Spring Boot 2
Recipes

A Problem-Solution Approach

Marten Deinum

Apress’

Spring Boot 2 Recipes
A Problem-Solution Approach

Marten Deinum

Apress’

Spring Boot 2 Recipes: A Problem-Solution Approach

Marten Deinum
Meppel, Drenthe, The Netherlands

ISBN-13 (pbk): 978-1-4842-3962-9 ISBN-13 (electronic): 978-1-4842-3963-6
https://doi.org/10.1007/978-1-4842-3963-6

Library of Congress Control Number: 2018964913

Copyright © 2018 by Marten Deinum

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or audio rights,
please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484239629. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3963-6

For my wife and daughters.
I love you.

Table of Contents

About the AUNOKcccrusemmisnnmmsssnmmsssnmssssnmssssssssssnsssssnnesssnnesssnnesssnnesssnnesssnnssssnnnsss Xiii
About the Technical REVIEWETccurussessssssnssssanssssanssssansssssnsssssnsssssnnssssnsssssnnssssnnssssas XV
AcknNoWIedgmentscccuseemnimssssnnnmnsssssnnmssssssnnesssssnnnssssssnnnssssssnnnsssssnnnnsssssnnnnssssnnns Xvii
INtroduCtion ...c.cciiiesmmssanmmsssnnmsssnnmssannmssansessannnsssnnssssnnnsssnnesssnnesssnnssssnnssssnnnsssnnnnssnnnsss Xix
Chapter 1: Spring Boot—Introduction.........cccuusseemmmmmmmnnmnsssssssssmnmmmmmsssssssssssemmns 1
1-1 Create a Spring Boot Application UsSing Maven ... s sessessens 2
PrODIBIM ... e e 2
SOIULION .t nan 2

HOW HEWOTKS ...ttt sttt s n s e s s e e e bt 2

1-2 Create a Spring Boot Application Using Gradle...........c.ccvcrivvnnninennnnsnnens s sessessens 6

o (0]0] T 1 4 SO SSRS SRR 6
SOIULION .t e e an 6

HOW [EWOTKS ..ot s sne s s n e s s r e s nn e s ne s n s nn e ene e 6

1-3 Create a Spring Boot Application Using Spring Initializr..........ccecvvvvvinininnsnsniennsensenennns 10

(o0 (0]] T 1 OSSR 10
310 11 (3OS 10

HOW [EWOPKSeeeeccrinie st s s s s s n e e e nne s 10

T 11111 O 14
Chapter 2: Spring BoOt—BaSIiCScccurrrrsssmmnmmssssnnnsmssssnssssssssnssssssssnsssssssssssssssssnnnsssss 15
2-1 CoNfigUre @ BEANcccovverireecre sttt e e s e e 15
PrODIBM ... ——————— 15

3T 11 170 O 15

HOW HEWOTKS ...t s s s 15

TABLE OF CONTENTS

2-2 Externalize Properties ... s ss s s 21
10] T S 21
RST8] 1] TP 22
HOW [EWOTKS ...t s s 23

B T LT 1 o o OSSOSO 26
10 T T 26
830} 0 27
HOW [EWOTKS ... s s 27

2-4 CoNfigUIE LOGGING .eveereeerersererreereesesessesessesessssesessssessesessssssesssssssssssssssssssssssssnsssensesssssssssnens 32
(0]] T 32
ST 11 70 P 32
HOW [EWOTKS ... e 32

2-5 Reusing Existing Configuration..........c.cuccevenernssnsessnesesnsesssssesese s sessssssssssssssssssssssssenens 34
(0]] T SR 34
S0 11 0] RS 34
HOW [EWOTKS ...t e 34

Chapter 3: Spring MVCcccirnimmmnmmmmsnnnmmmsssssnmmssssssnmessssssnesssssssssessssnsssssssnnnssssss 37

3-1 Getting Started with SPring MVC........c.ccvv i s sne s 37
PrODIBM ...t ————————— 37
£ 10 0 37
HOW [EWOTKS ...ttt 37

3-2 Exposing REST Resources With Spring MVCcccvvirnnnnniennennsessesesssessessessessssessessenes 42
PrODIBIM ... s 42
£S04 42
HOW [EWOTKS ...ttt e 42

3-3 Using Thymeleaf with SPring BOOtccccvvrierennsnsereresessere e ssssesessessesessessessessssessessenes 52
(0] T N 52
£ 10 0] 52
0L L0 N 52

TABLE OF CONTENTS

3-4 Handling EXCEPLIONSccvcvvcircresn et s s 59
(0]] T 59

£ 10 0§ 59
HOW [EWOTKS ...t 59
3-5 Internationalizing Your Application ... s 65
(0]] T 65
S0 11 0] P 65
HOW [EWOTKS ...t 65
3-6 ReSOIVING USEI LOCAIES........cccourueererererneerseneseesesesesessesesessesessesessssessssesessssesssssssssssssssnsenens 68
(0]] T 68

ST 11 70 TS 68
0L L0 69
3-7 Selecting and Configuring the Embedded SErver...........cvvnrnneneresesnsesesesesesesessesessenens 73
(0]] T SR 73
S0 11 0] SRS 73
HOW [EWOTKS ... 73
3-8 Configuring SSL for the Serviet Container..........couevvesressnesnese s 79
L0 (0] 0] [T 1 SR 79

30 0] OSSO 79
HOW [EWOTKS ...t nns s 79
Chapter 4: Spring MVGC = ASYNC ..cccccerrrssssnnnsssssssssssssssssssesssssssssssssnsssssssssnsssssssnnnsssss 85
4-1 Asynchronous Request Handling with Controllers and TaSKEXECULOF...........ceoveereereererseraenns 86
o 10] 1T N 86

£ 10 10 86
HOW [EWOTKS ...t s 86
4-2 RESPONSE WHTEIS....ccceierieiriirc e s s s e s 91
o 10]] T N L
£S04 OSSR 91
HOW [EWOTKS ...t Cl

vii

TABLE OF CONTENTS

4-F3WEDSOCKELSceeeeereecrercreree et e ne e 100
g £0]] T TS 100

£ 10 10T 100
HOW [EWOTKS ... s s 100
4-4 WebSockets With STOMP.........ccoo e 110
g 10] T T 110

£ 0] 11 0] T 111
HOW [EWOTKS ... e 111
Chapter 5: Spring WebFIUXcoucumimssemmmmmmmmmmmmsssssssssmssmssmssssssssssssssssssssssssssnssssess 121
5-1 Developing a Reactive Application with Spring WebFIuX........cccoovvvvnininninnninnsnsenennn, 121
(0]] T S TSTST 121

B30 0] T 121
HOW [EWOTKS ... se e se s s se e s e e s e sessssssssns s e nennis 123
5-2 Publishing and Consuming with Reactive Rest Servicescccovvvrvrinninsnienesensensennn, 128
PrODIBIM ... e 128

B3 0] 0] OSSPSR 128
HOW IEWOTKS ..veeeiecesscse s sn s s ss e s se s e s sas s s sn s nensis 128
5-3 Use Thymeleaf as a Template ENQINecccvvevennininnnsinse s sesse s ssesessessesnes 137
PrODIBM ... —————————————————— 137
SOIULION .t ——————————— 137
HOW IEWOIKS ...t s 137
5-4 WebFlux and WebhSO0CKELS..........ccocrriississ s 144
PrODIBM ... ———————— 144
SOIULION <.t 144
HOW [EWOTKS ... s s s 144
Chapter 6: Spring SECUNtYccccusremmrrmsssnnnmsssssnnnmsssssnsnssssssnssessssssnnsssssnnnssssssnnnnss 155
6-1 Enable Security in Your Spring Boot Applicationcccoecvvninivnsncnnens e 155
g 10] T S 155
£S04 155
HOW TEWOTKS ... e 155

viil

TABLE OF CONTENTS

6-2 Logging into Web AppliCations.........cccoevinninienesnsnse s snas 163
g 10] T 163
£S04 TSP 163
HOW [EWOTKS ... s 164

6-3 Authenticating USEIS ..o e s 173
(0]] T T 173
30 11 0] 173
HOW [EWOTKS ... e 174

6-4 Making Access Control DECISIONS........c.cccvreererenerenerrssesese e senns 180
(0]] T T 180
30 11 0] S 180
HOW [EWOTKS ... se s se s sns s 180

6-5 Adding Security to @ WebFIux Applicationcoovernnernenensse s 185
(0]] T TS 185
£ 0] 11 170 ST 185
HOW [EWOTKS ... s 185

66 SUIMIMANYcovvveiirierissesense s s ss e s e e s se s a e sea e sn e p e e e R e pe e e e e 191

Chapter 7: Data ACCESS ...uueeeerrrrmmmmssssssssssssssssssssssssnnssssssssssssssssnnnsssssssssssssnnnnnnnnsnnss 193

7-1 Configuring @ DAtASOUICE.........covveererrerertrrerre e s e s ss e e s saesae e s e saenaes 193
g 10]] =T TN 193
£S04 193
HOW [EWOTKS ...t s s 194

7-2 Use JUDCTEMPIALE ..o e e 204
L 10]] =T 204
£ 10 10§ 204
HOW [EWOTKS ... s s 204

LA T8 E =T VT 212
10] T 212
£ 0] 11 0] T 212
HOW [EWOTKS ... e 212

ix

TABLE OF CONTENTS

7-4 Use PIain HIDEIMALE ..ot 221
g £0]] T TS 221

£ 10 10T 221
HOW [EWOTKS ... s s 221
7-5 Spring Data MoNQODB ... e s 224
g 10] T T 224

£ 0] 11 0] T 224
HOW [EWOTKS ... e 224
Chapter 8: Java Enterprise ServiCesccccsrumssnsmmsssssnsnssssssnnnssssssnnsssssssnnnsssssnnnnss 239
8-1 Spring ASYNCRronOUS ProCESSINGvueerrrerrsesmsreserissesessesesss e seseses e ssssssessssesssssssssesenns 239
(0]] T S TSTST 239

B30 0] T 239
HOW [EWOTKS ... se s s se e s sessssesss s s sessssssssnsnssssnsnns 240
8-2 Spring Task SCREAUIINGccveervcerirerire e 243
PrODIBIM ... e 243
HOW IEWOIKS ... s s s s 244
8-3 Sending E-Mailccceririeririireresirsere s s e s a e s s e e e p e e e nnn 246
PrODIBM ... —————————————— 246
SOIULION . —————————— 246
HOW [EWOTKS ...t s 246
8-4 Register @ JMX MBEANccvcerererreriererssssssessessessssessessesssssssessesssssssessessesssssssessssssssssessesses 251
PrODIBM ... —————————— 251
SOIULION <.t 252
HOW [EWOTKS ...t s s s s 252
Chapter 9: MeSSagiNg.....cusussssssssassssnsssansssansssnsssansssassssnsssansssansssnssssnsssansssnsssansssans 257
9-1 Configure JMS ... e e e e 257
g 10] T S 257
£S04 257
HOW [EWOTKS ... s 257

TABLE OF CONTENTS

9-2 Send Messages USiNg JMS ... s s sns s s snes 264
g 18]] T T 264

£ 10 10O 264
HOW [EWOTKS ... e 264
9-3 Receive Messages USING JMS..........o e 27
g 10] T T 271

£ 0] 11 0] 27
HOW [EWOTKS ... e 27
9-4 Configure RADDItMQcccovriirecer e 276
(0]] T TS 276

£ o] 11 0] T 276
HOW [EWOTKS ... s sne s sns e 277
9-5 Send Messages Using RabbitMQ............ccccceeemnnciennn e eeaes 278
(0]] T TS 278
B30} 0] T 278
HOW [EWOTKS ... se e s se e s sesss e s e s sessssssssnsnssssnsnns 278
9-6 Receive Messages Using RabbitMQc.ccccvvevresnnnesncsess s 286
g (0] 0] [T 1 OSSR 286

RS0 0] OSSPSR 286
HOW HEWOIKS ... s s 286
Chapter 10: Spring Boot Actuator............ccceunnsmmnnnnsssnnnmnnssssnnmmsssssnmmssssssessssnnn 291
10-1 Enable and Configure Spring Boot ACTUALONcccccvverererserrerernsersese e s s sessesennens 291
g 10]] =T TN 291
£S04 291
HOW [EWOTKS ...t s s 292
10-2 Create Custom Health Checks and MEtriCSc.ccocrerrerrnienesenressesesese e 300
L 10]] =T 300

£ 10 10§ 300
HOW [EWOTKS ... s s 300

xi

TABLE OF CONTENTS

10-3 EXPOIE METIICS ...cveerceeriesire s s s sn s st s s st 303
g 10] T TS 303

£ 10 10T 303
HOW [EWOTKS ... e s 303
Chapter 11: PACKagingccccuurrrrrmssssssssssnmmmmssssssssssssssnssssssssssssssnsnsssssssssssnsnnnnnnnness 307
11-1 Create an Executable ArChive..........ccoveererrnsnrcse s 307
10] T T 307
30 11 0] 307
HOW [EWOTKS ... 307
Making the Archive EXECULADIE ... s 308
11-2 Create @ WAR for Deployment.........cccvvererenernsesesesese s sesssss e ssssesessssenns 311
Lo 10]] T TS 311

£ 0] 11 0] TR 311
HOW [EWOTKS ... e nns e 311
11-3 Reduce Archive Size Through the Thin LAUNCNENccovevniennienereserssesese e 314
(0]] T TSRS 314

B30 0] OSSPSR 315
HOW [EWOTKS ...t s nna e 315
114 USING DOCKEerveerreerisessssesesse e sss e srs s s ss s ss s s ss s e sesnsnens 316
PrODIBIM ... e 316

B30 0] OSSPSR 316

g (0 LT o g OSSR 317
11T - N 321

xii

About the Author

Marten Deinum is a submitter on the open source Spring
Framework project. He is also a Java/software consultant
working for Conspect. He has developed and architected
software, primarily in Java, for small and large companies.
He is an enthusiastic open source user and longtime

fan, user, and advocate of the Spring Framework. He has
held a number of positions including software engineer,
development lead, coach, and Java and Spring trainer.

xiii

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic developer and
researcher who enjoys learning new technologies for his
own experiments and creating new integrations. Manuel
won the Springy Award—Community Champion and Spring
Champion 2013. In his little free time, he reads the Bible
and composes music on his guitar. Manuel is known as dr_
pompeii. He has tech reviewed numerous books for Apress,
including Pro Spring, 4th Edition (2014), Practical Spring
LDAP (2013), Pro JPA 2, Second Edition (2013), and Pro
Spring Security (2013). Read his 13 detailed tutorials about
many Spring technologies, contact him through his blog at www.manueljordanelera.
blogspot.com, and follow him on his Twitter account, @dr_pompeii.

http://www.manueljordanelera.blogspot.com/
http://www.manueljordanelera.blogspot.com/

Acknowledgments

Although this is the fourth book I've ever (co)authored, I'm still amazed by the amount
of work that goes into creating the book. Not just by me writing the content, but also by
the very nice people at Apress. I realized with my first book that writing a book is hard;
however, writing a book on cutting edge technology (Spring Boot 2.1) is even harder.
Writing content against prerelease/beta software will result in rewriting samples and
content. This, at times, drove me and I guess my Editoral Manager (Mark Powers) nuts
as well. So I'm sorry I had to rewrite and reproduce so much content and that all in all it
took more time then I initially thought it would. However, the result is a fresh book using
Java 11 and covering Spring Boot 2.1.

I owe a big thanks to all the people at Apress for trying to keep me on schedule while
still keeping the quality and content up. Thank you for giving me the chance to finish my
fourth book and for the support. So a very big thanks to all of you.

A book isn’t written in isolation and without the comments and suggestions from
the review, Manuel Jordan, some parts of the book would have been quite different. So
Manuel, thanks for the comments, suggestions, and your time for reviewing this book
(and reaching out to me).

Thanks to my family and friends for the times they had to miss me and again to my
dive buddies for all the dives and trips I missed.

Last but definitely not least, I thank my wife, Djoke Deinum, and daughters, Geeske
and Sietske, for their endless support, love, and dedication, despite the long evenings
and sacrificed weekends and holidays to finish the book. Without your support, I
probably would have abandoned the endeavor long ago.

xvii

Introduction

Welcome to the first edition of Spring Boot 2 Recipes. It will focus on developing software
using Spring Boot 2.1 and the supported projects like Spring Security, Spring AMQP etc.

Who This Book is For

This book is for the developer who wants to simplify application development and have
a faster startup time for writing applications. Introducing Spring Boot to you will simplify
your application configuration. Using the full power of Spring Boot simplifies your
deployment and management as well.

This book assumes that you are familiar with Java, Spring, and an IDE of some sort.
This book doesn't explain all the internals and in-depth workings of Spring or the related
projects. For in-depth coverage, pick up a copy of Spring 5 Recipes or Pro Spring MVC.

How This Book Is Structured

Chapter 1, “Spring Boot - Introduction,” gives a quick overview of Spring Boot and
how to get started.

Chapter 2, “Spring Boot - Basics,” covers the basic scenarios of how to define and
configure a bean and do dependency injection with Spring Boot.

Chapter 3, “Spring MVC,” Covers web-based application development using Spring
MVC.

Chapter 4, “Spring MVC - Async,” covers asynchrounous web-based application
development using Spring MVC.

Chapter 5, “Spring WebFlux,” covers reactive web-application development using
Spring WebFlux.

Chapter 6, “Spring Security,” provides an overview on how to secure your Spring
Boot application using Spring Security.

Chapter 7 “Data Access,” explains how to access data storage like a database or
MongoDB.

Xix

INTRODUCTION

Chapter 8 “Java Enterprise Services,” introduces how to use enterprise services like
JMX, Mail, and scheduling with Spring Boot.

Chapter 9 “Messaging,” provides an introduction on how to do messaging with JMS
and RabbitMQ using Spring Boot.

Chapter 10, “Spring Boot Actuator,” explains how to use the production-ready
features like health and metrics endpoints from Spring Boot Actuator.

Chapter 11, “Packaging,” covers how to package and deploy your Spring Boot
application by making it executable or wrapping it in a Docker container.

Conventions

Sometimes, when we want you to pay particular attention to a part within a code
example, we will make the font bold. Please note that the bold doesn't necessarily reflect
a code change from the previous version.

In case a code line is too long to fit the page’s width, we will break it with a code
continuation character. Please note that when you try to type the code, you have to
concatenate the line by yourself without any spaces.

Prerequisites

Because the Java programming language is platform independent, you are free to choose
any supported operating system. However, some of the examples in this book use
platform-specific paths. Translate them as necessary to your operating system's format
before typing the examples.

To make the most out of this book, install JDK version 11' or higher. You should
have a Java IDE installed to make development easier. For this book, most of the sample
code is Maven? based, and most IDE's have build in support for Maven to manage the
classpath. The samples all make use of the Maven Wrapper® so you don't necessarily
need to install Maven to be able to build the samples from the command line.

The samples sometimes need additional libraries installed like PostreSQL,
ActiveMQ), etc.; for this, the book uses Docker.* Of course you can install the libraries

'https://adoptopenjdk.net/
*https://maven.apache.org/
Shttps://github.com/takari/maven-wrapper
*https://www.docker.com

XX

https://adoptopenjdk.net/
https://maven.apache.org/
https://github.com/takari/maven-wrapper
https://www.docker.com/

INTRODUCTION

on your machine instead of using Docker, but for ease of use (and not polluting your
system) using Docker is preferred.

Downloading the Code

The source code for this book can be accessed by clicking the Download Source Code
link located at www.apress.com/9781484239629. The source code is organized by
chapters, each of which includes one of more independent examples.

Contacting the Author

We always welcome your questions and feedback regarding the contents of this book.
You can contact Marten Deinum by e-mail at marten@deinum.biz or Twitter at @mdeinum.

xxi

http://www.apress.com/9781484239629

CHAPTER 1

Spring Boot—Introduction

In this chapter you will get a brief introduction to Spring Boot. At the heart of Spring Boot
lies the Spring Framework; Spring Boot extends this to make auto-configuration, among
others, possible.

Spring Boot makes it easy to create stand-alone, production-grade, Spring-
based Applications that you can “just run.” We take an opinionated view of
the Spring platform and third-party libraries so you can get started with
minimum fuss. Most Spring Boot applications need very little Spring
configuration.

From the Spring Boot Reference Guide

Spring Boot has auto-configuration for infrastructure like JMS, JDBC, JPA, RabbitMQ,
and lots more. Spring Boot also offers auto-configuration for different frameworks
like Spring Integration, Spring Batch, Spring Security, and many others. When
these frameworks or capabilities are detected, Spring Boot will configure them with
opinionated but sensible defaults.

The source code uses Maven for its build. Maven will take care of getting the
necessary dependencies, compiling the code, and creating the artifact (generally a
jar-file). Furthermore, if a recipe illustrates more than one approach, the source code is
classified with various examples with roman letters (e.g., Recipe_2_1_i, Recipe_2_1_ii,
Recipe_2_1_iii, etc.).

Tip To build each application, go inside the Recipe directory (e.g., ch2/
recipe_2_1_i/) and execute the mvnw command to compile the source code. Once
the source code is compiled, a target subdirectory is created with the application
executable. You can then run the application JAR from the command line (e.qg.,
java -jar target/Recipe 2 1 i.jar).

© Marten Deinum 2018
M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6_1

CHAPTER 1 SPRING BOOT—INTRODUCTION

1-1 Create a Spring Boot Application Using Maven
Problem

You want to start developing an application using Spring Boot and Maven.

Solution

Create a Maven build file, the pom.xml, and add the needed dependencies. To launch the
application, create a Java class containing a main method to bootstrap the application.

How It Works

Suppose you are going to create a simple application that bootstraps a
SpringApplication (the main entry point for a Spring Boot application), gets all the
beans from the ApplicationContext, and outputs them to the console.

Create the pom.xml

Before you can start coding you need to create the pom. xml the file used by Maven to
determine what needs to be done. The easiest way to use Spring Boot is by using the
spring-boot-starter-parent as the parent for your application.

<parent»
<groupldyorg.springframework.boot</groupIlds
<artifactId>spring-boot-starter-parent<¢/artifactIds
<version»2.1.0.RELEASE</version»
<relativePath />

</parent>

Next you need to add some Spring dependencies to get started using Spring; for this,
add the spring-boot-starter as a dependency to your pom.xml.

<dependencies>
<dependency>
<groupldyorg.springframework.boot</groupIds
<artifactId>spring-boot-starter</artifactlds
</dependency>
</dependenciesy

2

CHAPTER 1 SPRING BOOT—INTRODUCTION

Notice the fact that there is no version or other information needed; all this is
managed because the spring-boot-starter-parent is used as the parent for the
application. The spring-boot-starter will pull in all the core dependencies needed to
start a very basic Spring Boot application, things like the Spring Framework, Logback for
logging, and Spring Boot itself.

The full pom.xml should now look like this.

<2xml version="1.0" encoding="UTF-8"2»

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd"»

<modelVersion»4.0.0</modelVersion>
<groupIdscom.apress.springbootrecipes</groupIds>
<artifactId>chapter 1 1</artifactIds
<version»2.0.0</version»

<parent>
<groupldyorg.springframework.boot</groupIds
<artifactId>spring-boot-starter-parent<¢/artifactIds»
<version»2.1.0.RELEASE</version»

</parent>

<dependencies>
<dependency>
<groupldyorg.springframework.boot</groupIds
<artifactldyspring-boot-starter</artifactlds
</dependency>
</dependenciesy
</projects

Create the Application Class

Let’s create a DemoApplication class with a main method. The main method calls
SpringApplication.run with the DemoApplication.class and arguments from the
main method. The run method returns an ApplicationContext, which is used to
retrieve the bean names from ApplicationContext. The names are sorted and then
printed to the console.

CHAPTER 1 SPRING BOOT—INTRODUCTION
The resulting class would look like the following:
package com.apress.springbootrecipes.demo;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.context.annotation.ComponentScan;

import org.springframework.context.annotation.Configuration;

import java.util.Arrays;

@Configuration
@EnableAutoConfiguration
@ComponentScan

public class DemoApplication {

public static void main(String[] args) {
var ctx = SpringApplication.run(DemoApplication.class, args);

System.out.println("# Beans: " + ctx.getBeanDefinitionCount());

var names = ctx.getBeanDefinitionNames();
Arrays.sort(names);
Arrays.asList(names).forEach(System.out::println);

This class is a regular Java class with a main method. You can run this class from your
IDE. When the application runs it will show output similar to Figure 1-1.

CHAPTER 1 SPRING BOOT—INTRODUCTION

VAN AU U R W U W
CCN [I I I VAR I W U WY

AV B I T o i e O O O N IS B B IR B B |

QR PR R U I U U B PSP B0 iy 4

(I | /=111

1t Spring Boot :: (v2.1.0.BUILD-SNAPSHOT)
2018-08-31 09:02:38.014 INFO 39174 — [main] c.a.s.demo.DemoApplication
2018-98-31 09:02:38.017 INFO 39174 — [main] c.a.s.demo.DemoApplication
2018-08-31 09:02:38.568 INFO 39174 —— [main] o.s.s5.co rrent.ThreadPoolTaskExecutor
2018-08-31 09:02:38.596 INFO 39174 —— [main] c.a.s.demo.DemoApplication
Beans: 33
applicationTaskExecutor
demoApplication
mbeanExporter
mbeanServer
objectNamingStrategy

org.springframework.boot.autoconfigure.AutoConfigurationPackages

Figure 1-1. Output of running application

What did happen with the code and annotations? The @Configuration annotation
makes this class a Spring Java configuration class. Generally when creating an
application you also have other components you need to have picked up; for this add the
@ComponentScan annotation. Finally, to let Spring Boot do its auto-configuration, add the
@EnableAutoConfiguration annotation.

Simplify the Application Class
Ifyou look at the class definition, there are three annotations on it.

@Configuration
@EnableAutoConfiguration
@ComponentScan

public class DemoApplication { s }

When writing a Spring Boot-based application, most of those require all these
annotations. This code can be simplified by using the @SpringBootApplication
annotation instead. The class header then becomes

@SpringBootApplication
public class DemoApplication { s }

The @SpringBootApplication annotation is a so-called composed annotation and
consists of the earlier needed annotations.

CHAPTER 1 SPRING BOOT—INTRODUCTION

@Target({ElementType.TYPE})
@Retention(RetentionPolicy.RUNTIME)

@ocumented

@Inherited

@SpringBootConfiguration
@EnableAutoConfiguration

@ComponentScan

public @interface SpringBootApplication { ... }

There is one difference between the @SpringBootApplication and the earlier
mentioned annotations. Here the @SpringBootConfiguration annotation is used instead
of the @Configuration annotation. The @SpringBootConfiguration is a specialized
@Configuration annotation. It indicates that this is a Spring Boot-based application.
When using @SpringBootConfiguration in your application, there can only be one class
annotated with this annotation!

1-2 Create a Spring Boot Application Using Gradle
Problem

You want to start developing an application using Spring Boot and Gradle.

Solution

Create a Gradle build file, the build.gradle, and add the needed dependencies.
To launch the application, create a Java class containing a main method to bootstrap
the application.

How It Works

Suppose you are going to create a simple application that bootstraps a
SpringApplication, gets all the beans from the ApplicationContext, and outputs them
to the console.

CHAPTER 1 SPRING BOOT—INTRODUCTION

Create the build.gradle

First you need to create a build.gradle and use the two plug-ins needed for Gradle

to properly manage the dependencies for Spring Boot. Spring Boot requires a special
Gradle plug-in (the Spring Boot Gradle plug-in) as well as a plug-in to extend the default
dependency management capabilities of Gradle (the dependency management plug-in).
To enable and configure these plug-ins, create a buildscript task in your build.gradle.

buildscript {
ext {
springBootVersion = '2.1.0.RELEASE'

}

repositories {
mavenCentral()

}

dependencies {
classpath("org.springframework.boot:spring-boot-gradle-
plugin:${springBootVersion}")

This task will now properly configure the Spring Boot plug-in to use. Next you
need to specify the plug-ins you want to use; as this is a Java-based project, you at
least need the Java plug-in and as this book is about Spring Boot, you will also need
the org.springframework.boot plug-in. Finally, you need to include the io.spring.
dependency-management plug-in, for letting the Spring Boot Starters manage the
dependencies.

apply plugin: 'java'
apply plugin: 'org.springframework.boot'

apply plugin: 'io.spring.dependency-management'

Finally you will need to add the needed dependencies; just as with Recipe 1.1, add
the spring-boot-starter dependency.

dependencies {
compile 'org.springframework.boot:spring-boot-starter’

CHAPTER 1 SPRING BOOT—INTRODUCTION

Notice the absence of the specific version on the dependency. Not needing to
specify the version, and have it automatically managed, is due to the usage of the io.
spring.dependency-management plug-in which, just as with Maven, allows for easier
dependency management.

The full build.gradle should now look something like this:

buildscript {
ext {
springBootVersion = '2.1.0.RELEASE'

}

repositories {
mavenCentral()

}

dependencies {
classpath("org.springframework.boot:spring-boot-gradle-
plugin:${springBootVersion}")

}

apply plugin: 'java'
apply plugin: 'org.springframework.boot'
apply plugin: 'io.spring.dependency-management'

dependencies {
compile 'org.springframework.boot:spring-boot-starter’

}

repositories {
mavenCentral()

}

Create the Application Class

Let’s create a DemoApplication class with a main method. The main method calls
SpringApplication.run with the DemoApplication.class and arguments from the
main method. The run method returns an ApplicationContext, which is used to
retrieve the bean names from ApplicationContext. The names are sorted and then

printed to the console.

8

CHAPTER 1 SPRING BOOT—INTRODUCTION
The resulting class would look like the following:
package com.apress.springbootrecipes.demo;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

import java.util.Arrays;

@SpringBootApplication
public class DemoApplication {

public static void main(String[] args) {
var ctx = SpringApplication.run(DemoApplication.class, args);

System.out.println("# Beans: " + ctx.getBeanDefinitionCount());

var names = ctx.getBeanDefinitionNames();
Arrays.sort(names);
Arrays.asList(names).forEach(System.out::println);

This class is a regular Java class with a main method. You can run this class from
your IDE. When the application runs, it will show output similar to Figure 1-2.

VAN AU U R W U W
CCN [I I R VA B U W WY
AV B I T o i e O O O N IS B B IR B B |

R PR R D O U) NP B Ay A

(I | /=111

: Spring Boot :: (v2.1.0.BUILD-SNAPSHOT)
2018-08-31 09:02:38.014 INFO 39174 — [main] c.a.s.demo.DemoApplication
2018-98-31 09:02:38.017 INFO 39174 — [main] c.: emo.DemoApplication
2018-08-31 09:02:38.568 INFO 39174 —— [main] o.s.s. concurrent.ThreadPoolTaskExecutor
2018-08-31 ©09:02:38.596 INFO 39174 — [main] c.a.s.demo.DemoApplication
Beans: 33
applicationTaskExecutor
demoApplication
mbeanExporter
mbeanServer
objectNamingStrategy

org.springframework.boot.autoconfigure.AutoConfigurationPackages

Figure 1-2. Output of running application

CHAPTER 1 SPRING BOOT—INTRODUCTION

1-3 Create a Spring Boot Application Using Spring

Initializr
Problem

You want to start a Spring Boot application using Spring Initializr.

Solution

Goto http://start.spring.1io, select the Spring Boot version and the different

dependencies you think you need, and download the project.

How It Works

First, go to http://start.spring.io, which will open the Spring Initializr (Figure 1-3)

eoe® < o

Generate a Maven Project 4

Project Metadata
Artifact coordinates
Group

com.axample

Artifact

demo

start.spring.jo : [+] Ul =N

SPRING INITIALIZR

with Spring Boot 130sc

Dependencies

Add Spring Boot Starters and dependencies to your application

Search for dependencies

Selected Starters

Don't know what to look for? Want more options? Switch to th

e full vers

on

Figure 1-3. Spring Initializr

10

http://start.spring.io
http://start.spring.io

CHAPTER 1 SPRING BOOT—INTRODUCTION

Now select what you want to generate (Maven or Gradle). Select the Spring
Boot version you want to use; select the most recent one. Next, for the group
enter com.apress.springbootrecipes and as artifact leave the default demo
value (Figure 1-4).

20® < im) start.spring.io & 4]] (m) =

SPRING INITIALIZR

Generate @ waweneec ¢ With Spring Boot 130sc

Project Metadata Dependencies
Artifact coordinates Add Spring Boot Starters and dependencies to your application
Group Search for dependencies
com.apress.springbootrecipes. demo Web, Security, JPA, Actuator, Devtools...
Artifact Selected Starters
demo

Generate Project % + =

Don't know what to look for? Want more options? Switch to the full version

Figure 1-4. Spring Initializr with values
Finally click the Generate Project button; this will trigger a download of a demo. zip.

Extract this zip file and import the project into your IDE. After importing, you should
have a structure similar to that in Figure 1-5.

11

CHAPTER 1 SPRING BOOT—INTRODUCTION

v [Eidemo (~/Downloads/demo)
» 1.mvn
v Osrc
v [CImain
v [Ojava
v [1com.apress.springbootrecipes.demo
@ & DemoApplication
v [Eresources
#§ application.properties
v [Ctest
v [Ojava
v [E1com.apress.springbootrecipes.demo
€' % DemoApplicationTests
Il demo.iml
=] mvnw
5l mvnw.cmd
m pom.xmil

Figure 1-5. Imported project

Open the pom.xml and compare it with the one from Recipe 1.1 (or build.gradle from
Recipe 1.2). It is quite similar; however, there are two differences to note. First there is
an additional dependency, spring-boot-starter-test. This pulls in the needed test
dependencies like Spring Test, Mockito, Junit 4, and Assert]. With this single dependency
you are ready to start testing.

The second difference is the fact that there is now a build section with the spring-
boot-maven-plugin configured.

<build»
<plugins>
<pluginy
<groupIdsorg.springframework.boot</grouplds
<artifactId»spring-boot-maven-plugin</artifactIds
</pluginy
</plugins>
</build»

This plug-in takes care of creating a fat JAR. It takes the original JAR and repackages
it with all the dependencies inside it. That way you can just hand over the JAR file to the
operations team. The operations team needs to do java -jar <your-application>.jar
to launch the application. No need to deploy it to a Servlet container or JEE container.

12

CHAPTER 1 SPRING BOOT—INTRODUCTION

Implement a Simple Application

Open the DemoApplication and update the content to count and obtain the beans from

the ApplicationContext.

package com.apress.springbootrecipes.demo;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

import java.util.Arrays;

@SpringBootApplication
public class DemoApplication {

public static void main(String[] args) {
var ctx = SpringApplication.run(DemoApplication.class, args);

System.out.println("# Beans: " + ctx.getBeanDefinitionCount());
var names = ctx.getBeanDefinitionNames();

Arrays.sort(names);
Arrays.asList(names).forEach(System.out::println);

}
Building the JAR

When using the Spring Initializr, all projects come with the Maven Wrapper (or Gradle
Wrapper when using Gradle) to make it easier to build the application. To use the
wrapper script, open up a command line. Navigate to the directory the project is in.
Finally, execute ./mvnw package or ./gradlew build. This should create the executable
artifact in the target (or build/1ibs) directory.

Now that the JAR has been built, let’s execute it and see what happens. Type java
-jar target/demo-0.0.1-SNAPSHOT.jar (or java -jar build/libs/demo-0.0.1-
SNAPSHOT. jar) and watch the application start and list the beans from the context
(see Figures 1-1 and 1-2).

13

CHAPTER 1 SPRING BOOT—INTRODUCTION

1-4 Summary

In this chapter you looked at how to bootstrap your development using Spring Boot. We
looked at how to get started using Maven as well as Gradle, and finally we looked at how
to get started using the Spring Initializer.

In the next chapter we will take a look at basic configuration of a Spring Boot
application, how to define a bean, how to use property files, and how to override
properties.

14

CHAPTER 2

Spring Boot—Basics

In this chapter we will take a look at the basic features of Spring Boot.

Note To get a starting point, use the Spring Initializr to create a project. No
additional dependencies are required, just a Spring Boot project.

2-1 Configure a Bean
Problem

You want Spring Boot to use your class as a bean.

Solution

Depending on your needs, you can either leverage @ComponentScan to automatically
detect your class and have an instance created; use it together with @Autowired

and @Value to get dependencies or properties injected; or you can use a method
annotated with @Bean to have more control over the construction of the bean being
created.

How It Works

Recipe 1.1 explained that @SpringBootApplication includes both @ComponentScan and
@Configuration. This means that any @Component annotated class will be automatically
detected and instantiated by Spring Boot; it also allows for @ean methods to be defined
to declare beans.

15
© Marten Deinum 2018

M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6_2

CHAPTER 2 SPRING BOOT—BASICS

Using @Component

First, create a class to bootstrap the application. Create a HelloWorldApplication that s
annotated with @SpringBootApplication.

@SpringBootApplication
public class HelloWorldApplication {

public static void main(String[] args) {
SpringApplication.run(HelloWorldApplication.class, args);
}
}

Tip Place the @SpringBootApplication annotated class in a top-level
package; this way it will automatically detect all your annotated components,
configuration classes, etc. defined in this package and all subpackages.’

This will bootstrap the application, detect all @Component annotated classes, and
detect which libraries are on the classpath (see also Chapter 1). When running this
HelloWorldApplication it won’t do much, as there is nothing to detect or to run. Let’s
create a simple class that will be automatically detected by Spring Boot.

@Component
public class HellolWorld {

@PostConstruct
public void sayHello() {
System.out.println("Hello World, from Spring Boot 2!");
}
}

Spring Boot will detect this class and create a bean instance from it. The
@PostConstruct annotated method is invoked after construction and injection of all
dependencies. Simply put, at startup the sayHello method will run and the console will
print the line Hello World, from Spring Boot 2!.

'https://docs.spring.io/spring-boot/docs/current/reference/
htmlsingle/#using-boot-locating-the-main-class

16

https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#using-boot-locating-the-main-class
https://docs.spring.io/spring-boot/docs/current/reference/htmlsingle/#using-boot-locating-the-main-class

CHAPTER 2 SPRING BOOT—BASICS

Important When you need to scan packages not covered by the default
component scanning, you need to add a @ComponentScan annotation to your
@SpringBootApplication annotated class so that those packages will be
scanned as well. These packages are scanned in addition to the default scanning
applied through the @SpringBootApplication annotation.

Using @Bean Method

Instead of automatically detecting components, you can also use a factory method to
create beans. This is useful if you want or need more control over the construction of
your bean. A factory method is a method annotated with @Bean? and it will be used to
register a bean in the application context. The name of the bean is the same as the name
of the method. The method can have arguments and those will be resolved to other
beans in the application context.

Let’s create an application that can do some basic calculations for integers. First
let’s write the Calculator; it will get a collection of Operation beans in the constructor.
Operationis an interface, and the different implementations will do the actual
calculation.

package com.apress.springbootrecipes.calculator;
import java.util.Collection;
public class Calculator {

private final Collection<Operation> operations;

public Calculator(Collection<Operation> operations) {
this.operations = operations;

}

public void calculate(int lhs, int rhs, char op) {

for (var operation : operations) {

*https://docs.spring.io/spring/docs/current/spring-framework-reference/core.
html#beans-java-bean-annotation

17

https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-java-bean-annotation
https://docs.spring.io/spring/docs/current/spring-framework-reference/core.html#beans-java-bean-annotation

CHAPTER 2 SPRING BOOT—BASICS

if (operation.handles(op)) {
var result = operation.apply(lhs, rhs);
System.out.printf("%d %s %d = %s¥%n", lhs, op, rhs, result);
return;

}

throw new IllegalArgumentException("Unknown operation

+0p);

In the calculate method, the correct Operation is detected using the Operation.
handles method; when the correct one is found, the Operation.apply method is called
to do the actual calculation. If we pass in an operation that the calculator cannot handle,
an exception is thrown.

The Operation interface is a simple interface with the earlier mentioned two
methods.

package com.apress.springbootrecipes.calculator;
public interface Operation {

int apply(int lhs, int rhs);
boolean handles(char op);

Now let’s add two operations: one for adding values and one for multiplying values.
package com.apress.springbootrecipes.calculator.operation;

import com.apress.springbootrecipes.calculator.Operation;
import org.springframework.stereotype.Component;

@Component
class Addition implements Operation {

@verride
public int apply(int lhs, int rhs) {
return lhs + rhs;

18

CHAPTER 2 SPRING BOOT—BASICS

@verride

public boolean handles(char op) {
return '+' == op;

}

}

package com.apress.springbootrecipes.calculator.operation;

import com.apress.springbootrecipes.calculator.Operation;
import org.springframework.stereotype.Component;

@Component
class Multiplication implements Operation {

@verride
public int apply(int lhs, int rhs) {
return lhs * rhs;

}

@verride

public boolean handles(char op) {
return '*' == op;

}

These are all the components we need to make a calculator that can do additions
and multiplications and still have an extensible mechanism.

Finally let’s make an application that configures and uses the Calculator. To make
an instance of the Calculator, a @Bean method is needed. This method can be added to
the class annotated with @SpringBootApplication or a regular @Configuration.

package com.apress.springbootrecipes.calculator;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import java.util.Collection;

@SpringBootApplication
public class CalculatorApplication {

19

CHAPTER 2 SPRING BOOT—BASICS
public static void main(String[] args) {
var ctx = SpringApplication.run(CalculatorApplication.class, args);

var calculator = ctx.getBean(Calculator.class);
calculator.calculate(137, 21, '+');
calculator.calculate(137, 21, '*');
calculator.calculate(137, 21, '-');

}

@Bean
public Calculator calculator(Collection<Operation> operations) {
return new Calculator(operations);

}
}

The calculator factory method takes a List<Operation> and we use that to
construct the Calculator. When using parameters in a @Bean annotated method, those
will automatically be resolved; and when injecting a collection, Spring will automatically
detect all instances of the beans required and use that to invoke the calculator factory
method.

In the main method we retrieve the Calculator and call its calculate method with
different numbers and operations. The first two will nicely print some output to the
console; the last one will throw an exception, as there is no suitable operation to do
subtractions.

Although you created a factory method for the Calculator, this isn’t actually
needed. When annotating the Calculator with @Component, Spring will detect it.

The single constructor in the class will be used to construct it. When there are multiple
constructors, annotate the one to use with @Autowired.

Another thing that isn’t really nice about this code is that beans are retrieved
manually and that could be considered as a bad practice; generally you want to use
dependency injection. Spring Boot has an interface ApplicationRunner, which can be
used to run some code after startup of the application. When Spring Boot detects a bean
of type ApplicationRunner, it will invoke its run method as soon as the application has
started.

20

CHAPTER 2 SPRING BOOT—BASICS

package com.apress.springbootrecipes.calculator;

import org.springframework.boot.ApplicationRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
public class CalculatorApplication {

public static void main(String[] args) {
SpringApplication.run(CalculatorApplication.class, args);

}

@Bean
public ApplicationRunner calculationRunner(Calculator calculator) {
return args -> {
calculator.calculate(137, 21, '+');
calculator.calculate(137, 21, '*');
calculator.calculate(137, 21, '-');
};
}
}

The method to create a Calculator has been replaced by an ApplicationRunner.
This ApplicationRunner receives the automatically configured Calculator and
runs some operations on it. When running this class, the output should still be the
same as before. The major difference and advantage is that it is no longer needed to
manually get beans from the ApplicationContext, as Spring will take care of getting
the correct beans.

2-2 Externalize Properties
Problem

You want to use properties to configure your application for different environments or

executions.

21

CHAPTER 2 SPRING BOOT—BASICS

Solution

By default, Spring Boot supports getting properties from numerous locations. By
default, it will load a file named application.properties, and use the environment
variables and Java System properties. When running from the command line, it will also
take command line arguments into consideration. There are more locations that are
taken into account depending on the type of application and availability of capabilities
(like JNDI, for instance).? For our application the following resources are taken into
considering in given order.

1. Command line arguments
2. application.properties outside of the packaged application
3. application.properties packaged inside the application

Next to that, for options 2 and 3 you can also load a profile-specific one based on
the active profiles. The profiles to activate can be passed through the spring.profiles.
active property. The profile-specific application-{profile}.properties takes
precedence over the non-profile-specific one. Each will get loaded and with that you can
override properties, which makes the list a bit longer.

1. Command line arguments

2. application-{profile}.properties outside the packaged
application

3. application.properties outside the packaged application

4. application-{profile}.properties packaged inside the
application

5. application.properties packaged inside the application

*https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-
external-config.htmlitboot-features-external-config

22

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html#boot-features-external-config

CHAPTER 2 SPRING BOOT—BASICS

How It Works

The Calculator as created for Recipe 2.1 itself is pretty flexible; however, the
CalculatorApplication has hardcoded values when it comes to the calculations it does.
Now when we want to calculate something different, we would need to modify the code,
recompile, and run the newly compiled code. We want to use properties for this so that
we are able to change them when needed.

First modify the application to use the value from properties instead of hardcoded
values. For this, change the @Bean method for the ApplicationRunner to accept three
additional parameters, and those parameters are going to be annotated with @Value.

package com.apress.springbootrecipes.calculator;

import org.springframework.beans.factory.annotation.Value;

import org.springframework.boot.ApplicationRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

@SpringBootApplication
public class CalculatorApplication {

public static void main(String[] args) {

SpringApplication.run(CalculatorApplication.class, args);

}

@Bean
public ApplicationRunner calculationRunner(Calculator calculator,
@alue("${1lhs}") int lhs,
@value("${rhs}") int rhs,
@value("${op}") char op) {
return args -> calculator.calculate(lhs, rhs, op);

}

23

CHAPTER 2 SPRING BOOT—BASICS

The @Value will instruct Spring to look up the property and use the value of that
property. For instance if we would use a @Value("${1hs}"), Spring would try to detect a
property named lhs and use the value. You could also specify a default value by adding
a semicolon. With @Value("${1hs:12}"), if no value can be found it will use 12. If
there is no default value specified, an I11egalArgumentException will be thrown for
missing properties. If we would now start the application, an exception would be thrown
explaining that no property 1hs could be found.

Add an application.properties in src/main/resources and put values in there for
lhs, rhs, and op.

lhs=7
rhs=6
op=*

Spring Boot will load the application.properties at startup, and with that the
properties are available. Now when running the application, it should again create
output honoring the values given in the application.properties.

Although you now have externalized the properties into the application.
properties, those are still packaged up inside the application, which would mean you
still need to change them to do a different calculation. This would mean that for each
combination of properties you would need a fresh build. Imagine doing this for a real
production system and creating new artifacts just because your configuration needs to
change. There are different ways in which Spring Boot can help you with that.

Override Using an External application.properties

First build the artifact and launch the application with java -jar recipe 2 2--
1.0.0.jar. It will still run and use the supplied and packaged application.properties.
Now, in the same location as the artifact add an application.properties and put
values in there for the different properties.

lhs=26
rhs=952
op=*

When launching the application again, it will now use the values from this
application.properties.

24

CHAPTER 2 SPRING BOOT—BASICS

Override Properties Using Profiles

Spring Boot can use the active profiles to load additional configuration files, which can
totally replace or override parts of the general configuration. Let’s add an application-
add.properties in the src/main/resources, which contains a different value for op.

op=+

Now build the artifact (a JAR file) and launch it from the command line with java
-jar recipe 2 2-1.0.0.jar --spring.profiles.active=add and it will start and use
the properties from both application.properties and application-add.properties
to configure the application. Notice how an addition instead of multiplication is done,
which indicates that the application-add.properties take precedence over the general
application.properties.

Tip This also works when working with an external application.properties
and application-{profile}.properties.

Override Properties Using Command Line Arguments

The last option is to use command line arguments to override properties; in the previous
section you already used command line argument --spring.profile.active=add to
specify the active profile. You can also specify the 1hs and other arguments that way. Use
java -jar recipe 2 2-1.0.0.jar --lhs=12 --rhs=15 --op=+to run the application,
you will see that it does the calculation based on the arguments passed in through the
command line. Arguments from the command line always override all other configuration.

Load Properties from Different Configuration File

If you are using another file than application.properties or you have some
component that comes with an embedded file you want to load, you can always use an
additional @PropertySource annotation on your @SpringBootApplication annotated
class to load that additional file.

@PropertySource("classpath:your-external.properties™)
@SpringBootApplication
public class MyApplication { <. }

25

CHAPTER 2 SPRING BOOT—BASICS

The @PropertySource annotation allows you to add additional property files to
be loaded during startup. Instead of using a @PropertySource, you can also instruct
Spring Boot to load additional property files using the command line parameters
from Table 2-1.

Table 2-1. Configuration Parameters

Parameter Description

spring.config.name Comma separated string of file names to load, default application

spring.config.location Comma seperated string of resource locations (or files) to consider
for loading property files from, default classpath:/,classpath:/
config/,file:./,file:./config/

spring.config. Comma seperated string of additional resource locations (or files) to
additional-location consider for loading property files from, default empty

Warning When using spring.config.location or spring.config.
additional-location with a file, this will be used as is and a profile specific
one won'’t be loaded. When using a directory, then profile-specific files will be
loaded.

To load the your-external.properties using - -spring.config.name=your-
external would be sufficient; however, this would break loading the application.
properties. It is better to use --spring.config.name=application,your-external;
now all the location will be searched for both application.properties and
your-external.properties and the profile-specific versions will be taken into
consideration.

2-3 Testing
Problem

You want to write a test for a component or part of your Spring Boot application.

26

CHAPTER 2 SPRING BOOT—BASICS

Solution

Spring Boot extended the range of features of the Spring Test framework. It added
support for mocking and spying on beans as well as provided auto-configuration for web
tests. However, it also introduced easy ways of testing slices of your application by only
bootstrapping that which is needed (through the use of @WebMvCTest or @JdbcTest for

instance).

How It Works

Spring Boot extended the auto-configuration to parts of the test framework as well.

It also integrates with Mockito* for easy mocking (or spying) on beans. It also provides
auto-configuration for web-based tests using either the Spring MockMvc testing
framework or WebDriver based testing.

Writing a Unit Test

First, let’s write a simple unit test for one of the components of the calculator, the
MultiplicationTest, which will test the Multiplication class.

public class MultiplicationTest {
private final Multiplication addition = new Multiplication();

@Test

public void shouldMatchOperation() {
assertThat(addition.handles('*")).isTrue();
assertThat(addition.handles('/")).isFalse();

}

@Test

public void shouldCorrectlyApplyFormula() {
assertThat(addition.apply(2, 2)).isEqualTo(4);
assertThat(addition.apply(12, 10)).isEqualTo(120);

*https://site.mockito.org

27

https://site.mockito.org

CHAPTER 2 SPRING BOOT—BASICS

This is a basic unit test. The Multiplication is instantiated and we call methods on
it and validate the outcome. The first test will test if it really reacts to the * operator and
not something else. The second test will test the actual multiplication logic. To make a
method a test method (for JUnit 4) you will have to annotate it with @Test.

Mocking Dependencies in a Unit Test

Sometimes a class needs dependencies; however, you want your test to test only a
single component (when writing a unit test). Spring Boot automatically brings in the
Mockito framework, which is very nice to mock classes and record behavior on it.
Writing a test for the Calculator requires additional components, as it delegates the
actual calculation to the available Operation classes. To test the correct behavior of
the Calculator we would need to create a mock of the Operation and inject that into
the Calculator.

public class CalculatorTest {

private Calculator calculator;
private Operation mockOperation;

@Before
public void setup() {
mockOperation = Mockito.mock(Operation.class);
calculator = new Calculator(Collections.
singletonList(mockOperation));

}

@Test(expected = IllegalArgumentException.class)
public void throwExceptionWhenNoSuitableOperationFound() {

when(mockOperation.handles(anyChar())).thenReturn(false);
calculator.calculate(2, 2, '*');

}

@Test
public void shouldCallApplyMethodWhenSuitableOperationFound() {

when(mockOperation.handles(anyChar())).thenReturn(true);
when(mockOperation.apply(2, 2)).thenReturn(4);

28

CHAPTER 2 SPRING BOOT—BASICS
calculator.calculate(2, 2, '*');

verify(mockOperation, times(1)).apply(2,2);

In the @Before class we mock the Operation by calling Mockito.mock and we
construct the Calculator using the mocked operation. The mock is used in the test
methods to have a certain behavior. In the first test method we want to test the situation
where no suitable operation can be found, hence we instruct the mock to return false
when the handles method is being called. The test will expect an exception; if the
exception occurs the test will succeed. The second test is to check if the correct flow is
followed; we want to test the correct behavior. The mock is instructed to return true for
the handles method and a return value for the apply method.

Integration Testing with Spring Boot

Spring Boot provides several annotations to aid in testing. The first is @SpringBootTest,
which will make the test a Spring Boot-driven test. This means that the test context
framework will be searching for the class annotated with @SpringBootApplication
(if no specific configuration is passed) and will use that to actually start the application.

@RunWith(SpringRunner.class)
@SpringBootTest(classes = CalculatorApplication.class)
public class CalculatorApplicationTests {

@Autowired
private Calculator calculator;

@Test(expected = IllegalArgumentException.class)
public void doingDivisionShouldFail() {
calculator.calculate(12,13, '/');
}
}

The preceding test will start the CalculatorApplication and inject the fully
configured Calculator. We can then write a test, in this case a situation that the
calculator cannot handle, and write expectations for it.

29

CHAPTER 2 SPRING BOOT—BASICS

When doing a calculation, the output is printed to the console; using an
OutputCapture JUnit rule, we could also write a success test and test the written output.

@RunWith(SpringRunner.class)
@SpringBootTest(classes = CalculatorApplication.class)
public class CalculatorApplicationTests {

@Rule
public OutputCapture capture = new OutputCapture();

@Autowired
private Calculator calculator;

@Test

public void doingMultiplicationShouldSucceed() {
calculator.calculate(12,13, '*');
capture.expect(Matchers.containsString("12 * 13 = 156"));

}

@Test(expected = IllegalArgumentException.class)
public void doingDivisionShouldFail() {
calculator.calculate(12,13, '/');
}
}

The @Rule will configure the given JUnit rule, in this case the OutputCapture rule,
which comes with Spring Boot and intercepts the System.out and System.err so that
assertions can be written on the output generated on those streams. In this case we do a
multiplication and the output should reflect that.

Integration Testing with Spring Boot and Mocks

Spring Boot makes it easy to replace a bean with a mock in the application context.
For this, Spring Boot introduced the @MockBean annotation.

@MockBean
private Calculator calculator

30

CHAPTER 2 SPRING BOOT—BASICS

This would replace the whole calculator with a mocked instance; to be able to use it
you would need to define the behavior using the regular Mockito way. When there are
multiple beans of a certain type, you need to specify the name of the bean you wish to
replace.

@MockBean(name ="addition")
private Operation mockOperation;

This would replace the regular Addition bean with a mocked instance, which we can
then use to register mock behavior on. When a bean with that name cannot be found,
the mocked bean will be registered as a new instance of that bean.

@MockBean(name ="division")
private Operation mockOperation;

Would not replace an existing bean but add a bean to the application context and as
aresult the Calculator would have an additional operation added to the operations
it can handle. You could test that using the ReflectionTestUtils helper class from the
Spring Test framework.

@Test
public void calculatorShouldHave3Operations() {
Object operations =
ReflectionTestUtils.getField(calculator, "operations");

assertThat((Collection) operations).hasSize(3);
}

This will obtain the operations field through reflection and assert that the
collection size is 3. When the @MockBean annotation is removed (or the name changed to
addition), this test will fail because there are now only two operations registered.

Using the mock is straightforward

@Test

public void mockDivision() {
when(mockOperation.handles('/")).thenReturn(true);
when(mockOperation.apply(14, 7)).thenReturn(2);

calculator.calculate(14,7, '/');
capture.expect(Matchers.containsString("14 / 7 = 2"));
}

31

CHAPTER 2 SPRING BOOT—BASICS

Here we instruct Mockito to return true when a / is being tested and to return a
value when the apply method is called. Next, the method is called and we assert that the
output is what is expected from this test.

2-4 Configure Logging
Problem

You want to configure log levels for certain loggers.

Solution

With Spring Boot you can configure the logging framework and configuration.

How It Works

Spring Boot ships with a default configuration for the supported log providers (Logback,®
Log4j 2,° and Java Util Logging). Next to the default configuration, it also adds support for
configuring the logging levels through the regular application.properties as well as
specifying patterns and where to, optionally, write log files to.

Spring Boot uses SLF4] as the logging API, and when writing components you should
use those interfaces to write your logging. That way you have a choice of which logging
framework to use.

Configure Logging

One of the general things to do with a logging framework is to enable or disable logging
for parts of the framework. With Spring Boot you can do this by adding some lines to
your application.properties. The lines need to be prefixed with logging.level
followed by the name of the logger and finally the level you want it to be.

logging.level.org.springframework.web=DEBUG

https://logback.qos.ch
https://logging.apache.org/log4j/2.x/

32

https://logback.qos.ch
https://logging.apache.org/log4j/2.x/

CHAPTER 2 SPRING BOOT—BASICS

The preceding line will enable DEBUG logging for the org.springframework.web
logger (generally all classes in that package and subpackages). To set the level of the root
logger, use logging.level.root=<level>. This will set the default level of logging.

Logging to File

By default, Spring Boot will only log to the console. If you want to write to a file as well,
you need to specify either logging.file or logging.path. The first takes the name of
the file; the second, the path. The default filename used is spring.log and the default
directory used is the Java temp directory.

logging.file=application.log
logging.path=/var/log

With this configuration, a logfile named application.log will be written to the
/var/log directory.

When writing logs to a file, you might want to prevent the logfiles from flooding your
system. You can specify how many files to retain with the logging.file.max-history
(default is 0 meaning unlimited) and logging.file.max-size to specify the file size
(default is 10MB).

Using Your Preferred Logging Provider

Spring Boot by default uses Logback as the provider for the logging. It does, however,
support Java Util Logging as well as Log4j 2. To use another logging framework, you
will have to first exclude the default framework and include your own. Spring Boot has
a spring-boot-starter-log4j2 to include all necessary dependencies for Log4j 2. To
exclude the default Logback logging, you need to add an exclusion rule to the spring-
boot-starter dependency; this is the main dependency that brings in the logging.

<dependency>
<groupldyorg.springframework.boot</groupIlds
<artifactIdyspring-boot-starter</artifactId»
<exclusions»
<exclusion»
<groupldyorg.springframework.boot</groupIds
<artifactIdyspring-boot-starter-logging</artifactIds
</exclusion»
</exclusions>

33

CHAPTER 2 SPRING BOOT—BASICS

</dependency>

<dependency>
<groupldyorg.springframework.boot</grouplds
<artifactId»spring-boot-starter-log4j2¢/artifactIds

</dependency>

Note Spring Boot 2 doesn’t support the older Log4j framework; it supports its
successor, Log4j 2!

2-5 Reusing Existing Configuration
Problem

You have an existing, non-Spring Boot, application or module and you want to reuse the
configuration with Spring Boot.

Solution

To import an existing configuration, add the @Import or @ImportResource annotation
to your @Configuration or @SpringBootApplication annotated class to import the
configuration.

How It Works

On your main application class, the one with @SpringBootApplication, place the
@Import or @ImportResource annotations to let Spring load the additional files.

Reusing Existing XML Configuration

Find the class with the @SpringBootApplication annotation and add the @ImportResource
annotation to it.

@SpringBootApplication
@ImportResource("classpath:application-context.xml")
public class Application { ... }

34

CHAPTER 2 SPRING BOOT—BASICS

This configuration will load the application-context.xml file from the classpath
due to the classpath: prefix. If the file is somewhere in the file system, you can use the
file: prefix, thatis, file:/var/conf/application-context.xml.

When bootstrapping the application, Spring Boot will also load the additional
configuration from the mentioned XML file.

Reusing Existing Java Configuration

Find the class with the @SpringBootApplication annotation and add the @Import
annotation to it.

@SpringBootApplication
@Import(ExistingConfiguration.class)
public class Application { ... }

The @Import will take care of adding the mentioned class to the configuration. This
can be needed if you want to include things not covered in the component scan or if you
have disabled auto detection of @Configuration classes.

35

CHAPTER 3

Spring MVC

Spring Boot will automatically configure a web application when it finds the classes
on the classpath. It will also start an embedded server (by default it will launch an
embedded Tomcat)!

3-1 Getting Started with Spring MVC
Problem

You want to use Spring Boot to power a Spring MVC application.

Solution

Spring Boot will do auto-configuration for the components needed for Spring
MVC. To enable this, Spring Boot needs to be able to detect the Spring MVC classes
on its classpath. For this you will need to add the spring-boot-starter-web asa
dependency.

How It Works

In your project, add the dependency for spring-boot-starter-web.

<dependency»
<groupIdsorg.springframework.boot</groupIds
<artifactId>spring-boot-starter-web</artifactIds
</dependency>

'https://tomcat.apache.org

37

© Marten Deinum 2018
M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6_3

https://tomcat.apache.org

CHAPTER 3 SPRING MVC

What this does is add the needed dependencies for Spring MVC. Now that
Spring Boot can detect these classes, it will do additional configuration to set up the
DispatcherServlet. It will also add all the JAR files needed to be able to start an
embedded Tomcat server.

package com.apress.springbootrecipes.hello;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class HelloWorldApplication {

public static void main(String[] args) {
SpringApplication.run(HelloWorldApplication.class, args);

These few lines of code are enough to start the embedded Tomcat server and have
a preconfigured Spring MVC setup. When you start the application, you will see output
similar to that in Figure 3-1.

15 [main] ¢. L tion : Starting HelloWorldApplication w2.8.8-SNAPSHOT on imac-van-marten. home
tting-started-2.0.8-SNAPSHOT. jar starte Fteposuori.es.rsprmg—mt recipes/code/ché3/recipe 3 1}
I | [: Mo active profile set, falling back to default profiles: default
: Tomcat initialized with port(s): 8888 (http)
: Starting service [Tomcat]
: Starting Servlet Engine: Apache Tomcat/9.0.10
r : The APR based Apache Tomcat Mative library which allows optimal perforr
iy ystq:m’l.wrary/;lnvot[tensions: fusr/lib/java:.]
ast]. [: Initializing Spring embedded WebApplicationContext
: Root WebApplicationfontext: initialization completed in 1439 ms
: Servlet dispatcherServliet mapped to [/]
: Mapping filter: 'characterEncodingFilter' to: [/4]
: Mapping filter: 'hiddenHttpMethodFilter' to: [/=]
: Mapping filter: 'formContentFilter' to: [/+]
: Mapping filter: 'reguestContextFilter' to: [/x]
: Initializing ExecutorService ‘'applicationTaskExecutor®
: Tomcat started on port(s): 8888 (http) with context path *'
: Started HelloWorldAgplication in 2.588 seconds (IWM running for 3.854)

INFO 4??Jﬁ L
INFO 422790 ain] o.
ions: .lebrery.fJava!Enensions .-‘Nehso
INFO 42270 | in] 0.
INFD 42278 e
INFO 42270

INFO 42270
INFO 42279
INFOD 42278
INFO 42278
INFO 42278
2016-0B-3 171 INFO 42279

Figure 3-1. Startup output logging

The following things happen when you start the HelloWorldApplication:
1. Startan embedded Tomcat server on port 8080 (by default)

2. Register and enable a couple of default Servlet Filters (Table 3-1)

38

CHAPTER 3 SPRING MVC

3. Setup static resource handling for things like .css, . js and

favicon.ico

4. Enable integration with Web]Jars?

5. Setup basic error handling features

6. Preconfigure the DispatcherServlet with the needed

components (i.e., ViewResolvers, I18N, etc.)

Table 3-1. Automatically Registered Servlet Filters

Filter

Description

CharacterEncodingFilter

HiddenHttpMethodFilter

FormContentFilter

RequestContextFilter

Will force the encoding to be UTF-8 by default, can be configured
by setting the spring.http.encoding.charset property.
Can be disabled through setting the spring.http.encoding.
enabled to false

Enables the use of hidden form field named _method to specify
the actual HTTP method. Can be disabled by setting the spring.
mvc.hiddenmethod.filter.enabled to false

Will wrap the request for PUT, PATCH, and DELETE requests
so that those can also benefit from binding. Can be disabled by
setting the spring.mvc. formcontent.filter.enabled to
false

Exposes the current request to the current thread so that you can
use the RequestContextHolder and LocaleContextHolder
even in a non-Spring MVC application like Jersey

In the current state, the HelloWorldApplication doesn’t do anything but start the

server. Let’s add a controller to return some information.

package com.apress.springbootrecipes.hello;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.RestController;

2https://www.webjars.org

39

https://www.webjars.org

CHAPTER 3 SPRING MVC

@RestController
public class HelloWorldController {

@GetMapping("/")
public String hello() {
return "Hello World, from Spring Boot 2!";
}
}

This HelloWorldController will be registered at the / URL and when called will
return the phrase Hello World from Spring Boot 2!.The @RestController indicates
that this is a @Controller and as such will be detect by Spring Boot. Additionally, it adds
the @ResponseBody annotation to all request handling methods, indicating it should
send the result to the client. The @GetMapping maps the hello method to every GET
request that arrives at /. We could also have written @RequestMapping(value="/",
method=RequestMethod.GET).

When restarting the HelloWorldApplication, the HelloWorldController will be
detected and processed. Now when using something like curl or http to access http://
localhost:8080/ the result should be like that in Figure 3-2.

[NON & marten — marten@iMac-van-Marten — ~ — -zsh — 80x11
[+ ~ http http://localhost:8080/

Figure 3-2. Output of controller

Testing

Now that the application is running and returning results, it’s time to add a test for the
controller (ideally you would write the test first!). Spring already has some impressive
testing features and Spring Boot adds more of those. Testing a controller has become
pretty easy with Spring Boot.

40

CHAPTER 3 SPRING MVC
package com.apress.springbootrecipes.hello;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;
import org.springframework.http.MediaType;

import org.springframework.test.context.junit4.SpringRunner;

import org.springframework.test.web.servlet.MockMvc;

import org.springframework.test.web.servlet.request.MockMvcRequestBuilders;

import static
org.springframework.test.web.servlet.result.MockMvcResultMatchers.content;
import static
org.springframework.test.web.servlet.result.MockMvcResultMatchers.status;

@RunWith(SpringRunner.class)
@WebMvcTest (HelloWorldController.class)
public class HelloWorldControllerTest {

@Autowired
private MockMvc mockMvc;

@Test
public void testHelloWorldController() throws Exception {
mockMvc.perform(MockMvcRequestBuilders.get("/"))
.andExpect(status().is0k())
.andExpect(content().string("Hello World, from Spring Boot 2!"))
.andExpect(content().contentTypeCompatibleWith(MediaType.TEXT PLAIN));

The @RunWith(SpringRunner.class) is needed to instruct JUnit to use this specific
runner. This special runner is what integrates the Spring Test framework with JUnit. The
@WebMvcTest instructs the Spring Test framework to set up an application context for
testing this specific controller. It will start a minimal Spring Boot application with only
the web-related beans like @Controller, @ControllerAdvice, etc. In addition it will
preconfigure the Spring Test Mock MVC support, which can then be autowired.

41

CHAPTER 3 SPRING MVC

Spring Test Mock MVC can be used to simulate making an HTTP request to the
controller and do some expectations on the result. Here we call the / with GET and expect
an HTTP 200 (thus OK) response with the plain text message of Hello World, from
Spring Boot 2!.

3-2 Exposing REST Resources with Spring MVC
Problem

You want to use Spring MVC to expose REST based resources @WebMvcTest.

Solution

You will need a JSON library to do the JSON marshalling (although you could use XML
and other formats as well, as content negotiation® is part of REST). In this recipe we will
use the Jackson* library to take care of the JSON conversion.

How It Works

Imagine you are working for a library and you need to develop a REST API to make it
possible to list and search books.

The spring-boot-starter-web dependency (see also Recipe 3.1) already includes
the needed Jackson libraries by default.

<dependency»
<groupIdsorg.springframework.boot</groupIds
<artifactIdyspring-boot-starter-web</artifactId»
</dependency>

Note You can also use the Google GSON library; just use the appropriate GSON
dependency instead.

Shttps://www.ics.uci.edu/~fielding/pubs/dissertation/evaluation.htmifsec 6 3 2 7
*https://github.com/FasterXML/jackson

42

https://www.ics.uci.edu/~fielding/pubs/dissertation/evaluation.htm#sec_6_3_2_7
https://github.com/FasterXML/jackson

CHAPTER 3 SPRING MVC

Asyou are making an application for a library it will probably include books, so let’s
create a Book class.

package com.apress.springbootrecipes.library;
import java.util.*;
public class Book {

private String isbn;
private String title;
private List<String> authors = new ArraylList<>();

public Book() {}

public Book(String isbn, String title, Stringe... authors) {
this.isbn = isbn;
this.title = title;
this.authors.addAll(Arrays.asList(authors));

}

public String getIsbn() {
return isbn;

}

public void setIsbn(String isbn) {
this.isbn = isbn;

}

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

public void setAuthors(List<String> authors) {
this.authors = authors;

}

43

CHAPTER 3 SPRING MVC

public List<String> getAuthors() {
return Collections.unmodifiablelist(authors);

}

@verride
public boolean equals(Object o) {
if (this == o) retuxn true;
if (o == null || getClass() != o.getClass()) return false;
Book book = (Book) o;
return Objects.equals(isbn, book.isbn);

}

@0verride
public int hashCode() {
return Objects.hash(isbn);

}

@verride

public String toString() {

return String.format("Book [isbn=%s, title=%s, authors=%s]",
this.isbn, this.title, this.authors);

A book is defined by its ISBN number; it has a title and 1 or more authors.
You would also need a service to work with the books in the library. Let’s define an
interface and implementation for the BookService.

package com.apress.springbootrecipes.library;
import java.util.Optional;
public interface BookService {

Iterable<Book> findAll();
Book create(Book book);
Optional<Book> find(String isbn);

}

44

CHAPTER 3 SPRING MVC
The implementation, for now, is a simple in-memory implementation.
package com.apress.springbootrecipes.library;
import org.springframework.stereotype.Service;

import java.util.Map;
import java.util.Optional;
import java.util.concurrent.ConcurrentHashMap;

@Service
class InMemoryBookService implements BookService {

private final Map<String, Book> books = new ConcurrentHashMap<>();

@0verride
public Iterable<Book> findAll() {
return books.values();

}

@0verride

public Book create(Book book) {
books . put(book.getIsbn(), book);
return book;

}

@verride
public Optional<Book> find(String isbn) {
return Optional.ofNullable(books.get(isbn));
}
}

The service has been annotated with @Service so that Spring Boot will detect it and
create an instance of it.

package com.apress.springbootrecipes.library;

import org.springframework.boot.ApplicationRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

45

CHAPTER 3 SPRING MVC

@SpringBootApplication
public class LibraryApplication {

public static void main(String[] args) {
SpringApplication.run(LibraryApplication.class, args);

}

@Bean
public ApplicationRunner booksInitializer(BookService bookService) {
return args -> {
bookService.create(
new Book("9780061120084", "To Kill a Mockingbird", "Harper Lee"));
bookService.create(
new Book("9780451524935", "1984", "George Orwell"));
bookService.create(
new Book("9780618260300", "The Hobbit", "J.R.R. Tolkien"));
};
}
}

The LibraryApplication will detect all the classes and start the server. Upon
starting, it will preregister three books so that we have something in our library.

To expose the Book as a REST resource, create a class, BookController, and annotate
it with @RestController. Spring Boot will detect this class and create an instance of it.
Using @RequestMapping (and @GetMapping and @PostMapping) you can write methods to
handle the incoming requests.

Note Instead of @RestController you could also use @Controller and put
@ResponseBody on each request handling method. Using @RestController
will implicitly add @ResponseBody to request handling methods.

package com.apress.springbootrecipes.library.rest;

import com.apress.springbootrecipes.library.Book;
import com.apress.springbootrecipes.library.BookService;
import org.springframework.http.ResponseEntity;

46

CHAPTER 3 SPRING MVC

import org.springframework.web.bind.annotation.*;
import org.springframework.web.util.UriComponentsBuilder;

import java.net.URI;

@RestController
@RequestMapping("/books")
public class BookController {

private final BookService bookService;

public BookController(BookService bookService) {
this.bookService = bookService;

}

@GetMapping
public Iterable<Book> list() {
return bookService.findAll();

}

@GetMapping("/{isbn}")
public ResponseEntity<Book> get(@PathVariable("isbn") String isbn) {
return bookService.find(isbn)
.map(ResponseEntity: :ok)
.orElse(ResponseEntity.notFound().build());
}

@PostMapping
public Book create(@RequestBody Book book,
UriComponentsBuilder uriBuilder) {
Book created = bookService.create(book);
URI newBookUri = uriBuilder.path("/books/{isbn}").build(created.getIsbn());
return ResponseEntity.created(newBookUri).body(created);

}
}

47

CHAPTER 3 SPRING MVC

The controller will be mapped to the /books path due to the @RequestMapping
("/books™) annotation on the class. The 1ist method will be invoked for GET requests
on /books. When /books/<isbn> is called with a GET request, the get method will be
invoked and return the result for a single book or, when no book can be found, a 404
response status. Finally, you can add books to the library using a POST request on /
books; then the create method will be invoked and the body of the incoming request
will be converted into a book

After the application has started, you can use HTTPie® or cURLS to retrieve the books.
When using HTTPie to access http://localhost:8080/books, you should see output
similar to that of Figure 3-3.

® © ® | target —marten@iMac-van-Marten — ..pe_3_2/target — -zsh — 88x31
target git:(master) » http :8080/books

Type:

-
" o

target git:(master) x ||

Figure 3-3. JSON output for list of books

*https://httpie.org
https://curl.haxx.se

48

https://httpie.org
https://curl.haxx.se

CHAPTER 3 SPRING MVC

Arequest to http://localhost:8080/books/9780451524935 will give you the result
of a single book, in this case for 1984 by George Orwell. Using an unknown ISBN will
resultin a 404.

When issuing a POST request, we could add a new book to the list.

http POST :8080/books \
title="The Lord of the Rings" \
isbn="9780618640157" \
authors:="["J.R.R. Tolkien"]'

The result of this call, when done correctly, is the freshly added book and a location
header. Now when you get the list of books it should contain four books instead of the
three books you started with.

What happens is that HTTPie translates the parameters into a JSON request body,
which in turn is read by the Jackson library and turned into a Book.

{
"title": "The Lord of the Rings",
"isbn": "9780618640157",
"authors": ["J.R.R. Tolkien"]

}

By default Jackson will use the getter and setter to map the JSON to an object. What
happens is that a new Book instance is created using the default no-args constructor
and all properties are set through the setters. For the title property, the setTitleis
called, etc.

Testing a @RestContxoller

As you want to make sure that the controller does what it is supposed to do, write a test to
verify the correct behavior of the controller.

Package com.apress.springbootrecipes.library.rest;

import com.apress.springbootrecipes.library.Book;

import com.apress.springbootrecipes.library.BookService;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.web.servlet.WebMvcTest;
49

CHAPTER 3 SPRING MVC

import org.springframework.boot.test.mock.mockito.MockBean;

import org.springframework.test.context.junit4.SpringRunner;

import org.springframework.test.web.servlet.MockMvc;

import org.springframework.test.web.servlet.result.MockMvcResultMatchers;

import java.util.Arrays;
import java.util.Optional;

import static org.hamcrest.Matchers.*;

import static org.mockito.ArgumentMatchers.anyString;
import static org.mockito.Mockito.when;

import static org.springframework.test.web.servlet.request.
MockMvcRequestBuilders.get;

import static org.springframework.test.web.servlet.result.
MockMvcResultMatchers.status;

@RunWith(SpringRunner.class)
@WebMvcTest (BookController.class)
public class BookControllerTest {

@Autowired
private MockMvc mockMvc;

@MockBean
private BookService bookService;

@Test
public void shouldReturnListOfBooks() throws Exception {

when(bookService.findAll()).thenReturn(Arrays.asList(
new Book("123", "Spring 5 Recipes"”, "Marten Deinum", "Josh Long"),
new Book("321", "Pro Spring MVC", "Marten Deinum", "Colin Yates")));

mockMvc.perform(get("/books"))
.andExpect(status().is0k())
.andExpect(jsonPath("$", hasSize(2)))
.andExpect(jsonPath("$[*].isbn", containsInAnyOrder("123", "321")))
.andExpect(jsonPath("$[*].title",
containsInAnyOrder("Spring 5 Recipes”, "Pro Spring MVC")));

50

CHAPTER 3 SPRING MVC

@Test
public void shouldReturn404WhenBookNotFound() throws Exception {

when(bookService.find(anyString())).thenReturn(Optional.empty());

mockMvc.perform(get("/books/123")).andExpect(status().isNotFound());
}

@Test
public void shouldReturnBookWhenFound() throws Exception {

when(bookService.find(anyString())).thenReturn(
Optional.of(
new Book("123", "Spring 5 Recipes"”, "Marten Deinum", "Josh Long")));

mockMvc.perform(get("/books/123"))
.andExpect(status().is0k())
.andExpect(jsonPath("$.isbn", equalTo("123")))
.andExpect(jsonPath("$.title", equalTo("Spring 5 Recipes")));

The test uses @WebMvcTest to create a MockMvc-based test and will create a minimal
Spring Boot application to be able to run the controller. The controller needs an instance
of a BookService, so we let the framework create a mock for this using the @ockBean
annotation. In the different test methods, we mock the expected behavior (like returning
a list of books, returning an empty Optional, etc.).

Note Spring Boot uses Mockito 7 to create mocks using @MockBean.

Furthermore, the test uses the JsonPath® library so that you can use expressions to
test the JSON result. JsonPath is for JSON what Xpath is for XML.

"https://site.mockito.org
Shttps://github.com/json-path/JsonPath

51

https://site.mockito.org
https://github.com/json-path/JsonPath

CHAPTER 3 SPRING MVC

3-3 Using Thymeleaf with Spring Boot
Problem

You want to use Thymeleaf to render the pages of your application.

Solution

Add the dependency for Thymeleaf and create a regular @Controller to determine the
view and fill the model.

How It Works

To get started you will first need to add the spring-boot-starter-thymeleaf as a
dependency to your project to get the desired Thymeleaf® dependencies.

<dependency»
<groupIdsorg.springframework.boot«</groupIds
<artifactId»spring-boot-starter-thymeleaf</artifactIds
</dependency>

With the addition of this dependency, you will get the Thymeleaf library as
well as the Thymeleaf Spring Dialect so that the two integrate nicely. Due to the
existence of these two libraries, Spring Boot will automatically configure the
ThymeleafViewResolver.

The ThymeleafViewResolver requires a Thymeleaf ItemplateEngine to be able to
resolve and render the views. A special SpringTemplateEngine will be preconfigured
with the SpringDialect so that you can use SpEL inside Thymeleaf pages.

To configure Thymeleaf, Spring Boot exposes several properties in the spring.
thymeleaf namespace (Table 3-2).

https://www.thymeleaf.org

52

https://www.thymeleaf.org

CHAPTER 3 SPRING MVC

Table 3-2. Thymeleaf Properties

Property

Description

spring.thymeleaf.prefix

Spring.thymeleaf.suffix
spring.thymeleaf.encoding

spring.thymeleaf.check-
template

Spring.thymeleaf.check-
template-location

Spring.thymeleaf.mode
Spring.thymeleaf.cache

Spring.thymeleaf.template-
resolver-order

Spring.thymeleaf.view-names

spring.thymeleaf.excluded-
view-names

Spring.thymeleaf.enabled

Spring.thymeleaf.enable-
spring-el-compiler

Spring.thymeleaf.servlet.
content-type

The prefix to use for the ViewResolver, default
classpath:/templates/

The suffix to use for the ViewResolver, default . html
The encoding of the templates, default UTF-8

Check if the template exists before rendering, default true.

Check if the template location exists, the default is true.

Thymeleaf TemplateMode to use, default HTML
Should resolved templates be cached or not, default true

Order of the ViewResolver defaultis 1.

The view names (comma separated) that can be resolved
with this ViewResolver

The view names (comma separated) that are excluded from
being resolved

Should Thymeleaf be enabled, default true

Enable the compilation of SpEL expressions, default false

Content-Type value used to write the HTTP Response,
default text/html

Adding an Index Page

First add an index page to the application. Create an index.html inside the src/main/
resources/templates directory (the default location).

<IDOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org"»

CHAPTER 3 SPRING MVC

<heady

<meta charset="UTF-8"»

<title>Spring Boot Recipes - Library</titles
</head»
<body>

<h1sLibrary</h1s
<a th:href="@{/books.html}" href="#"sList of books</a»

</body>
</htmly

This is just a basic HTML5 page with some minor additions for Thymeleaf.
First there is xmlns:th="http://www.thymeleaf.org" to enable the namespace for
Thymeleaf. The namespace is used in the link through th:href. The @{/books.html1}
will be expanded, by Thymeleaf, to a proper link and placed in the actual href
attribute of the link.

Now when running the application and visiting the homepage (http://
localhost:8080/), you should be greeted by a page with a link to the books overview
(Figure 3-4).

oe®0e® < > @D localhost ¢ (4] it a | »

Figure 3-4. Rendered index page

54

http://www.thymeleaf.org

CHAPTER 3 SPRING MVC

Adding a Controller and View

When clicking the link provided in the index page, we want to be shown a page that
shows a list of available books in the library (Figure 3-5). For this, two things need to be
added: first a controller that can handle the request and prepare the model, and second
aview to render the list of books.

[} ® < [localhost ¢ o »

Available Books

Title Author ISBN
The Hobbit [J.R.R. Tolkien] 9780618260300
1984 [George Orwell] 9780451524935

To Kill a Mockingbird [Harper Lee] 9780061120084

Toon een menu

Figure 3-5. Books list page

Let’s add a controller that will fill the model with a list of books and select the name
of the view to render. A controller is a class annotated with @Controller and which
contains request handling methods (methods annotated with @RequestMapping or as in
this recipe @GetMapping, which is a specialized @RequestMapping annotation).

package com.apress.springbootrecipes.library.web;

@Controller
public class BookController {

private final BookService bookService;

public BookController(BookService bookService) {
this.bookService = bookService;

}

55

CHAPTER 3 SPRING MVC

@GetMapping("/books.html")

public String all(Model model) {
model.addAttribute("books", bookService.findAll());
return "books/list";

}
}

The BookController needs the BookService so that it can obtain a list of books to
show. The all method has an org.springframework.ui.Model as method argument
so that we can put the list of books in the model. A request handling method can have
different arguments'’; one of them is the Model class. In the all method, we use the
BookService to retrieve all the books from the datastore and add it to the model using
model.addAttribute. The list of books is now available in the model under the key
books.

Finally, we return the name of the view to render books/1ist. This name is passed
on to the ThymeleafViewResolver and will result in a path to classpath:/templates/
books/list.html.

Now that the controller together with the request handling method has been added,
we need to create the view. Create a 1ist.html in the src/main/templates/books
directory.

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"s
<head lang="en"»
<meta charset="UTF-8"»
<titlesLibrary - Available Books</titles
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/»
</head>
<body>
<h1»Available Books</h1»
<table>
<thead»
<tr>
<th>Title</thy

"https://docs.spring.io/spring/docs/current/spring-framework-reference/web.
html#mvc-ann-arguments

56

https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-ann-arguments
https://docs.spring.io/spring/docs/current/spring-framework-reference/web.html#mvc-ann-arguments

CHAPTER 3 SPRING MVC

<thy»Author</thy
<thyISBN</thy
</txr>
</thead»
<tbody>
¢tr th:each="book : ${books}"»
<td th:text="${book.title}"sTitle</td>
<td th:text="${book.authors}"sAuthors</td»
<tdy
<a th:href="@{/books.html(isbn=${book.isbn})}" href="#"
th:text="${book.isbn}"$1234567890123¢/a»
</td»
</try
</tbody>
</table>
</body>
</htmly

This is again an HTMLS5 page using the Thymeleaf syntax. The page will render a list
of books using the th:each expression. It will take all the books from the books property
in the model and for each book create a row. Each column in the row will contain some
text using the th:text expression; it will print the title, authors, and ISBN of the book.
The final column in the table contains a link to the book details. It constructs a URL
using the th:href expression. Notice the expression between (); this will add the isbn
request parameter.

When launching the application and clicking the link on the index page, you should
be greeted with a page showing the contents of the library as shown in Figure 3-5.

Adding a Details Page

Finally, when clicking the ISBN number in the table, you want a page with details to be
shown. The link contains a request parameter named isbn, which we can retrieve and
use in the controller to find a book. The request parameter can be retrieved through a
method argument annotated with @RequestParam.

The following method will handle the GET request, map the request parameter to
the method argument, and includes the model so that we can add the book to the model.

57

CHAPTER 3 SPRING MVC

@GetMapping(value = "/books.html", params = "isbn")
public String get(@RequestParam("isbn") String isbn, Model model) {

bookService.find(isbn)
.ifPresent(book -> model.addAttribute("book", book));

return "books/details";

}

The controller will render the books/details page. Add the details.html to the
src/main/resources/templates/books directory.

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"s
<head lang="en"»
<meta charset="UTF-8"»
<titlesLibrary - Available Books</title»
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/»
</head>
<body>
<div th:if="${book != null}"»
<divy
<div th:text="¢${book.title}"sTitle</div>
<div th:text="${book.authors}"sauthors</divy
<div th:text="${book.isbn}"»ISBN</divy
</divy
</div>

<div th:if="${book} == null"»
<h1 th:text=""'No book found with ISBN: ' + ${param.isbn}"sNot
Found</h1»
</divy
</body>»
</html>

58

CHAPTER 3 SPRING MVC

This HTML5 Thymeleaf template will render one of the two available blocks on the
page. Either the book has been found and it will display the details, else it will show a
not found message. This is achieved by using the th:if expression. The isbn for the
not found message is retrieved from the request parameters using the param as a prefix.
${param.isbn} will get the isbn request parameter.

3-4 Handling Exceptions
Problem

You want to customize the default white label error page shown by Spring Boot.

Solution

Add an additional error.html as a customized error page, or specific error pages for
specific HTTP error codes (i.e., 404.html and 500. html).

How It Works

Spring Boot by default comes with the error handling enabled and will show a default error
page. This can be disabled in full by setting the server.error.whitelabel.enabled property
to false. When disabled, the exception handling will be handled by the Servlet Container
instead of the general exception handling mechanism provided by Spring and Spring Boot.

There are also some other properties that can be used to configure the whitelabel
error page, mainly on what is going to be included in the model so that it, optionally,
could be used to display. See Table 3-3 for the properties.

Table 3-3. Error Handling Properties

Property Description

server.error.whitelabel.enabled Is the whitelabel error page enabled, default true

server.error.path The path of the error page, default /error

server.error.include-exception Should the name of the exception be included in the model,
default false

server.error.include-stacktrace Should the stacktrace be included in the model, default never

59

CHAPTER 3 SPRING MVC
First let’s add a method to the BookController that forces an exception.

@GetMapping("/books/500")
public void error() {
throw new NullPointerException("Dummy NullPointerException.");

}

This will throw an exception and as a result the whitelabel error page will be shown
when visiting http://localhost:8080/books/500 (see Figure 3-6).

0@ < M e O localhost ¢ t o =

Whitelabel Error Page

This application has no explicit mapping for /error, so you are seeing this as a fallback.

Wed May 09 12:12:40 CEST 2018
There was an unexpected error (type=Internal Server Error, status=500).
Dummy NullPointerException.

Toon een menu

Figure 3-6. Default error page

This is shown if no error page can be found. To override this, add an error.html to
the src/main/resources/templates directory.

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"s
<head>
<meta charset="UTF-8"»
<title»Spring Boot Recipes - Library</titles
</head>
<body>
<h1»00ps something went wrong, we don't know what but we are going to work
on it!</h1»

<divy
<div>
<span»<strong»Status</spans
<span th:text="${status}"s</span»

60

CHAPTER 3 SPRING MVC

</divy

<divy
<spany<strongsError</strongs
<span th:text="${error}"»</spany

</div>

<divy
<span»<strongsMessage</strongs</span»

</div>

<div th:if="${exception != null}"s
<span»<strongsException</strongs
<span th:text="${exception}"»</span»

</divy
<div th:if="${trace != null}"»
<h3»Stacktrace</h3»
¢span th:text="${trace}"»</spany
</divy
</div>
</body>
</htmly

Now when the application is started and an exception occurs, this custom error page
will be shown (Figure 3-7). The page will be rendered by the view technology of your
choice (in this case it uses Thymeleaf).

[] ® < im] (2] (0] localhost < t a T

Oops something went wrong, we don't know
what but we are going to work on it!

Status 500
Error Internal Server Error
Message Dummy NullPointerException.

Figure 3-7. Custom error page

61

CHAPTER 3 SPRING MVC

If you now set the server.error.include-exception to true and server.error.
include-stacktrace to always, the customized error page will also include the
classname of the exception and the stacktrace (Figure 3-8).

o0® < im] 0 0O = localhost &

o
+

Oops something went wrong, we don't know what but we are going to
work on it!

Status 500

Error Internal Server Error

Message Dummy NullPointerException.
Exception java.lang.NullPointerException

Stacktrace

java.lang NullPointerException: Dummy NullPointerException. at com.apress.springbootrecipes.library.web.BookController.error(BookController java:52) at
java.base/jdk.internal.reflect. NativeMethod AccessorImpl.invokeO(Native Method) at

java.base/jdk.internal reflect. NativeMethod AccessorImpl.invoke(NativeMethod AccessorImpl java:62) at

java.base/jdk.internal reflect.DelegatingMethod A irlmpl.invoke(DelegatingMethodA Impl.java:43) at

java.base/java.lang.reflect. Method.invoke(Method java:564) at

org.springframework.web.methed support.InvocableHandlerMethod dolnvoke(InvocableHandlerMethod java:209) at

org.springframework.web.method support.InvocableHandlerMethod..invokeForRequest(InvocableHandlerMethod java: 136) at
org.springframework.web.servlet.mve.method annotation.ServietInvocableHandlerMethod invoke AndHandle(ServietinvocableHandlerMethod java: 102) at
org.springframework.web.serviet.mve.method .annotation.RequestMappingHandlerAdapter.invokeHandlerMethod(RequestMappingHandlerAdapter.java:877)
at org springframework.web.servlet.mve.method.annotation RequestMappingHandlerAdapter.h nal(RequestMappingHandlerAdapter.java: 783) at
org.springframework.web.serviet.mve.method.Ab HandlerMethod Adapter.handle(AbstractHandlerMethod Adapter.java:87) at
org.springframework.web.servlet.DispatcherServlet.doDispatch(DispatcherServlet java:991) at
org.springframework.web.servlet.DispatcherServlet.doService(DispatcherServlet java:925) at
org.springframework.web.serviet. Framework Servlet.processRequest(FrameworkServlet java:974) at
org.springframework.web.serviet. Framework Servlet.doGet(FrameworkServlet,java:866) at javax.servlet.http . HupServiet.service(HttpServlet java:635) at
org.springframework.web.servlet. FrameworkServlet service(FrameworkServlet java:851) at javax.servlet.htip. HupServlet.service(HupServiet.java: 742) at
org.apache.catalina.core.ApplicationFilterChain.internal DoFilter(ApplicationFilterChain java:231) at

org.apache.catalina.core. ApplicationFilterChain.doFilter(ApplicationFilterChain.java: 166) at

Figure 3-8. Custom error page with stacktrace

Next to providing a custom generic error page, you could also add an error page for
specific HTTP status codes. This can be achieved by adding a <http-status>.html to
the src/main/resources/templates/error directory. Let’s add a 404.html to be shown
for unknown URLs.

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"s
<head>

<meta charset="UTF-8"»

<title»Spring Boot Recipes - Library - Resource Not Found</title»
</head>
<body>
<h1>00ps the page couldn't be located.</h1»
</body>
</html>
62

CHAPTER 3 SPRING MVC

When navigating to a URL that is unknown to the application, it will render this page,
and when triggering the exception it will still show the customized error page, as shown
in Figures 3-7 and 3-8.

Tip You can also add a 4xx.html or 5xx.html for a custom error page for all
http status code in the 400 or 500 range.

Adding Attributes to the Model

By default, Spring Boot will include the attributes in the model for the error page, as
listed in Table 3-4.

Table 3-4. Default Error Model Attributes

Attribute Description
timestamp The time that the errors were extracted
status The status code
error The error reason
exception The class name of the root exception (if configured)
message The exception message
errors Any ObjectError from a BindingResult
(when using binding and/or validation)
trace The exception stack trace (if configured)
path The URL path when the exception was raised

This is all done through the use of an ExrrorAttributes component. The
default used and configured is the DefaultErrorAttributes. You can create
your own ErrorAttributes handler to create a custom model or extend the
DefaultErrorAttributes to add additional attributes.

package com.apress.springbootrecipes.library;

import org.springframework.boot.web.servlet.error.DefaultErrorAttributes;
import org.springframework.web.context.request.WebRequest;

63

CHAPTER 3 SPRING MVC
import java.util.Map;
public class CustomizedErrorAttributes extends DefaultErrorAttributes {

@verride
public Map<String, Object> getErrorAttributes(WebRequest webRequest,
boolean includeStackTrace) {
Map<String, Object> errorAttributes =
super.getErrorAttributes(webRequest, includeStackTrace);
errorAttributes.put("parameters”, webRequest.getParameterMap());
return errorAttributes;

}
}

The CustomizedErrorAttributes will add the original request parameters to
the model next to the default attributes. Next step is to configure this as a bean in the
LibraryApplication. Spring Boot will then detect it and use it instead of configuring the
default.

@Bean
public CustomizedErrorAttributes errorAttributes() {
return new CustomizedErrorAttributes();

}

Finally, you might want to use the additional properties in your error.html.

<div th:if="${parameters != null}"s
<h3»Parameters</h3»
<span th:each="parameter :${parameters}"s
<div th:text="${parameter.key} + ' : '
arrayJoin(parameter.value, ',")}"»</divy
</span»
</div>

+ ${#strings.

When the preceding part is included in your error.html it will print the content of
the map of parameters available in the model (Figure 3-9).

64

CHAPTER 3 SPRING MVC

® 0 ® [y ssring Boot Recipes - Library % Marten,

« C @ kcalhost:B080/books/500Foo=bar&baz=true B Q@ w

Oops something went wrong, we don't know what but we are going to work on it!

Status 500
Error Internal Server Emor
Message Dummy NullPointerException.

Parameters

foo : bas
baz : rue

Figure 3-9. Custom error page with parameters

3-5 Internationalizing Your Application
Problem

When developing an internationalized web application, you have to display your web
pages in a user’s preferred locale. You don’t want to create different versions of the same
page for different locales.

Solution

To avoid creating different versions of a page for different locales, you should make your
web page independent of the locale by externalizing locale-sensitive text messages.
Spring is able to resolve text messages for you by using a message source, which has to
implement the MessageSource interface. In your page templates you can then use either
special tags or do lookups for the messages.

How It Works

Spring Boot automatically configures a MessageSource when it finds a messages.
propertiesin src/main/resources (the default location). This messages.properties
contains the default messages to be used in your application. Spring Boot will use the
Accept-Language header from the request to determine which locale to use for the
current request (see Recipe 3.6 on how to change that).

There are some properties that change the way the MessageSource reacts to missing
translations, caching, etc. See Table 3-5 for an overview of the properties.

65

CHAPTER 3 SPRING MVC

Table 3-5. 118N Properties

Property Description

spring.messages.basename Comma-separated list of basenames, default
messages

spring.messages.encoding Message bundle encoding, default UTF-8

spring.messages.always-use- Should MessageFormat be applied to all messages,

message-format default false

spring.messages.fallback-to- Fallback to the systems locale when no resource bundle

system-locale for the detected locale can be found. When disabled,
will load the defaults from the default file. Default true

spring.messages.use-code-as- Use the message code as a default message when

default-message no message can be found instead of throwing a

NoSuchMessageException. Default false

spring.messages.cache-duration Cache duration, default forever

Tip It can be useful to set the spring.messages.fallback-to-system-
locale to false when deploying your application to the cloud or other external
hosting parties. That way you control what the default language of your application
is, instead of the (out of your control) environment you are deploying on.

Add amessages.properties to the src/main/resources directory.
main.title=Spring Boot Recipes - Library

index.title=Library
index.books.link=List of books

books.list.title=Available Books
books.list.table.title=Title
books.list.table.author=Author
books.list.table.isbn=ISBN

Now change the templates to use the translations; following is the changed index.
html file.

66

CHAPTER 3 SPRING MVC

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"s
<head>
<meta charset="UTF-8"»
<title th:text="#{main.title}"»Spring Boot Recipes - Library</titles
</head>
<body>

<h1 th:text="#{index.title}"sLibrary</h1s

<a th:href="@{/books.html}" href="#" th:text="#{index.books.link}"sList of
books</ay

</body>
</html»

For Thymeleaf you can use a #{ . . . } expression in the th:text attribute; this will
(due to the automatic Spring integration) resolve the messages from the MessageSource.
When restarting the application, it appears as nothing has changed in the output.
However all the texts now come from the messages.properties.

Now let’s add a messages_nl.properties for the Dutch translation of the website.

main.title=Spring Boot Recipes - Bibliotheek

index.title=Bibliotheek
index.books.link=Lijst van boeken

books.list.title=Beschikbare Boeken
books.list.table.title=Titel
books.list.table.author=Auteur
books.list.table.isbn=ISBN

Now when changing the accept header to Dutch, the website will translate to Dutch
(Figure 3-10).

Tip Changing the language for your browser might not be that easy, for Chrome
and Firefox there are plug-ins that allow you to switch the Accept-Language
header easily.

67

CHAPTER 3 SPRING MVC

@ @ &/ Spring Boot Recipes - Biblioth X Marten

€ > C @ localhost:8080 w B O 0w =

Bibliotheek

Lijst van boeken

Figure 3-10. Homepage in Dutch

3-6 Resolving User Locales
Problem

In order for your web application to support internationalization, you have to identify
each user’s preferred locale and display contents according to this locale.

Solution

In a Spring MVC application, a user’s locale is identified by a locale resolver, which
has to implement the LocaleResolver interface. Spring MVC comes with several
LocaleResolver implementations for you to resolve locales by different criteria.
Alternatively, you may create your own custom locale resolver by implementing this
interface.

Spring Boot allows you to set the spring.mvc.locale-resolver property.
This can be set to ACCEPT (the default) or FIXED. The first will create an
AcceptHeaderLocaleResolver; the latter, a FixedLocaleResolver.

You can also define a locale resolver by registering a bean of type LocaleResolver
in the web application context. You must set the bean name of the locale resolver to
localeResolver so it can be autodetected.

68

CHAPTER 3 SPRING MVC

How It Works

Spring MVC ships with several default implementations of the LocaleResolver interface.
There is a HandlerInterceptor provided to allow users to override the locale they want
to use, the LocaleChangeInterceptor.

Resolving Locales by an HTTP Request Header

The default locale resolver registered by Spring Boot is the
AcceptHeaderlLocaleResolver. It resolves locales by inspecting the Accept-Language
header of an HTTP request. This header is set by a user’s web browser according to the
locale setting of the underlying operating system.

Note The AcceptHeaderLocaleResolver cannot change a user’s locale,
because it is unable to modify the locale setting of the user’s operating
system.

@Bean
public LocaleResolver localeResolver () {
return new AcceptHeaderlLocaleResolver();

}

Resolving Locales by a Session Attribute

Another option of resolving locales is by SessionLocaleResolver. It resolves locales

by inspecting a predefined attribute in a user’s session. If the session attribute doesn’t
exist, this locale resolver determines the default locale from the Accept-Language HTTP
header.

@Bean

public LocaleResolver localeResolver () {
SessionLocaleResolver localeResolver = new SessionlLocaleResolver();
localeResolver.setDefaultLocale(new Locale("en"));
return localeResolver;

69

CHAPTER 3 SPRING MVC

You can set the defaultLocale property for this resolver in case the session attribute
doesn’t exist. Note that this locale resolver is able to change a user’s locale by altering the
session attribute that stores the locale.

Resolving Locales by a Cookie

You can also use CookielLocaleResolver to resolve locales by inspecting a cookie in a
user’s browser. If the cookie doesn’t exist, this locale resolver determines the default
locale from the Accept-Language HTTP header.

@Bean
public LocaleResolver localeResolver() {
return new CookielocaleResolver();

The cookie used by this locale resolver can be customized by setting the cookieName
and cookieMaxAge properties. The cookieMaxAge property indicates how many seconds
this cookie should be persisted. The value -1 indicates that this cookie will be invalid
after the browser is closed.

@Bean

public LocaleResolver localeResolver() {
CookielocaleResolver cookielocaleResolver = new CookielocaleResolver();
cookielocaleResolver.setCookieName("language");
cookielocaleResolver.setCookieMaxAge(3600);
cookielocaleResolver.setDefaultLocale(new Locale("en"));
return cookielocaleResolver;

You can also set the defaultLocale property for this resolver in case the cookie
doesn’t exist in a user’s browser. This locale resolver is able to change a user’s locale by
altering the cookie that stores the locale.

Using a Fixed Locale

The FixedLocaleResolver always returns the same fixed locale. By default it returns
the JVM default locale but it can be configured to return a different one by setting the
defaultlocale property.

70

CHAPTER 3 SPRING MVC

@Bean

public LocaleResolver localeResolver() {
FixedLocaleResolver cookielocaleResolver = new FixedLocaleResolver();
cookielLocaleResolver.setDefaultLocale(new Locale("en"));
return cookielocaleResolver;

Note The FixedLocaleResolver cannot change a user’s locale because, as
the name implies, it is fixed.

Changing a User’s Locale

In addition to changing a user’s locale by calling LocaleResolver.setLocale()
explicitly, you can also apply LocaleChangeInterceptor to your handler mappings.
This interceptor detects if a special parameter is present in the current HTTP request.
The parameter name can be customized with the paramName property of this interceptor
(default is locale). If such a parameter is present in the current request, this interceptor
changes the user’s locale according to the parameter value.

To be able to change the locale, a LocaleResolver that allows change has to be used.

@Bean
public LocaleResolver localeResolver() {
return new CookielocaleResolver();

}

To change the locale, add the LocaleChangeInterceptor as a bean and register
it as an interceptor; for the latter, use the addInterceptors method from the
WebMvcConfigurer.

Note Instead of adding it to the @SpringBootApplication you could

also create a specialized @Configuration annotated class to register the
interceptors. Be aware of not adding @EnableWebMvc to that class, as that will
disable the auto configuration from Spring Boot!

71

CHAPTER 3 SPRING MVC

@SpringBootApplication
public class LibraryApplication implements WebMvcConfigurer {

@verride

public void addInterceptors(InterceptorRegistry registry) {
registry.addInterceptor(localeChangeInterceptor());

}

@Bean
public LocaleChangelnterceptor localeChangeInterceptor() {
return new LocaleChangeInterceptor();

}

@Bean
public LocaleResolver localeResolver() {
return new CookielocaleResolver();

}
}

Now add the following snippet to the index.html:

<h3»Language</h3»
<divy
<a href="?locale=nl" th:text="#{main.language.nl}"sNL</as |
<a href="?locale=en" th:text="#{main.language.en}"sEN¢</a»
</div>

Add the keys to the messages.properties file.

main.language.nl=Dutch
main.language.en=English

Now when selecting one of the languages, the page will re-render and be shown in
the selected language; and when you continue browsing, the remainder of the pages will
also be shown in the selected language.

72

CHAPTER 3 SPRING MVC

3-7 Selecting and Configuring the Embedded Server
Problem

You want to use Jetty as an embedded container instead of the default Tomcat
container.

Solution

Exclude the Tomcat runtime and include the Jetty runtime. Spring Boot will
automatically detect if Tomcat, Jetty, or Undertow is on the classpath and configure the
container accordingly.

How It Works

Spring Boot has out-of-the-box support for Tomcat, Jetty, and Undertow as embedded
servlet containers. By default, Spring Boot uses Tomcat as the container (expressed
through the spring-boot-starter-tomcat dependency in the spring-boot-starter-
web artifact). The container can be configured using properties for which some apply to
all containers and others to a specific container. The global properties are prefixed with
server. or server.servlet whereas the container ones start with server.<container>
(where container is either tomcat, jetty, or undertow).

General Configuration Properties

There are several general server properties available, as seen in Table 3-6.

Table 3-6. General Server Properties

Property Description

server.port The HTTP server port, default 8080

server.address The IP Address to bind to, default 0.0.0.0 (i.e., all adapters)

server.use-forward- Should X-Forwarded-* headers be applied to the current request,

headers default not set and uses the default from the selected servlet container
(continued)

73

CHAPTER 3 SPRING MVC

Table 3-6. (continued)

Property

Description

server.server-header

server.max-http-
header-size

server.connection-
timeout

server.http2.enabled

server.compression.
enabled

server.compression.
mime-types
server.compression.
excluded-user-agents
server.compression.
min-response-size
server.servlet.
context-path
server.servlet.path
server.servlet.
application-display-
name

server.servlet.
context-parameters

Name of the header to be sent the Server name, default empty

Maximum size of a HTTP header, default 0 (unlimited)

Timeout for HTTP connectors to wait for the next request before
closing. Default is empty leaving it to the container; a value of -1
means infinite and never timeout.

Enable Http2 support if the current container supports it. Default
false

Should HTTP compression be enabled, default false

Comma seperated list of MIME types that compression applies to

Comma separated list of user agents for which compression should be
disabled

Minimum size of the request for compression to be applied, default
2048

The main context path of the application, default launched as the root
application

The path of the main DispatcherServlet, default /

Name used as display name in the container, default application

Servlet Container Context/init parameters

As the embedded containers all adhere to the Servlet specification, there is also

support for JSP pages and that support is enabled by default. Spring Boot makes it easy to

change the JSP provider or even disable the support in full. See Table 3-7 for the exposed

properties.

74

CHAPTER 3 SPRING MVC

Table 3-7.]JSP Related Server Properties

Property Description
server.servlet.jsp.registered Should the JSP servlet be registered, default true
server.servlet.jsp.class-name The JSP servlet classname, default org.apache.

jasper.servlet.JspServlet as both Tomcat
and Jetty use Jasper as the JSP implementation

server.servlet.jsp.init-parameters Context parameters for the JSP servlet

Note The use of JSP with a Spring Boot application is discouraged and limited."

When using Spring MVC, you might want to use the HTTP Session to store
attributes (generally with Spring Security to store CSFR tokens, etc.). The general servlet
configuration also allows you to configure the http session and the way it will be stored
(cookie, URL, etc.). See Table 3-8 for the properties.

Table 3-8. HTTP Session Related Server Properties

server.servlet.session. Session timeout, default 30 minutes
timeout

server.servlet.session. Session tracking modes one or more of cookie, url and ssl.
tracking-modes Default empty leaving it to the container

server.servlet.session. Should session data be persisted between restarts, default
persistent false

server.servlet.session. Name of the cookie to store the session identifier. Default empty
cookie.name leaving it to the container default

server.servlet.session. Domain value to use for the session cookie. Default empty
cookie.domain leaving it to the container default

(continued)

"https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-
developing-web-applications.html#fboot-features-jsp-limitations

75

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-web-applications.html#boot-features-jsp-limitations
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-developing-web-applications.html#boot-features-jsp-limitations

CHAPTER 3 SPRING MVC

Table 3-8. (continued)

server.servlet.session.
cookie.path

server.servlet.session.
cookie.comment

server.servlet.session.
cookie.http-only

server.servlet.session.
cookie.secure

server.servlet.session.
cookie.max-age

server.servlet.session.
session-store-directory.
directory

Path value to use for the session cookie. Default empty leaving
it to the container default

Comment to use for the session cookie. Default empty leaving it
to the container default

Should the session cookie be http-only accesible, default empty
leaving it to the container default

Should the cookie be send through SSL only, default empty
leaving it to the container default

The lifetime of the session cookie. Default empty leaving it to
the container default

Name of the directory to use for persistent cookies. Has to be an
existing directory

Finally, Spring Boot makes it very easy to configure SSL by exposing a few properties,

see Table 3-9 and Recipe 3.8 on how to configure SSL.

Table 3-9. SSL Related Server Properties

Property

Description

server.ssl.enabled
server.ssl.ciphers

server.ssl.client-auth

server.ssl.protocol

server.ssl.enabled-
protocols

server.ssl.key-alias

server.ssl.key-password

Should SSL be enabled, default true
Supported SSL ciphers, default empty

Should SSL client authentication be wanted (WANT) or needed
NEED. Default empty

SSL protocol to use, default TLS
Which SSL protocols are enabled, default empty

The alias to identify the key in the keystore, default empty

The password to access the key in the keystore, default empty

76

(continued)

CHAPTER 3 SPRING MVC

Table 3-9. (continued)

Property Description

server.ssl.key-store Location of the keystore, typically a JKS file, default empty
server.ssl.key-store- Password to access the keystore, default empty
password

server.ssl.key-store- Type of the keystore, default empty

type

server.ssl.key-store- Provider of the keystore, default empty

provider

server.ssl.trust-store Location of the truststore

server.ssl.trust-store- Password to access the truststore, default empty
password

server.ssl.trust-store- Type of the truststore, default empty

type

server.ssl.trust-store- Provider of the truststore, default empty
provider

Note All the properties mentioned in the aforementioned tables apply only
when using an embedded container to run your application. When deploying to an
external container (i.e., deploying a WAR file), the settings do not apply!

As we are using Thymeleaf, we could disable the registration of the JSP servlet; and
let’s change the port and compression as well. Place the following in the application.
properties:

server.port=8081
server.compression.enabled=true
server.servlet.jsp.registered=false

Now when (re)starting, your application pages (when large enough) will be
compressed and the server will run on port 8081 instead of 8080.

77

CHAPTER 3 SPRING MVC

Note There is a difference between server.servlet.context-path and
server.servlet.path. When looking at a URL http://localhost:8080/
books it consists of several parts. The first is the protocol (generally http or
https); then there is the address and port of the server you want to access,
followed by the context-path (default / deployed at the root), which in turn

is followed by the servlet-path. The server.context-path is the main
URL to your application; for instance if we set the server.context-path=/
library the whole application is available on the /1ibrary URL. (The
DispatcherServlet still listens to / within the context-path). Now if we set
the server.path=/dispatch we need to use /library/dispatch/books to
access the books.

Next, if we added a second DispatcherServlet, which we configure to have a
path of /services, that would be accesible through /1ibrary/services. Both
DispatcherServlets would be active within the main context-path of
/library.

Changing the Runtime Container

When including the spring-boot-starter-web dependency, it will automatically
include a dependency to the Tomcat container as it itself has a dependency on the
spring-boot-starter-tomcat artifact. To enable a different servlet container, the
spring-boot-starter-tomcat needs to be excluded and one of spring-boot-starter-
jetty or spring-boot-starter-undertow needs to be included.

<dependency»
<groupId>org.springframework.boot</groupIds
<artifactId>spring-boot-starter-web</artifactId>
<exclusions»
<exclusion»
<groupldyorg.springframework.boot</groupIds
<artifactId>spring-boot-starter-tomcat<¢/artifactIds
</exclusion»
</exclusions>

78

CHAPTER 3 SPRING MVC

</dependency>

<dependency>
<groupIdsorg.springframework.boot</groupIds»
<artifactIdyspring-boot-starter-jetty</artifactIds

</dependency>

In Maven you can use an <exclusion> element inside your <dependency> to exclude
a dependency.

Now when the application is started it will start with Jetty instead of using Tomcat
(Figure 3-11).

INFO 44500 " ¥ . Started 0.5.b.w.e.j.JettyEndeddediebAppContext@lodedbad{application,
B49348713278767.8081/] , AVATLABLE }
<00

Started g2200ms

Initialiring ExecutorService 'applicationTaskExecutor®

Adding welcone page template: index

Initializing Spring DispatcherServiet 'dispatcherServiet'
Initializing Servlet 'dispatcherServiet’

Completed initialization in 5 as

Started ServerConnector@?0fab835{HTTP/1.1, [http/1.1] }{0.0.0.0:8081}
Jetty started on port(s) 8981 (http/l.1) with context path **
Started LibraryApplication in 2.385 seconds (JW running for 2.785)

Figure 3-11. Bootstrap logging with Jetty container

3-8 Configuring SSL for the Servlet Container
Problem

You want your application to be accessible through HTTPS next (or instead of) HTTP.

Solution

Get a certificate, place it in a keystore, and use the server.ssl namespace to configure
the keystore. Spring Boot will then automatically configure the server to be accessible
through HTTPS only.

How It Works

Using the server.ssl.key-store (and related properties) you can configure the
embedded container to only accept HTTPS connection. Before you can configure SSL
you will need to have a certificate to secure your application with. Generally you will
want to get a certificate from a certification authority like VeriSign or Let’s Encrypt.
However, for development purposes you can use a self-signed certificate (see the section
on Creating a Self-Signed Certificate).

79

CHAPTER 3 SPRING MVC

Creating a Self-Signed Certificate

Java comes packaged with a tool called the keytool, which can be used to generate
certificates among other things.

keytool -genkey -keyalg RSA -alias sb2-recipes -keystore sb2-recipes.pfx
-storepass password -validity 3600 -keysize 4096 -storetype pkcsi2

The preceding command will tell keytool to generate a key using the RSA
algorithm and place it in the keystore named sb2-recipes.pfx with the alias
sb2-recipes, and it will be valid for 3,600 days. When running the command, it
will ask a few questions; answer them accordingly (or leave empty). After that, there
will be a file called sb2-recipes.pfx containing the certificate and protected with a
password.

Place this file in the src/main/resources folder so that it is packaged as part of your
application and Spring Boot can easily access it.

Warning Using a self-signed certificate will produce a warning in the browser
that the website isn’t safe and protected, because the certificate isn’t issued by a
trusted authority (see also Figure 3-12).

Configure Spring Boot to Use the Keystore

Spring Boot will need to know about the keystore to be able to configure the embedded
container. For this, use the server.ssl.key-store property. You will also need to specify
the type of keystore (pkcs12) and the password.

server.ssl.key-store=classpath:sb2-recipes.pfx
server.ssl.key-store-type=pkcsi2
server.ssl.key-store-password=password
server.ssl.key-password=password
server.ssl.key-alias=sb2-recipes

Now when opening the http://localhost:8080/books.html page, it will be served
through https (although with a warning). See Figure 3-12.

80

CHAPTER 3 SPRING MVC

— ————— g

& - C | A Niet veilig | bttps://localhost:8080/books.htm| '

Available Books

Title Author ISBN
The Hobbit [J.R.R. Tolkien] 9780618260300
1984 [George Orwell] 9780451524935

To Kill a Mockingbird [Harper Lee] 9780061120084

Figure 3-12. HTTPS access

Support Both HTTP and HTTPS

Spring Boot by default only starts one connector: either HTTP or HTTPS but not both. If
you want to support both HTTP and HTTPS, you will manually have to add an additional
connector. It is easiest to create the HTTP connector yourself and let Spring Boot set up
the SSL part.

First let’s configure Spring Boot to start the server on port 8443.

server.port=8443

To add an additional connector to the embedded Tomcat, you will need to add
the TomcatServletWebServerFactory as a bean to our context. Normally Spring Boot
would detect the container and select the WebServerFactory to use; however, as a
customization needs to be done we need to add it manually. This bean can be added to a
@Configuration annotated class or to the LibraryApplication class.

@Bean

public TomcatServletWebServerFactory tomcatServletWebServerFactory() {
var factory = new TomcatServletWebServerFactory();
factory.addAdditionalTomcatConnectors(httpConnector());
return factory;

}
81

CHAPTER 3 SPRING MVC

private Connector httpConnector() {
var connector = new Connector(TomcatServletWebServerFactory.DEFAULT PROTOCOL);
connector.setScheme("http");
connector.setPort(8080);
connector.setSecure(false);
return connector;

This will add an additional connector on port 8080. The application will now be
usable from both port 8080 and 8443. Using Spring Security, you could now force access
to parts of your application over HTTPS instead of HTTP.

Tip If you don’t want to explicitly configure the TomcatServletWebServer
Factory you could also use a BeanPostProcessor to register the additional
Tomcat Connector with the TomcatServletWebServerFactory. That way you
could implement this for different embedded containers instead of being tied to a
single container.

@Bean
public BeanPostProcessor addHttpConnectorProcessor() {
return new BeanPostProcessor() {
@verride
public Object postProcessBeforeInitialization(Object bean, String
beanName)
throws BeansException {
if (bean instanceof TomcatServletWebServerFactory) {
var factory = (TomcatServletWebServerFactory) bean;
factory.addAdditionalTomcatConnectors(httpConnector());
}
return bean;
}
};
}

82

CHAPTER 3 SPRING MVC

Redirect HTTP to HTTPS

Instead of supporting both HTTP and HTTPS, another option is to support only HTTPS
and redirect the traffic from HTTP to HTTPS. The configuration is similar to that as
when supporting both HTTP and HTTPS. However, you now configure the connector to
redirect all traffic from 8080 to 8443.

@Bean

public TomcatServletWebServerFactory tomcatServletWebServerFactory() {
var factory = new TomcatServletWebServerFactory();
factory.addAdditionalTomcatConnectors(httpConnector());
factory.addContextCustomizers(securityCustomizer());
return factory;

}

private Connector httpConnector() {
var connector = new Connector(TomcatServlethWebServerFactory.DEFAULT PROTOCOL);
connector.setScheme("http");
connector.setPort(8080);
connector.setSecure(false);
connector.setRedirectPort(8443);
return connector;

}

private TomcatContextCustomizer securityCustomizer() {
return context -> {

var securityConstraint = new SecurityConstraint();
securityConstraint.setUserConstraint("CONFIDENTIAL");
var collection = new SecurityCollection();
collection.addPattern("/*");
securityConstraint.addCollection(collection);
context.addConstraint(securityConstraint);

};

83

CHAPTER 3 SPRING MVC

The httpConnector now has a redirectPort set so that it knows which port to use.
Finally, you need to secure all URLs with a SecurityConstraint. With Spring Boot you
can use a specialized TomcatContextCustomizer to post-process the Context from
Tomcat before it is started. The constraint makes everything (due to the use of /* as
pattern) confidential (one of NONE, INTEGRAL, or CONFIDENTIAL is allowed) and the result
is that everything will be redirected to https.

84

CHAPTER 4

Spring MVC - Async

When the Servlet API was released, the majority of the implementing containers used
a thread per request. This meant a thread was blocked until the request processing
finished and the response was sent to the client.

In those early days there weren’t as many devices connected to the Internet as
nowadays. Due to the increased number of devices, the number of HTTP requests
handled has grown. Due to this increase for a lot of web applications, keeping a thread
blocked isn’t workable anymore.

As of the Servlet 3 specification, it is possible to handle a HTTP request
asynchronously. This is done by releasing the thread that handled the HTTP request. The
new thread will run in the background, and as soon as the result is available it’s written
to the client. This all can be done in a nonblocking way on a Servlet 3.1-compliant servlet
container. All used resources then also would have to be nonblocking.

In the last couple of years there has also been an uprising in Reactive programming.
As of Spring 5 it is possible to write Reactive web applications. To be reactive, spring
utilizes Project Reactor as an implementation of the Reactive Streams API. It goes
beyond the scope of this book to do a full dive into Reactive programming. Reactive
programming is, in short, a way of doing nonblocking functional programming.

When working with web applications there would be a request, HTML would render
on the server, and that got sent back to the client. In the last couple of years, rendering of
HTML moved to the client. Communication is done by returning JSON, XML, or another
representation to the client.

This was still a request and response cycle, although driven through an async call
by the client through the XmlHttpRequest. There are also other ways of communicating
between the client and server. One could use Server-Sent-Events to have one-way
communication. For full duplex communication, one could use Web Sockets.

Add the spring-boot-starter-web as a dependency when building a regular web
application. Add spring-boot-starter-webflux when building a reactive application.

85
© Marten Deinum 2018

M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6_4

CHAPTER 4 SPRING MVC - ASYNC

4-1 Asynchronous Request Handling
with Controllers and TaskExecutor

Problem

To reduce the throughput on the servlet container, you want to asynchronously handle
the request.

Solution

When a request comes in it is handled synchronously, which blocks the HTTP request
handling thread. The response stays open and is available to be written to. This is useful
when, for instance, a call takes some time to finish and instead of blocking threads you
can have this processed in the background and return a value to the user when finished.

How It Works

Spring MVC supports a number of return types from methods; the return types in
Table 4-1 are processed in an asynchronous way.

Table 4-1. Asynchronously Return Types

Type Description

DeferredResult<V> Async result produced from another thread

ListenableFuture<V> Async result produced from another thread, an equivalent
alternative for DeferredResult

CompletionStage<V>/ Async result produced from another thread, an equivalent

CompletableFuture<V> alternative for DeferredResult

Callable<V> An async computation with the result produced after the
computation finishes

ResponseBodyEmitter Can be used to write multiple objects to the response
asynchronously

SseEmitter Can be used to write Server-Sent Event asynchronously

StreamingResponseBody Can be used to write to the OutputStream asynchronously.

86

CHAPTER 4 SPRING MVC - ASYNC

Writing an Asynchronous Controller

Writing a controller and having it handle the request asynchronously is as simple as
changing the return type of the controllers handler method (see Table 4-1). Let’s imagine
that the call to HelloWorldController.hello takes quite some time but we don’t want to
block the server for that.

Use a Callable

package com.apress.springbootrecipes.library;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

import java.util.concurrent.Callable;
import java.util.concurrent.ThreadLocalRandom;

@RestController
public class HelloWorldController {

@GetMapping
public Callable<String> hello() {
return () -> {
Thread.sleep(ThreadLocalRandom.current().nextInt(5000));
return "Hello World, from Spring Boot 2!";
};
}
}

The hello method now returns a Callable<String> instead of returning a String
directly. Inside the newly constructed Callable<String> there is a random wait to
simulate a delay before the message is returned to the client.

Now when making a reservation, you will see something in the logs similar to Figure 4-1.

2160 . t GET “/hello”, parameters={(}

1 ¥ Mapped to public java.util.concurrent.Callable<java.lar
Started async request

Exiting but response remains cpen for further handling
Async result set, dispatch to /helle

“ASYNC" dispatch for GET "/hello”, parameters={}
Resuse with async result [“Hello World, from Spring Boc
Using ‘text/plain’, given [v/+] and supported [text/pla

nl
160 ~ Writing [“Hello World, from Spring Boot 2!")
160 t t Exiting from “ASYNC" dispatch, status 200

Figure 4-1. Logging Output
87

CHAPTER 4 SPRING MVC - ASYNC

You notice that request handling is started on a certain thread (here nio-8080-
exec-1). Another thread is doing the processing and returning the result (here, task-1).
Finally, the request is dispatched to the DispatcherServlet again to handle the result on
yet another thread (here nio-8080-exec-2).

Use a CompletableFuture

Change the signature of the method to return CompletableFuture<String> and use the
TaskExecutor to asynchronously execute the code.

@RestController
public class HelloWorldController {

private final TaskExecutor taskExecutor;

public HelloWorldController(TaskExecutor taskExecutor) {
this.taskExecutor = taskExecutor;

}

@GetMapping
public CompletableFuture<String> hello() {

return CompletableFuture.supplyAsync(() -> {
randomDelay();
return "Hello World, from Spring Boot 2!";
}, taskExecutor);

}

private void randomDelay() {
try {
Thread.sleep(ThreadLocalRandom.current().nextInt(5000));
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}

88

CHAPTER 4 SPRING MVC - ASYNC

Calling the supplyAsync (or when using void, use runAsync) a task is submitted.
It returns a CompletableFuture. Here you use the supplyAsync method that takes
both a Supplier and an Executor. This way you can reuse the TaskExecutor for async
processing. If you use the supplyAsync method, which only takes a Supplier, it will be
executed using the default fork/join pool available on the JVM.

When returning a CompletableFuture, you can take advantage of all the features of it
like composing and chaining multiple CompletableFuture instances.

Testing Async Controllers

Just as with regular controllers, the Spring MVC Test framework can be used to test async
controllers.

Create a test class and annotate it with @WebMvcTest (HelloWorldController.class)
and @RunWith(SpringRunner.class). The @WebMvcTest will bootstrap a minimal Spring
Boot application containing the things needed to test the controller. It automatically
configures Spring MockMvc, which is autowired into the test.

@RunWith(SpringRunner.class)
@WebMvcTest (HelloWorldController.class)
public class HelloWorldControllerTest {

@Autowired
private MockMvc mockMvc;

@Test
public void testHelloWorldController() throws Exception {
MvcResult mvcResult = mockMvc.perform(get("/"))
.andExpect(request().asyncStarted())
.andDo(MockMvcResultHandlers.log())
.andReturn();

mockMvc.perform(asyncDispatch(mvcResult))
.andExpect(status().is0k())
.andExpect(content().contentTypeCompatibleWith(TEXT PLAIN))
.andExpect(content().string("Hello World, from Spring Boot 2!"));

89

CHAPTER 4 SPRING MVC - ASYNC

The main difference between an async web test and a regular web test is the fact
that the async dispatching needs to be initiated. First the initial request is performed
and validated for async to be started. For debugging purposes you could log the result
with MockMvcResultHandlers.log(). Next, the asyncDispatch is applied. Finally we can
assert the expected response.

Configuring Async Processing

Depending on your needs, you probably also want to configure an explicit TaskExecutor
for the asynchronous request handling instead of using the default TaskExecutor
provided by Spring Boot.

To configure async processing, you override the configureAsyncSupport
method of WebMvcConfigurer. Overriding this method gives you access to the
AsyncSupportConfigurer. This allows you to set the AsyncTaskExecutor to use
(among others).

@SpringBootApplication
public class HelloWorldApplication implements WebMvcConfigurer {

public static void main(String[] args) {
SpringApplication.run(HelloWorldApplication.class, args);

}

@0verride
public void configureAsyncSupport(AsyncSupportConfigurer configurer) {
configurer.setTaskExecutor(mvcTaskExecutor());

}

@Bean

public ThreadPoolTaskExecutor mvcTaskExecutor() {
ThreadPoolTaskExecutor taskExecutor = new ThreadPoolTaskExecutor();
taskExecutor.setThreadNamePrefix("mvc-task-");
return taskExecutor;

}
}

90

CHAPTER 4 SPRING MVC - ASYNC

4-2 Response Writers
Problem

You have a service, or multiple calls, and want to collect the results and send the
response to the client.

Solution

Use a ResponseBodyEmitter (or its subclass SseEmitter) to collect and send the
response to the client.

How It Works
Send Multiple Results in a Response

Spring MVC has a class named ResponseBodyEmitter, which is useful if instead
of a single result you want to return multiple objects to the client. When sending
an object, it is converted to a result using an HttpMessageConverter. To use the
ResponseBodyEmitter you have to construct it and return it from the request
handling method.

Create an OrderController with an orders method that returns a
ResponseBodyEmitter and send the results one by one to the client.

First create the Order and OrderService.

public class Order {

private String id;
private BigDecimal amount;

public Order() {
}

public Order(String id, BigDecimal amount) {
this.id=id;
this.amount = amount;

}

91

CHAPTER 4 SPRING MVC - ASYNC

public String getId() {
return id;

}

public void setId(String id) {
this.id = id;
}

public BigDecimal getAmount() {
return amount;

}

public void setAmount(BigDecimal amount) {
this.amount = amount;

}

@verride
public String toString() {
return String.format("Oxder [id='%s', amount=%4.2f]", id, amount);
}
}

Then add a simple OrderService to hold the orders.

@Service
public class OrderService {

private final List<Order> orders = new ArraylList<>();

@PostConstruct
public void setup() {
createOrders();

}

public Iterable<Order> findAll() {
return List.copyOf(orders);

}

92

CHAPTER 4 SPRING MVC - ASYNC

private Iterable<Order> createOrders() {
for (int i = 0; i < 25; i++) {
this.oxders.add(createOrder());

}

return orders;

}

private Order createOrder() {
String id = UUID.randomUUID().toString();
double amount = ThreadlLocalRandom.current().nextDouble(1000.00d);
return new Order(id, BigDecimal.valueOf(amount));
}
}

Now create the OrderController.

@RestController
public class OrderController {

private final OrderService orderService;

public OrderController(OrderService orderService) {
this.orderService = orderService;

}

@GetMapping("/orders")
public ResponseBodyEmitter orders() {
var emitter = new ResponseBodyEmitter();
var executor = Executors.newSingleThreadExecutor();
executor.execute(() -> {
var orders = orderService.findAll();
try {
for (var order : orders) {
randomDelay();
emitter.send(order);

}

93

CHAPTER 4 SPRING MVC - ASYNC

emitter.complete();
} catch (IOException e) {
emitter.completeWithError(e);

}
D;
executor.shutdown();
return emitter;
}
private void randomDelay() {
try {

Thread.sleep(ThreadLocalRandom.current().nextInt(150));
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
}
}
}

First a ResponseBodyEmitter is created, and in the end returned from this method.
Next a task is executed that will query the reservations using the OrderService.findAll
method. All the results from that call are returned one by one using the send method of
the ResponseBodyEmitter. When all the objects have been sent, the complete() method
needs to be called so that the thread responsible for sending the response can complete
the request and be freed up for the next response to handle. When an exception occurs
and you want to inform the user of this, you call the completelWithError; the exception
will pass through the normal exception handling of Spring MVC and after that the
response is completed.

When using a tool like httpie or curl, calling the URL http://localhost:8080/
orders will yield a result similar to that depicted in Figure 4-2.

94

CHAPTER 4 SPRING MVC - ASYNC

o0 e W marten — marten@imac-van-marten — ~ — -zsh — 122x32

http :8088/orders -v

{"id":"a3e2c659-6d61-4172-81a2-9386767901c7", "amount":964.3303264768648}{"id" : "68e353b9-60b@-44cc-aBa5-c9dB11a61f5e", "amou
nt":630.5819945932226}{"id": "7cdS68aa-4168-40cb-996c-051e5fa82457", "amount" : 247, 3223213836674} {" id" : "96426124-f993-43eb-ba
17-9@8bfc5@97aa", "amount" : 808.549237068922}{"id" : "5ecc62bc~-9f3c~473b-9966-d5c9737555Fd" , "amount" :661.3744699952401}{" id": "
676d1bc-dded-478c-83b5-23101642c123", "amount" 1 857.9818651414307 }{"id":"2c47232-8315-41b3-9633-4771a48e3364", "amount" : 891
. 7136746089751}{"id":"d20b8c31-Bdcd-46d1-aea3-9defacOf14ce”, "amount":332. 40993916867015}{"1d" : "b683f8ee-011b-4390-8973-80a
al75@9d7a", "amount™:800.6509712001965 {"id" : "3cd778f@-9e25-4d2a-b29e-92d239a9189d", "amount" : 891.36673088438916}{"id" : "abdBe
7da-9d76-42d9-a@f@-0455e@5187b1", "amount' : 554.321571430265}{"id" :"7769e%9a4~-f951-447¢c~-961c~-d715c8al8ab8" , "amount":115.50183
050747442}3{"id" :"5b1fc94f-853b-4f32-b@1c-1f4afTcedldd", "amount" :686.6941002940033}{"id" : "05d36d52-786a-4a5e-b022-915956b89
37e","amount":748.0382636058531}{"id" : "6564f567-d9ad-4486-b5dd-b77celelb@6c", "amount" : 879.4838692645482}{" id" : "be6c103d-10
9a-4afe-9f5f-992d522b42ba", "amount" : 447.45108559657245} {" id" : "46a39e54-bb29-43dc-9417-c17fc7462574" , "amount®:419,.547649244
9695}H{"id":"51a7¢85¢c-b35a-4269-9b52-e2dd7ef2deBc", "amount" : 421, 8349910257171 }{"id": "35564e73-bTee-46ca-9438-fdc9637d63d4",
"amount":975.8530454514776}{"id": "6fBebdfa-1c60-4a0c-8299-1d592204dd3@", "amount" :338. 3550152812614 }{" id" : "5542e1a6-d500-44
4d-b889-ad@cd98d17a7", "amount" 1 402, 66337401090167)} {" id": " 47087519-398-4110-8719-612a581f@6a6" , "amount™: 782, 9394273793404}
{"id":"11b96b15-d4eb-4f56-b14b-1b3f9ff77d61", "amount":176.8339216118647}{"id":"697b74c3-8e35-4514-beb9-3e35d4a7b935", "amou
nt":297.7516547391046}{"id" : "c@58b00d-bBI =442 f=8f7b=3cB469T49728", "amount" : 588, 2887029367946}

Figure 4-2. Output of ResponseBodyEmitter

Finally, let’s write a test for this controller. Annotate a class with @RunWith
(SpringRunner.class) and @WebMvcTest (OrderController.class) to get a web slice
test. The OrderController needs an OrderService, which is mocked by using @MockBean
on the OrderService field.

@RunWith(SpringRunner.class)
@WebMvcTest (OrderController.class)
public class OrderControllerTest {

@Autowired
private MockMvc mockMvc;

@MockBean
private OrderService orderService;

@Test
public void foo() throws Exception {
when(orderService.findAll())
.thenReturn(List.of(new Order("1234", BigDecimal.TEN)));

95

CHAPTER 4 SPRING MVC - ASYNC

MvcResult mvcResult =
mockMvc.perform(get("/orders"))
.andExpect(request().asyncStarted())
.andDo(MockMvcResultHandlers.log())
.andReturn();

mockMvc.perform(asyncDispatch(mvcResult))
.andDo (MockMvcResultHandlers.log())
.andExpect(status().is0k())
.andExpect(content().json("{\"id\":\"1234\",\"amount\":10}"));

The test method first registers behavior on the mocked OrderService to return a
single instance of an Order. Next we use MockMvc to perform a get on the /orders
endpoint. As this is an asynchronous controller, the request should start
asynchronous processing. Next we mimic the async dispatching and write assertions
for the actual response. The result should be a single JSON element containing the
id and amount.

Sending Multiple Results as Events

The SseEmitter can deliver events from the server to the client. Server-Sent-Events are
messages from the server to the client. They have a Content-Type header of text/event-
stream. They are quite lightweight, with only four fields (Table 4-2).

Table 4-2. Allowed Fields For Server-Sent-Events

Field Description

id The ID of the event

event the type of event

data The event data

retry Reconnection time for the event stream

96

CHAPTER 4 SPRING MVC - ASYNC

To send events from a request handling method, you need to create an instance of
SseEmitter and return it from the request handling method. Then use the send method

to send individual elements to the client.

@GetMapping("/orders")
public SseEmitter orders() {
SseEmitter emitter = new SseEmitter();
ExecutorService executor = Executors.newSingleThreadExecutor();
executor.execute(() -> {
var orders = orderService.findAll();
try {
for (var order : orders) {
randomDelay();
emitter.send(order);
}
emitter.complete();
} catch (IOException e) {
emitter.completeWithError(e);

}
};

executor.shutdown();
return emitter;

}

Note There is a delay in sending each item to the client; just so you can see the
different events coming in you wouldn’t do this in real code.

Now when the URL http://localhost:8080/orders is called, you see events

coming in one by one (Figure 4-3).

97

CHAPTER 4 SPRING MVC - ASYNC

[] O # marten — marten@imac-van-marten — ~ — -zsh — 92x29
[~ http :8@88/orders

data: {"id":"941a263f-3f48-49¢cb-9801-ca931623a355", "amount" :730.4383307235909}
data: {"id":"@blaefda-afdf-47da-853d-25ce67977597", "amount":154.7487508307738}
data: {"id":"03504d98-ce57-4950-9627-8dd582b0f43f", "amount" :689.9288545237567}
data:{"id":"bc2dabaa-d6dc-4201-bBBA-35f114babf51", "amount" :581.8511724684582}
data: {"id":"a25f2d92-ff06-4bO0O-bRBb-fObB5fa4355¢", "amount" :779.151699482505}

data:{"id":"a7@c3311-ccBB-4a82-93ab-06e25a490cbb"”, "amount™ :198.71754307506419}
data: {"id":"334bc6c5-Bcc5-40f7-bc3b-1035b99dccHb8", "amount™ :371. 8884523273436}
data: {"id":"416ddcad-4149-42ec-bf79-50a8f10cB1a9", "amount" :955.9374666581973}
data: {"id":"e64dB21f-6abf-4cB1-9698-99e135ccBfd4", "amount" :549.3973604937846}
data:{"id":"a220b6a9-53fd-4a3e-b34c-938966007727","amount" :179. 1484242467024}

data:{"id":"598448a5-2120-4137-9896-b66T1a09d@d5", "amount":138.47217193639062}

data:{"id":"B2224f61-3474-4eec4-8066-91e9f119c36¢", "amount" :976.5754411843043}

Figure 4-3. Server-Sent-Events Result

Note the Content-Type header has a value of text/event-stream to indicate that we
get a stream of events. The stream can be kept open and receiving event notifications.
Each object written is converted to JSON with an HttpMessageConverter. Each object is
written in the data tag as the event data.

If you want to add more info to the event (fill in one of the other fields as mentioned
in Table 4-2), use the SseEventBuilder. The event() factory-method of the SseEmitter
creates an instance. Use it to fill the id and event fields.

@GetMapping("/orders™)
public SseEmitter orders() {
SseEmitter emitter = new SseEmitter();
ExecutorService executor = Executors.newSingleThreadExecutor();
executor.execute(() -> {
var orders = orderService.findAll();
try {
for (var order : orders) {
randomDelay();

98

CHAPTER 4

var eventBuilder = event();
emitter.send(
eventBuilder
.data(order)
.name("order-created")
.id(String.valueOf(order.hashCode())));
}
emitter.complete();
} catch (IOException e) {
emitter.completeWithError(e);
}
D;

executor.shutdown();
return emitter;

SPRING MVC - ASYNC

Now when calling the URL http://localhost:8080/orders, events contain an id,

event, and data field.

[NN) # marten — marten@imac-van-marten — ~ — -zsh — 92x29

[~ http :8@88/orders

data: {"id":"8b32ffal-9108-4135-a1f1-b576ffabdcbc", "amount":571.7930067888439}
event:order-created
id:1253900499

data: {"id":"2be2f24d-fdB2-4156-994b-c7c@f65deled", "amount" :337.4862782201099}
event:order-created
id:1820233767

data:{"id":"17153887-5304-43ff-0088-62bladcbb3db","amount" :489.9123343382062}
event:order-created
id:2096994301

data: {"id":"e515b3bB-aSbc-4fBd-aa3f-2¢6576e77913", "amount" :234.7290986199768}
event:order-created
id:1747749104

data:{"id":"93bB7a4a-b145-4386-2589-c@eaeB458757","amount" :167.13027374188226}
event:order-created
id:616835188

data:{"id":"d48b5alf-d5b7-41da-8374-00a3d9756c1f","amount" :467.42611999725835}
event:order-created
id:1239837839

Figure 4-4. Orders Endpoint Output

99

CHAPTER 4 SPRING MVC - ASYNC

Note Server-Sent-Events aren’t supported on Microsoft’s browsers (Internet Explorer
or Edge); to make it work with Microsoft browser you would have to use a polyfill.”

4-3 WebSockets
Problem

You want to use bidirectional communication from the client to the server over the web.

Solution

Use WebSockets to communicate from the client to the server and vice versa.
WebSockets provide full duplex communication, unlike HTTP.

How It Works

A full explanation of WebSockets goes beyond the scope of this recipe; however, one
thing worth mentioning is that the relation between HTTP and WebSockets is actually
quite thin. The only usage of HTTP for WebSockets is that the initial handshake uses
HTTP, to upgrade the connection from plain HTTP to a TCP socket connection.

Configure WebSocket Support

The first step is to add a dependency on spring-boot-starter-websocket, which brings
in the needed dependencies and will auto-configure websocket support in Spring Boot.

To enable the use of WebSockets, it is just a matter of adding @EnablelWebSocket to
your application. Do this by adding the annotation to the @SpringBootApplication
annotated class or an @Configuration annotated class.

@SpringBootApplication
@EnablelWebSocket
public class EchoApplication implements WebSocketConfigurer { ... }

'https://github.com/remy/polyfills
100

https://github.com/remy/polyfills

CHAPTER 4 SPRING MVC - ASYNC

Creating a WebSocketHandler

To handle WebSocket messages and lifecycle events (handshake, connection established,
etc.) you need to create a WebSocketHandler and register it to an endpoint URL.

The WebSocketHandler defines five methods, which need implementing
(Table 4-3) if you would implement this interface directly. However, Spring
already provides a nice class hierarchy that you can use to your advantage.
When writing your own custom handlers, it is often enough to extend one of
TextWebSocketHandler or BinaryWebSocketHandler which, as their names imply,
can handle either text or binary messages.

Table 4-3. WebSocketHandler methods

Method Description

afterConnectionEstablished Invoked when the websocket connection is open and ready
for use

handleMessage Called when a WebSocket message arrives for this handler

handleTransportError Called when an error occurs

afterConnectionClosed Invoked after the websocket connection has been closed

supportsPartialMessages If this handler supports partial messages: if set true the

WebSocket messages can arrive over multiple calls.

Create EchoHandler by extending the TextWebSocketHandler and implement the
afterConnectionEstablished and handleTextMessage methods.

package com.apress.springbootrecipes.echo;

import org.springframework.web.socket.TextMessage;
import org.springframework.web.socket.WebSocketSession;
import org.springframework.web.socket.handler.TextWebSocketHandler;

public class EchoHandler extends TextWebSocketHandler {

101

CHAPTER 4 SPRING MVC - ASYNC

@verride
public void afterConnectionEstablished(WebSocketSession session)
throws Exception {

session.sendMessage(new TextMessage("CONNECTION ESTABLISHED"));

}

@verride
protected void handleTextMessage(WebSocketSession session,
TextMessage message) throws Exception {
var msg = message.getPayload();
session.sendMessage(new TextMessage("RECEIVED:

+ Mmsg));

When a connection is established, a TextMessage will be sent back to the client
telling it that the connection was established. When a TextMessage is received, the
payload (the actual message) is extracted and prefixed with RECEIVED and sent back to
the client.

Next you need to register this handler with a URI; to do so you can create a
@Configuration class that implements WebSocketConfigurer and register it in the
registerWebSocketHandlers method. Add this interface to the EchoApplication class.

package com.apress.springbootrecipes.echo;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import org.springframework.web.socket.config.annotation.EnablelWebSocket;
import org.springframework.web.socket.config.annotation.
WebSocketConfigurer;

import org.springframework.web.socket.config.annotation.
WebSocketHandlerRegistry;

@SpringBootApplication
@EnablelebSocket
public class EchoApplication implements WebSocketConfigurer {

102

CHAPTER 4 SPRING MVC - ASYNC

public static void main(String[] args) {
SpringApplication.run(EchoApplication.class, args);

}

@Bean
public EchoHandler echoHandler() {
return new EchoHandler();

}

@verride
public void registerlWebSocketHandlers(WebSocketHandlerRegistry registry) {
registry.addHandler(echoHandler(), "/echo");
}
}

First you register the EchoHandler as a bean so that it can be used to attach it to a
URL. In the registerWebSocketHandlers you can use the WebSocketHandlerRegistry to
register the handler. Using the addHandler method you can register the handler to a URI,
in this case /echo. With this configuration we could use the ws://localhost:8080/echo
URL to open a WebSocket connection from the client.

Now that the server is ready, we need a client to connect to our WebSocket endpoint.
For this you will need some JavaScript and HTML. Write the following app. js and place
itin the src/main/resources/static directory.

var ws = null;
var url = "ws://localhost:8080/echo";

function setConnected(connected) {
document.getElementById('connect').disabled = connected;
document.getElementById('disconnect').disabled = !connected;
document.getElementById('echo').disabled = !connected;

}

function connect() {
ws = new WebSocket(url);

ws.onopen = function () {
setConnected(true);

};

103

CHAPTER 4 SPRING MVC - ASYNC

ws.onmessage = function (event) {

log(event.data);
15
ws.onclose = function (event) {
setConnected(false);
log('Info: Closing Connection.');
15

}

function disconnect() {
if (ws != null) {

ws.close();

ws = null;
}
setConnected(false);

}

function echo() {
if (ws != null) {
var message = document.getElementById('message').value;
log('Sent: ' + message);
ws.send(message);
} else {
alert('connection not established, please connect.');

}

function log(message) {
var console = document.getElementById('logging');
var p = document.createElement('p");
p.appendChild(document.createTextNode(message));
console.appendChild(p);
while (console.childNodes.length > 12) {
console.removeChild(console.firstChild);

}

console.scrollTop = console.scrollHeight;

104

CHAPTER 4 SPRING MVC - ASYNC

There are a few functions here. The first connect will be invoked when pressing
the Connect button; this will open a WebSocket connection tows://localhost:8080/
echo, which is the handler created and registered earlier. Connecting to the server will
create a WebSocket JavaScript object and that gives you the ability to listen to messages
on the client. Here the onopen, onmessage, and onclose callbacks are defined. The most
important is the onmessage because that will be invoked whenever a message comes in
from the server; this method simply calls the log function, which will add the received
message to the logging element on the screen.

Next there is disconnect, which will close the WebSocket connection and clean up
the JavaScript objects. Finally there is the echo function, which will be invoked whenever
the Echo Message button is pressed. The given message will be sent to the server (and
eventually will be returned).

To use the app.js add the next index.html in src/main/resources/static.

<!DOCTYPE html>
<html»
<head>
<link type="text/css" rel="stylesheet" href="https://cdnjs.cloudflare.
com/ajax/1libs/semantic-ui/2.2.10/semantic.min.css" /»
¢script type="text/javascript" src="app.js"></scripty
</head>
<body>
<divy
<div id="connect-container" class="ui centered grid"»
<div class="row"»
<button id="connect" onclick="connect();" class="ui green
button "»Connect</buttony
<button id="disconnect" disabled="disabled"
onclick="disconnect();" class="ui red button"sDisconnect</
button>
</divy
<div class="row"»
<textarea id="message" style="width: 350px" class="ui input"
placeholder="Message to Echo"s</textareas
</divy

105

CHAPTER 4 SPRING MVC - ASYNC

<div class="row"»
<button id="echo" onclick="echo();" disabled="disabled"
class="ui button"»Echo message</button>

</divy
</divy
¢div id="console-container"»
<h3>Logging</h3>
<div id="logging"»</div>
</divy
</divy
</body>
</html>

Now when deploying the application, you can connect to the echo WebSocket
service on http://localhost:8080 and send a message and have them send it back
(Figure 4-5).

® © ® / . iocalnost:8080 X\

< C @ localhost:8080

Disconnect

il—lello World, through websockets.

Echo message
Logging
CONNECTION ESTABLISHED
Sent: Spring Boot 2 Recipes
RECEIVED: Spring Boot 2 Recipes
Sent: Hello World, through websockets.

RECEIVED: Hello World, through websockets.

Figure 4-5. WebSocket client output

106

CHAPTER 4 SPRING MVC - ASYNC

Unit Testing a WebSocketHandler

You want to write a unit test to make sure that the EchoHandler actually does what you
want it to do. To unit test the EchoHandler, write a test and use Mockito (or another
mocking framework) to mock the websocket parts.

package com.apress.springbootrecipes.echo;

import org.junit.Test;
import org.springframework.web.socket.TextMessage;
import org.springframework.web.socket.WebSocketSession;

import static org.mockito.ArgumentMatchers.eq;
import static org.mockito.Mockito.*;

public class EchoHandlerTest {
private final EchoHandler handler = new EchoHandler();

@Test

public void shouldEchoMessage() throws Exception {
var mockSession = mock(WebSocketSession.class);
var msg = new TextMessage("Hello World!");
handler.handleTextMessage(mockSession, msg);

verify(mockSession, times(1))
.sendMessage(eq(new TextMessage("RECEIVED: Hello World!")));

The test constructs an instance of the EchoHandler. In the test method the
WebSocketSession is mocked. The TextMessage can simply be constructed. With the
mocked WebSocketSession and TextMessage we call the handleTextMessage. To verify that it
does what it is meant to do, we verify the behavior on the mocked WebSocketSession.

Integration Testing Plain WebSockets

Writing an integration test is a little harder. A websocket connection needs to be made to
the server, and we need to manually send messages and check the response. But before
that the server needs to be started.

107

CHAPTER 4 SPRING MVC - ASYNC

To start the server, annotate a class with @unWith(SpringRunner.class) and
@SpringBootTest (webEnvironment = SpringBootTest.WebEnvironment.RANDOM
PORT). We actually want to start the application instead of the default WebEnvironment.
MOCK. Use the @LocalServerPort annotation on an int field to get the actual port value.
This value is needed to construct the URT to connect to.

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM PORT)
public class EchoHandlerIntegrationTest {

@LocalServerPort
private int port;

}

Testing websockets is fairly easy with the default Java WebSocket API. To test, you can
write a basic websocket client that records the received messages and session. Annotate
a class with @ClientEndpoint and methods in that class with @nOpen, @nClose, and
@0nMessage. These annotated methods will receive callbacks when the connection
is opened, closed, and when a message is received, respectively. Next there are two
helper methods: sendTextAndWait and closeAndWait. The sendTextAndWait will send
a message using the Session and wait for a response. The closeAndWait will close the
session and wait until that has been confirmed. Finally, there are some getter methods to
receive the state and validate it in the test methods.

Add the SimpleTestClientEndpoint as a static embedded class in the
EchoHandlerIntegrationTest.

@ClientEndpoint
public static class SimpleTestClientEndpoint {

private List<String> received = new ArraylList<>();
private Session session;

private CloseReason closeReason;

private boolean closed = false;

@0n0Open
public void onOpen(Session session) {
this.session = session;

}

108

CHAPTER 4 SPRING MVC - ASYNC

@0nClose

public void onClose(Session session, CloseReason reason) {
this.closeReason = reason;
this.closed = true;

}

@0nMessage
public void onMessage(String message) {
this.received.add(message);

}

public void sendTextAndWait(String text, long timeout)
throws IOException, InterruptedException {
var current = received.size();
session.getBasicRemote().sendText(text);
wait(() -> received.size() == current, timeout);

}

public void closeAndWait(long timeout)
throws IOException, InterruptedException {
if (session != null 88 !closed) {
session.close();

}

wait(() -> closeReason == null, timeout);

}

private void wait(Supplier<Boolean> condition, long timeout)
throws InterruptedException {
var waited = 0;
while (condition.get() && waited < timeout) {
Thread.sleep(1);
waited += 1;
}
}

public CloseReason getCloseReason() {
return closeReason;

}

109

CHAPTER 4 SPRING MVC - ASYNC

public List<String> getReceived() {
return this.received;

}

public boolean isClosed() {
return closed;

}
}

Now that the helper classes are in place, write a test. Use the WebSocket
ContainerProvider to obtain the container. Before making the actual connection, you
have to construct the URI using the port field. Next, use the connectToServer method
to connect to the server, using an instance of the SimpleTestClientEndpoint. After
connecting, send a text message to the server and wait for some time and close the
connection (just to cleanup resources). The final thing is to actually do some assertions
on the received messages. Here we expect exactly two messages to be received.

@Test

public void sendAndReceiveMessage() throws Exception {
var container = ContainerProvider.getWebSocketContainer();
var uri = URI.create("ws://localhost:" + port + "/echo");
var testClient = new SimpleTestClientEndpoint();
container.connectToServer(testClient, uri);

testClient.sendTextAndWait("Hello World!", 200);
testClient.closeAndWait(2);

assertThat(testClient.getReceived())
.containsExactly("CONNECTION ESTABLISHED", "RECEIVED: Hello World!");

}

4-4 WebSockets with STOMP
Problem

You want to use STOMP (Simple/Streaming Text Oriented Message Protocol) over
WebSockets to communicate with the server.

110

CHAPTER 4 SPRING MVC - ASYNC

Solution

Configure the message broker and use @MessageMapping annotated methods in an
@Controller annotated class to handle the messages.

How It Works

Let’s talk about using WebSockets to create an application that more or less implies
messaging. Although you can use the WebSocket protocol as is, the protocol allows
you to use subprotocols. One of those protocols, supported by Spring WebSocket, is
STOMP.

STOMP is a very simple text-oriented protocol. It was created for scripting languages
like Ruby and Python to connect to message brokers. STOMP can be used over any
reliable bidirectional network protocol like TCP and also WebSocket. The protocol itself
is text-oriented, but the payload of the messages isn’t strictly bound to this; it can also
contain binary data.

When configuring and using STOMP with Spring WebSocket support, the WebSocket
application acts as a broker for all connected clients. The broker can be an in-memory
broker or an actual full-blown enterprise solution that supports the STOMP protocol
(like RabbitMQ or ActiveMQ). In the latter case the Spring WebSocket application acts as
a relay for the actual broker. To add messaging over WebSocket, spring uses the Spring
Messaging abstraction.

Using STOMP and MessageMapping

To be able to receive messages, you need to mark a method in a @Controller with
@MessageMapping and tell it from which destination it will receive messages. Let’s modify
the EchoHandler (from the previous recipe) to work with annotations.

package com.apress.springbootrecipes.echo;
import org.springframework.messaging.handler.annotation.MessageMapping;

import org.springframework.messaging.handler.annotation.SendTo;
import org.springframework.stereotype.Controller;

111

CHAPTER 4 SPRING MVC - ASYNC

@Controller
public class EchoHandler {

@MessageMapping("/echo™)

@SendTo("/topic/echo™)

public String echo(String msg) {
return "RECEIVED: " + msg;

When a message is received on the /app/echo destination, it will be passed on to
the @MessageMapping annotated method. Notice the @SendTo("/topic/echo™) on the
method as well, this instructs Spring to put the result, a String, on said topic.

Configure the message broker and add an endpoint for receiving messages. For this,
add @EnablelWebSocketMessageBroker to the EchoApplication and let it implement the
WebSocketMessageBrokerConfigurer.

package com.apress.springbootrecipes.echo;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.messaging.simp.config.MessageBrokerRegistry;
import org.springframework.web.socket.config.annotation.
EnableWebSocketMessageBroker;

import org.springframework.web.socket.config.annotation.
StompEndpointRegistry;

import org.springframework.web.socket.config.annotation.
WebSocketMessageBrokerConfigurer;

@SpringBootApplication
@EnablelebSocketMessageBroker
public class EchoApplication implements WebSocketMessageBrokerConfigurer {

@0verride

public void configureMessageBroker(MessageBrokerRegistry registry) {
registry.enableSimpleBroker("/topic");
registry.setApplicationDestinationPrefixes("/app");

}

112

@0verride

CHAPTER 4 SPRING MVC - ASYNC

public void registerStompEndpoints(StompEndpointRegistry registry) {
registry.addEndpoint("/echo-endpoint");

}

public static void main(String[] args) {
SpringApplication.run(EchoApplication.class, args);

}

—

The @EnablelWebSocketMessageBroker will enable the use of messaging over
WebSocket. The broker is configured in the configureMessageBroker method. Here the
simple message broker is used. To connect to an enterprise broker, use the registry.
enableStompBrokerRelay to connect to the actual broker.

To distinguish between messages handled by the broker or by the app, there are
different prefixes (Figure 4-6). Anything on a destination starting with /topic will be
passed on to the broker; anything on a destination starting with /app will be sent to a
message handler (i.e., @essageMapping annotated method).

J

Destination:

Destination:
topicfecho

e

Destination:
ftopic/echo

Broker
Jappl* MessageHandler _’(Channel ()

Request (
Channel

hopic/* Message Broker Hopicl

—

Response
Channel

Figure 4-6. WebSockets Stomp channels and routing

The final part is the registration of a WebSocket endpoint that listens to incoming
STOMP messages, in this case that is mapped to /echo-endpoint.

113

CHAPTER 4 SPRING MVC - ASYNC

Modify the client to use STOMP instead of plain WebSocket. The HTML can remain
pretty much the same. You need an additional library to be able to work with STOMP in
the browser; this recipe uses webstomp-client? but there are different libraries that you

can use.

<head>
<link type="text/css" rel="stylesheet" href="https://cdnjs.cloudflare.
com/ajax/libs/semantic-ui/2.2.10/semantic.min.css" /»

¢script type="text/javascript" src="webstomp.js"s</script>
¢script type="text/javascript" src="app.js"»</scripts

</head>
The biggest change is in the app. js file.

var ws = null;
var url = "ws://localhost:8080/echo";

function setConnected(connected) {
document.getElementById('connect').disabled = connected;
document.getElementById('disconnect').disabled = !connected;
document.getElementById('echo').disabled = !connected;

}

function connect() {
ws = webstomp.client(url, {protocols: ['vii.stomp', 'vi2.stomp']});
ws.connect({}, function(frame) {
setConnected(true);
log(frame);
ws.subscribe('/topic/echo', function(message){
log(message.body);

3]
};

*https://github.com/JSteunou/webstomp-client
114

https://github.com/JSteunou/webstomp-client

CHAPTER 4 SPRING MVC - ASYNC

function disconnect() {
if (ws != null) {

ws.disconnect();
ws = null;
}
setConnected(false);

}

function echo() {
if (ws != null) {
var message = document.getElementById('message"').value;
log('Sent: ' + message);
ws.send("/app/echo", message);
} else {
alert('connection not established, please connect.');

}

function log(message) {
var console = document.getElementById('logging');
var p = document.createElement('p");
p.appendChild(document.createTextNode(message));
console.appendChild(p);
while (console.childNodes.length > 12) {
console.removeChild(console.firstChild);

}

console.scrollTop = console.scrollHeight;

The connect function now uses webstomp.client to create a STOMP client

connection to our broker. When connected, the client will subscribe to /topic/echo and

receive the messages put on the topic. The echo function has been modified to use the

send method of the client to send the message to the /app/echo destination.
When starting the application and opening the client, you are still able to send

and receive messages but now using the STOMP subprotocol. You could even connect

multiple browsers and each browser would see the messages on the /topic/echo
destination, as it acts as a topic.

CHAPTER 4 SPRING MVC - ASYNC

When writing @MessageMapping annotated methods, you can use a variety of method

arguments and annotations (Table 4-4) to receive more or less information on the message.

By default it is assumed that a single argument will map to the payload of the message; a

MessageConverter will be used to convert the message payload to the desired type.

Table 4-4. Supported Method Arguments and Annotations

Type Description

Message The actual underlying message including the headers and body

@Payload The payload of the message (default); arguments can also be
annotated with @Validated to be validated.

@Header Get the given header from the Message

@Headers Can be placed on a Map argument to get all Message headers

MessageHeaders All the Message headers

Principal The current user, if set

Unit Testing the Handler

Writing a unit test for the handler is relative simple. The method accepts a String and

expects a String. To test, simply call the method and assert the returned value.

package com.apress.springbootrecipes.echo;

import org.junit.Test;

import static org.assertj.core.api.Assertions.assertThat;

public class EchoHandlerTest {

private final EchoHandler handler = new EchoHandler();

@Test

public void shouldEchoMessage() throws Exception {

var msg = "Hello World!";
assertThat(handler.echo(msg)).isEqualTo("RECEIVED: " + msg);

}

116

CHAPTER 4 SPRING MVC - ASYNC

Integration Testing with STOMP

To do integration testing you would need to start the application, probably on a random
port, construct a STOMP client, and send a message. The last part of the test (sending
and receiving) is asynchronous, so that makes it a bit more difficult to do testing. First,
start the application on a random port and get the random port in the test class.

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM PORT)
public class EchoHandlerIntegrationTest {

@LocalServerPort
private int port;

}

The @RunWith instructs JUnit to use the SpringRunner to execute the test. The
@SpringBootTest will start the application, and due to the WebEnvironment.RANDOM_PORT
it will start at a random port. With the @LocalServerPort annotation on an int field, we
can get the actual port.

Next, to test you can use the WebSocketStompClient from the Spring client library
to connect to the server and subscribe to a topic. To receive messages on a topic, write a
class that extends from StompSessionHandlerAdapter and override the getPayloadType
and handleFrame methods. This class, as we don’t reuse it, can be a static nested class
inside the EchoHandlerIntegrationTest class.

private static class TestStompFrameHandler extends
StompSessionHandlerAdapter {

private final CompletableFuture<String> answer;

private TestStompFrameHandler(CompletableFuture<String> answer) {
this.answer = answer;

}

@0verride
public Type getPayloadType(StompHeaders headers) {
return byte[].class;

}

117

CHAPTER 4 SPRING MVC - ASYNC

@verride
public void handleFrame(StompHeaders headers, Object payload) {
answer.complete(new String((byte[]) payload));
}
}

Due to the asynchronous nature of WebSockets, we need something we can use to
block until we receive a response. To transfer the result we use a CompletableFuture,
and when asserting we can use the get method to block until we receive an answer
(or timeout).

For the test case, we need to create a STOMP client and use that to connect to the
STOMP broker, subscribe to the /topic/echo to receive messages, and finally send a
message and check the result.

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM PORT)
public class EchoHandlerIntegrationTest {

@LocalServerPort
private int port;

private WebSocketStompClient stompClient;
private List<StompSession> sessions = new ArraylList<>();

@Before

public void setup() {
var webSocketClient = new StandardwWebSocketClient();
stompClient = new WebSocketStompClient(webSocketClient);

}

@After

public void cleanUp() {
this.sessions.forEach(StompSession: :disconnect);
this.sessions.clear();

}

118

CHAPTER 4 SPRING MVC - ASYNC

@Test

public void shouldSendAndReceiveMessage() throws Exception {
CompletableFuture<String> answer = new CompletableFuture<>();
var stompSession = connectAndSubscribe(answer);

stompSession.send("/app/echo”, "Hello World!".getBytes());

var result = answer.get(1, TimeUnit.SECONDS);
assertThat(result).isEqualTo("RECEIVED: Hello World!");

}

private StompSession connectAndSubscribe(CompletableFuture<String> answer)
throws InterruptedException, ExecutionException, TimeoutException {
var uri = "ws://localhost:" + port + "/echo-endpoint";
var stompSession =
stompClient.connect(uri, new StompSessionHandlerAdapter() {})
.get(1, TimeUnit.SECONDS);

stompSession.subscribe("/topic/echo”,

new TestStompFrameHandler(answer));
this.sessions.add(stompSession);
return stompSession;

}

In the @Before the WebSocketStompClient is created, and it uses a
StandardWebSocketClient as a transport. In the @After method, we clean up any
sessions that have connected to the broker (just to be sure not to leave anything behind).
The connectAndSubscribe method uses the WebSocketStompClient to connect to the
broker and here it is configured to wait 1 second to be connected. The StompSession is
then used to subscribe the earlier created TestStompFrameHandler using the passed in
CompletableFuture. Of course you could do without the helper method, but generally you
need more integration tests and with this you can create a reusable piece of code. Finally
the actual test: it first connects and subscribes, then it sends Hello World! to the server
and expects an answer in 1 second (or less). The result is checked with the expected result.

119

CHAPTER 5

Spring WebFlux

5-1 Developing a Reactive Application with
Spring WebFlux

Problem

You want to develop a simple reactive web application with Spring WebFlux to learn the
basic concepts and configurations of this framework.

Solution

The lowest component of Spring WebFlux is the HttpHandler, an interface with a single
handle method.

public interface HttpHandler {

Mono<Void> handle(ServerHttpRequest request, ServerHttpResponse response);

The handle method returns a Mono<Void>, which is the reactive way of saying it
returns void. It takes both a ServerHttpRequest and ServerHttpResonse from the org.
springframework.http.server.reactive package. These are again interfaces and
depending on the container used for running, an instance of the interface is created.

For this, several adapters or bridges for containers exist; when running on a Servlet 3.1
container (supporting nonblocking I0) the ServletHttpHandlerAdapter (or one of its
subclasses) is used to adapt from the plain Servlet world to the Reactive world. When
running on a native Reactive engine like Netty' the ReactorHttpHandlerAdapter is used.

'https://netty.io

121
© Marten Deinum 2018

M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6_5

https://netty.io

CHAPTER 5 SPRING WEBFLUX

When a web request is sent to a Spring WebFlux application, the HandlerAdapter
first receives the request. Then it organizes the different components configured in
Spring’s application context—all needed to handle the request.

To define a controller class in Spring WebFlux, a class has to be marked with the
@Controller or @RestController annotation (just as with Spring MVC; see Chapter 3).
When a @Controller annotated class (i.e., a controller class) receives a request,
it looks for an appropriate handler method to handle the request. This requires that

a controller class map each request to a handler method by one or more handler
mappings. In order to do so, a controller class’s methods are decorated with the
@RequestMapping annotation, making them handler methods.

The signature for these handler methods—as you can expect from any standard
class—is open ended. You can specify an arbitrary name for a handler method and
define a variety of method arguments. Equally, a handler method can return any of a
series of values (e.g., String or void), depending on the application logic it fulfills. The
following is only a partial list of valid argument types, just to give you an idea.

1. ServerHttpRequest or ServerHttpResponse

2. Request parameters from the URL of arbitrary type, annotated
with @RequestParam

3. Cookie values included in an incoming request, annotated with
@CookieValue

4. Request header values of arbitrary type, annotated with
@RequestHeader

5. Request attribute of arbitrary type, annotated with
@RequestAttribute

6. Map or ModelMap, for the handler method to add attributes to the
model

7. WebSession, for the session

Once the controller class has picked an appropriate handler method, it invokes the
handler method’s logic with the request. Usually, a controller’s logic invokes back-end
services to handle the request. In addition, a handler method’s logic is likely to add or
remove information from the numerous input arguments (e.g., ServerHttpRequest, Map
or Errors) that will form part of the ongoing flow.

122

CHAPTER5 SPRING WEBFLUX

After a handler method has finished processing the request, it delegates control to
aview, which is represented as the handler method’s return value. To provide a flexible
approach, a handler method’s return value doesn’t represent a view’s implementation
(e.g., user.html or report.pdf) but rather a logical view (e.g., user or report)—note the
lack of file extension.

A handler method’s return value can be either a String—representing a logical view
name—or void, in which case a default logical view name is determined on the basis of a
handler method’s or controller’s name.

In order to pass information from a controller to a view, it’s irrelevant that a handler’s
method returns a logical view name—String or a void—since the handler method input
arguments will be available to a view.

For example, if a handler method takes Map and Model objects as input parameters—
modifying their contents inside the handler method’s logic—these same objects will be
accessible to the view returned by the handler method.

When the controller class receives a view, it resolves the logical view name into
a specific view implementation (e.g., user.html or report.fmt) by means of a view
resolver. A view resolver is a bean configured in the web application context that
implements the ViewResolver interface. Its responsibility is to return a specific view
implementation for a logical view name.

Once the controller class has resolved a view name into a view
implementation, per the view implementation’s design, it renders the objects
(e.g., ServerHttpRequest, Map, Exrrors, or WebSession) passed by the controller’s
handler method. The view’s responsibility is to display the objects added in the
handler method’s logic to the user.

How It Works

Let’s write a reactive version of the HelloWorldApplication from Recipe 4-1.
package com.apress.springbootrecipes.helloworld;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Mono;

@RestController
public class HelloWorldController {

123

CHAPTER 5 SPRING WEBFLUX

@GetMapping
public Mono<String> hello() {
return Mono.just("Hello World, from Spring Boot 2!");
}
}

Notice the Mono<String> is a return type for the hello method, instead of a plain
String. The Mono is what makes it reactive.

Setting Up a Spring WebFlux Application

To be able to handle requests in a reactive way, you need to enable webflux. This is done
by adding a dependency on spring-boot-starter-webflux.

<dependency>
<groupIdsorg.springframework.boot</groupIds
<artifactId>spring-boot-starter-webflux</artifactId>
</dependency>

This brings in the needed dependencies like spring-webflux and the project
Reactor (http://www.projectreactor.io) dependencies. It also includes a reactive
runtime, which by default is Netty.

Now that everything is configured, the final thing to do is create an application class.

package com.apress.springbootrecipes.library;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class HelloWorldApplication {

public static void main(String[] args) {
SpringApplication.run(HelloWorldApplication.class, args);

}
}

Spring Boot will detect the reactive runtime and configure it using the server.*
properties (see Recipe 3-7).

124

http://www.projectreactor.io

CHAPTER5 SPRING WEBFLUX

Creating Spring WebFlux Controllers

An annotation-based controller class can be an arbitrary class that doesn’t implement

a particular interface or extend a particular base class. You can annotate it with the
@Controller or @RestController annotation. There can be one or more handler
methods defined in a controller to handle single or multiple actions. The signature of the
handler methods is flexible enough to accept a range of arguments.

package com.apress.springbootrecipes.helloworld;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import reactor.core.publisher.Mono;

@RestController
public class HelloWorldController {

@GetMapping("/hello")
public Mono<String> hello() {
return Mono.just("Hello World, from Reactive Spring Boot 2!");
}
}

The annotation @GetMapping is used to decorate the hello method as the controller’s
HTTP GET handler method. It's worth mentioning that if no default HTTP GET
handler method is declared, a ServletException is thrown—hence the importance of
a controller having at a minimum a URL route and at least one handler method. The
method is bound to /hello due to the expression in the @GetMapping.

When a request is made on /hello it will reactively return Hello World, from
Reactive Spring Boot 2!, although the client won’t notice this. For the client it still is a
regular HTTP request.

Unit Test for Reactive Controllers

You have two ways of doing an integration test for a controller. The first approach is
to simply write a test that creates an instance of the HelloWorldController, call the
method, and do expectations on the result. The second is to use the @WebFluxTest
annotation to create the test. The latter will start a minimal application context

125

CHAPTER 5 SPRING WEBFLUX

containing the web infrastructure and you can use MockMvc to test the controller. This
last approach sits between a plain unit test and a full-blown integration test.

package com.apress.springbootrecipes.helloworld;

import org.junit.Test;
import reactor.core.publisher.Mono;
import reactor.test.StepVerifier;

public class HelloWorldControllerTest {

private final HelloWorldController controller = new
HelloWorldController();

@Test
public void shouldSayHello() {
Mono<String> result = controller.hello();

StepVerifier.create(result)
.expectNext("Hello World, from Reactive Spring Boot 2!")
.verifyComplete();

This is a basic unit test. It instantiates the controller, and simply calls the method to
be tested. It uses the StepVerifier from the reactive-test module to make it easier to
test. The hello method is called, and the result is then verified using the StepVerifier.

Adding the reactive-test dependency is done by adding the following
dependency:

<dependency>
<groupIdsio.projectreactor</groupld>
<artifactIdsreactor-test</artifactIds
<scopeytest</scopey

</dependency>

The second option is to use @WebFluxTest for a specific controller.

@RunWith(SpringRunner.class)
@WebFluxTest(HelloWorldController.class)
public class HelloWorldControllerSliceTest {

126

CHAPTER5 SPRING WEBFLUX

@Autowired
private WebTestClient webClient;

@Test
public void shouldSayHello() {

webClient.get().uri("/hello").accept(MediaType.TEXT PLAIN)
.exchange()
.expectStatus().1is0k()
.expectBody(String.class)
.isEqualTo("Hello World, from Reactive Spring Boot 2!");

This test will start a minimal Spring Boot context and auto detect all web related
beans in your project, like @ControllerAdvice, @Controller, etc. Instead of now
directly calling the HelloWorldController, you can use the special WebTestClient to
declare a request .get().uri("/hello") and send that nonblocking using exchange().
Finally, the assertions/expectations are verified. The request is expected to have an OK
status and to contain the specified body.

Integration Test for Reactive Controllers

The integration test looks very much like the @WebFluxTest in the previous section.
The main difference is the use of @SpringBootTest instead of @WebFluxText. Using
@SpringBootTest this will bootstrap the full application, including all other beans
(services, repositories, etc.). With the webEnvironment you can specify which
environment to use: values are RANDOM_PORT, MOCK (default), DEFINED PORT, and
NONE. Here we use a random port and again use the WebTestClient to fire off a
request.

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM PORT)
public class HelloWorldControllerIntegrationTest {

@Autowired
private WebTestClient webClient;

127

CHAPTER 5 SPRING WEBFLUX

@Test
public void shouldSayHello() {

webClient.get().uri("/hello").accept(MediaType.TEXT PLAIN)
.exchange()
.expectStatus().is0k()
.expectBody(String.class)
.isEqualTo("Hello World, from Reactive Spring Boot 2!");

The request is sent to the embedded server, after which the result is verified to have
the correct status and body content.

Note When using MOCK (also the default) as the webEnvironment you must add
the @AutoConfigureWebTestClient annotation to get the WebTestClient
for testing.

5-2 Publishing and Consuming with Reactive
Rest Services

Problem

You want to write a reactive REST endpoint that will produce JSON.

Solution

Just as with a regular @RestController, you can return a regular object or list of objects
and those will be sent to the client. To make them reactive, you will have to wrap those
return values in their reactive counterparts: a Mono or a Flux.

How it Works

Let’s start by writing a Reactive OrderService. Each method will return either a
Mono<Order> or a Flux<Order>.

128

CHAPTER5 SPRING WEBFLUX

package com.apress.springbootrecipes.order;

@Service

public class OrderService {
private final Map<String, Order> orders = new ConcurrentHashMap<>(10);

@PostConstruct
public void init() {
OrderGenerator generator = new OrderGenerator();
for (int i = 0; 1 < 25; i++) {
var order = generator.generate();
orders.put(order.getId(), order);
}
}

public Mono<Order> findById(String id) {
return Mono.justOrEmpty(orders.get(id));

}

public Mono<Order> save(Mono<Order> order) {
return order.map(this::save);

}

private Order save(Order order) {
orders.put(order.getId(), order);
return order;

}

public Flux<Order> orders() {
return Flux.fromIterable(orders.values()).delayElements(Duration.
0fMillis(128));

}

The OrderService creates 25 random orders at startup. It has some simple methods

to obtain or save an order. When retrieving all orders, it will delay them for

128 milliseconds. Next to this service, create a basic Order class and OrderGeneratozr.

129

CHAPTER 5 SPRING WEBFLUX

package com.apress.springbootrecipes.order;
// Imports omitted
public class Order {

private String id;
private BigDecimal amount;

public Order() {
}

public Order(String id, BigDecimal amount) {
this.id=id;
this.amount = amount;

}

public String getId() {
return id;

}

public void setId(String id) {
this.id = id;
}

public BigDecimal getAmount() {
return amount;

}

public void setAmount(BigDecimal amount) {
this.amount = amount;

}

@verride
public String toString() {
return String.format("Order [id='%s', amount=%4.2f]", id, amount);

}

@verride
public boolean equals(Object o) {
if (this == 0) return true;
if (o == null || getClass() != o.getClass()) return false;

130

CHAPTER5 SPRING WEBFLUX

Order order = (Order) o;
return Objects.equals(id, order.id) 8&
Objects.equals(amount, order.amount);

}

@verride
public int hashCode() {
return Objects.hash(id, amount);
}
}

This is the full Order class; it holds nothing more than an id and a total amount.
The OrderGenerator is a simple component for creating Order instances.

package com.apress.springbootrecipes.order;

import java.math.BigDecimal;
import java.util.UUID;
import java.util.concurrent.ThreadlLocalRandom;

public class OrderGenerator {

public Order generate() {
var amount = ThreadlLocalRandom.current().nextDouble(1000.00);
return new Order (UUID.randomUUID().toString(),
BigDecimal.valueOf(amount));

An OrderController is needed to expose the Order as a REST resource.
package com.apress.springbootrecipes.order.web;

import com.apress.springbootrecipes.order.Order;

import com.apress.springbootrecipes.order.OrderService;
import org.springframework.web.bind.annotation.*;
import reactor.core.publisher.Flux;

import reactor.core.publisher.Mono;

131

CHAPTER 5 SPRING WEBFLUX

@RestController
@RequestMapping("/orders")
public class OrderController {

private final OrderService orderService;

OrderController(OrderService orderService) {
this.orderService = orderService;

}

@PostMapping
public Mono<Order> store(@RequestBody Mono<Order> order) {
return orderService.save(order);

}

@GetMapping("/{id}")
public Mono<Order> find(@PathVariable("id") String id) {
return orderService.findById(id);

}

@GetMapping
public Flux<Order> list() {
return orderService.orders();

}
}

The OrderController is mapped to /orders and supports listing all orders
or a single one and adding/modifying an order. To bootstrap everything, a simple
OrderApplicationis needed.

package com.apress.springbootrecipes.order;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class OrderApplication {

132

public static void main(String[] args) {

CHAPTERS5 SPRING WEBFLUX

SpringApplication.run(OrderApplication.class, args);

Using something like cUrl or httpie, you can query the endpoint.
An http http://localhost:8080/orders --streamshould listall the orders in the
system (Figure 5-1) and http http://localhost:8080/orders/{some-id} should list a

single one.

@®) ® | | code — marten@imac-van-marten — ..-recipes/code — -zsh — 81x34

[~ http :8080/orders --stream

HTTP/1.1 2@@ OK
Content-Type: application/json;charset=UTF-8
transfer-encoding: chunked
"amount": 124.75206795562843,
"jid": "43@0186c4-Bb9b-45d6-BB8le-d6a@f1f39@8c"
},
“amount™: 199.02B1378481792,
"id": "eb69b332-1b38-4@7d-bd94-1789%e%9@al0al"
"amount": 732.8312484016409,
"id": "eS53fe817-f695-4728-b628-167718708c38"
},
"amount": 739.3566545411823,
"id": "“6B934Bb9-4244-4478-951d-2f5643518bcbk"
},
“"amount": 521.6957440618431,
"id": "eefeld55-d51f-43eb-aa32-2db@aB263447"
},
{
"amount": 768.2839060291667,
"id": "5e5cd964-ffc9-4bea-8221-402cB4eccB35"
},
{
"amount": 234.38937731760169,
*id": "33@calad-bldd-4ff4-ad41f-bccl6bPRO59F"
j

Figure 5-1. Result of getting all orders

133

CHAPTER 5 SPRING WEBFLUX

Streaming JSON

The result of the call to /orders isn’t streaming, but rather it is blocking. It first collects
all the results before sending them out. See also the Content-Type header in Figure 5-1; it
is setto application/json. To stream the result, it should be application/stream+json.
For this, modify the controller’s 1ist method.

@GetMapping(produces = MediaType.APPLICATION STREAM JSON VALUE)
public Flux<Order> list() {
return orderService.orders();

Notice the produces = MediaType.APPLICATION STREAM JSON_VALUE. This instructs
Spring to stream the results when a part is ready. Restart the application and again issue
an http http://localhost:8080/orders --stream. The result will now gently stream
in until there is nothing more to consume (Figure 5-2).

@ @ [) code — marten@imac-van-marten — ..-recipes/code — -zsh — 81x34

[~ http :808@/0rders --stream
HTTP/1.1 20@ 0K
Content-Type: application/stream+json;charset=UTF-8
transfer-encoding: chunked
{
“amount": B869.914155769869,
"id": "256@c9f9-3705-4af7-87f@-d5eb385890¢c1"
}
{
"amount": 665.111824250672,
“id": “ccdf92b1-7762-405f-Ball-267dd7e7@c5e"
}
{
"amount": 189.76585055697913
"id": "e7dc8c@B-eBfB8-41f2-9d30-a62b@5f02305"
}
{
"amount": B888.05120030982,
"id": "ad4daf53a-57a7-4df2-85e2-0c61935fb54e"
}
{
"amount": 517.6150089714039,
"id": "ac6791f5-35cd-49c5-985a-083cbd@bdd6ae"
}
{
“"amount": 282.81392569585284,
"id": "96a5ba93-b99b-463d-bff7-65f3bd939f34"
}
{
"amount": 216.8457800621515,
"id": "@72af@3d-d5a7-4cf3-8b7d-129eb4ed47c9"
}

Figure 5-2. Result of streaming all orders

134

CHAPTER5 SPRING WEBFLUX

The result also slightly changed: instead of returning an array or orders (see
Figure 5-1) it now returns single orders (see Figure 5-2).

Server Sent Events

Instead of using a stream of JSON, one can also use Server Sent Events. With WebFlux
this is as easy as changing the produces in the @GetMapping to MediaType.TEXT_EVENT _
STREAM_VALUE. Then events will be written.

@GetMapping(produces = MediaType.TEXT EVENT STREAM VALUE)
public Flux<Order> list() {
return orderService.orders();

Restart the application and again issue an http http://localhost:8080/orders
--stream. The result, as events, will now gently stream in until there is nothing more to
consume (Figure 5-3). Notice that the content type has changed to text/event-stream.

[] [] | 1 manuscript — marten®@imac-van-marten — ..es/manuscript — -zsh — 108x24
http --stream :8080/orders

H

data:{"id":"c2d6772d-882d-4675-a651-4570a%9af@125", "amount" :297. 2396366549731}
data:{"id":"fddf6cd7-dbe9-41f0-8f6f-dfbBee3663df", "amount":305, 2656834693431}
data:{"id":"2f4ad4c14-2ecc-4c18-b551-9bfbB7167052", "amount" :696, 706842452895}
data:{"id":"94c1772e-4217-4de9-bd5a-af5a5e59df62", "amount":0.1775470518441402}
data:{"id":"136fece3-538d-4336-978d-bdB90dcabc 3", "amount":93.55790629640903}
data:{"id":"ebeb3aad-8df1-4877-bdB3-Bcbfddcee?2e", "amount":103.94281039673325}
data:{"id":"ed@02f19-2215-4541-b451-88637F8B6079","amount":194.99013045150792}

data:{"id":"55f42c4d-832b-4fef-b2dd-54fc6179b@bc", "amount":92@.3041222593154}

{

{

{

{
data:{"id":"91bb34ab-021f-4507-2£208-92162947b561" , “amount" :924. 8909365656588}

{

{

{

{

data:{"id":"a6503643-defa-4c2c-acfe-debbed2e@9ed", "amount":121.79381700959424}

Figure 5-3. Result of streaming all orders as events

Write an Integration Test

An integration test for the OrderController can be written quite easily using the
WebTestClient and a MOCK web environment (you could also use a RANDOM PORT instead
of MOCK).

135

CHAPTER 5 SPRING WEBFLUX
package com.apress.springbootrecipes.order.web;

import com.apress.springbootrecipes.order.Order;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.web.reactive.
AutoConfigurelWebTestClient;

import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.test.annotation.DirtiesContext;

import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.test.web.reactive.server.WebTestClient;

import java.math.BigDecimal;

@RunWith(SpringRunner.class)

@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.MOCK)
@AutoConfigureWebTestClient

@irtiesContext(classMode = DirtiesContext.ClassMode.AFTER_EACH TEST METHOD)
public class OrderControllerIntegrationTest {

@Autowired
private WebTestClient webTestClient;

@Test
public void listOrders() {

webTestClient.get().uri("/orders")
.exchange()
.expectStatus().is0k()
.expectBodylList(Order.class).hasSize(25);

}

@Test
public void addAndGetOrder() {

136

CHAPTER5 SPRING WEBFLUX

var order = new Order("test1", BigDecimal.valueOf(1234.56));
webTestClient.post().uri("/orders").syncBody(order)
.exchange()
.expectStatus().is0k()
.expectBody(Order.class).isEqualTo(order);

webTestClient.get().uri("/orders/{id}", order.getId())
.exchange()
.expectStatus().is0k()
.expectBody(Order.class).isEqualTo(order);

The @DirtiesContext is needed here because the OrderService is a stateful
bean. So after adding an Order to the collection, it needs to be reset for the next
test. The test will start the full application, due to the @SpringBootTest with
a mocked environment. The @AutoConfigureWebTestClient is needed for a
mocked environment to get a WebTestClient. The WebTestClient makes it easy to
build a request and send that to the server. After sending the response, it can do
expectations on the result.

5-3 Use Thymeleaf as a Template Engine
Problem

You want to render a view in a WebFlux based application.

Solution

Use Thymeleaf to create a view and reactively return the view name and fill the model.

How It Works

Add a dependency on spring-boot-starter-webflux and spring-boot-starter-
thymeleaf. This is enough for Spring Boot to automatically configure Thymeleaf for use
in a WebFlux application.

137

CHAPTER 5 SPRING WEBFLUX

<dependency>
<groupldyorg.springframework.boot</groupIlds
<artifactId>spring-boot-starter-webflux</artifactId»
</dependency>
<dependency>
<groupldyorg.springframework.boot</grouplds
<artifactIdyspring-boot-starter-thymeleaf</artifactIds
</dependency>

With the addition of this dependency, you will get the Thymeleaf library as
well as the Thymeleaf Spring Dialect so that they integrate nicely. Due to the
existence of these two libraries, Spring Boot will automatically configure the
ThymeleafReactiveViewResolver.

The ThymeleafReactiveViewResolver requires a Thymeleaf
ISpringWebFluxTemplateEngine to be able to resolve and render the views. A special
SpringWebFluxTemplateEngine will be preconfigured with the SpringDialect so that
you can use SpEL inside Thymeleaf pages.

To configure Thymeleaf, Spring Boot exposes several properties in the spring.
thymeleaf and spring.thymeleaf.reactive namespaces (Table 5-1).

Table 5-1. Common Thymeleaf Properties

Property Description

spring.thymeleaf.prefix The prefix to use for the ViewResolver, default
classpath:/templates/

spring.thymeleaf.suffix The suffix to use for the ViewResolver, default .html

spring.thymeleaf.encoding The encoding of the templates, default UTF-8

spring.thymeleaf.check- Check if the template exists before rendering, default true.

template

spring.thymeleaf.check- Check if the template location exists. Default is true.

template-location

spring.thymeleaf.mode Thymeleaf TemplateMode to use, default HTML

spring.thymeleaf.cache Should resolved templates be cached or not, default true
(continued)

138

Table 5-1. (continued)

CHAPTER5 SPRING WEBFLUX

Property

Description

spring.thymeleaf.
template-resolver-order

spring.thymeleaf.
view-names

spring.thymeleaf.exclude-
view-names

spring.thymeleaf.enabled

spring.thymeleaf.enable-
spring-el-compiler

spring.thymeleaf.reactive.

max-chunk-size

spring.thymeleaf.reactive.

media-types

spring.thymeleaf.reactive.

full-mode-view-names

spring.thymeleaf.reactive.

chunked-mode-view-names

Order of the ViewResolver default is 1

The view names (comma separated) that can be resolved
with this ViewResolver

The view names (comma separated) that are excluded from
being resolved

Should Thymeleaf be enabled, default true

Enable the compilation of SpEL expressions, default false

Maximum size of databuffers used to write the response in
bytes. Default 0

Media types supported by this view technology, like text/
html

Comma-separated list of view names that should operate
in FULL mode. Default none. Full mode means basically
blocking mode.

Comma-separated list of view names that should operate in
chunked mode

Use Thymeleaf Views

First create an index.html in the src/main/resources/templates directory.

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org"s

<head»

<meta charset="UTF-8"»

<title>Spring Boot - Orders</titles

</head»

139

CHAPTER 5 SPRING WEBFLUX

<body»

<h1s>0rder Management System«</h1»

<a th:href="@{/orders}" href="#"sList of orders</a»

</body>
</htmly

This page will render a simple page with a single link, pointing to /orders. This URL
is rendered using the th:href tag, which will expand /orders to a proper URL. Next,
write a controller that will select the page to render.

package com.apress.springbootrecipes.order.web

@Controller
class IndexController {

@GetMapping
public String index() {

return "index";

Write an OrderController, which will return the orders/1list as the name of the
view and adds Flux<Order> to the model.

package com.apress.springbootrecipes.order.web
@Controller

@RequestMapping("/orders")
class OrderController {

private final OrderService orderService;

OrderController(OrderService orderService) {
this.orderService = orderService;

}

140

CHAPTER5 SPRING WEBFLUX

@GetMapping

public Mono<String> list(Model model) {
var orders = orderService.orders();
model.addAttribute("orders", orders);
return Mono.just("orders/list");

}

For the Order and OrderService and related objects, see Recipe 5.2.

Now that the controller and the other needed components are ready, a view is
required. Create a 1ist.html in the stc/main/resources/templates/orders directory.
This page will render a table with the orders showing the id and the amount of the
different orders.

<!DOCTYPE html>

<html xmlns:th="http://www.thymeleaf.org"s

<heady
<meta charset="UTF-8"»
<title»Orders</titles

</head»

<body>

<h1y0rders</h1y

<table>
<theady
<try
<th></thy
<thyId</th>
<thyAmount</thy
</try
</thead»
<tbody>
<tr th:each="order : ${orders}"»
<td th:text="${orderStat.count}"s1</td>
<td th:text="${order.id}"»</td»

141

CHAPTER 5 SPRING WEBFLUX

<td th:text="${#numbers.formatCurrency(order.amount)}"
style="text-align: right"s</td»
</tr>
</tbody>
</table»
</body>
</html»

Finally, the OrderApplication to start the application.

@SpringBootApplication
public class OrderApplication {

public static void main(String[] args) {
SpringApplication.run(OrderApplication.class, args);

Now when launching the application and clicking the link, you will end up with a
page showing the orders. See Figure 5-4.

142

CHAPTER5 SPRING WEBFLUX

® ©® /o orders x \ T\ Marten
- C @ localhost:8080/orders w B O 0 &
Orders

Id Amount

3ela5584-1911-4ecc-be77-9f8efa2a5468 ©589.98
48a50717-c48¢-4638-9979-62¢115d5bla6é ©609.99
94bc003c-d3fb-40f2-8ce9-fdca5b7al5bh3 1119.21
¢91d4978-c07c-4a43-a137-e6¢7de848ccd ©90.38
©0d7ad70-6¢cc8-4449-95d6-54ec4f595¢2d ©593.93
1ba2f188-410f-4965-929a-82031d9d40%9a ©939.13
9d650d3a-fe6f-4f3a-a623-89¢af8bb71a2 ©246.51
cadb8fc4-2860-4a21-956¢-d479591d08a5 ©640.66
22051056-0bf2-43f7-9305-2e1a262a84cc ©805.20
4c5b1842-7f5d-411¢c-92f0-c21f400ef13b ©454.02
2391c5f2-fe31-4ab8-8a73-9a7513bee70c ©602.36
72228870-7386-4868-80b7-41ab6cbe2abaa ©283.09
4¢2d2cel-227¢-4368-9a21-63b788366968 ©230.91
6f445¢ab-cb0c-4785-a7dc-6e5ce082ac29 ©667.87
801eca2b-95a8-4680-b05¢c-c975d9f1926f ©680.43
71963289-5691-47b9-815¢-158a87f92dac =112.41
ffbffd04-¢58f-4149-bc50-b7378e43cc4l 1793 .51
93325d72-3ed6-4870-a5ad-054dcdbeec3f ©401.11
b79e6585-c459-4973-9b35-3a211979b07d =958.63
4f24¢442-7e46-4870-9be8-9385bd0fe6f6 ©487.76
3172fed7-96d2-44a0-9b10-1bdcb6511cle ©988.62
98b16dce-50f2-4¢29-969-73a9¢c9b6d65d ©712.26
6b7abbel-d4e12-435¢-a121-25498cd17e96 ©766.22
f2c1403b-abf0-4427-bbe8-9a3c7bddd60e =148.60
41075133-5a2a-4163-abee-1d23f1fcdbdb ©676.51

Figure 5-4. Orders list

Making it More Reactive

When running the application and opening the page, you have to wait some time
before the page starts to render. When rendering a page and the model contains Flux,
it will by default wait until the whole Flux is consumed. After that it will start rendering
the page. It basically behaves like you would retrieve a Collection instead of a Flux.
To start rendering the page quicker and get the page streaming, wrap the Fluxin a
ReactiveDataDriverContextVariable.

143

CHAPTER 5 SPRING WEBFLUX

@GetMapping
public Mono<String> list(Model model) {
var orders = orderService.orders();
model.addAttribute("orders"”, new ReactiveDataDriverContextVariable(orde
1s, 5));
return Mono.just("orders/list");

}

The 1ist method looks the same, but notice that the Flux is wrapped in the
ReactiveDataDriverContextVariable. It will start rendering as soon as five elements
are received and will continue to render the page until everything is received. Now when
opening the orders page you will see the table grow until all orders are read.

5-4 WebFlux and WebhSockets
Problem

You want to use WebSockets in a Reactive application.

Solution

Include the javax.websocket-api as a dependency and use the Reactive
WebSocketHandler interface to implement the handler.

How It Works

Adding a dependency on javax.websocket-api next to spring-boot-starter-webflux
is enough to get WebSockets support running in a reactive application.

<dependency>
<groupldyorg.springframework.boot</grouplds
<artifactId»spring-boot-starter-webflux</artifactIds

</dependency>

<dependency>
<groupId»javax.websocket</groupIds
<artifactIdyjavax.websocket-api</artifactIds
<versiony1.1</version>

</dependency>

144

CHAPTER5 SPRING WEBFLUX

Spring WebFlux expects that WebSockets version 1.1 is used. When using 1.0, the
code won't run.
Next, use the WebSocketHandler to implement a reactive handler.

package com.apress.springbootrecipes.echo;

import org.springframework.web.reactive.socket.WebSocketHandler;
import org.springframework.web.reactive.socket.WebSocketSession;
import reactor.core.publisher.Mono;

public class EchoHandler implements WebSocketHandler {

@verride
public Mono<Void> handle(WebSocketSession session) {
return session.send(
session.receive()
.map(msg -> "RECEIVED: " + msg.getPayloadAsText())
.map(session::textMessage));

The EchoHandler will receive a message and return it prefixed with “RECEIVED: ”
(see also recipe 4.4 for the nonreactive version).

Setting up WebSockets with WebFlux requires a few components to be registered.
First we need the handler. The handler needs to be mapped to a URL using the
SimpleUrlHandlerMapping. We need something that can invoke our handler, in this case
the WebSocketHandlerAdapter. The final part is to let the WebSocketHandlerAdapter
understand the incoming reactive runtime request. As we use Netty (the default), we
need to configure a WebSocketService with the ReactorNettyRequestUpgradeStrategy.

package com.apress.springbootrecipes.echo;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import org.springframework.core.Ordered;

import org.springframework.web.reactive.HandlerMapping;

import org.springframework.web.reactive.handler.SimpleUrlHandlerMapping;

145

CHAPTER 5 SPRING WEBFLUX

import org.springframework.web.reactive.socket.WebSocketHandler;

import org.springframework.web.reactive.socket.server.WebSocketService;
import org.springframework.web.reactive.socket.server.support.
HandshakeWebSocketService;

import org.springframework.web.reactive.socket.server.support.
WebSocketHandlerAdapter;

import org.springframework.web.reactive.socket.server.upgrade.
ReactorNettyRequestUpgradeStrategy;

import java.util.HashMap;
import java.util.Map;

@SpringBootApplication
public class EchoApplication {

public static void main(String[] args) {
SpringApplication.run(EchoApplication.class, args);

}

@Bean
public EchoHandler echoHandler() {
return new EchoHandler();

}

@Bean

public HandlerMapping handlerMapping() {
Map<String, WebSocketHandler> map = new HashMap<>();
map.put("/echo", echoHandler());

var mapping = new SimpleUrlHandlerMapping();
mapping.setUr1lMap(map);
mapping.setOrder(Ordered.HIGHEST PRECEDENCE);
return mapping;

}

@Bean
public WebSocketHandlerAdapter handlerAdapter() {
return new WebSocketHandlerAdapter(webSocketService());

}

146

CHAPTER5 SPRING WEBFLUX

@Bean

public WebSocketService webSocketService() {
var strategy = new ReactorNettyRequestUpgradeStrategy();
return new HandshakeWebSocketService(strategy);

}
}

Now you can launch the server and handle WebSockets with WebFlux.

HTML & JavaScript Echo Client

Now that the server is ready, we need a client to connect to our WebSocket endpoint. For
this you will need some JavaScript and HTML. Write the following app. js and place it in
the src/main/resources/static directory.

var ws = null;
var url = "ws://localhost:8080/echo";

function setConnected(connected) {
document.getElementById('connect').disabled = connected;
document.getElementById('disconnect').disabled = !connected;
document.getElementById('echo').disabled = !connected;

}

function connect() {
ws = new WebSocket(url);

ws.onopen = function () {

setConnected(true);

b

ws.onmessage = function (event) {
log(event.data);

}s

ws.onclose = function (event) {
setConnected(false);
log('Info: Closing Connection.');

};

147

CHAPTER 5 SPRING WEBFLUX

function disconnect() {
if (ws != null) {

ws.close();

ws = null;
}
setConnected(false);

}

function echo() {
if (ws != null) {
var message = document.getElementById('message"').value;
log('Sent: ' + message);
ws.send(message);
} else {
alert('connection not established, please connect.');

}

function log(message) {
var console = document.getElementById('logging');
var p = document.createElement('p");
p.appendChild(document.createTextNode(message));
console.appendChild(p);
while (console.childNodes.length > 12) {
console.removeChild(console.firstChild);

}

console.scrollTop = console.scrollHeight;

There are a few functions here. The first connect will be invoked when pressing the
Connect button; this will open a WebSocket connection to ws://localhost:8080/echo,
which is the handler created and registered earlier. Connecting to the server will create
aWebSocket JavaScript object, and that gives you the ability to listen to messages and
events on the client. Here the onopen, onmessage, and onclose callbacks are defined.
The most important is the onmessage because that will be invoked whenever a message
comes in from the server; this method simply calls the log function, which will add the
received message to the logging element on the screen.

148

CHAPTER5 SPRING WEBFLUX

Next there is disconnect, which will close the WebSocket connection and clean
up the JavaScript objects. Finally, there is the echo function, which will be invoked
whenever the Echo message button is pressed. The given message will be sent to the
server (and eventually will be returned).

To use the app. js add the next index.html.

<!DOCTYPE html>
<html>
<head>
<link type="text/css" rel="stylesheet" href="https://cdnjs.cloudflare.
com/ajax/libs/semantic-ui/2.2.10/semantic.min.css" /»
¢script type="text/javascript" src="app.js"></script>
</head>
<body>
<divy
<div id="connect-container" class="ui centered grid"»
<div class="row"y
<button id="connect" onclick="connect();"
button "sConnect</button»
<button id="disconnect" disabled="disabled"
onclick="disconnect();" class="ui red button"sDisconnect
</button>
</div>
<div class="row"y

class="ui green

<textarea id="message" style="width: 350px" class="ui input"
placeholder="Message to Echo"»</textareas

</div>

<div class="row"»
<button id="echo" onclick="echo();" disabled="disabled"
class="ui button"sEcho message</button>

</divy
</divy
¢div id="console-container"»
<h3sLogging</h3»
<div id="logging"»</div>
</divy

149

CHAPTER 5 SPRING WEBFLUX

</divy
</body>
</html>

Now when deploying the application you can connect to the echo WebSocket service

and send some message and have them send it back (Figure 5-5).

® © ® /[iocalnost:8080/index.ntml X | Marten

[C | @ localhost:B080/index.html # B ® 0 @

[Hello Reactive World!

Echo message
Logging
'Sent: Hello Reactive World!

RECEIVED: Hello Reactive World!

Figure 5-5. WebSocket client output

Write an Integration Test

Writing an integration test requires some work. A WebSocket connection needs to be
made to the server, and we need to manually send messages and check the response. But
before that the server needs to be started.

To start the server, annotate a class with @unWith (SpringRunner.class) and
@SpringBootTest (webEnvironment = SpringBootTest.WebEnvironment.RANDOM PORT).
We actually want to start the application instead of the default WebEnvironment.MOCK.
Use the @LocalServerPort annotation on an int field to get the actual port value. This
value is needed to construct the URI to connect to.

package com.apress.springbootrecipes.echo;

@RunWith(SpringRunner.class)
@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM PORT)
public class EchoHandlerIntegrationTest {

150

CHAPTER5 SPRING WEBFLUX

@LocalServerPort
private int port;

}

Testing websockets is fairly easy with the default Java WebSocket API. To test, you can
write a basic WebSockets client that records the received messages and session. For this
you would need a WebSocket client, like Tomcat.

<dependency>»
<groupIdyorg.apache.tomcat.embed</groupIds»
<artifactId>tomcat-embed-websocket</artifactIds
<scopeytest</scopey

</dependency>

Adding this client, however, will result in bootstrapping a Tomcat server instead of
the reactive Netty that we want. Add the following to the EchoHandlerIntegrationTest

to circumvent this.
public class EchoHandlerIntegrationTest {
// Remainder of class omitted

@Configuration
@Import(EchoApplication.class)
public static class EchoHandlerIntegrationTestConfiguratation {

@Bean
public NettyReactiveWebServerFactory webServerFactory() {
return new NettyReactiveWebServerFactory();

}

}
}

This additional @Configuration class will explicitly launch Netty instead of
Tomcat. This way we test against the same runtime as we would do when normally
running our application. Depending on your client (or way of testing) this might not be

needed.

151

CHAPTER 5 SPRING WEBFLUX

Now annotate a class with @C1ientEndpoint and methods in that class with @0nOpen,
@nClose, and @0nMessage. These annotated methods will receive callbacks when the
connection is opened, closed, and when a message is received, respectively. Next there
are two helper methods: sendTextAndWait and closeAndWait. The sendTextAndWait
will send a message using the Session and wait for a response. The closeAndWait will
close the session and wait until that has been confirmed. Finally, there are some getter
methods to receive the state and validate it in the test methods.

@ClientEndpoint
public static class SimpleTestClientEndpoint {

private List<String> received = new ArraylList<>();
private Session session;

private CloseReason closeReason;

private boolean closed = false;

@0nOpen
public void onOpen(Session session) {
this.session = session;

}

@0nClose

public void onClose(Session session, CloseReason reason) {
this.closeReason = reason;
this.closed = true;

}

@0nMessage
public void onMessage(String message) {
this.received.add(message);

}

public void sendTextAndWait(String text, long timeout)
throws IOException, InterruptedException {
var current = received.size();
session.getBasicRemote().sendText(text);
wait(() -> received.size() == current, timeout);

}

152

CHAPTER5 SPRING WEBFLUX

public void closeAndWait(long timeout)
throws IOException, InterruptedException {
if (session != null 88 !closed) {
session.close();

}

wait(() -> closeReason == null, timeout);

}

private void wait(Supplier<Boolean> condition, long timeout)
throws InterruptedException {
var waited = 0;
while (condition.get() && waited < timeout) {
Thread.sleep(1);
waited += 1;
}
}

public CloseReason getCloseReason() {
return closeReason;

}

public List<String> getReceived() {
return this.received;

}

public boolean isClosed() {
return closed;

}

Now that the helper classes are in place, write the test. Use the WebSocket
ContainerProvider to obtain the container. Before making the actual connection, you

have to construct the URI using the port field. Next, use the connectToServer method
to connect to the server, using an instance of the SimpleTestClientEndpoint. After

connecting, send a text message to the server and wait for some time and close the

connection (just to cleanup resources). The final thing is to actually do some assertions

on the received messages.

153

CHAPTER 5 SPRING WEBFLUX

@Test

public void sendAndReceiveMessage() throws Exception {
var container = ContainerProvider.getWebSocketContainer();
var uri = URI.create("ws://localhost:" + port + "/echo");
var testClient = new SimpleTestClientEndpoint();
container.connectToServer(testClient, uri);

testClient.sendTextAndWait("Hello World!", 200);
testClient.closeAndWait(2);

assertThat(testClient.getReceived())
.containsExactly("RECEIVED: Hello World!");

154

CHAPTER 6

Spring Security

In this chapter we will take a look at the Spring Security® integration for Spring Boot.
Spring Security can be used for both authentication and authorization of users for your
application. Spring Security has a plugable mechanism for both the authentication
and authorization process and by default, supports different mechanisms. For
authentication, Spring Security out-of-the-box has support for JDBC, LDAP, and
property files.

6-1 Enable Security in Your Spring Boot
Application

Problem

You have a Spring Boot-based application and you want to enable security in this
application.

Solution

Add the spring-boot-starter-security as a dependency to have security
automatically configured and set up for your application.

How it Works

To get started you will need to get the libraries for Spring Security into your
application; to do this you can add the spring-boot-starter-security to your list of
dependencies.

'https://projects.spring.io/spring-security/

155
© Marten Deinum 2018

M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6_6

https://projects.spring.io/spring-security/

CHAPTER6 SPRING SECURITY

<dependency>
<groupldyorg.springframework.boot</grouplds
<artifactId>spring-boot-starter-security</artifactIds
</dependency>

This will add the spring-security-core, spring-security-config, and spring-
security-web dependencies to your project. Spring Boot detects the availability of some
of the classes inside these JAR files, and with that will automatically enable security.

Spring Boot will configure Spring Security with the following: authentication with
Basic authentication and form login; enable HTTP headers for security; Servlet API
integration; anonymous login; and disable caching of resources.

Warning Spring Boot will add a default user, named usexr, with a random
generated password, visible in the startup logs. This is only intended to be used for
testing, prototyping, or demos; do not use the generated user in a live system!.

When adding the dependency spring-boot-starter-security to Recipe 3.2, it will
automatically secure all exposed endpoints. At startup the generated password will be
logged (Figure 6-1).

INFO 58204
Using generated security password: ©33397ce-d724-4c7a-a7l17-edab7747f99d

DEBUG 58204

Figure 6-1. Generated password Output

Spring Boot exposes some properties to configure the default user; those can be
found in the spring.security namespace (Table 6-1).

Table 6-1. Properties for Default User

Property Description

spring.security.user.name Default user name, default user
spring.security.user.password Password for the default user, default generated UUID

spring.security.user.roles Roles for the default user. Default none

156

CHAPTER6 SPRING SECURITY

After adding the dependency and starting the LibraryApplication, the endpoints
are secured. When trying to obtain a list of books from http://localhost:8080/books
the result will be an HTTP result with status 401 - Unauthorized (Figure 6-2).

code/ch@6/recipe_6_1_i master x
http :8080/books
HTTP/1.1 401
Cache-Control: no-cache, no-store, max—-age=0, must-revalidate
Content-Type: application/json;charset=UTF-8
Date: Sun, 23 Sep 2018 18:08:46 GMT
Expires: @
Pragma: no-cache
Set-Cookie: JSESSIONID=EB5370933EB2198BE3B766B4F9A2C339; Path=/; HttpOnly
Transfer-Encoding: chunked
WwWwW-Authenticate: Basic realm="Realm"
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XS5-Protection: 1; mode=block

{

"error": "Unauthorized",

"message": "Unauthorized",

“path": "/books",

“status": 401,

“"timestamp": "2018-09-23T18:08:46.032+0000"

}
Figure 6-2. Unauthenticated access result
When adding the correct authentication headers (username user, password from

the logging or as specified in the spring.security.user.password property), the result
will be the regular list of books (Figure 6-3).

157

CHAPTER6 SPRING SECURITY

~/Repositories/spring-boot-recipes master x
http —-a user:@33397ce-d724-4c7a-a717-edab7747f99d :8080/books
HTTP/1.1 200
Cache-Control: no-cache, no-store, max—-age=@, must-revalidate
Content-Type: application/json;charset=UTF-8
Date: Mon, 24 Sep 2018 17:41:50 GMT
Expires: @
Pragma: no-cache
Set-Cookie: JSESSIONID=D434219EEF940FB@O83C1DC2B44BB1717; Path=/; HttpOnly
Transfer-Encoding: chunked
X-Content-Type-Options: nosniff
X-Frame-Options: DENY
X-XSS-Protection: 1; mode=block

[

“"authors": [
"J.R.R. Tolkien"
]J
"isbn": "9780618260300",
“"title": "The Hobbit"

}r
“"authors": [
"George Orwell"
]]
"isbn": '"9780451524935",
"title": "1984"
}J’

Figure 6-3. Authenticated access result

Testing Security

When using Spring Security to secure your endpoints together with an @WebMvcTest, the
security infrastructure will be automatically applied. Spring Security provides some nice

annotations to help in writing tests (Table 6-2).

Note If you want to test your controllers without security, you can disable it by
setting the secure attribute on @WebMvcTest to false; it defaults to true.

158

CHAPTER6 SPRING SECURITY

Table 6-2. Spring Security Annotations for Testing

Annotation Description

@WithMockUser Run as the user with the given username,
password, and roles/authorities

@WithAnonymousUser Run as an Anonymous user

@WithUserDetails Run as the user with the configured
name, does a lookup in the
UserDetailsService

To use these annotations, a dependency to spring-security-test must be added.

<dependency>
<groupIdyorg.springframework.security</groupIds
<artifactIdyspring-security-test</artifactIds
<scopestest</scope>

</dependency>

With this dependency the BookControllerTest from Recipe 3.2 can be extended and
fixed again. If you don’t mind disabling security for your test, you could add @WebMvcTest
(value = BookController.class, secure = false) to the test class. With it, the
security filter won’t be added and thus security will be disabled. The tests will run and
succeed.

@RunWith(SpringRunner.class)
@WebMvcTest(value = BookController.class, secure = false)
public class BookControllerUnsecuredTest { «es }

If, however, you want to test with security enabled, you will need to make some
minor modifications to the test class. First, add @WithMockUser to run with an
authenticated user. Second, as Spring Security by default enabled CSRF? protection, a
header or parameter needs to be added to the request. When using Mock MVC, Spring
Security provides a RequestPostProcessor for that, the CsrfRequestPostProcessor.
The SecurityMockMvcRequestPostProcessors contains factory methods to easily
use them.

*Cross Site Request Forgery

159

CHAPTER6 SPRING SECURITY

@RunWith(SpringRunner.class)

@WebMvcTest (BookController.class)
@wWithMockUser

public class BookControllerSecuredTest {

@Test
public void shouldAddBook() throws Exception {

when(bookService.create(any(Book.class))).thenReturn(new
Book("123456789", "Test Book Stored", "T. Author"));

mockMvc . perform(post("/books™)
.contentType(MediaType.APPLICATION JSON)
.content("{ \"isbn\" : \"123456789\"}, \"title\" : \"Test
Book\", \"authors\" : [\"T. Author\"]")
with(csrf()))
.andExpect(status().isCreated())
.andExpect (header()
.string("Location", "http://localhost/books/123456789"));

The test now uses the user as specified in @WithMockUser; here it uses the default
user, with user as the username and password as the password. The line with(csrf())
takes care of adding the CSRF token to the request.

Which option to use depends on the needs you have. If for instance in your
controller you need the current user, then security should probably be enabled and an
@WithMockUser or @WithUserDetails should be used. If that isn’t the case and you can
test your controller without the security (and you don’t have additional security rules
[see Recipe 6.2]), you can run with disabled security.

Integration Testing Security

When using @SpringBootTest to write an integration test, it depends on if you can use
the @With* annotations. With the default mocked environment, it still will work.

@RunWith(SpringRunner.class)
@SpringBootTest

160

CHAPTER6 SPRING SECURITY

@WithMockUser
@AutoConfigureMockMvc
public class BookControllerIntegrationMockTest { «.s }

This test will create an almost full-blown application but still uses Mock MVC to
access the endpoints. It still runs in the same process as the tests, and that is why the
@WithMockUser and with(csrf()) still work. When running the test on an external port,
it won’t work anymore.

To test the application on a port, you would need to run the tests through the test
client TestRestTemplate and/or WebTestClient and pass the authentication headers
or implement the flow by first doing a form-based login in your integration test. To write
a successful integration test, inject the TestRestTemplate, and before doing the actual
request use the withBasicAuth helper method to set the basic authentication header.

Tip When writing this test and using the default user, you might want to set
a default password using the spring.security.user.password. This
recipe uses a @TestPropertySource to do so, but you could add it to the
application.properties as well.

@RunWith(SpringRunner.class)

@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM_PORT)
@TestPropertySource(properties = "spring.security.user.password=s3cr3t")
public class BookControllerIntegrationTest {

@Autowired
private TestRestTemplate testRestTemplate;

@MockBean
private BookService bookService;

@Test
public void shouldReturnListOfBooks() throws Exception {

when(bookService.findAll()).thenReturn(Arrays.asList(
new Book("123", "Spring 5 Recipes”, "Marten Deinum", "Josh Long"),
new Book("321", "Pro Spring MVC", "Marten Deinum", "Colin
Yates")));

161

CHAPTER6 SPRING SECURITY

ResponseEntity<Book[]> books = testRestTemplate
.withBasicAuth("user", "s3cr3t")
.getForEntity("/books", Book[].class);

assertThat(books.getStatusCode()).isEqualTo(HttpStatus.0K);
assertThat(books.getBody()).hasSize(2);
}
}

The test uses the default-configured TestRestTemplate to issue a request. The
withBasicAuth uses the default user and preset s3cr3t as the username and password
to send to the server. The getForEntity can be used to get the result, including some
additional information about the response. Using the ResponseEntity it is also possible
to validate the status code, etc.

When testing a WebFlux-based application instead of the TestRestTemplate, you
would need the WebTestClient (see also Chapter 5 for more information on Spring
WebFlux). The WebTestClient has the headers () function to add additional headers to
the request. It exposed the HttpHeaders, which in turn has the convenient setBasicAuth
method to apply the basic authentication.

@RunWith(SpringRunner.class)

@SpringBootTest(webEnvironment = SpringBootTest.WebEnvironment.RANDOM PORT)
@TestPropertySource(properties = "spring.security.user.password=s3cr3t")
public class BookControllerIntegrationWebClientTest {

@Autowired
private WebTestClient webTestClient;

@MockBean
private BookService bookService;

@Test
public void shouldReturnListOfBooks() throws Exception {

when(bookService.findAll()).thenReturn(Arrays.asList(
new Book("123", "Spring 5 Recipes”, "Marten Deinum", "Josh Long"),
new Book("321", "Pro Spring MVC", "Marten Deinum", "Colin
Yates")));

162

CHAPTER6 SPRING SECURITY

webTestClient
-get()
.uri("/books")
.headers(headers -> headers.setBasicAuth("user", "s3cr3t"))
.exchange()
.expectStatus().is0k()
.expectBodyList(Book.class).hasSize(2);

The request is built and “fired” using exchange (). Then the result is expected to be
an HTTP 200 (OK) and the result contains two books.

6-2 Logging into Web Applications
Problem

A secure application requires its users to log in before they can access certain secure
functions. This is especially important for applications running on the open Internet,
because hackers can easily reach them. Most applications have to provide a way for users
to input their credentials to log in.

Solution

Spring Security supports multiple ways for users to log into a web application. It supports
form-based login by providing a default web page that contains a login form. You can
also provide a custom web page as the login page. In addition, Spring Security supports
HTTP Basic authentication by processing the Basic authentication credentials presented
in HTTP request headers. HTTP Basic authentication can also be used for authenticating
requests made with remoting protocols and web services.

Some parts of your application may allow for anonymous access (e.g., access to the
welcome page). Spring Security provides an anonymous login service that can assign
a principal and grant authorities to an anonymous user, so that you can handle an
anonymous user like a normal user when defining security policies.

163

CHAPTER6 SPRING SECURITY

Spring Security also supports remember-me login, which is able to remember a
user’s identity across multiple browser sessions so that a user needn’t log in again after
logging in for the first time.

How It Works

Spring Boot enables the default security settings when no explicit
WebSecurityConfigurerAdapter can be found. When one or more are found, it will use
those to configure the security.

To help you better understand the various login mechanisms in isolation, let’s first
disable the default security configuration.

Caution You generally want to stick with the defaults and just disable what you don’t
want, like httpBasic().disable(), instead of disabling all of the security defaults!

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter {

public LibrarySecurityConfig() {
super(true); // disable default configuration

Note that the login services introduced next will be registered automatically if you
enable HTTP auto-config. However, if you disable the default configuration or you want
to customize these services, you have to configure the corresponding features explicitly.

Before enabling the authentication features you will have to enable basic Spring
Security requirements; you need at least to configure exception handling and security

context integration.

@Override
protected void configure(HttpSecurity http) {

http.securityContext()
.and()
.exceptionHandling();

164

CHAPTER6 SPRING SECURITY

Without these basics, Spring Security wouldn’t store the user after doing a login and
it wouldn’t do proper exception translation for security-related exceptions (they would
simply bubble up, which might expose some of your internals to the outside world). You
also might want to enable the Servlet API integration so that you can use the methods on
the HttpServletRequest to do checks in your view.

@Override
protected void configure(HttpSecurity http) {
http.servletApi();

}
HTTP Basic Authentication

The HTTP Basic authentication support can be configured via the httpBasic() method.
When HTTP Basic authentication is required, a browser will typically display a login
dialog or a browser-specific login page for users to log in.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter {

@Override
protected void configure(HttpSecurity http) throws Exception {
http

.httpBasic();
}

Form-Based Login

The form-based login service will render a web page that contains a login form for users
to input their login details and process the login form submission. It’s configured via the
formLogin method.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter {

165

CHAPTER6 SPRING SECURITY

@verride
protected void configure(HttpSecurity http) throws Exception {
http

.formLogin();

By default, Spring Security automatically creates a login page and maps it to the URL
/login. So, you can add a link to your application (e.g., in index.html of Recipe 3.3),
referring to this URL for login:

<a th:href="/login" href="#">Login

If you don’t prefer the default login page, you can provide a custom login page
of your own. For example, you can create the following login.html file in sxrc/main/
resources/templates (when using Thymeleaf). As by default the CSRF protection is
on, you need to add a CSRF token to the form. That is what the hidden field is for. If you
disabled CSRF (not recommended), you should remove this line.

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"s
<head>
<titlesLogin</titles
<link type="text/css" rel="stylesheet"
href="https://cdnjs.cloudflare.com/ajax/1libs/semantic-ui/2.2.10/
semantic.min.css"»
<style type="text/css"»
body {
background-color: #DADADA;
}
body > .grid {
height: 100%;
}
.column {
max-width: 450px;
}
</style>

166

CHAPTER 6 SPRING SECURITY
</head»

<body»
<div class="ui middle aligned center aligned grid"s
<div class="column"»
<h2 class="ui header"sLog-in to your account</h2»
<form method="POST" th:action="@{/login}" class="ui large form"»
<input type="hidden"
th:name="${ csrf.parameterName}" th:value="${ csrf.token}"/»
<div class="ui stacked segment"s
<div class="field"s
¢div class="ui left icon input”s
<i class="user icon"»</i»
<input type="text" name="username" placeholder="E-
mail address"»
</divy
</div>
<div class="field"»
¢div class="ui left icon input"»
<i class="lock icon"»</1i»
<input type="password" name="password"
placeholder="Password"»
</div>
</div>
<button class="ui fluid large submit green button"sLogin</
button»
</div>
</form>
</divy
</div>
</body>
</html>

In order for Spring Security to display your custom login page when a login is
requested, you have to specify its URL in the loginPage configuration method.

167

CHAPTER6 SPRING SECURITY

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter {

@verride
protected void configure(HttpSecurity http) throws Exception {
http

.formLogin().loginPage("/login");

Finally, add a view resolver to map /login to the login.html page. For this you can
have the LibrarySecurityConfig implement the WebMvcConfigurer and override the
addViewControllers methods.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter
implements WebMvcConfigurer {

public void addViewControllers(ViewControllerRegistry registry) {
registry.addViewController("/login").setViewName("login");

}
}

If the login page is displayed by Spring Security when a user requests a secure
URL, the user will be redirected to the target URL once the login succeeds. However,
if the user requests the login page directly via its URL, by default the user will
be redirected to the context path’s root (i.e., http://localhost:8080/) after a
successful login. If you have not defined a welcome page in your web deployment
descriptor, you may wish to redirect the user to a default target URL when the login
succeeds.

168

CHAPTER6 SPRING SECURITY

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter
implements WebMvcConfigurer {
@verride
protected void configure(HttpSecurity http) throws Exception {
http

.formLogin().loginPage("/login").defaultSuccessUrl("/books");

If you use the default login page created by Spring Security, then when a login fails,
Spring Security will render the login page again with the error message. However, if you
specify a custom login page, you will have to configure the authentication-failure-url
to specify which URL to redirect to on login error. For example, you can redirect to the

custom login page again with the error request parameter.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter
implements WebMvcConfigurer {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
.formLogin()

.loginPage("/login.html")
.defaultSuccessUrl("/books")
.failureUrl("/login.html?error=true");

}

Then your login page should test whether the error request parameter is present.
If an error has occurred, you will have to display the error message by accessing the
session scope attribute SPRING_SECURITY_LAST_EXCEPTION, which stores the last
Exception thrown by Spring Security for the current user.

169

CHAPTER6 SPRING SECURITY

<formy

<div th:if="${param.error}"s
<div class="ui error message" style="display: block;"»
Authentication Failed<bx/»
Reason :
¢span th:text="${session.SPRING SECURITY LAST EXCEPTION.message}" /»
</div>
</div>

</foxrmy

The Logout Service

The logout service provides a handler to handle logout requests. It can be configured via
the logout () configuration method.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter
implements WebMvcConfigurer {

@verride
protected void configure(HttpSecurity http) throws Exception {
http

and()
.logout();

By default, it's mapped to the URL /logout and will react to POST requests only. You
can add a small html form to your page to log out.

<form th:action="/logout" method="post"><button>Logout</button><form>

170

CHAPTER6 SPRING SECURITY

Note When using CSRF protection, don’t forget to add the CSRF token to the
form, else logout will fail.

By default, a user will be redirected to the context path’s root when the logout
succeeds, but sometimes you may wish to direct the user to another URL, which you can
do by using the logoutSuccessUrl configuration method.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter
implements WebMvcConfigurer {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
.and()
.logout().logoutSuccessurl("/");

After logout you might notice that when using the browser back button you will still
be able to see the previous pages, even if your logout was successful. This has to do with
the fact that the browser caches the pages. By enabling the security headers with the
headers() configuration method, the browser will be instructed to not cache the page.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter
implements WebMvcConfigurer {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
.and()
.headers();

171

CHAPTER6 SPRING SECURITY

Next to the no-cache headers this will also disable content sniffing and enable
x-frame protection. With this enabled and using the browser back button, you will be
redirected to the login page again.

Anonymous Login

The anonymous login service can be configured via the anonymous () method in Java
config, where you can customize the username and authorities of an anonymous user,
whose default values are anonymousUser and ROLE_ANONYMOUS.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter
implements WebMvcConfigurer {

@0verride
protected void configure(HttpSecurity http) throws Exception {
http
.and()
.anonymous().principal("guest").authorities("ROLE_GUEST");

}
}
Remember-Me Support

Remember-me support can be configured via the rememberMe () method in Java config.
By default, it encodes the username, password, remember-me expiration time, and a
private key as a token, and stores it as a cookie in the user’s browser. The next time the
user accesses the same web application, this token will be detected so that the user can

log in automatically.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter
implements WebMvcConfigurer {
@0verride
protected void configure(HttpSecurity http) throws Exception {
http

172

CHAPTER6 SPRING SECURITY

.and()
.rememberMe();

However, static remember-me tokens can cause security issues because they may
be captured by hackers. Spring Security supports rolling tokens for more advanced
security needs, but this requires a database to persist the tokens. For details about
rolling remember-me token deployment, please refer to the Spring Security reference
documentation.

6-3 Authenticating Users
Problem

When a user attempts to log into your application to access its secure resources, you
have to authenticate the user’s principal and grant authorities to this user.

Solution

In Spring Security, authentication is performed by one or more
AuthenticationProviders, connected as a chain. If any of these providers authenticates
a user successfully, that user will be able to log into the application. If any provider
reports that the user is disabled or locked or that the credential is incorrect, or if

no provider can authenticate the user, then the user will be unable to log into this
application.

Spring Security supports multiple ways of authenticating users and includes built-in
provider implementations for them. You can easily configure these providers with
the built-in XML elements. Most common authentication providers authenticate
users against a user repository storing user details (e.g., in an application’s memory,
arelational database, or an LDAP repository).

When storing user details in a repository, you should avoid storing user passwords
in clear text because that makes them vulnerable to hackers. Instead, you should always
store encrypted passwords in your repository. A typical way of encrypting passwords is
to use a one-way hash function to encode the passwords. When a user enters a password
to log in, you apply the same hash function to this password and compare the result

173

CHAPTER6 SPRING SECURITY

with the one stored in the repository. Spring Security supports several algorithms for

encoding passwords (including BCrypt and SCrypt) and provides built-in password

encoders for these algorithms.

How It Works
Authenticating Users with In-Memory Definitions

If you have only a few users in your application and you seldom modify their details, you

can consider defining the user details in Spring Security’s configuration file so that they

will be loaded into your application’s memory.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter {

174

@0verride
protected void configure(AuthenticationManagerBuilder auth)
throws Exception {
UserDetails adminUser = User.withDefaultPasswordEncoder()
.username("admin@books.io")
.password("secret")
.authorities("ADMIN","USER").build();

UserDetails normalUser = User.withDefaultPasswordEncoder()
.username("marten@books.io")
.password("user")
.authorities("USER").build();

UserDetails disabledUser = User.withDefaultPasswordEncoder()
.username("marten@books.io")
.password("user")
.disabled(txue)
.authorities("USER").build();

CHAPTER6 SPRING SECURITY

auth.inMemoryAuthentication()
.withUser(adminUser)
.withUser(normalUser)
.withUser(disabledUser);

Using the UserBuild, obtained through User.withDefaultPasswordEncoder(),
you can construct users with encrypted passwords. It will use the Spring Security
default password encoded (which by is by default encoding with BCrypt). You can add
user details with the inMemoryAuthentication() method; using the withUser method,
you can define the users. For each user you can specify a username, a password, a
disabled status, and a set of granted authorities. A disabled user cannot log into an
application.

Authenticating Users Against a Database

More typically, user details should be stored in a database for easy maintenance. Spring
Security has built-in support for querying user details from a database. By default, it
queries user details, including authorities, with the following SQL statements:

SELECT username, password, enabled
FROM users
WHERE username = ?

SELECT username, authority
FROM authorities
WHERE username = ?

In order for Spring Security to query user details with these SQL statements, you
have to create the corresponding tables in your database. For example, you can create
them in the database with the following SQL statements:

CREATE TABLE USERS (
USERNAME ~ VARCHAR(50) NOT NULL,
PASSWORD VARCHAR(50) NOT NULL,
ENABLED SMALLINT NOT NULL,
PRIMARY KEY (USERNAME)

)5

175

CHAPTER6 SPRING SECURITY

CREATE TABLE AUTHORITIES (
USERNAME VARCHAR (50) NOT NULL,
AUTHORITY VARCHAR(50) NOT NULL,
FOREIGN KEY (USERNAME) REFERENCES USERS
);
Next, you can input some user details into these tables for testing purposes. The data
for these two tables is shown in Tables 6-3 and 6-4.

Table 6-3. Testing User Data for the USERS Table

USERNAME PASSWORD ENABLED
admin@books.io {noop}secret 1
marten@books.io {noopluser 1
jdoe@hooks.net {noop}unknown 0

Note The {noop} in the password field indicates that no encryption has been
applied to the stored password. Spring Security uses delegation to determine
which encoding method to use; values can be {bcrypt}, {scrypt}, {pbkdf2}
and {sha256}. The {sha256} is mainly there for compatibility reasons and
should be considered unsecure.

Table 6-4. Testing User Data for the AUTHORITIES Table

USERNAME AUTHORITY
admin@books.io ADMIN
admin@books.io USER
marten@books.io USER
jdoe@books.net USER

176

CHAPTER6 SPRING SECURITY

In order for Spring Security to access these tables, you have to declare a data source
to be able to create connections to this database.

For Java Config use the jdbcAuthentication() configuration method and pass it
a DataSource. Generally this will be the Spring Boot-configured DataSource, which
can be configured through the spring.datasource properties (see Recipe 7.1 for
more details).

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter {

@Autowired
private DataSource dataSource;

@verride

protected void configure(AuthenticationManagerBuilder auth)

throws Exception {
auth.jdbcAuthentication().dataSource(dataSource);

However, in some cases you may already have your own user repository defined in a
legacy database. For example, suppose that the tables are created with the following SQL
statements, and that all users in the MEMBER table have the enabled status:

CREATE TABLE MEMBER (
ID BIGINT NOT NULL,
USERNAME ~ VARCHAR(50) NOT NULL,
PASSWORD VARCHAR(32) NOT NULL,
PRIMARY KEY (ID)

);

CREATE TABLE MEMBER ROLE (
MEMBER ID BIGINT NOT NULL,
ROLE VARCHAR(10) NOT NULL,
FOREIGN KEY (MEMBER ID) REFERENCES MEMBER

)s

177

CHAPTER6 SPRING SECURITY

Suppose you have the legacy user data stored in these tables as shown in Tables 6-5
and 6-6.

Table 6-5. Legacy User Data in the MEMBER Table

ID USERNAME PASSWORD
1 admin@ya2do.io {noop}secret
2 marten@ya2do.io {noop}user

Table 6-6. Legacy User Data in the MEMBER_ROLE Table

MEMBER_ID ROLE

1 ROLE_ADMIN
1 ROLE_USER
2 ROLE_USER

Fortunately, Spring Security also supports using custom SQL statements
to query a legacy database for user details. You can specify the statements for
querying a user’s information and authorities using usersByUsernameQuery() and
authoritiesByUsernameQuery() configuration methods.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter {

@verride
protected void configure(AuthenticationManagerBuilder auth)
throws Exception {
auth.jdbcAuthentication()
.dataSource(dataSource)
.usersByUsernameQuery (
"SELECT username, password, 'true' as enabled " +
"FROM member WHERE username = ?"

178

CHAPTER6 SPRING SECURITY

.authoritiesByUsernameQuery(
"SELECT member.username, member role.role as authorities " +

"FROM member, member role " +
"WHERE member.username = ? AND member.id = member role.member id");

}

Encrypting Passwords

Until now, you have been storing user details with clear-text passwords. But this
approach is vulnerable to hacker attacks, so you should encrypt the passwords before
storing them. Spring Security supports several algorithms for encrypting passwords.
For example, you can choose BCrypt, a one-way hash algorithm, to encrypt your

passwords.

Note You may need a helper to calculate BCypt hashes for your passwords.
You can do this online through, for example, www.browserling.com/tools/
bcrypt, or you can simply create a class with a main method that uses Spring
Security’s BCryptPasswordEncoder.

Of course, you have to store the encrypted passwords in the database tables instead
of the clear-text passwords, as shown in Table 6-7. To store BCrypt hashes in the
password field, the length of the field has to be at least 68 chars long (that is the length of
the BCrypt hash + the encryption type {bcrypt}).

Table 6-7. Testing User Data with Encrypted Passwords for the USERS Table

USERNAME PASSWORD ENABLED

admin@yaz2do.io {berypt}$2a$10$E3MPTZb50e7sSW15fDx8Ne7hDZpfDjrm 1
MPTTUp8wVjLTu.G50PYCO

marten@ya2do.io {berypt}$2a$10$5VWajwoMYnFRTTmbWCRZT. 1
iY3WW8ny27kQuUL9yPK1/WJcPcBLFWO

jdoe@does.net {berypt}$2a$10$cFKh0.XCUOAIL.in5smli02QI0T8.6ufQSwIIC. 0
AVz26WctxhSWC6

179

http://www.browserling.com/tools/bcrypt
http://www.browserling.com/tools/bcrypt

CHAPTER6 SPRING SECURITY

6-4 Making Access Control Decisions
Problem

In the authentication process, an application will grant a successfully authenticated user
a set of authorities. When this user attempts to access a resource in the application, the
application has to decide whether the resource is accessible with the granted authorities
or other characteristics.

Solution

The decision on whether a user is allowed to access a resource in an application is called
an access control decision. It is made based on the user’s authentication status, and the
resource’s nature and access attributes.

How It Works

With Spring Security it is possible to use Spring Expression Language (SpEL) to create
powerful access control rules. Spring Security supports a couple of expressions out of the
box (see Table 6-8 for a list). Using constructs like and, or, and not one can create very
powerful and flexible expressions.

Table 6-8. Spring Security Built-in Expressions

Expression Description
hasRole(‘role’) or Returns true if the current user has the given role
hasAuthority(‘authority’)
hasAnyRole(‘role1’,‘role2’) / Returns true if the current user has at least one of
hasAnyAuthority(‘auth1’,’auth2’) the given roles
haslpAddress(‘ip-address’) Returns true if the current user has the given ip-address
principal The current user
Authentication Access to the Spring Security authentication object
permitAll Always evaluates to true

(continued)

180

CHAPTER6 SPRING SECURITY

Table 6-8. (continued)

Expression Description

denyAll Always evaluates to false

isAnonymous() Returns true if the current user is anonymous

isRememberMe() Returns true if the current user logged in by the
means of remember-me functionality

isAuthenticated() Returns true if this is not an anonymous user

isFullyAuthenticated() Returns true if the user is not an anonymous or a

remember-me user

Caution Although role and authority are almost the same, there is a slight, but
important, difference in how they are processed. When using hasRole the passed
in value for the role will be checked if it starts with ROLE _ (the default role prefix);
if not, this will be added before checking the authority. So hasRole('ADMIN')
will actually check if the current user has the authority ROLE_ADMIN. When using
hasAuthority it will check the value as is.

The following expression would give access to deletion of a book if someone had the
ADMIN role or was logged in on the local machine. Writing such an expression can be
done through the access method instead of one of the has* methods when defining a
matcher.

@Configuration
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter {

@verride
protected void configure(HttpSecurity http) throws Exception {
http
.authorizeRequests()
.antMatchers (HttpMethod.GET, "/books*").hasAnyRole("USER", "GUEST")
.antMatchers (HttpMethod.POST, "/books*").hasRole("USER")

181

CHAPTER6 SPRING SECURITY

.antMatchers (HttpMethod .DELETE, "/books*")
.access("hasRole('ROLE_ADMIN') or hasIpAddress('127.0.0.1") " +
"or hasIpAddress('0:0:0:0:0:0:0:1")")

}
}

Using Expression to Make Access Control Decisions Using Spring
Beans

Using the @ syntax in the expression, you can call any bean in the application context. So
you could write an expression like @accessChecker.hasLocalAccess (authentication)
and provide a bean named accessChecker, which has a hasLocalAccess method that
takes an Authentication object.

package com.apress.springbootrecipes.library.security;

import org.springframework.security.core.Authentication;
import org.springframework.security.web.authentication.
WebAuthenticationDetails;

@Component
public class AccessChecker {

public boolean haslLocalAccess(Authentication authentication) {
boolean access = false;
if (authentication.getDetails() instanceof
WebAuthenticationDetails) {
WebAuthenticationDetails details =
(WebAuthenticationDetails) authentication.getDetails();
String address = details.getRemoteAddress();
access = address.equals("127.0.0.1") ||
address.equals("0:0:0:0:0:0:0:1");
}

return access;

182

CHAPTER6 SPRING SECURITY

The AccessChecker does the same checks as the earlier written custom expression
handler but doesn’t extend the Spring Security classes.

@0verride
protected void configure(HttpSecurity http) throws Exception {

http.authorizeRequests()
.antMatchers (HttpMethod,POST, "/books*").hasAuthority("USER")
.antMatchers (HttpMethod .DELETE, "/books*")
.access("hasAuthority('ADMIN') " +
"or @accessChecker.hasLocalAccess(authentication)");

}

Securing Methods with Annotations and Expressions

You can use the @PreAuthorize and @PostAuthorize annotations to secure method
invocations instead of only securing URLs. The @PreAuthorize is checked before the
method is invoked and @PostAuthorize after the method invocation and could be used
to do security checks on the returned value. With those you can write security-based
expressions just as with the URL-based security. To enable the annotation processing,
add the @EnableGlobalMethodSecurity annotation to the security configuration and set
the prePostEnabled attribute to true.

@Configuration
@EnableGlobalMethodSecurity(prePostEnabled = true)
public class LibrarySecurityConfig extends WebSecurityConfigurerAdapter {

cee }

Now you can use the @PreAuthorize annotation to secure your application.
package com.apress.springbootrecipes.library;

import org.springframework.security.access.prepost.PreAuthorize;
import org.springframework.stereotype.Service;

import java.util.Map;
import java.util.Optional;
import java.util.concurrent.ConcurrentHashMap;

183

CHAPTER6 SPRING SECURITY

@Service
class InMemoryBookService implements BookService {

private final Map<String, Book> books = new ConcurrentHashMap<>();

@verride

@PreAuthorize("isAuthenticated()")

public Iterable<Book> findAll() {
return books.values();

}

@0verride
@PreAuthorize("hasAuthority("'USER")")
public Book create(Book book) {
books .put(book.getIsbn(), book);
return book;

}

@verride
@PreAuthorize("hasAuthority('ADMIN') or @accessChecker.hasLocalAccess
(authentication)")
public void remove(Book book) {
books . remove (book.getIsbn());

}

@verride
@PreAuthorize("isAuthenticated()")
public Optional<Book> find(String isbn) {
return Optional.ofNullable(books.get(isbn));

The @PreAuthorize annotation will trigger Spring Security to validate expression
in there. If it is successful, then access is granted, else an exception will be thrown and
indicated to the user that he doesn’t have access.

184

CHAPTER6 SPRING SECURITY

6-5 Adding Security to a WebFlux Application
Problem

You have an application built with Spring Web Flux (see Chapter 5) and you want to
secure it using Spring Security.

Solution

When adding Spring Security as a dependency to a WebFlux-based application, Spring
Boot will automatically enable security. It will add an @EnableWebFluxSecurity
annotated configuration class to the application. The @EnableWebFluxSecurity
annotation then imports the default Spring Security WebFluxSecurityConfiguration.

How It Works

A Spring WebFlux application is very different in nature than a regular Spring MVC
application; nonetheless, Spring Boot and Spring Security strive to make it easier to build
secure WebFlux-based applications.

To get security enabled, add the spring-boot-starter-security to your WebFlux
application (from Recipe 5.3).

<dependency>
<groupIdsorg.springframework.boot</groupIds
<artifactIdyspring-boot-starter-security</artifactIds
</dependency>

This will add the spring-security-core, spring-security-config, and spring-
security-web dependencies to your project. Spring Boot detects the availability of
some of the classes inside these JAR files, and with that will automatically enable
security.

Spring Boot will configure Spring Security with the following: authentication with
Basic Authentication and form login’ enable HTTP headers for security; and require a
login to access any resource.

185

CHAPTER6 SPRING SECURITY

Warning Spring Boot will add a default user, named user, with a generated
password, visible in the startup logs. This is only intended to be used for testing,
prototyping, or demos; do not use the generated user in a live system!.

When adding the dependency spring-boot-starter-security to Recipe 5.3, it will
automatically secure all exposed endpoints. At startup the generated password will be
logged (Figure 6-4).

[() A W WL A
L AN PR VA LN VL T
NS e oy
S Y R I P N O A 4
| s

restartedMain] c.a.s.order.0OrderApplication : Starting OrderApplication on imac-van-mart
ses started by marten in /Users/marten/Repositories/spring-boot-recipes/code/ch@6/recipe_6_5_1i)

1 c.a.s.order.0OrderApplic : No active profile set, falling back to def
e.DevToolsPropertyDefa ce : Devtools property defaults active! Set 'sp
e.DevToolsPropertyDefa cessor @ For additional web related logging conside

31 INFD 6547 restart | ctiveUserDetailsServiceAutoConfiguration :

Using generated security password: 412ad2ec-64cd-4cc7-bE7a-ed540e3823d9

5 INFO 6547 ——
i INFO 8547

+5.5.

concurrent.Thr : Initializing ExecutorService 'applicationT
.b.d.a.0ptionallLiy : LiveReload server is running on port 35729
W
o

s.b
.5.b.web.embedded.n erver : Netty started on port(s): BO8@
.a.s.order.0rderApplication : Started OrderApplication in 3.724 seconds

INFO 8547
51 INFO 6547 -

Figure 6-4. Secure WebFlux output

Now when trying to access http://localhost:8080/ alogin page will be shown
(Figure 6-5).

@ @/ Please signin b1 +

& > C O localhost:8080/login+ vr @ @ » H o v | O

Please signin

lUsername

Password

Figure 6-5. Default login page

186

CHAPTER6 SPRING SECURITY

Securing URL Access

Access rules can be configured by adding a custom SecurityWebFilterChain. First let’s
create an OrdersSecurityConfiguration.

@Configuration
public class OrdersSecurityConfiguration { «ee }

The WebFluxSecurityConfiguration class from Spring Security detects instances of
SecurityWebFilterChain (containing the security configuration), which is wrapped as a
WebFilter which in turn is used by WebFlux to add behavior to incoming request (just as
a normal Servlet Filter).

Currently the configuration only enables security; let’s add some security rules.

@Bean

SecurityWebFilterChain springWebFilterChain(ServerHttpSecurity http) throws

Exception {

return http

.authorizeExchange()
.pathMatchers("/").permitAll()
.pathMatchers("/orders*").hasRole("USER")
.anyExchange().authenticated()
.and().build();

The ServerHttpSecurity should look familiar (see other recipes in this chapter)
and is used to add security rules and do further configuration (like adding/removing
headers and configure the login method). With the authorizeExchange it is possible
to write rules, where with secure URLs the / is permitted for everyone and the
/orders URLs are only available for the role USER. For other requests you have at
least to be authenticated. Finally you need to call build() to actually build the
SecurityWebFilterChain.

Next to the authorizeExchange it is also possible to use the headers() configuration
method to add security headers to requests, csrf() for adding CSRF protection, etc.

187

CHAPTER6 SPRING SECURITY

Logging in to Web Flux Applications

You could override parts of the default configuration by explicitly configuring them; you

could override the authentication manager used and the repository used to store the

security context. The authentication manager is detected automatically; you just need to

register a bean of type ReactiveAuthenticationManager or of UserDetailsRepository.
You can also configure the location where the SecurityContext is stored by

configuring the ServerSecurityContextRepository. The default implementation

used is the WebSessionServerSecurityContextRepository, which stores

the context in the WebSession. The other default implementation is the

NoOpServerSecurityContextRepository, which is used in stateless applications.

@Bean
SecurityWebFilterChain springWebFilterChain(HttpSecurity http) throws
Exception {
return http
.httpBasic().
.and().formLogin().
.authenticationManager(new CustomReactiveAuthenticationManager())
.securityContextRepository(
new ServerhWebExchangeAttributeSecurityContextRepository())
.and().build();

This would override the defaults with a CustomReactiveAuthenticationManager
and the stateless NoOpServerSecurityContextRepository. However, for our application
we are going to stick with the defaults.

Authenticating Users

Authenticating users in a Spring WebFlux-based application is done through a
ReactiveAuthenticationManager; this is an interface with a single authenticate
method. You can either provide your own implementation or use one of the two provided
implementations. The first is the UserDetailsRepositoryAuthenticationManager,
which wraps an instance of ReactiveUserDetailsService.

188

CHAPTER6 SPRING SECURITY

Note The ReactiveUserDetailsService has only a single implementation,
the MapReactiveUserDetailsService, which is an in-memory
implementation. You could provide your own implementation based on a Reactive
datastore (like MongoDB or Couchbase).

The other implementation, the ReactiveAuthenticationManagerAdapter, is actually
a wrapper for a regular AuthenticationManager. It will wrap a regular instance and
because of that you can use the blocking implementations in a reactive way. This doesn’t
make them reactive: they still block, but they are reusable this way. With this you could
use JDBC, LDAP, etc. also for your reactive application.

When configuring Spring Security in a Spring WebFlux application, you can either
add an instance of a ReactiveAuthenticationManager to your Java configuration
class or a UserDetailsRepository. When the latter is detected, it will automatically be
wrapped in a UserDetailsRepositoryAuthenticationManager.

@Bean
public MapUserDetailsRepository userDetailsRepository() {
UserDetails marten =
User.withUsername("marten").password("secret")
.roles("USER").build();
UserDetails admin =
User.withUsername("admin").password("admin")
.roles("USER","ADMIN").build();
return new MapUserDetailsRepository(marten, admin);

When you now run the application you would be free to access the / page but
when accessing a URL starting with /orders you would be greeted by a login form (see
Figure 6-5). When entering the credentials of one of the predefined users, you should be
allowed access to the requested URL.

Making Access Control Decisions

At some point in your application you need to grant access to a user, based on the
authorities or roles the user has. Spring Security provides some built-in expressions
(Table 6-9) to handle that.

189

CHAPTER6 SPRING SECURITY

Table 6-9. Spring Security WebFlux Built-in Expressions

Expression Description

hasRole('role') or Returns true if the current user has the given role
hasAuthority('authority")

permitAll() Always evaluates to true

denyAll() Always evaluates to false

authenticated() Returns true if the user is authenticated
access() Use a function to determine if access is granted

Caution Although role and authority are almost the same, there is a slight, but
important, difference in how they are processed. When using hasRole the passed
in value for the role will be checked if it starts with ROLE (the default role prefix);
if not, this will be added before checking the authority. So hasRole('ADMIN')
will actually check if the current user has the authority ROLE_ADMIN. When using
hasAuthority it will check the value as is.

@Bean
SecurityWebFilterChain springWebFilterChain(HttpSecurity http) throws
Exception {
return http
.authorizeExchange()
.pathMatchers("/").permitAll()
.pathMatchers("/orders*").access(this: :ordersAllowed)
.anyExchange().authenticated()
.and()
.build();

190

CHAPTER6 SPRING SECURITY

private Mono<AuthorizationDecision> ordersAllowed(Mono<Authentication>
authentication, AuthorizationContext context) {
return authentication
.map(a.getAuthorities()
.contains(new SimpleGrantedAuthority("ROLE_ADMIN")))
.map(AuthorizationDecision::new);

The access() expression can be used to write a very powerful expression. The
preceding snippet allows access if the current user has the ROLE_ADMIN authority. The
Authentication contains the collection of GrantedAuthorities, which you can check
for the ROLE_ADMIN. Of course you can write as many complex expressions as you like:
you could check for the ip-address, request headers, etc.

6-6 Summary

In this chapter you learned how to secure Spring Boot applications with Spring
Security. It can be used to secure any Java application, but it’s mostly used for web-
based applications. The concepts of authentication, authorization, and access
control are essential in the security area, so you should have a clear understanding
of them.

You often have to secure critical URLs by preventing unauthorized access to them.
Spring Security can help you to achieve this in a declarative way. It handles security by
applying servlet filters, which can be configured with simple Java-based configuration.
Spring Security will automatically configure the basic security services for you and tries
to be as secure as possible by default.

Spring Security supports multiple ways for users to log into a web application, such
as form-based login and HTTP Basic authentication. It also provides an anonymous
login service that allows you to handle an anonymous user just like a normal user.
Remember-me support allows an application to remember a user’s identity across
multiple browser sessions.

191

CHAPTER6 SPRING SECURITY

Spring Security supports multiple ways of authenticating users and has built-in
provider implementations for them. For example, it supports authenticating users
against in-memory definitions, a relational database, and an LDAP repository. You
should always store encrypted passwords in your user repository, because clear-text
passwords are vulnerable to hacker attacks. Spring Security also supports caching user
details locally to save you the overhead of performing remote queries.

Decisions on whether a user is allowed to access a given resource are made by access
decision managers. Spring Security comes with three access decision managers that are
based on the voting approach. All of them require a group of voters to be configured for
voting on access control decisions.

Spring Security enables you to secure method invocations in a declarative way using
the @PreAuthorize and @PostAuthorize annotations.

Spring Security also has support for securing Spring WebFlux-based applications.

In the last recipe, you explored how you could add security to such an application.

192

CHAPTER 7

Data Access

When working with a database the first thing you need is a connection to the database.
A connection in Java is obtained through a javax.sql.DataSource. Spring provides
out-of-the-box several implementations of a DataSource like the
DriverManagerDataSource and SimpleDriverDataSource. However, these
implementations aren’t connections pool and should be considered mainly for testing
but not production use. For a live system, you want to use a proper connection pool like
HikariCP.!

Tip In the db folder there is a Dockerfile that will build a PostgreSQL? with the
database automatically created. Build it using docker build -t sb2r-postgres.
You can then run it using docker run -p 5432:5432 -it sb2r-postgres.

7-1 Configuring a DataSource
Problem

You need access to a database from your application.

Solution

Use the spring.datasource.url, spring.datasource.username, and
spring.datasource.password properties to let Spring Boot configure a DataSource.

'https://brettwooldridge.github.io/HikariCP/
*https://www.postgresql.org

193
© Marten Deinum 2018

M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6_7

https://brettwooldridge.github.io/HikariCP/
https://www.postgresql.org

CHAPTER 7 DATA ACCESS

How It Works

To configure a DataSource, Spring Boot requires the presence of a connection pool or

an embedded database like H2, HSQLDB, or Derby. Spring Boot automatically detects
HikariCP, Tomcat JDBC, and Commons DBCP2-based connection pools (in that

order). To use the connection pool, configure the spring.datasource.url, spring.
datasource.username, and spring.datasource.password properties. The JDBC support
can be enabled by adding the spring-boot-starter-jdbc dependency. This will pull in
all required dependencies to work with JDBC.

<dependency»
<groupIdsorg.springframework.boot</groupIds
<artifactId>spring-boot-starter-jdbc¢/artifactIds
</dependency>

Dependencies included are spring-jdbc, spring-tx, and HikariCP as the default
connection pool.

Use an Embedded DataSouzxce

When Spring Boot detects the presence of H2, HSQLDB, or Derby it will by default start
an embedded database using the detected embedded implementation. This is very
useful when writing a test or preparing a demonstration for a business. Letting Spring
Boot create this is a simple matter of including the desired dependency.

<dependency»
<groupIdsorg.apache.derby</groupId>
<artifactId>derby</artifactIds
<scopedruntime</scopes
</dependency>

Spring Boot will now detect Derby and bootstrap an embedded DataSource. Let’s
write an application that lists the tables in the database.

package com.apress.springboot2recipes.jdbc;

import org.slf4j.Logger;
import org.slf4j.lLoggerFactory;
import org.springframework.boot.ApplicationArguments;

194

CHAPTER 7 DATA ACCESS

import org.springframework.boot.ApplicationRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.stereotype.Component;

import javax.sql.DataSource;

@SpringBootApplication
public class JdbcApplication {

public static void main(String[] args) {
SpringApplication.run(JdbcApplication.class, args);
}
}

@Component
class TablelLister implements ApplicationRunner {

private final Logger logger = LoggerFactory.getlLogger(getClass());
private final DataSource dataSource;

Tablelister(DataSource dataSource) {
this.dataSource = dataSource;

}

@verride
public void run(ApplicationArguments args) throws Exception {
try (var con = dataSource.getConnection();
var rs = con.getMetaData().getTables(null, null, "%", null)) {
while (rs.next()) {
logger.info("{}", rs.getString(3));
}
}
}
}

When the application runs, it will create an instance of the TableLister and the
instance will receive the configured DataSource. Spring Boot will then detect the fact
itis an ApplicationRunner and will call the run method. The run method obtains a

195

CHAPTER 7 DATA ACCESS

Connection from the DataSource and uses the DatabaseMetaData (from JDBC) to obtain
the tables in the database. Now when running the application it should display output
similar to that as in Figure 7-1.

WARN 96243

1.zaxxer.hikari.util.DriverDataSource : Registered driver with driverClass

INFO 96243 : HikariPool-=1 = Driver does not sup
INFO 96243 : HikariPool-1 - Start completed.
INFO 96243 : SYSALIASES

INFO 96243 : SYSCHECKS

INFO 96243 : SYSCOLPERMS

INFO 96243 [© SYSCOLUMNS

INFO 96243 — : SYSCONGLOMERATES

INFO 96243 [© SYSCONSTRAINTS

INFO 96243 — [: SYSDEPENDS

INFO 96243 : SYSFILES

INFO 96243 : SYSFOREIGNKEYS

INFO 96243 : SYSKEYS

INFO 96243 : SYSPERMS

INFO 96243 : SYSROLES

INFO 96243 . Springboo : SYSROUTINEPERMS

INFO 96243 - a.springboot2r : SYSSCHEMAS

INFO 96243 - .springboo © SYSSEQUENCES

INFO 96243 a.springboo es. j : SYSSTATEMENTS

INFO 96243
INFO 96243
INFO 96243
INFO 96243

«springboo
.springboot2r

es.jdbc.TableLister : SYSSTATISTICS
j leLister : SYSTABLEPERMS
leLister : SYSTABLES
Lister : SYSTRIGGERS
INFO 96243 leLister : SYSUSERS
INFO 96243 - [. leLister : SYSVIEWS
INFO 96243 [mainl c.a.springboot2recipes.jdb leLister : SYSDUMMYL

Figure 7-1. TableLister output for Derby

Using an External Database

To connect to a database, you need a JDBC driver; this recipe uses PostgreSQL, so you
need to include the driver for this database.

<dependency»
<groupId>org.postgresql</groupIlds
<artifactId>postgresql</artifactId>
</dependency>

Now configuring a single datasource is a matter of including the properties in the
application.properties. For the dockerized PostgreSQL database shipped with
this recipe, the datasource configuration is shown as follows; replace with our own
configuration as needed.

spring.datasource.url=jdbc:postgresql://localhost:5432/customers
spring.datasource.username=customers
spring.datasource.password=customers

196

CHAPTER 7 DATA ACCESS

The spring.datasource.url tells the datasource where to connect to, and
spring.datasource.username and spring.datasource.password configure the
username and password to use when connecting. You could also specify the
spring.datasource.driver-class-name to specify the JDBC driver class to use;
generally Spring Boot will detect the driver to use from the passed in URL. If you want to
use a nondefault driver (for performance or logging), you could specify this as well.

When running the JdbcApplication the output should be like that of Figure 7-2;
there are now a bunch of different tables (compared with Derby).

11 INFO 97421 : HikariPool-1 - Starting...
5 INFO 97421 : HikariPool-1 - Start completed.

INFO 97421 . pg_aggregate_fnoid_index
INFO 97421 ¢ pg_am_name_index
INFO 97421 : pg_am_oid_index
INFO 97421 : pg_amop_fam_strat_index
INFO 97421 - : pg_amop_oid_index
INFO 97421 . pg_amop_opr_fam_index
INFO 97421 : pg_amproc_fam_proc_index
INFO 97421 ¢ pg_amproc_oid_index

INFO 97421
INFO 97421
INFO 97421

. pg_attrdef_adrelid_adnum_index
: pg_attrdef_oid_index
¢ pg_attribute_relid_attnam_index

INFO 97421 : pg_attribute_relid_attnum_index
INFO 97421 : pg_auth_members_member_role_index
INFO 97421 - . pg_auth_members_role_member_index
INFO 97421 : pg_authid_oid_index
INFO 97421 — : pg_authid_rolname_index
INFO 97421 : pg_cast_oid_index
INFO 97421 : pg_cast_source_target_index
INFO 97421 : pg_class_oid_index

1 INFO 97421 : pg_class_relname_nsp_index
INFO 97421 n 3 : pg_class_tblspc_relfilenode_index
INFO 97421 [c.a.springboot2reci L ¢ pg_collation_name_enc_nsp_index
INFQ 97421 main]l c.a.springboot2recipes.jdbc.TableLister : pg_collation_oid_index

Figure 7-2. TableLister output for PostgreSQL

Obtaining a DataSource from JNDI

If you are deploying your Spring Boot application to an application server (or if you have
aremote JNDI server) and want to use a preconfigured DataSource, you can use the
spring.datasource.jndi-name property to let Spring Boot know you want to obtain a
DataSource from JNDI.

spring.datasource.jndi-name=java:jdbc/customers

Configure the Connection Pool

The default connection pool used by Spring Boot is HikariCP. This comes automatically
when including the spring-boot-starter-jdbc dependency (or one of the other
database-related dependencies). Spring Boot will configure the connection pool with
some default settings; however, you might want to override this (increase the max

197

CHAPTER 7 DATA ACCESS

connections or reduce it, set the timeouts, etc.). The configuration options for HikariCP

are in the spring.datasource.hikari namespace (Table 7-1).

Table 7-1. HikariCP Common Connection Pool Settings

Property

Description

spring.datasource.hikari.

connection-timeout

spring.datasource.hikari.

leak-detection-threshold

spring.datasource.hikari.

idle-timeout

spring.datasource.hikari.

validation-timeout

spring.datasource.hikari.

connection-test-query

spring.datasource.hikari.

maximum-pool-size

spring.datasource.hikari.

minimum-idle

Maximum number of milliseconds that a client will wait for a
connection from the pool. Default 30 seconds

Amount of milliseconds that a connection can be out of
the pool before a message is logged indicating a possible
connection leak. Default O (effectively disabled)

Maximum number of milliseconds that a connection is allowed
to sit idle in the pool. Default 10 minutes

Maximum number of milliseconds that the pool will wait for a
connection to be validated as alive. Default 5 seconds

SQL query to be executed to test the validity of connections.
NOTE: Generally not needed with JDBC 4.0 (or higher) drivers!
Default is none.

Maximum number of connections that will be kept in the pool.
Default 10 connections

Minimum number of idle connections that are maintained in
the pool. Default 10 connections

There are more properties you can use, but the list is quite long and the properties

mentioned in Table 7-1 are the most commonly used properties.

Note

The properties for Tomcat JDBC are in the spring.datasource.tomcat

namespace and for Commons DBCP2 in the spring.datasource.dbcp2

namespace.

198

CHAPTER 7 DATA ACCESS

To configure the datasource with a maximum of five connections, minimum of two,
and leak detection with a threshold of 20 seconds, the following configuration needs to
be added.

spring.datasource.hikari.maximum-pool-size=5
spring.datasource.hikari.minimum-idle=2
spring.datasource.hikari.leak-detection-threshold=20000

Initializing the Database with Spring Boot

When working with an existing database, you probably already have existing tables,
views, and procedures. However, when you create a new database it is empty and you
will need to create the tables yourself. Using Spring Boot, this is supported out-of-the-
box. You can add a schema. sql to initialize the schema (tables, views, etc.) and a
data.sql to insert data into the tables. Spring Boot will also allow you to provide a
schema-<db-platform>.sql and data-<db-platform>.sql to do database-specific
initialization. The value for <db-platform> is read from the spring.datasource.
platform property (see also Table 7-2). When using Derby, you could add

a schema-derby.sql, etc. The name of the schema and data files can be changed
through the spring.datasource.schema and spring.datasource.data properties.
See Table 7-2 for a description of available properties.

Table 7-2. DataSource Initialize Properties

Property Description
spring.datasource. Whether to stop if an error occurs while initializing the
continue-on-error database, default false
spring.datasource.data Data (DML) script resource references, default

classpath:data
spring.datasource.data- Password of the database to execute DML scripts, defaults to
password the normal password
spring.datasource.data- Username of the database to execute DML scripts, defaults to
username the normal username

(continued)

199

CHAPTER 7 DATA ACCESS

Table 7-2. (continued)

Property Description
spring.datasource. Initialize the datasource with available DDL and DML scripts.
initialization-mode Default EMBEDDED, can be changed to NEVER or ALWAYS

spring.datasource.platform Platform to use in the DDL or DML scripts (such as schema-
${platform}.sql or data-${platform}.sql). Defaults is all.

spring.datasource.schema Data (DDL) script resource references, default
classpath:schema

spring.datasource.schema- Password of the database to execute DDL scripts, defaults to
password the normal password.

spring.datasource.schema- Username of the database to execute DDL scripts, defaults to
username the normal username

spring.datasource.separator Statement separator in SQL initialization scripts. Default ;

spring.datasource.sql- SQL scripts encoding. Defaults to platform encoding
script-encoding

Let’s create a table customer and insert some data into this. To create the table, add
the following schema.sql to the src/main/resources directory:

DROP TABLE IF EXISTS customer;

CREATE TABLE customer (
id SERIAL PRIMARY KEY,
name VARCHAR(100) NOT NULL,
email VARCHAR(255) NOT NULL,
UNIQUE (name)

);
To insert the data, add the data.sql to the stc/main/resources directory.
INSERT INTO customer (name, email) VALUES
('Marten Deinum', "marten.deinum@conspect.nl'),
('Josh Long', 'jlong@pivotal.com"),

('John Doe', 'john.doe@island.io'),
('Jane Doe', 'jane.doe@island.io');

200

CHAPTER 7 DATA ACCESS

To see if this is working, let’s add another ApplicationRunner that prints the content
of the customer table using the DataSource.

package com.apress.springboot2recipes.jdbc;
// Imports removed

@SpringBootApplication
public class JdbcApplication {

public static void main(String[] args) {
SpringApplication.run(JdbcApplication.class, args);
}
}

eee // Other code removed
@Component
class CustomerLister implements ApplicationRunner {

private final Logger logger = LoggerFactory.getlLogger(getClass());
private final DataSource dataSource;

CustomerLister(DataSource dataSource) {
this.dataSource = dataSource;

}

@verride
public void run(ApplicationArguments args) throws Exception {
var query = "SELECT id, name, email FROM customer";
try (var con = dataSource.getConnection();
var stmt = con.createStatement();
var rs = stmt.executeQuery(query)) {
while (rs.next()) {
logger.info("Customer [id={}, name={}, email={}]",
rs.getlong(1), rs.getString(2), rs.getString(3));
}
}
}
}

201

CHAPTER 7 DATA ACCESS

Database initialization is always on for embedded databases, so when using Derby,
H2, or HSQLDB, this is default on. When using an external database, the initialization
doesn’t happen by default. To change this you can toggle the spring.datasource.
initialization-mode property to always, so that it will always run.

spring.datasource.initialization-mode=always

When the application starts, you will now see the list of customers from the database
being printed in the logs.

Initializing the Database with Flyway

When developing an application, you want more control of the database migration.
Using a schema.sql and data.sql can work very well and quickly, but it eventually will
be cumbersome to maintain. Spring Boot also supports Flyway® which is, simply said, a
version control for your database schema. It allows you to incrementally change/update
your database schema. To use Flyway the first thing to do is to add the dependency on
Flyway itself.

<dependency»
<groupIdsorg.flywaydb</groupIds
<artifactIdy»flyway-core</artifactIds
</dependency>

Spring Boot will detect the presence of Flyway and it will assume you want to use it
to do database migrations. The migration scripts should be in the db/migration folder in
src/main/resources.

CREATE TABLE customer (
id SERIAL PRIMARY KEY,
name VARCHAR(100) NOT NULL,
email VARCHAR(255) NOT NULL,
UNIQUE (name)

)5

Shttps://flywaydb.org
202

https://flywaydb.org

CHAPTER 7 DATA ACCESS

INSERT INTO customer (name, email) VALUES
('Marten Deinum', 'marten.deinum@conspect.nl'),
('Josh Long', 'jlong@pivotal.com'),
('John Doe', 'john.doe@island.io'),
('Jane Doe', 'jane.doe@island.io');

This SQL, when putinaVi__ first.sql in the db/migration folder, will be executed
on startup (assuming an empty database). The naming convention by default is
V<sequence__<name>.sql and is used to determine what to execute. Once a script has
been executed, you cannot (and shouldn’t) modify the script. That will lead to Flyway
preventing your application from starting. It detects changes in scripts already executed.

When running the application the customers should still be listed. You will notice an
additional table in the table listing (Figure 7-3), the flyway schema_history. This table
contains the metadata used by Flyway to detect (and guard) database changes.

14 1INFO 98933
INFO 98933

5. jdbc.TablelLister : pg_user
jdbc.TableList : pg_user_mappings

INFO 98933 jdbc.TableList : pg_views
INFO 98933 — | s.jdbc. TableList : customer
INFO 98933 - ij jdbc.TableList . flyway_schema_history
INFO 98933 jdbc.TableLister : pg_toast_12242
14 INFO 98933 ma c.a.springboot2recipes.jdbc.TableLister : pg_toast_12247
15 INFO 98933 [main] c.a.springboot2recipes.jdbc.TableLister : pg_toast_12252

Figure 7-3. Table listing with Flyway

There are also several properties you can use to configure Flyway with Spring Boot.
See Table 7-3 for the most commonly used properties.

Table 7-3. Commonly Used Flyway Properties

Property Description

spring.flyway.enabled Should Flyway be enabled, default true
spring.flyway.locations The locations of migrations scripts, default classpath:db/migration

spring.flyway.url JDBC URL of the database to migrate, when not set uses the default
configured DataSource

spring.flyway.user Username to use for the database if Flyway uses its own
DataSource configuration

spring.flyway.password Password to use for the database if Flyway uses its own
DataSource configuration

203

CHAPTER 7 DATA ACCESS

7-2 Use JdbcTemplate
Problem

You want to use JdbcTemplate or NamedParameterJdbcTemplate to have a better JDBC
experience.

Solution

Use the automatically configured JdbcTemplate or NamedParameterJdbcTemplate to
execute the queries and handle the results.

How It Works

Spring Boot will configure a JdbcTemplate and NamedParameterJdbcTemplate by
default and does so when it can detect a single candidate DataSouce. A single candidate
DataSource means there is either only a single DataSource or there is one marked as
primary resource using @Primary. As the JdbcTemplate is already available, you can use
that to write your JDBC code. Rewriting the CustomerLister to use the JdbcTemplate
instead of a plain DataSource will make the code easier to read and thus easier to
handle.

Note The NamedParameterJdbcTemplate is similar to the JdbcTemplate,
with the major advantage of being able to use named parameters in a query
instead of the regular JDBC placeholders.

@Component
class CustomerLister implements ApplicationRunner {

private final Logger logger = LoggerFactory.getlLogger(getClass());
private final JdbcTemplate jdbc;

CustomerLister(JdbcTemplate jdbc) {
this.jdbc = jdbc;
}

204

CHAPTER 7 DATA ACCESS

@verride
public void run(ApplicationArguments args) {

var query = "SELECT id, name, email FROM customer";
jdbc.query(query, rs -> {
logger.info("Customer [id={}, name={}, email={}]",
rs.getlong(1), rs.getString(2), rs.getString(3));
D;
}

The JdbcTemplate is used to execute the query through the query method; this
method takes a String and a RowCallbackHandler. The JdbcTemplate will execute the
query and for each row call the RowCallbackHandler, which does the logging of the row.
When running the application, the output is still the same but the code became cleaner.

The JdbcTemplate also has the, probably more familiar, RowMapper interface, which
can be used to map a row from the ResultSet to a Java object. Let’s create a Customer
class and use a RowMapper to create Customer instances from the database.

package com.apress.springboot2recipes.jdbc;
import java.util.Objects;
public class Customer {

private final long id;
private final String name;
private final String email;

Customer(long id, String name, String email) {
this.id = id;
this.name = name;
this.email = email;

}

public long getId() {
return id;

}

205

CHAPTER 7 DATA ACCESS

public String getName() {
return name;

}

public String getEmail() {
return email;

}

@verride
public boolean equals(Object o) {
if (this == 0) return true;
if (o == null || getClass() != o.getClass()) return false;
Customer customer = (Customer) o;
return id == customer.id 8&&
Objects.equals(name, customer.name) &8&
Objects.equals(email, customer.email);

}

@0verride
public int hashCode() {
return Objects.hash(id, name, email);

}

@Override
public String toString() {
return "Customer [" +

id=" + id +", name='
+ email + "\" + ']";

+ name + "\" +

, email=

Next we create a repository interface to define the contract and create a JDBC-based

implementation.
package com.apress.springboot2recipes.jdbc;
import java.util.list;

public interface CustomerRepository {

206

CHAPTER 7 DATA ACCESS

List<Customer> findAll();
Customer findById(long id);
Customer save(Customer customer);

}

Next, the implementation uses the JdbcTemplate and a RowMapper to map the results
to Customer objects.

package com.apress.springboot2recipes.jdbc;

import org.springframework.jdbc.core.JdbcTemplate;
import org.springframework.jdbc.support.GeneratedKeyHolder;
import org.springframework.stereotype.Repository;

import java.sql.PreparedStatement;
import java.sql.ResultSet;

import java.sql.SQLException;
import java.util.list;

@Repository
class JdbcCustomerRepository implements CustomerRepository {

private static final String ALL_QUERY =

"SELECT id, name, email FROM customer";
private static final String BY_ID QUERY =

"SELECT id, name, email FROM customer WHERE id=?";
private static final String INSERT_QUERY =

"INSERT INTO customer (name, email) VALUES (?,?)";
private final JdbcTemplate jdbc;

JdbcCustomerRepository(JdbcTemplate jdbc) {
this.jdbc = jdbc;
}

@0verride
public List<Customer> findAll() {
return jdbc.query(ALL QUERY, (rs, rowNum) -> toCustomer(rs));

}

207

CHAPTER 7 DATA ACCESS

@verride

public Customer findById(long id) {
return jdbc.queryForObject(BY_ID QUERY, (rs, rowNum) -> toCustomer(rs),
id);

}

@verride
public Customer save(Customer customer) {
var keyHolder = new GeneratedKeyHolder();
jdbc.update(con -> {
var ps = con.prepareStatement(INSERT QUERY);
ps.setString(1, customer.getName());
ps.setString(2, customer.getEmail());
retuxn ps;
}, keyHolder);
return new Customer(keyHolder.getKey().longValue(),
customer.getName(), customer.getEmail());

}

private Customer toCustomer(ResultSet rs) throws SQLException {
var id = rs.getlong(1);
var name = rs.getString(2);
var email = rs.getString(3);
return new Customer(id, name, email);
}
}

The JdbcCustomerRepository uses a JdbcTemplate and RowMapper (through a
lambda expression) to convert the ResultSet into a Customer. The CustomerListener
can now use the CustomerRepository to get all the Customers from the database and

print them to the console.

@Component
class CustomerLister implements ApplicationRunner {

private final Logger logger = LoggerFactory.getlLogger(getClass());
private final CustomerRepository customers;

208

CHAPTER 7 DATA ACCESS

CustomerLister(CustomerRepository customers) {
this.customers = customers;

}

@0verride
public void run(ApplicationArguments args) {

customers.findAll()
.forEach(customer -> logger.info("{}", customer));

As all JDBC code has been moved to the JdbcCustomerRepository, the class
becomes very simple. It gets a CustomerRepository injected and, using the findAll
method, it obtains the content of the database and for each customer prints a line.

Testing JDBC Code

When testing JDBC code one requires a database, often an embedded database like H2,
Derby, or HSQLDB is used for testing. Spring Boot makes it very easy to write tests for
JDBC code. JDBC-based tests can be annotated with @JdbcTest and Spring Boot will
create a minimal application with only the JDBC-related beans like a DataSource and
transaction manager.

Let’s write a test for the JdbcCustomerRepository and use H2 as the embedded
database. First, add H2 as a test dependency.

<dependency>
<groupIdycom.h2database</groupIlds
<artifactId>h2¢/artifactIds
<scope>test</scope>

</dependency>

Next create the JdbcCustomerRepositoryTest.

@RunWith(SpringRunner.class)
@JdbcTest(includeFilters =
@ComponentScan.Filter(
type= FilterType.REGEX,
pattern = "com.apress.springboot2recipes.jdbc.*Repository"))

209

CHAPTER 7 DATA ACCESS

@TestPropertySource(properties = "spring.flyway.enabled=false")
public class JdbcCustomerRepositoryTest {

@Autowired
private JdbcCustomerRepository repository;

}

The @RunWith(SpringRunner.class) executes the test by a special JUnit runner
to bootstrap the Spring Test Context framework. The @JdbcTest will replace the
preconfigured DataSource with an embedded one (H2 in this case). As we also want
to create instances of our repositories, we add an includeFilters and give it a regular
expression to match our JdbcCustomerRepository.

Finally, there is the @TestPropertySource(properties = "spring.flyway.
enabled=false"), which indicates that we want to disable Flyway. The application uses
Flyway to manage the schema; however, those scripts are written for PostgreSQL and
not H2. For testing, we want to disable Flyway and provide an H2-based schema.sql to
create the schema.

Note This is one of the drawbacks of using a different database for testing (H2)
than actually in the live system (PostgreSQL). You either need to maintain two sets
of scripts for the schema or use the same database for testing as in the live system.

Create a schema.sql in src/test/resources and add the following DDL statement:

CREATE TABLE customer (
id BIGINT AUTO INCREMENT PRIMARY KEY,
name VARCHAR(100) NOT NULL,
email VARCHAR(255) NOT NULL,
UNIQUE (name)

)5

210

CHAPTER 7 DATA ACCESS

Now write a test that tests if records get inserted correctly.

@Test
public void insertNewCustomer() {
assertThat(repository.findAll()).isEmpty();

Customer customer = repository.save(new Customer(-1, "T. Testing",
"t.testing@test123.tst"));

assertThat(customer.getId()).isGreaterThan(-1L);
assertThat(customer.getName()).isEqualTo("T. Testing");
assertThat(customer.getEmail()).isEqualTo("t.testing@test123.tst");

assertThat(repository.findById(customer.getId())).isEqualTo(customer);

This test first asserts that the database is empty—not really required but can be
useful to detect if other tests pollute the database. Next a Customer is added to the
database by calling the save method on the JdbcCustomerRepository. The resulting
Customer is validated to have an id and if the name and email attributes are there. Finally,
the Customer is retrieved again and compared to be the same.

Another test you could add is the findA1l method. When inserting two records,
calling findAll should result in two records being retrieved.

@Test
public void findAllCustomers() {
assertThat(repository.findAll()).isEmpty();

repository.save(new Customer(-1, "T. Testingl", "t.testing@test123.tst"));
repository.save(new Customer(-1, "T. Testing2", "t.testing@test123.tst"));

assertThat(repository.findAl1l()).hasSize(2);

Of course there could be more assertions, but saving the data is already verified in
the other test method.

211

CHAPTER 7 DATA ACCESS

7-3 Use JPA
Problem

You want to use JPA in your Spring Boot application.

Solution

Spring Boot automatically detects the presence of Hibernate, and the needed JPA classes
will use that information to configure the EntityManagerFactory.

How It Works

Spring Boot has out-of-the-box support for JPA through Hibernate.? When Hibernate is
detected, an EntityManagerFactory will be automatically configured using the earlier
configured DataSource (see Recipe 7.1).

First you need to add hibernate-core and spring-ormas a dependency to your
project. However, it is easier to add the spring-boot-starter-data-jpa dependency to
your project (although this will also pull in spring-data-jpa as a dependency.)

<dependency>
<groupIdsorg.springframework.boot</groupIlds
<artifactIdyspring-boot-starter-data-jpa</artifactIds
</dependency>

This will add all the necessary dependencies to the classpath.

Using Plain JPA Repositories

For JPA to work you have to annotate the classes representing entities in your system.

In your system we are going to store and retrieve the Customer from the database. We
need to mark this as an entity using the @Entity annotation. A JPA entity class is required
to have a default no-args constructor (although it can be package private) and a field
marked with @id to mark the primary key.

*https://www.hibernate.org
212

https://www.hibernate.org

CHAPTER 7 DATA ACCESS

@Entity
public class Customer {

@Id
@GeneratedValue(strategy = GenerationType.IDENTITY)
private long id;

@Column(nullable = false)
private final String name;

@Column(nullable = false)
private final String email;

Customer() {
this(null,null);

}
// Other code omitted

Next, create a JPA implementation of the CustomerRepository (see Recipe 7.2);

to use JPA you have to get the EntityManager. This is done by declaring a field and
annotating it with @PersistenceContext.

package com.apress.springboot2recipes.jpa;
import org.springframework.stereotype.Repository;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import java.util.list;

@Repository
class JpaCustomerRepository implements CustomerRepository {

@PersistenceContext
private EntityManager em;

@Override
public List<Customer> findAll() {

var query = em.createQuery("SELECT ¢ FROM Customer c", Customer.class);

213

CHAPTER 7 DATA ACCESS

return query.getResultlList();
}

@Override
public Customer findById(long id) {
return em.find(Customer.class, id);

}

@verride

public Customer save(Customer customer) {
em.persist(customer);
return customer;

}
}

The following application class (similar to the one of Recipe 7.2) will read all
Customers from the database and print them to the logging (Figure 7-4).

package com.apress.springboot2recipes.jpa;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.boot.ApplicationArguments;

import org.springframework.boot.ApplicationRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.stereotype.Component;

@SpringBootApplication
public class JpaApplication {

public static void main(String[] args) {
SpringApplication.run(JpaApplication.class, args);
}
}

@Component
class CustomerLister implements ApplicationRunner {

214

CHAPTER 7 DATA ACCESS

private final Logger logger = LoggerFactory.getlLogger(getClass());
private final CustomerRepository customers;

CustomerLister(CustomerRepository customers) {
this.customers = customers;

}

@verride
public void run(ApplicationArguments args) {

customers.findAll()
.forEach(customer -> logger.info("{}", customer));

& INFO 99472
30 INFO 99472
INFO 99472
06 INFO 99472
4 INFO 99472
& INFO 99472

¥ : HHHERE27®: Type registration [java.util.UUID] overrides previous : org.h:
:an ¢ Initialized JPA EntityManagerfactory for persistence unit "default’
r: Initializing ExecutorService ‘applicationTaskExecutor®
: Started Jpaspplication in 3.567 seconds (JWM running for 16.739)
r o : HHHRRR3ET: Using ASTOueryTronslaterfactory
Customer [id=1, name=‘Marten Deinum’, emails='marten.deinumgconspect.nl’]
¢ Customer [1d=2, name="Josh Long’, email="jlong@pivotal.con’]
: Customer lid=3, name='lohn Doe', enail="john.doe@island.io"]
: Customer [id=4, name='lane Doe', email="jane.doe@island.io']

Figure 7-4. JPA Customer output

There are some configuration options you can use to configure the
EntityManagerFactory in your application; those properties can be found in the
spring.jpanamespace

Table 7-4. JPA Properties

Property Description

spring.jpa.database Target database to operate on, auto-detected by default.

spring.jpa.database-platform Name of the target database to operate on, auto-detected
by default. Can be used to specify a specific Hibernate
Dialect to use.

spring.jpa.generate-ddl Initialize the schema on startup, default is false.
spring.jpa.show-sql Enable logging of SQL statements, default is false
(continued)

215

CHAPTER 7 DATA ACCESS

Table 7-4. (continued)

Property Description

spring.jpa.open-in-view Register the OpenEntityManagerInViewInterceptor
Binds the EntityManager to the request processing
thread. Default true.

spring.jpa.hibernate.ddl-auto Shorthand for the hibernate.hbm2ddl.auto property.
Default none and create-drop for embedded databases.

spring.jpa.hibernate.use-new- Shorthand for the hibernate.id.new_generator
id-generator-mappings mappings property. When not explicitly set, defaults to
true.

spring.jpa.hibernate.naming. FQN of the implicit naming strategy, default org.
implicit-strategy springframework.boot.orm.jpa.hibernate.
SpringPhysicalNamingStrategy.
spring.jpa.hibernate.naming. FQN of the physical naming strategy, default org.
physical-strategy springframework.boot.orm.jpa.hibernate.
SpringImplicitNamingStrategy.
spring.jpa.mapping-resources Additional XML files containing entity mappings in XML
instead of Java. Like the JPA specified orm.xm1.

spring.jpa.properties.* Additional properties to set on the JPA provider.

The spring.jpa.properties is useful if you want to configure advanced features
of Hibernate like the fetch size hibernate.jdbc.fetch_size or batch size hibernate.
jdbc.batch _size when doing batch processing.

spring.jpa.properties.hibernate.jdbc.fetch size=250
spring.jpa.properties.hibernate.jdbc.batch_size=50

This will set the properties on the JPA provider.

216

CHAPTER 7 DATA ACCESS

Use Spring Data JPA Repositories

Instead of writing your own repositories, which can be a tedious and repetitive task, you
can also let Spring Data JPA® do the heavy lifting for you. Instead of writing your own
implementation, you can extend the CrudRepository interface from Spring Data and
have a repository available at runtime. This saves you from writing the data access code.
Spring Boot will also autoconfigure Spring Data JPA when it detects it on the classpath.

public interface CustomerRepository extends CrudRepository<Customer, Long> { }

That is all you need; the findAll, findById, and save methods, among
others, are provided out-of-the-box by Spring Data JPA. You can remove the
JpaCustomerRepository implementation. Due to the CrudRepository<Customer,
Long> Spring Data knows that it can query for Customer instances and that it has a Long
as an id field.

Running the application should result in the same output as before (see Figure 7-4).

There is only a single property available for Spring Data JPA and that is to enable or
disable it explicitly. It is by default enabled. Setting the spring.data.jpa.repositories.
enabled to false will disable Spring Data JPA.

Including Entities from Different Packages

By default, Spring Boot will detect components, repositories, and entities starting from
the package the @SpringBootApplication annotated class is in. But what if you have
entities in a different package that still need to be included? For this you can use the
@EntityScan annotation; it works like @ComponentScan but then for @Entity annotated
beans.

package com.apress.springboot2recipes.order;

import javax.persistence.Entity;
import javax.persistence.Id;
import java.util.Objects;

@Entity
public class Order {

*https://projects.spring.io/spring-data-jpa/
217

https://projects.spring.io/spring-data-jpa/

CHAPTER 7 DATA ACCESS

@Id
private long id;
private String number;

public long getId() {
return id;

}

public void setId(long id) {
this.id = id;
}

public String getNumber() {
return number;

}

public void setNumber(String number) {
this.number = number;

}
// Other methods omitted

This Order class is in the com.apress.springboot2recipes.order package,
which isn’t covered by the @SpringBootApplication annotated class as that is in the
com.apress.springboot2.recipes.jpa package. To have this entity detected, you can
add the @EntityScan annotation with the package(s) to scan to your
@SpringBootApplication annotated class (or a regular @Configuration class).

@SpringBootApplication

@EntityScan({
"com.apress.springboot2recipes.order”,
"com.apress.springboot2recipes.jpa"” })

With this addition the Order entity will now be detected and accessible by JPA.

218

CHAPTER 7 DATA ACCESS

Testing JPA Repositories

When testing JPA code, a database is required, often an embedded database like H2,
Derby, or HSQLDB is used for testing. Spring Boot makes it very easy to write tests for
JPA. JPA-based tests can be annotated with @ataJlpaTest, and Spring Boot will create
a minimal application with only the JPA-related beans like a DataSource, transaction
manager, and if needed Spring Data JPA repositories.

Let’s write a test for the CustomerRepository and use H2 as the embedded database.
First, add H2 as a test dependency.

<dependency»
<groupIdscom.h2database</groupIlds
<artifactId>h2</artifactIds>
<scopes>test</scopes

</dependency>

Next, create the CustomerRepositoryTest.

@RunWith(SpringRunner.class)

@DataJpaTest

@TestPropertySource(properties = "spring.flyway.enabled=false")
public class CustomerRepositoryTest {

@Autowired
private CustomerRepository repository;

@Autowired
private TestEntityManager testEntityManager

The @RunWith(SpringRunner.class) executes the test by a special JUnit runner
to bootstrap the Spring Test Context framework. The @DataJpaTest will replace the
preconfigured DataSource with an embedded one (H2 in this case). It will also bootstrap
the JPA components and, when detected, Spring Data JPA repositories.

Spring Boot also offers a TestEntityManager, which offers some convenience
methods to easily store and find data for testing.

Finally there is the @TestPropertySource (properties = "spring.flyway.
enabled=false"), which indicates that we want to disable Flyway. The application uses
Flyway to manage the schema; however, those scripts are written for PostgreSQL and

219

CHAPTER 7 DATA ACCESS

not H2. For testing, you can let Hibernate manage the schema, which is also the default
setting when using an embedded database with Spring Boot.
Now, write a test that checks if records get inserted correctly.

@Test
public void insertNewCustomer() {
assertThat(repository.findAll()).isEmpty();

Customer customer = repository.save(new Customer(-1, "T. Testing",
"t.testing@test123.tst"));

assertThat(customer.getId()).isGreaterThan(-1L);
assertThat(customer.getName()).isEqualTo("T. Testing");
assertThat(customer.getEmail()).isEqualTo("t.testing@test123.tst");

assertThat(repository.findById(customer.getId())).isEqualTo(customer);

This test first asserts that the database is empty—not really required but can be
useful to detect if other tests pollute the database. Next, a Customer is added to the
database by calling the save method on the CustomerRepository. The resulting
Customer is validated to have an id, and if the name and email attributes are there.
Finally, the Customer is retrieved again and compared to be the same.

Another test you could add is the findAll method. When inserting two records,
calling findAll should result in two records being retrieved.

@Test
public void findAllCustomers() {
assertThat(repository.findAl1()).isEmpty();

repository.save(new Customer(-1, "T. Testingl", "t.testing@test123.tst"));
repository.save(new Customer(-1, "T. Testing2", "t.testing@test123.tst"));

assertThat(repository.findAll()).hasSize(2);
}

Of course there could be more assertions, but saving the data is already verified in
the other test method.

220

CHAPTER 7 DATA ACCESS

7-4 Use Plain Hibernate
Problem

You have some code that uses the plain Hibernate API, Session, and/or SessionFactory
that you want to use with Spring Boot.

Solution

Use the EntityManager or EntityManagerFactory to obtain the plain Hibernate objects
like Session or SessionFactory.

How It Works

When migrating older code to Spring Boot or when using a third-party library, it might
not always be feasible to migrate everything to JPA. You want to use that code as is or
with as little modification possible. There are two ways you can use the plain Hibernate
API: either by getting the Session from the current EntityManager or configuring the
SessionFactory. Which you want or can use depends on the influence you have on the
code using the plain Hibernate API.

Using the EntityManager to Obtain the Session

To obtain the underlying Hibernate Session, the unwrap method can be used. This
method has been added in JPA 2.0 to have a unified and convenient way to obtain the
underlying JPA implementor classes, for those cases where you really need to access the
native classes.

package com.apress.springboot2recipes.jpa;

import org.hibernate.Session;
import org.springframework.stereotype.Repository;

import javax.persistence.EntityManager;
import javax.persistence.PersistenceContext;
import javax.transaction.Transactional;
import java.util.list;

221

CHAPTER 7 DATA ACCESS

@Repository
@Transactional
class HibernateCustomerRepository implements CustomerRepository {

@PersistenceContext
private EntityManager em;

private Session getSession() {
return em.unwrap(Session.class);

}

@0verride

public List<Customer> findAll() {
return getSession().createQuery("SELECT c FROM Customer c", Customer.
class).getResultList();

}

@verride
public Customer findById(long id) {
return getSession().find(Customer.class, id);

}

@verride

public Customer save(Customer customer) {
getSession().persist(customer);
return customer;

}
}

The HibernateCustomerRepository gets the EntityManager injected, and to obtain
the Session (see the getSession method) the unwrap method is used. Now you can use
the Hibernate Session to perform queries, etc.

Using the SessionFactory

As of Hibernate 5.2 the Hibernate SessionFactory extends EntityManagerFactory
and as such can be used to create both a Session and EntityManager. Spring 5.1 added
support for this in the LocalSessionFactoryBean and this can be used to mix both
native Hibernate code and JPA code.

222

CHAPTER 7 DATA ACCESS

To configure a SessionFactory bean, use the LocalSessionFactoryBean.

@Bean
public LocalSessionFactoryBean sessionFactory(DataSource dataSource) {

Properties properties = new Properties();
properties.setProperty(DIALECT,
"org.hibernate.dialect.PostgreSQL95Dialect");

LocalSessionFactoryBean sessionFactoryBean = new
LocalSessionFactoryBean();

sessionFactoryBean.setDataSource(dataSource);
sessionFactoryBean.setPackagesToScan("com.apress.springboot2recipes.jpa”);
sessionFactoryBean.setHibernateProperties(properties);

return sessionFactoryBean;

The SessionFactory requires a DataSource to obtain connections to the
database, a dialect to create SQL, and it needs to know where the entities are.
This is the minimal configuration needed for a SessionFactory. There is no
need to add the HibernateTransactionManager, as the default configured
JpaTransactionManager can take care of the transactions. However, as JPA has some
limitations (especially in transaction propagation levels) you might want to add the
HibernateTransactionManager, which doesn’t suffer from these limitations.

The modified HibernateCustomerRepository uses the getCurrentSession method
from the SessionFactory to obtain the Session.

@Repository
@Transactional
class HibernateCustomerRepository implements CustomerRepository {

private final SessionFactory sf;

HibernateCustomerRepository(SessionFactory sf) {
this.sf=sf;
}

223

CHAPTER 7 DATA ACCESS

private Session getSession() {
return sf.getCurrentSession();

}
// unmodified methods omitted

}

Note Because the SessionFactory can also create the EntityManager, the
CustomerRepository from Recipe 7-3 could be used as well!

7-5 Spring Data MongoDB
Problem

You want to use MongoDB in your Spring Boot application.

Solution

Add the Mongo Driver as a dependency and use the spring.data.mongodb properties to
let Spring Boot set up the MongoTemplate to the correct MongoDB.

How It Works

Spring Boot automatically detects the presence of the MongoDB driver combined
with the Spring Data MongoDB classes. If those are found, MongoDB as well as the
MongoTemplate (among others) will be automatically set up for you.

Use the MongoTemplate

Now that the connection is set up you can use it, ideally through the MongoTemplate to
make it easier to store and retrieve documents. First you need a document you want to
store; let’s create a Customer that we want to persist.

package com.apress.springboot2recipes.mongo;

public class Customer {

224

private String id;

private final String name;
private final String email;

Customer() {
this(null,null);

}

Customer(String name, String email) {
this.name = name;
this.email = email;

}

public String getId() {
return id;

}

public String getName() {
return name;

}

public String getEmail() {
return email;

}

// equals(), hashCode() and toString() omitted

CHAPTER 7

DATA ACCESS

The id field will automatically be mapped to the id document identifier of

MongoDB. If you would like to use another field, you could use the @Id annotation from

Spring Data to specify which field should be used.

Let’s create a CustomerRepository so that instances can be saved and retrieved.

package com.apress.springboot2recipes.mongo;

import java.util.list;

public interface CustomerRepository {

225

CHAPTER 7 DATA ACCESS

List<Customer> findAll();
Customer findById(long id);
Customer save(Customer customer);

}

The MongoDB CustomerRepository is implemented by using a MongoTemplate.
package com.apress.springboot2recipes.mongo;

import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.stereotype.Repository;

import java.util.list;

@Repository
class MongoCustomerRepository implements CustomerRepository {

private final MongoTemplate mongoTemplate;

MongoCustomerRepository(MongoTemplate mongoTemplate) {
this.mongoTemplate = mongoTemplate;

}

@verride
public List<Customer> findAll() {
return mongoTemplate.findAll(Customer.class);

}

@0verride
public Customer findById(long id) {
return mongoTemplate.findById(id, Customer.class);

}

@verride

public Customer save(Customer customer) {
mongoTemplate.save(customer);
return customer;

}
}

226

CHAPTER 7 DATA ACCESS

The MongoCustomerRepository uses the preconfigured MongoTemplate to store and

retrieve customers in Mongo.
To use all the parts, first there needs to be some data in MongoDB; an
ApplicationRunner can be used to insert some data.

@Component
@0rder(1)
class DataInitializer implements ApplicationRunner {

private final CustomerRepository customers;

DataInitializer(CustomerRepository customers) {
this.customers = customers;

}

@verride
public void run(ApplicationArguments args) throws Exception {

List.of(
new Customer(“"Marten Deinum", "marten.deinum@conspect.nl"),
new Customer("Josh Long", "jlong@pivotal.io"),
new Customer("John Doe", "john.doe@island.io"),
new Customer("Jane Doe", "jane.doe@island.io"))
.forEach(customers: :save);

The DataInitializer will use the CustomerRepository to save some Customer
instances into MongoDB. Notice the @0rder we want this to execute first this can be
enforced by explicitly ordering the bean.

Next create an ApplicationRunner to retrieve all the customers from MongoDB.

@Component
class CustomerLister implements ApplicationRunner {

private final Logger logger = LoggerFactory.getlLogger(getClass());
private final CustomerRepository customers;

CustomerLister(CustomerRepository customers) {
this.customers = customers;

227

CHAPTER 7 DATA ACCESS
}
@verride

public void run(ApplicationArguments args) {

customers.findAll().forEach(customer -> logger.info("{}", customer));

}
}

This listener will use the CustomerRepository to load all customers from the

database and print a line in the logs.

Finally the application class to bootstrap all this (including the two aforementioned
ApplicationListeners).

package com.apress.springboot2recipes.mongo;

import
import
import
import
import
import
import
import

org.
org.

org

org.
org.

org

org.
org.

s1f4j.Logger;

slf4j.LoggerFactory;
.springframework.boot.ApplicationArguments;
springframework.boot.ApplicationRunner;
springframework.boot.SpringApplication;
.springframework.boot.autoconfigure.SpringBootApplication;
springframework.core.annotation.Order;
springframework.stereotype.Component;

import java.util.Arrays;

@SpringBootApplication

public class MongoApplication {

public static void main(String[] args) {
SpringApplication.run(MongoApplication.class, args);

}
}

@Component
@0rder(1)
class Datalnitializer implements ApplicationRunner {

228

CHAPTER 7 DATA ACCESS
private final CustomerRepository customers;

DataInitializer(CustomerRepository customers) {
this.customers = customers;

}

@verride
public void run(ApplicationArguments args) throws Exception {

List.of(
new Customer("Marten Deinum", "marten.deinum@conspect.nl"),
new Customer("Josh Long", "jlong@pivotal.io"),
new Customer("John Doe", "john.doe@island.io"),
new Customer("Jane Doe", "jane.doe@island.io"))
.forEach(customers::save);
}
}

@Component
class CustomerLister implements ApplicationRunner {

private final Logger logger = LoggerFactory.getlLogger(getClass());
private final CustomerRepository customers;

CustomerLister(CustomerRepository customers) {
this.customers = customers;

}

@0verride
public void run(ApplicationArguments args) {

customers.findAll().forEach(customer -> logger.info("{}", customer));

}
}

When running the application, it will automatically connect to the MongoDB
instance, insert data into it, and finally retrieve it and print it to the logs.

You will need a MongoDB instance to store and retrieve documents. You can either
use an embedded MongoDB (ideal for testing) or connect to an actual MongoDB
instance.

229

CHAPTER 7 DATA ACCESS

Use Embedded MongoDB

An easy project to use is the Embedded MongoDB¢; this will automatically start a
MongoDB when Spring Boot starts. Spring Boot even has extensive support for this
embedded MongoDB through properties in the spring.mongodb.embedded namespace
(Table 7-5). The only thing needed for this to work is to add the necessary dependency.

<dependency»
<groupIdsde.flapdoodle.embed</groupIlds
<artifactId>de.flapdoodle.embed.mongo</artifactIds
</dependency>

Table 7-5. Embedded MongoDB Properties

Property Description

spring.mongodb.embedded.version The version of MongoDB to use. Default 3.2.2
spring.mongodb.embedded. features List of features to enable, default only sync-delay

spring.mongodb.embedded.storage. Directory to store the data in
database-dir

spring.mongodb.embedded.storage. Size of the log in megabytes.
oplog-size

spring.mongodb.embedded.storage. Name of the replica set, default null.
repl-set-name-dir

Now when running the MongoApplication, it will automatically bootstrap MongoDB
as well and tear it down when the application stops.

Connect to an External MongoDB

Note The bin directory contains a mongo. sh script that will start a MongoDB
instance using Docker.

https://flapdoodle-oss.github.io/de.flapdoodle.embed.mongo/

230

https://flapdoodle-oss.github.io/de.flapdoodle.embed.mongo/

CHAPTER 7 DATA ACCESS

When starting the MongoApplication without the Embedded MongoDB, it will by default
try to connect to a MongoDB server on localhost and port 27017. If that is not where

you want to connect to, use the spring.data.mongodb properties (Table 7-6) to configure

the correct location.

Table 7-6. MongoDB Properties

Property

Description

spring.data.

spring.data.

username

spring.data.

password

spring.data.

spring.data.

spring.data.

database

spring.data.mongodb.field-

mongodb.uri

mongodb.

mongodb.

mongodb . host

mongodb . port

mongodb.

naming-strategy

spring.data.

mongodb.

authentication-database

spring.data.mongodb.grid-

fs-database

Mongo database URI, including credentials, settings etc. Default
mongodb://localhost/test

Login user of the mongo server. Default none

Login password of the mongo server. Default none

Hostname (or IP address) if the MongoDB server. Default
fallback to localhost

Port of the MongoDB server. Default fallback to 27017

Name of the MongoDB database/collection to use

FQN of the FieldNamingStrategy used to
map object fields to document fields. Defaults to
PropertyNameFieldNamingStrategy

Name of MongoDB to use for authentication. Defaults to
spring.data.mongodb.database value

Name of MongoDB to connect to. Defaults to spring.data.
mongodb .database value

Warning The spring.data.mongodb.username, spring.data.mongodb.
password, spring.data.mongodb.host, spring.data.mongodb.port, and
spring.data.mongodb.database are only supported for MongoDB 2.0; for
MongoDB 3.0 and up, you have to use the spring.data.mongodb.uri property!

231

CHAPTER 7 DATA ACCESS

Although you can use Spring Boot to configure the MongoClient, if you need more
control you can always specify the MongoDbFactory or MongoClient yourself as a bean
and Spring Boot will not autoconfigure the MongoClient. It will still detect Spring Data
MongoDB classes and will enable repository support.

Use Spring Data MongoDB Repositories

Instead of writing your own implementation of the repository, you can also use Spring
Data MongoDB to create them for you (just like as with Spring Data JPA). For this you
need to extend one of the Repository interfaces from Spring Data. The easiest is to
extend CrudRepository or MongoRepository.

public interface CustomerRepository extends MongoRepository<Customer, String>

{}

This is all we need to get a fully functional repository, you can remove the
MongoCustomerRepository implementation. This will give you save, findAll, findById,
and many more methods.

The application will still run, insert some customers, and list them in the logs.

Reactive MongoDB Repositories

Instead of using regular blocking operations, MongoDB can also be used in a reactive
fashion. For this, use the spring-boot-starter-data-mongodb-reactive instead of the
spring-boot-starter-data-mongodb. This dependency will include the needed reactive
libraries and reactive driver for MongoDB.

<dependency»
<groupIdyorg.springframework.boot</groupIds
<artifactId>spring-boot-starter-data-mongodb-reactive</artifactId»
</dependency>

With the dependencies in order, you can make the CustomerRepository
areactive one. This is done by simply extending ReactiveRepository,
ReactiveSortingRepository, or ReactiveMongoRepository depending on your needs.

public interface CustomerRepository
extends ReactiveMongoRepository<Customer, String> { }

232

CHAPTER 7 DATA ACCESS

Now that CustomerRepository extends ReactiveMongoRepository, all the methods
return either Flux (zero or more elements) or Mono (zero or one element).

Note The default implementations use Project Reactor” as the reactive
framework; however, you can also use RxJava.t Then instead of a Flux and
Mono you will use an Observable or Single. For this you need to extend the
RxJava2CrudRepository or RxJava2SortingRepository.

The Datalnitializer needs to be made reactive as well.

@Component
@0rder(1)
class DataInitializer implements ApplicationRunner {

private final CustomerRepository customers;

DataInitializer(CustomerRepository customers) {
this.customers = customers;

}

@verride
public void run(ApplicationArguments args) throws Exception {

customers.deleteAll()
.thenMany (
Flux.just(
new Customer("Marten Deinum", "marten.deinum@conspect.nl"),
new Customer("Josh Long", "jlong@pivotal.io"),
new Customer("John Doe", "john.doe@island.io"),
new Customer("Jane Doe", "jane.doe@island.io"))
).flatMap(customers: :save).subscribe(System.out: :println);

}
}

"https://projectreactor.io
%https://github.com/ReactiveX/RxJava

233

https://projectreactor.io
https://github.com/ReactiveX/RxJava

CHAPTER 7 DATA ACCESS

First it deletes everything, and then we create new Customers and add them to the
repository. Finally we need to subscribe to this flow, else nothing will happen. Instead
of subscribing you could also block, but blocking in a reactive application should be
avoided.

Finally, also the CustomerListener needs to be made reactive.

@Component
class CustomerLister implements ApplicationRunner {

private final Logger logger = LoggerFactory.getlLogger(getClass());
private final CustomerRepository customers;

CustomerLister(CustomerRepository customers) {
this.customers = customers;

}

@0verride
public void run(ApplicationArguments args) {

customers.findAll().subscribe(customer -> logger.info("{}", customer));

It will findAll the customers from the repository and for each will print a line in the
log file.

When starting the application you will probably see nothing in the log files. Due
to the reactive nature of the application, it finishes quickly and the CustomerListener
doesn’t have time to register itself and start listening. To prevent the shutdown of the
application, add a System.in.read(); this will keep the application running until you
press Enter. Generally when running an application this isn’t needed, because the
application is exposed as a service/web application, which keeps running automatically.

public static void main(String[] args) throws IOException {
SpringApplication.run(ReactiveMongoApplication.class, args);
System.in.read();

}

234

CHAPTER 7 DATA ACCESS

Now when running the application you will see that the customers will be retrieved
from MongoDB and printed in the logs. This might not look like a huge difference, but
the way in which the retrieval is done is totally different. This can be made clear with a
small modification to the DataInitializer’; let’s delay the elements with 250ms.

@Component
@0rder(1)
class DataInitializer implements ApplicationRunner {

private final CustomerRepository customers;

DataInitializer(CustomerRepository customers) {
this.customers = customers;

}

@verride
public void run(ApplicationArguments args) throws Exception {

customers.deleteAll().thenMany(
Flux.just(
new Customer("Marten Deinum", "marten.deinum@conspect.nl"),
new Customer("Josh Long", "jlong@pivotal.io"),
new Customer("John Doe", "john.doe@island.io"),
new Customer("Jane Doe", "jane.doe@island.io"))
) .delayElements(Duration.ofMillis(250))
.flatMap(customers: :save)
.subscribe(System.out::println);

Now the insert of each individual element will be delayed with 250ms. When
running the application you will see that the customer listener also takes some time for
each element to appear.

235

CHAPTER 7 DATA ACCESS

Testing Mongo Repositories

When testing MongoDB code a running Mongo instance is used; for testing an
embedded MonogDB is often used. Spring Boot makes it very easy to write tests for
MongoDB, using the @DataMongoTest. Spring Boot will create a minimal application
with only the MongoDB-related beans and start an embedded MongoDB (if detected).

Let’s write a test for the CustomerRepository and use an embedded MongoDB. First,
add the embedded MongoDB as a test dependency.

<dependency>
<groupldsde.flapdoodle.embed</groupIds>
<artifactIdsde.flapdoodle.embed.mongo</artifactIds
<scopestest</scope>

</dependency>

Next create the CustomerRepositoryTest.

@RunWith(SpringRunner.class)
@DataMongoTest
public class CustomerRepositoryTest {

@Autowired
private CustomerRepository repository;

@After
public void cleanUp() {
repository.deleteAll();
}
}

The @RunWith(SpringRunner.class) executes the test by a special JUnit runner
to bootstrap the Spring Test Context framework. The @DataMongoTest will replace
the preconfigured MongoDB with an embedded one (if on the classpath). It will
also bootstrap the MongoDB components and, when detected, Spring Data Mongo
repositories.

After each test, we want to make sure that the embedded MongoDB doesn’t contain
any data. This can be achieved by adding an @After annotated method and calling
deleteAll on the repository. This method will be called after each executed test method.

236

CHAPTER 7 DATA ACCESS

Now write a test that checks if records get inserted correctly.

@Test
public void insertNewCustomer() {
assertThat(repository.findAll()).isEmpty();

Customer customer = repository.save(new Customer(-1, "T. Testing",
"t.testing@test123.tst"));

assertThat(customer.getId()).isGreaterThan(-1L);
assertThat(customer.getName()).isEqualTo("T. Testing");
assertThat(customer.getEmail()).isEqualTo("t.testing@test123.tst");

assertThat(repository.findById(customer.getId())).isEqualTo(customer);

This test first asserts that the database is empty—not really required but can be
useful to detect if other tests pollute the database. Next, a Customer is added to the
database by calling the save method on the CustomerRepository. The resulting
Customer is validated to have an id, and if the name and email attributes are there.
Finally, the Customer is retrieved again and compared to be the same.

Another test you could add is the findA1l method. When inserting two records,
calling findAll should result in two records being retrieved.

@Test
public void findAllCustomers() {
assertThat(repository.findAll()).isEmpty();

repository.save(new Customer(-1, "T. Testingl", "t.testing@test123.tst"));
repository.save(new Customer(-1, "T. Testing2", "t.testing@test123.tst"));

assertThat(repository.findAl1l()).hasSize(2);

Of course there could be more assertions, but saving the data is already verified in
the other test method.

237

CHAPTER 8

Java Enterprise Services

In this chapter, you will learn about Spring’s support for the most common Java
enterprise services: Java Management Extensions (JMX), sending e-mail with JavaMail,
background processing, and scheduling tasks.

JMX is part of JavaSE and is a technology for managing and monitoring system
resources such as devices, applications, objects, and service-driven networks. These
resources are represented as managed beans (MBeans). Spring supports JMX by
exporting any Spring bean as model MBeans without programming against the JMX
API. In addition, Spring can easily access remote MBeans.

JavaMail is the standard API and implementation for sending e-mail in Java. Spring
further provides an abstract layer to send e-mail in an implementation-independent
fashion.

8-1 Spring Asynchronous Processing
Problem

You want to asynchronously invoke a method with a long-running method.

Solution

Spring has support to configure a TaskExecutor and the ability to asynchronously
execute methods annotated with @Async. This can be done in a transparent way without
the normal setup for doing asynchronous execution. Spring Boot, however, will not
automatically detect the need for asynchronous method execution. This support has to
be enabled with the @EnableAsync configuration annotation.

239
© Marten Deinum 2018

M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6_8

CHAPTER 8 JAVA ENTERPRISE SERVICES

How It Works

Let’s write a component that prints something in an asynchronous way to the console.
package com.apress.springbootrecipes.scheduling;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.scheduling.annotation.Async;
import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;

@Component
public class HellolWorld {

private static final Logger logger = LoggerFactory.
getlLogger(HelloWorld.class);

@Async

public void printMessage() throws InterruptedException {
Thread.sleep(500);
logger.info("Hello World, from Spring Boot 2!");

The class will wait for 500 milliseconds before printing something to the logger.
Notice the @Async annotation on the method; this indicates that the method can be
executed in an asynchronous manner. However, this support has to be explicitly enabled
for a Spring Boot application.

To enable asynchronous processing, the @EnableAsync configuration annotation is
needed. The easiest solution is to add this annotation to your application class.

package com.apress.springbootrecipes.scheduling;

import org.springframework.boot.ApplicationRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import org.springframework.scheduling.annotation.EnableAsync;

import org.springframework.scheduling.annotation.EnableScheduling;

240

CHAPTER 8 JAVA ENTERPRISE SERVICES
import java.io.IOException;

@SpringBootApplication
@EnableAsync
public class ThreadingApplication {

public static void main(String[] args) throws IOException {
SpringApplication.run(ThreadingApplication.class, args);

System.out.println("Press [ENTER] to quit:");
System.in.read();

}

@Bean
public ApplicationRunner startupRunner(HelloWorld hello) {
return (args) -> {hello.printMessage();};

Spring Boot will by default create a TaskExecutor named applicationTaskExecutor.
When adding @EnableAsync, it will automatically detect this instance and use it for
asynchronous execution of methods, and also will enable the detection of @Async
annotated methods.

The System.in.read is in there to prevent the application from shutting down,
so that the background task can finish processing. When pressing the ENTER key the
program will quit. Generally, when developing a web application you don’t need things
like this.

Configuring the TaskExecutor

Spring Boot will automatically configure a ThreadPoolTaskExecutor. This can be
configured through the properties in the spring.task.execution namespace (Table 8-1).

241

CHAPTER 8 JAVA ENTERPRISE SERVICES

Table 8-1. Spring Boot Task Executor Properties

Property Description

spring.task.execution. Number of core threads, default 8
pool.core-size

spring.task.execution. Maximum number of threads, default Integer.MAX_VALUE
pool.max-size

spring.task.execution. Queue capacity. Default is unbounded and this by default ignores
pool.queue-capacity the max-size property.

spring.task.execution. Limit of how long threads can be idle before being terminated
pool.keep-alive

spring.task.execution. Prefix to use for the names of newly created threads.
thread-name-prefix Default is task-

spring.task.execution. Are core threads allowed to time out, default true. This enables

pool.allow-core-thread- dynamically growing and shrinking the pool.
timeout

Adding the following to the application.properties will override some of the
defaults.

spring.task.execution.pool.core-size=4
spring.task.execution.pool.max-size=16
spring.task.execution.pool.queue-capacity=125
spring.task.execution.thread-name-prefix=sbr-exec-

Now when rerunning the application, the name of the thread will start with sbx-
exec. It will start four threads and will grow to a maximum size of 16. To enable pool
resizing, it is required to give a fixed number to the capacity of the queue. Too large (or
unbounded) will not increase the number of threads automatically.

Use the TaskExecutorBuilder to Create a TaskExecutor

If you need to construct a TaskExecutor, Spring Boot provides the
TaskExecutorBuilder. This builder class makes it easier to construct a
ThreadPoolTaskExecutor. It allows us to set the same properties as shown in Table 8-1.

242

CHAPTER 8 JAVA ENTERPRISE SERVICES

@Bean
public TaskExecutor customTaskExecutor(TaskExecutorBuilder builder) {
return builder.corePoolSize(4)
.maxPoolSize(16)
.queueCapacity(125)
.threadNamePrefix("sbr-exec-").build();

If there are, for some reason, multiple TaskExecutor instances in your application,
you would need to either mark one of them as @Primary to be used as the default
TaskExecutor or use the AsyncConfigurer interface and implement the taskExecutor
method to return the default TaskExecutor to use.

@SpringBootApplication
@EnableAsync
public class ThreadingApplication implements AsyncConfigurer {

@Bean
public ThreadPoolTaskExecutor taskExecutor() { <. }

@verride
public Executor getAsyncExecutor() {
return taskExecutor();

8-2 Spring Task Scheduling
Problem

You want to schedule a method invocation in a consistent manner, using either a cron

expression, an interval, or a rate.

Solution

Spring has support to configure TaskExecutor s and TaskScheduler s. This capability,
coupled with the ability to schedule method execution using the @5cheduled annotation,
makes Spring scheduling support work with a minimum of fuss: all you need are a

243

CHAPTER 8 JAVA ENTERPRISE SERVICES

method, an annotation, and to have switched on the scanner for annotations. Spring
Boot will not automatically detect the need for scheduling; you will have to enable it
yourself using the @EnableScheduling annotation.

How It Works

Let’s write a component that prints out a message in the logging every four seconds.
Create a Java class and use the @Scheduled annotation on a method to indicate that
this needs to be invoked. Using fixedRate=4000 as an argument, it will run every four
seconds. If you want to use a cron expression, you can set the cron attribute on the
@Scheduled annotation instead.

package com.apress.springbootrecipes.scheduling;

import org.slf4j.Logger;

import org.slf4j.lLoggerFactory;

import org.springframework.scheduling.annotation.Scheduled;
import org.springframework.stereotype.Component;

@Component
public class HelloWorld {

private static final Logger logger =
LoggerFactory.getlLogger(HelloWorld.class);

@Scheduled(fixedRate = 4000)
public void printMessage() {
logger.info("Hello World, from Spring Boot 2!");

The @Component will make sure that it will be detected by Spring Boot.

The next thing to do is enable scheduling for your application. The easiest solution is
to annotate the application class with @EnableScheduling. Of course you can also place
it on other @Configuration annotated classes.

244

CHAPTER 8 JAVA ENTERPRISE SERVICES
package com.apress.springbootrecipes.scheduling;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.scheduling.annotation.EnableScheduling;

@SpringBootApplication
@EnableScheduling
public class SchedulingApplication {

public static void main(String[] args) {
SpringApplication.run(SchedulingApplication.class, args);

The @EnableScheduling will enable the detection of @Scheduled annotated
methods and will register a TaskScheduler to use for scheduling tasks. When a single
TaskScheduler is detected in the application context, it will use that one rather than
creating a new one.

Running the SchedulingApplication will give you an output in the logs about every
four seconds.

Instead of using the @Scheduled annotation, you could also schedule a method using
Java. This can be needed if you cannot place a @Scheduled annotation on the method
you want to execute periodically or you just want to limit the amount of annotations.

For this you can use the SchedulingConfigurer, which has a single callback method to
configure additional tasks.

@SpringBootApplication
@EnableScheduling
public class SchedulingApplication implements SchedulingConfigurer {

@Autowired
private HelloWorld helloWorld;

public static void main(String[] args) {
SpringApplication.run(SchedulingApplication.class, args);

245

CHAPTER 8 JAVA ENTERPRISE SERVICES

@verride
public void configureTasks(ScheduledTaskRegistrar taskRegistrar) {
taskRegistrar.addFixedRateTask(
() -> helloWorld.printMessage()
, 4000);

8-3 Sending E-mail

Spring Boot will automatically configure the ability to send mail when mail properties
and the java mail library are detected on the classpath. In this recipe we will take a look
at how to set the properties and how to send an e-mail using Spring Boot.

Problem

You want to send e-mail from a Spring Boot application.

Solution

Spring’s e-mail support makes it easier to send e-mail by providing an abstract and
implementation-independent API for sending e-mail. The core interface of Spring’s
e-mail support is MailSender. The JavaMailSender interface is a subinterface of
MailSender that includes specialized JavaMail features such as Multipurpose Internet
Mail Extensions (MIME message) support. To send an e-mail message with HTML
content, inline images, or attachments, you have to send it as a MIME message. Spring
Boot will automatically configure the JavaMailSender when the javax.mail classes are
found on the classpath and when the appropriate spring.mail properties have been set.

How It Works

The first thing to do is add the spring-boot-starter-mail dependency to your list of
dependencies. This will add the necessary javax.mail as well as the spring-context
dependencies on the classpath.

246

CHAPTER 8 JAVA ENTERPRISE SERVICES

<dependency>
<groupldyorg.springframework.boot</grouplds
<artifactldyspring-boot-starter-mail¢/artifactlds
</dependency>

Configure the JavaMailSender

To be able to send mail, you need to configure the appropriate spring.mail properties
(Table 8-2). At least the spring.mail.host property is needed; the other properties are
optional.

Table 8-2. Spring Boot Mail Properties

Property Description

spring.mail.host The SMTP server host

spring.mail.port The SMTP sever port (default 25)
spring.mail.username Username to use for connecting to the SMTP server
spring.mail.password Password to use for connecting to the SMTP server
spring.mail.protocol The protocol used by the SMTP server (default smtp)

spring.mail.test-connection Test if the SMTP server is available at startup (default false)
spring.mail.default-encoding Encoding used for MIME messages (default UTF-8)
spring.mail.properties.* Additional properties to be set on the JavaMail Session

spring.mail.jndi-name JNDI name of the JavaMail Session, can be used when
deploying to a JEE server with preconfigured JavaMail
Sessions in JNDI.

Next, you need to define at least the spring.mail.host property to be able to
send mail.

spring.mail.host=localhost
spring.mail.port=3025

247

CHAPTER 8 JAVA ENTERPRISE SERVICES

Note The code for this recipe uses GreenMail as an SMTP server; a configured
instance can be run using the smtp. sh script from the bin directory. It will, by
default, expose an SMTP server on port 3025.

Sending a Plain Text E-mail

With the added dependencies and spring.mail properties, Spring Boot will add a
preconfigured JavaMailSenderImpl as a bean to the ApplicationContext. This bean
can be autowired into components, by either using an @Autowired field or through
constructors or, as shown here, as dependencies in @Bean annotated methods.

package com.apress.springbootrecipes.mailsender;

import org.springframework.boot.ApplicationRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import org.springframework.mail.javamail.JavaMailSender;

import org.springframework.mail.javamail.MimeMessageHelper;

import javax.mail.Message;

@SpringBootApplication
public class MailSenderApplication {

public static void main(String[] args) {
SpringApplication.run(MailSenderApplication.class, args);

}
@Bean

public ApplicationRunner startupMailSender(JavaMailSender mailSender) {

return (args) -> {
mailSender.send((msg) -> {
var helper = new MimeMessageHelper(msg);
helper.setTo("recipient@some.where");
helper.setFrom("spring-boot-2-recipes@apress.com");
helper.setSubject("Status message");

248

CHAPTER 8 JAVA ENTERPRISE SERVICES

helper.setText("All is well.");

};
};

The MailSenderApplication will send an e-mail when the application finished
starting. The startupMailSender is an ApplicationRunner (see Chapter 2), which takes
the preconfigured JavaMailSender to send a mail message.

Using Thymeleaf for E-mail Templates

Spring Boot has some nice support for using Thymeleaf® as a templating solution;
however, the default setup is mainly for using Thymeleaf for webpages. It is, however,
very possible to use Thymeleaf for e-mail templates.

First, add the spring-boot-starter-thymeleaf as a dependency. This will pull in
all the needed Thymeleaf dependencies and will automatically configure the Thymeleaf
TemplateEngine, which we need to generate the HTML content.

<dependency>
<groupIdsorg.springframework.boot</groupIds
<artifactId»spring-boot-starter-thymeleaf</artifactIds
</dependency>

By default, the Spring configured Thymeleaf TemplateEngine will resolve the HTML
templates from the templates directory under src/main/resources. Add a file named
email.html to this directory and make a nice looking e-mail message from it.

<!DOCTYPE html>
<html xmlns:th="http://www.thymeleaf.org"s
<head>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /»
</head>
<body>
<pr<strong th:text="${msg}"»Some email content will be here.</strong»</p>

'https://www.thymeleaf.org

249

https://www.thymeleaf.org

CHAPTER 8 JAVA ENTERPRISE SERVICES

<p>
Kind Regards,

Your Application
</p>
</body>
</html>

The th:text is a Thymeleaf tag and will replace the content with the value of that
attribute. Of Course we would need to pass in a value for that attribute from our mail
sending/generating code.

package com.apress.springbootrecipes.mailsender;

import org.springframework.boot.ApplicationRunner;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.context.annotation.Bean;

import org.springframework.context.i18n.LocaleContextHolder;

import org.springframework.mail.javamail.JavaMailSender;

import org.springframework.mail.javamail.MimeMessageHelper;

import org.thymeleaf.context.Context;

import org.thymeleaf.spring5.SpringTemplateEngine;

import javax.mail.Message;
import java.util.Collections;

@SpringBootApplication
public class MailSenderApplication {

public static void main(String[] args) {
SpringApplication.run(MailSenderApplication.class, args);

}

@Bean

public ApplicationRunner startupMailSender(
JavaMailSender mailSender,
SpringTemplateEngine templateEngine) {

250

CHAPTER 8 JAVA ENTERPRISE SERVICES

return (args) -> {
mailSender.send((msg) -> {

};

D

var helper = new MimeMessageHelper(msg);
helper.setTo("recipient@some.where");
helper.setFrom("spring-boot-2-recipes@apress.com");
helper.setSubject("Status message");

var context = new Context(
LocaleContextHolder.getlLocale(),
Collections.singletonMap("msg", "All is welll!"));
var body = templateEngine.process("email.html"”, context);
helper.setText(body, true);

The code still is very similar to the code as it was, but with this difference now we

also have a SpringTemplateEnginge at our disposable to generate the HTML content

for our e-mail. We use the process method to select the template we want to render,

email.html, and pass in a Context object. The Context object is used by Thymeleaf to

resolve the attributes, in our case the msg one.

8-4 Register a JMX MBean

Problem

You want to register an object in your Spring Boot application as a J]MX MBean, to have

the ability to look at services that are running and manipulate their state at runtime.

This will allow you to perform tasks like rerun batch jobs, invoke methods, and change

configuration metadata.

251

CHAPTER 8 JAVA ENTERPRISE SERVICES

Solution

Spring Boot by default enables the Spring JMX support and will detect the
@ManagedResource annotated beans and register them with the JMX server.

How It Works

First, let’s inspect the default JMX support that is enabled by Spring Boot. Let’s create a
simple Spring Boot application that will keep running and use JConsole to inspect the

running application.
package com.apress.springbootrecipes.jmx;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

import java.io.IOException;

@SpringBootApplication
public class ImxApplication {

public static void main(String[] args) throws IOException {
SpringApplication.run(JmxApplication.class, args);

System.out.print("Press [ENTER] to quit:");
System.in.read();

When the application is running you can start jconsole and you will be prompted
with a screen in which you can select the local process to connect to. Select the one that
is running the JmxApplication (Figure 8-1).

252

CHAPTER 8 JAVA ENTERPRISE SERVICES

| NON Java Monitoring & Management Console
Connection Window Help

@ JConsole: New Connection

M New Connection

() Local Process:

Name PID
81681

com.intellij.rt.execution.junit.JUnitStarter -ideVersi... 4593

org.jetbrains.idea.maven.server.RemoteMavenSer... 10115

org.jetbrains.jps.cmdline.Launcher /Users/marten... 20054
com.apress.springbootrecipes.jmx.JmxApplication 20055
| jdk.jconsole /sun.tools.jconsole.JConsole 20124 |

" Remote Process:

Usage: <hostname>:<port> OR service:jmx: <protocol>:<sap>

Username: Password:

Connect Cancel

Figure 8-1. JConsole process selection

After selecting the process, go to the MBeans tab and open the org.
springframework.boot menu and everything under it on the left side of the screen.
There is a shutdown operation on the SpringApplication that you can invoke. When
invoked, it will shut down the application (Figure 8-2).

253

CHAPTER 8 JAVA ENTERPRISE SERVICES

[N] Java Monitoring & Management Consola
C i Window Help

ene pid: 33944 com.apress jene
Overview Memory Theeads Classes VM Summary

» [DetauitDomain o Y
»

| JMimiple mentation voud shutdown 0
¥ [0 com.apress. springbootrecioes.jmx

¥ [com.sun.management

Lo Javaang Mame Valoe
> W jaanio Operation:
+ [0 ava.utitkogging |Name shudowr
¥ |5 ceg.springframework.boat Description shudown
v §5 Admin Impact UNKNOWN
v @ Springhpplcation RewrnTyne void
* Aributes
v Operations
getPraperty

 Descriptor -

Hame
|Operation:
|openTyoe Java Smak Typ larg.Void)
|origmalType void

Figure 8-2. Invoking the shutdown method

To configure JMX, Spring Boot offers three properties (Table 8-3).

Table 8-3. Spring Boot JMX Properties

Property Description
spring.jmx.enabled Should JMX be enabled or not (default true)
spring.jmx.server The bean name of the JMX MBeanServer to use (default

mbeanServer). This is generally only needed if an MBeanServer
has been manually registered in the application context.

spring.jmx.default- The JMX domain name to use to register the beans (default is the
domain package name)

254

CHAPTER 8 JAVA ENTERPRISE SERVICES

As Spring Boot by default has J]MX and the Spring support for J]MX enabled,
exposing a bean is pretty straightforward. For a bean to be exposed, it needs to have an
@ManagedResource annotation and the operations to expose the @ManagedOperation

annotation.
package com.apress.springbootrecipes.jmx;

import org.slf4j.Logger;

import org.slf4j.LoggerFactory;

import org.springframework.jmx.export.annotation.ManagedOperation;
import org.springframework.jmx.export.annotation.ManagedResource;
import org.springframework.scheduling.annotation.Async;

import org.springframework.stereotype.Component;

@Component
@ManagedResource
public class HellolWorld {

private static final Logger logger =
LoggerFactory.getLogger(HelloWorld.class);

@ManagedOperation
public void printMessage() {
logger.info("Hello World, from Spring Boot 2!");

When the application has been restarted and JConsole reconnected to the process
running the JmxApplication, you will now notice a com.apress.springbootrecipes.
jmx leaf in the menu on the left side. Open up all the nodes and in the Operations leaf
you will find the printMessage operation (Figure 8-3).

255

CHAPTER 8 JAVA ENTERPRISE SERVICES

ation

Threads

ipes.jmx.J

Classes VM S

:

LN Java Monitoring & Management Console
Connection Window Help
e0e pid: 33944 com.apress
Overview Memory
> .
» |7 DefaultDomain Or ion invocation
| |» [Mimplementation vold (printMessage | O
¥ = com.apress.springbootrecipes.jmx
¥ = HelloWorld T P N
¥ @ helloworld Name B Value
¥ Operations Operation:
Name printMessage
» Notifications Description printMessage
» [com.sun.management Impact UNKNOWN
» [java.lang ReturnType void
» [java.nio
» [java.util.logging
» [org.springframework. boot

Figure 8-3. Invoking the printMessage method

When invoking the printMessage method, the console will print the message

(Figure 8-4).

i . I S———— . 1
() 1 =] ad BN AN

NN L T TR YY)

o o (R [R R e e T

11 |—f=f_f_ff

: Spring Boot i: (v2.8.8.RELEASE)
2018-03-21 15:32:20.802 INFO 33944 — | main] .
2018-03-21 15:32:29.804 INFO 33944 —— [nain] c.a.s.jmx.]
2018-@3-21 15:32:29.858 INFO 33944 — [main] c. 3. Annota

WARNING: An illegal reflective access operation has occurred

: Starting JmxApplication on iMac-v
: No active profile set, falling ba
: Refreshing org.springframework.co

WARNING: Illegal reflective access by org.springframework.cglib.core.ReflectUtilssl (file:/Users/marten/.m2/repository/org/springframe
WARNING: Please consider reporting this to the maintainers of org.springframework.cglib.core.ReflectUtilssl
WARNING: Use —illegal-access=warn to enable warnings of further illegal reflective access operations

WARNING: ALl illegal access operations will be denied in a futurc rclcasc

2018-03-21 15:32:30.492 INFO 33944 — [main] o

2918-03-21 15:32:30.498 INFO 33944 — [main]

2018-93-21 15:32:30.5€0 INFO 33944 —- | main]

2018-93-21 15:32:30.528 INFO 33944 — | main]] tior
Press [ENTER] to quit:2018-83-21 15:42:48.585 INFO 33944 —— [nhd} 12? 0 0 1] C.3.5p
2018-03-21 15:42:53.240 INFO 33944 — (n{14)-127.0.8.1]) 2. springbo x.. He

Figure 8-4. Console output

256

: Registering beans for JMX exposur

: Bean with name 'helloWorld' has b

: Located managed bean 'hellowWorld®
Startv.‘d Jmmppt.ication in 1,86 se

Cipe

: Hello World

= Hello N‘orld from Spring Boot 2!

CHAPTER 9

Messaging

9-1 Configure JMS
Problem

You want to use JMS in a Spring Boot application and need to connect to the JMS broker.

Solution

Spring Boot supports auto-configuration for ActiveMQ' and Artemis.>? Adding one of
those JMS Providers together with setting some properties in, respectively, the spring.
activemqand spring.artemis namespace will be all you need.

How It Works

By declaring a dependency of the JMS provider of your choice, Spring Boot will
automatically configure the ConnectionFactory and strategy to look up destinations, the
DestinationResolver, for your environment. This can also be done by using JNDI, and a
final solution would be to do all the configuration yourself if you need more control over
the ConnectionFactory.

Adding dependencies for the supported JMS providers is pretty easy, as Spring
Boot has provides starter projects for those; for JNDI you need to include the JMS
dependencies yourself.

'https://activemq.apache.org
*https://activemq.apache.org/artemis/

257
© Marten Deinum 2018

M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6_9

https://activemq.apache.org
https://activemq.apache.org/artemis/

CHAPTER9 MESSAGING

Use ActiveMQ

When using ActiveMQ, the first thing to do is to include the spring-boot-starter-
activemq and this will pull in all the needed JMS and ActiveMQ dependencies to get
started. It will include the spring-jms dependency and the client libraries for ActiveMQ.

<dependency>
<groupIdsorg.springframework.boot</groupIlds
<artifactIdyspring-boot-starter-activemq¢/artifactIds
</dependency>

By default, Spring Boot will start an embedded broker if no explicit broker
configuration is given. Configuration can be changed by using properties from the
spring.activemq namespace (see Table 9-1).

Table 9-1. ActiveMQ Configuration Properties

Property Description

spring.activemq.broker-url URL of the broker to connect to, default vm: //localhost?
broker.persistent=false for an in-memory broker, else
tcp://localhost:61616

spring.activemq.user Username to use to connect to the broker, default empty
spring.activemq.password Password to use to connect to the broker, default empty

spring.activemq.in-memory Should an embedded broker be used, default true. Ignored
when spring.activemq.broker-url has been explicitly set

spring.activemq.non- Stop message delivery before redelivering rolled-back messages;
blocking-redelivery when enabled message order will not be preserved!, default false
spring.activemq.close- Time to wait to consider a close to be effective, default 15
timeout seconds

spring.activemq.send-timeout Time to wait for a response from the broker, default O (unlimited)

spring.activemq.packages. When using Java Serialization to send JMS messages should
trust-all classes from all packages be trusted, default none (requires
explicit setting the packages)

spring.activemq.packages. Comma-separated list of specific packages to trust
trusted

258

CHAPTER9 MESSAGING

A simple application to list all the beans with jms in their name, this should include a

bean named cachingImsConnectionFactory.

@SpringBootApplication
public class ImsActiveMQApplication {

private static final String MSG = "\tName: %100s, Type: %s\n";

public static void main(String[] args) {
var ctx = SpringApplication.run(ImsActiveMQApplication.class, args);

System.out.println("# Beans: " + ctx.getBeanDefinitionCount());

var names = ctx.getBeanDefinitionNames();
Stream.of(names)
.filter(name -> name.tolLowerCase().contains("jms"))
.forEach(name -> {
Object bean = ctx.getBean(name);
System.out.printf(MSG, name, bean.getClass().getSimpleName());

};

When running the preceding, it will print all the names and type of the beans
containing jms in their name to the console. The output should be similar to that of

Figure 9-1.

155 INFO 24235 [ain] c.a.s.demo.ImsActiveMQApplication : Starting JImsActiveMQApplication on imac-van-marte
n /Users/marten/Repositories/spring
INFO 24235 L wain]

2018-89-16 16
ses started

: No active profile set, falling back to default pr

INFO 24235 [wain] 0.5.5.C0 - @ Initializing ExecutorService 'applicationTaskExec

7 INFO 24235 ain) c.a.s.demo.ImsAc : Started JmsActiveMQApplication in 1.246 seconds |
Name: cachingdmsConnectionFactory, Type: CachingCennectionFactory
Name: jmsActiveMQApplication, Type: ImsActiveMQApplication$$Enh:z
Name: jmsListenerContainerFactory, Type: DefaultImsListenerContainerf
Name: jmsListenerContainerFactoryConfigurer, Type: DefaultldmsListenerContainerf
Name: jmsMessagingTemplate, Type: ImsMessagingTemplate
Name: jmsTemplate, Type: ImsTemplate

Figure 9-1. ActiveMQ beans output

259

CHAPTER9 MESSAGING

Use Artemis

When using Artemis, the first thing to do is to include spring-boot-starter-artemis.
This will pull in all the needed JMS and Artemis dependencies to get started. It will
include the spring-jms dependency and the libraries for Artemis.

<dependency>
<groupIdsorg.springframework.boot</groupIlds
<artifactIdyspring-boot-starter-artemis</artifactIds
</dependency>

Table 9-2. Artemis Configuration Properties

Property Description

spring.artemis.host Hostname for connecting to the Artemis broker, default
localhost

spring.artemis.port Port number for connecting to the Artemis broker, default 61616

spring.artemis.user Port number for connecting to the Artemis broker, default empty

spring.artemis.password Port number for connecting to the Artemis broker, default empty

spring.artemis.mode Mode of operation either native or embedded, default is none
leading to auto-detection of the mode. When the embedded
classes are found, will run in embedded mode

A simple application to list all the beans with jms in their name, this should include a
bean named cachingImsConnectionFactory.

@SpringBootApplication
public class JmsActiveMOApplication {

private static final String MSG = "\tName: %100s, Type: %s\n";

public static void main(String[] args) {
var ctx = SpringApplication.run(ImsActiveMQApplication.class, args);

System.out.println("# Beans: " + ctx.getBeanDefinitionCount());

var names = ctx.getBeanDefinitionNames();

260

CHAPTER9 MESSAGING

Stream.of(names)

.filter(name -> name.tolLowerCase().contains("jms"))

.sorted(Comparator.naturalOrder())
.forEach(name -> {
Object bean = ctx.getBean(name);

System.out.printf(MSG, name, bean.getClass().

getSimpleName());
D;

}

}
When run, the output will look like Figure 9-2.

AN O R
LI B A Wy B B R Vs AT
N rrrrnert oy

S IR SN U I P O NP
e B |—t=id it

ses started by marten in /uurslnlrtenlReoes1torxes/snr.'mq-boot-mwes/coﬂe/r-.hlwreciae-,ll,!.,n)
INFO 455 5. d ArtemisApg t

Beans: 50
Name: cachingdmsConnectionFactory,
Name: jmsArteaisApplication,
Name: jmsListenerContainerFactory,
Name: jmsListenerContainerFactoryConfigurer,
Name: jmsMessagingTemplate,
Name: jmsTemplate,

Figure 9-2. Artemis beans output

Type:
Type:
Type:
Type:
Type:
Type:

Starting JmsArtemisApplication on imac-van-mar

No active profile set, falling back to default
Initializing ExecutorService 'applicationTaskE
Started JmsArtemisApplication in 1.322 seconds

CachingConnect ionFactory
JmsArtemisApplicationsSEn
DefaultmsListenerContain
DefaultasListenerContain
JmsMessagingTemplate
JmsTenplate

Note You might wonder when using Artemis if there is still an

ActiveMQConnectionFactory in your configuration. Artemis is based on

ActiveMQ, and as such shares classes with it.

Artemis can be used in embedded mode (just like ActiveMQ); it will then

start an embedded broker. To configure it, there are several properties exposed in the
spring.artemis.embedded namespace (see Table 9-3). The embedded mode requires

artemis-server as an additional dependency.

<dependency»
<groupIdsorg.apache.activemq¢/groupIlds
<artifactId>artemis-server</artifactIds
</dependency>

261

CHAPTER9 MESSAGING

Table 9-3. Artemis Embedded Configuration Properties

Property

Description

spring.artemis.
spring.artemis.

spring.artemis.

directory

spring.artemis.

spring.artemis.

spring.artemis.

password

embedded.enabled
embedded.persistent

embedded.data-

embedded.queues

embedded.topics

embedded.cluster-

Should embedded mode be enabled, default true
Are messages persisted, default false

Directory used to store the journal, only useful
when persistent is true. Default is the Java
Tempdir.

Comma-separated list of queues to create on
startup

Comma-separated list of topics to create on startup

Cluster password, default generated

JNDI

When deploying a Spring Boot application to a JEE container, there is a big chance

that you want to use a preregistered ConnectionFactory from that container as well.

To enable this, you would need a dependency on the spring-jms library and the

javax.jms-api (the latter can then probably be marked, provided as well as that it

will be supplied by your JEE container). You could use one of the starters and exclude

the explicit ActiveMQ or Artemis dependencies; however, declaring only the needed

dependencies is easier and clearer.

<dependency>

<groupldyorg.springframework</groupIds
<artifactIdyspring-jms</artifactIds

</dependency>
<dependency>

<groupIdyjavax.jms</groupIds
<artifactIdyjavax.jms-api</artifactIds
<scopeyprovided</scopes

</dependency>

262

CHAPTER9 MESSAGING

When JNDI is available, Spring Boot will first try to detect the ConnectionFactory
in the JNDI register under one of the well-known names java:/JmsXA and java:/
XAConnectionFactory or by the name specified in the spring.jms.jndi-name property.
Furthermore, it will also automatically create a JndiDestinationResolver so that the
queues and topics will also be detected in JNDI; by default a fallback to dynamic creation
of destinations is allowed.

spring.jms.jndi-name=java:/jms/connectionFactory

With that in place and having built your WAR (see Recipe 11.2), you can now deploy
your application to the JEE container and reuse the existing ConnectionFactory.

Manual Configuration

The final way of configuring JMS is to do manual configuration. For this you will at
least need the spring-jms and javax.jms-api dependencies and probably some client
libraries for the JMS broker you are using. Manual configuration can be needed when:

1. Spring Boot cannot auto-configure your ConnectionFactory.
2. Extensive setup of the ConnectionFactory is needed.
3. Multiple ConnectionFactory instances are needed.

To configure a ConnectionFactory, you can add a @Bean annotated method that
constructs one.

@Bean

public ConnectionFactory connectionFactory() {
var connectionFactory = new ActiveMQConnectionFactory("vm://localhost?
broker.persistent=false");
connectionFactory.setClientID("someId");
connectionFactory.setCloseTimeout(125);
return connectionFactory;

This will create a ConnectionFactory for ActiveMQ; it will use an embedded
nonpersistent broker and set the clientId and closeTimeout. When Spring Boot detects
a preconfigured ConnectionFactory, it doesn't attempt to create one itself.

263

CHAPTER9 MESSAGING

9-2 Send Messages Using JMS
Problem

You want to send messaes to other systems over JMS.

Solution

Use the Spring Boot-provided JmsTemplate to send and (optionally) convert messages.

How It Works

When using Spring Boot, when it detects JMS and a single ConnectionFactory it will
also automatically configure a JnsTemplate, which can be used to send and convert
messages. Spring Boot exposes properties in the spring. jms.template namespace,
which can be used to configure the JmsTemplate.

Send a Message with JmsTemplate

To send a message through JMS, you can use the send or sendAndConvert methods on
the JmsTemplate. Let’s write a component that places a message with the current date
and time on a queue every second.

@Component
class MessageSender {

private final ImsTemplate jms;

MessageSender (JmsTemplate jms) {
this.jms = jms;

}

@Scheduled(fixedRate = 1000)
public void sendTime() {
jms.convertAndSend("time-queue”, "Current Date & Time is: " +
LocalDateTime.now());

264

CHAPTER9 MESSAGING

The JmsTemplate is automatically injected through the constructor, and due to
scheduling we will get a message containing the current date and time on a queue called
time-queue. To run this code, you will need an @SpringBootApplication class with the
@EnableScheduling annotation so that the @Scheduled will be processed.

@SpringBootApplication
@EnableScheduling
public class ImsSenderApplication {

public static void main(String[] args) {
SpringApplication.run(JmsSenderApplication.class, args);

}

Now when running this class it appears as if nothing much is happening, but the
messages are filling up the queue. We can write a simple integration test to check if this

code is working.
package com.apress.springbootrecipes.demo;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.jms.core.JImsTemplate;

import org.springframework.test.context.junit4.SpringRunner;

import javax.jms.JMSException;
import javax.jms.Message;
import javax.jms.TextMessage;

import static org.assertj.core.api.Assertions.assertThat;

@RunWith(SpringRunner.class)
@SpringBootTest
public class ImsSenderApplicationTest {

@Autowired
private JmsTemplate jms;

265

CHAPTER9 MESSAGING

@Test
public void shouldSendMessage() throws IMSException {

Message message = jms.receive("time-queue");

assertThat(message)
.isInstanceOf(TextMessage.class);

assertThat(((TextMessage) message).getText())
.startsWith("Current Date & Time is: ");

This JUnit test will bootstrap the application and starts sending messages. In the test,
we use a JmsTemplate to receive a message and we do some assertions on it to see if
messages are really sent and contain what we expected them to contain. The test will use
the embedded JMS broker, as we haven’t configured anything. When running the test, it
should be green as a message will be sent and received.

Tip When writing tests for messaging, you might want to set the
receive-timeout property of the JmsTemplate, as the default is to indefinitly
wait for a message to come; however, after 500ms you might want to fail your test.
You can do this by adding spring.jms.template.receive-timeout=500ms to your
application.properties.

Configure the JmsTemplate

Spring Boot provides properties in the spring.jms.template namespace to configure
the JmsTemplate (Table 9-4).

266

CHAPTER9 MESSAGING

Table 9-4. ImsTemplate Properties

Property Description
spring.jms.template.default- Default destination to use for send and receive
destination operations when a specific destination isn’t specified

spring.jms.template.delivery-delay Delivery delay for sending a message

spring.jms.template.delivery-mode Delivery mode, persistent or non-persistent,
when explicitly set sets qos-enabled to true

spring.jms.template.priority Priority of the message when sending. Default none,
when explicitly set sets qos-enabled to true

spring.jms.template.qos-enabled Should QOS (Quality of Service) be enabled. When
enabled the priority, delivery-mode, and time-to-live
of a message will be set. Default false

spring.jms.template.receive- Timeout to use for recieve calls. Default indefinite
timeout

spring.jms.template.time-to-live Time-to-live of a JMS message, when set sets gos-
enabled to true

spring.jms.pub-sub-domain Default destination is a topic or queue. Default
false meaning queue

Next to these properties the JnsTemplate will also be auto-configured with a
DestinationResolver and MessageConverter if a unique instance of the beans
can be found. If no unique instance can be found, the defaults will be used,
DynamicDestinationResolver and SimpleMessageConverter (Table 9-5).

Table 9-5. SimpleMessageConverter Class to JMS Message Converter

Type JMS Message Type
java.lang.String javax.jms.TextMessage
java.util.Map javax.jms.MapMessage
java.io.Serializable javax.jms.ObjectMessage
byte[] javax.jms.BytesMessage

267

CHAPTER9 MESSAGING

Let’s send an Order to the orders queue. Use Jackson to send JSON instead of using
the Java Serialization mechanism.

public class Order {

private String id;
private BigDecimal amount;

public Order() {
}

public Order(String id, BigDecimal amount) {
this.id=id;
this.amount = amount;

}
// Getters / Setters omitted for brevity

@Override
public String toString() {
return String.format("Order [id='%s', amount=%4.2f]", id, amount);

}
}

That is the simple order we are going to send.
Now we need a sender that constructs an Order and places it on the queue using a
ImsTemplate.

@Component
class OrderSender {

private final ImsTemplate jms;

OrderSender(ImsTemplate jms) {
this.jms = jms;

}

@Scheduled(fixedRate = 1000)
public void sendTime() {

268

CHAPTER9 MESSAGING

var id = UUID.randomUUID().toString();

var amount = ThreadLocalRandom.current().nextDouble(1000.00d);
var order = new Order(id, BigDecimal.valueOf(amount));
jms.convertAndSend("orders", order);

It isn’t that different from the MessageSender written earlier, but now it creates
an Order with some random generated data and sends it on the orders queue. When
running this, it would actually fail. Converting fails, as Order doesn’t implement
Serializable, which is needed to convert the Order into an ObjectMessage (see
Table 9-5). However, we wanted to use JSON to make this happen; a different
MessageConverter is needed, the MappingJackson2MessageConverter to be exact.
This uses Jackson to marshal and unmarshal objects to JSON. It should be added as a
bean to the configuration.

First you will need to add the dependency on Jackson to your build configuration.

<dependency>
<groupIdycom.fasterxml. jackson.core</groupIlds
<artifactIdyjackson-core</artifactIds
</dependency>

Next you can configure the MappingJackson2MessageConverter.

@SpringBootApplication
@EnableScheduling
public class JImsSenderApplication {

public static void main(String[] args) {
SpringApplication.run(JmsSenderApplication.class, args);

}

@Bean

public MappingJackson2MessageConverter messageConverter() {
var messageConverter = new MappingJackson2MessageConverter();
messageConverter.setTypeIdPropertyName("content-type");

269

CHAPTER9 MESSAGING

messageConverter.setTypeIdMappings(
Collections.singletonMap("order"”, Order.class));
return messageConverter;

}

The typeIdPropertyName is a required property and indicates the name of the
property in which the actual type of the message is stored. Without any further
configuration, the FQN of the class will be used. With the typeIdMappings you can
specify which type to map to which class and vice versa. When not specified, the
FQN of a class will be used as the type in the mapping. When sending an Order, the
content-type header will contain the value order.

Tip It generally is a good idea to explicitly define type mappings. This way you
don’t explicitly bind two or more applications together on the Java level. They can
use their own mapping for order to their own Order class.

With all this in place, we can write a test to see if orders are actually being sent.

@RunWith(SpringRunner.class)
@SpringBootTest
public class ImsSenderApplicationTest {

@Autowired
private JmsTemplate jms;

@Test
public void shouldReceiveOrderPlain() throws Exception {

Message message = jms.receive("orders");

assertThat(message)
.isInstanceOf(BytesMessage.class);

BytesMessage msg = (BytesMessage) message;
ObjectMapper mapper = new ObjectMapper();

byte[] content = new byte[(int) msg.getBodyLength()];
msg.readBytes(content);

270

CHAPTER9 MESSAGING

Order order = mapper.readValue(content, Order.class);
assertThat(order).hasNoNullFieldsOrProperties();

}

@Test
public void shouldReceiveOrderWithConversion() throws Exception {

Order order = (Order) jms.receiveAndConvert("orders");
System.out.println(order);

assertThat(order).hasNoNullFieldsOrProperties();
}

There are two test methods here: the plain one does manual conversion of the
message to an Order, whereas the second uses the receiveAndConvert method to have
the conversion done for you. This to show what the MessageConverter is doing and that
it makes your code more readable. The MappingJackson2MessageConverter converts the
Order into a BytesMessages. To use a TextMessage, you can set the targetType property
to TEXT. You will then recieve a TextMessage with a JSON as a String as the payload.

9-3 Receive Messages Using JMS
Problem

You want to read messages from a JMS destination so that you can handle them in your
application.

Solution

Create a class and annotate methods with @msListener to bind it to a destination and
handle incoming messages.

How It Works

You can create a POJO and annotate its methods with @msListener. Spring will detect
this and create a JMS listener for it. Spring Boot exposes properties to configure the
listeners under the spring.jms.listener namespace.

271

CHAPTER9 MESSAGING

Receiving Messages

Let’s create a service that listens to the message sent by the sender from Recipe 9.2.

@Component
class CurrentDateTimeService {

@ImsListener(destination = "time-queue")
public void handle(Message msg) throws IMSException {
Assert.state(msg instanceof TextMessage, "Can only handle
TextMessage.");
System.out.println("[RECEIVED] - " + ((TextMessage) msg).getText());
}
}

It is a regular class and has a method annotated with @msListener, which requires
atleast a destination so that it knowns where to retrieve messages from. It accepts a
javax.jms.Message, which we validate to be a TextMessage and print the content to
the console. The method signature of a @msListener annotated method is somewhat
flexible, as it allows for several arguments either annotated or from a specific type
(Table 9-6).

Table 9-6. Allowed Method Parameter Types

Type Description

java.lang.String Get message payload as String only for TextMessage

java.util.Map Get message payload as Map only for MapMessage

byte[] Get message payload as byte[] only for BytesMessage

Serializable object Deserialize Object from ObjectMessage

javax.jms.Message To get the actual JMS message

javax.jms.Session To access the Session for access, sending a custom reply for
instance

@Header annotated element Extract a header from the JMS message

@Headers annotated Only usable on a java.util.Map to get all the JMS message
element headers

272

CHAPTER9 MESSAGING

The listener could be simplified by simply using a String as a method argument
instead of handling the javax. jms.Message ourselves.

@Component
class CurrentDateTimeService {

@ImsListener(destination = "time-queue")
public void handle(String msg) {
System.out.println("[RECEIVED] - " + msg);
}
}

Configure the Listener Container

Spring uses a JmsListenerContainerFactory to create the infrastructure needed to
support the @JmsListener annotation. Spring Boot configures a default one, which
can be configured using properties from the spring.jms.listener namespace.

If that doesn’t suffice, you can always configure your own instance and do all

the configuration options manually. Spring Boot will then refrain from creating
ImsListenerContainerFactory when it already detects one in the context.

Table 9-7. Listener Container Properties

Property Description

spring.jms.listener. Acknowledge mode of the container, default is automatic.
acknowledge-mode

spring.jms.listener.auto- Start the container automatically on startup. Default true
startup

spring.jms.listener. Minimum number of concurrent consumers. Default is none,
concurrency leading to 1 concurrent consumer (the Spring default).
spring.jms.listener.max- Maximum number of concurrent consumers. Default is none,
concurrency leading to 1 concurrent consumer (the Spring default).

spring.jms.pub-sub-domain Default destination is a topic. Default false meaning queue.

273

CHAPTER9 MESSAGING

The default configured JmsListenerContainerFactory will also detect a single,
unique DestinationResolver and MessageConverter and when found will use
that; otherwise it will use the Spring defaults DynamicDestinationResolver and
SimpleMessageConverter (see recipe 9.2 for more information).

Use Custom MessageConverter

What if you want to send objects as JSON to the next system over JMS? You can rely

on Java Serialization, but that generally is frowned upon because that tightly couples
systems. Using JSON or XML to transfer objects/messages is a better way. With Spring
JMS it is a matter of configuring a different MessageConverter (see also Recipe 9.2 on the
sending part).

@Bean
public MappingJackson2MessageConverter messageConverter() {

var messageConverter = new MappingJlackson2MessageConverter();
messageConverter.setTypeIdPropertyName("“content-type");
messageConverter.setTypeIdMappings(singletonMap("order”, Order.class));
return messageConverter;

The MappingJackson2MessageConverter by default requires a property name to put
in the identifier for the content type. This will be read from a header in the JMS message
(here we set it to content-type). Next we can, optionally, define a mapping between a
type and the class. As we want to be able to map objects to the Order class, we specify
that as the mapping for the content-type order.

@Component
class OrderService {

@ImsListener(destination = "orders")
public void handle(Order order) {
System.out.println("[RECEIVED] - " + order);
}
}

274

CHAPTER9 MESSAGING

The listener receives the Order object, as Spring JMS will take care of receiving and
converting the messages. If you combine this listener with the order sender from
Recipe 9.2, you will see a steady stream of orders coming in.

Sending a Reply

Sometimes when receiving a message, you want to return an answer or trigger another
part of the process. With Spring Messaging this is pretty easy: you can simply return what
you want to send from your handler method. To determine where to send the response
to, you can add an additional @SendTo annotation to specify the destination. Let’s modify
the sample to send an OrderConfirmation to the order-confirmations queue

@Component
class OrderService {

@ImsListener(destination = "orders")
@SendTo("order-confirmations™)
public OrderConfirmation handle(Order order) {

System.out.println("[RECEIVED] - " + order);
return new OrderConfirmation(order.getId());

}
}

The OrderService changed slightly; it now returns an OrderConfirmation after
processing the order. With the @5endTo annotation, we specify which destination to put
the result on.

Let’s create another listener for the OrderConfirmation object so that we can see

them coming in.

@Component
class OrderConfirmationService {

@ImsListener(destination = "order-confirmations")
public void handle(OrderConfirmation confirmation) {
System.out.println("[RECEIVED] - " + confirmation);

}
}

275

CHAPTER9 MESSAGING

As last the OrderConfirmation class. This will be constructed from the incoming
message.

public class OrderConfirmation {
private String orderId;
public OrderConfirmation() {}

public OrderConfirmation(String orderId) {
this.orderId = orderId;

}

public String getOrderId() {
return orderld;

}

public void setOrderId(String orderId) {
this.orderId = orderld;

}

@0verride
public String toString() {
return String.format("OrderConfirmation [orderId='%s']", orderId);

}
}

When running the application, you will see that first the order is received and next
that the OrderConfirmation is being received.

9-4 Configure RabbitMQ
Problem

You want to use AMQP messaging in a Spring Boot application and need to connect to
the RabbitMQ broker.

Solution

Configure the appropriate spring.rabbitmq properties (minimal spring.rabbitmg.
host) to connect to the exchange and be able to send and receive messages.
276

CHAPTER9 MESSAGING

How It Works

Spring Boot will automatically create a ConnectionFactory when it detects the
RabbitMQ client library on the classpath. To get started, you need to add the spring-
boot-starter-amgp dependencies; this will pull in all the required dependencies.

<dependency>
<groupIdsorg.springframework.boot</groupIlds
<artifactIdyspring-boot-starter-amgp</artifactIds
</dependency>

Now you can use the spring.rabbitmq properties to connect to the broker.

spring.rabbitmq.host=1ocalhost
spring.rabbitmq.port=5672

spring.rabbitmq.username=guest
spring.rabbitmq.password=guest

The preceding configuration is all that is needed to connect to a default instance of
RabbitMQ and are also the defaults as used by Spring Boot.

Table 9-8. Common RabbitMQ Properties

Property Description

spring.rabbitmq.addresses Comma-separated list of addresses to which the client should
connect

spring.rabbitmgq. Connection timeout. Default none, 0 never timeout

connection-timeout

spring.rabbitmq.host The RabbitMQ Host, default localhost

spring.rabbitmq.port The RabbitMQ port, default 5672

spring.rabbitmq.username Username to use for connecting, default guest
spring.rabbitmq.password Password to use for connecting, default guest

spring.rabbitmq.virtual- Virtual host to use when connecting to the broker
host

277

CHAPTER9 MESSAGING

9-5 Send Messages Using RabbitMQ
Problem

You want to send a message to a RabbitMQ broker so that the message can be delivered
to the receiver.

Solution

Using the RabbitTemplate, you can send messages to an exchange and provide a
routing key.

How It Works

Spring Boot automatically configures a RabbitTemplate when it finds a unique
ConnectionFactory; this template can be used to send a message to a queue.

Configure the RabbitTemplate

Spring Boot will automaticaly configure a RabbitTemplate if it can find a unique
ConnectionFactory and if no RabbitTemplate exists in the configuration. Spring Boot
allows us to modify the configured RabbitTemplate through properties in the spring.
rabbitmq.template namespace (Table 9-9).

Table 9-9. RabbitTemplate Configuration Properties

Property Description

spring.rabbitmq.template.exchange Name of the default exchange to use for
send operations, default none

spring.rabbitmq.template.routing-key Value of a default routing key to use for
send operations, default none

spring.rabbitmq.template.receive-timeout Timeout for receive operations. Default O,
no timeout

spring.rabbitmq.template.reply-timeout Timeout for send-and-receive operations.
Default 5 seconds

278

CHAPTER9 MESSAGING

Spring Boot also makes it easy to configure retry logic with the RabbitTemplate;
by default it is disabled. By putting spring.rabbitmq.template.retry.enabled=true
in the application.properties it will be enabled. Now when sending fails, it will try
an additional two times to send the message. To change the number of retries or the
interval, you can use properties from the spring.rabbitmq.template.retry namespace
(Table 9-10).

Table 9-10. RabbitTemplate Retry Configuration

Property Description
spring.rabbitmq.template.retry.enabled Publishing retries enabled, default
false

spring.rabbitmq.template.retry.max-attempts Number of attempts to deliver a
message, default 3.

spring.rabbitmq.template.retry.initial- Duration between the first and second
interval publishing attempt, default 1 second

spring.rabbitmq.template.retry.max-interval Number of attempts to deliver a
message, default 10 seconds

spring.rabbitmq.template.retry.multiplier Multiplier to apply to the previous
interval, default 1.0

Sending a Simple Message

Sending a message with the RabbitTemplate can be done by the convertAndSend
method. It takes, at least, the routing key and the object to send in the message.

@Component
class HelloWorldSender {

private final RabbitTemplate rabbit;

HelloWorldSender (RabbitTemplate rabbit) {
this.rabbit = rabbit;

}

279

CHAPTER9 MESSAGING

@Scheduled(fixedRate = 500)
public void sendTime() {
rabbit.convertAndSend("hello",
"Hello World, from Spring Boot 2, over
RabbitMQ!");

The HelloWorldSender will be injected with the RabbitTemplate through the
constructor. Every 500ms a message will be sent on the default exchange with the hello
routing key. As it is sent to the default exchange, a queue with the name hello will be
automatically created. You can check in the RabbitMQ management console (default
http://localhost:15672) the number of messages on the queue.

Write a test to verify the correct behavior of the application. As there isn’t an
embedded broker for RabbitMQ, you need to mock the RabbitTemplate with @ockBean.
In the @Test method, validate the method call with the proper arguments.

@RunWith(SpringRunner.class)
@SpringBootTest
public class RabbitSenderApplicationTest {

@MockBean
private RabbitTemplate rabbitTemplate;

@Test
public void shouldSendAtLeastASingleMessage() {
verify(rabbitTemplate, Mockito.atLeastOnce())
.convertAndSend("hello",
"Hello World, from Spring Boot 2, over RabbitMQ!");

Tip There are ways of using Docker or an embedded process?® to bootstrap
RabbitMQ. The source code includes a test with an embedded process.

Shttps://github.com/AlejandroRivera/embedded-rabbitmq

280

https://github.com/AlejandroRivera/embedded-rabbitmq

CHAPTER9 MESSAGING

Sending an Object

To send a message to RabbitMQ, the message payload has to be converted into a byte[].
For a String that is pretty easy by calling String.getBytes. However, when sending
an object this becomes more cumbersome. The default implementation will check if
the object is Serializable and if so will use Java serialization to convert the object to
abyte[]. Using Java serialization isn’t the best solution, especially if you need to send
messages to non-Java clients.

The RabbitTemplate uses a MessageConverter to delegate the message creation
to. By default it uses the SimpleMessageConverter, which implements the strategy
outlined above. There are, however, various implementations that use XML
(MarshallingMessageConverter) or JSON (Jackson2JsonMessageConverter) for the
actual payload (instead of Java serialization).

Spring Boot will automatically detect the configured MessageConverter and use it for
both the RabbitTemplate as well as the listeners (see Recipe 9.5).

@Bean
public Jackson2JsonMessageConverter jsonMessageConverter() {
return new Jackson2]sonMessageConverter();

}

This is enough to change the SimpleMessageConverter into a
Jackson2JsonMessageConverter.

Let’s create an Order and use the RabbitTemplate to send it to the orders exchange
using a new-order routing key.

package com.apress.springbootrecipes.demo;
import java.math.BigDecimal;
public class Order {

private String id;
private BigDecimal amount;

public Order() {
}

281

CHAPTER9 MESSAGING

public Order(String id, BigDecimal amount) {
this.id=id;
this.amount = amount;

}

public String getId() {
return id;

}

public void setId(String id) {
this.id = id;
}

public BigDecimal getAmount() {
return amount;

}

public void setAmount(BigDecimal amount) {
this.amount = amount;

}

@verride
public String toString() {
return String.format("Order [id='%s', amount=%4.2f]", id, amount);

}
}

Now that we have an order, let’s create a scheduled method that periodically sends a

message with a random order.

@Component
class OrderSender {

private final RabbitTemplate rabbit;

OrderSender(RabbitTemplate rabbit) {
this.rabbit = rabbit;

}

282

CHAPTER9 MESSAGING

@Scheduled(fixedRate = 256)

public void sendTime() {
var id = UUID.randomUUID().toString();
var amount = ThreadLocalRandom.current().nextDouble(1000.00d);
var order = new Order(id, BigDecimal.valueOf(amount));
rabbit.convertAndSend("orders", "new-order", order);

}

It will create an Order with a random amount of max 1000.00. It will then send it, using
the convertAndSend method, to the orders exchange, using the new-order routing key.

The test will create a mock of the RabbitTemplate using @MockBean again and will
test the method invocation.

@RunWith(SpringRunner.class)
@SpringBootTest
public class RabbitSenderApplicationTest {

@MockBean
private RabbitTemplate rabbitTemplate;

@Test
public void shouldSendAtLeastASingleMessage() {

verify(rabbitTemplate, atlLeastOnce())
.convertAndSend(
eq("orders"),
eq("new-order"),
any(Order.class));

Write an Integration Test

Add a dependency to an embedded RabbitMQ server to easily start it from a test case.

<dependency>
<groupld>io.arivera.oss</groupld>
<artifactId>embedded-rabbitmq</artifactId>

283

CHAPTER9 MESSAGING

<version>1.3.0</version>
<scope>test</scope>
</dependency>

Next, create a RabbitSenderApplicationIntegrationTestConfiguration that
contains the additional configuration needed to run an integration test.

@TestConfiguration
public class RabbitSenderApplicationIntegrationTestConfiguration {

@Bean(initMethod = "start", destroyMethod = "stop")
public EmbeddedRabbitMq embeddedRabbitMq() {
EmbeddedRabbitMgConfig config = new
EmbeddedRabbitMgConfig.Builder()
.rabbitMgServerInitializationTimeoutInMillis(10000).build();
return new EmbeddedRabbitMq(config);

}

@Bean
public Queue newOrderQueue() {
return QueueBuilder.durable("new-order").build();

}

@Bean
public Exchange ordersExchange() {
return ExchangeBuilder.topicExchange("orders").durable(true).build();

}

@Bean
public Binding newOrderQueueBinding(Queue queue, Exchange exchange) {
return BindingBuilder.bind(queue).to(exchange)
.with("new-order").noargs();

The configuration includes the embedded RabbitMQ definition, a Queue and
Exchange definition, and finally the Binding of the Queue to the Exchange with the
routingKey.

284

CHAPTER9 MESSAGING

The queue and bindings are needed to be able to receive the messages, else they
would only reside on the exchange (or, depending on the configuration, be discarded).

The integration test will load the application and the additional configuration. It will
use the RabbitTemplate to receive the message.

@RunWith(SpringRunner.class)
@SpringBootTest(classes = {
RabbitSenderApplication.class,
RabbitSenderApplicationIntegrationTestConfiguration.class })
public class RabbitSenderApplicationIntegrationTest {

@Autowired
private RabbitTemplate rabbitTemplate;

@Test
public void shouldSendAtLeastASingleMessage() {

Message msg = rabbitTemplate.receive("new-order"”, 1500);

assertThat(msg).isNotNull();
assertThat(msg.getBody()).isNotEmpty();
assertThat(msg.getMessageProperties().getReceivedExchange())
.isEqualTo("orders");
assertThat(msg.getMessageProperties().getReceivedRoutingKey())
.isEqualTo("new-order");
assertThat(msg.getMessageProperties().getContentType())
.isEqualTo(MediaType.APPLICATION JSON_VALUE);

This test will load the application and additional configuration class. This is done
by specifing the classes attribute on the @SpringBootApplication annotation.
When the test starts it will receive a message from the new-order queue defined in the
configuration. The received message will be used to do assertions on the message like
the encoding (application/json), the routing key, etc.

285

CHAPTER9 MESSAGING

9-6 Receive Messages Using RabbitMQ
Problem

You want to receive messages from a RabbitMQ.

Solution

Annotating a method with @RabbitListener will bind it to a queue and let it receive
messages.

How It Works

A bean that has @RabbitListener annotated methods will be used as a message listener
for incoming messages. A message listener container is constructed and the annotated
method will receive the incoming message. The message listener container can be
configured through properties in the spring.rabbitmq.listener namespace.

Table 9-11. Rabbit Listener Properties

Property Description

spring.rabbitmq.listener.type The listener container type direct or
simple, default is simple

spring.rabbitmq.listener.simple. Container acknowledge mode, default none
acknowledge-mode

spring.rabbitmq.listener.simple.prefetch Number of messages to be handled in a
single request, default none

spring.rabbitmq.listener.simple.default- Should rejected deliveries be re-queued
requeue-rejected

spring.rabbitmq.listener.simple. Minimum number of listener invoker threads
concurrency
spring.rabbitmq.listener.simple.max- Maximum number of listener invoker
concurrency threads

(continued)

286

CHAPTER9 MESSAGING

Table 9-11. (continued)

Property Description
spring.rabbitmq.listener.simple. Number of messages processed in a single
transaction-size transaction. For best results should be

smaller or equal to the prefetch size

spring.rabbitmq.listener.direct. Container acknowledge mode, default none
acknowledge-mode

spring.rabbitmq.listener.direct.prefetch Number of messages to be handled in a
single request, default none

spring.rabbitmq.listener.direct. Should rejected deliveries be re-queued
default-requeue-rejected

spring.rabbitmq.listener.direct. Number of consumers per queue. Default is 1
consumers-per-queue

Receiving a Simple Message

A component with an @RabbitListener annotation is all that is needed to start receiving
messages from RabbitMQ.

@Component
class HellolWorldReceiver {

@RabbitListener(queues = "hello")
public void receive(String msg) {

System.out.println("Received: " + msg);

}
}

The preceding component will receive all the messages from the hello queue and
print it to the console. This works fine for simple payloads or if the receiving object can
be deserialized from the payload of the message. However, when sending objects or
complex messages, one might prefer to use JSON or XML.

287

CHAPTER9 MESSAGING

Receiving an Object

To receive a more complex object without relying on Java serialization, you need to
configure a MessageConverter (see also Recipe 9.4). The configured MessageConverter
will be used by the message listener container to convert incoming payloads into an
object required by the @RabbitListener annotated method.

@Bean
public Jackson2JsonMessageConverter jsonMessageConverter() {
return new Jackson2JsonMessageConverter();

}

To configure the MessageConverter, create an @Bean annotated method and
construct the converter you want to use. Here the converter is a Jackson 2-based one, but
there is also one for unmarshalling XML, the MarshallingMessageConverter.

@Component
class OrderService {

@RabbitListener(bindings = @QueueBinding(
exchange = @Exchange(name="orders", type = ExchangeTypes.TOPIC),
value = @ueue(name = "incoming-orders"),
key = "new-order"
)
public void handle(Order order) {
System.out.println("[RECEIVED] - " + order);

}
}

The preceding listener will use the orders exchange (which is a topic exchange) and
creates a binding for the incoming-orders using the new-order routing key. When started,
the exchange and queue will automatically be created if they don’t already exist. The
incoming message is converted into an Order using the Jackson2JsonMessageConverter.

288

CHAPTER9 MESSAGING

Receiving a Message and Sending a Reply

When receiving a message, it might be necessary to send a response back to the client or
communicate with a different message; using an @RabbitListener on a nonvoid method
is possible. It will create a result message and place it on an exchange with a routing-key;
this needs to be specified in the @SendTo annotation.

@Component
class OrderService {

@RabbitListener(bindings = @QueueBinding(
exchange = @Exchange(name="orders", type = ExchangeTypes.TOPIC),
value = @Queue(name = "incoming-orders"),
key = "new-order"

)

@SendTo("orders/order-confirmation™)

public OrderConfirmation handle(Order order) {
System.out.println("[RECEIVED] - " + order);
return new OrderConfirmation(order.getId());

}

When receiving an Order after processing it, an OrderConfirmation will be sent;
the @SendTo annotation (from the general Spring Messaging component) contains the
exchange and routing key. The part before the / is the exchange, the part afterwards
is the routing key, thus <exchange>/<routing-key> is the pattern used. An empty
exchange or routing key value is possible (or both); in that case, the default configured
exchange and routing key will be used. Here it will use the orders exchange and use
order-confirmation as the routing key.

Another listener could be used to process the OrderConfirmation messages.

@Component
class OrderConfirmationService {

@RabbitListener(bindings = @QueueBinding(
exchange = @Exchange(name="orders", type = ExchangeTypes.TOPIC),
value = @Queue(name = "order-confirmations"),
key = "order-confirmation"

))

289

CHAPTER9 MESSAGING

public void handle(OrderConfirmation confirmation) {
System.out.println("[RECEIVED] - " + confirmation);

}
}

It will create a queue order-confirmations using the order-confirmation
routing-key and bind that on the orders exchange (just as the OrderService created
earlier). When running the code, together with the sender from Recipe 9.4 you should
receive Order instances and see that they will be confirmed as well.

290

CHAPTER 10

Spring Boot Actuator

When developing an application, you also want to be able to monitor the behavior of
the application. Spring Boot makes it very easy to enable that by introducing Spring
Boot Actuator. Spring Boot actuator exposes health and metrics from the application to
interested parties. This can be over JMX, HTTP, or exported to an external system.

The health endpoints tell something about the health of your application and/or the
system it is running on. It will detect if the database is up, report the diskspace, etc.
The metrics endpoints expose usage and performance statistics like number of request,
the longest request, the fastest, the utilization of your connection pool, etc.

All these metrics can be viewed either through JMX or HTTP when enabled, but
can also be automatically exported to an external system like Graphite, InfluxDB, and
many others.

10-1 Enable and Configure Spring Boot Actuator
Problem

You want to enable health and metrics in your application so that you can monitor the
status of the application.

Solution

Add a dependency for the spring-boot-starter-actuator to your project and the
health and metrics will be enabled and exposed for your application. Additional
configuration can be done through properties in the management namespace.

291
© Marten Deinum 2018

M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6_10

CHAPTER 10 SPRING BOOT ACTUATOR

How It Works

When adding the spring-boot-starter-actuator, Spring Boot will automatically set
up the health and metrics based on the beans in the application context. Which health
and metrics are exposed depends on the beans and features that are enabled. When a
DataSource is detected, metrics for that will be collected and exposed as well as health.
Spring Boot does this for many components like Hibernate, RabbitMQ, Caches, etc.

To enable the actuator, add the dependency to your application (here we assume
Recipe 3.3 sources as a starting point).

<dependency>
<groupldyorg.springframework.boot</grouplds
<artifactId»spring-boot-starter-actuator<¢/artifactIds
</dependency>

Now when starting the application, Spring Boot will have the actuator configured
and it is accessible through JMX (Figure 10-1, and see Recipe 8.4 on how to use JConsole)
and through the web (default under the /actuator path)(see Figure 10-2).

L] @ Java Monitering & Management Console
Connection Window Help

@ @ pid: 10806 com.apress.springb ipes.library.LibraryApplication
Overview Memory Threads Classes VM Summary m C

'+ [DefaultDomain
» [0 Mimplementation

» [Tomeat

» [com.sun.management
» |7 java.lang

» [java.nio

» |7 java.util.logging

> B :
¥ |5 org.springframework.boot)

[Admin

¥ =5 Endpoint
> 63 Auditevents
> @ Beans
» @@ Caches
» @ Conditions
» @ Configprops
> & Env
> @ Health
» @ Huptrace
> @ Info

> @ Loggers

> @ Mappings

> # Metrics

» @ Scheduledtasks

» @@ Shutdown

\ » @ Threaddump J

Figure 10-1. JMX exposed metrics

292

CHAPTER 10 SPRING BOOT ACTUATOR

@ L @/ localhost:8080factuator X 4+
& S5 C @ localhost:B080/actuator e #+ B O 0O w @ ¢ @
{
- _links: {
- self: {

href: "http://localhost:8080/actuator”,
templated: false
}J
- health-component: {
href: "http://localhost:8080/actuator/health/{component}",
templated: true
}l
- health-component-instance: {
href: "http://localhost:8080/actuator/health/{component}/{instance}",
templated: true

|
- health: {
href: "http://localhost:8080/actuator/health",
templated: false

|
- info: {
href: "http://localhost:8080/actuator/info",
templated: false

Figure 10-2. HTTP exposed metrics

You will notice that JMX exposes a lot more endpoints then HTTP does. HTTP only
exposes /actuator/health and /actuator/info. JMX exposed a lot more. This is done
with security in mind: the /actuator is exposed publicly and as such you don’t want
everyone to see things. What to expose can be configured through the management.
endpoints.web.exposure.include and management.endpoints.web.exposure.exclude
properties. Using a * for the include will expose all endpoints to the web.

management.endpoints.web.exposure.include=*

With the preceding configuration added to the application.properties, the same
features will be exposed to the web as through JMX (Figure 10-3).

293

CHAPTER 10 SPRING BOOT ACTUATOR

® O @® g iocalhost:8080actuator b +
€ 3 C @ localhost:B080/actuator Q % B O 0 w @ ¢ (1]
{
- _links: {
- self: {

href: "http://localhost:8080/actuator",
templated: false

e

- auditevents: {
href: "http://localhost:8080/actuator/auditevents”,
templated: false

}l
- beans: {
href: "http://localhost:8080/actuator/beans",
templated: false
b
- caches-cache: {
href: "http://localhos
templated: true
}l’
- caches: {
href: "http://localhost:8080/actuator/caches",
templated: false
}l
- health: {
href: "http://localhost:8080/actuator/health",
templated: false
Y

- health-component: {
href: "http://localhost:8080/actuator/health/{component}",
templated: true

e

- health-component-instance: {
href: "http://localhost:8080/actuator/health/{component}/{instance}"”,
templated: true

Y.
_links.caches-cache

Figure 10-3. HTTP exposed metrics (all)

Configure the Management Server

By default, the actuator is available on the same port and address (http://localhost:8080)
as the regular application. It is, however, very easy (and common) to run the
management endpoints on a different port. This can be configured through properties in
the management. server namespace; most of them mimic the ones in the regular server
namespace (Table 10-1).

294

CHAPTER 10 SPRING BOOT ACTUATOR

Table 10-1. Management Server Properties

Property Description

management.server.add- Add an X-Application-Context header to the

application-context-header response containing the application context name

management.server.port The port to run the management server on, default same
as server.port

management.server.address The network address to bind to, default same as server.
address (which is 0.0.0.0 all addresses)

management.server.servlet. The context path of the management server, default none

context-path resulting in /

management.server.ssl.* SSL properties to configure SSL for the management

server (see Recipe 3.8 on how to configure SSL)

Adding the following to the application.properties will run the management
endpoints on a separate port and add the X-Application-Context header.

management.server.add-application-context-header=true
management.server.port=8090

When restarting the application, the management endpoints are now available on
http://localhost:8090/actuator. Running the actuator on a different port has the
benefit of hiding it from the public internet by blocking the port on the firewall and only
allowing local access.

Note The management.server properties are only effective when using an
embedded server; when deploying to an external server these properties don’t
apply anymore!

295

CHAPTER 10 SPRING BOOT ACTUATOR

Configure Individual Management Endpoints

Individual endpoints can be configured through properties in the management.
endpoint.<endpoint-name> namespace. Most of them have at least an enabled property
and a cache.time-to-1live property. The first will enable or disable the endpoint, the
other one specifies how long to cache a result of the endpoint (Table 10-2).

Table 10-2. Endpoint Configuration Properties

Property Description
management.endpoint. Whether the specific endpoint is enabled, generally
<endpoint-name>.enabled defaults to true and sometimes depends on availability

of a feature (i.e., if Flyway isn’t present, then enabling the
flyway endpoint wouldn’t have any effect)

management.endpoint. Time to cache a response, default is 0Oms meaning no
<endpoint-name>.cache. caching
time-to-live

management.endpoint.health. Whether to show details for the health endpoint, default is

show-details never, can be changed to always or when-authorized
management.endpoint. Roles that are allowed to see the details (use together with
health.roles when-authorized for show-details)

Adding management.endpoint.health.show-details=always to the application.
properties will show more information about the health of the application. By default it
will only show UP, but now you can see the different parts of the health information for
your application (Figure 10-4).

296

CHAPTER 10 SPRING BOOT ACTUATOR

® O ® [y localhost:8090/actuator/health x 4
& C @ localhost:8090/actuate.. @ % B @ 0 & @ (]

{
status: "UP",

- details: {
- diskSpace: {
status: "UP",
- details: {
total: 1120468197376,

free: 888696094720,
threshold: 10485760

L8

Figure 10-4. Extended health endpoint output

Securing Management Endpoints

When Spring Boot detects both Spring Boot Actuator and Spring Security, it will enable
secure access to management endpoints automatically. When accessing the endpoint,
a Basic Login prompt will be shown and asks for a username and password. Spring
Boot will generate a default user, with the username user and a generated password
(see Recipe 6.1) to use for login.

Adding the spring-boot-starter-security in addition to the spring-boot-
starter-actuator is enough to have secured management endpoints.

<dependency>
<groupIdsorg.springframework.boot</groupIlds
<artifactIdyspring-boot-starter-security</artifactIds
</dependency>

This will enable security in your application and for the management endpoints.
Now when accessing the endpoint http://localhost:8090/actuator a Basic login
prompt will be shown. After entering the correct credentials you should still be able to
see the results.

297

CHAPTER 10 SPRING BOOT ACTUATOR

Configure Healthchecks

One of the features of Spring Boot Actuator is to do healthchecks. Those are exposed
under http://localhost:8090/actuator/health; this produces a result if the application
is UP or DOWN. The health endpoint calls all the available HealthIndicators in the
system and reports those in the endpoint. Which HealthIndicators are present can be
controlled by setting the management.health.<health-indicator>.enabled property.
Setting a property to true for a not available feature (like trying to get information on the
DataSource while one isn’t available) won’t work.

management.health.diskspace.enabled=false
This will disable the healthcheck for the diskspace, and it won’t be part of the health

checks anymore.

Configure Metrics

One of the features of Spring Boot Actuator is to expose metrics. Those are exposed
under http://localhost:8090/actuator/metrics; this will produce a list of available
metrics for your application (Figure 10-5).

] o [localhost:8090/actuator/metri X =+

& C @ localhost:8090/actuate.. @ % @ @ 0o w = ©

{

- names: [

"process.files.max",
"jvm.gc.memory.promoted”,
"tomcat.cache.hit",
"jvm.memory.max",
"jvm.memory.used",
"system.load.average.lm",
"tomcat.cache.access",
"jvm.gc.max.data.size",
"jvm.memory.committed",
"system.cpu.count"”,
"logback.events",
"tomcat.global.sent",
"jvm.buffer.memory.used",
"tomcat.sessions.created",

names

Figure 10-5. List of currently available metrics

298

CHAPTER 10 SPRING BOOT ACTUATOR

More information about a metric can be obtained by accessing
http://localhost:8090/actuator/metrics/{name-of-metric}, for example,
http://localhost:8090/actuator/metrics/system.cpu.usage will show the current
CPU usage (Figure 10-6).

@ o [localhost:B090/actuator/metr X +

< C @ localhost:8090/actuator/metrics/system.cpu... @ # @ @ 0 @ @ ¢ (]}

{

name: "system.cpu.usage",
description: "The "recent cpu usage" for the whole system",
baseUnit: null,

- measurements: [

=
statistic: "VALUE",
value: 0.4375
}
1:
availableTags: []
}
- measurements

Figure 10-6. Detailed CPU metrics

Spring Boot uses micrometer.io' to record metrics. Metrics are enabled by default
for the features detected by Spring Boot. So if a DataSource is detected, metrics will be
enabled. To disable metrics, add them to the management.metrics.enable property.
This is a map containing keys and values on which metrics to enable.

management.metrics.enable.system=false
management.metrics.enable.tomcat=false

The preceding configuration will disable system and tomcat metrics. When viewing
the metrics at http://localhost:8090/actuator/metrics, they aren’t part of the list
anymore.

'https://micrometer.io

299

https://micrometer.io

CHAPTER 10 SPRING BOOT ACTUATOR

10-2 Create Custom Health Checks and Metrics
Problem

Your application needs to expose certain metrics and have a health check that aren’t
available by default.

Solution

The health checks and metrics are pluggable, and beans of type HealthIndicator and

MetricBinder are automatically registered to provide additional health checks and/or

metrics. The task is to create a class implementing the desired interface and register an
instance of that class as a bean in the context of having it contribute to the health and

metrics.

How It Works

Assuming that a dependency on Spring Boot Actuator is already present, you can

start writing an implementation right away. Assume you have an application using

a TaskScheduler and you want to have some metrics and health on it. (Adding

@EnableScheduling is enough to have Spring Boot create a default TaskScheduler.)
First, let’s write the HealthIndicator. You can either directly implement the

HealthIndicator interface or use the convenience AbstractHealthIndicator asa

base class.

package com.apress.springbootrecipes.library.actuator;

import org.springframework.boot.actuate.health.AbstractHealthIndicator;
import org.springframework.boot.actuate.health.Health;

import org.springframework.scheduling.concurrent.ThreadPoolTaskScheduler;
import org.springframework.stereotype.Component;

@Component
class TaskSchedulerHealthIndicator extends AbstractHealthIndicator {

300

CHAPTER 10 SPRING BOOT ACTUATOR

private final ThreadPoolTaskScheduler taskScheduler;

TaskSchedulerHealthIndicator(ThreadPoolTaskScheduler taskScheduler) {
this.taskScheduler = taskScheduler;

}

@verride
protected void doHealthCheck(Health.Builder builder) throws Exception {

int poolSize = taskScheduler.getPoolSize();
int active = taskScheduler.getActiveCount();
int free = poolSize - active;

builder
.withDetail("active", taskScheduler.getActiveCount())
.withDetail("poolsize", taskScheduler.getPoolSize());

if (poolSize > 0 & free <= 1) {
builder.down();
} else {
builder.up();
}
}
}

The TaskSchedulerHealthIndicator operates on the given ThreadPoolTaskExecutor.
It reports the status as down if there is one or fewer threads available to schedule tasks.
The condition on poolSize > 0 is there because the creation of the underlying Executor
is delayed until needed; until then the poolSize will report 0. The returned value includes
the poolsize and active thread count just for information.

The TaskSchedulerMetrics implements the MeterBinder interface from
micrometer.io. It exposes the active and pool-size to the metrics registry.

package com.apress.springbootrecipes.library.actuator;

import io.micrometer.core.instrument.FunctionCounter;

import io.micrometer.core.instrument.MeterRegistry;

import io.micrometer.core.instrument.binder.MeterBinder;

import org.springframework.scheduling.concurrent.ThreadPoolTaskScheduler;
import org.springframework.stereotype.Component;

301

CHAPTER 10 SPRING BOOT ACTUATOR

@Component
class TaskSchedulerMetrics implements MeterBinder {

private final ThreadPoolTaskScheduler taskScheduler;

TaskSchedulerMetrics(ThreadPoolTaskScheduler taskScheduler) {
this.taskScheduler = taskScheduler;

}

@verride
public void bindTo(MeterRegistry registry) {
FunctionCounter
.builder("task.scheduler.active", taskScheduler,
ThreadPoolTaskScheduler: :getActiveCount)
.register(registry);

FunctionCounter
.builder("task.scheduler.pool-size", taskScheduler,
ThreadPoolTaskScheduler: :getPoolSize)
.register(registry);

Now when placing an @EnableScheduling on the LibraryApplication and
restarting the application, metrics and health will be reported for the TaskScheduler
(Figure 10-7).

@ o] [localhost:8090/actuator/health x -+

&« C @ localhost:8090/actuator/health @ @ @ QO w @ | @ :

{
status: "DOWN",
- (details: {
- taskScheduler: {
status: "DOWN",
- details: {
active: 0,
poolsize: 0

}
}J’

Figure 10-7. TaskScheduler health check

302

CHAPTER 10 SPRING BOOT ACTUATOR

10-3 Export Metrics
Problem

You want to export the metrics to an external system, to create a dashboard to monitor
the application.

Solution

Use one of the supported systems like Graphite and periodically push the metrics to
that system. Include a micrometer.io registry dependency in your application (next to
the spring-boot-starter-actuator dependency) and metrics will automatically be
exported. By default, every minute the data will be pushed to the server.

How It Works

Exporting metrics is part of the Micrometer.io library and it supports a wide variety of
services like Graphite, DataDog, Ganglia, or regular StatsD. This recipe uses Graphite, so
a dependency to micrometer-registry-graphite needs to be added.

<dependency»
<groupIdsio.micrometer</groupIds
<artifactIdsmicrometer-registry-graphite</artifactIds
</dependency>

In theory this could be enough to have metrics published to Graphite if Graphite
(https://graphiteapp.org) is running on localhost and with the default ports. However,
Spring Boot makes it easy to configure this by exposing some properties, generally in the
management.metrics.export.<registry-name> namespace (Table 10-3).

303

https://graphiteapp.org

CHAPTER 10 SPRING BOOT ACTUATOR

Table 10-3. Common Metrics Export Properties

Property Description

management.metrics.export. Whether or not to enable metrics exporting. Default

<registry-name>.enabled true when the library is detected on the classpath

management.metrics.export. Host to send metrics to, mostly localhost or

<registry-name>.host well-known url of service (like SignalFX, DataDog,
etc.)

management.metrics.export. Port to send metrics to, defaults to the well-known

<registry-name>.port port of the desired service

management.metrics.export. How often to send metrics, default 1 minute

<registry-name>.step

management.metrics.export. Base time unit used to report rates, default
<registry-name>.rate-units seconds

management.metrics.export. Base time unit used to report durations, default
<registry-name>.duration-units milliseconds

To report the metrics every ten seconds instead of each minute, add the following to
the application.properties:

management.metrics.export.graphite.step=10s

Note The bin directory contains a graphite.sh, which uses docker to start a
Graphite instance.

Now the metrics will be published to Graphite every ten seconds. If you start the
application and open Graphite on http://localhost (assuming you are running the
aforementioned Docker container) you could, for example, create a graph of the CPU
usage (Figure 10-8).

304

€« < C (@ kcalhost

CHAPTER 10 SPRING BOOT ACTUATOR

Tree | Search || Auto-Completer
4 __|tomecatGlobalRequest
4 [tomecatGlobalRequestiMax
4 [tomcatGlobalSent
4 _JtomcatSenvietError
tomcatSendetRequest

C.]

4 _tomecatSendetRequestMax
4 _tomcatSessionsCreated
4 _ItomcatSessionsExpired
]

4 [tomcatSessionsRejected
4 [tomcalThreadsBusy

4 [tomcatThreadsConfightax
| tomcalThreadsCurrent

jvmClassesloaded
mGeLiveDataSize
mGeMaxDataSize
mThreadsDaemon
mThreadsLive
jvmThreadsPeak
processCpullsage
processFileshax

| processFilesOpen
processStarTime
processUptime
ystemCpuCount
systemCpullsage
systemLoadAveragelm

mcalSessionsActiveCurrent

Graphite Composer
cCEHEOAm

Figure 10-8. Graphite CPU graph

Now showing the past 15 minutes

305

CHAPTER 11

Packaging

In this chapter you will take a look at different solutions for packaging a Spring Boot
based application.

11-1 Create an Executable Archive

By default, Spring Boot creates a JAR or WAR and that can be run with java -jar your-
application.jar. However, you might want to run the application as part of the startup
of your server (currently tested and supported for Debian and Ubuntu-based systems).
For this you can use the Maven or Gradle plugins to create an executable jar.

Problem

You want an executable JAR so that it can be installed as service on your environment.

Solution

The Spring Boot Maven and Gradle plugins both have the option to make the created
artifact executable.! When doing so, the archive also becomes/behaves like a Unix shell
script to start/stop a service.

How It Works

To make an artifact executable, you would need to configure the Maven or Gradle plugin
as such.

'https://docs.spring.io/spring-boot/docs/current/reference/html/deployment-install.html

307
© Marten Deinum 2018

M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6_11

https://docs.spring.io/spring-boot/docs/current/reference/html/deployment-install.html

CHAPTER 11 PACKAGING

Making the Archive Executable

<plugin>
<groupldyorg.springframework.boot</grouplds
<artifactId>spring-boot-maven-plugin</artifactIds
<configurationy
<executable>true</executables
</configurationy
</pluginy

In the Maven plugin you can set the executable property to true and the archive will
be executable.

bootJar {
launchScript()

Now after building your artifact, the artifact itself is executable and can be used
to launch the application. Instead of java -jar your-application.jar you can now
simply type ./your-application.jar and it will start.

Note It might be necessary to make the archive executable; use chmod +x
your-application.jar for that.

When making the archive executable, the archive will be prefixed with a bash

script. You might think that doing so will break the Java archive. However, due
to the way Java reads archives (bottom to top) and the way the shell reads the
archives (top to bottom) this actually does work.

You can see the bash script using head -n 290 your-application. jar.

308

CHAPTER 11 PACKAGING

#!1/bin/bash

#

#

NN/ _ ' () I Y W WA
0O N VYV
o\ A0t))))
N T
=========| |=s=============|__ /=/ /[/ /
:: Spring Boot Startup Script ::

#

BEGIN INIT INFO

Provides: recipe 14 1

Required-Start: $remote_fs $syslog $network
Required-Stop: $remote_fs $syslog $network
Default-Start: 2345

Default-Stop: 016

Short-Description: recipe 14 1

Description: Demo project for Spring Boot
chkconfig: 2345 99 01

END INIT INFO

This is the header of the script the Java archive will be prefixed with. The description
will be filled with the project description as given in Maven. You could override this by
specifying the initInfoDescription next to the executable property.

Specifying Configuration

Normally when you launch a Spring Boot-based application, there are several options
for providing additional configuration (see Recipe 2.2). However, when using the archive
as a script (or as a service), some of them don’t apply anymore. What you can do

instead is make use of a . conf file next to your executable archive (it must be named
your-application.conf) to contain additional configuration options for your
application (See Table 11-1).

309

CHAPTER 11 PACKAGING

Table 11-1. Available Properties

Property Description

MODE The “mode” of operation. Default is auto, which will detect the
mode; when launched from a symlink will behave like service.
Change to run if you want to run the process in the foreground.

USE_START_STOP_DAEMON Whether to use the start-stop-daemon command or not. By default
will detect if the command is available

PID_FOLDER Name of the folder to write the PID to, default /var/run

LOG_FOLDER Name of the folder to write the logging to, default /var/log

CONF_FOLDER Name of the folder to read .conf from, default the same directory
as the jar file

LOG_FILENAME Name of the logfile to write to, default <appname>.log.

APP_NAME The name of the application. If the jar is run from a symlink, the
script guesses the app name.

RUN_ARGS The arguments to pass to the Spring Boot application

JAVA_HOME By default will be discovered from the $PATH but can be explicitly
defined if needed

JAVA_OPTS Options to pass to the JVM (like memory settings, GC settings, etc.)

JARFILE The explicit location of the JAR file, in case the script is being

used to launch a JAR that it is not actually embedded

DEBUG If not empty, sets the -x flag on the shell process, making it easy
to see the logic in the script

STOP_WAIT TIME The time to wait before forcing a shutdown (default is 60 seconds)

When using an embedded script (the default) the JARFILE and APP_NAME properties
aren’t configurable using a . conf file.

JAVA OPTS=-Xmx1024m
DEBUG=true

With this, you will assign a maximum of 1GB of memory to your application and it
will do some additional logging for the shell script.

310

CHAPTER 11 PACKAGING

11-2 Create a WAR for Deployment
Problem

Instead of creating a JAR file, you want a WAR file for deployment to a Servlet Container
or JEE Container.

Solution

Change the packaging of the application from JAR to WAR and let your Spring Boot
application extend the SpringBootServletInitializer so that it can bootstrap itself as
aregular application.

How It Works

To make Recipe 3.1 into a deployable WAR, three things need to be done:
1. Change the packaging from JAR to WAR.

2. Extend SpringBootServletInitializer to bootstrap the
application on deployment.

3. Change the scope of the embedded server to provided.

In the pom.xml change the packaging from JAR to WAR.
<packagings»war</packaging>

To prevent the embedded container from adding its classes to the web application,
the scope of the embedded container needs to be changed to provided instead of the
default compile.

When using an embedded Tomcat (the default), add the following to the pom. xml.

<dependency>
<groupIdyorg.springframework.boot</groupIds
<artifactId»spring-boot-starter-tomcat</artifactIds
<scopeyprovided</scope»

</dependency>

311

CHAPTER 11 PACKAGING

When using a different embedded container, see Recipe 3.7, then change the scope
of that container to provided by including <scope>provided</scope>. When doing so,
the Spring Boot plugin will not add the libraries to the default WEB-INF/1ib. However,
they will still be part of the created WAR file, but in the special WEB-INF/1ib-provided
directory. Spring Boot knows this location, and as such you can also use the WAR to start
the embedded container. Starting an embedded container is very nice for development;
however, as it is a WAR file it is also deployable to a container like Tomcat of WebSphere.

To make sure that the application will start, you need your application to extend the
SpringBootServletInitializer. This is a special class needed to bootstrap Spring Boot
in a Servlet or JEE container.

package com.apress.springbootrecipes.helloworld;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.SpringBootApplication;
import org.springframework.boot.builder.SpringApplicationBuilder;
import org.springframework.boot.web.servlet.support.
SpringBootServletInitializer;

@SpringBootApplication
public class HelloWorldApplication extends SpringBootServletInitializer {

public static void main(String[] args) {
SpringApplication.run(HelloWorldApplication.class, args);

}

@verride
protected SpringApplicationBuilder configure(SpringApplicationBuilder
builder) {
return builder.sources(HelloWorldApplication.class);
}
}

When extending the SpringBootServletInitializer, you need to override
the configure method. The configure method gets a SpringApplicationBuilder,
which you can use to configure the application. One of the things to add is the main
configuration class, just as with SpringApplication.run. That is what the line builder.
sources(HelloWorldApplication.class) does. This will be used to bootstrap the
application.

312

CHAPTER 11 PACKAGING
For completeness, the HelloWorldController as used in Recipe 3.7.
package com.apress.springbootrecipes.helloworld;

import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;

@RestController
public class HelloWorldController {

@GetMapping
public String hello() {
return "Hello World, from Spring Boot 2!";
}
}

Warning When deploying something to a Servlet or JEE Container, Spring Boot

is no longer in control of the server; due to this configuration, options from the
server and management.servlet namespaces don’t apply anymore. So when
a server.port has been defined, it will be ignored when deploying to an external
server!.

When the application has been deployed, it is no longer available at the root URL / as
it would be when using the embedded server. It will be available at the /<name-of-war/
URL instead: generally, something like http://<name-of-server>:8080/<name-of-war>
to access the application. When deployed to a standard Tomcat installation and looking
at the Management GUI, it looks like Figure 11-1.

313

CHAPTER

11 PACKAGING

Version Display Name
/ None specified Welcome to Tomcat
/docs None specified Tomcat Documentation
fexamples None specified Servlet and JSP Examples
/host-manager None specified Tomcat Host Manager Application
[/manager None specified Tomcat Manager Application
[spring-mv war-2.0. None specified

Figure 11-1. Tomcat management GUI

Clicking the /spring-mvc-as-war-2.0.0 link will open the application (Figure 11-2).

Figure 11-2. Result of deployed application

eoce [10calhost:8080/spring-mve-as X

&« C @ localhost:8080/spring-mvc-as-war-2.0.0/

Hello World, from Spring Boot 2!

11-3 Reduce Archive Size Through the Thin Launcher
Problem

Spring Boot, by default, generates a so-called fat JAR, a JAR with all the dependencies

inside it. This has some obvious benefits, as the JAR is fully self-contained. However, the

JAR size can grow considerably, and when using multiple applications you might want to

reuse already downloaded dependencies to reduce the overall footprint.

314

CHAPTER 11 PACKAGING

Solution

When packaging the application, you can specify a custom layout. One such a custom
layout is the [Thin Launcher].? This launcher will result in the dependencies being
downloaded before starting the application, instead of the dependencies packaged
inside the application.

How It Works

When using the Spring Boot plugin as is, all the needed libraries are included in the
archive in the BOOT-INF/1ib folder. However, one might want to reduce the size of the
JAR and enable reuse of dependencies to create an even smaller overall footprint. For
example, the archive generated with Recipe 14.1 is around 7.1M. Most of this comes
from included dependencies.

It is possible to add a custom layout and launcher to the Spring Boot plugin. A layout
defines where the sources are loaded from, and the launcher uses this information to
load those dependencies. The Thin Launcher will download the artifacts from Maven
Central and place them in a shared repository. So when multiple applications share the
dependencies, they are only downloaded once.

To use the Thin Launcher, add a dependency to the Spring Boot plugin.

<plugin>
<groupIdsorg.springframework.boot</groupIds
<artifactId>spring-boot-maven-plugin</artifactId>
<dependencies>
<dependency>
<groupldyorg.springframework.boot.experimental</grouplds
<artifactId>spring-boot-thin-layout</artifactId>
<version»1.0.15.RELEASE</version»
</dependency>
</dependencies»
</pluginy

*https://github.com/dsyer/spring-boot-thin-launcher

315

https://github.com/dsyer/spring-boot-thin-launcher

CHAPTER 11 PACKAGING

This is enough to create a considerably smaller archive. When running . /mvn
package the resulting JAR is around 12K. The drawback is, however, that it needs to
download the dependencies when the application is started, so starting the application
might take longer depending on the number of dependencies.

What happens is that a class named ThinJarlWrapper has been added and that will
be the entrypoint of your application. Now your application contains a pom.xml and/
or aMETA-INF/thin.properties to determine the dependencies. The thinJarWrapper
will locate another JAR file (the “launcher”). The wrapper downloads the launcher (if it
needs to), or else uses the cached version in your local Maven repository.

The launcher then takes over and reads the pom.xml (if present) and the META-INF/
thin.properties, downloading the dependencies (and all transitives) as necessary.

It will now create a custom class loader with all the downloaded dependencies on the
classpath. Then it runs the application’s own main method with that class loader.

Note When downloaded, the dependencies from Maven will respect settings made
in the Maven settings.xml, as it uses regular Maven tooling. When using a mirror
like Nexus for Maven repositories, include a thin.repo in the META-INF/thin.
properties to point to that mirror, else downloading the launcher will fail.

11-4 Using Docker

Using Docker?® to build and ship containers is common practice nowadays. When using
Spring Boot, it is quite easy to wrap that into a Docker container.

Problem

You want to run your Spring Boot-based application inside a Docker container.

Solution

Create a Dockerfile and use one of the available Maven Docker plugins to build the
Docker container.

Shttps://www.docker.com

316

https://www.docker.com

CHAPTER 11 PACKAGING

Note In this recipe we choose to use the dockerfile-maven-plugin from
Spotify, but there are others that work equally well.

How It Works

First you will need a Dockerfile containing the information needed to build the container.
When the container has been built, you can launch it using the docker run command.

Update Build Script to Produce a Docker Container

To create a Docker container, first create a Dockerfile. The Dockerfile is the file
containing the information on how to build the container. Place this file in the root of
the project.

FROM openjdk:11-jre-slim

VOLUME /tmp

ARG JAR_FILE

COPY ${JAR_FILE} app.jar

ENTRYPOINT ["java","-Djava.security.egd=file:/dev/./urandom","-jar","/app.jar"]

With the preceding Dockerfile, we use the openjdk-provided container to build
our own. We are going to add our application to it using the ADD command, and finally
we need to tell the container what to start during startup; for this you can use the
ENTRYPOINT command.

Caution Using publicly available containers as a starting point might seem like a
good idea, but you have to be aware of the possible security implications this can
have. As you don’t control that specific container, you cannot guarantee what is
built into (or not) the container. For real-life situations you might want to build your
own base containers.

The ARG with the JAR_FILE argument is telling the build that there is a variable
JAR_FILE available that can be used in the build script. We will provide the value of that
variable through the plugin configuration.

317

CHAPTER 11 PACKAGING

The ENTRYPOINT simply specifies that it will run java -jar /app.jar. You could
also combine this with Recipe 14.1 and install an executable JAR as script, making the
entrypoint a little smaller.

Now that there is a Dockerfile, you need to add the dockerfile-maven-plugin to
your build section of the pom.xml.

<pluginy
<groupIdycom.spotify</groupIds
<artifactIdsdockerfile-maven-plugin</artifactlds
<versiony1.4.4</versiony
<configurationy
<repositorysspring-boot-recipes/${project.name}</repositorys
<tagy${project.version}</tags
<buildArgs>
<JAR_FILE>target/${project.build.finalName}.jar</IAR_FILE>
</buildArgs>
</configurationy
<dependenciesy
<dependency>
<groupld»javax.activation</grouplds
<artifactld»javax.activation-api¢/artifactId»
<version»1.2.0</version»
</dependency>
<dependency>
<groupIdsorg.codehaus.plexus</groupIds
<artifactIdyplexus-archiver</artifactIds
<version»3.6.0</version»
</dependency»
</dependencies»
</pluginy

We specify a name of the image through the repository property in the plugin; that
way we know where to find the container later on. Generally you also want to place a tag
on the container, and we choose to use the ${project.version} as the tag.

318

CHAPTER 11 PACKAGING

The buildArgs are for passing arguments to the docker build command so that
they can be made available when processing the Dockerfile. As we have specified a
JAR_FILE, we also declare that in the configuration and point it to the location of the

generated artifact.

Note The dependency on the javax.activation-api is there because that
isn’t part of the default set of available classes of Java 9; if you are on Java 8 you
don’t need this. The dependency for plexus-archiver is there because the

default version with Maven doesn’t work on Java 9+.

Building and Starting the Container

Now that everything is in place, you can use mvn clean build dockerfile:buildto

generate a Docker container.

To launch the container, you can run it with something like this:

docker run -d spring-boot-recipes/dockerize:2.0.0-SNAPSHOT

This will start the container in the background and it will start to print messages to
the console. To see the logs, do docker logs <name-of-container> --followand you

will see a message printed every two seconds (Figure 11-3).

code/chld/recipe_14_4 master x
docker logs blissful_hypatia ——follow

-l | —
1t Spring Boot :: (v2.1.@.BUILD-SNAPSHOT)

2018-09-18 18:24:10.754 INFO 1 — [main] c.a.s.helloworld.HelloWorldApplication
2018-89-18 18:24:10.759 INFO 1 — [main] c.a.s.helloworld.HelloWorldApplication
2018-09-18 18:24:11.681 INFO 1 —— [main] o.s.s.concurrent.ThreadPoolTaskExecutor
2018-89-18 18:24:11.700 INFO 1 — [main] o.s.s.c.ThreadPoolTaskScheduler

Helle World, from Spring Boot 2!

2018-89-18 18:24:11.742 INFO 1 — [mainl c.a.s.helloworld.HelloWorldApplication
Helle World, from Spring Boot 2!
Hello World, from Spring Boot 2!
Helle World, from Spring Boot 2!
Hello World, from Spring Boot 2!

Figure 11-3. Docker container logging

: Starting HelloWorldApplicatior
3 No active profile set, falling
: Initializing ExecutorService "
: Initializing ExecutorService "

3 Started HelloWorldApplication

319

CHAPTER 11 PACKAGING

Passing Properties to the Spring Boot Application

When running a Spring Boot application in a Docker container, you probably want to be
able to change properties based on the environment the application gets deployed on. You
can use Spring Profiles for this (see also recipes in Chapter 2) but you still need to provide a
variable specifying which profile to use. Normally you would start the application like java
-jar your-applicarion.jar --spring.profiles.active=profile1,profile. However,
as you have a Docker container, that isn’t possible.

Luckily with Docker you can use the -e switch to pass in environment variables and,
as Spring Boot also takes into consideration the variables in the local environment,* that
will work.

For the simple application we have here, we can pass the audience property (by
default it will say World and the message becomes Hello World, from Spring Boot 2!).
Let’s change it to Docker. To do this you need to add -e AUDIENCE='Docker"' to the run
command.

docker run -d -e AUDIENCE='Docker' spring-boot-recipes/dockerize:2.0.0-SNAPSHOT

When looking at the logging of the newly started container, the message has changed
toHello Docker, from Spring Boot 2! (Figure 11-4).

[RSN S N (N N R N N A

[| —
1: Spring Boot :: (w2.1.0.BUILD-SNAPSHOT)
2018-09-18 18:27:00.941 INFO 1 — [main] c¢.a.s.helloworld.HelloWorldApplication 1 Starting HelloWorldApplicatior
2018-09-18 18:27:00.948 INFO 1 — [main] ¢.a.s.helloworld.HelloWorldApplication : No active profile set, fallinc
2018-09-18 18:27:01.863 INFO 1 — [main] o.s.s.concurrent,ThreadPoolTaskExecutor : Initializing ExecutorService '
2018-09-18 18:27:01.882 INFO 1 —- [main] o.s.s.c.ThreadPoolTaskScheduler : Initializing ExecutorService '
2018-09-18 18:27:01.916 INFO 1 —- [main] c¢.a.s.helloworld.HelloWorldApplication : Started HelloWorldApplication

Hello Docker, from Spring Boot 2!
Hello Docker, from Spring Boot 2!
Hello Docker, from Spring Eoot 2!
Hello Docker, from Spring Boot 2!
Hello Docker, from Spring Boot 2!

Figure 11-4. Docker container output

Note When setting variables to a Unix based system, you generally want to use
all uppercase characters in the name and replace any . with a _. So when passing
in spring.profiles.active that would become SPRING PROFILES ACTIVE.

*https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-
external-config.html

320

https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html
https://docs.spring.io/spring-boot/docs/current/reference/html/boot-features-external-config.html

Index

A

Access control decision
ADMIN role, 181
annotations and expressions
@EnableGlobalMethod
Security, 183-184
@PostAuthorize, 183
@PreAuthorize, 183-184
built-in expressions, 180, 181
SpEL, 180
Spring Beans
@ syntax, 182
AccessChecker, 183
@accessChecker.hasLocal
Access, 182
Access data
DataSource (see DataSource)
Flyway, database
database migrations, 202
database schema, 202
Flyway properties, 203
flyway_schema_history, 203
Spring Boot, database
ApplicationRunner, 201
DataSource initialize
properties, 199-200
data.sql, 199-200
Derby, 199

© Marten Deinum 2018

initialization, 202
schema.sql, 199-200

using JdbcTemplate (see JdbcTemplate)

using JPA (see JPA)
using plain Hibernate (see Plain
Hibernate)

Actuator

configuration (see Configuration,
actuator)

exporting metrics
CPU usage, 299, 304
Graphite, 303-305
micrometer.io, 303
properties, 304

health checks
@EnableScheduling, 302
HealthIndicator, 300-301
MeterBinder interface, 301
MetricBinder, 300
poolSize, 301
TaskScheduler, 300, 301-302

TaskSchedulerMetrics, 300, 301-302

ThreadPoolTaskExecutor, 301
anonymous() method, 172
Applications, Spring Boot

annotations, testing, 159
authenticated result, 158
authentication, 156

BookControllerTest, 159

M. Deinum, Spring Boot 2 Recipes, https://doi.org/10.1007/978-1-4842-3963-6

https://doi.org/10.1007/978-1-4842-3963-6

INDEX

Applications, Spring Boot (cont.) B
HTTP headers, 156
integration test, 160, 162-163
LibraryApplication, 157
password generation, 156
RequestPostProcessor, 159
ResponseEntity, 162
setBasicAuth method, 162-163
spring-boot-starter-security, 155
TestRestTemplate, 161
unauthenticated result, 157

@Bean method
ApplicationRunner interface, 20-21
@Autowired, 20
calculator, application, 17
calculator factory method, 20
calculator operations, 18-19
factory method, 17
operation.apply method, 18
operation.handles method, 18
@SpringBootApplication, 19, 20

user, 156

@WebMvcTest, 158-159

WebTestClient, 161-162 C

@With* annotations, 160 Configuration, actuator

withBasicAuth, 162 DataSource, 292

@WithMockUser, 159-160 HTTP metrics, 293-294

@WithUserDetails, 160 JMX metrics, 292-293

Web applications (see Web management server
applications, logging) CPU metrics, 299

WebFlux application (see WebFlux endpoint properties, 296
application, security) healthcheck, 298

Asynchronous request HealthIndicators, 298

async controllers testing, 89-90 individual endpoints, 296-297

asyncDispatch, 90 micrometer.io, 299

async processing, 90 port, 294

Callable<String>, 87-88 properties, 295

CompletableFuture<String>, 88-89 public internet, 295

controller, 87 secure management

DispatcherServlet, 88 endpoints, 297

HTTP request, 86 tomcat metrics, 299

return types, 86 X-Application-Context

Spring MockMvc, 89 header, 295

supplyAsync method, 89 metrics, 298

throughput, 86 spring-boot-starter-actuator, 291

WebMvcConfigurer, 90 @Controller annotated class, 122

@WebMvcTest, 89 @CookieValue, 122

322

D

DataSource
configuration, 194
DatabaseMetaData, 196
Derby, 194
embedded database, 194-195
HikariCP connection pool
settings, 197-198
JDBC driver, 196
JDBC support, 194
JNDI, 197
leak detection, 199
PostgreSQL, 196-197
Spring Boot, 194
TableLister, 195-197
Docker
container
ADD command, 317
buildArgs, 319
creation, 317
Dockerfile, 317
ENTRYPOINT command, 317-318
JAR_FILE, 317, 319
launch, 319
logs, 319
Maven Docker plugin, 316
passing properties
-e switch, 320
output, 320
Spring Profiles, 320
DriverManagerDataSource, 193
DynamicDestinationResolver, 274

E,F
EchoHandlerIntegration
Test, 108, 110, 151

INDEX

E-mail, sending
@Autowired field, 248
JavaMailSender, 246
JavaMailSenderImpl, 248
mail properties, 247
MailSenderApplication, 249
MIME message, 246
spring.mail.host
property, 247
Thymeleaf TemplateEngine
HTML templates, 249
SpringTemplateEnginge, 251
th:text, 250
@EnableWebFluxSecurity, 185
Error handling
adding attributes, 63-64
properties, 59
working, 59
custom error page, 61
stacktrace, custom
error page, 62-63
whitelabel error page, 60

G

Gradle, 6
building, 7
creating DemoApplication
class, 8-9
Graphite, 303
GreenMail, 248

H

HikariCP, 193-194
httpie, 94, 133
HTTP request, 85

323

INDEX

inMemoryAuthentication() method, 175

Integration test, WebSockets
assertions, received message, 153
callbacks, 152
@ClientEndpoint, 152-153
closeAndWait, 108, 152
@Configuration class, 151
connectToServer method, 110
ContainerProvider, 153
EchoHandlerIntegrationTest, 151
@LocalServerPort, 108, 150
Netty, 151
received messages assertions, 110
@RunWith, 150
sendTextAndWait, 108, 152
SimpleTestClientEndpoint, 153
@SpringBootTest, 108, 150
WebSocket client, 151

Internationalization (I18N) process
properties, 66
working, 65-68

J, K
Java enterprise services
Spring asynchronous process
@Async, 239
AsyncConfigurer, 243
@EnableAsync, 239-240
System.in.read, 241
TaskExecutor, 239, 241-242
TaskExecutorBuilder, 242-243
TaskExecutor properties, 242
Spring Boot, JMX MBean
(see JMX MBean)
Spring Boot, sending e-mail
(see E-mail, sending)

324

Spring task scheduling
@Component, 244
@EnableScheduling, 244-245
@Scheduled annotation, 243
SchedulingApplication, 245
SchedulingConfigurer, 245
TaskScheduler, 245

Java keytool, 80

Java Management Extensions (JMX), 239

Java WebSocket API, 108
JdbcTemplate
customer objects, 207
customer class creation, 205, 206
CustomerLister, 204
customer objects, 207-208
CustomerRepository, 208
single candidate DataSouce, 204
findAll method, 209
query method, 205
repository interface, 206
RowCallbackHandler, 205
RowMapper, 205, 208
testing JDBC code
embedded database, 209
findAll method, 211
Flyway, 210
H2, 209
includeFilters, 210
JdbcCustomerRepository, 209
@JdbcTest, 209
JUnit runner, 210
schema.sql, 210
Jetty container, 79
JMS
ActiveMQ
beans, 259

cachingmsConnectionFactory, 259

configuration properties, 258

Artemis
artemis-server, 261
beans, 260-261
cachingmsConnection
Factory, 260-261
configuration properties, 260
embedded configuration
properties, 262
JNDI, 262-263
spring-jms, 260
ConnectionFactory, 257
manual configuration, 263
receiving messages (see Receiving
messages, JMS)
sending messages (see JmsTemplate)
spring.jms.template, 264

JmsListenerContainerFactory, 273
JmsTemplate

configuration
DestinationResolver, 267
Jackson, 269
JSON, 268
MappingJackson2Message
Converter, 269
MessageConverter, 267
ObjectMessage, 269
Order, 268
properties, 267
receiveAndConvert method, 271
test methods, 271
test orders, 270-271
typeldPropertyName, 270
@EnableScheduling, 265
integration test, 265-266
JUnit test, 266
sendAndConvert methods, 264
time-queue, 265

INDEX

JMX MBean
JConsole, 252
JmxApplication, 252-253
JMX properties, 254
@ManagedOperation, 255
@ManagedResource, 252, 255
printMessage
operation, 255-256
shutdown operation, 253-254
JPA
EntityManagerFactory, 212
@EntityScan, 217-218
Order entity, 218
repositories
read customers, 214-215
@Entity, 212
EntityManager, 213
@id, 212
JPA properties, 215-216
@PersistenceContext, 213-214
read customers, 215
spring.jpa.properties, 216
Spring Data
CrudRepository, 217
findAll method, 217
findByld method, 217
spring.data.jpa.repositories, 217
testing repositories
CustomerRepository, 219
@DataJpaTest, 219
DataSource, 219
findAll method, 220
Flyway, 219
H2, 219
TestEntityManager, 219
@TestPropertySource, 219
transaction manager, 219

325

INDEX

L

LibrarySecurityConfig, 168

Maven
DemoApplication class, 3, 5
pom.xml, 2-3
@SpringBootApplication
annotation, 5
MBeans, 239
@MessageMapping annotated
method, 113, 116
Message/messaging
receiving
using JMS, 271
using RabbitMQ, 286
sending
using JMS, 264
using RabbitMQ, 278
MockMvc-based test, 51
MongoRepository, 232
Multipurpose Internet Mail Extensions
(MIME message), 246

N,O

NamedParameterJdbcTemplate, 204

Netty, 121, 124, 145

NoOpServerSecurityContext
Repository, 188

PQ

Packaging
archive size reduction
Docker (see Docker)
Thin Launcher (see Thin Launcher)

326

executable archive
APP_NAME, 310
.conffile, 309
configuration properties, 310
Gradle plugin, 307
initiInfoDescription, 309
JAR, 307
JARFILE, 310
Java, 309
Maven plugin, 308
Spring Boot Maven, 307
WAR file, deployment
bootstrap, 312
Recipe 3.1, 311
result, 314
Servlet/JEE container, 312-313
SpringApplicationBuilder, 312
SpringBootServlet
Initializer, 311-312
Tomcat, 311, 313
Tomcat management GUI, 314
WEB-INF/lib, 312
Plain Hibernate
API, 221
DataSource, 223
EntityManager, 221-222
getCurrentSession method, 223
HibernateCustomerRepository, 222
JpaTransactionManager, 223
LocalSessionFactoryBean, 223
SessionFactory, 221-222
Project reactor, 85

R

Rabbit listener
@Bean annotated method, 288
Jackson2]JsonMessageConverter, 288

JSON, 287
MarshallingMessageConverter, 288
MessageConverter, 288
properties, 286-287
@RabbitListener annotated
methods, 286
receiving messages, 287
sending reply
Order instances, 290
OrderConfirmation, 289
@SendTo annotation, 289
XML, 287
@RabbitListener annotated method, 288
RabbitMQ
AMQP messaging, 276
ConnectionFactory, 277
properties, 277
receiving messages (see Rabbit
listener)

sending messages (see RabbitTemplate)

RabbitTemplate
configuration properties, 278
ConnectionFactory, 278
convertAndSend method, 279
HelloWorldSender method, 280
integration test, 283, 285
@MockBean, 280
retry configuration, 279
sending object
convertAndSend method, 283
Jackson2JsonMessage
Converter, 281
Java serialization, 281
MessageConverter, 281
@MockBean, 283
scheduled method, 282
SimpleMessageConverter, 281
send messages, 278

INDEX

String.getBytes, 281
@Test method, 280

ReactiveAuthenticationManager, 188
Reactive Rest services

@AutoConfigureWebTestClient, 137
@DirtiesContext, 137
integration test, 135-137
JSON streaming, 134-135
Order class, 129-131
OrderController, 131-133
OrderGenerator, 129, 131
OrderService, 128-129
orders result, 133
@RestController, 128
Server Sent Events, 135
@SpringBootTest, 137
WebTestClient, 135

Receiving messages, JMS

@JmsListener, 271

listener container, 273-274

MappingJackson2Message
Converter, 274

MessageConverter, 274-275

method parameter types, 272

OrderConfirmation, 275-276

POJO, 271

@SendTo, 275

String, 273

rememberMe() method, 172
@RequestAttribute, 122

Request handling method, 46, 56
@RequestHeader, 122
@RequestParam, 122
@ResponseBody annotation, 40
Response writers

events, multiple results
event() factory-method, 98
HttpMessageConverter, 98

327

INDEX

Response writers (cont.)
Server-Sent-Events, 96-97
SseEmitter, 97-99
text/event-stream, 98

ResponseBodyEmitter, 91

response, multiple results
complete() method, 94
httpie, 94
HttpMessageConverter, 91
@MockBean, 95, 96
MockMvc, 96
Order, 91
OrderController, 91, 93, 94
OrderService, 92, 93
OrderService.findAll

method, 94

ResponseBodyEmitter, 94-95
@RunWith class, 95
@WebMvcTest class, 95

@RestController annotation, 40

RowCallbackHandler, 205

RSA algorithm, 80

S

SecurityMockMvcRequestPost
Processors, 159
@SendTo annotation, 289
ServerHttpRequest/ServerHttp
Response, 122
ServerSecurityContext
Repository, 188
Server-Sent-Events, 96, 100
SimpleDriverDataSource, 193

Simple/Streaming Text Oriented Message

Protocol (STOMP)
defined, 111
handler unit test, 116

328

integration testing
CompletableFuture, 119
EchoHandlerIntegrationTest
class, 117
transfer result, 118
@RunWith, 117
STOMP client, 118
StompSession, 119
test case, 118-119
WebSocketStompClient, 117
MessageMapping
channels and routing, 113
EchoHandler, 111-112
@EnableWebSocketMessage
Broker, 112-113
method arguments and
annotations, 116
STOMP messages, 113
webstomp-client, 114-115
WebSocket protocol, 111
Spring Boot
bean class
@Component, 16
@ComponentScan, 15
HelloWorldApplication, 16
@PostConstruct annotated
method, 16

@Bean method (see @Bean method)

configuration
@Configuration classes, 35
@Import, 35
@ImportResource, 34
Java, 35
@SpringBootApplication, 34
XML, 35

logging configuration
DEBUG logging, 33
Java temp directory, 33

Logback, provider, 33-34
logfile, 33
logging file, 33
logging.file.max-history, 33
logging.file.max-size, 33
logging.path, 33
log providers, 32
SLF4], 32
packaging (see Packaging)
properties
application.properties, 24
CalculatorApplication, 23

command line arguments, 22, 25

command line parameters, 26
IllegalArgumentException, 24
override, 22
profiles, 25
profile-specific, 22, 26
@PropertySource, 25
resources, 22
@Value, 23-24
testing
bootstrapping, 27
calculator, 28-29
JUnit rule, 30
@MockBean, 30-31
Mockito framework, 27, 28, 32
Mockito.mock, 29
ReflectionTestUtils class, 31
@Rule, 30
@SpringBootApplication, 29
@SpringBootTest, 29
@Test, 28
unit test, 27-28
Spring Boot actuator, see Actuator
Spring-boot-starter-security, 155
Spring-boot-starter-test, 12
Spring-boot-starter-websocket, 100

INDEX

Spring Data MongoDB
embedded MongoDB, 230
external connection

port 27017, 231
localhost, 231
MongoClient, 232
MongoDbFactory, 232
MongoDB properties, 231
MongoTemplate, 224
ApplicationListeners, 228, 229
ApplicationRunner, 227
create customer, 224-225
CustomerRepository, 225
Datalnitializer, 227
embedded MongoDB, 229
implementation, 226
reactive repositories
CustomerListener, 234
Datalnitializer, 233
elements delay, 235
reactive driver, 232
reactive libraries, 232
ReactiveMongoRepository, 233
System.in.read(), 234
testing
CustomerRepository, 237
@DataMongoTest, 236
deleteAll method, 236
embedded MongoDB, 236
findAll method, 237
JUnit, 236

Spring Expression Language (SpEL), 180

Spring Initializr, 10
ApplicationContext, 13
building JAR, 13
import project, 12
spring-boot-maven-plugin, 12
with values, 11

329

INDEX

spring.jpa.properties, 216
Spring Messaging abstraction, 111
Spring MockMvc testing
framework, 27
Spring MVC
configure SSL
key-store, 79-80
namespace, 79
support HTTPS, 81-84
embedded server
properties, 73-77
runtime container, 78
filters, 39
REST Resources
testing @RestController, 49-51
working, 42-46, 48-49
server properties, 73-74
testing, 40, 42
working
HelloWorldApplication, 38-39
HelloWorldController, 40
locale resolver, 68-72
spring-boot-starter-web, 37
Spring security
authenticating users (see User
authentication)
control decisions access (see Access
control decision)
Spring Boot, 155
Spring Boot application (see
Applications, Spring Boot)
SseEventBuilder, 98
StompSessionHandlerAdapter, 117

T

TaskSchedulerHealthIndicator, 301
TestStompFrameHandler, 119

330

Thin Launcher
dependencies reuse, 315
drawback, 316
layout, 315
libraries, 315
Maven Central, 315
META-INF/thin.properties, 316
pom.xml, 316
thinJarWrapper, 316
ThreadPoolTaskExecutor, 241
Thymeleaf, 52
controller, 140
Flux, 143
Flux<Order>, 140-141
index.html, 139
list.html, 141-142
OrderApplication, 142
OrderController, 140
order list, 143
OrderService, 141
properties, 53, 138-139
ReactiveDataDriverContext
Variable, 143-144
SpringWebFluxTemplateEngine, 138
ThymeleafReactiveViewResolver, 138
WebFlux application, 137
working, 52
adding controller, 55-57
adding details page, 57, 59
adding index page, 53
Thymeleaf Spring Dialect, 138
Tomcat server, 73, 151

Uuyv

User authentication
AuthenticationProviders, 173
BCrypt, 174

database

authoritiesByUsernameQuery(), 178

authorities table, 176
jdbcAuthentication()
configuration, 177
MEMBER_ROLE table, 178
MEMBER table, 177-178
spring.datasource properties, 177
SQL statements, 175
usersByUsernameQuery(), 178
users table, 176
encrypted passwords, 173
hash function, 173
in-memory, 174-175
password encryption, 179
SCrypt, 174
User.withDefaultPasswordEncoder()
method, 175

W XY Z
Web applications, logging
anonymous login, 172
anonymous user, 163
exception handling, 164
form-based login
addViewControllers methods, 168
authentication-failure-url, 169
configuration, 167
CSRF protection, 166
error message, 169
error request, 169
formLogin method, 165
login.html file, 166, 167
secure URL, 168
SPRING_SECURITY_LAST_
EXCEPTION, 169-170
view resolver, 168

INDEX

HTTP auto-config, 164
HTTP Basic authentication, 163, 165
httpBasic() method, 165
HttpServletRequest, 165
logout service
caches, 171-172
logout() configuration, 170
logoutSuccessUrl configuration, 171
POST requests, 170
remember-me login, 164
remember-me support, 172
security configuration, 164
WebSecurityConfigurerAdapter, 164

WebFlux

application, set up, 124
@Controller/ @RestController, 122
controller, unit test
MockMvc, 126
StepVerifier, 126
@WebFluxTest, 125
WebTestClient, 127
creating controller, 125
@GetMapping, 125
handler method, 122-123
HelloWorldApplication, 123-124
HTTP GET handler method, 125
HttpHandler, 121
Mono<Void>, 121
integration test
@SpringBootTest, 127
WebTestClient, 127-128
Map and Model objects, 123
ReactorHttpHandler
Adapter, 121
@RequestMapping, 122
ServletHttpHandler
Adapter, 121
ViewResolver interface, 123

331

INDEX

WebFlux application, security

access control decisions
access() expression, 191
built-in expressions, 190
ROLE_ADMIN, 191

@EnableWebFluxSecurity, 185

HTTP headers, 185

JAR files, 185

logging, 188

login form, 189

login page, 186

ReactiveAuthenticationManager, 188

spring-boot-starter-security, 185
URL access
csrf(), 187
SecurityWebFilterChain, 187
ServerHttpSecurity, 187
user authentication, 188-189
UserDetailsRepository, 188-189
WebMvcConfigurer, 168
@WebMvcTest, 41
WebSocket JavaScript object, 105
WebSocketConfigurer, 102
WebSocketHandlerRegistry, 103
WebSocketMessageBroker
Configurer, 112-113
WebSockets
bidirectional communication, 100
configuration, 100
EchoHandler, 145
@EnableWebSocket, 100
full duplex communication, 100
HTML & JavaScript
app.js, 147-148
callbacks, 148

332

echo function, 149
index.html, 149-150
WebSocket connection, 148
WebSocket service, 150
HTTP, 100
integration test (see Integration test,
WebSockets)
javax.websocket-api, 144
reactive application, 144
SimpleUrlHandlerMapping, 145
STOMP (see Simple/Streaming Text
Oriented Message Protocol
(STOMP))
WebSocketHandler (see
WebSocketHandler)
WebSocketHandler
Adapter, 145
WebSocketService, 145-147

WebSocketHandler, 145

app.js, 103-104

client output, 106

@Configuration class, 102

echo function, 105

EchoHandler, 101

echo WebSocket service, 106

index.html, 105-106

methods, 101

Mockito, 107

onclose callbacks, 105

onmessage callbacks, 105

onopen callbacks, 105

registerWebSocketHandlers
method, 102-103

unit test, 107

WebSocketStompClient, 119

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Spring Boot—Introduction
	1-1 Create a Spring Boot Application Using Maven
	Problem
	Solution
	How It Works
	Create the pom.xml
	Create the Application Class
	Simplify the Application Class

	1-2 Create a Spring Boot Application Using Gradle
	Problem
	Solution
	How It Works
	Create the build.gradle
	Create the Application Class

	1-3 Create a Spring Boot Application Using Spring Initializr
	Problem
	Solution
	How It Works
	Implement a Simple Application
	Building the JAR

	1-4 Summary

	Chapter 2: Spring Boot—Basics
	2-1 Configure a Bean
	Problem
	Solution
	How It Works
	Using @Component
	Using @Bean Method

	2-2 Externalize Properties
	Problem
	Solution
	How It Works
	Override Using an External application.properties
	Override Properties Using Profiles
	Override Properties Using Command Line Arguments
	Load Properties from Different Configuration File

	2-3 Testing
	Problem
	Solution
	How It Works
	Writing a Unit Test
	Mocking Dependencies in a Unit Test
	Integration Testing with Spring Boot
	Integration Testing with Spring Boot and Mocks

	2-4 Configure Logging
	Problem
	Solution
	How It Works
	Configure Logging
	Logging to File
	Using Your Preferred Logging Provider

	2-5 Reusing Existing Configuration
	Problem
	Solution
	How It Works
	Reusing Existing XML Configuration
	Reusing Existing Java Configuration

	Chapter 3: Spring MVC
	3-1 Getting Started with Spring MVC
	Problem
	Solution
	How It Works
	Testing

	3-2 Exposing REST Resources with Spring MVC
	Problem
	Solution
	How It Works
	Testing a @RestController

	3-3 Using Thymeleaf with Spring Boot
	Problem
	Solution
	How It Works
	Adding an Index Page
	Adding a Controller and View
	Adding a Details Page

	3-4 Handling Exceptions
	Problem
	Solution
	How It Works
	Adding Attributes to the Model

	3-5 Internationalizing Your Application
	Problem
	Solution
	How It Works

	3-6 Resolving User Locales
	Problem
	Solution
	How It Works
	Resolving Locales by an HTTP Request Header
	Resolving Locales by a Session Attribute
	Resolving Locales by a Cookie
	Using a Fixed Locale
	Changing a User’s Locale

	3-7 Selecting and Configuring the Embedded Server
	Problem
	Solution
	How It Works
	General Configuration Properties
	Changing the Runtime Container

	3-8 Configuring SSL for the Servlet Container
	Problem
	Solution
	How It Works
	Creating a Self-Signed Certificate
	Configure Spring Boot to Use the Keystore
	Support Both HTTP and HTTPS
	Redirect HTTP to HTTPS

	Chapter 4: Spring MVC - Async
	4-1 Asynchronous Request Handling with Controllers and TaskExecutor
	Problem
	Solution
	How It Works
	Writing an Asynchronous Controller
	Use a Callable
	Use a CompletableFuture
	Testing Async Controllers
	Configuring Async Processing

	4-2 Response Writers
	Problem
	Solution
	How It Works
	Send Multiple Results in a Response
	Sending Multiple Results as Events

	4-3 WebSockets
	Problem
	Solution
	How It Works
	Configure WebSocket Support
	Creating a WebSocketHandler
	Unit Testing a WebSocketHandler
	Integration Testing Plain WebSockets

	4-4 WebSockets with STOMP
	Problem
	Solution
	How It Works
	Using STOMP and MessageMapping
	Unit Testing the Handler
	Integration Testing with STOMP

	Chapter 5: Spring WebFlux
	5-1 Developing a Reactive Application with Spring WebFlux
	Problem
	Solution
	How It Works
	Setting Up a Spring WebFlux Application
	Creating Spring WebFlux Controllers
	Unit Test for Reactive Controllers
	Integration Test for Reactive Controllers

	5-2 Publishing and Consuming with Reactive Rest Services
	Problem
	Solution
	How it Works
	Streaming JSON
	Server Sent Events
	Write an Integration Test

	5-3 Use Thymeleaf as a Template Engine
	Problem
	Solution
	How It Works
	Use Thymeleaf Views
	Making it More Reactive

	5-4 WebFlux and WebSockets
	Problem
	Solution
	How It Works
	HTML & JavaScript Echo Client
	Write an Integration Test

	Chapter 6: Spring Security
	6-1 Enable Security in Your Spring Boot Application
	Problem
	Solution
	How it Works
	Testing Security
	Integration Testing Security

	6-2 Logging into Web Applications
	Problem
	Solution
	How It Works
	HTTP Basic Authentication
	Form-Based Login
	The Logout Service
	Anonymous Login
	Remember-Me Support

	6-3 Authenticating Users
	Problem
	Solution
	How It Works
	Authenticating Users with In-Memory Definitions
	Authenticating Users Against a Database
	Encrypting Passwords

	6-4 Making Access Control Decisions
	Problem
	Solution
	How It Works
	Using Expression to Make Access Control Decisions Using Spring Beans
	Securing Methods with Annotations and Expressions

	6-5 Adding Security to a WebFlux Application
	Problem
	Solution
	How It Works
	Securing URL Access
	Logging in to Web Flux Applications
	Authenticating Users
	Making Access Control Decisions

	6-6 Summary

	Chapter 7: Data Access
	7-1 Configuring a DataSource
	Problem
	Solution
	How It Works
	Use an Embedded DataSource
	Using an External Database
	Obtaining a DataSource from JNDI
	Configure the Connection Pool
	Initializing the Database with Spring Boot
	Initializing the Database with Flyway

	7-2 Use JdbcTemplate
	Problem
	Solution
	How It Works
	Testing JDBC Code

	7-3 Use JPA
	Problem
	Solution
	How It Works
	Using Plain JPA Repositories
	Use Spring Data JPA Repositories
	Including Entities from Different Packages
	Testing JPA Repositories

	7-4 Use Plain Hibernate
	Problem
	Solution
	How It Works
	Using the EntityManager to Obtain the Session
	Using the SessionFactory

	7-5 Spring Data MongoDB
	Problem
	Solution
	How It Works
	Use the MongoTemplate
	Use Embedded MongoDB
	Connect to an External MongoDB
	Use Spring Data MongoDB Repositories
	Reactive MongoDB Repositories
	Testing Mongo Repositories

	Chapter 8: Java Enterprise Services
	8-1 Spring Asynchronous Processing
	Problem
	Solution
	How It Works
	Configuring the TaskExecutor
	Use the TaskExecutorBuilder to Create a TaskExecutor

	8-2 Spring Task Scheduling
	Problem
	Solution

	How It Works

	8-3 Sending E-mail
	Problem
	Solution
	How It Works
	Configure the JavaMailSender
	Sending a Plain Text E-mail
	Using Thymeleaf for E-mail Templates

	8-4 Register a JMX MBean
	Problem
	Solution
	How It Works

	Chapter 9: Messaging
	9-1 Configure JMS
	Problem
	Solution
	How It Works
	Use ActiveMQ
	Use Artemis
	JNDI

	Manual Configuration

	9-2 Send Messages Using JMS
	Problem
	Solution
	How It Works
	Send a Message with JmsTemplate
	Configure the JmsTemplate

	9-3 Receive Messages Using JMS
	Problem
	Solution
	How It Works
	Receiving Messages
	Configure the Listener Container
	Use Custom MessageConverter
	Sending a Reply

	9-4 Configure RabbitMQ
	Problem
	Solution
	How It Works

	9-5 Send Messages Using RabbitMQ
	Problem
	Solution
	How It Works
	Configure the RabbitTemplate
	Sending a Simple Message
	Sending an Object
	Write an Integration Test

	9-6 Receive Messages Using RabbitMQ
	Problem
	Solution
	How It Works
	Receiving a Simple Message
	Receiving an Object
	Receiving a Message and Sending a Reply

	Chapter 10: Spring Boot Actuator
	10-1 Enable and Configure Spring Boot Actuator
	Problem
	Solution
	How It Works
	Configure the Management Server
	Configure Individual Management Endpoints
	Securing Management Endpoints
	Configure Healthchecks
	Configure Metrics

	10-2 Create Custom Health Checks and Metrics
	Problem
	Solution
	How It Works

	10-3 Export Metrics
	Problem
	Solution
	How It Works

	Chapter 11: Packaging
	11-1 Create an Executable Archive
	Problem
	Solution
	How It Works
	Making the Archive Executable
	Specifying Configuration

	11-2 Create a WAR for Deployment
	Problem
	Solution
	How It Works

	11-3 Reduce Archive Size Through the Thin Launcher
	Problem
	Solution
	How It Works

	11-4 Using Docker
	Problem
	Solution
	How It Works
	Update Build Script to Produce a Docker Container
	Building and Starting the Container
	Passing Properties to the Spring Boot Application

	Index

