
Progressive
Web Apps
with Angular

Create Responsive, Fast and Reliable
PWAs Using Angular
—
Majid Hajian

Progressive Web Apps
with Angular

Create Responsive, Fast and Reliable
PWAs Using Angular

Majid Hajian

Progressive Web Apps with Angular

ISBN-13 (pbk): 978-1-4842-4447-0			 ISBN-13 (electronic): 978-1-4842-4448-7
https://doi.org/10.1007/978-1-4842-4448-7

Copyright © 2019 by Majid Hajian

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress LLC: Welmoed Spahr
Acquisitions Editor: Louise Corrigan
Development Editor: James Markham
Coordinating Editor: Nancy Chen

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484244470. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Majid Hajian
Oslo, Norway

https://doi.org/10.1007/978-1-4842-4448-7

To my lovely wife and daughter, who give me a reason to write,
accept me for me, support my drive and ambitions.

v

Table of Contents

Chapter 1: Setup Requirements��� 1

Progressive Web App Fundamentals�� 1

Why Angular?��� 2

Installing Node and NPM�� 3

Installing Chrome��� 4

Scaffolding Our Project�� 4

Generating New Angular App with CLI�� 4

Adding Angular Material Design��� 5

Setting Up a Mobile Device�� 8

Setting Up a Mobile Emulator�� 8

Connecting Android Simulator to Chrome Dev Tools�� 8

Summary��� 8

Chapter 2: Deploying to Firebase as the Back End�� 9

Setting Up Your Account��� 9

Creating a Project�� 10

Deploying to Firebase�� 12

Generating a New Angular App��� 12

Initializing the App�� 16

About the Author�� xi

About the Technical Reviewer�� xiii

Acknowledgments��xv

Introduction��xvii

vi

Deploying Our App�� 21

Setting Up AngularFire�� 22

Summary��� 27

Chapter 3: Completing an Angular App��� 29

Implementing Our UI�� 29

Installing and Setting Up Angular Material, CDK, and Animations�� 30

Creating a Core Module / Shared Module�� 33

Header, Footer, and Body Components��� 35

Login / Profile Page�� 41

Adding Login, Signup, and Profile UI and Functionalities��� 43

Firebase CRUD Operations for Note Module��� 51

Summary��� 70

Chapter 4: Angular Service Worker��� 71

Service Workers: The Brain of PWAs�� 71

Understanding Service Worker��� 72

The Service Worker Life Cycle�� 73

Service Worker Functional Events�� 76

Chrome DevTools�� 76

Service Worker Example Code�� 79

Cache API��� 83

Precache Static Assets��� 85

Angular Service Worker Module��� 88

Support for Service Worker in Angular��� 90

ngsw-config.json Anatomy��� 97

Build Project with Angular Service Worker��� 101

Summary��� 104

Chapter 5: Advanced Angular Service Worker and Runtime Caching������������������� 107

Cache Strategies�� 107

Cache Only�� 107

Network Only�� 108

Table of Contents

vii

Cache Falling Back to Network or Cache-First��� 109

Network Falling Back to Cache or Network-First��� 110

Cache and Network�� 112

Generic Fallback��� 114

Runtime Cache in Angular Service Worker�� 116

External Resources��� 116

Revalidate Strategy for Resources with No Hash��� 121

Data Groups Settings�� 122

Navigation Cache�� 131

AppData Config��� 134

Dealing with Updates��� 134

Deploy to Firebase��� 138

Summary��� 139

Chapter 6: An App Manifest and Installable Angular App������������������������������������� 141

The Web App Manifest��� 141

Debugging Web App Manifest��� 148

Adding to Home Screen��� 150

Handling Installation Event (Deferring the Prompt)�� 152

The Mini-Info Bar�� 153

Implementing Functionality into Angular App��� 154

Adding to Home Screen on Mobile and Desktop�� 157

Microsoft Windows��� 159

Android and Chrome��� 161

Manually Adding to Home Screen�� 164

Further Enhancement��� 165

Summary��� 168

Chapter 7: App Shell and Angular Performance�� 169

The App Shell Model�� 169

Angular App Shell��� 171

Angular App Shell and Angular Universal��� 174

Generating the App Shell in Production�� 179

Table of Contents

viii

Measuring App Shell Performance via webpagetest.org��� 182

Measuring App Shell Performance via Audit tab in Chrome DevTools���������������������������������� 184

Beyond the App Shell, Further Optimizations��� 187

Analyze Bundle Sizes and Lazy Load Module��� 187

Waterfall View from Web Page Test�� 189

Reduce Render Blocking CSS��� 190

Optimize Fonts�� 192

Browser Resource Hinting�� 195

Preload Angular Lazy Loaded Modules��� 197

HTTP/2 Server Push�� 198

Summary��� 199

Chapter 8: Push Notifications�� 201

Introduction to Push Notifications�� 201

Web Notifications��� 202

Push Notifications�� 203

Browser Supports��� 206

Push Notification in Angular��� 206

Showing Again the Allow/Block Notifications Popup�� 214

Sending Push Notifications�� 215

Firebase Cloud Function��� 216

lPush Message Body�� 221

Listen to Messages in Angular��� 225

Notification Actions and Handling Notification Click Events��� 225

Deploy to Firebase�� 227

Summary��� 227

Chapter 9: Resilient Angular App and Offline Browsing�� 229

Offline Storage��� 230

Offline First Approach��� 232

Summary��� 253

Table of Contents

ix

Chapter 10: Debugging and Measurement Tools��� 255

Debugging�� 255

NGSW Debug�� 255

Web App Manifest��� 256

Service Workers��� 258

Storage��� 264

Cache�� 267

Simulate Offline Behavior��� 269

Simulate Different Network Conditions�� 271

Simulate Mobile Devices�� 272

Measurement��� 273

Audit��� 273

Analytics��� 279

Online Tools�� 282

Real Device��� 282

Summary��� 282

Chapter 11: Safety Service Worker�� 283

Fail-safe��� 283

Safety Worker��� 285

Extended Safety Worker��� 286

Summary��� 288

Chapter 12: Modern Web APIs��� 289

Credential Management��� 290

Browsers Support��� 298

Payment Request��� 299

Browsers Support��� 308

Video and Audio Capturing��� 308

Browsers Support��� 315

Table of Contents

x

Geolocation�� 316

Browsers Support��� 320

Web Bluetooth�� 320

Browsers Support��� 324

Web USB��� 324

Browsers Support��� 330

Summary��� 330

Chapter 13: PWA with Angular and Workbox�� 331

Angular and Workbox Setup��� 332

Workbox Wizard Mode�� 334

Workbox injectManifest�� 338

Summary��� 345

Chapter 14: Advanced Workbox�� 347

Dealing with Updates��� 347

Background Sync��� 351

Push Notification�� 359

Offline Analytics��� 364

Summary��� 365

Chapter 15: Next Steps�� 367

Learning Resources��� 367

Case Studies�� 368

Example Applications��� 369

Tools and Technologies�� 369

Last Words��� 373

�Index�� 375

Table of Contents

xi

About the Author

Majid Hajian is a software developer that has developed and

architected complex web applications since 2007 – after he

graduated as a software engineer.

Majid is passionate about web platforms, especially

hardware connectivity and performance; and, in particular,

Progressive Web Apps.

He loves sharing his knowledge with the community

by writing on his blog majidhajian.com and tweeting

@mhadaily, speaking at conferences, visiting developers

to help them, contributing to open source, and organizing

meetups and events.

He is a co-organizer of a few meetups in Norway dedicated to front end and mobile

in Oslo, including Mobile Meetup, Vue.js Oslo, and Angular Oslo. Majid is also orginizer

and an active contributor to Mobile Era and ngVikings, which are the main Nordic

conferences for mobile and Angular.

xiii

About the Technical Reviewer

Maxim Salnikov (@webmaxru) is an Oslo-based Web

Full-Stack Engineer, a Google Developer Expert in Web

Technologies and IoT, and a Microsoft MVP in Development

Technologies. He’s been architecting complex web

applications since the end of the last century and has

extensive experience with all aspects of web platforms

focusing on apps managing real-time data from IoT devices

and Progressive Web Apps.

Maxim is a founder and active contributor to two

conferences: Mobile Era and ngVikings – Nordic’s main

conferences for mobile and Angular developers, respectively.

He also leads Norway’s largest meetups dedicated to web

front end and mobile: Angular Oslo, Mobile Meetup, and

Oslo PWA.

Maxim is passionate about sharing his web platform experience and knowledge with

the community. He travels extensively for developer events and speaking/training at

conferences and meetups around the world.

xv

Acknowledgments

Writing this book was a truly enjoyable and great experience and believe or not, it was

way more difficult than it looks. There is a lot of work to be done and lots of people that

need to help.

First, I want to start by thanking my wonderful wife, Shirin, for all of her support,

encouragement, and patience while I was writing this book. I always run to you with my

crazy ideas, but you are always patient enough to listen and motivate me!

I’d like to thank my lovely daughter, Hournaz, who was supportive and so patient

because I didn’t have time for her when I was writing this book.

Many of the technical aspects of this book would not have been possible without the

help of Maxim Salnikov. In other words, I believe and always say, this is a book by me

and my true friend Maxim. Thanks for all of your efforts and encouragement.

A special thanks to the Apress team: Jade Scard; Nancy Chen for being so calm and

insightful; and James Markham for the editing process, which made it a breeze – and I

guess it was fun, too!

Thanks to all Angular and PWA community leaders and members, and thank you to

Addy Osmani, Jake Archibald, Alex Rickabaugh, and many other PWA devs that I have

never met – you don’t even know how much I learned from you.

Finally, I am extremely grateful to you, the Reader. Despite the fact that there are tons

of videos, tutorials, and blogs available on the internet, you have chosen this book, which

might not have been an easy purchase. Thanks for your faith. I hope you enjoy reading it

as much as I enjoyed writing it.

xvii

Introduction

Progressive Web Apps by Angular are amazing ways to build web applications that utilize

PWAs’ great features: they are fast, engaging, and resilient. In this book, I will start by

exploring the basics of PWAs and soon will dive into Angular Service Worker and its

capabilities in different chapters – not only to improve your own PWAs – but also to

explore tips and tricks and best practices to build an outstanding web application. My

approach in this book is to create an Angular application and slowly improve it and turn

it to a PWA; thus, you will see gradually how we will progressively build and deploy

a real-world application.

Web development, especially in the front end, was different 12 years ago. The web is

evolving very fast. PWAs, Hardware connectivity APIs on the web, and new modern APIs

help to create not only much faster and more reliable applications but also ones that are

much more native like and pleasant for our customers. So, in this book, I am going to

review some of the newest modern APIs that are exciting and will open a new era on the

web, in particular, for mobile web development in the feature.

Last but not least, different applications have different needs. Therefore, in this book,

I am going to cover building Progressive Web Apps using Angular by implementing

Workbox. You will see in this book how different features are being used in Angular

Service Worker and Workbox, respectively, and you can make a decision to use either

one of them based on your particular application requirements.

1
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_1

CHAPTER 1

Setup Requirements
In this book, I strive to take you on a journey where you can create the most

comprehensive Progressive Web Apps (PWAs) with Angular. But before I start,

we’ll review some PWA fundamentals and set up the environment that will be used

throughout the book.

�Progressive Web App Fundamentals
PWAs are applied to those web applications that are fast, engaging, reliable, and will

try to progressively enhance user experience regardless of their browsers, platforms, or

devices. In other words, a PWA is not only one framework, tool, or fancy buzzword, but

it is a mindset for constant enhancement by leveraging browsers’ modern APIs, which

leads to satisfaction for every single user.

No matter which framework you choose to work with, no matter which language you

choose to write your code with, PWAs must have special characteristics:

	 1.	 Instant loading: Application should load fast and must be

interactive very quickly.

	 2.	 Connectivity independent: With either no network or a slow and

unstable connection, the application must continue working.

	 3.	 Responsive, mobile-first, offline-first design: Let’s focus and

optimize for mobile first, which has lower hardware capacity, and

the application should be completely usable on mobile.

	 4.	 Re-engaging: A push notification is one way to send a reminder to

a user.

2

	 5.	 Native-like features: Having UI architecture like App Shell and

using hardware APIs like Web Bluetooth can make our web app

more like a native app.

	 6.	 Secure: Security is the highest priority, and every PWA must serve

via HTTPs.

	 7.	 Installable: Being installable means it’ll be added to the device’s

home screen and launched like a native app.

	 8.	 Progressive: Regardless of browsers or devices, our app should

evolve and embrace new features and give every single one of

them the best user experience.

�Why Angular?
A couple of years ago, the front-end world was dominated by Angular 1.x even

before React came to the market. By establishing and finalizing ES6 and TypeScript

appearances as well as new browser features and standards that have been adapted

widely, the Angular team, which has been backed by Google, decided to rewrite

AngularJS, formerly known as Angular 1.x, leading toward Angular 2, called Angular

nowadays. Angular is backed by Observable APIs with Rxjs and TypeScript and has

unique features such as robust change detection and routing, animation, lazy loading,

a headache-free bundle process, CLI, and tons of other APIs. These make it an

exceptional, capable, and full-fledged front-end framework that is trusted by many

companies worldwide to build and distribute complex web applications.

Additionally, the Angular Service Worker module has been introduced in version

5, improved in version 6,1 and is now getting updates regularly in order to add more

features and become stable. Although Angular Service Worker along with Angular CLI

is not the only option to create a PWA, it is very well maintained, which allows us to

effortlessly create or convert an Angular app to a PWA.

All in all, it’s not that far off to say you have an all-in-one framework to create a web

and mobile application, and this makes Angular unique.

1�At the time I am writing this book, Angular is in version 6, but when you read this book, it may
have a higher version.

Chapter 1 Setup Requirements

3

�Installing Node and NPM
You need to make sure that you have Node and NPM installed on your machine. Simply

run the following commands to check your Node and NPM version or to see if you have

already installed them:

$ node -v

$ npm -v

Node 8 or higher and NPM 5 or higher are needed. You can visit the Node website at

https://nodejs.org and download the latest version based on your operating system

(Figure 1-1).

Figure 1-1.  Node official website where you can download the latest version of
NodeJS

Chapter 1 Setup Requirements

https://nodejs.org

4

YARN is an alternative to NPM and has been around for a while. If you prefer to use

it, you should visit https://yarnpkg.com/en/docs/install and then install the latest

version based on your operating system. To check if you have YARN installed, simply run

the following command:

$ yarn -v

�Installing Chrome
Although we create a PWA that will work regardless of browsers of your choice, I will

stick to Chrome and its dev tools to develop and debug Service Worker as well as other

PWA features. At the time of writing the book, Chrome has a PWA auditing tool called

Lighthouse that is built in under the Audit tab. If you would like to download Chrome,

you can visit https://www.google.com/chrome/.

I will evaluable our application with Lighthouse and boost our PWA score later

in this book. We continuously use the applications tab to debug our Service Worker,

IndexedDB, Web App manifest, etc.

�Scaffolding Our Project
It is time to scaffold our project using Angular CLI. So, before we proceed, first install

Angular CLI globally by running the following:

$ npm install -g @angular/cli

Or

$ yarn global add @angular/cli

Now that CLI is installed globally, we can generate a new Angular application.

�Generating New Angular App with CLI
As soon as Angular CLI version 6 is installed (you may have a higher version when

you read this book), you have the ng command available globally in your terminal.

Let’s scaffold our project simply by running the following:

$ ng new lovely-offline –-routing –-style=scss

Chapter 1 Setup Requirements

https://yarnpkg.com/en/docs/install
https://www.google.com/chrome/

5

Lovely-offline is our application name, routing will generate the route module, and

style=scss indicates the scss prefix for our styling files.

�Adding Angular Material Design
The Angular Material module is, perhaps, one of the best UI libraries for a web app.

It will let us develop our application rapidly and flawlessly. You are not limited to this

library only, but I recommend it for this project. To install:

$ npm install --save @angular/material @angular/cdk @angular/animations

Now open the project in your editor or Idea, and then under /src/app, find the

app.module.ts, and import BrowserAnimationsModule into your application to enable

animations support.

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { BrowserAnimationsModule } from '@angular/platform-browser/

animations';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 BrowserAnimationsModule,

 AppRoutingModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Chapter 1 Setup Requirements

6

To use each component, we should import their relevant module into ngModule,

for instance:

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { BrowserAnimationsModule } from '@angular/platform-browser/

animations';

import { MatToolbarModule } from '@angular/material/toolbar';

import { MatIconModule } from '@angular/material/icon';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 BrowserAnimationsModule,

 MatToolbarModule,

 MatIconModule,

 AppRoutingModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

A theme is required; therefore, I will add one of the available themes to style.scs in

our project:

@import "~@angular/material/prebuilt-themes/indigo-pink.css";

It is recommended that you install and include hammer.js as Gestures in Material

design are relied on in this library.

$ npm install hammerjs

Chapter 1 Setup Requirements

7

After installing, import it in src/main.ts

import { enableProdMode } from '@angular/core';

import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app/app.module';

import { environment } from './environments/environment';

import 'hammerjs';

if (environment.production) {

 enableProdMode();

}

platformBrowserDynamic().bootstrapModule(AppModule)

 .catch(err => console.log(err));

Icons requires the Google Material Icons font; thus, we will add the font CDN link to

our index.html file:

<!doctype html>

<html lang="en">

<head>

 <meta charset="utf-8">

 <title>LovelyOffline</title>

 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 �<link href="https://fonts.googleapis.com/icon?family=Material+Icons"

rel="stylesheet">

 <link rel="icon" type="image/x-icon" href="favicon.ico">

</head>

<body>

 <app-root></app-root>

</body>

</html>

Now our project is ready to use. Simply run ng serve or npm start. You can access the

project in your browser by entering localhost:4200.

Chapter 1 Setup Requirements

8

�Setting Up a Mobile Device
There is nothing better than testing our application in a real device to see how it

looks. Android, along with Chrome, is supporting most of the PWA features including

Service Worker, Push notification, and background sync as well as even more

modern browser APIs.

Please read the article below on the Google developer website, https://

developers.google.com/web/tools/chrome-devtools/remote-debugging, if you have

a real device and want to conveniently connect it to Chrome dev tools. Keep in mind

that the real device is not necessary; you can always test your app via Android and iOS

emulators.

�Setting Up a Mobile Emulator
To run an Android Emulator, I recommend you install Android Studio and follow the

instructions placed on the Android developer website: https://developer.android.

com/studio/run/emulator.

Mac Users are also able to install xCode and run an iPhone simulator on their Mac.

After installing xCode from https://developer.apple.com/xcode/, you should be able

to find Open Developer Tool under the xCode menu, and then you can open Simulator to

open your selected iPhone / iPad.

�Connecting Android Simulator to Chrome Dev Tools
You now should be able to connect your Android simulator to Chrome dev tools. Please

refer to the “Set Up Mobile Device” section.

�Summary
In this chapter, we have looked at PWA fundamentals, and then we scaffolded our projects

using CLI. Angular Material has been added to our project in order to style our app.

Moreover, we have reviewed other tools that we will need throughout this course

such as Node, NPM, YARN, and Chrome; and we learned how to set up our real device as

well as our simulators in order to properly test our app.

Chapter 1 Setup Requirements

https://developers.google.com/web/tools/chrome-devtools/remote-debugging
https://developers.google.com/web/tools/chrome-devtools/remote-debugging
https://developer.android.com/studio/run/emulator
https://developer.android.com/studio/run/emulator
https://developer.apple.com/xcode/

9
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_2

CHAPTER 2

Deploying to Firebase as
the Back End
Firebase is considered a Backend as a Service, which is now part of the Google Cloud

Platform while it’s still serving as an independent entity. It offers different services such

as hosting, real-time databases, and cloud functions.

In this chapter, I am going to show you how we can deploy our app to Firebase.

It’s important to mention that Firebase is not the only option. However, since it’s

easy to set up and deploy, I encourage you to use Firebase as our host server.

Additionally, we may need to write a bit of back-end logic for our application;

therefore, Firebase Function is one of the best choices, in order to leverage serverless

architecture and reduce our concerns regarding a back-end system, while the front end

will remain our main focus.

Last but not least, to persist our data, we will use Firebase Firestore, which gives

us the best passivity to store and retrieve our data as quickly and possible with built-in

JSON access to each collection and document where needed.

�Setting Up Your Account
Let’s get started by opening firebase.google.com. Sign in with your Gmail credentials, but

if you don’t have any, please continue by first registering a Google account.

After you have signed in, continue and hit “GO TO CONSOLE.” You will be redirected

to your console where you can see your projects.

http://firebase.google.com

10

You should see a new view where it is going to ask you about your project details

such as your project name. Awesome-Apress-PWA is what I have chosen to name my

project.

You may need to change your organization or Cloud Firestore location; however,

the default setting should be enough to get started. Keep in mind that if you change the

Cloud Firestore location, you will not be able to alter it until your project is created.

I will leave “Use the default settings for sharing Google Analytics for Firebase
data” and “Terms and Condition” checked. Now, it’s time to hit Create project button,

as shown in Figure 2-2.

�Creating a Project
Now it’s time to add your project; simply click Add project, as shown in Figure 2-1.

Figure 2-1.  Firebase console, where you should hit Add Project to create a new
project

Chapter 2 Deploying to Firebase as the Back End

11

Figure 2-2.  Firebase project detail modal

It may take several seconds before your project gets ready. As soon as the project is

ready, you can continue to your project’s dashboard (see Figure 2-3).

Chapter 2 Deploying to Firebase as the Back End

12

�Deploying to Firebase
We have chosen Firebase as it’s easy to work with for our project, and you’ll see in a

minute how painless deployment is with Firebase CLI (Command-Line Interface).

�Generating a New Angular App
Before we start, we need to generate a new Angular app using Angular CLI (Command-

Line Interface). If you don’t have @angular/cli installed globally on your machine, you

should run the following command first:

$ npm install -g @angular/cli

To generate a new Angular app with routing and scss set up, we can run:

$ ng new lovely-offline --routing --style=scss

 Name of project enable routing styling with scss

Figure 2-3.  After several seconds, the project is ready, so simply click on the
“Continue” button to be redirected to the dashboard

Chapter 2 Deploying to Firebase as the Back End

13

After installing all NPM dependencies, you will have your app ready for building and

then deploying.

├── README.md
├── angular.json
├── e2e
├── node_modules
├── package-lock.json
├── package.json
├── src
│ ├── app
│ ├── assets
│ ├── browserslist
│ ├── environments
│ ├── favicon.ico
│ ├── index.html
│ ├── karma.conf.js
│ ├── main.ts
│ ├── polyfills.ts
│ ├── styles.scss
│ ├── test.ts
│ ├── tsconfig.app.json
│ ├── tsconfig.spec.json
│ └── tslint.json
├── tsconfig.json
└── tslint.json

Let’s now build our app for production.

$ ng build --prod

> ng build

Date: 2018-08-26T17:20:35.649Z

Hash: e6da8aa80ad79bc41363

Time: 6332ms

chunk {main} main.js, main.js.map (main) 11.6 kB [initial] [rendered]

chunk {polyfills} polyfills.js, polyfills.js.map (polyfills) 227 kB

[initial] [rendered]

Chapter 2 Deploying to Firebase as the Back End

14

chunk {runtime} runtime.js, runtime.js.map (runtime) 5.22 kB [entry] [rendered]

chunk {styles} styles.js, styles.js.map (styles) 16 kB [initial] [rendered]

chunk {vendor} vendor.js, vendor.js.map (vendor) 3.18 MB [initial] [rendered]

The build is a success, and now it’s time to deploy our app to Firebase. Let’s install

Firebase CLI.

$ npm install -g firebase-tools

Now the firebase command is available globally in our command line. Before we can

deploy, we need to make sure we have enough privileges; thus, we should now log in to

Firebase to set our credentials, so simply run:

$ firebase login

A questionnaire appears like that below:

Allow Firebase to collect anonymous CLI usage and error

reporting information? (Y/n) Y

Visit this URL on any device to log in:

https://accounts.google.com/o/oauth2/........

Waiting for authentication...

As soon as you see Authentication URL, you will be redirected to a browser in order

to sign in to your Google account. Then, you should grant enough permission to Firebase

CLI by clicking Allow access, as shown in Figure 2-4.

Chapter 2 Deploying to Firebase as the Back End

15

As quickly as permission is given, you should see a success message in your browser,

as shown in Figure 2-5.

Figure 2-4.  Click Allow to give Firebase CLI permission to access your
account

Chapter 2 Deploying to Firebase as the Back End

16

You will also see a success message as seen below in your terminal, which means

that Firebase CLI now has enough access to your Firebase projects.

✓ Success! Logged in as mhadaily@gmail.com

�Initializing the App
The next step is to initialize your Firebase project. This will link your local Angular app to

the Firebase application that we just created. To do this, make sure you are in the root of

the project and run:

$ firebase init

Once you hit the command above, Firebase CLI asks you a few questions, appearing

in your terminal, in order to scaffold your Firebase project and create necessary

requirements that are essential to deploy our application to Firebase. Let’s review each

question step by step.

�Features Selection

The first question, as shown below, is about which Firebase features we would like to

use:

Which Firebase CLI features do you want to set up for this folder? Press

Space to select features, then Enter to confirm your choices.

 ◯ Database: Deploy Firebase Realtime Database Rules

> ◉ Firestore: Deploy rules and create indexes for Firestore

Figure 2-5.  Success message in your browser after giving permission to
Firebase CLI

Chapter 2 Deploying to Firebase as the Back End

17

 ◉ Functions: Configure and deploy Cloud Functions

 ◉ Hosting: Configure and deploy Firebase Hosting sites

 ◯ Storage: Deploy Cloud Storage security rules

Firebase Realtime Database1 and Firestore2 are two NoSQL databases services

to store and sync data for client- and server-side development. Cloud functions for

Firebase lets you automatically run back-end code in response to events triggered by

Firebase features and HTTPS requests. Your code is stored in Google’s cloud and runs

in a managed environment. Firebase Hosting provides fast and secure hosting for your

web app, static and dynamic content, and microservices. Cloud storage is built for app

developers who need to store and serve user-generated content, such as photos or

videos.

I will select Firestore, Functions, and Hosting features for this project as I am going

to use them throughout this book. Once you have selected what is needed, press enter to

go to the next step.

�Project Selection

The second question, as shown below, shows your projects in Firebase, and since

we have created one project, I will select that one and continue by pressing enter.
Note that you can also create a project in this step, too.

Select a default Firebase project for this directory: (Use arrow keys)

[don't set up a default project]

> awesome-apress-pwa (awesome-apress-pwa)

 [create a new project]

�Database Setup

Firebase Firestore is a scalable and flexible NoSQL3 real-time database to store and

sync data for a client- or server-side app development. This database keeps our data

in sync across multiple client apps and offers offline capabilities. Data in Firestore

saves documents that contain fields mapping to values. Collections are containers of

documents that allow us to not only organize our data but also to build queries.

1�https://firebase.google.com/docs/database/
2�https://firebase.google.com/docs/firestore/
3�Read more at https://en.wikipedia.org/wiki/NoSQL.

Chapter 2 Deploying to Firebase as the Back End

https://firebase.google.com/docs/database/
https://firebase.google.com/docs/firestore/
https://en.wikipedia.org/wiki/NoSQL

18

Since we have selected Firestore service already in the step features selection step,

the third question, as shown below, is about a database rules file to write all rules

regarding our project database. I continue with the default name, which is database.

rules.json:

 What file should be used for Database Rules? (database.rules.json)

�Functions Setup

Cloud functions in Firebase let us run back-end code over HTTPS requests without

having an actual server to maintain and manage and store our code in Google’s cloud-

managed environment. In order to achieve serverless4 architecture in our app, we are

going to use Functions to write and run our essential back-end code.

Since we have selected to use the Firebase Functions feature already in the feature

selection step, the fourth question, as shown below, asks to choose our desired language

to write Functions.

What language would you like to use to write Cloud Functions? (Use arrow

keys)

> JavaScript

 TypeScript

JavaScript is my choice now as we are not going to have a lot of functions in this

book; therefore, I kept it simple. Feel free to continue with TypeScript if this is what

you like.

Followed by the language of choice, Firebase CLI offers to set up a linting tool to help

us find possible bugs and styling issues in the next question, as shown below. If you like

to enforce styling and catch possible bugs in your cloud functions, continue with Y.

Do you want to use ESLint to catch probable bugs and enforce style? (Y/N) y

�Final Setup

I will continue for the last three questions in order to complete my project initialization.

If you like to install dependencies now, enter Y in the next question.

Do you want to install dependencies with npm now? (Y/n)

4�Read more at https://en.wikipedia.org/wiki/Serverless_computing.

Chapter 2 Deploying to Firebase as the Back End

https://en.wikipedia.org/wiki/Serverless_computing

19

In the next step, we need to define where our ready-to-deploy app is located. By

default, in Angular it’s dist directory; thus, I also enter dist to set my public directory.

So, I will continue to answer the question as shown below:

What do you want to use as your public directory? (public) dist

Finally, our application is going to have a routing system in the front end, which

means we are going to create a single-page application. Therefore, when Firebase CLI is

questioned about rewriting all URLs to index.html, we should answer Y to make sure our

front end is handling routes individually, regardless of our server routing.

Although we are moving forward with a single-page application, it’s definitely not

required for creating a PWA. Notice that in this book, we will make a single-page PWA by

Angular. Let’s continue the final question with Y as shown below:

Configure as a single-page app (rewrite all urls to /index.html)? (y/N) y

Initializing our app with Firebase CLI has been completed! Our app structure will

look like the following tree after initialization.

.

├── README.md
├── angular.json
├── database.rules.json -> firebase databse rules
├── dist
├── e2e
├── firebase.json -> firebase configs
 ├── functions-> firebase cloud funtions directory
 │ ├── index.js
 │ ├── node_modules
 │ ├── package-lock.json
 │ └── package.json
├── node_modules
├── package-lock.json
├── package.json
├── src
│ ├── app
│ ├── assets
│ ├── browserslist
│ ├── environments

Chapter 2 Deploying to Firebase as the Back End

20

│ ├── favicon.ico
│ ├── index.html
│ ├── karma.conf.js
│ ├── main.ts
│ ├── polyfills.ts
│ ├── styles.scss
│ ├── test.ts
│ ├── tsconfig.app.json
│ ├── tsconfig.spec.json
│ └── tslint.json
├── tsconfig.json
└── tslint.json

�Adjustment in Angular Project Settings

Before we can deploy our app, we need to apply a minor change to our Angular setting

located in Angular.json. Angular CLI is capable of building multiple apps, and each

app could simply be placed in a dist folder. However, we want to deal with only one app

at the moment, and we need to build it in the dist folder where Firebase will find and

deploy it. Therefore, we should change from

 "architect": {

 "build": {

 "builder": "@angular-devkit/build-angular:browser",

 "options": {

 �"outputPath": "dist/lovely-offline", // outputPath showes

where to build

to

 "architect": {

 "build": {

 "builder": "@angular-devkit/build-angular:browser",

 "options": {

 "outputPath": "dist ", // build app just in dist

By removing our app name from outputPath, we enforce Angular CLI to build and

place all files in the dist folder instead. Now it’s time to finally deploy our app to Firebase.

Chapter 2 Deploying to Firebase as the Back End

21

�Deploying Our App
While we are in the root of the project directory, we can simply run the following

command:

$ firebase deploy

Deployment starts…

> firebase deploy

=== Deploying to 'awesome-apress-pwa'...

i deploying database, functions, hosting

Running command: npm --prefix "$RESOURCE_DIR" run lint

> functions@ lint ~/awesome-apress-pwa/functions

> eslint .

✓ functions: Finished running predeploy script.

i database: checking rules syntax...

✓ database: rules syntax for database awesome-apress-pwa is valid

i functions: ensuring necessary APIs are enabled...

✓ functions: all necessary APIs are enabled

i functions: preparing functions directory for uploading...

i hosting[awesome-apress-pwa]: beginning deploy...

i hosting[awesome-apress-pwa]: found 14 files in dist

✓ hosting[awesome-apress-pwa]: file upload complete

i database: releasing rules...

✓ database: rules for database awesome-apress-pwa released successfully

i hosting[awesome-apress-pwa]: finalizing version...

✓ hosting[awesome-apress-pwa]: version finalized

i hosting[awesome-apress-pwa]: releasing new version...

✓ hosting[awesome-apress-pwa]: release complete

✓ Deploy complete!

Chapter 2 Deploying to Firebase as the Back End

22

Project Console: https://console.firebase.google.com/project/awesome-

apress-pwa/overview

Hosting URL: https://awesome-apress-pwa.firebaseapp.com

Congratulations – deployment is successfully completed, and now the website is

available at https://awesome-apress-pwa.firebaseapp.com.

�Setting Up AngularFire5

AngularFire2 is an official library for Angular to support Firebase functionalities. It is

powered by observable, real-time bindings, authentication, and offline data support.

I strongly recommend implementing this library in order to make it way easier for our

development process to deal with Firebase.

To install, run the following command:

$ npm install firebase @angular/fire –-save

To add a Firebase configuration, open the /src/environment/environment.ts

file, and add the following setup:

export const environment = {

 production: false,

 firebase: {

 apiKey: '<your-key>',

 authDomain: '<your-project-authdomain>',

 databaseURL: '<your-database-URL>',

 projectId: '<your-project-id>',

 storageBucket: '<your-storage-bucket>',

 messagingSenderId: '<your-messaging-sender-id>'

 }

};

To find your app configuration, open the Firebase console and from the project

overview page, click gear icon and click project settings, as shown in Figure 2-6.

5�https://github.com/angular/angularfire2

Chapter 2 Deploying to Firebase as the Back End

https://awesome-apress-pwa.firebaseapp.com
https://github.com/angular/angularfire2

23

From the project setting view, find Add Firebase to your web app (see Figure 2-7).

Figure 2-6.  Click the gear icon to see the project setting menu

Figure 2-7.  Click Add Firebase to your app button to see project settings

Chapter 2 Deploying to Firebase as the Back End

24

Replace the project setting in environment.ts. (see Figure 2-8).

Figure 2-8.  Copy your project setting to replace in environment.ts

Navigate to /src/app/app.module.ts and inject the Firebase provider. Injector

makes sure that your Firebase configuration is specified correctly in the app.

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AngularFireModule } from 'angularfire2';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { environment } from '../environments/environment';

@NgModule({

 declarations: [

 AppComponent

],

Chapter 2 Deploying to Firebase as the Back End

25

 imports: [

 BrowserModule,

 AppRoutingModule,

 AngularFireModule.initializeApp(environment.firebase)

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

AngularFire is a modular package to support different Firebase features.

AngularFirestoreModule, AngularFireAuthModule, AngularFireDatabaseModule,

and AngularFireStorageModule are available individually to be added to

@NgModules. For instance, in this app, we would add AngularFireStoreModule

and AngularFireAuthModule, respectively, to get support for database and

authentication features.

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AngularFireModule } from 'angularfire2';

import { AngularFirestoreModule } from 'angularfire2/firestore';

import { AngularFireAuthModule } from 'angularfire2/auth';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { environment } from '../environments/environment';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule,

 AngularFireModule.initializeApp(environment.firebase),

 AngularFirestoreModule, // needed for database features

 AngularFireAuthModule, // needed for auth features,

],

Chapter 2 Deploying to Firebase as the Back End

26

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Great, AngularFirestore provider is now available in order to get access to Firebase

database collections to modify/delete or perform more actions. For example, open /src/
app/app.component.ts and inject AngularFirestore.

import { Component } from '@angular/core';

import { AngularFirestore } from 'angularfire2/firestore';

@Component({

 selector: 'app-root',

 templateUrl: './app.component.html',

 styleUrls: ['./app.component.scss']

})

export class AppComponent {

 title = 'lovely-offline';

 constructor(db: AngularFirestore) {

 }

}

The nest step is to bind a particular Firestore collection. As an example, in the future,

we will create a collection named notes. The following code demonstrates how we can

get access to all data and show it in our view while it’s an observable.

import { Component } from '@angular/core';

import { AngularFirestore } from 'angularfire2/firestore';

import { Observable } from 'rxjs';

@Component({

 selector: 'app-root',

Chapter 2 Deploying to Firebase as the Back End

27

 template: `

 <h1>Bind Firestore collection example</h1>

 <li class="text" *ngFor="let note of notes$ | async">

 {{note.title}}

 <router-outlet></router-outlet>

 `,

 styleUrls: ['./app.component.scss']

})

export class AppComponent {

 notes$: Observable<any[]>;

 constructor(db: AngularFirestore) {

 this.notes$ = db.collection('notes').valueChanges();

 }

}

�Summary
This chapter unfolds an easy way to deploy our Angular app to Firebase and

introduced services such as Firestore Cloud functions to manage and run our back-

end code. Even though we didn’t deep dive into each feature, it was enough to start

and make the app live.

AngularFire2 is the official Angular library for Firebase, which has been set up in

our app, and it was explained how to inject it in our component in order to get access to

Firestore and other Firebase features later in the next chapters.

Now that we have prepared deployment requirements, we are ready to move on to

the next chapter and create our app skeleton and make it ready to start building a PWA.

Chapter 2 Deploying to Firebase as the Back End

29
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_3

CHAPTER 3

Completing an
Angular App
Up to this point, we have reviewed fundamentals and requirements and set up

prerequisites in order to host, store data, and run functions in the cloud. It may sound a

bit boring to you, but as we continue to each chapter, it gets more exciting because we

will gradually build a real PWA together by adding more features.

Now, it’s time to step into the real world and create an app that works. In this chapter,

we are going to implement logics to yield an app that saves personal notes in Firebase.

This app will have user authentication functionalities and let a user save, edit, and delete

notes in their personal account. We will create UIs and routes, respectively, for each of

these functionalities.

Furthermore, there are two goals behind this chapter. First, you will see how we can

start an app from scratch and understand how we proceed to convert it to a PWA as we

continue to the next chapters. Secondly, you will see how we are going to convert an

existing app to a PWA. So, what are we waiting for? Let’s get started.

�Implementing Our UI
First, we need to create an app that looks good. What we select for our UI must at least

contain the following characteristics: modern, fast, consistent, versatile, flexible,
mobile first, responsive, and user friendly. Angular Material1 is one of the best, which

perfectly fits in Angular and helps us to rapidly develop our app while it looks nice and

fulfills our needs.

1�https://material.angular.io/

https://material.angular.io/

30

�Installing and Setting Up Angular Material, CDK,
and Animations
Angular CLI 6+ provides a new command ng add in order to update an Angular project

with correct dependencies, perform configuration changes, and execute initialization

code, if any.

�Installing @angular/material Automatically with Angular CLI

We can now use this command to install @angular/material:

ng add @angular/material

You should see the following messages:

> ng add @angular/material

Installing packages for tooling via npm.

npm WARN @angular/material@6.4.6 requires a peer of @angular/cdk@6.4.6 but

none is installed. You must install peer depen

dencies yourself.

+ @angular/material@6.4.6

added 2 packages from 1 contributor and audited 24256 packages in 7.228s

found 12 vulnerabilities (9 low, 3 high)

 run `npm audit fix` to fix them, or `npm audit` for details

Installed packages for tooling via npm.

UPDATE package.json (1445 bytes)

UPDATE angular.json (3942 bytes)

UPDATE src/app/app.module.ts (907 bytes)

UPDATE src/index.html (477 bytes)

UPDATE src/styles.scss (165 bytes)

added 1 package and audited 24258 packages in 7.297s

Awesome – Angular cli has taken care of all configurations for us. However, for

a better understanding of how it works in detail, I will also continue to add Angular

material to my project manually, as described below.

Chapter 3 Completing an Angular App

31

�Installing @angular/material Manually

You can use either NPM or YARN to install packages, so use whichever is most

appropriate for your project. I will continue with npm.

npm install --save @angular/material @angular/cdk @angular/animations

To enable animation support once packages are installed, BrowserAnimationsModule

should be this:

imported into our application.

import { BrowserModule } from '@angular/platform-browser';

import { NgModule } from '@angular/core';

import { AngularFireModule } from 'angularfire2';

import { AngularFirestoreModule } from 'angularfire2/firestore';

import { AngularFireAuthModule } from 'angularfire2/auth';

import { AppRoutingModule } from './app-routing.module';

import { AppComponent } from './app.component';

import { environment } from '../environments/environment';

import { BrowserAnimationsModule } from '@angular/platform-browser/

animations';

@NgModule({

 declarations: [

 AppComponent

],

 imports: [

 BrowserModule,

 AppRoutingModule,

 AngularFireModule.initializeApp(environment.firebase),

 AngularFirestoreModule, // needed for database features

 AngularFireAuthModule, // needed for auth features,

 BrowserAnimationsModule,

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule { }

Chapter 3 Completing an Angular App

32

To enable animation support once packages are installed, BrowserAnimationsModule

should be imported.

Fonts and icons help our app look nicer and feel better. Therefore, we will add

Roboto and Material Icons fonts into our application. To include them, modify index.

html, and add the following links between <head></head>:

<link href="https://fonts.googleapis.com/icon?family=Material+Icons"

rel="stylesheet">

<link href="https://fonts.googleapis.com/css?family=Roboto:300,400,500"

rel="stylesheet">

Finally, we need to include a theme. There are prebuilt themes in the @angular/

material library, which at the time I am writing this book, are the following:

•	 deeppurple-amber.css

•	 indigo-pink.css

•	 pink-bluegrey.css

•	 purple-green.css

Open angular.json, and add one of the theme CSS files to architect ➤ build ➤ styles,

so it looks like the following configuration:

"architect": {

 "build": {

 "builder": "@angular-devkit/build-angular:browser",

 "options": {

 "outputPath": "dist",

 "index": "src/index.html",

 "main": "src/main.ts",

 "polyfills": "src/polyfills.ts",

 "tsConfig": "src/tsconfig.app.json",

 "assets": [

 "src/favicon.ico",

 "src/assets"

],

Chapter 3 Completing an Angular App

33

 "styles": [

 {

 �"input": "node_modules/@angular/material/prebuilt-themes/

indigo-pink.css"

 },

 "src/styles.scss"

],

 "scripts": []

 },

Great – we have added what we need for our UI; now let’s create a basic skeleton for

our app.

�Creating a Core Module / Shared Module
One of the common ways in Angular to benefit from lazy loading and code splitting is

to modularize an application while it still keeps its components-based approach.

It means that we will encapsulate as many components as make sense into one module

and will reuse this module by importing into other modules. To start, we will generate

SharedModule to import into all other modules and expose all common components

and modules that will be reused across our app and CoreModule, which will only be

imported once in our root module, AppModule, and contains all providers that are

singletons and will initialize as soon as the application starts.

Run the following commands to generate a core module.

ng generate module modules/core

> ng g m modules/core

CREATE src/app/modules/core/core.module.spec.ts (259 bytes)

CREATE src/app/modules/core/core.module.ts (188 bytes)

Angular CLI generates CoreModule located in the modules folder. Let’s do this

command one more time to generate SharedModule located in the modules folder:

ng generate module modules/shared

> ng g m modules/shared

CREATE src/app/modules/shared/shared.module.spec.ts (275 bytes)

CREATE src/app/modules/shared/shared.module.ts (190 bytes)

Chapter 3 Completing an Angular App

34

To make sure that CoreModule will not be imported multiple times, we can create a

guard for this module. Simply add the following code to your module:

export class CoreModule {

 constructor(@Optional() @SkipSelf() parentModule: CoreModule) {

 if (parentModule) {

 �throw new Error(`CoreModule has already been loaded. Import Core

modules in the AppModule only.`);

 }

 }

}

So, our core module looks like the following:

import { NgModule, Optional, SkipSelf } from '@angular/core';

import { CommonModule } from '@angular/common';

@NgModule({

 imports: [

 CommonModule,

],

 providers: []

})

export class CoreModule {

 constructor(@Optional() @SkipSelf() parentModule: CoreModule) {

 if (parentModule) {

 �throw new Error(`CoreModule has already been loaded. Import Core

modules in the AppModule only.`);

 }

 }

}

Let’s import CoreModule into AppModule. Now we are ready to start creating our first

shared components.

Chapter 3 Completing an Angular App

35

�Header, Footer, and Body Components
In this section, we are going to create our first application – a main application layout –

based on the simple sketch that is shown in Figure 3-1.

We will continue developing while we have this sketch in mind. To begin, let’s create

a module named LayoutModule that contains a footer, header, and menu components

and then import this module into AppModule to reuse header/footer in the app.

component.ts file.

ng g m modules/layout

import LayoutModule into AppModule:

Header / MENU

Footer / copyright

NOTE CARD

NOTE CARD

NOTE CARD

Header / MENU

Footer / copyright

BODY

Figure 3-1.  Initial app sketch

Chapter 3 Completing an Angular App

36

...imports: [

 CoreModule,

 LayoutModule,...

By running the following command, footer and header components are generated,

respectively.

ng generate component modules/layout/header

ng generate component modules/layout/footer

We have already created SharedModule; however, we need some changes in this

module. First, what we imported as share modules or share components should be

exported, too. Angular Material is a modular package; with that said, we should import

modules that are needed for our UI. Then, I will add as many modules from Angular

Material as we need in this application. It will be possible to add or remove modules and

components later.

Lastly, our SharedModule looks like the code below:

const SHARED_MODULES = [

 CommonModule,

 MatToolbarModule,

 MatCardModule,

 MatIconModule,

 MatButtonModule,

 MatDividerModule,

 MatBadgeModule,

 MatFormFieldModule,

 MatInputModule,

 MatSnackBarModule,

 MatProgressBarModule,

 MatProgressSpinnerModule,

 MatMenuModule,

 ReactiveFormsModule,

 FormsModule,

 RouterModule

];

Chapter 3 Completing an Angular App

37

const SHARED_COMPONENTS = [];

@NgModule({

 imports: [...SHARED_MODULES2],

 declarations: [...SHARED_COMPONENTS],

 exports: [...SHARED_MODULES, ...SHARED_COMPONENTS],

})

export class SharedModule { }

After importing SharedModule into LayoutModule, we are able to design our header/

footer based on material components that are required.

Following is the Header component:

// header.component.html

<mat-toolbar color="primary">

 ApressNote-PWA

 <button mat-icon-button [mat-menu-trigger-for]="menu">

 <mat-icon>more_vert</mat-icon>

 </button>

</mat-toolbar>

<mat-menu x-position="before" #menu="matMenu">

 <button mat-menu-item>Home</button>

 <button mat-menu-item>Profile</button>

 <button mat-menu-item>Add Note</button>

</mat-menu>

// header.component.scss

.space-between {

 flex:1;

}

// header.component.ts

import { Component, OnInit } from '@angular/core';

@Component({

 selector: 'app-header',

2�The pread operator (three dots …) helps to concatenate arrays.

Chapter 3 Completing an Angular App

38

 templateUrl: './header.component.html',

 styleUrls: ['./header.component.scss']

})

export class HeaderComponent { }

Following is the Footer component:

// footer.component.html

<footer>

 <div class="copyright">Copyright Apress - Majid Hajian</div>

</footer>

<div class="addNote">

 <button mat-fab>

 <mat-icon>add circle</mat-icon>

 </button>

</div>

// footer.component.scss

footer{

 background: #3f51b5;

 color: #fff;

 display: flex;

 box-sizing: border-box;

 padding: 1rem;

 flex-direction: column;

 align-items: center;

 white-space: nowrap;

}

.copyright {

 text-align: center;

}

.addNote {

 position: fixed;

 bottom: 2rem;

 right: 1rem;

 color: #fff;

}

Chapter 3 Completing an Angular App

39

// footer.component.ts

import { Component, OnInit } from '@angular/core';

@Component({

 selector: 'app-footer',

 templateUrl: './footer.component.html',

 styleUrls: ['./footer.component.scss']

})

export class FooterComponent { }

Now add a few custom CSS lines in style.scss file to adjust our layout:

html, body { height: 100%; }

body { margin: 0; font-family: 'Roboto', sans-serif; }

.appress-pwa-note {

 display: flex;

 flex-direction: column;

 align-content: space-between;

 height: 100%;

}

.main{

 display: flex;

 flex:1;

}

mat-card {

 max-width: 80%;

 margin: 2em auto;

 text-align: center;

}

mat-toolbar-row {

 justify-content: space-between;

}

Chapter 3 Completing an Angular App

40

Lastly, add the footer, header, and necessary changes to app.component.ts:

import { Component } from '@angular/core';

@Component({

 selector: 'app-root',

 template: `

 <div class="appress-pwa-note">

 <app-header></app-header>

 <div class="main">

 <router-outlet></router-outlet>

 </div>

 <app-footer></app-footer>

 </div>

 `,

})

export class AppComponent { }

So far, so good – the initial skeleton based on the sketch is now ready as shown in

Figure 3-2.

Let move on and create different pages and routes.

Note  You’ll find all the codes in the www.github.com/mhadaily/awesome-
apress-pwa/chapter03/01-material-design-and-core-shared-
modules-setup.

Chapter 3 Completing an Angular App

http://www.github.com/mhadaily/awesome-apress-pwa/chapter03/01-material-design-and-core-shared-modules-setup
http://www.github.com/mhadaily/awesome-apress-pwa/chapter03/01-material-design-and-core-shared-modules-setup
http://www.github.com/mhadaily/awesome-apress-pwa/chapter03/01-material-design-and-core-shared-modules-setup

41

�Login / Profile Page
We need to create pages so that my users can register, log in, and see their profiles.

To begin, we create UserModule, including routing:

ng generate module modules/user --routing

As we are going to lazy load this module, we need at least one path and one

component. To generate a component, continue running the following command:

ng generate component modules/user/userContainer --flat

flag --flat ignores creating a new folder for this component.

Figure 3-2.  Initial application shell

Chapter 3 Completing an Angular App

42

Once the component is generated, we should add it to UserModule declarations

and then define our path in UserModuleRouting – path /user could be lazy loaded in

AppRoutingModule accordingly.

// UserModuleRouting

import { NgModule } from '@angular/core';

import { Routes, RouterModule } from '@angular/router';

import { UserContainerComponent } from './user-container.component';

const routes: Routes = [

 {

 path: '',

 component: UserContainerComponent

 }

];

@NgModule({

 imports: [RouterModule.forChild(routes)],

 exports: [RouterModule]

})

export class UserRoutingModule { }

//AppModuleRouting

import { NgModule } from '@angular/core';

import { Routes, RouterModule } from '@angular/router';

const routes: Routes = [

 {

 path: 'user',

 loadChildren: './modules/user/user.module#UserModule',

 }

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class AppRoutingModule { }

Chapter 3 Completing an Angular App

43

�Adding Login, Signup, and Profile UI and Functionalities
Before we continue to add login/signup functionalities, we must activate Sign-in

providers in Firebase. Hence, go to your project Firebase console, find Authentication

under the develop group on the left menu list, and then move the current tab to Sign-in

methods. To keep it simple, we will use Email/Password providers; however, you should

be able to add more providers as you wish (see Figure 3-3).

Let’s move on and create an Angular service that handles all Firebase authentication

methods. Continue by running the following command:

ng generate service modules/core/firebaseAuthService

We need to write several methods, checking the user login state and doing log in,

sign up, and log out.

Take your time and look at Listing 3-1 where we implement FirebaseAuthService

in order to invoke necessary methods from AngularFireAuth service and share the state

across the app. The service methods are self-explanatory.

Figure 3-3.  Enable Email/Password authentication

Chapter 3 Completing an Angular App

44

Listing 3-1.  App/modules/core/auth.service.ts

export class AuthService {

 // expose all data

 public authErrorMessages$ = new Subject<string>();

 public isLoading$ = new BehaviorSubject<boolean>(true);

 public user$ = new Subject<User>();

 constructor(private afAuth: AngularFireAuth) {

 this.isLoggedIn().subscribe();

 }

 private isLoggedIn() {

 return this.afAuth.authState.pipe(

 first(),

 tap(user => {

 this.isLoading$.next(false);

 if (user) {

 const { email, uid } = user;

 this.user$.next({ email, uid });

 }

 })

);

 }

 public signUpFirebase({ email, password }) {

 this.isLoading$.next(true);

 this.handleErrorOrSuccess(() => {

 return this.afAuth.auth.createUserWithEmailAndPassword(email, password);

 });

 }

 public loginFirebase({ email, password }) {

 this.isLoading$.next(true);

 this.handleErrorOrSuccess(() => {

 return this.afAuth.auth.signInWithEmailAndPassword(email, password);

 });

 }

Chapter 3 Completing an Angular App

45

 public logOutFirebase() {

 this.isLoading$.next(true);

 this.afAuth.auth

 .signOut()

 .then(() => {

 this.isLoading$.next(false);

 this.user$.next(null);

 })

 .catch(e => {

 console.error(e);

 this.isLoading$.next(false);

 this.authErrorMessages$.next("Something is wrong when signing out!");

 });

 }

 private handleErrorOrSuccess(

 cb: () => Promise<firebase.auth.UserCredential>

) {

 cb()

 .then(data => this.authenticateUser(data))

 .catch(e => this.handleSignUpLoginError(e));

 }

 private authenticateUser(UserCredential) {

 const {

 user: { email, uid }

 } = UserCredential;

 this.isLoading$.next(false);

 this.user$.next({ email, uid });

 }

 private handleSignUpLoginError(error: { code: string; message: string })

{

 this.isLoading$.next(false);

 const errorMessage = error.message;

Chapter 3 Completing an Angular App

46

 this.authErrorMessages$.next(errorMessage);

 }

}

Lastly, the application should provide a UI to log in and sign up as well as user

information. Going back to our userContainerComponent, we will implement UI and

methods respectively. Listings 3-2 through 3-4 show our TypeScript, HTML, and CSS.

Listing 3-2.  User-container.component.ts

export class UserContainerComponent implements OnInit {

 public errorMessages$ = this.afAuthService.authErrorMessages$;

 public user$ = this.afAuthService.user$;

 public isLoading$ = this.afAuthService.isLoading$;

 public loginForm: FormGroup;

 public hide = true;

 constructor(

 private fb: FormBuilder,

 private afAuthService: FirebaseAuthService

) {}

 ngOnInit() {

 this.createLoginForm();

 }

 private createLoginForm() {

 this.loginForm = this.fb.group({

 email: ["", [Validators.required, Validators.email]],

 password: ["", [Validators.required]]

 });

 }

 public signUp() {

 this.checkFormValidity(() => {

 this.afAuthService.signUpFirebase(this.loginForm.value);

 });

 }

Chapter 3 Completing an Angular App

47

 public login() {

 this.checkFormValidity(() => {

 this.afAuthService.loginFirebase(this.loginForm.value);

 });

 }

 private checkFormValidity(cb) {

 if (this.loginForm.valid) {

 cb();

 } else {

 �this.errorMessages$.next("Please enter correct Email and Password value");

 }

 }

 public logOut() {

 this.afAuthService.logOutFirebase();

 }

 public getErrorMessage(controlName: string, errorName: string): string {

 const control = this.loginForm.get(controlName);

 return control.hasError("required")

 ? "You must enter a value"

 : control.hasError(errorName)

 ? `Not a valid ${errorName}`

 : "";

 }

}

Listing 3-3.  User-container.component.html

<mat-card *ngIf="user$ | async as user">

 <mat-card-title>

 Hello {{user.email}}

 </mat-card-title>

 <mat-card-subtitle>

 ID: {{user.uid}}

 </mat-card-subtitle>

Chapter 3 Completing an Angular App

48

 <mat-card-content>

 �<button mat-raised-button color="secondary" (click)="logOut()">Logout

</button>

 </mat-card-content>

</mat-card>

<mat-card *ngIf="!(user$ | async)">

 <mat-card-title>

 Access to your notes

 </mat-card-title>

 �<mat-card-subtitle class="error" *ngIf="errorMessages$ | async as

errorMessage">

 {{ errorMessage }}

 </mat-card-subtitle>

 <mat-card-content>

 <div class="login-container" [formGroup]="loginForm">

 <mat-form-field>

 �<input matInput placeholder="Enter your email" formControl

Name="email" required>

 �<mat-error *ngIf="loginForm.get('email').invalid">{{getErrorMessage

('email', 'email')}}</mat-error>

 </mat-form-field>

 <mat-form-field>

 �<input matInput placeholder="Enter your password" [type]="hide ?

'password' : 'text'" formControlName="password">

 �<mat-icon matSuffix (click)="hide = !hide">{{hide ? 'visibility' :

'visibility_off'}}</mat-icon>

 �<mat-error *ngIf="loginForm.get('password').invalid">{{getErrorMess

age('password')}}</mat-error>

 </mat-form-field>

 </div>

 �<button mat-raised-button color="primary" (click)="login()">Login

</button>

 </mat-card-content>

Chapter 3 Completing an Angular App

49

 <mat-card-content>
----- OR -----

</mat-card-content>

 <mat-card-content>

 �<button mat-raised-button color="accent" (click)="signUp()">Sign Up

</button>

 </mat-card-content>

 <mat-card-footer>

 �<mat-progress-bar *ngIf="isLoading$ | async" mode="indeterminate">

</mat-progress-bar>

 </mat-card-footer>

</mat-card>

Listing 3-4.  User-container.component.scss

.login-container {

 display: flex;

 flex-direction: column;

 > * {

 width: 100%;

 }

}

Figure 3-4 shows the result of what we have done up to this point.

Chapter 3 Completing an Angular App

50

Note  You’ll find all the codes in the www.github.com/mhadaily/awesome-
apress-pwa/chapter03/02-login-signup-profile.

Although what we need to proceed has been achieved, you are not limited and

can continue adding more and more Firebase features such as forgot password link,

password-less login, and other providers for log in.

Figure 3-4.  Login, Signup, and Profile UI in the app

Chapter 3 Completing an Angular App

http://www.github.com/mhadaily/awesome-apress-pwa/chapter03/02-login-signup-profile
http://www.github.com/mhadaily/awesome-apress-pwa/chapter03/02-login-signup-profile

51

�Firebase CRUD3 Operations for Note Module
In the following section, we are going to work on different views and methods in order to

list, add, delete, and update notes in our application; let’s do it step by step.

�Set Up Firestore Database

First things first: a quick start to show how to set up our Firestore database.

	 1.	 Open your browser and go to Firebase project console.

	 2.	 In the Database section, click the Get Started or Create database

button for Cloud Firestore.

	 3.	 Select Locked mode for your Cloud Firestore Security Rules.4

	 4.	 Click Enable as shown in Figure 3-5.

3�https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
4�https://firebase.google.com/docs/firestore/quickstart

Figure 3-5.  Select locked mode when creating a new database in Firebase

Chapter 3 Completing an Angular App

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://firebase.google.com/docs/firestore/quickstart

52

Below is the Database schema5 that we aim to create in order to store our users and

their notes.

----- users // this is a collection

 ------- [USER IDs] // this is a document

 ------ notes // this is a collection

 ----- [NOTE DOCUMENT]

 ----- [NOTE DOCUMENT]

 ----- [NOTE DOCUMENT]

 ------- [USER IDs] // this is a document

 ------ notes // this is a collection

 ----- [NOTE DOCUMENT]

 ----- [NOTE DOCUMENT]

 ----- [NOTE DOCUMENT]

It is possible to create collections and documents in Firestore manually; but we will do it

programmatically later by implementing proper logics in our application (see Figure 3-6).

5�https://en.wikipedia.org/wiki/Database_schema

Figure 3-6.  Firestore view once it is enabled

Chapter 3 Completing an Angular App

https://en.wikipedia.org/wiki/Database_schema

53

The last step is to set Firestore rules to require a user unique id (uid) in request in

order to give sufficient permission to do create/read/update/delete actions. Click on the

Rules tab and copy and paste the following rules (see Figure 3-7).

service cloud.firestore {

 match /databases/{database}/documents {

 // Make sure the uid of the requesting user matches name of the user

 // document. The wildcard expression {userId} makes the userId variable

 // available in rules.

 match /users/{userId} {

 allow read, update, delete: if request.auth.uid == userId;

 allow create: if request.auth.uid != null;

 �// make sure user can do all action for notes collection if userID is

matched

 match /notes/{document=**} {

 allow create, read, update, delete: if request.auth.uid == userId;

 }

 }

 }

}

Chapter 3 Completing an Angular App

54

�List, Add, and Detail Note Views

The next step, once the Firestore setup is done, is to create our components in order

to show a list of notes, add a note, and detail the note view along with their relevant

functionalities.

To begin, generate a notes module, including routing, by running the following

command:

ng generate module modules/notes --routing

Let’s take a look at NotesRoutingModule:

const routes: Routes = [

Figure 3-7.  Firestore rules

Chapter 3 Completing an Angular App

55

 {

 path: "",

 component: NotesListComponent

 },

 {

 path: "add",

 component: NotesAddComponent

 },

 {

 path: ":id",

 component: NoteDetailsComponent

 }

];

@NgModule({

 imports: [RouterModule.forChild(routes)],

 exports: [RouterModule]

})

export class NotesRoutingModule {}

As you see, three paths have been defined; therefore we should generate related

components by running each command separately:

ng generate component modules/notes/notesList

ng generate component modules/notes/notesAdd

ng generate component modules/notes/noteDetails

Finally, lazy load NotesModule by adding NotesRoutingModule into the

AppRoutingModule:

const routes: Routes = [

 {

 path: "",

 redirectTo: "/notes",

 pathMatch: "full"

 },

Chapter 3 Completing an Angular App

56

 {

 path: "user",

 loadChildren: "./modules/user/user.module#UserModule",

 },

 {

 path: "notes",

 loadChildren: "./modules/notes/notes.module#NotesModule"

 }

];

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 exports: [RouterModule]

})

export class AppRoutingModule {}

Authentication Service

The authentication service is used to log in, log out, and sign up and check if the user

has already been authenticated for the application. The credentials were sent to Firebase

by calling proper methods on the AngularFire Auth service to perform each function

accordingly.

AuthService is required to be injected6 in order to handle the authentication layer in

our app:

ng generate service modules/core/auth

The following code shows the logic for AuthService:

// auth.service.ts

interface User {

 uid: string;

 email: string;

}

6�https://angular.io/guide/dependency-injection

Chapter 3 Completing an Angular App

https://angular.io/guide/dependency-injection

57

@Injectable({

 providedIn: "root"

})

export class AuthService {

 public authErrorMessages$ = new BehaviorSubject<string>(null);

 public isLoading$ = new BehaviorSubject<boolean>(true);

 public user$ = new BehaviorSubject<User>(null);

 private authState = null;

 constructor(private afAuth: AngularFireAuth) {

 this.isLoggedIn().subscribe(user => (this.authState = user));

 }

 get authenticated(): boolean {

 return this.authState !== null;

 }

 get id(): string {

 return this.authenticated ? this.authState.uid : "";

 }

 private isLoggedIn(): Observable<User | null> {

 return this.afAuth.authState.pipe(

 map(user => {

 if (user) {

 const { email, uid } = user;

 this.user$.next({ email, uid });

 return { email, uid };

 }

 return null;

 }),

 tap(() => this.isLoading$.next(false))

);

 }

 public getCurrentUserUid(): string {

 return this.afAuth.auth.currentUser.uid;

 }

Chapter 3 Completing an Angular App

58

 public signUpFirebase({ email, password }) {

 this.isLoading$.next(true);

 this.handleErrorOrSuccess(() => {

 return this.afAuth.auth.createUserWithEmailAndPassword(email, password);

 });

 }

 public loginFirebase({ email, password }) {

 this.isLoading$.next(true);

 this.handleErrorOrSuccess(() => {

 return this.afAuth.auth.signInWithEmailAndPassword(email, password);

 });

 }

 public logOutFirebase() {

 this.isLoading$.next(true);

 return this.afAuth.auth.signOut();

 }

 private handleErrorOrSuccess(

 cb: () => Promise<firebase.auth.UserCredential>

) {

 cb()

 .then(data => this.authenticateUser(data))

 .catch(e => this.handleSignUpLoginError(e));

 }

 private authenticateUser(UserCredential) {

 const {

 user: { email, uid }

 } = UserCredential;

 this.isLoading$.next(false);

 }

Chapter 3 Completing an Angular App

59

 private handleSignUpLoginError(error: { code: string; message: string })

{

 this.isLoading$.next(false);

 const errorMessage = error.message;

 this.authErrorMessages$.next(errorMessage);

 }

}

Data Service

This service contains a standard set of CRUD methods (Create, read, update and delete).

Functionalities such as fetching all notes; add, update and delete; and fetch detail note

by calling proper methods or requesting from proper APIs. In fact, it acts as an interface

between the Angular application and the back-end APIs.

To generate DataService, run the command below:

ng generate service modules/core/data

The following code shows the logic for DataService:

// data.service.ts

interface Note {

 id: string;

 title: string;

 content: string;

}

@Injectable({

 providedIn: "root"

})

export class DataService {

 protected readonly USERS_COLLECTION = "users";

 protected readonly NOTES_COLLECTION = "notes";

 public isLoading$ = new BehaviorSubject<boolean>(true);

 get timestamp() {

 return new Date().getTime();

 }

Chapter 3 Completing an Angular App

60

 constructor(private afDb: AngularFirestore, private auth: AuthService) {}

 getUserNotesCollection() {

 return this.afDb.collection(

 this.USERS_COLLECTION + "/" + this.auth.id + "/" + this.NOTES_COLLECTION,

 ref => ref.orderBy("updated_at", "desc")

);

 }

 addNote(data): Promise<DocumentReference> {

 return this.getUserNotesCollection().add({

 ...data,

 created_at: this.timestamp,

 updated_at: this.timestamp

 });

 }

 editNote(id, data): Promise<void> {

 return this.getUserNotesCollection()

 .doc(id)

 .update({

 ...data,

 updated_at: this.timestamp

 });

 }

 deleteNote(id): Promise<void> {

 return this.getUserNotesCollection()

 .doc(id)

 .delete();

 }

 getNote(id): Observable<any> {

 return this.getUserNotesCollection()

 .doc(id)

 .snapshotChanges()

 .pipe(

 map(snapshot => {

Chapter 3 Completing an Angular App

61

 const data = snapshot.payload.data() as Note;

 const id = snapshot.payload.id;

 return { id, ...data };

 }),

 catchError(e => throwError(e))

);

 }

 getNotes(): Observable<any> {

 return this.getUserNotesCollection()

 .snapshotChanges()

 .pipe(

 map(snapshot =>

 snapshot.map(a => {

 //Get document data

 const data = a.payload.doc.data() as Note;

 //Get document id

 const id = a.payload.doc.id;

 //Use spread operator to add the id to the document data

 return { id, ...data };

 })

),

 tap(notes => {

 this.isLoading$.next(false);

 }),

 catchError(e => throwError(e))

);

 }

}

Authentication Guard

Since this application requires a user to be authenticated before performing any action,

we should make sure that all routes are protected by a guard.

Chapter 3 Completing an Angular App

62

AuthGuard helps to protect access to authentication routes. Since we need to put this

guard on a lazy load module, CanLoad should be implemented.

Ng generate guard modules/notes/auth

The following code shows the logic for AuthGuard:

// auth.guard.ts

@Injectable()

export class AuthGuard implements CanLoad {

 constructor(private auth: AuthService, private router: Router) {}

 canLoad(): Observable<boolean> {

 if (!this.auth.authenticated) {

 this.router.navigate(["/user"]);

 return of(false);

 }

 return of(true);

 }

}

We should provide AuthGuard in our AppRoutingModule. It’s important to remember

to add this guard into providers.

 {

 path: "notes",

 loadChildren: "./modules/notes/notes.module#NotesModule",

 canLoad: [AuthGuard]

 }

@NgModule({

 imports: [RouterModule.forRoot(routes)],

 providers: [AuthGuard],

 exports: [RouterModule]

})

Chapter 3 Completing an Angular App

63

NoteList, NoteAdd, and NoteDetail Components

We have prepared all the service layers and routing that are needed in the application.

The rest of the application is to just implement proper UI and components logics for

NotesList, NoteAdd, and NoteDetail components (Listings 3-5 through 3-13). Since it’s

easy, I would like you to just take a look at the components, and at the end, Figure 3-8

will demonstrate the result.

Listing 3-5.  // Notes-list.component.ts

export class NotesListComponent implements OnInit {

 notes$: Observable<Note[]>;

 isDbLoading$;

 constructor(private db: DataService) {}

 ngOnInit() {

 this.notes$ = this.db.getNotes();

 this.isDbLoading$ = this.db.isLoading$;

 }

}

Listing 3-6.  // Notes-list.component.html

<div *ngIf="notes$ | async as notes; else notFound">

 �<app-note-card *ngFor="let note of notes" [note]="note" [loading]="isDb

Loading$ | async" [routerLink]="['/notes', note.id]">

 </app-note-card>

</div>

<ng-template #notFound>

 <mat-card>

 <mat-card-title>

 Either you have no notes

 </mat-card-title>

 </mat-card>

</ng-template>

Chapter 3 Completing an Angular App

64

Listing 3-7.  // Notes-card.component.ts

@Component({

 selector: "app-note-card",

 templateUrl: "./note-card.component.html",

 styleUrls: ["./note-card.component.scss"]

})

export class NoteCardComponent {

 @Input()

 note;

 @Input()

 loading;

 @Input()

 edit = true;

}

Listing 3-8.  // Notes-card.component.html

<mat-card>

 <mat-card-title>{{ note.title }}</mat-card-title>

 �<mat-card-subtitle>{{ note.created_at | date:"short" }}</mat-card-

subtitle>

 <mat-card-content>{{ note.content }}</mat-card-content>

 <mat-card-footer class="text-right">

 <button color="primary" *ngIf="edit"><mat-icon>edit</mat-icon></button>

 �<mat-progress-bar *ngIf="loading" mode="indeterminate"></mat-progress-

bar>

 </mat-card-footer>

</mat-card>

Listing 3-9.  // Notes-add.component.ts

export class NotesAddComponent {

 public userID;

 public errorMessages$ = new Subject();

Chapter 3 Completing an Angular App

65

 constructor(

 private router: Router,

 private data: DataService,

 private snackBar: SnackBarService

) {}

 onSaveNote(values) {

 this.data

 .addNote(values)

 .then(doc => {

 this.router.navigate(["/notes"]);

 this.snackBar.open(`Note ${doc.id} has been succeffully saved`);

 })

 .catch(e => {

 this.errorMessages$.next("something is wrong when adding to DB");

 });

 }

 onSendError(message) {

 this.errorMessages$.next(message);

 }

}

Listing 3-10.  // Notes-add.component.html

<mat-card>

 <mat-card-title>New Note</mat-card-title>

 �<mat-card-subtitle class="error" *ngIf="errorMessages$ | async as

errorMessage">

 {{ errorMessage }}

 </mat-card-subtitle>

 <mat-card-content>

 �<app-note-form (saveNote)="onSaveNote($event)" (sendError)="onSendError

($event)"></app-note-form>

 </mat-card-content>

</mat-card>

Chapter 3 Completing an Angular App

66

Listing 3-11.  // Notes-form.component.ts

export class NoteFormComponent implements OnInit {

 noteForm: FormGroup;

 @Input()

 note;

 @Output()

 saveNote = new EventEmitter();

 @Output()

 sendError = new EventEmitter();

 constructor(private fb: FormBuilder) {}

 ngOnInit() {

 this.createForm();

 if (this.note) {

 this.noteForm.patchValue(this.note);

 }

 }

 createForm() {

 this.noteForm = this.fb.group({

 title: ["", Validators.required],

 content: ["", Validators.required]

 });

 }

 addNote() {

 if (this.noteForm.valid) {

 this.saveNote.emit(this.noteForm.value);

 } else {

 this.sendError.emit("please fill all fields");

 }

 }

}

Chapter 3 Completing an Angular App

67

Listing 3-12.  // Notes-form.component.html

<div class="note-container" [formGroup]="noteForm">

 <mat-form-field>

 �<input matInput placeholder="Enter your title" formControlName="title"

required>

 </mat-form-field>

 <mat-form-field>

 �<textarea matInput placeholder="Leave a comment"

formControlName="content" required cdkTextareaAutosize></textarea>

 </mat-form-field>

</div>

<div class="text-right">

 <button mat-raised-button color="primary" (click)="addNote()">Save</

button>

</div>

Listing 3-13.  // Notes-details.component.ts

export class NoteDetailsComponent implements OnInit {

 public errorMessages$ = new Subject();

 public note$;

 public isEdit;

 private id;

 constructor(

 private data: DataService,

 private route: ActivatedRoute,

 private snackBar: SnackBarService,

 private router: Router

) {}

Chapter 3 Completing an Angular App

68

 ngOnInit() {

 const id = this.route.snapshot.paramMap.get("id");

 this.id = id;

 this.note$ = this.data.getNote(id);

 }

 delete() {

 if (confirm("Are you sure?")) {

 this.data

 .deleteNote(this.id)

 .then(() => {

 this.router.navigate(["/notes"]);

 this.snackBar.open(`${this.id} successfully was deleted`);

 })

 .catch(e => {

 this.snackBar.open("Unable to delete this note");

 });

 }

 }

 edit() {

 this.isEdit = !this.isEdit;

 }

 saveNote(values) {

 this.data

 .editNote(this.id, values)

 .then(() => {

 this.snackBar.open("Successfully done");

 this.edit();

 })

 .catch(e => {

 this.snackBar.open("Unable to edit this note");

 this.edit();

 });

 }

Chapter 3 Completing an Angular App

69

 sendError(message) {

 this.errorMessages$.next(message);

 }

}

Listing 3-14.  // Notes-details.component.html

<div *ngIf="note$ | async as note; else spinner">

 <mat-card *ngIf="isEdit">

 �<mat-card-subtitle class="error" *ngIf="errorMessages$ | async as

errorMessage">

 {{ errorMessage }}

 </mat-card-subtitle>

 <mat-card-content>

 �<app-note-form [note]="note" (saveNote)="saveNote($event)"

(sendError)="sendError($event)"></app-note-form>

 </mat-card-content>

 </mat-card>

 �<app-note-card *ngIf="!isEdit" [note]="note" [loading]="isDbLoading$ |

async"></app-note-card>

 �<button mat-raised-button color="accent" (click)="delete()"><mat-

icon>delete</mat-icon></button>

 �<button mat-raised-button color="primary" (click)="edit()"><mat-

icon>edit</mat-icon></button>

</div>

<ng-template #spinner>

 <mat-spinner></mat-spinner>

</ng-template>

Chapter 3 Completing an Angular App

70

Note I f you are comfortable, check out the final code. You will find it in github.
com/mhadaily/chapter03/03-note-list-add-edit-update-delete/. Clone the project
and navigate to the folder. Then run the following commands:

npm install // to install dependencies

npm start // to run development server

npm run deploy // to deploy to firebase

�Summary
The first three chapters’ goal was to reveal PWA fundamentals; tools; and creating an

app, step by step, together. It may sound unrelated to PWA; however, as we continue

in this book, chapter by chapter, section by section, we will try to make our app

progressively better to finally have a great PWA with Angular.

Beginning with the next chapter, we will dive into implementing offline capabilities,

caches, push notifications, new modern browsers’ APIs, and more just to create a native-

like app for better user experiences on the mobile and web. While this was not possible

just a few years ago, these days it’s widely supported in major browsers.

Figure 3-8.  Add note, details, and notes list view

Chapter 3 Completing an Angular App

71
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_4

CHAPTER 4

Angular Service Worker
Up to this point, the application that we built has no PWA characteristics. From this

chapter on, we are going to gradually add PWA features and dive into them in depth.

Angular provides a module called service-worker to handle caching strategies and

push notifications out of the box. Angular Service Worker is highly configurable and can

satisfy Angular app requirements. However, before we start implementing this module,

we should have a basic understanding of Service Worker.

This chapter begins with Service Worker fundamentals and cache APIs as it’s crucial

to know what’s going on behind the scenes when we code with Angular Service Worker.

Then, Angular CLI will help us to scaffold and turn our project to PWA by using

@angular/pwa schematics.

Although, the focus is on CLI v6, each modification will be broken down in order

to give us a better picture of what needs to be done if it is implemented manually, for

instance, in Angular version 5 or even lower.

�Service Workers: The Brain of PWAs
Your brain is the center of decision making and has full control of your body. Server

workers resemble our brain. At their core, they are worker scripts written in JavaScript,

enabled with a few lines of code in modern browsers and runs in the background. Once

activated, developers are able to intercept network requests, handle push notifications,

manage caches, and perform many different tasks.

You may ask, what if it’s not supported?1

1�All major browsers, support Service Worker. Check https://caniuse.com/
#feat=serviceworkers

https://caniuse.com/#feat=serviceworkers
https://caniuse.com/#feat=serviceworkers

72

If it is not implemented in a user’s browser, it simply falls back, and the website will

function normally. The beautify of PWA is, by its definition, that anyone – regardless of

browser and operating system of choice – should be able to surf the website and get the

best user experience. This description refers to a phrase known as “perfect progressive

enhancement.”

�Understanding Service Worker
In order to understand Service Worker, think of yourself sitting in the center of your

brain. You are provided with different tools to gain control of your body. You see

everything, and you can make any decision. It’s up to you either let your body do what

it does normally or redirect the decision to a different direction. You may even stop the

brain from functioning completely. This is what you can do with network requests in

Service Worker; it acts similar to a proxy between a website and server. The ability to

totally take over a network request makes Service Worker extremely powerful and allows

you to react and respond!

It’s crucial to mention that although Service Worker is written in JavaScript, it has

slightly different behavior such as the following:

•	 Runs in different threads from the main JavaScript that empowers

your app. Figure 4-1 illustrates how Service Worker sits on a different

thread and intercepts a network request.

•	 Runs in its own global context.

•	 Designed to be fully asynchronous; therefore, it doesn’t have access

to things such as synchronous XHR and LocalStorage.

•	 Runs in worker context – thus, it doesn’t have access to DOM.

•	 Runs HTTPS-Only in production, in addition to Localhost for

development.

•	 Runs in 1:1 scope, meaning there can be only one Service Worker per

scope.

•	 Can be terminated any time.

Chapter 4 Angular Service Worker

73

Service Workers are event driven. As a consequence, it is easier than you think to get

started with them once the basics of the events are understood. Simply pick and choose

which event you want to tap into, and you are good to go. Let’s take a look at primary

events in Service Workers.

�The Service Worker Life Cycle
Service Worker in its life cycle has different stages. Take your time and look at Figure 4-2,

which demonstrates how the Service Worker life cycle takes place in four steps. Imagine

that your website is going to be served by a Service Worker:

Step 1, when the user navigates to the website, by calling the register() function,

the browser detects the Service Worker JavaScript file; therefore, it downloads, parses,

and the execution phase begins. The Register function retunes a Promise2 in which in

case of error, the registration gets rejected and the Service Worker registration process

stops.

Step 2, however, if registration goes well and gets resolved, the Service Worker

state turns into installed. Therefore, an install event fires where it is the best place to

precache all of the static assets. Keep in mind that an install event happens only the first

time after registration.

Step 3, as soon as install has completed successfully, Service Worker is then

activated, and has total control under its own scope. Similar to the install event, activate

only happens for the first time after registration and once install has completed.

Figure 4-1.  Service Worker can run in different threads and intercept requests

2�https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/
Promise

Chapter 4 Angular Service Worker

https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Global_Objects/Promise

74

Note  Scope is used to specify the subset of your content that you want the
server worker to control and can be defined either by the optional parameter
scope in second argument in register() function or by default where the
server worker JavaScript file is located. For instance, if the server worker file is in
the root of the application, it has control over all pages. However, /sw-test/
specifies only access to all pages under this origin. Figure 4-3 demonstrates how
the scope works.

Figure 4-2.  Server worker life cycle

Chapter 4 Angular Service Worker

75

Step 4, once install and activate events are completed with no errors, Service Worker

will be effective. However, if it fails during installation, activation, or is replaced by a new

one, it remains redundant and does not affect the app.

As mentioned, a website without Service Worker won’t handle any requests;

however, as soon as it’s installed and activated, it can control every single request under

its own scope. Hence, to kick the logic off in Service Worker after the first installation and

activation, the website needs to be refreshed, or we should navigate to another page.

Last but not least, it may happen that we want to alter a registered and activated

Service Worker. If there is byte-size change in the registered file, the browser considers it,

and all the steps, as mentioned above, will happen again. However, since we already had

a Service Worker activated, the process is slightly different. This time, Service Worker will

not get activated immediately; therefore, the logic in Service Worker does not execute.

Figure 4-3.  Service worker scope demonstration

Chapter 4 Angular Service Worker

76

It remains waiting until all tabs and clients that have old Service Worker running are

terminated. In other words, all the tabs that have the website open must be closed and

reopened again. As we are developers and know ninja tricks, we can simply skip waiting

from DevTools, or if we want, we can do it programmatically in Service Worker logic, too.

We will review this in detail, shortly, in this chapter.

�Service Worker Functional Events
Along with Install and Activate events, Fetch, Push, and Sync events are also available

in Service Worker and are known as functional events. In short:

•	 Fetch: happens every time the browser requests static assets or

dynamic content; for instance, request for an image, video, CSS, JS,

HTML, and even an ajax request.

•	 Push: happens when web app receives a push notification.

•	 Sync: Lets you defer actions until the user has stable connectivity.

This is useful to ensure that whatever the user wants to send is

actually sent. This API also allows servers to push periodic updates to

the app so the app can update when it’s next online.

�Chrome DevTools
No developer feels comfortable without an appropriate debugging tool. Among all

browsers, at the time of writing this book, Chrome DevTools is the best choice to debug

Service Workers. Let’s catch a glimpse Chrome DevTools and see what options it

provides to assist us in making debugging easier and enhancing PWAs even better.

Console, Application, and Audits are main panels for debugging Service Worker

in Chrome DevTools. Audits panel leverages Lighthouse,3 which is an open source,

automated tool for improving the quality of websites and can be used to run

accessibility, performance, SEO, best practices, and a PWA audit test. We use the Audits

panels to qualify web pages, especially Progressive Web App, which is in our target (see

Figure 4-4).

3�https://developers.google.com/web/tools/lighthouse/

Chapter 4 Angular Service Worker

https://developers.google.com/web/tools/lighthouse/

77

Having looked at Application panel, we see the following:

•	 Manifest: where we can debug Web App Manifest.4

•	 Service Workers: where we debug Service Worker and have many

options such as update Service Worker, remove, skip waiting, and

different options to work with the network (Figure 4-5).

•	 Offline: simulate a no-internet-access in browser.

•	 Update on reload: where it downloads Service Worker every time

a page is reloaded, and therefore all life-cycle events, including

install and activate, happen on reload. This is incredibly useful for

debugging.

•	 Bypass for network: Will force the browser to ignore any active

Service Worker and fetch resources from the network. This is

extremely useful for situations where you want to work on CSS

Figure 4-4.  Audits panel in Chrome where we run auditing tests on web pages

4�Chapter 6 is dedicated to Web App Manifest.

Chapter 4 Angular Service Worker

78

or JavaScript and not have to worry about the Service Worker

accidentally caching and returning old files.

•	 Clear storage: where we can delete all caches.

•	 LocalStorage, Session Storage, Indexed DB, Web SQL, and cookies

are all different type of storages you may be familiar with. Indexed

DB will be in our main focus in this book since it’s asynchronous and

Service Worker has access to it.

•	 Cache Storage: it’s a new cache API in browsers, key-value base, and

capable of storing requests and responding. We open this cache to

store most of our assets and dynamic content. This cache is extremely

powerful and is available in both application and Service Worker.

If you are interested in learning more about Chrome DevTools, you can check the

detailed documents at the Google developer website found in https://developers.

google.com/web/tools/chrome-devtools/. I strongly recommend that you take your

time and explore, in depth, the information about DevTools, which I believe makes you

much more productive.

Figure 4-5.  Service Workers option under Application panel in Chrome DevTools

Chapter 4 Angular Service Worker

https://developers.google.com/web/tools/chrome-devtools/
https://developers.google.com/web/tools/chrome-devtools/

79

I know that you are impatient to start coding and see sample codes, so let’s

get started.

�Service Worker Example Code
It is time to write a few lines of code to see how we can register a Service Worker and

explore its own life cycle. To begin, I’ll create a simple html file, and right before

</body> I’ll open a <script> tag and will register service-worker.js file where it is

located in the root next to index.html.

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <meta http-equiv="X-UA-Compatible" content="ie=edge">

 <title>Apress Simple Service Worker Registartion</title>

</head>

<body>

 <div style="text-align: center; padding: 3rem">

 <h1>Apress Simple Service Worker Registartion</h1>

 </div>

 <script>

 if ('serviceWorker' in navigator) {

 navigator.serviceWorker

 .register('/service-worker.js')

 .then(registration => { // registeration object

 console.log('Service worker is registered', registration);

 })

 .catch(e => {

 �console.error('Something went wrong while registaring

service worker.')

 });

 }

 </script>

</body>

</html>

Chapter 4 Angular Service Worker

80

Progressive enhancement is meant to allow all users to load our web pages whether

they are using the oldest or latest versions of browsers. Consequently, we should always

check for features that may not be available in different browsers. Code above has

started by a feature-checking statement if ('serviceWorker' in navigator) {}.

Once availability is ensured, the register method has been called register('/service-

worker.js') by passing the Service Worker path. This method has a second argument

that is optional to pass extra options to the method: for instance, defining scope. Since,

there is no second argument in the register method, scope is supposed to be the default;

and in this case it is the root where the Service Worker file is located. then and catch

return the registration or error object when the register promised is resolved or rejected

respectively.

Logic in server-worker.js is listeners for activate and install events where we

log two messages in the console in the callback function. Self in this context refers to

ServiceWorkerGlobalScope.

//service-worker.js

self.addEventListener("install", (event) => {

 console.log("[SW.JS] Step 2, Service worker has been installed");

});

self.addEventListener("activate", (event) => {

 console.log("[SW.JS] Step 2, Service worker has been activated");

});

You will be able to see logs when you open devTools in console panel

(see Figure 4-6).

Note  You can pull down www.github.com/mhadaily/awesome-apress-
pwa/chapter04/01-simple-service-worker. Run npm install and
then run npm start. It runs a web server on port 8080. You can navigate to
localhost:8080. If you copy and paste code from the book to your project, you
need a web server to run your code.

Chapter 4 Angular Service Worker

http://www.github.com/mhadaily/awesome-apress-pwa/chapter04/01-simple-service-worker
http://www.github.com/mhadaily/awesome-apress-pwa/chapter04/01-simple-service-worker

81

Reload the web page; from now on until the new change in service-wokrer.js,

you’ll only see the registration object logged in the console, and install and activate does

not get fired anymore (see Figure 4-7).

Figure 4-6.  Service worker life cycle when it’s registered for the first time. As you
see, install and activate events happen.

Chapter 4 Angular Service Worker

82

Add just a few lines to the Service Worker file and then reload the application while

watching Service Workers in the application panel.

// modified service-worker.js

// this is equivalent to following addEventistener

// self.oninstall = (event) => { };

self.addEventListener("install", event => {

 console.log("[SW.JS] Step 2, Service worker has been installed");

 console.log("Just added something;");

});

// this is equivalent to following addEventistener

// self.onactivate = (event) => { };

self.addEventListener("activate", event => {

 console.log("[SW.JS] Step 3, Service worker has been activated");

});

Figure 4-7.  Once Service Worker is activated, second reload doesn’t fire install and
activate event anymore

Chapter 4 Angular Service Worker

83

After reloading, you’ll see that a new Service Worker is waiting until all clients are

terminated. Once the browser detects a new change in Service Worker, then, this file gets

installed; however, it does not activate until all clients get claimed– in other words, all

tabs need to be closed and reopened again, programmatically performing skipWaiting

in Service Worker, or you can manually click on SkipWaiting in Chrome DevTools as

shown in Figure 4-8.

Figure 4-8.  In DevTools, you can click SkipWaiting to activate new Service
Worker

So far, we have discovered how Service Worker and its life cycle work. Now it’s time

to unfold Cache API capability and see it in action in the next section.

�Cache API
Connectivity independence is a top-notch PWAs trait that makes them phenomenal.

Cache API is a new caching storage in browsers where we can store a request as key and

a response as value. In this section, we are going to have a quick glimpse of Cache API in

order to understand how offline features work under the hood.

Chapter 4 Angular Service Worker

84

I change the app structure to include app.js file where it manipulates DOM to

display title and style.css where it contains a title to make the headline center.

.

├── app.js
├── index.html
├── service-worker.js
└── style.css
// app.js

const title = document.querySelector(".title");

title.innerHTML = "<h1>Apress Simple Service Worker Registartion</h1>";

// style.css

.title {

 text-align: center;

 padding: 3rem;

}

// index.html

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <meta http-equiv="X-UA-Compatible" content="ie=edge">

 <title>Apress Simple Service Worker Registartion</title>

 <link href="/style.css" rel="stylesheet">

</head>

<body>

 <div class="title"></div>

Chapter 4 Angular Service Worker

85

 <script src="/app.js"></script>

 <script>

 if ('serviceWorker' in navigator) {

 navigator.serviceWorker.register('/service-worker.js')

 }

 </script>

</body>

</html>

�Precache Static Assets
Every web application contains many static assets including styles, JavaScript, and

images. As mentioned earlier in this chapter, once an install event fires, it’s possible

to tap into the event and write desired logics. It fires once per installation right before

Service Worker takes control over all content; thus, here is one of the best places to

open cache and add data to cache storage in which it is essential to load application

fundamentals.

server-worker.js

// always add version to your cache

const CACHE_VERSION = "v1";

const PRECACHE_ASSETS = ["/", "/style.css", "/index.html", "/app.js"];

self.oninstall = event => {

 console.log("Install event, start precaching...");

 event.waitUntil(

 caches.open(CACHE_VERSION).then(cache => {

 return cache.addAll(PRECACHE_ASSETS);

 })

);

};

Let’s break down the code. First, we have defined a cache storage name, which is

specified as a version name. Secondly, this app requires that some of its static assets, in

order to run without having an internet connection, must be listed in an array.

Chapter 4 Angular Service Worker

86

As soon as the install event in Service Worker fires, regardless of what the result of

logic in callback is, it is closed. So, we need a mechanism to tell Service Worker to stand

still until actions are resolved. Hence, waitUntil() is a method that tells browsers to

remain in the same event until the promise or promises that are going to be passed into

the method are resolved.

Lastly, caches.open() accepts a name and open cache to store data into it. Other

Caches methods are:

•	 delete(cacheName): delete whole cache name and returns Boolean.

•	 has(cacheName): find cache name and returns Boolean.

•	 keys(): retrieve all caches name and returns array of strings.

•	 match(request): matches a request, if any.

•	 open(cacheName): it opens a cache storage to add request/

response.

All cache APIs are Promised Based.

Once a cache opens, we can add all of our assets either one by one or as an array.

Other available methods on cache are the following:

•	 add(request): add a request, and you can add a name as string.

•	 addAll(requests): add array of requests or arrays of strings.

•	 delete(request): deletes request or name string and returns a

Boolean.

•	 keys(): retrieve all caches names and returns array of strings.

•	 match(request): matches a request, if any.

•	 matchAll(requests): matches array of requests, if any.

•	 put(request, response): modifies an existing request with new

response.

You may ask, where should I dump my cache? Great question – it’s right before

Service Worker controls all pages under its scope, which means to activate an event.

Imagine we already bumped up our cache version to v2 and we want to delete all

outdated caches, which helps to clean up outdated caches and free up space (see

Figure 4-9).

Chapter 4 Angular Service Worker

87

We need to filter out all other caches expect the current one and delete all of them.

// service-worker.js

self.onactivate = event => {

 console.log("activate event, clean up all of our caches...");

 event.waitUntil(

 caches.keys().then(cacheNames => {

 return Promise.all(

 cacheNames

 �.filter(cacheName => cacheName !== CACHE_VERSION) .

map(cacheName => caches.delete(cacheName));

 })

);

};

We call waitUntil() method to tell browser to stay in the activate event until all

Promises passed into this method have been resolved. As you see in the code above, all

keys are retrieved and then are being filtered where it’s not equal to current version, and

then deletes all previous caches (see Figure 4-10).

Figure 4-9.  Two versions of caches are available in install event since new Service
Worker is not activated yet

Chapter 4 Angular Service Worker

88

Having reviewed the Service Worker and cache API, I am impatiently looking

forward to starting off the Angular Service Worker module.

�Angular Service Worker Module
Conceptually, Angular Service Worker is similar to a forward cache or a CDN edge

installed in the end user’s web browsers, which satisfies requests made by an Angular

app for resources or data from a local cache without needing to wait for the network.

Like any cache, it has rules for how content is expired and updated.

Before adding anything to the project, let’s analyze our application using Lighthouse

in the Audit panel.

Navigate to awesome-apress-pwa.firebaseapp.com5 or your Firebase URL where you

have already deployed the application.

Figure 4-10.  Once new Service Worker is activated, all previous oudated caches
are deleted

5�Alternatively, you can run ng serve --prod to run production ready app served a locally
runned server, then nagivate to localhost:4200.

Chapter 4 Angular Service Worker

89

Note  You can pull down www.github.com/mhadaily/awesome-apress-
pwa/chapter04/03-analyze-using-lighthouse. Run npm install and
then run npm run serve:prod. It runs a production app on a web server. You
can navigate to localhost:4200. You may need to also deploy this code to
Firebase in order to evaluate your app before adding a Service Worker.

Next, open developer tools6 in Chrome and click on the Audit panel. Our main

target group is mobile users. So, preferably select emulation on Mobile and uncheck all

check boxes expect Progress Web App7 and select Simulated Fast 3G, 4x CPU slowdown

in throttling8 option to make sure our test environment is similar to average real mobile

user devices. Ensure clear storage is also selected as focused visitors are those who load

the web for the first time.

Press run audits and wait until Lighthouse generates a report. Result indicates a

54/1009 score; that’s because we have some audits passed. Six failures are mainly related

to Service Workers, Progressive Enhancement, and Web App Manifest as shown in

Figure 4-11.

Note I f you run auditing on localhost, keep in mind that since you are not running
your app with HTTPS, you may see a lower score.

6�Press Ctrl + Shift + I in Windows or Cmd + Shift + I in Mac.
7�We do run all other options in this book as we go and optimize to hit a 100/100 score.
8�Read more about network throttling in Lighthouse: https://github.com/GoogleChrome/
lighthouse/blob/master/docs/throttling.md.

9�Lighthouse validates many aspects of PWA which is specifically based on https://developers.
google.com/web/progressive-web-apps/checklist.

Chapter 4 Angular Service Worker

http://www.github.com/mhadaily/awesome-apress-pwa/chapter04/03-analyze-using-lighthouse
http://www.github.com/mhadaily/awesome-apress-pwa/chapter04/03-analyze-using-lighthouse
https://github.com/GoogleChrome/lighthouse/blob/master/docs/throttling.md
https://github.com/GoogleChrome/lighthouse/blob/master/docs/throttling.md
https://developers.google.com/web/progressive-web-apps/checklist
https://developers.google.com/web/progressive-web-apps/checklist

90

�Support for Service Worker in Angular
Angular schematics10 has been introduced to Angular CLI 6 and has had a notable

impact on how quickly we can scaffold our Angular app. Due to this, Adding PWA

features, including Service Worker, is a straightforward process and incredibly easy.

Since @angular/cli has been installed globally, simply run the following command in

your terminal.

ng add @angular/pwa

This command11 will automatically modify some of the existing files by extending

boilerplate codes and adding new files into the Angular app structure. Let’s take a close

look at the modifications.

Figure 4-11.  Initial result before adding any new optimization to the project

10�Learn more about schematics at https://blog.angular.io/schematics-an-introduction-
dc1dfbc2a2b2.

11�Version 6.1.3 of Angular cli and PWA schematics is buggy. So please upgrade or downgrade to a
lower version, possibly 6.1.0 or 6.2+.

Chapter 4 Angular Service Worker

https://blog.angular.io/schematics-an-introduction-dc1dfbc2a2b2
https://blog.angular.io/schematics-an-introduction-dc1dfbc2a2b2

91

CREATE ngsw-config.json (441 bytes)

CREATE src/manifest.json (1085 bytes)

CREATE src/assets/icons/icon-128x128.png (1253 bytes)

CREATE src/assets/icons/icon-144x144.png (1394 bytes)

CREATE src/assets/icons/icon-152x152.png (1427 bytes)

CREATE src/assets/icons/icon-192x192.png (1790 bytes)

CREATE src/assets/icons/icon-384x384.png (3557 bytes)

CREATE src/assets/icons/icon-512x512.png (5008 bytes)

CREATE src/assets/icons/icon-72x72.png (792 bytes)

CREATE src/assets/icons/icon-96x96.png (958 bytes)

UPDATE angular.json (4049 bytes)

UPDATE package.json (1646 bytes)

UPDATE src/app/app.module.ts (1238 bytes)

UPDATE src/index.html (652 bytes)

As you have seen, different icons sizes, ngsw-config.json, manifest.json, and

ngsw-worker.js12 have been added to the project while angular.json, app.module.ts,

index.html, and package.json have been modified.

Let’s break down the changes and see what and where it has changed:

	 1.	 package.json: Angular Service Worker "@angular/service-

worker" has been added to list of dependencies, and by the

time of writing this book, version 6.1.0 has been installed. It may

upgrade or add a new version by the time you read this book.

	 2.	 ngsw-config.json: added to root of project, and it contains a Service

Worker configuration. In this chapter we will take a look at it and

walk through the basics, and in the next chapter we will dive into it

and add more advanced configurations along with tips and tricks.

{

 "index": "/index.html",

 "assetGroups": [

12�You need to build for production to find this file under /dist folder.

Chapter 4 Angular Service Worker

92

 {

 "name": "app",

 "installMode": "prefetch",

 "resources": {

 "files": [

 "/favicon.ico",

 "/index.html",

 "/*.css",

 "/*.js"

]

 }

 }, {

 "name": "assets",

 "installMode": "lazy",

 "updateMode": "prefetch",

 "resources": {

 "files": [

 "/assets/**"

]

 }

 }

]

}

	 3.	 manifest.json: added to /src/ folder in the project. it contains a

configuration to make the app installable. In Chapter 6, manifest.

json will be reviewed in depth.

{

 "name": "lovely-offline",

 "short_name": "lovely-offline",

 "theme_color": "#1976d2",

 "background_color": "#fafafa",

 "display": "standalone",

 "scope": "/",

 "start_url": "/",

Chapter 4 Angular Service Worker

93

 "icons": [

 {

 "src": "assets/icons/icon-72x72.png",

 "sizes": "72x72",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-96x96.png",

 "sizes": "96x96",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-128x128.png",

 "sizes": "128x128",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-144x144.png",

 "sizes": "144x144",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-152x152.png",

 "sizes": "152x152",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-192x192.png",

 "sizes": "192x192",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-384x384.png",

 "sizes": "384x384",

 "type": "image/png"

 },

Chapter 4 Angular Service Worker

94

 {

 "src": "assets/icons/icon-512x512.png",

 "sizes": "512x512",

 "type": "image/png"

 }

]

}

	 4.	 Different icons: added in src/assets/icons/ and have been reused

in manifest.json. We will come back to these icons in Chapter 6.

	 5.	 Angular.json: as you know, this file contains all Angular CLI

configurations. Since manifest.json needs to be exposed in a

public/build folder, it must be added to an assets array in in the

architect configurations where it’s applicable. See the following

snippet, for example:

"architect": {

 "build": {

 "builder": "@angular-devkit/build-angular:browser",

 "options": {

 ...

 "assets": [

 "src/favicon.ico",

 "src/assets",

 "src/manifest.json"

],

 "styles": [

 ...

 "src/styles.scss"

],

 "scripts": []

 },

 ...

Chapter 4 Angular Service Worker

95

There will be one more change here. serviceWorker has been

added to the production configuration to inform Angular CLI that

this feature is enabled. Let take a look at the configuration’s snippet:

"configurations": {

 "production": {

 "fileReplacements": [

 {

 "replace": "src/environments/environment.ts",

 "with": "src/environments/environment.prod.ts"

 }

],

 "optimization": true,

 "outputHashing": "all",

 "sourceMap": false,

 "extractCss": true,

 "namedChunks": false,

 "aot": true,

 "extractLicenses": true,

 "vendorChunk": false,

 "buildOptimizer": true,

 "serviceWorker": true

 }

 }

	 6.	 Index.html: after adding manifest.json to the project, it needs to

be exposed by rel=manifest in the head of index.html to let the

browser know that this file is the project’s manifest configuration

file. Theme color meta tells the browser what color to tint UI

elements such as the address bar.

<link rel="manifest" href="manifest.json">

<meta name="theme-color" content="#1976d2">

	 7.	 app.module.ts: is our main app module that has been modified

to import ServiceWorkerModule in order to add Service Worker

capabilities and features to the project. This module registers

Chapter 4 Angular Service Worker

96

ngsw-worker.js Service Worker JavaScript file, which has been

written and maintained by the Angular team and will be added

after a prod build to the root of project. It has a second argument

to ensure that this registration is enabled only when the app

is ready to be built for production and doesn’t interrupt the

development environment.

ServiceWorkerModule.register("ngsw-worker.js", {

 enabled: environment.production

})

Service Worker in Angular can also be registered in two other options:

•	 Adding registration script in index.html, please refer to the previous

section where we register a simple Service Worker. Remember to

register ngsw-worker.js. I don’t recommend this option; rather, use

the next option if necessary.

•	 Using the same registration code in main.ts after bootstrapModule()

is resolved,

// main.ts

platformBrowserDynamic().bootstrapModule(AppModule)

 .then(() => {

 if ('serviceWorker' in navigator && environment.production) {

 window.addEventListener('load', () => {

 navigator.serviceWorker.register('/ngsw-worker.js') ;

 });

 }

 })

 .catch(err => console.log(err));

Note  ServiceWorkerModule.register() has scope option in addition to
enable.

Chapter 4 Angular Service Worker

97

Although @angular/pwa schematic helps to set up an Angular PWA project quickly,

there may be use cases that we need to do all of the above steps manually. For instance:

	 1.	 If you are running Angular 5 in production, there is still a chance

to add Angular Service Worker module to your application. Simply

go back to each step and try to add or modify all the changes one

by one. Run npm install to make sure @angular/service-worker

is successfully installed and that you are good to go!

	 2.	 You may need only ServiceWorker module alone and not the rest

of features: for instance, manifest.json.

It seems every piece is in place and ready to build for production. In the next section,

we are going to check out the dist folder and explore new additions.

�ngsw-config.json Anatomy
Angular Server Worker has been designed and programmed for large applications in

mind; thus, it’s highly configurable.

Rules are written in ngsw-config json file. A Top-Level Angular Service Worker

configuration object interface indicates that there are five main properties that can be

used.

interface Config {

 appData?: {};

 index: string;

 assetGroups?: AssetGroup[];

 dataGroups?: DataGroup[];

 navigationUrls?: string[];

}

By default, index.html has been added as the main entry point. Having looked

at assetGroups interface, it’s an array that set rules for static assets such as JavaScript,

images, icons, CSS, and HTML files.

type Glob = string;

Chapter 4 Angular Service Worker

98

interface AssetGroup {

 name: string;

 installMode?: 'prefetch' | 'lazy';

 updateMode?: 'prefetch' | 'lazy';

 resources: {

 files?: Glob[];

 versionedFiles?: Glob[];

 urls?: Glob[];

 };

}

Note V ersionedFiles is depreciated and as of v6, `versionedFiles` and `files`
options have the same behaviors. Use `files` instead.

We have seen that Angular CLI has added default rules to the ngsw-config.json:

"assetGroups": [

 {

 "name": "app",

 "installMode": "prefetch",

 "resources": {

 "files": ["/favicon.ico", "/index.html", "/*.css", "/*.js"]

 }

 },

 {

 "name": "assets",

 "installMode": "lazy",

 "updateMode": "prefetch",

 "resources": {

 "files": ["/assets/**"]

 }

 }

]

Chapter 4 Angular Service Worker

99

As it’s shown, there are two objects in this array. Let’s explore the first object.

{

 "name": "app",

 "installMode": "prefetch",

 "resources": {

 "files": ["/favicon.ico", "/index.html", "/*.css", "/*.js"]

 }

 },

	 1.	 name: defines group name and will be part of Cache API storage

name.

	 2.	 installMode: determines how cache strategies should behave for

group’s resources when they are cached or fetched. It has two options:

	 a.	 prefetch: means all the resources are downloaded and should immediately

be cached on install event; this is similar to precache assets that we have

seen earlier in this chapter. This mode is being used for caching assets

that applications require for bootstrapping like app-shell to make the

application be fully capable offline.

	 b.	 lazy: means each resource is cached individually in runtime when it’s

requested.

	 3.	 resouces: the explicit list of resources to cache. There are two

ways to set up them: files or urls. VersionedFiles as mentioned are

depreciated and have the same behavior as files.

	 a.	 files: contains a list of globs matched against files in the root (in this case).

* stands for file names which have been defined with appropriate file name

extensions. For example, *.js means all JavaScript files and / means they are

located in the root. In short, /*.js indicates all JavaScript files located in the

root of the project.

	 b.	 urls: contains a list of external URLs (either relative, absolute paths, or on

different origins) that should be cached: for example, Google Fonts. URLs

cannot be hashed, so by changes in configuration, they will be updated.

In default configurations, there are no URLs, but we will need it to add our

external resources in the next chapter.

Chapter 4 Angular Service Worker

100

Note  Files will have content hashed included in ngsw.json file’s hashTable13
node. It helps to have an accurate version. Keep in mind that file paths are mapped
into the URL space of the application, starting with the base href.

Clearly, it tries to precache essential files that are required to run the Angular

application even when there is no network.

Moving forward to the second object, it has similar configurations except that it

targets all files regardless of their file extension under /assets folder, which will get

cached as soon as they are fetched in runtime. If there is a new change in each of those

assets, it’ll be fetched and updated immediately.

 {

 "name": "assets",

 "installMode": "lazy",

 "updateMode": "prefetch",

 "resources": {

 "files": ["/assets/**"]

 }

 }

	 1.	 installMode: please refer to object one description.

	 2.	 updateMode: determines how each cached asset should behave

when application has a new version and is downloaded; similar to

installMode, it has two options:

	 a.	 prefetch: means each asset should be refreshed on every new app version

(if needed). Angular creates hashTable to compare hashes, and if there is a

new change, the asset will be downloaded. URLS in caches, in this manner,

will always be refreshed (with an If-Modified-Since14 request).

	 b.	 lazy: performs similar to above flow however, when resource is requested.

This mode works only if installMode is also lazy.

13�https://en.wikipedia.org/wiki/Hash_table
14�https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/If-Modified-Since

Chapter 4 Angular Service Worker

https://en.wikipedia.org/wiki/Hash_table
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/If-Modified-Since

101

	 3.	 resources: please refer to object one description.

	 a.	 files: ** stands for everything. In this case, /assets/** means all files under

assets files including images, icons, etc.

Note  Default value for installMode and updateMode is prefetch in ngsw.js

I believe in the saying that says “understand, don’t imitate.” Evaluating each object

should help us to be more capable of writing our own rule based on what we need in our

application. The fundamentals are the same; however, you may need more advanced

setups such as writing rules for external resources and navigation URLs, which will,

be discussed in the next chapter.

�Build Project with Angular Service Worker
ServiceWorker module is only enabled when we run a production build. Run the

following command to start building an app in prod-environment:

npm run build:prod // or ng build --prod

ngsw-worker.js is our servicer worker file and ngsw.json our configurations which

will be fetched by service worker and will be implemented accordingly.

.

├── 0.c570a2562d2874d34dc4.js
├── 1.71eb2445db7dfda9e415.js
├── 2.df6bb6a6fde654fe8392.js
├── 3rdpartylicenses.txt
├── assets
├── favicon.ico
├── index.html
├── main.873527a6348e9dfb2cc1.js

Chapter 4 Angular Service Worker

102

├── manifest.json
├── ngsw-worker.js
├── ngsw.json
├── polyfills.8883ab5d81bf34ae13b1.js
├── runtime.e14ed3e6d31ff77728e9.js
├── safety-worker.js
├── styles.7a3dc1d11e8502df3926.css
└── worker-basic.min.js

ngsw-worker is registered as the Service Worker logic file, and ngsw.json is being

created based on ngsw-config.json. All the configurations and resources are generated

in ngsw.json manifest, which is automatically fetched by written logic in ngsw-worker

and an add, update, or delete cache based on URLs, files, and strategies that have been

defined in this file. It contains a hashTable according to build-hash and Angular Service

Worker. Check this hash to update resources that are in dist folder if there are any

changes.

If you open ngsw manifest file, static assets and JavaScript files after the build have

been added magically. Eventually, Angular CLI will match all of our files and add them

to ngsw, as we need a full path of each file. ngsw.json also informs Angular to fetch these

resources into the cache and keep them updated accordingly. It’s worth mentioning that

even though this file has been designed for Angular Service Worker, it’s a pretty readable

file for us as developers.

Let’s run following the command to fire up the local server:

npm run prod

Navigate to localhost:4200 and open your Chrome DevTools. Open the application

panel and check for Service Workers. Figure 4-12 clearly shows that ngsw-worker.js has

been successfully installed and how different caches in Cache Storage were created.

In the next chapter, ngsw manifest and ngsw-worker will be reviewed in depth.

Chapter 4 Angular Service Worker

103

We need to run the following command as always to deploy a new build to Firebase

and see how all of our efforts in the setup work in action:

npm run deploy

Once deployment is done, open audit panel in Chrome DevTools and press run

audits (see Figure 4-13). Remember, we should keep all the same settings as we did

earlier in this chapter.

Yes, this is true: score 100/100 as shown in Figure 4-13 has been achieved for PWA

auditing by just adding a few steps in Angular, which was mainly done by the CLI. This is

great, but we still have a lot to do.

Figure 4-12.  ngsw-worker.js has been installed and resouces have been added to
Cache storage

Chapter 4 Angular Service Worker

104

Note  Chapters 13 and 14 are dedicated to building a PWA with Workbox, which
is a tool to create our service worker and cache strategies. The goal is to have
100% PWA coverage for all Angular apps regardless of their version. So, do not
worry if your Angular version does not have an Angular Service Worker module or
the Angular Service Worker does not meet your essential requirements. You’ll be
covered soon.

�Summary
The Angular team aims to make PWA features as easy as possible. As you have seen, it

was a trivial process to set up those features in the Angular project. In this chapter, we

have seen how we turned our Angular application into a PWA using Angular CLI not

only with pwa schematic but also with defined steps to reproduce manually while default

configurations have been explained.

Figure 4-13.  Score 100 after setting up Angular for PWA schematics by ng CLI

Chapter 4 Angular Service Worker

105

Although the app got a score of 100, it does not mean we have accomplished all of

what we need to run our application for any circumstances. So, bear with me while we

dive deeply into more configurations, settings, and advanced techniques in order to

meet all production-ready app requirements.

With that said, I encourage you to proceed to the next chapter.

Chapter 4 Angular Service Worker

107
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_5

CHAPTER 5

Advanced Angular Service
Worker and Runtime
Caching
In the previous chapter, we implemented Angular Service Worker and saw that Angular

CLI helped us to run PWA out of the box with minimal effort. Basic configuration is the

beginning of our journey to create a PWA with Angular. It is obvious that an application

will require advanced techniques and strategies as it grows. Hence, Angular Service

Worker is providing more features to handle variant situations.

In this chapter, I will expand configurations to an advanced level in order to make a fully

offline application. However, we start off by learning complex cache strategies in Service

Worker that enable us to understand what underlies Angular Service Worker implementation.

�Cache Strategies
There are a few patterns for handling requests and responds in Service Worker. It differs

from application to application. Depending on requirements, you may use one or more

of the strategies discussed in the following sections.

�Cache Only
In this strategy, requests always look for a match in the cache and respond accordingly.

This is ideal for “versioned” files when they are supposed to be there for your application

and considered static and unchanged until the next deployment. Usually all statics assets

that application needs to run, we cache them on install event. Figure 5-1 is a simple

illustration to show how it works.

108

Following snippet shows how we can use this strategy.

self.addEventListener("fetch", event => {

 event.respondWith(caches.match(event.request));

});

Notice where a request match is not found in the cache, respond will look like a

connection error.

�Network Only
There are use cases that don’t have an offline equivalent. Imagine that you have a stock

exchange website and always need to show the latest and most up-to-date rates to your

user. Figure 5-2 shows a simple illustration of how this works.

Figure 5-1.  Cache only strategy illustration

Figure 5-2.  Network Only

Chapter 5 Advanced Angular Service Worker and Runtime Caching

109

self.addEventListener("fetch", event => {

 event.respondWith(fetch(event.request));

});

It is possible that you don’t call event.respondWith, which ends up in default

browser behavior.

�Cache Falling Back to Network or Cache-First
This gives you a combination of cache only and network only where it tries to match the

request from a cache, and if it doesn’t exist, then it falls back to fetch a request from the

network. See Figure 5-3 to see how it works.

Figure 5-3.  Cache falling back to network or Cache-First

self.addEventListener('fetch', function(event) {

const request = event.request;

 event.respondWith(

 caches.match(event.request).then(function(response) {

 return response || fetch(event.request);

 })

);

});

Chapter 5 Advanced Angular Service Worker and Runtime Caching

110

We can leverage this strategy to cache content dynamically.

self.addEventListener("fetch", event => {

const request = event.request;

 event.respondWith(

 caches.match(request).then(res => {

 // Fallback

 return (

 res || fetch(request).then(newRes => {

 // Cache fetched response

 caches

 .open(DYNAMIC_CACHE_VERSION)

 .then(cache => cache.put(request, newRes));

// Response can be used once, we need to clone to use it more in the

context

 return newRes.clone();

 })

);

 })

);

});

Keep in mind that updated-cached content will be available in the next visit of the

same request.

�Network Falling Back to Cache or Network-First
This strategy is suitable for those resources that should update regardless of what is the

app version or what the versioned files are: for instance, showing the latest articles or

timeline in social media (see Figure 5-4). Eventually, the most up-to-date content is

shown to our online users whereas in offline mode, a user will receive an older cached

version of the content. Similar to the previous strategy, it’s most likely that we want to

update a cache entry when a network request succeeds.

Chapter 5 Advanced Angular Service Worker and Runtime Caching

111

self.addEventListener("fetch", event => {

const request = event.request;

 event.respondWith(

 fetch(request)

 .then(res => {

 // Cache latest version

 caches

 .open(DYNAMIC_CACHE_VERSION)

 .then(cache => cache.put(request, res));

 return res.clone();

 }) // Fallback to cache

 .catch(err => caches.match(request))

);

});

However, in case of a slow or intermittent connection, a user faces an unacceptable

and unpleasant experience since fetch takes an extremely long time; so it’s going to be

frustrating from the user’s perspective. See the next pattern if you are looking for a better

alternative.

Figure 5-4.  Network falling back to cache or Network-First

Chapter 5 Advanced Angular Service Worker and Runtime Caching

112

�Cache and Network
The idea is to first show your user old cached content if it exists and then update the UI

when the network request succeeds. In other words, you have to make two fetch requests

in the page, and in Service Worker you should always update the cache with the latest

fetch response. Figure 5-5 demonstrates how it works.

You have seen this pattern in many social media platforms such as Twitter where

they usually show old cached content and then add newer content on top of the timeline

and adjust the scroll position so that a user is uninterrupted. All in all, this is ideal for

content that needs to be updated frequently such as articles or activity timelines.

Although this strategy gives our user a better experience, it can be disruptive, too:

for instance, when a user is reading content on the website. All of sudden, a large piece

of that content disappears in order to update the UI and show them fresh data. So, it is

important that we ensure users’ interactions with the app and never interrupt so it is as

smooth as possible. Remember, one of the most important goals of PWA is to give our

user a much better experience.

Code in the app looks like this:

const hasFetchData = false;

// fetch fresh data

const freshDataFromNetwork = fetch(YOUR_API)

.then((response) => response.json())

.then((data) => {

 hasFetchData = true;

 showDataInPage();

});

// fetch cached data

caches.match(YOUR_API)

.then((response) => response.json())

.then(function(data) {

 if (!hasFetchData) {

 showDataInPage(data);

 }

})

.catch((e)=>{

Chapter 5 Advanced Angular Service Worker and Runtime Caching

113

// in case if cache is not availble, we hope data is received by network

fetch

return freshDataFromNetwork;

})

Note  Cache API is available in Window Object and other Workers in addition to
Service Worker.

Code in Service Worker is similar to a network falling back to cache while updating

the cache.

self.addEventListener("fetch", event => {

 const request = event.request;

 event.respondWith(

 caches.open(DYNAMIC_CACHE_VERSION).then(cache => {

 return fetch(request).then(res => {

Figure 5-5.  Cache and network

Chapter 5 Advanced Angular Service Worker and Runtime Caching

114

 cache.put(request, res.clone());

 return res;

 });

 })

);

});

You may ask, what if both network and cache fail? See the next pattern to find out

more.

�Generic Fallback
This pattern is ideal to show a replacement for those requests that are not available in

both cache and network: for example, when a user has an avatar and fetch from both the

network and cache fails. So, we can simply replace this request with a photo placeholder.

Another example is to show our user an offline page when a request fails. You can

simply precache offline.html page and match from the cache when necessary. Figure 5-6

illustrates how it works.

Figure 5-6.  Generic fallback

Chapter 5 Advanced Angular Service Worker and Runtime Caching

115

self.addEventListener("fetch", event => {

 const request = event.request;

 event.respondWith(

 // check with cache first

 caches

 .match(request)

 .then(res => {

 // Fall back to network and if both failes catch error

 return res || fetch(request);

 })

 .catch(() => {

 // If both fail, show a generic fallback:

 return caches.match("/offline.html");

 })

);

});

In a real application, even though you can show an offline replacement to a user,

you may want to store data to the indexedDB and let your user know that the request

is successfully retained and will be synced. We will review offline storage together in

Chapter 9.

Note I t is likely that using all or many of the cache strategies in an application
depends on what we need to implement. Evaluate your particular use case and
then choose one pattern that suits it.

It is important to understand most of the common cache patterns in Service Worker

before we review Angular runtime caching. I am confident that you will get a better

understanding of Angular cache strategies since you know how they work. Let’s procced

to Angular Service Worker advanced configurations.

Chapter 5 Advanced Angular Service Worker and Runtime Caching

116

�Runtime Cache in Angular Service Worker
Angular Service Worker is configured using ngsw-config.json. Having been helped by

Angular CLI, the default setting has been in place to run for a barebones Angular app.

But as the application develops, we see the need to cache external files, CDN resources,

as well as populate data from a remote API call. It gets more complex and we would like

the caching all data or at least partially caching to have an enhanced performance, faster

app, and smooth experience. I aim to cover what an application needs regarding data

and external file caches in this section. Let’s carry on.

Note R untime cache may be called dynamic content cache, too. The idea is to
cache data when fetched or requested while the application is running, and data
has not been stored to cache already on the install event, which is referred to as
precache.

�External Resources
Font, JavaScript, style, Images, and other type of files that are hosted on a different origin

or CDN are considered external resources. Whether we want to precache or lazily add

them to cache on runtime, we need to define them in an ngsw-config.json. They must

be added to assetGroup using urls key where the value will be an array of Glob,

meaning we can also use glob pattern to specify urls. URLs are not hashed;

thus, whenever a configuration changes, they will update. As mentioned in previous

chapters, we had added two fonts in our application.

<head>

<link href="https://fonts.googleapis.com/icon?family=Material+Icons"

rel="stylesheet">

<link href="https://fonts.googleapis.com/css?family=Roboto:300,400,500"

rel="stylesheet">

 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link rel="manifest" href="manifest.json">

 <meta name="theme-color" content="#1976d2">

</head>

Chapter 5 Advanced Angular Service Worker and Runtime Caching

117

Now we want to cache these fonts. Code is similar to the following:

// this is our application ngsw-config.json file

{

 "name": "app",

 "installMode": "prefetch",

 "resources": {

 "files": ["/favicon.ico", "/index.html", "/*.css", "/*.js"],

 "urls": [

 https://fonts.googleapis.com/icon?family=Material+Icons,

 https://fonts.googleapis.com/css?family=Roboto:300,400,500,

 �https://fonts.gstatic.com/s/roboto/v18/

KFOlCnqEu92Fr1MmSU5fCRc4AMP6lbBP.woff2,

 �https://fonts.gstatic.com/s/materialicons/v41/flUhRq6tzZclQEJ-Vdg-

IuiaDsNcIhQ8tQ.woff2

]

 }

 },

 {

 "name": "assets",

 "installMode": "lazy",

 "updateMode": "prefetch",

 "resources": {

 "files": ["/assets/**"],

 }

 }

Here is an example where we could add precise URLs since we already knew those

URLs. However, it is not always clear what will be the exact URLs. Thus, we can add a

glob pattern to cache all URLs that are hosted in googleapis.com and gstatic.com in order

to host woff fonts dynamically.

{

 "name": "app",

 "installMode": "prefetch",

Chapter 5 Advanced Angular Service Worker and Runtime Caching

118

 "resources": {

 "files": ["/favicon.ico", "/index.html", "/*.css", "/*.js"],

 }

 },

 {

 "name": "assets",

 "installMode": "lazy",

 "updateMode": "prefetch",

 "resources": {

 "files": ["/assets/**"],

 "urls": [

 https://fonts.googleapis.com/**,

 https://fonts.gstatic.com/**

]

 }

 }

Patterns use a limited glob format in configuration unless otherwise it is explicitly

noted.

	 1.	 ** matches 0 or more path segments

	 a.	 /**/*.html specifies all HTML files

	 b.	 /**/*.js specifies all JS files

	 c.	 example.com/** specifies all request which hostname is matched

	 2.	 * matches 0 or more characters excluding /

	 a.	 /*.html specifies only HTML files in the root

	 b.	 /a/folder/*.png specified only png files in the /a/folder/

	 3.	 ? matches exactly one character excluding /

	 a.	 /what?ver.js specifies all JS files in the root where its 5th character

could be anything

Chapter 5 Advanced Angular Service Worker and Runtime Caching

119

	 4.	 The ! prefix acts negative, meaning that only files that don’t match

the pattern will be included.

	 a.	 !/**/*.map excludes all source-maps

	 b.	 !/*.pdf excludes all pdf files in the root

Note  urls doesn’t have support for negative glob patterns and ? will be
matched literally; that means ? will not match any character other than ? itself.

Run the build command. Once it’s done, navigate to /dist folder and open ngsw.

json generated based on an ngsw-config.json by Angular CLI.

"assetGroups": [

 {

 "name": "app",

 "installMode": "prefetch",

 "updateMode": "prefetch",

 "urls": [

 "/0.c570a2562d2874d34dc4.js",

 "/1.71eb2445db7dfda9e415.js",

 "/2.df6bb6a6fde654fe8392.js",

 "/favicon.ico",

 "/index.html",

 "/main.f224c8a2c47bceb8bef0.js",

 "/polyfills.8883ab5d81bf34ae13b1.js",

 "/runtime.e14ed3e6d31ff77728e9.js",

 "/styles.7a3dc1d11e8502df3926.css"

],

 "patterns": []

 },

 {

 "name": "assets",

 "installMode": "lazy",

 "updateMode": "prefetch",

Chapter 5 Advanced Angular Service Worker and Runtime Caching

120

 "urls": [

 "/assets/icons/icon-128x128.png",

 "/assets/icons/icon-144x144.png",

 "/assets/icons/icon-152x152.png",

 "/assets/icons/icon-192x192.png",

 "/assets/icons/icon-384x384.png",

 "/assets/icons/icon-512x512.png",

 "/assets/icons/icon-72x72.png",

 "/assets/icons/icon-96x96.png"

],

 "patterns": [

 "https:\\/\\/fonts\\.googleapis\\.com\\/.*",

 "https:\\/\\/fonts\\.gstatic\\.com\\/.*"

]

 }

],

By looking into the generated ngsw-worker.js and ngsw.json, we notice that the

glob turned into a pattern to be consumed as regex. Here is the piece of code that maps

pattern to regex, in class AssetGroup extracted from ngsw-worker.js:

 // �Patterns in the config are regular expressions disguised as

strings. Breathe life into them.

 �this.patterns = this.config.patterns.map(pattern => new

RegExp(pattern));

And in the future, down in code, it is being used as:

// Either the request matches one of the known resource URLs, one of the

patterns for

// dynamically matched URLs, or neither. Determine which is the case for

this request // in order to decide how to handle it.

if (this.config.urls.indexOf(url) !== -1 || this.patterns.some(pattern =>

pattern.test(url))) {

These have been added in order to match requests while intercepting and storing

them in cache storage.

Chapter 5 Advanced Angular Service Worker and Runtime Caching

121

�Revalidate Strategy for Resources with No Hash
Some resources may not have hash while it existed in the cache. Angular Service Worker

will check how old is this request and ensure it still can be usable. There are three

different strategies applied in Angular Service Worker regarding resource revalidation:

	 1.	 The request has a Cache-Control header, and thus expiration

needs to be based on its age.

•	 This specifies directives for caching mechanisms in both requests

and responses. Standard Cache-Control directives can be used by

the client in an HTTP request.

Cache-Control: max-age=<seconds>

Cache-Control: max-stale[=<seconds>]

Cache-Control: min-fresh=<seconds>

Cache-Control: no-cache

Cache-Control: no-store

Cache-Control: no-transform

Cache-Control: only-if-cached

•	 Depends on the condition Angular looks for: max-age or Date

header.

	 2.	 The request has an Expires header, and expiration is based on the

current timestamp.

•	 The Expires header contains the date/time while Invalid

dates, like the value 0, is an indication that a resource is already

expired. If there is a Cache-Control header with the "max-age"

or "s-maxage" directive in the response, the Expires header is

ignored.

•	 e.g.: Expires: Wed, 21 Oct 2019 07:28:00 GMT.

	 3.	 The request has no applicable caching headers and must be

revalidated.

•	 If there is no way to evaluate staleness, assume the response is

already stale.

Chapter 5 Advanced Angular Service Worker and Runtime Caching

122

So, it’s good practice to add the cache control to your resources; it not only helps

browsers to revalidate a response, but also Angular Service Worker helps to stay up to

date efficiently.

�Data Groups Settings
Beside assetGroups, there are also dataGroups. Unlike asset resources, data requests

defined in this section are independent of the app version while the assetGroups cache

update strategy is different: if the single resource was updated, we recycle the whole

version cache. They follow their own manually configured policies, which are most useful

for situations such as handling API requests and other data dependencies. We can use

them to cache the responses from the external services in case that application goes offline.

Having looked at DataGroup Typescript interface, the following properties reveal:

export interface DataGroup {

 name: string;

 urls: string[];

 version?: number;

 cacheConfig: {

 maxSize: number;

 maxAge: string;

 timeout?: string;

 strategy?: 'freshness' | 'performance';

 };

}

	 1)	 name:

(required) name of group that will be included in Cache API

storage name. It should be string, descriptive to our knowledge,

and uniquely identified.

	 2)	 urls:

(required) a list of glob patterns that are used to match these

URLs for caching accordingly to this data policy. Similar to

assetGroups, negative glob patterns are not supported and ? will

be matched literally, which means ? will remain the ? character

and doesn’t match anything.

Chapter 5 Advanced Angular Service Worker and Runtime Caching

123

	 3)	 version:

(optional) versioning in APIs is quite common. In a way that

sometimes a new version format will not be backward compatible

with the old API; thus, the existing cache contains an older format

and is likely to break the app since it does not match the newer

API structure. Although version is optional and an integer field

defaults to 0, it provides a mechanism to indicate whether an API

response that is being cached has been changed in a backward-

incompatible way. Hence all old cache entries stored responses

for this API must be discarded, eradicated, and replaced with new

responses.

	 4)	 cacheConfig:

(required) settings that define the policies and strategies by which

matching requests will be cached:

•	 maxSize:

(required) when cache is open to accept unlimited number

of responses, depends on your app size, it can grow rapidly

and eventually exceed the storage quota,1 calling for eviction.

Thus, we can define a maximum number of entries or

responses here.

•	 maxAge:

(required) indicates how long responses are allowed to

remain in cache until they flag as invalid and are evicted. It is

a string that specifies time duration, which can be set by d:

days, h: hours, m: minutes, s: seconds and u: milliseconds.

10d12h4m, for instance, will cache content for up to 10 and a

half days and 4 minutes.

1�All browsers impose a limit for storage that your web app’s origin is allowed to use and that
differs from device to device, browser to browser. If the origin eviction couldn’t free enough
space, the browser will throw a QuotaExceededError.

Chapter 5 Advanced Angular Service Worker and Runtime Caching

124

•	 timeout:

(optional) Although this is optional parameter, it tells Angular

Service Worker how long it should wait for the network

response before it falls back to content that is cached. This is

valid when strategy is freshness, which means network first

(see next property). Duration specifies time duration similar

to maxAge unit. 1d considers 1 day.

•	 strategy

(optional) it can have two options for all data resources:

•	 performance:

it refers to Cache-First strategy. Content that doesn’t

change often can fall into this strategy since it has been

optimized for faster response.

It checks cache first and if the resource exists there and it

not expired depending on maxAge, the cached version will

instantly be served depending on the maxAge, in exchange

for better performance. If content expires, it tries to

update the cache.

As an example, we have an endpoint to retrieve a user’s

wish list. Based on our app, we really do not need to

call this API; thus we can set a maxAge of 1 hour and

performance strategy to show a faster response to our

user.

•	 freshness:

This strategy considers as Network-First for which

it always tries to fetch data from the network only.

Depending on timeout, if the network doesn’t respond

accordingly, the request fall backs to the cache. It fits all

data that needs to be updated frequently.

For example: a user dashboard that shows user points

balance.

Chapter 5 Advanced Angular Service Worker and Runtime Caching

125

Note  By default. Angular Service Worker does not cache any data or files that
fetch at runtime. They have to be explicitly defined and configured.

Now it’s time to configure our Note application. I will use a Network-First strategy

for retrieving notes from a Firebase endpoint using ** glob. I’d like to set size to 100,

maximum cache age to 10 days and 5 seconds for timeout after which the request falls

backs to cache if it exists.

To have a better understanding, I will create two new methods in data.service.ts

to make a GET request to Firestore API directly as well as another method to get a

random dad joke. New methods look like the following code:

 // data.service.ts

// DataService

protected readonly FIRESTORE_ENDPOINT =

 �'https://firestore.googleapis.com/v1beta1/projects/awesome-apress-pwa/

databases/(default)/documents/';

 protected readonly DAD_JOKE = 'https://icanhazdadjoke.com';

// Get a random joke

getRandomDadJoke(): Observable<string> {

 return this.http

 .get<Joke>(this.DAD_JOKE, {

 headers: {

 Accept: 'application/json'

 }

 })

 .pipe(map(data => data.joke));

 }

// Get note Details

getNoteFromDirectApi(id): Observable<any> {

 return this.auth.getToken().pipe(

 switchMap(idToken => {

Chapter 5 Advanced Angular Service Worker and Runtime Caching

126

 return this.http.get(

 `${this.FIRESTORE_ENDPOINT}users/${this.auth.id}/notes/${id}`,

 {

 headers: {

 Authorization: `Bearer ${idToken}`

 }

 }

);

 }),

 map(notes => this.transfromNote(notes))

);

 }

// List all notes for current user

initializeNotes(): Observable<any> {

 return this.auth.getToken().pipe(

 switchMap(idToken => {

 return this.http.get(

 `${this.FIRESTORE_ENDPOINT}users/${this.auth.id}/notes`,

 {

 headers: {

 Authorization: `Bearer ${idToken}`

 }

 }

);

 }),

 map((data: { documents: { fields: {} }[] }) => data.documents),

 map(notes => this.transfromNotes(notes)),

 tap(notes => {

 this.isLoading$.next(false);

 })

);

 }

Chapter 5 Advanced Angular Service Worker and Runtime Caching

127

 private transfromNotes(notes) {

 return notes.map(note => this.transfromNote(note));

 }

// since I am calling google API directly, a simple transfromationm make it

easy to use data in our application

 private transfromNote(note) {

 const _note = {};

 _note['id'] = note.name.split('/').reverse()[0];

 for (const prop in note.fields) {

 if (note.fields[prop]) {

 _note[prop] =

 note.fields[prop]['stringValue'] || note.fields[prop]['integerValue'];

 }

 }

 return _note;

 }

Then I’ll replace getNotes() with initializeNotes() and getNote() with

getNoteFromDirectApi() in notes-list.component.ts and note-details.component.ts,

respectively. Last but not least, I will add a joke to my app.component.ts.

@Component({

 selector: 'app-root',

 template: `

 <div class="appress-pwa-note">

 <app-header></app-header>

 <div class="main">

 <div *ngIf="joke$ | async as joke" class="joke">

 {{ joke }}

 </div>

 <router-outlet></router-outlet>

 </div>

 <app-footer></app-footer>

 </div>

 `,

Chapter 5 Advanced Angular Service Worker and Runtime Caching

128

 styles: [

 `

 .joke {

 margin-top: 0.5rem;

 padding: 1rem;

 border: 1px solid #ccc;

 }

 `

]

})

export class AppComponent implements OnInit {

 joke$: Observable<string>;

 constructor(private db: DataService) {}

 ngOnInit() {

 this.joke$ = this.db.getRandomDadJoke();

 }

}

Based on my strategy in the app, I decided to use freshness for Firestore Google API

endpoints and performance for the random joke endpoint since this is unnecessary to

be called many times; once after every 15 minutes should be enough. The corresponding

configuration will look like this:

"dataGroups": [

 {

 "name": "api-network-first",

 "version": 1,

 "urls": ["https://firestore.googleapis.com/v1beta1/**"],

 "cacheConfig": {

 "strategy": "freshness",

 "maxSize": 100,

 "maxAge": "10d",

 "timeout": "5s"

 }

 },

Chapter 5 Advanced Angular Service Worker and Runtime Caching

129

 {

 "name": "api-cache-first",

 "version": 1,

 "urls": ["https://icanhazdadjoke.com"],

 "cacheConfig": {

 "strategy": "performance",

 "maxSize": 20,

 "maxAge": "15m"

 }

 }

]

Now I will build my production-ready app and will serve it locally.

npm run prod

Navigate to localhost:4200 and check out cache storage and the Service Worker

tab. You’ll notice that now we have cache names to store our both strategies as shown in

Figure 5-7.

Figure 5-7.  Runtime cache

Chapter 5 Advanced Angular Service Worker and Runtime Caching

130

Now spend a bit of time with the app and after a few minutes, turn the network off as

shown in Figure 5-8 and reload the application.

Surprise! All the data that you have seen including notes, static assets, and jokes are

now available even though you don’t have a network connection whatsoever. Let’s take

a look at all requests in the network tab. You may notice in Figure 5-9 that there is no

request for a joke endpoint.

Figure 5-8.  Check offline to disconnect network

Figure 5-9.  Offline mode network request

Chapter 5 Advanced Angular Service Worker and Runtime Caching

131

Yes, this is correct, since we have set performance (Cache-First) strategy for this

endpoint, and it has not been expired due to maxAge, which is 15 minutes, Angular

Service Worker will drop this request until it expires and then will revalidate this request

and update the cache with an appropriate response.

�Navigation Cache
In a single page application, routing is being handled in the front end. All routes in the

front end are eventually pointed to index.html where the framework, in particular

Angular Router Module, will match a navigation request to a specific view.

What makes a request considered to be a navigation request falls into three main

bullets:

	 1.	 Its mode is navigation.

The mode read-only property of the Request interface, is used to

determine if cross-origin requests lead to valid responses, and

which properties of the response are readable –values of which

are cors, no-cors, same-origin, or navigate. navigate is a mode for

supporting navigation and is intended to be used only by HTML

navigation. A navigate request is created only while navigating

between documents.2

	 2.	 It accepts a text/html response (as determined by the value of the

Accept header).

	 3.	 Its URL matches certain criteria, defaults to:

	 a.	 The URL must not contain a file extension (i.e., a .) in the last path segment.

	 b.	 The URL must not contain __.

Having looked at Config interface, you will notice that there is a specific property

for Angular or custom navigations navigationUrls. As you can see, this is optional and

enables us to customize a list of URLs.

export interface Config {

 appData?: {};

2�https://developer.mozilla.org/en-US/docs/Web/API/Request/mode

Chapter 5 Advanced Angular Service Worker and Runtime Caching

https://developer.mozilla.org/en-US/docs/Web/API/Request/mode

132

 index: string;

 assetGroups?: AssetGroup[];

 dataGroups?: DataGroup[];

 navigationUrls?: string[];

}

The URLs can be either an array of URLs and glob-like URL pattern that can be

matched at runtime. Negative and nonnegative patterns are both supported.

While the default value is sufficient in most cases, it is sometimes necessary to

configure different rules. Let’s imagine we have some particular URLs in our application

that need to be served in the back end, and we need to pass them through to the server

to be handled since they are not Angular routes.

If nagivationUrls is omitted, default values are replaced:

 "navigationUrls": [

 "/**", // Include all URLs.

 "!/**/*.*", // Exclude URLs to files.

 "!/**/*__*", // �Exclude URLs containing `__` in the last

segment.

 "!/**/*__*/**" // �Exclude URLs containing `__` in any other

segment.

]

And the result will look like this:

"navigationUrls": [

 {

 "positive": true,

 "regex": "^\\/.*$"

 },

 {

 "positive": false,

 "regex": "^\\/(?:.+\\/)?[^/]*\\.[^/]*$"

 },

 {

 "positive": false,

 "regex": "^\\/(?:.+\\/)?[^/]*__[^/]*$"

Chapter 5 Advanced Angular Service Worker and Runtime Caching

133

 },

 {

 "positive": false,

 "regex": "^\\/(?:.+\\/)?[^/]*__[^/]*\\/.*$"

 }

]

As an example, I will implement a route that doesn’t need to be cached.

I will generate a component called NoCacheRouteComponent.

@Component({

 selector: 'app-no-cache-route',

 template: `

 <div class="appress-pwa-note">No-cache</div>

 `

})

export class NoCacheRouteComponent {}

Then I will add a route to app-routing.module.ts.

 {

 path: 'no-cache-route',

 component: NoCacheRouteComponent

 }

And finally, I will exclude this URL in ngsw-config.json.

 "navigationUrls": [

 "/**",

 "!/**/*.*",

 "!/**/*__*",

 "!/**/*__*/**",

 "!/**/no-cache-route"

]

Chapter 5 Advanced Angular Service Worker and Runtime Caching

134

Note  You can pull down www.github.com/mhadaily/awesome-apress-
pwa/chapter05/03-no-cache-route. Run npm install and then run npm
run serve:prod. It runs production app on a web server. You can navigate to
localhost:4200.

�AppData Config
This property is also optional and may contain application metadata for this specific

version. The appData is not used by Service Worker but may be determined in Server

Worker update where it can be used to show additional information in UI notifications to

inform the user or make an intelligent decision on the app.

For example, information such as release date, build hash, a flag to indicate a sever

security bugs which can be applied on the next reload without interrupting users.

I will use this object in the next section and will look at this config in other chapters

later.

�Dealing with Updates
By implementing Service Worker in our application, sooner or later dealing with a stale

version of an app compared to what has been cached and used will become a problem

because new versions of Service Worker will only be activated on page reload. Angular

Service Worker resolves this issue by providing an SwUpdate class that makes it easy to

check for available updates. Let’s take a look at the class:

class SwUpdate {

 available: Observable<UpdateAvailableEvent>

 activated: Observable<UpdateActivatedEvent>

 isEnabled: boolean

 checkForUpdate(): Promise<void>

 activateUpdate(): Promise<void>

}

Chapter 5 Advanced Angular Service Worker and Runtime Caching

http://www.github.com/mhadaily/awesome-apress-pwa/chapter05/03-no-cache-route
http://www.github.com/mhadaily/awesome-apress-pwa/chapter05/03-no-cache-route

135

Let’s break this class down:

	 1.	 available: an observable that emits UpdateAvailableEvent

whenever a new app version is available.

interface Version {

 hash: string;

 appData?: Object;

}

interface UpdateAvailableEvent {

 type: 'UPDATE_AVAILABLE';

 current: Version

 available: Version;

}

UpdateAvailableEvent interface is pretty self-explanatory. As you

see, in both current and available properties, appData is an option

that will be available if we define it in ngsw-config.json.

For example:

{

 "index": "/index.html",

 "appData": {

 "version": "1.0.1"

 },

 "assetGroups": []

}

	 2.	 activated: an observable that emits UpdateActivateEvent

whenever the app has been updated to a new version.

interface UpdateActivatedEvent {

 type: 'UPDATE_ACTIVATED';

 previous?: Version;

 current: Version;

}

Chapter 5 Advanced Angular Service Worker and Runtime Caching

136

	 3.	 isEnabled: is a Boolean in order to check if Service Worker is

supported by the browser and enabled via ServiceWorkerModule.

	 4.	 checkFoUpdate(): a Promise that will be resolved when an update

is available, and it allows us to check for updates periodically.

	 5.	 activateUpdate(): a Promise that will be resolved by forcing a

Service Worker update. We may need to take other actions after

getting resolved on this function. For instance, we need to reload the

application because the currently loaded resources become invalid.

Now it’s time to implement in our application and see the result in action.

export class AppComponent implements OnInit {

 joke$: Observable<string>;

 �constructor(private db: DataService, private swUpdates: SwUpdate, private

snackbar: SnackBarService) {}

 ngOnInit() {

 this.joke$ = this.db.getRandomDadJoke();

 this.swUpdateFlow();

 }

 swUpdateFlow() {

 // check if service worker is enabled and only check if it's production

 if (this.swUpdates.isEnabled && environment.production) {

 // subscribe to recieve update when it's available

 this.swUpdates.available.subscribe((event: UpdateAvailableEvent) => {

 // console log version on appData Object defined in ngsw-config.js

 console.log(`Version: ${event.current.appData['version']}`);

 // an update is available, inform user and take an action

 this.snackbar

 .action(

 �${event.type}: current is ${event.current.hash} but available

is ${event.available.hash}`,

 'Activate'

)

 .subscribe(() => {

Chapter 5 Advanced Angular Service Worker and Runtime Caching

137

 // force to activate update

 this.swUpdates

 .activateUpdate()

 .then(() => {

 this.snackbar.open('Update has been applied', 1000);

 // force to reload to ensure new update is in place

 // (<any>window).location.reload();

 })

 .catch(e => {

 �this.snackbar.open('Something is wrong, please reload

manually');

 });

 });

 });

 // subscribe to receive an notification when new version is activated

 this.swUpdates.activated.subscribe((event: UpdateActivatedEvent) => {

 // console log version on appData Object defined in ngsw-config.js

 console.log(`Version: ${event.current.appData['version']}`);

 this.snackbar

 �.action(`${event.type}, current is ${event.current.hash} but

previously was ${event.previous.hash}`, 'Reload')

 .subscribe(() => {

 // force to reload to ensure new update is in place

 (<any>window).location.reload();

 });

 });

 }

 }

}

In the app.component.ts, I will inject SwUpdate first. Then, I will ensure that we

run the code on production and Service Worker is enabled. I will subscribe to available

observables and once an update is available, I will show snackbar notification and

inform the user that there is a newer version of app available and ask them to reload the

page in order to see the latest and most up-to-date version of the app.

Chapter 5 Advanced Angular Service Worker and Runtime Caching

138

Note  You can pull down www.github.com/mhadaily/awesome-apress-
pwa/chapter05/04-notification-updates. Run npm install and then
run npm run serve:prod. It runs a production app on a web server. You can
navigate to localhost:4200.

�Deploy to Firebase
Now we are ready to build our application and deploy to Firebase. As always, simply run:

npm run deploy

✓ hosting[awesome-apress-pwa]: file upload complete

i database: releasing rules...

✓ database: rules for database awesome-apress-pwa released successfully

i hosting[awesome-apress-pwa]: finalizing version...

✓ hosting[awesome-apress-pwa]: version finalized

i hosting[awesome-apress-pwa]: releasing new version...

✓ hosting[awesome-apress-pwa]: release complete

✓ Deploy complete!

Project Console: https://console.firebase.google.com/project/awesome-

apress-pwa/overview

Hosting URL: https://awesome-apress-pwa.firebaseapp.com

Let’s navigate to the website and check Service Worker. As seen in Figure 5-10, new

Service Worker has been installed and activated and new caches have been created.

Chapter 5 Advanced Angular Service Worker and Runtime Caching

http://www.github.com/mhadaily/awesome-apress-pwa/chapter05/04-notification-updates
http://www.github.com/mhadaily/awesome-apress-pwa/chapter05/04-notification-updates

139

Note  You can pull down www.github.com/mhadaily/awesome-apress-
pwa/chapter05/02-runtime-cache. Run npm install and then run npm
run serve:prod. It runs a production app on a web server. You can navigate to
localhost:4200. You may need to also deploy this code to Firebase in order to
evaluate your app before adding Service Worker.

�Summary
in the last two chapters, I deep dived into Angular Service Worker configurations and

settings, implemented the best strategies for our applications, and deployed an offline-

ready app. Although our application works connection independently, there many

possibilities to enhance the user experience.

In the next chapter, we will take a detailed look at app manifest, which makes our

app installable where our user can run our application from the home screen.

Figure 5-10.  Success deployment to Firebase

Chapter 5 Advanced Angular Service Worker and Runtime Caching

http://www.github.com/mhadaily/awesome-apress-pwa/chapter05/02-runtime-cache
http://www.github.com/mhadaily/awesome-apress-pwa/chapter05/02-runtime-cache

141
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_6

CHAPTER 6

An App Manifest and
Installable Angular App
Up until this point in the book, we have focused on the core feature of Progressive Web

App (PWA), Service Worker. It enables us to cache our static assets as well as dynamic

content. The app will continue to work offline, which is especially important on mobile

devices. However, an app’s “look and feel” is another important factor that enhances the

user experience to truly delight users.

In this chapter, we focus on visual appeal and a few different ways that can help

boost engagement on the app. We explore features such as Add to Home Screen and

customization, which prompts a user to add the web to their device home screen.

�The Web App Manifest
The Web App Manifest is a JSON text file following Web App Manifest specification

that provides information about an application such as its name, author, icons, and

description. But more importantly, this file enables an application to be installed by a

user on their device and allows us to modify the theme, URL that should be opened,

splash screen, icons on home page, and more.

Let’s take a look at manifest.json located in /src/, which Angular CLI has created

by default.

{

 "name": "lovely-offline",

 "short_name": "ApressPWA",

 "theme_color": "#1976d2",

 "background_color": "#fafafa",

 "display": "standalone",

142

 "scope": "/",

 "start_url": "/",

 "icons": [

 {

 "src": "assets/icons/icon-72x72.png",

 "sizes": "72x72",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-96x96.png",

 "sizes": "96x96",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-128x128.png",

 "sizes": "128x128",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-144x144.png",

 "sizes": "144x144",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-152x152.png",

 "sizes": "152x152",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-192x192.png",

 "sizes": "192x192",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-384x384.png",

Chapter 6 An App Manifest and Installable Angular App

143

 "sizes": "384x384",

 "type": "image/png"

 },

 {

 "src": "assets/icons/icon-512x512.png",

 "sizes": "512x512",

 "type": "image/png"

 }

]

}

Most of the properties are self-explanatory, but I will try to provide descriptive

definitions. Each property in a manifest file has a role and tells the browser information

regarding our app’s look and feel. Although default manifest.json added by Angular

CLI should be fine for most use cases, there are more properties that we can add to better

enhance the user experience depending our needs and requirements.

Let’s break them down:

•	 name:

a readable name for the app displayed to user or as a label for

an icon.

•	 short_name:

short name that replaces name if that doesn’t fit due to insufficient

space.

•	 theme_color:

defines the default theme color for the application to tint OS or

browser-related UIs: for example, browser’s toolbar or Android’s

task switcher. HEX code or color’s name can be used.

•	 background_color:

defines the expected background color for the app even before

user agent loads website style sheets. Usually, there is a short gap

between launching the web application and loading the site’s

content. This creates a smooth transition to fill the delay.

Chapter 6 An App Manifest and Installable Angular App

144

You can use color HEX code or standard color’s name. Note that

this background will not be used by the user agent after the style

sheet is available.

•	 display:

preferred display mode for the website. Four options are available

as per spec, but it may not be available in all browsers:

fullscreen: All of the available display is used. if not supported,

falls back to standalone mode.

standalone: most browser elements are hidden. Feels like a

standalone application. In this mode, the user agent will exclude

UI elements for controlling navigation but can include other

UI elements such as a status bar. If not supported, falls backs to

minimal-ui mode.

minimal-ui: this application looks like a standalone app; however,

essential UIs of the browser are still visible such as navigation

buttons. It not supported, fall backs to browser mode.

browser: just conventional browser tab or new window.

It’s interesting to know what there is a feature in CSS where you

can detect display-mode. See code below:

@media all and (display-mode: minimal-ui) {

 /* ... */

}

@media all and (display-mode: standalone) {

 /* ... */

}

•	 scope:

more or less similar to service worker scope that defines the

navigation scope of this website’s context. If a page is outside of

this scope, it retunes to a normal web page inside a browser tab/

window. In case of relative URL, the base URL will be the URL of

the manifest. If omitted, default is everything under the manifest

directory and all subdirectories.

Chapter 6 An App Manifest and Installable Angular App

145

•	 start_url:

the URL that loads when a user launches the application. It can

be different from the main page, for example, if you want your

PWA users to go directly to login page or signup page instead of

home page. For analytical purposes, start_url can be crafted to

indicate that the application was launched from the outside of the

browser, which can be translated to PWA. That is: "start_url":

"/?launcher=homescreen"

•	 icons:

an array of image files that specifics the app icons depending on

the context. Each image has three properties:

src: path to the image file; in case of relative URL, the base URL

will be the URL of the manifest.

sizes: specifies an icon size (even multiple sizes that are

containing space-separate image dimensions). There are a

variety of different screen sizes that we should support; the more

dimensions we include, the better result we will get regarding the

quality of icons.

type: the media type1 of image; if the user agent doesn’t support

this type, they can quickly ignore it.

•	 prefer_related_applications:

this asks the browser to indicate to the user a specified native

application in which are recommended in the next property, over

the PWA. Although it may sound silly, sometimes it happens that

we have a very specific native feature that doesn’t exist on the web,

so we want our user to use a native app instead. If omitted, the

default value is false.

1�https://www.iana.org/assignments/media-types/media-types.xhtml#image

Chapter 6 An App Manifest and Installable Angular App

https://www.iana.org/assignments/media-types/media-types.xhtml#image

146

•	 related_applications:

recommended native applications that are installable or

accessible from underlying platform store. For example, link to

an Android app from Google Play Store. The objects may contain

platform, url, and id.

{

 "platform": "play",

 �"url": "https://play.google.com/store/apps/details?id=com.

example.app1",

 "id": "com.example.app1"

 }, {

 "platform": "itunes",

 "url": "https://itunes.apple.com/app/example-app1/id123456789"

 }

•	 orientation:

sets the app work on default orientation. Orientation may be one

of the following values:

any, natural, landscape, landscape-primary, landscape-secondary

portrait, portrait-primary, portrait-secondary

•	 dir:

specifies the primary text direction for the name, short_name, and

description. There are two values: ltr, auto, and rtl. When

the value is omitted, default is auto.

•	 lang:

together with dir, it specifies correct display language. Default is

en-US.2

•	 description:

a general description of what the website does.

2�https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/lang

Chapter 6 An App Manifest and Installable Angular App

https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/lang

147

•	 serviceWorker:

this member represents an intended service worker registration in

form of a registration object.

"serviceworker": {

 "src": "sw.js",

 "scope": "/foo",

 "update_via_cache": "none"

}

This feature may not work in any browsers.

•	 categories:

specifies an array of strings of the expected application categories

to which the web application belongs, written in lowercase.

•	 screenshots:

array of image resources that represent the web application in

common usage scenarios. This might not work yet in any browser

or platform.

•	 iarc_rating_id:

represents the International Age Rating Coalition (IARC)3

certification code of the web application.

To reference a manifest file, we need to add a link tag between head to all the pages

in our web app. However, we have a single page application with Angular, and ng-cli

has added the link to index.html and angular.json to copy this file to the root folder

after build.

3�https://www.globalratings.com/

Chapter 6 An App Manifest and Installable Angular App

https://www.globalratings.com/

148

// index.html where we added manifest.json link.

<head>

.

.

 <base href="/">

 <link rel="manifest" href="manifest.json">

.

.

 </head>

�Debugging Web App Manifest
Now that I have covered the Web App Manifest and referenced the index HTML page,

we should be able to run an application and then navigate to the app in the Chrome. In

DevTools, go to Application tab and click on manifest option on the left side, right

above Service Workers (see Figure 6-1).

The details appear there, including errors if any. There is an option to test the prompt

to add the app to the home screen also.

Chapter 6 An App Manifest and Installable Angular App

149

Although Chrome DevTools is fine to debug your manifest file, there are tools that

you can check to validate your manifest file against W3C spec. One example is manifest-

validator.appspot.com where you can simply audit your manifest file. Figure 6-2 shows a

screenshot of Web Manifest Validator.

Figure 6-1.  App manifest details in DevTools

Chapter 6 An App Manifest and Installable Angular App

150

�Adding to Home Screen
By default, a native app installs on your home screen. You will see an icon and short

name, and when you need to run this application, it’s easy to come back to the home

screen and tap on the icon to open up the app. As web developers, it is important to

engage our users and keep them coming back to our app. So, functionality as a native

app is one piece of the puzzle to tackle engagement. A great way to seamlessly allow our

users to add our web’s app to their home screen is Add to Home Screen (you may see

A2HS) capability, also known as a web app install banner.

This feature makes it easy to install a PWA on the mobile or desktop device. It displays

a prompt and after the user accepts it, your PWA will added to their launcher or home

screen. It will run like any other installed app and looks similar to native apps.

However, the web app install banner prompt will not be shown unless otherwise it

meets the following criteria:

	 1.	 Serve over HTTPS (this was one of the PWA core concepts and

required for Service Worker).

Figure 6-2.  Web Manifest Validator is a tool where you can debug your manifest
file

Chapter 6 An App Manifest and Installable Angular App

151

	 2.	 Web App Manifest has to include:

	 a.	 short_name or name

	 b.	 icons must include a 192px and a 512px sizes icons

	 c.	 start_url must have a proper value

	 d.	 display must be one of the: fullscreen, standalone, or minimal-ui

	 3.	 The web app is not already installed.

	 4.	 An appropriate user engagement heuristic.

This item may change over time, so you should always keep

yourself updated with the latest news and check different

browsers’ criteria lists time to time. At the time of writing this

book, a user must interact with the domain for at least 30 seconds.

	 5.	 App has a registered Service Worker with a fetch event handler.

While this list is in a bit of flux and is updated frequently, if these criteria are met,

Google Chrome will fire an event called beforeinstallprompt that we should use it to

show the prompt to our user. Keep an eye on different browsers and check the latest

news to see if they support this event or similar events.

Although Safari does not support the automatic Add to Home Screen prompt or

beforeinstsallprompt event, the manually add to home screen is shown by tapping

the share button, even though it behaves a bit differently compared with other browsers.

I hope that by the time you read this book, an automatic version of this feature will be

supported by Safari and all other browsers.

Note  Chrome 67 and earlier showed an “Add to Home Screen” banner.
It was removed in Chrome 68 and a dialog will be shown if it is listened to
beforeinstallprompt and the user taps on an element that has a proper
gesture event.

Chapter 6 An App Manifest and Installable Angular App

152

�Handling Installation Event (Deferring the Prompt)
As we have seen, when all the criteria are met, beforeinstallprompt event fires on the

window object. It is crucial to listen to this event to indicate when the app is installable,

and we need to act accordingly on the web app to show an appropriate UI to notify our

user that they are able to install this app on their home screen.

While add to home screen is our main goal, this event can be used for other purposes

also, such as the following:

	 1.	 Sending user choice to our analytics system.

	 2.	 Defer displaying the notification until we ensure that’s the best

time to show in which user will tap or click.

In order to save the event that has been fired, we need to write the code as the following:

let deferredPrompt;

window.addEventListener('beforeinstallprompt', event => {

 // Prevent automatically showing the prompt if browser still supports it

 event.preventDefault();

 // Stash the event so it can be triggered later.

 deferredPrompt = event;

 �// This is time to update UI, notify the user they can install app to

home screen

 const button = document.getElementById('add-to-home-screen-button');

 button.style.display = 'block';

 button.addEventListner('click', () => {

 if (deferredPrompt) {

 // will show prompt

 deferredPrompt.prompt();

 // Wait for the user to respond to the prompt

 deferredPrompt.userChoice.then(choiceResult => {

 // outcome is either "accepted" or "dismissed"

 if (choiceResult.outcome === 'accepted') {

 // User accepted the A2HS prompt

 // send data to analytics

Chapter 6 An App Manifest and Installable Angular App

153

 // do whatever you want

 } else {

 // User dismissed the A2HS prompt

 // send data to analytics

 // do whatever you want

 }

 // we don't need this event anymore

 deferredPrompt = null;

 // delete or hide this button as it's not needed anymore

 button.style.display = 'none';

 });

 }

 });

});

It’s only possible to call prompt() on the deferred event once. If the user dismisses it,

we need to wait until the browsers trigger beforeinstallprompt event on the next page

navigation.

�The Mini-Info Bar
The mini-info bar is an interim experience for Chrome on Android at the time of

writing this book; it is moving toward creating a consistent experience across all

platforms that includes an install button into the omnibox as shown in Figure 6-3.

Figure 6-3.  The mini-info bar in Google Chrome on Android4

4�https://developers.google.com/web/updates/2018/06/a2hs-updates

Chapter 6 An App Manifest and Installable Angular App

https://developers.google.com/web/updates/2018/06/a2hs-updates

154

This is Chrome UI component and we are not able to control it. Once it has been

dismissed by user, it will not appear again until a sufficient amount of time. Regardless

of preventDefault() on the beforeinstallprompt event, if the website meets all the

criteria above, this mini-bar will appear.

This experimental functionality may be controllable or completely eradicated in the

future.

�Implementing Functionality into Angular App
Let’s now implement the code above in our Angular sample project. Start off by creating

a service called AddToHomeScreenService and import it to CoreModule.

This service will hold the prompt event and will share this event according to the

modules.

@Injectable({

 providedIn: 'root'

})

export class AddToHomeScreenService {

 public deferredPromptFired$ = new BehaviorSubject<boolean>(false);

 public deferredPrompt;

 get deferredPromptFired() {

 this.deferredPromptFired$.next(!!this.deferredPrompt);

 return this.deferredPromptFired$;

 }

 public showPrompt() {

 if (this.deferredPrompt) {

 // will show prompt

 this.deferredPrompt.prompt();

 // Wait for the user to respond to the prompt

 this.deferredPrompt.userChoice.then(choiceResult => {

 // outcome is either "accepted" or "dismissed"

 if (choiceResult.outcome === 'accepted') {

 // User accepted the A2HS prompt

 // send data to analytics

Chapter 6 An App Manifest and Installable Angular App

155

 // do whatever you want

 this.sendToAnalytics(choiceResult.userChoice);

 } else {

 // User dismissed the A2HS prompt

 // send data to analytics

 // do whatever you want

 this.sendToAnalytics(choiceResult.userChoice);

 }

 // we don't need this event anymore

 this.deferredPrompt = null;

 this.deferredPromptFired$.next(false);

 });

 }

 }

 public sendToAnalytics(userChoice) {

 // for example, send data to Google Analytics

 console.log(userChoice);

 }

}

In the app.component.ts file, by adding @HostListener, we will listen to for a

beforeinstallprompt event and by injecting AddToHomeScreenService, we have access

to the deferredPrompt, which helps to keep our event object.

export class AppComponent implements OnInit {

 joke$: Observable<string>;

 @HostListener('window:beforeinstallprompt', ['$event'])

 onEventFire(e) {

 this.a2hs.deferredPrompt = e;

 }

 constructor(

 private db: DataService,

 private a2hs: AddToHomeScreenService

) {}

Chapter 6 An App Manifest and Installable Angular App

156

 ngOnInit() {

 this.joke$ = this.db.getRandomDadJoke();

 }

}

Next, I decided to show a notification box to my user on the notes list page. I think

this is the best place to ask if the user would like to install the app since they have already

benefited from the app, and it’s likely that they will accept the prompt. So, it’s good

practice not to bother a user with an unwanted prompt or notification and ask them,

instead, when it makes sense.

AddToHomeScreenService was injected to NotesListComponent and UI has been

created accordingly.

export class NotesListComponent implements OnInit {

 isAddToHomeScreenEnabled$;

 constructor(private db: DataService,

 private a2hs: AddToHomeScreenService) {}

 ngOnInit() {

 // this.notes$ = this.db.getNotes();

 this.notes$ = this.db.initializeNotes();

 this.isDbLoading$ = this.db.isLoading$;

 this.isAddToHomeScreenEnabled$ = this.a2hs.deferredPromptFired;

 }

}

And in the notes-list.component.html file, at the top of the page, I will add a simple

card to ask the user if they like to interact with prompt as soon as it it’s ready.

<mat-card *ngIf="isAddToHomeScreenEnabled$ | async">

 <mat-card-subtitle>Add To Home Screen</mat-card-subtitle>

 <mat-card-content>

 Do you know you can install this app on your homescreen?

 �<button mat-raised-button color="primary" (click)="showPrompt()">Show

me</button>

 </mat-card-content>

</mat-card>

Chapter 6 An App Manifest and Installable Angular App

157

<div *ngIf="notes$ | async as notes; else notFound">

 <app-note-card *ngFor="let note of notes" [note]="note"

[loading]="isDbLoading$ | async" [routerLink]="['/notes', note.id]">

 </app-note-card>

</div>

<ng-template #notFound>

 <mat-card>

 <mat-card-title>

 Either you have no notes

 </mat-card-title>

 </mat-card>

</ng-template>

Put all of it together and build an application for production and then deploy to Firebase.

�Adding to Home Screen on Mobile and Desktop
Now that we have implemented all the criteria, it’s time to test it on the mobile and

desktop. Since Google Chrome has the best support for installing an app, you may ask

what actually Google Chrome does when a user accepts the prompt?

Chrome handles most of the heavy lifting for us:

	 1.	 Mobile:

Chrome will generate a WebAPK,5 which results in better

integrated experiences for the users.

	 2.	 Desktop:

Your app is installed and will run in an app window6 on both Mac

and Windows machines.

Note T o test install flow for Desktop PWA on Mac, you’ll need to enable the
#enable-desktop-pwas flag in Google Chrome. It may be the default in the future or
when you are reading this book.

5�https://developers.google.com/web/fundamentals/integration/webapks
6�https://developers.google.com/web/progressive-web-apps/desktop#app-window

Chapter 6 An App Manifest and Installable Angular App

https://developers.google.com/web/fundamentals/integration/webapks
https://developers.google.com/web/progressive-web-apps/desktop#app-window

158

When you click on the button to show the prompt, a browser dialog prompt will

appear (see Figure 6-5).

Once you click on Install, the app will have installed in Chrome Apps folder and will

be ready to be served as a standalone app (see Figure 6-6). This feature is also available

on Windows 10.

Figure 6-5.  Prompt Dialog in Chrome on Mac

Figure 6-4.  Notification is shown once beforeinstallprompt in Chrome on Android
and Mac was fired

Let’s see this in action on a Mac and Android phone, as shown in Figure 6-4.

Chapter 6 An App Manifest and Installable Angular App

159

�Microsoft Windows7

PWA in Edge is a first-class citizen. Once PWA was distributed through the Microsoft

Store, the entire Windows 10 install base of 600+ million active monthly users are your

potential app audience!

Interestingly, when PWAs are in Windows 10, they run as Universal Windows

Platforms apps and will gain the following technical advantages:

•	 Standalone window

•	 Independent process from browser (isolated cache, less overhead)

•	 No storage quota (for IndexedDB, local storage, etc.)

•	 Offline and background processes Access to native Windows

Runtime (WinRT) APIs via JavaScript

•	 Appearance in “app” contexts such as the Windows Start menu and

Cortana search results

One of the greatest features is the ability to access WinRT APIs. It’s just a matter of

identifying what you need to use, obtaining the requisite permissions, and employing

feature detection to call that API on supported environments (see Figure 6-7). Let’s look

at one example:

if (window.Windows && Windows.UI.Popups) {

 document.addEventListener('contextmenu', function (e) {

Figure 6-6.  PWA was installed in Chrome apps on Mac

7�https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps

Chapter 6 An App Manifest and Installable Angular App

https://docs.microsoft.com/en-us/microsoft-edge/progressive-web-apps

160

 // Build the context menu

 var menu = new Windows.UI.Popups.PopupMenu();

 �menu.commands.append(new Windows.UI.Popups.UICommand("Option 1",

null, 1));

 menu.commands.append(new Windows.UI.Popups.UICommandSeparator);

 �menu.commands.append(new Windows.UI.Popups.UICommand("Option 2",

null, 2));

 // Convert from webpage to WinRT coordinates

 function pageToWinRT(pageX, pageY) {

 var zoomFactor = document.documentElement.msContentZoomFactor;

 return {

 x: (pageX - window.pageXOffset) * zoomFactor,

 y: (pageY - window.pageYOffset) * zoomFactor

 };

 }

 // When the menu is invoked, execute the requested command

 �menu.showAsync(pageToWinRT(e.pageX, e.pageY)).done(function

(invokedCommand) {

 if (invokedCommand !== null) {

 switch (invokedCommand.id) {

 case 1:

 console.log('Option 1 selected');

 // Invoke code for option 1

 break;

 case 2:

 console.log('Option 2 selected');

 // Invoke code for option 2

 break;

 default:

 break;

 }

Chapter 6 An App Manifest and Installable Angular App

161

 } else {

 // The command is null if no command was invoked.

 console.log("Context menu dismissed");

 }

 });

 }, false);

}

�Android and Chrome
Flow is similar for Chrome in Android. beforeinstallprompt event is triggered. Once we

tap on the button that we implemented, the dialog will be shown (see Figure 6-8).

Figure 6-7.  Context menu on Microsoft Edge and Windows App

Chapter 6 An App Manifest and Installable Angular App

162

As soon as the user accepts it to install, App icon and short_name will have been

placed just next to other native apps icons in the home screen as shown in Figure 6-9.

Note S amsung internet browser behavior is similar to Chrome but reacts slightly
differently.

Figure 6-8.  Install app notification to user and add to home screen dialog

Chapter 6 An App Manifest and Installable Angular App

163

When you tap to open the app, no browser chrome (navigation buttons, address

bar, menu options, etc.) are visible with the fullscreen option, and you’ll notice that the

status bar on the top adopts the theme_color, which we have configured in our app (see

Figure 6-10).

Figure 6-9.  App installed on home screen and once tapped to open, splash screen
with configured background and icons is shown

Chapter 6 An App Manifest and Installable Angular App

164

�Manually Adding to Home Screen
Dialog prompt is not guaranteed to always be triggered. So, there are possibilities to

manually add a PWA to the home screen. This feature is also available on Safari iOS.

In Chrome, if you click on menu context menu on the top-right side of the browser,

you’ll see the menu options where you can find add to home screen, tap on it, and a

prompt dialog UI appears.

In Safari, the add to home screen feature is hidden under the share button. You

should explicitly hit share and then you’ll find add to home screen as shown in

Figure 6-11. However, Safari doesn’t exactly follow the Web App Manifest spec and

may be changed in the future – hopefully by the time you are reading the book.

Figure 6-10.  PWA looks similar to native app once it opens

Chapter 6 An App Manifest and Installable Angular App

165

�Further Enhancement
There are a few tags available to refine UI in for Apple and Microsoft where web manifest

is not supported. I add them to index.html between head tag. Even though it’s a minor

improvement, we still progressively enhance our user experience, which is our goal in PWA.

 <!-- Enhancement for Safari-->

 <meta name="apple-mobile-web-app-capable" content="yes">

 <meta name="apple-mobile-web-app-status-bar-style" content="default">

 <meta name="apple-mobile-web-app-title" content="ApressNote">

Figure 6-11.  Add to Home Screen buttons are available on Safari and Chrome

Chapter 6 An App Manifest and Installable Angular App

166

 �<link rel="apple-touch-startup-image" href="/assets/icons/icon-512x512.

png">

 �<link rel="apple-touch-icon" sizes="57x57" href="/assets/icons/icon-

96x96.png">

 �<link rel="apple-touch-icon" sizes="76x76" href="/assets/icons/icon-

72x72.png">

 �<link rel="apple-touch-icon" sizes="114x114" href="/assets/icons/icon-

114x114.png">

 �<link rel="apple-touch-icon" sizes="167x167" href="/assets/icons/apple-

icon-384x384.png">

 �<link rel="apple-touch-icon" sizes="152x152" href="/assets/icons/apple-

icon-152x152.png">

 �<link rel="apple-touch-icon" sizes="180x180" href="/assets/icons/apple-

icon-384x384.png">

 �<link rel="apple-touch-icon" sizes="192x192" href="/assets/icons/icon-

192x192.png">

 <!-- Tile icon for Win8 (144x144 + tile color) -->

 �<meta name="msapplication-TileImage" content="/assets/images/icons/icon-

144x144.png">

 <meta name="msapplication-TileColor" content="#3372DF">

 <meta name="msapplication-starturl" content="/">

 <meta name="application-name" content="ApressPWA">

 <!-- Mobile specific browser color -->

 <meta name="theme-color" content="#3f51b5">

apple-mobile-web-app-capable: behaves similarly to display fullscreen mode if

set to yes. We determine whether a web page is displayed in fullscreen mode using the

window.navigator.standalone in Safari.

apple-mobile-web-app-status-bar-style: this meta tag has no effect unless you

first specify fullscreen mode as described in apple-apple-mobile-web-app-capable.

If content is set to default, the status bar appears normal. If set to black, the status

bar has a black background. If set to black-translucent, the status bar is black and

translucent. If set to default or black, the web content is displayed below the status bar.

If set to black-translucent, the web content is displayed on the entire screen, partially

obscured by the status bar. The default value is default.

Chapter 6 An App Manifest and Installable Angular App

167

apple-touch-startup-image: specifies a launch screen image that is displayed while

your web application launches. By default, a screenshot of the web application the last

time it was launched is used.

apple-mobile-web-app-title: specifies a web application title for the launch icon.

By default, the <title> tag is used.

apple-touch-icon:8 specifies an icon to represent your web application or web page

that user may want to add to the home screen. These links, represented by an icon, are

called Web Clips.

application-name:9 the default name displayed with the pinned sites tile (or icon).

msapplication-starturl: the root URL of the pinned site similar to start_url in web

manifest.

msapplication-TileColor: sets the background color for a live tile.

msapplication-TileImage: specifies a URI for the desired image in the background

image for live tile.

While you can add all of the enhancements manually yourself, there is a library from

Google Chrome Team that can help you mitigate this issue automatically.

�PWACompat Library10

PWAcompat is a library that brings the Web App Manifest to noncompliant browsers for

better PWAs; you can use the PWACompat library where we will fill the gap for wider

support in most browsers through legacy HTML tags for icons and theming. Basically,

you just need to include the library script in your page and you are done!

<link rel="manifest" href="manifest.json" />

<script async src="https://cdn.jsdelivr.net/npm/pwacompat@2.0.7/pwacompat.

min.js"></script>

What actually this library does is to update your page and also the following:

•	 Create meta icon tags for all icons in the manifest (e.g., for a favicon,

older browsers)

8�https://developer.apple.com/library/archive/documentation/AppleApplications/
Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.
html

9�https://technet.microsoft.com/en-us/windows/dn255024(v=vs.60), to find out more
about window site metadata.

10�https://github.com/GoogleChromeLabs/pwacompat

Chapter 6 An App Manifest and Installable Angular App

https://developer.apple.com/library/archive/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html
https://developer.apple.com/library/archive/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html
https://developer.apple.com/library/archive/documentation/AppleApplications/Reference/SafariWebContent/ConfiguringWebApplications/ConfiguringWebApplications.html
https://technet.microsoft.com/en-us/windows/dn255024
https://github.com/GoogleChromeLabs/pwacompat

168

•	 Create fallback meta tags for various browsers (e.g., iOS, WebKit/

Chromium forks etc.) describing how a PWA should open

•	 Sets the theme color based on the manifest

For Safari, PWACompat also:

•	 Sets apple-mobile-web-app-capable (opening without a browser

chrome) for display modes standalone, fullscreen, or minimal-ui

•	 Creates apple-touch-icon images, adding the manifest background to

transparent icons: otherwise, iOS renders transparency as black

•	 Creates dynamic splash images, closely matching the splash images

generated for Chromium-based browsers

For PWAs on Windows with access to UWP APIs:

•	 Sets the title bar color

Keep an eye on the library to see the latest version and features.

�Summary
Advanced caching and the add to home screen have been implemented. We are one step

closer to the native app counterparts. In the next chapter, we are going to boost Angular

performance and work on App Shell to take our application to the next level.

Chapter 6 An App Manifest and Installable Angular App

169
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_7

CHAPTER 7

App Shell and Angular
Performance
No one likes to wait for long to see that an application is loading. In fact, statistics show

that if the initial rendering takes more than three seconds, it’s very likely that a user

leaves our app. One of the main fundamentals of PWAs is to be fast. In native apps, the

user usually is presented a splash screen and after a reasonable amount of time will

see the main content and skeleton. On the other hand, there will be white screen until

bootstrapping is finished, especially a single page app.

In this chapter, we will review the app shell model to understand what it is and how

it works. Then, we will set up Angular CLI to help us generate our Angular App Shell.

Finally, we are going to step beyond the app shell and optimize our Angular app to

achieve better performance.

�The App Shell Model
This model has been introduced in order to build a PWA that, reliably, instantly loads

and boosts perceived startup performance for the user similar to what they see in native

applications.

The app “shell” is the minimal HTML, CSS, and JavaScript that are required for the

user interface in order to see something meaningful when they load the application. We

can think of what they should see above the fold content or the main skeleton as quickly

as possible. It can be cached offline and should be instantly loaded and must have

reliable performance to the user on repeat visits. In other words, an application shell is

not loaded from the network every time a user visits the app.

170

You may ask, what about the content? Content, in this case, is requested from the

network if necessary. This architecture may not work for all scenarios and applications;

however, it’s has been the go-to-approach for Angular app, which is mostly considered a

single-page application.

As seen in Figures 7-1 and 7-2, an application shell is similar to the native app

skeleton that is necessary to boot up the app and show the initial UI to user; however, it

doesn’t contain the data. So, we can simply bundle it up and publish it to the app store.

This architecture not only help to simulate a native-like app and load it fast, but also,

from an economical perspective, will save data as we have cached them and will reload

caches on repeated visits.

Figure 7-1.  Application shell

Chapter 7 App Shell and Angular Performance

171

In Chapter 4, we technically cached our application shell and managed to even

cache part of our dynamic content in Chapter 5, which also boosted our user experience.

�Angular App Shell
An app shell concept in Angular consists of two meanings: “pre-caching app’s UI” and

“pre-rendering of the UI during build-time.” In general, using both cache and pre-

rendering UIs together can create an Angular App Shell.

Although we have cached our static assets, which include application shell

requirements, it is not shown to the user until Angular is bootstrapped. The time that we

have shown meaningful content to our user is when JavaScript files have been parsed

and executed; thus the Angular App has been bootstrapped. As we know, we reference

our JavaScript files in index.html; therefore, the user hits this file first before even the

files are downloaded.

Figure 7-2.  Dynamic content

Chapter 7 App Shell and Angular Performance

172

In low-performance apps and especially on the first-time visit, there is a time

between seeing app content and a blank screen, which is basically our index.html and

does not have any elements.

Angular CLI has a built-in functionality that helps us to generate our app shell at

build time automatically. Before we go further, let’s see what index.html contains after

building for prod in /dist folder. Open your project and build for prod or if you have

cloned the repository for this book, simply change your directory to chapter07 and then

to 02-app-shell; finally, run the following command:

npm run build:prod

If we compare index.html from src folder and dist folder, we notice that we only

see JS files and CSS files injected into this file.

<!doctype html>

<html lang="en">

<head>

 ...

 <link rel="stylesheet" href="styles.c418d0a7774195ac83e5.css">

</head>

<body>

 <app-root></app-root>

 �<noscript>Please enable JavaScript to continue using this application.

</noscript>

 �<script type="text/javascript" src="runtime.3d4490af672566f1a0de.js">

</script>

 �<script type="text/javascript" src="polyfills.c53b1132b0de9f2601bd.js">

</script>

 �<script type="text/javascript" src="main.a136972022b8598085fb.js">

</script>

</body>

</html>

Chapter 7 App Shell and Angular Performance

173

I would like to measure the app startup performance after build. You can either run

ng serve --prod or after build run a local server to run the app. If you are still in project

repository for this book, simply run npm run prod then follow these steps:

	 1.	 Open a new browser, possibly incognito where we ensure there is

no cache.

	 2.	 Open DevTools in Chrome and select tab performance.

	 3.	 Open capture setting and select Fast 3G for Network and 4x

Slowdown for CPU; this is typically when we want to simulate

throttling for a mobile (Figure 7-3).

	 4.	 Click on record and hit enter to load the website or simply reload

the page by hitting the reload icon in performance tab.

As you can see in Figure 7-4, the browser is rendering the page at about 2000 ms

while the first paint attempt has started around 500 ms, but since there is no content and

nothing to show, it remains blank.

Figure 7-3.  Open capture setting and select Fast 3G and 4x slowdown

Chapter 7 App Shell and Angular Performance

174

�Angular App Shell and Angular Universal
Angular Universal generates static application pages on the server through a process

called server-side rendering (SSR). When Universal is integrated with your app, it can

pre-generate pages as HTML files that can be served later.

Having looked at the application structure, app.component.ts has the main skeleton,

which includes a header and footer.

 template: `

 <div class="appress-pwa-note">

 <app-header></app-header>

 <div class="main">

 <div *ngIf="joke$ | async as joke" class="joke">

 {{ joke }}

 </div>

Figure 7-4.  Initial rendering for app shell after Angular is bootstrapped around
2 seconds

Chapter 7 App Shell and Angular Performance

175

 <router-outlet></router-outlet>

 </div>

 <app-footer></app-footer>

 </div>

 `,

It seems that if we can pre-render this component, we can have an app shell before

bootstrapping Angular. As you see in the component template, it has <router-outlet>

that is going to be replaced with content; thus, we need to specify what we want to put in

place of the router outlet.

This is where we are using Angular Universal by running simple commands via

Angular CLI to generate an app-shell at build time and output in index.html. We define

the route we would like to pre-render and then we are good to go. Hence, we are going

to scaffold for an Angular Universal to gain pre-rendering capabilities. Angular CLI will

be a built-in command that will help us to achieve our goal painlessly. Simply run the

following command:

ng generate app-shell --client-project <my-app> --universal-project

<server-app>

•	 Angular CLI generates App Shell.

•	 --universal-project specifies which Angular Universal application

we want to use for pre-rendering.

•	 --client-project specifies the client project that we would like to

use for pre-rendering.

•	 Optionally, you can use --route to specify what route name should

be used for generating App Shell. The default value is shell.

Since Angular CLI 6+ can handle multiple client projects, it’s important to find the

correct app. If you don’t know your client project name, look inside the angular.json

CLI configuration file.

Here is the command output:

CREATE src/main.server.ts (220 bytes)

CREATE src/app/app.server.module.ts (590 bytes)

CREATE src/tsconfig.server.json (219 bytes)

CREATE src/app/app-shell/app-shell.component.css (0 bytes)

Chapter 7 App Shell and Angular Performance

176

CREATE src/app/app-shell/app-shell.component.html (28 bytes)

CREATE src/app/app-shell/app-shell.component.spec.ts (643 bytes)

CREATE src/app/app-shell/app-shell.component.ts (280 bytes)

UPDATE package.json (1822 bytes)

UPDATE angular.json (5045 bytes)

UPDATE src/main.ts (656 bytes)

UPDATE src/app/app.module.ts (1504 bytes)

If you want to do the process manually or if you wonder how it works under the

hood. I will break the code down.

Main.server.ts has been created to bootstrap the app-server-module:

import { enableProdMode } from '@angular/core';

import { environment } from './environments/environment';

if (environment.production) {

 enableProdMode();

}

export { AppServerModule } from './app/app.server.module';

app-server.module.ts with only one route shell where it’s being replaced with

router-outlet

import { NgModule } from '@angular/core';

import { ServerModule } from '@angular/platform-server';

import { AppModule } from './app.module';

import { AppComponent } from './app.component';

import { Routes, RouterModule } from '@angular/router';

import { AppShellComponent } from './app-shell/app-shell.component';

const routes: Routes = [{ path: 'shell', component: AppShellComponent }];

@NgModule({

 imports: [

 AppModule,

 ServerModule,

 RouterModule.forRoot(routes),

],

Chapter 7 App Shell and Angular Performance

177

 bootstrap: [AppComponent],

 declarations: [AppShellComponent],

})

export class AppServerModule {}

app-shell.component where we can add what we need to show for pre-rendering; in

this case, I will add a simple loading message.

// app-shell.component.html

<div class="loading" style="text-align:center; padding:3rem">

 loading... will be sevring you very very soon

</div>`

// app-shell.component.ts

@Component({

 selector: 'app-app-shell',

 templateUrl: './app-shell.component.html',

 styleUrls: ['./app-shell.component.css']

})

export class AppShellComponent implements OnInit {

 constructor() { }

 ngOnInit() {

 }

}

tsconfig-server.json will have all requirements for server-side rendering an

Angular app.

{

 "extends": "./tsconfig.app.json",

 "compilerOptions": {

 "outDir": "../out-tsc/app-server",

 "baseUrl": "."

 },

 "angularCompilerOptions": {

 "entryModule": "app/app.server.module#AppServerModule"

 }

}

Chapter 7 App Shell and Angular Performance

178

And platform-server module has been added to package.json:

"@angular/platform-server": "^7.0.1",

In app.module.ts, BrowserModule has configured in order to transition from a

server-rendered app, if one is present on the page.

BrowserModule.withServerTransition({ appId: 'serverApp' }),

Besides all the other changes, there are new configurations in angular.json file

where we have two new targets:

"server": {

 "builder": "@angular-devkit/build-angular:server",

 "options": {

 "outputPath": "dist/lovely-offline-server",

 "main": "src/main.server.ts",

 "tsConfig": "src/tsconfig.server.json"

 },

 "configurations": {

 "production": {

 "fileReplacements": [

 {

 "replace": "src/environments/environment.ts",

 "with": "src/environments/environment.prod.ts"

 }

]

 }

 }

 },

 "app-shell": {

 "builder": "@angular-devkit/build-angular:app-shell",

 "options": {

 "browserTarget": "lovely-offline:build",

 "serverTarget": "lovely-offline:server",

 "route": "shell" // where we define our route

 },

Chapter 7 App Shell and Angular Performance

179

 "configurations": {

 "production": {

 "browserTarget": "lovely-offline:build:production"

 }

 }

 }

As you have seen, app-shell component was linked to /shell route but only in

the Angular Universal application. This special route is an internal Angular CLI

mechanism in order to generate App Shell. It will replace router-outlet tag and the

user will not able to navigate to it.

�Generating the App Shell in Production
So, everything seems ready and has been set up properly. Let’s now build with the app

shell target.

To trigger a production build, all you need to do is run one of the below commands:

ng run <project-name>:app-shell:production

ng run <project-name>:app-shell --configuration production

Therefore, in the project, run the following command:

ng run lovely-offline:app-shell:production

This command will target the client app named lovely-offline and the target

build, which is app-shell. Angular CLI starts building and bundling and once it’s done,

output is ready in dist folder. Let’s take a look at index.html now.

<app-root _nghost-sc0="" ng-version="7.0.1">

 <div _ngcontent-sc0="" class="appress-pwa-note">

 <app-header _ngcontent-sc0="" _nghost-sc1="">

 �<mat-toolbar _ngcontent-sc1="" class="mat-toolbar mat-primary mat-

toolbar-single-row" color="primary"

 �ng-reflect-color="primary"><span _ngcontent-sc1="" tabindex="0"

ng-reflect-router-link="/">ApressNote-PWA<span

 �_ngcontent-sc1="" class="space-between"><button _

ngcontent-sc1="" aria-haspopup="true"

Chapter 7 App Shell and Angular Performance

180

 �mat-icon-button="" class="mat-icon-button _mat-animation-

noopable"

 �ng-reflect-_deprecated-mat-menu-trigger-for="[object

Object]">

 �<mat-icon _ngcontent-sc1="" class="mat-icon material-icons"

role="img" aria-hidden="true">more_vert</mat-icon>

 �<div class="mat-button-ripple mat-ripple mat-button-ripple-

round" matripple="" ng-reflect-centered="true"

 �ng-reflect-disabled="false" ng-reflect-trigger="[object

Object]"></div>

 <div class="mat-button-focus-overlay"></div>

 </button></mat-toolbar>

 <mat-menu _ngcontent-sc1="" x-position="before" class="ng-tns-c6-0">

 <!---->

 </mat-menu>

 </app-header>

 <div _ngcontent-sc0="" class="main">

 <!--bindings={

 "ng-reflect-ng-if": "How many kids with ADD does it"

}-->

 �<div _ngcontent-sc0="" class="joke ng-star-inserted"> How many kids

with ADD does it take to change a

 lightbulb? Let's go ride bikes! </div>

 <router-outlet _ngcontent-sc0=""></router-outlet>

 <app-app-shell _nghost-sc7="" class="ng-star-inserted">

 �<div _ngcontent-sc7="" class="loading" style="text-align:center;

padding:3rem"> loading... will be sevring

 you very very soon

 </div>`

 </app-app-shell>

 </div>

 <app-footer _ngcontent-sc0="" _nghost-sc2="">

 <footer _ngcontent-sc2="">

 �<div _ngcontent-sc2="" class="copyright">Copyright Apress - Majid

Hajian</div>

Chapter 7 App Shell and Angular Performance

181

 </footer>

 �<div _ngcontent-sc2="" class="addNote"><button _ngcontent-sc2=""

mat-fab="" class="mat-fab mat-accent _mat-animation-noopable"

 �tabindex="0" ng-reflect-router-link="/notes/add"><span

class="mat-button-wrapper">

 �<mat-icon _ngcontent-sc2="" class="mat-icon material-icons"

role="img" aria-hidden="true">add circle</mat-icon>

 �<div class="mat-button-ripple mat-ripple mat-button-ripple-

round" matripple="" ng-reflect-centered="false"

 �ng-reflect-disabled="false" ng-reflect-trigger="[object

Object]"></div>

 <div class="mat-button-focus-overlay"></div>

 </button></div>

 </app-footer>

 </div>

 </app-root>

It looks very different from what we had before. Angular CLI has generated a shell

based on /shell route, which has a footer and header, including a joke section.

In addition to HTML, you see that all CSS based on these components have also

been generated and added to <head> </head>.

I will add a npm script to build App Shell and measure the performance again.

"build:prod:shell": "ng run lovely-offline:app-shell:production",

And

"prod": "npm run build:prod:shell && cd dist && http-server -p 4200 -c-1",

Run the local server by hitting

npm run prod

If you are running your own project, make sure you have http-server installed and

you change the directory to /dist and run http-server -p 4200 c-1.

After the server is ready, navigate to localhost:4200 in Chrome and do the same

performance profiling as we did before App Shell implementation.

Chapter 7 App Shell and Angular Performance

182

The result may differ from app to app and where you run the test, but the main point

is that Angular App Shell could potentially enhance start up load time. As you see in

Figure 7-5, we managed to render our application shell to the user at around 100 ms and

as soon as Angular is bootstrapped dynamic content, it will be loaded.

�Measuring App Shell Performance via webpagetest.org
Although we have run a local test with our local server via the Chrome Performance tab

in DevTools, it’s not very precise. Webpagetest.org is a tool that we can use to measure a

website’s performance and generate details about the test, including many features that

are useful when it comes to web app optimization.

Let’s run a test for our app on Firebase before we deploy new App Shell

implementation.

Figure 7-5.  First paint starts at around 100 ms after we implement Angular App
Shell

Chapter 7 App Shell and Angular Performance

183

Open webpagetest website and go to simple testing tab. Enter your website name

and select “Mobile regular 3G” (see Figure 7-6). Select both “Include repeat view”

and “run lighthouse audit.” You can run more tests with different settings. Finally,

start the test.

Once a result is ready, we see that before App Shell optimization, the time to interact

is around 7.8 seconds and the browser starts rendering around 6.9 seconds, which is

somehow expected due to bootstrapping Angular (see Figure 7-7). To see more details,

check out this link:

https://www.webpagetest.org/result/181030_ZA_ff4f3780bea8eb430be1171a5297ae35/

I will deploy the app to Firebase with App Shell implementation. Once deployment

is done, navigate to the website and see the source via Chrome. You’ll see that the App

Shell and inline styles are already in the source. Open webpagetest.org and run the exact

same test again.

Figure 7-6.  Simple testing setting on webpagetest.org

Figure 7-7.  Webpagetest result before App Shell and more optimizations, run on
Mobile Regular 3G network

Chapter 7 App Shell and Angular Performance

https://www.webpagetest.org/result/181030_ZA_ff4f3780bea8eb430be1171a5297ae35/

184

As soon as the result is ready, a significant improvement is seen. The time to

interact has reduced to 5.9 seconds and the start render time dropped at least 2 seconds

compared to the previous test. You see that a simple model in the app could have a

notable impact on user experience (see Figure 7-8).

To see more details, check out this link:

https://www.webpagetest.org/result/181031_KE_538b7df1cabf6cbe4a3565a3f6c42fc6/

�Measuring App Shell Performance via Audit tab
in Chrome DevTools
While webpagetest.org is able to run a test application via Lighthouse, I would like to

run the measure with my web app running on Chrome DevTools on my machine. Keep

in mind, the more tests you do, the better. So, don’t give up, and run more tests on

different tools.

Simply open your Chrome DevTools while the web app on Firebase is loading. Go

to Audit tab as you are familiar with, and select the Performance check box as well as

Progressive Web App. Make sure Simulated Fast 3G, 4x CPU Slowdown is chosen for

throttling and then hit the “Run Audit” button. I will do this test before and after I deploy

the app with App Shell implementation. You can see the result in Figures 7-9 through 7-12.

Figure 7-8.  Webpagetest result after App Shell, run on Mobile Regular 3G
network

Chapter 7 App Shell and Angular Performance

https://www.webpagetest.org/result/181031_KE_538b7df1cabf6cbe4a3565a3f6c42fc6/

185

Figure 7-9.  Audit website in Chrome audit tab to check performance score before
deploying App Shell implementation on simulated mobile fast 3G

Figure 7-10.  Performance tab before deploying App Shell implementation, tested
on good internet connection, and initial rendering is around 700 ms

Chapter 7 App Shell and Angular Performance

186

Figure 7-12.  performance tab after deploying App Shell implementation, tested on
good internet connection, initial rendering is around 150 ms

Figure 7-11.  Audit website in Chrome audit tab to check performance score after
deploying App Shell implementation on simulated mobile fast 3G

Chapter 7 App Shell and Angular Performance

187

As we have seen, in this particular app, the App Shell has represented a huge

improvement to the typical time to the first paint of a full SPA, which could sometimes

keep a user waiting for a few noticeable seconds.

Although, App Shell model is one way to improve a startup load, it’s not the only

thing that we can do in our applications. There are even more optimizations that we can

do in a web app, especially in an Angular application, in order to boost the performance.

�Beyond the App Shell, Further Optimizations
As we know, web apps are still fighting with native apps in terms of performance

perception; thus, each blink of an eye is going to be important. There are an infinite

number of tips and tricks that we can try to do in the app to eke out another few

milliseconds.

In general, performance in Angular is mostly divided into two sections:

	 1.	 Runtime performance, which targets best practices to improve

mostly change detection, rendering related optimizations.

	 2.	 Network performance, which targets best practices to enhance

the load time of our application, including latency and bandwidth

reduction.

There are common best practices that are known in web development and overlap

both sections. However, in this section, my focus point is network performance and

faster load time. I will review some of the most important tips that we can do in order to

improve loading speed.

�Analyze Bundle Sizes and Lazy Load Module
No doubt that the less JavaScript code in the bundle size, the better for downloading and

parsing. Angular CLI uses Webpack to bundle the app. By passing --stats-json in build

command, Angular CLI will generate a JSON file that contains all bundle information

and we simply can analyze it.

Chapter 7 App Shell and Angular Performance

188

Just follow the steps below:

	 1.	 Install the tool with npm install webpack-bundle-analyzer -D

	 2.	 Add --stats-json to build script in packge.json

"build:prod": "ng build --prod --stats-json",

	 3.	 Add new script to package.json file

"analyzer": "webpack-bundle-analyzer dist/stats.json"

	 4.	 Build and then run npm run analyzer

Once build is done, there will be a stats.json file in the /dist folder that contains

all information about the project bundles. You’ll be redirected to the browser as soon

as you run the npm command, and you’ll see how the app stats look like as shown in

Figure 7-13.

Figure 7-13.  Analysis of the project app; lazy loaded modules are shown to the
right of the picture

Chapter 7 App Shell and Angular Performance

189

One way of splitting code to decease the bundle size is to use lazy loading in Angular.

Lazy loading gives you an ability to optimize your application load time by splitting the

application to feature modules and loading them on demand.

 {

 path: 'user',

 loadChildren: './modules/user/user.module#UserModule'

 },

 {

 path: 'notes',

 loadChildren: './modules/notes/notes.module#NotesModule',

 canLoad: [AuthGuard]

 }

We can even prevent whole modules from being loaded based on some condition.

For example, in the project application, we have prevented loading the whole module by

adding canLoad guard, if it’s necessary based on the rule in the guard.

The analysis may differ from app to app and it’s based on how you architect your app.

�Waterfall View from Web Page Test
Waterfall view reveals many helpful loading details that can be used for tracking down

bottlenecks: for instance, things that block rendering, or requests that can be eliminated

or deferred. An overview of how long that takes from initial a request until is done. Useful

information about http handshaking and etc. For example, Figure 7-14 shows that the

project app renders blocks by loading Google fonts, or it delays painting around 450 ms

because the browser is parsing CSS.

Chapter 7 App Shell and Angular Performance

190

�Reduce Render Blocking CSS
It is a common mistake that is seen in many applications in which they will load a

lot of CSS while it’s not necessary for the content that are can be seen in the screen or so-

called above-the-fold-content.

Generally speaking, we should determine what is crucial for the app skeleton, app

shell, and for the initial load and add them to style.css. We should try to minimize the

footprint of our initial style file.

Additionally, we should import shared styles in lazy loaded modules. Sometimes

we even need to import styles to only those lazy loaded modules that need a particular

style. For example, imagine that we have a chart module that has been loaded lazily.

If this module needs a specific styling, we should only import that to this where it will

be loaded on demand.

In a real example, think of our app, since we are pre-rendering and app shell and

Angular CLI will inject all essential styling to index.html. It may make sense to remove

Angular Material theme CSS file and our main style.scss file into AppComponent,

Figure 7-14.  The app waterfall view from webpagetest.org

Chapter 7 App Shell and Angular Performance

191

because basically the whole application needs those styles and we can simply pre-render

and inject that styling into index.html head, which will result removing the style.css

bundle file that blocks the render.

// Angular.json

"styles": [

 {

 �"input": "node_modules/@angular/material/prebuilt-themes/

indigo-pink.css"

 },

 "src/styles.scss"

],

// remove these files and it looks like

"styles": [],

And then import them to AppComponent:

//app.component.ts

@Component({

 selector: 'app-root',

 template: `

 <div class="appress-pwa-note">

 <app-header></app-header>

 <div class="main">

 <div *ngIf="joke$ | async as joke" class="joke">

 {{ joke }}

 </div>

 <router-outlet></router-outlet>

 </div>

 <app-footer></app-footer>

 </div>

 `,

 styleUrls: [

 '../../node_modules/@angular/material/prebuilt-themes/indigo-pink.css',

 '../../styles.scss'

]

})

Chapter 7 App Shell and Angular Performance

192

Now, if you build the application and then check /dist/index.html, you’ll see that

all stylings have been added to the head and there is no more css file as before.

Once more, this is just an example that I want to show how you can think of

optimizing your app; and it may make sense for our Note app but doesn’t seem a good

option for your next project. Keep in mind, you should evaluate the app performance

after each change and see if there is an improvement.

�Optimize Fonts
It’s very likely that you are using fonts in web applications these days, especially external

fonts such as Google fonts. While we add the style link to the head of the page, it should

be taken into consideration that these fonts will block rendering. That means rendering

will hold off until these styles are downloaded and rendered. It is important to slim down

the initial need for fonts and load the reset of them on demand.

�Self-Hosting Fonts

Using a web font face block means that the browser decides what to do if it takes a long

time for that web font to fetch. Some browsers will wait anywhere up to three seconds for

this before falling back to a system font, and they'll eventually swap it out to the font once

it's downloaded.

We are trying to avoid invisible text, so thanks to new feature called font-display,

this helps to decide how web fonts will render or fall back based on how long it takes for

them to swap.

Swap gives the font face a zero-second block period and an infinite swap period.

In other words, the browser will render text pretty quickly with a fallback font if

downloading takes time. Once the web font is ready, it is going to swap. This feature has

a good browser support.1

@font-face {

 font-family: YouFont;

 font-style: normal;

 font-display: swap;

 font-weight: 400;

1�https://caniuse.com/#search=font-display

Chapter 7 App Shell and Angular Performance

https://caniuse.com/#search=font-display

193

 src: local(yo-font Regular'), local(YouFont -Regular'),

 /* Chrome 26+, Opera 23+, Firefox 39+ */

 url(you-font -v12-latin-regular.woff2') format('woff2'),

 /* Chrome 6+, Firefox 3.6+, IE 9+, Safari 5.1+ */

 url(you-font -v12-latin-regular.woff') format('woff');

}

In case of Note app, it makes sense to show our user their notes as quickly as possible

and then move on, and transition over to the web font once it is ready. Keep in mind that

we still get a FOUT2 (flash of unstyled text).

�CDN-Based Fonts

Clearly, we are using Google web fonts in the Note app. There are many different

approaches to optimize these types of fonts. On way is to asynchronously add them to

UI, which helps to avoid block rendering. There are tools and libraries that we can use to

lazy load fonts, but perhaps one of the most well-known libraries is Web Font loader.3

However, I have decided to load my fonts differently in my Angular project in

order to unveil two attributes that help loading JavaScript files while they don’t block

rendering. I have created a JavaScript file named lazy-fonts.js and added it to /src

and will add the following code, which basically adds a script tag to the head.

(function(d) {

 var x = d.createElement('link');

 var y = d.getElementsByTagName('script')[0];

 x.rel = 'stylesheet';

 x.href = 'https://fonts.googleapis.com/icon?family=Material+Icons';

 �y.parentNode.insertBefore(x, y);

 })(document);

(function(d) {

 var x = d.createElement('link');

 var y = d.getElementsByTagName('script')[0];

2�https://en.wikipedia.org/wiki/Flash_of_unstyled_content
3�https://github.com/typekit/webfontloader

Chapter 7 App Shell and Angular Performance

https://en.wikipedia.org/wiki/Flash_of_unstyled_content
https://github.com/typekit/webfontloader

194

 x.rel = 'stylesheet';

 x.href = 'https://fonts.googleapis.com/css?family=Roboto:300,400,500';

 y.parentNode.insertBefore(x, y);

})(document);

I will also delete the fonts tags between <head> in the index.html file in the

Application and will reference this file right before </body>. Last but not least, I will add

this file into my assets array in Angular configuration file, which tells Angular CLI to copy

this file from the src to dist folder root.

// angular.json

"assets": [

 "src/favicon.ico",

 "src/assets",

 "src/manifest.json",

 "src/lazy-fonts.js"

],

and

// index.html

<script type="text/javascript" src="lazy-fonts.js"></script>

</body>

Modern browsers have a couple of additional options to keep the scripts from

blocking the page-rendering process. The two main features are the following:

•	 defer attribute: tells browser to continue rendering while the

resource is being downloaded but to not execute this JS resource

until it’s finished rendering HTML. In other words, the browser will

wait for the script to execute until rendering is completely done. For

angular-cli app, currently there is no way to add this automatically

during the build, so you have to do it manually after the build.

•	 async attribute: tells browsers that continuing rendering while the

script resource is also being downloaded will only pause parsing from

HTML to execute the script. This is useful when you need the script

to be executed as soon as possible but not block rendering from your

application shell. The best example is to use it with Google analytics

scripts, which are usually independent of any other scripts.

Chapter 7 App Shell and Angular Performance

195

So, based on the definition I would like to add async to my script file.

// index.html

<script type="text/javascript" src="lazy-fonts.js" async></script>

</body>

This will help to render HTML without being blocked by the script, which will also

add the fonts to the app.

�Browser Resource Hinting
You might have heard of preload, prefetch, and preconnect. Eventually, these enable

web developers to optimize delivery of the resources, reduce round-trips, and fetch

resources faster than it’s requested.

•	 Preload: is a new standard to of how to gain more control on how

resources should be fetched for current navigation. This directive

is defined within a <link> element, <link rel="preload">. This

allows the browser to set priority to prefetch even before the resource

is reached. See Figure 7-15 for browser support.

<link rel="preload" href="https://example.com/fonts/font.

woff" as="font" crossorigin>

Figure 7-15.  Preload browser support as of writing this book

Chapter 7 App Shell and Angular Performance

196

•	 Prefetch: is set as a low priority resource hint that informs the

browser to fetch that particular resource in the background when

the browser is idle. We use prefetch for those resources that may

be needed later: for example, prefetch pictures that will need to be

shown on the second navigation on the website. Element is defined

similar to preload. See Figure 7-16 for browser support.

<link rel="prefetch" href="/uploads/images/pic.png">

•	 Preconnect: this allows the browser to set up early connection

before an HTTP request is actually sent to the server, including DNS

lookups, TLS negotiations, and TCP handshakes. One of the benefits

of having this resource hint is to eliminate roundtrip latency and save

time for users. In some cases, it could improve up to 400 ms for the

initial load. The tag is similar to preload, which is added to the head

in HTML. Using preconnect for external resources such as fonts that

are being served via a CDN can potentially boost loading time. See

Figure 7-17 for browser support.

 �<link rel="preconnect" href="https://fonts.googleapis.

com"crossorigin="anonymous">

Figure 7-16.  Prefetch brower support as of writing this book

Chapter 7 App Shell and Angular Performance

197

Since we are using Google fonts in PWA Note project, adding resources hits preconnect

and preload and may help loading performance. Open src/index.html and add the

following codes:

<head>

 �<link rel="preconnect" href="https://fonts.googleapis.com"

crossorigin="anonymous">

 �<link rel="preconnect" href="https://fonts.gstatic.com"

crossorigin="anonymous">

 �<link rel="preload" href="https://fonts.googleapis.com/

icon?family=Material+Icons" as="style">

 �<link rel="preload" href="https://fonts.googleapis.com/

css?family=Roboto:300,400,500" as="style">

 <link rel="preload" href="lazy-fonts.js" as="script">

Once we build and deploy to Firebase, we can run another test to measure

performance after adding these tags. You may not see a huge improvement, but even 100

ms counts. Remember, we strive to reduce milliseconds.

�Preload Angular Lazy Loaded Modules
Angular enables us to preload all lazy loaded modules. This feature is inherited from

Angular Router module where we are able to change the preloading strategy.

While you are able to write a custom provider to define a preloading strategy, I use

PreloadAllModules, which is in Angular Router module already. Open app-routing.

module.ts and add a second argument to forRoot on RouterModule.

Figure 7-17.  Preconnect browser support as of writing this book

Chapter 7 App Shell and Angular Performance

198

@NgModule({

 imports: [

 RouterModule.forRoot(routes, { preloadingStrategy: PreloadAllModules })

],

 providers: [AuthGuard],

 exports: [RouterModule]

})

export class AppRoutingModule {}

This allows the browser to prefetch and cache these modules even before they are

on demand; thus, subsequent navigations are instant while the initial load is as small as

possible. This might be especially useful when our lazy load modules are pretty big in

size. Keep in mind that preloading will not affect the initial load performance.

�HTTP/2 Server Push4

HTTP/2 (h2) Server Push is one of the performance features included in version 2 of the

HTTP protocol.

As long as all the URLs are delivered over the same hostname and protocol, the web

server is allowed to “push” contents to the client ahead of time even if the client has not

requested them.

Having push resources compete with the delivery of the HTML can impact page load

times. This can be avoided by limiting the amount and size of what is pushed.

Firebase allows us to push content to the client by configurating firebase.json

located in the root of our project. The rule looks like the code below:

"hosting": {

 "headers": [

 {

 "source": "/",

 "headers": [

 {

 "key": "Link",

4�https://en.wikipedia.org/wiki/HTTP/2_Server_Push

Chapter 7 App Shell and Angular Performance

https://en.wikipedia.org/wiki/HTTP/2_Server_Push

199

 �"value": "</lazy-fonts.js>;rel=preload;as=script,</css/any-

file.css>;rel=preload;as=style"

 }

]

 }

],

}

Although this feature sounds promising, do not try to overuse it.

�Summary
App Shell pattern is a great way to boost initial load speed, and we have seen that

Angular CLI by utilizing Angular Universal will generate a proper app shell for any

Angular project as long as it is well architected.

We optimize our application for enhancing performance in a network level to

build a blazing fast application. Although I have covered the main important topics

in performance and optimizations, you are not limited and should take things a step

further and refine even more. Things like Google Closure Compiler, Tree-shaking, Build-

optimizer flag, Ivy Render Engine, Cache-control header, Gzip compression, Header

compression in HTTP/2, Compressing images, Change Detection optimization, Pure

pipes and memorization, are just examples of how far you can get and how fast the

application can be.

As I mentioned, progressive enhancement is one of the most important keys in

building PWAs. So, implement features with feature-detecting in browsers, always keep

all of your users in mind, iteratively enhance your app performance, and give your users

the best integration and interaction experience regardless of what browser they are

using.

In the next chapter, we shift our attention to engaging part of a PWA and will see how

we can send push notifications to our users.

Chapter 7 App Shell and Angular Performance

201
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_8

CHAPTER 8

Push Notifications
There are different ways to keep your user engaged and up to date such as by email, in-

app notifications, and push notifications! Native mobile apps have been engaging their

users by push notifications for a long time. This feature was not supported on the web

until PWAs were born. Thanks to new standard APIs such as Notification API and Push

API, which are built on top of Service Worker, it’s possible to send push notifications to

web users.

In this chapter, you’ll discover the basics of push notifications and will build a

working example for the existing application, PWA Note. You’ll see how we write a

Firebase Cloud Function in order to send push notifications from a server. All in all, after

this chapter, you should be able to run your own server for sending push notifications

and implement this feature in Angular in no time.

�Introduction to Push Notifications
Most modern web applications will keep their users updated and communicate through

different channels such as their social medias, emails, and in-app notifications. While all

of these channels are great, they don’t always grab their users’ attention, especially when

the user navigates away from the app.

Traditionally, native applications had this amazing ability, push notification, until

PWAs were born. That’s why PWAs are a game changer. A notification is a message that

can be shown on the user’s device and is triggered either locally by Web Notifications

API1 or can be pushed from the server to the user when the app is not even running,

thanks to Service Worker.

1�https://www.w3.org/TR/notifications/

https://www.w3.org/TR/notifications/

202

�Web Notifications
The notification API allows a web page to control the display of system notifications to

the user. Since this message is shown outside of the top-level browsing context viewport,

it can be displayed to the user even if the user switches tabs. The best part is that this

API is designed to be compatible with existing notification systems across different

platforms. On supported platforms, the user needs to grant the current origin permission

to display system notifications. Generally, it can be done by calling the Notification.

requestPermission() method (Figure 8-1).

Once permission is granted, on the web page, we just need to instantiate

Notification constructor with an appropriate title and options (see Figure 8-2).

new Notification("New Email Received", { icon: "mail.png" })

Figure 8-1.  Permission popup for web notifications in different browsers

Figure 8-2.  Simple notification received in Chrome browser

Chapter 8 Push Notifications

203

This is pretty great. It would be nice if we can involve Service Worker, too. When

showing a notification is handled by Service Worker, it’s called “Persistent notifications,”

since Service Worker remains persistent in the background of the app whether it’s

running or not.

Almost all of the code is going to be the same as before; the only difference is that we

just need to call showNotification method on sw object.

nagivator.serviceWorker.ready.then(sw =>{

 sw.showNotification('title', { icon: "main.png"})

})

You’ll find out more about possible options for the notifications in this chapter.

�Push Notifications
Undoubtedly, one of the most powerful and incredible ways to engage with our user is

push notifications, where they extend the app beyond the browser. There are several

pieces that come together to make push notifications work. One of the main pieces is

Push API that enables web developers to do this similarly to native apps technology,

which is called Push Messaging.

In a few steps, I’ll try to simplify the push notification architecture:

	 1.	 After the user grants permission, the app asks a web push service

for a PushSubscription object. Keep in mind that each browser

has its own implementation of a push service.

	 2.	 The web push service returns the PushSubscription object. Here

is when you can save this object in your database in order to reuse

it for pushing notifications.

	 3.	 In our app, we define which action requires a push notification.

Therefore, the app back end will handle sending push

notifications based on the subscription details.

	 4.	 Finally, once the web push service sends the notification, Service

Worker will receive the notification and show it.

There are different events for push notification in Service Worker such as push and

notificationclick events.

Chapter 8 Push Notifications

204

Note I n Service Worker, you can listen to push and other events related to push
notifications such as notificationclick

Looking at Figure 8-3, you’ll see how it works visually.

Requesting for a subscription object without identifying the app itself in the web

push server, potentially, will expose a lot of risks and vulnerabilities. The solution is to

use Voluntary Application Server Identification (VAPID) keys, also known as application

server keys. This ensures that the server will know who is requesting the push and

who will receive it. This is considered a security precaution to make sure nothing goes

maliciously wrong between the application and the server.

Figure 8-3.  Push notification process

Chapter 8 Push Notifications

205

The process is pretty simple:

	 1.	 Your application server creates a public/private key pair. Public

key is used as a unique server identifier for subscribing the user to

notifications sent by that server, and the private key is used by the

application server to sign messages, before sending them to the

Push Service for delivery.

There are different ways to generate public/private keys. For

instance,

	 a.	 You can use web-push-codelab.glitch.me and generate keys. Then

store the keys safely, especially private key (it should be hidden to

public) and use it when it’s needed.

	 b.	 There is npm package called web-push that we can use to both

generate private/public keys. Also, it can be used to push a

notification in the app back-end server.

To generate with web push library:

npm install web-push -g

Once package is installed, run the following command to generate

key pair:

web-push generate-vapid-keys --json

Using this command, here is what a VAPID key pair looks like:

{

 �"publicKey":"ByP9KTS5K7ZLBx- _x3qf5F4_hf2WrL2qEa0qKb-

aCJbcxEvyn62GDTy0K7TfmOKSPqp8vQF0DaG8hpSBknz iEFo",

 "privateKey":"fGcS9j-KgY29NM7myQXXoGcO-fGcSsA_fG0DaG8h"

}

	 2.	 The public key is given to your web app. When the user elects

to receive pushes, add the public key to the subscribe() call’s

options object. Later in this chapter, we need the public key to

pass into the requestSubscription method and Angular Service

Worker will handle the permission request.

Chapter 8 Push Notifications

206

The subscribe method on PushManager needs

ApplicationSeverKey as UInt8Array,2 which is handled by

Angular Service Worker under the hood.

	 3.	 When your app back end sends a push message, include a signed

JSON web token along with the public key.

Note I f you have cloned the project source, go to https://github.com/mhadaily/
awesome-apress-pwa/tree/master/chapter08/01-push-notification. To generate
vapid pair keys, run npm install first and then npm run vapid.

�Browser Supports
At the time of writing this book, the Push API is supported by the major browsers Firefox,

Chrome, Opera, and Microsoft Edge. Safari doesn’t support Push API. However, if you

would like to target Safari, too, there is a recommendation on the Apple Developer’s

website on how to send push notifications for websites. You can find this document on

developer.apple.com/notifications/safari-push-notifications for more information. Keep

in mind that this solution is not related to Safari on iOS.

Now that you know how push notifications work, it’s time to start implementing

Angular Service Worker to handle push notifications in our application.

�Push Notification in Angular
Angular Service Worker provides SwPush service, which has different methods and

properties to facilitate push notification implementation. While we can use the Angular

way, it’s not obligatory to use it in order to subscribe and unsubscribe because those

methods are basically just syntax sugar on top of native pushManager object methods.

However, in this section, I will keep using the Angular way.

Since we have already installed Angular Service Worker, we now are able to

inject SwPush service. First, we should allow our user to subscribe for receiving push

2�If you like to know more, check urlB64ToUint8Array() function here: https://github.com/
GoogleChromeLabs/web-push-codelab/blob/master/app/scripts/main.js

Chapter 8 Push Notifications

https://github.com/mhadaily/awesome-apress-pwa/tree/master/chapter08/01-push-notification
https://github.com/mhadaily/awesome-apress-pwa/tree/master/chapter08/01-push-notification
http://developer.apple.com/notifications/safari-push-notifications
https://github.com/GoogleChromeLabs/web-push-codelab/blob/master/app/scripts/main.js
https://github.com/GoogleChromeLabs/web-push-codelab/blob/master/app/scripts/main.js

207

notification. In order to do that, the user should grant a permission to subscribe to

notifications. Let’s change the app UI to let the user enable notification.

I will add a button in the menu that when the user clicks, it triggers request

permission. Since we do care about our user experience, I’ll add another button for

when the user likes to unsubscribe from a push notification.

 �<button mat-menu-item (click)="requestPermission()"

*ngIf="!(subscription$ | async) && (user$ | async) && isEnabled">

 <mat-icon>notifications_on</mat-icon>

 Enable alerts

 </button>

 �<button mat-menu-item (click)="requestUnsubscribe()"

*ngIf="subscription$ | async">

 <mat-icon>notifications_off</mat-icon>

 Disabled alerts

 </button>

We are progressively building our application; therefore, we should make sure that

this feature is available for those who have Service Worker registered and pushManager

object is available in the Service Worker registration. As you see, we hide the Enable

Alerts button when there is already a subscription enabled and Service Worker is

enabled.

requestPermission and requestUnsubscribe methods are defined in the

HeaderComponent class.

export class HeaderComponent {

 private readonly VAPID_PUBLIC_KEY = 'YOUR VAPID PUBLIC KEY';

 public user$ = this.auth.user$;

 public subscription$ = this.swPush.subscription;

 public isEnabled = this.swPush.isEnabled;

 constructor(

 private auth: AuthService, private swPush: SwPush,

 private snackBar: SnackBarService, private dataService: DataService,

 private router: Router

) { }

Chapter 8 Push Notifications

208

 requestPermission() {

 this.swPush

 .requestSubscription({

 serverPublicKey: this.VAPID_PUBLIC_KEY

 })

 .then(async (sub: PushSubscription) => {

 const subJSON = sub.toJSON();

 await this.dataService.addPushSubscription(subJSON);

 return this.snackBar.open('You are subscribed now!');

 })

 .catch(e => {

 console.error(e);

 this.snackBar.open('Subscription failed');

 });

 }

 requestUnsubscribe() {

 this.swPush

 .unsubscribe()

 .then(() => {

 this.snackBar.open('You are unsubscribed');

 })

 .catch(e => {

 console.error(e);

 this.snackBar.open('unsubscribe failed');

 });

 }

}

Let’s break down the code.

SwPush subscription property is an observable that is associated to the Service

Worker get subscription method or if there is not, the subscription is null.

In requestPermission method, the user is asked for permission by calling

requestSubscription on swPush service. We should pass our VAPID public key as

serverPublicKey to this method.

Chapter 8 Push Notifications

209

 this.swPush

 .requestSubscription({

 serverPublicKey: this.VAPID_PUBLIC_KEY

 })

This method returns a Promise that contains PushSubscription. The push

notification object has the following methods and properties:

interface PushSubscription {

 readonly endpoint: string;

 readonly expirationTime: number | null;

 readonly options: PushSubscriptionOptions;

 getKey(name: PushEncryptionKeyName): ArrayBuffer | null;

 toJSON(): PushSubscriptionJSON;

 unsubscribe(): Promise<boolean>;

}

As a result, we are going to call toJSON()3 function to receive the

PushSubscriptionJSON object, which includes essential properties for sending

notifications where we send it to the back end and store it our database.

interface PushSubscriptionJSON {

 endpoint?: string;

 expirationTime?: number | null;

 keys?: Record<string, string>;

}

I have created a simple method in the data service to store push subscription data in

the database.

const subJSON = sub.toJSON();

 await this.dataService.addPushSubscription(subJSON);

By passing subscription JSON object to the addPushSUbscription method, I

will store this object to another collection called subscription for the active user

in Firestore. Our user may have more than one subscription based on different

3�Standard serializer – returns a JSON representation of the subscription properties.

Chapter 8 Push Notifications

210

browsers and devices. So, it’s important to store all subscription for this user and send

notifications to all of the devices that are registered to receive notifications.

 �addPushSubscription(sub: PushSubscriptionJSON):

Promise<DocumentReference> {

 const { keys, endpoint, expirationTime } = sub;

 return this.afDb

 .collection(this.USERS_COLLECTION)

 .doc(this.auth.id)

 .collection(this.SUBSCRIPTION_COLLECTION)

 .add({ keys, endpoint, expirationTime });

 }

We have implemented another button to allow our user to opt out from receiving

notifications if they are willing to. Therefore, the requestUnsubscribe method will call

unsubscribe() method on swPush that returns a Promise and once resolved, the user

will be unsubscribed.

 requestUnsubscribe() {

 this.swPush

 .unsubscribe()

 .then(() => {

 this.snackBar.open('You are unsubscribed');

 })

 .catch(e => {

 console.error(e);

 this.snackBar.open('unsubscribe failed');

 });

 }

Now we have implemented the basics of our needs, let’s build an application for a

production and run server. Navigate to Chrome browser and under the menu, click on

enable alerts (see Figure 8-4).

Chapter 8 Push Notifications

211

Once clicked, you should be able to see a permission popup (see Figures 8-5 and 8-6).

What you’ll see is a native browser UI, and it may differ from browser to browser on different

platforms. However, you’ll have two options – “allow” and “block” – where you can grant

sufficient permission for receiving notifications. Once either of these options is chosen, this

modal will not get triggered anymore.

Figure 8-4.  Enable alerts buttons when Service Worker is enabled and there is no
notification subscription

Figure 8-5.  Notification request popup in Chrome

Chapter 8 Push Notifications

212

If the user chooses Block, the app goes to the block list, and there will not be any

subscription granted. However, if the user accepts the request, the browser will generate

a push notification subscription for this user on the device, and therefore the request

permission will successfully be evaluated, and then the push subscription will be passed

to then(). To covert the result to JSON format, we call toJSON() and then we send it over

to the back end in order to store it to the database (see Figure 8-7).

Figure 8-6.  Notification request modal on Chrome, Android

Figure 8-7.  Snack bar message when user accepts the request and it’s stored in
database

Chapter 8 Push Notifications

213

You may now notice that enable alerts under the menu has become disable alerts as

soon as permission is granted, and the subscription object returns from the push server

(see Figures 8-8 and 8-9).

This is a good practice to give our user the ability to opt out from receiving

notifications.

Having looked at the database, the user subscription has been added to the

subscriptions collection for the current user. We are now ready to push notifications to

our users based on their subscription information in our database.

Let’s have a look at the subscription object in JSON format (see Figure 8-10).

{

 "endpoint": "UNIQUE URL",

 "expirationTime": null,

 "keys": { "p256dh": "KEY", "auth": "KEY }

}

Figure 8-8.  If there is an active subscription, disable alerts is displayed and lets the
user unsubscribe from the subscription

Figure 8-9.  Snack bar message when user unsubscription is successful

Chapter 8 Push Notifications

214

To understand better how Push Notifications works in general, I will uncover push

notification object properties:

•	 endpoint: This contains a unique URL from Browser Push Service

used by the application back end to send push notifications to this

subscription.

•	 expirationTime: Some messages are time sensitive and don't need to

be sent if a certain time interval has passed: for instance, if message

has an authentication code that expires at a certain time.

•	 p256dh: This is an encryption key that our back end will use to

encrypt the message, before sending it to the Push Service.

•	 auth: This is an authentication secret, which is one of the inputs of

the message content encryption process.

All of the information is essential to be able to send push notifications to this user.

Figure 8-10.  JSON format of subscription object stored for the active user in the
app. For instance, this user has more than one subscription, and we may want to
send push notifications to all of them

�Showing Again the Allow/Block Notifications Popup
While testing locally, you may hit the Block button accidentally or deliberately, and the

permission popup will never display anymore. Instead, if you click on the subscription

button, the Promise is going to be rejected and the catch block in our code will be

triggered (see Figure 8-11).

Chapter 8 Push Notifications

215

To fix this issue, we should remove the app from the block list in the browser. For

instance, in Chrome:

	 1.	 Go to chrome://settings/content/notifications.

	 2.	 Scroll down to the Block list where all the websites that are

blocked from emitting push notifications are located.

	 3.	 Delete localhost or your app URL from the Block list.

The popup should now appear again, and if we click on the Allow option, a Push

Subscription object will be generated.

�Sending Push Notifications
A user’s subscriptions object has been stored in the database. It means we are able to

push a notification to the user even if there is more than one subscription.

In order to send a push notification, we are going to write a simple Firebase Cloud

Function to save the note into the database and once it’s saved, send a notification to the

user with a note ID that says the note has been synced with an appropriate ID retrieved

from the database. This is just an example; you may want to send notifications for

different purposes, and after this section, you should be able to do that in no time.

Note A lthough sending push notifications is one of the best ways to engage with
the user, sending too many unwanted and unnecessary notifications may have
the opposite impact and makes the user frustrated and annoyed. Thus, it is our
responsibility to respect a user’s privacy and experiences.

Figure 8-11.  Permission denied in console and snack bar message to show
subscription fail where it is triggered in Catch block in the Request Permission Block

Chapter 8 Push Notifications

216

In the app, we are going to define a new method in DataService that will accept a

note object and post it to the endpoint that is created by Firebase Cloud Function. It will

then replace the addNote() method.

// DataService

 protected readonly SAVE_NOTE_ENDPOINT =

 'https://us-central1-awesome-apress-pwa.cloudfunctions.net/saveNote';

 saveNoteFromCloudFunction(

 note: Note

): Observable<{ success: boolean; data: Note }> {

 return this.http.post<{ success: boolean; data: Note }>(

 this.SAVE_NOTE_ENDPOINT,

 {

 user: this.auth.id,

 data: {

 ...note,

 created_at: this.timestamp,

 updated_at: this.timestamp

 }

 }

);

 }

Now we will write the function and as soon as we deploy, the saveNote endpoint

will be provided by Firebase.

�Firebase Cloud Function
In Chapter 2 we prepared a project that was ready for defining functions. Node.js engine

had been set to 8, which is the latest and most up-to-date version of Node in Firebase as

of writing this book.

We are going to use Firebase SDK for the Cloud Function setup with Firestore.

const admin = require('firebase-admin');

const functions = require('firebase-functions');

const webpush = require('web-push');

Chapter 8 Push Notifications

217

const cors = require('cors')({

 origin: true

});

const serviceAccount = require('./awesome-apress-pwa-firebase-adminsdk-

l9fnh-6b35c787b9.json');

admin.initializeApp({

 credential: admin.credential.cert(serviceAccount),

 databaseURL: 'https://awesome-apress-pwa.firebaseio.com'

});

const sendNotification = (noteId, subscriptions) => {

 webpush.setVapidDetails(

 'mailto:me@majidhajian.com',

 'VAPID PUBLIC KEY',

 'VAPID PRIVATE KEY

);

 const pushPayload = {

 notification: {

 title: 'WebPush: New Note',

 body: `Note ${noteId} has been synced!`,

 icon: 'https://placekitten.com/200/139',

 badge: 'https://placekitten.com/50/50',

 dir: 'ltr',

 lang: 'en',

 renotify: false,

 requireInteraction: false,

 timestamp: new Date().getTime(),

 silent: false,

 tag: 'saveNote',

 vibrate: [100, 50, 100],

 data: {

 noteID: noteId,

 dateOfArrival: Date.now(),

 primaryKey: 1

 },

Chapter 8 Push Notifications

218

 actions: [

 {

 action: 'open',

 title: 'Open Note', icon: 'images/checkmark.png'

 },

 {

 action: 'cancel',

 title: 'Close', icon: 'images/checkmark.png'

 }

]

 }

 };

 if (subscriptions) {

 setTimeout(() => {

 subscriptions.forEach(pushConfig => {

 webpush

 .sendNotification(pushConfig.data(), JSON.stringify(pushPayload))

 .then(_ => console.log('message has been sent'))

 .catch(err => {

 console.log(`PushError ${err}`);

 // Check for "410 - Gone" status and delete it

 if (err.statusCode === 410) {

 pushConfig.ref.delete();

 }

 });

 });

 }, 3000);

 }

};

exports.saveNote = functions.https.onRequest((request, response) => {

 const { user, data } = request.body;

 cors(request, response, async () => {

 return admin

 .firestore()

Chapter 8 Push Notifications

219

 .collection(`users/${user}/notes`)

 .add(data)

 .then(async noteDoc => {

 const note = await noteDoc.get();

 const data = note.data();

 data.id = note.id;

 const subscriptions = await admin

 .firestore()

 .collection(`users/${user}/subscriptions`)

 .get();

 sendNotification(note.id, subscriptions);

 return response.status(201).json({

 succcess: true,

 data

 });

 })

 .catch(err => {

 console.log(err);

 response.status(500).json({

 error: err,

 succcess: false

 });

 });

 });

});

Note  We have used Node.js for this example, but you are able to use other
languages such as Python, Java, and Go. Feel free to choose what you like. To find
out more, you can check the Firebase documentation website.

Chapter 8 Push Notifications

220

Let’s break down the code.

	 1.	 We have imported libraries required for the functions. As you see,

I am using web-push library for sending notifications.

const admin = require('firebase-admin');

const functions = require('firebase-functions');

const webpush = require('web-push'); // to send Push Notification

const cors = require('cors')({ // to solve CORS issue we use this

library

 origin: true

});

The webpush library will then do the following steps:

•	 the payload of the message is going to be encrypted using the

p256dh public key and the auth authentication secret

•	 the encrypted payload is then going to be signed using the VAPID

private key

•	 the message is then going to be sent to the Firebase Cloud

Messaging endpoint specified in the endpoint property of the

subscription object

	 2.	 To Initialize the app, you need to pass the essential credential

and database URL. When you get this credential, you should go

to Firebase console, settings and then Service accounts tab. Select

Admin SDK language, in this case Node.js, then click on Generate

new private key. A JSON file is downloaded that contains all

necessary credentials. It’s important to keep this information safe

and never reveal publicly. For example, my JSON file has been

added to .gitignore

const serviceAccount = require('./awesome-apress-pwa-firebase-

adminsdk-l9fnh-6b35c787b9.json');

admin.initializeApp({

 credential: admin.credential.cert(serviceAccount),

 databaseURL: 'https://awesome-apress-pwa.firebaseio.com'

});

Chapter 8 Push Notifications

221

	 3.	 saveNote function will save a note to the database and then we

retrieve a user’s subscriptions from the database and will send

push notifications to the user. You may want to implement a

different logic to send push notifications in your application.

However, sending a notification itself is the same as it’s described

in the following. As mentioned, this endpoint will be used in

DataService.

	 4.	 sendNotification: this function is pretty self-explanatory.

	 a.	 Set VAPID details by calling webpush.setValidDetails(), and you need

to pass an email, public and private VAPID keys.

	 b.	 Send a notification by calling webpush.sendNotification(). This function

accepts two arguments: subscription config, which we have stored in the

database for the user, followed by the push payload. It returns a Promise.

If the notification is sent successfully, Promise will resolve. Basically, this

means the subscription configs are still valid. However, if is an error in

subscription config like when a user unsubscribes, sending a notification

to that particular endpoint rejects and the status code will be 410, meaning

this endpoint is gone. Therefore, Promise rejects. Catch block is where we

clean up our database by removing dead subscription configs.

// Check for "410 - Gone" status and delete it

 if (err.statusCode === 410) {

 pushConfig.ref.delete();

 }

�lPush Message Body
Angular Service Worker needs specific formats to show the push notification correctly.

As seen, in the example code above, it’s a root object that has only one property, which is

notification. In this property, we are going to define our push message configurations.

Let’s break them down:

Chapter 8 Push Notifications

222

Remember ​ServiceWorkerRegistration.showNotification(title, [options]),

here are the properties for options, passing to showNotification() in Service Worker:

•	 title: The title that must be shown within the notification. This tag

is used in Angular Service Worker to pass as a first argument in the

showNotification function. The rest of properties are passed as one

object called options in the second argument of show Notification

functions.

•	 body: A string representing extra content to display within the

notification

•	 icon: The URL of an image to be used as an icon by the notification

•	 badge: The URL of an image to represent the notification when there

is not enough space to display the notification itself. For example, the

Android Notification Bar, on Android devices.

•	 dir: The direction of the notification; it can be auto, ltr, or rtl

•	 lang: Specify the language used within the notification

•	 image: The URL of an image to be displayed in the notification.

•	 renotify: A Boolean that indicates whether to suppress vibrations

and audible alerts when reusing a tag value. The default is false. If

you set renotify: true on a notification without a tag, you'll get the

following error:

TypeError: Failed to execute 'showNotification' on

'ServiceWorkerRegistration':

 Notifications which set the renotify flag must specify a

non-empty tag

•	 requireInteraction: Indicates that on devices with sufficiently large

screens, a notification should remain active until the user clicks or

dismisses it. If this value is absent or false, the desktop version of

Chrome will auto-minimize notifications after approximately

20 seconds. The default value is false.

Chapter 8 Push Notifications

223

•	 silent: This option allows you to show a new notification but prevents

the default behavior of vibration, sound, and turning on the device's

display. If you define both silent and renotify, silent will take precedence.

•	 tag: A string ID that “groups” notifications together, providing an easy

way to determine how multiple notifications are displayed to the user.

•	 vibrate: A vibration pattern to run with the display of the

notification. A vibration pattern can be an array with as few as one

member. Android devices respect this option.

•	 timestamp: Show the timestamp of the notification.

•	 data: Any data type that we want to be associated with the

notification.

•	 actions: An array of actions to display in the notification. The

members of the array should be an object literal. It may contain the

following values:

•	 action: a user action to be displayed on the notification.

•	 title: text to be shown to the user.

•	 icon: the URL of an icon to display with the action.

Appropriate responses are built using event.action within the notificationclick

event.

Note S ilent push notifications are now encompassed in the Budget API,4 which
is a new API designed to allow developers to perform limited background work
without notifying the user, such as a silent push or performing a background fetch.

These comprehensive options perform differently in each platform. As of writing this

book, Chrome, in particular on Android, has implemented all of these options. It’s likely

that if browsers don’t support one or more of these options, they will be ignored.

After sending push notifications, all users’ browsers that have a subscription will

show the notification in the notification center (see Figure 8-12 and 8-13).

4�https://developers.google.com/web/updates/2017/06/budget-api

Chapter 8 Push Notifications

https://developers.google.com/web/updates/2017/06/budget-api

224

Figure 8-12.  Notification shown on Mac, both Chrome and Firefox

Figure 8-13.  Notifications in Android

Chapter 8 Push Notifications

225

�Listen to Messages in Angular
SwPush service provides an Observable that allows us to listen to each message. We may

need to perform a different action based on what we receive.

// header.componetnt.ts

constructor(

 private auth: AuthService,

 private swPush: SwPush,

 private snackBar: SnackBarService,

 private dataService: DataService,

 private router: Router

) {

 this.swPush.messages.subscribe((msg: { notification: object }) =>

 this.handlePushMessage(msg)

);

 }

We listen and do what we want. For instance, in this case, we just need to show the

notification body to a user in the snack bar.

 handlePushMessage({ notification }) {

 this.snackBar.open(`Push Notification: ${notification.body}`);

 }

This is already existing, but what if the user clicks on notification? Let’s explore this

in the next section.

�Notification Actions and Handling Notification Click Events
In Service Worker, like when we listen to install or push event, we can also listen to a

notificationclick event. And because we have implemented actions on notification

options, we will know what the user clicked on, an action or anywhere else. This makes

the app very flexible on what we want to do based on the user choice. This feature was

not available in Angular Service Worker until version 7.1, which has introduced a new

Observable on SwPush Service called notificationClicks. There are limitations for the

Chapter 8 Push Notifications

226

current implementation, which is, as these events processed in the app, so it should be

opened in the browser.

// header.componetnt.ts

constructor(

 private auth: AuthService,

 private swPush: SwPush,

 private snackBar: SnackBarService,

 private dataService: DataService,

 private router: Router

) {

 this.swPush.messages.subscribe((msg: { notification: object }) =>

 this.handlePushMessage(msg)

);

 this.swPush.notificationClicks.subscribe(options =>

 this.handlePushNotificationClick(options)

);

 }

The options that are passed have two properties: action, which is selected by the

choice of the user when he or she clicked on the notification action; and notification,

which are all of the notification properties that been pushed to the user.

handlePushNotificationClick({ action, notification }) {

 switch (action) {

 case 'open': {

 �this.router.navigate(['notes', notification.data.noteID, {

queryParams: { pushNotification: true } }]);

 break;

 }

 case 'cancel': {

 this.snackBar.dismiss();

 }

 // or anything else

 }

 }

Chapter 8 Push Notifications

227

As an example, in data property, we have defined nodeID; and we have

implemented that when a user clicks on open action, we redirect our application to the

detailed note view.

It might be a good idea to add some indicator that you can measure how many

users click on the notification. For instance, you can send some analytics or add a

queryParams.

Note R emember, though, actions are not supported in all browsers. So, have
a backup for your app in case you face an undefined due to lack of browser
support.

�Deploy to Firebase
It seems we have implemented our needs for the application PWA Note. I will deploy the

application to Firebase as always by running the following command:

npm run deploy

�Summary
In this chapter, we explored another native-like feature and are now one step closer

toward building a PWA that resembles a native app.

In the next chapter, I am going to shift your focus back to persistent data. Although

we have cached dynamic data on runtime, there are different solutions and architectures

that you can use in your application to help persist data in the user browsers and

synchronize it back to the server when necessary. This gives our user a powerful

capability to work fully offline with our application and helps us to build a much faster,

reliable, and performant application.

Chapter 8 Push Notifications

229
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_9

CHAPTER 9

Resilient Angular App
and Offline Browsing
One important aspect of PWAs is the concept of building an app that can be served

offline. Up until this point of the book, we have made an application and enabled offline

capabilities. We have seen the power of Service Worker, which has done most of the

heavy lifting when it comes to storing static assets and dynamic content by leveraging

Cache API. All in all, the achievement is significant compared to a traditional web

application.

However, there is still room for improvement. Let’s imagine that you are building

an application that communicates through REST API. Although Service Worker is

facilitating to cache content and serve faster, it doesn’t help with a poor internet

connection as soon as the network first strategy must be applied, and the respond and

request have a long latency. Or what should we do with the application state or the app

data set?

In PWA Note app, users’ experience is most likely disrupted because we keep them

waiting until sending a message to the server is successfully completed if they have a

poor internet connection. in fact, a delay of more than 10 seconds will often make users

leave a site instantly. Slowness and lack of acceptable user experience could abruptly

affect your business if it relies on the app.

In this chapter, I am going to explorer an approach that provides a consistent

user experience whether the users’ devices have no connectively, limited

connectivity, or great connectively. This model reduces latency down to zero as it

provides access to content stored directly on the device and synchronizes data in all

users’ devices over HTTP.

230

�Offline Storage
Before HTML5, application data had to be stored in cookies, included in every server

request while it was limited up to 4 KB. Web Storage is not only more secure but also

capable of storing large amounts of data locally without affecting website performance.

It is per origin and all pages, from the same origin, can store and access the same data.

The two mechanisms within web storages are as follows:

•	 sessionStorage maintains a separate storage area for each given

origin that’s available for the duration of the page session (as long as

the browser is open, including page reloads and restores).

•	 localStorage does the same thing but persists even when the

browser is closed and reopened.

There are two downsides to this API:

	 1.	 You need to serialize and deserialize data when you want to store

(only strings).

	 2.	 API is synchronous, which means it blocks the application and

has no Web Worker support.

Due to these issues, we shift our focus to other options in order to achieve better

performance and support in Web Worker.

•	 WebSQL is asynchronous (callback-based); however, it also has no

Web Worker support and was rejected by Firefox and Edge but is in

Chrome and Safari. It’s also depreciated.

•	 File System API is asynchronous too (callback-based) and does

work in Web Workers and Windows (albeit with a synchronous API).

Unfortunately, it doesn’t have much interest outside of Chrome and

is sandboxed (meaning you don’t get native file access).

•	 File API is being improved over in the File and Directory Entries

API and File API specs. A File API library exists and for file saving,

I’ve been using FileSaver.js as a stopgap. The writable-files proposal

may eventually give us a better standards-track solution for seamless,

local file interaction.

Chapter 9 Resilient Angular App and Offline Browsing

231

•	 IndexedDB is a key-value pair NoSQL database and supports large

scale storage (up to 20%–50% of hard drive capacity) and supports

many data types like number, string, JSON, blob, and so on. As it is

asynchronous, it can be used everywhere including Web Workers and

is widely supported in the browsers.

•	 Cache API provides a storage mechanism for Request / Response

object pairs that are cached, for example, as part of the Service

Worker life cycle. Note that the Cache interface is exposed to window

scopes as well as workers.

As we have seen, it seems the best options are IndexedDB1 and Cache API.

A combination of both APIs makes it much more reliable and provides a better user

experience. We have used Cache API to store URL addressable resources such as static

files and request and respond from REST APIs. There are no hard rules how to use and

architect your application to leverage these APIs. Some applications might be sufficiently

simple that they can just use the Cache API alone, while others may find it valuable

to partially cache their JSON payloads in IDB so that in browsers without Cache API

support, you still get the benefit of some local caching during the session.

Note  IndexedDB API is powerful but may seem too complicated for simple
cases. I recommend trying libraries such as LocalForage, Dexie.js,
zangoDB, PouchDB, LoxiJs, JsStore, IDB, LokiJs that help to wrap
IndexedDB APIs, which make it more programmer friendly. Also, this API was
buggy and slow in Safari 10; therefore some of these libraries implemented a fall
back to WebSQL in Safari as opposed to indexedDB to gain a better performance.
Although this issue was resolved and IndexedDB is stable in all major browsers,
if your apps target older browsers for some certain reasons, you may need to use
suggested libraries: for example, Localforage

1�https://developer.mozilla.org/en/docs/Web/API/IndexedDB_API

Chapter 9 Resilient Angular App and Offline Browsing

https://developer.mozilla.org/en/docs/Web/API/IndexedDB_API

232

Even though there is no specific architecture, it’s recommended that

•	 For the network resources necessary to load your app while offline,

use the Cache.

•	 For all other data, use IndexedDB, for instance, application state and

data set are the best candidates to be stored in IndexedDB.

�Offline First Approach
A common way to build a web application is to be a consumer of a back-end server to

store and retrieve data for persistency (Figure 9-1).

One issue with this approach is that a flaky or nonexistent internet connection may

interrupt the user experience and lead to unreliable performance. To fix that, we have

used Service Worker and will leverage other storage techniques to substantially improve

the user experience in all situations, including a perfect wireless environment.

In this approach (shown in Figure 9-2), the user interacts with the cache constantly

where it’s stored in the client device; therefore, there will be zero latency.

View ServerModel

Figure 9-1.  Data-binding ways in traditional web applications

View Server Model

Cache
JS

Figure 9-2.  Offline first approach, 4-way data binding

Chapter 9 Resilient Angular App and Offline Browsing

233

Service Worker can intercept request between the client and server if needed.

We can even think of how to synchronize our data with the server.

Note T hanks to Background Sync event in Service Worker, it’s easily possible
to resolve synchronization. I will explore the sync event in Chapter 14 when we
are implementing Workbox because this feature is not available in Angular Service
Worker as of now (Angular 7.1).

I am going to step forward and tweak this model a bit more. What if we can implement

a logic that can sync data from and to a server whether the user is online or offline; and

therefore, that server can manipulate data and do necessary adjustments afterward (see

Figures 9-3 and 9-4). Think how much this approach can improve a user’s experience.

JS

View Model Sync Server

Cache

Figure 9-3.  Offline first approach with syncing in mind

Chapter 9 Resilient Angular App and Offline Browsing

234

JS

View Model

Cache

JS

View Model

Cache

JS

View Model

Cache

Sync Server

Figure 9-4.  Data can be distributed and synchronized through all user’s devices
from/to sync server

Let’s experiment with the offline first database approach in PWA Note application

and see how it works in action.

�Implement Offline First Approach with Sync Server

We have figured out that IndexedDB is what we need to use in a client app. The next hurdle

is figuring out how to store and sync the app’s data and state. Offline syncing is a bit more

challenging than it looks. I believe one of the best solutions to overcome this obstacle is to

Chapter 9 Resilient Angular App and Offline Browsing

235

2�https://pouchdb.com
3�Hoodie is another example; you can find more about it on https://hood.ie.
4�http://couchdb.apache.org
5�PouchDB can sync back data to any services that speak to the CouchDB replication protocol. For
examples, CouchDB, IBM Cloudant, Couchbase.

use PouchDB.2 Keep in mind, you are not limited to this solution, and you may need to either

implement your own logic for your application or use another third party.3 All in all, the goal

is to implement offline first cache for storing data and sync back to the server accordingly.

Note  PouchDB is an open source JavaScript database inspired by Apache
CouchDB4 that is designed to run well within the browser. PouchDB was created to
help web developers build applications that work as well offline as they do online.
It enables applications to store data locally while offline, then synchronize it with
CouchDB and compatible servers when the application is back online, keeping the
user’s data in sync no matter where they next log in.

You can use PouchDB without the sync feature too, but for the sake of offline

capability, I enable the sync and offline features in PouchDB.

First, we need to install pouchdb:

npm install pouchdb

The pouchdb-browser preset contains the version of PouchDB that is designed for

the browser. In particular, it ships with the IndexedDB and WebSQL adapters as its default

adapters. It also contains the replication, HTTP, and map/reduce plugins. Use this

preset if you only want to use PouchDB in the browser, and don’t want to use it in Node.

js. (e.g., to avoid installing LevelDB.)

Therefore, instead of pouchdb, I install pouchdb-browser alternately:

npm install pouchdb-browser

Carry on and create a new service in Angular by running:

ng g s modules/core/offline-db

To create a remote sync database server, for simplicity, I install pouchdb-server.5

npm install -g pouchdb-server

Chapter 9 Resilient Angular App and Offline Browsing

https://pouchdb.com
https://hood.ie
http://couchdb.apache.org

236

Run the PouchDB server:

pouchdb-server --port 5984

If you clone the project repository and want to see the example codes, first install

npm packages and then npm run pouchdb-server

In OfflineDbService, we need to instantiate PouchDB. To sync, the simplest case

is unidirectional replication, meaning you just want one database to mirror its changes

to a second one. Writes to the second database, however, will not propagate back to the

master database; however, we need bidirectional replication to make things easier for

your poor, tired fingers; PouchDB has a shortcut API.

import PouchDB from 'pouchdb-browser';

 constructor() {

// create new local database

 this._DB = new PouchDB(this.DB_NAME);

// shortcut API for bidirectional replication

 this._DB.sync(this.REMOTE_DB, {

 live: true,

 retry: true

 });

 }

Note I f you see an error due to undefined global object in console, please
add (window as any).global = window; at the bottom of Polyfills.ts.6

Database has been instantiated successfully; therefore, CRUD operations need to be

implemented.

public get(id: string) {

 return this._DB.get(id);

 }

6�This is a known issue with pouchdb 7 and Angular 6 and 7 as of the writing of this book.

Chapter 9 Resilient Angular App and Offline Browsing

237

 public async delete(id) {

 const doc = await this.get(id);

 const deleteResult = this._DB.remove(doc);

 return deleteResult;

 }

 public add(note: any) {

 return this._DB.post({

 ...note,

 created_at: this.timestamp,

 updated_at: this.timestamp

 });

 }

 public async edit(document: any) {

 const result = await this.get(document._id);

 document._rev = result._rev;

 return this._DB.put({

 ...document,

 updated_at: this.timestamp

 });

 }

To retrieve all notes from the database, I define another function getAll where I will

call this method on loading application to show notes to my user.

public async getAll(page?: number) {

 const doc = await this._DB.allDocs({

 include_docs: true,

 limit: 40,

 skip: page || 0

 });

 this._allDocs = doc.rows.map(row => row.doc);

 // Handle database change on documents

 this.listenToDBChange();

 return this._allDocs;

 }

Chapter 9 Resilient Angular App and Offline Browsing

238

PouchDB provides a changes() method that is an event emitter and will emit a

'change' event on each document change, a 'complete' event when all the changes

have been processed, and an 'error' event when an error occurs. Calling cancel() will

automatically unsubscribe all event listeners.

 listenToDBChange() {

 if (this.listener) {

 return;

 }

 this.listener = this._DB

 .changes({ live: true, since: 'now', include_docs: true })

 .on('change', change => {

 this.onDBChange(change);

 });

 }

From now on, we have a listener that can detect each document change and

manipulate the data accordingly. For instance, in onDBChange method in the

OfflineDbService, I have implemented a very simple logic to detect what types of

change have happened to the document and run a logic based on that.

private onDBChange(change) {

 this.ngZone.run(() => {

 const index = this._allDocs.findIndex(row => row._id === change.id);

 if (change.deleted) {

 this._allDocs.splice(index, 1);

 return;

 }

 if (index > -1) {

 // doc is updated

 this._allDocs[index] = change.doc;

 } else {

 // new doc

Chapter 9 Resilient Angular App and Offline Browsing

239

 this._allDocs.unshift(change.doc);

 }

 });

 }

Altogether, the OfflineDBServer looks like the following:

export class OfflineDbService {

 private readonly LOCAL_DB_NAME = 'apress_pwa_note';

 private readonly DB_NAME = `${this.LOCAL_DB_NAME}__${this.auth.id}`;

 private readonly REMOTE_DB = `http://localhost:5984/${this.DB_NAME}`;

 private _DB: PouchDB.Database;

 private listener = null;

 private _allDocs: any[];

 get timestamp() {

 return;

 }

 constructor(private auth: AuthService, private ngZone: NgZone) {

 this._DB = new PouchDB(this.DB_NAME);

 this._DB.sync(this.REMOTE_DB, {

 live: true,

 retry: true

 });

 }

 listenToDBChange() {

 if (this.listener) {

 return;

 }

 this.listener = this._DB

 .changes({ live: true, since: 'now', include_docs: true })

 .on('change', change => {

 this.onDBChange(change);

 });

 }

Chapter 9 Resilient Angular App and Offline Browsing

240

 private onDBChange(change) {

 console.log('>>>>>> DBChange', change);

 this.ngZone.run(() => {

 const index = this._allDocs.findIndex(row => row._id === change.id);

 if (change.deleted) {

 this._allDocs.splice(index, 1);

 return;

 }

 if (index > -1) {

 // doc is updated

 this._allDocs[index] = change.doc;

 } else {

 // new doc

 this._allDocs.unshift(change.doc);

 }

 });

 }

 public async getAll(page?: number) {

 const doc = await this._DB.allDocs({

 include_docs: true,

 limit: 40,

 skip: page || 0

 });

 this._allDocs = doc.rows.map(row => row.doc);

 // Handle database change on documents

 this.listenToDBChange();

 return this._allDocs;

 }

 public get(id: string) {

 return this._DB.get(id);

 }

Chapter 9 Resilient Angular App and Offline Browsing

241

 public async delete(id) {

 const doc = await this.get(id);

 const deleteResult = this._DB.remove(doc);

 return deleteResult;

 }

 public add(note: any) {

 return this._DB.post({

 ...note,

 created_at: this.timestamp,

 updated_at: this.timestamp

 });

 }

 public async edit(document: any) {

 const result = await this.get(document._id);

 document._rev = result._rev;

 return this._DB.put({

 ...document,

 updated_at: this.timestamp

 });

 }

}

Now I need to change all components and replace DataService with

OfflineDbService. To begin, NotesListComponent:

constructor(

 private offlineDB: OfflineDbService,

) {}

 ngOnInit() {

// here is we call getAll() and consequesntly subscribe to change listerner

 this.offlineDB.getAll().then(allDoc => {

 this.notes = allDoc;

 });

 }

Chapter 9 Resilient Angular App and Offline Browsing

242

onSaveNote() on NotesAddComponent is updated to

constructor(

 private router: Router,

 private offlineDB: OfflineDbService,

 private snackBar: SnackBarService

) {}

 onSaveNote(values) {

 this.loading$.next(true);

// Notice we add everything to local DB

 this.offlineDB.add(values).then(

 doc => {

 this.router.navigate(['/notes']);

 this.snackBar.open(`LOCAL: ${doc.id} has been succeffully saved`);

 this.loading$.next(false);

 },

 e => {

 this.loading$.next(false);

 this.errorMessages$.next('something is wrong when adding to DB');

 }

);

 }

And here is the same change to NoteDetailsComponent where we have Edit, Get,

Delete operations.

constructor(

 private offlineDB: OfflineDbService,

 private route: ActivatedRoute,

 private snackBar: SnackBarService,

 private router: Router

) {}

 ngOnInit() {

 const id = this.route.snapshot.paramMap.get('id');

 this.id = id;

 this.getNote(id);

 }

Chapter 9 Resilient Angular App and Offline Browsing

243

 getNote(id) {

// get note from offline DB

 this.offlineDB.get(id).then(note => {

 this.note = note;

 });

 }

 delete() {

 if (confirm('Are you sure?')) {

// delete note from offline DB

 this.offlineDB

 .delete(this.id)

 .then(() => {

 this.router.navigate(['/notes']);

 this.snackBar.open(`${this.id} successfully was deleted`);

 })

 .catch(e => {

 this.snackBar.open('Unable to delete this note');

 });

 }

 }

 edit() {

 this.isEdit = !this.isEdit;

 }

 saveNote(values) {

// edit in offline DB

 this.offlineDB

 .edit(values)

 .then(() => {

 this.getNote(values._id);

 this.snackBar.open('Successfully done');

 this.edit();

 })

Chapter 9 Resilient Angular App and Offline Browsing

244

 .catch(e => {

 this.snackBar.open('Unable to edit this note');

 this.edit();

 });

 }

It’s time to test the application, and we don’t necessarily need Service Worker;

therefore, we can simply run my application in development mode locally. So, run npm

start and then navigate to localhost:4200 to see the application. Try to add a new note

and observe the console messages (see Figure 9-5).

As you have been shown in Figure 9-5, each document has an _id and _rev property

that is being added automatically. The change object contains all the necessary

information that we can use in our app logic to manipulate the data.

Figure 9-5.  Change object is emitted for each change on database

Chapter 9 Resilient Angular App and Offline Browsing

245

Note T he rev field in the response indicates a revision of the document. Each
document has a field by the name _rev. Every time a document is updated, the _
rev field of the document is changed. Each revision points to its previous revision.
PouchDB maintains a history of each document (much like git). _rev allows
PouchDB and CouchDB to elegantly handle conflicts, among its other benefits.

Open two different browsers on your computer, for instance, Chrome and Firefox

and open the app on each. First, you’ll notice that you will have the exact same notes

on both browsers. Now add a new note in one browser, and check the other one (see

Figure 9-6); you’ll notice the new note will appear quickly in another browser where the

app is open.

Figure 9-6.  The App is running in two different browsers (devices), and by adding
a note from one, as soon as it’s added to sync server, a change will get emitted and
immediately the note will appear in another browser (device)

So far so good; you’ll notice that there will be zero latency to show or add a note,

since the content is going to be added to the cache first and then will be synced back

with the server. Therefore, our user will not notice the latency between the cache and

server.

Chapter 9 Resilient Angular App and Offline Browsing

246

What if our user goes offline? Let’s test it out. We’ll disconnect the network by

checking offline in Chrome and then will try to delete a note from Safari where it’s online

still and add a note from Chrome browser, which is offline (see Figures 9-7 and 9-8).

Note  PouchDB has two types of data: documents and attachments.

Documents A s in CouchDB, the documents you store must be serializable as
JSON.

Attachments  PouchDB also supports attachments, which are the most efficient
way to store binary data. Attachments may either be supplied as base64-encoded
strings or as Blob objects.

Figure 9-7.  Deleting one note from another browser that is online will reflect on
the remote database, but since another browser is offline, it will not receive the
update

Chapter 9 Resilient Angular App and Offline Browsing

247

Once I am done, I will make the Chrome network online again and will wait a bit.

You’ll see after a few seconds that the app in both browsers will be synced successfully

(see Figure 9-9).

Figure 9-8.  Add a note in a browser (device) even when the user is offline. App
allows the user to add this note; however, it does not reflect on the remote database
until the user comes back online.

Chapter 9 Resilient Angular App and Offline Browsing

248

There has been no interruption in the user experience, and there has been fast

performance and reliable data and synchronization – isn't it amazing?

As said, PouchDB is one way to the implement offline first approach. Depending on

your application and requirements, you may use different libraries or even your own

implementation where you use IndexedDB APIs directly.

�Implement Persistent Data with Angular Firebase

Cloud Firestore supports offline data persistence. This feature caches a copy of the Cloud

Firestore data that your app is actively using, so your app can access the data when the

device is offline. You can write, read, listen to, and query the cached data. When the

device comes back online, Cloud Firestore synchronizes any local changes made by your

app to the data stored remotely in Cloud Firestore.

Offline persistence is an experimental feature that is supported only by

the Chrome, Safari, and Firefox web browsers.

Figure 9-9.  App in both browsers (devices) is synced when user comes back online

Chapter 9 Resilient Angular App and Offline Browsing

249

To enable offline persistence, enablePersistence() must be called while importing

AngularFirestoreModule into your @NgModule:

@NgModule({

 declarations: [AppComponent, LoadingComponent],

 imports: [

 CoreModule,

 LayoutModule,

 BrowserModule.withServerTransition({ appId: 'serverApp' }),

 HttpClientModule,

 AppRoutingModule,

 AngularFireModule.initializeApp(environment.firebase),

 AngularFirestoreModule.enablePersistence(),

 // AngularFirestoreModule, // needed for database features

 AngularFireAuthModule, // needed for auth features,

 BrowserAnimationsModule, // needed for animation

 ServiceWorkerModule.register('ngsw-worker.js', {

 enabled: environment.production

 }),

 RouterModule

],

 providers: [],

 bootstrap: [AppComponent]

})

export class AppModule {}

If a user opens multiple browser tabs that point to the same Cloud

Firestore database, and offline persistence is enabled, Cloud Firestore

will work correctly only in the first tab. However, As of September 2018,

experimental multi-tab is available for you to play with. You just need to

pass {experimentalTabSynchronization: true} to enbalePersistence() function

such as:

AngularFirestoreModule.enablePersistence({experimentalTabSynchronization: true})

Next, we need to make sure we are using Angular Firestore APIs.

Chapter 9 Resilient Angular App and Offline Browsing

250

For instance, in NotesListComponent, use getNotes() method instead of

initializedNotes()

ngOnInit() {

 this.notes$ = this.db.getNotes();

 // this.notes$ = this.db.initializeNotes();

}

In NoteDetailsComponent, use getNote() method instead of

getNoteFromDirectApi():

 ngOnInit() {

 const id = this.route.snapshot.paramMap.get('id');

 this.id = id;

 this.note$ = this.data.getNote(id);

 // this.note$ = this.data.getNoteFromDirectApi(id);

 }

And in NotesAddComponent, call the addNote() method on DataService.

onSaveNote(values) {

 this.data.addNote(values).then(

 doc => {

 this.snackBar.open(`LOCAL: ${doc.id} has been succeffully saved`);

 },

 e => {

 this.errorMessages$.next('something is wrong when adding to DB');

 }

);

 this.router.navigate(['/notes']);

 }

Run the application and disconnect from the network. You can add a note even

though you are offline; and as soon as you come back online, the data will sync back to

Firestore.

We can go ahead and deploy the app to Firebase by running:

npm run deploy

Chapter 9 Resilient Angular App and Offline Browsing

251

�User Interface Considerations

Imagine that our application works even when users are offline. Users will continue

adding content and modify more and more. Users usually do not notice that the data

is not synced due to slowness or no internet connection. In this case, there are several

UI considerations that can be done in the app to show some signals to the users as to

whether they are offline or online:

	 1.	 Change the header and footer color to some other colors that

indicate they are offline; for instance, in the Note app, we can gray

out the blue header when the user is offline.

	 2.	 Show a notification or a popup when the user is offline; for

instance, when the user is adding a note in Note PWA app, we can

show a message that you are offline, but we will sync back data to

server as soon as you are online.

	 3.	 Display an icon or other indication that clearly shows even though

a note has been added, it’s not synced with the server yet and only

exists on the user local device.

	 4.	 Resolve conflicts based on user decision; for instance, a user

may edit a note in different devices at once when all devices are

offline, and when all devices come online again, there might be

conflicts between each revision. In this case, it’s a good practice to

show our user a notification and tell them that there are different

revisions based on their edit; therefore, they can select which

update is the one that needs to be applied.

These are just a few ideas. You may have better ideas based on your app. It is

important to enhance the UIs along with adding more functionalities and features to

boost the user experience.

Last but not least, by listening for a change event on navigator.connection, we can

react to proper logic based on the change accordingly. As an example, take a look at the

function below where we can find out more about the network information:

 constructor(

 private auth: AuthService,

 private swPush: SwPush,

Chapter 9 Resilient Angular App and Offline Browsing

252

 private snackBar: SnackBarService,

 private dataService: DataService,

 private router: Router

) {

 �(<any>navigator).connection.addEventListener('change', this.

onConnectionChange);

 }

 onConnectionChange() {

 const { downlink, effectiveType, type } = (<any>navigator).connection;

 console.log(`Effective network connection type: ${effectiveType}`);

 console.log(`Downlink Speed/bandwidth estimate: ${downlink}Mb/s`);

 console.log(

 �type of connection is ${type} but could be of bluetooth, cellular,

ethernet, none, wifi, wimax, other, unknown`

);

 if (/\slow-2g|2g|3g/.test((<any>navigator).connection.effectiveType)) {

 this.snackBar.open(`You connection is slow!`);

 } else {

 this.snackBar.open(`Connection is fast!`);

 }

 }

As you see, you can write your own logic based on how the network information

changes.

Note I f you want to see and run all the examples and codes on your machine,
simply clone https://github.com/mhadaily/awesome-apress-pwa.git,
then go to chapter09. For pouchdb implementation, you’ll find 01-pouchdb; go
to folder and install all packages first by running npm install and then run both
app and pouchdb-server by running npm start and npm run pouchdb-
server respectively. For Firestore implementation, go to 02-firebase-
presistent-db, run npm install and npm start respectively.

Chapter 9 Resilient Angular App and Offline Browsing

https://github.com/mhadaily/awesome-apress-pwa.git

253

�Summary
One main aspect of PWAs is to enhance the user experience. Providing an offline

experience – whether with a flaky connection in transport or being offline in the

airplane – is invaluable to boost user satisfaction and improve the app’s performance.

To support a meaningful experience in an offline case, not only we should cache

our static assets and requests and responses, but also storing data on the client side

seems essential. By rethinking how to architect an application in the front end and make

it offline – first by leveraging browser offline storage, like IndexedDB, with one of the

libraries available (PouchDB), the app has been moved to the next level.

Chapter 9 Resilient Angular App and Offline Browsing

255
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_10

CHAPTER 10

Debugging and
Measurement Tools
As developers, we work with debugging tools on a daily basis, and we cannot think of

coding without them. For developing a PWA, we may need more tools to help us inspect

our code, find bugs, run, simulate offline mode, and test Service Worker. To progressively

enhance our application, measuring different aspects such as performance and PWA

criteria, and engagement by tracking, seem crucial, too.

In this chapter, I will explorer a lot of tools that will help us to inspect, debug and

develop, and measure a PWA more easily and pleasantly. Although you may find many

of these tools familiar, I still would like to have all of them in one chapter where you can

refer to it anytime you like.

�Debugging
First things first, let’s start by looking into debugging possibilities.

�NGSW Debug
Angular Service Worker has a specific URL in order to check the state of ngsw. To get

access to it, you should navigate to /ngsw/state to your website base URL.

256

For instance, if you are running your production app on your local machine, you

should be able to navigate to https://localhost:3000/ngsw/state and see the

information, which looks like the following:

NGSW Debug Info:

Driver state: NORMAL ((nominal))

Latest manifest hash: b15d32a87eae976c0909801e2b8962df20a7deec

Last update check: 13s304u

=== Version b15d32a87eae976c0909801e2b8962df20a7deec ===

Clients: 9d63b22a-f76b-f642-aab4-e6c8e627f66a, 20e02d5b-746e-8e48-b04e-

232d3a43e760, 40ccc813-b89f-5643-8e67-a6e93b688ee9

=== Idle Task Queue ===

Last update tick: 13s647u

Last update run: 8s646u

Task queue:

Debug log:

[13s638u] Error(Response not Ok (fetchAndCacheOnce): request for https://

fonts.googleapis.com/icon?family=Material+Icons returned response 0 ,

fetchAndCacheOnce/<@https://awesome-apress-pwa.firebaseapp.com/ngsw-worker.

js:589:31

fulfilled@https://awesome-apress-pwa.firebaseapp.com/ngsw-worker.js:312:52

) while running idle task revalidate(ngsw:b15d32a87eae976c0909801

e2b8962df20a7deec:assets, assets): https://fonts.googleapis.com/

icon?family=Material+Icons

This state may help you to find useful information that makes debugging easier.

�Web App Manifest
A web manifest allows you to control how your app behaves when launched and

displayed to the user. Along with Service Worker, it offers users the Add to Homescreen

option. In Chapter 6, we looked into the web app manifest in depth.

Chapter 10 Debugging and Measurement Tools

257

�Chrome DevTools

Once Chrome DevTools are Opened, go to the Application panel and click on Manifest

to inspect it (see Figure 10-1).

•	 To look at the manifest source, click the link below the App Manifest

label.

•	 Press the Add to homescreen button to simulate an Add to

Homescreen event. On the Chrome Desktop, it triggers the browser

to add the app to the shelf. On mobile, it prompts the user to install

the app (add the icon to the home screen).

•	 The Identity and Presentation sections just display fields from the

manifest source in a more user-friendly display.

•	 The Icons section displays every icon that you’ve specified.

Figure 10-1.  Manifest inspector in Chrome

Chapter 10 Debugging and Measurement Tools

258

�Online Validators

It is easy to find many websites and online tools that can also validate a web app

manifest, for instance, manifest-validator.appspot.com.

�Online Generators

Sometimes generating web app manifests might be time consuming or monotonous.

Hence, online generators come in handy, for example, tomitm.github.io/appmanifest.

�Service Workers
Service Workers give developers the amazing ability to intercept network requests and

create a truly offline-first web app. In Chapters 4 and 5, we introduced the Service Worker

via Angular Service Worker.

�Chrome DevTools

Open DevTools and go to Application Panel (see Figure 10-2). Click on Service Workers.

•	 The Offline puts the website in the corresponding tab offline.

•	 The Update on reload forces the Service Worker to update on every

page load.

•	 The Bypass for network bypasses the Service Worker and forces the

browser to go to the network for requested resources.

•	 The Update performs a one-time update of the specified Service

Worker.

•	 The Push emulates a push notification with a specific message.

•	 The Sync emulates a background sync event with a specific tag.

•	 The Unregister unregisters the specified Service Worker.

•	 The Source tells you when the currently running Service Worker was

installed. If you click on the click, it will redirect you to the Service

Worker source under the Sources panel.

Chapter 10 Debugging and Measurement Tools

http://manifest-validator.appspot.com

259

•	 The Status tells you the status of the Service Worker. Since Service

Workers are designed to be stopped and started by the browser at any

time, we can explicitly stop the Service Worker using the stop button,

which will simulate it to reveal bugs due to faulty assumptions about

persistent global states.

•	 The Clients tells you the origin that the Service Worker is scoped to.

�Firefox DevTools

The about:debugging page provides an interface for interacting with Service Workers.

There are several different ways to open about:debugging; however, I will encourage you

to open debugger by simply entering the command in the Firefox address bar.

You’ll see a few options such as push, debug, and unregister, which are similar to a

Chrome expect push emulate push event without a payload (see Figure 10-3).

Figure 10-2.  Service Worker debugger in Chrome DevTools

Chapter 10 Debugging and Measurement Tools

260

Figure 10-3.  Service Worker debugger in Firefox DevTools

Chapter 10 Debugging and Measurement Tools

261

�Service Worker Mock

Pinterest engineers have developed a set of tools to work with Service Worker. Service

Worker Mock is a library that creates an environment with the following properties that

make it easy to turn a Node.js environment into a faux Service Worker environment and

will be helpful when you need to write integration tests.

const env = {

 // Environment polyfills

 skipWaiting: Function,

 caches: CacheStorage,

 clients: Clients,

 registration: ServiceWorkerRegistration,

 addEventListener: Function,

 Request: constructor Function,

 Response: constructor Function,

 URL: constructor Function,

 // Test helpers

 listeners: Object,

 trigger: Function,

 snapshot: Function,

};

The Service Worker mock is best used by applying its result to the global scope, then

calling require(‘./service-worker.js’) with the path to your Service Worker file. The file

will use the global mocks for things like adding event listeners. Let’s write a simple test:

// service-worker.js

const TESTCACHE = 'TESTCACHE';

const TESTCACHE_URLS = [

 'index.html',

 './' // Alias for index.html

];

self.addEventListener('install', event => {

 console.log('[SW.JS] Server worker has been installed');

 event.waitUntil(

Chapter 10 Debugging and Measurement Tools

262

 caches

 .open(TESTCACHE)

 .then(cache => cache.addAll(TESTCACHE_URLS))

 .then(self.skipWaiting())

);

});

// The activate handler takes care of cleaning up old caches.

self.addEventListener('activate', event => {

 console.log('[SW.JS] Server worker has been activated');

 const currentCaches = [TESTCACHE];

 event.waitUntil(

 caches

 .keys()

 �.then(cacheNames => cacheNames.filter(cacheName => !currentCaches.

includes(cacheName)))

 .then(cachesToDelete => {

 �return Promise.all(cachesToDelete.map(cacheToDelete => caches.

delete(cacheToDelete)));

 })

 .then(() => self.clients.claim())

);

});

self.addEventListener('push', event => {

 console.log(

 '[SWJ.S] Debug Push',

 event.data ? event.data.text() : 'no payload'

);

});

self.addEventListener('sync', event => {

 console.log('[SWJ.S] Debug Sync', event.tag);

});

Chapter 10 Debugging and Measurement Tools

263

I will write my test using the Jest framework and service-worker-mock library.

// service-worker.test.js

const makeServiceWorkerEnv = require('service-worker-mock');

const makeFetchMock = require('service-worker-mock/fetch');

describe('Service worker', () => {

 beforeEach(() => {

 Object.assign(

 global,

 makeServiceWorkerEnv(),

 makeFetchMock()

 // �If you're using sinon ur similar you'd probably use below instead

of makeFetchMock

 // fetch: sinon.stub().returns(Promise.resolve())

);

 jest.resetModules();

 });

 it('should add listeners', () => {

 require('./service-worker.js');

 expect(self.listeners['install']).toBeDefined();

 expect(self.listeners['activate']).toBeDefined();

 expect(self.listeners['push']).toBeDefined();

 expect(self.listeners['sync']).toBeDefined();

 expect(self.listeners['fetch']).toBeUndefined();

 });

 it('should delete old caches on activate', async () => {

 require('./service-worker.js');

 // Create old cache

 await self.caches.open('OLD_CACHE');

 expect(self.snapshot().caches.OLD_CACHE).toBeDefined();

 // Activate and verify old cache is removed

 await self.trigger('activate');

 expect(self.snapshot().caches.OLD_CACHE).toBeUndefined();

 });

});

Chapter 10 Debugging and Measurement Tools

264

Run Jest or npm test.

PASS ./service-worker.test.js

 Service worker

 ✓ should add listeners (7ms)

 ✓ should delete old caches on activate (15ms)

 console.log service-worker.js:19

 [SW.JS] Server worker has been activated

Test Suites: 1 passed, 1 total

Tests: 2 passed, 2 total

Snapshots: 0 total

Time: 0.77s, estimated 1s

Ran all test suites.

Note  Clone https://github.com/mhadaily/awesome-apress-pwa.git
and go to the Chapter10 directory and see samples. npm test will run the test.

�Storage
You might already be familiar with many types of web storage. A web storage’s standard

such as Local Storage, Session Storage, IndexedDB (have extensively used it), Web SQL,

and Cookies are found in all major browsers. I am especially interested in IndexedDB,

which can generally be used in Service Worker.

�Chrome DevTools

In DevTools, navigate to the Application tab (see Figure 10-4). Select IndexedDB.

Chapter 10 Debugging and Measurement Tools

https://github.com/mhadaily/awesome-apress-pwa.git

265

By right-clicking on the object store, you can find a clear action and by clicking on

the database name, you will find delete and refresh database buttons where you can

delete or refresh the database respectively (see Figure 10-5).

You can clear and refresh the object store by the little action buttons on top of the

object store’s list UI. You are also able to delete selected data. You may find the refresh

and delete action by right-clicking on each piece of data (see Figure 10-6).

Figure 10-4.  IndexedDB in Chrome DevTools

Figure 10-5.  Clear, refresh, delete IndexedDB in Chrome DevTools/

Chapter 10 Debugging and Measurement Tools

266

�Firefox DevTools

When you open Firefox DevTools, you may not see the storage panel by default. You

should enable it from the setting as seen in Figure 10-7.

Once enabled, Click on Storage panel and you’ll find IndexedDB as seen in Figure 10-8.

Figure 10-6.  Clear, refresh, delete IndexedDB on Object store

Figure 10-7.  Enable storage from DevTools Setting in Firefox

Figure 10-8.  Storage panel in Firefox DevTools

Chapter 10 Debugging and Measurement Tools

267

�Cache
The Cache Storage pane provides a read-only list of resources that have been cached

using the Cache API.

�Chrome DevTools

Note that the first time you open a cache and add a resource to it, DevTools might not

detect the change. Reload the page and you should see the cache. If you’ve got two or

more caches open, you’ll see them listed below the Cache Storage Cache Storage drop-

down (see Figure 10-9).

When loading resources cached by Service Workers Cache Storage using the Cache

API, the Network panel of the DevTools shows it as coming from Service Worker (see

Figure 10-10).

Figure 10-9.  Cache Storage in Chrome DevTools

Chapter 10 Debugging and Measurement Tools

268

�Firefox DevTools

Caches name are available under storage Cache as you can see in Figure 10-11.

When loading resources cached by Service Workers Cache Storage using the Cache

API, Firefox shows it is cached in the Network panel (see Figure 10-12).

Figure 10-10.  Network request in Chrome DevTools Cache Storage from Service
Worker

Figure 10-11.  Cache Storage in Firefox DevTools

Chapter 10 Debugging and Measurement Tools

269

�Simulate Offline Behavior
To verify everything works as planned while our application is offline, we need to make

sure we are able to simulate no connectivity.

Chrome and Firefox provide a handy feature that we can leverage to mock the

offline mode.

�Chrome

In addition to the Offline check box in Service Worker under the Application panel, we

are able to use the offline check box under the Network panel (see Figure 10-13).

Figure 10-12.  Network request in Firefox DevTools Cache Storage from Service
Worker

Figure 10-13.  Offline mode under Network panel in Chrome DevTools

Chapter 10 Debugging and Measurement Tools

270

�Firefox

In order to enable offline mode in Firefox, click on the menu icon and then click

Developer ➤ Work Offline (see Figure 10-14).

Figure 10-14.  Offline mode Firefox

Chapter 10 Debugging and Measurement Tools

271

Figure 10-15.  Throttling option in Chrome under Network Tab; you are able to
add custom profile as you wish

Sometimes the offline simulator doesn’t do the proper job, and you may need to

actually turn off your internet and reconnect again. For example, at the time I am writing

this book, when you work with background sync in Service Worker, you may need to

really turn off your internet connection.

�Simulate Different Network Conditions
There are also many parts of the world where 3G and 2G speeds are the norm. Also, we

are constantly moving between various states of connectivity. To verify that our app

works well for these consumers, we need to test our application in different network

connections and devices.

In both Chrome and Firefox, we have a throttling option that you can find in

Figures 10-15 and 10-16.

Chapter 10 Debugging and Measurement Tools

272

Note U ltimately, Service Worker is a plain JavaScript file, where you can use all
JavaScript debugging features such as Debugger or break point to inspect code
inside Service Worker.

�Simulate Mobile Devices
You can run your PWA on a real device while it’s connected to your browser via USB, or

you can run an emulator and perform your test and inspect what you are looking for.

�Remote Debugging and Measuring

To connect your Android device to Chrome, you can follow the instructions on this link:

https://goo.gl/syNfSR; and to connect to Firefox, you can find instructions on this

link: https://goo.gl/P7gFNE.

Figure 10-16.  Throttling option in Firefox

Chapter 10 Debugging and Measurement Tools

273

�Emulators

To set up and run the iOS simulator, follow this link: https://goo.gl/ymihLs. And for

Android, follow the instructions on this link: https://goo.gl/EGPpxx.

�Online Tools

BrowserStack is a cross-browser testing tool. With it you can test your website across

browsers on multiple operating systems and mobile devices without individual virtual

machines, devices, or emulators. BrowserStack also offers remote testing on physical

devices, so if you find yourself needing to test your website performance on many

devices, it can be a helpful time-saver.

�Measurement
It is always important to measure our application for different aspects such as speed,

performance, or user experience in order to deliver a quality application progressively.

In this section, I will explorer possibilities that help us to get better insight about out

application, which allows us to continuously refine our application.

�Audit
As seen in previous chapters, the Audit panel in Chrome DevTools, which is

powered by Lighthouse, is one of the best tools that we can use to perform auditing

on our application. It has different options including performance and PWA (see

Figure 10-17).

Chapter 10 Debugging and Measurement Tools

274

Figure 10-17.  Lighthouse in Chrome DevTools Audit tab where different audits
can be selected and performed

It is likely that we will automate our audit test or add that to the CD/CI1 pipeline.

Lighthouse2 is also available as the Node command-line tool and can also be used as a

Node module programmatically.

1�Continuous Delivery, Continuous Integration.
2�https://developers.google.com/web/tools/lighthouse

Chapter 10 Debugging and Measurement Tools

https://developers.google.com/web/tools/lighthouse

275

To run Lighthouse in the command line, do the following:

	 1.	 Make sure Chrome for Desktop and Node is installed.

	 2.	 Install Lighthouse.

npm install -g lighthouse

to run an audit

lighthouse <url>

for example

lighthouse https://awesome-apress-pwa.firebaseapp.com --view

You can see more options by running

lighthouse --help

Let’s take a look at how we can add Lighthouse programmatically.

�Lighthouse with Chrome Launcher

We will write an example that will run chrome-launcher and perform Lighthouse audits.

This test is helpful when you run a test for your application, especially if you want to run

multiple automated tests.

// lighthouse-chrome-launcher.js

const lighthouse = require('lighthouse');

const chromeLauncher = require('chrome-launcher');

function launchChromeAndRunLighthouse(url, opts, config = null) {

 return chromeLauncher

 .launch({ chromeFlags: opts.chromeFlags })

 .then(chrome => {

 opts.port = chrome.port;

 return lighthouse(url, opts, config).then(results => {

 // use results.lhr for the JS-consumeable output

 // �https://github.com/GoogleChrome/lighthouse/blob/master/types/

lhr.d.ts

 // use results.report for the HTML/JSON/CSV output as a string

Chapter 10 Debugging and Measurement Tools

276

 // �use results.artifacts for the trace/screenshots/other specific

case you need (rarer)

 return chrome.kill().then(() => results.lhr);

 });

 });

}

const opts = {

 chromeFlags: ['--show-paint-rects'],

 onlyCategories: ['performance', 'pwa'] // you can leave it empty for all

audits

};

// Usage:

launchChromeAndRunLighthouse(

 'https://awesome-apress-pwa.firebaseapp.com',

 opts

).then(results => {

 // Use results!

 console.log({

 pwa: results.categories.pwa.score,

 performance: results.categories.performance.score

 });

});

When you run this file, you’ll get the result, and you can add your logic based on the

scores.

node lighthouse-chrome-launcher.js

You’ll see

{ pwa: 1, performance: 0. 95 }

For instance, if a particular page has lower score than 0.5 in PWA, you can exit build

and ask to improve that page.

Chapter 10 Debugging and Measurement Tools

277

�Lighthouse with Puppeteer3

Puppeteer is a Node library that provides a high-level API to control Chrome or

Chromium over a DevTools Protocol. Puppeteer runs headless by default but can be

configured to run full (non-headless) Chrome or Chromium. Lighthouse and Puppeteer

is an excellent combination to run audits in our CD/CI where we cannot use the Chrome

launcher.

// lighthouse-puppeteer.js

const puppeteer = require('puppeteer');

const lighthouse = require('lighthouse');

const { URL } = require('url');

const run = async url => {

 // �Use Puppeteer to launch headful Chrome and don't use its default

800x600 viewport.

 const browser = await puppeteer.launch({

 headless: true,

 defaultViewport: null

 });

 browser.on('targetchanged', async target => {

 const page = await target.page();

 function addStyleContent(content) {

 const style = document.createElement('style');

 style.type = 'text/css';

 style.appendChild(document.createTextNode(content));

 document.head.appendChild(style);

 }

 const css = '* {color: red}';

 if (page && page.url() === url) {

 const client = await page.target().createCDPSession();

 await client.send('Runtime.evaluate', {

 expression: `(${addStyleContent.toString()})('${css}')`

 });

 }

3�Headless Chrome Node API https://pptr.dev.

Chapter 10 Debugging and Measurement Tools

https://pptr.dev

278

 });

 const { lhr } = await lighthouse(

 url,

 {

 port: new URL(browser.wsEndpoint()).port,

 output: 'json',

 logLevel: 'error',

 chromeFlags: ['--show-paint-rects'],

 onlyCategories: ['performance', 'pwa']

 },

 {

 extends: 'lighthouse:default'

 }

);

 await browser.close();

 return {

 pwa: lhr.categories.pwa.score,

 performance: lhr.categories.performance.score

 };

};

run('https://awesome-apress-pwa.firebaseapp.com').then(res => console.

log(res));

Then you can run this file:

node lighthouse-puppeteer.js

And you’ll see

{ pwa: 1, performance: 0.96 }

Chapter 10 Debugging and Measurement Tools

279

�Analytics
PWAs allows applications to offer functionality that weren’t possible before: for instance,

adding offline behavior to a page or allowing users to launch a website from the home

screen.

Generally, there are three events that we are interested in:

•	 Add to home screen: This will allow us to understand how users are

reacting to the browser prompt and based on users’ choices, we can

know how valuable the service is being to the users.

•	 Run from home screen: Adding an icon to the home screen is just

the first step. It would be beneficial to understand how adding our

service to the home screen affects user engagement.

•	 Offline pageviews frequency: This allows us to track how many users

are accessing the service while offline.

�Tracking Home Screen Prompts

We are going to use beforeinstallprompt event to track how many users are being

asked to add a website to their home screen and what will be their decision and based on

that, we will send information to our tracking system: for instance, Google Analytics.

Open AddToHomeScreenService

public showPrompt() {

 if (this.deferredPrompt) {

 // will show prompt

 this.deferredPrompt.prompt();

 // Wait for the user to respond to the prompt

 this.deferredPrompt.userChoice.then(choiceResult => {

 // outcome is either "accepted" or "dismissed"

 if (choiceResult.outcome === 'accepted') {

 // User accepted the A2HS prompt

 // send data to analytics

 // do whatever you want

 this.sendToAnalytics(choiceResult.userChoice);

 } else {

Chapter 10 Debugging and Measurement Tools

280

 // User dismissed the A2HS prompt

 // send data to analytics

 // do whatever you want

 this.sendToAnalytics(choiceResult.userChoice);

 }

 // we don't need this event anymore

 this.deferredPrompt = null;

 this.deferredPromptFired$.next(false);

 });

 }

 }

 public sendToAnalytics (userChoice) {

 // �for example, send data to Google Analytics, you can create another

service

 // or you may use a library to send this event to Google Analytics

 // ga('send', 'event', 'A2H', userChoice);

 console.log(userChoice);

 this.deferredPromptFired$.next(false);

 }

�Tracking Sessions from the Home Screen

One of the most reliable ways to track sessions being started from the home screen is to

add a custom query param to start_url on our application manifest. For instance, if you

are using Google Analytics, you can add custom campaigns parameters.4

Generally, there are five parameters that you can add to your URLs:

utm_source: Identify the advertiser, site, publication, etc., that is

sending traffic to your property: for example, google, newsletter4,

billboard.

utm_medium: The advertising or marketing medium: for example,

cpc, banner, email newsletter.

4�https://support.google.com/analytics/answer/1033863?hl=en

Chapter 10 Debugging and Measurement Tools

https://support.google.com/analytics/answer/1033863?hl=en

281

utm_campaign: The individual campaign name, slogan, promo

code, etc., for a product.

utm_term: Identify paid search keywords. If you’re manually

tagging paid keyword campaigns, you should also use utm_term to

specify the keyword.

utm_content: Used to differentiate similar content or links within

the same ad. For example, if you have two call-to-action links

within the same email message, you can use utm_content and

set different values for each so you can tell which version is more

effective.

As an example:

// manifest.json

{ ...

 "background_color": "#fafafa",

 "display": "standalone",

 "scope": "/",

 "//": "Append tracking parameters to start_url",

 "start_url": "/?utm_source=homescreen",

 "icons": [

 {

 "src": "assets/icons/icon-72x72.png",

 "sizes": "72x72",

 "type": "image/png"

 },

...

}

To see the Campaigns reports:

	 1.	 Sign in to Google Analytics.

	 2.	 Navigate to your view.

	 3.	 Open Reports.

	 4.	 Select Acquisition ➤ Campaigns.

Chapter 10 Debugging and Measurement Tools

282

You may user other tracking systems as needed to create your desirables using the

same mechanism.

�Track Offline Pageviews

At the time of writing this book, there is no implemented solution in Angular Service

Worker.

Workbox is providing support for offline pageview tracking. In Chapters 13 and 14, we

will implement this module and see how it works.

�Online Tools
webpagetest.org is a go-to tool when it comes to measuring performance. You will find

in-depth documentation here: sites.google.com/a/webpagetest.org/docs.

web.dev/measure is a new tool from Google that helps developers like you learn

and apply the web’s modern capabilities to your own sites and apps.

�Real Device
Last but not least, never forget real-device testing and measure your application

performance and behavior on an average device or on your top-visited devices based on

your analytics system. It’s imperative to have an overview on a real device to see that app

in the real world.

�Summary
In this chapter, we talked about the handiest tools to debug and measure a PWA.

However, things will not always go so well. In the next chapter, I will reveal

possibilities to show that id your application and Service Worker go wrong, you will

still be able to survive.

Chapter 10 Debugging and Measurement Tools

http://webpagetest.org
http://sites.google.com/a/webpagetest.org/docs

283
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_11

CHAPTER 11

Safety Service Worker
Service Workers are indeed powerful, and the Angular Service Worker is no exception.

They do complex and advanced jobs for building a web application. However, based on

my experience building PWAs over the years, things are not always going in a way that we

like. It may happen that the Service Worker acts in unforeseen ways, and it may interrupt

the user experience or even make our app completely useless and unreachable.

Getting rid of a Service Worker is not as easy as it looks when you have registered

a Service Worker in the browser. Knowing how to unregister a service worker from a

client can leave your site in a suspended state of failure, which may lead to a frustrating

experience for your users.

A simple example is when you have registered a Service Worker and want to remove

a registered Service Worker file; therefore, a browser will not find the Service Worker file

any more, and the old Service Worker will stay on the browser until a new Service Worker

file gets registered. You will see that this mistake can have a disruptive impact on your

clients.

Luckily, Angular Service Worker contains several solutions such as Fail-safe, which

is a self-destructing way to unregister itself from the browser. In this chapter, I am going

to show you different mechanisms – a so-called “kill switch” – in addition to Angular

solutions where you can kill off or unregister your Service Worker, clean the cache, and

more, in order to avoid serving disruptive web applications to the user. You can use these

methods while you are debugging or even when you feel you need to get rid of the PWA

feature for your application.

�Fail-safe
Angular provides a simple solution to deactivate the Service Worker. As we have seen

in previous chapters, ngsw-config.json (ngsw.json after build in dist folder) is the

manifest where we define our Service Worker rules and logic.

284

Angular Service Worker tries to fetch the ngsw manifest on app initialization

and when it checks for new updates on navigation requests, by executing the

fetchLatestManifest method. Let’s take a look at the method closely:

 fetchLatestManifest(ignoreOfflineError = false) {

 return __awaiter$5(this, void 0, void 0, function* () {

 �const res = yield this.safeFetch(this.adapter.

newRequest('ngsw.json?ngsw-cache-bust=' + Math.random()));

 if (!res.ok) {

 if (res.status === 404) {

 yield this.deleteAllCaches();

 yield this.scope.registration.unregister();

 }

 else if (res.status === 504 && ignoreOfflineError) {

 return null;

 }

 �throw new Error(`Manifest fetch failed! (status: ${res.

status})`);

 }

 this.lastUpdateCheck = this.adapter.time;

 return res.json();

 });

 }

As seen in the snippet, Angular tries to fetch with a random cache-bust query param

where it makes sure that the file was not cached and is fresh.

If this file doesn’t exist or basically the response status code is 404, Angular Service

Worker will first delete all caches and then unregister the current SW registration.

Thus, if in your application something went wrong, you can simply rename or
remove ngsw.json file, which essentially removes all caches; de-registers itself; or, in

other words, self-destructs itself.

rm dist/ngsw.json

Chapter 11 Safety Service Worker

285

Here is a function where it handles deleting all caches:

 deleteAllCaches() {

 return __awaiter$5(this, void 0, void 0, function* () {

 yield (yield this.scope.caches.keys())

 .filter(key => key.startsWith('ngsw:'))

 �.reduce((previous, key) => __awaiter$5(this, void 0,

void 0, function* () {

 yield Promise.all([

 previous,

 this.scope.caches.delete(key),

]);

 }), Promise.resolve());

 });

 }

Note that if you turn “serviceWorker” to false in angular.json, ngsw.json will not

be generated; therefore, this mechanism will work too.

�Safety Worker
The Angular Service Worker package contains a simple no-op1 Service Worker script that

can replace ngsw-worker.js:

self.addEventListener('install', event => { self.skipWaiting(); });

self.addEventListener('activate', event => {

 event.waitUntil(self.clients.claim());

 self.registration.unregister().then(

 �() => { console.log('NGSW Safety Worker - unregistered old service

worker'); });

});

1�A no op (or no-op), for no operation, is a computer instruction that takes up a small amount
of space but specifies no operation. Here it refers to a simple Service Worker that doesn’t do
anything expect that it just registers itself, or we may delete just caches in an active event or
unregister if necessary.

Chapter 11 Safety Service Worker

286

Let’s break down this script:

	 1.	 It listens to install even and forces to skip waiting in order to

immediately install.

	 2.	 It listens to activate event:

	 a.	 Make sure all clients (tabs, for instances) are claimed in order to use

the latest installed Service Worker. The claim() method of the clients

allows an active service worker to set itself as the controller for all clients

within its scope. This triggers a “controllerchange” event on navigator.

serviceWorker in any clients that become controlled by this Service

Worker.

	 b.	 It will unregister itself immediately.

In order to unregister your current Service Worker, copy the file content into

ngsw-worker.js or any Service Worker name that was registered and is in use.

cp dist/satefy-worker.js dist/ngsw-worker.js

This script can be used both to deactivate Angular Service Worker as well as any

other Service Worker that might have been served on the website.

�Extended Safety Worker
However, in most cases a simple no-op Service Worker will work. In some cases, we may

need to delete all caches or force a user’s tab (each client of the website) to be refreshed

in order to receive the latest update. For instance, when you redirect your website to a

new origin (domain), your Service Worker may abruptly misbehave.

So, how to solve this?

	 1.	 To remove all caches:

caches.keys().then(cacheNames => {

 return Promise.all(

 cacheNames.map(cacheName => caches.delete(cacheName))

);

 })

Chapter 11 Safety Service Worker

287

If you want to just filter the Angular cache name and delete them:

caches.keys().then(cacheNames => {

 return Promise.all(

 cacheNames

 .filter(key => key.startsWith('ngsw:'))

 .map(cacheName => caches.delete(cacheName))

);

 })

	 2.	 To Refresh all Windows type clients (tabs):

	 a.	 Get a list of all window clients (tabs).

	 b.	 Each client exposes a method called navigatem which allow us to redirect

the client to another page.

	 c.	 We navigate each client to itself in order to force it to reload the page!

self.clients.matchAll({ type: 'window' })

.then(clients => {

 for (const client of clients) {

 client.navigate(client.url);

 }

 });

Put them all together:

self.addEventListener('install', event => {

 self.skipWaiting();

});

self.addEventListener('activate', event => {

 event.waitUntil(self.clients.claim());

 self.registration.unregister().then(async () => {

 �console.log('NGSW Safety Worker - unregistered old service

worker');

Chapter 11 Safety Service Worker

288

 // Get all cache keys

 const cacheNames = await caches.keys();

 // If you want to delete Only Angular Caches

 �const AngularCaches = cacheNames.filter(key => key.

startsWith('ngsw:'));

 // Delete all caches

 �await Promise.all(AngularCaches.map(cacheName => caches.

delete(cacheName)));

 // Grab a list of all tabs

 const clients = await self.clients.matchAll({ type: 'window'

});

 // Reload pages

 for (const client of clients) {

 client.navigate(client.url);

 }

 });

});

�Summary
Although our goal is to develop, build, and deploy an application that works, bugs are

unavoidable. In this chapter, we made a backup plan – a so-called “kill switch” – ready

for cases in which we need to get rid of a buggy Service Worker until we can debug and

fix the problem. Angular, in particular, provides several methods that makes sure our

application works flawlessly as much as possible: such as fail-safe and safety-worker

script mechanisms.

We have also extended the no-op Service Worker script and learned how to

unregister Service Worker, claims for all clients, clean up caches, and reload pages if

necessary. I hope you never get to use these methods and that everything goes well;

however, you now know what to do if something unexpectedly goes wrong.

Chapter 11 Safety Service Worker

289
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_12

CHAPTER 12

Modern Web APIs
What if I tell you that you can build a web app, connect to a device that supports

Bluetooth Low Energy, and have control over it from your web application? What if

a user’s login credentials are kept in the browsers safely, and when users access the

website, they are automatically signed in? What if a login to a web application needs a

device connected via USB to authenticate a user? What if I can access share options on

a native platform via a JavaScript API within our browser? I know what you might be

thinking now; but even though these all sounded like dreams 10 years ago, today most of

them are achievable or at least close to becoming realities.

For the past decade, much of the web has evolved significantly. New web APIs allow

developers to connect web applications to hardware via Bluetooth and USB. Online

payment has never been easier than it is today. Single sign-on and password-less

solutions have brought a much better user experience with minimal effort. Developing

a cross-platform via the same API across all devices and operating systems was very

difficult whereas, today, it’s such a pleasant way to develop and build a web application –

especially Progressive Web Apps (PWAs) since a lot of new APIs have been standardized

that provide a high-level JavaScript API in our browsers to gain access to underlying low-

level APIs of the platform.

In this chapter, I have chosen a few new technologies and APIs to explore and

integrate with PWA note apps such as Credential Management, Payment Request,

Geolocation, Media Streams, Web Bluetooth, and Web USB. I will ensure that the

fundamentals of these APIs will be covered. However, you may need to develop

additional ones for your applications based on your needs and requirements.

Additionally, I would suggest keeping an eye on Web Share, Web VR/AR, Background

fetch, Accessibility improvement, Web Assembly, and many more new standards that are

either under development or under consideration and will empower the web, especially

by building a PWA.

290

�Credential Management
The Credential management API is a Promised-based standard browser API that

facilitates seamless sign-ins across devices by providing an interface between

the website and the browser. This API allows the user to sign in with one tab via

an account chooser and helps to store credentials in the browsers by which can

be synced across devices. This helps that user who has signed in to one browser

already – he or she can then stay logged in to all other devices as well if they use the

same browser.

This API not only works with native-browser password management, but it can also

provide information about credentials from a federated identity provider. What it means

is this: any entity that a website trusts to correctly authenticate a user and provide an

API for that purpose can be a provider in this API to store the credential and retrieve it if

necessary. For example, Google Account, GitHub, Twitter, Facebook, or OpenID Connect

are examples of a federated identity provider framework.

Keep in mind that this API will only work when the origin is secure; in other words,

similar to PWA, your website must run on HTTPS.

Let’s start implementing in an Angular project and see how it works.

First, we will create a service called CredentialManagementService, and we import

to my CoreModule.

declare const PasswordCredential: any;

declare const FederatedCredential: any;

declare const navigator: any;

declare const window: any;

@Injectable({

 providedIn: 'root'

})

export class CredentialManagementService {

 isCredentialManagementSupported: boolean;

 constructor(private snackBar: SnackBarService) {

 if (window.PasswordCredential || window.FederatedCredential) {

 this.isCredentialManagementSupported = true;

 } else {

Chapter 12 Modern Web APIs

291

 this.isCredentialManagementSupported = false;

 �console.log('Credential Management API is not supported in this

browser');

 }

 }

 async store({ username, password }) {

 if (this.isCredentialManagementSupported) {

 // You can either pass the passwordCredentialData as below

 // �or simply pass down your HTMLFormElement. A reference to an

HTMLFormElement with appropriate input fields.

 // The form should, at the very least, contain an id and password.

 // It could also require a CSRF token.

 /*

 <form id="form" method="post">

 <input type="text" name="id" autocomplete="username" />

 �<input type="password" name="password" autocomplete="current-

password" />

 <input type="hidden" name="csrf_token" value="*****" />

 </form>

 <script>

 const form = document.querySelector('#form');

 const credential = new PasswordCredential(form);

 // if you have a federated provider

 const cred = new FederatedCredential({

 id: id,

 name: name,

 provider: 'https://account.google.com',

 iconURL: iconUrl

 });

 <script>

 */

Chapter 12 Modern Web APIs

292

 // Create credential object synchronously.

 const credential = new PasswordCredential({

 id: username,

 password: password

 // name: name,

 // iconURL: iconUrl

 });

 const isStored = await navigator.credentials.store(credential);

 if (isStored) {

 this.snackBar.open('You password and username saved in your browser');

 }

 }

 }

 async get() {

 if (this.isCredentialManagementSupported) {

 return navigator.credentials.get({

 password: true,

 mediation: 'silent'

 // federated: {

 // providers: ['https://accounts.google.com']

 // },

 });

 }

 }

 preventSilentAccess() {

 if (this.isCredentialManagementSupported) {

 navigator.credentials.preventSilentAccess();

 }

 }

}

Chapter 12 Modern Web APIs

293

This service has three methods that are basically wrappers around the main

credential API methods to check if the API is available in the browser or not. Let’s break

the service down:

	 1.	 A feature detection when service is initialized to ensure this API

is available.

if (window.PasswordCredential || window.FederatedCredential) {}

	 2.	 store method:

	 A)	 Accepts username and password, and therefore we can create a password

credential where it’ll be ready to store in credentials. PasswordCredential

constructor accepts both HTMLFormElement and an object of essential fields.

If you want to pass in the HTMLFormElement, make sure your form contains

at least an ID and Password as well as CSRF token. In the method, the call

constructor with ID, which is a username and password. name and iconURL,

are names of the user that is signing in and the user’s avatar image,

respectively and optionally. Keep in mind that we run this code if the feature

is available; otherwise we let the user work with the application normally.

Since we are building a PWA, it is always important to provide

an alternative for those users whose browser of choice doesn’t

support features that are being used.

	 B)	 If you are going to use third-party login, you must call

FederatedCredential constructor with an id as well as provider

endpoint.

	 C)	 Credentials API is available on navigator, the store function is Promised-

based and by calling that, we can save user credentials in the browser.

	 D)	 Finally, we show a message to the user in order to inform them that we

store their password in the browser.

	 3.	 get method:

After feature detection is checked, we call get on navigation.

credentials by passing in the configuration such as password,

mediation. Mediation defines how we want to tell the browser

to show the account chooser to user, which has three values:

Chapter 12 Modern Web APIs

294

optional, required, and silent. When mediation is optional,

the user is explicitly shown an account chooser to sign in after a

navigator.credentials.preventSilentAccess() was called.

This is normally to ensure automatic sign-in doesn’t happen after

the user chooses to sign out or unregister.

Once navigator.credentials.get() resolves, it returns either

an undefined or a credential object. To determine whether it

is a PasswordCredential or a FederatedCredential, simply look

at the type property of the object, which will be either password

or federated. If the type is federated, the provider property is a

string that represents the identity provider.

	 4.	 preventSilentAccess method:

We call preventSilentAccess() on navigator.credentials.

This will ensure the auto sign-in will not happen until next time

the user enables auto sign-in. To resume auto sign-in, a user can

choose to intentionally sign in by choosing the account they wish

to sign in with, from the account chooser. Then the user is always

signed back in until they explicitly sign out.

To continue with UserContainerComponent, we will first inject this service, then will

define my autoSignIn method and will call that on ngOnInit. On both the signup and

login methods, we will call the store method from the credential service to save and

update the user credential.

Finally, when a user logs out, we need to call preventSilentAccess(). This is what it

looks like:

 constructor(

 private credentialManagement: CredentialManagementService,

 private fb: FormBuilder,

 private auth: AuthService,

 private snackBar: SnackBarService

) {}

 ngOnInit() {

 this.createLoginForm();

 if (!this.auth.authenticated) {

Chapter 12 Modern Web APIs

295

 this.autoSignIn();

 }

 }

 private async autoSignIn() {

 const credential = await this.credentialManagement.get();

 if (credential && credential.type === 'password') {

 const { password, id, type } = credential;

 const isLogin = await this._loginFirebase({ password, email: id });

 if (isLogin) {

 // make sure to show a proper message to the user

 this.snackBar.open(`Signed in by ${id} automatically!`);

 }

 }

 }

 public signUp() {

 this.checkFormValidity(async () => {

 const signup = await this.auth.signUpFirebase(this.loginForm.value);

 const isLogin = await this.auth.authenticateUser(signup);

 if (isLogin) {

 const { email, password } = this.loginForm.value;

 this.credentialManagement.store({ username: email, password });

 }

 });

 }

 public login() {

 this.checkFormValidity(async () => {

 const { email, password } = this.loginForm.value;

 const isLogin = this._loginFirebase({ email, password });

 if (isLogin) {

 this.credentialManagement.store({ username: email, password });

 }

 });

 }

Chapter 12 Modern Web APIs

296

 public logOut() {

 this.auth

 .logOutFirebase()

 .then(() => {

 this.auth.authErrorMessages$.next(null);

 this.auth.isLoading$.next(false);

 this.auth.user$.next(null);

 // prevent auto signin until next time user login explicity

 // or allow us for auto sign in

 this.credentialManagement.preventSilentAccess();

 })

 .catch(e => {

 console.error(e);

 this.auth.isLoading$.next(false);

 this.auth.authErrorMessages$.next(

 'Something is wrong when signing out!'

);

 });

 }

Note  Clone https://github.com/mhadaily/awesome-apress-pwa.git
and go to Chapter 12, 01-credential-management-api folder to find all sample
codes.

It is also a good practice to use the autocomplete attribute on the login form to help

the browser to appropriately identify the fields (Figure 12-1).

 <input

 matInput

 placeholder="Enter your email"

 autocomplete="username"

 formControlName="email"

 required

 />

Chapter 12 Modern Web APIs

https://github.com/mhadaily/awesome-apress-pwa.git

297

<input

 matInput

 autocomplete="current-password"

 placeholder="Enter your password"

 [type]="hide ? 'password' : 'text'"

 formControlName="password"

 />

We run the application in a new browser, then we will go to the login page and by

entering my credential will log in to the website. You’ll see a prompt message that asks

the user to save the credential in the browser (see Figure 12-2).

Figure 12-1.  Autocomplete attribute allows browser to show appropriate
username and password for the website

Figure 12-2.  Credential prompt when web app wants to save credential in the
browser

Chapter 12 Modern Web APIs

298

To test my auto sign-in, we will open a new clean browser and will go to the login

page, then we will notice that we get redirected to the note list, and a snackbar message

appears that shows we am automatically signed in (see Figure 12-3).

Finally, the mediation optional or required will display an account chooser prompt

that allows users to select their account of choice, especially if they have more than one

account saved (See Figure 12-4).

�Browsers Support
By the time of writing this book, Chrome on Desktop and for Android, Android browser,

Opera for desktop and mobile, and Samsung internet browser support this API; and it

currently under consideration for Firefox. MS Edge is moving to a Chromium platform

and this API should be covered soon.

Figure 12-3.  The website snackbar message and a message from browser itself
after automatic sign-in occurs

Figure 12-4.  The account chooser if mediation is optional or required

Chapter 12 Modern Web APIs

299

�Payment Request
There is a high probability that all of us reading this book have made a payment on the

web – at least once. So we all know that how time consuming, and boring it is to fill out

the checkout forms, especially if it has more than one step.

The payment request standard API is developed by W3C to ensure the online

payment system for both consumers and merchants remains consistent and smooth

with minimal effort. This is not a new way of payment; rather, it’s a way that aims to

make the checkout process easier.

With this API, consumers always see a native platform UI when they want to select

payment details such as shipping address, credit card, contact details, etc. Imagine that

once you save all of the information in your browsers, you can simply just reuse them in

every single checkout page where this API is supported. How pleasant an experience it

will be: ignore the filling out of lots of fields in a checkout form, credit card information,

and more. Instead we will be seeing saved information consistently with a familiar

native UI. Just a few clicks or tabs to select, and it’s done!

Another advantage of this API is to accept different payment methods from a variety

of handlers to the web with relatively easy integration: for example, Apple Pay, Samsung

Pay, Google Pay.

Long story short, I am going to add a donation button in the PWA note app.

First, we will create a service in Angular called WebPaymentService and import it in

CoreModule.

export class WebPaymentService {

 public isWebPaymentSupported: boolean;

 private requestPayment = null;

 private canMakePaymentPromise: Promise<boolean> = null;

 private supportedPaymentMethods = [

 {

 // support credit card payment

 supportedMethods: 'basic-card',

 data: {

 supportedNetworks: ['visa', 'mastercard', 'amex'],

 supportedTypes: ['credit', 'debit']

 }

 }

Chapter 12 Modern Web APIs

300

 // Apple pay, Google Pay, Samasung pay, Stripe and others can be added here too.

];

// just an example of a simple product details

 private paymentDetails: any = {

 total: {

 label: 'Total Donation',

 amount: { currency: 'USD', value: 4.99 }

 },

 displayItems: [

 {

 label: 'What I recieve',

 amount: { currency: 'USD', value: 4.49 }

 },

 {

 label: 'Tax',

 amount: { currency: 'USD', value: 0.5 }

 }

]

 };

 private requestPaymentOptions = {

 requestPayerName: true,

 requestPayerPhone: false,

 requestPayerEmail: true,

 requestShipping: false

 shippingType: 'shipping'

 };

 constructor() {

 if (window.PaymentRequest) {

 // Use Payment Request API which is supported

 this.isWebPaymentSupported = true;

 } else {

 this.isWebPaymentSupported = false;

 }

 }

Chapter 12 Modern Web APIs

301

 constructPaymentRequest() {

 if (this.isWebPaymentSupported) {

 this.requestPayment = new PaymentRequest(

 this.supportedPaymentMethods,

 this.paymentDetails,

 this.requestPaymentOptions

);

// ensure that user have a supported payment method if not you can do other

things

 if (this.requestPayment.canMakePaymentPromise) {

 this.canMakePaymentPromise = this.requestPayment.canMakePayment();

 } else {

 this.canMakePaymentPromise = Promise.resolve(true);

 }

 } else {

 // do something else for instance redirect user to normal checkout

 }

 return this;

 }

 async show(): Promise<any> {

/* you can make sure client has a supported method already if not do

somethig else. For instance, fallback to normal checkout, or let them to

add one active card */

 const canMakePayment = await this.canMakePaymentPromise;

 if (canMakePayment) {

 try {

 const response = await this.requestPayment.show();

 // here where you can process response payment with your backend

 // there must be a backend implementation too.

 const status = await this.processResponseWithBackend(response);

 // �after backend responsed successfully, you can do any other logic

here

 // complete transaction and close the payment UI

Chapter 12 Modern Web APIs

302

 response.complete(status.success);

 return status.response;

 } catch (e) {

 // API Error or user closed the UI

 console.log('API Error or user closed the UI');

 return false;

 }

 } else {

 // Fallback to traditional checkout for example

 // this.router.navigateByUrl('/donate/traditional');

 }

 }

 async abort(): Promise<boolean> {

 return this.requestPayment.abort();

 }

 // mock backend response

 async processResponseWithBackend(response): Promise<any> {

 // check with backend and respond accordingly

 return new Promise(resolve => {

 setTimeout(() => {

 resolve({ success: 'success', response });

 }, 1500);

 });

 }

}

Let’s break it down.

	 1.	 As always, a feature detection for progressive enhancement.

if (window.PaymentRequest) {

 this.isWebPaymentSupported = true;

 } else {

 this.isWebPaymentSupported = false;

 }

Chapter 12 Modern Web APIs

303

	 2.	 For each payment, you need to construct a PaymentRequest that

accepts three arguments.

new PaymentRequest(

 this.supportedPaymentMethods,

 this.paymentDetails,

 this.requestPaymentOptions

);

	 3.	 Define supportedPaymentMethods, which is an array of all

supported payment methods. In the code example, I have just

defined a basic card; however, in this chapter’s sample codes,

you will find more methods such as Apple Pay, Google Pay,

and Samsung Pay. You are not also limited to them; you can

implement any favorite methods such as PayPal, Stripe, and more

that support this API.

private supportedPaymentMethods = [

 {

 // support credit card payment

 supportedMethods: 'basic-card',

 data: {

 // you can add more such as discover, JCB and etc.

 supportedNetworks: ['visa', 'mastercard', 'amex'],

 supportedTypes: ['credit', 'debit']

 }

 },

]

Each object in this array has supportedMethods and data

property that is specific for the method itself. To have a better

understanding, I’ll provide an Apple Pay object as an example, too:

{

 supportedMethods: 'https://apple.com/apple-pay',

 data: {

 version: 3,

 merchantIdentifier: 'merchant.com.example',

Chapter 12 Modern Web APIs

304

 �merchantCapabilities: ['supports3DS', 'supportsCredit',

'supportsDebit'],

 supportedNetworks: ['amex', 'discover', 'masterCard', 'visa'],

 countryCode: 'US'

 }

 },

	 4.	 In Define paymentDetails, for instance, in my example, I have a

fixed donation number; however, you may have a cart page with

different products and other details that need to be added to

payment details accordingly.

private paymentDetails: any = {

 total: {

 label: 'Total Donation',

 amount: { currency: 'USD', value: 4.99 }

 },

 displayItems: [

 {

 label: 'What I recieve',

 amount: { currency: 'USD', value: 4.49 }

 },

 {

 label: 'Tax',

 amount: { currency: 'USD', value: 0.5 }

 }

]

 };

There are two main properties: total indicates total amount; and

displayItems, which is an array that shows cart items.

	 5.	 Define requestPaymentOptions is optional; however, you may

find it very useful for different purposes – for instance, if a

shipping address is required or email must be provided.

Chapter 12 Modern Web APIs

305

 private requestPaymentOptions = {

 requestPayerName: true,

 requestPayerPhone: false,

 requestPayerEmail: true,

 requestShipping: false,

 shippingType: 'shipping'

 };

In this example, we ask the payer to provide an email and name

only.

	 6.	 Last but not least, we show call show method on requestPayment

in order to display the payment native prompt page.

async show(): Promise<any> {

 const canMakePayment = await this.canMakePaymentPromise;

 if (canMakePayment) {

 try {

 const response = await this.requestPayment.show();

 �const status = await this.processResponseWithBackend

(response);

 response.complete(status.success);

 return status.response;

 } catch (e) {

 return false;

 }

 }

 }

There is another Promised-based method on requestPayment called

canMakePayment(), which is essentially a helper to determine if the user has a supported

payment method to make this payment before show() gets called. It may not be in all

user agents; therefore, we need to feature detect.

Then we call show(), once the user is done, and Promise will get resolved with the

user’s selection details including contact information, credit card, shipping, and more.

Now it’s time to validate and process the payment with the back end.

Chapter 12 Modern Web APIs

306

Open header.component.html() and add the following button (see Figure 12-5):

 <button mat-menu-item (click)="donateMe()" *ngIf="isWebPaymentSupported">

 <mat-icon>attach_money</mat-icon>

 Donate

 </button>

Lastly, inject WebPaymentService into header.component.ts. donateMe() method

should be defined, and it will call requestPayment and display the appropriate message

to the user once it’s resolved.

public isWebPaymentSupported: boolean;

 constructor(

 private webPayment: WebPaymentService,

) {

 this.isWebPaymentSupported = this.webPayment.isWebPaymentSupported;

 }

Figure 12-5.  Donate button where it triggers payment native UI

Chapter 12 Modern Web APIs

307

async donateMe() {

 const paymentResponse = await this.webPayment

 .constructPaymentRequest()

 .show();

 if (paymentResponse) {

 this.snackBar.open(

 �Successfully paid, Thank you for Donation ${paymentResponse.

payerName}`

);

 } else {

 // �this.snackBar.open('Ops, sorry something went wrong with

payment');

 }

 }

We will build application and run and test it in the browser and mobile (See

Figures 12-6 and 12-7).

Figure 12-6.  Payment native UI, Chrome, Mac

Chapter 12 Modern Web APIs

308

Note  Clone https://github.com/mhadaily/awesome-apress-pwa.git
and go to Chapter 13, 02-request-payment-api folder to find all sample codes.

�Browsers Support
By the time of writing this book, almost all major browsers support this API either in

production or a nightly build for both desktop and mobile, although they may also

support them partially.

�Video and Audio Capturing
The Media Streams is an API related to WebRTC, which provides support for streaming

audio and video data. This API has been around for a while. New Promised-based

getUserMedia() is a method that ask for user permission for microphone and camera;

and, thus, you will get access to the live stream.

Figure 12-7.  Apple pay in Safari, Chrome, and Samsung internet browser display
native payment UI

Chapter 12 Modern Web APIs

https://github.com/mhadaily/awesome-apress-pwa.git

309

In this section, we will add a new feature to “add note” page, where users can save an

interactive video with audio to their notes.

Note, we will not send this video to a server in this example, but the implementation will

be ready to communicate to the back end in order to save the video and audio if needed.

In notes-add.component.html, we will add following html snippet:

<div class="media-container" *ngIf="isMediaRecorderSupported">

 <h1>Add video with audio Note</h1>

 <div class="videos">

 <div class="video">

 <h2>LIVE STREAM</h2>

 <video #videoOutput autoplay muted></video>

 </div>

 <div class="video">

 <h2>RECORDED STREAM</h2>

 <video #recorded autoplay loop></video>

 </div>

 </div>

 <div class="buttons">

 �<button mat-raised-button color="primary" (click)="record()"

*ngIf="disabled.record" > Start Recording</button>

 �<button mat-raised-button color="primary" (click)="stop()"

*ngIf="disabled.stop"> Stop Recording </button>

 �<button mat-raised-button color="secondary" (click)="play()"

*ngIf="disabled.play"> Play Recording</button>

 �<button mat-raised-button color="primary" (click)="download()"

*ngIf="disabled.download"> Download Recording </button>

 <a #downloadLink href="">Download Link

 </div>

 </div>

This code is pretty self-explanatory. We add the logic to notes-add.component.ts:

export class NotesAddComponent {

 @ViewChild('videoOutput') videoOutput: ElementRef;

 @ViewChild('recorded') recordedVideo: ElementRef;

 @ViewChild('downloadLink') downloadLink: ElementRef;

Chapter 12 Modern Web APIs

310

 �public disabled = { record: true, stop: false, play: false, download:

false };

 public userID;

 public errorMessages$ = new Subject();

 public loading$ = new Subject();

 public isMediaRecorderSupported: boolean;

 private recordedBlobs;

 private liveStream: any;

 private mediaRecorder: any;

 constructor(

 private router: Router,

 private data: DataService,

 private snackBar: SnackBarService

) {

 if (window.MediaRecorder) {

 this.isMediaRecorderSupported = true;

 this.getStream();

 } else {

 this.isMediaRecorderSupported = false;

 }

 }

 async getStream() {

 try {

 const stream = await navigator.mediaDevices.getUserMedia({

 audio: true,

 video: true

 });

 this.handleLiveStream(stream);

 } catch (e) {

 this.isMediaRecorderSupported = false;

 this.onSendError('No permission or something is wrong');

 return 'No permission or something is wrong';

 }

 }

Chapter 12 Modern Web APIs

311

 handleLiveStream(stream) {

 this.liveStream = stream;

 this.videoOutput.nativeElement.srcObject = stream;

 }

 getMediaRecorderOptions() {

 let options = {

 mimeType: 'video/webm;codecs=vp9',

 audioBitsPerSecond: 1000000, // 1 Mbps

 bitsPerSecond: 1000000, // 2 Mbps

 videoBitsPerSecond: 1000000 // 2 Mbps

 };

 if (!MediaRecorder.isTypeSupported(options.mimeType)) {

 console.log(`${options.mimeType} is not Supported`);

 options = { ...options, mimeType: 'video/webm;codecs=vp8' };

 if (!MediaRecorder.isTypeSupported(options.mimeType)) {

 console.log(`${options.mimeType} is not Supported`);

 options = { ...options, mimeType: 'video/webm' };

 if (!MediaRecorder.isTypeSupported(options.mimeType)) {

 console.log(`${options.mimeType} is not Supported`);

 options = { ...options, mimeType: " };

 }

 }

 }

 return options;

 }

 record() {

 this.recordedBlobs = [];

 �this.disabled = { play: false, download: false, record: false, stop: true };

 this.mediaRecorder = new MediaRecorder(

 this.liveStream,

 this.getMediaRecorderOptions

);

 this.mediaRecorder.ondataavailable = e => {

Chapter 12 Modern Web APIs

312

 {

 if (e.data) {

 this.recordedBlobs.push(e.data);

 }

 }

 };

 this.mediaRecorder.start();

 console.log('MediaRecorder started', this.mediaRecorder);

 }

 stop() {

 this.disabled = { play: true, download: true, record: true, stop: false };

 this.mediaRecorder.onstop = e => {

 this.recordedVideo.nativeElement.controls = true;

 };

 this.mediaRecorder.stop();

 }

 play() {

 this.disabled = { play: true, download: true, record: true, stop: false };

 const buffer = new Blob(this.recordedBlobs, { type: 'video/webm' });

 �this.recordedVideo.nativeElement.src = window.URL.createObjectURL(buffer);

 }

 download() {

 const blob = new Blob(this.recordedBlobs, { type: 'video/webm' });

 const url = window.URL.createObjectURL(blob);

 this.downloadLink.nativeElement.url = url;

 �this.downloadLink.nativeElement.download = `recording_${new Date().

getTime()}.webm`;

 this.downloadLink.nativeElement.click();

 setTimeout(() => {

 window.URL.revokeObjectURL(url);

 }, 100);

 }

 onSaveNote(values) {

Chapter 12 Modern Web APIs

313

 this.data.addNote(values).then(

 doc => {

 this.snackBar.open(`LOCAL: ${doc.id} has been succeffully saved`);

 },

 e => {

 this.errorMessages$.next('something is wrong when adding to DB');

 }

);

 this.router.navigate(['/notes']);

 }

 onSendError(message) {

 this.errorMessages$.next(message);

 }

}

This code is straightforward. As always, it is a feature detection for MediaRecorder,

and if it is supported by a browser, we will continue and show this feature to our user

and will initialize getUserMedia(); therefore, we ask for audio and video permission as

shown in Figure 12-8.

Once permission is granted, Promise gets resolved and the stream will be accessible

(see Figure 12-9). When user clicks on tab “start recording” button, MediaRecorder

constructor gets called with the live stream data and the options that gave already been

defined.

Figure 12-8.  Browser asks for permission for camera and microphone

Chapter 12 Modern Web APIs

314

We store each blob in an array until stop() method gets called. Once recording

stops, media is ready to be played. By hitting “play” button, we will simply create a

stream buffer of the stream array and by creating a Blob URL, we will assign it to an

src of <video> tag.

Ta-da, now the video is playing directly in the browser. We are also able to work on

the downloadable version of this video (see Figure 12-10).

Figure 12-9.  Ask for permission for getting access to video and audio on Android
mobile

Chapter 12 Modern Web APIs

315

By the tab or click on “Download“ button, we will create a Blob from an array of

recordedBlob and then will create a URL and assign to <a> tag thatI have defined in the

template with display: none and then call click() to force browser opening download

modal for user in order to ask them where this file must be saved on their system.

Note  Clone https://github.com/mhadaily/awesome-apress-pwa.git
and go to Chapter 12, 03-camera-and-microphone-api folder to find all sample
codes.

�Browsers Support
At the time of writing this book, Opera, Chrome, and Firefox on desktop; and Chrome

and Samsung internet on Android support most of the standard specs. Microsoft Edge

also has this API under consideration. It also works on Safari 12 / iOS 12. I believe the

API’s future is bright.

Figure 12-10.  Live stream and recorded playback

Chapter 12 Modern Web APIs

https://github.com/mhadaily/awesome-apress-pwa.git

316

�Geolocation
The Geolocation API provides the user’s location coordination and exposes it to the web

application. The browser will ask for permission for privacy reasons. This Promised-

based API has been around for a long time. You might even work with it already.

We will explore this API by creating a service called GeolocationService where you

can find it under modules/core/geolocation.service.ts.

export interface Position {

 coords: {

 accuracy: number;

 altitude: number;

 altitudeAccuracy: number;

 heading: any;

 latitude: number;

 longitude: number;

 speed: number;

 };

 timestamp: number;

}

@Injectable()

export class GeolocationService {

 public isGeoLocationSupported: boolean;

 private geoOptions = {

 enableHighAccuracy: true, maximumAge: 30000, timeout: 27000

 };

 constructor() {

 if (navigator.geolocation) {

 this.isGeoLocationSupported = true;

 } else {

 // geolocation is not supported, fall back to other options

 this.isGeoLocationSupported = false;

 }

 }

Chapter 12 Modern Web APIs

317

 getCurrentPosition(): Observable<Position> {

 return Observable.create(obs => {

 if (navigator.geolocation) {

 navigator.geolocation.getCurrentPosition(

 position => {

 obs.next(position);

 obs.complete();

 },

 error => {

 obs.error(error);

 }

);

 }

 });

 }

 watchPosition(): Observable<Position> {

 return Observable.create(obs => {

 if (navigator.geolocation) {

 navigator.geolocation.watchPosition(

 position => {

 obs.next(position);

 },

 error => {

 obs.error(error);

 },

 this.geoOptions

);

 }

 });

 }

}

Chapter 12 Modern Web APIs

318

Let’s break it down.

	 1.	 As usual, a feature detection to ensure geolocation is available.

	 2.	 Define getCurrentPosition(), I am going to convert

geolocation.getCurrentPosition() callbacks into an

observable.

	 3.	 Define watchPosition(), we do the same with geolocation.

watchPosition() and turn its callbacks into an observable.

	 4.	 We have already defined my Position interface by which

geolocation methods provide.

What I’d like to do is to add user coordination to each note to keep the location as

it saves. Thus, we can later show the user’s note’s coordination or exact address using a

third-party map provider like Google Map. Since we are saving all coordination data, we

will be able to convert this coordination to a meaningful address using third-party map

providers in the back end or even in the front end based on application needs.

At the moment, to keep in simple and short, let’s just display the current latitude and

longitude to the user.

First, we inject geolocation service into NotesAddComponent, then we will call

getCurrentPosition() and assign it to my local location$ variable where we transform

a position object into a simple string.

public isGeoLocationSupported = this.geoLocation.isGeoLocationSupported;

public location$: Observable<string> = this.geoLocation

 .getCurrentPosition()

 .pipe(map(p =>

 `Latitude:${p.coords.latitude}

 Longitude:${p.coords.longitude}`

));

 constructor(

 private router: Router,

 private data: DataService,

 private snackBar: SnackBarService,

 private geoLocation: GeolocationService

) {}

Chapter 12 Modern Web APIs

319

Finally, add the following html snippet where we use location$ observable with async

pipe; however, we first check if geolocation is available by using *ngIf (see permission

dialog in Figure 12-11).

 �<h4 *ngIf="isGeoLocationSupported">You location is {{ location$ |

async }}</h4>

Once permission is allowed by the user, the browser will provide coordination data

on each method call (see Figure 12-12).

Figure 12-11.  Browser asks for location permission

Figure 12-12.  Geolocation permission dialog on Android; once it’s resolved,
coordination is displayed

Chapter 12 Modern Web APIs

320

Note  Clone https://github.com/mhadaily/awesome-apress-pwa.git
and go to Chapter 12, 04-geolocation-api folder to find all sample codes.

�Browsers Support
All major browsers support this API, which globally covers over 93 percent of the market

according to the caniuse.com website.1

�Web Bluetooth
This Promised-based API is a new technology that opens a new era for Internet of Things

through the web. It allows a web application to get connected to Bluetooth Low Energy

(BLE) devices.

Imagine developing a PWA where we are able to get access to Bluetooth and get

control over devices such as smart home appliances, health accessories, ONLY with web

API consistency across all browsers in different platforms.

Keep in mind that this API is still being developed and API may slightly change

in the future. I recommend the following implementation status documentation on

GitHub.2

Before we continue, I would suggest studying the basic knowledge of how Bluetooth

Low Energy (BLE) and the Generic Attribute Profile (GATT)3 work.

In this section, we simulate a BLE device using BLE Peripheral Simulator4 app on

Android and will pair my PWA note app to that device in order to receive a battery level

number. What we have done is this:

	 1.	 Installed BLE Peripheral Simulator app

	 2.	 Select Battery Service to advertise

	 3.	 Keep the screen on and put the battery level to 73

1�https://caniuse.com/#search=geolocation
2�https://github.com/WebBluetoothCG/web-bluetooth/blob/master/implementation-status.md
3�https://www.bluetooth.com/specifications/gatt/generic-attributes-overview
4�Search “BLE Peripheral Simulator” on the Google Play store.

Chapter 12 Modern Web APIs

https://github.com/mhadaily/awesome-apress-pwa.git
http://caniuse.com
https://caniuse.com/#search=geolocation
https://github.com/WebBluetoothCG/web-bluetooth/blob/master/implementation-status.md
https://www.bluetooth.com/specifications/gatt/generic-attributes-overview

321

Let’s get started.

First, we will create my WebBluetoothService and import it in CoreModule.

@Injectable()

export class WebBluetoothService {

 public isWebBluetoothSupported: boolean;

 private GATT_SERVICE_NAME = 'battery_service';

 private GATT_SERVICE_CHARACTERISTIC = 'battery_level';

 constructor() {

 if (navigator.bluetooth) {

 this.isWebBluetoothSupported = true;

 }

 }

 async getBatteryLevel(): Promise<any> {

 try {

 // step 1, scan for devices and pair

 const device = await navigator.bluetooth.requestDevice({

 // acceptAllDevices: true

 filters: [{ services: [this.GATT_SERVICE_NAME] }]

 });

 // step 2: connect to device

 const connectedDevice = await this.connectDevice(device);

 // step 3 : Getting Battery Service

 �const service = await this.getPrimaryService(connectedDevice, this.

GATT_SERVICE_NAME);

 // step 4: Read Battery level characterestic

 �const characteristic = await this.getCharacteristic(service, this.

GATT_SERVICE_CHARACTERISTIC);

 // step 5: ready battery level

 const value = await characteristic.readValue();

 // step 6: return value

 return `Battery Level is ${value.getUint8(0)}%`;

 } catch (e) {

 console.error(e);

Chapter 12 Modern Web APIs

322

 return `something is wrong: ${e}`;

 }

 }

 private connectDevice(device): Promise<any> {

 return device.gatt.connect();

 }

 private getPrimaryService(connectedDevice, serviceName): Promise<any> {

 return connectedDevice.getPrimaryService(serviceName);

 }

 private getCharacteristic(service, characterestic): Promise<any> {

 return service.getCharacteristic(characterestic);

 }

}

This service is simple. We followed these steps:

	 1.	 Detect if bluetooth is available.

	 2.	 Call requestDevice() with proper configuration where we ask

browser to filter and show us what we are interested in. There is

potentially an option to ask for checking all devices; however, it’s

not recommended regarding battery health.

To make the service simple, we have statically defined GATT

service name and characteristic.

	 3.	 Try to connect to device once prompt modal appears.

	 4.	 Call getPrimaryService() to retrieve battery service.

	 5.	 By calling getCharacteristic(), we will ask for battery_level.

	 6.	 Once characteristic was resolved, we will read the value.

It seems a bit complex and confusing even though this a very simple device and the

documentation is clear. The more you work with these types of devices and technologies,

the better you will become at figuring it all out.

Chapter 12 Modern Web APIs

323

You can only ask a browser to discover devices by click or tab on a button; thus, we’ll

add a button under the menu in header.component.html and ensure with ngIf that the

button appears when it’s supported.

 �<button mat-menu-item (click)="getBatteryLevel()" *ngIf="isWebBluetooth

Supported">

 <mat-icon>battery_unknown</mat-icon>

 Battery Level

 </button>

Finally, I will define my getBatteryLevel method in header.component.ts,

which only shows a message with the battery level once all promises are resolved (see

Figure 12-13).

async getBatteryLevel() {

 const level = await this.bluetooth.getBatteryLevel();

 this.snackBar.open(level);

 }

Note  Clone https://github.com/mhadaily/awesome-apress-pwa.git
and go to Chapter 12, 05-web-bluetooth-api folder to find all sample codes.

Figure 12-13.  Web Bluetooth API: pair a device and read a characteristic and
display a message once all Promises are resolved

Chapter 12 Modern Web APIs

https://github.com/mhadaily/awesome-apress-pwa.git

324

The example above unfolds read possibilities from a BLE device; however, writing5

to Bluetooth characteristics and subscribing6 to receive GATT notifications are also

another case.

We have reviewed the basics of Web Bluetooth and hope that it excites you enough to

get started with this awesome web technology.

There is a great Angular library for Web Bluetooth with Observable API by my

community friend Wassim Chegham – and you can install by running the following

command:

npm i -S @manekinekko/angular-web-bluetooth @types/web-bluetooth

Find the documentation on GitHub https://github.com/manekinekko/angular-

web-bluetooth.

�Browsers Support
Browsers that support this API, at the time of writing this book, are Chrome Desktop

for both Windows and Mac as well as Android, Samsung internet, and Opera. I hope

in the future, especially when you are reading this section, there will be more browsers

supporting Web Bluetooth API.

�Web USB
This Promised-based API provides a safe way to expose USB devices to the web via

browsers using JavaScript high-level APIs. This is still a relatively new API and may

change over time, implementation is limited, and bugs are reported.

Web USB API by default needs HTTPS, and similar to Web Bluetooth it must be

called via a user gesture such as a touch or mouse click. Devices similar to a keyboard

and mouse are not accessible to this API.

5�https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.
bluetooth.characteristic.heart_rate_control_point.xml

6�https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.
bluetooth.characteristic.heart_rate_measurement.xml&u=org.bluetooth.
characteristic.heart_rate_measurement.xml

Chapter 12 Modern Web APIs

https://github.com/manekinekko/angular-web-bluetooth
https://github.com/manekinekko/angular-web-bluetooth
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.heart_rate_control_point.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.heart_rate_control_point.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.heart_rate_measurement.xml&u=org.bluetooth.characteristic.heart_rate_measurement.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.heart_rate_measurement.xml&u=org.bluetooth.characteristic.heart_rate_measurement.xml
https://www.bluetooth.com/specifications/gatt/viewer?attributeXmlFile=org.bluetooth.characteristic.heart_rate_measurement.xml&u=org.bluetooth.characteristic.heart_rate_measurement.xml

325

I believe Web USB opens a new window where it brings a lot of opportunities for

academic purposes, students, manufacturers, and developers. Imagine this instead

of an online developer tool that can access to a USB board directly or manufacturers

who need to write native drivers; instead they will be able to develop a cross-

platform JavaScript SDK. Think of a hardware support center who can access directly

through their website to my device and diagnose or debug. We can count more and

more case studies; however, I should mention that this technology is still growing

and, if not right now, will be a mind-blowing feature for the web in the coming

future. Truly, the web is amazing; isn’t it?

Enough talking, let’s get started and explorer the API. To keep it simple and give

you an idea how Web USB works, we going to connect my “Transcend Pen drive,” and

once it’s connected, I will just show a message where it displays hardware information

including “serial number.”

First, I write a service called WebUSBService and import to CoreModule.

@Injectable()

export class WebUSBService {

 public isWebUSBSupported: boolean;

 constructor(private snackBar: SnackBarService) {

 if (navigator.usb) {

 this.isWebUSBSupported = true;

 }

 }

 async requestDevice() {

 try {

 �const usbDeviceProperties = { name: 'Transcend Information, Inc.',

vendorId: 0x8564 };

 �const device = await navigator.usb.requestDevice({ filters:

[usbDeviceProperties] });

 // await device.open();

 console.log(device);

 return `

 �USB device name: ${device.productName}, Manifacture is ${device.

manufacturerName}

Chapter 12 Modern Web APIs

326

 �USB Version is: ${device.usbVersionMajor}.${device.

usbVersionMinor}.${device.usbVersionSubminor}

 Product Serial Number is ${device.serialNumber}

 `;

 } catch (error) {

 return 'Error: ' + error.message;

 }

 }

 async getDevices() {

 const devices = await navigator.usb.getDevices();

 devices.map(device => {

 console.log(device.productName); // "Mass Storage Device"

 console.log(device.manufacturerName); // "JetFlash"

 this.snackBar.open(

 �this. USB device name: ${device.productName}, Manifacture is

${device.manufacturerName} is connected.`

);

 });

 }

}

Let’s break it down:

	 1.	 Feature detection to ensure “usb” is available.

	 2.	 Define requestDevice method, it calls navigator.usb.

requestDevice(). I needed to explicitly filter my USB device by

vendorID. I didn’t magically come up with vendor hexadecimal

number; what I did was to search and find my device name

‘Transcend’ in this list http://www.linux-usb.org/usb.ids.

	 3.	 Define getDevices method, and it calls navigator.usb.

getDevices(); once resolved, it will return a list of devices that are

connected to the origin.

We add two buttons in header.component.html, which on click call getDevices()

and requestDevice() methods respectively.

Chapter 12 Modern Web APIs

http://www.linux-usb.org/usb.ids

327

 �<button mat-menu-item (click)="getUSBDevices()"

*ngIf="isWebUSBSupported">

 <mat-icon>usb</mat-icon>

 USB Devices List

 </button>

 �<button mat-menu-item (click)="pairUSBDevice()"

*ngIf="isWebUSBSupported">

 <mat-icon>usb</mat-icon>

 USB Devices Pair

 </button>

Inject WebUSBService to header.component.ts. Make sure buttons are visible if

isWebUSBSupported is true.

constructor(private webUsb: WebUSBService) {

 this.isWebUSBSupported = this.webUsb.isWebUSBSupported;

}

 getUSBDevices() {

 this.webUsb.getDevices();

 }

 async pairUSBDevice() {

 const message = await this.webUsb.requestDevice();

 this.snackBar.open(message);

 }

By clicking on “USB Devices Pair,” a list appears where it shows my device and I can

pair it (see Figure 12-14).

Chapter 12 Modern Web APIs

328

Once the pair is completed successfully, the device is ready to be opened and data

can be transferred in and out.

For example, here is an example for a device to communicate with:

 await device.open();

 �await device.selectConfiguration(1) // Select configuration #1

 �await device.claimInterface(0) �// Request exclusive control

over interface #0

 await device.controlTransferOut({

 "recipient": "interface",

 "requestType": "class",

 "request": 9,

 "value": 0x0300,

 "index": 0 })

 �const result = await device.transferIn(8, 64); �// Ready to

receive data7

 // and you need to read the result...

7�https://beyondlogic.org/usbnutshell/usb4.shtml

Figure 12-14.  A device in the list based on the filter options when
requestDevice() gets called. Once paired, based on logic, a message appears that
shows device information such as serial number, device name, manufacturer, USB
version, etc. Once device is connected, it’s ready to transfer data in and out.

Chapter 12 Modern Web APIs

https://beyondlogic.org/usbnutshell/usb4.shtml

329

This information is specific to each device. However, the methods are an API in the

browser.

In general, the Web USB API provides all endpoint types of USB devices:

•	 Interrupt transfers:

Used for typically nonperiodic, small device “initiated”

communication by calling transferIn(endpointNumber,

length) and transferOut(endpointNumber, data)

•	 Control transfers:

Used for command and status operations by

calling controlTransferIn(setup, length) and

controlTransferOut(setup, data)

•	 Bulk transfers:

Used for large data such as print-job sent to a printer

by calling transferIn(endpointNumber, length) and

transferOut(endpointNumber, data)

•	 Isochronous transfers:

Used for continuous and periodic data, such as an audio or video

stream by calling isochronousTransferIn(endpointNumber,

packetLengths) and isochronousTransferOut(endpointNumber,

data, packetLengths)

Last but not least, it may happen that users connect or disconnect the device from

their system. There are two events that can be listened to and acted on accordingly.

 navigator.usb.onconnect = event => {

 // event.device will bring the connected device

 // do something here

 console.log('this device connected again: ' + event.device);

 };

 navigator.usb.ondisconnect = event => {

 // event.device will bring the disconnected device

Chapter 12 Modern Web APIs

330

 // do something here

 console.log('this device disconnected: ', event.device);

 };

Debugging USB in Chrome is easier with the internal page chrome://device-log

where you can see all USB device-related events in one single place.

Note  Clone https://github.com/mhadaily/awesome-apress-pwa.git
and go to Chapter 12, 06-web-usb-api folder to find all sample codes.

�Browsers Support
Browsers that support this API, at the time of writing this book, are Chrome For desktop

and Android as well as Opera. While the API is evolving and being developed rapidly,

I hope we soon see better support in the browsers.

�Summary
In this chapter, we have just explored six web APIs. Although they are not an essential

part of a PWA, they help to build an app that is even closer to native apps.

As I wrote in the chapter’s introduction, these are not the only new APIs that

are coming to web. There are many others that are either under development or

consideration to be developed soon.

I am very excited about the future of web development as I can see how it will open

endless opportunities in front of us to build and ship a much better web application.

Chapter 12 Modern Web APIs

https://github.com/mhadaily/awesome-apress-pwa.git

331
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_13

CHAPTER 13

PWA with Angular
and Workbox
Up until this point in the book, I bet on the Angular Service Worker module and built on

top of that. It has many advantages, including less code; tested in high scale, reliability,

and stability; Angular way of communicating with Service Worker; automatic build with

CLI; and great support from the Angular team. It truly gives us peace of mind.

However, like every other tool, there are also disadvantages too. One of the

downsides is that Angular Service Worker is not extendable in a proper way (at least at

the time of writing this book), which means that you are not able to add your own logic

to Service Worker if you want; or you may need some of the new Service Worker APIs

or features that Angular Service Worker doesn’t support yet, and it may take some time

until the team provides a public API to Angular developers.

Luckily there are a few tools out there which support generating Service Workers

with ease, although they might be more complex than an Angular Service Worker. One

of the best is Workbox, a library from Google Chrome team. Workbox is a modular

library that provides an extremely easy way to write our Service Worker. Workbox CLI

(command-line interface) consists of a Node.js program and can be run from a Mac,

Window, and Unix-compatible command-line environment. It wraps the Workbox build

module under the hook, which generates an entire Service Worker or just generates a list

of assets to precache that could be used within an existing Service Worker.

In this chapter, we strive to explore Workbox capabilities and will build the Note PWA

once more with Workbox. You will see what the differences are between Workbox setup

and Angular Service Worker. Thus, you will be able to decide, based on your project,

which one you have to choose in order to build your next, fantastic PWA.

332

�Angular and Workbox Setup
Before we go further, we will explorer Workbox and explain how it works.

Workbox is a modular library that helps to generate an entire Service Worker with

minimal effort. It can generate an SW automatically or will allow us to write a custom

Service Worker, and it will inject scripts based on the configuration (aka manifest) and

generate an entire Service Worker.

Workbox-cli provides an easy way of integrating Workbox into a command-line build

process with a flexible configuration. To install the CLI:

npm install workbox-cli --global

Or if you would like to install locally (which I prefer to):

npm install workbox-cli --save-dev // to run `npx workbox [mode]`

Workbox CLI has four different modes, which are the following:

•	 wizard: a step-by-step guide to set up Workbox for your project.

•	 generateSW: generates a complete Service Worker for you.

•	 injectManifest: injects the assets to precache into your project.

•	 copyLibraries: copy the Workbox libraries into a directory.

Workbox consists of different modules that a developer can decide to use. These

modules are the following:

•	 Core: common code that each module relies on, for instance, log level.

•	 Precaching: simplifies precaching app-shell on install event.

•	 Routing: perhaps the most important module, where you can

intercept a network request and respond accordingly.

•	 Strategies: provides the most common caching strategies so it’s easy

to apply them in your Service Worker.

•	 Expiration: allows you to limit the number of entries in a cache and /

or remove entries that have been cached for a long period of time.

Chapter 13 PWA with Angular and Workbox

333

•	 BackgroundSync: detects a network request’s failing due to

connectivity issue and queue them in IndexedDB and will retry

on a ‘sync’ event, which the browser fires when a user reconnects.

This module also provides a fallback for those browsers that still

don’t support Background sync APIs. This feature is not available in

Angular Service Worker as of the time of writing this book.

•	 GoogleAnalytics: helps to detect failed requests to Measurement

Protocol, store in IndexedDB, and retry once connectivity is back.

•	 CacheableResponse: provides a standard way of determining

whether a response should be cached based on its numeric status

code, the presence of a header with a specific value, or a combination

of the two.

•	 BroadcastUpdate: provides a standard way of notifying Window

Clients that a cached response has been updated. This module uses

Broadcast Channel AI to announce the update. In Workbox 4, it will

automatically fall back to postMessage() API for those browsers that

don’t support Broadcast Channel API.

•	 NavigationPreload:1 will handle checking at runtime to see if the

current browser supports navigation preload; and if it does, it will

automatically create an activate event handler to enable it.

•	 RangeRequests: when making a request, a range header can be set

that tells the server to return only a portion of the full request. This

is useful for certain files like a video file, where a user might change

where to play the video.

We know the basics now. Let’s continue and add Workbox to our Angular project.

Note  Clone https://github.com/mhadaily/awesome-apress-pwa.git
and go to Chapter 13, folder 01-starter does not have Service Worker
implementation and is ready to start adding Workbox.

1�https://developers.google.com/web/updates/2017/02/navigation-preload

Chapter 13 PWA with Angular and Workbox

https://github.com/mhadaily/awesome-apress-pwa.git
https://developers.google.com/web/updates/2017/02/navigation-preload

334

�Workbox Wizard Mode
The first and easiest way to work with Workbox is to use the Wizard mode. Workbox

CLI asks you a few questions. Then workbox-config.js is created, and you can add or

generate a Service Worker to your build process. It is possible, indeed, to do all these

steps manually by creating workbox-config file.

Run wizard mode with Workbox CLI:2

npx workbox wizard

And then questions appear, which are listed below:

	 1.	 What is the root of your web app (i.e., which directory do you

deploy)? (dist or could be dist/project-name)

	 2.	 Which file types would you like to precache? (Press

<space> to select, <a> to toggle all, <i> to inverse selection)

(css,js,txt,png,ico.html.json)

	 3.	 Where would you like your Service Worker file to be saved?

(dist/sw.js)

	 4.	 Where would you like to save these configuration options?

(workbox-config.js)

Config file will be generated with minimal setup in a file called workbox-config.js

as you have chosen in the wizard:

module.exports = {

 �globDirectory: 'dist/', // this could be dist/project-name in an Angular

project

 globPatterns: ['**/*.{js,txt,png,ico,html,css}'],

 globIgnores: ['stats.json'],

 �swDest: 'dist/sw.js', // this could be dist/project-name in an Angular

project

 importWorkboxFrom: 'local',

 maximumFileSizeToCacheInBytes: 4 * 1024 * 1024 // not more than 4MB

};

2�https://developers.google.com/web/tools/workbox/modules/workbox-cli

Chapter 13 PWA with Angular and Workbox

https://developers.google.com/web/tools/workbox/modules/workbox-cli

335

	 1.	 globDirectory: the folder that Workbox needs to scan for the

patterns or ignore files provided in the next property.

	 2.	 globPatterns: an array of globs in order to add them to precache,

essentially to generate our app-shell.

	 3.	 globIgnores: an array of glob type that will be ignored for

app-shell.

	 4.	 swDest: folder where sw.js will be placed after generating.

	 5.	 imporWorkboxFrom: defines how Workbox library should be

imported into Service Worker file.

	 a.	 cdn: script will be imported from Google Cloud storage. For example:

https://storage.googleapis.com/workbox-cdn/releases/3.6.3/

workbox-sw.js

	 b.	 local: Workbox libraries must be copied to dist folder and be imported

into Service Worker. In order to copy Workbox libraries, run npx workbox

copyLibraries dist

	 c.	 none: will import nothing.

	 6.	 maximumFileSizeToCacheInBytes: a guard if discovered file is

oversized.

This configuration is enough for generating a Service Worker to precache the static

assets and app-shell. Once the Angular build is done, by running the command below,

Workbox will be generating a Service Worker automatically:

npx workbox generateSW workbox-config.js

Tada! The auto-generated sw.js is in dist folder, so let’s glance at it:

importScripts(`workbox-v3.6.3/workbox-sw.js`);

workbox.precaching.precacheAndRoute([

 {

 "url": "favicon.ico",

 "revision": "b9aa7c338693424aae99599bec875b5f"

 },

Chapter 13 PWA with Angular and Workbox

https://storage.googleapis.com/workbox-cdn/releases/3.6.3/workbox-sw.js
https://storage.googleapis.com/workbox-cdn/releases/3.6.3/workbox-sw.js

336

 {

 "url": "index.html",

 "revision": "ba3375f16e2a5c7fdf36600745e88e98"

 },

 {

 "url": "styles.356e924fea446d033420.css",

 "revision": "b7a968bbc1b49cd4f6478cae97fed4f6"

 },

 {

 "url": "1.ee064b5075b0e24f691c.js",

 "revision": "1a0cf93d36be20c46550e5a85a91aeae"

 },

 {

 "url": "5.902dda00d476d615f591.js",

 "revision": "28265e0a43435a8acebad181a6f02056"

 },

 {

 "url": "6.58566fec934a1864fc29.js",

 "revision": "33af875f4f0454106aa0e23f66ee13d0"

 },

 {

 "url": "lazy-fonts.js",

 "revision": "62693c91e34c656d59025a6fb3e22f99"

 },

 {

 "url": "main.e1f6fe9ffe4709effd6b.js",

 "revision": "6debac0612cf6f10ab6140e18f310899"

 },

 {

 "url": "polyfills.c1da48c5c45ccdef1eb4.js",

 "revision": "7c508c4c2a0d8521e03909fb9e015ebe"

 },

Chapter 13 PWA with Angular and Workbox

337

 {

 "url": "runtime.0c53ce34d2b71056f3b2.js",

 "revision": "ad44f617b496d7cf73f3e6338864abe1"

 }

]);

First the Workbox library is imported, then an array of app-shell assets in the precaching

module is used in order to put them into a cache on the ‘install’ event in Service Worker.

Note  Workbox uses a revision hash similar to Angular Service Worker to detect
file changes.

Now it is time to register sw.js. We will add my Service Worker registration in the

main.ts file where Angular bootstraps AppModule.

document.addEventListener('DOMContentLoaded', async () => {

 try {

 const module = await platformBrowserDynamic().bootstrapModule(AppModule);

 const app = module.injector.get(ApplicationRef);

 const whenStable = await app.isStable

 .pipe(filter((stable: boolean) => !!stable), take(1)).toPromise();

 window.onload = async () => {

 if (whenStable && navigator.serviceWorker && environment.production) {

 const registration = await navigator

 .serviceWorker.register('/sw.js', { scope:

 '/' });

 �console.log(`sw.js has been registered, scope is: ${registration.

scope}`);

 }

 };

 } catch (err) {

 console.error(err);

 }

});

Chapter 13 PWA with Angular and Workbox

338

To break down:

	 1.	 Once Angular AppModule is bootstrapped and promised to

be resolved, we’ll get access to ApplicationRef through a

dependency injection to find out if the application is stable.

	 2.	 To ensure registration is as performant as possible, we keep the

logic in `window load` event.

	 3.	 Once the Angular bootstrap is resolved and AppModule is stable,

which means there is not any kind of recurrent asynchronous task

when the application starts: for example, a polling process started

with setInterval or Rxjs Interval.

We will do feature detection for Service Worker as part of

progressive enhancement as well as production environment in

order to prevent conflicts in development.

Finally, we will add a Workbox command to my build pipeline for generating a

Service Worker right after the Angular build for production is done:

"build:prod": "ng build --prod && workbox copyLibraries dist && workbox

generateSW workbox-config.js",

�Workbox injectManifest
Workbox generateSW is simple, fully configuration based, and makes it easy to generate

an entire Service Worker. It works perfectly for many web apps. However, what if we want

to add our custom code for any reason to Service Worker? Every time Workbox generates

SW file, our custom code will be overwritten. There must be a solution.

Luckily, Workbox provides injectManifest mode in which you can stay in control

of your Service Worker file and let Workbox generate part of it. All your configuration is

written as code in a custom Service Worker instead of a configuration file.

To use injectManifest, you need to specify where the source of the custom Service

Worker is by swSrc property. I have created a sw-srouce.js in the src folder and add it

to the config file.

module.exports = {

 globDirectory: 'dist/',

 globPatterns: ['**/*.{js,txt,png,ico,html,css}'],

Chapter 13 PWA with Angular and Workbox

339

 globIgnores: ['stats.json'],

 swDest: 'dist/sw.js',

 swSrc: 'src/sw-source.js',

 maximumFileSizeToCacheInBytes: 4 * 1024 * 1024 // not more than 4MB

};

Now we need to create “Source Service Worker.” Let’s get started. First things first,

though; we need to import Workbox.

// current workbox version

const MODULE_PATH_PREFIX = 'workbox-v3.6.3';

// to copy workbox files run npm run copyWorkboxModules or 'npx workbox

copyLibraries dist'

// this synchronously load workbox locally, if you prefer CDN use the linke

// mentioned earlier

importScripts(`${MODULE_PATH_PREFIX}/workbox-sw.js`);

if (!workbox) {

 // if workbox for any resson didn't happen simply ignore the rest of file

 �console.error(`Something went wrong while loading ${modulePathPrefix}/

workbox-sw.js`);

} else {

 // OUR CODE

}

We can modify the Workbox config and SW update cycle based on requirements.

 // set module path prefix

 workbox.setConfig({ modulePathPrefix: MODULE_PATH_PREFIX });

 // overwrite cache name details if you like, if you don’t write this line,

 // Workbox uses default settings.

 workbox.core.setCacheNameDetails({

 prefix: 'angular-aprees-note-pwa',

 suffix: 'v1',

 precache: 'install-time',

 runtime: 'run-time',

 googleAnalytics: 'ga'

 });

Chapter 13 PWA with Angular and Workbox

340

// Modify SW update cycle

// forces the waiting service worker to become the active service worker.

 workbox.skipWaiting();

// ensure that updates to the underlying service worker take effect

immediately // for both the current client and all other active clients.

 workbox.clientsClaim();

Workbox still will generate precaches assets; however, we need to tell Workbox

explicitly where assets (manifestEntrys) should be concatenated in the source file.

We can configure this in two ways:

•	 By adding a different RegExp containing two capture groups.

The manifest array will be injected in between the capture groups.

For example: injectionPointRegexp: new RegExp('(const

myManifest =)(;)'),

default is: /(\.precacheAndRoute\()\s*\[\s*\]\s*(\))/

•	 Or, we can add a placeholder in the source Service Worker file by

using a precaching module that calls precacheAndRoute([]) by

passing an empty array.

 /* PRE-CACHE STERATEGY */

 �// this is a placeholder. All assets that must be precached

will be injected here

 // automatically

 workbox.precaching.precacheAndRoute([]);

In Chapter 4, we defined assetGroups in ngsw-config.json. If you forgot, please

quickly review Chapter 4 where ngsw-config.json assetGroups was explained.

For prefetch installMode, I had a list of globs that can be written in the Workbox

config file, too.

 globPatterns: [

 '**/favicon.ico', '**/index.html', '**/*.css', '**/*.js'

],

Chapter 13 PWA with Angular and Workbox

341

We have done precaching so far by instructing Workbox to add app-shell resources

to cache where it actually happens during the ‘install event’ in Service Worker. Now we

need to write our logic for a runtime cache with different cache strategies. The Workbox

routing module allows us to register routes by defining a regular expression that matches

a specific request and then assigns a cache strategy to it.

Before we continue, let me remind you that we had explored advanced cache

strategies in Chapter 4, and basically the Workbox strategy module provides them to you

effortlessly.

•	 Stale-While-Revalidate: workbox.strategies.staleWhileRevalidate()

•	 Cache First (Cache Falling Back to Network): workbox.strategies.

cacheFirst()

•	 Network First (Network Falling Back to Cache): workbox.

strategies.networkFirst()

•	 Network Only: workbox.strategies.networkOnly()

•	 Cache Only: workbox.strategies.cacheOnly()

All of these methods are configurable by passing an object argument containing the

following:

•	 cacheName: the name of the cache to use in the strategy.

•	 plugins: an array of plugins that will have their life-cycle methods

called when fetching and caching a request. We can use all

Workbox plugins such as expiration, cacheableResponse,

broadcastUpdate, and backgroundSync as well as a custom plugin

by passing in instances.

Let’s register two routes for caching images and Google fonts requested dynamically

in sw-source.js.

 workbox.routing.registerRoute(

 new RegExp('/(.*)assets(.*).(?:png|gif|jpg)/'),

 // cacheFirst for images

 workbox.strategies.cacheFirst({

 cacheName: 'images-cache',

Chapter 13 PWA with Angular and Workbox

342

 plugins: [

 �// set cache expiration restrictions to use in the

strategy

 new workbox.expiration.Plugin({

 // only cache 50 requests

 maxEntries: 50,

 // only cache requests for 30 days

 maxAgeSeconds: 30 * 24 * 60 * 60

 })

]

 })

);

 // we need to handle Google fonts

 workbox.routing.registerRoute(

 new RegExp('https://fonts.(?:googleapis|gstatic).com/(.*)'),

 // stale-while-revalidate for fonts

 workbox.strategies.staleWhileRevalidate({

 cacheName: 'google-apis-cache',

 plugins: [

 �// set cache expiration restrictions to use in the

strategy

 new workbox.expiration.Plugin({

 // only cache 50 requests

 maxEntries: 10,

 // only cache requests for 10 days

 maxAgeSeconds: 10 * 24 * 60 * 60

 })

]

 })

);

Having looked at ngsw-config from Chapter 4, in dataGroups, we defined

api-network-first and api-cache-first. Let’s register those routes with Workbox.

Chapter 13 PWA with Angular and Workbox

343

 // API with network-first strategy

 workbox.routing.registerRoute(

 new RegExp('https://firestore.googleapis.com/v1beta1/(.*)'),

 workbox.strategies.networkFirst({

 cacheName: 'api-network-first',

 plugins: [

 new workbox.expiration.Plugin({

 maxEntries: 100

 })

]

 })

);

 // API with cache-first strategy

 workbox.routing.registerRoute(

 new RegExp('https://icanhazdadjoke.com/(.*)'),

 workbox.strategies.cacheFirst({

 cacheName: 'api-cache-first',

 plugins: [

 new workbox.expiration.Plugin({

 maxEntries: 20,

 maxAgeSeconds: 15 * 60 * 60 // 15 min

 })

]

 })

);

A routing module allows us to add a whitelist or blacklist for a particular navigation

route. We will use the same Regex from the Angular manifest file.

 // Register whitelist and black list

 workbox.routing.registerNavigationRoute('/index.html', {

 whitelist: [new RegExp('^\\/.*$')],

 blacklist: [

 new RegExp('/restricted/(.*)'),

 new RegExp('^\\/(?:.+\\/)?[^/]*\\.[^/]*$'),

Chapter 13 PWA with Angular and Workbox

344

 new RegExp('^\\/(?:.+\\/)?[^/]*__[^/]*$'),

 new RegExp('^\\/(?:.+\\/)?[^/]*__[^/]*\\/.*$')

]

 });

Time to build the application. To simplify the build process, we will add two npm

scripts to packge.json and add injectManifest to the production build script.

"injectManifest": "workbox copyLibraries dist && workbox injectManifest",

"copyWorkboxModules": "workbox copyLibraries dist"

"build:prod:shell": "ng run lovely-offline:app-shell:production && npm run

injectManifest",

Let’s build and run the app. After the first visit, test the application in offline mode

(see Figure 13-1).

Figure 13-1.  Cache storage after writing our logic for Workbox

Chapter 13 PWA with Angular and Workbox

345

Note  Clone https://github.com/mhadaily/awesome-apress-pwa.git
and go to Chapter 12, 02-workbox-setup folder to find all sample codes. You can
build the application and test in your browser by running npm run prod.

�Summary
In this chapter, we managed to set up an Angular project with Workbox and generate

our custom Service Worker where it caches app-shell resources and intercepts network

requests based on the pattern that we have defined, along with an appropriate strategy.

You may read this chapter while Workbox 4 is being released. There are a few

breaking changes in Workbox 4, and many of the techniques that have been revealed in

this chapter can be used for version 4, too, although there might be additional features.

In the next chapter, we will explore advanced features such as background sync,

which helps to retry failed requests due to no connectivity; push notifications for

engaging; update flow notifications that inform users to refresh an application in order to

receive the latest update; and offline analytics.

Chapter 13 PWA with Angular and Workbox

https://github.com/mhadaily/awesome-apress-pwa.git

347
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_14

CHAPTER 14

Advanced Workbox
In the previous chapter, I taught you how to use Workbox in an Angular project whether

you have used Angular Service Worker and you want to replace it with Workbox, or you

simply want to start a new project from scratch.

In this chapter, I will show you how to implement Background sync, push

notification, offline analytics, and how to notify a user if there is a new update available.

�Dealing with Updates
When responding to a request with cached entries, while being fast, it comes with

a trade-off that uses my end up seeing stable data. Workbox provides broadcast

update module, which helps to notify Window clients in a standard way when there

is an available update for a cached responded. While Workbox, by default, compares

Conent-Length, ETag, and Last-Modified headers for detecting updates, we can still

define our custom headers to be checked.

We start implementing a channel for broadcasting a message if there will

be an update available for precached assets. In sw-source.js, we will add the

broadcastUpdate plugin to the precaching module in order to open a new channel to

receive an update notification message:

workbox.precaching.addPlugins([new

workbox.broadcastUpdate.Plugin('app-shell-update')]);

Or we can use this plugin along with staleWhileRevalidate caching strategy since

that strategy involves returning a cached response immediately, but also provides a

mechanism for updating the cache asynchronously. While the first argument of the

plugin is channel name, the second one is an object that provides options to the function.

348

For instance, we can pass headersToCheck, which is an array to define all the custom

headers that must be checked for detecting changes and notifying throughout the

channel.

 workbox.routing.registerRoute(

 new RegExp('https://fonts.(?:googleapis|gstatic).com/(.*)'),

 workbox.strategies.staleWhileRevalidate({

 cacheName: 'google-apis-cache',

 plugins: [

 new workbox.expiration.Plugin({

 maxEntries: 10,

 maxAgeSeconds: 10 * 24 * 60 * 60 // 10 Days

 })

 // new workbox.broadcastUpdate.Plugin('apis-updates', {

 // headersToCheck: ['X-Custom-Header']

 // })

]

 })

);

In the Angular app-component, we need to listen to the channels that we have

opened in Service Worker in order to receive the message and perform an action

accordingly. For instance, a snack bar that has update action button will be shown

when a message is received. Once clicked or tabbed on the “update me” action button,

we will force the window to be reloaded, which helps that a new update gets in place

automatically.

 ngOnInit() {

 this.joke$ = this.db.getRandomDadJoke();

 this.checkForUpdates();

 }

checkForUpdates() {

 �const updateChannel = new this.window.native.BroadcastChannel

('app-shell-update');

 updateChannel.addEventListener('message', event => {

 console.log(event);

Chapter 14 Advanced Workbox

349

 this.snackBar

 .open('Newer version of the app is available', 'Update me!')

 .onAction()

 .subscribe(() => {

 this.window.native.location.reload();

 });

 });

 }

The window object may not be available everywhere that Angular is running such

as mobile or web workers; therefore, you notice that we are using WindowRef service

injected in app-component instead of getting a reference to window object directly to

change the concrete runtime instance of a given object based on the environment. It

may look overworked for this project, but let’s do it in the Angular way.

// app-component.ts

constructor(private window: WindowRef){}

And wrap window by creating WindowRefService as below:

// window.service.ts

function _window(): any {

 // return the native window obj

 return window;

}

@Injectable()

export class WindowRef {

 get native(): any {

 return _window();

 }

}

It is good to mention that there is an alternative way to listen to an update

during the install event in Service Worker. The onupdatefound property of the

ServiceWorkerRegistration interface is an EventListener property called whenever an

event of type statechange is fired; it is fired any time the ServiceWorkerRegistration.

installing property acquires a new Service Worker.

Chapter 14 Advanced Workbox

350

if ("serviceWorker" in navigator) {

 // register service worker file

 navigator.serviceWorker

 .register("service-worker.js")

 .then(reg => {

 reg.onupdatefound = () => {

 const installingWorker = reg.installing;

 installingWorker.onstatechange = () => {

 switch (installingWorker.state) {

 case "installed":

 if (navigator.serviceWorker.controller) {

 // new update available

 } else {

 // no update available

 }

 break;

 }

 };

 };

 })

 .catch(err => console.error("[SW ERROR]", err));

}

The code above is an example that we can listen to for purposes of an update.

Let’s build and run the application. To see the notification, first make sure you are

running the app in supported browsers such as Firefox, Chrome, and Opera on both

Android and Desktop.1 When an update is available, snackBar will show a message with

an action button (Figure 14-1).

1�As of writing this book, Broadcast Channel API is only supported in these browsers, but it may
change later. However, in Workbox 4, there will be a fallback to another method if this API is not
supported. At the moment, we are using Workbox 3.6.3.

Chapter 14 Advanced Workbox

351

�Background Sync
The BackgroundSync API is an ideal solution to those requests that fail due to no

connectivity or when server is down. When a Service Worker detects that a network

request has failed, it can register a sync event that gets delivered when the browser

thinks connectivity has returned. Thus, we can save the requests and when the sync

event happens, retry to send the requests. This is more effective than a traditional

strategy to resolve this issue because even if the user has left the application, we still can

deliver the requests to the server from Service Worker.

Workbox provides a background sync module that helps to intercept network

requests that fail and save it in IndexedDB to retry them when a sync event happens.

It also implements a fallback strategy for browsers that don't yet implement

BackgroundSync.

Figure 14-1.  The “Update me” button will trigger reloading page

Chapter 14 Advanced Workbox

352

The best candidate for implementing a background sync is the POST and DELETE

method in Note PWA. To demonstrate back-end APIs, we will create a simple express

app that provides POST and DELETE APIs:

const express = require('express');

const bodyParser = require('body-parser');

const axios = require('axios').default;

const app = express();

app.use(express.static(__dirname + '/dist'));

app.use(bodyParser.urlencoded({ extended: false }));

app.use(bodyParser.json());

app.post('/api/saveNote', async (req, res) => {

 try {

 �const result = await axios.post('https://us-central1-awesome-apress-

pwa.cloudfunctions.net/saveNote', req.body);

 return res.status(201).json(result.data);

 } catch (error) {

 �return res.status(500).json({ success: false, error: { message:

'something went wrong with the endpoint' } });

 }

});

app.delete(`/api/deleteNote/users/:user_id/notes/:note_id`, async (req,

res) => {

 try {

 const { user_id, note_id } = req.params;

 const { authorization } = req.headers;

 const result = await axios.delete(

 �https://firestore.googleapis.com/v1beta1/projects/awesome-apress-

pwa/databases/(default)/documents/users/${user_id}/notes/${note_id}`,

 {

 headers: {

 Authorization: authorization

 }

 }

);

Chapter 14 Advanced Workbox

353

 return res.json(result.data);

 } catch (error) {

 console.log(error);

 �return res.status(500).json({ success: false, error: { message:

'something went wrong with the endpoint' } });

 }

});

// redirect all routes to index.html since we are running single page

application

app.get('*', (req, res) => {

 res.sendfile('./dist/index.html');

});

app.listen(4200);

console.log('SEVER IS R'EADY -> PORT 4200');

You can run this server as simple as "node simple-express-server.js" in the

terminal. As you remember, DataService was in charge of making http requests;

therefore, we are going to slightly modify the two methods and endpoint in this service

to point them to new back-end APIs.

We will data SaveNote endpoint to be pointed to our back end.

 protected readonly SAVE_NOTE_ENDPOINT = '/api/saveNote';

 �saveNoteFromCloudFunction(note: Note): Observable<{ success: boolean;

data: Note }> {

 �return this.http.post<{ success: boolean; data: Note }>(this.SAVE_NOTE_

ENDPOINT, {

 user: this.auth.id,

 data: {

 ...note,

 created_at: this.timestamp,

 updated_at: this.timestamp

 }

 });

 }

Chapter 14 Advanced Workbox

354

I will also define a new method for deleting a note pointing to my back-end API.

 deleteNoteDirectly(id): Promise<any> {

 return this.auth

 .getToken()

 .pipe(

 switchMap(idToken => {

 �return this.http.delete(`/api/deleteNote/users/${this.auth.id}/

notes/${id}`, {

 headers: {

 Authorization: `Bearer ${idToken}`

 }

 });

 })

)

 .toPromise();

 }

Finally, we will use these methods while saving and deleting a single note. Once you

cloned https://github.com/mhadaily/awesome-apress-pwa, go to Chapter 14, then

02-background-sync. You will find all the sample codes including all the new changes in

NoteModule, DataService and sw-source.js.

We will register two routes in order to intercept network requests that fail and use the

backgroundSync plugin to retry those requests.

workbox.routing.registerRoute(

 new RegExp('/api/saveNote'),

 workbox.strategies.networkOnly({

 plugins: [

 new workbox.backgroundSync.Plugin('firebaseSaveNoteQueue',

 {

 callbacks: {

 queueDidReplay: StorableRequest => {

 // Invoked after all requests in the queue have successfully replayed.

 console.log('queueDidReplay', StorableRequest);

Chapter 14 Advanced Workbox

https://github.com/mhadaily/awesome-apress-pwa

355

// show notification

 �self.registration.showNotification('Background Sync

Successful', {

 body: 'You notes has been saved in cloud! '});

 },

 requestWillEnqueue: StorableRequest => {

 // Invoked immediately before the request is stored to IndexedDB.

// Use this callback to modify request data at store time.

 console.log('requestWillEnqueue', StorableRequest);

 },

 requestWillReplay: StorableRequest => {

 // Invoked immediately before the request is re-fetched.

// Use this callback to modify request data at fetch time.

 console.log('requestWillEnqueue', StorableRequest);

 }

 },

 maxRetentionTime: 60 * 24 * 7 // 7 days in minutes

 })

]

 }),

 'POST'

);

Let’s break it down now that the argument has been passed into the

registerRoute() function:

	 1.	 First argument is regular expression to match network request,

which is /api/saveNote in this example.

	 2.	 Background sync has been added to plugins. The first argument

is the queue name, and the second one is options, which is

optional. In the options, there are a few properties such as

maxRetentionTime that indicate how long this request should

be retried and callbacks where you have access to life-cycle

methods.

	 a.	 queueDidReplay: Invoked after all requests in the queue have

successfully replayed.

Chapter 14 Advanced Workbox

356

	 b.	 requestWillEnqueue: Invoked immediately before the request is

stored to IndexedDB.

	 c.	 requestWillReplay: Invoked immediately before the request is

re-fetched.

	 3.	 Third argument is the HTTP methods.

We will register a new route for intercepting failed DeleteNote network requests.

 workbox.routing.registerRoute(

 new RegExp('/api/deleteNote/(.*)'),

 workbox.strategies.networkOnly({

 plugins: [

 new workbox.backgroundSync.Plugin('firebaseDeleteNoteQueue', {

 callbacks: {

 queueDidReplay: _ => {

 �self.registration.showNotification('Background Sync

Successful', {

 body: 'DELETE is done!'

 });

 }

 },

 maxRetentionTime: 24 * 60 // Retry for max of 24 Hours

 })

]

 }),

 'DELETE'

);

Sadly, testing BackgroundSync is somewhat unintuitive and difficult for a number of

reasons. One of the best ways to test is by using the following steps:

	 1.	 Build and run application in production as Service Worker is

registered.

	 2.	 Turn off your computer’s network or turn off back-end server,

which is simple-express-server.js. Please note that you cannot

use offline in Chrome DevTools as it will only affect requests from

the page. Service Worker requests will continue to go through.

Chapter 14 Advanced Workbox

357

	 3.	 Make network requests that should be queued with Workbox

Background Sync. For example, add a note or delete a note.

	 4.	 You can check the requests have been queued by looking in

Chrome DevTools > Application > IndexedDB > workbox-

background-sync > requests.

	 5.	 Now turn on your network or run the web server (node simple-

express-server.js).

	 6.	 Force an early sync event by going to Chrome DevTools >

Application > Service Workers, enter the tag name of workbox-

background-sync:<your queue name> for example workbox-

background-sync:firebaseSaveNoteQueue, where “ ” should be

the name of the queue you set and then clicking the ‘Sync’ button.

	 7.	 You should see network requests go through for the failed

requests, and the IndexedDB data should now be empty since the

requests have been successfully replayed (Figures 14-2, 14-3, 14-4,

and 14-5).

Figure 14-2.  Queue databse in indexedDB

Chapter 14 Advanced Workbox

358

Figure 14-3.  Successful notification when network requests succesfully synced

Figure 14-4.  Simluate background sycn in Chrome dev tools

Chapter 14 Advanced Workbox

359

If you check console when you are in localhost, you will be able to see logs, too.

You should see a notification when sync is done since we have used

showNotification() in queueDidReplay callback.

�Push Notification
In Chapter 8, I explained the basics of a web push notification and taught you how to use

Angular Service Worker SwPush service. Since we have taken out this module, we will

first create a service called SwPushService that provides the same methods that Angular

provides and use it in our components.

@Injectable()

export class SwPushService {

 constructor() {}

 �public async checkSW(): Promise<{ isEnabled: boolean; subscription: any

}> {

 if (navigator.serviceWorker) {

 �const registration = await navigator.serviceWorker.getRegistration();

 let subscription;

 if ('PushManager' in window && registration) {

 subscription = await registration.pushManager.getSubscription();

 }

 return { isEnabled: true, subscription };

 } else {

 return { isEnabled: false, subscription: null };

 }

 } else {

 return { isEnabled: false, subscription: null };

 }

Figure 14-5.  Workbox logs in callback functions for background sync

Chapter 14 Advanced Workbox

360

 urlBase64ToUint8Array(base64String) {

 const padding = '='.repeat((4 - (base64String.length % 4)) % 4);

 �const base64 = (base64String + padding).replace(/\-/g, '+').

replace(/_/g, '/');

 const rawData = window.atob(base64);

 const outputArray = new Uint8Array(rawData.length);

 for (let i = 0; i < rawData.length; ++i) {

 outputArray[i] = rawData.charCodeAt(i);

 }

 return outputArray;

 }

 async requestSubscription({ serverPublicKey }) {

 const registration = await navigator.serviceWorker.getRegistration();

 return registration.pushManager.subscribe({

 userVisibleOnly: true,

 applicationServerKey: this.urlBase64ToUint8Array(serverPublicKey)

 });

 }

 async unsubscribe(): Promise<boolean> {

 const registration = await navigator.serviceWorker.getRegistration();

 const subscription = await registration.pushManager.getSubscription();

 return subscription.unsubscribe();

 }

}

Let’s break it down:

	 1.	 We need to first check if Service Worker is ready and PushManager

is available. We use this to ensure that the “subscribe” button in UI

is shown when the browser supports web push notification.

	 2.	 requestSubscription() method accepts serverPublicKey. We

use it when subscripting to pushManager. Server public key must

be converted to Uint8Array by calling urlBase64ToUint8Array().

	 3.	 Unsubscribe() to unsubscribe from push manager.

Chapter 14 Advanced Workbox

361

Now we just replace this service with Angular Service Worker. Since we have

provided the same methods, we don’t need to change too many things, only run

checkSW() on component initialization.

constructor(

 private auth: AuthService,

 private swPush: SwPushService,

 private snackBar: SnackBarService,

 private router: Router,

 private dataService: DataService

) {}

ngOnInit() {

 this.checkSW();

 }

 async checkSW() {

 const { isEnabled, subscription } = await this.swPush.checkSW();

 this.isEnabled = isEnabled;

 this.subscription$.next(subscription);

 }

The rest of the header will be as same as what we have created in Chapter 8. Let’s

continue to add our push notification event in sw-source.js. As we discussed earlier in

this book, push event fires when a push notification is received. Thus, we need to listen

to this event in Service Worker.

 self.onpush = event => {

 const { notification } = event.data.json();

 �const promiseChain = self.registration.showNotification(notification.

title, notification);

 event.waitUntil(promiseChain);

 };

We also need to handle click event on notification actions. In Chapter 8, we

implemented a logic in Firebase function method that a notification will be sent while

saving a note is successful. The sent notification will have two custom actions: open and

cancel.

Chapter 14 Advanced Workbox

362

// Custom notification actions

 self.onnotificationclick = event => {

 event.notification.close();

 switch (event.action) {

 case 'cancel': {

// do something if you want, e.g sending analytics to track these actions

 break;

 }

 case 'open': {

// we can track these actions in Analytics

 �const URL = `${self.registration.scope}notes/${event.notification.

data.noteID}`;

 event.waitUntil(clients.openWindow(URL));

 break;

 }

 default: {

 event.waitUntil(

 clients

 .matchAll({

 includeUncontrolled: true,

 type: 'window'

 })

 .then(clientList => {

 clientList.forEach(client => {

 if (client.url == '/' && 'focus' in client) {

 return client.focus();

 }

 });

 if (clients.openWindow) {

 return clients.openWindow('/');

 }

 })

);

 }

 }

 };

Chapter 14 Advanced Workbox

363

 // Closing notification action

 self.onnotificationclose = event => {

 console.log('Notification Close Event', event);

 // do something if you want!

 };

Once you build and run the application again, add a note. A notification will be sent

to the browser and shown to the user if you have a valid subscription (see Figure 14-6).

Please note that you can clone https://github.com/mhadaily/awesome-apress-pwa,

and all the sample codes can be found in Chapter 14 ➤ 03-push-notification folder.

Figure 14-6.  Web push notification after saving note in both mobile and desktop

Chapter 14 Advanced Workbox

https://github.com/mhadaily/awesome-apress-pwa

364

�Offline Analytics
Offline analytics is a module that will use background sync to ensure that requests to

Google Analytics are made regardless of the current network condition; this is especially

useful while a user is offline.

Whether you use Google tracking tag directly in index.html or using a module such

as angulartics2, you should set a custom dimension to determine when the app was

offline or when it was online. Let’s add the script in index.html.

<script>

 /*

 (function(i, s, o, g, r, a, m) { i['GoogleAnalyticsObject'] = r;

 �(i[r] = i[r] || function() { (i[r].q = i[r].q || []).

push(arguments);}),

 �(i[r].l = 1 * new Date()); (a = s.createElement(o)), (m =

s.getElementsByTagName(o)[0]);

 a.async = 1; a.src = g; m.parentNode.insertBefore(a, m);

 �})(window, document, 'script', 'https://www.google-analytics.com/

analytics.js', 'ga');

 ga('create', 'UA-XXXXX-Y', 'auto');

 // Set default value of custom dimension 1 to 'online'

 ga('set', 'networkstatus', 'online');

 ga('send', 'pageview');

 */

 </script>

Enabling offline analytics can be as simple as in sw-source.js:

 workbox.googleAnalytics.initialize({

 parameterOverrides: {

 networkstatus: 'offline'

 }

 });

On googleAnalytics initialization, we will pass in parameterOverrides that we

define to overwrite the dimension that we have defined already to determine the

tracking has received when the app was offline.

Chapter 14 Advanced Workbox

365

�Summary
In this chapter, advanced topics have been implemented in both Angular and Service

Worker with Workbox. We walked through how to send a message to a window client in

order to inform the client that there is an update in the cache. Background sync helped

us to retry sending a failed request to the server once the connection or endpoint

is back online. Engaging is one of the main characteristics of the PWA that we have

achieved by implementing push notifications. Finally, Workbox Google Analytics

module provides a mechanism that we can track our application while it is being used

offline. With that said, let’s move on to the next chapter and see what the next steps for

building PWA will be.

Chapter 14 Advanced Workbox

367
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7_15

CHAPTER 15

Next Steps
Congratulations! You have completed Angular PWA education, which enables you to

build a Progressive Web App with Angular and have a good understanding of how PWA

works. But, wait! This is just the beginning! From now on, you have to keep learning

and trying to do things better and better. You don’t have to stop at this point but should

continue your path, which you have come with me until this point in the book. There

are a lot more things to learn. Some of the concepts that we have explored together in

this book were just the surface for an ocean of knowledge and information. You should

continue diving deeper and deeper.

As a developer, we all know that what we write today might be obsolete in the next

five years. You have probably also noticed that I mentioned a few times in different

chapters that many of these APIs are still evolving and changing over time, which means

we need to embrace these changes and keep ourselves updated.

In this chapter, I will write a few pages about learning resources, case studies, and

PWA examples in the real world as well as introducing a few new technologies and tools

that you should keep an eye on.

�Learning Resources
There are tons of articles, videos, tutorials, blogs, and podcast about PWA. In the list

below, I introduce you to a few resources that you can help you learn more about PWA

and Angular and dive deeper if you want:

	 1.	 https://developers.google.com/web/progressive-web-apps/

I believe you have seen this website before. Google Developer has

a dedicated section for PWA under Web. Just check it out!

https://developers.google.com/web/progressive-web-apps/

368

	 2.	 https://web.dev

In Chrome Dev Summit 2018, Googlers announced a new website

dedicated to web and, in particular, PWA. This website not only

helps you to learn more but also provides tools to measure and

audit your web application.

	 3.	 https://serviceworke.rs

This website is powered by Mozilla and provides a collection of

working, practical examples of using Service Worker in modern

websites.

	 4.	 https://blog.angular.io/

Ensure you are getting the latest update from the Angular blog.

Also, it’s good have an eye on Angular documents, especially the

PWA guide.

	 5.	 https://developer.mozilla.org/en-US/docs/Web/Apps/

Progressive

Mozilla MDN website is familiar to all developers. Keep your eye

on PWA sections.

�Case Studies
In my opinion, it’s always great to read about other developers’ and teams’ experiences

and follow their journey. I always find many tips and tricks that help sometimes to avoid

bugs and errors, or many times speed up my development process. I will write no case

studies here, but I will encourage you to read up from the following resources:

	 1.	 https://developers.google.com/web/showcase/2018/nikkei

Nikkei achieves a new level of quality and performance with their

multipage PWA.

	 2.	 https://developers.google.com/web/showcase/2018/asda-

george

George.com enhances the mobile customer experience with a

new PWA.

Chapter 15 Next Steps

https://web.dev
https://serviceworke.rs
https://blog.angular.io/
https://developer.mozilla.org/en-US/docs/Web/Apps/Progressive
https://developer.mozilla.org/en-US/docs/Web/Apps/Progressive
https://developers.google.com/web/showcase/2018/nikkei
https://developers.google.com/web/showcase/2018/asda-george
https://developers.google.com/web/showcase/2018/asda-george
http://george.com

369

	 3.	 https://developers.google.com/web/showcase/2017/eleme

Ele.me improves performance load times with a multipage PWA.

	 4.	 https://developers.google.com/web/showcase/2017/

bookmyshow

BookMyShow’s new PWA drives an 80 percent increase in

conversions.

	 5.	 https://developers.google.com/web/showcase/2016/

aliexpress

AliExpress increases the conversion rate for new users by 104

percent with a new PWA.

You can find a lot more on the Google website if you just simply search PWA case

studies or check out www.pwastats.com to see more use cases in the context of business

advantages.

�Example Applications
If you are interested to see who is using PWA in production now, you can find a list of

PWA websites on this website: https://outweb.io/ or https://pwa.rocks/.

I encourage you to check out Hacker news as PWAs: https://hnpwa.com/

website where you will find a lot of different implementations of PWAs with different

technologies and tools. It’s a good resource to learn and study more, especially about

techniques that are being used to boost initial load and application performance.

�Tools and Technologies
Although throughout this book I have mentioned a lot of tools and technologies and

reviewed them, there are still tools and technologies that I’d like to write a few lines

about here.

Chapter 15 Next Steps

https://developers.google.com/web/showcase/2017/eleme
https://developers.google.com/web/showcase/2017/bookmyshow
https://developers.google.com/web/showcase/2017/bookmyshow
https://developers.google.com/web/showcase/2016/aliexpress
https://developers.google.com/web/showcase/2016/aliexpress
http://www.pwastats.com
https://outweb.io/
https://pwa.rocks/
https://hnpwa.com/

370

	 1.	 Desktop Progressive Web App

As we already talked about, one of the main advantages of PWA

is that we create only for browsers and we can ship it to different

platforms. Mobile users are the most important target for our

Angular PWA; that’s why we have focused on mobile refinement

and mentioned that many times. However, we don’t have to forget

that our desktop users will benefit from our optimization, too.

In fact, Desktop PWAs are supported on many platforms already

such as Chrome 67+ on Chrome OS, Linux, Windows, and Mac.

Even better, we are able to submit our PWA app to the Microsoft

Store; and once published, our customers can install to Windows

10 as an app. That’s huge. Imagine your PWA will be discovered by

millions of active Windows users.

So, when you build your PWA with Angular, you should think of

a wide variety of customers from mobile to desktop. I think we

may see Google Play or Apple Store! Also we might be able to

submit our PWA to their store in the future – who knows! Just even

thinking of that makes me so excited.

In order to learn more about the Windows store and PWA, follow

this link: https://developer.microsoft.com/en-us/windows/pwa.

Also, Google has a dedicated page regarding this topic, which

is accessible here: https://developers.google.com/web/

progressive-web-apps/desktop.

	 2.	 Trusted Web Activities

Trusted Web Activities are a new way to integrate your web-app

content such as your PWA with your Android app using a protocol

based on Custom Tabs. Read more about it on https://developers.

google.com/web/updates/2019/02/using-twa.

	 3.	 Web Share APIs

This is one of my favorite API that I hope will see better support

soon, especially on iOS. This method provides a simple high-level

JavaScript API that invokes the native sharing capabilities of the

host platform. The API is Promised-based and has only a single

Chapter 15 Next Steps

https://developer.microsoft.com/en-us/windows/pwa
https://developers.google.com/web/progressive-web-apps/desktop
https://developers.google.com/web/progressive-web-apps/desktop
https://developers.google.com/web/updates/2019/02/using-twa
https://developers.google.com/web/updates/2019/02/using-twa

371

method. It accepts configuration objects that at least need to have

text or url properties.

Here is an example:

// a method which gets invoke by user mouse click or tab (touch)

async openShare(){

 if (navigator.share) {

 try {

 const result = await navigator.share({

 title: 'Apress NG-PWANote',

 text: 'Check out Apress Angular PWA Note!',

 url: 'https://awesome-apress-pwa.firebaseapp.com',

 })

 console.log('Successful share')

 } catch(error) {

 console.log('Error sharing', error)

 }

 }

}

Chrome for Android supports this API. There is no more support

as of writing this book, but I hope that by the time you read this

book, this API is supported widely across different platforms and

browsers.

	 4.	 Offline Webpack Plugin

You may, for some reasons, use webpack or are using webpack

for your Angular application. If so, there is plugin in the webpack

ecosystem that brings offline capabilities.

Find it here https://github.com/NekR/offline-plugin

	 5.	 www.pwabuilder.com

This website is founded by Microsoft and helps you to take data

from your website and use that to generate a cross-platform PWA.

If you like automation and have no configuration for your website,

you may find this website useful!

Chapter 15 Next Steps

https://github.com/NekR/offline-plugin
http://www.pwabuilder.com

372

	 6.	 www.webhint.io

Another great website from Microsoft developers.

Webhint is a linting tool that will help you with your site's

accessibility, speed, security, and more by checking your code for

best practices and common errors. Use the online scanner or the

CLI to start checking your site for errors.

	 7.	 Background Fetch

This is a web standard API that handles large uploads/downloads

in the background with user visibility. The problem is when you

fetch something, Service Worker must be alive and the process

should be short; otherwise, the browser will kill Service Worker

due to a risk for a user’s privacy and battery.

This is extremely useful for tasks that may take a long time to be

finished, like downloading a movie or podcasts. At the time of

writing this chapter, this API was introduced as an experimental

web platform feature flag to Chrome 71.

Keep your eye on this API and find more information on it here:

https://developers.google.com/web/updates/2018/12/

background-fetch

	 8.	 Web Performance

We build PWA because we want users to have native-like

experiences that are fast, reliable, and engaging. Thus, web

performance is always a topic that we never have to stop learning

about it. The more you learn, the faster the app you build. A lot of

resources, including those that I have mentioned earlier in this

chapter, provide performance-related topics, too; however, in

addition, you can find the following link helpful:

https://developers.google.com/web/fundamentals/

performance/why-performance-matters/

Chapter 15 Next Steps

http://www.webhint.io
https://developers.google.com/web/updates/2018/12/background-fetch
https://developers.google.com/web/updates/2018/12/background-fetch
https://developers.google.com/web/fundamentals/performance/why-performance-matters/
https://developers.google.com/web/fundamentals/performance/why-performance-matters/

373

	 9.	 Web Components

Web Components is a suite of different technologies allowing you

to create reusable custom elements while their functionality is

encapsulated away from the rest of your code and lets you utilize

them in your web apps.

This is a great technology that Angular supports by Angular

Element. You can find more about it here: https://angular.

io/guide/elements. After Angular Ivy1 (pretty soon), Angular

Element will be even better. Don’t forget to keep your eye on it.

	 10.	 Web Assembly

Web assembly (abbreviated WASM) is designed to help with the

compilation of high-level languages like C/C++/ Rust along with

JavaScript, which means with Web Assembly JavaScript APIs,

you can load WASM modules into a JavaScript app and share the

functionality between the two. This is amazing technology that

has, of now, been shipped to all major browsers.

The developer documentation is available here o nth Mozilla

MDN web docs website:

https://developer.mozilla.org/en-US/docs/WebAssembly

�Last Words
Web is evolving rapidly. PWA, in particular, is growing quickly. We hear about new

technologies literally every day. Even during the time that I was writing this book, there

was a lot of new news regarding PWA and Angular, and I probably should have revised

what I have written. I personally love it. I love to see new APIs that make me excited and

thrilled as a web developer. What I want to point out is that, even though the it takes

great speed to catch up sometimes, the concepts and principles of Progressive Web Apps

with or without Angular that have been taught to you throughout the book will remain

the same. An Angular PWA must be fast to load, reliable to work with, and engaging as

1�https://github.com/angular/angular/blob/master/packages/core/src/render3/STATUS.md

Chapter 15 Next Steps

https://angular.io/guide/elements
https://angular.io/guide/elements
https://developer.mozilla.org/en-US/docs/WebAssembly
https://github.com/angular/angular/blob/master/packages/core/src/render3/STATUS.md

374

native apps were in the past and now. It must run on all browsers and platforms and

must be developed and deployed progressively.

Thank you for reading! We had a long journey together. I hope you enjoy building

amazing Progressive Web Apps with Angular (or maybe without!) as much as I enjoyed

writing this book.

All the best.

Chapter 15 Next Steps

375
© Majid Hajian 2019
M. Hajian, Progressive Web Apps with Angular, https://doi.org/10.1007/978-1-4842-4448-7

Index

A
addPushSUbscription() method, 209
AddToHomeScreenService, 154
Android and Chrome, 161–164
Android Studio, 8
Angular App Shell

Angular Universal, 174
bootstrapped, 171
built-in functionality, 172
JS and CSS files, 172
performance

audit tab, Chrome
DevTools, 184–187

bundle sizes analyze, 187–189
optimizations, 187
webpagetest.org, 182–184

in production, 179–182
project repository, 173–174

Angular CLI, 143, 169
app generation, 4
installation, 4
material design, 5–7

AngularFire, 22–27
Angular firebase, 248–250
Angular Router module, 197
Angular schematics

@angular/cli, 90
@angular/pwa schematic, 97
app structure, 90
modifications, 90–95

Angular service worker, 285–288
appData configuration, 134
build project, 101–104
chrome DevTools, 258–259
clear storage, 89
data groups, 122
external resources, 116–120
firebase URL, 88
firefox DevTools, 259–260
forward cache/CDN edge, 88
Network-First strategy, 125–129
network request, 131
resource revalidation, no hash, 121–122
runtime cache, 116, 130
SwUpdate class, 134–137
Web App Manifest, 89–90

Angular universal
angular CLI, 175
angular.json file configuration, 178–179
app-server-module, 176
CLI configuration file, 175
route shell, 176
server-side application, 177
SSR, 174

app-server-module, 176
app-shell.component, 177
App Shell model, 169–171
Audit panel

lighthouse, Chrome launcher, 275–276
lighthouse, Puppeteer, 277

https://doi.org/10.1007/978-1-4842-4448-7

376

B
Background fetch, 372
BackgroundSync API

backgroundSync plugin, 354–355
callback functions, 359
Chrome dev tools, 358
DataService, 353
DeleteNote network, 356
indexedDB, 357
network request, 358
POST and DELETE method, 352
registerRoute() function, 355–356
showNotification(), 359
testing, 356–357

beforeinstsallprompt event, 151
Bluetooth low energy (BLE), 320, 324
Broadcast update module, 347, 350
BrowserAnimationsModule, 5
Browser resource hinting, 195–197
BrowserStack, 273
Bulk transfers, 329

C
Cache and network strategy, 112–114
Cache API, 83–85
Cache falling back to network/

cache-first, 109–110
Cache only strategy, 107–108
changes() method, 238
Chrome DevTools, 257–259

application panel, 78
cache storage, 78
progressive web app, 76
service workers, debug, 76
Web App Manifest, 77

Chrome installation, 4
Cloud Firestore security rules, 51

Command-Line Interface (CLI), 12
Components-based approach, 33
Control transfers, 329
Core/shared module, 33–34

email/password authentication, 43–45
Firestore setup, 51–54
footer and header components, 36–40
login/profile page, 41–42
note view

authentication guard, 61–62
authentication service, 56–58
data service, 59–61
Notes-add, 64–65
Notes-card, 64
Notes-details, 67–70
Notes-form, 66–67
Notes-list, 63
paths, 54–55

sketch, 35, 40–41
user-container.component, 46–49

Credential management
account chooser, 298
autocomplete attribute, 296–297
CredentialManagementService, 290–292
defined, 290
methods, 293–294
preventSilentAccess(), 294, 296
prompt message, 297
snackbar message, 298

CSS blocking, render, 190–192

D
Database schema, 52
DataGroup Typescript interface, 122
Debugging tools

cache storage, 267–269
NGSW debug, 255–256

INDEX

377

offline behavior, 269–271
service workers, 258
Web App Manifest, 256
web storage, 264

Deploy to Firebase, 138–139
Desktop Progressive Web App

(Desktop PWAs), 370
Dynamic content, 171

E
Emulators, 273
EventListener property, 349

F
Fail-safe, 283–285
Feature detection, 293
File system API, 230
Firebase Cloud

Function, 216–220
Firebase CRUD

authentication guard, 62
authentication service, 56–58
database schema, 52
data service, 59–61
Firestore database, 51–54
notes view, 54–55

Notes-add, 64–65
Notes-card, 64
Notes-details, 67–70
Notes-form, 66–67
Notes-list, 63

Firebase function
account access, 15
Angular app generation, 12–14
app deploy, 21
app initialization

Angular project adjustment, 20
database setup, 17–18
feature selection, 16–17
final setup, 18–20
functions setup, 18
project selection, 17

dashboard, 12
project, 10–11
success message, 16

Functionality into angular app, 154–157

G
Generic attribute profile (GATT), 320
Generic fallback, 114–115
Geolocation API

coordination data, 319
GeolocationService, 316–317
location permission, 319
NotesAddComponent, 318

getCurrentPosition(), 318
getDevices method, 326
get method, 293–294
getNote() method, 250
getUserMedia() method, 308
Glob pattern, 117

H
Home screen

on desktop, 157–158
on mobile, 157–158
PWA, 164–165

HTTP/2 server push, 198–199

I
IndexedDB, 231
Installation event, 152–153

Index

378

Interrupt transfers, 329
Isochronous transfers, 329

J, K
Jest framework, 263

L
Lazy loaded modules, 197–198
localStorage, 230

M
Measurement

analytics
home screen prompts, 279–280
tracking sessions, 280–282
track offline pageviews, 282

audit panel, 273
online tools, 282
real-device testing, 282

MediaRecorder constructor, 313
Media streams, API, 308

getUserMedia(), 313
live stream and recorded playback, 315

Microsoft Windows, 159–161
Mini-info bar, 153–154
Mobile devices, 272–273

set up, 8
Mobile Emulator, 8
Mobile regular 3G network, 183, 184

N
navigatem method, 287
Navigation cache, 131–133
Network connections, 271–272

Network falling back to cache, 110–111
Network first strategy, 229
Network information, 251–252
Network only, cache strategy, 108–109
Network panel, 269
ng add command, 30
NGSW debug, 255–256
NoCacheRouteComponent, 133
Node and NPM, 3
NoteDetailsComponent, 242
NotesListComponent, 241
Notification.requestPermission()

method, 202

O
Offline analytics, 364
Offline first approach

data manipulation, 233
sync server implementation (see Sync

server implementation)
user’s devices from/to sync server, 234
4-way data binding, 232–233
web applications, 232

Offline mode Firefox, 270–271
Offline storage, 230–232
Online validators, 258
Optimize fonts

CDN, 193–195
self-hosting, 192–193

P, Q
Page-rendering, 194–195
Payment request

arguments, 303
data property, 303
feature detection, 302

INDEX

379

paymentDetails, 304
payment native UI, 307–308
show() method, 305
W3C, 299
WebPaymentService, 299, 306

Persistent notifications, 203
preventSilentAccess method, 294
Progressive Web Apps (PWAs), 141, 289,

367–369
Angular service worker module, 2
characteristics of, 1–2

Push notifications, 203–206
addNote() method, 216
allow/block popup, 214–215
browsers, 206
checkSW() method, 361
click event, 361–362
deploy to Firebase, 227
enable alerts buttons, 210–211
Firebase cloud function, 216–221
HeaderComponent class, 207–208
IPush message body, 221–224
listen to message, 225
note, 363
notificationClicks, 225–227
object properties, 214
request popup, 211–212
requestSubscription() method, 360
subscription, 212–213
SwPush service, 206, 359–360
toJSON() function, 209–210
unsubscribe() method, 210

PWACompat library, 167–168

R
Real-device testing, 282
register() function, 73

requestDevice method, 322, 326
requestPaymentOptions, 304
Router-outlet, 176

S
Server-side rendering (SSR), 174
Server workers

behavior, 72
callback function, 80
Chrome DevTools, SkipWaiting, 83
functional events, 76
install/activate events, 81
life cycle, 73–76
network request, 72
perfect progressive enhancement, 72
PWA, 72
registration object, 82
thread and intercepts request, 73

Service worker mock library, 261–264
sessionStorage, 230
showNotification() method, 203, 222
Static assets

caches methods, 86
cache storage, 85
outdated caches, 86–88
waitUntil() method, 87

stop() method, 314
store method, 293
supportedPaymentMethods, 303
SwUpdate class, 134
Sync server implementation

CRUD operations, 236–237
data manipulation, 244–245
error event, 238
IndexedDB, 234
OfflineDBServer, 239–241
onDBChange method, 238

Index

380

PouchDB, 235–236
reliable data, 248
remote database, 246–247
zero latency, 245

T
Trusted web activities, 370

U
User interface (UI), 251–252

implementation, 30–33

V
Voluntary application server identification

(VAPID) keys, 204

W, X
watchPosition() method, 318
Waterfall view, 189–190
Web app install banner, 150–151
Web App Manifest, 141, 165–167

chrome DevTools, 257
debug, 148–150
online generators, 258
online validators, 258

Web assembly (WASM), 373
Web components, 373
Web Font Loader, 193
Webhint, 372

Web notifications, 202–203
Webpack, 371
Web performance, 372
Web-push, 205
Web Share APIs, 370–371
Web storage

Chrome DevTools, 264–266
Firefox DevTools, 266

Web USB
device, communication, 328
endpoint types, 329
navigator.usb.requestDevice(), 326
user gesture, 324
WebUSBService, 325–326

WindowRef service, 349
Workbox

CLI installation, 332
injectManifest

configuration, 340
object argument, 341
offline mode, 344
routing module, 341–343
source Service Worker, 339
strategy module, 341
swSrc property, 338
SW update, 339

modes, 332
modules, 332–333
wizard mode, 334–338

Y, Z
YARN, 4

Sync server implementation (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Setup Requirements
	Progressive Web App Fundamentals
	Why Angular?

	Installing Node and NPM
	Installing Chrome
	Scaffolding Our Project
	Generating New Angular App with CLI
	Adding Angular Material Design

	Setting Up a Mobile Device
	Setting Up a Mobile Emulator
	Connecting Android Simulator to Chrome Dev Tools
	Summary

	Chapter 2: Deploying to Firebase as the Back End
	Setting Up Your Account
	Creating a Project
	Deploying to Firebase
	Generating a New Angular App
	Initializing the App
	Features Selection
	Project Selection
	Database Setup
	Functions Setup
	Final Setup
	Adjustment in Angular Project Settings

	Deploying Our App
	Setting Up AngularFire�

	Summary

	Chapter 3: Completing an Angular App
	Implementing Our UI
	Installing and Setting Up Angular Material, CDK, and Animations
	Installing @angular/material Automatically with Angular CLI
	Installing @angular/material Manually

	Creating a Core Module / Shared Module
	Header, Footer, and Body Components
	Login / Profile Page
	Adding Login, Signup, and Profile UI and Functionalities
	Firebase CRUD� Operations for Note Module
	Set Up Firestore Database
	List, Add, and Detail Note Views
	Authentication Service
	Data Service
	Authentication Guard
	NoteList, NoteAdd, and NoteDetail Components

	Summary

	Chapter 4: Angular Service Worker
	Service Workers: The Brain of PWAs
	Understanding Service Worker
	The Service Worker Life Cycle
	Service Worker Functional Events
	Chrome DevTools
	Service Worker Example Code

	Cache API
	Precache Static Assets
	Angular Service Worker Module
	Support for Service Worker in Angular
	ngsw-config.json Anatomy
	Build Project with Angular Service Worker

	Summary

	Chapter 5: Advanced Angular Service Worker and Runtime Caching
	Cache Strategies
	Cache Only
	Network Only
	Cache Falling Back to Network or Cache-First
	Network Falling Back to Cache or Network-First
	Cache and Network
	Generic Fallback

	Runtime Cache in Angular Service Worker
	External Resources
	Revalidate Strategy for Resources with No Hash
	Data Groups Settings
	Navigation Cache
	AppData Config
	Dealing with Updates

	Deploy to Firebase
	Summary

	Chapter 6: An App Manifest and Installable Angular App
	The Web App Manifest
	Debugging Web App Manifest

	Adding to Home Screen
	Handling Installation Event (Deferring the Prompt)
	The Mini-Info Bar
	Implementing Functionality into Angular App
	Adding to Home Screen on Mobile and Desktop
	Microsoft Windows7
	Android and Chrome
	Manually Adding to Home Screen
	Further Enhancement
	PWACompat Library10

	Summary

	Chapter 7: App Shell and Angular Performance
	The App Shell Model
	Angular App Shell
	Angular App Shell and Angular Universal
	Generating the App Shell in Production
	Measuring App Shell Performance via webpagetest.org
	Measuring App Shell Performance via Audit tab in Chrome DevTools

	Beyond the App Shell, Further Optimizations
	Analyze Bundle Sizes and Lazy Load Module
	Waterfall View from Web Page Test
	Reduce Render Blocking CSS
	Optimize Fonts
	Self-Hosting Fonts
	CDN-Based Fonts

	Browser Resource Hinting
	Preload Angular Lazy Loaded Modules
	HTTP/2 Server Push�

	Summary

	Chapter 8: Push Notifications
	Introduction to Push Notifications
	Web Notifications
	Push Notifications
	Browser Supports

	Push Notification in Angular
	Showing Again the Allow/Block Notifications Popup
	Sending Push Notifications
	Firebase Cloud Function
	lPush Message Body
	Listen to Messages in Angular
	Notification Actions and Handling Notification Click Events
	Deploy to Firebase

	Summary

	Chapter 9: Resilient Angular App and Offline Browsing
	Offline Storage
	Offline First Approach
	Implement Offline First Approach with Sync Server
	Implement Persistent Data with Angular Firebase
	User Interface Considerations

	Summary

	Chapter 10: Debugging and Measurement Tools
	Debugging
	NGSW Debug
	Web App Manifest
	Chrome DevTools
	Online Validators
	Online Generators

	Service Workers
	Chrome DevTools
	Firefox DevTools
	Service Worker Mock

	Storage
	Chrome DevTools
	Firefox DevTools

	Cache
	Chrome DevTools
	Firefox DevTools

	Simulate Offline Behavior
	Chrome
	Firefox

	Simulate Different Network Conditions
	Simulate Mobile Devices
	Remote Debugging and Measuring
	Emulators
	Online Tools

	Measurement
	Audit
	Lighthouse with Chrome Launcher
	Lighthouse with Puppeteer�

	Analytics
	Tracking Home Screen Prompts
	Tracking Sessions from the Home Screen
	Track Offline Pageviews

	Online Tools
	Real Device

	Summary

	Chapter 11: Safety Service Worker
	Fail-safe
	Safety Worker
	Extended Safety Worker
	Summary

	Chapter 12: Modern Web APIs
	Credential Management
	Browsers Support

	Payment Request
	Browsers Support

	Video and Audio Capturing
	Browsers Support

	Geolocation
	Browsers Support
	Web Bluetooth
	Browsers Support
	Web USB
	Browsers Support

	Summary

	Chapter 13: PWA with Angular and Workbox
	Angular and Workbox Setup
	Workbox Wizard Mode
	Workbox injectManifest

	Summary

	Chapter 14: Advanced Workbox
	Dealing with Updates
	Background Sync
	Push Notification
	Offline Analytics
	Summary

	Chapter 15: Next Steps
	Learning Resources
	Case Studies
	Example Applications
	Tools and Technologies
	Last Words

	Index

