
1 | P a g e

Learn Angular in 2 days Step by Step
(Covering Angular 2 and Angular 4/6 Labwise)

For online Angular training or self-study materials visit: www.questpond.com

For Face to Face classroom/offline Angular training in Mumbai: www.stepbystepschools.net

Table of Contents
Introduction ... 2

Who wrote this book? ... 2

How does this book teach you Angular? ... 3

Why do we need Angular? ... 5

Lab 1:- Practicing NodeJS ... 7

Lab 2:- Practicing TypeScript .. 12

Lab 3:- Practicing VS Code .. 15

Lab 4: - Understanding Module loaders using SystemJS ... 21

Lab 5:- Understanding Module Bundlers using WebPack ... 28

Lab 6: - Components and Modules (Running your first Angular Application) 30

Lab 7:- Implementing SPA using Angular routing .. 52

Lab 8:- Implementing validation using Angular form .. 65

Lab 9: - Making HTTP calls.. 75

Lab 10: - Input, Output and emitters ... 83

Lab 11: - Lazy loading using dynamic routes .. 93

Lab 12: - Using jQuery with Angular .. 104

Lab 13: - Pipes in Angular ... 108

Lab 14: - Providers, Services and Dependency Injection ... 112

Angular Interview Questions and Answers .. 120

Future road map for Edition 3 ... 127

Acronym used in this book... 127

2 | P a g e

Introduction

Why should we learn Angular? , the below stack overflow graph says it all. Its popular, it is hot
with lot of job openings. This book teaches you Angular step by step via 20 great Labs. So if you
are here to learn Angular then you are at the right place and with the right book.

AngularJS vs Angular. There are two versions of Angular the old is named as AngularJS and
the new one is named as just Angular. So when someone says AngularJS it means Angular

1.X and when someone says JUST Angular its Angular 2/4.

Who wrote this book?

My name is Shivprasad Koirala, a 43 years old selfish developer and author 😊. He steals times
from his kids and family to write books 😊. You can catch his Learn Angular in 8 hours step by
step video series from https://www.youtube.com/watch?v=oMgvi-AV-eY

He feeds himself by recording training videos on www.questpond.com and also has an institute
in Andheri, Mumbai where he takes training on Angular in weekly basis. For any technical/non-
technical issues with this book please feel to contact him on questpond@questpond.com
Please do boost my EGO 😊 by tagging me on my Facebook profile at
https://www.facebook.com/shivprasad.koirala , it just motivates us to write more.

3 | P a g e

How does this book teach you Angular?

The best way to learn Angular or any new technology is by creating a project. So in this step by
step series we will be creating a simple Customer data entry screen project.

This project will have the following features:-

 Application should have capability of accepting three fields Customer name, Customer
and Customer Amount values.

 Customer name and Customer codes are compulsory fields and it should be validated.
 Application will have an “Add” button, which help us to post the current customer data

to a Server. Once the data is added to the server it should displayed on the grid.
 Application will have a navigation structure wherein we will have logo and company

name at the top, navigational link at the left and copy right details at the bottom of the
screen.

4 | P a g e

So below is the road map of this book. It has three phases covering 14 labs step by step: -

Theory Phase: - In this phase we will understand what Angular is? And why do we need it.

Pre-requisite phase: -In this phase we will four important things Node, TypeScript, VS Code,
Module loaders (SystemJS) and module bundlers (Webpack).

Main learning phase: - This is where actual angular starts. In this we will be having 10 labs and
while covering those labs we will create the customer data entry screen project as discussed
previously.

So do not wait any more start LAB by LAB and STEP by STEP.

Should I start from Angular 1, 2 or 4. Angular 1.X and 2.X are very much different. So even
if you have done Angular 1.X you have to restart fresh from Angular 2.X. Angular 2.X and

Angular 4.X are backward compatible so if you are learning Angular 2 you are learning Angular 4
and ahead. So people who are new to Angular just start from Angular 4 and this book teaches
Angular 4.

5 | P a g e

Why do we need Angular?

“Angular is an open source JavaScript framework which simplifies binding code between
JavaScript objects and HTML UI elements.”

Let us try to understand the above definition with simple sample code.

Below is a simple “Customer” function with “CustomerName” property. We have also created
an object called as “Cust” which is of “Customer” class type.

function Customer()

{

this.CustomerName = "AngularInterview";

}

var Cust = new Customer();

Now let us say in the above customer object we want to bind to a HTML text box called as
“TxtCustomerName”. In other words when we change something in the HTML text box the
customer object should get updated and when something is changed internally in the customer
object the UI should get updated.

<input type=text id="TxtCustomerName" onchange="UitoObject()"/>

So in order to achieve this communication between UI to object developers end up writing
functions as shown below. “UitoObject” function takes data from UI and sets it to the object
while the other function “ObjecttoUi” takes data from the object and sets it to UI.

function UitoObject()

{

Cust.CustomerName = $("#TxtCustomerName").val();

}

function ObjecttoUi()

{

$("#TxtCustomerName").val(Cust.CustomerName);

}

So if we analyze the above code visually it looks something as shown below. Your both functions
are nothing but binding code logic which transfers data from UI to object and vice versa.

6 | P a g e

Binding Code

Now the same above code can be written in Angular as shown below. So now whatever you
type in the textbox updates the “Customer” object and when the “Customer” object gets
updated it also updates the UI.

<input type=text [(ngModel)]="Customer.CustomerName"/>

In short if you now analyze the above code visually you end up with something as shown in the
below figure. You have the VIEW which is in HTML, your MODEL objects which are JavaScript
functions and the binding code in Angular.

Now that binding code have different vocabularies.

 Some developers called it “ViewModel” because it connects the “Model” and the “View”.

 Some call it “Presenter” because this logic is nothing but presentation logic.

 Some term it has “Controller” because it controls how the view and the model will
communicate.

To avoid this vocabulary confusion Angular team has termed this code as “Whatever”. It’s that
“Whatever” code which binds the UI and the Model. That’s why you will hear lot of developers
saying Angular implements “MVW” architecture. So concluding the whole goal of Angular is
Binding, Binding and Binding.

7 | P a g e

Lab 1:- Practicing NodeJS

So the first JavaScript open source which you should know before learning Angular is NodeJS. In
this lab whatever I am adding is also demonstrated in this YouTube practical Angular video as
well, here is the link https://www.youtube.com/watch?v=-LF_43_Mqnw, so feel free to see
demonstrative lab.

Theory: - What is NodeJS?

NodeJS is an open source JavaScript framework which does two things: -

 It helps you to run JavaScript outside the browser. NodeJS uses the chrome JavaScript
engine to execute JavaScript outside the browser so that we can create desktop and
server based application using JavaScript.

 It also acts a central repository from where we can get any JavaScript framework using
NPM (Node package manager).

Learn but do not over learn. NodeJS is a big topic by itself. For Angular we just need to
know how to use NPM commands. So we will be limiting ourselves only around how to use

NPM. We will not be doing full-fledged node programming. Remember JavaScript is vast do not
do unnecessary learning or else your focus will drift.

Step 1:- Installing NodeJS

In order to install NodeJS, go to
https://nodejs.org/ & download the latest
version and install it.

Once you install node you should see NodeJS
command prompt in your program files as
shown in the figure.

We can then open the NodeJS command
prompt and fire NPM commands inside this
command prompt.

In case you are completely new to NodeJS
please see this NodeJS Video which explains
NodeJS in more details.

8 | P a g e

Step 2: - Practicing NPM Install command

So let’s practice the first command in NPM
“npm install”. “npm install” command helps
you get the latest version of any JavaScript
open source framework.

For example if you want to install jQuery
you will open node command prompt and
type “npm install jQuery” and once you
press enter you should see “jQuery” has
been installed in your computer.

Are you wondering where jQuery has
been installed. It has been installed in
the same folder where you ran the
NPM command.

In that folder he has created a
“node_modules” folder and in that he
has created “jquery” folder where all
jQuery had been loaded by “npm”.

Step 3:- Understanding package.json file

When you work with large projects you would need lot of JavaScript frameworks. So in one
project you would probably need jQuery, angular, lodash and so on. Doing “npm install” again
and again is definitely wasting precious time of your life.

So to load all JavaScript framework references in one go “npm” team has given a package.json.
In this package.json file you can make an entry to all JavaScript references and load those in one
go.

To create package.json file open the node command prompt and type “npm init”. After “npm
init” command it would ask for package name, version number, project description and so on.
Once you fill the entire question it will create a package.json file in your current folder. Below is
how “npm init” command looks like.

9 | P a g e

Once npm init command has been successfully executed it creates a “package.json” file in the
current folder. If you open “package.json” file it has the following below structure.

Do not overload yourself with the entire information just zoom on the “dependencies” node.
This node has all JavaScript dependencies listed out with version number. So in our package.json
file we have all the dependencies listed down.

{

 "name": "test",

 "version": "1.0.0",

 "description": "",

 "main": "MyClass.js",

 "dependencies": {

 "angular": "^1.6.5",

 "jquery": "^3.2.1",

 "knockout": "^3.4.2",

 "lodash": "~4.17.4"

 },

 "devDependencies": {},

 "scripts": {

 "test": "echo \"Error: no test specified\" && exit 1"

 },

 "author": "",

 "license": "ISC"

}

10 | P a g e

Wherever “package.json” file is
created you just need to type “npm
install” command as shown in the
figure.

If you remember in package.json file
we had 3 JavaScript framework
dependencies listed those will be
installed one after another. You can
see in the image it is stating “added
3 packages”.

Learn but do not over learn. Package.json has lot of configuration do not spend your
stamina in learning all those. As we do the labs ahead I will be walking through important

ones. So keep moving ahead with the chapters.

Understanding versioning system in package.json

Most software versions follow semantic versioning. In semantic versioning versions are divided
in to three numbers as shown in the image below.

The first number is termed as “major version”, second
“minor version” and third “revision”.

Major version: - Any increment in major version is an
indication that there are breaking changes in the software
functionality. It’s very much possible that the old code will
not work with these changes and have to be tested properly.

Minor version: - This version is incremented when we add
new features but the old code still works.

Revision: - This version is incremented when we are just
doing bug fixes. So there are no new functionalities added,
no breaking changes and back ward compatible with old
code.

11 | P a g e

NPM follows semantic versioning but it also has
some more special characters like “^”, “~”, “>” and
so on. They dictate how NPM get latest should
behave for Major and Minor versions.

For these formats 3 formats are very primary let’s
understand each them.

Exact (1.6.5), Major/Minor (^1.6.5) or Minor(~1.6.5).

Exact (1.6.5): - This will do a get latest of exact
version 1.6.5 not more or not less. If that
version is not available it will throw up an
exception.

 Major/Minor(^1.6.5): - The carrot sign will
get minimum 1.6.5 and if there are any higher
MINOR / REVISION versions it will get that. It
WILL NEVER GET HIGHER MAJOR VERSIONS.
So if 1.6.5 has 1.6.7 it will get that, if it has
1.7.7 it will that, but if it as 2.0 it will NOT get
that.

Minimum or lower (~1.6.5): - The tilde sign
will get HIGHER REVISIONS. For if 1.6.5 has
1.6.7 it will get that, but if it has 1.7.5 it will
not be installed, if it has 2.0 it will not be
installed.

What is package-lock.json file?

As discussed in the previous sections package.json has “^” and “~” versioning mechanism. Now
suppose in your package.json you have mentioned "jQuery": "^3.1.0"and jQuery has a new
version “3.2.1”. So in actual it will install or in other words LOCK DOWN to “3.2.1”.

So in package.json you will have “^3.1.0” but actually you will be using “3.2.1”. This entry of
actual version is present in “package-lock.json”. So package lock files have the EXACT versions
which are used in your code.

12 | P a g e

Below is the image snapshot of both the files.

Important NPM commands

NPM has huge command list. Down below are some very important command which you will
need now and then. As said previously LEARN but don’t do over LEARNING.

Command Explanation
npm install -g typescript The -g command will install the package globally. In other words in

your computer when you use this package it will take the global
installation. This should be used only for command lines packages
like grunt, TypeScript, npm and so on.

npm install -save jQuery This will install the package and also make an entry in to the
package.json file. Some time we are use a package in our project
and forget to update package.json this comes very handy.

npm view -version jQuery
npm view -versions
jQuery

This first command will show you latest jQuery version on GitHub
and the second one will show all versions in an ascending manner.

npm install -g npm This command updates npm himself. “-g” as discussed in previously
helps to install npm globally.

Lab 2:- Practicing TypeScript

Angular is created using TypeScript language. So if you are doing development with
Angular TypeScript is the way to go ahead.

Introduction: - Why do we need TypeScript?

Now JavaScript is a great and WEIRD language. So in JavaScript if you want to do inheritance you
need to use prototype, it’s not a strongly typed language, there is no polymorphism and so on.
So when developers who come from C# and Java background it’s very difficult for them to get

13 | P a g e

acquainted with this weird language. People who come from C# and Java background use OOP
features a lot. So to fill this GAP answer is “TypeScript”.

“TypeScript is a sugar-coated Object-oriented programming language over JavaScript.”

So in typescript we can write code using
keywords like “class”, “extends”, “interface”
and so on.

Internally TypeScript will compile (must be right
word would be “transpile”) in to pure JavaScript
code in terms of functions, closures and IIFE.

Please do watch 1 hour Training video on TypeScript which explains Typescript in more detail.

Step 1: - Installing TypeScript

So to install TypeScript we need to use
“npm”. TypeScript is a JavaScript open
source framework so the best way to get
it installed is by using “npm”. So open
node command prompt and type “npm
install typescript -g”.

The “-g” command says that you can
execute typescript command from any
folder.

Step 2: - Compiling a simple TypeScript to JavaScript

Let’s try to understand how we can compile a TypeScript to JavaScript. For that let us create a
simple “Customer.ts” file with the following code.

class Customer{

}

14 | P a g e

Now open NodeJS command prompt and type
command ‘tsc “Customer.ts”’. Once you press
enter it will create “Customer.js” in the same
folder.

If you remember “tsc” was registered globally
during “npm install” command. So this “tsc”
command can be executed in any folder.

Below is the JavaScript output from typescript command line utility.

var Customer = (function () {

 function Customer() {

 }

 return Customer;

}());

Many people term this conversion from typescript to JavaScript as “compiling”. Personally, I feel
we should call this process as “transpiling”.

Compiling converts from a higher level languages like C# , Java , C++ to machine language or
some intermediate language which cannot be read by humans. While transpiling converts from
one higher level language to another higher-level language. In this both TypeScript and
JavaScript are higher level language. So let’s term this process and transpiling and let us call
typescript as a “transpiler” rather than a compiler.

Step 3:- Using tsconfig.json file

The transpiling process of typescript has lot of advance settings. Below are some options you
can pass to tsc command line while compiling: -

Options Description
tsc Customer.ts –removecomments While transpiling the comments will be removed
tsc Customer.ts --target ES5 This will compile using ES5 specifications.
tsc Customer.ts --outdir "c:\users\shiv" This will compile to a specific output directory
tsc foo.ts bar.ts –outFile “Single.js” This will compile multiple TS files to single JS file.
tsc Customer.ts -w This command will run typescript continuously in

the background and keep looking for changed files.
If the file it will compile that file.

15 | P a g e

But now let’s think practically, if I want transpile with ES5 specification, to a specific directory
without comments the command line would become something as shown below.

tsc Customer.ts --outdir "c:\users\shiv" --target ES5 --removecomments

That’s where tsconfig.json file comes to rescue. You can put all these configurations in
“tsconfig.json” file and then just execute “tsc”.

{

 "compilerOptions": {

 "target": "es5",

 "removeComments": false,

 "outDir": "/Shiv"

 }

}

Learn but do not over learn. Tsconfig.json has 1000’s of properties do not spend your
stamina in understanding all of them now. Move ahead with the labs when any new
typescript config comes up we will look in to it.

Lab 3:- Practicing VS Code

What is VS Code?

Theoretically you can do Angular with a simple notepad. But then that would be going back to
back ages of Adam and Eve and reinventing the wheel. So we will need some kind of tools by
which will help us to type HTML easily, compile typescript and so on.

That’s where VS code is needed. VS code is a free editor provided by Microsoft which will help
us with all automation for HTML, JavaScript, and Typescript and so on.

So go to https://code.visualstudio.com/download and depending on your operating system
install the appropriate one. For instance I am having windows OS so I will be installing the
windows version.

Once you download the setup it’s a simple setup EXE run it and just hit next, next and finish.

16 | P a g e

You can also watch this VS code tutorial which will help you to understand
https://www.youtube.com/watch?v=gQ9CiRlRPKs

Point number 1: - All actions happens in a folder

In VS code all source code you put inside a folder. So the first step is to create a folder and point
VS code to that folder by clicking on File Open and select folder shown in the below figure.

Point number 2: - Creating files and folders

If you want to create a file or sub folder you
can click on the icons as shown in the figure.

The first icon creates a file and the second
icon creates a folder.

17 | P a g e

Point number 3: - Explorer and Open Editors

The explorer part of VS code
has two section one which
shows open editors and the
other which shows your
folder. You can see the
image where open editors
are shown. You can click on
those cross signs to close the
open files.

Point number 4:- Reveal in explorer

If you want to browse to the
current folder, do can right click on
the folder and click on “Reveal in
Explorer”.

Point number 5: - Integrated Terminal

TypeScript, Node these frameworks mostly run through command prompts. So it would be great
if we can have integrated command line inside VS code. VS code has something called as
Integrated Terminal, you can open the integrated terminal by clicking on view Integrated
Terminal.

18 | P a g e

Once you are inside the integrated terminal you can fire “npm install”, “tsc” and so on. Below is
how the integrated terminal looks like.

Point number 6: - Running multiple terminals

One of the things we always need is running multiple commands and for that we need a facility
to load multiple terminals.

In VS code we can load multiple terminals by clicking on the plus sign as shown below. So in one
terminal you can run the webserver and in the other terminal you can a code review tool.

19 | P a g e

Point number 7: - Changing to soothing color themes

By default, VS code shows black theme which is very good for health of your eyes. But
sometimes to just have more code clarity you would like to change to some brighter theme. You
can do that by clicking on file preferences color theme, you would get themes as shown in
the below figure.

Point number 8: - VS code settings

VS code has lot of settings like you can hide unwanted files and only focus on the files you want,
change icons settings, change font size and so on. To apply a setting, you need to goto File
Preferences Settings and you would be shown a figure as shown below.

In this there are two sections one which has the preference SAMPLE CODE SNIPPETS and the
second section at what level you want to apply these snippets. You can apply snippets at two
levels one at a project workspace level and other at user / computer level. If you apply at the
workspace level it is only for that project and if you apply at the user level it will be applied for
all projects in that computer.

20 | P a g e

For example in the user settings we have pasted the file exclude settings. In this we have
specified we do not want to see the “.JS” and “.Map” files in the workspace.

{

 "workbench.sideBar.location": "left",

 "window.zoomLevel": 2,

 "window.menuBarVisibility": "default",

 "files.exclude": {

 "**/*.js": true,

 "**/*.js.map": true,

 "**/.hg": true,

 "**/CVS": true,

 "**/.DS_Store": true

 },

 "workbench.colorTheme": "Visual Studio Light"

}

Once that setting is applied you can see the “JS” and “Map” files are not seen.

21 | P a g e

Lab 4: - Understanding Module loaders using SystemJS

You can watch the below videos which demonstrates concept of Module Loaders and SystemJS
practically.

Topic name YouTube URL source
SystemJS https://www.youtube.com/watch?v=nQGhdoIMKaM
CommonJS concept https://www.youtube.com/watch?v=jN4IM5tp1SE

Step 1: - TypeScript Modules and Import/Export keywords

Modular development is one of the important pillars of development. A good software will
always have self-contained modules. So you would like to create separate physical typescript or
JavaScript files which will have self-contained code. Then you would like have to some kind of
reference mechanism by which modules can be referred between those physical files.

In TypeScript, we do this by using “import” and “export”
keywords.

So the modules which need to be exposed should have
“export” keyword while modules which want to import
the exported modules should have “import” keyword.

For instance, let’s say we have two typescript
files “Customer.ts” and “Dal.ts”. Let’s assume
“Customer.ts” is using “Dal.ts”.

So “Dal.ts” will use export to expose his
modules while “Customer.ts” will use to
import to get the exported module.

So in “Dal.ts” the classes which you want to export should be marked as “exported” as shown in
the below code. If you do not mark it exported it cannot be imported.

export class Dal{

 Add(){

 alert("Dal add called");

 }}

22 | P a g e

Now in the “Customer.ts” we use “import” to call the exported class from the “Dal.ts”.

import {Dal} from "./Dal "

export class Customer{

 Add(){

 var dal = new Dal();

 dal.Add();

 }

}

So in short you use export and import to do modular development in typescript. But now how
does this “TRANSPILE” to JavaScript code that we will see in the next section. At the end of the
day all these modules are transpiled to JavaScript so let’s understand how that works under the
hoods.

Step 2: - Module formats in JavaScript CommonJS, AMD, ES6

Let’s first define this word “Module” formats. We talked about modules in the previous section.
Module formats define the JavaScript syntaxes of how the module should be exported and
imported. In JavaScript world there are two ways of defining module formats: - Unofficial way
and Official way. So prior to ES6 there was no official way so some of the unofficial viral ways of
defining module formats are CommonJS , AMD , UMD and so on. Official way is only and only
one ES6.

For instance, below is the format of CommonJS. In CommonJS the module which is exported is
defined in “exports” variables and to import we need to use “require” keyword. You can see
below is the JS output where the dal is exported using “exports” variable.

Object.defineProperty(exports, "__esModule", { value: true });

var Dal = (function () {

 function Dal() {

 }

 Dal.prototype.Add = function () {

 alert("Dal add called");

 };

 return Dal; }());

exports.Dal = Dal;

23 | P a g e

Below is the code for “Customer.js” which uses “require” to load “Dal.js”.

Object.defineProperty(exports, "__esModule", { value: true });

var Dal_js_1 = require("./Dal.js");

var Customer = (function () {

 function Customer() {

 }

 Customer.prototype.Add = function () {

 var dal = new Dal_js_1.Dal();

 dal.Add();

 };

 return Customer;

}());

exports.Customer = Customer;

So now this is a CommonJS format in the same way we have other formats as well. For example
below is “amd” module format.

In this we export the classes in the “export” variable and use “define” to import. Below is the
code of “define”. We are not pasting of “export” as it’s same like CommonJS.

define(["require", "exports", "./Dal.js", "./Validation.js"], function

(require, exports, Dal_js_1, Validation_js_1) {

 "use strict";

 Object.defineProperty(exports, "__esModule", { value: true });

 var Customer = (function () {

 function Customer() {

 }

 Customer.prototype.Add = function () {

 var val = new Validation_js_1.Validation();

 var dal = new Dal_js_1.Dal();

 dal.Add();

 };

24 | P a g e

 return Customer;

 }());

 exports.Customer = Customer;

});

In “ES6” module format to expose the class we need to “export” keywords and to consume we
need to use “import”.

import { Dal } from "./Dal.js";

import { Validation } from "./Validation.js";

var Customer = (function () {

 function Customer() {

 }

 Customer.prototype.Add = function () {

 var val = new Validation();

 var dal = new Dal();

 dal.Add();

 };

 return Customer;

}());

export { Customer };

var Dal = (function () {

 function Dal() {

 }

 Dal.prototype.Add = function () {

 alert("Dal add called");

 };

 return Dal;

}());

export { Dal };

25 | P a g e

So in simple words
“amd”,”CommonJS” and
“ES6” define how
modules will
communicate with each
other. Concluding ES6
uses “import / export”,
amd uses
“define/export” and
CommonJS uses
“require/export”.

All these module formats can be generated
with simple an option change in TypeScript
config file.

So in “tsconfig.json” we can set in “module”
which module format we want.

Step 3: - Calling JavaScript module loaders in HTML UI

Now when we try to load JavaScript functions which are using module formats like AMD,
CommonJS or ES6 it’s not so easy. For example in below code in HTML UI we have loaded
“Dal.js” and “Customer.js”. This example has been demonstrated in the previous lab and is
having “CommonJS” enabled.

Also we have put the sequence properly, first we have added reference of “Dal.js” and then
“Customer.js” because “Customer.js” is dependent on “Dal.js”.

But when we try to create “Customer” object and try to call “Add” it does not work.

<script src="Dal.js"></script>

<script src="Customer.js"></script>

 <script>

 var cust = new Customer();

 cust.Add();

 </script>

26 | P a g e

We end up with an error below stating that “exports” is not understood. That makes sense
because browser does not know any keywords like “exports” and “require” as its not standard
JavaScript.

The second problem is even if this code had worked i would still have ordering problems for
large number of references. Let us say we have 15 modules which are referencing using module
formats we would end with spending half-life arranging those sequences in HTML file. It would
be great if we can just point to “Customer.js” and automatically using “exports” and “imports”
the references is identified and “Address.js” is loaded.

That’s where we need JavaScript module loaders. Some example of module loaders are
SystemJS , WebPack and so on.

So if we are using module
loaders we just need to point to
the first JS file and automatically
using the
“import/require/define” and
“exports” it will get references
of all the dependent JS files and
load them accordingly.

Let’s demonstrate a module using “SystemJS”. So first go to “Node command prompt” and
install “systemjs”.

npm install systemjs

So in the HTML UI we need to tell “system.js” which is the first JS file to be loaded. You can see
in the below code we are saying “SystemJS.import” load “Customer.js” as the first file.

27 | P a g e

<script src="system.js"></script>

 <script>

 SystemJS.import('./Customer.js')

 .then(function(module){

 var cust = new module.Customer();

 cust.Add();

 }).catch(function (err)

 { console.error(err); });;

 </script>

Once the file has been loaded in the then function we get the modules. We can then refer the
module variable and create object of “Customer” function.

If you watch the network tab of chrome browser you can see first “system.js” loads
“Customer.js” and then also loads its reference that is “Dal.js”.

28 | P a g e

Lab 5:- Understanding Module Bundlers using WebPack

Introduction: - Runtime vs Compile time – Webpack Module bundler

In the previous Lab 4 systemJS was doing everything at the runtime. So in the browser it first
loads “Customer.js” then “Address.js” and so on. If you have lot of dependencies you would end
up with lot of requests.

At the side is a simple image
from an enterprise project
where we have 342
JavaScript file requests to
load the site.

Now that’s a big number and
with so many requests your
application performance will
come down a lot.

If we can create a SINGLE BUNDLE during the compile time itself, that would be a great
performance booster.

That’s where WebPack (
https://webpack.js.org/) comes to use.
WebPack is a module bundler.

It takes the first JS file uses module definitions
like CommonJS/AMD/UMD etc. and figures
out the references and generates one Single
JS file DURING COMPILE TIME. You can take
this one single bundle JS and put in your web
page.

29 | P a g e

So let’s try to understand the basics of how WebPack works.

Step 1: - Install WebPack

So the first step is to install WebPack. So open the node command prompt and type the below
NPM command. Please see we have use “-g” the global flag.

npm install -g webpack

Step 2: - Generate a Single Bundle

We take the same code which we have used in “Lab 4”. In lab 4 if you see we have “Customer.js”
calling “Address.js”. So the first JavaScript file is “Customer.js”. We just need to give the first JS
file name in the WebPack command the final bundle file name. You can also see there is “—
output-library” flag parameter. WebPack will expose “CustomerLibrary” component to us from
where we can access the “Customer” class in the UI.

webpack "Customer.js" "Bundle.js" --output-library='CustomerLibrary'

Step 3: - Calling the javascript class in the webpage.

So now that we have a single bundle we can just load the JS file in the webpage and access the
classes via the “CustomerLibrary”. Remember this “CustomerLibrary” is coming from command
line, please revisit step 2 again for details.

<script src="Bundle.js"></script>

 <script>

 var x = new CustomerLibrary.Customer();

 x.Add();

 </script>

If you now see the network tab you will see now only one single file “Bundle.js” as compared to
multiple files.

30 | P a g e

’

SystemJS and WebPack. When we learn Angular we will first use SystemJS and then in one
of the labs we will see how WebPack helps us.

So now that we have completed all the prerequisites it’s time to start getting in to Angular. So
from Lab 6 the actual Angular starts.

Lab 6: - Components and Modules (Running your first Angular Application)

Introduction

In this lab we will configure Angular environment and we will try to create the basic Customer
screen and make it up and running. So let’s start with the first step downloading angular
framework and configuring typescript compiler.

Step 1: - NPM install to get Angular framework

So let’s create a folder called as “Angular” and open the same using VS code. Please refer Lab 3
on how to use VS code. In case you want to Angular using visual studio you can see this video
https://www.youtube.com/watch?v=oMgvi-AV-eY . If you are eclipse guy please mail me at
questpond@questpond.com

31 | P a g e

So as we discussed in Lab 1 that “Node” has “npm” which helps us to get JavaScript open
sources. So create a package.json file with the below details and do an “npm install” in the
integrated command line of VS code.

{

 "name": "angular-quickstart",

 "version": "1.0.0",

 "license": "ISC",

 "dependencies": {

 "@angular/common": "4.0.0",

 "@angular/compiler": "4.0.0",

 "@angular/core": "4.0.0",

 "@angular/forms": "4.0.0",

 "@angular/http": "4.0.0",

 "@angular/platform-browser": "4.0.0",

 "@angular/platform-browser-dynamic": "4.0.0",

 "@angular/router": "4.0.0",

32 | P a g e

 "@angular/upgrade": "4.0.0",

 "angular-in-memory-web-api": "0.3.2",

 "bootstrap": "^3.3.6",

 "core-js": "^2.4.1",

 "http-server": "^0.10.0",

 "reflect-metadata": "^0.1.3",

 "rxjs": "^5.4.1",

 "systemjs": "0.19.27",

 "zone.js": "^0.8.4"

 },

 "devDependencies": {

 "@types/core-js": "^0.9.42",

 "typescript": "2.3.4"

 }

}

If all the npm install runs successfully you
should see a node_modules folder in your VS
code project directory with the following
folder structure.

If you go inside the “Angular” folder you will
see lot of folders like common, http, forms
core and so on. Putting in simple words
Angular is MODULAR.

They have developed isolated components for
Forms, Http, Core and so on.

33 | P a g e

In AngularJS 1.X we just had one JS file which had the whole framework. So you drag and drop
that single Angular 1.X JS file on HTML page and you are ready with the Angular 1.X
environment. But the problem with having whole framework in one JS files was that you have
to include all features even if you need it or not.

For instance, if you are not using HTTP still that feature will be loaded. In case of Angular we
have separate discrete components which make Angular awesome.

Common errors during NPM install

This is the most crucial part of Angular. You can see that in “package.json” file we have so many
dependencies and these dependencies use each other. So if one version is incompatible the
whole NPM command will fail. So below are the couple of things that you need to take care.

First keep NPM
updated to the latest
version or else you can
end up with a warning
as shown at the side.

AND EVEN IF YOU DO
NOT GET THIS
WARNING STILL KEEP
THE LATEST NPM
VERSION.

34 | P a g e

To get the latest NPM version you need to use “npm install -g npm”. This command will update
NPM itself. Also you can get the below error which shows incompatibility between modules. For
example in the below figure it says “For Angular 4.0 you will need Zone.js which is greater than
0.8.4 version.

So go to your project.json, fix
the version number, DELETE
node_modules folder and do
a NPM again.

Errors of version mismatch can be huge as shown in the below figure. Sometimes fixing
“package.json” can be more painful and iterative. When you do these iterations please ensure
you delete “node_modules” folder so that you are not referring old versions.

You can also get error as shown below “ERR nottarget”. This error says that the particular
version number is not found. Use “npm view packagename version” command to get the latest
version and update your package accordingly.

35 | P a g e

Step 2:- TypeScript configuration tsconfig.json

Also in the same folder we need to create tsconfig.json which defines how typescript will
compile. Do not worry on what settings are there in it we will explain as we go ahead.
Remember do not OVER LEARN. For now just note that the below file defines how TSC will
compile.

{

 "compilerOptions": {

 "target": "es5",//defines what sort of code ts generates, es5

because it's what most browsers currently UNDERSTANDS.

 "module": "commonjs",

 "moduleResolution": "node",

 "sourceMap": true,

 "emitDecoratorMetadata": true,//for angular to be able to use

metadata we specify in our components.

 "experimentalDecorators": true,//angular needs decorators like

@Component, @Injectable, etc.

 "removeComments": false,

 "noImplicitAny": false,

 "noStrictGenericChecks": true,

 "lib": ["es2016", "dom"]

 }

}

36 | P a g e

Step 3:- Configuring SystemJS module loader

SystemJS file defines configuration of how SystemJS will load the frameworks. So this file put it
in the same folder with the name “systemjs.config.js”. The name should be EXACTLY
“systemjs.config.js” because SystemJS looks with that name.

 (function (global) {

 System.config({

 paths: {

 // paths serve as alias

 'npm:': '../node_modules/'

 },

 // map tells the System loader where to look for things

 map: {

 // our app is within the app folder

 app: 'startup',

 // angular bundles

 '@angular/core': 'npm:@angular/core/bundles/core.umd.js',

 '@angular/common': 'npm:@angular/common/bundles/common.umd.js',

 '@angular/compiler':

'npm:@angular/compiler/bundles/compiler.umd.js',

 '@angular/platform-browser': 'npm:@angular/platform-

browser/bundles/platform-browser.umd.js',

 '@angular/platform-browser-dynamic': 'npm:@angular/platform-

browser-dynamic/bundles/platform-browser-dynamic.umd.js',

 '@angular/http': 'npm:@angular/http/bundles/http.umd.js',

 '@angular/router': 'npm:@angular/router/bundles/router.umd.js',

 '@angular/forms': 'npm:@angular/forms/bundles/forms.umd.js',

 'lodash':'node_modules/lodash',

 // other libraries

 'rxjs': 'npm:rxjs',

 'angular-in-memory-web-api': 'npm:angular-in-memory-web-

api/bundles/in-memory-web-api.umd.js',

 'moment': 'npm:moment',

37 | P a g e

 // ag libraries

 'ag-grid-ng2': '../node_modules/ag-grid-ng2',

 'ag-grid': '../node_modules/ag-grid',

 'jquery': '../node_modules/jquery/dist/jquery.js',

 'ng2-auto-complete': '../node_modules/ng2-auto-complete/dist'

 },

 // packages tells the System loader how to load when no filename and/or

no extension

 packages: {

 app: {

 main: '../Startup/Startup.js',

 defaultExtension: 'js'

 },

 rxjs: {

 defaultExtension: 'js'

 },

 'angular-in-memory-web-api': {

 main: './index.js',

 defaultExtension: 'js'

 },

 'lodash': { main: './index.js', defaultExtension: 'js' },

 moment: {

 defaultExtension: 'js'

 },

 'ag-grid-ng2': {

 defaultExtension: "js"

 },

 'ag-grid': {

 defaultExtension: "js"

 },

 'ng2-auto-complete': {

 main: 'ng2-auto-complete.umd.js', defaultExtension: 'js'

38 | P a g e

 }

 }

 });

})(this);

Understanding Angular Component and module architecture

As we said in the previous section that the whole goal of Angular is binding the model and the
view. In Angular the binding code is officially termed as “Component”. So hence forth we will
use the word “Component” for the binding code.

In enterprise projects you can have lot of
components. With many components it can
become very difficult to handle the project.
So you can group components logically in to
modules.

So hence forth I will be using two terms: -

Components: - This will have the binding
logic to bind the UI and the model.

Modules: - This will logically group
components.

Step 4: - Following MVW Step by Step – Creating the folders

Before we start coding lets visualize the steps of coding. As we have said Angular is a binding
framework. It follows MVW architecture. It binds HTML UI with the JavaScript code (model). So
if we visualize it will looks something as shown in the image below. So let’s move from right to
left. So let’s do the coding in the following sequence:-

1. Create the model.
2. Create the Component.

3. Create the module.
4. Create the HTML UI.

39 | P a g e

So let’s first create four folders in our project:-

 View folder: - This folder will contain the HTML UI.
 Model folder: - This folder will have the main business typescript classes.
 Component folder: - This folder will have the binding code which binds the HTML UI and

Model.
 Module: - This folder will have code which will logically group the components.

In order to create a folder in VS code you can use the “New folder” icon or you can right click
and also create a folder.

40 | P a g e

Step 5:- Creating the model

A model is nothing but a class with
properties and behavior. So let us first
create the customer model with three
properties “CustomerName”,
“CustomerCode” and
“CustomerAmount”.

So right click on the “Model” folder and
add a new file “Customer.ts”. Keep the
extension of this file as “.ts” as it’s a
typescript file.

While compiling the typescript
command identifies only files with the
extension “.ts”.

41 | P a g e

In the “Customer.ts” let’s create a “Customer” class with three properties. In this book we will
not be going through the basics of TypeScript , please do go through this 1 hour training video of
typescript which explains typescript in more detail.

export class Customer {

 CustomerName: string = "";

 CustomerCode: string = "";

 CustomerAmount: number = 0;

}

Step 6:- Creating the Component

The next thing we need to code is the
binding code. Binding code in Angular is
represented by something termed as
“COMPONENTS”. Angular components have
the logic which helps to bind the UI with the
model.

So right click on the component folder and
add “CustomerComponent.ts” file as shown
in the figure at the left.

In the component we need to import two things the Angular core and our Customer model.
Please note “import” is a typescript syntax and not JavaScript. So in case you are not following
the code , please see this Learn TypeScript in 1 hour video before moving ahead.

import {Customer} from '../Model/Customer'

import {Component} from "@angular/core"

The first line imports the “Customer” class in to the “CustomerComponent.ts”. This import is
only possible because we have written “export” in “Customer.ts” file. The import and export
generate code which follows CommonJS , AMD or UMD specifications. In case you are new to
these specifications please see this CommonJS video which explains the protocol in more detail.

import {Customer} from '../Model/Customer'

42 | P a g e

Let’s try to understand how “Customer”
component is located. If you see it’s using a
relative path. In the import it says
“../Model/Customer”.

The “../” says go one folder up. So we are
currently in the “Component” folder, so with
“../” it travels to the root and from that point
it makes entry in to the “Model” folder.

The next import command imports angular core components. In this we have not given any
relative path using “../” etc. So how does typescript locate the angular core components?

import {Component} from "@angular/core"

If you remember we had used node to load Angular and node loads the JS files in the
“node_modules” folder. So how does typescript compiler automatically knows that it has to load
the Angular components from “node_modules” folder.
Typescript compiler uses the configuration from “tsconfig.json” file. In the configuration we
have one property termed as “moduleResolution. It has two values:-

 Classic: - In this mode typescript relies on “./” and “../” to locate folders.
 Node: - In this mode typescript first tries to locate components in “node_modules”

folder and if not found then follows the “../” convention to traverse to the folders.

In our tsconfig.json we have defined the mode as “node” this makes typescript hunt modules
automatically in “node_modules” folder. That makes the “import” of Angular components work.

{

 {

 "moduleResolution": "node",

 }

}

43 | P a g e

So now that both the import statements are applied let us create the “CustomerComponent”
and from that let’s expose “Customer” object to the UI with the object name
“CurrentCustomer”.

export class CustomerComponent {

 CurrentCustomer:Customer = new Customer();

}

As we said previously that component connects / binds the model to the HTML UI. So there
should be some code which tells that “CustomerComponent” is bounded with HTML UI. That’s
done by something termed as “Component MetaData Attribute”. A component metadata
attribute starts with “@Component” which has a “templateUrl” property which specifies the
HTML UI with which the component class is tied up with.

@Component({

 selector: "customer-ui",

 templateUrl: "../UI/Customer.html"

})

This attribute is then decorated on the top of the component. Below goes the full code.

@Component({

 selector: "customer-ui",

 templateUrl: "../UI/Customer.html"

})

export class CustomerComponent {

 CurrentCustomer:Customer = new Customer();

}

Putting in simple words binding
code is nothing but a simple
typescript class which decorated
by the “@Component” attribute
which dictates that this typescript
class is binded with which UI.

44 | P a g e

Below goes the full code of the Angular component.

// Import statements

import {Component} from "@angular/core"

import {Customer} from '../Model/Customer'

// Attribute metadata

@Component({

 selector: "customer-ui",

 templateUrl: "../UI/Customer.html"

})

// Customer component class exposing the customer model

export class CustomerComponent {

 CurrentCustomer:Customer = new Customer();

}

Step 7:- Creating the Customer HTML UI – Directives and Interpolation

Now from the “CustomerComponent” , “Customer” is exposed via the “CurrentCustomer”
object to UI. So in the HTML UI we need to refer this object while binding.

In the HTML UI the object is binded by using “Directives”. Directives are tags which direct how
to bind with the UI.

For instance if we want to bind “CustomerName” with HTML textbox code goes something as
shown below:-

 “[(ngModel)]” is a directive which will help us send data from the object to UI and vice
versa.

 Look at the way binding is applied to the object. It’s referring the property as
“CurrentCustomer.CustomerName” and not just “CustomerName”. Why ??. Because if
you remember the object exposed from the “CustomerComponent” is
“CurrentCustomer” object. So you need to qualify “CurrentCustomer.CustomerCode”.

<input type="text" [(ngModel)]="CurrentCustomer.CustomerName">

45 | P a g e

 Round brackets indicate data sent
from UI to object.

 Square brackets indicate data is sent
from object to UI.

 If both are present then it’s a two way
binding.

There would be times when we would like to display object data on the browser. By using
“{{“braces we can display object data with HTML tags. In the below HTML we are displaying
“CustomerName” mixed with HTML BR tag. These braces are termed as “INTERPOLATION”. If
you see the dictionary meaning of interpolation it means inserting something of different nature
in to something else.

In the below code we are inserting object data within HTML.

{{CurrentCustomer.CustomerName}}

Below goes the full HTML UI code with binding directives and interpolation.

<div>

Name:

<input type="text" [(ngModel)]="CurrentCustomer.CustomerName">

Code:

<input type="text" [(ngModel)]="CurrentCustomer.CustomerCode">

Amount:

<input type="text" [(ngModel)]="CurrentCustomer.CustomerAmount">

</div>

{{CurrentCustomer.CustomerName}}

{{CurrentCustomer.CustomerCode}}

{{CurrentCustomer.CustomerAmount}}

Step 8:- Creating the Module

Module is a container or you can say it’s a logical grouping of components and other services.

46 | P a g e

So the first import in this module is the “CustomerComponent” component.

import { CustomerComponent } from '../Component/CustomerComponent';

We also need to import “BrowserModule” and “FormsModule” from core angular.
“BrowserModule” has components by which we can write IF conditions and FOR loop.
“FormsModule” provides directive functionality like “ngModel”, expressions and so on.

import { BrowserModule } from '@angular/platform-browser';

import {FormsModule} from "@angular/forms"

We also need to create a TypeScript class “MainModuleLibrary”. At this moment this class does
not have any code but it can have code which will provide component level logic like caching,
initialization code for those group of components and so on.

export class MainModuleLibrary { }

To create a module we need to use import “NgModule” from angular core. This helps us to
define module directives.

import { NgModule } from '@angular/core';

“NgModule” has three properties:-

 Imports: - If this module is utilizing other modules we define the modules in this section.
 Declarations: - In this section we define the components of the modules. For now we

only have one component ‘CustomerComponent”.
 Bootstrap: - This section defines the first component which will run. For example we can

have “HomeComponent”, “CustomerComponent” and so on. But the first component
which will run is the “HomeComponent” so that we need to define in this section.

@NgModule({

 imports: [BrowserModule,

 FormsModule],

 declarations: [CustomerComponent],

 bootstrap: [CustomerComponent]

})

Below goes the full code of Angular module which we discussed in this section.

47 | P a g e

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import {FormsModule} from "@angular/forms"

import { CustomerComponent } from '../Component/CustomerComponent';

@NgModule({

 imports: [BrowserModule,

 FormsModule],

 declarations: [CustomerComponent],

 bootstrap: [CustomerComponent]

})

export class MainModuleLibrary { }

Step 9:- Creating the “Startup.ts” file

So we have created the UI, we have
created the models, we have created
components and these components
are grouped in to modules. In an
angular application you can have
many modules.

So you need to define the startup
module. So let’s create a “Startup.ts”
file which will define the startup
module.

Below goes the “Startup.ts” file in which we have defined which module will be bootstrapped.

import { platformBrowserDynamic } from '@angular/platform-browser-

dynamic';

import { MainModuleLibrary } from '../Module/MainModuleLibrary';

const platform = platformBrowserDynamic();

platform.bootstrapModule(MainModuleLibrary);

48 | P a g e

Step 10: - Invoking “Startup.ts” file using main angular page

So let us create a startup HTML page which will invoke the “Startup.ts”. Now in this page we will
need to import four JavaScript framework files Shim, Zone, Meta-data and System JS as shown
in the below code.

<script src="../../node_modules/core-js/client/shim.min.js"></script>

<script src="../../node_modules/zone.js/dist/zone.js"></script>

<script src="../../node_modules/reflect-metadata/Reflect.js"></script>

<script src="../../node_modules/systemjs/dist/system.src.js"></script>

Following are the uses of JS files:-

Shim.min.js This framework ensures that ES 6 JavaScript can run in old browsers.
Zone.js This framework ensures us to treat group of async activities as one zone.
Reflect.js Helps us to apply meta-data on JavaScript classes. We are currently using

@NgModule and @NgComponent as attributes.
System.js This module will helps to load JS files using module protocols like

CommonJS, AMD or UMD.

In this HTML page we will are calling the “systemjs.config.js” file. This file will tell system JS
which files to be loaded in the browser.

<script src="../systemjs.config.js"></script>

<script>

 System.config({

 "defaultJSExtensions": true

 });

 System.import('startup').catch(function (err) { console.error(err);

});

</script>

In the “import” we need to specify “startup” which will invoke “startup.js” file.

 System.import('startup').catch(function (err) { console.error(err);

});

49 | P a g e

Our customer screen is with the name “Customer.html”. So to load in to this screen we need to
define a place holder. So in this place holder our Customer HTML page will load.

 <customer-ui></customer-ui>

If you remember when we created the component class we had said to load the HTML page in a
selector. So that selector is nothing but a tag (placeholder) to load our Customer page.

@Component({

 selector: "customer-ui",

 templateUrl: "../UI/Customer.html"

})

Below goes the full HTML page with all scripts and the place holder tag.

<!DOCTYPE html>

<html>

<head>

 <title></title>

 <meta charset="utf-8" />

</head>

<!-- 1. Load libraries -->

<!-- Polyfill(s) for older browsers -->

<script src="../../node_modules/core-js/client/shim.min.js"></script>

<script src="../../node_modules/zone.js/dist/zone.js"></script>

<script src="../../node_modules/reflect-metadata/Reflect.js"></script>

<script src="../../node_modules/systemjs/dist/system.src.js"></script>

<!-- 2. Configure SystemJS -->

<script src="../systemjs.config.js"></script>

<script>

 System.config({

 "defaultJSExtensions": true

 });

50 | P a g e

 System.import('startup').catch(function (err) { console.error(err);

});

</script>

<body>

 <customer-ui></customer-ui>

</body>

</html>

Step 11:- Setting up the typescript compiler

We also need to run typescript so that TS files gets compiled to JS files. So open the integrated
terminal and type “tsc -w”. This will make typescript run continuously at the background. So as
you type typescript will keep compiling when the file changes.

Step 12: - Running the http-server

So if everything is ok in
Step 11 we now need
to now run http server.
To run server we need
to type “http-server” in
the VS code integrated
terminal as shown in
the figure.

51 | P a g e

In case your 80 port is blocked you can run this server on a specific port using command

“http-server –p 99”

This will run this server over 99 port.

So once the web server is running
you can now browse to the main
angular HTML page.

Main angular page means the page
in which we have put the scripts,
put the place holder, SystemJS and
so on.

Please note Customer.html is not
the main page. This page will be
loaded in the placeholder of main
angular page.

Once the sites are running type in
one of the textboxes and see the
automation of binding output in
expression.

Run in two terminals. You can open two terminals by clicking on the “+” in terminal
window. So in one window you can run http-server and in other window you can run

typescript in watch mode.

52 | P a g e

How to the run the source code?

The source code that is attached in this book is without “node_modules” folder. So to run the
code you need to open the folder using VS code and then do a NPM using the integrated
terminal on the folder where you have “package.json” file.

Lab 7:- Implementing SPA using Angular routing

Fundamental of Single Page Application (SPA)

Now a day’s Single page application (SPA) has become the style of creating websites. In SPA we
load only things which we need and nothing more than that.

At the right-hand side is a simple website where we
have Logo and header at the top, Left menu links and
footer at the bottom. So the first time when user
comes to the site all the sections of the master page
will be loaded.
But when user clicks on Supplier link only Supplier
page will load and not logo, header and footer again.
When user clicks on Customer link only Customer page
will be loaded and not all other sections.
Angular routing helps us to achieve the same.

Step 1: - Creating the Master Page

As everything revolves around Master Page so first logical step is to create the “MasterPage”.

53 | P a g e

In this master page we will create placeholders for logo, header , menu , footer , copyright and
so on. These sections will be loaded only once when the user browses the website first time.
And in the later times only pages which are needed will be loaded on demand. Below is the
sample HTML code which has all the placeholder sections. You can also see in this code we have
kept a “DIV” tag section in which we would loading the pages on-demand.

Below is the overall main sections of “MasterPage”. Please note the “DIV” section with name
“dynamicscreen” where we intend to load screens dynamically. We will fill these sections later.

<table border="1">

<tr>

<td>Logo</td>

<td>Header</td>

</tr>

<tr>

<td>Left Menu</td>

<td>

<div id=”dynamicscreen”>

 Dynamic screen will be loaded here

</div>

</td></tr>

<tr>

<td>Footer</td>

<td>Copyright</td></tr></table>

54 | P a g e

Step 2:- Creating the Supplier page and welcome page

Let’s create two more HTML UI one “Supplier” page and “Welcome” page. In both these HTML
pages we are not doing much, we have just greeting messages.

Below is the supplier pages text.

This is the Suppliers page

Below is welcome pages text.

Welcome to the website

Step 3:- Renaming placeholder in Index.html

As explained in Part 1 “Index.html” is the startup page and it bootstraps all other pages using
systemjs. In the previous lesson inside “Index.html”, “Customer.html” page was loading. But
now that we have master page so inside index page “MasterPage.html” will load.

So to make it more meaningful lets rename “customer-ui” tag to “main-ui”. In this “main-ui”
section we will load the master page and when end user clicks on the master page left menu
links supplier, customer and welcome pages will load.

<body>

 <main-ui></main-ui>

</body>

So if look at the flow, first index.html will
get loaded and then inside the “main-ui”,
“masterpage.html” gets loaded.

55 | P a g e

Step 4:- Removing selector from CustomerComponent

Now the first page to load in the index.html will be MasterPage and not Customer page. So we
need to remove the selector from “CustomerComponent.ts”. This selector will be moved to
MasterPage component in the later sections.

The final code of “CustomerComponent.ts” would look something as show below.

import {Component} from "@angular/core"

//importing the customer model

import {Customer} from '../Model/Customer'

@Component({

 templateUrl: "../UI/Customer.html"

})

export class CustomerComponent {

 //this is binding

 CurrentCustomer:Customer = new Customer();

}

56 | P a g e

Step 5:- Creating Components for Master, Supplier and Welcome page

Every UI which is Angular enabled should
have component code file. We have
created 3 user interfaces so we need
three component code files for the
same.

In the component folder, we will create
three component TS files
“MasterPageComponent.ts”,
“SupplierComponent.ts” and
“WelcomeComponent.ts”.

You can visualize component code files as code
behind for Angular UI.

So first let us start with our “MasterPage.html” component which we have given the name it as
“MasterPageComponent.ts”. This master page will get loaded in “Index.html” page in the initial
bootstrapping process. You can see in this component we have put the selector and this will be
the only component which will have the selector.

import {Component} from "@angular/core"

@Component({

 selector: "main-ui",

 templateUrl: "../UI/MasterPage.html"

})

export class MasterPageComponent {

}

Below is the component code for “Supplier.html”.

import {Component} from "@angular/core"

@Component({

 templateUrl: "../UI/Supplier.html"

})

export class SupplierComponent {

}

57 | P a g e

Below is the component code for “Welcome.html”. Both Supplier and Welcome component do
not have the selector, only the master page component has it as it will be the startup UI which
will get loaded in index page.

import {Component} from "@angular/core"

@Component({

 templateUrl: "../UI/Welcome.html"

})

export class WelcomeComponent {

}

Step 6: - Creating the routing constant collection

Once the master page is loaded in the index page, end user will click on the master page links to
browse to supplier page, customer page and so on. Now in order that the user can browse
properly we need to define the navigation paths. These paths will be specified in the “href” tags
in the later steps. When these paths will be browsed, it will invoke the components and
components will load the UI. Below is a simple table with three columns. The first column
specifies the path pattern, second which component will invoke when these paths are browsed
and the final column specifies the UI which will be loaded.

Path/URL Component UI which will be loaded
/ WelcomeComponent.ts Welcome.html
/Customer CustomerComponent.ts Customer.html
/Supplier SupplierComponent.ts Supplier.html

The paths and component entries needs to be defined in a simple literal collection as shown in
the below code. You can see the “ApplicationRoutes” is a simple collection where we have
defined path and the component which will be invoked. These entries are made as per the table
specified at the top.

import {Component} from '@angular/core';

import {CustomerComponent} from '../Component/CustomerComponent';

import {SupplierComponent} from "../Component/SupplierComponent";

import {WelcomeComponent} from "../Component/WelcomeComponent";

58 | P a g e

export const ApplicationRoutes = [

 { path: 'Customer', component: CustomerComponent },

 { path: 'Supplier', component: SupplierComponent },

 { path: '', component:WelcomeComponent }

];

As a good practice above code we have it in a separate folder “routing” & in a separate file
“routing.ts”.

Step 7: - Defining routerLink and router-outlet

The navigation (routes) is defined in “Step 6” in the collection needs to be referred when we try
to navigate inside the website. For example, in the master page we have defined the left menu
hyperlinks. So rather than using the “href” tag of HTML we need to use “[routerLink]”.

Supplier

We need to use “[routerLink]” and the value of “[routerLink]” will be the paths specified in the
route collection define the previous step. For example in the “ApplicationRoutes” collection we
have made one entry for Supplier path we need to specify the path in the anchor tag as shown
in the below code.

<a import {Component} from '@angular/core';

import {CustomerComponent} from '../Component/CustomerComponent';

import {SupplierComponent} from "../Component/SupplierComponent";

59 | P a g e

import {WelcomeComponent} from "../Component/WelcomeComponent";

export const ApplicationRoutes = [

 { path: 'Customer', component: CustomerComponent },

 { path: 'Supplier', component: SupplierComponent },

 { path: '', component:WelcomeComponent }

];

]">Supplier

When the end user clicks on the left master page links the pages (supplier page, customer page
and welcome page) will get loaded inside the “div” tag. For that we need to define “router-
outlet” placeholder. Inside this placeholder pages will load and unload dynamically.

<div id=”dynamicscreen”>

<router-outlet></router-outlet>

</div>

So if we update the master page defined in “Step 1” with “router-link” and “router-outlet” we
would end up with code something as shown below.

<table border="1">

<tr>

<td><img src="http://www.questpond.com/img/logo.jpg" alt="Alternate

Text" />

</td>

<td>Header</td>

</tr>

<tr>

<td><u>Left Menu</u>

<a [routerLink]="['Supplier']">Supplier

<a [routerLink]="['Customer']">Customer</td><td>

<div id=”dynamicscreen”>

<router-outlet></router-outlet>

60 | P a g e

</div>

</td>

</tr>

<tr>

<td>Footer</td>

<td></td>

</tr>

</table>

Step 8:- Loading the routing in Main modules

In order to enable routing collection paths defined in “ApplicationRoutes” we need to load that
in the “MainModuleLibrary” as shown in the below code. “RouterModule.forRoot” helps load
the application routes at the module level.

Once loaded at the module level it will be available to all the components for navigation
purpose which is loaded inside this module.

@NgModule({

 imports: [RouterModule.forRoot(ApplicationRoutes),

 BrowserModule,

 FormsModule],

 declarations:

[CustomerComponent,MasterPageComponent,SupplierComponent],

 bootstrap: [MasterPageComponent]

})

export class MainModuleLibrary { }

The complete code with routes would look something as shown below.

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import {FormsModule} from "@angular/forms"

import { CustomerComponent } from '../Component/CustomerComponent';

import { SupplierComponent } from '../Component/SupplierComponent';

61 | P a g e

import { MasterPageComponent } from

'../Component/MasterPageComponent';

import { RouterModule } from '@angular/router';

import { ApplicationRoutes } from '../Routing/Routing';

@NgModule({

 imports: [RouterModule.forRoot(ApplicationRoutes),

 BrowserModule,

 FormsModule],

 declarations:

[CustomerComponent,MasterPageComponent,SupplierComponent],

 bootstrap: [MasterPageComponent]

})

export class MainModuleLibrary { }

62 | P a g e

Step 9: - Define APP BASE HREF

Router module requires a root path. In other words “Supplier” route would become
“companyname/Supplier”, “Customer” route would become “companyname/Customer” and so
on. If you do not provide a route you would end up with error as shown below.

So in your “Index.html” we need add the HTML BASE HREF tag as show in the highlighted code
below. At this moment we are not providing any root directory.

<!DOCTYPE html>

<html>

<head>

 <title></title>

 <meta charset="utf-8" />

</head>

<base href="./">

<!—Other code has been removed for clarity -->

Step 10:- Seeing the output

Now run the website and try to browser to UI folder and you should see the below animated
video output. You can see that the logo gets loaded only once and later when the user is click on
the supplier links, customer links image is not loading again and again.

63 | P a g e

Step 11:- Fixing cannot match any routes error

If you do a “F12” and check in the console part of the chrome browser, you would see the below
error. Can you guess what the error is?

64 | P a g e

Your current angular application is
route enabled. So every URL which is
browsed is looked up in to routes
collection.

So the first URL which you browse is
“/UI” and it tries to lookup in to your
routes collection and does not find one.

So that’s why it throws up the above
error.

In order to fix the same, make one more entry for “UI” path & point it to
“WelcomeComponent”.

export const ApplicationRoutes = [

 { path: 'Customer', component: CustomerComponent },

 { path: 'Supplier', component: SupplierComponent },

 { path: '', component:WelcomeComponent },

 { path: 'UI', component:WelcomeComponent }

];

Understanding the flow

1. End user loads “index.html”
page.

2. Index.html triggers SystemJS
and loads masterpage.html.

3. When end users click on
MasterPage links, other
pages are loaded in “router-
outlet” placeholders.

65 | P a g e

Lab 8:- Implementing validation using Angular form

In this lab we will try to understand how we can implement validations using Angular
framework.

Requirement of a good validation structure

One of the important legs of software
application is validations.

Validations are normally applied to user
interfaces (Forms) and User interfaces have
controls and on the controls, we apply
validations.

In Angular form validation architecture
structure is as follows.

At the top we have FormGroup,
FormGroup has FormControls and
FormControls has one or many
validations.

There are 3 broader steps to implement Angular validation

1. Create FormGroup.
2. Create FormControl and with proper validations.
3. Map those validations to the HTML Form.

66 | P a g e

What kind of validation will we implement in this Lab?

In this lab we will implement the following validation on our Customer screen: -

 Customer Name should be compulsory.
 Customer code should be compulsory.
 Customer code should be in the format of A1001, B4004 and so on. In other words the

first character should be a capital alphabet followed by 4 letter numeric.

Note: - Customer code has composite validations.

Where to put Validations?

Even before we start with validations we need to decide right place to put validations. If you see
in Angular we have three broader sections UI, Component and Model. So let’s think over which
is the right layer to put validations.

 UI: - UI is all about look and feel and positioning of controls. So putting validation in this
layer is a bad idea. Yes on this layer we will apply validations but the validation code
should be in some other layer.

 Component: - Component is the code behind (Binding code) which binds the UI and
Model. In this layer more binding related activity should be put. One component can
use many models so if we put the validation logic here we need to duplicate that in
other components as well.

 Model: - A Model represents a real world entity like person, user, admin, product etc.
Behavior a.k.a validations are part of the model. A model has Data and Behavior. So the
right place where validations should be present is this Layer.

So let us put validation as a part of the model.

67 | P a g e

Step 1: - Import necessary components for Angular validators

So the first step is to import the necessary components for angular validators in the customer
model. All angular validator components are present in “@angular/forms” folder. We need to
import five components NgForm, FormGroup, FormControl and validators.

NgForm: - Angular tags for validation.
FormGroup: - Helps us to create collection of validation.
FormControl and Validators: - Helps us to create individual validation inside FormGroup.
FormBuilder: - Helps us to create the structure of Form group and Form controls. Please note
one Form group can have many FormControls.

import {NgForm,

 FormGroup,

 FormControl,

 Validators,

 FormBuilder } from '@angular/forms'

Step 2: - Create FormGroup using FormBuilder

The first step is to create an object of FormGroup in which we will have collection of validation.
The FormGroup object will be constructed using the “FormBuilder” class.

formGroup: FormGroup = null; // Create object of FormGroup

var _builder = new FormBuilder();

this.formGroup = _builder.group({}); // Use the builder to create

object

Step 3: - Adding a simple validation

Once the FormGroup object is created the next step is to add controls in the FormGroup
collection. To add a control we need to use “addControl” method. The first parameter in
“addControl” method is the name of the validation and second is the Angular validator type to
be added.

68 | P a g e

Below is a simple code in which we are adding a “CustomerNameControl” using the
“Validators.required” FormControl. Please note “CustomerNameControl” is not a reserved
keyword. It can be any name like “CustControl”.

this.formGroup.addControl('CustomerNameControl', new

 FormControl('',Validators.required));

Step 4: - Adding a composite validation

If you want to create a composite validation then you need to create a collection and add it
using “compose” method as shown in the below code.

var validationcollection = [];

validationcollection.push(Validators.required);

validationcollection.push(Validators.pattern("^[A-Z]{1,1}[0-

9]{4,4}$"));

this.formGroup.addControl('CustomerCodeControl', new FormControl('',

Validators.compose(validationcollection)));

Full Model code with validation

Below is the full Customer Model code with all three validations as discussed in the previous
section. We have also commented the code so that you can follow it.

// import components from angular/form

import {NgForm,

 FormGroup,

 FormControl,

 Validators,

 FormBuilder } from '@angular/forms'

export class Customer {

 CustomerName: string = "";

 CustomerCode: string = "";

 CustomerAmount: number = 0;

 // create object of form group

69 | P a g e

 formGroup: FormGroup = null;

 constructor(){

 // use the builder to create the

 // the form object

 var _builder = new FormBuilder();

 this.formGroup = _builder.group({});

 // Adding a simple validation

 this.formGroup.addControl('CustomerNameControl', new

 FormControl('',Validators.required));

 // Adding a composite validation

 var validationcollection = [];

 validationcollection.push(Validators.required);

 validationcollection.push(Validators.pattern("^[A-Z]{1,1}[0-

9]{4,4}$"));

 this.formGroup.addControl('CustomerCodeControl', new

 FormControl('', Validators.compose(validationcollection)));

 }

}

Step 5: - Reference “ReactiveFormsModule” in MainModuleLibrary.

import {FormsModule , ReactiveFormsModule} from "@angular/forms"

@NgModule({

 imports: [RouterModule.forRoot(ApplicationRoutes),

 BrowserModule,

 FormsModule,

 ReactiveFormsModule],

 declarations: [CustomerComponent,

 MasterPageComponent,

70 | P a g e

 SupplierComponent,

 WelcomeComponent],

 bootstrap: [MasterPageComponent]

})

export class MainModuleLibrary { }

Step 6: - Apply formGroup to HTML form

The next thing is to apply ‘formGroup’ object to the HTML form. For that we need to use
“[formGroup]” angular tag in that we need to specify the “formGroup” object exposed via the
customer object.

<form [formGroup]="CurrentCustomer.formGroup">

</form>

Step 7: - Apply validations to HTML control

The next step is to apply formgroup validation to the HTML input controls. That’s done by using
“formControlName” angular attribute. In “formControlName” we need to provide the form
control name which we have created while creating the validation.

<input type="text" formControlName="CustomerNameControl"

[(ngModel)]="CurrentCustomer.CustomerName">

Step 8: - Check if Validations are ok

When user starts filling data and fulfilling the validations we would like to check if all validations
are fine and accordingly show error message or enable/disable UI controls.

In order to check if all validations are fine we need to use the “valid” property of “formGroup”.
Below is a simple example where the button will be disabled depending on whether validations
are valid or not. “[disabled]” is an angular attribute which enables and disables HTML controls.

<input type="button"

71 | P a g e

value="Click" [disabled]="!(CurrentCustomer.formGroup.valid)"/>

Step 9:- Checking individual validations

“CurrentCustomer.formGroup.valid” checks all the validations of the “FormGroup” but what if
we want to check individual validation of a control.

For that we need to use “hasError” function.
“CurrentCustomer.formGroup.controls['CustomerNameControl'].hasError('required')” checks
that for “CustomerNameControl” has the “required” validation rule been fulfilled. Below is a
simple code where we are displaying error message in a “div” tag which visible and not visible
depending on whether the “hasError” function returns true or false.

Also note the “!” (NOT) before “hasError” which says that if “hasError” is true then hidden
should be false and vice versa.

<div

[hidden]="!(CurrentCustomer.formGroup.controls['CustomerNameControl'].h

asError('required'))">Customer name is required </div>

Step 10: - standalone elements

In our forms we have three textboxes “CustomerName” , “CustomerCode” and
“CustomerAmount”. In these three textboxes only “CustomerName” and “CustomerCode” has
validations while “CustomerAmount” does not have validations.
Now this is bit funny but if we do not specify validations for a usercontrol which is inside a
“form” tag which has “formGroup” specified you would end up with a long exception as shown
below.

Error: Uncaught (in promise): Error: Error in ../UI/Customer.html:15:0

caused by:

 ngModel cannot be used to register form controls with a parent

formGroup directive. Try using

 formGroup's partner directive "formControlName" instead.

Example:

 <div [formGroup]="myGroup">

72 | P a g e

 <input formControlName="firstName">

 </div>

 In your class:

 this.myGroup = new FormGroup({

 firstName: new FormControl()

 });

 Or, if you'd like to avoid registering this form control,

indicate that it's standalone in ngModelOptions:

 Example:

 <div [formGroup]="myGroup">

 <input formControlName="firstName">

 <input [(ngModel)]="showMoreControls"

[ngModelOptions]="{standalone: true}">

 </div>

Error:

 ngModel cannot be used to register form controls with a parent

formGroup directive. Try using

 formGroup's partner directive "formControlName" instead.

Example:

 <div [formGroup]="myGroup">

 <input formControlName="firstName">

 </div>

73 | P a g e

 In your class:

 this.myGroup = new FormGroup({

 firstName: new FormControl()

 });

 Or, if you'd like to avoid registering this form control,

indicate that it's standalone in ngModelOptions:

 Example:

 <div [formGroup]="myGroup">

 <input formControlName="firstName">

 <input [(ngModel)]="showMoreControls"

[ngModelOptions]="{standalone: true}">

 </div>

The above error can be simplified in three simple points: -

1. It says that you have enclosed a HTML control inside a HTML FORM tag which has
Angular form validations.

2. All controls specified inside HTML FORM tag which have angular validation applied
SHOULD HAVE VALIDATIONS.

3. If a HTML control inside Angular form validation does not have validation you can do
one of the below things to remove the exception: -

o You need to specify that it’s a standalone control.
o Move the control outside the HTML FORM tag.

Below is the code how to specify “standalone” for Angular validations.

<input type="text" [ngModelOptions]="{standalone:true}"

[(ngModel)]="CurrentCustomer.CustomerAmount">

Also talk about we can remove from the form control and what happens

74 | P a g e

Complete code of Customer UI with validations applied

Below is the complete Customer UI with all three validations applied to “CustomerName” and
“CustomerCode” controls.

<form [formGroup]="CurrentCustomer.formGroup">

<div>

Name:

<input type="text" formControlName="CustomerNameControl"

[(ngModel)]="CurrentCustomer.CustomerName">

<div

[hidden]="!(CurrentCustomer.formGroup.controls['CustomerNameControl'].h

asError('required'))">Customer name is required </div>

Code:

<input type="text" formControlName="CustomerCodeControl"

[(ngModel)]="CurrentCustomer.CustomerCode">

<div

[hidden]="!(CurrentCustomer.formGroup.controls['CustomerCodeControl'].h

asError('required'))">Customer code is required </div>

<div

[hidden]="!(CurrentCustomer.formGroup.controls['CustomerCodeControl'].h

asError('pattern'))">Pattern not proper </div>

Amount:

<input type="text"

[(ngModel)]="CurrentCustomer.CustomerAmount"

[ngModelOptions]="{standalone: true}">

</div>

{{CurrentCustomer.CustomerName}}

{{CurrentCustomer.CustomerCode}}

{{CurrentCustomer.CustomerAmount}}

<input type="button"

value="Click" [disabled]="!(CurrentCustomer.formGroup.valid)"/>

</form>

75 | P a g e

Write reactive forms

Run and see your validation in action

Once you are done you should be able to see the validation in action as shown in below figure.

Dirty, pristine, touched and untouched

In this lab we covered “valid” and “hasError” property and function. “formGroup” also has lot of
other properties which you will need when you are working with validations. Below are some
important ones.

Property Explanation
dirty This property signals if Value has been modified.
pristine This property says if the field has changed or not.
touched When the lost focus for that control occurs.
untouched The field is not touched.

Lab 9: - Making HTTP calls

Importance of server side interaction

HTML user interfaces are dead if there is no server side interaction. Normally in a web
application we would like to send the data entered by end user to the server. On server side we

76 | P a g e

would have some kind of service which can be created in technologies like Java, C# and so on.
The server side technology can save, edit or delete this data in a database.

In simple words we need to understand how to make HTTP calls from Angular code to a server
side technology.

Yes, this is a pure Angular book

I intend to keep this book as a pure
Angular book. So teaching server
side technology like ASP.NET MVC,
Java services, PHP is out of scope.

So the server side service would be
FAKED (Mocked) by using “Angular
inmemory Webapi”. Please note this
is not a service which you will use
for production its only for test and
development purpose.

In case you want to learn ASP.NET MVC you can start from this
video https://www.youtube.com/watch?v=Lp7nSImO5vk

Step 1: - Creating a fake server side service

Even though we have decided that we will not be creating a professional server side service
using ASP.NET, Java etc. but we will still need one. So we will be using a fake service called as
“angular-in-memory-web-api”. Already the “angular-in-memory-web-api” has been installed
when we did npm. You can check your “package.json” file for the entry of “angular-in-memory-
web-api”.

So let’s create a folder called as “Api” and in
that let us add “CustomerApi.ts” file and in
this file we will write code which will create a
fake customer service.

On this fake service we will make HTTP calls.

Below is a simple service created using “angular-in-memory” open source. In this service we
have loaded a simple “customers” collection with some sample customer records.

77 | P a g e

import { InMemoryDbService } from 'angular-in-memory-web-api'

import {Customer} from "../Model/Customer"

export class CustomerApiService implements InMemoryDbService {

 createDb() {

 let customers =[

 { CustomerCode: '1001', CustomerName: 'Shiv' , CustomerAmount

:100.23 },

 { CustomerCode: '1002', CustomerName: 'Shiv1' , CustomerAmount

:1.23 },

 { CustomerCode: '1003', CustomerName: 'Shiv2' , CustomerAmount

:10.23 },

 { CustomerCode: '1004', CustomerName: 'Shiv3' , CustomerAmount

:700.23 }

]

 return {customers};

 }

}

So now when angular makes HTTP call it
will hit this in-memory API.

So when you make a HTTP GET it will
return the above four records. When you
make a HTTP POST it will add the data to
the in-memory collection.

In other words we do not need to create a professional server side service using ASP.NET or Java
service.

Step 2: - Importing HTTP and WebAPI module in to main module

The next step is to import “HttpModule” from “angular/http” and in-memory API in to main
module. Remember module is collection of components. So the “MainModule” has
“CustomerComponent”, “SupplierComponent”, “MasterpageComponent” and
“WelcomeComponent”.

78 | P a g e

import { HttpModule} from '@angular/http';

import {CustomerApiService} from "../Api/CustomerApi"

Also in the “NgModule” attribute in imports we need to specify “HttpModule” and
“InMemoryWebApiModule”.

@NgModule({

 imports: [….

 HttpModule,

 InMemoryWebApiModule.forRoot(CustomerApiService),

 …..],

 declarations: […],

 bootstrap: [….]

})

export class MainModuleLibrary { }

Shiv: - Talk about the sequence of the Httpmodule and Angular WebAPI

Where do we put the HTTP call?

The next question comes which is the right place to put HTTP calls?

So if you see the normal architecture of
Angular it is as follows: -

 User interface is binded with the
Angular component using bindings
“[()]”.

 So once end user starts putting data
in the UI the model object (in our
case it’s the customer object) will be
loaded and sent to the Customer
component.

 Now customer component has the
filled customer object. So the right
place to make HTTP call is in the
component.

79 | P a g e

Step 3: - Importing HTTP in the Customer component

So let’s go ahead and import the Angular HTTP inside the Customer component.

import { Http, Response, Headers, RequestOptions } from

'@angular/http';

We do not need to create object of HTTP using the new keyword, it will be dependency injected
via the constructor. On the constructor component we have defined the object injection of
HTTP.

constructor(public http:Http){

 }

Step 4: - Creating header and request information

When we send HTTP request from
client to server or we get response,
header information is passed with
the request and response. In header
information we have things like
content types, status, user agent
and so on.

So to create a request we need to first create a header and using that header create a request.
One of the header information we need to provide is type of content we are sending to server is
it XML, JSON etc.

Below is how to create simple request using basic header information.

let headers = new Headers({'Content-Type': 'application/json'});

let options = new RequestOptions({ headers: headers });

Step 5: - Making HTTP calls and observables

Angular HTTP uses something called as observables. So angular is an observer and it subscribes
to observable like HTTP response. In other words, it is listening to data coming from the server.

80 | P a g e

So the below code says that we will be making a GET call to “api/customers” URL and when the
data comes we will send the successful data to the “Success” function and when error occurs we
will get it in “Error” function.

var observable = this.http.get("api/customers", options);

 observable.subscribe(res => this.Success(res),

 res => this.Error(res));

Below is the code of Error and Success function. In “Success” function we are converting the
response to JSON and assigning it to “Customers” collection which is in the component. If we
have error we are displaying it in the browser console.

Error(err) {

 console.debug(err.json());

 }

 Success(res) {

 this.Customers = res.json().data;

 }

Step 6: - Creating a simple post and get call

With all that wisdom we have gathered from Step 4 and Step 5 lets write down two functions
one which will display data and the other which will post data.

Below is a simple “Display” function which makes a HTTP GET call.

Display(){

 let headers = new Headers({

 'Content-Type': 'application/json'

 });

 let options = new RequestOptions({ headers: headers });

 var observable = this.http.get("api/customers", options);

 observable.subscribe(res => this.Success(res),

 res => this.Error(res));}

81 | P a g e

As soon as the customer UI is loaded the customer component object will be created. So in the
constructor we have called the “Display” function to load the customer’s collection.

export class CustomerComponent {

// other code removed for clarity

constructor(public http:Http){

 this.Display();

 }

// other codes removed for clarity

}

Below is simple “Add” function which makes a POST call to the server. In http POST call code
below you can see customer object sent as the third parameter. After the “Add” call we have
made call to “Display” so that we can see the new data added on the server.

Add(){

 let headers = new Headers({

 'Content-Type': 'application/json'

 });

 var cust:any = {};

 cust.CustomerCode = this.CurrentCustomer.CustomerCode;

 cust.CustomerName = this.CurrentCustomer.CustomerName;

 cust.CustomerAmount = this.CurrentCustomer.CustomerAmount;

 let options = new RequestOptions({ headers: headers });

 var observable = this.http.post("api/customers",cust,

options);

 observable.subscribe(res => this.Success1(res),

 res => this.Error(res));

 this.Display();

 }

In the above “Add” function you can see the below code which creates a fresh light weight
customer object. So why do we need to create this fresh new object?

82 | P a g e

 var cust:any = {};

 cust.CustomerCode = this.CurrentCustomer.CustomerCode;

 cust.CustomerName = this.CurrentCustomer.CustomerName;

 cust.CustomerAmount = this.CurrentCustomer.CustomerAmount;

The current customer object has lot of
other things like validations, prototype
object etc. So posting this whole object to
the server does not make sense. We just
want to send three properties
“CustomerCode”, “CustomerAmount” and
“CustomerName”.

In other words we need to create a light
weight DTO (Data transfer object) which
just has those properties.

Step 7: - Connecting components to User interface

Now that our component is completed we need to attach the “Add” function to the button
using the “click” event of Angular. You can see that the (click) is inside a round bracket, in other
words we are sending something(event click) from UI to the Object.

<input type="button"

value="Click" (click)="Add()"

[disabled]="!(CurrentCustomer.formGroup.valid)"/>

Also we need to create a table in which we will use “ngFor” loop and display all customer’s
collection on the HTML UI. In the below code we have created a temporary object “cust” which
loops through the “Customers” collection and inside <td> tag we are using the expressions
({{cust.CustomerName}}) to display data.

<table>

 <tr>

 <td>Name</td>

 <td>code</td>

 <td>amount</td>

83 | P a g e

 </tr>

 <tr *ngFor="let cust of Customers">

 <td>{{cust.CustomerName}}</td>

 <td>{{cust.CustomerCode}}</td>

 <td>{{cust.CustomerAmount}}</td>

 </tr>

</table>

Go ahead and run the application. If you go and add “customer” object you should see the HTTP
calls happening and the list getting loaded in the HTML table.

Lab 10: - Input, Output and emitters

Theory

Reusability is one of the most important
aspects of development. As Angular is a UI
technology we would like to create UI
controls and reuse them in different UI.

For example in the Customer UI we have the
table grid display. If we want to create grid in
other UI we need to again repeat the
“<tr><td>” loop. It would be great if we can
create a generic reusable grid control which
can be plugged in to any UI.

84 | P a g e

If we want to create a GENERIC
reusable grid control you need to
think GENERICALLY, you need to
think in terms of INPUTS and
OUTPUTS.

So the first visualization which you
should have in your mind is that your
GRID control is like a self-contained
unit which gets a input of some data
collection and when any one selects
grid data the selected object is sent
outside.

So if you are using this grid control
with a Customer UI you get a
Customer collection, if you are using
a Supplier UI you will get a supplier
collection.

In order to achieve this generic thought process Angular
has provided three things Input, Output and Event
emitters.

Input helps us define the input data to the user control.
Output uses event emitters to send data to the UI in
which the user control is located.

Planning how the component will look like

First let us plan how our grid component will look like. Grid component will be called in main
HTML using “<grid-ui></grid-ui>” HTML element.

The grid component will have three attributes: -

 grid-columns: - This will be a input in which we will specify the columns names of the
grid.

85 | P a g e

 grid-data: - This will be again a input in which we will provide the data to be displayed
on the grid.

 grid-selected: - This will be a output from which the selected object will be sent via
emitter events to the contained UI.

<grid-ui [grid-columns]=”In this we will give column names"

 [grid-data]="In this we will give data for grid"

 (grid-selected)="The selected object will be sent in event">

</grid-ui>

Step 1: - Import input, output and Event Emitter

So first let us go ahead and add a separate file
for grid component code and name it
“GridComponent.ts”.

In this file, we will write all code that we need
for Grid component.

The first step is to add necessary components which will bring in Input and Output capabilities.
For that we need to import component, Input, Output and event emitter component from
“angular/core”.

import {Component,

 Input,

 Output,

 EventEmitter} from "@angular/core"

Step 2: - Creating the reusable GridComponent class

As this is a component we need to decorate the class with “@Component” decorator. The UI for
this component will coded in “Grid.html”. You can also see in the below code we defined the
selector has “grid-ui”, can you guess why?

If you remember in the planning phase we had said that the grid can be called by using “<grid-
ui>” tag.

86 | P a g e

@Component({

 selector: "grid-ui",

 templateUrl : "../UI/Grid.html"

})

export class GridComponent {

}

Step 3: - Defining inputs and output

As this is a grid component we need data for the grid and column names for the grid. So we
have created two array collection one, “gridColumns” (which will have column names) and
“gridData” (to data for the table).

export class GridComponent {

 // This will have columns

 gridColumns: Array<Object> = new Array<Object>();

 // This will have data

 gridData: Array<Object> = new Array<Object>();}

There are two methods “setGridColumns” and “setGridDataSet” which will help us to set
column names and table data to the above defined two variables.

These methods will be decorated by using “@Input” decorators and in this we will put the
names by which these inputs will be invoked while invoking this component.

// The top decorator and import code is removed

// for clarity purpose

export class GridComponent {

// code removed for clarity

 @Input("grid-columns")

 set setgridColumns(_gridColumns: Array<Object>) {

 this.gridColumns = _gridColumns;

 }

 @Input("grid-data")

 set setgridDataSet(_gridData: Array<Object>) {

87 | P a g e

 this.gridData = _gridData;

 }

}

The names defined in the input decorator will be used as shown below while making call to the
component in the main UI.

<grid-ui [grid-columns]=”In this we will give column names"

 [grid-data]="In this we will give data for grid" >

</grid-ui>

Step 4: - Defining Event emitters

As discussed in this Labs theory section we will have inputs and outputs. Outputs are again
defined by using “@Output” decorator and data is sent via event emitter object.

To define output we need to use “@Output” decorator as shown in the below code. This
decorator is defined over “EventEmitter” object type. You can see that the type is “Object” and
not “Customer” or “Supplier” because we want it to be of a generic type. So that we can attach
this output with any component type.

 @Output("grid-selected")

 selected: EventEmitter<Object> = new EventEmitter<Object>();

Now when any end user selects an object from the grid we need to raise event by using the
“EventEmitter” object by calling the “emit” method as shown below.

// Other codes have been removed for clarity purpose.

export class GridComponent {

 @Output("grid-selected")

 selected: EventEmitter<Object> = new EventEmitter<Object>();

 Select(_selected: Object) {

 this.selected.emit(_selected);

 }

}

88 | P a g e

Below goes the full code of “GridComponent.ts” which we have discussed till now.

import {Component,

 Input,

 Output,

 EventEmitter} from "@angular/core"

@Component({

 selector: "grid-ui",

 templateUrl : "../UI/Grid.html"

})

export class GridComponent {

 gridColumns: Array<Object> = new Array<Object>();

 // inputs

 gridData: Array<Object> = new Array<Object>();

 @Output("grid-selected")

 selected: EventEmitter<Object> = new EventEmitter<Object>();

 @Input("grid-columns")

 set setgridColumns(_gridColumns: Array<Object>) {

 this.gridColumns = _gridColumns;

 }

 @Input("grid-data")

 set setgridDataSet(_gridData: Array<Object>) {

 this.gridData = _gridData;

 }

 Select(_selected: Object) {

 this.selected.emit(_selected);

 }

}

89 | P a g e

Step 5: - Creating UI for the reusable component

Also we need to create UI for the
“GridComponent.ts”. Remember if we have
an Angular component we NEED A HTML UI
for it.

So in the UI folder we will add “Grid.html” in
which we will write the code of table display.

In the “GridComponent.ts” (refer Step 4 of this Lab) we have defined input “gridColumns”
variable in which we will provide the columns for the grid. So for that we had made a loop using
“*ngFor” which will create the columns “<td>” dynamically.

<table>

 <tr>

 <td *ngFor="let col of gridColumns">

 {{col.colName}}

 </td>

 </tr>

</table>

And to display data in the grid we need to loop through “gridData” variable.

 <tr *ngFor="let colObj of gridData">

 <td *ngFor="let col of gridColumns">

 {{colObj[col.colName]}}

 </td>

 <td><a [routerLink]="['Customer/Add']"

(click)="Select(colObj)">Select</td> </tr>

90 | P a g e

So the complete code of “Grid.html” looks as shown below.

<table>

 <tr>

 <td *ngFor="let col of gridColumns">

 {{col.colName}}

 </td>

 </tr>

 <tr *ngFor="let colObj of gridData">

 <td *ngFor="let col of gridColumns">

 {{colObj[col.colName]}}

 </td>

 <td><a [routerLink]="['Customer/Add']"

(click)="Select(colObj)">Select</td>

 </tr>

</table>

Step 6: - Consuming the component in the customer UI

So now that our reusable component and its UI is completed, let us call the component in the
“Customer.html” UI.

Below is the full proper code which has column names defined in “grid-columns” and in “grid-
data” we have set “Customers” collection. This “Customers” collection object is exposed from
the “CustomerComponent” class. This “Customers” collection is that collection which we had
created during the “HTTP” call lab. This variable has collection of “Customer” data.

<grid-ui

 [grid-

columns]="[{'colName':'CustomerCode'},{'colName':'CustomerName'},{'colN

ame':'CustomerAmount'}]"

 [grid-data]="Customers"

 (grid-selected)="Select($event)"></grid-ui>

91 | P a g e

Also we need to ensure that the old “<table>” code is deleted and is replaced with the above
“<grid-ui>” input /output tag.

Step 7: - Creating events in the main Customer component

If you remember in our
“GridComponent” we are emitting
event by calling “emit” method. Below
is the code snippet for it. Now this
event which is emitted needs to caught
in the “CustomerComponent” and
processed.

export class GridComponent {

 Select(_selected: Object) {

 this.selected.emit(_selected);

 }

}

So in order to catch that event in the main component we need to create a method in
“CustomerComponent” file. So in the customer component typescript file we will create a
“Select” function in which the selected customer will come from the GridComponent and that
selected object will be set to “CurrentCustomer” object.

export class CustomerComponent {

Select(_selected:Customer) {

 this.CurrentCustomer.CustomerAmount =_selected.CustomerAmount;

 this.CurrentCustomer.CustomerCode = _selected.CustomerCode;

 this.CurrentCustomer.CustomerName = _selected.CustomerName;

 }

}

92 | P a g e

Step 8: - Defining the component in the mainmodule

Also we need to ensure that the “GridComponent” is loaded in the main module. So in the main
module import the “GridComponent” and include the same in the declaration of “NgModule”
decorator as shown in the below code.

import { GridComponent } from '../Component/GridComponent';

@NgModule({

 imports: [RouterModule.forRoot(ApplicationRoutes),

 InMemoryWebApiModule.forRoot(CustomerApiService),

 BrowserModule,ReactiveFormsModule,

 FormsModule,HttpModule],

 declarations: [CustomerComponent,

 MasterPageComponent,

 SupplierComponent,

 WelcomeComponent,

 GridComponent],

 bootstrap: [MasterPageComponent]

})

export class MainModuleLibrary { }

And that’s it now hit “Control + B” on keyboard, run the server and see your reusable grid
working.

93 | P a g e

Lab 11: - Lazy loading using dynamic routes

Theory

Big projects will have lot of components and modules, in other words we will end up with lot of
JS files on the browser client side. Loading these JS files in ONE GO at the client browser side
would really hit performance.

If you load the current application at this
stage and see the developer tools you will
see on the network tab all JS files are getting
loaded at the start.

When the first time the user comes to the
site we would like to just load the welcome
component and master component JS only.

When the user clicks on supplier and
customer respective JS files should be
loaded at that moment.

Let’s investigate who is the culprit?

If you see the current architecture of our
project we have one module (MainModule.ts)
and all components current belong to this only
ONE Module.

So when this module loads it loads all
components inside it.

In simple words we need to BREAK MODULES
in to separate physical module files.

94 | P a g e

Step 1: - Creating three different physical modules

So as discussed in the
previous part of the
theory we need to first
divide our project in to
three different physical
module files: -

MainModule ,

SupplierModule and

CustomerModule.

So in the module folder let us create three
different physical module files. We already have
MainModule.ts we need to create two more.

MainModule.ts :- This module will load
“MasterPageComponent.ts” and
“WelcomeComponent.ts”.

SupplierModule.ts :- This module will load
“SupplierComponent.ts”.

CustomerModule.ts :- This will load
CustomerComponent and GridComponent.
Remember grid is used only in Customer UI so
this should load only when Customer
functionality is loaded.

95 | P a g e

Step 2: - Removing Supplier and Customercomponent from MainModule

The first thing is we need to remove all references of CustomerComponent, SupplierComponent
and GridComponent from the MainModule. Below is source code which is represented as strike
out and now all it needs to be removed from the MainModule. In the main module, we only
have reference to WelcomeComponent and MastePageComponent.

Two modules are decoupled from each other when import does not exist between those
modules. Even if you do not use the component and there is an import decoupling is not
complete and the JS will be loaded.

Lot of Code has been removed for clarity. Please download source code

for full code.

import { CustomerComponent } from '../Component/CustomerComponent';

import { SupplierComponent } from '../Component/SupplierComponent';

import { WelcomeComponent } from '../Component/WelcomeComponent';

import { GridComponent } from '../Component/GridComponent';

import { MasterPageComponent } from

'../Component/MasterPageComponent';

@NgModule({

 imports: [RouterModule.forRoot(ApplicationRoutes),

 InMemoryWebApiModule.forRoot(CustomerApiService),

 BrowserModule,ReactiveFormsModule,

 FormsModule,HttpModule],

 declarations: [CustomerComponent,

 MasterPageComponent,

 SupplierComponent,

 WelcomeComponent,

 GridComponent],

 bootstrap: [MasterPageComponent]

})

export class MainModuleLibrary { }

96 | P a g e

Step 3: - Creating different Route files

As said previously “A SIMPLE IMPORT REFERENCE” will make two modules coupled. If the
modules are coupled those JS files will be loaded.

If you remember “MainModule.ts”
loads the Routes from “Routing.ts”
and Routing.ts has import
references to SupplierComponent
and CustomerComponent.

So loading routing will load the
other components as well and we
will not be able to achieve lazy
loading.

So let us remove all references of
Customer and Supplier component
from MainModule.ts, see the
striked out code down below.

import {Component} from '@angular/core';

import {CustomerComponent} from '../Component/CustomerComponent';

import {SupplierComponent} from "../Component/SupplierComponent";

import {WelcomeComponent} from "../Component/WelcomeComponent";

export const ApplicationRoutes = [

 { path: 'Customer', component: CustomerComponent },

 { path: 'Supplier', component: SupplierComponent },

 { path: '', component:WelcomeComponent },

 { path: 'UI/Index.html', component:WelcomeComponent }

];

But still we need to still define routes for “Customer” and “Supplier” and the same time not use
“import” statement as that makes the module coupled. If you look at the current syntax of
defining route we need to have that component in the import or else we cannot define the
route.

{ path: 'CustomerComponent', component:CustomerComponent },

97 | P a g e

For that Angular has given a nice property called as “loadChildren”. In “loadChildren” we need
to give the module in a single quote like a string. It thus means that this thing will be evaluated
during run time and now compile time.

{

path: 'Customer',

loadChildren:'../Module/CustomerModuleLibrary#CustomerModuleLibrary'

}

The structure of “loadChildren” should follow this pattern: -

 The first element in the ‘loadChildren” is the folder name, in case module file is in a
folder.

 The second element is the physical filename of the module. In our case we have
“CustomerModuleLibrary.ts”, “SupplierModuleLibrary.ts” and so on.

 The third element after the “#” is the class name which should be loaded from the
physical module file. It’s very much possible you can have many classes in one physical
module file, but after the “#” we define which of those classes should be loaded.

The full code of the route will look something as shown below.

import {Component} from '@angular/core';

import {WelcomeComponent} from "../Component/WelcomeComponent";

export const ApplicationRoutes = [

 { path: 'Customer',

98 | P a g e

loadChildren:'../Module/CustomerModuleLibrary#CustomerModuleLibrary' },

 { path: 'Supplier',

loadChildren: '../Module/SupplierModuleLibrary#SupplierModuleLibrary'

},

 { path: '', component:WelcomeComponent },

 { path: 'UI/Index.html', component:WelcomeComponent },

 { path: 'UI', component:WelcomeComponent }

];

We also need to create two more route files one for “Customer” and one for “Supplier” as
shown below.

import {Component} from '@angular/core';

import {CustomerComponent} from "../Component/CustomerComponent";

export const CustomerRoutes = [

 { path: 'Add', component:CustomerComponent }

];

import {Component} from '@angular/core';

import {SupplierComponent} from "../Component/SupplierComponent";

export const SupplierRoutes = [

 { path: 'Add', component:SupplierComponent }

];

“SupplierRoutes” and “CustomerRoutes” are child routes while the “ApplicationRoutes” is the
parent route.

Step 4: - Calling Child routes in Supplier and Customer modules

In supplier module and customer modules we need to load their respective routes defined in
“Step 3”. To load child routes we need to use “RouterModule.forChild”.

99 | P a g e

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import {FormsModule , ReactiveFormsModule} from "@angular/forms"

import { SupplierComponent } from '../Component/SupplierComponent';

import { RouterModule } from '@angular/router';

import { SupplierRoutes } from '../Routing/SupplierRouting';

import {CustomerApiService} from "../Api/CustomerApi"

@NgModule({

 imports: [RouterModule.forChild(SupplierRoutes),

 CommonModule,ReactiveFormsModule,

 FormsModule],

 declarations: [SupplierComponent],

 bootstrap: [SupplierComponent]

})

export class SupplierModuleLibrary { }

Same way we need to for Customer Module.

import { NgModule } from '@angular/core';

import { CommonModule } from '@angular/common';

import {FormsModule , ReactiveFormsModule} from "@angular/forms"

import { CustomerComponent } from '../Component/CustomerComponent';

import { GridComponent } from '../Component/GridComponent';

import { RouterModule } from '@angular/router';

import { CustomerRoutes } from '../Routing/CustomerRouting';

import { InMemoryWebApiModule } from 'angular2-in-memory-web-api';

import {CustomerApiService} from "../Api/CustomerApi"

import { HttpModule } from '@angular/http';

@NgModule({

 imports: [RouterModule.forChild(CustomerRoutes),

 InMemoryWebApiModule.forRoot(CustomerApiService),

 CommonModule,ReactiveFormsModule,

100 | P a g e

 FormsModule,HttpModule],

 declarations: [CustomerComponent,

 GridComponent],

 bootstrap: [CustomerComponent]

})

export class CustomerModuleLibrary { }

Step 5: - Configuring routerlinks

In step 3 and 4 we have defined parent routes
and child routes. Parent routes are defined in
“Routing.ts” while child routes are defined in
“CustomerRouting.ts” and
“SupplierRouting.ts”. So now the router link
has to be changed to “Supplier/Add” and
“Customer/Add” as shown in the below code.

<a [routerLink]="['Supplier/Add']">Supplier

<a [routerLink]="['Customer/Add']">Customer

So now the full code look of master page looks as shown below.

<table border="0" width="100%">

<tr>

<td width="20%"><img src="http://www.questpond.com/img/logo.jpg"

alt="Alternate Text" />

</td>

<td width="80%">Questpond.com Private limited</td>

</tr>

<tr>

<td valign=top><u>Left Menu</u>

<a [routerLink]="['Supplier/Add']">Supplier

<a [routerLink]="['Customer/Add']">Customer

<a [routerLink]="['']">Home

101 | P a g e

</td>

<td>

<div id=”dynamicscreen”>

<router-outlet></router-outlet>

</div></td></tr>

<tr>

<td></td>

<td>Copy right @Questpond</td></tr></table>

Step 6: - Replacing browser module with common module

“BrowserModule” and “CommonModule” are modules of angular. “BrowserModule” has code
which starts up services and launches the application while “CommonModule” has directives
like “NgIf” and “NgFor”.
“BrowserModule” re-exports “CommonModule”. Or if I put in simple words “BrowserModule”
uses “CommonModule”. So if you are loading “BrowserModule” you are loading
“CommonModule” also.

So now if you are loading “BrowserModule”
in all three modules then you will end
uploading “CommonModule” 3 times.
When you are doing Lazy Loading you really
do not want to load things 3 times, it should
be loaded only once.

So if you have “BrowserModule” in all three
modules then you would end up getting
such kind of error as shown in below figure.

This error says “BrowserModule” has
already been loaded in the “MainModule”
please use “CommonModule” in
“CustomerModule” and “SupplierModule”.

102 | P a g e

So in main module load the browser module and in rest of modules load “CommonModule”.

import { BrowserModule } from '@angular/platform-browser';

// Other imports have been removed for clarity

@NgModule({

 imports: [RouterModule.forRoot(ApplicationRoutes),

 InMemoryWebApiModule.forRoot(CustomerApiService),

 BrowserModule,ReactiveFormsModule,

 FormsModule,HttpModule],

 declarations: [

 MasterPageComponent,

 WelcomeComponent],

 bootstrap: [MasterPageComponent]

})

export class MainModuleLibrary { }

But in customer and supplier module just load common module.

import { CommonModule } from '@angular/common';

// other imports has been removed for clarity

@NgModule({

 imports: [RouterModule.forChild(SupplierRoutes),

103 | P a g e

 CommonModule,ReactiveFormsModule,

 FormsModule],

 declarations: [SupplierComponent],

 bootstrap: [SupplierComponent]

})

export class SupplierModuleLibrary { }

import { CommonModule } from '@angular/common';

// Other import has been removed for claroty

@NgModule({

 imports: [RouterModule.forChild(CustomerRoutes),

 InMemoryWebApiModule.forRoot(CustomerApiService),

 CommonModule,ReactiveFormsModule,

 FormsModule,HttpModule],

 declarations: [CustomerComponent,

 GridComponent],

 bootstrap: [CustomerComponent]

})

export class CustomerModuleLibrary { }

Step 7: - Check if Lazy loading is working

Now run your application, go to network tab and check if lazy loading is working. You can see
when the application run at the start only “WelcomeComponent” and “MasterPageComponent”
is loaded. Once you click on supplier and customer the respective components will loaded at
that time.

Please put a proper filter so that you do not see all JS files in your network.

104 | P a g e

Lab 12: - Using jQuery with Angular

Introduction

If you look at jQuery it is a very old and trusted JavaScript framework. It has lot of UI
components which are stable and trusted. As a practice, you should not use jQuery with Angular
because both of them can overlap with DOM manipulation causing confusion.

jQuery manipulates HTML
DOM directly using “$”
syntaxes while Angular
creates a sugar-coated
DOM over HTML DOM and
does the manipulation via
this sugar-coated DOM.

So jQuery can manipulate
HTML DOM without
Angular not having
knowledge about this
manipulation creating more
confusion.

105 | P a g e

But then there are instances when we would like to use jQuery UI components like jQuery grids,
jQuery calendar and so on which probably are not available in Angular.

If Angular is your prime framework, then first see that you get your solution inside Angular
if not then use jQuery or any other framework.

In this lab we will use jQuery to fade away and fade in our grid component. So let’s create a
button with name Hide grid. When the end user clicks on hide grid the grid should gradually
become visible and invisible.

Step 1: - Install jQuery

So the first step is to get jQuery. Let’s fire up the node command and also let’s get jQuery as
well as let us save the entry in to “package.json” file.

npm install jquery –save

Step 2: - Install jQuery Typings

JavaScript is divided in to two generations, one generation before TypeScript i.e. pure JavaScript
and other generation after typescript. JavaScript is a dynamic and an untyped language while
TypeScript is strongly typed. We can call methods which does not exist, assign variables which
are not created as so on.

On other side TypeScript is strongly typed. Everything is done during design time/compile time,
TypeScript has to know the methods, parameters everything upfront.

106 | P a g e

Now frameworks like jQuery are made in pure JavaScript, so if they need to be used in
TypeScript we need to expose their types, parameters and so on. That’s where we need to
create typing files. Typing’s are TypeScript files which expose the shape and structure of
JavaScript objects so that TypeScript can understand JavaScript types during design time.

You must be wondering so do we need to create the typing’s file manually? No you do not need
to. jQuery already has typing’s on the contrary almost all popular JavaScript frameworks have
their typing’s file.

So to get the jQuery typing’s we need to do npm install by pointing at “@types/jquery”. In fact
you can load any types by using “@types” for example if you want to load lodash you can do
“npm install” on “@types/lodash”.

npm install @types/jquery –save

Step 3: - Providing ID’s in the UI

If you see jQuery refers HTML UI elements using selectors. In selectors, we need to provide
name or ids by which we can get reference of that HTML element. So let’s wrap our “grid”
component inside a DIV tag and lets assign some “id” value to it, like the one we have given in
the below code “divgrid”.

Also we have created a button which calls the “Fade” methods from the component.

107 | P a g e

<input (click)="Fade()" type="button" value="Hide Grid"/>

<div id="divgrid">

<grid-ui

 [grid-

columns]="[{'colName':'CustomerCode'},{'colName':'CustomerName'},{'colN

ame':'CustomerAmount'}]"

 [grid-data]="Customers"

 (grid-selected)="Select($event)"></grid-ui>

<div>

Step 4: - Importing and using jQuery in Component

Now the first thing is to import jQuery in to your component file. For that we need to use the
below code. You can see the import statement is bit differently used. We are using “*” and “as”
keyword. “*” means we want to refer full JQuery file and “$” is the alias by which we will be
referring jQuery syntax in the code.

import * as $ from "jquery";

Once jQuery has been imported we can now use “$” to execute jQuery syntaxes. You can see we
have created a method called as “Fade” in which we are referring the HTML DIV ID and calling
the “fadeToggle” method to fade in and out.

import * as $ from "jquery";

export class CustomerComponent {

 // Code removed for clarity

 Fade(){

 $("#divgrid").fadeToggle(3000);

 }

 }

108 | P a g e

Step 5: - Make entry in to Systemjs.config.js

Our JS files are loaded using SystemJS module loader. So we need to make an entry in to
“Systemjs.config.js” file stating where the jQuery file is located.

'jquery': '../node_modules/jquery/dist/jquery.js'

If you see we have specified the folder path as “dist”. “dist” stands for distribution folder.
The final compiled copy of jQuery is in this folder so we have specified the same.

Now run the program and see the output. If you click on the “Hide” button you should see the
grid fading out and in.

Lab 13: - Pipes in Angular

This lab is the smallest of all labs till now with some theory followed by three steps. So if you are
tired and worn out, this lab will be relaxing for you.

Introduction

Pipes take in a data input and transforms data to a different output. For example, pipe can take
“Learn Angular” as input and transform to “LEARN ANGULAR” in capital or you can give input as
“100” which you want to display (transform) as “100.00 $” on UI.

109 | P a g e

So for our lab number 13 we will do the
following pipe transforms: -

 Change Customer name in to capital
letters.

 Change Customer amount to proper
formatted amount with $ currency
sign.

 Depending on the Amount we would
like to display “Gold” or “Silver”
customer status. So if the amount
exceeds 100 it will display “Gold
Customer” and if less than 100 it will
display “Simple Customer”.

See down the image for more detail of how the
output produced on the browser would really

look like.

Understanding syntax of pipes

Before we move ahead with labs on pipes let us understand how the syntax of pipes looks like.
You need to write pipe syntax inside an expression “{{ }}”. You need to first put data that needs
to be formatted and then followed by “|” symbol as shown in the below figure. Once you run it,
it displays final formatted output on the HTML.

Pipe syntaxes are written inside HTML.

Step 1: - Applying readymade pipes

There are two broader categories of pipes:- Readymade pipes and Custom pipes. You can get list
of readymade pipes from https://angular.io/api?type=pipe.

So to display “CustomerName” in capital and “CustomerAmount” with currency sign we can use
two readymade filters “uppercase” and “currency” respectively. Below are the code syntaxes for
the same.

110 | P a g e

{{CurrentCustomer.CustomerName | uppercase}}

{{CurrentCustomer.CustomerAmount | currency}}

Step 2: - Creating custom pipes for customer grading

But the third requirement is a bit complicated. In this is the entered amount is greater than 100
we need to display “Gold Customer” and if it’s less than 100 we need to display “Normal
Customer”.

So let’s create a separate folder called as “Pipes” and in that lets create “GradePipes.ts” as
shown in the below figure.

In “GradePipes.ts” we will write the code which will have the logic. So first thing we need to
import “Pipe” and “PipeTransform” from core as these classes are the building blocks for pipes.

import { Pipe, PipeTransform } from '@angular/core';

The next thing is we need to create a “GradePipes” class which implements the “PipeTransform”
interface and has “@Pipe” decorated on the top of it. Every pipe class should have a
“transform” method as it is small “t” “r”… “transform” which has a input parameter i.e.
customer amount which will be provided in the UI.

111 | P a g e

@Pipe({name: 'GradePipes'})

export class GradePipes implements PipeTransform {

 transform(value:number): string {

 if(value < 100){

 return "Simple Customer";

 }

 else{

 return "Gold Customer";

 }

 }

}

In “@Pipe” decorator we have also specified a “name”. This name will be used in the UI to make
call to the pipe.

Step 3: - Applying the grading pipe on the UI

And then finally we need to call the pipe in the HTML UI. We need can now call “GradePipes” as
shown in the below code. “CurrentCustomer.CustomerAmount” is the input and the pipe is
“GradePipes”.

{{ CurrentCustomer.CustomerAmount|GradePipes}}

Once done, enjoy your produced output.

112 | P a g e

Lab 14: - Providers, Services and Dependency Injection

The Problem

Courtesy: - https://medium.com/nestle-usa/4-tips-for-starting-your-baby-on-fruits-veggies-
aafd6b2c0cde

A sign of really good software architecture is: -

“When you make change at one place you do not need to change at many places”.

Now take the below situation. In your project let’s say you have lot of modules and 100’s (just
put a figure) components. Now in all your 100 components you want to implement logging
utility.

In logging utility also you have different varieties. Some logger just logs to the console of the
browser while some display using dialog boxes.

113 | P a g e

So assume that these loggers are used in those 100’s of components to log error and
instrumentation messages. So in all your components you will do two things: -

 Import the logger component using “import” syntax.
 And then create object of the logger.

Below is the code snippet for it.

import { ConsoleLogger} from "../Utility/Utility"

// code deleted for clarity

export class CustomerComponent {

 logger: ConsoleLogger = new ConsoleLogger ();

 // code removed for clarity

}

Now let’s say somewhere down the line you think you want to log messages using dialog boxes ,
think about the amount of changes you need to make in your 100 of components.

Solution DI and IOC

Let us conclude what is the cause which leads to change in all components. To solve this
problem below is the solution, read the below sentence slowly with full senses alive.

“The problem is because Component is creating the object of Utility, if we can INVERT this,
means if we can inject /provide “Utility” to the components rather than creating, then this will
make our architecture better”.

114 | P a g e

In other words, we need to implement “Inversion of control”. Means invert the object creation
to someone else and component just refers a generic utility reference.

So rather than components creating the object of the utility component will ASK for providing/
injecting the “logger” object via constructor.

IOC is a concept and to implement IOC we need to use DI. I would encourage you to see this
YouTube video which explains DI and IOC in detail
https://www.youtube.com/watch?v=FuAhnqSDe-o

So now that we know DI and IOC concepts, let’s do a demonstration for the same.

Demo of DI IOC

Here is a simple demo we
will implement in our project
to see the importance of
Provider DI. So we will create
a simple parent “Logger”
class and we will create two
flavour’s one which displays
messages one on dialog
boxes and other to the
console of the browser.

We will then try to figure out how easy it is to make changes at one place & replicate it across all
places.

115 | P a g e

Step 1: - Create the logger utility classes with Injectable attribute

So let’s create a folder called as “Utility”
inside which we will create these logger
classes.

Let’s create a parent “Logger” class from which we will inherit and create different flavours of
“Logger” class. Now because this class will be injected in to the components we need to mark it
with “@Injectable()” decorator. “@Injectable()” decorator is available in “Injectable” in
“angular/core”.

import { Injectable } from '@angular/core';

@Injectable()

export class Logger{

 public Log(){

 // some default logging

 }

}

Below is the code for “ConsoleLogger” and “DialogLogger” classes which inherit from “Logger”
class. For now both classes do not have any functionality as such. At this moment let us focus on
DI rather than logging functionality.

@Injectable()

export class ConsoleLogger extends Logger{

 public Log(){

 // do console logging here

 }

}

@Injectable()

export class DialogLogger extends Logger{

 public Log(){

 // do console logging here

 }}

116 | P a g e

Step 2: - Define providers and injection in the modules

So as we discussed previously the goal is
that we want to change at one place and
the logger types should change in all
components.

Now the whole loading (bootstrapping) of
our project starts with
“MainModuleLibrary”, so if we can inject
at the level of “MainModuleLibrary’ it will
be available to all components and
modules down below.

In the “MainModuleLibrary” using “@NgModule” decorator we need to provide the providers
which will be trickled down to all components. In providers we need to specify two things: -

 First the parent class which be referred in all components. So using the “provide” we
have specified “Logger” class.

 Second need to provide which child implementation object we want to inject in all
components. That’s provided in “useClass”.

providers: [

 {

 provide: Logger,

 useClass: ConsoleLogger

 }]

The complete code of the main module with “providers” looks something as shown below.

// Imports have been removed for clarity

import {Logger,DialogLogger,ConsoleLogger} from "../Utility/Utility"

@NgModule({

 imports: [RouterModule.forRoot(ApplicationRoutes),

117 | P a g e

 HttpModule,

 InMemoryWebApiModule.forRoot(CustomerApiService),

 BrowserModule,

 FormsModule,

 ReactiveFormsModule],

 declarations: [

 MasterPageComponent,

 WelcomeComponent],

 bootstrap: [MasterPageComponent],

 providers: [

 {

 provide: Logger,

 useClass: ConsoleLogger

 }

]

}) export class MainModuleLibrary { }

Step 3: - Define constructors for injection

Now that we have define on the main module which object will inject. In the components we
need to expose the “logger” class in the constructor for DI purpose.

Note: - All your components should only refer “Logger” parent class and not the child classes.
You can see in the below code we have imported only “Logger” class and through constructor
only “logger” class is referred.

// code removed for clarity

import {Logger} from "../Utility/Utility"

@Component({

 templateUrl: "../UI/Customer.html"

})

export class CustomerComponent {

 constructor(public http:Http , logger:Logger){

 this.Display();

118 | P a g e

 }

// code removed for clarity

}

Step 4: - Test if things are working

Run the application, put a debug point and see the “ConsoleLogger” object getting injected. If
you change it to “DialogLogger” you will see the same injected.

Take a deep breathe , close your eyes and
think . You are changing in the main
module and its getting propogated all over.

As we started this lab saying a “Good
architecture is all about changing at one
place and the changes are reflected
through out”.

119 | P a g e

A word about token based providers

In real time scenarios dependency injection of
objects will not be static, but rather dynamic.
Angular has provided something termed as
“token” for such scenarios.

From application we can provide “tokens” which
can be objects, values and then depending on
the token respective object will be injected.

For example, in the above lab scenario we would
like to inject “ConsoleLogger” when someone
passes “1” & “DialogLogger” when we pass “2”.

In the module class we need to provide the providers with “token” value as shown in the below
code. In the “providers” we have provided collection of all dependencies. So “DialogLogger” can
be fetched using “1” and “ConsoleLogger” using “2”.

@NgModule({

 // code removed for clarity

 providers: [

 {provide:'1', useClass : DialogLogger},

 {provide:'2', useClass : ConsoleLogger}

]

})

export class MainModuleLibrary { }

Once the providers are loaded we can then look up using the “get” function of the “injector”
object.

import { Injector } from '@angular/core';

constructor(public injector: Injector){

 this.logger = this.injector.get("2");

 }

120 | P a g e

You can also make it more dynamic by creating a collection separately and loading it using HTTP
calls and then connect that collection to the “providers” property in the module. In the below
code we have created a separate “providerscoll” collection and that collection is provided to the
provider property.

export const providerscoll= [

 { provide: "1", useClass: DialogLogger },

 { provide: "2", useClass: ConsoleLogger },

];

@NgModule({

 // code removed for clarity

 providers: [providerscoll]

})

export class MainModuleLibrary { }

You can use the “push” method of JavaScript collection and load the providers dynamically as
well.

var providerscoll:any = [];

providerscoll.push({ provide: "1", useClass: DialogLogger });

providerscoll.push({ provide: "2", useClass: ConsoleLogger });

@NgModule({

 // code removed for clarity

 providers: [providerscoll]

})

export class MainModuleLibrary { }

Angular Interview Questions and Answers

What is the goal of Angular?

Angular is a binding framework which helps to bind HTML UI with JavaScript objects.
In complicated JavaScript projects, you end up writing such kinds of below functions for binding.
These functions bind the UI with JavaScript objects and vice versa.

121 | P a g e

function UitoObject()

{

Cust.CustomerName = $("#TxtCustomerName").val();

}

function ObjecttoUi()

{

$("#TxtCustomerName").val(Cust.CustomerName);

}

These functions become complicated as the UI gets complicated. Angular is a binding framework
and makes your binding easy.

So when you use Angular you do not need to write the above complicated functions you end up
writing directives as shown in the below code. The below directive “ngModel” will bind data
from the textbox to the customer objects and vice versa.

<input type="text" [(ngModel)]="cust.CustomerName">

What is the difference between AngularJS and Angular?

Angular 1 is called as “AngularJS” while Angular 2/4 is termed as “Angular”. So when you say
“AngularJS” you are referring the “1.X” version and when you say Angular you are talking about
the new version.

How different is Angular 1.X from Angular 2.X and 4.X?

Angular 2 is completely different from Angular 1. The syntaxes and project structure are
completely different. Also automatic migration of an Angular 1 project to Angular 2 is not
possible.

122 | P a g e

While Angular 2 and Angular 4 are backward compatible. Angular 2 projects can work with
Angular 4 framework without any tweak.

What is NodeJS and why do we need it for Angular?

NodeJS has something called as NPM (Node Package Manager). Using NPM we can install any
JavaScript framework. So once you install node, you can go to Node command prompt and type
command as shown in the below figure.

So in Angular projects NPM is used to install Angular framework.

What is the importance of package.json file?

“package.json” file is a feature provided by Node. Rather than writing NPM commands again
and again. You can create a “package.json” file listing all dependencies as shown in below code
and just fire “NPM INSTALL” command. That will install all the packages mentioned in the file.

{

 "name": "test",

 "version": "1.0.0",

 "description": "",

 "dependencies": {

 "jquery": "^3.2.1",

 "knockout": "^3.4.2",

 "lodash": "~4.17.4"

 }

}

123 | P a g e

So how do we install Angular using NodeJS?

To install Angular you need to create a “package.json” file with all Angular dependencies listed
and then do a NPM INSTALL on the folder where this file is. This file is available on the main site
of Angular as well.

{

 "name": "angular-quickstart",

 "version": "1.0.0",

 "license": "ISC",

 "dependencies": {

 "@angular/common": "4.0.0",

 "@angular/compiler": "4.0.0",

 "@angular/core": "4.0.0",

 "@angular/forms": "4.0.0",

 "@angular/http": "4.0.0",

 "@angular/platform-browser": "4.0.0",

 "@angular/platform-browser-dynamic": "4.0.0",

 "@angular/router": "4.0.0",

 "@angular/upgrade": "4.0.0",

 "bootstrap": "^3.3.6",

 "core-js": "^2.4.1",

 "http-server": "^0.10.0",

 "reflect-metadata": "^0.1.3",

 "rxjs": "^5.4.1",

 "systemjs": "0.19.27",

 "zone.js": "^0.8.4"

 }

}

124 | P a g e

Which NPM commands do you use frequently?

NPM has huge command list. In these kinds of questions interviewer is expecting you to talk
about common NPM commands. So below are some important ones.

Command Explanation
npm install -g typescript This installs the package globally.
npm install -save jquery This will install the package and also make a entry in “package.json”

file.
npm view -version jquery
npm view -versions jquery

This first command will show you latest jQuery version on GitHub
and the second one will show all version in a ascending manner.

npm install -g npm This upgraded NPM to latest version

What is the use of TypeScript in Angular?

TypeScript is a transpiler over JavaScript. It provides sugar coated syntax over JavaScript where
developers can apply OOP principles like class, inheritance, interfaces and so on.

Once you hit compile TypeScript will transpile the code to pure JavaScript.

125 | P a g e

To compile code we need run “tsc” from command line.

What is the importance of tsconfig.json?

“tsconfig.json” defines how TypeScript compiler will compile. Below is a simple code snippet of
tsconfig file, which do compile using ES 5 specifications, remove comments and put all compiled
JS files to “Shiv” directory.

{

 "compilerOptions": {

 "target": "es5",

 "removeComments": false,

 "outDir": "/Shiv"

 }

}

Explain Components and Modules and how to create them?

Components have the binding code which binds the view with the model. While modules group
these components. So in complex angular project can have “Customer component”, “Customer
reporting component” which is grouped in “Customer module”. In the same project you can
have supplier module which groups 1 or many supplier components.

126 | P a g e

What is the importance of Startup.ts file?

In a complex angular project you can have lot of modules like home module, supplier module
and so on. “Startup.ts” file determine which states of the module will become your startup
module.

Explain how a typical angular project loads?

127 | P a g e

Future road map for Edition 3

Lab 15:- Pathlocation and HashLocation
Lab 16:- Auxiliary router outlet
Lab 17:- Going live to production using Webpack
Lab 18:- Communicating between components using viewChild
Lab 19:- Sharing data between modules
Lab 20:- ElementRef
Lab 21:- Angular CLI

Acronym used in this book

 NPM: - Node Package Manager.
 TS: - TypeScript.
 JS: - JavaScript.
 VS: - Visual Studio.
 WP: - Webpack
 OS: - Operating system.
 SPA: - Single page application.
 AOT: - Ahead of Time compilation
 DI: - Dependency injection
 IOC: - Inversion of Control

