
Shyam Seshadri

LEARNING ANGULAR, STEP BY STEP

Angular
Up & Running

Shyam Seshadri

Angular: Up and Running
Learning Angular, Step by Step

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-491-99983-7

[LSI]

Angular: Up and Running
By Shyam Seshadri

Copyright © 2018 Shyam Seshadri. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com/safari). For more information, contact our corporate/insti‐
tutional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Mary Treseler
Developmental Editor: Angela Rufino
Production Editor: Kristen Brown
Copyeditor: Kim Cofer
Proofreader: Jasmine Kwityn

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

June 2018: First Edition

Revision History for the First Edition
2018-05-31: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491999837 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Angular: Up and Running, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author, and do not represent the publisher’s views.
While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

http://oreilly.com/safari
http://oreilly.com/catalog/errata.csp?isbn=9781491999837

Table of Contents

Introduction. ix

1. Introducing Angular. 1
Why Angular 2
What This Book Will Not Cover 2
Getting Started with Your Development Environment 3

Node.js 3
TypeScript 3
Angular CLI 4
Getting the Codebase 5

Conclusion 5

2. Hello Angular. 7
Starting Your First Angular Project 7
Understanding the Angular CLI 8

Running the Application 9
Basics of an Angular Application 11

Root HTML—index.html 12
The Entry Point—main.ts 12
Main Module—app.module.ts 13
Root Component—AppComponent 14

Creating a Component 16
Steps in Creating New Components 16
Using Our New Component 18
Understanding Data Binding 19
Understanding Property Binding 22
Understanding Event Binding 25
Using Models for Cleaner Code 30

iii

Conclusion 32
Exercise 33

3. Useful Built-In Angular Directives. 35
Directives and Components 35
Built-In Attribute Directives 36

NgClass 36
NgStyle 40
Alternative Class and Style Binding Syntax 41

Built-In Structural Directives 42
NgIf 44
NgFor 45
NgSwitch 50
Multiple Sibling Structural Directives 51

Conclusion 51
Exercise 52

4. Understanding and Using Angular Components. 53
Components—A Recap 53
Defining a Component 54

Selector 54
Template 55
Styles 56
Style Encapsulation 58
Others 59

Components and Modules 61
Input and Output 62

Input 62
Output 64
Change Detection 67

Component Lifecycle 71
Interfaces and Functions 72

View Projection 77
Conclusion 79
Exercise 79

5. Testing Angular Components. 81
Why Unit Test? 81
Testing and Angular 82
The Test Setup 83

Karma Config 84
test.ts 85

iv | Table of Contents

Writing Unit Tests 85
An Isolated Unit Test 85
Running the Tests 87
Writing an Angular-Aware Unit Test 89
Testing Component Interactions 92

Debugging 95
Conclusion 96
Exercise 96

6. Working with Template-Driven Forms. 97
Template-Driven Forms 97

Setting Up Forms 98
Alternative to ngModel—Event and Property Binding 99
ngModel 102
A Complete Form 104
Control State 108
Control Validity 112

Working with FormGroups 118
Conclusion 121
Exercise 121

7. Working with Reactive Forms. 123
Reactive Forms 123

Understanding the Differences 124
Using Reactive Forms 124

Form Controls 124
Form Groups 128
Form Builders 131

Form Data 132
Control State, Validity, and Error Messages 133
Form and Data Model 135

FormArrays 139
Conclusion 145
Exercise 145

8. Angular Services. 147
What Are Angular Services? 147
Creating Our Own Angular Service 148

Digging into the Example 148
An Introduction to Dependency Injection 158
Angular and Dependency Injection 160

RxJS and Observables: Moving to Asynchronous Operations 167

Table of Contents | v

Conclusion 173
Exercise 173

9. Making HTTP Calls in Angular. 175
Introducing HttpClient 175

Server Setup 176
Using HttpClientModule 176
Making HTTP GET/POST Calls 177

Advanced HTTP 183
Options—Headers/Params 184
Options—Observe/Response Type 186
Interceptors 191

Advanced Observables 199
Conclusion 206
Exercise 207

10. Unit Testing Services. 209
How to Unit Test Services 209
Testing Components with a Service Dependency 213

Testing Components with a Real Service 213
Testing Components with a Mock Service 214
Testing Components with a Fake Service 216

Unit Testing Async 219
Unit Testing HTTP 222
Conclusion 227
Exercise 228

11. Routing in Angular. 229
Setting Up Angular Routing 229

Server Setup 229
Starting Codebase 230
Importing the Router Module 230
Displaying the Route Contents 233
Navigating Within the Application 234
Wildcards and Defaults 236

Common Routing Requirements 238
Required Route Params 238
Navigating in Your Application 240
Optional Route Params 244

Route Guards 247
Authenticated-Only Routes 248
Preventing Unload 250

vi | Table of Contents

Preloading Data Using Resolve 253
Conclusion 255
Exercise 256

12. Productionizing an Angular App. 259
Building for Production 259

Production Build 260
Ahead-of-Time (AOT) Compilation and Build Optimizer 261
Base Href 262
Deploying an Angular Application 262

Other Concerns 263
Caching 263
API/Server Calls and CORS 265
Different Environments 266
Handling Deep-Linking 266
Lazy Loading 267
Server-Side Rendering and Handling SEO 274

Conclusion 283

Index. 285

Table of Contents | vii

Introduction

It’s funny that we constantly over- or underestimate the impact of certain events and
projects in our lives. I seriously believed that the last project I worked on at Google,
Google Feedback, would end up completely changing how the company interacted
with its customers. And I believed Angular (AngularJS at the time) would just be
another flash-in-the-pan, yet-another-framework that would not outlive the Feed‐
back project’s admin interface.

And in hindsight, it was exactly the other way around. While Feedback still exists and
is baked into a lot of Google products, it is Angular that has gone from a tiny project
used by one internal team at Angular to now being used by thousands of developers
and companies worldwide. And a lot of it stems from Misko, Igor, and the entire team
around it, and their unerring dedication to improving how we develop web applica‐
tions.

What started off as a two-member project is now one of the largest open source com‐
munities on the web, and the framework has impacted and been a part of thousands
of projects across the world. There are dozens of books, hundreds of tutorials, and
thousands of articles on Angular, and Angular’s adoption and support continues to
grow each day.

Some of the major concepts that were ahead of their time during the first version of
Angular (like data binding, separation of concerns, dependency injection, etc.) are
now common features of new frameworks.

The biggest change to the AngularJS ecosystem has been the release of the new ver‐
sion of Angular (initially called Angular 2.0, now just called Angular). It was a drastic,
non-backward-compatible change that almost divided an entire community. But with
community engagement and an open, inclusive team, what could have been a disas‐
trous step turned out to be a much needed overhaul of Angular to bring it to the new
age of web development.

ix

Truly, what makes Angular a great technology and framework is the community
around it—those who contribute to the core framework, or develop plug-ins for it, as
well as those who use it on a day-to-day basis.

As part of the community, I am truly excited to present this book, and contribute in
my own way to what makes this community great.

Who Should Read This Book
This book is for anyone who is looking to get started with Angular (2.0 and onward),
whether as a side project, as an additional tool, or for their main work. It is expected
that readers are comfortable with JavaScript and HTML before starting this book, but
a basic knowledge of JavaScript should be sufficient to learn Angular. Knowledge of
AngularJS 1.0 is not needed or expected.

We will also use TypeScript, which is the recommended way of developing in Angu‐
lar, but a preliminary knowledge is sufficient to read this book.

We will take it step by step, so relax and have fun learning with me.

Why I Wrote This Book
Angular as a framework has grown immensely, and comes with a large set of features
and capabilities. With a large community behind it, it also comes with an influx of
helpful content. But the help content, tutorials, and guides are either focused only on
particular topics, or sporadic and not necessarily useful for someone getting started.

The aim of this book is to provide a step-by-step guide on getting started with Angu‐
lar. Each concept is provided in a logical, organized fashion, building on top of the
previous one. With so many moving parts and an active community, this book does
not intend to cover each and every aspect, but instead focuses on the core building
blocks in a detailed fashion while letting readers discover the rest on their own.

At the end of the book, you should be familiar with a majority of the Angular frame‐
work, and be able to use Angular to develop your own web applications and use it in
your own projects.

A Word on Web Application Development Today
JavaScript has come a long way, to the point where it is one of the most widely used
and adopted programming languages. Nowadays, it’s rare for web developers to have
to worry about browser inconsistencies and the like, which was the primary reason
for frameworks like jQuery to have existed.

x | Introduction

Frameworks (like Angular and React) are now a very common choice for developing
frontend experiences, and it is rare for anyone nowadays to decide to build a frontend
application without leveraging one.

The advantages of using frameworks are manifold, from reducing boilerplate code, to
providing a consistent structure and layout for developing an application to many
more. The primary intent is always to reduce the time spent on cruft, and focus more
on the major functionality we want to provide. And if it works across browsers (and
platforms, like Android and iOS, in addition to desktop), then more power to it.

Angular (as well as other frameworks) provides this, primarily through some core
fundamentals that are at the heart of the framework, including:

• Powerful templating syntax driven by declarative programming
• Modularity and separation of concerns
• Data binding, and through it, data-driven programming
• Testability and awesome testing support
• Routing and navigation
• And a host of other features, from server-side rendering, to the ability to write

native mobile applications, and much more!

With the help of Angular, we can focus on building amazing experiences, while man‐
aging complexity and maintainability in a seamless fashion.

Navigating This Book
This book aims to walk a developer through each part of Angular, step by step. Each
chapter that introduces a new concept will be immediately followed by a chapter on
how we can unit test it. The book is roughly organized as follows:

• Chapter 1, Introducing Angular, is an introduction to Angular as well as the con‐
cepts behind it. It also covers what it takes to start writing an Angular
application.

• Chapter 2, Hello Angular, walks through creating a very simple Angular applica‐
tion, and diving into how the pieces work together. It also introduces the Angular
CLI.

• Chapter 3, Useful Built-In Angular Directives, digs into the basic built-in Angular
directives (including ngFor, ngIf, etc.) and when and how to use them.

• Chapter 4, Understanding and Using Angular Components, covers Angular com‐
ponents in more detail, as well as the various options available when creating
them. It also covers the basic lifecycle hooks available with components.

Introduction | xi

• Chapter 5, Testing Angular Components, introduces how to unit test angular com‐
ponents using Karma and Jasmine, along with the Angular testing framework.

• Chapter 6, Working with Template-Driven Forms, covers creating and working
with forms in Angular, specifically template-driven forms.

• Chapter 7, Working with Reactive Forms, covers the other way of defining and
working with forms, which is how to create and develop reactive forms.

• Chapter 8, Angular Services, covers Angular services, which includes how to use
built-in Angular services, as well as how and when to define our own Angular
services.

• Chapter 9, Making HTTP Calls in Angular, moves into the server communication
aspect of Angular, and delves into making HTTP calls, as well as some advanced
topics like interceptors and the like.

• Chapter 10, Unit Testing Services, takes a step back and covers unit testing again,
but this time with a focus on unit testing services. This includes testing simple
services and slightly harder cases like asynchronous flows as well as services and
components that make HTTP calls.

• Chapter 11, Routing in Angular, goes in depth into how we can accomplish rout‐
ing in an Angular application and covers the Angular routing module in detail as
well as a majority of its features.

• Chapter 12, Productionizing an Angular App, finally brings together all the con‐
cepts and covers taking the developed Angular application to production and the
various concerns and techniques involved in the same.

The entire code repository is hosted on GitHub, so if you don’t want to type in the
code examples from this book, or want to ensure that you are looking at the latest and
greatest code examples, visit the repository and grab the contents.

This book uses AngularJS version 5.0.0 for all its code examples.

Online Resources
The following resources are a great starting point for any AngularJS developer, and
should be always available at your fingertips:

• The Official Angular API Documentation
• The Official Angular Quickstart Guide
• The Angular Heroes Tutorial App

xii | Introduction

https://github.com/shyamseshadri/angular-up-and-running
https://angular.io/api
https://angular.io/guide/quickstart
https://angular.io/tutorial

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/shyamseshadri/angular-up-and-running.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples

Introduction | xiii

https://github.com/shyamseshadri/angular-up-and-running

from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Angular: Up and Running by Shyam
Seshadri (O’Reilly). Copyright 2018 Shyam Seshadri, 978-1-491-99983-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

O’Reilly Safari
Safari (formerly Safari Books Online) is a membership-based
training and reference platform for enterprise, government,
educators, and individuals.

Members have access to thousands of books, training videos, Learning Paths, interac‐
tive tutorials, and curated playlists from over 250 publishers, including O’Reilly
Media, Harvard Business Review, Prentice Hall Professional, Addison-Wesley Profes‐
sional, Microsoft Press, Sams, Que, Peachpit Press, Adobe, Focal Press, Cisco Press,
John Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe
Press, FT Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, and
Course Technology, among others.

For more information, please visit http://oreilly.com/safari.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/angularUR.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

xiv | Introduction

mailto:permissions@oreilly.com
http://oreilly.com/safari
http://oreilly.com/safari
http://bit.ly/angularUR
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
This book is dedicated to my wife, Sanchita, and my parents and grandmom who
were my rock as well as my motivation to write this book in the best manner I could,
all the while balancing my own fledgling startup in its most precarious time (the
beginning!).

I’d also like to thank my reviewers, Yakov Fain and Victor Mejia, who had to read and
review my unedited ramblings and make sure I got my point across in the most suc‐
cinct and understandable terms.

This book of course wouldn’t be possible without the faith and efforts of the awesome
team at O’Reilly, especially Angela and Kristen!

And finally, thank you to the amazing Angular community for all their contributions,
feedback, and support, and for teaching us how to use and make it better.

Introduction | xv

http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

CHAPTER 1

Introducing Angular

Our expectations of what we can perform on the web (and by web here, I mean both
desktop as well as the mobile web) has increased to the point where what used to be
full-fledged native desktop applications are run on the browser. Web applications
now resemble desktop native applications in scope and complexity, which also results
in added complexity as a developer.

Furthermore, Single-Page Applications (SPAs) have become a very common choice in
building out frontend experiences, as they allow for great customer experiences in
terms of speed and responsiveness. Once the initial application has loaded into a cus‐
tomer’s browser, further interactions only have to worry about loading the additional
data needed, without reloading the entire page as was the norm with server-side ren‐
dered pages of the past.

AngularJS was started to first bring structure and consistency to single-page web
application development, while providing a way to quickly develop scalable and
maintainable web applications. In the time since it was released, the web and brows‐
ers have moved forward by leaps and bounds, and some of the problems that Angu‐
larJS was solving weren’t as relevant anymore.

Angular then was basically a completely new rewritten version of the framework,
built for the new-age web. It leveraged a lot of the newer advances, from modules to
web components, while improving the existing features of AngularJS, like depend‐
ency injection and templating.

From now on, when I say AngularJS, I refer to the original Angu‐
larJS framework, the 1.0 version. Whenever I mention Angular, it
refers to the newer framework, from 2.0 onward. This is primarily
because Angular 2.0 onward does not predicate itself to using only
JavaScript, but also supports writing applications in TypeScript.

1

Why Angular
Angular as a framework provides a few significant advantages while also providing a
common structure for developers on a team to work with. It allows us to develop
large applications in a maintainable manner. We will dig into each one of these in
more detail in the following chapters:

Custom components
Angular allows you to build your own declarative components that can pack
functionality along with its rendering logic into bite-sized, reusable pieces. It also
plays well with web components.

Data binding
Angular allows you to seamlessly move your data from your core JavaScript code
to the view, and react to view events without having to write the glue code your‐
self.

Dependency injection
Angular allows you to write modular services, and have them injected wherever
they are needed. This greatly improves the testability and reusability of the same.

Testing
Tests are first-class citizens, and Angular has been built from the ground up with
testability in mind. You can (and should!) test every part of your application.

Comprehensive
Angular is a full-fledged framework, and provides out-of-the-box solutions for
server communication, routing within your application, and more.

Angular as a framework has adopted semantic versioning for all
new releases. Furthermore, the core team has an aggressive road‐
map, with a new major release planned every six months. Thus,
what started off as Angular 2 is now referred to as just Angular,
since we don’t want to call them Angular 2, Angular 4, Angular 5,
and so on.
That said, unlike AngularJS to Angular, upgrading between ver‐
sions of Angular (say 2 to 4, etc.) is an incremental step, and more
often than not an almost trivial upgrade. So you don’t need to
worry about having to do a major upgrade every few months with
drastic code changes.

What This Book Will Not Cover
While Angular as a framework is quite large, the community around it is even larger.
A lot of great features and options for use with Angular in fact stem from this

2 | Chapter 1: Introducing Angular

community. This makes life harder as an author to figure out how to write a book
that preps you, the reader, as an Angular developer, while still limiting the scope to
what I think are the essentials.

To that extent, while Angular can be extended in so many ways, from writing native
mobile apps using Angular (see NativeScript), rendering your Angular application on
the server (see Angular Universal), using Redux as a first-class option in Angular
(multiple options; see ngrx), and many more, the initial version of the book will only
focus on the core Angular platform and all the capabilities it provides. It will also
strive to focus on the more common cases rather than cover every single feature and
capability of Angular, as such a book would run into thousands of pages.

The intention is to focus on the parts that will be necessary and useful to all Angular
developers, rather than focus on bits and parts that would be useful to a subset.

Getting Started with Your Development Environment
Angular expects you to do a fair bit of groundwork to be able to develop seamlessly
on your computer. Certain prerequisites need to be installed that we will cover in this
section.

Node.js
While you will never be coding in Node.js, Angular uses Node.js as its base for a large
part of its build environment. Thus, to get started with Angular, you will need to have
Node.js installed on your environment. There are multiple ways to install Node.js, so
please refer to the Node.js Download Page for more instructions.

On macOS, installing Node.js through Homebrew has been known
to cause some issues. So try installing it directly if you run into any
problems.

You need to install version 6.9.0 or above of Node.js, and version 3.0.0 or above of
npm. You can confirm your versions after installing by running the following
commands:

node --version
npm --v

TypeScript
TypeScript adds a set of types to the JavaScript code that we write, allowing us to
write JavaScript that is easier to understand, reason about, and trace. It ensures that
the latest proposed ECMAScript features are also available at the tip of our fingers. At

Getting Started with Your Development Environment | 3

https://www.nativescript.org/
https://universal.angular.io/
https://github.com/ngrx
https://nodejs.org/en/download/

the end of the day, all your TypeScript code compiles down to JavaScript that can run
easily in any environment.

TypeScript is not mandatory for developing an Angular application, but it is highly
recommended, as it offers some syntactic sugar, as well as makes the codebase easier
to understand and maintain. In this book, we will be using TypeScript to develop
Angular applications.

TypeScript is installed as an NPM package, and thus can be simply installed with the
following command:

npm install -g typescript

Make sure you install at least version 2.4.0 or above.

While we will be covering most of the basic features/concepts that we use from Type‐
Script, it is always a good idea to learn more from the official TypeScript documenta‐
tion.

Angular CLI
Unlike AngularJS, where it was easy to source one file as a dependency and be up and
running, Angular has a slightly more complicated setup. To this extent, the Angular
team has created a command-line interface (CLI) tool to make it easier to bootstrap
and develop your Angular applications.

As it significantly helps making the process of development easier, I recommend
using it at the very least for your initial projects until you get the hang of all the things
it does and are comfortable doing it yourself. In this book, we will cover both the CLI
command as well as the actions it performs underneath, so that you get a good
understanding of all the changes needed.

Installing the latest version (1.7.3 at the time of writing this book) is as simple as run‐
ning the following command:

npm install -g @angular/cli

If you are scratching your head at this newfangled naming conven‐
tion for Angular packages, the new syntax is a feature of NPM
called scoped packages. It allows packages to be grouped together
within NPM under a single folder. You can read more here.

Once installed, you can confirm if it was successful by running the following
command:

ng --version

4 | Chapter 1: Introducing Angular

https://www.typescriptlang.org/docs/home.html
https://www.typescriptlang.org/docs/home.html
https://docs.npmjs.com/misc/scope

Getting the Codebase
All the examples from this book, along with the exercises and the final solution, are
hosted as a Git repository. While it is not mandatory to download this, you can
choose to do so if you want a reference or want to play around with the samples in
this book. You can do so by cloning the Git repository by running the following
command:

git clone https://github.com/shyamseshadri/angular-up-and-running.git

This will create a folder called angular-up-and-running in your current working direc‐
tory with all the necessary examples. Within this directory you’ll find subfolders con‐
taining the examples, organized by chapter.

Conclusion
At this point, we are all set up with our development environment and are ready to
start developing Angular applications. We have installed Node.js, TypeScript, as well
as the Angular CLI and understand the need and use of each.

In the next chapter, we will finally get our hands dirty building our first Angular
application and understanding some of the basic terms and concepts of Angular.

Conclusion | 5

CHAPTER 2

Hello Angular

In the previous chapter, we got a very quick overview of Angular and its features, as
well as a step-by-step guide on how to set up our local environment for developing
any Angular application. In this chapter, we will go through the various parts of an
Angular application by creating a very simple application from scratch. Through the
use of this application, we will cover some of the basic terminologies and concepts
like modules, components, data and event binding, and passing data to and from
components.

We will start with a very simple stock market application, which allows us to see a list
of stocks, each with its own name, stock code, and price. During the course of this
chapter, we will see how to package rendering a stock into an individual, reusable
component, and how to work with Angular event and data binding.

Starting Your First Angular Project
As mentioned in the previous chapter, we will heavily rely on the Angular CLI to help
us bootstrap and develop our application. I will assume that you have already fol‐
lowed the initial setup instructions in the previous chapter and have Node.js, Type‐
Script, and the Angular CLI installed in your development environment.

Creating a new application is as simple as running the following command:

ng new stock-market

When you run this command, it will automatically generate a skeleton application
under the folder stock-market with a bunch of files, and install all the necessary
dependencies for the Angular application to work. This might take a while, but even‐
tually, you should see the following line in your terminal:

Project 'stock-market' successfully created.

7

Congratulations, you have just created your first Angular application!

While we created our first application with the vanilla Angular CLI
command, the ng new command takes a few arguments that allow
you to customize the application generated to your preference.
These include:

• Whether you want to use vanilla CSS or SCSS or any other
CSS framework (for example, ng new --style=scss)

• Whether you want to generate a routing module (for example,
ng new --routing); we’ll discuss this further in Chapter 11.

• Whether you want inline styles/templates
• Whether you want a common prefix to all components (for

example, to prefix acme to all components, ng new

--prefix=acme)

And much more. It’s worth exploring these options by running ng
help once you are a bit more familiar with the Angular framework
to decide if you have specific preferences one way or the other.

Understanding the Angular CLI
While we have just created our first Angular application, the Angular CLI does a bit
more than just the initial skeleton creation. In fact, it is useful throughout the devel‐
opment process for a variety of tasks, including:

• Bootstrapping your application
• Serving the application
• Running the tests (both unit and end-to-end)
• Creating a build for distribution
• Generating new components, services, routes and more for your application

Each of these corresponds to one or more Angular CLI commands, and we will cover
each one as and when we need or encounter them, instead of trying to cover each
command and its uses upfront. Each command provides further flexibility with a
variety of arguments and options, making the Angular CLI truly diverse and capable
for a wide variety of uses.

8 | Chapter 2: Hello Angular

Running the Application
Now that we have generated our application, the next part is to run it so that we can
see our live running application in the browser. There are technically two ways to
run it:

• Running it in development mode, where the Angular CLI compiles the changes
as it happens and refreshes our UI

• Running it in production mode, with an optimal compiled build, served via static
files

For now, we will run it in development mode, which is as simple as running

ng serve

from the root folder of the generated project, which is the stock-market folder in this
case. After a little bit of processing and compilation, you should see something like
the following in your terminal:

** NG Live Development Server is listening on localhost:4200,
 open your browser on http://localhost:4200/ **
Date: 2018-03-26T10:09:18.869Z
Hash: 0b730a52f97909e2d43a
Time: 11086ms
chunk {inline} inline.bundle.js (inline) 3.85 kB [entry] [rendered]
chunk {main} main.bundle.js (main) 17.9 kB [initial] [rendered]
chunk {polyfills} polyfills.bundle.js (polyfills) 549 kB [initial] [rendered]
chunk {styles} styles.bundle.js (styles) 41.5 kB [initial] [rendered]
chunk {vendor} vendor.bundle.js (vendor) 7.42 MB [initial] [rendered]

webpack: Compiled successfully.

The preceding output is a snapshot of all the files that the Angular CLI generates in
order for your Angular application to be served successfully. It includes the
main.bundle.js, which is the transpiled code that is specific to your application, and
the vendor.bundle.js, which includes all the third-party libraries and frameworks you
depend on (including Angular). styles.bundle.js is a compilation of all the CSS styles
that are needed for your application, while polyfills.bundle.js includes all the polyfills
needed for supporting some capabilities in older browsers (like advanced ECMA‐
Script features not yet available in all browsers). Finally, inline.bundle.js is a tiny file
with webpack utilities and loaders that is needed for bootstrapping the application.

ng serve starts a local development server on port 4200 for you to hit from your
browser. Opening http://localhost:4200 in your browser should result in you seeing
the live running Angular application, which should look like Figure 2-1.

Understanding the Angular CLI | 9

Figure 2-1. Hello Angular application in the browser

You can actually leave the ng serve command running in the ter‐
minal, and continue making changes. If you have the application
opened in your browser, it will automatically refresh each time you
save your changes. This makes the development quick and itera‐
tive.

10 | Chapter 2: Hello Angular

In the following section, we will go into a bit more detail about what exactly hap‐
pened under the covers to see how the generated Angular application works and what
the various pieces are.

Basics of an Angular Application
At its core, any Angular application is still a Single-Page Application (SPA), and thus
its loading is triggered by a main request to the server. When we open any URL in
our browser, the very first request is made to our server (which is running within ng
serve in this case). This initial request is satisfied by an HTML page, which then
loads the necessary JavaScript files to load both Angular as well as our application
code and templates.

One thing to note is that although we develop our Angular application in TypeScript,
the web application works with transpiled JavaScript. The ng serve command is
responsible for translating our TypeScript code into JavaScript for the browser to
load.

If we look at the structure the Angular CLI has generated, it is something like this:

stock-market
+----e2e
+----src
 +----app
 +----app.component.css
 +----app.component.html
 +----app.component.spec.ts
 +----app.component.ts
 +----app.module.ts
 +----assets
 +----environments
 +----index.html
 +----main.ts
 +----.angular-cli.json

Root component

Main module

Root HTML

Entry point

Angular CLI config

There are a few more files than listed here in the stock-market folder, but these are the
major ones we are going to focus on in this chapter. In addition, there are unit tests,

Basics of an Angular Application | 11

end-to-end (e2e) tests, the assets that support our application, configuration specific
to various environments (dev, prod, etc.), and other general configuration that we will
touch upon in Chapters 5, 10, and 12.

Root HTML—index.html
If you take a look at the index.html file, which is in the src folder, you will notice that
it looks very clean and pristine, with no references to any scripts or dependencies:

<!doctype html>
<html lang="en">
<head>
 <meta charset="utf-8">
 <title>StockMarket</title>
 <base href="/">

 <meta name="viewport" content="width=device-width, initial-scale=1">
 <link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
 <app-root></app-root>
</body>
</html>

Root component for our Angular application

The only thing of note in the preceding code is the <app-root> element in the
HTML, which is the marker for loading our application code.

What about the part that loads the core Angular scripts and our application code?
That is inserted dynamically at runtime by the ng serve command, which combines
all the vendor libraries, our application code, the styles, and inline templates each into
individual bundles and injects them into index.html to be loaded as soon as the page
renders in our browser.

The Entry Point—main.ts
The second important part of our bootstrapping piece is the main.ts file. The
index.html file is responsible for deciding which files are to be loaded. The main.ts
file, on the other hand, identifies which Angular module (which we will talk a bit
more about in the following section) is to be loaded when the application starts. It can
also change application-level configuration (like turning off framework-level asserts
and verifications using the enableProdMode() flag), which we will cover in Chap‐
ter 12:

import { enableProdMode } from '@angular/core';
import { platformBrowserDynamic } from '@angular/platform-browser-dynamic';

import { AppModule } from './app/app.module';

12 | Chapter 2: Hello Angular

import { environment } from './environments/environment';

if (environment.production) {
 enableProdMode();
}

platformBrowserDynamic().bootstrapModule(AppModule)
 .catch(err => console.log(err));

Bootstrap the main AppModule

Most of the code in the main.ts file is generic, and you will rarely have to touch or
change this entry point file. Its main aim is to point the Angular framework at the
core module of your application and let it trigger the rest of your application source
code from that point.

Main Module—app.module.ts
This is where your application-specific source code starts from. The application mod‐
ule file can be thought of as the core configuration of your application, from loading
all the relevant and necessary dependencies, declaring which components will be
used within your application, to marking which is the main entry point component of
your application:

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';

@NgModule({
 declarations: [
 AppComponent
],
 imports: [
 BrowserModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

NgModule TypeScript annotation to mark this class definition as an Angular
module

Declarations marking out which components and directives can be used within
the application

Basics of an Angular Application | 13

Importing other modules that provide functionality needed in the application

The entry point component for starting the application

This is our first time dealing with a TypeScript-specific feature,
which are decorators (you can think of them as annotations). Dec‐
orators allow us to decorate classes with annotations and properties
as well as meta-functionality.
Angular heavily leverages this TypeScript feature across the board,
such as using decorators for modules, components, and more.
You can read more about TypeScript decorators in the official doc‐
umentation.

We will go over the details of each of these sections in the following chapters, but at
its core:

declarations

The declarations block defines all the components that are allowed to be used
in the scope of the HTML within this module. Any component that you create
must be declared before it can be used.

imports

You will not create each and every functionality used in the application, and the
imports array allows you to import other Angular application and library mod‐
ules and thus leverage the components, services, and other capabilities that have
already been created in those modules.

bootstrap

The bootstrap array defines the component that acts as the entry point to your
application. If the main component is not added here, your application will not
kick-start, as Angular will not know what elements to look for in your index.html.

You usually end up needing (if you are not using the CLI for any reason!) to modify
this file if and only if you add new components, services, or add/integrate with new
libraries and modules.

Root Component—AppComponent
We finally get to the actual Angular code that drives the functionality of the applica‐
tion, and in this case, it is the main (and only) component we have, the AppCompo
nent. The code for it looks something like this:

14 | Chapter 2: Hello Angular

http://bit.ly/2IDQd1U
http://bit.ly/2IDQd1U

import { Component } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'app';
}

The DOM selector that gets translated into an instance of this component

The HTML template backing this component—in this case, the URL to it

Any component-specific styling, again pointing to a separate file in this case

The component class with its own members and functions

A component in Angular is nothing but a TypeScript class, decorated with some
attributes and metadata. The class encapsulates all the data and functionality of the
component, while the decorator specifies how it translates into the HTML.

The app-selector is a CSS selector that identifies how Angular finds this particular
component in any HTML page. While we generally use element selectors (app-root
in the preceding example, which translates to looking for <app-root> elements in the
HTML), they can be any CSS selector, from a CSS class to an attribute as well.

The templateUrl is the path to the HTML used to render this component. We can
also use inline templates instead of specifying a templateUrl like we have done in the
example. In this particular case, the template we are referring to is app.compo‐
nent.html.

styleUrls is the styling counterpart to the template, encapsulating all the styles for
this component. Angular ensures that the styles are encapsulated, so you don’t have to
worry about your CSS classes from one component affecting another. Unlike tem
plateUrl, styleUrls is an array.

The component class itself finally encapsulates all the functionality backing your
component. It makes it easy to think of the responsibilities of the component class as
twofold:

• Load and hold all the data necessary for rendering the component
• Handle and process any events that may arise from any element in the

component

Basics of an Angular Application | 15

The data in the class will drive what can be displayed as part of the component. So
let’s take a look at what the template for this component looks like:

<h1>
 {{title}}
</h1>

Data-bound title from the component

Our HTML is as simple as can be for the component. All it has is one element, which
is data-bound to a field in our component class. The double-curly ({{ }}) syntax is
an indication to Angular to replace the value between the braces with the value of the
variable from the corresponding class.

In this case, once the application loads, and the component is rendered, the
{{title}} will be replaced with the text app works!. We will talk in more detail
about data binding in “Understanding Data Binding” on page 19.

Creating a Component
So far, we have dealt with the basic skeleton code that the Angular CLI has generated
for us. Let’s now look at adding new components, and what that entails. We will use
the Angular CLI to generate a new component, but look underneath the covers to see
what steps it takes. We will then walk through some very basic common tasks we try
to accomplish with components.

Steps in Creating New Components
Using the Angular CLI, creating a new component is simply running a simple com‐
mand. We will first try creating a stock widget, which displays the name of the stock,
its stock code, the current price, and whether it has changed for the positive or nega‐
tive.

We can simply create a new stock-item by running the following command from the
main folder of the application:

ng generate component stock/stock-item

There are a few interesting things to note here:

• The Angular CLI has a command called generate, which can be used to generate
components (like we did in the preceding example), and also to generate other
Angular elements, such as interfaces, services, modules, and more.

• With the target type, we also specify the name (and the folder) within which the
component has to be generated. Here, we are telling the Angular CLI to generate

16 | Chapter 2: Hello Angular

a component called stock-item within a folder called stock. If we don’t specify
stock, it will create a component called stock-item in the app folder itself.

The command will generate all the relevant files for a new component, including:

• The component definition (named stock-item.component.ts)
• The corresponding template definition (named stock-item.component.html)
• The styles for the component (in a file named stock-item.component.css)
• The skeleton unit tests for the component (named stock-item.component.spec.ts)

In addition, it updated the original app module that we saw earlier so that our Angu‐
lar application recognizes the new module.

This is the recommended convention to follow whenever you are working with
components:

• The filename starts with the name of the item you are creating
• This is followed by the type of element it is (in this case, a component)
• Finally, we have the relevant extension

This allows us to both group and easily identify relevant and related files in a simple
manner.

When you run the command, you should see something like this:

 create src/app/stock/stock-item/stock-item.component.css
 create src/app/stock/stock-item/stock-item.component.html
 create src/app/stock/stock-item/stock-item.component.spec.ts
 create src/app/stock/stock-item/stock-item.component.ts
 update src/app/app.module.ts

The source for the component, HTML, and the CSS remain pretty much barebones,
so I won’t repeat that here. What is important is how this new component that we
create is hooked up and made available to our Angular application. Let’s take a look at
the modified app.module.ts file:

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { AppComponent } from './app.component';
import { StockItemComponent } from './stock/stock-item/stock-item.component';

@NgModule({
 declarations: [
 AppComponent,
 StockItemComponent
],

Creating a Component | 17

 imports: [
 BrowserModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Importing the newly created stock-item component

Adding the new component to the declarations section

In the application module, we have to ensure that the new component is imported
and added to the declarations array, before we can start using it in our Angular
application.

Using Our New Component
Now that we have created a new component, let’s see how we can use it in our appli‐
cation. We will now try to use this skeleton in the app component. First, take a look at
the generated stock-item.component.ts file:

import { Component, OnInit } from '@angular/core';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit {

 constructor() { }

 ngOnInit() {
 }

}

The selector for using this component. Note it is prefixed with app, which is
added by the Angular CLI by default unless otherwise specified.

The component has no data and does not provide any functionality at this point; it
simply renders the template associated with it. The template at this point is also triv‐
ial, and just prints out a static message.

To use this component in our application, we can simply create an element that
matches the selector defined anywhere inside our main app component. If we had
more components and a deeper hierarchy of components, we could choose to use it
in any of their templates as well. So let’s replace most of the placeholder content in

18 | Chapter 2: Hello Angular

app.component.html with the following, so that we can render the stock-item
component:

<div style="text-align:center">
 <h1>
 Welcome to {{ title }}!
 </h1>
 <app-stock-item></app-stock-item>
</div>

Adding our stock-item component

All it takes is adding the <app-stock-item></app-stock-item> to our app.compo‐
nent.html file to use our component. We simply create an element using the selector
we defined in our component. Then when the application loads, Angular recognizes
that the element refers to a component, and triggers the relevant code path.

When you run this (or if your ng serve is still running), you should see both the
original "app works" along with a new "stock-item works" in the UI.

Understanding Data Binding
Next, let’s focus on getting some data and figuring out how to display it as part of our
component. What we are trying to build is a stock widget, which will take some stock
information, and render it accordingly.

Let’s assume that we have a stock for a company named Test Stock Company, with a
stock code of TSC. Its current price is $85, while the previous price it traded at was
$80. In the widget, we want to show both the name and its code, as well as the current
price, the percentage change since last time, and highlight the price and percentage
change in green if it is an increment, or red if it is a decrement.

Let’s walk through this step by step. First, we will make sure we can display the name
and code in the widget (we will hardcode the information for now, and we will build
up the example to get the data from a different source later).

We would change our component code (the stock-item.component.ts file) as follows:

import { Component, OnInit } from '@angular/core';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit {

 public name: string;
 public code: string;

Creating a Component | 19

 public price: number;
 public previousPrice: number;

 constructor() { }

 ngOnInit() {
 this.name = 'Test Stock Company';
 this.code = 'TSC';
 this.price = 85;
 this.previousPrice = 80;
 }
}

Implement OnInit interface from Angular, which gives us a hook to when the
component is initialized

Definition of the various fields we will want to access from the HTML

OnInit function that is triggered when a component is initialized

Initializing the values for each of the fields

Angular gives us hooks into the lifecycle of a component to let us take certain actions
when a component is initialized, when its view is rendered, when it is destroyed, and
so on. We’ve extended our trivial component with a few notable things:

OnInit

Angular’s OnInit hook is executed after the component is created by the Angular
framework, after all the data fields are initialized. It is generally recommended to
do any initialization work of a component in the OnInit hook, so that it makes it
easier to test the functionality of the rest of the component without necessarily
triggering the initialization flow every time. We will cover the remaining lifecycle
hooks in Chapter 4.

ngOnInit

When you want to hook on the initialization phase of a component, you need to
implement the OnInit interface (as in the example) and then implement the
ngOnInit function in the component, which is where you write your initializa‐
tion logic. We have initialized the basic information we need to render our stock
widget in the ngOnInit function.

Class member variables
We have declared a few public variables as class instance variables. This informa‐
tion will be used to render our template.

Now, let’s change the template (the stock-item.component.html file) to start rendering
this information:

20 | Chapter 2: Hello Angular

<div class="stock-container">
 <div class="name"><h3>{{name}}</h3> - <h4>({{code}})</h4></div>
 <div class="price">$ {{price}}</div>
</div>

and its corresponding CSS (the stock-item.component.css file), to make it look nice:

.stock-container {
 border: 1px solid black;
 border-radius: 5px;
 display: inline-block;
 padding: 10px;
}

.stock-container .name h3, .stock-container .name h4 {
 display: inline-block;
}

Note that the CSS is purely from a visual perspective, and is not
needed nor impacts our Angular application. You could skip it
completely and still have a functional application.

Once we make these changes and refresh our application, we should see something
like Figure 2-2 in our browser.

Figure 2-2. Angular app with stock component

We have just used one fundamental building block from Angular to render our data
from our component into the HTML. We use the double-curly notation ({{ }}),
which is also known as interpolation. Interpolation evaluates the expression between
the curly braces as per the component backing it, and then renders the result as a

Creating a Component | 21

string in place in the HTML. In this case, we render the name, code, and the price of
the stock using interpolation. This picks up the values of name, code, and price, and
then replaces the double-curly expression with its value, thus rendering our UI.

This is Angular’s one-way data binding at work. One-way data binding simply refers
to Angular’s capability to automatically update the UI based on values in the compo‐
nent, and then keeping it updated as the value changes in the component. Without
one-way binding, we would have to write code to take the value from our component,
find the right element in HTML, and update its value. Then we would have to write
listeners/watchers to keep track of when the value in the component changes, and
then change the value in the HTML at that time. We can get rid of all of this extra
code because of data binding.

In this particular case, we are binding to simple variables, but it is not necessarily
restricted to simple variables. The expressions can be slightly more complex. For
example, we could render the same UI by changing the binding expression as follows
in stock-item.component.html:

<div class="stock-container">
 <div class="name">{{name + ' (' + code + ')'}}</div>
 <div class="price">$ {{price}}</div>
</div>

In this case, we replaced our multiple heading elements with a single div. The interpo‐
lation expression is now a combination of both the name and the code, with the code
surrounded by parentheses. Angular will evaluate this like normal JavaScript, and
return the value of it as a string to our UI.

Understanding Property Binding
So far, we used interpolation to get data from our component code to the HTML. But
Angular also provides a way to bind not just text, but also DOM element properties.
This allows us to modify the content and the behavior of the HTML that is rendered
in the browser.

For example, let’s try to modify our stock widget to highlight the price in red if the
price is less than the previous price, and in green if it is equal to or more than the
previous price. We can first change our component (the stock-item.component.ts) to
precalculate if the difference is positive or negative like so:

22 | Chapter 2: Hello Angular

import { Component, OnInit } from '@angular/core';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit {

 public name: string;
 public code: string;
 public price: number;
 public previousPrice: number;
 public positiveChange: boolean;

 constructor() { }

 ngOnInit() {
 this.name = 'Test Stock Company';
 this.code = 'TSC';
 this.price = 85;
 this.previousPrice = 80;
 this.positiveChange = this.price >= this.previousPrice;
 }
}

In this code, we added a new public variable called positiveChange, which is of type
boolean, and then set the value based on comparing the current price with the previ‐
ous price. This gives us a singular boolean value that we can use to decide whether to
highlight the price in red or green.

Next, let’s add some classes in the stock-item.component.css file to allow for changing
the color of the text:

.stock-container {
 border: 1px solid black;
 border-radius: 5px;
 display: inline-block;
 padding: 10px;
}

.positive {
 color: green;
}

.negative {
 color: red;
}

We simply added two classes, positive and negative, which change the color of the
text to green and red, respectively. Now let’s tie this together to see how we can use
this information and classes in our stock-item.component.html file:

Creating a Component | 23

<div class="stock-container">
 <div class="name">{{name + ' (' + code + ')'}}</div>
 <div class="price"
 [class]="positiveChange ? 'positive' : 'negative'">$ {{price}}</div>
</div>

We have added one new binding on the price div element, which reads as:

[class]="positiveChange ? 'positive' : 'negative'"

This is the Angular syntax for property binding, which binds the value of the expres‐
sion to the DOM property between the square brackets. The [] is the general syntax
that can be used with any property on an element to bind one-way from the compo‐
nent to the UI.

In this particular case, we are telling Angular to bind to the class property of the
DOM element to the value of the expression. Angular will evaluate it like a normal
JavaScript expression, and assign the value (positive in this case) to the class property
of the div element.

When you bind to the class property like we did in the example,
note that it overrides the existing value of the property. In our
example, the "price" class is replaced with the class "positive",
instead of appending to the existing value of the property. You can
notice this for yourself if you inspect the rendered HTML in the
browser. Be careful about this if you bind directly to the class
property.

If the value of the variable positiveChange in the component changes, Angular will
automatically re-evaluate the expression in the HTML and update it accordingly. Try
changing the price so that there is a negative change and then refresh the UI to make
sure it works.

Notice that we have been explicitly referring to the data binding working with DOM
properties, and not HTML attributes. The following sidebar goes into more detail on
the difference between the two, and why it is important to know and understand as
you work on Angular. But simplifying it, Angular data binding only works with
DOM properties, and not with HTML attributes.

HTML Attribute Versus DOM Property: What’s the Difference?
As mentioned, when we work with data binding in Angular, we aren’t working with
HTML attributes but rather DOM properties. Attributes are defined by HTML, while
properties are defined by the Document Object Model. Though some attributes (like
ID and class) directly map to DOM properties, others may exist on one side but not
the other.

24 | Chapter 2: Hello Angular

But more importantly, the distinction between the two is that HTML attributes are
generally used for initialization of a DOM element, but after that, they have no pur‐
pose or effect on the underlying element. Once the element is initialized, its behavior
is controlled by the DOM properties from then on.

For example, consider the input HTML element. If we bootstrap our HTML with
something like:

<input type="text" value="foo"/>

this initializes an input DOM element, with the initial value of the DOM property
value to be set to foo. Now let’s assume we type something in the text box, say bar. At
this point:

• If we do input.getAttribute('value'), it would return foo, which was the
attribute value we used to initialize the HTML.

• If we do input.value, we will get the current value of the DOM property, which
is bar.

That is, the attribute value is used to boostrap and set the initial value of the HTML
DOM element, but after that, it is the DOM property that drives the behavior. If you
inspect the HTML, you will see that it is still the initial HTML we provided, and does
not update either.

In Angular, we thus bind to the DOM property, and not to the HTML attributes.
Whenever we think about one-way binding from the component to the UI, we should
always keep this in mind!

Just like we did for the class property, depending on the use case, we can actually
bind to other HTML properties like the src property of an img tag, or the disabled
property of input and button. We will cover this in more depth in the next chapter.
We will also cover a simpler and more specific way of binding CSS classes in the next
chapter as well.

Understanding Event Binding
So far, we have worked on using the data in our component to both render values and
change the look and feel of our component. In this section, we will start understand‐
ing how to handle user interactions, and work with events and event binding in
Angular.

Say we wanted to have a button that allows users to add the stock to their list of favor‐
ite stocks. Generally, with a button like this, when the user clicks it, we would want to
make some server call and then process the result. So far, since we are working with

Creating a Component | 25

very simple examples, let’s just say we wanted to handle this click and get a hook to it
in our component. Let’s see how we might accomplish that.

First, we can change our component code in stock-item.component.ts to add a func‐
tion toggleFavorite, which should be triggered each time the click happens from
the UI:

import { Component, OnInit } from '@angular/core';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit {

 public name: string;
 public code: string;
 public price: number;
 public previousPrice: number;
 public positiveChange: boolean;
 public favorite: boolean;

 constructor() { }

 ngOnInit() {
 this.name = 'Test Stock Company';
 this.code = 'TSC';
 this.price = 85;
 this.previousPrice = 80;
 this.positiveChange = this.price >= this.previousPrice;
 this.favorite = false;
 }

 toggleFavorite() {
 console.log('We are toggling the favorite state for this stock');
 this.favorite = !this.favorite;
 }

}

We have added a new public boolean member variable called favorite, which is ini‐
tialized with a false value. We then added a new function called toggleFavorite(),
which simply flips the boolean value of favorite. We are also printing a log in the
console to ensure this is getting triggered.

Now, let’s update the UI to use this concept of a favorite and also allow users to tog‐
gle the state:

26 | Chapter 2: Hello Angular

<div class="stock-container">
 <div class="name">{{name + ' (' + code + ')'}}</div>
 <div class="price"
 [class]="positiveChange ? 'positive' : 'negative'">$ {{price}}</div>
 <button (click)="toggleFavorite()"
 [disabled]="favorite">Add to Favorite</button>
</div>

We have added a new button in the stock-item.component.html file to allow users to
click and add the stock to their favorite set. We are using the data-binding concept
from the previous section on the disabled property. Thus, we are disabling the but‐
ton based on the boolean value favorite. If favorite is true, the button will be dis‐
abled, and if it is false, the button will be enabled. Thus, by default, the button is
enabled.

The other major thing we have on the element is this fragment:

(click)="toggleFavorite()"

This syntax is called event binding in Angular. The left part of the equals symbol refers
to the event we are binding to. In this case, it is the click event. Just like how the
square-bracket notation refers to data flowing from the component to the UI, the
parentheses notation refers to events. And the name between the parentheses is the
name of the event we care about.

In this case, we are telling Angular that we are interested in the click event on this
element. The right part of the equals symbol then refers to the template statement
that Angular should execute whenever the event is triggered. In this case, we want it
to execute the new function we created, toggleFavorite.

When we run this application in our browser, we can see the new button. Clicking it
would render something like Figure 2-3.

Notice the other interesting thing, which is Angular data binding at play. When we
click the button, our toggleFavorite function is executed. This flips the value of
favorite from false to true. This in turn triggers the other Angular binding, which
is the disabled property of the button, thus disabling the button after the first click.
We don’t have to do anything extra to get these benefits, which is the beauty of data
binding.

Creating a Component | 27

Figure 2-3. Handling events in an Angular app

There are times when we might also care about the actual event triggered. In those
cases, Angular gives you access to the underlying DOM event by giving access to a
special variable $event. You can access it or even pass it to your function as follows:

28 | Chapter 2: Hello Angular

<div class="stock-container">
 <div class="name">{{name + ' (' + code + ')'}}</div>
 <div class="price"
 [class]="positiveChange ? 'positive' : 'negative'">$ {{price}}</div>
 <button (click)="toggleFavorite($event)"
 [disabled]="favorite">Add to Favorite</button>
</div>

In the HTML, we simply add a reference to the variable $event, and pass it in as an
argument to our toggleFavorite function. We can now refer to it in our component
as follows:

import { Component, OnInit } from '@angular/core';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit {

 public name: string;
 public code: string;
 public price: number;
 public previousPrice: number;
 public positiveChange: boolean;
 public favorite: boolean;

 constructor() { }

 ngOnInit() {
 this.name = 'Test Stock Company';
 this.code = 'TSC';
 this.price = 85;
 this.previousPrice = 80;
 this.positiveChange = this.price >= this.previousPrice;
 this.favorite = false;
 }

 toggleFavorite(event) {
 console.log('We are toggling the favorite state for this stock', event);
 this.favorite = !this.favorite;
 }

}

When you run the application, you will see that when you click the button, your con‐
sole log now appends the actual MouseEvent that was triggered, in addition to our
previous code.

In a similar manner, we can easily hook onto other standard DOM events that are
triggered, like focus, blur, submit, and others like them.

Creating a Component | 29

Why Angular Shifted to Property and Event Binding
Anyone who has worked on AngularJS would be wondering why the framework
developers decided to do such a major breaking change when they created Angular.
The binding syntax has changed drastically, as well as the directives and symbols
used. In AngularJS, we had ng-bind, ng-src, and the like for binding from our con‐
trollers to the UI, and directives like ng-click and ng-submit for handling events.

This meant that any time there was a new event or property that we wanted to bind to
in AngularJS, we would end up writing a wrapper directive that would do the work of
translating from AngularJS to the inner workings and vice versa.

The other problem with the AngularJS syntax was that there was no clear differentia‐
tion between data flowing from our controller to the UI or from the UI to the con‐
troller. Both follow the same syntax, which made understanding the HTML
sometimes difficult, and required developers to understand each directive first.

In Angular, we instead rely on core DOM properties and events for binding. This
means that if a property or event exists as per the HTML standards, we can bind to it.
This also makes it very easy to work with web components that expose proper prop‐
erties and events, as Angular works with them simply out of the box, without needing
to write any additional code. This has also made obsolete the tons of AngularJS direc‐
tives from the past, such as ng-click, ng-submit, and so on, and makes it easier for
any web developer to quickly understand and work with Angular. You don’t have to
spend as much time learning Angular-specific knowledge.

Furthermore, the square bracket and parentheses notation also makes it very obvious
about the flow of data. Any time you see the square bracket notation, you can be
assured that it is data flowing from the component into the HTML. Any time you see
the parentheses notation, you are guaranteed that it refers to an event and flows from
a user action to the component.

Using Models for Cleaner Code
The last part of this chapter covers something that is more of a best practice, but it is
worth adopting—especially as we aim to build large, maintainable web applications
using Angular. We want to use encapsulation to ensure that our components don’t
work with lower-level abstractions and properties, like we did previously where the
stock widget gets an individual name, price, etc. At the same time, we want to lever‐
age TypeScript to make it easier to understand and reason about our application and
its behavior. To this extent, we should ideally model our stock itself as a type in Type‐
Script, and leverage that instead.

30 | Chapter 2: Hello Angular

The way we would do it in TypeScript is to define an interface or a class with the defi‐
nition for what belongs in a stock, and use that consistently throughout our applica‐
tion. In this case, since we might want additional logic in addition to just the values
(calculating whether the price differential is positive or not, for example), we can use
a class.

We can use the Angular CLI to quickly generate a skeleton class for us, by running:

ng generate class model/stock

This will generate an empty skeleton file called stock.ts in a folder called model. We
can go ahead and change it as follows:

export class Stock {
 favorite: boolean = false;

 constructor(public name: string,
 public code: string,
 public price: number,
 public previousPrice: number) {}

 isPositiveChange(): boolean {
 return this.price >= this.previousPrice;
 }
}

This gives us a nice encapsulation while we work with stocks across our application.
Note that we didn’t actually define the variables name, code, and so on as properties of
the class. This is because we are using TypeScript’s syntactic sugar to automatically
create the corresponding properties based on the constructor arguments by using the
public keyword. To learn more about TypeScript classes, refer to the official docu‐
mentation. In short, we have created a class with five properties, four coming through
the constructor and one autoinitialized. Let’s see how we might use this now in our
component:

import { Component, OnInit } from '@angular/core';

import { Stock } from '../../model/stock';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit {

 public stock: Stock;

 constructor() { }

 ngOnInit() {

Creating a Component | 31

https://www.typescriptlang.org/docs/handbook/classes.html
https://www.typescriptlang.org/docs/handbook/classes.html

 this.stock = new Stock('Test Stock Company', 'TSC', 85, 80);
 }

 toggleFavorite(event) {
 console.log('We are toggling the favorite state for this stock', event);
 this.stock.favorite = !this.stock.favorite;
 }

}

In stock-item.component.ts, we imported our new model definition at the top, and
then replaced all the individual member variables with one variable of type Stock.
This simplified the code in the component significantly, and encapsulated all the logic
and underlying functionality within a proper TypeScript type. Now let’s see how
stock-item.component.html changes to accommodate this change:

<div class="stock-container">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="price"
 [class]="stock.isPositiveChange() ? 'positive' : 'negative'">
 $ {{stock.price}
 </div>
 <button (click)="toggleFavorite($event)"
 [disabled]="stock.favorite">Add to Favorite</button>
</div>

We have made a few changes in the HTML for our stock item. First, most of our ref‐
erences to the variable are now through the stock variable, instead of directly access‐
ing the variables in the component. So name became stock.name, code became
stock.code, and so on.

Also, one more thing of note: our class property binding now refers to a function
instead of a variable. This is acceptable, as a function is also a valid expression. Angu‐
lar will just evaluate the function and use its return value to determine the final
expression value.

Conclusion
In this chapter, we started building our very first Angular application. We learned
how to bootstrap our Angular application, as well as understand the various pieces
that the Angular skeleton application generates and their needs and uses. We then
created our very first component, and looked at the steps involved in hooking it up to
our application.

Following that, we added some very basic data to our component, and then used that
to understand how basic Angular data binding works, using both interpolation as
well as property binding. We then looked at how event binding works, and handled

32 | Chapter 2: Hello Angular

user interactions through it. Finally, we encapsulated some information in a Type‐
Script class to make our code cleaner and modular.

In the next chapter, we will go through some basic Angular directives that Angular
provides out of the box and how it allows us to work with templates in an effective
manner.

Exercise
Each chapter will have an optional exercise at the end to reinforce some of the con‐
cepts covered in the chapter, as well as give you some time to experiment and try your
hand at Angular code. Over the course of the book, we will build on the same exercise
and keep adding more features to it.

The finished source code for the exercise is available in the GitHub repository in each
chapter’s folder. You can refer to it in case you are stuck or want to compare the final
solution. Of course, there are multiple ways to solve every problem, so the solution in
the repository is one possible way. You may arrive at a slightly different solution in
the course of your attempts.

For the first exercise, try to accomplish the following:

1. Start a new project to build an ecommerce website.
2. Create a component to display a single product.
3. The product component should display a name, price, and image for the product.

You can initialize the component with some defaults for the same. Use any place‐
holder image you want.

4. Highlight the entire element in a different color if the product is on sale. Whether
the product is on sale can be an attribute of the product itself.

5. Add buttons to increase and decrease the quantity of the product in the cart. The
quantity in the cart should be visible in the UI. Disable the button if the quantity
is already zero.

All of this can be accomplished using concepts covered in this chapter. You can check
out the finished solution in chapter2/exercise/ecommerce.

Exercise | 33

CHAPTER 3

Useful Built-In Angular Directives

In the previous chapter, we got started with our very first Angular application, and
got a feel for using the Angular CLI to begin a new project and create components in
it. We got a basic sense of how to use Angular’s data and event binding mechanisms
as well.

In this chapter, we will first understand what directives are in Angular and how they
are different from components. We will then cover some basic directives that Angular
provides out of the box and the use cases where they’re applicable. By the end of the
chapter, you should be comfortable using most of the out-of-the-box directives that
Angular provides and understand when and where to use them.

Directives and Components
A directive in Angular allows you to attach some custom functionality to elements in
your HTML. A component in Angular, like the one we built in the previous chapter,
is a direcive that provides both functionality and UI logic. It is fundamentally an ele‐
ment that encapsulates its behavior and rendering logic.

Noncomponent directives, on the other hand, usually work on and modify existing
elements. These can be further classified into two types:

Attribute directives
Attribute directives change the look and feel, or the behavior, of an existing ele‐
ment or component that it is applied on. NgClass and NgStyle, which we will see
later in this chapter, are examples of attribute directives.

35

Structural directives
Structural directives change the DOM layout by adding or removing elements
from the view. NgIf and NgFor are examples of structural directives that we will
see later in this chapter.

Built-In Attribute Directives
We will first explore attribute directives. There are two basic attribute directives that
Angular provides out of the box, which are the NgClass and the NgStyle directives.
Both of these are alternatives for the class and style bindings, of which we saw the
class binding in the previous chapter.

We generally refer to the directive with the name of its class, which
is why we call the directive NgClass or NgIf. But the same direc‐
tive, when used as an HTML attribute, is usually in camel-case, like
ngClass or ngIf. Keep this in mind as we go along.

NgClass
The NgClass directive allows us to apply or remove multiple CSS classes simultane‐
ously from an element in our HTML. Previously, we applied a single class to our ele‐
ment to highlight whether it was a positive or a negative change as follows:

<div [class]="stock.isPositiveChange() ? 'positive' : 'negative'">
 $ {{stock.price}}
</div>

In this example, we simply look at a boolean value, and then decide whether to apply
the class positive or negative based on that. But what if we had to apply multiple
CSS classes? And they were all (or a lot of them) conditional? You would end up hav‐
ing to write code that does string generation based on these multiple conditions, so
that you could have one string that represents all the classes that need to be applied.

This is cruft code that is not worth writing or maintaining. So for these kinds of situa‐
tions, Angular provides the NgClass directive, which can take a JavaScript object as
input. For each key in the object that has a truthy value, Angular will add that key
(the key itself, not the value of the key!) as a class to the element. Similarly, each key
in the object that has a falsy value will be removed as a class from that element.

36 | Chapter 3: Useful Built-In Angular Directives

Truthy and Falsy in JavaScript

JavaScript allows us to use non-boolean values in conditional state‐
ments. Thus, instead of just true and false, a whole set of values
are equivalent to true and false. In JavaScript, the following values
are treated as falsy:

• undefined

• null

• NaN

• 0

• "" (any empty string)
• false (the boolean value)

Any other value is treated as truthy, including, but not limited to:

• Any nonzero number
• Any nonempty string
• Any nonnull object or array
• true (the boolean value)

Another way to easily remember is that any non-falsy value is tru‐
thy. We end up using these concepts quite often in conditionals in
our applications.

Let’s take an example to see this in action. Say we want to extend our example from
before, where instead of just a positive and a negative class, we want to add another
class that dictates whether it is a large or a small change. We want it to be a small
change (denoted by the CSS class small-change) if the change percentage is less than
1%; otherwise it would be a large change (denoted by the CSS class large-change).

We will build on the example from the previous chapter, so if you don’t have it, feel
free to grab the final code we were working with from the GitHub repository. The
codebase is in chapter2/stock-market, which is the base for the code in this chapter.

First, we can add the new classes to the src/app/stock/stock-item/stock-
item.component.css file:

.stock-container {
 border: 1px solid black;
 border-radius: 5px;
 display: inline-block;
 padding: 10px;
}

Built-In Attribute Directives | 37

https://github.com/shyamseshadri/angular-up-and-running

.positive {
 color: green;
}

.negative {
 color: red;
}

.large-change {
 font-size: 1.2em;
}

.small-change {
 font-size: 0.8em;
}

Next, we can change our component class to calculate and keep the JSON object
ready with the classes to apply. We modify the src/app/stock/stock-item/stock-
item.component.ts file to first calculate the difference between the current and the pre‐
vious price, and then create an object that holds all the classes we need to apply:

import { Component, OnInit } from '@angular/core';

import { Stock } from '../../model/stock';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit {

 public stock: Stock;
 public stockClasses;

 constructor() { }

 ngOnInit() {
 this.stock = new Stock('Test Stock Company', 'TSC', 85, 80);
 let diff = (this.stock.price / this.stock.previousPrice) - 1;
 let largeChange = Math.abs(diff) > 0.01;
 this.stockClasses = {
 "positive": this.stock.isPositiveChange(),
 "negative": !this.stock.isPositiveChange(),
 "large-change": largeChange,
 "small-change": !largeChange
 };
 }

 toggleFavorite(event) {
 console.log('We are toggling the favorite state for this stock', event);
 this.stock.favorite = !this.stock.favorite;

38 | Chapter 3: Useful Built-In Angular Directives

 }

}

In the component code, we created a stockClasses object with four keys: positive,
negative, large-change, and small-change. Based on the current price and previous
prices, each of these keys will have a value of true or false.

Now, let’s see how we can use the NgClass directive to use this instead of the class
binding we were previously using in the src/app/stock/stock-item/stock-item.compo‐
nent.html file:

<div class="stock-container">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="price"
 [ngClass]="stockClasses">$ {{stock.price}}</div>
 <button (click)="toggleFavorite($event)"
 [disabled]="stock.favorite">Add to Favorite</button>
</div>

We primarily replaced the

[class]="stock.isPositiveChange() ? 'positive' : 'negative'"

line with the following:

[ngClass]="stockClasses"

Now if you run this application in your browser (ng serve, in case you have forgot‐
ten), you can see the impact of your changes. The price is now shown in green, as well
as in slightly larger font, since it has applied both the positive and the large-change
classes. You can play around with the values of price and previous price in the com‐
ponent class to see the different combinations reflected.

Another thing to note is that unlike before, where the class binding was overwriting
our initial class from the element, the NgClass directive retains the classes on the
element.

The finished code for the preceding example is available in the chapter3/ng-class
folder in the GitHub repository.

You should consider using the NgClass directive if you have the use case of having to
apply various different CSS classes on an element conditionally. It makes it easy to
reason and understand how and what classes are applied, and it also makes it easy to
unit test the logic of selecting classes separate from the logic of applying classes to the
elements.

Built-In Attribute Directives | 39

NgStyle
The NgStyle directive is the lower-level equivalent of the NgClass directive. It oper‐
ates in a manner similar to the NgClass in that it takes a JSON object and applies it
based on the values of the keys. But the NgStyle directive works at a CSS style/prop‐
erties level. The keys and values it expects are CSS properties and attributes rather
than class names.

Considering that our example with NgClass was using simple CSS classes each affect‐
ing only one CSS property, let’s see how we can translate the same example using the
NgStyle directive instead. First, we need to make a change to the src/app/stock/stock-
item/stock-item.component.ts file to create the style object based on the stock proper‐
ties:

import { Component, OnInit } from '@angular/core';

import { Stock } from '../../model/stock';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit {

 public stock: Stock;
 public stockStyles;

 constructor() { }

 ngOnInit() {
 this.stock = new Stock('Test Stock Company', 'TSC', 85, 80);
 let diff = (this.stock.price / this.stock.previousPrice) - 1;
 let largeChange = Math.abs(diff) > 0.01;
 this.stockStyles = {
 "color": this.stock.isPositiveChange() ? "green" : "red",
 "font-size": largeChange ? "1.2em" : "0.8em"
 };
 }

 toggleFavorite(event) {
 console.log('We are toggling the favorite state for this stock', event);
 this.stock.favorite = !this.stock.favorite;
 }

}

Similar to the previous section, we have created a stockStyles object. In the initiali‐
zation code, we have initialized the stockStyles object with the keys color and
font-size. Its values are CSS attributes that are generated based on the stock proper‐

40 | Chapter 3: Useful Built-In Angular Directives

ties. We can then use this stockStyles object as an input to the NgStyle directive for
binding.

We can now change our HTML to use this information by editing the src/app/stock/
stock-item/stock-item.component.html file as follows:

<div class="stock-container">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="price"
 [ngStyle]="stockStyles">$ {{stock.price}}</div>
 <button (click)="toggleFavorite($event)"
 [disabled]="stock.favorite">Add to Favorite</button>
</div>

We have added a binding for the NgStyle directive:

[ngStyle]="stockStyles"

Angular will look at the keys and values of the stockStyles object and add those par‐
ticular styles to the HTML element. You can again run the application and try chang‐
ing the values of the price and previous price to see this in action.

The finished code for the preceding example is available in the chapter3/ng-style
folder in the GitHub repository.

It is generally preferable to use the class or NgClass bindings to change the look and
feel of your application, but the NgStyle does give you another tool in your toolkit, in
case you have the use case of changing the CSS style of elements and cannot (for
whatever reasons) use classes to perform the same.

Alternative Class and Style Binding Syntax
We covered using the [class] binding syntax in the previous chapter, as well as the
NgClass alternative to dynamically add classes to our elements using Angular. There
is a third alternative for both classes and styles, which is to use a singular version of
the class and style binding that adds and removes one particular class/style, instead of
the all-or-nothing approach of the [class] binding.

We can add or remove individual classes based on evaluating a truthy expression in
Angular with the following syntax:

[class.class-name]="expression"

We would replace class-name with the particular CSS class we want to apply/remove
on our element, and replace expression in the syntax with a valid JavaScript expres‐
sion that would either return a truthy or falsy value.

Let’s modify our stock example to apply and remove the positive and negative CSS
classes using this syntax instead. We don’t have to make any changes in the compo‐

Built-In Attribute Directives | 41

nent or the CSS, and only make the following changes to the src/app/stock/stock-item/
stock-item.component.html file:

<div class="stock-container">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="price"
 [class.positive]="stock.isPositiveChange()"
 [class.negative]="!stock.isPositiveChange()">$ {{stock.price}}</div>
 <button (click)="toggleFavorite($event)"
 [disabled]="stock.favorite">Add to Favorite</button>
</div>

Notice the two new lines:

[class.positive]="stock.isPositiveChange()"
[class.negative]="!stock.isPositiveChange()"

We are telling Angular to apply the CSS class positive if there is a positive change
(based on the call to stock.isPositiveChange()), and remove it if this is falsy. Simi‐
larly, we are doing the negation of that for negative. This is a nice simple way to deal
with CSS classes if you only have to add/remove one or two classes. Note that this
also works if the class name has dashes and so on. For example, you could do:

[class.large-change]="someExpressionHere"

and this would apply the class large-change if someExpressionHere evaluated to
true. Also note that this keeps the original class from the element intact (the price
class), which the basic [class] binding does not. That is yet another advantage of
this syntax.

It is, though, preferred to use the NgClass directive any time you have to deal with
more than one or two classes, as it makes it more manageable and easier to test.

The style binding is also something similar, and can be done like follows:

[style.background-color]="stock.isPositiveChange() ? 'green' : 'red'"

You can read more about the style binding in the official Angular documentation.

Built-In Structural Directives
Structural directives, as discussed earlier, are responsible for changing the layout of
the HTML by adding, removing, or modifying elements from the DOM. Just like
other directives that are not components, structural directives are applied on a pre-
existing element, and the directive then operates on the content of that element.

Structural directives in Angular follow a very particular syntax, which makes it easy
to recognize when a directive is a structural directive versus a normal one. All struc‐
tural directives in Angular start with an asterisk (*), like:

<div *ngIf="stock.favorite"></div>

42 | Chapter 3: Useful Built-In Angular Directives

https://angular.io/guide/template-syntax#style-binding

Unlike the data- or event-binding syntaxes, there are no square brackets or parenthe‐
ses. Just a plain *ngIf followed by the expression. Angular understands the expres‐
sion and translates it into the final HTML. To understand this process a bit more,
refer to the following sidebar.

Syntax and Reasoning
You might be curious about the asterisk syntax, and rightfully so. The star syntax is
syntactic sugar that is replaced underneath by Angular to a series of steps, resulting in
the final view you get. In fact, unlike the rest of the directives where you can use data/
event binding correctly with expressions, with the structural directives, what you
instead use is a microsyntax, a mini-language of sorts that Angular uses to accomplish
certain things.

You can skip this section if you don’t want to dive into the innards of how exactly
Angular works with these expressions.

Let’s walk through a simple lifecycle of how Angular translates a simple expression
into its final state. Say we started with:

<div *ngIf="stock.favorite">
 <button>Remove from favorite</button>
</div>

Angular will recognize the structural directive and transform it into a template direc‐
tive, to create something along the lines of the following:

<div template="ngIf stock.favorite">
 <button>Remove from favorite</button>
</div>

This template directive is using the microsyntax that Angular recognizes and then
translates it into an Angular template that surrounds this particular element, to some‐
thing like:

<ng-template [ngIf]="stock.favorite">
 <div>
 <button>Remove from favorite</button>
 </div>
</ng-template>

Finally, based on the value of stock.favorite, the inner div would get rendered to
the DOM, or removed from it. You can technically use any of these syntaxes to ach‐
ieve the same effect, but it is recommended for consistency and ease of readability.

Built-In Structural Directives | 43

NgIf
We will first take a look at the trusty and often used structural directive NgIf. The
NgIf directive allows you to conditionally hide or show elements in your UI. The syn‐
tax, as mentioned earlier, starts with an asterisk as it is a structural directive that can
conditionally remove or add elements to our rendered HTML.

The NgIf uses one of the simplest microsyntaxes of all the structural directives, as it
simply expects the expression provided to it to evaluate to a truthy value. This is the
JavaScript concept of truthiness (as explained previously), so the boolean true value, a
nonzero number, a nonempty string, and a nonnull object would all be treated as
true. This also makes it convenient to have templates that show up if certain objects
are present and nonnull.

We will build on the examples from the previous chapter, so if you don’t have it, feel
free to grab the final code we were working with from the GitHub repository. The
codebase is in chapter2/stock-market, which is the base for the code in this chapter.

Let’s modify the Add to Favorite button such that instead of getting disabled, we hide
the button if the stock is already favorited. We don’t need to make any changes to the
component or CSS code, but instead just to the src/app/stock/stock-item/stock-
item.component.html file as follows:

<div class="stock-container">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="price"
 [class]="stock.isPositiveChange() ? 'positive' : 'negative'">
 $ {{stock.price}}
 </div>
 <button (click)="toggleFavorite($event)"
 *ngIf="!stock.favorite">Add to Favorite</button>
</div>

On the button, we added the conditionality with *ngIf="!stock.favorite". This
tells Angular to add the element if the stock is not favorited, and remove it from the
DOM if it is currently a favorite stock. Now when you load the page, you will see the
button by default. Once you click the Add to Favorite button, the boolean will flip
and the stock will now be favorited. Angular will automatically at this point hide the
button from the UI.

If you inspect the HTML of the page, you will see that the element is actually
removed from the rendered DOM.

44 | Chapter 3: Useful Built-In Angular Directives

https://github.com/shyamseshadri/angular-up-and-running

Why Remove Versus Hide Element?
Why does *ngIf remove the element, instead of hiding it via CSS? The reason comes
down to performance and the implications thereof. Angular continues to listen and
watch for events on all elements in the DOM. Removing the element from the DOM
is a good way to ensure that it reduces any impact on performance, especially when
the element being removed is a resource-intensive component (think a graph, or an
autoupdating widget). This does mean that it is slightly less efficient when the condi‐
tion toggles (since it involves a DOM addition/removal), but in the grand context of
things, it is more efficient.

The NgIf directive, along with the NgFor, which we will cover in the following sec‐
tions, are work-horse directives. They do a lot of the heavy lifting and are commonly
used in most applications you will develop.

NgFor
While the NgIf directive is used for conditionally showing/hiding elements, the
NgFor directive is used for creating multiple elements, usually one for each instance of
some or the other object in an array. It is a common practice to have a template, and
then create an instance of that template for each instance of our object.

NgFor or NgForOf

In this book, we use NgFor to refer to the *ngFor directive. But
technically, the *ngFor directive uses the class called NgForOf under
the hood. Thus, you might see people use NgFor and NgForOf inter‐
changeably when referring to the *ngFor directive in Angular.

NgFor uses a special microsyntax that comes with a set of mandatory and optional
segments. Let’s modify our example from Chapter 2 to now show a list of stocks,
instead of one individual stock.

First, we will modify the src/app/stock/stock-item.component.ts file, just for the sake of
demonstration, to have an array of stocks instead of one stock:

import { Component, OnInit } from '@angular/core';

import { Stock } from '../../model/stock';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']

Built-In Structural Directives | 45

})
export class StockItemComponent implements OnInit {

 public stocks: Array<Stock>;

 constructor() { }

 ngOnInit() {
 this.stocks = [
 new Stock('Test Stock Company', 'TSC', 85, 80),
 new Stock('Second Stock Company', 'SSC', 10, 20),
 new Stock('Last Stock Company', 'LSC', 876, 765)
];
 }

 toggleFavorite(event, index) {
 console.log('We are toggling the favorite state for stock', index, event);
 this.stocks[index].favorite = !this.stocks[index].favorite;
 }
}

Generally, we want to keep a stock-item for one particular stock only, but we will
circumvent that for this particular example. We changed stock to be stocks, an array
of stock objects. We then created some dummy stocks in our initialization. Finally, we
changed the toggleFavorite to take in an index as a parameter, instead of working
with the current stock.

Next, let’s see how we can now modify our HTML in src/app/stock/stock-
item.component.html to leverage the power of the NgFor directive:

<div class="stock-container" *ngFor="let stock of stocks; index as i">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="price"
 [class]="stock.isPositiveChange() ? 'positive' : 'negative'">
 $ {{stock.price}}
 </div>
 <button (click)="toggleFavorite($event, i)"
 [disabled]="stock.favorite">Add to Favorite</button>
</div>

We updated our parent container with the NgFor directive. Let’s explore how we have
used it in a bit more detail:

*ngFor="let stock of stocks; index as i"

The first part of the microsyntax is basically our for loop. We create a template
instance variable named stock, which will be available within the scope of the ele‐
ment created. This can be equated to a standard for-each loop, with the variable
stock referring to each individual item in the array. The second part after the semico‐
lon is creating another template instance variable i, which holds the current index
value. We will talk about the other properties in just a bit.

46 | Chapter 3: Useful Built-In Angular Directives

With this statement, Angular will repeat the stock-container div element once for
each item in the stocks array, thus creating three elements in our final rendered
HTML. You should see something like Figure 3-1 on your screen.

Figure 3-1. Angular app using *ngFor

Angular encapsulates the stock and i variables such that each instance of the tem‐
plate has its own copy of them. Thus, when we refer to stock.name inside the ele‐
ment, Angular correctly picks up the relevant stock and displays its name. When we
click the Add to Favorite button, the correct index is passed and only that particular
button is disabled.

Similar to index, there are other local values that are available within the context of an
NgFor directive that you can assign to a local variable name (like we did with i) and
bind them to different values:

index

This refers to the current element index

even

This is true when the item has an even index

odd

This is true when the item has an odd index

first

This is true when the item is the first item in the array

last

This is true when the item is the last item in the array

You can then use these variables to bind to CSS classes, or display them in the UI, or
run any other calculations you might want to. For instance, you might want to add

Built-In Structural Directives | 47

the CSS class even-item to each even index item, which you can accomplish with a
binding like:

[css.even-item]="isEven"

where even is assigned to the isEven variable in the NgFor microsyntax like:

*ngFor="let stock of stocks; even as isEven; index as i"

The last major capability that the NgFor directive provides is a hook into how Angular
recognizes elements and avoids re-creating element instances unnecessarily. By
default, Angular uses object identity to track additions, removals, and modifications
to an array. That is, as long as the object reference does not change, Angular will not
create new elements for it, and reuse the old element reference. This is mostly for per‐
formance reasons, as element creation/removal are two of the more costly operations
in the browser.

There are cases when the element reference might change, but you still want to con‐
tinue using the same element. For example, when you fetch new data from the server,
you don’t want to blow away your list and re-create it unless the data has fundamen‐
tally changed. This is where the trackBy capability of the NgFor directive comes into
play.

The trackBy option takes a function that has two arguments: an index and the item.
If the trackBy function is provided to the NgFor directive, then it will use the return
value of the function to decide how to identify individual elements. For example, in
our particular case, we might want to use the stock’s code as an identifier, instead of
the object reference.

First, we will add the function used to track individual items in src/app/stock/stock-
item.component.ts:

import { Component, OnInit } from '@angular/core';

import { Stock } from '../../model/stock';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit {

 public stocks: Array<Stock>;

 constructor() { }

 ngOnInit() {
 this.stocks = [
 new Stock('Test Stock Company', 'TSC', 85, 80),

48 | Chapter 3: Useful Built-In Angular Directives

 new Stock('Second Stock Company', 'SSC', 10, 20),
 new Stock('Last Stock Company', 'LSC', 876, 765)
];
 }

 toggleFavorite(event, index) {
 console.log('We are toggling the favorite state for stock', index, event);
 this.stocks[index].favorite = !this.stocks[index].favorite;
 }

 trackStockByCode(index, stock) {
 return stock.code;
 }
}

The last function (trackStockByCode) is the one we just added. We are taking both
the index and the stock, and returning the stock.code. Angular will use this value to
identify each element.

Next, we can change the HTML to pass this function to the NgFor directive by chang‐
ing the src/app/stock/stock-item/stock-item.component.html file as follows:

<div class="stock-container"
 *ngFor="let stock of stocks; index as i; trackBy: trackStockByCode">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="price"
 [class]="stock.isPositiveChange() ? 'positive' : 'negative'">
 $ {{stock.price}}
 </div>
 <button (click)="toggleFavorite($event, i)"
 [disabled]="stock.favorite">Add to Favorite</button>
</div>

We just modified the *ngFor to pass in an additional attribute in the microsyntax,
which is trackBy: trackStockByCode. This will ensure that Angular calls this func‐
tion to figure out how to identify individual items, instead of using the object
reference.

This ensures that even if we reload all the stocks from the server (thus changing all
the object references), Angular will still look at the stock code to decide whether or
not to reuse the elements present in the DOM.

Use the trackBy option in the NgFor directive whenever you know
that you are going to reload the list (for example, loading it from an
observable that makes a server call). It will definitely help in
performance.

Built-In Structural Directives | 49

NgSwitch
The last built-in directive is actually a set of multiple directives. NgSwitch by itself is
not a structural directive, but rather an attribute directive. You would use it with nor‐
mal data-binding syntax with the square-bracket notation. It is the NgSwitchCase and
the NgSwitchDefault directives that are, in fact, structural directives, as they would
add or remove elements depending on the case.

Let’s take a hypothetical example to see how this might look in action. Let’s assume
that instead of just stocks, we were dealing with all kinds of securities, like stocks,
options, derivatives, and mutual funds. And we had built components to render each
one of these. Now, given a security we want to render the right kind of component
based on its type. This would be a great example of using an NgSwitch, which might
look something like follows:

<div [ngSwitch]="security.type">
 <stock-item *ngSwitchCase="'stock'" [item]="security">
 </stock-item>
 <option-item *ngSwitchCase="'option'" [item]="security">
 </option-item>
 <derivative-item *ngSwitchCase="'derivative'" [item]="security">
 </derivative-item>
 <mutual-fund-item *ngSwitchCase="'mutual-fund'" [item]="security">
 </mutual-fund-item>
 <unknown-item *ngSwitchDefault [item]="security">
 </unknown-item>
</div>

A few interesting things of note in the example:

• We use normal data binding using square brackets with the ngSwitch directive,
as we want it to understand and interpret the value underneath the expression. It
is not a structural directive, as we mentioned previously.

• Each *ngSwitchCase is again taking an expression, and in this case, we are pass‐
ing string constants like 'stock', 'option', and so on. If the value of
security.type matches any one of these string constants, then that particular
element will get rendered, and all other sibling elements will be removed.

• If none of the sibling *ngSwitchCase statements matches, then the *ngSwitch
Default will get triggered and in the example, the unknown-item component will
get rendered.

The NgSwitch family of directives is great when you have multiple elements/
templates, of which one has to be rendered based on conditions.

50 | Chapter 3: Useful Built-In Angular Directives

Multiple Sibling Structural Directives
You might run into a case at some point where you want to run an *ngFor on a tem‐
plate, but only if some condition is met. Your instinctive reaction in that case might
be to add both *ngFor and *ngIf on the same element. Angular will not let you.

For example, consider the following code:

<div *ngFor="let stock of stocks" *ngIf="stock.active">
 <!-- Show stock details here if stock is active -->
</div>

Here, we want to run the *ngFor, and then decide if the stock is active before we dis‐
play it. Now consider the following code:

<div *ngFor="let stock of stocks" *ngIf="stocks.length > 2">
 <!-- Show stock details here if more than 2 stocks present -->
</div>

Both of these cases look very similar, but the intent and expectation is very different.
In the first case, we expect the *ngFor to execute first followed by the *ngIf, and vice
versa in the second case.

It is not immediately obvious which one between the two should run first. Rather
than creating some innate order that one directive runs before the other, Angular
simplifies it by not allowing it on the same element.

When you run into such a case, it is recommended to just use wrapping elements so
that you can be explicit about the order in which these structural directives are
executed.

Conclusion
In this chapter, we covered what the built-in directives are, and then went over some
common directives that you will need and use for your Angular application, such as
NgFor, NgIf, and more. We looked at examples of how we could use them for various
functionality and saw a little bit of some more complex use cases for NgSwitch as well
as advanced usage of NgFor. Of course, Angular does allow you to extend and create
your own directives, and you can read up on it in the documentation.

In the next chapter, we will dive deep into Angular components and understand the
various options we have for configuring them as well as the lifecycle of an Angular
component.

Conclusion | 51

https://angular.io/guide/attribute-directives

Exercise
For our second exercise, try to change the exercise code from the previous chapter to
perform the following:

1. Move from using simple class binding to using either ngClass or the specific
class binding from this chapter to highlight on-sale items. Have a combination of
some on sale and some not on sale.

2. Instead of disabling the decrease quantity button when the quantity is zero, use
*ngIf to show the button only if it can be clicked.

3. Add a drop-down with quantity selection from 1 to 20 (generated via *ngFor).
Don’t worry about the action/update of data on selection of a quantity; we will
get to that in one of the following chapters.

All of this can be accomplished using concepts covered in this chapter. You can check
out the finished solution in chapter3/exercise/ecommerce.

52 | Chapter 3: Useful Built-In Angular Directives

CHAPTER 4

Understanding and Using
Angular Components

In the previous chapter, we did a deep dive into the built-in directives that Angular
offers that allow us to perform common functionality like hiding and showing ele‐
ments, repeating templates, and so on. We worked with directives like ngIf and
ngForOf and got a feel for how and when to use them.

In this chapter, we will go a bit deeper into components, those elements we have been
creating to render the UI and let users interact with the applications we build. We will
cover some of the more useful attributes you can specify when creating components,
how to think about the lifecycle of the component and the various hooks that Angu‐
lar gives you, and finally, cover how to pass data into and out of your custom compo‐
nents. By the end of the chapter, you should be able to perform most common tasks
related to components while understanding what you are doing and why.

Components—A Recap
In the previous chapter, we saw that Angular only has directives, and that directives
are reused for multiple purposes. We dealt with attribute and structural directives,
which allow us to change the behavior of an existing element or to change the struc‐
ture of the template being rendered.

The third kind of directives are components, which we have been using pretty much
from the first chapter. To some extent, you can consider an Angular application to be
nothing but a tree of components. Each component in turn has some behavior and a
template that gets rendered. This template can then continue to use other compo‐
nents, thus forming a tree of components, which is the Angular application that gets
rendered in the browser.

53

At its very simplest, a component is nothing but a class that encapsulates behavior
(what data to load, what data to render, and how to respond to user interactions) and
a template (how the data is rendered). But there are multiple ways to define that as
well, along with other options, which we will cover in the following sections.

Defining a Component
We define a component using the TypeScript decorator Component. This allows us to
annotate any class with some metadata that teaches Angular how the component
works, what to render, and so on. Let’s take a look again at the stock-item compo‐
nent we created to see what a simple component would look like, and we will build up
from there:

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit {
 // Code omitted here for clarity
}

The very basic component only needs a selector (to tell Angular how to find instances
of the component being used) and a template (that Angular has to render when it
finds the element). All other attributes in the Component decorator are optional. In
the preceding example, we have defined that the StockItemComponent is to be ren‐
dered whenever Angular encounters the app-stock-item selector, and to render the
stock-item.component.html file when it encounters the element. Let’s talk about the
attributes of the decorator in a bit more detail.

Selector
The selector attribute, as we touched upon briefly in Chapter 2, allows us to define
how Angular identifies when the component is used in HTML. The selector takes a
string value, which is the CSS selector Angular will use to identify the element. The
recommended practice when we create new components is to use element selectors
(like we did with app-stock-item), but technically you could use any other selector
as well. For example, here are a few ways you could specify the selector attribute and
how you would use it in the HTML:

• selector: 'app-stock-item' would result in the component being used as
<app-stock-item></app-stock-item> in the HTML.

• selector: '.app-stock-item' would result in the component being used as a
CSS class like <div class="app-stock-item"></div> in the HTML.

54 | Chapter 4: Understanding and Using Angular Components

• selector: '[app-stock-item]' would result in the component being used as
an attribute on an existing element like <div app-stock-item></div> in the
HTML.

You can make the selector as simple or complex as you want, but as a rule of thumb,
try to stick to simple element selectors unless you have a very strong reason not to.

Template
We have been using templateUrl so far to define what the template to be used along
with a component is. The path you pass to the templateUrl attribute is relative to the
path of the component. In the previous case, we can either specify the templateUrl
as:

templateUrl: './stock.item.component.html'

or:

templateUrl: 'stock.item.component.html'

and it would work. But if you try to specify an absolute URL or anything else, your
compilation would break. One interesting thing to note is that unlike AngularJS (1.x),
the application Angular builds does not load the template by URL at runtime.
Instead, Angular precompiles a build and ensures that the template is inlined as part
of the build process.

Instead of templateUrl, we could also specify the template inline in the component,
using the template option. This allows us to have the component contain all the
information instead of splitting it across HTML and TypeScript code.

Only one of template and templateUrl can be specified in a com‐
ponent. You cannot use both, but at least one is essential.

There is no impact on the final generated application as Angular compiles the code
into a single bundle. The only reason you might want to split your template code into
a separate file is to get nicer IDE features such as syntax completion and the like,
which are specific to file extensions. Generally, you might want to keep your tem‐
plates separate if they are over three or four lines or have any complexity.

Let’s see how our stock-item component might look with an inline template:

import { Component, OnInit } from '@angular/core';

import { Stock } from '../../model/stock';

Defining a Component | 55

@Component({
 selector: 'app-stock-item',
 template: `
 <div class="stock-container">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="price"
 [class]="stock.isPositiveChange() ? 'positive' : 'negative'">
 $ {{stock.price}}
 </div>
 <button (click)="toggleFavorite($event)"
 *ngIf="!stock.favorite">Add to Favorite</button>
 </div>
 `,
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit {
 // Code omitted here for clarity
}

ECMAScript 2015 (and TypeScript) allows us to define multiline
templates using the ` (backtick) symbol, instead of doing string
concatenation across multiple lines using the + (plus) operator. We
leverage this usually when we define inline templates.

You can find the completed code in the chapter4/component-template folder in the
GitHub repository.

All we have done is taken the template and moved it into the template attribute of
the Component decorator. In this particular case though, because there are more than
a few lines with some amount of work being done, I would recommend not moving it
inline. Note that as a result of moving it to template, we have removed the previous
templateUrl attribute.

Styles
A given component can have multiple styles attached to it. This allows you to pull in
component-specific CSS, as well as potentially any other common CSS that needs to
be applied to it. Similar to templates, you can either inline your CSS using the styles
attribute, or if there is a significant amount of CSS or you want to leverage your IDE,
you can pull it out into a separate file and pull it into your component using the
styleUrls attribute. Both of these take an array as an input.

One thing that Angular promotes out of the box is complete encapsulation and isola‐
tion of styles. That means by default, the styles you define and use in one component
will not affect/impact any other parent or child component. This ensures that you can

56 | Chapter 4: Understanding and Using Angular Components

be confident that the CSS classes you define in any component will not unknowingly
affect anything else, unless you explicitly pull in the necessary styles.

Again, just like templates, Angular will not pull in these styles at runtime, but rather
precompile and create a bundle with the necessary styles. Thus, the choice of using
styles or styleUrls is a personal one, without any major impact at runtime.

Do not use both styles and styleUrls together. Angular will end
up picking one or the other and will lead to unexpected behavior.

Let’s quickly see how the component might look if we inlined the styles:

import { Component, OnInit } from '@angular/core';

import { Stock } from '../../model/stock';

@Component({
 selector: 'app-stock-item',
 templateUrl: 'stock-item.component.html',
 styles: [`
 .stock-container {
 border: 1px solid black;
 border-radius: 5px;
 display: inline-block;
 padding: 10px;
 }

 .positive {
 color: green;
 }

 .negative {
 color: red;
 }
 `]
})
export class StockItemComponent implements OnInit {
 // Code omitted here for clarity
}

You can find the completed code in the chapter4/component-style folder in the
GitHub repository.

You can of course choose to pass in multiple style strings to the attribute. The deci‐
sion between using styles and styleUrls is one of personal preference and has no
impact on the final performance of the application.

Defining a Component | 57

Style Encapsulation
In the preceding section, we talked about how Angular encapsulates the styles to
ensure that it doesn’t contaminate any of your other components. In fact, you can
actually tell Angular whether it needs to do this or not, or if the styles can be accessi‐
ble globally. You can set this by using the encapsulation attribute on the Component
decorator. The encapsulation attribute takes one of three values:

ViewEncapsulation.Emulated

This the default, where Angular creates shimmed CSS to emulate the behavior
that shadow DOMs and shadow roots provide.

ViewEncapsulation.Native

This is the ideal, where Angular will use shadow roots. This will only work on
browsers and platforms that natively support it.

ViewEncapsulation.None

Uses global CSS, without any encapsulation.

What Is the Shadow DOM?

HTML, CSS, and JavaScript have a default tendency to be global in
the context of the current page. What this means is that an ID
given to an element can easily clash with another element some‐
where else on the page. Similarly, a CSS rule given to a button in
one corner of the page might end up impacting another totally
unrelated button.
We end up having to come up with specific naming conventions,
use CSS hacks like !important, and use many more techniques to
work around this generally in our day-to-day development.
Shadow DOM fixes this by scoping HTML DOM and CSS. It pro‐
vides the ability to have scoped styling to a component (thus pre‐
venting the styles from leaking out and affecting the rest of the
application) and also the ability to isolate and make the DOM self-
contained.
You can read up on it more in the documentation for self-
contained web components.

The best way to see how this impacts our application is to make a slight change and
see how our application behaves under different circumstances.

First, let’s add the following snippet of code to the app.component.css file. We are
using the same base as the previous chapter, and the completed code is available in
the chapter4/component-style-encapsulation folder:

58 | Chapter 4: Understanding and Using Angular Components

https://developers.google.com/web/fundamentals/web-components/shadowdom
https://developers.google.com/web/fundamentals/web-components/shadowdom

.name {
 font-size: 50px;
}

If we run the application right now, there is no impact on our application. Now, let’s
try changing the encapsulation property on the main AppComponent. We will change
the component as follows:

import { Component, ViewEncapsulation } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css'],
 encapsulation: ViewEncapsulation.None
})
export class AppComponent {
 title = 'app works!';
}

We added the encapsulation: ViewEncapsulation.None line to our Component dec‐
orator (of course, after importing the ViewEncapsulation enum from Angular). Now
if we refresh our application, you will see that the name of the stock has been blown
up to 50px. This is because the styles applied on the AppComponent are not restricted
to just the component but are now taking the global namespace. Thus, any element
that adds the name class to itself will get this font-size applied to it.

ViewEncapsulation.None is a good way of applying common styles to all child com‐
ponents, but definitely adds the risk of polluting the global CSS namespace and hav‐
ing unintentional effects.

Others
There are a lot more attributes than what we covered on the Component decorator. We
will briefly review a few of those here, and will reserve discussion of others for later
chapters when they become more relevant. Here is a quick highlight of some of the
other major attributes and their uses:

Stripping white spaces
Angular allows you to strip any unnecessary white spaces from your template (as
defined by Angular, including more than one space, space between elements,
etc.). This can help reduce the build size by compressing your HTML. You can
set this feature (which is set to false by default) by using the preserveWhitespa
ces attribute on the component. You can read more about this feature in the offi‐
cial documentation.

Defining a Component | 59

https://angular.io/api/core/Component#preserveWhitespaces
https://angular.io/api/core/Component#preserveWhitespaces

Animations
Angular gives you multiple triggers to control and animate each part of the com‐
ponent and its lifecycle. To accomplish this, it provides its own DSL, which
allows Angular to animate on state changes within the element.

Interpolation
There are times when the default Angular interpolation markers (the double-
curlies {{ and }}) interfere with integrating with other frameworks or technolo‐
gies. For those scenarios, Angular allows you to override the interpolation
identifiers at a component level by specifying the start and end delimiters. You
can do so by using the interpolation attribute, which takes an array of two
strings, the opening and closing markers for the interpolation. By default, they
are ['{{', '}}'], but you override it by, say, providing interpolation: ['<<',
'>>'] to replace the interpolation symbols for just that component to << and >>.

View providers
View providers allow you to define providers that inject classes/services into a
component or any of its children. Usually, you won’t need it, but if there are cer‐
tain components where you want to override, or restrict the availability of a class
or a service, you can specify an array of providers to a component using the view
Providers attribute. We will cover this in more detail in Chapter 8.

Exporting the component
We have been working so far by using the component class’s functions within the
context of the template. But there are use cases (especially when we start dealing
with directives and more complex components) for which we might want to
allow the user of the component to call functions on the component from out‐
side. A use case might be that we provide a carousel component, but want to pro‐
vide functionality to allow the user of the component to control the next/
previous functionality. In these cases, we can use the exportAs attribute of the
Component decorator.

changeDetection

By default, Angular checks every binding in the UI to see if it needs to update any
UI element whenever any value changes in our component. This is acceptable for
most applications, but as our applications get larger in size and complexity, we
might want control over how and when Angular updates the UI. Instead of
Angular deciding when it needs to update the UI, we might want to be explicit
and tell Angular when it needs to update the UI manually. To do this, we use the
changeDetection attribute, where we can override the default value of Change
DetectionStrategy.Default to ChangeDetectionStrategy.OnPush. This means
that after the initial render, it will be up to us to let Angular know when the value
changes. Angular will not check the component’s bindings automatically. We will
cover this in more detail later in the chapter.

60 | Chapter 4: Understanding and Using Angular Components

There are a lot more attributes and features with regards to components that we don’t
cover in this chapter. You should take a look at the official documentation for compo‐
nents to get familiar with what else is possible, or dive deeper into the details.

Components and Modules
Before we go into the details of the lifecycle of a component, let’s quickly sidetrack
into how components are linked to modules and what their relation is. In Chapter 2,
we saw how any time we created a new component, we had to include it in a module.
If you create a new component, and do not add it to a module, Angular will complain
that you have components that are not part of any modules.

For any component to be used within the context of a module, it has to be imported
into your module declaration file and declared in the declarations array. This
ensures that the component is visible to all other components within the module.

There are three specific attributes on the NgModule that directly impact components
and their usage, which are important to know. While only declarations is important
initially, once you start working with multiple modules, or if you are either creating
or importing other modules, the other two attributes become essential:

declarations

The declarations attribute ensures that components and directives are available
to use within the scope of the module. The Angular CLI will automatically add
your component or directive to the module when you create a component
through it. When you first start out building Angular applications, you might
easily forget to add your newly created components to the declarations
attribute, so keep track of that (if you are not using the Angular CLI, that is!) in
order to avoid this common mistake.

imports

The imports attribute allows you to specify modules that you want imported and
accessible within your module. This is mostly as a way to pull in third-party
modules to make the components and services available within your application.
If you want to use a component from other modules, make sure you import the
relevant modules into the module you have declared and where the component
exists.

exports

The exports attribute is relevant if you either have multiple modules or you need
to create a library that will be used by other developers. Unless you export a com‐
ponent, it cannot be accessed or used outside of the direct module where the
component is declared. As a general rule of thumb, if you will need to use the
component in another module, make sure you export it.

Components and Modules | 61

https://angular.io/api/core/Component
https://angular.io/api/core/Component

If you are facing issues using a component, where Angular fails to
recognize a component or says it does not recognize an element, it
most likely is due to misconfigured modules. Check, in order, the
following:

• Whether the component is added as a declaration in the
module.

• In case it is not a component that you wrote, make sure that
you have imported the module that provides/exports the
component.

• If you created a new component that needs to be used in other
components, make sure that you export the component in its
module so that any application including the module will get
access to your newly created component.

Input and Output
One common use case when we start creating components is that we want to separate
the content that a component uses from the component itself. A component is truly
useful when it is reusable. One of the ways we can make a component reusable (rather
than having default, hardcoded values inside it) is by passing in different inputs
depending on the use case. Similarly, there might be cases where we want hooks from
a component when a certain activity happens within its context.

Angular provides hooks to specify each of these through decorators, aptly named
Input and Output. These, unlike the Component and NgModule decorators, apply at a
class member variable level.

Input
When we add an Input decorator on a member variable, it automatically allows you
to pass in values to the component for that particular input via Angular’s data binding
syntax.

Let’s see how we can extend our stock-item component from the previous chapter to
allow us to pass in the stock object, rather than hardcoding it within the component
itself. The finished example is available in the GitHub repository in the chapter4/
component-input folder. If you want to code along and don’t have the previous code,
you can use the chapter3/ng-if codebase as the starter to code along from.

We will first modify the stock-item component to mark the stock as an input to the
component, but instead of initializing the stock object, we will mark it as an Input to
the component. We do this by importing the decorator and using it for the stock
variable. The code for the stock-item.component.ts file should look like the following:

62 | Chapter 4: Understanding and Using Angular Components

import { Component, OnInit, Input } from '@angular/core';

import { Stock } from '../../model/stock';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent {

 @Input() public stock: Stock;

 constructor() { }

 toggleFavorite(event) {
 this.stock.favorite = !this.stock.favorite;
 }
}

We have removed all instantiation logic from the app-stock-item component, and
marked the stock variable as an input. This means that the initialization logic has
been moved out, and the component is only responsible for receiving the value of the
stock from the parent component and just rendering the data.

Next, let’s take a look at the AppComponent and how we can change that to now pass in
the data to the StockItemComponent:

import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent implements OnInit {
 title = 'Stock Market App';

 public stockObj: Stock;

 ngOnInit(): void {
 this.stockObj = new Stock('Test Stock Company', 'TSC', 85, 80);
 }
}

We just moved the initialization of the stock object from the StockItemComponent to
the AppComponent. Finally, let’s take a look at the template of the AppComponent to see
how we can pass in the stock to the StockItemComponent:

<h1>
 {{title}}

Input and Output | 63

</h1>
<app-stock-item [stock]="stockObj"></app-stock-item>

We use Angular’s data binding to pass in the stock from the AppComponent to the
StockItemComponent. The name of the attribute (stock) has to match the name of
the variable in the component that has been marked as input. The attribute name is
case sensitive, so make sure it matches exactly with the input variable name. The
value that we pass to it is the reference of the object in the AppComponent class, which
is stockObj.

HTML and Case-Sensitive Attributes?

You might wonder how this is even possible. Angular has its own
HTML parser under the covers that parses the templates for
Angular-specific syntax, and does not rely on the DOM API for
some of these. This is why Angular attributes are and can be case-
sensitive.

These inputs are data bound, so if you end up changing the value of the object in
AppComponent, it will automatically be reflected in the child StockItemComponent.

Output
Just like we can pass data into a component, we can also register and listen for events
from a component. We use data binding to pass data in, and we use event binding
syntax to register for events. We use the Output decorator to accomplish this.

We register an EventEmitter as an output from any component. We can then trigger
the event using the EventEmitter object, which will allow any component bound to
the event to get the notification and act accordingly.

We can use the code from the previous example where we registered an Input deco‐
rator and continue on from there. Let’s now extend the StockComponent to trigger an
event when it is favorited, and move the data manipulation out from the component
to its parent. This makes sense as well because the parent component is responsible
for the data and should be the single source of truth. Thus, we will let the parent App
Component register for the toggleFavorite event and change the state of the stock
when the event is triggered.

The finished code for this is in the chapter4/component-output folder.

Take a look at the StockItemComponent code in src/app/stock/stock-item/stock-
item.component.ts:

import { Component, OnInit, Input, Output, EventEmitter } from '@angular/core';

import { Stock } from '../../model/stock';

64 | Chapter 4: Understanding and Using Angular Components

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent {

 @Input() public stock: Stock;
 @Output() private toggleFavorite: EventEmitter<Stock>;

 constructor() {
 this.toggleFavorite = new EventEmitter<Stock>();
 }

 onToggleFavorite(event) {
 this.toggleFavorite.emit(this.stock);
 }
}

A few important things to note:

• We imported the Output decorator as well as the EventEmitter from the Angular
library.

• We created a new class member called toggleFavorite of type EventEmitter,
and renamed our method to onToggleFavorite. The EventEmitter can be typed
for additional type safety.

• We need to ensure that the EventEmitter instance is initialized, as it is not auto-
initialized for us. Either do it inline or do it in the constructor as we did earlier.

• The onToggleFavorite now just calls a method on the EventEmitter to emit the
entire stock object. This means that all listeners of the toggleFavorite event will
get the current stock object as a parameter.

We will also change stock-item.component.html to call the onToggleFavorite method
instead of toggleFavorite. The HTML markup remains pretty much the same
otherwise:

<div class="stock-container">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="price"
 [class]="stock.isPositiveChange() ? 'positive' : 'negative'">
 $ {{stock.price}}
 </div>
 <button (click)="onToggleFavorite($event)"
 *ngIf="!stock.favorite">Add to Favorite</button>
</div>

Input and Output | 65

Next, we add a method to the AppComponent that should be triggered whenever the
onToggleFavorite method is triggered, which we will add event binding on:

import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent implements OnInit {
 title = 'app works!';

 public stock: Stock;

 ngOnInit(): void {
 this.stock = new Stock('Test Stock Company', 'TSC', 85, 80);
 }

 onToggleFavorite(stock: Stock) {
 console.log('Favorite for stock ', stock, ' was triggered');
 this.stock.favorite = !this.stock.favorite;
 }
}

The only thing new is the onToggleFavorite method we have added, which takes a
stock as an argument. In this particular case, we don’t use the stock passed to it other
than for logging, but you could base any decision/work on that. Note also that the
name of the function is not relevant, and you could name it whatever you want.

Finally, let’s tie it all together by subscribing to the new output from our
StockComponent in the app-component.html file:

<h1>
 {{title}}
</h1>
<app-stock-item [stock]="stock"
 (toggleFavorite)="onToggleFavorite($event)">
</app-stock-item>

We just added an event binding using Angular’s event-binding syntax to the output
declared in the stock-item component. Notice again that it is case sensitive and it
has to exactly match what member variable we decorated with the Output decorator.
Also, to get access to the value emitted by the component, we use the keyword $event
as a parameter to the function. Without it, the function would still get triggered, but
you would not get any arguments with it.

66 | Chapter 4: Understanding and Using Angular Components

With this, if you run the application (remember, ng serve), you should see the fully
functional app, and when you click the Add to Favorite button, it should trigger the
method in the AppComponent.

Change Detection
We mentioned changeDetection as an attribute on the Component decorator. Now
that we have seen how Input and Output decorators work, let’s deep dive a little bit
into how Angular performs its change detection at a component level.

By default, Angular applies the ChangeDetectionStrategy.Default mechanism to
the changeDetection attribute. This means that every time Angular notices an event
(say, a server response or a user interaction), it will go through each component in
the component tree, and check each of the bindings individually to see if any of the
values have changed and need to be updated in the view.

For a very large application, you will have lots of bindings on a given page. When a
user takes any action, you as a developer might know for sure that most of the page
will not change. In such cases, you can actually give a hint to the Angular change
detector to check or not check certain components as you see fit. For any given com‐
ponent, we can accomplish this by changing the ChangeDetectionStrategy from the
default to ChangeDetectionStrategy.OnPush. What this tells Angular is that the
bindings for this particular component will need to be checked only based on the
Input to this component.

Let’s consider a few examples to see how this might play out. Say we have a compo‐
nent tree A → B → C. That is, we have a root component A, which uses a component
B in its template, which in turn uses a component C. And let’s say component B
passes in a composite object compositeObj to component C as input. Maybe some‐
thing like:

<c [inputToC]="compositeObj"></c>

That is, inputToC is the input variable marked with the Input decorator in compo‐
nent C, and is passed the object compositeObj from component B. Now say we
marked component C’s changeDetection attribute as ChangeDetectionStrategy
.OnPush. Here are the implications of that change:

• If component C has bindings to any attributes of compositeObj, they will work as
usual (no change from default behavior).

• If component C makes any changes to any of the attributes of compositeObj, they
will also be updated immediately (no change from default behavior).

• If the parent component B creates a new compositeObj or changes the reference
of compositeObj (think new operator, or assign from a server response), then

Input and Output | 67

component C would recognize the change and update its bindings for the new
value (no change from default behavior, but internal behavior changes on how
Angular recognizes the change).

• If the parent component B changes any attribute on the compositeObj directly
(as a response to a user action outside component B), then these changes would
not be updated in component C (major change from the default behavior).

• If the parent component B changes any attribute on response to an event emitter
from component C, and then changes any attribute on the compositeObj
(without changing the reference), this would still work and the bindings would
get updated. This is because the change originates from component C (no change
from default behavior).

Angular provides ways for us to signal when to check the bindings from within the
component as well, to have absolute control on Angular’s data binding. We will cover
these in “Change Detection” on page 67. For now, it is good to understand the differ‐
ence between the two change detection strategies that Angular provides.

Let’s now modify the example code to see this in action. First, modify the stock-
item.component.ts file to change the ChangeDetectionStrategy in the child compo‐
nent:

import { Component, OnInit, Input, Output } from '@angular/core';
import { EventEmitter, ChangeDetectionStrategy } from '@angular/core';

import { Stock } from '../../model/stock';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css'],
 changeDetection: ChangeDetectionStrategy.OnPush
})
export class StockItemComponent {

 @Input() public stock: Stock;
 @Output() private toggleFavorite: EventEmitter<Stock>;

 constructor() {
 this.toggleFavorite = new EventEmitter<Stock>();
 }

 onToggleFavorite(event) {
 this.toggleFavorite.emit(this.stock);
 }

 changeStockPrice() {
 this.stock.price += 5;

68 | Chapter 4: Understanding and Using Angular Components

 }
}

In addition to changing the ChangeDetectionStrategy, we also added another func‐
tion to changeStockPrice(). We will use these functions to demonstrate the behavior
of the change detection in the context of our application.

Next, let’s quickly modify stock-item.component.html to allow us to trigger the new
function. We will simply add a new button to trigger and change the stock price when
the button is clicked:

<div class="stock-container">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="price"
 [class]="stock.isPositiveChange() ? 'positive' : 'negative'">
 $ {{stock.price}}
 </div>
 <button (click)="onToggleFavorite($event)"
 *ngIf="!stock.favorite">Add to Favorite</button>
 <button (click)="changeStockPrice()">Change Price</button>
</div>

There is no change to the HTML of the template other than adding a new button to
change the stock price. Similarly, let’s quickly change the main app.component.html
file to add another button to trigger the change of the price from the parent compo‐
nent (similar to component B in the earlier hypothetical example):

<h1>
 {{title}}
</h1>
<app-stock-item [stock]="stock"
 (toggleFavorite)="onToggleFavorite($event)">
</app-stock-item>
<button (click)="changeStockObject()">Change Stock</button>
<button (click)="changeStockPrice()">Change Price</button>

We have added two new buttons to this template: one that will change the reference
of the stock object directly, and another that will modify the existing reference of the
stock object to change the price from the parent AppComponent. Now finally, we can
see how all of this is hooked up in the app.component.ts file:

import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent implements OnInit {
 title = 'app works!';

Input and Output | 69

 public stock: Stock;
 private counter: number = 1;

 ngOnInit(): void {
 this.stock = new Stock('Test Stock Company - ' + this.counter++,
 'TSC', 85, 80);
 }

 onToggleFavorite(stock: Stock) {
 // This will update the value in the stock item component
 // Because it is triggered as a result of an event
 // binding from the stock item component
 this.stock.favorite = !this.stock.favorite;
 }

 changeStockObject() {
 // This will update the value in the stock item component
 // Because we are creating a new reference for the stock input
 this.stock = new Stock('Test Stock Company - ' + this.counter++,
 'TSC', 85, 80);
 }

 changeStockPrice() {
 // This will not update the value in the stock item component
 // because it is changing the same reference and angular will
 // not check for it in the OnPush change detection strategy.
 this.stock.price += 10;
 }
}

The app.component.ts file has seen the most changes. The preceding code is also well
annotated with comments to explain the expected behavior when each of these func‐
tions are triggered. We have added two new methods: changeStockObject(), which
creates a new instance of the stock object in the AppComponent, and changeStock
Price(), which modifies the prices of the stock object in the AppComponent. We have
also added a counter just to keep track of how many times we create a new stock
object, but that is not strictly necessary.

Now when you run this application, you should expect to see the following behavior:

• Clicking Add to Favorite within the StockItemComponent still works as expected.
• Clicking Change Price within the StockItemComponent will increase the price of

the stock by $5 each time.
• Clicking Change Stock outside the StockItemComponent will change the name of

the stock with each click. (This is why we added the counter!)
• Clicking Change Price outside the StockItemComponent will have no impact

(even though the actual value of the stock will jump if you click Change Price

70 | Chapter 4: Understanding and Using Angular Components

inside after this). This shows that the model is getting updated, but Angular is
not updating the view.

You should also change back the ChangeDetectionStrategy to default to see the dif‐
ference in action.

Component Lifecycle
Components (and directives) in Angular have their own lifecycle, from creation, ren‐
dering, changing, to destruction. This lifecycle executes in preorder tree traversal
order, from top to bottom. After Angular renders a component, it starts the lifecycle
for each of its children, and so on until the entire application is rendered.

There are times when these lifecycle events are useful to us in developing our applica‐
tion, so Angular provides hooks into this lifecycle so that we can observe and react as
necessary. Figure 4-1 shows the lifecycle hooks of a component, in the order in which
they are invoked.

Figure 4-1. Angular component lifecycle hooks (original from https://angular.io/guide/
lifecycle-hooks)

Angular will first call the constructor for any component, and then the various steps
mentioned earlier in order. Some of them, like the OnInit and AfterContentInit
(basically, any lifecycle hook ending with Init) is called only once, when a compo‐
nent is initialized, while the others are called whenever any content changes. The
OnDestroy hook is also called only once for a component.

Component Lifecycle | 71

https://angular.io/guide/lifecycle-hooks
https://angular.io/guide/lifecycle-hooks

Each of these lifecycle steps comes with an interface that should be implemented
when a component cares about that particular lifecycle, and each interface provides a
function starting with ng that needs to be implemented. For example, the OnInit life‐
cycle step needs a function called ngOnInit to be implemented in the component and
so on.

We will walk through each of the lifecycle steps here, and then use one example to see
this all in action and the ordering of lifecycle steps within a component and across
components.

There is also one more concept to learn, which we will briefly touch upon in this
chapter, and come back to later in more detail—the concept of ViewChildren and
ContentChildren.

ViewChildren is any child component whose tags/selectors (mostly elements, as that
is the recommendation for components) appear within the template of the compo‐
nent. So in our case, app-stock-item would be a ViewChild of the AppComponent.

ContentChildren is any child component that gets projected into the view of the
component, but is not directly included in the template within the component. Imag‐
ine something like a carousel, where the functionality is encapsulated in the compo‐
nent, but the view, which could be images or pages of a book, comes from the user of
the component. Those are generally achieved through ContentChildren. We will
cover this in more depth later in this chapter.

Interfaces and Functions
Table 4-1 shows the interfaces and functions in the order in which they are called,
along with specific details about the step if there is anything to note. Note that we are
only covering component-specific lifecycle steps, and they are slightly different from
a directive’s lifecycle.

Table 4-1. Angular lifecycle hooks and methods

Interface Method Applicable to Purpose

OnChanges ngOn
Changes(changes:
SimpleChange)

Components
and directives

ngOnChanges is called both right after the constructor to
set and then later every time the input properties to a directive
change. It is called before the ngOnInit method.

OnInit ngOnInit() Components
and directives

This is your typical initialization hook, allowing you to do any
one-time initialization specific to your component or directive.
This is the ideal place to load data from the server and so on,
rather than the constructor, both for separation of concerns as
well as testability.

72 | Chapter 4: Understanding and Using Angular Components

Interface Method Applicable to Purpose

DoCheck ngDoCheck() Components
and directives

DoCheck is Angular’s way of giving the component a way to
check if there are any bindings or changes that Angular can’t
or should not detect on its own. This is one of the ways we can
use to notify Angular of a change in the component, when we
override the default ChangeDetectionStrategy for a
component from Default to OnPush.

After
Content
Init

ngAfterContent
Init()

Components
only

As mentioned, the AfterContentInit hook is triggered
during component projection cases, and only once during
initialization of the component. If there is no projection, this is
triggered immediately.

After
Content
Checked

ngAfterContent
Checked()

Components
only

AfterContentChecked is triggered each time Angular’s
change detection cycle executes, and in case it is initialization,
it is triggered right after the AfterContentInit hook.

AfterView
Init

ngAfterViewInit() Components
only

AfterViewInit is the complement to AfterContent
Init, and is triggered after all the child components that are
directly used in the template of the component are finished
initializing and their views updated with bindings. This may
not necessarily mean that the views are rendered into the
browser, but that Angular has finished updating its internal
views to render as soon as possible. AfterViewInit is
triggered only once during the load of the component.

AfterView
Checked

ngAfterView
Checked()

Components
only

AfterViewChecked is triggered each time after all the
child components have been checked and updated. Again, a
good way to think about both this and AfterContent
Checked is like a depth-first tree traversal, in that it will
execute only after all the children components’ AfterView
Checked hooks have finished executing.

OnDestroy ngOnDestroy() Components
and directives

The OnDestroy hook is called when a component is about
to be destroyed and removed from the UI. It is a good place to
do all cleanup, like unsubscribing any listeners you may have
initialized and the like. It is generally good practice to clean up
anything that you have registered (timers, observables, etc.) as
part of the component.

Let’s try to add all these hooks to our existing application to see the order of execution
in a real-world scenario. We will add all of these hooks to both our AppComponent and
the StockItemComponent, with a simple console.log to just see when and how these
functions are executed. We will use the base from the output example to build from,
so in case you are not coding along, you can take the example from chapter4/
component-output to build from there.

The final finished example is also available in chapter4/component-lifecycle.

First, we can modify the src/app/app.component.ts file and add the hooks as follows:

import { Component, SimpleChanges, OnInit, OnChanges, OnDestroy,
 DoCheck, AfterViewChecked, AfterViewInit, AfterContentChecked,
 AfterContentInit } from '@angular/core';

Component Lifecycle | 73

import { Stock } from 'app/model/stock';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent implements OnInit, OnChanges, OnDestroy,
 DoCheck, AfterContentChecked,
 AfterContentInit, AfterViewChecked,
 AfterViewInit {
 title = 'app works!';

 public stock: Stock;

 onToggleFavorite(stock: Stock) {
 console.log('Favorite for stock ', stock, ' was triggered');
 this.stock.favorite = !this.stock.favorite;
 }

 ngOnInit(): void {
 this.stock = new Stock('Test Stock Company', 'TSC', 85, 80);
 console.log('App Component - On Init');
 }

 ngAfterViewInit(): void {
 console.log('App Component - After View Init');
 }
 ngAfterViewChecked(): void {
 console.log('App Component - After View Checked');
 }
 ngAfterContentInit(): void {
 console.log('App Component - After Content Init');
 }
 ngAfterContentChecked(): void {
 console.log('App Component - After Content Checked');
 }
 ngDoCheck(): void {
 console.log('App Component - Do Check');
 }
 ngOnDestroy(): void {
 console.log('App Component - On Destroy');
 }
 ngOnChanges(changes: SimpleChanges): void {
 console.log('App Component - On Changes - ', changes);
 }
}

You can see that we have implemented the interfaces for OnInit, OnChanges,

OnDestroy, DoCheck, AfterContentChecked, AfterContentInit, AfterView

Checked, AfterViewInit on the AppComponent class, and then went ahead and

74 | Chapter 4: Understanding and Using Angular Components

implemented the respective functions. Each of the methods simply prints out a log
statement mentioning the component name and the trigger method name.

Similarly, we can do the same for the StockItemComponent:

import { Component, SimpleChanges, OnInit,
 OnChanges, OnDestroy, DoCheck, AfterViewChecked,
 AfterViewInit, AfterContentChecked,
 AfterContentInit, Input,
 Output, EventEmitter } from '@angular/core';
import { Stock } from '../../model/stock';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent implements OnInit, OnChanges,
 OnDestroy, DoCheck,
 AfterContentChecked,
 AfterContentInit,
 AfterViewChecked,
 AfterViewInit {

 @Input() public stock: Stock;
 @Output() private toggleFavorite: EventEmitter<Stock>;

 constructor() {
 this.toggleFavorite = new EventEmitter<Stock>();
 }

 onToggleFavorite(event) {
 this.toggleFavorite.emit(this.stock);
 }

 ngOnInit(): void {
 console.log('Stock Item Component - On Init');
 }
 ngAfterViewInit(): void {
 console.log('Stock Item Component - After View Init');
 }
 ngAfterViewChecked(): void {
 console.log('Stock Item Component - After View Checked');
 }
 ngAfterContentInit(): void {
 console.log('Stock Item Component - After Content Init');
 }
 ngAfterContentChecked(): void {
 console.log('Stock Item Component - After Content Checked');
 }
 ngDoCheck(): void {
 console.log('Stock Item Component - Do Check');

Component Lifecycle | 75

 }
 ngOnDestroy(): void {
 console.log('Stock Item Component - On Destroy');
 }
 ngOnChanges(changes: SimpleChanges): void {
 console.log('Stock Item Component - On Changes - ', changes);
 }
}

We have done exactly the same thing we did on the AppComponent with the Stock
ItemComponent. Now, we can run this application to see it in action.

When you run it, open the JavaScript console in the browser. You should see, in order
of execution:

1. First, the AppComponent gets created. Then the following hooks are triggered on
the AppComponent:

• On Init

• Do Check

• After Content Init

• After Content Checked

The preceding two immediately execute because we don’t have any content pro‐
jection in our application so far.

2. Next, the StockItemComponent OnChanges executes, with the input to the Stock
ItemComponent being recognized as the change, followed by the hooks listed here
within the StockItemComponent:

• On Init

• Do Check

• After Content Init

• After Content Checked

• After View Init

• After View Checked

3. Finally, there are no more subcomponents to traverse down on, so Angular steps
back out to the parent AppComponent, and executes the following:

• After View Init

• After View Checked

76 | Chapter 4: Understanding and Using Angular Components

This gives us a nice view of how and in which order Angular goes around initializing
and the tree traversal it does under the covers. These hooks become very useful for
certain trickier initialization logic, and are definitely essential for cleanup once your
component is done and dusted, to avoid memory leaks.

View Projection
The last thing we will cover in this chapter is the concept of view projection. Projec‐
tion is an important idea in Angular as it gives us more flexibility when we develop
our components and again gives us another tool to make them truly reusable under
different contexts.

Projection is useful when we want to build components but set some parts of the UI
of the component to not be an innate part of it. For example, say we were building a
component for a carousel. A carousel has a few simple capabilities: it is able to display
an item, and allow us to navigate to the next/previous element. Your carousel compo‐
nent might also have other features like lazy loading, etc. But one thing that is not the
purview of the carousel component is the content it displays. A user of the compo‐
nent might want to display an image, a page of a book, or any other random thing.

Thus, in these cases, the view would be controlled by the user of the component, and
the functionality would be provided by the component itself. This is but one use case
where we might want to use projection in our components.

Let’s see how we might use content projection in our Angular application. We will use
the base from the input example to build from, so in case you are not coding along,
you can take the example from chapter4/component-input to build from there.

The final finished example is available in chapter4/component-projection.

First, we will modify our StockItemComponent to allow for content projection. There
is no code change in our component class; we only need to modify the src/app/stock/
stock-item/stock-item.component.html file as follows:

<div class="stock-container">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="price"
 [class]="stock.isPositiveChange() ? 'positive' : 'negative'">
 $ {{stock.price}}
 </div>
 <ng-content></ng-content>
</div>

The new ng-content element for projection

We have simply removed the buttons we previously had, and are going to let the user
of the component decide what buttons are to be shown. To allow for this, we have

View Projection | 77

replaced the buttons with an ng-content element. There is no other change required
in the component.

Next, we will make a change to the AppComponent, simply to add a method for testing
purposes. Modify the src/app/app.component.ts file as follows:

/** Imports and decorators skipped for brevity **/

export class AppComponent implements OnInit {
 /** Constructor and OnInit skipped for brevity **/

 testMethod() {
 console.log('Test method in AppComponent triggered');
 }
}

We have simply added a method that will log to the console when it is triggered. With
this in place, now let’s see how we can use our updated StockItemComponent and use
the power of projection. Modify the app.component.html file as follows:

<h1>
 {{title}}
</h1>
<app-stock-item [stock]="stockObj">
 <button (click)="testMethod()">With Button 1</button>
</app-stock-item>

<app-stock-item [stock]="stockObj">
 No buttons for you!!
</app-stock-item>

We have added two instances of the app-stock-item component in our HTML. And
both of these now have some content inside them, as opposed to previously where
these elements had no content. In one, we have a button that triggers the testMethod
we added in the AppComponent, and the other simply has text content.

When we run our Angular application and open it in the browser, we should see
something like Figure 4-2.

Notice that the two stock item components on our browser, each with slightly differ‐
ent content, are based on what we provided. If you click the button in the first stock
widget, you will see that the method in the AppComponent gets called and the con
sole.log is triggered.

Thus, users of the component now have the capability to change part of the UI of the
component as they see fit. We can even access functionality from the parent compo‐
nent as well, which makes it truly flexible. It is also possible to project multiple differ‐
ent sections and content into our child component. While the official Angular
documentation is spare on this topic, there is a great article that can give you more
insight on content projection.

78 | Chapter 4: Understanding and Using Angular Components

http://bit.ly/2IFX237

Figure 4-2. Angular app with view projection

Conclusion
In this chapter, we went into a lot more depth on components, and saw some of the
more commonly used attributes when creating components. We took a detailed look
at the Component decorator, talking about attributes like template versus template
Url, styles, and also covered at a high level how Angular’s change detection works
and how we can override it.

We then covered the lifecycle of a component, as well as the hooks that Angular pro‐
vides for us to hook on to and react to some of these lifecycle events. Finally, we cov‐
ered projection in components and how we can make some truly powerful
components that allow the user of the component to decide parts of the UI.

In the next chapter, we will do a quick detour to understand unit testing of compo‐
nents, and see how we can test both the logic that drives the component as well as the
view that gets rendered.

Exercise
For our third exercise, we can build on top of the previous exercise (chapter3/exercise)
by including concepts from this chapter:

Conclusion | 79

1. Create a ProductListComponent. Initialize an array of products there, instead of
initializing a single product in the ProductComponent. Change its template to use
NgFor to create a ProductItemComponent for each product.

2. Use inline templates and styles on the ProductListComponent. Generate it using
the Angular CLI with that setting rather than generating it and changing it
manually.

3. Change the ProductItemComponent to take the product as an input.
4. Move the increment/decrement logic from the ProductItem to the ProductList

Component. Use an index or product ID to find the product and change its
quantity.

5. Move the ProductItemComponent to be optimal and move from the default
ChangeDetectionStrategy to an OnPush ChangeDetectionStrategy.

All of this can be accomplished using concepts covered in this chapter. You can check
out the finished solution in chapter4/exercise/ecommerce.

80 | Chapter 4: Understanding and Using Angular Components

CHAPTER 5

Testing Angular Components

In the chapters so far, we focused on writing our Angular application, and dealt with
how to use the Angular CLI, how to create components, some common built-in
Angular directives, and the like.

In this chapter, we will take a detour to learn how we can write unit tests for the com‐
ponents we have written so far. To do this, we will first get a sense of the unit testing
setup for Angular, the various frameworks and libraries we use to accomplish this,
and walk step by step through writing unit tests for a component.

Why Unit Test?
But before we go into all that, let’s quickly talk about unit tests and why they are
important. Unit tests are called that because they test an individual unit within your
application. Given a very large application and its many pieces, it can become very
tricky to test each and every flow through the application. This is why we break up
the testing to check each individual component, such that we can be assured that
when they are hooked up together, they will work correctly under all cases without
necessarily testing each and every flow.

This is easily demonstrated with a simple example. Assume we have a very simple
application with three different parts. Each part itself might have five different flows
through it, giving us a total of 5 * 5 * 5 = 125 flows through the entire application. If
we focused only on end-to-end or overall testing, we would have to test 125 flows (or
somewhere approaching that number) to get a reasonable assurance on the quality of
the application.

Now on the other hand, if we tested each part in isolation, assuming that the other
parts were reasonably tested and functional, we would have to write 5 tests for each
part, which gives us a total of about 15 tests. Add another 10 to 20 end-to-end tests to

81

make sure the parts are hooked up correctly, and you can have reasonable (not 100%
of course) confidence in the overall quality of your application.

That said, unit tests are not just for overall quality. There are a few other good reasons
why we write unit tests, some being:

• It is an assertion that what you have written actually does what it is meant to.
Without unit tests, there is no way to prove that your code performs correctly.

• It guards your code against future breakages, aka regressions. You write your
code today with certain assumptions. You or someone else tomorrow may not
remember or know them and may unwittingly change something that breaks
your underlying assumption. Unit tests are guards that make sure your code
remains future-proof.

• Unit tests are great documentation for your code. Comments have an annoying
tendency of becoming obsolete, as people tend to forget to update them. Unit
tests, on the other hand, will break if you forget to update your tests as you make
changes to your code.

• Unit tests are a great view on how testable and modular your design is. If tests are
hard to read or write, it usually is a signal that there might be design flaws or
issues in the underlying code.

That said, people have different associations when they hear the term “unit test.” The
prototypical definition of a unit test is a test of a component, with all dependencies
completely mocked out. You are testing only the code you have written and nothing
else.

Of course, with frameworks like Angular, sometimes unit tests are useful, and other
times you actually want a little bit of integration involved. You want to test how your
component behaves rather than the class that defines the component. Angular gives
you the capability to write both kinds of tests.

Testing and Angular
Before we go deep into how we write tests for Angular components, let’s take a look at
the various frameworks and libraries we will use to write and run our Angular tests.
Each of these can be used in other non-Angular projects as well, or can be swapped
out for something comparable if you have a preference:

Jasmine
Jasmine is a test framework that is oriented toward writing specifications rather
than traditional unit tests. It is what is referred to as a behavior-driven develop‐
ment (BDD) framework. It is a standalone framework that can be used to write
tests or specifications for any code, not just Angular. The major difference from

82 | Chapter 5: Testing Angular Components

traditional unit testing frameworks and something like Jasmine is that Jasmine is
more oriented to reading like plain English, so instead of writing a test, you write
a specification. A specification is a series of commands, and expectations on what
should have happened as a result of these commands.

Karma
If Jasmine is the test-writing framework, then Karma is the test-running frame‐
work. Karma’s sole task is to take any kind of test, and run it across a suite of real
browsers and report the results back. It is highly tuned toward development
workflow, as it is heavily oriented toward rapid execution and reporting. It is pos‐
sible to have Karma run the tests every time you hit save, giving you real-time
feedback on whether tests are still passing as you write your code.

Angular testing utilities
Angular provides a suite of various functions and utilities that make testing
Angular-specific functionality easier. These are common tasks that you might
need to perform in any test, such as initializing modules, components, working
with services and routes, and the like. We will touch upon the relevant ones as we
work our way through Angular, but in case you want to see all the utility func‐
tions upfront, you can check out the documentation.

Protractor
This framework is not relevant with regards to this chapter and unit testing, but
for the sake of completeness, we will quickly mention it. Protractor is a frame‐
work that is built to write and run end-to-end tests. While the tests we write in
this chapter will instantiate various classes and test functionality, it is useful to
also test from the perspective of an end user. This would involve opening the
browser, clicking, and interacting with the application. Protractor supports this
capability of running the real application and simulating actions and verifying
behavior, thus completing the circle of testing.

The Test Setup
With that background, let’s write our first unit test. Since we generated our applica‐
tions so far using the Angular CLI, we have the basic infrastructure already set up for
us. In fact, every time we generate a component using the Angular CLI, it also gener‐
ates a skeleton spec for us to write our test code in.

For the purpose of understanding how the testing infrastructure is set up, we’ll walk
through the major files one by one. The entire finished code for this chapter, includ‐
ing all the tests, is available in the GitHub repository in the chapter5/component-spec
folder.

The Test Setup | 83

https://angular.io/guide/testing#atu-apis

Karma Config
The first file of interest is the configuration file for how Karma should find and exe‐
cute files. The pregenerated karma.conf.js is in the main application folder, and looks
like the following:

// Karma configuration file, see link for more information
// https://karma-runner.github.io/1.0/config/configuration-file.html

module.exports = function (config) {
 config.set({
 basePath: '',
 frameworks: ['jasmine', '@angular/cli'],
 plugins: [
 require('karma-jasmine'),
 require('karma-chrome-launcher'),
 require('karma-jasmine-html-reporter'),
 require('karma-coverage-istanbul-reporter'),
 require('@angular/cli/plugins/karma')
],
 client:{
 clearContext: false // leave Jasmine Spec Runner output visible in browser
 },
 coverageIstanbulReporter: {
 reports: ['html', 'lcovonly'],
 fixWebpackSourcePaths: true
 },
 angularCli: {
 environment: 'dev'
 },
 reporters: ['progress', 'kjhtml'],
 port: 9876,
 colors: true,
 logLevel: config.LOG_INFO,
 autoWatch: true,
 browsers: ['Chrome'],
 singleRun: false
 });
};

The Karma configuration is responsible for identifying the various plug-ins needed
for Karma to run (which includes an Angular CLI–specific plug-in), the files it needs
to watch or execute, and then some Karma-specific configuration including coverage
reporting (coverageIstanbulReporter), which port it needs to run on (port), which
browsers to run it on (browsers), whether it should rerun every time the file changes
(autoWatch), and which level of logs it needs to capture.

84 | Chapter 5: Testing Angular Components

test.ts
The test.ts file is the main entry point for our testing, and responsible for loading all
our components, the related specifications, and the testing framework and utilities
needed to run them:

// This file is required by karma.conf.js and loads recursively all the .spec
// and framework files

import 'zone.js/dist/zone-testing';
import { getTestBed } from '@angular/core/testing';
import {
 BrowserDynamicTestingModule,
 platformBrowserDynamicTesting
} from '@angular/platform-browser-dynamic/testing';

declare const require: any;

// First, initialize the Angular testing environment.
getTestBed().initTestEnvironment(
 BrowserDynamicTestingModule,
 platformBrowserDynamicTesting()
);
// Then we find all the tests.
const context = require.context('./', true, /\.spec\.ts$/);
// And load the modules.
context.keys().map(context);

The test.ts file is basically responsible for loading a series of files for the testing frame‐
work, and then initializing the Angular testing environment. Then, it looks for speci‐
fications (files ending with .spec.ts) recursively in all the folders from the current
directory (which is the src folder). It then loads all the relevant modules for them and
starts executing Karma.

This file is the reason why we don’t have to manually list all the specification files in
karma.conf.js, as it recursively loads them.

Writing Unit Tests
With these two files in place, we can now focus on writing our unit test. To get famil‐
iar with Jasmine, we will first start with writing what we call an “isolated unit test.”

An Isolated Unit Test
An isolated unit test in Angular terminology is a vanilla JavaScript unit test. This has
nothing to do with Angular, but just instantiates classes and methods and executes
them. This is sufficient for a large number of classes, as they will mostly be doing sim‐
ple data manipulation and execution.

Writing Unit Tests | 85

We will start with writing a very simple isolated unit test for the AppComponent using
the example we were working on from Chapter 4. The base codebase to start with can
be found in the GitHub repository in the chapter4/component-output folder.

The very first thing we will do is create (if it doesn’t already exist) a file right beside
app.component.ts in the src/app folder called app.component.spec.ts. If it already exists
and you haven’t deleted it yet, you can go ahead and clear the content, as we will write
it from scratch so that we are aware of all the intricacies involved in the test.

The first two tests that we will write will focus on AppComponent as a class, and focus
on its initialization and how a stock’s favorite state is toggled. In these tests, we will
not focus on any Angular-specific functionality and see how to test AppComponent in
isolation:

import { AppComponent } from './app.component';
import { Stock } from 'app/model/stock';

describe('AppComponent', () => {

 it('should have stock instantiated on ngInit', () => {
 const appComponent = new AppComponent();
 expect(appComponent.stock).toBeUndefined();
 appComponent.ngOnInit();
 expect(appComponent.stock).toEqual(
 new Stock('Test Stock Company', 'TSC', 85, 80));
 });

 it('should have toggle stock favorite', () => {
 const appComponent = new AppComponent();
 appComponent.ngOnInit();
 expect(appComponent.stock.favorite).toBeFalsy();
 appComponent.onToggleFavorite(new Stock('Test', 'TEST', 54, 55));
 expect(appComponent.stock.favorite).toBeTruthy();
 appComponent.onToggleFavorite(new Stock('Test', 'TEST', 54, 55));
 expect(appComponent.stock.favorite).toBeFalsy();
 });
});

Importing all relevant dependencies for our tests

Our main AppComponent test suite

The first test, each test being an it block

Instantiating the AppComponent

An expectation or assertion on what the behavior should be

Our final expectation on what the stock should be

86 | Chapter 5: Testing Angular Components

Our isolated unit tests read just like plain old JavaScript, with Jasmine syntax thrown
in. We first import our relevant class and interfaces to be able to use them in the spec‐
ification. Then we define our first describe block, which is Jasmine’s way of encapsu‐
lating a set of tests as one suite. Describe blocks can be nested any number deep,
which we will use in the feature to create separate describe blocks for Angular-aware
tests versus isolated unit tests.

We then write our first test block, which uses Jasmine’s it to define a specification
block. Within this, we define and instantiate our AppComponent instance, and then
write an expectation that, by default, the stock instance of the AppComponent is unde
fined. We then call the ngOnInit method of the AppComponent manually, which cre‐
ates a stock instance for us. We then write another expectation to make sure this value
is created as we expect it to be.

Note that this behavior mirrors how the AppComponent behaves. When an instance of
the AppComponent is created, we just have a definition for the stock object, but with
no initial value. Thus, our initial expectation for the stock instance in the test is that
it should be undefined. Then, we trigger the ngOnInit method, which ends up creat‐
ing a stock instance with some values. We then assert in our test that the instance
that gets created in the AppComponent actually has the values we want.

Note that in an isolated unit test, Angular lifecycle methods are not
called automatically, which is why we manually trigger ngOnInit
ourselves in the test. This gives us the flexibility that we might want
to test some other function and avoid the ngOnInit, which might
make expensive or complex server calls.

Similarly, we write the second test that evaluates the onToggleFavorite method on
the AppComponent class. We pass a random value to it, as the value is not used in the
class except to log it. We use a different expectation, toBeFalsy and toBeTruthy,
instead of the toEquals we used in the previous test. These are all in-built matchers
that Jasmine provides for us to use in our specifications. You can see the whole list of
matchers that Jasmine provides out of the box in the official documentation.

Running the Tests
Running the actual tests, if you are using the Angular CLI as we are doing in this
book, is actually very simple. Simply execute

ng test

from the command line in the root folder to execute the tests. This will:

1. Pick up the configuration from the karma.conf.js Karma configuration file

Writing Unit Tests | 87

https://jasmine.github.io/api/2.8/matchers.html

2. Load all the relevant tests and files as per the test.ts file
3. Capture the default browser (which is Chrome in our case)
4. Execute the tests and report the results in the terminal
5. Keep a watch on files to continue executing on change

You should see Karma capturing Chrome, and spawn up a browser that looks like
Figure 5-1.

Figure 5-1. Angular tests running via Karma in Chrome

In the terminal, once you run the ng test command, you should see output similar
to Figure 5-2.

88 | Chapter 5: Testing Angular Components

Figure 5-2. Angular test output in the terminal

Once this completes, you should see (in both your Karma captured browser and the
terminal) a result of having run two tests with both passing successfully.

Writing an Angular-Aware Unit Test
The next thing we want to learn is how to write a test that is Angular-aware and goes
through the Angular lifecycle. In such a test, rather than just instantiating the compo‐
nent class, we want to instantiate a component just the way Angular does, including
the HTML for the component.

We will write a test for the StockItemComponent, in which we will make sure that
given the right stock input, the template gets rendered with the correct bindings. Fur‐
thermore, we want to make sure the input and output bindings are connected and
triggered correctly.

Let’s create a stock-item.component.spec.ts file as a sibling to stock-item.component.ts.
Again, if this file already exists, replace it with the following contents:

Writing Unit Tests | 89

import { TestBed, async } from '@angular/core/testing';

import { StockItemComponent } from './stock-item.component';
import { Stock } from '../../model/stock';
import { By } from '@angular/platform-browser';

describe('Stock Item Component', () => {

 let fixture, component;

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [
 StockItemComponent
],
 }).compileComponents();
 }));

 beforeEach(() => {
 fixture = TestBed.createComponent(StockItemComponent);
 component = fixture.componentInstance;
 component.stock = new Stock('Testing Stock', 'TS', 100, 200);
 fixture.detectChanges();
 });

 it('should create stock component and render stock data', () => {
 const nameEl = fixture.debugElement.query(By.css('.name'));
 expect(nameEl.nativeElement.textContent).toEqual('Testing Stock (TS)');
 const priceEl = fixture.debugElement.query(By.css('.price.negative'));
 expect(priceEl.nativeElement.textContent).toEqual('$ 100');
 const addToFavoriteBtnEl = fixture.debugElement.query(By.css('button'));
 expect(addToFavoriteBtnEl).toBeDefined();
 });

 it('should trigger event emitter on add to favorite', () => {
 let selectedStock: Stock;
 component.toggleFavorite.subscribe((stock: Stock) => selectedStock = stock);
 const addToFavoriteBtnEl = fixture.debugElement.query(By.css('button'));

 expect(selectedStock).toBeUndefined();
 addToFavoriteBtnEl.triggerEventHandler('click', null);
 expect(selectedStock).toEqual(component.stock);
 });
});

Importing Angular testing utilities

An async beforeEach, to ensure templates are loaded in the components

Using the Angular testing utilities to configure a module for testing

90 | Chapter 5: Testing Angular Components

Compiling all the declared components for later use

A non-async beforeEach executed only after the previous one finishes

Creating an instance of the component fixture under test

Getting the underlying component instance from the test fixture

Manually triggering the Angular change detection to update templates

Getting a particular HTML element from the compiled element

Verifying that the element has the expected value

We have added a lot of code, and highlighted most of the important sections in the
code as well. But let’s walk through it step by step so that we are aware of the intrica‐
cies of using the Angular testing utilities to write tests for components:

1. @angular/core/testing provides a set of functionality for testing in Angular.
We use the TestBed, which is used to create modules and components while test‐
ing, and async, which is to allow the Jasmine framework to understand Angular’s
async behavior (like loading templates for a component, which in our case is
from an external template file). The async utility function ensures that we don’t
start executing the test until these async tasks are finished. Notice how we call the
async function with a function that does all the tasks which might be asynchro‐
nous, and then pass this result to the beforeEach.

2. We use the TestBed to configure a module for our test. Rather than using an
existing module, we create a new module with just our component. This gives us
absolute control and can also ensure that we don’t inadvertently depend on
something else other than what we have defined. In this case, we declare the
StockItemComponent, and then finally compile the component. This does the
task of loading the component, loading all its related templates and styles, and
then creating a compiled component for us to use later. This happens asynchro‐
nously in some cases, which is why we are wrapping it in an async block.

3. In the non-async beforeEach, we create a fixture, which is an instance of the
component along with its template and everything related to it. Unlike the previ‐
ous isolated unit test, where we unit tested just the component class, the fixture is
the combination of the template, the component class instance, and Angular’s
magic to combine the two.

4. From the fixture instance, we can get a handle to the underlying component
class instance by using the componentInstance variable on it. We can then
manipulate the inputs and outputs directly from the component instance.

Writing Unit Tests | 91

5. In this test, we are not working with a higher-level component, so we cannot
directly test the Input and Output bindings. But we can set these values by
accessing them directly from the component instance.

6. Finally, in the beforeEach, we trigger fixture.detectChanges(). This is a signal
to Angular to trigger its change detection flow, which will look at the values in
the component and update the bindings in the corresponding HTML. It is also
the trigger to execute the ngOnInit for the component the very first time.
Without this, the HTML for the component will not have any values. We trigger
this after setting the stock value so that these values will be propagated to the
HTML.

7. In the actual tests, we can get access to individual elements from the generated
component by using the fixture.debugElement and running CSS queries
against it. This allows us to check whether the template has the correct bindings
and values. Thus, we can avoid writing an end-to-end test for a lot of these basic
checks and simply write Angular tests for them.

8. In the second test, we can actually see that when we trigger a click event on the
button element in the template, the corresponding function in the StockItemCom
ponent class is triggered, and an event is emitted with the current stock value.

Similarly, we can write a test for most components and test the interaction with the
templates and get a good sense for most of the basic functionality and whether it is
working as intended.

Testing Component Interactions
The final thing that we’ll need to check is whether the AppComponent and the Stock
ItemComponent interact with each other correctly, and whether the stock value is
passed from the AppComponent to the StockItemComponent as input correctly. We can
also test these functionalities and more using the Angular testing utilities. Let’s extend
our tests for the AppComponent by adding another sub-suite as follows in the app.com‐
ponent.spec.ts file:

import { TestBed, async } from '@angular/core/testing';

import { AppComponent } from './app.component';
import { StockItemComponent } from 'app/stock/stock-item/stock-item.component';
import { Stock } from 'app/model/stock';
import { By } from '@angular/platform-browser';

describe('AppComponent', () => {

 describe('Simple, No Angular Unit Test', () => {
 /** Move all the previous test code into a
 child describe block

92 | Chapter 5: Testing Angular Components

 */
 });

 describe('Angular-Aware test', () => {

 let fixture, component;

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [
 AppComponent,
 StockItemComponent,
],
 }).compileComponents();
 }));

 beforeEach(() => {
 fixture = TestBed.createComponent(AppComponent);
 component = fixture.componentInstance;
 fixture.detectChanges();
 });

 it('should load stock with default values', () => {
 const titleEl = fixture.debugElement.query(By.css('h1'));
 // Trim to avoid HTML whitespaces
 expect(titleEl.nativeElement.textContent.trim())
 .toEqual('Stock Market App');

 // Check for default stock values in template
 const nameEl = fixture.debugElement.query(By.css('.name'));
 expect(nameEl.nativeElement.textContent)
 .toEqual('Test Stock Company (TSC)');
 const priceEl = fixture.debugElement.query(By.css('.price.positive'));
 expect(priceEl.nativeElement.textContent).toEqual('$ 85');
 const addToFavoriteBtnEl = fixture.debugElement.query(By.css('button'));
 expect(addToFavoriteBtnEl).toBeDefined();
 });

 });

});

Most of this test will look very similar to the previous test we wrote for the StockItem
Component, but here are a few notable differences:

• When we configure our testing module, this time we have to mention both the
AppComponent, which is the component under test, as well as the StockItemCompo
nent. This is because the AppComponent uses the StockItemComponent internally,
and without declaring it, Angular would complain about an unknown element.

Writing Unit Tests | 93

• No major changes to either of the beforeEach other than this. One thing to note
(and it’s worth playing around with and trying it out yourself) is that without the
fixture.detectChanges() in the second beforeEach, none of the bindings
would happen. You can test this by commenting it out and making sure the test
fails.

• Our test follows a similar pattern like before (in fact, it is pretty much a copy/
paste of the previous test for StockItemComponent). The one thing to note is we
are trimming the actual text contents retrieved from the DOM to account for
extra whitespaces in the HTML from how we have done our binding. This can be
useful sometimes when the HTML is not an exact replica of your bound value.

Let’s quickly add another test that ensures that the end-to-end flow is both ways. We
will add a test that makes sure that clicking Add to Favorite updates both the model
value as well as hiding the button in the template. The following code is just the test,
ignoring the imports and everything else. This is a part of app.component.spec.ts like
the previous specification:

it('should toggle stock favorite correctly', () => {
 expect(component.stock.favorite).toBeFalsy();
 let addToFavoriteBtnEl = fixture.debugElement.query(By.css('button'));
 expect(addToFavoriteBtnEl).toBeDefined();
 addToFavoriteBtnEl.triggerEventHandler('click', null);

 fixture.detectChanges();
 expect(component.stock.favorite).toBeTruthy();
 addToFavoriteBtnEl = fixture.debugElement.query(By.css('button'));
 expect(addToFavoriteBtnEl).toBeNull();
});

First, we check the base default value to ensure that the stock is not favorited by
default and that the Add to Favorite button is present. Post that, we trigger the click
event on the button.

At this point, Angular is supposed to kick in, emit an event from the StockItemCompo
nent to the AppComponent, change the model value, trigger the change detection flow,
and update the UI. But in our test, we need to tell Angular to trigger the change
detection flow, and hence after we trigger the event, we manually call fix
ture.detectChanges().

After this, we can write our assertions to ensure that the behavior matches our
expectations.

Forgetting to trigger fixture.detectChanges() is one of the most
common mistakes when writing Angular tests. By default, it is
manual and thus up to the developer to trigger it when events cor‐
responding to user interactions or server responses happen.

94 | Chapter 5: Testing Angular Components

Debugging
Oftentimes, there are cases when your unit test is not working as expected, or is
slightly off from what you expect. In these cases, one common approach would be to
add tons of console.log statements to try and figure out when and where things are
going wrong. Figure 5-3 shows how you can see the test results in the Chrome
browser captured by Karma.

Figure 5-3. Debugging Karma tests using Chrome

Karma allows you to debug your tests and application code the same way you would
debug in your normal browser. To debug your tests, simply:

1. Open up the Karma Chrome browser window that Karma spawned on startup. It
is the one with the green bar at the top, as shown in Figure 5-3.

Debugging | 95

2. Click the DEBUG button on the top right of the Karma browser window. This
will open up a new tab in debug mode for you to start debugging.

3. Open the Chrome developer tools (Command-Option-I on macOS, Ctrl-Shift-I
on Windows) in this tab. Then open up the Sources tab of the developer tools.

4. Select the file you want to debug from the Sources tab. Use Command-P on
macOS and Ctrl-P on Windows to start typing the name of the file and select it in
case you can’t find it.

5. Add your breakpoints where you need them by clicking the line number on the
left of the source code. You can learn more about how to do this by referring to
the documentation.

6. Run the tests by refreshing the browser; your test should stop at your breakpoint.

Conclusion
In this chapter, we started digging into the testing sections of Angular. We saw how to
use Karma and Jasmine to write simple, isolated unit tests for our component classes,
without dealing with anything from Angular. We then saw how to use the Angular
testing utilities to be able to test the component logic along with the Angular integra‐
tion. We saw how to use the TestBed to test both individual components as well as
cross-component interactions. Finally, we learned how to both run and debug these
tests.

In the next chapter, we will start digging into forms to understand how to capture
data from users, and how to validate them and process them in a convenient manner.

Exercise
Take the finished exercise from the previous chapter (available in chapter4/exercise).
Do the following:

1. Add isolated unit tests for the ProductListComponent that checks the onQuan
tityChange functionality.

2. Add three Angular tests for the ProductItemComponent that test the initial ren‐
dering, the incrementInCart, and the decrementInCart.

3. Add an integrated Angular test for the ProductListComponent that checks the
integration between the ProductListComponent and its children ProductItemCom
ponent.

All of this can be accomplished using concepts covered in this chapter. You can check
out the finished solution in chapter5/exercise/ecommerce.

96 | Chapter 5: Testing Angular Components

http://bit.ly/2s3tdy1

CHAPTER 6

Working with Template-Driven Forms

In the chapters so far, we have worked on a basic Angular application, with the scaf‐
folding in place and working with very simple components and user interactions. We
have learned how to create components and do basic data and event binding, and
took a look at the capabilities and extensions that this enables.

In this chapter, we will focus purely on how to handle user input, primarily via the
use of forms. Forms are the mainstay for many web applications, and are used for
everything from logging in and registering to more complex use cases. Creating and
using forms is not simply about the template for the form, but also the data binding
(both from UI to the code, and vice versa), form state tracking, validation, and error
handling. There are two primary mechanisms to work with forms in Angular, and we
will explore the template-driven approach in this chapter, followed by how we can
create reactive forms in the following chapter.

Template-Driven Forms
Template-driven forms in Angular are an extension of how we have been creating and
working with components so far. This approach is also reminiscent of how forms
worked in AngularJS (1.x and below), as it uses a similar syntax and methodology.
Anyone well-versed with that would have minimal problems adapting to this. In this
section, we will create a simple form that allows us to add new stocks, and build our
way up from there.

Template-driven forms, as the name suggests, start with the template, and use data
binding to get the data to and from your components. It is template-first, and allows
you to drive the logic of your application via your template.

97

Setting Up Forms
Before we dig into the actual form and the template and how it would work, we need
to establish some basic groundwork with Angular. At this point, we still don’t know
how to create multiple routes, so we will simply, for convenience, add a form on our
main page itself.

We can use the same codebase from Chapter 5 as our base to build this in case you
are not coding along with the book. You can get that from the chapter5/component-
spec folder in the GitHub repository.

The very first thing we will do is extend our AppModule to import FormsModule into
our main app.module.ts file if we have not already done so. The src/app/app.module.ts
file should look like this:

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';

import { AppComponent } from './app.component';
import { StockItemComponent } from './stock/stock-item/stock-item.component';

@NgModule({
 declarations: [
 AppComponent,
 StockItemComponent
],
 imports: [
 BrowserModule,
 FormsModule
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

The FormsModule in the imports section of your AppModule

What this does is ensure that all the template-driven form features that are built into
Angular are made available to your application. The reason form-specific logic and
functionality is in a separate module is for performance and size, so that developers
can decide whether or not they need form-specific features in their application.

The FormsModule adds the capability of using ngModel, which allows for two-way
data binding in Angular. But before we use it, let’s explore what other ways we can
accomplish this, so that we understand what ngModel does for us.

98 | Chapter 6: Working with Template-Driven Forms

Alternative to ngModel—Event and Property Binding
At its core, what ngModel does for us is two-way data binding. That is, whenever a
user enters any text in the UI, it binds that data back to the component. And when‐
ever the value in our component changes (say as a response to a server call, or the
initialization logic), then it updates that value in the UI.

If we break it down, the first one (the user entering a value in the UI) can be handled
through event binding. We can listen for the input event, grab the value from the
event property target, and update the value in the component class.

The second one similarly can be simply handled through data binding, in which we
can bind the HTML element property value to the variable in our component.

Let’s first create a new component, called CreateStockComponent. We can use the
Angular CLI to create it by running:

ng g component stock/create-stock

This will create the skeleton component along with its test. Now, let’s modify the app/
stock/create-stock/create-stock.component.ts file as follows:

import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css']
})
export class CreateStockComponent {

 public stock: Stock;
 constructor() {
 this.stock = new Stock('test', '', 0, 0);
 }
}

We are using the generated template of the Angular CLI, but we have made two small
changes. We added a stock member variable with visibility public, and then initial‐
ized it with some dummy values in the constructor. We have also cleaned up and
removed the ngOnInit because it was unnecessary.

Next, let’s take a look at the template for the CreateStockComponent, which is where
all the magic is. We will edit the file app/stock/create-stock/create-stock.component
.html as follows:

Template-Driven Forms | 99

<h2>Create Stock Form</h2>

<div class="form-group">
 <form>
 <div class="stock-name">
 <input type="text"
 placeholder="Stock Name"
 [value]="stock.name"
 (input)="stock.name=$event.target.value">
 </div>
 </form>
 <button (click)="stock.name='test'">Reset stock name</button>
</div>

<h4>Stock Name is {{stock.name}}</h4>

We have added a header, followed by a simple form with one input element of type
text. Finally, we have another header that is using interpolation to show the current
value of name from the stock variable in the component class. Now let’s take a look at
the input element in more detail. Other than the type and placeholder, we have two
bindings that we need to talk about:

• The value binding is telling Angular to update the value property of the input
element using the stock.name field in the component class. If and when it
changes, Angular will be responsible for updating the property as well.

• The input event binding is instructing Angular to update the value of
stock.name with the value from the event. The $event in this case is the underly‐
ing DOM InputEvent, through which we access the target and from it, the
changed value.

Finally, we have a button that on click resets the value of stock.name to 'test'.

When you run this, you should see something like Figure 6-1 on your screen.

To really understand how this works, I would recommend removing one binding and
keeping just the other, and then reversing it.

100 | Chapter 6: Working with Template-Driven Forms

Figure 6-1. Angular template-driven form in action

When you remove just the value binding and run the application (ng serve, in case
you forgot!), you will see that when you type into the text box, the value in the UI gets
updated as you type. But when you click the Reset button, then while the header gets
updated, the value in the text box does not. Thus, the component gets updated when
the event happens, but because we don’t have the Component → UI binding, the UI
doesn’t update if the component gets updated under the covers.

Similarly, we can turn off the input event binding. In this case, regardless of what we
type in the text box, the underlying model does not get updated.

Template-Driven Forms | 101

The combination of the two bindings is what gives us the look and feel of a two-way
data binding.

ngModel
Of course, who among us remembers exactly which property is used by each form
field? Who can remember what are the various events and where the values would be
available? To simplify and abstract this particular information away for ease of use,
Angular has the ngModel directive.

The ngModel directive and its special syntax abstracts away the internals of each and
every input type from us developers, making it easier for us to quickly develop form-
based applications. Let’s see how the code gets modified when we use ngModel instead
of the input and value binding.

We will only modify the src/app/stock/create-stock/create-stock.component.html file as
follows; the rest of the code remains the same:

<h2>Create Stock Form</h2>

<div class="form-group">
 <form>
 <div class="stock-name">
 <input type="text"
 placeholder="Stock Name"
 name="stockName"
 [ngModel]="stock.name"
 (ngModelChange)="stock.name=$event">
 </div>
 </form>
 <button (click)="stock.name='test'">Reset stock name</button>
</div>

<h4>Stock Name is {{stock.name}}</h4>

Most of the HTML remains the same except for the following changes:

• First, we added a name field to the input form element. This is necessary for the
ngModel directive to work. If you remove this, you will see errors in the console.

• We added two bindings. The first one is ngModel data binding. This does the
work of the value binding we had previously, but abstracting out which property
underneath needs to be bound. It points to the component member variable that
it takes the value from.

• The second binding we added is the ngModelChange event binding. In this, we
update the underlying component member variable (stock.name) with the value
of the $event, which is the changed value of the text field.

102 | Chapter 6: Working with Template-Driven Forms

There is a simpler version of this, which is what we use in most normal cases, which
is the [(ngModel)] banana-in-a-box syntax, as it is called. This encapsulates both of
these statements into a single expression, like so:

<h2>Create Stock Form</h2>

<div class="form-group">
 <form>
 <div class="stock-name">
 <input type="text"
 placeholder="Stock Name"
 name="stockName"
 [(ngModel)]="stock.name">
 </div>
 </form>
 <button (click)="stock.name='test'">Reset stock name</button>
</div>

<h4>Stock Name is {{stock.name}}</h4>

Why Is It Called Banana-in-a-Box?

When used together, a common confusion while using the ngModel
directive could be the order of the types of parentheses, whether it
is [()] or ([]). This is why the Angular team came up with a nick‐
name to make it easy to remember. The () looks like a banana (yes,
it’s a stretch, but roll with it!), and it is enclosed in a box []. Hence,
the banana-in-a-box, which is [()].

In this, we replaced the two individual ngModel and ngModelChange bindings with the
single banana-in-the-box [(ngModel)]. The end result will still be the same, as you
should see the text value change as you type, as well as the value in the text box get
reset when you press the Reset button.

When to Use the Expanded ngModel Variant

Given that we accomplished the same thing via both the expanded
and the collapsed version of the ngModel syntax, is there a need for
the expanded version at all?
The combined ngModel syntax only has the capability to set the
data-bound property. If you need to do something more compli‐
cated (say convert the text into upper-case before setting the model
variable), or set it in a different field itself (a calculated value
maybe?), or do multiple things, then you might want to consider
the expanded syntax. For all other needs, the banana-in-the-box
combined syntax works great!

Template-Driven Forms | 103

A Complete Form
Now that we have seen a basic form field, let’s extend this to a complete form that has
different types of controls that are bound to our component along with handling sub‐
mission of the form. We will continue building on the previous example, the code for
which can be found in the chapter6/simple-ng-model folder in case you don’t have the
codebase.

Let’s extend our example now to allow users to enter in the other information about a
stock, including its code, price, and the exchange it is listed on. In addition, we will
have a confirmation checkbox that needs to be checked before the form can be sub‐
mitted. Finally, we will see how to handle the actual submission event.

First, we’ll add an additional field to our stock model (src/app/model/stock.ts), which
we haven’t changed since the initial version, as follows:

export class Stock {
 favorite = false;

 constructor(public name: string,
 public code: string,
 public price: number,
 public previousPrice: number,
 public exchange: string) {}

 isPositiveChange(): boolean {
 return this.price >= this.previousPrice;
 }
}

Next, let’s extend app/model/create-stock/create-stock.component.ts:
import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css']
})
export class CreateStockComponent {

 public stock: Stock;
 public confirmed = false;
 constructor() {
 this.stock = new Stock('test', '', 0, 0, 'NASDAQ');
 }

 setStockPrice(price) {
 this.stock.price = price;
 this.stock.previousPrice = price;
 }

104 | Chapter 6: Working with Template-Driven Forms

 createStock() {
 console.log('Creating stock ', this.stock);
 }
}

We have added a few new pieces here, in particular:

• We added to the stock initialization (an argument 'NASDAQ' in this case).
• We added confirmed, a boolean member variable, to the component class, with a

default value of false.
• We created a new function setStockPrice, which takes a price and then sets

both the current and previous price for the stock.
• Finally, we have a new createStock method, which simply logs out the current

stock variable to the console.

Now let’s see how these are used as we create and hook up the finished template for
the form. We will change src/app/stock/create-stock/create-stock.component.html as
follows :

<h2>Create Stock Form</h2>

<div class="form-group">
 <form (ngSubmit)="createStock()">
 <div class="stock-name">
 <input type="text" placeholder="Stock Name"
 name="stockName" [(ngModel)]="stock.name">
 </div>
 <div class="stock-code">
 <input type="text" placeholder="Stock Code"
 name="stockCode" [(ngModel)]="stock.code">
 </div>
 <div class="stock-code">
 <input type="number" placeholder="Stock Price"
 name="stockPrice" [ngModel]="stock.price"
 (ngModelChange)="setStockPrice($event)">
 </div>
 <div class="stock-exchange">
 <div>
 <input type="radio" name="stockExchange"
 [(ngModel)]="stock.exchange" value="NYSE">NYSE
 </div>
 <div>
 <input type="radio" name="stockExchange"
 [(ngModel)]="stock.exchange" value="NASDAQ">NASDAQ
 </div>
 <div>
 <input type="radio" name="stockExchange"
 [(ngModel)]="stock.exchange" value="OTHER">OTHER

Template-Driven Forms | 105

 </div>
 </div>
 <div class="stock-confirm">
 <input type="checkbox" name="stockConfirm"
 [(ngModel)]="confirmed">
 I confirm that the information provided above is accurate!
 </div>
 <button [disabled]="!confirmed" type="submit">Create</button>
 </form>
</div>

<h4>Stock Name is {{stock | json}}</h4>

Handling the form submission via the ngSubmit event handler

Expanded version of ngModel to handle setting both current and previous price

Handling radio buttons through ngModel

Handling checkboxes through ngModel

Disabling the form while the checkbox is unchecked

In the template, we have added a whole new set of form fields, from input boxes for
stock code and price, to radio buttons to select the exchange and a checkbox to con‐
firm if the data is correct. Let’s go through this step by step:

1. For the stock code, it remains similar to the stock name which we had. Nothing
different other than, of course, the target variable.

2. For the stock price, we are using the expanded version of the ngModel syntax.
This is because while we want the value in the text box to come from
stock.price, when the user sets it, we want both the price and the previous
Price to be set through the method setStockPrice.

3. Next, we have a set of radio buttons that we are using to set the exchange. Each
radio button has the same name (which is the standard HTML way of creating a
radio group), and are bound to the same model variable (stock.exchange) using
ngModel. The value for each radio button is what defines what the value in the
stock.exchange variable is, and similarly, the value in the stock.exchange vari‐
able defines which of the radio buttons are selected.

4. We then have a checkbox, which is bound to the variable confirmed on the com‐
ponent class. Since it is a checkbox, toggling the checkbox on and off sets the
value of the variable confirmed to true and false, respectively.

5. Finally, we have a button of type submit. This is only enabled when the con
firmed boolean is set to true. On clicking this, it triggers a form submit, which is

106 | Chapter 6: Working with Template-Driven Forms

then intercepted by our ngSubmit event handler at the form level. This will then
trigger the createStock method on our component class.

Once you run this, you should see something like Figure 6-2 on your screen.

Figure 6-2. Angular form with data binding

We thus have a very simple form that handles different kinds of form elements and
binds the value to the component, allowing us to get to the user input once he sub‐
mits the form. To be fair, we haven’t handled any errors or requirements on the form,
which we will do shortly in the next section.

Template-Driven Forms | 107

What about SELECT Boxes?

One type of input we didn’t cover in the preceding example was a
select drop-down/combo box. But we could have used it instead
of the radio buttons, if we felt like it. How would our example have
changed? We currently have the following HTML template code for
displaying our radio buttons:

<input type="radio" name="stockExchange"
 [(ngModel)]="stock.exchange" value="NYSE">NYSE
<input type="radio" name="stockExchange"
 [(ngModel)]="stock.exchange" value="NASDAQ">NASDAQ
<input type="radio" name="stockExchange"
 [(ngModel)]="stock.exchange" value="OTHER">OTHER

We can replace this with a simple select HTML template as follows:
<select name="stockExchange" [(ngModel)]="stock.exchange">
 <option value="NYSE">NYSE</option>
 <option value="NASDAQ">NASDAQ</option>
 <option value="OTHER">OTHER</option>
</select>

Again, very similar to the other form elements, as long as we have a
name and the ngModel directive, Angular internally handles the data
binding for us. We could very easily replace the individual option
tags with a single option tag and use ngFor to programmatically
generate a list of options as well. In those cases, assuming our com‐
ponent has the following code in it:

public exchanges = ['NYSE', 'NASDAQ', 'OTHER'];

Then we could replace our template code to be as simple as:
 <select name="stockExchange" [(ngModel)]="stock.exchange">
 <option *ngFor="let exchange of exchanges"
 [ngValue]="exchange">{{exchange}}</option>
 </select>

Note the *ngFor loop, and the usage of ngValue to ensure that the
current value is used instead of a hardcoded value.

Control State
Angular form validation for template-driven forms relies and extends the native form
validation from HTML. Thus, you can simply use most of the constraints that you
already know and love out of the box, and they should work directly and cleanly with
an Angular form. That said, Angular does the work of integrating these control states
and validations with its own internal model (whether it is ngModel or ngForm), and it
is up to us to use this internal model to then show the right kind of message to the
user.

108 | Chapter 6: Working with Template-Driven Forms

https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/Constraint_validation
https://developer.mozilla.org/en-US/docs/Web/Guide/HTML/HTML5/Constraint_validation

There are two aspects to this:

• The state, which allows us to peek into the state of the form control, on whether
the user has visited it, whether the user has changed it, and finally whether it is in
a valid state.

• The validity, which tells us whether a form control is valid or not, and if it is not
valid, the underlying reason (or reasons) for which the form element is invalid.

Let’s first see how state is made available to us and how we can use it. The ngModel
directive changes and adds CSS classes to the element it is on, based on the user’s
interaction with it. There are three primary modes of interaction that it tracks, and
two CSS classes per mode of interation associated with it. They are:

Control state CSS class if True CSS class if False
Visited ng-touched ng-untouched

Changed ng-dirty ng-pristine

Valid ng-valid ng-invalid

In particular, these states allow you to present different experiences or views to users
under various scenarios. We can use the code from the previous section as a base to
work off, in case you are not coding along. The starting code can be found in chap‐
ter6/template-driven/full-form, which holds the completed code from the previous
section.

Now, to use these control state classes, we actually don’t need to make any component
class code changes. We only need to tweak the CSS a bit and then leverage that in the
HTML template for the component.

Let’s first add the following CSS class definitions to the src/app/stock/create-stock/
create-stock.component.css file:

.stock-name .ng-valid,

.stock-code .ng-pristine,

.stock-price .ng-untouched {
 background-color: green;
}

.stock-name .ng-invalid,

.stock-code .ng-dirty,

.stock-price .ng-touched {
 background-color: pink;
}

Now, we will make minor tweaks (which are more for highlighting different elements
rather than any functional changes) to the template HTML in src/app/stock/create-
stock/create-stock.component.html:

Template-Driven Forms | 109

<h2>Create Stock Form</h2>

<div class="form-group">
 <form (ngSubmit)="createStock()">
 <div>
 The following element changes from green to red
 when it is invalid
 </div>
 <div class="stock-name">
 <input type="text"
 placeholder="Stock Name"
 required
 name="stockName"
 [(ngModel)]="stock.name">
 </div>
 <div>
 The following element changes from green to red
 when it has been modified
 </div>
 <div class="stock-code">
 <input type="text"
 placeholder="Stock Code"
 name="stockCode"
 [(ngModel)]="stock.code">
 </div>
 <div>
 The following element changes from green to red
 when it is visited by the user, regardless of change
 </div>
 <div class="stock-price">
 <input type="number"
 placeholder="Stock Price"
 name="stockPrice"
 [ngModel]="stock.price"
 (ngModelChange)="setStockPrice($event)">
 </div>
 <div class="stock-exchange">
 <div>
 <select name="stockExchange" [(ngModel)]="stock.exchange">
 <option *ngFor="let exchange of exchanges"
 [ngValue]="exchange">{{exchange}}</option>
 </select>
 </div>
 </div>
 <div class="stock-confirm">
 <input type="checkbox"
 name="stockConfirm"
 [(ngModel)]="confirmed">
 I confirm that the information provided above is accurate!
 </div>
 <button [disabled]="!confirmed"
 type="submit">Create</button>

110 | Chapter 6: Working with Template-Driven Forms

 </form>
</div>

<h4>Stock Name is {{stock | json}}</h4>
<h4>Data has been confirmed: {{confirmed}}</h4>

Adding a required attribute to the stock name

The only change we did to our component HTML is to make the stock name a
required field. Angular’s Form Module is responsible for reading it and applying the
form control state classes accordingly, without any other work on our side.

With these two changes, we now have an application that:

• For the stock name, when it is valid (the class ng-valid), we make the back‐
ground color of the text box green, and when it is invalid (the class ng-invalid),
we change the background color of the text box to be pink.

• For the stock code, when the user has not made any changes to the field (the class
ng-pristine), we make the background color of the text box green, and when‐
ever the user makes any change (the class ng-dirty), regardless of whether he
reverts the change or not, we change the background color of the text box to
pink.

• Finally, for the stock price, the background color remains green as long as the
field is not interacted with (the class ng-untouched), and changes to pink as soon
as the user interacts and then leaves it (the class ng-touched). Note that the color
remains green while the user is interacting/typing on it, and only changes once
he moves away from it.

You can test it, of course, by:

1. Removing the default name of the stock (the background color should toggle
from green to pink when there is no text in the field)

2. Typing any character in the stock code field (the background color should toggle
from green to pink when you do)

3. Focusing and navigating away from the stock price field (the background color
should toggle from green to pink when you do)

The end result if you do these actions in order is a screen that looks something like
the image in Figure 6-3.

Template-Driven Forms | 111

Figure 6-3. Angular form with control state bindings

Control Validity
Next, let’s take a look at how we can leverage the HTML form validation to create
nice, meaningful errors for our users. We won’t get into custom validations just yet in
this chapter, but will cover how to use multiple validations on the same elements, and
how to display error messages for the same.

Internally, Angular has its own set of validators. These mirror the HTML Form vali‐
dators that are then used to drive a similar behavior in the context of an Angular
application. Once you add any validators to your form elements, Angular will take

112 | Chapter 6: Working with Template-Driven Forms

care of running them every time any of the form control changes. This would then be
reflected at each control level, as well as at an aggregate level at the form.

Before we dig into this, you can take a look at the following sidebar to get a brief
understanding of template reference variables, which are a major workhorse in how
we execute and work with form control validity.

Template Reference Variables
A template reference variable in Angular allows us to get a temporary handle on a
DOM element, component, or directive directly in the template. It is denoted by a
standard syntax in the HTML, which is a prefix of #. For example, in the following
HTML:

<input type="text" #myStockField name="stockName">

The #myStockField is a template reference variable that gives us a reference to the
input form field. We can then use this as a variable in any Angular expression, or
directly access its value through myStockField.value and pass it as an argument to a
function.

In addition to the DOM elements, it can also be used to reference the class/value
underlying a directive, which is how we use it in conjunction with forms and form
fields.

By default, when we don’t pass it any value, it will always refer to the HTML DOM
element.

Once you have looked through the sidebar note, we’ll dig into how we can accom‐
plish simple error handling via our template-driven forms. In case you are not coding
along, you can use the codebase from the previous section (which is located in chap‐
ter6/template-driven/control-state) as a base.

We will undo some of the changes from the previous section and now focus purely on
form validation. First, let’s change our CSS to reflect all invalid form controls with a
pink background, by editing the src/app/stock/create-stock/create-stock.component.css
file as follows:

.stock-name .ng-valid,

.stock-code .ng-valid,

.stock-price .ng-valid {
 background-color: green;
}

.stock-name .ng-invalid,

.stock-code .ng-invalid,

.stock-price .ng-invalid {

Template-Driven Forms | 113

 background-color: pink;
}

Next, we will make minor changes to the component class (src/app/stock/create-stock/
create-stock.component.ts), simply to log out different values under certain conditions
as follows:

import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css']
})
export class CreateStockComponent {

 public stock: Stock;
 public confirmed = false;
 public exchanges = ['NYSE', 'NASDAQ', 'OTHER'];
 constructor() {
 this.stock = new Stock('', '', 0, 0, 'NASDAQ');
 }

 setStockPrice(price) {
 this.stock.price = price;
 this.stock.previousPrice = price;
 }

 createStock(stockForm) {
 console.log('Stock form', stockForm);
 if (stockForm.valid) {
 console.log('Creating stock ', this.stock);
 } else {
 console.error('Stock form is in an invalid state');
 }
 }
}

We have made minor changes only to the createStock method:

• We have now started taking the stockForm as an argument to the function. This
is the ngForm object representing the form we have in our template, including all
its controls and states. We are also logging this out to the web console.

• We are checking if the form is valid using this passed-in object, and then only
proceeding to create the stock (for what it’s worth, logging it out at this point).

• We have also changed the constructor to initialize the stock with an empty name,
unlike before.

114 | Chapter 6: Working with Template-Driven Forms

Next, let’s see the changes made to the template in src/app/stock/create-stock/create-
stock.component.html:

<h2>Create Stock Form</h2>

<div class="form-group">
 <form (ngSubmit)="createStock(stockForm)" #stockForm="ngForm">
 <div class="stock-name">
 <input type="text"
 placeholder="Stock Name"
 required
 name="stockName"
 #stockName="ngModel"
 [(ngModel)]="stock.name">
 </div>
 <div *ngIf="stockName.errors && stockName.errors.required">
 Stock Name is Mandatory
 </div>
 <div class="stock-code">
 <input type="text"
 placeholder="Stock Code"
 required
 minlength="2"
 name="stockCode"
 #stockCode="ngModel"
 [(ngModel)]="stock.code">
 </div>
 <div *ngIf="stockCode.dirty && stockCode.invalid">
 <div *ngIf="stockCode.errors.required">
 Stock Code is Mandatory
 </div>
 <div *ngIf="stockCode.errors.minlength">
 Stock Code must be atleast of length 2
 </div>
 </div>
 <div class="stock-price">
 <input type="number"
 placeholder="Stock Price"
 name="stockPrice"
 required
 #stockPrice="ngModel"
 [ngModel]="stock.price"
 (ngModelChange)="setStockPrice($event)">
 </div>
 <div *ngIf="stockPrice.dirty && stockPrice.invalid">
 <div *ngIf="stockPrice.errors.required">
 Stock Price is Mandatory
 </div>
 </div>
 <div class="stock-exchange">
 <div>
 <select name="stockExchange" [(ngModel)]="stock.exchange">

Template-Driven Forms | 115

 <option *ngFor="let exchange of exchanges"
 [ngValue]="exchange">{{exchange}}</option>
 </select>
 </div>
 </div>
 <div class="stock-confirm">
 <input type="checkbox"
 name="stockConfirm"
 required
 [(ngModel)]="confirmed">
 I confirm that the information provided above is accurate!
 </div>
 <button type="submit">Create</button>
 </form>
</div>

<h4>Stock Name is {{stock | json}}</h4>
<h4>Data has been confirmed: {{confirmed}}</h4>

Template reference variable stockForm to work at the form model level

Template reference variable stockName to expose the name ngModel

Check on the template reference variable for errors and presence

Template reference variable stockCode to expose the code ngModel

Check on the stockCode template reference variable for dirty and invalid form
controls

Check on the stockCode for errors

Template reference variable stockPrice to expose the code ngModel

Most of the template remains the same, but there are a few items worth calling out:

• We added a template reference variable at the form level, and at each control
level. The form-level template reference variable (stockForm) gets the NgForm
model object bound to it, which allows us to check on things like form and con‐
trol validity and values through it.

• We added template reference variables (stockName, stockPrice, stockCode) on
each of the text boxes, and assigned the NgModel model object to it. This allows
us to check the form field for all the control states that we were previously using
through CSS classes (dirty/pristine, valid/invalid, and touched/untouched), in
addition to errors.

116 | Chapter 6: Working with Template-Driven Forms

• For the first form field (stock name), we added a div to show the error message
that it is required, if the error exists.

• For the second and third field messages, we enclosed the error message within
another div, which first checks if the form field is dirty and invalid before looking
for a particular error message.

• On form submit we pass the stockForm template reference variable, which points
to the form model, to the createStock method. This is another capability of
template reference variables: you can pass them in as arguments to your compo‐
nent class.

This completed code is available in the chapter6/template-driven/control-validity
folder. When you run this application, you should see something like Figure 6-4.

Figure 6-4. Angular form with form validity checks

Template-Driven Forms | 117

A few interesting things worth noting:

• Notice that the error message for the stock name is displayed by default, but the
error message that the price and code are required is only displayed after we
touch the field. This is the advantage of wrapping the error message under the
control state (dirty and invalid). Otherwise, the field is invalid by default (because
it is empty).

• Most of the default validators (required, minlength, maxlength) will add a cor‐
responding entry on the errors field on the template reference variable, which
you can use to display a relevant message.

• Note that for the stock price, the minlength and required validators are not
shown simultaneously. This is handled by the Angular built-in validators, but
you need to be aware and handle multiple validators having errors simultane‐
ously, and decide and show messages conditionally.

• Finally, we pass the stockForm template reference variable to the createStock
method in the component class. This actually gives us access to the individual
controls, as well as the value of the form model. We can use this (or similar tem‐
plate reference variables) to, for example, start showing error messages only after
the first submit, instead of, say, as soon as the user types.

Thus, between the template reference variables and the validators, you get utmost
control in how and when you want to show your validation messages. You can choose
to do it completely in the template, or choose to have them in the template, but
decide when and how to show them from your component class, or go to the extreme
of creating your validation messages and drive it completely from your component
class. It would be up to you which of the approaches you choose, as Angular gives you
the tools and the complete flexibility to choose.

Working with FormGroups
Before we finish with this chapter, we will quickly introduce another method of work‐
ing with template-driven forms and the ngModel directive. So far, we have been
declaring a member variable in our component, and then using ngModel to bind to it.
We can instead let the form model drive the entire form, and copy over or use the
values from it once the form has been submitted.

We can use the same codebase from the previous section (chapter6/template-driven/
control-validity) as the base to work off of.

Let’s first modify the CreateStockComponent class with minor changes to take the
model value from the form instead of relying on it being updated via data binding:

118 | Chapter 6: Working with Template-Driven Forms

import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css']
})
export class CreateStockComponent {

 public stock: Stock;
 public confirmed = false;
 public exchanges = ['NYSE', 'NASDAQ', 'OTHER'];
 constructor() {
 this.stock = new Stock('', '', 0, 0, 'NASDAQ');
 }

 createStock(stockForm) {
 console.log('Stock form', stockForm.value);
 if (stockForm.valid) {
 this.stock = stockForm.value.stock;
 console.log('Creating stock ', this.stock);
 } else {
 console.error('Stock form is in an invalid state');
 }
 }
}

We have changed the createStock method, to copy over the stock object from the
form value field. We have also dropped the setStockPrice method as we won’t be
using it. Now, let’s take a look at the changes needed in the template to be able to sup‐
port this:

<h2>Create Stock Form</h2>

<div class="form-group">
 <form (ngSubmit)="createStock(stockForm)" #stockForm="ngForm" >
 <div ngModelGroup="stock">
 <div class="stock-name">
 <input type="text"
 placeholder="Stock Name"
 required
 name="name"
 ngModel>
 </div>
 <div class="stock-code">
 <input type="text"
 placeholder="Stock Code"
 required
 minlength="2"
 name="code"
 ngModel>

Working with FormGroups | 119

 </div>
 <div class="stock-price">
 <input type="number"
 placeholder="Stock Price"
 name="price"
 required
 ngModel>
 </div>
 <div class="stock-exchange">
 <div>
 <select name="exchange" ngModel>
 <option *ngFor="let exchange of exchanges"
 [ngValue]="exchange">{{exchange}}</option>
 </select>
 </div>
 </div>
 </div>
 <button type="submit">Create</button>
 </form>
</div>

<h4>Stock Name is {{stock | json}}</h4>
<h4>Data has been confirmed: {{confirmed}}</h4>

We have temporarily removed all validators, so as to not distract us from the core
change. The major changes are as follows:

• We have removed the banana-in-a-box syntax from all the ngModel bindings, and
just kept it as an attribute. When we use ngModel like this, Angular uses the name
field on the form element as the model name and creates a model object corre‐
sponding to it on the form.

• We have surrounded the form fields with another div, and used an Angular
directive called ngModelGroup on it, providing it a name (stock in this case).
What this does is group the form elements, thus creating the name, price, code,
and exchange fields as models under the common name stock. This is visible in
the component when we access this entire set of values through
form.value.stock.

We can similarly create multiple form groups and use ngModel directly, and then
finally copy over the entire values to a common field (or not copy it over at all) in our
component on form submit. This is another way we can use ngModel and template-
driven forms in our applications. The finished code for this is available in the chap‐
ter6/template-driven/form-groups/ folder in the GitHub repository.

120 | Chapter 6: Working with Template-Driven Forms

Conclusion
In this chapter, we started exploring how to handle user input through the use of
forms. In particular, we took a deep dive into how to create and work with template-
driven forms, and leverage ngModel for two-way data binding. We further saw what
control states Angular provides out of the box and how to leverage that as well as
show and deal with validations and error messages.

In the next chapter, we will look at a different way of approaching this: reactive forms.
We will discuss how to use reactive forms but will first review the ways they differ
from template-driven forms and why you might choose one over the other.

Exercise
Take the finished exercise from the previous chapter (available in chapter5/exercise/
ecommerce). Do the following:

1. Create a new component that allows us to add new products.
2. Create a form that takes in the product name, price, image URL, and whether or

not it is on sale. Try to use the form groups approach rather than two-way bind‐
ing through ngModel.

3. Make all the fields required, and see if you can add a basic Regex pattern valida‐
tion for the image URL.

4. Display relevant error messages, but only after the user either edits the field or
after the first submit.

5. Copy over the form and print it to the console after successful submission.

All of this can be accomplished using concepts covered in this chapter. You can check
out the finished solution in chapter6/exercise/ecommerce.

Conclusion | 121

CHAPTER 7

Working with Reactive Forms

In the previous chapter, we started working on our first form-based Angular applica‐
tion. To do this, we explored template-driven forms and how we might build and use
them within the context of an Angular application. We saw how to perform data
binding, work with different form elements, and also perform validity and show rele‐
vant error messages.

In this chapter, we will focus on doing the exact same set of things, though this time,
we will use a reactive approach. As mentioned in the previous chapter, Angular
allows us to build forms using two approaches: template-driven and reactive. Both
these approaches are part of the core @angular/forms library, but are part of two dif‐
ferent modules, FormsModule and ReactiveFormsModule, respectively.

Reactive Forms
To understand and get into building forms in a reactive manner, it is important to
understand what reactive programming is. Reactive programming, to overly simplify
it, is the concept of writing a program in a way that it fundamentally deals with and
acts on asynchronous data streams. While most programs (especially web apps) do
this, reactive programming does this by providing an amazing toolbox of utilities and
functions to combine, filter, and merge these various streams and act on them, which
is where it gets real fun real fast.

Unlike template-driven forms in Angular, with reactive forms, you define the entire
tree of Angular form control objects in your component code, and then bind them to
native form control elements in your template. Because the component has access to
the form controls as well as the backing data model, it can push data model changes
into the form control and vice versa, thus reacting to changes either way.

123

Understanding the Differences
Now, with two approaches in front of us (even though we haven’t looked at a single
line of code of the reactive form approach), the question naturally arises: which one is
better? The answer, as you would expect, is that neither is truly “better” than the
other. Both have their own advantages and disadvantages.

When we create forms using the template-driven approach, we declare the form con‐
trols in the template, and add directives to it (like ngModel). Then Angular is respon‐
sible for creating the form controls through the use of directives.

That said, template-driven forms are nice and declarative, and easy to understand.
Angular is responsible for the data model sync and pushes data to the model and
reads and updates values in the UI via directives like ngModel. This also usually
means less code in the component class.

Reactive forms, on the other hand, are synchronous, and you as a developer have
absolute control over how and when the data is synced from the UI to the model and
vice versa. Because you create the entire form control tree in the component, you
have access to it immediately and don’t have to deal with Angular’s asynchronous life-
cycle. While we haven’t encountered this ourselves in any of the examples so far, you
will run into this if you try to update the form controls from your component class on
initialization, as they might not be immediately available. You can read up on this in
the official Angular docs. It also fits in better if the rest of your application is follow‐
ing a reactive style of programming.

Using Reactive Forms
Now that we have briefly compared reactive versus template-driven forms and
reviewed the pros and cons of each, let’s look at building a reactive form. We will do
this step by step, starting with the building block of reactive forms, Form Controls,
and work our way upwards to the other various components like Form Groups and
Form Builders.

Form Controls
The core of any reactive form is the FormControl, which directly represents an indi‐
vidual form element in the template. Thus, any reactive form is nothing but a set of
grouped FormControls. It is at the FormControl level that we also assign initial values
and validators (both sync and async). Thus, everything that we did in the template
with template-driven forms now happens at a FormControl level in the TypeScript
code.

124 | Chapter 7: Working with Reactive Forms

http://bit.ly/2ki0EcR

We can use the same codebase from Chapter 6 as our base to build this in case you
are not coding along with the book. You can get that from the chapter6/template-
driven/simple-ng-model folder in the GitHub repository.

The very first thing we will do is import ReactiveFormsModule into our main
app.module.ts file. For this example, we can remove the old FormsModule from it. The
src/app/app.module.ts file should look like this:

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { ReactiveFormsModule } from '@angular/forms';

import { AppComponent } from './app.component';
import { StockItemComponent } from './stock/stock-item/stock-item.component';
import { CreateStockComponent }
 from './stock/create-stock/create-stock.component';

@NgModule({
 declarations: [
 AppComponent,
 StockItemComponent,
 CreateStockComponent
],
 imports: [
 BrowserModule,
 ReactiveFormsModule,
],
 providers: [],
 bootstrap: [AppComponent]
})
export class AppModule { }

Import the ReactiveFormsModule

Add the ReactiveFormsModule to the NgModule imports section

Now given this base setup, which enables reactive form features in our application,
let’s see how to create a simple form that allows us to take and work with a name. We
will first modify the template for our CreateStockComponent by changing the
src/app/stock/create-stock/create-stock.component.html file as follows:

<h2>Create Stock Form</h2>

<div class="form-group">

 <div class="stock-name">
 <input type="text"
 placeholder="Stock Name"
 name="stockName"
 [formControl]="nameControl">
 </div>

Using Reactive Forms | 125

 <button (click)="onSubmit()">Submit</button>
</div>

<p>Form Control value: {{ nameControl.value | json }}</p>
<p>Form Control status: {{ nameControl.status | json }}</p>

Using a form control binding instead of ngModel

Accessing the current value in the form field

The way we created this form is very different than the template-driven approach
outlined in the previous chapter. Instead of using ngModel, we are binding the form
element to nameControl. We can then derive the current value of the form control via
this field, whether it is the value (via nameControl.value) or its status (via nameCon
trol.status, which is always valid for this simple element). Finally, we have a simple
button that triggers the onSubmit() method in the component.

Next, let’s take a look at the src/app/component/stock/create-stock/create-
stock.component.ts file to see what changes we have to make to it to support this form:

import { Component, OnInit } from '@angular/core';
import { FormControl } from '@angular/forms';

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css']
})
export class CreateStockComponent {

 public nameControl = new FormControl();
 constructor() {}

 onSubmit() {
 console.log('Name Control Value', this.nameControl.value);
 }
}

We have removed all references of the Stock model from this. Instead, we import and
create an instance of FormControl called nameControl. This is the variable we bound
to in the template. Then, on the onSubmit() call, we simply print the current value of
the nameControl control. Again, note that unlike traditional non-MVC frameworks,
at no point is the control reaching out into the view to get the current value of the
element. We rely on the FormControl to provide a representative view of the input
element, and keep it up to date.

We have used the default FormControl constructor, but it can also take the initial
value along with a list of validators (both sync and async) as arguments. We will see
how to add validators in a bit more detail in “Form Groups” on page 128.

126 | Chapter 7: Working with Reactive Forms

When we run this application, we should see something like Figure 7-1, with a simple
form field below our stock widgets. If you type into it, you should see the form field
below it.

Figure 7-1. Simple Angular reactive form

Summing up, it is helpful to think of FormControl when we need to track the state
and value of any individual form element, like an input box or a checkbox. In the
next section, we will see how to build a more complete form using FormControl and
something called FormGroup.

Using Reactive Forms | 127

The finished example is available in the chapter7/form-control folder in the GitHub
repository.

Form Groups
Usually, when we build any form, it rarely has just one element. We typically have a
set of different fields and elements we want to track under one common form or
heading. In these cases, the FormGroup is useful as a way to group relevant form fields
under one group. This gives us the convenience of whether we want to track the form
controls individually, or as a group. For example, we can get the entire form value, or
check whether the form as a whole is valid (as a result of individual elements and
their state).

Let’s see how we can extend the example from the previous section to create a com‐
prehensive form for creating a stock using FormControl and FormGroup instances.

First, we will see how to modify the src/app/stock/create-stock/create-stock.component
.html template to ask for all the relevant fields of a stock from the user:

<h2>Create Stock Form</h2>

<div class="form-group">
 <form [formGroup]="stockForm" (ngSubmit)="onSubmit()">
 <div class="stock-name">
 <input type="text"
 placeholder="Stock Name"
 name="stockName"
 formControlName="name">
 </div>
 <div class="stock-code">
 <input type="text"
 placeholder="Stock Code"
 formControlName="code">
 </div>
 <div class="stock-price">
 <input type="number"
 placeholder="Stock Price"
 formControlName="price">
 </div>
 <button type="submit">Submit</button>
 </form>
</div>

<p>Form Control value: {{ stockForm.value | json }}</p>
<p>Form Control status: {{ stockForm.status | json }}</p>

We now bind to a formGroup instead of a formControl

Once we use a formGroup, we use formControlName inside the group

128 | Chapter 7: Working with Reactive Forms

Change over to printing the form group value instead of the element

The major change from the previous example is that we switched over from binding
to formControl to a formGroup. We do this at the form level. Now within it, for each
form element, we mention a formControlName. Each of these will bind to an individ‐
ual element within the formGroup. Finally, we display the current value and status
of the form similar to how we did for the FormControl.

Also, for easier readability, we have switched from calling the control nameControl,
and instead just call it name, code, and price in the component.

Next, let’s take a look at how we change the src/app/stock/create-stock/create-
stock.component.ts component class to get this example to work:

import { Component, OnInit } from '@angular/core';
import { FormControl, FormGroup, Validators } from '@angular/forms';

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css']
})
export class CreateStockComponent {

 public stockForm: FormGroup = new FormGroup({
 name: new FormControl(null, Validators.required),
 code: new FormControl(null, [Validators.required, Validators.minLength(2)]),
 price: new FormControl(0, [Validators.required, Validators.min(0)])
 });
 constructor() {}

 onSubmit() {
 console.log('Stock Form Value', this.stockForm.value);
 }
}

In the component, we now instantiate and expose a FormGroup instance, named
stockForm. This is what we had bound to at the form level in the template. FormGroup
allows us to instantiate multiple named controls within it, and we have done so to
instantiate a form control for the name, code, and price. This time, we are also using
the constructor of the FormControl to the maximum extent possible, by adding a
default value and validators as required.

The first argument to the FormControl constructor is the default value of the form
control. Here, we initialize the default values of the two form controls to be null and
0, respectively.

Using Reactive Forms | 129

The second argument to the FormControl constructor can either be a single Valida
tor, or an array of Validators. There are a set of built-in validators to ensure that the
FormControl is require, or has a minimum value. These validators can either be syn‐
chronous (like the ones we have used), or can also be asynchronous (for example, to
check whether a username is available in the server). You can check out the built-in
validators in the official Angular docs.

When the form is submitted (using ngSubmit event binding), we then print the entire
form group value to the console.

When we run this, and type in some values in the form, we should see the form react
and print the current value of the form as well as its validity status in the UI. It would
look something like Figure 7-2.

Figure 7-2. Angular reactive form with form control state

130 | Chapter 7: Working with Reactive Forms

https://angular.io/api/forms/Validators

The finished example is available in the chapter7/form-groups folder in the GitHub
repository.

Form Builders
Now, while the FormGroup gives us the flexibility to build complex, nested forms (and
by the way, you can absolutely nest further form groups within a form group!), its
syntax is slightly verbose. And that’s why, to replace it, we have a FormBuilder in
Angular, which makes it slightly nicer to build these rich forms in a cleaner manner.

The nice thing about the FormBuilder is that we don’t have to change or even touch
our template. The FormBuilder fundamentally is syntactic sugar to allow us to
quickly create FormGroup and FormControl elements without manually calling new for
each one. The reactive form still relies on those elements under the covers for its
functioning, and FormBuilder does not do away with them.

Let’s see how we can switch our CreateStockComponent to use FormBuilder. We will
change the src/app/stock/create-stock/create-stock.component.ts file as follows:

import { Component, OnInit } from '@angular/core';
import { FormControl, FormGroup } from '@angular/forms';
import { Validators, FormBuilder } from '@angular/forms';

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css']
})
export class CreateStockComponent {

 public stockForm: FormGroup;
 constructor(private fb: FormBuilder) {
 this.createForm();
 }

 createForm() {
 this.stockForm = this.fb.group({
 name: [null, Validators.required],
 code: [null, [Validators.required, Validators.minLength(2)]],
 price: [0, [Validators.required, Validators.min(0)]]
 });
 }

 onSubmit() {
 console.log('Stock Form Value', this.stockForm.value);
 }
}

Import FormBuilder from @angular/forms

Using Reactive Forms | 131

We don’t initialize the FormGroup while declaring it anymore

Inject an instance of the FormBuilder into the constructor

Create a FormGroup using the injected FormBuilder instance

Initialize the name control with an initial null value and a required validator

The major change from before is how we initialize the stockForm FormGroup
instance. Instead of initializing it in line, with the FormBuilder, we first inject an
instance of the FormBuilder into our constructor. Then, in the constructor itself, we
use the group method on the FormBuilder instance to then create the various form
controls.

Even for creating the form controls, we simply use the FormBuilder syntactic sugar.
For example, if we just wanted to initialize a text field called name with an empty
string as the initial value, we could simply have a key called name, and pass an empty
string as the value for it (that is, name: ''). In the preceding code, we actually want to
both initialize it with a default value as well as add some validators, so instead of pass‐
ing it just a value, we pass it an array.

The first value in the array is the default value of the form control (null in the case of
name and code, 0 in the case of price). The second value is then either a single valida‐
tor (like in name), or an array of validators (like in code and price).

Fundamentally, nothing else changes. The result of doing this is we get an application
that behaves exactly like the version from the previous section, but we are able to
hook it up in a more concise and less verbose manner. For any form with more than a
few elements, it almost always makes sense to use the FormBuilder rather than the
FormGroup method, as it reduces both the code and makes it a lot more concise and
readable.

The finished example is available in the chapter7/form-builder folder in the GitHub
repository.

Form Data
So far, we have hand-waved over handling the form data. We have simply used the
FormControl or FormGroup and accessed the value from it. In this section, we will go
into the data and form model and how reactive forms allow us to deal with it as well
as control and form state (like valid, invalid, etc.).

132 | Chapter 7: Working with Reactive Forms

Control State, Validity, and Error Messages
Before we go deep into how the form model is structured, and how that corresponds
to our data model in the component, we will first cover the simpler aspects, which is
dealing with the control’s state and validity. Dealing with form control state and valid‐
ity is quite similar to how we handle it with template-driven forms, in that the base
control states and validity are the same. What changes is the method of accessing
these properties.

Let’s now add error messages to our form that we have been building so far, so that we
can show respective error messages along each field. That said, we only want to show
these error messages if the user has interacted with a field, and not before. So by
default, when the page opens, we don’t want to show any error messages.

We will build on the example from the previous section, so in case you are not coding
along, you can copy the codebase from chapter7/form-builder. Before we start going
into the code, here’s a quick refresher on the basic Angular control states (repeated
from Chapter 6):

Control state CSS class if True CSS class if False
Visited ng-touched ng-untouched

Changed ng-dirty ng-pristine

Valid ng-valid ng-invalid

We could use these to highlight and show errors and state of the form, like we did
before. But for this section, we will focus on showing only condition error messages,
and cleanly handling cases with multiple validators.

Now, let’s see how to edit the template to start showing relevant error messages in the
form, while using the reactive form approach. We will edit the src/app/stock/create-
stock/create-stock.component.html file as follows:

<h2>Create Stock Form</h2>

<div class="form-group">
 <form [formGroup]="stockForm" (ngSubmit)="onSubmit()">
 <div class="stock-name">
 <input type="text"
 placeholder="Stock Name"
 name="stockName"
 formControlName="name">
 <div *ngIf="stockForm.get('name').invalid &&
 (stockForm.get('name').dirty ||
 stockForm.get('name').touched)">
 Name is required
 </div>
 </div>

Form Data | 133

 <div class="stock-code">
 <input type="text"
 placeholder="Stock Code"
 formControlName="code">
 <div *ngIf="stockForm.get('code').invalid &&
 (stockForm.get('code').dirty ||
 stockForm.get('code').touched)">
 <div *ngIf="stockForm.get('code').errors.required">
 Stock Code is required
 </div>
 <div *ngIf="stockForm.get('code').errors.minlength">
 Stock Code must be at least 2 characters
 </div>
 </div>
 </div>
 <div class="stock-price">
 <input type="number"
 placeholder="Stock Price"
 formControlName="price">
 <div *ngIf="stockForm.get('price').invalid &&
 (stockForm.get('price').dirty ||
 stockForm.get('price').touched)">
 <div *ngIf="stockForm.get('price').errors.required">
 Stock Price is required
 </div>
 <div *ngIf="stockForm.get('price').errors.min">
 Stock Price must be positive
 </div>
 </div>
 </div>
 <button type="submit">Submit</button>
 </form>
</div>

<p>Form Control value: {{ stockForm.value | json }}</p>
<p>Form Control status: {{ stockForm.status | json }}</p>

Accessing an individual control element’s validity through the form group

Checking for individual validator status for a form element

While the base form remains the same from the previous example, we have modified
it now to show conditional error messages. There are a few noteworthy things hap‐
pening in this template, so let’s walk through it step by step:

• For each form element, we have added a div element beneath it to show condi‐
tional error messages.

• For each element, we first get the individual form element by calling stock
Form.get() with the name of the individual form control that we provided while
instantiating the FormGroup in the component class.

134 | Chapter 7: Working with Reactive Forms

• With each FormControl, we can then check for various properties like whether
the form element is touched or not (that is, whether the user has accessed the ele‐
ment), whether the form element has been modified or not (dirty or pristine),
and whether it is valid or not.

• For our example, we are relying on these properties to ensure that we display the
error message only when the form element is both invalid and the user has inter‐
acted with it by either modifying it (dirty if modified, pristine otherwise) or at
least accessing it (touched if accessed, untouched otherwise).

• For form fields with more than one validator (primarily, the stock code and
price), we further look at the errors property on the form control. This field
allows us to check what kind of error is causing the form field to be invalid, and
thus show the respective error message.

Instead of repeating stockForm.get('price') every time, you
might want to create simple getters in the component class like so:

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css']
})
export class CreateStockComponent {
/* Skipping irrelevant code here */

 get name() { return this.stockForm.get('name'); }

 get price() { return this.stockForm.get('price'); }

 get code() { return this.stockForm.get('code'); }
}

Now in your HTML, you can simply refer to name.invalid instead
of stockForm.get('name').invalid and so on.

In this way, we can interact with the state of the form controls and provide the correct
user experience to the users of our web application.

The finished example is available in the chapter7/control-state-validity folder in the
GitHub repository.

Form and Data Model
Now we will start digging into accessing and working with the data driving the form,
and the interaction between the form and the data model in our component. We sim‐
plified this so far in the preceding examples, by simply accessing the value from the

Form Data | 135

FormGroup or the FormControl. This is also what we log in both the template using
the json pipe, as well as in the component when we click the Submit button.

Let’s use an example to demonstrate how we work with the form and data model, and
how the two interact. First, let’s change our template slightly from the previous exam‐
ple (in case you want the completed code, you can copy it from the chapter7/control-
state-validity folder) to provide for a few more actions.

We will edit the template for the CreateStockComponent by changing src/app/stock/
create-stock/create-stock.component.html as follows:

<h2>Create Stock Form</h2>

<div class="form-group">
 <form [formGroup]="stockForm" (ngSubmit)="onSubmit()">

 <!-- Repeated code from before, omitted for brevity -->

 <button type="submit">Submit</button>
 <button type="button"
 (click)="resetForm()">
 Reset
 </button>
 <button type="button"
 (click)="loadStockFromServer()">
 Simulate Stock Load from Server
 </button>
 <button type="button"
 (click)="patchStockForm()">
 Patch Stock Form
 </button>
 </form>
</div>

<p>Form Control value: {{ stockForm.value | json }}</p>
<p>Form Control status: {{ stockForm.status | json }}</p>

Most of the template has not changed, but we have added three new buttons at the
end of the form. All three of them call out to a method in the component class, which
we will see in just a bit. But the three buttons fundamentally perform the following
two actions:

1. Reset the form to its original state
2. Simulate loading a stock from the server

And to perform the latter, we show two methods by which we can accomplish that
with our reactive form.

136 | Chapter 7: Working with Reactive Forms

Watch out in case you forget the type on the button element.
Depending on the browser, it can take various defaults. For exam‐
ple, Chrome on Mac will assume the type as submit if omitted,
causing a form submit even while triggering its event handler.

Now, let’s move to the CreateStockComponent class, which is where most of the activ‐
ity and changes happen. We will edit the src/app/stock/create-stock/create-
stock.component.ts file as follows:

/** NO CHANGE IN IMPORTS **/

let counter = 1;

/** NO CHANGE IN COMPONENT DECORATOR **/
export class CreateStockComponent {

 private stock: Stock;
 public stockForm: FormGroup;
 constructor(private fb: FormBuilder) {
 this.createForm();
 this.stock = new Stock('Test ' + counter++, 'TST', 20, 10);
 }

 createForm() {
 this.stockForm = this.fb.group({
 name: [null, Validators.required],
 code: [null, [Validators.required, Validators.minLength(2)]],
 price: [0, [Validators.required, Validators.min(0)]]
 });
 }

 loadStockFromServer() {
 this.stock = new Stock('Test ' + counter++, 'TST', 20, 10);
 let stockFormModel = Object.assign({}, this.stock);
 delete stockFormModel.previousPrice;
 delete stockFormModel.favorite;
 this.stockForm.setValue(stockFormModel);
 }

 patchStockForm() {
 this.stock = new Stock(`Test ${counter++}`, 'TST', 20, 10);
 this.stockForm.patchValue(this.stock);
 }

 resetForm() {
 this.stockForm.reset();
 }

 onSubmit() {
 this.stock = Object.assign({}, this.stockForm.value);

Form Data | 137

 console.log('Saving stock', this.stock);
 }
}

We have introduced a stock model object, in addition to the form model

Instantiating our stock model with some default value

Setting the entire form model with our stock data model values

Patching the form model with whatever fields are available

Resetting the form to its initial state

While it seems like we have added a lot of code, it is actually not that much. Let’s walk
through the component step by step to understand what has changed and what it
does:

1. You can ignore the counter; it is there simply to make sure that something (the
name) changes every time we click a button. It is not tied into any of the Angular
functionality otherwise.

2. We create a stock model object, which is a pure data model object. This is not
tied to the Angular form models or anything we have been dealing with so far. It
parallels the form model, but has a few extra fields that we don’t ask for in the
form. We instantiate this with a default value in the constructor (but it is not used
or tied to the template until this point).

3. We leave the createForm method untouched.
4. We create a new method loadStockFromServer, to simulate us fetching the stock

details from the server. While it is synchronous (unlike a real HTTP server call),
it shows us how to take a value and push it to the UI’s form model.

5. We use the setValue method on the stockForm FormGroup instance. This
method takes a JSON model object that matches the form model exactly. That
means for the setValue to work in this case, it needs an object with a name, code,
and price key. It should not have more or fewer keys than this, as it would throw
an error in this case. Based on the object, the form’s model object values would
get updated and these values would be visible in the form in the UI. This is also
the reason why we delete all other keys from the model object before calling set
Value.

6. Thus, triggering the loadStockFromServer method would end up updating the
form with the name, code, and price from the newly created stock instance.

7. The second method, patchStockForm, uses another method on the stockForm
FormGroup instance called patchValue. This is a more forgiving method that

138 | Chapter 7: Working with Reactive Forms

takes the fields it has available, and updates the form with them. It will ignore
extra fields even if it has fewer fields.

8. Triggering the patchStockForm instance would also have the same effect as trig‐
gering the previous button. What is more interesting (and left as an exercise to
the reader) is to delete the code from the stock object and try patching. In the
case of setValue, it will fail and throw an exception, while patchValue would
happily set the other fields (name, price) and leave the code untouched in the
form.

9. The final method is the resetForm, which simply resets the form to its initial
state.

One final thing to note is that we have changed the onSubmit method slightly as well.
While in this case our form model mirrors the data model, it is good practice to not
directly assign the form model to our data model, but rather make a copy of it. In this
case, since it is a simple object, a simple Object.assign or the spread operator works,
but for slightly more complicated models, it might be necessary to do a deep copy.

The finished example is available in the chapter7/form-model folder in the GitHub
repository.

Another Advantage of Reactive Forms
Another slightly subtle advantage of using reactive forms over template-driven forms
is that it forces developers to have a separation between what the user sees and inter‐
acts with (what we call the form model), and the persisted data model that drives our
application. This is quite common in most applications, where the presented view is
different from what the underlying data model is. Reactive forms make that distinc‐
tion clear, while also keeping you cognizant of the data flow and giving you control
over when and what flows from UI to the component and vice versa.

FormArrays
For the purpose of demonstrating the last thing related to reactive forms, we are
going to extend our stock market example in a slightly tangential manner. Let’s sup‐
pose that for each stock, we wanted to capture and highlight the key people related to
the company, as well as their titles. A company may have none, one, or many such
people associated with it.

This will allow us to see how we can handle forms where we need to capture multiple
values as well as handle nested form elements cleanly. We will take the codebase from
the previous section and modify it to support the following:

FormArrays | 139

1. Add a new model to represent one or many notable persons under a stock
2. Add a button in the UI to add a new notable person for a stock
3. Add a button to remove an added notable person from the stock
4. Support basic validation on each notable person added

Let’s walk through, step by step, how to accomplish this. In case you are not coding
along with the examples, you can copy the codebase from chapter7/form-model and
work from there.

We will first update the model to understand this new concept of a person. Ideally, we
would do this in a model file of its own, but here, we took a shortcut for readability
and making it easier to understand. We added our model to the src/app/model/stock.ts
file as follows:

export class Stock {
 favorite = false;
 notablePeople: Person[];

 constructor(public name: string,
 public code: string,
 public price: number,
 public previousPrice: number) {
 this.notablePeople = [];
 }

 isPositiveChange(): boolean {
 return this.price >= this.previousPrice;
 }
}

export class Person {
 name: string;
 title: string;
}

We added a new class Person with a name and a title, and then added it as a child to
the Stock class, with the name notablePeople. In the constructor for Stock class, we
initialized it to an empty array.

Now we move over to our CreateStockComponent class. First, let’s walk through the
changes to the component class, which is located in src/app/stock/create-stock/create-
stock.component.ts:

/**
Omitted for brevity, no change in imports
*/
export class CreateStockComponent {

 private stock: Stock;

140 | Chapter 7: Working with Reactive Forms

 public stockForm: FormGroup;
 constructor(private fb: FormBuilder) {
 this.createForm();
 }

 createForm() {
 this.stockForm = this.fb.group({
 name: [null, Validators.required],
 code: [null, [Validators.required, Validators.minLength(2)]],
 price: [0, [Validators.required, Validators.min(0)]],
 notablePeople: this.fb.array([])
 });
 }

 get notablePeople(): FormArray {
 return this.stockForm.get('notablePeople') as FormArray;
 }

 addNotablePerson() {
 this.notablePeople.push(this.fb.group({
 name: ['', Validators.required],
 title: ['', Validators.required]
 }))
 }

 removeNotablePerson(index: number) {
 this.notablePeople.removeAt(index);
 }

 resetForm() {
 this.stockForm.reset();
 }

 onSubmit() {
 this.stock = Object.assign({}, this.stockForm.value);
 console.log('Saving stock', this.stock);
 }
}

Initialize notablePeople as a FormArray instance

Getter to make it easier to access the underlying FormArray from the template

Add a new FormGroup instance to the FormArray

Remove a particular FormGroup instance from the FormArray

There are a few notable things in the code for the component class. Primarily, we
have removed all things related to the model, including loading and patching the
stock model object from the class. Instead, we have added:

FormArrays | 141

• notablePeople to the main FormGroup. Note that notablePeople is a FormArray
instance with an initial value that is empty. In case we have to populate it with
existing values, we would pass it to the constructor.

• We have created a simple getter for notablePeople, which goes deep into the
stockForm FormGroup instance and returns the notablePeople FormArray

instance. This is more for the template to prevent us from writing this.stock
Form.get('notablePeople') each time.

• Since we can have zero to many notable people per stock, we need a method to
allow us to add as many notable people as we want. This is what the addNotable
Person() method does. Note that each instance of notable person in the actual
form is represented by a FormGroup. So each time we want to add a new notable
person, we add a FormGroup instance with a required name and title.

• Similarly, we want to be able to remove any notable person that we have added,
which is what the removeNotablePerson() method does. It takes an index and
just removes that particular index from the FormArray instance.

Next, we will add some simple CSS that will allow us to separate out each individual
person by adding the following to src/app/stock/create-stock/create-stock.component
.css:

.notable-people {
 border: 1px solid black;
 padding: 10px;
 margin: 5px;
}

Finally, let’s now look at how the template changes to hook all of this up. We will
modify src/app/stock/create-stock/create-stock.component.html as follows:

<h2>Create Stock Form</h2>

<div class="form-group">
 <form [formGroup]="stockForm" (ngSubmit)="onSubmit()">
 <!-- No change until the end of price form element -->
 <!-- Omitted for brevity -->
 <div formArrayName="notablePeople">
 <div *ngFor="let person of notablePeople.controls; let i = index"
 [formGroupName]="i"
 class="notable-people">
 <div>
 Person {{i + 1}}
 </div>
 <div>
 <input type="text"
 placeholder="Person Name"
 formControlName="name">
 </div>

142 | Chapter 7: Working with Reactive Forms

 <div>
 <input type="text"
 placeholder="Person Title"
 formControlName="title">
 </div>
 <button type="button"
 (click)="removeNotablePerson(i)">
 Remove Person
 </button>
 </div>
 </div>
 <button type="button"
 (click)="addNotablePerson()">
 Add Notable Person
 </button>
 <button type="submit">Submit</button>
 <button type="button"
 (click)="resetForm()">
 Reset
 </button>
 </form>
</div>

<p>Form Control value: {{ stockForm.value | json }}</p>
<p>Form Control status: {{ stockForm.status | json }}</p>
<p>Stock Value: {{stock | json}}</p>

There are a few things to note on how we hooked together the FormArray instance we
created in our component to the template for the component:

• Instead of using formControlName, we use formGroupName on the enclosing div
element. This is the element that will contain zero to many forms, one for each
notable person.

• We then have a div element that is repeated once for each entry in the FormArray
instance, which we access through notablePeople.controls. The notable
People accesses the getter that we created in the component.

• We also expose the current index of the *ngFor via the variable i.
• We then connect the FormGroup that is each element in the FormArray via the
formGroupName binding, binding it to each individual index in the array.

• This allows us to then use formControlName individually for the name and title
like we have done so far. This ensures that the name and title are bound to that
particular FormGroup instance denoted by the index in the FormArray.

• Finally, we have the Remove Person button within each *ngFor instance, which
calls the removeNotablePerson() method, and a global Add Person button,
which calls the addNotablePerson() method.

FormArrays | 143

When you run this, you should now see a new button, Add Notable Person. Clicking
this should show new form elements to enter a person’s details. You can click this
multiple times to add more people, and you can click Remove on any individual per‐
son to remove them. Your working application should look something like
Figure 7-3.

Figure 7-3. Angular form using FormArray

Notice that the form value (printed as JSON) also holds all the person data that you
enter. Thus, when the form is submitted, you can capture this data and transform it to
the necessary data model before transmitting it.

144 | Chapter 7: Working with Reactive Forms

The finished example is available in the chapter7/form-arrays folder in the GitHub
repository.

Conclusion
In this chapter, we explored how to create reactive forms as an alternative to using
template-driven forms. We reviewed the building blocks of these forms and saw how
to use elements like FormControl, FormGroup, and even FormArray to build complex
user experiences. We also briefly touched upon the major differences between
template-driven forms and reactive forms, and how reactive forms facilitate and
highlight the difference between having a form model (or the presentation model),
which is different from our underlying data model.

In the next chapter, we will start exploring Angular services, what they are, and when
and how to create them. We will also touch upon Angular’s dependency injection
framework and how to deal with asynchronous behavior using observables.

Exercise
Take the finished exercise from Chapter 5 (available in chapter5/exercise/ecommerce).
We will repeat the same exercise that we accomplished using template-driven forms,
by performing the following:

1. Create a new component that allows us to add new products.
2. Create a form that takes in the product name, price, image URL, and whether it is

on sale or not. Create proper FormGroup to encapsulate this form. Use Form
Builder ideally.

3. Make all the fields except the On Sale checkbox required. Set the minimum valid
price as 1.

4. Add a basic Regex pattern validation for the image URL.
5. Display relevant error messages, but only after the user either modifies a field or

after the first submit.
6. Copy over the form and print it to the console after successful submission.

All of this can be accomplished using concepts covered in this chapter. You can check
out the finished solution in chapter7/exercise/ecommerce.

Conclusion | 145

CHAPTER 8

Angular Services

In the previous two chapters, we worked on creating form-based Angular applica‐
tions. To this extent, we approached it in two ways: the traditional template-driven
approach and then the reactive form-based approach. With both, we looked at the
building blocks and then built live working forms with validation and proper messag‐
ing.

In this chapter, we will move beyond the UI for a bit, and start exploring Angular
services, which are the workhorses of any application. We will take a step back,
understand what Angular services are, and how to create one. Then we will dig into
the Angular dependency injection system and understand how to use and leverage it,
before going off and building our own Angular services.

What Are Angular Services?
We have mostly worked with Angular components so far. Components, to quickly
recap, are responsible for deciding what data to display and how to render and dis‐
play it in the UI. We bind our data from the components to our UI and bind our
events from the UI to methods in the components to allow and handle user interac‐
tions. That is, components in Angular are our presentation layer, and should be
involved in and focus on the presentation aspects of data.

But if components are our presentation layer, it begs the question of what should be
responsible for the actual data fetching and common business logic in an Angular
application. This is where Angular services come in. Angular services are that layer
that is common across your application, that can be reused across various compo‐
nents. Generally, you would create and use Angular services when:

• You need to retrieve data from or send data to your server. This may or may not
involve any processing of the data while it is being transferred.

147

• You need to encapsulate application logic that is not specific to any one compo‐
nent, or logic that can be reused across components.

• You need to share data across components, especially across components that
may or may not know about each other. Services by default are singletons across
your application, which allows you to store state and access them across various
components.

Another simple way to think about Angular services is that it is the layer to abstract
the “how” away from the component, so that the component can just focus on the
“what,” and let the service decide the how.

Creating Our Own Angular Service
Instead of talking in abstract, let’s dig into some actual code so that we can more fully
understand the concept of services. What we will do is build on the example we have
worked on so far, and extend it using Angular services. We will try to accomplish the
following things in our stock market application:

• Fetch the list of stocks to show from a service, instead of hardcoding it in the
component.

• When we create a stock, we will send it to the service.
• When we create a stock, we want it to show up in our list of stocks.

To do this, if we want to continue using components, we would have to come up with
a way for our CreateStockComponent to communicate with our StockItemCompo
nent, and keep the data in sync between the two. This would mean our components
would have to know each other, and where in the hierarchy they and all other compo‐
nents fit.

First, we will add a StockListComponent that fetches a list of stocks, and displays
them using the StockItemComponent. This component will use the StockService that
we will build to act as a layer behind both the components. It will be responsible for
figuring out how and where to fetch the list of stocks from, and how to create a stock.
In this chapter, we will continue with it being a list on the client, but we will see how
to build it in a way that each component does not need to worry about the details.
Later, when we learn how to work with an HTTP server, we will see how easy it is to
switch once we have a service layer in between.

Digging into the Example
For this example, you can use the code from chapter6/template-driven/control-validity
as the base to code from. We will modify the example to achieve what we have just
outlined.

148 | Chapter 8: Angular Services

First, let’s tackle the easy stuff. The StockItemComponent class does not need any
change, but we will change the template for it slightly so that it displays both an Add
to Favorite and a Remove from Favorite button depending on the state of the stock.
We can modify src/app/stock/stock-item/stock-item.component.html as follows:

<div class="stock-container">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="exchange">{{stock.exchange}}</div>
 <div class="price"
 [class.positive]="stock.isPositiveChange()"
 [class.negative]="!stock.isPositiveChange()">$ {{stock.price}}</div>
 <button (click)="onToggleFavorite($event)"
 *ngIf="!stock.favorite">Add to Favorite</button>
 <button (click)="onToggleFavorite($event)"
 *ngIf="stock.favorite">Remove from Favorite</button>
</div>

We have just added a div to show the exchange of the stock, and a button to show
Remove from Favorite if the stock is already favorited.

Next, let’s create the skeleton for the StockListComponent before we try creating and
integrating our StockService. We can generate the skeleton by executing:

ng g component stock/stock-list

which we can then modify to our purpose. We will modify the src/app/stock/stock-list/
stock-list.component.ts file as follows:

import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';

@Component({
 selector: 'app-stock-list',
 templateUrl: './stock-list.component.html',
 styleUrls: ['./stock-list.component.css']
})
export class StockListComponent implements OnInit {

 public stocks: Stock[];
 constructor() { }

 ngOnInit() {
 this.stocks = [
 new Stock('Test Stock Company', 'TSC', 85, 80, 'NASDAQ'),
 new Stock('Second Stock Company', 'SSC', 10, 20, 'NSE'),
 new Stock('Last Stock Company', 'LSC', 876, 765, 'NYSE')
];
 }

 onToggleFavorite(stock: Stock) {
 console.log('Favorite for stock ', stock, ' was triggered');
 stock.favorite = !stock.favorite;

Creating Our Own Angular Service | 149

 }
}

There are a few things of note here, but nothing fundamentally new or path-breaking
so far:

• We have declared an array of stocks at the class level, and initialized it with some
default values in the ngOnInit block.

• We have a function onToggleFavorite that logs the stock and toggles its favorite
state.

Let’s now look at its corresponding template, in src/app/stock/stock-list/stock-
list.component.html:

<app-stock-item *ngFor="let stock of stocks" [stock]="stock"
 (toggleFavorite)="onToggleFavorite($event)">
</app-stock-item>

In the template, we simply loop over all the stocks and display an instance of the
StockItemComponent for each one. We ask the StockItemComponent to trigger the
onToggleFavorite whenever someone clicks the Add to Favorite or Remove from
Favorite button within the stock item.

Since we generated the component using the Angular CLI, we can
avoid the step of having to register the newly created component in
the Angular module. Otherwise, there would be one more step here
of adding the newly created component in the app.module.ts file in
the declarations section.

The AppComponent can now be simplified further. The component class in src/app/
app.component.ts can be modified to:

import { Component, OnInit } from '@angular/core';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent implements OnInit {
 title = 'Stock Market App';

 ngOnInit(): void {
 }
}

The corresponding template in src/app/app.component.html can be modified to:

150 | Chapter 8: Angular Services

<h1>
 {{title}}
</h1>
<app-stock-list></app-stock-list>
<app-create-stock></app-create-stock>

Now finally, let’s look at what it takes to build a very simple and trivial StockService.
We can again generate the base skeleton for the service using the Angular CLI as
follows:

ng g service services/stock

This will generate two files, a skeleton stock-service.ts and a dummy test for it in stock-
service.spec.ts. We will ignore the latter for now but will return to it in Chapter 10, as
part of our discussion of unit testing of services. The generated skeleton in src/app/
service/stock.service.ts should look something like this:

import { Injectable } from '@angular/core';

@Injectable()
export class StockService {

 constructor() { }

}

The skeleton is literally just an empty shell class, with one decorator of note, which is
Injectable. The Injectable decorator has no current value for us, but is a recom‐
mended decorator whenever you are working with services, as it is a hint to the
Angular dependency injection system that the service you are working on might have
other dependencies. With the Injectable decorator, Angular will take care of inject‐
ing them into our service.

We will leave the decorator untouched, keeping with the best practices. And pretty
soon, as early as the next chapter, we will need it anyway.

Now, let’s get to the crux of the work, which is the data that the StockService is to
provide. This is where services really shine. Components generally will defer and ask
a service for data (or a section of the data). It is up to the service to decide how and
where to fetch the data from, whether it is from a web service via HTTP calls, a local
storage or cache, or even return mock data, as we will in just a bit. Later, if we want to
change the source, we can do it in one place without touching any of the components,
as long as our API signature remains the same.

Let’s define our StockService to continue returning mock data. We will edit the
src/app/services/stock.service.ts file as follows:

Creating Our Own Angular Service | 151

import { Injectable } from '@angular/core';
import { Stock } from 'app/model/stock';

@Injectable()
export class StockService {

 private stocks: Stock[];
 constructor() {
 this.stocks = [
 new Stock('Test Stock Company', 'TSC', 85, 80, 'NASDAQ'),
 new Stock('Second Stock Company', 'SSC', 10, 20, 'NSE'),
 new Stock('Last Stock Company', 'LSC', 876, 765, 'NYSE')
];
 }

 getStocks() : Stock[] {
 return this.stocks;
 }

 createStock(stock: Stock) {
 let foundStock = this.stocks.find(each => each.code === stock.code);
 if (foundStock) {
 return false;
 }
 this.stocks.push(stock);
 return true;
 }

 toggleFavorite(stock: Stock) {
 let foundStock = this.stocks.find(each => each.code === stock.code);
 foundStock.favorite = !foundStock.favorite;
 }
}

While it seems like we have added a lot of code, if we dig into it, there is nothing that
is Angular specific in the code we added. Most of the added code is business func‐
tionality that we have defined and enforced via the StockService. Let’s quickly walk
through the major functionality we have introduced in the service:

• We have moved our initialization of the mock list of stocks to the constructor of
the StockService, initializing it with some dummy values to provide an initial
state for our UI when it is rendered.

• We have defined a very simple getStocks() method that simply returns the cur‐
rent list of stocks.

• The createStock method does little more than simply adding the stock to our
list of stocks. It first checks if the stock already exists (using the code on the stock
to check for uniqueness), exiting early if it does. If not found, it adds the passed-
in stock to our list of stocks.

152 | Chapter 8: Angular Services

• Finally, we have a toggleFavorite, which simply finds the passed-in stock in our
array and then toggles the state of the favorite key on it.

Now that we have defined our service, let’s see what it takes to be able to use it in our
components. Before we can start injecting it into our components, we need to define
how this service will be provided and at what level. We can define this at the Stock
ListComponent level, the AppComponent level, or the AppModule level. We will see
what the difference is in a bit, but in the meantime, let’s define it at the module level.

Let’s edit the src/app/app.module.ts file to define the provider as follows:

/** Imports same as before, skipped for brevity **/
import { StockService } from 'app/services/stock.service';

@NgModule({
 declarations: [
 AppComponent,
 StockItemComponent,
 CreateStockComponent,
 StockListComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 HttpModule
],
 providers: [
 StockService
],
 bootstrap: [AppComponent]
})
export class AppModule { }

Registering the provider for StockService

We have just made a small addition to the NgModule decorator on the AppModule. We
have registered an array of providers, in which the StockService is the one and only
service right now. The providers array in the Angular module tells Angular to create
a singleton instance of the service, and make it available for any class or component
that asks for it. When we register it at the module level, it means that any component
within the module that asks for the service will get the exact same instance injected
into it.

Creating Our Own Angular Service | 153

We could have skipped the step of manually adding the service to
the module by asking the Angular CLI to also perform this. The
Angular CLI doesn’t know at which level the service is supposed to
operate, so it skips the service registration. If we wanted it to regis‐
ter it at the app module level, we could have executed it as:

ng g service services/stock --module=app

This would have both generated the service and also registered the
provider in the AppModule.

At this point, we are ready to start using the service, so first we will use it in the newly
created StockListComponent. Let’s change the src/app/stock/stock-list/stock-
list.component.ts file as follows:

import { Component, OnInit } from '@angular/core';
import { StockService } from 'app/services/stock.service';
import { Stock } from 'app/model/stock';

@Component({
 selector: 'app-stock-list',
 templateUrl: './stock-list.component.html',
 styleUrls: ['./stock-list.component.css']
})
export class StockListComponent implements OnInit {

 public stocks: Stock[];
 constructor(private stockService: StockService) { }

 ngOnInit() {
 this.stocks = this.stockService.getStocks();
 }

 onToggleFavorite(stock: Stock) {
 console.log('Favorite for stock ', stock, ' was triggered');
 this.stockService.toggleFavorite(stock);
 }
}

Inject the StockService into the component

Use the StockService to get the list of stocks

Use the StockService to toggle the favorite status on a stock

This is our first instance of injecting and using a service, so let’s walk through it step
by step:

1. We can inject any service we want into our component simply by listing it in our
constructor. In this case, we have declared a private instance of StockService

154 | Chapter 8: Angular Services

with the name stockService. The name itself doesn’t matter; Angular uses the
type definition to figure out what service to inject. For all we care, we could even
call the instance of the service xyz (not that you should!), and it would still get
injected correctly.

2. We simply call the methods we want on our service through our instance (like
stockService.getStocks() or stockService.toggleFavorite()) at the correct
time. We initialize our list of stocks, and pass through the toggle call to the ser‐
vice. Note that we need to access the service through an instance variable and
cannot access it directly (that is, we need to call this.stockService, and cannot
directly use stockService).

While we don’t need to make any changes to the corresponding template, here is what
the template for the StockListComponent looks like in case you don’t remember:

<app-stock-item *ngFor="let stock of stocks" [stock]="stock"
 (toggleFavorite)="onToggleFavorite($event)">
</app-stock-item>

We just used one of TypeScript’s features in the preceding example
to both declare a parameter as well as a property simultaneously.
By adding the private or public keyword in front of a constructor
argument, we can make it a member property of the class with the
same name.

With this, we need to make no more changes in our template. If we run the applica‐
tion at this point, we should see it running with a list of three stocks displayed at the
top.

Let’s continue with the minor changes to the CreateStockComponent to finish the ser‐
vice integration. First, we’ll add a simple message to the top of the CreateStockCompo
nent template, to show a message to the user if the stock was created successfully or if
there was any error in creation. We will edit src/app/stock/create-stock/create-
stock.component.html as follows:

<h2>Create Stock Form</h2>

<div *ngIf="message">{{message}}</div>
<div class="form-group">
 <!-- Rest of the form omitted for brevity -->
 <!-- No change from the base code -->
</div>

<h4>Stock Name is {{stock | json}}</h4>

Display a message if it exists

Creating Our Own Angular Service | 155

The highlighted line is the only change in this file, which is simply adding a div that
shows the message class variable if it has a value.

Now, we can change the component in src/app/stock/create-stock/create-
stock.component.ts to integrate with the StockService:

import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';
import { StockService } from 'app/services/stock.service';

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css']
})
export class CreateStockComponent {

 public stock: Stock;
 public confirmed = false;
 public message = null;
 public exchanges = ['NYSE', 'NASDAQ', 'OTHER'];
 constructor(private stockService: StockService) {
 this.stock = new Stock('', '', 0, 0, 'NASDAQ');
 }

 setStockPrice(price) {
 this.stock.price = price;
 this.stock.previousPrice = price;
 }

 createStock(stockForm) {
 if (stockForm.valid) {
 let created = this.stockService.createStock(this.stock);
 if (created) {
 this.message = 'Successfully created stock with stock code: '
 + this.stock.code;
 this.stock = new Stock('', '', 0, 0, 'NASDAQ');
 } else {
 this.message = 'Stock with stock code: ' + this.stock.code
 + ' already exists';
 }
 } else {
 console.error('Stock form is in an invalid state');
 }
 }
}

Add a message field to display success and error messages

Inject StockService into the component

156 | Chapter 8: Angular Services

Call stockService.createStock when the form is submitted

Deal with success and error scenarios while creating the stock

The CreateStockComponent has been changed slightly to integrate with the StockSer
vice as follows:

• We created a message field to show useful messages to the user on successful cre‐
ation of stock as well as errors while creating it.

• We injected the StockService and then called it when the form is submitted by
the user.

• We used the return value of the StockService.createStock() call to decide
what message to show to the user in the UI.

While we are at it, we can remove some of the CSS that makes the form hard to read
from src/app/stock/create-stock/create-stock.component.css, and just empty the file.

Now when we run this application, it should still look the same as before. The differ‐
ence is that when you fill the create stock form and click Create, it should clear the
form, and you should see the stock you just entered like in Figure 8-1.

Now of course, one of the first things you might ask is “How did adding the stock to
the list of stocks in the service make it appear in the StockListComponent magically?”
It is a very valid question, and the answer to that is JavaScript! We return the refer‐
ence to the stock array in the getStocks() method, which is what the StockListCom
ponent assigns to its member variable. Thus, any addition in the service automatically
makes a change in the component that is holding on to the reference of the array.

This is still hacky in some sense, as we wouldn’t want to rely on having the same ref‐
erence to update the values, but we will fix this shortly. Also, because we are using
mock data that is instantiated within the service when it is initialized, you will lose
any new stocks you have created when you refresh the page. This is because the ser‐
vice is reloaded and reinitialized when we refresh the page, as we don’t have a persis‐
tent store.

So just to recap, this is what we accomplished:

• We created a StockListComponent to display a list of stocks.
• We created a StockService that acts as the layer behind all the components, pro‐

viding APIs to fetch a list of stocks as well as to create new stocks. Currently, it is
working off of mock data.

• We made slight updates to all the components to integrate with this service.

Creating Our Own Angular Service | 157

Figure 8-1. Angular service sharing data between components

We have dealt with a very basic and simple Angular service to show what an Angular
service is, how it is created, and how it is hooked up and used within the context of
an Angular application.

The completed version of this code is available in chapter8/simple-service in the
GitHub repository.

An Introduction to Dependency Injection
Before we dive deeper into services and other related topics, let’s take a step back to
understand dependency injection, especially in context to Angular.

158 | Chapter 8: Angular Services

Dependency injection started in static languages that are more common in server-
side programming. In simple terms, dependency injection is the idea that any class or
function should ask for its dependencies, rather than instantiating it themselves.
Something else (usually called an injector) would be responsible for figuring out what
is needed and how to instantiate it.

Dependency injection has huge benefits when we practice it in our applications, as it
allows us to create modular, reusable pieces while allowing us to test components and
modules easily. Let’s take a simple example to demonstrate how dependency injection
can make your code more modular, easier to change, and testable:

class MyDummyService {

 getMyData() {
 let httpService = new HttpService();
 return httpService.get('my/api');
 }
}

class MyDIService {

 constructor(private httpService: HttpService) {}

 getMyData() {
 return this.httpService.get('my/api');
 }
}

In this example, there is actually not much to differentiate between MyDummyService
and MyDIService, except for the fact that one instantiates an HttpService before
using it, while the other asks for an instance of it in the constructor. But this small
change allows for many things, including:

• It makes it more obvious what is necessary for each service to actually execute,
rather than finding out at the time of execution.

• In our example, instantiating the HttpService was trivial, but it might not be in
certain cases. In such a case, every user of HttpService will need to know exactly
how to create it and configure it, before using it.

• In our test, we might not want to make actual HTTP calls. There, we can replace
and instantiate MyDIService with a fake HttpService that does not make real
calls, while there is nothing we can do for MyDummyService.

There are many more advantages of dependency injection in general, and the official
Angular documentation has a great article that covers this in depth if you want to
read further on this.

Creating Our Own Angular Service | 159

https://angular.io/guide/dependency-injection-pattern
https://angular.io/guide/dependency-injection-pattern

Angular and Dependency Injection
In the previous section, we covered dependency injection in general. In this section,
we will dig deeper into how Angular has set up its dependency injection system, and
the major things developers should be aware of. We will not go into each and every
detail in this section, but cover the general aspects we expect most developers to
encounter in their day-to-day work.

We have seen Angular’s dependency injection at work already, with the very first ser‐
vice that we created. For very simple asks, it is enough to think about Angular’s
dependency injection service as a very simple key-value store, with the ability of any
component or class to ask for a key when they are getting initialized. In reality, it is
much more complex than a simple key-value store. We will see how to leverage this
dependency injection system in our unit tests in Chapter 10.

Every service that we create needs to be registered as a provider with an injector.
Then any other class can ask for the service and the injector will be responsible for
providing it. However, as briefly mentioned in the previous section, Angular doesn’t
have just one injector—instead, it has a whole hierarchy of injectors.

At its root, at the application level, Angular has the root module and the root injector.
When we created our service, and registered it in the providers section of the NgMod
ule, the service was in fact registered with the root injector. This would mean that the
service is a singleton for the entire application, and that any class or component in the
application can ask for the service and would be handed the very same instance of the
service.

Let’s now understand Angular’s hierarchical dependency injection system by taking
our example and modifying it to make the dependency injection system apparent. We
can use the base code from the previous section in case you are not coding along,
which is available in chapter8/simple-service. We will continue from there.

Before we get into the code, let’s cover what exactly will we be trying to accomplish.
We will:

• Add a new service called MessageService. This will be used to display messages
at various points in the UI, and also as a mechanism to communicate across
services.

• Introduce and use the MessageService in both the CreateStockComponent as
well as the AppComponent.

First, let’s create the MessageService. This time, we will use the Angular CLI to create
it completely for us, including registering it with its provider in the AppModule. Just
execute:

ng g service services/message --module=app

160 | Chapter 8: Angular Services

Make sure you don’t miss the --module=app argument to the com‐
mand. In case you do, just open the app.module.ts file and manually
add the MessageService to the list of providers in the NgModule.

This will create a skeleton MessageService in the services folder, and register it with
the providers section of the AppModule. Let’s now update the src/app/services/
message.service.ts file as follows:

import { Injectable } from '@angular/core';

@Injectable()
export class MessageService {

 public message: string = null;

 constructor() { }
}

MessageService is nothing but a very simple container to hold a message string. It is
publicly available, so any class or component can simply reach out and access or
change it.

Now, let’s modify the AppComponent to use this service and display the current
message in the UI. Modify the src/app/app.component.ts file as follows:

import { Component, OnInit } from '@angular/core';
import { MessageService } from 'app/services/message.service';

@Component({
 selector: 'app-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent implements OnInit {
 title = 'app works!';

 constructor(public messageService: MessageService) {}

 ngOnInit(): void {
 this.messageService.message = 'Hello Message Service!';
 }
}

We simply injected our new MessageService into the AppComponent, and while ini‐
tializing set it to some default value. Notice that we made the default access for the
messageService public, so that we can use it from the template. Let’s now look at the
template in src/app/app.component.html:

Creating Our Own Angular Service | 161

<h1>
 {{title}}
</h1>
<h3>App level: {{messageService.message}}</h3>
<app-stock-list></app-stock-list>
<app-create-stock></app-create-stock>

We just added one line, which is an h3 element that shows the current value of the
message variable in the MessageService that is injected into our AppComponent.

Next, we’ll modify the CreateStockComponent to use the same service. Modify the
src/app/stock/create-stock/create-stock.component.ts file as follows:

import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';
import { StockService } from 'app/services/stock.service';
import { MessageService } from 'app/services/message.service';

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css'],
 providers: [MessageService]
})
export class CreateStockComponent {

 public stock: Stock;
 public confirmed = false;
 public exchanges = ['NYSE', 'NASDAQ', 'OTHER'];
 constructor(private stockService: StockService,
 public messageService: MessageService) {
 this.stock = new Stock('', '', 0, 0, 'NASDAQ');
 }

 setStockPrice(price) {
 this.stock.price = price;
 this.stock.previousPrice = price;
 }

 createStock(stockForm) {
 if (stockForm.valid) {
 let created = this.stockService.createStock(this.stock);
 if (created) {
 this.messageService.message =
 'Successfully created stock with stock code: ' +
 this.stock.code;
 this.stock = new Stock('', '', 0, 0, 'NASDAQ');
 } else {
 this.messageService.message = 'Stock with stock code: ' +
 this.stock.code + ' already exists';
 }
 } else {

162 | Chapter 8: Angular Services

 console.error('Stock form is in an invalid state');
 }
 }
}

Inject MessageService into the constructor

Use MessageService in both cases of creation

Most of the code remains unchanged from before. We just injected our new service
into the class, and then used it instead using console.log. We set the message
variable in the MessageService when the stock is created successfully or when there
is an error.

Finally, we will use the MessageService in the template of the component here as well
to display the same message. Let’s modify src/app/stock/create-stock/create-
stock.component.html as follows:

<h2>Create Stock Form</h2>

<div>{{messageService.message}}</div>
<div class="form-group">
 <form (ngSubmit)="createStock(stockForm)" #stockForm="ngForm">
 <div class="stock-name">
 <input type="text"
 placeholder="Stock Name"
 required
 name="stockName"
 #stockName="ngModel"
 [(ngModel)]="stock.name">
 </div>

<!-- Remaining code as before, omitting for brevity -->

We have omitted most of the file, as the only change we did was add line 3, where we
displayed the current value of messageService.message in the UI.

Now when we run this, we should see our application, but with two new lines. One is
the second line, which is part of our AppComponent, and one within the CreateStock
Component, both of which are displaying the initial value of the message in the UI. If
you now fill up the form and create a stock, you will notice that both the messages
change simultaneously. Hence, we are assured that there is only one instance of the
MessageService, which is being shared across both the components.

Now, let’s modify the CreateStockComponent slightly as follows:

import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';
import { StockService } from 'app/services/stock.service';
import { MessageService } from 'app/services/message.service';

Creating Our Own Angular Service | 163

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css'],
 providers: [MessageService]
})
export class CreateStockComponent {

 public stock: Stock;
 public confirmed = false;
 public exchanges = ['NYSE', 'NASDAQ', 'OTHER'];
 constructor(private stockService: StockService,
 public messageService: MessageService) {
 this.stock = new Stock('', '', 0, 0, 'NASDAQ');
 this.messageService.message = 'Component Level: Hello Message Service';

 }

 setStockPrice(price) {
 this.stock.price = price;
 this.stock.previousPrice = price;
 }

 createStock(stockForm) {
 /* Code as before, no change */
 /* Omitted for brevity */
 }
}

Adding providers declaration for MessageService

Adding an initial value to the MessageService in the component

We’ve made one addition to the @Component decorator for the CreateStockCompo
nent class. We have added a providers declaration, and provided the MessageSer
vice at the component level. We also added an initial value to the MessageService in
the constructor. We will not make any other changes. We will also leave the Message
Service declared in the providers section of the main module.

Before we talk about what happens as a result of this, it is worth executing the appli‐
cation and seeing it yourself. Execute and note the following:

1. See the message in the AppComponent, which is the default we had set.
2. See the message in the CreateStockComponent, which will be the value we set in

the component in the constructor "Component Level: Hello Message Ser
vice".

3. Now fill up the form and create a stock.

164 | Chapter 8: Angular Services

4. Note that the message is updated only in the CreateStockComponent, but the App
Component message does not change.

When you do all of this, you should see something like Figure 8-2.

Figure 8-2. Angular application with services defined at component level

This is Angular’s hierarchical dependency injection at play. As mentioned before,
Angular supports multiple dependency injectors within the same application. There
is the root injector at the root AppModule level, which is where most services you
create will be registered and made available. This makes the instance available across
your entire application, and this was happening initially.

Creating Our Own Angular Service | 165

Then, when we made the change to add the providers at the CreateStockComponent
level, we brought the injector at the component level into play. Angular will create a
chain of injectors all the way down, depending on the need and declarations. And all
child components will inherit that injector, which will take precedence over the root
injector. When we registered our MessageService provider at the CreateStockCompo
nent level, it created a child injector at that level, with its own instance of the Message
Service. What we injected into the CreateStockComponent is in fact this new
instance, which has nothing to do with the original root-level MessageService. So
we, in fact, have two separate instances of MessageService with nothing in common.

Just like an Angular application is a tree of components, there is a parallel tree of
injectors at play. For most components, these injectors might just be a reference or a
proxy to the parent injector. But they may not, as we have just seen.

Whenever a component asks for a dependency, Angular will check the closest injector
in the tree to see whether it can satisfy it. If it can (like in CreateStockComponent), it
will provide it. If not, it will check with the parent injector, all the way to the root
injector.

Now when will or can you use this? Usually, it won’t even matter and you will just
register all your services at the root level. But there might be cases when you want to
use this capability of the Angular injector, such as:

• You want to scope services to only certain components and modules, to ensure
that a change in the service doesn’t impact the entire application.

• You might want different instances of a service in different components. This
might be common where you might want to override things, or have different
services for different instances, and the like.

• You want to override a particular service with a more specific implementation for
a section of your application. Maybe you want a cached version of your service
for a certain section as opposed to the general pass-through implementation.

There is more detail in how we can instantiate a service and the various ways we can
provide them. You can read up on all the details and ways in the official Angular
docs.

The completed version of this code is available in chapter8/di-example in the GitHub
repository.

166 | Chapter 8: Angular Services

https://angular.io/guide/dependency-injection#providers
https://angular.io/guide/dependency-injection#providers

RxJS and Observables: Moving to Asynchronous
Operations
The last change we will make before we conclude this particular chapter on services is
to work with asynchronous code. The data that we returned from our service in our
example was hardcoded, mock data. We returned it as is, and displayed it immedi‐
ately. But in a real-world application, that would not be the case, as most of the times
we would be fetching the data from a server.

Handling responses and data from a server becomes slightly different from what we
have done. We might make a call to fetch the list of stocks from the server. And then
at some later point in time, after our server finishes processing the request, we would
be provided with a list of stocks. Thus, the stocks would not be available immediately
on demand, but at a later point in time, asynchronously.

In AngularJS, we used to handle these situations using promises. Promises were a
better way to handle asynchronous behavior than callbacks, which was the traditional
way, for multiple reasons. That said, there are a few drawbacks that Angular tries to
do away with, by switching to using observables.

Observables are a ReactiveX concept that allows us to deal with streams which emit
data. Any interested party can then be an observer on this stream, and perform oper‐
ations and transformations on the events emitted by the stream.

There are a few differences between observables and promises, primarily:

• Promises operate on a single asynchronous event, while observables allow us to
deal with a stream of zero or more asynchronous events.

• Unlike promises, observables can be canceled. That is, a promise’s success or
error handler will eventually be called, while we can cancel a subscription and
not process data if we don’t care about it.

• Observables allow us to compose and create a chain of transformations easily.
The operators it provides out of the box allow for some strong and powerful
compositions, and operations like retry and replay make handling some common
use cases trivial. All of this while being able to reuse our subscription code.

That said, promises are good for single event cases, and are still an option when you
work with Angular. An observable can be converted into a promise and then handled
in Angular. But it is recommended to use observables, as Angular provides a lot of
out-of-the-box support for RxJS and its extensions within its framework.

RxJS and Observables: Moving to Asynchronous Operations | 167

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Using_promises
http://reactivex.io/intro.html

Learning RxJS and Observables

We will touch upon the bare minimum of observables and RxJS
features in this book, but this book itself is not intended to be a way
to learn RxJS and reactive programming in general. There are
excellent tutorials and books available, starting with the official
documentation for ReactiveX.

Let’s now take our example and move it step by step to using observables and make it
ready for our future use cases. You can use the base codebase from chapter8/simple-
service if you have not been coding along.

First, we will modify our StockService to start returning an asynchronous observa‐
ble to get us ready for the future when we start integrating with servers. Then we will
modify our components to subscribe to these observables and deal with success and
error cases.

Let’s change the src/app/services/stock.service.ts file as follows:

import { Injectable } from '@angular/core';

import { Observable } from 'rxjs/Observable';
import { _throw as ObservableThrow } from 'rxjs/observable/throw';
import { of as ObservableOf } from 'rxjs/observable/of';
import { Stock } from 'app/model/stock';

@Injectable()
export class StockService {

 private stocks: Stock[];
 constructor() {
 this.stocks = [
 new Stock('Test Stock Company', 'TSC', 85, 80, 'NASDAQ'),
 new Stock('Second Stock Company', 'SSC', 10, 20, 'NSE'),
 new Stock('Last Stock Company', 'LSC', 876, 765, 'NYSE')
];
 }

 getStocks() : Observable<Stock[]> {
 return ObservableOf(this.stocks);
 }

 createStock(stock: Stock): Observable<any> {
 let foundStock = this.stocks.find(each => each.code === stock.code);
 if (foundStock) {
 return ObservableThrow({msg: 'Stock with code ' +
 stock.code + ' already exists'});
 }
 this.stocks.push(stock);
 return ObservableOf({msg: 'Stock with code ' + stock.code +
 ' successfully created'});;

168 | Chapter 8: Angular Services

http://reactivex.io/intro.html
http://reactivex.io/intro.html

 }

 toggleFavorite(stock: Stock): Observable<Stock> {
 let foundStock = this.stocks.find(each => each.code === stock.code);
 foundStock.favorite = !foundStock.favorite;
 return ObservableOf(foundStock);
 }
}

Importing Observable

Import core methods from the Observable API, like throw and of

Changing the return type of getStocks to an observable

Returning an observable for mock data

Throwing an exception to the observer

We completely overhauled the StockService, so let’s walk through the major changes
one by one so we understand what changed and more importantly, why:

• The first thing we do is import Observable from the RxJS library. Note that we
import operators and classes individually from the respective files, rather than
import the entire RxJS library.

• We then make sure to import and add the operators we are planning to use from
RxJS to ensure we have them available in our application. In this case, we are
simply planning to use the of and throw operators on the core Observable class.

• We then change the return type of each of the methods in the service to return an
observable instead of a synchronous value. This is to ensure a consistent API
interface to the user of the service. Once we make this change, we can change the
implementation underneath (say, changing from mock data to making a server
call) without having to change each and every component.

• For the time being, we convert our return value to an observable by using the
Observable.of operator. The of takes a value and returns an observable of that
type which is triggered only once.

• In the createStock method, we also change the functionality to throw an excep‐
tion on the observable if the stock already exists.

RxJS and Observables: Moving to Asynchronous Operations | 169

Instead of importing each class and operator from RxJS manually,
we also have the option to import the entire RxJS library and access
the classes and operators through it, like so:

import { Rx } from 'rxjs/Rx';

We would then be able to access Rx.Observable and so on. But this
comes with a downside, which is that Angular won’t be able to
optimize your build, as it would not be able to understand which
parts of RxJS are being used at the time of compilation. RxJS as a
library is large, and most applications would only end up using bits
and pieces of it.
Thus I would always recommend using individual imports as a
general practice.

Now let’s change the components to integrate with the new asynchronous APIs in the
service. First, we will change the StockListComponent, to read the list of stocks from
the observable instead of reading the array directly. We will change the src/app/stock/
stock-list/stock-list.component.ts file as follows:

/** Imports skipped for brevity **/
export class StockListComponent implements OnInit {

 public stocks: Stock[];
 constructor(private stockService: StockService) { }

 ngOnInit() {
 this.stockService.getStocks()
 .subscribe(stocks => {
 this.stocks = stocks;
 });
 }

 onToggleFavorite(stock: Stock) {
 this.stockService.toggleFavorite(stock);
 }
}

We have made one small change, which is to the ngOnInit block of the component.
Instead of directly assigning the return value of the stockService.getStocks() call
to the stocks array, we now instead subscribe to the observable that it returns. The
observable gets triggered with the array of stocks once, at which point we assign the
value to our local array. There is no change as such to the onToggleFavorite, though
we should also subscribe to the observable it returns for proper handling.

Let’s also change the CreateStockComponent and see how the src/app/stock/create-
stock/create-stock.component.ts file changes:

170 | Chapter 8: Angular Services

/** Imports skipped for brevity **/
export class CreateStockComponent {

 /** No changes, skipping for brevity **/

 createStock(stockForm) {
 if (stockForm.valid) {
 this.stockService.createStock(this.stock)
 .subscribe((result: any) => {
 this.message = result.msg;
 this.stock = new Stock('', '', 0, 0, 'NASDAQ');
 }, (err) => {
 this.message = err.msg;
 });
 } else {
 console.error('Stock form is in an invalid state');
 }
 }
}

Subscribing to the observable

Again, most of our changes are focused on one method, the createStock. Instead of
handling all the work immediately after triggering the stockService.create
Stock(), we now subscribe to the observable. In the previous case, we just handled
the success case, but the subscribe method allows us to take two functions as argu‐
ments. The first argument is called in the case of a successful call, while the second is
the error handler callback.

Both of our flows return an object with a msg key, so we handle it accordingly and
update the message with the value returned.

At this point, we can now run our application to see it working. When you run it, you
shouldn’t see any difference in the functionality, but all our stocks should be visible
and you should be able to add stocks.

Let’s alter our code one final time to make it simpler and easier to read. In a lot of
cases, we simply want to make a call to our server, and display the return value in our
UI. We don’t need to process the data, make any transformations, or anything else. In
those cases, Angular gives us a slight shortcut that we can use.

We’ll change the src/app/stock/stock-list/stock-list.component.ts file first:

/** Imports skipped for brevity **/
export class StockListComponent implements OnInit {

 public stocks$: Observable<Stock[]>;
 constructor(private stockService: StockService) { }

 ngOnInit() {

RxJS and Observables: Moving to Asynchronous Operations | 171

 this.stocks$ = this.stockService.getStocks();
 }

 onToggleFavorite(stock: Stock) {
 this.stockService.toggleFavorite(stock);
 }
}

Storing the observable as a member variable

Calling and directly storing the observable

We have made two changes to our StockListComponent class:

• Instead of having an array of stocks as a member variable, we now have an
Observable<Stock[]> as the member. That is, we are saving the observable that
the API returns directly, instead of its underlying return value.

• In ngOnInit, we simply save the observable returned by our stockService.get
Stocks() call.

Given this, how do we display our array of stocks in the template? How do we handle
this asynchronous behavior? Let’s look at what we can do in the template to take care
of this:

<app-stock-item *ngFor="let stock of stocks$ | async"
 [stock]="stock"
 (toggleFavorite)="onToggleFavorite($event)">
</app-stock-item>

We have made one tweak here, which is to use a Pipe in the ngFor expression. Angu‐
lar provides a pipe called async, which allows us to bind to Observable. Angular
would then be responsible for waiting for events to be emitted on the observable and
displaying the resultant value directly. It saves us that one step of having to manually
subscribe to the observable.

Again, this is useful in only a few situations where the data returned by an API call is
something we can directly display. But it does save a few lines of code, leaving it to the
framework to handle most of the boilerplate. Run your application to make sure that
this still works, and you should see the same application running without any issues.

The completed version of this code is available in chapter8/observables in the GitHub
repository.

172 | Chapter 8: Angular Services

Conclusion
In this chapter, we started understanding Angular services in more detail. We covered
what Angular services are and some common uses for them, primarily:

• Abstraction of the data-fetching aspects
• Encapsulation of shared application logic
• Sharing of data across components

We also discussed Angular’s dependency injection system and how its hierarchical
dependency injection works with an example. Finally, we looked at how Observable
works and how to integrate very simple observables into our application.

In the next chapter, we will dig into how to work with and make HTTP calls and deal
with their responses. We will also cover some common use cases that we have when
working with servers and how to build solutions for them.

Exercise
Take the finished exercise from Chapter 6 (available in chapter6/exercise/ecommerce).
Try to accomplish the following:

1. Create a common service backing the ProductListComponent and the CreatePro
ductComponent called ProductService.

2. Make the components simple and move any logic into the service. Register the
service correctly at the module level (either using the CLI or manually).

3. Start from the beginning with observables and make all the components deal
with asynchronous APIs.

4. Use the async pipe where possible instead of manually subscribing to the results.

All of this can be accomplished using concepts covered in this chapter. You can check
out the finished solution in chapter8/exercise/ecommerce.

Conclusion | 173

CHAPTER 9

Making HTTP Calls in Angular

In the previous chapter, we started our groundwork on Angular services. In particu‐
lar, we took a look at what Angular services are and when to use them. We then dealt
with creating Angular services and using them in our application, followed by a very
cursory glance at dealing with asynchronous behavior in Angular using observables.

In this chapter, we will build on that base and start using the built-in Angular mod‐
ules and services to make and parse HTTP calls to a server. We will use that to
explore common paradigms, the API options, and how to chain and really use the
power of observables in our application.

Introducing HttpClient
In this section, we will start using Angular’s HttpClient to make GET and POST calls
to a server. Through this, we will see how to set up our application so that we can
make the calls, walk through the process of actually making the calls and dealing with
the response, and then go into the API signature and all the various options that we
have to tweak it to our needs.

As for the server, we won’t be spending any time building it out, but rather using a
prebuilt server for this application. It is a Node.js server, and available in the reposi‐
tory in case you are interested in digging deeper into it, but it is not required to
understand this part of the book.

175

HttpClient Versus Http

If you happened upon some older tutorials and examples, you
might encounter a slightly different way of making HTTP calls, by
directly importing from @angular/http and then making calls.
This was the old way of working with HTTP in Angular, before
HttpClient was introduced in Angular version 4.3. In version 5 of
Angular, the old http service was deprecated in favor of
HttpClient, so just use the method described in this chapter in
your applications.

We will continue building on our application, and try to move it over to communi‐
cate with a real server instead of our mock data that it was working with so far. In
particular, in this section, we will switch over all three service calls (getting a list of
stocks, creating a stock, and toggling the favorite on a stock level) to server calls using
HTTP GET/POST. By the end of this section, we should not be operating with any
mock data on our client side.

Server Setup
As mentioned, the server we will be working with is already developed and available
in the repository in the chapter9/server folder. Before we start any web development,
let’s get our server up and running.

Checkout and browse to the chapter9/server folder in the GitHub repository. From
within the folder, execute the following commands in your terminal :

npm i
node index.js

This installs all the necessary dependencies for our Node.js server, and then starts the
server on port 3000. Keep this server running in the background; don’t kill it. This
will be what our application hits to fetch and save stocks.

Note that this is a very simplistic server with an in-memory data
store. Anything you create or save will be reset if you restart the
server.

Using HttpClientModule
In case you are not coding along, you can get the base code from the chapter8/observ‐
ables folder in the GitHub repository.

176 | Chapter 9: Making HTTP Calls in Angular

https://github.com/shyamseshadri/angular-up-and-running

Now let’s get to our web application, and see step by step how to convert our local
web application to talk to a server and fetch its data. While doing this, we will also see
how easy this switch is, since we are already using observables in our code.

The very first thing we will do is add a dependency on HttpClientModule in our App
Module. Let’s modify the src/app/app.module.ts file as follows:

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';
import { FormsModule } from '@angular/forms';
import { HttpClientModule } from '@angular/common/http';

import { AppComponent } from './app.component';
import { StockItemComponent } from './stock/stock-item/stock-item.component';
import { CreateStockComponent } from './stock/create-stock/create-stock.component';
import { StockListComponent }
 from './stock/stock-list/stock-list.component';
import { StockService } from 'app/services/stock.service';

@NgModule({
 declarations: [
 AppComponent,
 StockItemComponent,
 CreateStockComponent,
 StockListComponent
],
 imports: [
 BrowserModule,
 FormsModule,
 HttpClientModule
],
 providers: [
 StockService,
],
 bootstrap: [AppComponent]
})
export class AppModule { }

Import the HttpClientModule instead of HttpModule

Add HttpClientModule to the imports array

Making HTTP GET/POST Calls
Next, we will change the implementation of our StockService to actually make an
HTTP service call instead of just returning an observable of mock data. To do this, we
get the HttpClient service injected into the constructor (thanks, Angular depend‐
ency injection!), and then use it to make our calls. Let’s see how we can modify the
src/app/services/stock.service.ts file:

Introducing HttpClient | 177

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';

import { Observable } from 'rxjs/Observable';

import { Stock } from 'app/model/stock';

@Injectable()
export class StockService {

 constructor(private http: HttpClient) {}

 getStocks() : Observable<Stock[]> {
 return this.http.get<Stock[]>('/api/stock');
 }

 createStock(stock: Stock): Observable<any> {
 return this.http.post('/api/stock', stock);
 }

 toggleFavorite(stock: Stock): Observable<Stock> {
 return this.http.patch<Stock>('/api/stock/' + stock.code,
 {
 favorite: !stock.favorite
 });
 }
}

Our server exposes three APIs:

• GET on /api/stock to get a list of stocks
• POST on /api/stock with the new stock as a body to create a stock on the server
• PATCH on /api/stock/:code with the stock code in the URL and the new favorite

status in the body of the request, to change the state of favorite for the particular
stock.

Our StockService mirrors this API, with each of the three methods making the
respective call. The HttpClient APIs directly mirror the HTTP methods, as we can
call httpClient.get, httpClient.post, and httpClient.patch directly. Each of
them take the URL as the first argument, and a request body as the second (if the
method supports it).

One important thing to note is that the HttpClient can give you type-assurance
across your code. We leverage this feature in the getStocks() and the toggleFavor
ite() methods.

One effect of this is that we need to change our stock.ts from a TypeScript class to a
TypeScript interface. Why is this? While we don’t need to, Angular does a simple

178 | Chapter 9: Making HTTP Calls in Angular

typecast of the response body into the type we have defined. But TypeScript (and
ECMAScript underneath it) has no nice and easy way to convert a simple plain-old
JavaScript object into a prototypical JavaScript/TypeScript class object. This means
that while our response from StockService will have all the properties of the class
Stock, it would not have the functions (in particular, isPositiveChange()) available.

We could write a converter, but it is only worth it in very specific cases. It is easier to
simply leverage TypeScript for type safety and work with other ways of encapsulation
(either at a component level, or maybe as an Angular service).

For these reasons, let’s switch our Stock class to an interface, by editing src/app/
model/stock.ts as follows:

export interface Stock {
 name: string;
 code: string;
 price: number;
 previousPrice: number;
 exchange: string;
 favorite: boolean;
}

We have simply converted it to an interface, and defined all the properties on it. No
more constructor, no more built-in functions. With that groundwork done, let’s now
move to changing the components over to using the service correctly. We will first
start with StockListComponent, which has minimal changes. All we will do is remove
the toggling of favorites functionality away from this component, and let each indi‐
vidual stock component handle it. Let’s see the changes to src/app/stock/stock-list/
stock-list.component.ts:

import { Component, OnInit } from '@angular/core';
import { StockService } from 'app/services/stock.service';
import { Stock } from 'app/model/stock';
import { Observable } from 'rxjs/Observable';

@Component({
 selector: 'app-stock-list',
 templateUrl: './stock-list.component.html',
 styleUrls: ['./stock-list.component.css']
})
export class StockListComponent implements OnInit {

 public stocks$: Observable<Stock[]>;
 constructor(private stockService: StockService) { }

 ngOnInit() {
 this.stocks$ = this.stockService.getStocks();
 }
}

Introducing HttpClient | 179

Our StockListComponent becomes simplified with this change. We also have to make
a slight tweak to its template, to remove the toggleFavorite event binding. Change
src/app/stock/stock-list/stock-list.component.html as follows:

<app-stock-item *ngFor="let stock of stocks$ | async"
 [stock]="stock">
</app-stock-item>

Next, let’s move on to the StockItemComponent. We will move the toggleFavorite
logic into the component here, and ask each individual stock to make the respective
server call through StockService.toggleFavorite directly, and handle the response.
We will remove the EventEmitter while we are at it. The finished src/app/stock/stock-
item/stock-item.component.ts file should look like this:

import { Component, OnInit, Input } from '@angular/core';

import { Stock } from '../../model/stock';
import { StockService } from 'app/services/stock.service';

@Component({
 selector: 'app-stock-item',
 templateUrl: './stock-item.component.html',
 styleUrls: ['./stock-item.component.css']
})
export class StockItemComponent {

 @Input() public stock: Stock;

 constructor(private stockService: StockService) {}

 onToggleFavorite(event) {
 this.stockService.toggleFavorite(this.stock)
 .subscribe((stock) => this.stock.favorite = !this.stock.favorite);
 }
}

Only have input, remove the output binding

Inject StockService into the constructor

Change onToggleFavorite to call the service instead

Note that we are taking responsibility for toggling the local state of favorite on the
stock on successful toggle favorite call. Without it, it would change the state on the
server, but the local browser state would not be changed. We could also have chosen
to refresh the entire list of stocks on every toggle favorite, by keeping the EventEmit
ter and asking the parent StockListComponent to refetch the list of stocks every
time. That is a call we can make as we develop our applications, depending on our

180 | Chapter 9: Making HTTP Calls in Angular

needs. There will be times when we want the latest and greatest information from the
server, and times when handling changes locally is acceptable.

There is also a change in our template for the StockItemComponent, as we no longer
have access to the isPositiveChange() function on the stock. We instead directly
calculate whether it is positive or not using the underlying properties in our template.
Our changed src/app/stock/stock-item/stock-item.component.html should look as
follows:

<div class="stock-container">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>
 <div class="exchange">{{stock.exchange}}</div>
 <div class="price"
 [class.positive]="stock.price > stock.previousPrice"
 [class.negative]="stock.price <= stock.previousPrice">
 $ {{stock.price}}
 </div>
 <button (click)="onToggleFavorite($event)"
 *ngIf="!stock.favorite">Add to Favorite</button>
 <button (click)="onToggleFavorite($event)"
 *ngIf="stock.favorite">Remove from Favorite</button>
</div>

Add positive class binding based on stock price

Add negative class binding based on stock price

Now, we will move to the last component, the CreateStockComponent. We only have
to accommodate the change over from the class to the interface, which means we
don’t have a nice constructor for a Stock object. While we are it, we will refactor the
class for reuse. But there is no change required with respect to HttpClient, since we
abstracted out the logic and used observables from the beginning. The finished
src/app/stock/create-stock/create-stock.component.ts file should look like this:

import { Component, OnInit } from '@angular/core';
import { Stock } from 'app/model/stock';
import { StockService } from 'app/services/stock.service';

@Component({
 selector: 'app-create-stock',
 templateUrl: './create-stock.component.html',
 styleUrls: ['./create-stock.component.css']
})
export class CreateStockComponent {

 public stock: Stock;
 public confirmed = false;
 public message = null;
 public exchanges = ['NYSE', 'NASDAQ', 'OTHER'];
 constructor(private stockService: StockService) {

Introducing HttpClient | 181

 this.initializeStock();
 }

 initializeStock() {
 this.stock = {
 name: '',
 code: '',
 price: 0,
 previousPrice: 0,
 exchange: 'NASDAQ',
 favorite: false
 };
 }

 setStockPrice(price) {
 this.stock.price = price;
 this.stock.previousPrice = price;
 }

 createStock(stockForm) {
 if (stockForm.valid) {
 this.stockService.createStock(this.stock)
 .subscribe((result: any) => {
 this.message = result.msg;
 this.initializeStock();
 }, (err) => {
 this.message = err.error.msg;
 });
 } else {
 console.error('Stock form is in an invalid state');
 }
 }
}

Call initializeStock to create a stock instance

Define initializeStock method for reuse

Use initializeStock after stock is successfully created

We just pulled out an initializeStock function, which we call both from the con‐
structor as well as after the stock is successfully created. The only other change we did
in this class is how we handled the error. With HttpResponse for errors, the response
body is actually available in the error key inside the response, so we grab the msg key
from there instead. There are no other changes we need to do in this class. The tem‐
plate also remains as is.

We are now almost ready to run our application, but we have one final change we
need to make. The browser, for security reasons, does not allow you to make calls
across domains and origins. Thus, even while both our server and the Angular appli‐

182 | Chapter 9: Making HTTP Calls in Angular

cation are running on localhost, they are running on different ports, and thus the
browser treats them as different origins. To get around this, the Angular CLI allows
us to set up a proxy, so that our requests would be sent to the server, which would
then proxy it to our final endpoint.

To do this, we will create a file proxy.conf.json in the main folder of our Angular appli‐
cation, with the following contents:

{
 "/api": {
 "target": "http://localhost:3000",
 "secure": false
 }
}

What we have done is simply asked Angular to proxy all requests made to the server
with the path starting with /api to our Node.js server running on port 3000 locally.
Technically, this filename can be anything, but we are just following a certain pattern.
This file supports a lot more configuration, but we will not get into it in this book.
You can read up on it in the official Angular CLI docs.

Now we are finally ready to run our application. So far, we have been running the
application using ng serve. Now, we need to run it with the following command:

ng serve --proxy-config proxy.conf.json

This will let Angular run our application, but taking our proxy configuration into
account. Now, when you browse to our application (http://localhost:4200), you should
see the list of stocks coming from the server. Note that if you create a new stock, you
will see a message saying it has been added successfully, but you will have to manually
refresh the page to see it updated in the UI. Toggling the stock should also work, and
this should be persisted even after you refresh the page. The application should look
exactly the same as it has been looking so far, as we have not made any UI-specific
changes.

The finished code sample for this section is available in the GitHub repository in the
chapter9/simple-http folder.

Advanced HTTP
In the previous section, we started with the basics of Angular’s HttpClient and
learned how to make simple HTTP GET and POST calls to our server, and deal with
its response. In this section, we will dig a little bit deeper into our HTTP API, and
other features that are supported by Angular’s HTTP module.

Advanced HTTP | 183

https://github.com/angular/angular-cli/blob/master/docs/documentation/stories/proxy.md

Options—Headers/Params
First, let’s take a closer look at the HTTP API we invoke. So far, we passed it a URL,
along with a body for the request if necessary. The HTTP API also allows us to pass
an options object as the second (or third in case the API allows for a body like POST
and PATCH) argument to the function. Again, let’s modify our existing application to
see these options, and add in some common requirements as well. We will use the
codebase from the previous section, which can be obtained from the chapter9/simple-
http folder in case you are not coding along, as a base.

First, one of the common tasks that any developer has with an HTTP API is to send
additional query parameters, or certain HTTP headers along with the request. Let’s
see how we can accomplish this using the HttpClient. We will change the src/app/
services/stock.service.ts file as follows:

import { Injectable } from '@angular/core';
import { HttpClient, HttpHeaders } from '@angular/common/http';

import { Observable } from 'rxjs/Observable';

import { Stock } from 'app/model/stock';

@Injectable()
export class StockService {

 constructor(private http: HttpClient) {}

 getStocks() : Observable<Stock[]> {
 return this.http.get<Stock[]>('/api/stock', {
 headers: new HttpHeaders()
 .set('Authorization', 'MyAuthorizationHeaderValue')
 .set('X-EXAMPLE-HEADER', 'TestValue'),
 params: {
 q: 'test',
 test: 'value'
 }
 });
 }

 /** Unchanged after this, omitted for brevity */
}

Add HTTP headers to the outgoing call

Add query params q and test to the outgoing call

In the preceding code, we have made two changes. We have added a second argument
to the http.get call, which is an options object. There are certain keys we can pass to
it, to configure the outgoing HTTP request. In the code, we have added two options:

184 | Chapter 9: Making HTTP Calls in Angular

headers
We can set the outgoing/request HTTP headers. There are two ways we can set
both the headers as well as the parameters. One option, as we have done in the
code, is to pass an HttpHeaders object, which is a typed class instance, on which
we can call set to set the correct headers. It follows a builder pattern, so you can
chain multiple headers as we have done. The second option is to just pass it a
plain-old JavaScript object. Of course, for the values, we have hardcoded it here,
but you can just as well access it from some variable, or even some other service
(in case you need to get authorization headers from, say, an AuthService).

params
Just like the headers, HTTP query parameters can also be configured in two
ways: using the typed, built-in HttpParams class, or using a plain-old JavaScript
object.

Now, when we run this code (making sure that the Node.js server is also running in
parallel), open your network inspector to see the outgoing requests. You should see
something like Figure 9-1.

Figure 9-1. Sending query params and headers with an Angular HTTP request

The finished code is available in the chapter9/http-api folder.

Advanced HTTP | 185

Options—Observe/Response Type
We will next move on to two other options on the HTTP request, which give you
flexibility in a variety of use cases. The first one we will focus on is the observe prop‐
erty on the options parameter.

The observe parameter takes one of three values:

body

This is the default value, which ensures that the observable’s subscribe gets
called with the body of the response. This body is auto-casted to the return type
specified when calling the API. This is what we have been using so far.

response

This changes the response type of the HTTP APIs from returning the entire
HttpResponse instead of just the body. The response still holds a typed response,
so you can still access it underneath, but you also get access to the headers of the
response and the status code. Note that instead of a raw HttpResponse, what you
really get is an HttpResponse<T>, where T is the type of the body. So in the case
of getStocks, what you would end up returning is actually an observable of
HttpResponse<Stock[]>.

events

This is similar to response, but gets triggered on all HttpEvents. This would
include the initialization event, as well as the request finished event. These corre‐
spond to the XMLHttpRequest states. This is more useful when we have an API
that sends progress events, as we can catch and listen to progress events as well
with the observe parameter set to events.

The second parameter that we will explore is the responseType property on the
options parameter. This can take one of four values:

json

This is the default, which basically ensures that the response body is parsed and
treated as a JSON object. In most cases, you wouldn’t need to change this from
the default.

text

This allows you to treat the response body as a string, without parsing it at all. In
this case, the response from your HTTP request would be an Observa
ble<string> instead of a typed response.

186 | Chapter 9: Making HTTP Calls in Angular

blob

Both this and the next option are more useful when dealing with binary respon‐
ses that you need to handle in your application. blob gives you a file-like object
containing the raw immutable data, which you can then process as you see fit.

arraybuffer

The last option gives us the underlying raw binary data directly.

Let’s take a look at some of these in action. We will change the StockService tem‐
porarily to try the same API with a few of these values set as options. Change the
src/app/services/stock.service.ts file as follows:

/** No Change in Imports */

@Injectable()
export class StockService {

 constructor(private http: HttpClient) {}

 getStocks() : Observable<Stock[]> {
 return this.http.get<Stock[]>('/api/stock', {
 headers: new HttpHeaders()
 .set('Authorization', 'MyAuthorizationHeaderValue')
 .set('X-EXAMPLE-HEADER', 'TestValue'),
 params: {
 q: 'test',
 test: 'value'
 },
 observe: 'body'
 });
 }

 getStocksAsResponse(): Observable<HttpResponse<Stock[]>> {
 return this.http.get<Stock[]>('/api/stock', {
 observe: 'response'
 });
 }

 getStocksAsEvents(): Observable<HttpEvent<any>> {
 return this.http.get('/api/stock', {
 observe: 'events'
 });
 }

 getStocksAsString(): Observable<string> {
 return this.http.get('/api/stock', {
 responseType: 'text'
 });
 }

 getStocksAsBlob(): Observable<Blob> {

Advanced HTTP | 187

 return this.http.get('/api/stock', {
 responseType: 'blob'
 });
 }

 /** Remaining code unchanged, omitted for brevity */
}

Observe response body only

Observe entire response

Observe all events

Response to be treated as text

Response to be treated as blob

We have added four new methods to the StockService as follows:

• getStocksAsResponse makes the same HTTP call, but sets the observe value to
response. This also changes the response of the function to return an Observa
ble<HttpResponse<Stock[]>>.

• getStocksAsEvents makes the same HTTP call, but sets the observe value to
events. This also changes the response of the function to return an Observa
ble<HttpEvent<any>>. This is because we will get multiple instances of Http
Event that are not just the response, but also progress, initialization, etc. Thus the
format of the response is not defined.

• getStocksAsString makes the same HTTP call, but sets the responseType value
to text. We also change the response type of the function to return an Observa
ble<string>, and the string is the entire body as a string.

• getStocksAsBlob makes the same HTTP call, but sets the responseType value to
blob. We also change the response type of the function to return an Observa
ble<Blob> to allow the subscriber to work with the blob once we get a response
from the server.

Now, let’s hook this up in the component so that we see the effect of calling each of
these slightly different APIs. We will modify the StockListComponent to make calls
to each of these APIs so that we can see and compare them side by side. Modify the
src/app/stock/stock-list/stock-list.component.ts file as follows:

import { Component, OnInit } from '@angular/core';
import { StockService } from 'app/services/stock.service';
import { Stock } from 'app/model/stock';
import { Observable } from 'rxjs/Observable';

188 | Chapter 9: Making HTTP Calls in Angular

@Component({
 selector: 'app-stock-list',
 templateUrl: './stock-list.component.html',
 styleUrls: ['./stock-list.component.css']
})
export class StockListComponent implements OnInit {

 public stocks$: Observable<Stock[]>;
 constructor(private stockService: StockService) { }

 ngOnInit() {
 this.stocks$ = this.stockService.getStocks();
 this.stockService.getStocksAsResponse()
 .subscribe((response) => {
 console.log('OBSERVE "response" RESPONSE is ', response);
 });

 this.stockService.getStocksAsEvents()
 .subscribe((response) => {
 console.log('OBSERVE "events" RESPONSE is ', response);
 });

 this.stockService.getStocksAsString()
 .subscribe((response) => {
 console.log('Response Type "text" RESPONSE is ', response);
 });

 this.stockService.getStocksAsBlob()
 .subscribe((response) => {
 console.log('Response Type "blob" RESPONSE is ', response);
 });
 }
}

In the StockListComponent, we leave the original call untouched, and simply add
calls to each of the other functions we added in the service below it. For each, we sim‐
ply subscribe to the response, and then print it (with a respective log so that we can
identify them separately). Now, when you run it, make sure you have your browser
developer tools open so that you can see the logs it prints. You should see something
like Figure 9-2.

Advanced HTTP | 189

Figure 9-2. Different kind of response types in Angular

There are a few interesting things to note in the example we ran:

• For the getStocksAsEvents() call, our subscription is actually called twice, once
for the initialization/request being sent and once when the actual information
has been loaded with the response. The second event is the one that has the
actual data. If our API supported progress, then the subscription would get called
for progress events as well.

• The getStocksAsResponse() call is similar to our initial getStocks() call,
except it gives the body along with other HTTP request fields like status, headers,
etc.

• The getStocksAsString() call is similar to our original call, but instead of get‐
ting a typed JSON response, we get our entire JSON response as a string. As
mentioned before, this is more useful for working with non-JSON APIs.

• The final getStocksAsBlob() call returns a blob containing our data that we can
then work with. This is more useful for working with binary data and the like,
rather than JSON APIs.

190 | Chapter 9: Making HTTP Calls in Angular

For the most part, you wlll only need the default setting of observing the body and
using the json response type. These other options exist for that 5% of use cases where
the default is not enough, and you need access to something more. The new
HttpClient gives you that flexibility to work with your APIs the way you want to,
while making it easy for the most common use cases.

The finished code sample for this section is available in the GitHub repository in the
chapter9/http-api folder.

Interceptors
One other common use case is to be able to hook into all incoming and outgoing
requests to be able to either modify them in flight, or listen in on all responses to
accomplish things like logging, handling authentication failures in a common man‐
ner, etc.

With the HttpClient API, Angular allows easily defining interceptors, which can
conceptually sit between the HttpClient and the server, allowing it to transform all
outgoing requests, and listen in and transform if necessary all incoming responses
before passing them on. Let’s see how we might create a very simple interceptor in
Angular that allows us to:

• Modify all outgoing requests by adding a header if we have an authorization
token.

• Log all incoming responses before passing them along.
• In case the request ends up in a failure (a non-200 or non-300 response), we will

log it differently.

We will fetch the authorization token from another service, which we will create just
for the purpose of storing and returning our authorization information. To complete
this example, we will build on our codebase from the first section. So if you want, you
can obtain the base code from the chapter9/simple-http folder. Note that we are not
using the additions we did while we were exploring the HTTP API.

We will first add a very simple service that acts as a holder of authorization-related
information. We can add it simply by running this from the terminal:

ng generate service services/auth --module=app

This will create an AuthService for you, and also hook up the provider in the AppMod
ule. We will just make a small change to the generated service to hold a property that
we can use in our interceptor. The changed service in src/app/services/auth.service.ts
should look like the following:

Advanced HTTP | 191

import { Injectable } from '@angular/core';

@Injectable()
export class AuthService {

 public authToken: string;

 constructor() { }
}

We have added a public property on the class called authToken in the AuthService.
Because we generated the service using the Angular CLI, it automatically added the
provider in the AppModule. Otherwise, we would have had to do it ourselves. We will
add one more HTTP API call in the StockService to an API that always returns a
403. Make the change so that the src/app/services/stock.service.ts file looks like this:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';

import { Observable } from 'rxjs/Observable';

import { Stock } from 'app/model/stock';

@Injectable()
export class StockService {

 constructor(private http: HttpClient) {}

 /** No changes to other calls, omitting for brevity */

 makeFailingCall() {
 return this.http.get('/api/fail');
 }
}

We only added the last method, makeFailingCall(), to the StockService. The
remaining code remains untouched. We will then change the StockListComponent to
display a few extra buttons, which we will hook up to the StockService and the Auth
Service that we have just created. First, change the src/app/stock/stock-list/stock-
list.component.ts file as follows:

import { Component, OnInit } from '@angular/core';
import { StockService } from 'app/services/stock.service';
import { Stock } from 'app/model/stock';
import { Observable } from 'rxjs/Observable';
import { AuthService } from 'app/services/auth.service';

@Component({
 selector: 'app-stock-list',
 templateUrl: './stock-list.component.html',
 styleUrls: ['./stock-list.component.css']

192 | Chapter 9: Making HTTP Calls in Angular

})
export class StockListComponent implements OnInit {

 public stocks$: Observable<Stock[]>;
 constructor(private stockService: StockService,
 private authService: AuthService) { }

 ngOnInit() {
 this.fetchStocks();
 }

 fetchStocks() {
 this.stocks$ = this.stockService.getStocks();
 }

 setAuthToken() {
 this.authService.authToken = 'TESTING';
 }

 resetAuthToken() {
 this.authService.authToken = null;
 }

 makeFailingCall() {
 this.stockService.makeFailingCall().subscribe(
 (res) => console.log('Successfully made failing call', res),
 (err) => console.error('Error making failing call', err));
 }
}

We made a slight change to the initialization logic, and added a few new methods to
the StockListComponent. First, we pulled out the stock$ Observable subscription to
a new method called fetchStocks(), and just called it in the ngOnInit. Next, we have
added a few more methods, namely setAuthToken(), resetAuthToken(), and make
FailingCall(), all of which are trivial and basically call out to AuthService and
StockService, respectively.

Next, we will hook these four new methods to buttons in the template for the Stock
ListComponent. Let’s change src/app/stock/stock-list/stock-list.component.html as
follows:

<app-stock-item *ngFor="let stock of stocks$ | async"
 [stock]="stock">
</app-stock-item>

<div>
 <button type="button"
 (click)="fetchStocks()">
 Refetch Stocks
 </button>
 <button type="button"

Advanced HTTP | 193

 (click)="makeFailingCall()">
 Make Failing Call
 </button>
 <button type="button"
 (click)="setAuthToken()">
 Set Auth Token
 </button>
 <button type="button"
 (click)="resetAuthToken()">
 Reset Auth Token
 </button>
</div>

We have added four new buttons to the template, with each one calling out to one of
the new methods we just added.

So far, we have not added anything related to interceptors, but rather just set up our
application to demonstrate various things related to the interceptors and how we
might be able to use them in our application. Let’s create our interceptor now. Sadly,
the Angular CLI does not yet support generating the skeleton of the interceptor, so
we will do it manually. Create a file at src/app/services/stock-app.interceptor.ts with the
following content:

import {Injectable} from '@angular/core';
import {HttpEvent, HttpInterceptor, HttpResponse} from '@angular/common/http';
import {HttpHandler, HttpRequest, HttpErrorResponse} from '@angular/common/http'

import {Observable} from 'rxjs/Observable';

@Injectable()
export class StockAppInterceptor implements HttpInterceptor {

 constructor() {}

 intercept(req: HttpRequest<any>, next: HttpHandler):
 Observable<HttpEvent<any>> {
 console.log('Making a request to ', req.url);
 return next.handle(req);
 }
}

Implement the HttpInterceptor interface

Implement the intercept API

Continue the chain by calling handle with the request

We have a mostly straightforward StockAppInterceptor class that implements the
Angular HttpInterceptor interface. This interface provides one method, intercept,

194 | Chapter 9: Making HTTP Calls in Angular

which we implement in the class. The intercept method is called with two argu‐
ments, the HttpRequest and an HttpHandler.

A good way to think of HttpInterceptor is that it is a chain. Each interceptor is
called with the request, and it is up to the interceptor to decide whether it continues
in the chain or not. Within this context, each interceptor can decide to modify the
request as well. It can continue the chain by calling the handler provided to the
intercept method with a request object. If there is only one interceptor, then the
handler would simply call our backend with the request object. If there are more, it
would proceed to the next interceptor in the chain.

Let’s hook up this simple interceptor, which at this point simply logs all outgoing
requests to the console, to the application. We do so in the AppModule (available in
src/app/app.module.ts) as follows:

/** Skipping other standard imports for brevity **/
import { HttpClientModule, HTTP_INTERCEPTORS } from '@angular/common/http';
import { AuthService } from './services/auth.service';
import { StockAppInterceptor } from './services/stock-app.interceptor';

@NgModule({
 declarations: [
 /** Skipping for brevity **/
],
 imports: [
 /** Skipping for brevity **/
],
 providers: [
 StockService,
 AuthService,
 {
 provide: HTTP_INTERCEPTORS,
 useClass: StockAppInterceptor,
 multi: true,
 }
],
 bootstrap: [AppComponent]
})
export class AppModule { }

The major focus is on the last element in the providers section, which is how we
provide the HttpInterceptor. Here, we are using the basic form of a provider, where
we mention what we are providing (using the provide key), how to provide it (using
the useClass, which points at our newly created StockAppInterceptor), and the fact
that it is an array of interceptors (multi: true takes care of this). We can similarly
add another entry for each interceptor we want.

Advanced HTTP | 195

Now we can run this application (using ng serve --proxy-config

proxy.conf.json, after making sure our Node.js server is running). When you run
this, open the console in your developer tools and you should see a log entry each
time a server call is made. You can trigger more server calls by clicking the Refetch
Stocks button.

Now, let’s extend to make the interceptor nontrivial. Modify the src/app/services/stock-
app.interceptor.ts file as follows:

import {Injectable} from '@angular/core';
import {HttpEvent, HttpInterceptor, HttpResponse} from '@angular/common/http';
import {HttpHandler, HttpRequest, HttpErrorResponse} from '@angular/common/http'

import {Observable} from 'rxjs/Observable';
import 'rxjs/add/operator/do';

import { AuthService } from './auth.service';

@Injectable()
export class StockAppInterceptor implements HttpInterceptor {

 constructor(private authService: AuthService) {}

 intercept(req: HttpRequest<any>, next: HttpHandler):
 Observable<HttpEvent<any>> {
 if (this.authService.authToken) {
 const authReq = req.clone({
 headers: req.headers.set(
 'Authorization',
 this.authService.authToken
)
 });
 console.log('Making an authorized request');
 req = authReq;
 }
 return next.handle(req)
 .do(event => this.handleResponse(req, event),
 error => this.handleError(req, error));
 }

 handleResponse(req: HttpRequest<any>, event) {
 console.log('Handling response for ', req.url, event);
 if (event instanceof HttpResponse) {
 console.log('Request for ', req.url,
 ' Response Status ', event.status,
 ' With body ', event.body);
 }
 }

 handleError(req: HttpRequest<any>, event) {

196 | Chapter 9: Making HTTP Calls in Angular

 console.error('Request for ', req.url,
 ' Response Status ', event.status,
 ' With error ', event.error);
 }
}

Implement the intercept API

Check for presence of auth token in the service

Change the request to an authorized request with extra headers

Call the handle API on the request to proceed in the chain

Handle any successful response

Handle any error

We have changed a few things of note in the interceptor now:

• First, we check for the presence of the authToken in the AuthService. If it is
available, we then modify the request to add an Authorization header with the
current value from the AuthService.

• We have added an operator to Observable using the import 'rxjs/add/opera
tor/do'; statement. We then use this on the next.handle.

• The do operator on an observable allows us to hook onto the results of an observ‐
able in a pass-through manner, but still make changes or have side effects. It is
useful for cases like these where we want to see the response and possibly even
make changes to it or log it.

• We subscribe to both the success and error events on the observable, and add the
appropriate logging in both.

Advanced HTTP | 197

Why Clone the Request?

One very important thing to note is how we handle adding headers
(or making any other changes) to the outgoing request.
HttpRequest (and HttpResponse) instances are immutable. This
means that once created, its values cannot be changed. We want the
HttpRequest and HttpResponse to be immutable because there are
various Observable operators, some of which might want to retry
the request.
For example, assume a simple flow where before we make the
request, we add a counter that counts the number of requests from
our client. If the request was retried, then the count might get
updated again, even though it is still the original request that was
being retried.
If request instances were mutable, then on retrying the request
through an interceptor chain, the request might be completely dif‐
ferent. For this reason, both HttpRequest and HttpResponse
instances are immutable. Thus, any changes we make on them
result in a new immutable instance. This allows us to ensure that
retrying a request through an interceptor chain would result in
exactly the same request being made, and not result in unexpected
behavior because of mutability.
We therefore call clone() on the request to get a new instance with
modified/updated properties that we pass to the instance. This
gives us back a new instance with updated values. We pass this
instance to the handler instead of the original request.

Now when you run your application, take the following actions:

1. See the initial request to get the list of stocks in the network inspector. Ensure
that there is no Authorization header in the request.

2. Click the Set Auth Token button. Now click the Refetch Stocks button. Notice
that the Authorization header is now set and sent in the request. Corresponding
logs will also be printed.

3. Click Reset Auth Token to ensure that header is removed and try Refetch Stocks
once again.

4. Click the Make Failing Call button and ensure that the error handler in the inter‐
ceptor gets called and the logs are correctly printed.

198 | Chapter 9: Making HTTP Calls in Angular

Service Dependencies and Interceptors

Note that we pulled in an AuthService dependency in the intercep‐
tor via dependency injection. But there is one exception that you
would need to watch out for, which is if the dependency you are
pulling in within the interceptor in turn depends on HttpClient.
This would compile, but when you run the application in your
browser, you will see an error about circular dependency. This is
because the HttpClient underneath requires all the interceptors,
and when we add a service as a dependency that requires
HttpClient, we end up with a circular ask that breaks our applica‐
tion.
How do we fix this? There are a few approaches we can take:

• Split apart your service if possible into a data service that does
not depend on HttpClient and one that makes server calls
using HttpClient. Then you can pull in the first service as a
dependency only, which won’t cause this circular dependency.
This is usually the easier and preferred approach.

• Do not inject your HttpClient dependency in the constructor,
but rather lazily inject it later as and when you need it. To do
this, you would need the Injector injected in the constructor.
You can then do this.injector.get(MyService) to get a
handle on your service and use it. Refer to this GitHub issue
for more details.

The finished code is available in chapter9/interceptors.

Advanced Observables
In this final section, we will go a little bit more in depth into how we can accomplish
some usually complex things using observables. We will also see some common pit‐
falls that you should be aware of when using observables. From an application per‐
spective, we will try to add the capability to search stocks as you type from the
application. This will allow us to see many things in actions. Search is the prototypical
example for demonstrating the power of ReactiveX as it really demonstrates how
observables can make certain tasks simpler, especially when you treat everything as a
stream of events.

Search-as-you-type is generally difficult, for the following reasons:

• If you trigger an HTTP call every time someone performs a keypress, then you
would end up with a lot of calls, most of which will need to be ignored.

Advanced Observables | 199

https://github.com/angular/angular/issues/18224

• Users rarely type correctly in one shot, often having to erase and retype. This will
also result in unnecessary duplicate calls.

• You need to worry about how to deal with out-of-order responses. If the result
for the previous query returns after the current one, you need to handle it in your
application logic.

Thankfully, observables give us powerful operators to handle each of these. Before we
get into how to fix these using observables, let’s start by first adding a line to show
how many search results we are seeing. This will also demonstrate one thing to watch
out for when using observables.

We will again use the code from the first finished example, which is available in chap‐
ter9/simple-http. We will build on this for the rest of the section.

First, let’s edit src/app/stock/stock-list.component.html to show the number of stocks
we have in addition to the stocks themselves. We might end up with something like:

<h2>
 We have found {{(stocks$ | async)?.length}} stocks!
</h2>

<app-stock-item *ngFor="let stock of stocks$ | async"
 [stock]="stock">
</app-stock-item>

We have added a div, which shows the length (if present, which is what the ? syntax
does—it marks the element as optional, thus preventing failure in case of nulls, etc.).
Now if you run the application, you will see the list of stocks as well as “We have
found 3 stocks!”

But open up the network inspector and you will notice an interesting thing. There
will actually be two different calls going for fetching the list of stocks. Why? Because
Angular observables are cold by default. And so every time someone subscribes to it,
the observable is triggered. In this case, we have two subscribers, which are the two
Async pipes, one for the ngFor and one for the length. Thus, instead of using the
same observable, we end up with two different calls being made.

200 | Chapter 9: Making HTTP Calls in Angular

Cold Versus Hot Observables

We just mentioned that Angular observables are cold observables
by default. What does this mean for us? Fundamentally, an observ‐
able is nothing but a function that connects a producer to a con‐
sumer.
A cold observable is responsible for creating the producer as well,
while a hot observable ends up sharing the producer.
For us, this just means that if whenever someone subscribes to an
observable in Angular, the producer is created for that instance.
This is why for each subscribe, we end up with a new producer.
You can read up more on hot and cold observables in this article.

Now how can we solve it? We have a few options:

• We can tell Angular to share the same observable, thus preventing two calls.
• We can manually subscribe to the observable in the component, and capture the

event response and save it to a class variable. Then the template can access the
class variable instead of relying on the Async pipe.

• We can choose not to use observables and instead use the promise to get at the
underlying value. Promises do work in Angular, and you can convert any observ‐
able into a promise by calling toPromise on the observable (after adding the
operator toPromise first of course by importing it).

All of these are acceptable options, depending on the use case. While Angular pushes
us toward using observables, there is no hard-and-fast rule that you can’t convert it
into a promise. And there are cases where it makes sense to deal with a promise
instead of an observable.

We won’t go into code snippets for the latter two, though. Let’s see how we can share
the same observable, by changing the src/app/stock/stock-list/stock-list.component.ts
file as follows:

import { Component, OnInit } from '@angular/core';
import { StockService } from 'app/services/stock.service';
import { Stock } from 'app/model/stock';
import { Observable } from 'rxjs/Observable';

import { share } from 'rxjs/operators';

@Component({
 selector: 'app-stock-list',
 templateUrl: './stock-list.component.html',
 styleUrls: ['./stock-list.component.css']
})
export class StockListComponent implements OnInit {

Advanced Observables | 201

http://bit.ly/2s2HETa

 public stocks$: Observable<Stock[]>;

 constructor(private stockService: StockService) { }

 ngOnInit() {
 this.stocks$ = this.stockService.getStocks()
 .pipe(share());
 }
}

We have simply imported and used the share operator from RxJS. Then, in the ngOn
Init, instead of saving the getStocks() observable directly, we pipe our base observ‐
able and add the share() operator to our pipe. We save this observable as a member
variable. This ensures that regardless of how many subscriptions are present on the
observable, there would be only one underlying trigger to the server. Now when you
run the application, you should see only one request being made to fetch the list of
stocks, and still see both the number of stocks as well as the individual stocks.

Be careful when you use AsyncPipe in your application, as using
multiple async pipes on the same observable without sharing the
underlying observable underneath would result in multiple server
calls.
Another option is to use the as operator along with the async pipe.
This assigns the variable to a template variable for easy access and
use. We can do something like:

<li *ngFor="let stock of stocks$ | async as stocks;
 index as i">
 {{ stock.name }} ({{ i }} of {{ stocks.length }})

The problem is that the template variable is scoped to the element,
and cannot be accessed outside like in our example.

Next, let’s add a simple search field, and see how we might fetch a list of stocks based
on the search term from the server. We will take this step by step, by first updating
our service to make the modified server call, and then adding a search field in the UI.

First, let’s change our StockService to support searching for stocks with a query
string. We will update the src/app/services/stock.service.ts file as follows:

import { Injectable } from '@angular/core';
import { HttpClient } from '@angular/common/http';

import { Observable } from 'rxjs/Observable';

import { Stock } from 'app/model/stock';

202 | Chapter 9: Making HTTP Calls in Angular

@Injectable()
export class StockService {

 constructor(private http: HttpClient) {}

 getStocks(query: string) : Observable<Stock[]> {
 return this.http.get<Stock[]>(`/api/stock?q=${query}`);
 }

 /** Remaining same, omitted for brevity */
}

We have changed the definition of the getStocks method to take a query parameter,
which is then passed to the /api/stock server call as a query parameter. Note that we
could have passed it as an options object as the second argument as well instead of
appending it to the URL.

Now we need to change our StockListComponent to make the updated call. While we
are doing that, we will also add an input field bound to a model in the component,
which will drive our search-as-you-type capability. Let’s modify the template first to
add the new form field, by changing src/app/stock/stock-list/stock-list.component.html
as follows:

<div>
 <input name="searchBox"
 [(ngModel)]="searchString"
 placeholder="Search Here"
 (keyup)="search()">
</div>

<h2>
 We have found {{(stocks$ | async)?.length}} stocks!
</h2>

<app-stock-item *ngFor="let stock of stocks$ | async"
 [stock]="stock">
</app-stock-item>

We have added an input field named searchBox to the template, and bound it using
ngModel to a member variable called searchString. In addition, on every keyup
event, we are triggering a method called search(). Let’s see how the component in
src/app/stock/stock-list/stock-list.component.ts has to evolve:

import { Component, OnInit } from '@angular/core';
import { StockService } from 'app/services/stock.service';
import { Stock } from 'app/model/stock';
import { Observable } from 'rxjs/Observable';

import { share } from 'rxjs/operators';

@Component({

Advanced Observables | 203

 selector: 'app-stock-list',
 templateUrl: './stock-list.component.html',
 styleUrls: ['./stock-list.component.css']
})
export class StockListComponent implements OnInit {

 public stocks$: Observable<Stock[]>;
 public searchString: string = '';

 constructor(private stockService: StockService) { }

 ngOnInit() {
 this.stocks$ = this.stockService.getStocks(this.searchString)
 .pipe(share());
 }

 search() {
 this.stocks$ = this.stockService.getStocks(this.searchString)
 .pipe(share());
 }
}

We’ve not done much at this point; we’ve simply replicated our logic of fetching the
stocks in another method called search(). We have also ensured that we are passing
along the query term to our StockService. If you run the application at this point,
you will see the new search box. And if you type into the box, it does actually make a
request to the server and search. But opening the network inspector in the developer
tools tells the underlying story, which is that:

• For every keystroke, we make a request to the server. This is horrifyingly ineffi‐
cient.

• We make requests for duplicate values even if we had already made a request for
the previous one.

Thankfully, because we only hold the reference to the latest observable, we don’t have
to worry about out-of-order responses, but if we were subscribing to the observable
in our component, then we would have to ensure that the response we are working
with is the latest and not an older, out-of-date response.

Now let’s see how we can leverage observable operators to solve these problems in a
clean, simple manner. We will change the component’s implementation to the follow‐
ing now:

import { Component, OnInit } from '@angular/core';
import { StockService } from 'app/services/stock.service';
import { Stock } from 'app/model/stock';
import { Observable } from 'rxjs/Observable';
import { Subject } from 'rxjs/Subject';

204 | Chapter 9: Making HTTP Calls in Angular

import { debounceTime, switchMap,
 distinctUntilChanged, startWith,
 share } from 'rxjs/operators';

@Component({
 selector: 'app-stock-list',
 templateUrl: './stock-list.component.html',
 styleUrls: ['./stock-list.component.css']
})
export class StockListComponent implements OnInit {

 public stocks$: Observable<Stock[]>;
 public searchString: string = '';

 private searchTerms: Subject<string> = new Subject();
 constructor(private stockService: StockService) { }

 ngOnInit() {
 this.stocks$ = this.searchTerms.pipe(
 startWith(this.searchString),
 debounceTime(500),
 distinctUntilChanged(),
 switchMap((query) => this.stockService.getStocks(query)),
 share()
);
 }

 search() {
 this.searchTerms.next(this.searchString);
 }
}

We have given the component a major overhaul, so let’s talk through the various
changes and why we have done them:

• The first major thing we have done is that we have introduced a member variable
called searchTerms, which is a Subject. A Subject is a special type in RxJS that
acts as both an observer as well as an observable. That is, it is capable of both
emitting events as well as subscribing to one. We will use this searchTerms sub‐
ject to trigger an event whenever the user types in our search box.

• At this point, our ngOnInit now starts with the Subject we created, rather than
the StockService. This means our chain of observable operators will be trig‐
gered each time the Subject gets a new term. The Subject is hooked in the
search() to emit an event each time the user enters a letter.

• Of course, we don’t want to trigger the server call each time the user enters a key,
so we introduce the debounceTime() operator in the chain. To chain, we use the
pipe operator on the observable, and then can add any number of operators
separated as arguments to the pipe function. Here, we instruct the stream to hold

Advanced Observables | 205

until there are no more new events for a period of 500 milliseconds. This ensures
that we only send a call once the user stops typing for half a second.

• The next thing we want to do is to avoid unnecessary calls, like if the user enters
a search term (say, “test”), then types a few more characters and then erases them
to land back at the same word he started with. Instead of adding checks and local
variables, we use another observable operator called distinctUntilChanged().
This ensures that the event is only emitted if the new value is different from the
previous value, thus saving a few more network calls.

• So far, we are using a Subject that emits string values. But our observable that
we bind to is one of Stock[]. Converting an observable chain from one type to
another is usually the work of the map operator. But we will use a particular type
of map operator called the switchMap. The switchMap has a nice behavior that in
addition to converting from one type of observable to another, it also has the
capability to cancel old, in-flight subscriptions. This helps to solve our out-of-
order response problem in a nice, clean manner. Note that it does not necessarily
cancel the underlying HTTP request, but simply drops the subscription.

• If we leave it at just this, our chain will only start the first moment the user starts
typing into the search box, and will result in an empty list of stocks when the
page loads. We can solve this by using an operator called startWith, which sets
the initial value with which the observable chain is to be triggered. We start it
with an empty string, which ensures that when the page is loaded, we see our
original list of stocks.

At this point, with a chain of four RxJS operators, we can now run our application.
When you type in the search box, it will wait for you to stop typing for a period
before making the request. If you type and erase to land back at the starting value, it
will not make the request at all.

There are many more operators available in RxJS than what I can reasonably cover in
this book, so I won’t even try. This section is more to give you an idea of what RxJS is
really capable of. Whenever you are trying to do any complex work, see if you can
tackle it using operators rather than doing it manually. The official RxJS documenta‐
tion is a great place to start on learning them.

Conclusion
In this chapter, we learned how to make HTTP calls using the HttpClient in Angu‐
lar. We started with GET and POST calls using the HttpClient, before diving deeper
into the API provided in the HttpClient. This included working with headers and
query parameters, as well as working with different levels of detail in the response
and different response types. We then moved on to handling common use cases of
hooking onto every HTTP request and response using interceptors, and saw how to

206 | Chapter 9: Making HTTP Calls in Angular

http://reactivex.io/rxjs/manual/overview.html#operators
http://reactivex.io/rxjs/manual/overview.html#operators

create and hook our own interceptor to the Angular HTTP chain. Finally, we saw
how to leverage observables to accomplish some complex tasks in a simple, efficient
manner with an example of search-as-you-type.

In the next chapter, we will take a step back and learn how to write unit tests for serv‐
ices, as well as how to unit-test flows where HTTP calls are being made through the
HttpClient.

Exercise
Take the finished exercise from Chapter 8 (available in chapter8/exercise/ecommerce).
Install and run the server in the chapter9/exercise/server folder by running:

npm i
node index.js

from within the folder. This will start a local Node.js server, which can work with
products (similar to one we had for stocks). It exposes the following APIs:

• GET on /api/product to get a list of products. It can also take an optional query
param q, which is the product name to search for.

• POST on /api/product with product information in the body to create a product
on the server (in-memory of course; restarting the server would lose all created
products).

• PATCH on /api/product/:id with the product ID in the URL and a field changeIn
Quantity in the body would change the quantity in cart of the product by that
amount.

Given this, now try to accomplish the following:

1. Change over the ProductService to make HTTP calls instead of responding
with mock data. Support searching for a list of products as well.

2. Implement both product listing and search-as-you-type using the power of
observables.

3. Handle product creation, as well as change in quantity of an individual product
and hook it up end-to-end.

4. See if you can continue using the same observable chain to now reload the entire
list of products each time a product is created or the quantity is changed.

Most of this can be accomplished using concepts covered in this chapter. The only
tricky thing is how to reload the list of products when it happens in a different
component, for which you can leverage template reference variables to access the
component and make a call. The other thing you might need to use is the merge oper‐

Exercise | 207

ator in the observable so that you can leverage the same observable for loading the
list, searching products, and reloading the list. You can check out the finished solu‐
tion in chapter9/exercise/ecommerce.

208 | Chapter 9: Making HTTP Calls in Angular

CHAPTER 10

Unit Testing Services

In the previous two chapters, we started understanding what Angular services are,
when to create them, and how to use them. We also started learning how to make
HTTP calls and handle the various use cases that crop up when working with servers.

In this chapter, we will take a step back and try to see how we can unit test these serv‐
ices. We will first see how to unit test a service, followed by understanding how to
leverage the Angular dependency injection system to mock out service dependencies
in unit tests. Finally, we will dig into writing unit tests when we are working with
HttpClient.

If you want to quickly recap what unit tests are and how to write them for compo‐
nents, you can refer to Chapter 5.

How to Unit Test Services
The first thing we will start with is learning how to unit test very simple services.
These might be services without any dependencies that act as encapsulators of busi‐
ness logic or functionality that needs to be reused across our application.

We will start with testing the very simple service we built in Chapter 8. You can use
the codebase in chapter8/simple-service as the base for this section. The finished code
is available in chapter10/simple-service.

Any time we are unit testing our service, we must do a few things over and above
what we did for testing components. Namely:

• Configure the Angular TestBed with a provider for the service we want to test.

209

• Inject an instance of the service we want to test either into our test or as a com‐
mon instance in the beforeEach.

When you generate a service using the Angular CLI, this initial skeleton is generated
for you out of the box. Regardless, let’s first take a look at the skeleton spec that was
generated in src/app/services/stock.service.spec.ts:

import { TestBed, inject } from '@angular/core/testing';

import { StockService } from './stock.service';

describe('StockService', () => {
 beforeEach(() => {
 TestBed.configureTestingModule({
 providers: [StockService]
 });
 });

 it('should be created', inject([StockService],
 (service: StockService) => {
 expect(service).toBeTruthy();
 }));
});

The basic skeleton itself allows us to walk through some of the initial setup that we
mentioned. Let’s cover the most important bits:

• In the beforeEach, like we used to register the components, we now register the
provider for the StockService. This ensures that the test is now running in the
context of our testing module.

• In the it, which is the actual test, instead of just passing the test function to it, we
call inject, which is a function provided by the Angular testing utilities. We pass
an array to it as the first argument, which are the Angular services that need to be
injected into our test. The second argument is a function that gets the arguments
in the same order that we passed to the array. We write our actual test within this
function.

In the skeleton code, we instantiate the StockService provider with the testing mod‐
ule, and then just make sure that when we inject it in the test, we get an instantiated
version of the service for use in the test.

Before we get on to the actual test, let’s quickly review the service that we will be test‐
ing. The StockService currently looks like the following:

import { Injectable } from '@angular/core';
import { Stock } from 'app/model/stock';

@Injectable()

210 | Chapter 10: Unit Testing Services

export class StockService {

 private stocks: Stock[];
 constructor() {
 this.stocks = [
 new Stock('Test Stock Company', 'TSC', 85, 80, 'NASDAQ'),
 new Stock('Second Stock Company', 'SSC', 10, 20, 'NSE'),
 new Stock('Last Stock Company', 'LSC', 876, 765, 'NYSE')
];
 }

 getStocks() : Stock[] {
 return this.stocks;
 }

 createStock(stock: Stock) {
 let foundStock = this.stocks.find(each => each.code === stock.code);
 if (foundStock) {
 return false;
 }
 this.stocks.push(stock);
 return true;
 }

 toggleFavorite(stock: Stock) {
 let foundStock = this.stocks.find(each => each.code === stock.code);
 foundStock.favorite = !foundStock.favorite;
 }
}

The StockService has three stocks that are instantiated by default. When we call get
Stocks(), this list of three stocks is returned. We can also add stocks by calling
createStock, which checks for the presence of the stock and then adds it.

Now let’s improve it to actually test the service, which had the capability of getting a
list of stocks and adding stocks. We will add two tests for these two methods:

/** Other imports skipped for brevity **/
import { Stock } from 'app/model/stock';

describe('StockService', () => {
 var stockService: StockService;
 beforeEach(() => {
 /** No change in first beforeEach, skipping for brevity **/
 });

 beforeEach(inject([StockService],
 (service: StockService) => {
 stockService = service;
 }));

 it('should allow adding stocks', () => {

How to Unit Test Services | 211

 expect(stockService.getStocks().length).toEqual(3);
 let stock = new Stock('Testing A New Company', 'TTT',
 850, 800, 'NASDAQ');
 expect(stockService.createStock(stock)).toBeTruthy();
 expect(stockService.getStocks().length).toEqual(4);
 expect(stockService.getStocks()[3].code).toEqual('TTT')
 });

 it('should fetch a list of stocks', () => {
 expect(stockService.getStocks().length).toEqual(3);
 expect(stockService.getStocks()[0].code).toEqual('TSC');
 expect(stockService.getStocks()[1].code).toEqual('SSC');
 expect(stockService.getStocks()[2].code).toEqual('LSC');
 });
});

Inject StockService into another beforeEach and save it for access across tests

Ensure that we start with the original three stocks from our service

Add the stock and ensure that it returns true

Check for the presence of the stock we added in the service

Ensure that we start with the original three stocks from our service

Check each stock to ensure it is the data we expect

We have made a slight change to the initialization logic, and added two pretty mun‐
dane, run-of-the-mill tests:

• Instead of writing an inject block in each test (each it block), we have moved
that logic to another beforeEach block, which is solely responsible for setting up
local variables that will be repeatedly used across all the tests. Note that this does
not mean the same instance is used in all the tests, but that we don’t have to inject
the service into each test individually.

• We have added two tests, one to test adding of stocks and another to check the
default getStocks() call. Again, note that the two tests are independent. Our
adding a stock in the first stock does not result in there being four stocks in the
second test. Before each test, we are creating a new testing module with a new
instance of the service.

Other than this, the test itself is pretty straightforward and self-explanatory. To run
this test, simply execute:

ng test

212 | Chapter 10: Unit Testing Services

That should automatically start Karma, capture Chrome, run the tests, and report the
results right in your terminal window.

Handling Service Dependencies?

What if our service itself had a dependency on another service?
Well, we would handle it exactly the same way. We have a few
options:

• Register the dependency as a service with the Angular TestBed
module, and let Angular be responsible for injecting it into the
service we are testing.

• Override/mock the dependent service by registering a fake/
stub provider with the TestBed, and rely on that instead of the
original service.

For both of these, we would simply add another provider in the
TestBed.configureTestingModule call for the other service. We
will see this principle in action in the next section.

Testing Components with a Service Dependency
Next, let’s see how to deal with two slightly different situations:

• If we had to test a component, and actually use the real service underneath in the
test.

• If we had to test a component, and we wanted to mock out the service it depends
on in the test.

Testing Components with a Real Service
First, let’s take a look at the test for StockListComponent if we were using the real
service underneath. Our src/app/stock/stock-list/stock-list.component.spec.ts file would
look like the following:

import { async, ComponentFixture, TestBed } from '@angular/core/testing';

import { StockListComponent } from './stock-list.component';
import { StockService } from 'app/services/stock.service';
import { StockItemComponent } from 'app/stock/stock-item/stock-item.component';
import { Stock } from 'app/model/stock';

describe('StockListComponent With Real Service', () => {
 let component: StockListComponent;
 let fixture: ComponentFixture<StockListComponent>;

Testing Components with a Service Dependency | 213

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [StockListComponent, StockItemComponent],
 providers: [StockService]
 })
 .compileComponents();
 }));

 beforeEach(() => {
 fixture = TestBed.createComponent(StockListComponent);
 component = fixture.componentInstance;
 fixture.detectChanges();
 });

 it('should load stocks from real service on init', () => {
 expect(component).toBeTruthy();
 expect(component.stocks.length).toEqual(3);
 });
});

Add StockItemComponent to the TestBed declarations array

Add StockService to the providers array

Ensure that the stocks in the component are loaded from the service

Most of the test is the autogenerated skeleton from the Angular CLI. The changes we
have made in particular are:

• We have added a declaration of StockItemComponent in addition to the Stock
ListComponent. This is because the template for our StockListComponent uses
the StockItemComponent and hence it is needed for our test to succeed.

• We have added StockService in the array passed to the providers section of the
testing module created. This ensures that in our test, we use the actual underlying
StockService whenever it is asked for by any component.

• Finally, we have added an assertion to ensure that we load the three stocks that
are returned by our StockService when the component is initialized.

If you notice, this should be similar to how we tested the service itself in the previous
section. We simply add a provider for our service and then we have the real live ser‐
vice in our tests accessible.

Testing Components with a Mock Service
Next, let’s see how we could write a similar test, but instead of using the real service in
the test, how to mock out certain calls instead of creating a brand-new fake service
just for our test. This approach is useful when we do actually want to use most of the

214 | Chapter 10: Unit Testing Services

service, but just override/mock out certain calls. This is also less cumbersome than
creating and maintaining a full parallel fake implementation.

Let’s see how we could use the real service with just some calls mocked out in our test.
Our revamped test in src/app/stock/stock-list/stock-list.component.spec.ts would look
like this:

/** Standard imports, skipping for brevity **/

describe('StockListComponent With Mock Service', () => {
 let component: StockListComponent;
 let fixture: ComponentFixture<StockListComponent>;
 let stockService: StockService;

 beforeEach(async(() => {
 /** No change in TestBed configuration, skipping for brevity **/
 }));

 beforeEach(() => {
 fixture = TestBed.createComponent(StockListComponent);
 component = fixture.componentInstance;
 // Always get the Service from the Injector!
 stockService = fixture.debugElement.injector.get(StockService);
 let spy = spyOn(stockService, 'getStocks')
 .and.returnValue([
 new Stock('Mock Stock', 'MS', 800, 900, 'NYSE')
]);
 fixture.detectChanges();
 });

 it('should load stocks from mocked service on init', () => {
 expect(component).toBeTruthy();
 expect(component.stocks.length).toEqual(1);
 expect(component.stocks[0].code).toEqual('MS');
 });
});

Get the StockService instance through the component’s injector

Mock out the getStocks() call and return a hardcoded value instead

Ensure that the stocks are provided from our mocked-out call now

Our test looks mostly similar to the test in the previous section, especially in how we
hook up the service as a provider to the TestBed. The major difference is in the sec‐
ond beforeEach, where we use the injector in the test fixture to get a handle on the
StockService.

There are two ways for us to get the service instance in our tests. We can either rely
on the inject function from the Angular testing utilities to inject the service

Testing Components with a Service Dependency | 215

instance, like we did in our test for StockService, or we can use the injector refer‐
ence on the element, like we just did here.

Once we have a handle on the service instance, we can use Jasmine spies to spy on
different methods on the service. A spy (whether it is from Jasmine or any other
framework) allows us to stub any function or method, and track any calls to it along
with its arguments and also define our own return values.

In this case, we use spyOn to spy on a particular method in the service (the get
Stocks() call), and use it to change the return value to what we want, rather than the
original underlying call. This way, the actual service call never gets invoked.

Our test then just has assertions to make sure the return value is from our mocked
service call rather than the original service.

Testing Components with a Fake Service
The last option we have when we are writing tests for components or services that
depend on other services is to replace the actual service with a fake that we have cre‐
ated just for the purpose of testing. This allows us to create a service tuned just for the
test that gives us maybe more access, or just tracks what APIs are called with what
values. Most of this could also be accomplished with Jasmine spies, but if you have a
repeated use case, then it might make more sense to create a fake that can be reused.

For us, a fake would simply be an object that we create, which has the same API as the
service we are mocking, but our own (hardcoded) implementation of the methods
underneath. For example, our fake could simply return a different hardcoded list of
stocks instead of making a server call in a test.

Let’s see how we could use a fake service in our test. Our revamped test in src/app/
stock/stock-list/stock-list.component.spec.ts would look like this:

/** Skipping imports for brevity **/

describe('StockListComponent With Fake Service', () => {
 let component: StockListComponent;
 let fixture: ComponentFixture<StockListComponent>;

 beforeEach(async(() => {
 let stockServiceFake = {
 getStocks: () => {
 return [new Stock('Fake Stock', 'FS', 800, 900, 'NYSE')];
 }
 };
 TestBed.configureTestingModule({
 declarations: [StockListComponent, StockItemComponent],
 providers: [{
 provide: StockService,
 useValue: stockServiceFake

216 | Chapter 10: Unit Testing Services

 }]
 })
 .compileComponents();
 }));

 beforeEach(() => {
 fixture = TestBed.createComponent(StockListComponent);
 component = fixture.componentInstance;
 fixture.detectChanges();
 });

 it('should load stocks from fake service on init', () => {
 expect(component).toBeTruthy();
 expect(component.stocks.length).toEqual(1);
 expect(component.stocks[0].code).toEqual('FS');
 });
});

Define a stockServiceFake JavaScript object that implements a getStocks()
method

Specify the instance to use when providing the StockService

Ensure that the values are coming from our fake service

There are a lot of differences in the test from the previous sections, so let’s walk
through some of the major changes:

• We first create a fake service instance, called stockServiceFake. Note that we
initialize it with only one of the methods (getStocks()), and not necessarily all
the APIs in the service.

• When we configure the testing module using the TestBed, instead of registering
the StockService, we register a provider. We tell Angular that whenever some‐
one asks for StockService (using the provide key), provide the value stockSer
viceFake (using the useValue) key. This overrides the default behavior of
providing the class instance.

Testing Components with a Service Dependency | 217

Providing an Instance of a Service

Generally, when we identify a class as a provider to Angular,
Angular would be responsible for instantiating an instance of the
class and providing it when a component or a service depends
on it.
In certain cases, we don’t want Angular to instantiate it, but rather
we want to define what value to use. That is when we use the mech‐
anism we used in the preceding code, where we can define what
class is being provided (using the provide key) and specify the
instance to use, rather than letting Angular create the instance
(using the useValue key).
You can read up more on the different ways you can configure Pro‐
viders in the official Angular docs.

Other than this, our test looks similar. We again assert that the data returned to the
component is from our fake service, and not from the original service.

Always Get Services from the Injector

Note that the recommended way to get the handle on an instance
of a service, even when using fakes, is through the injector. This is
because the fakeStockService instance we create in our test will
not be the same as the instance provided by the Angular depend‐
ency injector. Thus, even with a fake, if you want to assert, for
example, that a stock was added successfully to the service, you
would want to do it against the service returned by the injector, and
not the original instance we used.
You can either let Angular’s dependency injection provide it for
you using the inject method from the Angular testing utilities or
use the injector instance on the element created.
Angular’s dependency injector creates a clone of the stub/fake you
provide to it and injects that instead of the original instance.
You can check this out by tring to write the test against the service
instance in the test versus the way we have written it here, and see
the behavior of the test. You will see that the test fails, because the
original instance does not change.

All three of these tests are available in chapter10/simple-service/src/app/stock/stock-list/
stock-list.component.spec.ts, one after the other as three describe blocks.

218 | Chapter 10: Unit Testing Services

http://bit.ly/2IVt8Hl

Unit Testing Async
So far, we have seen how we might test simple and straightforward services, with or
without further dependencies, as well as test components. But the services we have
worked with so far have been synchronous. In this section, we will dig a little bit into
how to handle and write tests when the underlying service or code deals with asyn‐
chronous flows.

With any code that touches an asynchronous flow, we have to be careful in our tests
and recognize at which point the hand-off happens from synchronous flow to asyn‐
chronous, and deal with it accordingly. Thankfully, Angular provides enough helpers
to abstract out some of the complexities of this in our test.

Fundamentally, we have to make sure our test itself is identified and running as an
asynchronous test. Secondly, we must ensure that we identify when we have to wait
for the asynchronous part to finish, and validate the changes after that.

Let’s see how a test for the CreateStockComponent might look, when we had just
switched to using observables (but not HTTP yet). We will use the codebase from
chapter8/observables as the base on which to write our tests.

We will add (or modify if the skeleton already exists) the src/app/stock/create-stock/
create-stock.component.spec.ts file, and change it as follows:

import { async, ComponentFixture, TestBed } from '@angular/core/testing';

import { CreateStockComponent } from './create-stock.component';
import { StockService } from 'app/services/stock.service';
import { Stock } from 'app/model/stock';
import { FormsModule } from '@angular/forms';
import { By } from '@angular/platform-browser';

describe('CreateStockComponent', () => {
 let component: CreateStockComponent;
 let fixture: ComponentFixture<CreateStockComponent>;

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [CreateStockComponent],
 providers: [StockService],
 imports: [FormsModule]
 })
 .compileComponents();
 }));

 beforeEach(() => {
 fixture = TestBed.createComponent(CreateStockComponent);
 component = fixture.componentInstance;
 fixture.detectChanges();

Unit Testing Async | 219

 });

 it('should create stock through service', async(() => {
 expect(component).toBeTruthy();
 component.stock = new Stock(
 'My New Test Stock', 'MNTS', 100, 120, 'NYSE');

 component.createStock({valid: true});

 fixture.whenStable().then(() => {
 fixture.detectChanges();
 expect(component.message)
 .toEqual('Stock with code MNTS successfully created');
 const messageEl = fixture.debugElement.query(
 By.css('.message')).nativeElement;
 expect(messageEl.textContent)
 .toBe('Stock with code MNTS successfully created');
 });
 }));
});

The CreateStockComponent needs FormsModule to work

Pass the return value of calling async as the second param to the it function

Wait for the test fixture to finish executing asynchronous flows

Update the view after the changes

The early part of the unit test remains pretty much the same, from initializing the
TestBed with the module to the beforeEach. We also have to import the FormsModule
for the CreateStockComponent to work.

The first difference comes in the it declaration itself of our asynchronous test.
Instead of simply passing the function containing our test code to the it block, we
now pass an async function, which in turn is passed the function containing our test
code. Do not forget this part when writing an asynchronous unit test.

The second major difference is after calling the function under test, createStock(),
which actually triggers the asynchronous flow. Normally, we would write our asser‐
tions right after this. In the case of an asynchronous flow, we need to ask Angular’s
test fixture to stabilize (that is, wait for the asynchronous parts to finish). The when
Stabilize returns a promise that on completion allows us to run the remaining part
of the test. In this case, we tell Angular to detect any changes and update the UI, and
then make our assertions.

220 | Chapter 10: Unit Testing Services

In this particular case, even if we had skipped the whenStabilize
bit and directly written our assertions, our test might still have
passed. But that is only because our actual underlying service is
also synchronous, even though it does return an observable. If it
was truly asynchronous, then the whenStable becomes critical for
us. Thus, it is generally a good practice to aways use it when it
comes to async tests.

The finished code for this example is available in the chapter10/observables folder in
the GitHub repository.

async Versus fakeAsync
In the preceding test, we passed an async function to the it block, which is our test.
This allowed us to deal with any asynchronous behavior in the test and still be able to
assert everything we needed to.

Angular also provides a fakeAsync function, which can be used instead of the async
function. Both are very similar and used for the same purpose, which is to abstract
away some of Angular’s internals and handling of asynchronous behavior in our code.
The async function still exposes some of the underlying asynchronous behavior, since
we have to deal with promises in our test with the whenStable() function.

The fakeAsync does away with all of that. It allows us to write our unit test (for async
and sync code) in a completely synchronous manner (almost that is, unless we are
actually making XHR requests in our tests). Here is how the same test might look if
rewritten using fakeAsync:

import { async, fakeAsync, tick,
 ComponentFixture, TestBed } from '@angular/core/testing';

import { CreateStockComponent } from './create-stock.component';
import { StockService } from 'app/services/stock.service';
import { Stock } from 'app/model/stock';
import { FormsModule } from '@angular/forms';
import { By } from '@angular/platform-browser';

describe('CreateStockComponent', () => {
 /** Skipped for brevity, same as before */

 it('should create stock through service', fakeAsync(() => {
 expect(component).toBeTruthy();
 component.stock = new Stock(
 'My New Test Stock', 'MNTS', 100, 120, 'NYSE');

 component.createStock({valid: true});

Unit Testing Async | 221

 tick();
 fixture.detectChanges();
 expect(component.message)
 .toEqual('Stock with code MNTS successfully created');
 const messageEl = fixture.debugElement.query(
 By.css('.message')).nativeElement;
 expect(messageEl.textContent)
 .toBe('Stock with code MNTS successfully created');
 }));
});

Using the fakeAsync instead of async

Using tick() to simulate and finish all async behavior

We pass a fakeAsync function, and instead of the whenStable call, we now have a
simple tick() function call that does similar work. It allows the code to look linear
and makes it more readable.

There are in fact two methods to simulate a passage of time in a fakeAsync test,
namely tick() and flush(). tick simulates the passage of time (and can take the
number of milliseconds as an argument). flush, on the other hand, takes the number
of turns as an argument, which is basically how many times the queue of tasks is to be
drained.

So why use one over the other? If you would like to keep your code linear and
abstract away the async behavior, then the fakeAsync is great. But if you would like to
ensure that you are thinking about how your code flows, and want to keep it similar
to your actual code, then you can use the async method. It is completely a matter of
preference. Feel free to pick whichever works better for your style of coding!

Unit Testing HTTP
The last thing we will take a look at in this chapter is to see how to test HTTP com‐
munication. In particular, we will dig into how to mock out server calls. We will see
how to leverage Angular’s built-in testing utilities that it provides to test HTTP
communication.

For this section, we will use the code from chapter9/simple-http as the base, and see
how we can test both GET calls like fetching a list of stocks as well as POST calls that
we make to create stocks.

First, let’s test the StockListComponent to see how we can test the initialization logic
of fetching the list of stocks from our server. We want to ensure the entire flow of
making a server call, getting the list of stocks, and then displaying it.

We will modify src/app/stock/stock-list/stock-list.component.spec.ts as follows:

222 | Chapter 10: Unit Testing Services

/** Standard imports, skipping for brevity **/

import { HttpClientModule } from '@angular/common/http';
import { HttpClientTestingModule, HttpTestingController }
 from '@angular/common/http/testing';
import { By } from '@angular/platform-browser';

describe('StockListComponent With Real Service', () => {
 let component: StockListComponent;
 let fixture: ComponentFixture<StockListComponent>;
 let httpBackend: HttpTestingController;

 beforeEach(async(() => {
 TestBed.configureTestingModule({
 declarations: [StockListComponent, StockItemComponent],
 providers: [StockService],
 imports: [
 HttpClientModule,
 HttpClientTestingModule
]
 })
 .compileComponents();
 }));

 beforeEach(inject([HttpTestingController],
 (backend: HttpTestingController) => {
 httpBackend = backend;
 fixture = TestBed.createComponent(StockListComponent);
 component = fixture.componentInstance;
 fixture.detectChanges();
 httpBackend.expectOne({
 url: '/api/stock',
 method: 'GET'
 }, 'Get list of stocks').flush([{
 name: 'Test Stock 1',
 code: 'TS1',
 price: 80,
 previousPrice: 90,
 exchange: 'NYSE'
 }, {
 name: 'Test Stock 2',
 code: 'TS2',
 price: 800,
 previousPrice: 900,
 exchange: 'NYSE'
 }]);
 }));

 it('should load stocks from real service on init',
 async(() => {
 expect(component).toBeTruthy();

Unit Testing HTTP | 223

 expect(component.stocks$).toBeTruthy();

 fixture.whenStable().then(() => {
 fixture.detectChanges();
 const stockItems = fixture.debugElement.queryAll(
 By.css('app-stock-item'));
 expect(stockItems.length).toEqual(2);
 });
 }));

 afterEach(() => {
 httpBackend.verify();
 });
});

Include the HttpTestingController as a local variable

Import the HttpClientModule and the HttpTestingController in the module

Set expectation that one call to /api/stock will be made as part of the test

Define a list of hardcoded stocks to return when the GET call is made

Wait for the Angular task queue to get empty, and then proceed

Verify that the GET call to /api/stock was actually made as part of the test

While the test seems very long, the changes to support testing HTTP calls are actually
pretty straightforward. The major change when it comes to writing tests for code that
makes XHR calls is the use of the HttpTestingController. In our unit test, while we
want to test the code flow that makes XHR calls, we don’t really want to make the
actual underlying call. Any network call in a test adds unreliable dependencies, and
makes our tests brittle and possibly nondeterministic.

For this reason, we actually mock out the XHR calls in our tests, just check that the
right XHR calls are made, and that if the response was a certain value, then it is han‐
dled correctly. Therefore, a lot of our tests would simply be setting up through the
HttpTestingController what calls to expect and what responses to send when those
calls are made. You even have control over whether the server responds with a 200
success response, or whether it is an error (a 400 or 500 response, which corresponds
to a client- or server-side error, respectively).

With that context, let’s walk through the points of interest in the preceding test:

1. The first and most important change is that we need to import the HttpClient
Module so that our service can initialize with the injected HttpClient.

224 | Chapter 10: Unit Testing Services

2. The second thing is that we include the HttpClientTestingModule from @angu
lar/common/http/testing. This testing module helps automatically mock out
the actual server calls, and replaces it with a HttpTestingController that can
intercept and mock all server calls.

3. We hook these two modules up in the imports section of the TestBed module
configuration.

4. Then in our test (or in this case, the beforeEach), we can inject an instance of the
HttpTestingController to set our expectations and verify server calls.

5. After initializing the component instance as usual, we then start setting our
expectations on the HttpTestingController. In this case, we expect that one
GET call to the URL /api/stock. We also pass it a human-readable text to print in
the logs in case the test fails or that call is not made.

6. In addition to setting expectations on calls made, we can also define the response
Angular should send when those calls are made. Here, we return an array of two
stocks by calling the flush method. The first argument to flush is the response
body.

7. The rest of the test is straightforward. We expect the component to be initialized.
Then, we wait for the change detection to stabilize (by calling fixture.whenSta
ble()), and then ensure that the response we returned is actually rendered in the
template correctly.

8. In the afterEach, we call httpBackend.verify(). This ensures that all the
expectations we set on the HttpTestingController were actually satisfied during
the run of the test. It is generally good practice to do this in the afterEach, to
ensure that our code doesn’t make extra or fewer calls.

Let’s quickly write one more test to see how to handle POST calls, and how to send
non-200 responses from the server. We will create the src/app/stock/create-stock/
create-stock.component.spec.ts file as follows:

/** Standard imports, skipping for brevity **/

describe('CreateStockComponent With Real Service', () => {
 let component: CreateStockComponent;
 let fixture: ComponentFixture<CreateStockComponent>;
 let httpBackend: HttpTestingController;

 beforeEach(async(() => {
 /** TestBed configuration similar to before, skipping for brevity **/
 }));

 beforeEach(inject([HttpTestingController],
 (backend: HttpTestingController) => {
 httpBackend = backend;

Unit Testing HTTP | 225

 fixture = TestBed.createComponent(CreateStockComponent);
 component = fixture.componentInstance;
 fixture.detectChanges();
 }));

 it('should make call to create stock and handle failure',
 async(() => {
 expect(component).toBeTruthy();
 fixture.detectChanges();

 component.stock = {
 name: 'Test Stock',
 price: 200,
 previousPrice: 500,
 code: 'TSS',
 exchange: 'NYSE',
 favorite: false
 };

 component.createStock({valid: true});

 let httpReq = httpBackend.expectOne({
 url: '/api/stock',
 method: 'POST'
 }, 'Create Stock with Failure');
 expect(httpReq.request.body).toEqual(component.stock);
 httpReq.flush({msg: 'Stock already exists.'},
 {status: 400, statusText: 'Failed!!'});

 fixture.whenStable().then(() => {
 fixture.detectChanges();
 const messageEl = fixture.debugElement.query(
 By.css('.message')).nativeElement;
 expect(messageEl.textContent).toEqual('Stock already exists.');
 });
 }));

 afterEach(() => {
 httpBackend.verify();
 });
});

Expect a POST request to be made to /api/stock during the test

Ensure that the body of the POST request is the same as the stock we created in
the component

Define the response for the POST request, which is a failure 400 response

Check that the server response is shown correctly by the component

226 | Chapter 10: Unit Testing Services

Ensure that the POST request happened during the test

Most of the preceding test should be very similar to the test we wrote for the Stock
ListComponent. Let’s talk about the major differences in detail:

• Instead of immediately flushing the response when we set the expectation on the
httpBackend for the POST call, we save it to a local variable.

• We can then write expectations on the various parts of the HTTP request, like the
method, URL, body, headers, and so on.

• We then ensure that the body of the request matches the stock in our component.
• Finally, we flush a response, but instead of just flushing the body, we pass a sec‐

ond options argument to configure the response further. We mark the response
as a 400 response to trigger the error condition.

• The rest of the test doesn’t change, from waiting for the fixture to stabilize, assert‐
ing on the elements, to verifying that the calls were made on the httpBackend.

httpBackend.expectOne also takes an HttpRequest object instead
of passing the URL and the method as a config object. In such a
case, we can actually configure the HttpRequest object with the
body of the POST request as well. Note that this does not enforce
that the POST request is made with that body. You will still need to
manually check it the way we did in the previous example. Do not
assume that the body is automatically matched and forget to verify
it.

The finished code is available in the chapter10/simple-http folder of the GitHub
repository.

Conclusion
In this chapter, we dug deeper into testing services in Angular. We looked at how we
could test services, as well as components that use services. We explored the various
techniques and options to deal with services, from using the real service, to mocking
it or stubbing it out. Then we moved onto seeing how we could handle async behav‐
ior when it came to unit tests, and then finally how to deal with XHR and HTTP in
our tests.

In the next chapter, we will switch back to seeing how we can enhance our Angular
applications with the ability to deep-link to certain pages and components. We will
see how to start setting up our routes, as well as protect certain routes to be accessible
under only certain conditions.

Conclusion | 227

Exercise
Take the finished exercise from Chapter 9 (available in chapter9/exercise/ecommerce).
Given this, now try to accomplish the following:

1. Update the ProductListComponent tests. Remove the isolated unit tests. Update
the Angular tests to use the HttpTestingController to provide the list of stocks
as well as handle quantity change.

2. Ensure that the list of stocks is reloaded when the quantity changes.
3. Add tests for the positive and negative cases of the CreateProductComponent.

Check that the event is emitted when a product is successfully created as well.

Most of this can be accomplished using concepts covered in this chapter. You can
check out the finished solution in chapter10/exercise/ecommerce.

228 | Chapter 10: Unit Testing Services

CHAPTER 11

Routing in Angular

In the previous few chapters, we saw how to extend our application and make reusa‐
ble services. We also saw how to integrate and deal with HTTP calls in our applica‐
tion using the HttpClient module, and deal with the asynchronous flows using
observables and RxJS.

In this chapter, we will deal with another common requirement of web applications,
which is to encapsulate various pages and pieces under different routes, and be able
to deep-link to them when needed. We will implement Angular’s built-in routing
module. In addition, we will also dig into how to secure our application using Auth
Guards and other features of the router.

Setting Up Angular Routing
For this chapter, we are going to build against a precoded server, as well as use a code‐
base that has most of the base components built so that we can focus only on the key
aspects. We are going to continue extending our application that we have been work‐
ing on across the chapters by adding routing capability to it. We are going to try to
add four routes: one for the stock list, one to create a stock, one for registering, and
one for logging in. Furthermore, we will protect the stock list route and the create
stock route so that you can access them only if you are logged in. Finally, we will add
protections to ensure that we don’t lose our work by navigating away from a filled-in
form.

Server Setup
As mentioned earlier, the server we will be working with is already developed and
available in the repository in the chapter11/server folder. Before we start any web
development, let’s get our server up and running. Note that this server has more

229

functionality than the previous ones, so please use this one instead of continuing to
keep the previous server running.

Checkout and browse to the chapter11/server folder in the GitHub repository. From
within the folder, execute the following commands in your terminal:

npm i
node index.js

This installs all the necessary dependencies for our Node.js server, and then starts the
server on port 3000. Keep this server running in the background. This will be what
our application hits to fetch and save stocks, in addition to logging in and registering
users.

Note that this server is a very simplistic, dummy server with an in-
memory data store. Anything you create/save will be reset if you
restart the server. This includes any usernames you might register.

Starting Codebase
Similarly, instead of spending time building all the components for the remaining
routes, and reviewing concepts we have already covered in previous chapters, we will
instead use the precoded base Angular application that has a few more components.
If you’re planning to keep coding along, do note the following additions and make
sure you add them to your application.

The code is available for you in the chapter11/base-code-base folder. The major addi‐
tions are:

• A LoginComponent and RegisterComponent
• A UserService that makes HTTP calls to login and register a user
• A UserStoreService that stores whether a user is logged in or not, along with

the token
• A StockAppInterceptor that will be used to send the authentication token if it

exists with every request

All of these are also registered in the main AppModule.

Importing the Router Module
With all the set up done, we can now get into how to set up routing in our applica‐
tion. The very first thing is to set up our index.html to ensure that it is able to provide
enough context to Angular on how to set up its navigation. We do this by using the

230 | Chapter 11: Routing in Angular

https://github.com/shyamseshadri/angular-up-and-running

base tag within the head element in index.html. If the application is being served
from the root (like we are doing so far), then it is enough to add the following to your
index.html:

 <base href="/">

This is automatically done by the Angular CLI, so you only need to change it in case
you are serving your application from a non-root location. The next thing to do is to
import and set up the RouterModule, as routing is an optional module in Angular.
Before we can add the RouterModule, we need to define the routes of our application.
So we will first look at how to define the routes. We will then come back to seeing
how to import and add the RouterModule.

We will define a separate routes module file, app-routes.module.ts, instead of defining
it in the same app.module.ts. This is generally good practice, as you want to keep it
separate and modular, even if you only have a few routes initially. While we are just
defining a separate module for our routes, it would eventually make sense for us to
define a separate module and routes for each feature. This would also allow us to lazy
load feature modules and certain routes instead of loading all our code up front.

We could choose to manually create our new module and hook it up to the main
AppModule, or let the Angular CLI do it for us, by running:

ng generate module app-routes --flat --module=app

This would generate an app-routes.module.ts file in the main app folder. We can drop
the basic CommonModule import from it, as we won’t be declaring any components as
part of our routing module. Our final app-routing.module.ts might look something
like the following:

import { NgModule } from '@angular/core';
import { RouterModule, Routes } from '@angular/router';

import { CreateStockComponent }
 from './stock/create-stock/create-stock.component';
import { StockListComponent } from './stock/stock-list/stock-list.component';
import { LoginComponent } from './user/login/login.component';
import { RegisterComponent } from './user/register/register.component';

const appRoutes: Routes = [
 { path: 'login', component: LoginComponent },
 { path: 'register', component: RegisterComponent },
 { path: 'stocks/list', component: StockListComponent },
 { path: 'stocks/create', component: CreateStockComponent },
];

@NgModule({
 imports: [
 RouterModule.forRoot(appRoutes),
],

Setting Up Angular Routing | 231

 exports: [
 RouterModule
],
})
export class AppRoutesModule { }

Declare the array of routes for our application

Import and register the routes for the root application

Export the RouterModule so that any module importing AppRoutesModule gets
access to router directives

This is the first time we have created another module, separate from the auto-
generated one of the Angular CLI. The AppRoutesModule (annotated with @NgMod
ule) simply imports the RouterModule and then exports it so that all modules get
access to router directives (which we will use in a bit). While importing the Router
Module, we mark it for the root module by calling the forRoot method on it, with the
routes we are defining.

The routes we pass to the forRoot method are nothing but an array of Routes. Each
route is simply a configuration that defines the path for the route, as well as the com‐
ponent to be loaded when the route is loaded. We define four routes, one for each of
the components.

Next, we just need to hook up this module to our main module, by modifying the
app.module.ts file as follows:

/** Other imports not changed, skipping for brevity **/
import { AppRoutesModule } from './app-routes.module';

@NgModule({
 declarations: [
 /** No change, skipping for brevity **/
],
 imports: [
 BrowserModule,
 FormsModule,
 HttpClientModule,
 AppRoutesModule,
],
 providers: [
 /** No change, skipping for brevity **/
],
 bootstrap: [AppComponent]
})
export class AppModule { }

232 | Chapter 11: Routing in Angular

Importing the newly created AppRoutesModule

There are a lot more components and services, but these were created before we
started hooking up the routing. These were part of the base codebase we used to build
on top of.

Displaying the Route Contents
The last thing we need to do to get our routing app up and running is to tell Angular
where to load the components when a certain route or path is matched. If you con‐
sider what we have done so far, we have defined the base for our routing and set up
the module and the routes.

The final thing we do is to mark out where Angular is to load the components, and
we do that by using the RouterOutlet directive that is made available as part of the
RouterModule. We will change the src/app.component.html file as follows:

<div>
 Login
 Register
 Stock List
 Create Stock
</div>
<router-outlet></router-outlet>

Previously, we used to have the StockListComponent and the CreateStockComponent
as part of this HTML file. Instead, now we are telling Angular to load the relevant
component based on the URL and path it matches. We have also added a bunch of
links to the various pages we added.

We are at a point when we can now run the application, and see the various routes in
action. Run it with the following command (making sure you proxy to the node
server you have running):

ng serve --proxy proxy.conf.json

You should see something like Figure 11-1 when you browse to http://localhost:4200
in your browser.

Clicking any of the links should open that particular component’s page in your
browser.

Setting Up Angular Routing | 233

Figure 11-1. Angular application with routing

Navigating Within the Application
If you do click any of the links at the top, and open the network inspector simultane‐
ously, you will see something interesting and unexpected. You will see that the entire
page reloads, rather than behaving like how we might expect a Single-Page Applica‐
tion routing to work. What we would want and expect is that when the route changes,
only the component is loaded, and its respective XHR calls (if any) are executed. So
how do we accomplish this?

Angular provides a directive that allows us to navigate within the application. The
modified app.component.html would look as follows:

<div class="links">

 Login

 Register

 Stock List

234 | Chapter 11: Routing in Angular

 Create Stock

</div>
<router-outlet></router-outlet>

We have slightly changed the content, and also added some styling to make it look
nicer. From a functionality perspective, the major changes are as follows:

• We have replaced the href links with an Angular directive routerLink. This
ensures that all navigation happens within Angular.

• We have also added another Angular directive, routerLinkActive, which adds
the argument passed to it (active in our case) as a CSS class when the current
link in the browser matches the routerLink directive. It is a simple way of adding
a class when the current link is selected.

We also add some CSS to app.component.css as follows:

.links, .links a {
 padding: 10px;
}

.links a.active {
 background-color: grey;
}

We have added a background-color to the currently active link. This class will auto‐
matically get added to the link based on the current URL.

Now when you run the application, you should see the screen in Figure 11-2 in your
browser.

By default, if you open http://localhost:4200 in your browser, you will see an empty
page with only the links at the top. If you click any of the links (say, Login), then the
respective components will be loaded.

Setting Up Angular Routing | 235

Figure 11-2. Angular application with routing and highlighting

Wildcards and Defaults
The one last thing we will take care of before we wrap up this example is handling the
initial load. If we open up http://localhost:4200 in our browser, we are treated with an
empty page. Similarly, if we try to navigate to a URL that does not exist, it results in
an error (in the developer console) and a redirect to the home page automatically.
Let’s see how we might tackle these in our application.

For both of these, we will go back to our AppRoutesModule. We will modify the app-
routes.module.ts file as follows:

/** No change in imports, skipping for brevity **/

const appRoutes: Routes = [
 { path: '', redirectTo: '/login', pathMatch: 'full' },
 { path: 'login', component: LoginComponent },
 { path: 'register', component: RegisterComponent },
 { path: 'stocks/list', component: StockListComponent },
 { path: 'stocks/create', component: CreateStockComponent },
];

/** No change in remaining file, skipping for brevity **/
export class AppRoutesModule { }

Add a default path to redirect to Login page

We have added one more entry to our routes array. Here, we match the empty path
and ask Angular to redirect us to the login route. Note that for any path, instead of

236 | Chapter 11: Routing in Angular

asking Angular to use a component, we can redirect to another already defined path
as well. Also note the pathMatch key, which is set as full. This ensures that only if the
remaining path matches the empty string do we redirect to the login route.

pathMatch

The default pathMatch is prefix, which would check if a URL
starts with the given path. If we had the first route as the default
matching one, and we forgot to add pathMatch: full, then every
URL would match and redirect to the login path. Thus, both the
ordering of routes as well as the pathMatch value is important.
You can check this out by changing the pathMatch to prefix.
When you do this, all the links will end up linking to the Login
page.

The final piece we will see is how to handle if the user types in a wrong URL, or we
end up having bad links in our application. It is always useful to have a catch-all route
that leads to a “Page not found” page or a redirect to some other page. Let’s see how
we can have such a capability in our application. Again, we will only modify the app-
routes.module.ts file:

/** No change in imports, skipping for brevity **/

const appRoutes: Routes = [
 { path: '', redirectTo: '/login', pathMatch: 'full' },
 { path: 'login', component: LoginComponent },
 { path: 'register', component: RegisterComponent },
 { path: 'stocks/list', component: StockListComponent },
 { path: 'stocks/create', component: CreateStockComponent },
 { path: '**', redirectTo: '/register' }
];

/** No change in remaining file, skipping for brevity **/
export class AppRoutesModule { }

Add a catch-all route that redirects to the Register page

Our catch-all route is added by matching the path **. On matching this route, we
then have the option of loading a component (like the other routes). Alternatively, we
can redirect again, as we have done here, to another route. We redirect to the /regis
ter route in case we can’t match the URL.

The end result of both of these changes is that if you just open http://localhost:4200 in
your browser, you will be automatically taken to the login route. In case we type in
some random URL that doesn’t exist, we will be redirected to the register route.

Setting Up Angular Routing | 237

The entire finished example is available in the chapter11/simple-routing folder in the
GitHub repository.

Common Routing Requirements
In this section, we will continue digging into Angular routing capabilities, and see
how we might accomplish common tasks that are needed in the course of building a
web application. In particular, we will focus on having and using routes with parame‐
ters (both required and optional), as well as understand the various ways we might
navigate within our application, whether it be through the template or via our com‐
ponent code.

Required Route Params
Let’s first see how we add a route where we might depend on the route to decide what
to load. The simplest thing we can do within the context of our example is to build a
details page for our stock.

For this section, we will use the previous section code as the base and build on top of
it. In case you are not coding along, you can grab the codebase from the chapter11/
simple-routing folder in the GitHub repository. Also, make sure you keep the Node
server running in the background, and you proxy your requests to it when you serve
your Angular application.

For the purpose of keeping our example focused on the routing, a completed (sim‐
plistic) StockDetailsComponent is already created in the src/app/stocks folder. It is
already registered in the AppModule. All it shows is a repetition of the individual
StockItemComponent, but without the favoriting logic. Before we look at it, let’s first
see how our routes definition would change to include this new route. We would
modify the app-routes.module.ts file as follows:

/** No change in imports, skipping for brevity **/

const appRoutes: Routes = [
 { path: '', redirectTo: '/login', pathMatch: 'full' },
 { path: 'login', component: LoginComponent },
 { path: 'register', component: RegisterComponent },
 { path: 'stocks/list', component: StockListComponent },
 { path: 'stocks/create', component: CreateStockComponent },
 { path: 'stock/:code', component: StockDetailsComponent },
 { path: '**', redirectTo: '/register' }
];

/** No change in remaining file, skipping for brevity **/
export class AppRoutesModule { }

A new route to load the details of a stock

238 | Chapter 11: Routing in Angular

There is only one addition to the route, which is a path to StockDetailsComponent.
Note the path, which is stock/:code. This includes a variable in the URL, which can
change based on which stock needs to be loaded. Our component in this case, the
StockDetailsComponent, can then when it is loaded read the code from the route,
and then load the corresponding stock from our server. Let’s see how the Stock
DetailsComponent looks:

import { Component, OnInit } from '@angular/core';
import { StockService } from '../../services/stock.service';
import { ActivatedRoute } from '@angular/router';
import { Stock } from '../../model/stock';

@Component({
 selector: 'app-stock-details',
 templateUrl: './stock-details.component.html',
 styleUrls: ['./stock-details.component.css']
})
export class StockDetailsComponent implements OnInit {

 public stock: Stock;
 constructor(private stockService: StockService,
 private route: ActivatedRoute) { }

 ngOnInit() {
 const stockCode = this.route.snapshot.paramMap.get('code');
 this.stockService.getStock(stockCode).subscribe(stock => this.stock = stock);
 }
}

Injecting the activated route into the constructor

Using the activated route to read the code from the URL

Most of the component is similar to the remaining components we have seen so far,
except for two differences:

• We inject what we call an ActivatedRoute into the constructor. The Activated
Route is a context-specific service that holds the information about the currently
activated route, and knows how to parse and retrieve information from it.

• We then use the ActivatedRoute to read the stock code (code) from the URL.
Note that we read it from a snapshot. The paramMap in the snapshot is a map of
all the URL parameters. We will talk about what that implies in just a bit.

Then we use the code to make a service call, and store the return value in a variable.
This is then used to display information in the UI, like we have done so far.

The StockService.getStock code is a trivial addition to the src/app/services/
stock.service.ts file as follows:

Common Routing Requirements | 239

import { Injectable } from '@angular/core';
import { HttpClient, HttpHeaders, HttpResponse } from '@angular/common/http';

import { Observable } from 'rxjs/Observable';

import { Stock } from 'app/model/stock';
import { HttpEvent } from '@angular/common/http/src/response';
import { UserStoreService } from './user-store.service';

@Injectable()
export class StockService {

 /** Skipped for brevity **/

 getStock(code: string): Observable<Stock> {
 return this.http.get<Stock>('/api/stock/' + code);
 }

 /** Skipped for brevity **/
}

The preceding code skips most of the implementation, other than the new addition.
Make sure you add it to the existing service. getStock simply makes a GET request
with the provided code to the server and returns the relevant stock.

At this point, if we run the application, we would have a route that corresponds the
stock details. But if you navigate via URL to it (say http://localhost:4200/stock/TSC),
you would see an empty page with just the $ sign. Inspect the Network tab in devel‐
oper tools, and you will actually see a request to get the stock details, but it is
responding with a 403 at this point because the user is not logged in right now. A 403
status response is usually sent when the access is forbidden to a certain resource, usu‐
ally because the user is not logged in or doesn’t have access to the data. We will see
how to deal with it in the section “Route Guards” on page 247.

Navigating in Your Application
Now that we have the route for details of a stock, let’s hook up the navigation within
the application. These are the few activities we want to enable:

• Navigate to the login page on successful registration
• Navigate to the stock list page on successful login
• Navigate to the stock detail page when we click any stock item in the stock list

Of these, two need to be handled in the TypeScript code, while the other is handled in
the template HTML. Let’s see how we can achieve this.

First, we’ll modify the RegisterComponent by changing src/app/user/register/regis‐
ter.component.ts as follows:

240 | Chapter 11: Routing in Angular

import { Component } from '@angular/core';
import { UserService } from '../../services/user.service';
import { Router } from '@angular/router';

@Component({
 selector: 'app-register',
 templateUrl: './register.component.html',
 styleUrls: ['./register.component.css']
})
export class RegisterComponent {

 public username: string = '';
 public password: string = '';

 public message: string = '';
 constructor(private userService: UserService,
 private router: Router) { }

 register() {
 this.userService.register(this.username, this.password)
 .subscribe((resp) => {
 console.log('Successfully registered');
 this.message = resp.msg;
 this.router.navigate(['login']);
 }, (err) => {
 console.error('Error registering', err);
 this.message = err.error.msg;
 });
 }
}

Inject the Router into the component

Navigate to a path using the Router

We have made some minor changes in the RegisterComponent. Primarly, we have
now injected an instance of the Angular Router into our constructor, which gives us
the capabilities to navigate within our application. Then, when we make a successful
register call, at that point, we use the router.navigate call to navigate to the login
page. The navigate method takes an array of commands, which together will resolve
to a particular route.

There are more intricacies to the router.navigate method. By default, any array of
commands that we pass to it result in an absolute URL that Angular navigates to. So if
we use router.navigate(['stocks', 'list']), it would navigate to stocks/list
route. But we can also specify the route it is relative to (for example, the current
route, which we can obtain by injecting the current ActivatedRoute in the construc‐
tor). So if we wanted to navigate to the parent of the current route, we could execute
router.navigate(['../'], {relativeTo: this.route}).

Common Routing Requirements | 241

We also have the capability to preserve the URL, skip changing the location, and so
on. You can read up more on the other capabilities in the official Angular Docs.

We can make a similar change to the LoginComponent as follows:

import { Component } from '@angular/core';
import { UserService } from '../../services/user.service';
import { Router } from '@angular/router';

@Component({
 selector: 'app-login',
 templateUrl: './login.component.html',
 styleUrls: ['./login.component.css']
})
export class LoginComponent {

 public username: string = '';
 public password: string = '';

 public message: string = '';
 constructor(private userService: UserService,
 private router: Router) { }

 login() {
 this.userService.login(this.username, this.password)
 .subscribe((resp) => {
 console.log('Successfully logged in');
 this.message = resp.msg;
 this.router.navigate(['stocks', 'list']);
 }, (err) => {
 console.error('Error logging in', err);
 this.message = err.error.msg;
 });
 }
}

Inject the Router into the component

Navigate to a path using the Router

Just like the RegisterComponent, we again inject the Router, and then use it on suc‐
cessful login to redirect to the stocks list page. Notice here that we use an array of
commands to redirect to the correct stocks list page.

Finally, let’s see how we might ensure that clicking a stock takes us to the details page
for that stock. We have already created and hooked up the route for the Stock
DetailsComponent, which is at stock/:code. Let’s modify src/app/stock/stock-item/
stock-item.component.html as follows:

<div class="stock-container" routerLink="/stock/{{stock.code}}">
 <div class="name">{{stock.name + ' (' + stock.code + ')'}}</div>

242 | Chapter 11: Routing in Angular

https://angular.io/api/router/Router#navigate

 <div class="exchange">{{stock.exchange}}</div>
 <div class="price"
 [class.positive]="stock.price > stock.previousPrice"
 [class.negative]="stock.price <= stock.previousPrice">
 $ {{stock.price}}
 </div>
 <button (click)="onToggleFavorite($event)"
 *ngIf="!stock.favorite">Add to Favorite</button>
 <button (click)="onToggleFavorite($event)"
 *ngIf="stock.favorite">Remove from Favorite</button>
</div>

The only change is on the first line, where we use the routerLink directive on the
container div element itself. Note that unlike the links we had in the navigation bar,
here we combine the routerLink directive with a binding. Thus, depending on the
stock, the value of routerLink will change to have the correct code in it.

Now run the application, and perform the following steps in order:

1. Open http://localhost:4200 in your browser. It should redirect you to the login
page.

2. You can try entering a username and password, and it should update the UI with
a message that the username and password is incorrect.

3. Click the Register link at the top. It should redirect you to the Register page, and
also highlight the Register link at the top (this is using the routerLinkActive
directive if you remember).

4. Enter a username and password, and click Register. It should redirect you to the
Login page if successful.

5. Enter the same username and password. It should now redirect you to the stocks
list page, with three stocks present.

6. Click any of the stocks. It should open a page with only that stock (no new details
though, we were lazy!). Notice that the URL has also changed.

A few things to note and keep in mind:

• We have not added any local storage capabilities in our application yet. Refresh‐
ing the page means you will have to login again!

• Restarting the node server will mean that you have to register again, as the Node
server also keeps all data in memory.

• If you try to open the stocks list page or the stock details page directly via URL,
expect to see a page with empty data, as the authentication token gets reset
(between reloads of the page) and you have to go through login again.

Common Routing Requirements | 243

Optional Route Params
Before we wrap up this section and example, we will look at one last thing. There are
routes where we might want additional params that may or may not be optional.
These could be things like the current page number, the page size, or any filtering
data that might be passed around, and we want to ensure that they can be book‐
marked. First we will cover how to handle those cases, and then quickly look at
another way in Angular to read both defined parameters and query parameters.

Let’s assume that we wanted to pass a page number to the StockListComponent so
that it can display the corresponding page. Now this parameter would be optional, so
we want to pass it as a query parameter.

First, let’s modify the LoginComponent to pass in a page number to the route:

/** Imports and Decorator unchanged, skipping for brevity **/
export class LoginComponent {

 /** Code unchanged, skipping for brevity **/

 login() {
 this.userService.login(this.username, this.password)
 .subscribe((resp) => {
 console.log('Successfully logged in');
 this.message = resp.msg;
 this.router.navigate(['stocks', 'list'], {
 queryParams: {page: 1}
 });
 }, (err) => {
 console.error('Error logging in', err);
 this.message = err.error.msg;
 });
 }
}

Passing query params as part of navigation request

We have made a slight change to the router.navigate in the subscribe, in that we
pass a queryParams object as part of the second argument to the call. This will trans‐
late to query parameters in the route.

Now let’s see how we might read the query params when necessary in our compo‐
nent. We would modify the StockListComponent as follows:

/** Imports unchanged, skipping for brevity **/
import { ActivatedRoute } from '@angular/router';

@Component({
 selector: 'app-stock-list',
 templateUrl: './stock-list.component.html',
 styleUrls: ['./stock-list.component.css']

244 | Chapter 11: Routing in Angular

})
export class StockListComponent implements OnInit {

 public stocks$: Observable<Stock[]>;
 constructor(private stockService: StockService,
 private userStore: UserStoreService,
 private route: ActivatedRoute) { }

 ngOnInit() {
 console.log('Page No. : ',
 this.route.snapshot.queryParamMap.get('page'));
 this.stocks$ = this.stockService.getStocks();
 }
}

Inject the current ActivatedRoute into the constructor

Read the query parameter from the route snapshot

Very similar to how we read the defined parameters, we can also read the query
parameters from the ActivatedRoute snapshot. In this case, when we run the appli‐
cation, when we successfully login, we would see that our route in the browser
becomes http://localhost:4200/stocks/list?page=1, and we get the page number printed
in the console.

Before we wrap up this topic, there is one additional thing to note or be wary of when
working with routes and route parameters (whether mandatory or query parame‐
ters). So far, we used the snapshot from the ActivatedRoute to read our parameters
in the ngOnInit of our components. This is OK if the component is loaded only once,
and we navigate from it to another component and route. But if there is a chance that
the same component might need to be loaded with different parameters, then it is
recommended that we do not rely on the snapshot.

Instead, we can treat the parameters and query parameters as an observable, just like
service calls and HTTP requests. This way, the subscription will get triggered each
time the URL changes, allowing us to reload the data rather than relying on the
snapshot.

Let’s change our StockListComponent slightly to see it action. First we will add a but‐
ton to our template to simulate moving to the next page, by modifying the src/app/
stock/stock-list/stock-list.component.html file as follows:

<app-stock-item *ngFor="let stock of stocks$ | async"
 [stock]="stock">
</app-stock-item>
<div>
 <button type="button" (click)="nextPage()">Next page</button>
</div>

Common Routing Requirements | 245

We simply added a button, which on click triggers the nextPage() method that we
will create. Next, let’s modify the component code to use a subscription to an observ‐
able, instead of relying on the snapshot. Our finished src/app/stock/stock-list/stock-
list.component.ts would look like this:

/** Imports unchanged, skipping for brevity **/
import { ActivatedRoute, Router } from '@angular/router';

@Component({
 selector: 'app-stock-list',
 templateUrl: './stock-list.component.html',
 styleUrls: ['./stock-list.component.css']
})
export class StockListComponent implements OnInit {

 public stocks$: Observable<Stock[]>;
 private page = 1;
 constructor(private stockService: StockService,
 private userStore: UserStoreService,
 private router: Router,
 private route: ActivatedRoute) { }

 ngOnInit() {
 console.log('Page No. : ',
 this.route.snapshot.queryParamMap.get('page'));
 this.route.queryParams.subscribe((params) => {
 console.log('Page : ', params.page);
 this.stocks$ = this.stockService.getStocks();
 });
 }

 nextPage() {
 this.router.navigate([], {
 queryParams: {
 page: ++this.page
 }
 })
 }
}

Inject router into the constructor

Inject ActivatedRoute into the constructor

Read page from query params snapshot

Subscribe to queryParams for any changes

Navigate to the same page while increasing the page number

246 | Chapter 11: Routing in Angular

There are a few changes, so let’s go over them one by one:

• We added a local variable page, and initialized it to 1.
• We added a nextPage() method, which on click navigates (using router.navi
gate) to the next page. Note that we don’t provide any commands, to keep it at
the same page, but just change the query params.

• In the ngOnInit, we left the old console.log as it is reading from the snapshot.
In addition, we subscribe to the queryParams observable. This subscription will
trigger each time the page changes, while we remain on the same component.

Now, you can try the following:

• Login (or register again, in case you restarted the server).
• Note the developer tools console to see the initial page number in the snapshot

as well as the observable subscription getting triggered.
• Click the “Next page” button a few times, to see the subscription getting

triggered.

Whether we subscribe to the queryParams or to params, the code doesn’t change by
much. This is a super useful approach in case you have a component where the data
will get loaded for various parameters without the component getting reloaded.

The entire completed example (including parameters, navigation, and query parame‐
ters including the subscription-based approach) can be found in the chapter11/
navigation-and-params folder in the GitHub repository.

Route Guards
The next thing we will cover is the concept of route guards. Route guards in Angular
are a way of protecting the loading or unloading of a route based on your own condi‐
tions. Route guards give you a lot of flexibility in the kinds of checks you want to add
before a route opens or closes. In this section, we will deal with three in particular: a
guard to prevent a route from opening, a guard to prevent a route from closing, and a
guard that loads necessary data before a route is opened. We will keep the examples
very simple, but these could be extended to do whatever is needed in your use case.

For this entire section, we will use the codebase from the previous section as a base to
build on. In case you are not coding along, you can find the starter code in the chap‐
ter11/navigation-and-params folder in the GitHub repository.

Route Guards | 247

Authenticated-Only Routes
The first thing we will tackle is the issue we saw in the previous section, where if we
tried to navigate to the Stock List component without logging in, we would end up
seeing an empty page. What we would ideally want in this case is a message or error,
and a redirection to the login page so that we can prompt the user to login.

For this, we will rely on the UserStoreService to figure out if the user is currently
logged in or not. Using this service, we will then create an authentication guard,
which will kick in before we open a protected route. The authentication guard will
then decide whether we can continue on to the route, or if we need to redirect to a
different route.

To accomplish this, the first thing we will do is create an AuthGuard. To get it kick‐
started, you can of course use the Angular CLI (remember, ng g guard guards/auth
will do the trick). Replace the content of the generated file (src/app/guards/
auth.guard.ts) with the following:

import { Injectable } from '@angular/core';
import { CanActivate, Router } from '@angular/router';
import { UserStoreService } from '../services/user-store.service';
import { Observable } from 'rxjs/Observable';

@Injectable()
export class AuthGuard implements CanActivate {

 constructor(private userStore: UserStoreService,
 private router: Router) {}

 canActivate(): boolean {
 console.log('AuthGuard#canActivate called');

 if (this.userStore.isLoggedIn()) { return true };

 console.log('AuthGuard#canActivate not authorized to access page');
 // Can store current route and redirect back to it
 // Store it in a service, add it to a query param
 this.router.navigate(['login']);

 return false;
 }
}

The AuthGuard class is straightforward, and looks and behaves just like an Angular
service. The service looks pretty simple, but let’s walk through the changes one by
one:

• We implement an interface called CanActivate from the Angular router module.
• We inject both the UserStoreService and the Router as part of the constructor.

248 | Chapter 11: Routing in Angular

• We then implement the canActivate method. The canActivate method can
return either a boolean or an Observable<boolean>. If it resolves to true, then
the route will activate. If not, the route will not open.

• In the canActivate, we check the UserStoreService to see if the user is logged
in. If he’s not, we redirect the user to the Login page, and return false as well.

In the last step is where we can add our custom logic, if needed. For example, we
could preserve the URL we were trying to open. Once the user successfully logs in, we
can then redirect to the saved URL rather than the default.

We also can access the newly activated route as well as the router snapshot as argu‐
ments to the canActivate method, in case we need to access any route or URL-
specific values to make our decision.

Another thing to note is that in our example, we are actually relying on synchronous
state to decide whether to proceed or not. But as mentioned, canActivate can also
return an observable or a promise, thus allowing you to make server calls to decide
whether or not to proceed. Angular will wait for the service to return before making a
decision on whether or not the route should activate.

Make sure that you hook up the service in the AppModule before you proceed further.
This might be required even if you use the Angular CLI, as we have multiple modules
in our application.

Now, let’s hook up our AuthGuard to the routing. We will modify the src/app-
routes.module.ts file as follows:

/** Imports unchanged, skipping for brevity **/
import { AuthGuard } from './guards/auth.guard';

const appRoutes: Routes = [
 { path: '', redirectTo: '/login', pathMatch: 'full' },
 { path: 'login', component: LoginComponent },
 { path: 'register', component: RegisterComponent },
 { path: 'stocks/list', component: StockListComponent,
 canActivate: [AuthGuard] },
 { path: 'stocks/create', component: CreateStockComponent,
 canActivate: [AuthGuard] },
 { path: 'stock/:code', component: StockDetailsComponent,
 canActivate: [AuthGuard] },
 { path: '**', redirectTo: '/register' }
];

/** Code unchanged, skipping for brevity **/
export class AppRoutesModule { }

Add the AuthGuard to the StockListComponent

Route Guards | 249

Add the AuthGuard to the CreateStockComponent

Add the AuthGuard to the StockDetailsComponent

To the three stock routes, we have added another key to the route definition. We have
added a canActivate key, which takes an array of guards. We only have the Auth
Guard, so we pass that as the only element of the array. Thus, only the routes we add
to the canActivate guard will use the guard, and the others will continue to work as
normal.

Before we run this application, ensure that the AuthGuard is hooked up as a provider
in the AppModule, which the ng generate guard does not do by default. Your src/
app.module.ts file should have the following in it:

/** Other imports unchanged, skipping for brevity **/
import { AuthGuard } from './guards/auth.guard';

@NgModule({
 /** No changes to imports and declarations **/
 providers: [
 /** No changes to other services **/
 AuthGuard,
 {
 provide: HTTP_INTERCEPTORS,
 useClass: StockAppInterceptor,
 multi: true,
 }
],
 bootstrap: [AppComponent]
})
export class AppModule { }

Add AuthGuard to the providers list

If you run the application at this point, you should see that trying to navigate directly
to the stock list or create stock page will end up redirecting you to the Login page.
You can confirm that the guard is working by checking the web development console
logs.

Preventing Unload
Similar to how we can prevent loading of a route, we can also prevent deactivation of
a route using guards. The canDeactivate guard is most commonly used to prevent
the user from losing data by navigating away unintentionally from a form page, or to
autosave the data when the user navigates away from a page. Other creative uses for
the canDeactivate guard could be logging and analytics.

250 | Chapter 11: Routing in Angular

In this example, we will again keep it very simple to just demonstrate the point, but
you can extend it for your purpose. We will simply always prompt the user when nav‐
igating away from the CreateStockComponent. But you could make it smarter by
looking at the form state, and whether there are any changes before prompting.

Create a CreateStockDeactivateGuard (again, your choice, either create it manually
or using the Angular CLI). Don’t forget to register it in the providers array in the
AppModule, and then replace the contents of the service with the following:

import { Injectable } from '@angular/core';
import { CanDeactivate, ActivatedRouteSnapshot, RouterStateSnapshot }
 from '@angular/router';
import { CreateStockComponent }
 from '../stock/create-stock/create-stock.component';
import { Observable } from 'rxjs/Observable';

@Injectable()
export class CreateStockDeactivateGuard
 implements CanDeactivate<CreateStockComponent> {

 constructor() { }

 canDeactivate(component: CreateStockComponent,
 currentRoute: ActivatedRouteSnapshot,
 currentState: RouterStateSnapshot,
 nextState?: RouterStateSnapshot):
 boolean | Observable<boolean> | Promise<boolean> {
 return window.confirm('Do you want to navigate away from this page?');
 }
}

Implement the CanDeactivate interface, specific for our CreateStockComponent

Instance of the CreateStockComponent passed to the canDeactivate method

The currently ActivatedRoute snapshot passed to the canDeactivate method

The current router state snapshot passed to the canDeactivate method

The next state that is being navigated to from the current state

Our CanDeactivate guard is slightly different from the CanActivate guard, and for a
few reasons. The most important reason is that usually, the deactivation is in context
of an existing component, and so the state of that component is usually important in
deciding whether or not the router can deactivate the component and route.

Here, we implement a CanDeactivate guard that is specific to our CreateStockCompo
nent. The advantage is that we can access state and methods from our component to

Route Guards | 251

make the decision (not that we are doing it in our example!). If we had the form state
available in the component, this would be a great place to access it and check if the
form was dirty or not. You can also refer to the current route and state, as well as
what the transition is going to and factor all of these into your decision.

You can return a simple boolean (like we are), or return an observable or a promise
that translates to a boolean, and Angular will wait for the asynchronous behavior to
finish before making a decision.

Now, let’s hook up this guard to the AppRoutesModule:

/** Imports unchanged, skipping for brevity **/
import { CreateStockDeactivateGuard }
 from './guards/create-stock-deactivate.guard';

const appRoutes: Routes = [
 { path: '', redirectTo: '/login', pathMatch: 'full' },
 { path: 'login', component: LoginComponent },
 { path: 'register', component: RegisterComponent },
 { path: 'stocks/list', component: StockListComponent,
 canActivate: [AuthGuardService] },
 { path: 'stocks/create', component: CreateStockComponent,
 canActivate: [AuthGuardService],
 canDeactivate: [CreateStockDeactivateGuard] },
 { path: 'stock/:code', component: StockDetailsComponent,
 canActivate: [AuthGuardService] },
 { path: '**', redirectTo: '/register' }
];

/** Code unchanged, skipping for brevity **/
export class AppRoutesModule { }

Add the CreateStockDeactivateGuard to the create stock route

We have only added another guard (canDeactivate) on the stocks/create route,
and hooked up the CreateStockDeactivateGuardService as the only item in the
array.

Make sure you hook up the new guard to the AppModule and regis‐
ter it with the providers array like the other guard. Don’t forget to
do this for any new service or guard if it is not automatically added
by the Angular CLI.

Once you do this, you can run your application. Log in and navigate to the create
stock page, and then try clicking any of the links at the top. At that point, you should
see the confirmation asking whether you really want to navigate away. Clicking “No”
should leave you on the same page, while clicking “Yes” would allow you to navigate
away.

252 | Chapter 11: Routing in Angular

Again, remember that you are free to make the logic as complex as needed. You need
to make a call to server to persist the data and then only navigate away? Feel free to
change the guard around. The only thing to note is that this will not detect if you
change the URL manually yourself. It will only detect navigation within the applica‐
tion context.

A Generic CanDeactivate Guard?

We just saw that the CanDeactivate guard was specific to a compo‐
nent, and we get an instance of that component in the canDeacti
vate method. Then is it possible for us to create a generic guard?
The answer is yes. One common technique is to create an interface
(say, DeactivateableComponent), with a method (say, canDeacti
vate) that returns a boolean, a Promise<boolean>, or an Observa
ble<boolean>.
We can then create a CanDeactivate<DeactivateableComponent>
that relies on the return value of canDeactivate to decide whether
to deactivate or not. Each component that needs this guard simply
needs to implement this interface, and you can then reuse the
guard as needed.
Again, this is only useful for a select handful of cases, primarily if
you have multiple components that need to decide whether they
can deactivate or not, but all in different ways.

Preloading Data Using Resolve
The last thing we will see in this section is how to preload data before a route is acti‐
vated. There might be cases where we want to make the service call to fetch its data
before the component loads. Similarly, we might want to check if the data exists
before even opening up the component. In these cases, it might make sense for us to
try to prefetch the data before the component itself. In Angular, we do this using a
Resolver.

Let’s take an example to demonstrate how a Resolver works and how you might
implement one. Say we wanted to resolve the stock data even before we open up the
details of a stock. This would also in some sense allow us to check if the stock with a
particular code exists even before opening the stock details component.

To accomplish this, we would use a Resolver. Use the Angular CLI or manually cre‐
ate a StockLoadResolver, with the following content:

import { Injectable } from '@angular/core';
import { StockService } from './stock.service';
import { Resolve, ActivatedRouteSnapshot, RouterStateSnapshot }
 from '@angular/router';

Route Guards | 253

import { Stock } from '../model/stock';
import { Observable } from 'rxjs/Observable';

@Injectable()
export class StockLoadResolverService implements Resolve<Stock> {

 constructor(private stockService: StockService) { }

 resolve(route: ActivatedRouteSnapshot,
 state: RouterStateSnapshot):
 Stock | Observable<Stock> | Promise<Stock> {
 const stockCode = route.paramMap.get('code');
 return this.stockService.getStock(stockCode);
 }
}

A Resolver implements the Resolve interface, and is typed. In this case, we are
building a Resolver that returns one individual stock. We inject the StockService
into the constructor, and then implement the resolve method. Here we have access
to the route and state, which allows us to fetch the parameter information from the
URL.

In the resolve, we load the stockCode from the URL, and then return an Observa
ble<Stock> by making the service call to getStock for the given stockCode. That is
all there is to the Resolver.

Make sure you hook this up to the AppModule and register it with the providers array
like the other guards.

Now we can hook this up to the AppRoutesModule as follows:

/** Imports unchanged, skipping for brevity **/
import { StockLoadResolverService } from './resolver/stock-load-resolver.service';

const appRoutes: Routes = [
 { path: '', redirectTo: '/login', pathMatch: 'full' },
 { path: 'login', component: LoginComponent },
 { path: 'register', component: RegisterComponent },
 { path: 'stocks/list', component: StockListComponent,
 canActivate: [AuthGuardService] },
 { path: 'stocks/create', component: CreateStockComponent,
 canActivate: [AuthGuardService],
 canDeactivate: [CreateStockDeactivateGuardService] },
 { path: 'stock/:code', component: StockDetailsComponent,
 canActivate: [AuthGuardService],
 resolve: { stock: StockLoadResolverService } },
 { path: '**', redirectTo: '/register' }
];

/** Code unchanged, skipping for brevity **/
export class AppRoutesModule { }

254 | Chapter 11: Routing in Angular

Add a resolver to the stock details route

Again, this file has only changed in one line. To the stock/:code route, we have now
added a resolve key, which is an object. For each key of the object, we map a
Resolver implementation. In this case, we only have the stock that needs to be
resolved using the StockLoadResolverService. This is one part of the work that
needs to be done, which ensures that the stock with the given code (based on the
URL) is prefetched.

Next, let’s see how to modify the StockDetailsComponent to use the prefetched infor‐
mation instead of making the service call itself:

import { Component, OnInit } from '@angular/core';
import { StockService } from '../../services/stock.service';
import { ActivatedRoute } from '@angular/router';
import { Stock } from '../../model/stock';

@Component({
 selector: 'app-stock-details',
 templateUrl: './stock-details.component.html',
 styleUrls: ['./stock-details.component.css']
})
export class StockDetailsComponent implements OnInit {

 public stock: Stock;
 constructor(private route: ActivatedRoute) { }

 ngOnInit() {
 this.route.data.subscribe((data: {stock: Stock}) => {
 this.stock = data.stock;
 });
 }
}

The major change in the component is that we have now gotten rid of our depend‐
ency on the StockService. Instead, we just use the ActivatedRoute. In the ngOnInit,
we subscribe to changes on the data element on the ActivatedRoute. The resolved
data would be made available in the data with the key that we used in the route
(stock for us). We simply read the key and store the data for use.

You could easily extend the resolve to any data and any number of data items that you
want to prefetch. The completed example is available in the chapter11/route-guards
folder in the GitHub repository.

Conclusion
In this chapter, we took a deep dive into Angular routing. In particular, we saw how
to start setting up the Angular router for any Angular application. We then dealt with

Conclusion | 255

handling different kinds of routes, and handling required and optional parameters in
routing. We also dealt with handling protected routes, as well as ensuring that we
don’t lose data by navigating away from a filled-out form.

In the next chapter, we will bring together all the topics we have covered, and then
talk about what it takes to build a performant Angular application, and how to think
about deploying it in production.

Exercise
Take the base exercise from chapter11/exercise/starter. Install and run the server in
the chapter11/exercise/server folder by running:

npm i
node index.js

from within the folder. This will start a local Node.js server which can work with
products (similar to one we had for stocks). It exposes the following APIs:

• GET on /api/product to get a list of products. It can also take an optional query
param q, which is the product name to search for.

• GET on /api/product/:id to get an individual product with an ID.
• POST on /api/product with a product information in the body to create a product

on the server (in-memory of course; restarting the server would lose all created
products).

• PATCH on /api/product/:id with the product ID in the URL and a field changeIn
Quantity in the body would change the quantity in the cart of the product by
that amount.

Given this, now try to accomplish the following:

• Hook up routing in the application. We want a login route, a register route, the
product list route, a create product route, and a product details route. The
components for the route are already created, as are the extra services you might
need.

• Only the create product route should be protected and accessible after login.
• In the product list and product details route, the add to cart should only be visi‐

ble after login.
• See if you can adapt the login flow to remember that the user has logged in even

through page refreshes.

Most of this can be accomplished using concepts covered in this chapter. The only
new thing might be trying to remember that you have logged in across page refreshes,

256 | Chapter 11: Routing in Angular

for which you need to extend the service using localStorage or something similar.
You can check out the finished solution in chapter11/exercise/ecommerce.

Exercise | 257

CHAPTER 12

Productionizing an Angular App

In all the chapters so far, we have talked about the various bits and pieces that add up
to an Angular application. We started at the very basic, and went to the more detailed
and complex, from simple components to routing and server calls. But through all
this, we focused on functionality and getting different bits to interact and play well
together. At this point, you as a developer are ready to tackle 90% of most Angular
application needs.

In this chapter, we will focus on what it takes to get that application you have built out
into production in a performant manner. We will cover all the things you will have to
keep in mind when deploying your Angular applications to production, as well as
some other concerns that you may not have thought of. We will cover how to build an
Angular app for production, how to reduce the size of the build, how to improve the
performance, and even briefly cover other concerns like SEO.

Building for Production
So far, whenever we run our application, we usually ask the Angular CLI to serve our
application, by running:

ng serve

This runs the Angular compiler, and builds and serves your Angular application
using the internal server that the Angular CLI has. You could use the build com‐
mand to generate the files to serve it for production as well. The command would
simply be:

ng build

This would by default generate all your compiled files in a folder called dist/. You can
then simply copy everything from this folder, put it on an HTTP server, and be off

259

and running. But it is not what you should be doing! The build that gets generated by
default is a suboptimal, overweight build that would make your production applica‐
tion slow to load and slow to run (comparatively, that is!). Angular allows you to
build an optimized version of your application, so let’s see how we might do that.

Production Build
The simplest thing we can do to create a better build for production is to use the prod
flag with the ng build command. Simply, you can run:

ng build --prod

This does a few things of note:

Bundling
When we write our code, we like to keep it in nice, disparate files to make it eas‐
ier to read, manage, and update. But for the end browser, loading 1,000 files is
not as efficient as loading, say, 4 or 5 files. Angular CLI bundles all the applica‐
tion and library files into a few bundles to make it faster to load in the browser.
Note that bundling happens both with and without the --prod flag.

Minification
Spaces, indentation, and the like are useful for us developers, but the browser and
systems running the code don’t care. Minification is the process of removing all
unneeded spaces. The --prod does this for us, thus saving a few bytes of space in
the final build.

Uglification
The --prod flag uglifies the code as well, which is the process of replacing all
nice, readable variable and function names with a smaller, two or three character
name to save a few bytes. The overall code is much more efficient and smaller to
load.

AOT
We will talk about Ahead-of-Time (AOT) compilation in a little bit more detail in
the following section, but in a nutshell, AOT compilation allows us to further
reduce the size of code by dropping unused paths.

Run Angular in production mode
When we run Angular using ng serve (or build and run it without the prod
flag), the Angular library performs some checks each time it renders in the UI.
Think of these as training wheels, to ensure that the developer doesn’t end up
developing something that invalidates or goes against Angular’s patterns. These
checks can add up to a few precious milliseconds during each render, and thus it
is recommended that we turn these off in the final production build. The --prod
does this for you.

260 | Chapter 12: Productionizing an Angular App

Dead code elimination
There are times when you erroneously leave a module imported, or you haven’t
ended up using all of the functionality from a module. The build process removes
all unused code and unreferenced modules, thus dropping the bundle size
further.

At the end of this, you should have the files you need to deploy in the dist folder, each
with an individual hash based on the contents. This would be a pretty optimal build
that should be good in a majority of cases.

Ahead-of-Time (AOT) Compilation and Build Optimizer
We briefly mentioned Ahead-of-Time compilation in the previous section. This mode
has become enabled by default in any production build since the 1.5 version of the
Angular CLI.

Angular applications use what we call Just-in-Time (JIT) compilation, where the
application is compiled at runtime in the browser before running. This is also the
default when you run the Angular application using ng serve or ng build.

In production mode, Angular uses AOT for compilation, which means that Angular
compiles as much of the application as possible upfront. Thus, when the application is
served to the browser, it is already precompiled and optimal, thus allowing the
browser to quickly render and execute the application.

Furthermore, as part of the compilation process, all HTML templates and CSS are
inlined within the application bundle, thus saving asynchronous requests to load
them later.

There is also a significant reduction in the size of the built bundle, as the Angular
compiler, which constitutes almost half of the Angular library, can be omitted. The
compiler’s work, of checking templates, bindings, and the like, can now be done at
compile time, thus catching them earlier rather than after deploying the application.

Build Optimizer is a webpack plug-in that was introduced by the Angular team to
further optimize the bundle beyond what webpack is capable of. In particular, it focu‐
ses on removing some of the decorators and other code that is not relevant for the
final build. It only works with AOT, so you shouldn’t end up using it with non-AOT
builds. Since Angular CLI 1.5, this has been enabled by default whenever you do a
production build in Angular along with AOT.

There is a lot more to the AOT compiler, and the options it provides and how we can
modify and play around with it. You can read up on it in more detail in the official
Angular docs.

Building for Production | 261

https://angular.io/guide/aot-compiler
https://angular.io/guide/aot-compiler

Thus, unless there is a very strong reason (and there usually isn’t), leave the AOT
enabled when you generate the final build, which should give you as close to an opti‐
mal build with minimal additional work.

Base Href
One additional concern when building and deploying any Single-Page Application is
where it is served from. In cases where your application is served from the root
domain (say, www.mytestpage.com), the default should work.

In other cases though, where your application is served not from the root domain
(say, www.mytestpage.com/app or something similar), then it is important that we
update our <base> tag in the index.html.

The HTML base tag is responsible for setting the base path for all relative URLs in
our application. These include, but are not limited to, CSS/style files, our JavaScript
application and library files, images, and more.

Let’s take the case of serving an application from www.mytestpage.com/app, and see
how the base tag would impact this:

1. Let’s assume that we didn’t have a <base> tag, or the tag was <base href="/">. In
this case, when we have the script tag <script src="js/main.js">, then the
browser will make a request to www.mytestpage.com/js/main.js.

2. Now let’s assume that we had the following base tag: <base href="/app">. In
this case, when we have the script tag <script src="js/main.js">, then the
browser will make a request to www.mytestpage.com/app/js/main.js.

As you can clearly see, the second request is the correct one, and ensures that the nec‐
essary images and scripts are loaded correctly.

How does this play into our Angular application? When we build our Angular appli‐
cation using the Angular CLI, we can specify or overwrite the base href value. Con‐
tinuing our example from earlier, we could build our application as follows:

ng build --base-href /app/

This would ensure that the generated index.html has the correct base tag for your
deployment.

Deploying an Angular Application
There are a ton more options when building your Angular application for deploy‐
ment, and you can read up on all the options and their uses at the Angular CLI build
wiki.

262 | Chapter 12: Productionizing an Angular App

https://github.com/angular/angular-cli/wiki/build
https://github.com/angular/angular-cli/wiki/build

But for the purpose of deploying a mostly performant Angular application, the
options we just reviewed cover the majority of the use cases. At this point, you would
have a dist/ folder (unless you have overriden the default) with generated files. Each
generated file would also have a hash representing the contents.

At this point, you should be able to take the entire folder, drop it in to your frontend
server (be it nginx, Apache, or whatever), and start serving your Angular application.
As long as you serve the entire folder, and your base path (as we saw in the preceding
section) is set correctly, you should be off to the races. There are a few more concerns
that we will cover in the next section, from handling caching, deep-linking, and oth‐
ers, but this would be the base you will build off of.

Other Concerns
In the previous section, we saw the bare minimum it would take to drop a mostly
optimal build into our frontend server and have it start serving traffic. In this section,
we will go slightly deeper into specific concerns that we need to think about to ensure
better performance or proper functionality.

Caching
The first topic we will start with is caching. And in this section, we are particularly
talking about frontend code caching, not the API response caching. That is, how and
when should we cache our index.html, our JS files and CSS files, and how long should
they remain cached.

When we create our production builds, notice that our generated files (other than the
index.html) have a hash in the filename (like inline.62ca64ed6c08f96e698b.bundle.js).
This hash is generated based on the contents of the file, so if the content of the file
changes, the hash in the filename also changes! Also, our generated index.html explic‐
itly refers to these generated files and loads them as scripts or as styles.

This gives us a great mechanism now for caching these files on the browser. Our sim‐
ple rule of thumb for caching now becomes:

• We never cache our index.html file on the browser. This would mean setting the
Cache-Control header on your server just for the index.html to be set to no-
cache, no-store, must-revalidate. Note that this is only for the index.html file,
and not for all other files from your frontend server. The index.html file is tiny
anyway, and we can quickly revalidate it if needed.

• We always cache all other asset files, like our JavaScript bundles and our CSS files,
as long as possible. Again, because the asset filenames themselves will change, we
can be guaranteed that our noncached index.html will always load the correct

Other Concerns | 263

asset files. And those files can remain cached indefinitely. This ensures a great
second load performance, where all asset files can be served from the cache.

Now, let’s talk through a few potential user scenarios to make it clear how this caching
strategy handles them:

First load, new user
For the very first request from a fresh user, the browser first requests the
index.html from the server. The server returns it, after which the browser pro‐
cesses the index.html. Based on the files it then asks for, the browser makes
request for the styles and scripts from the server. Since it is the first request, none
of the data is cached, and all the required files are served by the server. Finally,
the app is up and running after all the files are loaded.

Second load, repeat user
The second time the user comes back to our application, the browser again
requests the index.html from the frontend server. This is because the index.html
has not been cached according to our Cache-Control headers. The frontend
server responds with the latest content for index.html, which has not changed.
Now, the browser looks at the script and style files it has to load, which has also
not changed. But these files are perpetually cached on the browser. Thus, the
browser doesn’t need to make server requests to load them, and instead loads
them from the local cache. Our app is now up and running immediately almost
as soon as the index.html finishes loading.

First load, new user, website updated
In case a new user visits after we have updated our website source code, the flow
followed is exactly the same as the first load case for a new user.

Second load, repeat user, website updated
In this case, the user had visited our website in the past, and has a cached version
of the styles and scripts on his browser. Now when we visit the website, after we
have pushed out a new update, the very first thing that happens will not change.
The browser will make a request for index.html from the frontend server. The
server will return the new version of the index.html that points to the new script
and style tags. Now when the browser tries to load these, it will realize that it
doesn’t have a cached version of the script and style tags (because the content-
hash in the filename has changed). It will again make a request to the server to
load all these files, and thus the flow becomes very similar to the first flow where
the user is visiting for the first time.

Thus, we can see that with this kind of caching mechanism, we get the best of both
worlds, which is ensuring that we cache as much as possible, without breaking the
user experience in case of pushing out updates to our web application.

264 | Chapter 12: Productionizing an Angular App

API/Server Calls and CORS
The second topic worth covering is how to set up your web application so that it can
make server calls successfully. The browser, for security reasons, prevents your web
application from making asynchronous calls outside of its domain (this includes sub-
domains as well). That is, your web application running on www.mytestpage.com can‐
not make an AJAX call to www.mytestapi.com, or even to api.mytestpage.com.

We get around this during development by using a proxy as part of the Angular CLI
(remember ng serve --proxy proxy.config.json?). The proxy ensured that our
requests were made to the same frontend server (and domain) serving our static files,
and it then was responsible to proxy the calls to the actual API server.

When we deploy our web application in production, you will also need to set up
something similar to this. That is, your frontend server will be the one getting the ini‐
tial API calls, and it then has to proxy those requests forward to the actual API server.

Your frontend server would end up behaving something like shown in Figure 12-1.

Figure 12-1. Simple end-to-end architecture for a web application

We have used NGINX as an example, but you could easily replace it with Apache or
IIS configuration, which does exactly the same. We simply route all requests to our
API server (/api/), and all others to our static files, which is our Angular application.

If you really can’t do this (for whatever reason), then there is a second option, which
again requires changes on your server. We can enable Cross-Origin Resource Sharing
(CORS) on our server, which can allow pages from different origins (read domains or
subdomains) to make requests, bypassing the browser security restrictions. It simply
requires the API server to respond with an additional header:

Access-Control-Allow-Origin: *

You can also restrict this header to allow only requests from certain origins, instead of
all origins like we have done here. Once you do this, then you can allow your web
application to directly make requests to the API server. You can learn more about
CORS here, and see how to configure it for your particular server here.

Other Concerns | 265

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://enable-cors.org/server.html

Different Environments
Another common requirement when building an application is having different con‐
figuration for different environments. For example, you might have different API
keys for your client-side tracking libraries, or you might even have different server
URLs to configure for test versus production.

In such cases, you can use the concept of environments in Angular. By default, when
you create a new Angular application using the Angular CLI, it creates an src/environ‐
ments folder, with one file per environment. By default, the Angular CLI makes the
properties available in the environment.ts file available across your application. But
you can override it by running Angular with:

ng serve --env=prod

When you run it like this, it uses the value passed to --env flag, and loads and makes
available the corresponding environments file. In this case, it would make the envi‐
ronment.prod.ts file available.

In your application, you can simply import the main environment file like so, and
Angular will ensure you get the correct properties based on the flag:

import { environment } from './environments/environment';

Handling Deep-Linking
The last thing to have a really complete web application is to support deep-linking.
We already saw how to enable routing for your Angular application in Chapter 11.
Once you deployed your Angular application, you might notice something weird or
annoying. When you navigate to the base route of your application, your frontend
server serves the index.html, and your application works. Any routes from that point
on work as you would expect it to. But if you try to directly link to a route within
your application, it might not.

This is due to how we have set up our frontend server to serve the static files neces‐
sary for the Angular application. Let’s take a closer look at what is happening here:

1. If you request for the base route, your frontend server translates that to serve the
index.html file. This also loads all the relevant scripts and CSS, and bootstraps
your Angular application.

2. After this, any link within your application is intercepted by Angular within the
browser, and Angular serves the relevant content for that route. So while the
route in your browser changes, it is actually not making a request to the server
for that new route. It behaves like a Single-Page Application should.

3. Now in the case that we want to directly open a certain route, when we enter that
route in the browser, the browser makes that request to our frontend server.

266 | Chapter 12: Productionizing an Angular App

Unless you have set up your frontend server configuration correctly, it is not
going to find any match for this URL (which is a frontend only route). Thus it
fails to serve and most often ends up serving the 404 page (or whatever you
might have configured).

To work around this, we need to set up our frontend server to serve requests as fol‐
lows, in order of priority:

1. Recognize all API requests, and proxy that to the actual backend server to serve
those requests. Keep API requests under a common path, so that you can proxy
all of them consistently and first (for example, always beginning API requests
with /api).

2. Match and serve any request that translates to a static file (say, a JS, CSS file, or
something like those).

3. Either serve all remaining requests with the index.html file, or match all frontend
routes (in addition to the base / route) with the index.html.

An easy way to do this with an NGINX server would be to use the try_files direc‐
tive to serve the index.html as a fallback in case a file with the path is not found.

Once you have set up your frontend server as described, then a deep-linked route will
end up matching the last category of requests, and the index.html will be served. Once
the index.html loads and Angular is bootstrapped, Angular then takes over for all fur‐
ther routing and loading necessary content based on the route in the browser.

Make sure your base tag is set up correctly so that the web page
knows where to load the static files and relative paths from. Other‐
wise, your Angular application will not work even if you have set
up your frontend server correctly.

You can look at the official Angular docs for an updated set of configurations that
works for different frontend servers. Configurations for NGINX, Apache, IIS, and
more are available there.

Lazy Loading
One more technique for a highly performant app, which we very briefly touched
upon in Chapter 11 when we were talking about routing in Angular, is lazy loading.
Once we introduced the concept of routing into our Angular applications, you might
have realized that not all of the routes are really necessary or need to be loaded.

So one common trick that we use to increase the performance and reduce the initial
load time is to try to load the bare minimum up front in the initial request, and defer

Other Concerns | 267

https://angular.io/guide/deployment#routed-apps-must-fallback-to-indexhtml

loading everything else to as and when it’s needed. We accomplish this by leveraging
the Angular routing and using what we call child routes.

The technique in a nutshell is as follows:

1. Instead of defining all our routes up front, we break up our application into
smaller modules, each with their routes defined in self-contained units.

2. The respective components are now registered at these submodule level only, and
not at the main application-level module.

3. We register all these routes as child routes in each individual module.
4. At the application level, we change our routing to instead point certain subpaths

at the new module, rather than the individual routes.

Now, when we run our application, Angular will load the bare minimal code up front,
and load the remaining modules as and when we navigate to those routes.

Let’s take our application from the previous chapter, and see how to convert it into a
lazy-loading application. You can use the code from chapter11/route-guards as the
base to convert into the lazy-loading application. Before we get into the nitty gritties,
let’s talk through the changes we will make:

• We will create two new modules, a UserModule and a StockModule. The UserMod
ule will hold the Login and Register components, and the routes for them. The
StockModule would hold the routes and components related to showing and cre‐
ating stocks. Note that for now, we will leave the services registered at the parent
level, though you could optimize further and split them into related modules
only.

• We will redefine our routes to have a nice parent path for all related and grouped
routes. So our login and register routes will move under a user parent path, and
the stock routes will move under a stock parent path. This also means that all
our redirects and navigation within the app will have to change to refer to the
new URLs.

• Finally, we will change the main AppModule and the routes to use lazy routing
and register only relevant components and services.

Let’s walk through these changes step by step, along with the respective code.

First, we will generate two new modules, along with their corresponding routing
module:

ng generate module stock --routing
ng generate module user --routing

This will generate the following four files:

268 | Chapter 12: Productionizing an Angular App

• src/app/stock/stock.module.ts
• src/app/stock/stock-routing.module.ts
• src/app/user/user.module.ts
• src/app/user/user-routing.module.ts

Now let’s see how we will modify each one to set up our application for lazy loading.
First, we’ll start with the user-routing.module.ts file:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { LoginComponent } from './login/login.component';
import { RegisterComponent } from './register/register.component';

const routes: Routes = [
 { path: 'login', component: LoginComponent },
 { path: 'register', component: RegisterComponent },
];

@NgModule({
 imports: [RouterModule.forChild(routes)],
 exports: [RouterModule]
})
export class UserRoutingModule { }

We simply add our two routes for login and register to the routes array. These have
been moved from the app-routes.module.ts file. Also, note one major difference. Pre‐
viously, whenever we registered our routes, we registered them as RouterModule.for
Root. Now we have started registering them as child routes. This is how Angular
differentiates between parent/root routes and child routes.

Our user.module.ts will also change as follows:

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';

import { LoginComponent } from './login/login.component';
import { RegisterComponent } from './register/register.component';

import { UserRoutingModule } from './user-routing.module';
import { FormsModule } from '@angular/forms';

@NgModule({
 imports: [
 CommonModule,
 FormsModule,
 UserRoutingModule
],
 declarations: [

Other Concerns | 269

 LoginComponent,
 RegisterComponent,
]
})
export class UserModule { }

We end up with a very simple UserModule, which just declares the two components:
LoginComponent and the RegisterComponent. Also note that we have imported the
FormsModule, because we use ngModel binding in the forms. We don’t define the serv‐
ices here, because we rely on them from the main AppModule instead.

Our changes to the stock-routing.module.ts file are also similar:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router';
import { StockListComponent } from './stock-list/stock-list.component';
import { AuthGuardService } from 'app/services/auth-guard.service';
import { CreateStockComponent }
 from './create-stock/create-stock.component';
import { CreateStockDeactivateGuardService }
 from 'app/services/create-stock-deactivate-guard.service';
import { StockDetailsComponent }
 from './stock-details/stock-details.component';
import { StockLoadResolverService }
 from 'app/services/stock-load-resolver.service';

const routes: Routes = [
 { path: 'list', component: StockListComponent,
 canActivate: [AuthGuardService] },
 { path: 'create', component: CreateStockComponent,
 canActivate: [AuthGuardService],
 canDeactivate: [CreateStockDeactivateGuardService] },
 { path: ':code', component: StockDetailsComponent,
 canActivate: [AuthGuardService],
 resolve: { stock: StockLoadResolverService } },
];

@NgModule({
 imports: [RouterModule.forChild(routes)],
 exports: [RouterModule]
})
export class StockRoutingModule { }

Very similar to the UserRoutingModule, we have simply moved the stock list, create,
and details routes to the StockRoutingModule. Do note that we dropped the prefix
from the paths and just kept it relative to the current module. Other than prefilling
the routes array, everything else is just the autogenerated code.

Our StockModule change is also trivial and straightforward:

import { NgModule } from '@angular/core';
import { CommonModule } from '@angular/common';

270 | Chapter 12: Productionizing an Angular App

import { StockItemComponent } from './stock-item/stock-item.component';
import { CreateStockComponent } from './create-stock/create-stock.component';
import { StockListComponent } from './stock-list/stock-list.component';
import { StockDetailsComponent } from './stock-details/stock-details.component';

import { StockRoutingModule } from './stock-routing.module';
import { FormsModule } from '@angular/forms';

@NgModule({
 imports: [
 CommonModule,
 FormsModule,
 StockRoutingModule
],
 declarations: [
 StockDetailsComponent,
 StockItemComponent,
 StockListComponent,
 CreateStockComponent,
]
})
export class StockModule { }

We import the FormsModule along with declaring all the stock-related components.
Now let’s take a look at the modified AppModule first before we go redefine the routes:

/** No major changes in imports, skipping for brevity **/

@NgModule({
 declarations: [
 AppComponent,
],
 imports: [
 BrowserModule,
 HttpClientModule,
 AppRoutesModule,
],
 providers: [
 StockService,
 UserService,
 UserStoreService,
 AuthGuardService,
 CreateStockDeactivateGuardService,
 StockLoadResolverService,
 {
 provide: HTTP_INTERCEPTORS,
 useClass: StockAppInterceptor,
 multi: true,
 }
],
 bootstrap: [AppComponent]

Other Concerns | 271

})
export class AppModule { }

The major change is the declarations array of the NgModule. All the components
that we moved into the child modules have been removed from the declarations in
the AppModule now. These components will now be loaded if necessary based on the
route.

Now we can finally move to the app-routes.module.ts file, which changes as follows:

/** Imports omitted for brevity **/

const appRoutes: Routes = [
 { path: '', redirectTo: 'user/login', pathMatch: 'full' },
 { path: 'stock', loadChildren: 'app/stock/stock.module#StockModule' },
 { path: 'user', loadChildren: 'app/user/user.module#UserModule' },
 { path: '**', redirectTo: 'user/register' }
];

@NgModule({
 imports: [
 RouterModule.forRoot(appRoutes),
],
 exports: [
 RouterModule
],
})
export class AppRoutesModule { }

The major change is again only restricted to the appRoutes array. Previously, we
defined all our routes in this one file. Now, we use the loadChildren key to tell Angu‐
lar that these routes are defined as part of a child module. This also means that our
login and register routes have changed from /login to /user/login and so on, and
similar for the stock routes. Make sure you make a pass through the entire applica‐
tion to fix all the routes changed, in particular the following files:

• register.component.ts to redirect after registering
• login.component.ts to redirect after login
• app.component.html to fix all the navigation links

Now, we can run our application (after making sure you start the Node.js server and
proxy to it). When you run it, open up the network inspector of your browser, and
see the requests getting made. Create/register a user, and then try logging in. Now if
you have the network inspector open, you should see something like Figure 12-2.

272 | Chapter 12: Productionizing an Angular App

Figure 12-2. Angular lazy loading at work

Notice the additional request to load stock.module.chunk.js when a login happens.
This is lazy loading the StockModule chunk once we log in.

You could extend this and configure it to your liking. You might choose to lazy load
only the StockModule, and always load the UserModule, or vice versa. It just adds one
more item in your toolbox to use to your liking.

The finished example that we created is available in the chapter12/lazy-loading folder
in the GitHub repository.

Lazy loading can really impact performance and speed up the initial load for a very
large application with lots of routes and code flows. It also makes a lot of sense when
there are routes you know most users will not load or open. And as we saw, it is pretty
straightforward to implement and add to your application.

Other Concerns | 273

Server-Side Rendering and Handling SEO
We will look at one last thing in terms of performance before we wrap up this section.
If we consider the life of the first request when we load any Angular (or any Single-
Page Application in general) app in our browser, it looks something like this:

1. A request is made with the base path to the server (say www.mytestpage.com).
2. The server serves the index.html file for that path.
3. The browser starts loading the index.html, and then for every static file it needs

(CSS, JS, etc.), it will make another request to the server for them.
4. Once all the content has been loaded, Angular will bootstrap, parse the route, and

load the necessary components.
5. The components will then make necessary server calls to fetch the data, and then

render them.

It is only at this point that the final view is rendered to the user. As you can see, there
are multiple hops back-and-forth between the client and the server before this view is
rendered. Of course, for future routes and navigation, it is only the component and
its calls that happen, so the first few hops are skipped in a Single-Page Application for
further routes.

This back-and-forth nature also makes it difficult to handle when it comes to search
engine optimization, as most search engine crawlers will not actually render and exe‐
cute JavaScript when they try to crawl web pages (for various security reasons). Thus,
more often than not, deep links and routes in a Single-Page Application also do not
get indexed properly. One option to solve this is to use something like Pre-render,
which can render the web application in PhantomJS on the server, and serve the fully
rendered HTML for search engines to index.

But with Angular, there is another option: rendering the application server-side. We
accomplish this using something known as Angular Universal. With this approach,
we render the Angular application for serving the initial request on the server itself,
and then let Angular bootstrap and take over for the remaining application on the
client-side. Thus, we get the best of both worlds, where the initial request does not
have the usual back-and-forth, and future requests behave like a Single-Page Applica‐
tion. It also helps in reducing the perceived latency, as the user immediately gets the
information he needs while the remaining libraries and framework load.

In this section, we won’t go too much into the details of exactly how Angular accom‐
plishes this, but rather focus on what it takes for us to integrate and get it working.
Let’s see how we might take the Angular application we have been working on so far
and make it into an Angular Universal application that can seamlessly run on both
client and server.

274 | Chapter 12: Productionizing an Angular App

https://github.com/prerender/prerender
https://angular.io/guide/universal#angular-universal-server-side-rendering

Angular Universal is in its infancy, so expect to face lots of trouble
as you go about integrating it, especially when it comes to working
with third-party libraries and components. Even the online guides
and tutorials will often be out-of-date, incomplete, or not working
as the work is still in progress and prone to sudden changes.

We will again use the codebase from chapter11/routing-guard as the base, and add
server-side rendering capability to it. There are fundamentally five new files we will
need to add to get Angular Universal working:

• A bootstrapper for the server app (main.server.ts)
• TypeScript configuration for our server (tsconfig.server.json)
• An application module for our server-side app (app.server.module.ts)
• An express web server to serve our application code (server.ts)
• Webpack server configuration to define how the build happens (web‐

pack.server.config.js)

In addition, we will be making changes to a few other files as we go along.

Dependencies
To get started, we will rely on a few Angular platform libraries and frameworks. We
will need to install the following npm packages:

@angular/platform-server
These provide the Angular server-side components to run and render our appli‐
cation code on the server.

@nguniversal/module-map-ngfactory-loader
In case we use lazy loading for routes, we use the factory loader to lazy load
routes in the context of a server-side render.

@nguniversal/express-engine
An express engine to integrate with Angular Universal and render our applica‐
tion.

ts-loader
TypeScript loader to transpile our server-side application into JavaScript and run
it using Node.js.

You can install all of these using the following command:

npm install --save @angular/platform-server
 @nguniversal/module-map-ngfactory-loader
 ts-loader@3.5.0 @nguniversal/express-engine

Other Concerns | 275

This will install and save all of these dependencies to your package.json. Note that we
have installed a specific version of the ts-loader, because of a bug with the library
and how it interacts with our Angular Universal application.

Making the changes

The first thing we will do is modify the AppModule to have the capability to hook into
a rendered server-side Angular application. We accomplish this by replacing the
BrowserModule import in src/app/app.module.ts with the following line:

BrowserModule.withServerTransition({ appId: 'stock-app' }),

The appId is just for reference and a keyword for Angular to use when it renders
server-side styles and the like. You can replace it with anything of your choice. We
can also get runtime information about the current platform (whether Angular is
running on the server or the client) and the appId through Angular as well. We can
add the following constructor to the AppModule:

import { NgModule, Inject, PLATFORM_ID, APP_ID } from '@angular/core';
import { isPlatformBrowser, APP_BASE_HREF } from '@angular/common';

@NgModule({
/** Skipped for brevity */
 providers: [
 /* Skipping common ones for brevity */
 {provide: APP_BASE_HREF, useValue: ''}
]
})
export class AppModule {

 constructor(
 @Inject(PLATFORM_ID) private platformId: Object,
 @Inject(APP_ID) private appId: string) {
 const platform = isPlatformBrowser(platformId) ?
 'in the browser' : 'on the server';
 console.log(`Running ${platform} with appId=${appId}`);
 }
}

isPlatformBrowser is a useful check that you can use in other contexts as well, to
selectively enable/disable certain flows and features in your application. There might
be preloading, caching, and other flows you might want to keep only for the browser,
and you can use isPlatformBrowser for this.

The next major change is to the URLs to which we make HTTP calls. In the browser,
relative URLs are fine. But in a Universal app, especially on the server side, the HTTP
URLs must be absolute for Angular Universal to be able to resolve them correctly.
One trick (which we will do here) is to use the APP_BASE_HREF token, which we can
inject into our services. In the context of our browser, this will be what we have

276 | Chapter 12: Productionizing an Angular App

https://github.com/angular/angular-cli/issues/9783

defined it to be, and in the server, it will have the entire URL. Another way to do it
might be to again use isPlatformBrowser to check and change the URL. So in our
browser-specific flow, we set the value of APP_BASE_HREF in the main module to be an
empty string.

We will use the APP_BASE_HREF trick in the stock.service.ts file as follows:

import { Injectable, Optional, Inject } from '@angular/core';
import { APP_BASE_HREF } from '@angular/common';

/** Remaining imports skipped for brevity */

@Injectable()
export class StockService {

 private baseUrl: string;

 constructor(private http: HttpClient,
 private userStore: UserStoreService,
 @Optional() @Inject(APP_BASE_HREF) origin: string) {
 this.baseUrl = `${origin}/api/stock`;
 }

 getStocks() : Observable<Stock[]> {
 return this.http.get<Stock[]>(this.baseUrl);
 }

 /** Remaining skipped for brevity */
}

We would make the same change in the user.service.ts file as well, which we are skip‐
ping for brevity. You can always look up the changes in the finished example if you
are unsure.

Additions for the server side
Next, we will look at some of the additions we need to do on the server side for the
application to actually run. We will first start with a parallel AppServerModule (cre‐
ated as src/app/app.server.module.ts) to the AppModule, which will be used by the
server:

import { NgModule } from '@angular/core';
import { ServerModule } from '@angular/platform-server';
import { ModuleMapLoaderModule } from '@nguniversal/module-map-ngfactory-loader';

import { AppModule } from './app.module';
import { AppComponent } from './app.component';
import { APP_BASE_HREF } from '@angular/common';

@NgModule({
 imports: [

Other Concerns | 277

 AppModule,
 ServerModule,
 ModuleMapLoaderModule
],
 providers: [
 // Add universal-only providers here
 {provide: APP_BASE_HREF, useValue: 'http://localhost:4000/'}
],
 bootstrap: [AppComponent],
})
export class AppServerModule {}

Notice that we import the original AppModule into our AppServerModule, and then
add the ServerModule from Angular along with the ModuleMapLoaderModule to han‐
dle any lazy-loaded routes. We still bootstrap the AppComponent. We would set up any
Universal-specific providers in the providers section, which would be for services
that are only server-specific. In this case, we ensure that the value of APP_BASE_HREF
is provided with an absolute path so that our server can actually make the correct
requests.

We would also create a parallel main.server.ts that will be responsible as the entry
point for our server-side Angular application, which would be very straightforward.
Create it as src/main.server.ts with the following content:

export { AppServerModule } from './app/app.server.module';

Now we are ready to create our server. For the purpose of this example, we will use a
Node.js express server, for which Angular Universal has out-of-the-box integration
support. It is not necessary to understand the depths of this server code. Create a
server.ts file in the main root folder of the application with the following content:

// These are important and needed before anything else
import 'zone.js/dist/zone-node';
import 'reflect-metadata';

import { enableProdMode } from '@angular/core';

import * as express from 'express';
import { join } from 'path';

import * as proxy from 'http-proxy-middleware';

// Faster server renders w/ Prod mode (dev mode never needed)
enableProdMode();

// Express server
const app = express();

const PORT = process.env.PORT || 4000;

278 | Chapter 12: Productionizing an Angular App

const DIST_FOLDER = join(process.cwd(), 'dist');

// * NOTE :: leave this as require() since this file
// is built Dynamically from webpack
const { AppServerModuleNgFactory, LAZY_MODULE_MAP } =
 require('./dist/server/main.bundle');

// Express Engine
import { ngExpressEngine } from '@nguniversal/express-engine';
// Import module map for lazy loading
import { provideModuleMap } from '@nguniversal/module-map-ngfactory-loader';

app.engine('html', ngExpressEngine({
 bootstrap: AppServerModuleNgFactory,
 providers: [
 provideModuleMap(LAZY_MODULE_MAP)
]
}));

app.set('view engine', 'html');
app.set('views', join(DIST_FOLDER, 'browser'));

app.use('/api', proxy({
 target: 'http://localhost:3000',
 changeOrigin: true
}));

// Server static files from /browser
app.get('*.*', express.static(join(DIST_FOLDER, 'browser')));

// All regular routes use the Universal engine
app.get('*', (req, res) => {
 res.render(join(DIST_FOLDER, 'browser', 'index.html'), { req });
});

// Start up the Node server
app.listen(PORT, () => {
 console.log(`Node server listening on http://localhost:${PORT}`);
});

The preceding server is a very simplistic, insecure web server that serves your Angu‐
lar application, but after rendering it on the server side. Again, add your security and
authorization checks before you take it to production.

Other Concerns | 279

We make a few assumptions so that the whole process is easier for us. Primarily:

• The server uses the ngExpressEngine to convert all client requests into a server-
rendered page. We pass it the AppServerModule that we wrote, which acts as the
bridge between the server-side rendered application and our web application.

• We need to figure out what requests are for data, which are for static files, and
which are Angular routes.

• We expect all /api/* routes to be API/data routes, and the work to handle that if
left incomplete.

• We also expect that any request with an extension (say, .js or .css) will be for a
static file, and serve that as a static file from a predefined folder.

• Finally, any request without an extension is then treated as an Angular route, and
uses the ngExpressEngine to render the Angular server-side rendered page.

Configuration
Finally, we get to the configuration that pulls all of these together. The first thing is to
write a configuration for TypeScript, which we can add as src/tsconfig.server.json with
the following content:

{
 "extends": "../tsconfig.json",
 "compilerOptions": {
 "outDir": "../out-tsc/app",
 "baseUrl": "./",
 "module": "commonjs",
 "types": []
 },
 "exclude": [
 "test.ts",
 "**/*.spec.ts"
],
 "angularCompilerOptions": {
 "entryModule": "app/app.server.module#AppServerModule"
 }
}

We extend the existing tsconfig.json, and point it to our new AppServerModule as the
entry module. Also, the module must be set to commonjs for the Angular Universal
application to work.

Next, we need the Webpack configuration for our server to compile and work. We
add it as webpack.server.config.js at the root folder level, with the following content:

const path = require('path');
const webpack = require('webpack');

280 | Chapter 12: Productionizing an Angular App

module.exports = {
 entry: { server: './server.ts' },
 resolve: { extensions: ['.js', '.ts'] },
 target: 'node',
 // this makes sure we include node_modules and other third-party libraries
 externals: [/(node_modules|main\..*\.js)/],
 output: {
 path: path.join(__dirname, 'dist'),
 filename: '[name].js'
 },
 module: {
 rules: [{ test: /\.ts$/, loader: 'ts-loader' }]
 },
 plugins: [
 new webpack.ContextReplacementPlugin(
 /(.+)?angular(\\|\/)core(.+)?/,
 path.join(__dirname, 'src'), // location of your src
 {} // a map of your routes
),
 new webpack.ContextReplacementPlugin(
 /(.+)?express(\\|\/)(.+)?/,
 path.join(__dirname, 'src'),
 {}
)
]
};

This is mainly so that our Node.js server.ts compiles into executable JavaScript code,
with some fixes for some bugs in the Angular CLI. It also hooks up the ts-loader
plug-in we installed so that it can convert our TypeScript into JavaScript correctly.

We also need to make a small change to the Angular CLI configuration JSON file
(.angular-cli.json) to make sure it outputs our application code correctly based on the
platform. Add the following configuration as another entry into the apps array:

{
 "platform": "server",
 "root": "src",
 "outDir": "dist/server",
 "assets": [],
 "index": "index.html",
 "main": "main.server.ts",
 "polyfills": "polyfills.ts",
 "test": "test.ts",
 "tsconfig": "tsconfig.server.json",
 "testTsconfig": "tsconfig.spec.json",
 "prefix": "app",
 "styles": [
 "styles.css"
],
 "scripts": [],
 "environmentSource": "environments/environment.ts",

Other Concerns | 281

 "environments": {
 "dev": "environments/environment.ts",
 "prod": "environments/environment.prod.ts"
 }
}

While you are at it, also change the existing entry and change the outDir from dist
to dist/browser. Your combined apps array in .angular-cli.json should look some‐
thing like this:

"apps": [
 {
 "root": "src",
 "outDir": "dist/browser",
 "assets": [
 "assets",
 "favicon.ico"
],
 "index": "index.html",
 "main": "main.ts",
 "polyfills": "polyfills.ts",
 "test": "test.ts",
 "tsconfig": "tsconfig.app.json",
 "testTsconfig": "tsconfig.spec.json",
 "prefix": "app",
 "styles": [
 "styles.css"
],
 "scripts": [],
 "environmentSource": "environments/environment.ts",
 "environments": {
 "dev": "environments/environment.ts",
 "prod": "environments/environment.prod.ts"
 }
 }, {
 "platform": "server",
 "root": "src",
 "outDir": "dist/server",
 "assets": [],
 "index": "index.html",
 "main": "main.server.ts",
 "polyfills": "polyfills.ts",
 "test": "test.ts",
 "tsconfig": "tsconfig.server.json",
 "testTsconfig": "tsconfig.spec.json",
 "prefix": "app",
 "styles": [
 "styles.css"
],
 "scripts": [],
 "environmentSource": "environments/environment.ts",
 "environments": {

282 | Chapter 12: Productionizing an Angular App

 "dev": "environments/environment.ts",
 "prod": "environments/environment.prod.ts"
 }
 }
],

Once we do this, we can now finally add the executable scripts to our package.json.
Add the following commands to the scripts section in your package.json:

"build:universal":
 "npm run build:client-and-server-bundles && npm run webpack:server",
"serve:universal": "node dist/server.js",
"webpack:server": "webpack --config webpack.server.config.js --progress --colors"

At this point, we should now be ready to run our Angular Universal application.

Running Angular Universal
Building our Angular Universal application is now as simple as executing:

npm run build:universal

This runs and generates the build for both our server- and browser-side Angular
applications. It creates two folders in our dist folder, one each for browser and for
server.

Now we can run our Angular application as:

npm run serve:universal

This should now start your application, and allow you to hit the application at http://
localhost:4000.

When you open the URL in your browser, open the Network Inspector and look at
the requests being made and the responses. In particular, notice the very first request.
With a normal Angular application, you would see the barebones index.html being
served, which would then load all the relevant source code and trigger Angular.

In this case though, you would see that the very first request itself comes with the
route content preloaded, and the template HTML also loaded. It is then that the rest
of Angular triggers and starts working in the background. This becomes even more
apparent if you throttle the speed to 3G or below, to see the difference in perceived
latency in an Angular Universal application versus a normal Angular application.

The finished code for this application is available in the chapter12/server-side-
rendering folder in the GitHub repository.

Conclusion
This brings us to the end of our journey of learning Angular, step by step. In this
chapter in particular, we covered what it takes to bring the Angular application you

Conclusion | 283

have been building so far to production. We covered all the steps from building to
deploying, and then went in-depth into various concerns for performance, from
caching to prerendering. We also touched upon lazy loading and saw how simple it is
to take an Angular application and move it to lazy load certain sections of your
application.

That said, we have just begun to scratch the surface of Angular. There are tons of
things in Angular itself that we didn’t cover in this book, from creating directives and
pipes, to advanced concepts. But what we have done is build a solid base for you to
build from, and covered about 80%–90% of the common tasks you will have in build‐
ing any application. From here, you should be able to build pretty complex things,
and leverage the official documentation to see you the rest of the way through.

284 | Chapter 12: Productionizing an Angular App

Index

Symbols
(pound sign), prefacing template reference

variables, 113
$event variable, 100, 102
() (parentheses), event binding syntax, 27, 30
* (asterisk), beginning structural directives, 42
@Component decorator, 54
@Injectable decorator, 151
@NgModule TypeScript annotation, 13
[(ngModel)] banana-in-a-box syntax, 103
[] (square brackets), property binding syntax,

24, 30
{{ }} (double curly braces), interpolation syntax,

16, 21
replacing in components, 60

A
Access-Control-Allow-Origin: header, 265
ActivatedRoute, 239, 241

snapshot, 245
subscribing to changes on data element, 255

AfterContentChecked interface, 73
AfterContentInit interface, 73
AfterViewChecked interface, 73
AfterViewInit interface, 73
ahead-of-time (AOT) compilation, 260

and Build Optimizer, 261
Angular

advantages of, 2
and AngularJS, 1
core fundamentals, xi
shift to property and event binding, 30
starting a project, 7
testing utilities, 83

versioning and upgrades, 2
Angular services, 147-173

about, 147
creating, 148-166

Angular and dependency injection,
160-166

examining the code, 148-158
introduction to dependency injection,

158
moving to asynchronous operation, 167-172
service dependencies and interceptors, 199
unit testing, 209-228

async services, 219-222
HTTP calls, 222-227
testing components with a service

dependency, 213-218
Angular Universal, 274

caveats, 275
files needed to make it work, 275
running, 283

animations, controlling for components, 60
annotations, 14
API/server calls, 265
AppComponent (example), 14
applications (Angular)

basics of, 11-16
creating on the CLI, 7

AppRoutesModule, 231
APP_BASE_HREF, setting value, 277, 278
as operator, 202
async utility function, 91, 220

fakeAsync function vs., 221
asynchronous operations in services, 167-172

testing, 219-222

285

asynchronous vs. synchronous forms, 124
AsyncPipe, 200

caution with, 202
attribute directives, 35

built-in, 36-42
alternative class and style binding syn‐

tax, 41
NgClass, 36-39
NgStyle, 40-41

attributes, case sensitive, 64
authenticated-only routes, 248-250

B
banana-in-a-box syntax [()], 103
base HTML tag, 262, 267
beforeEach function, 91, 210
behavior-driven development (BDD) frame‐

works, 82
bootstrap array, 14
Build Optimizer, 261
bundling app and library files, 260

C
caching, 263
CanActivate interface, 248
canActivate method, 248
CanDeactivate guard, 250-253
case-sensitive attributes, 64
change detection for components, 67-71
changeDetection attribute, 60
ChangeDetectionStrategy.Default, 60, 67
ChangeDetectionStrategy.OnPush, 60, 67
child routes, 269
circular dependency, 199
class member variables, declaring in compo‐

nent creation, 20
classes

CSS
alternative class binding syntax, 41
applying/removing with NgClass direc‐

tive, 36-39
documentation on TypeScript classes, 31
generating TypeScript class on CLI, 31

cloning HttpRequest, 198
code examples from this book, xiii

getting the codebase, 5
cold vs. hot observables, 201
command-line interface (CLI), 4

Angular CLI build wiki, 262

Angular CLI configuration JSON file, 281
generating a skeleton class on, 31
generating components and other Angular

elements, 16
running an application on, 9
running unit tests from, 87
understanding, 8

components, 53-80
about, 53
and modules, 61
Angular service sharing data between, 157
component class, 15
creating, 16-19

steps in, 16
data binding, 19-22
defining, 54-61

other attributes, 59
selector, 54
style encapsulation, 58
styles, 56
template, 55

directives and, 35
event binding, 25-30
input, 62
input and output, change detection, 67-71
lifecycle, 71-77

interfaces and functions, 72-77
output, 64
property binding, 22-25
testing (see testing)
testing components with a service depend‐

ency, 213-218
testing with a fake service, 216
testing with a mock service, 214
testing with a real service, 213

using interfaces for cleaner code, 30-32
using our new component, 18
view projection, 77-78

comprehensive framework (Angular), 2
control state

in reactive forms, 133
in template-driven forms, 108-112

control validity
in reactive forms, 133
in template-driven forms, 112-118

Cross-Origin Resource Sharing (CORS), 265
CSS, 8

alternative class and style binding syntax, 41
and Angular applications, 21

286 | Index

app-selector, 15
app.component.css file, 235
caching CSS files in Angular applications,

263
classes for control state, 109, 133
classes, applying/removing with NgClass

directive, 36-39
scoping with shadow DOM, 58
selector for components, 54
styles/properties, manipulating with NgStyle

directive, 40-41
styleUrls for templates, 15

custom components, 2

D
data binding, 2

Angular form with, 107
component title, 16
in components (example), 19-22
two-way, with ngModel, 98
using form control binding instead of

ngModel, 126
data model in reactive forms, 135-139
deactivation of a route, preventing, 250-253
declarations, 14

adding new components to declarations
array, 18

components used within modules, 61
declarations attribute, 61
decorators (TypeScript), 14
deep-linking, handling in production apps, 266
default path (for routes), 236
dependencies

for server-side rendering and SEO, 275
handling service dependencies in unit test‐

ing, 213
service dependencies and interceptors, 199

dependency injection, 2
Angular dependency injection system,

160-166
Injectable decorator and, 151
introduction to, 158

deploying Angular applications, 262
development environment

getting started with, 3
Angular CLI, 4
codebase, getting, 5
Node.js, 3
TypeScript, 3

development mode, running application in, 9
directives, 35-52, 53

and components, 35
built-in attribute directives, 36-42

alternative class and style binding syn‐
tax, 41

NgClass, 36-39
NgStyle, 40-41

built-in structural directives, 42-51
multiple sibling, 51
NgFor, 45-49
NgIf, 44-45
NgSwitchCase and NgSwitchDefault, 50

DoCheck interface, 73
DOM

binding DOM properties, 22-25
shadow DOM, 58

E
encapsulation attribute, Component decorator,

58
environments, 266
error handling, HTTP calls, 182
error messages, adding to reactive forms, 133
event binding, 25-30

input event binding in template-driven
forms, 100

ngModelChange, 102
registering for events in components, 64
using in template-driven forms, 99

EventEmitter, 180
registering as output from a component, 64

exportAs attribute, 60
exporting components, 60
exports attribute, 61

F
fakeAsync function vs. async function, 221
falsy values in JavaScript, 37
fixture instance, 91
fixture.debugElement function, 92
fixture.detectChanges function, 92, 94
FormArrays, 139-145
FormBuilders, using in reactive forms, 131
FormControls (reactive forms), 124-128

checking control state, 135
FormGroups

using in reactive forms, 128-131, 132

Index | 287

adding to/removing from FormArrays,
141

using in template-driven forms, 118-120
forms, 97

(see also reactive forms; template-driven
forms)

Create Stock Form (example), 155
FormsModule, importing, 98
forRoot method, 232
frameworks

advantages of using, xi
for testing, 82

G
GET/POST calls (HTTP), making, 177-183
Git repository for this book, 5

H
headers (HTTP), sending with request, 184
hierarchical dependency injection, 160
hooks in component lifecycle, 20
hot vs. cold observables, 201
HTML

and case-sensitive attributes, 64
native form validation from, 108
scoping with shadow DOM, 58

HTML attributes vs. DOM properties, 24
HTML elements, removing vs. hiding, 44
HTTP calls in Angular, 175-208

advanced HTTP, 183-199
interceptors, 191-199
options, headers/params, 184-185
options, observe/response type, 186-191

advanced observables, 199-206
HttpClient, 175-183

server setup, 176
making GET/POST calls, 177-183
unit testing, 222-227
using HttPClientModule, 176

http service (deprecated), 176
httpBackend, 227
httpBackend.expectOne, 227
HttpClient

introduction to, 175-183
service dependencies and interceptors, 199

httpClient.get, httpClient.post, and
httpClient.patch, 178

HttpClientModule, 224
HttpClientTestingModule, 225

HttpHandler, 195
HttpHeaders object, 185
HttpInterceptor interface, 194
HttpParams class, 185
HttpRequest, 195, 227

immutability of, 198
HttpResponse, 182

immutability of, 198
HttpService, 159
HttpTestingController, 224

I
imports, 14
imports attribute, 61
index.html file, 12

caching, 263
inject function, 210
injector, getting services from, 218
inline styles, 8
Input decorator, 62
input element

in reactive forms, 126
in template-driven forms, 100

intercept method, 194
interceptors, 191-199

creating, 194
service dependencies and, 199

interfaces
in component lifecycle, 72-77
using for cleaner code, 30-32

interpolation, 21
controlling in components, 60

isPlatformBrowser, 276

J
Jasmine, 82

matchers, documentation on, 87
spies, using to spy on a service, 216
writing unit test with, 85

JavaScript, x
caching JS files in Angular applications, 263
translation of TypeScript code to, 11
truthy and falsy values in, 37

just-in-time (JIT) compilation, 261

K
Karma, 83

Angular tests running via, in Chrome, 88

288 | Index

configuration, 84
debugging tests using Chrome, 95
running service tests in, 213

L
lazy loading, 267-273
lifecycle hooks for components, 20
LoginComponent, 242, 244

M
main.server.ts file, 278
main.ts file, 12
matchers (Jasmine), 87
message, displaying to user on stock creation,

155
minification in production builds, 260
modules

components and, 61
issues using a component, checking config‐

uration for, 62

N
navigate method (router), 241
ng build --prod command, 260
ng g guard guards/auth command, 248
ng g service services/message --module=app

command, 160
ng generate component stock/stock-item com‐

mand, 16
ng generate module app-routes --flat --

module=app command, 231
ng help command, 8
ng new command, arguments, 8
ng serve --proxy proxy.config.json command,

265
ng serve command, 9
ng test command, 87
ng-content element, 77
ng-dirty class, 111, 133
ng-invalid class, 111, 133
ng-pristine class, 111, 133
ng-untouched and ng-touched classes, 111, 133
ng-valid class, 111, 133
ngAfterContentChecked function, 73
ngAfterContentInit function, 73
ngAfterViewChecked function, 73
ngAfterViewInit function, 73
NgClass directive, 36-39

ngDoCheck function, 73
ngExpressEngine, 280
NgFor directive, 45-49

running NgIf with, 51
using to generate select options in form, 108

ngForm object, 114
NgForOf class, 45
NgIf directive, 44-45

running with NgFor, 51
ngModel directive, 98

expanded syntax, use of, 103
two-way data binding in template-driven

forms, 102
using event and property binding instead of,

99
ngModelChange event binding, 102
ngModelGroup directive, 120
NgModule, attributes affecting components, 61
ngOnChanges function, 72
ngOnDestroy function, 73
ngOnInit function, 20, 72, 87
NgStyle directive, 40-41
ngSubmit event handler, 106, 130
NgSwitch directive, 50
NgSwitchCase directive, 50
NgSwitchDefault directive, 50
ngValue directive, 108
Node.js server, 176
Node.js, installing, 3
NPM, 3

scoped packages, 4

O
Observable.do operator, 197
Observable.of operator, 169
observables, 167-172, 177

advanced operations with, 199-206
cold vs. hot observables, 201
importing from RxJS library, 169
subscribing to, 171
subscription to, using instead of Activated‐

Route snapshot, 246
observe property, options parameter, 186
OnChanges interface, 72
OnDestroy interface, 73
one-way data binding, 22
OnInit hook, 20
OnInit interface, 72

implementing, 20

Index | 289

onSubmit method, 126, 139
options object, HTTP headers and parameters,

184-185
options parameter, observe/response type,

186-191
Output decorator, 64

P
packages, naming convention for, 4
parameters (HTTP queries), sending, 184
paramMap, 239
parent/root routes and child routes, 269
PATCH call (HTTP), making, 178
path (for routes), 232, 236
pathMatch key, 237
Pipe, using in ngFor expression, 172
POST calls (HTTP), making, 177-183
Pre-render, 274
prefix value (pathMatch), 237
prefixing components, 8
preserveWhitespaces attribute, 59
production mode

running Angular in, 260
running application in, 9

productionizing Angular apps, 259-283
API/server calls and CORS, 265
building for production, 259-263

ahead-of-time compilation and Build
Optimizer, 261

base href tag, 262
deploying applications, 262
ng build --prod command on CLI, 260

caching, 263
configurations for different environments,

266
handling deep-linking, 266
lazy loading, 267-273
server-side rendering and handling SEO,

274-283
additions for the server side, 277
configuration, 280
dependencies, 275
making changes to the code, 276
running Angular Universal, 283

promises, converting observables to, 201
property binding, 22-25

Angular shift to, 30
class property (example), 32
using in template-driven forms, 99

value property of input element, 100
Protractor, 83
providers, 218

providers array in Angular modules, 153
Universal-specific, 278

proxy server, setting up, 183, 265

Q
queryParams object, 244, 247

R
reactive forms, 123-145

differences from template-driven forms, 124
form controls, 124-128
FormArrays, 139-145
FormBuilders, 131
handling form data, 132-139

control state, validity, and error mes‐
sages, 133-135

form and data model, 135-139
reactive programming, 123
ReactiveFormsModule, importing, 125
RegisterComponent, 240
resolve method, 254
Resolver, preloading data with, 253-255
responseType property, options parameter, 186
root component, 12

AppComponent (example), 14
Router object, 241

injecting into LoginComponent and using
for redirect, 242

navigate method, 241, 244
routerLink directive, 235, 243
routerLinkActive directive, 235, 243
RouterModule, importing and setting up, 231
RouterOutlet directive, 233
routing, 229-257

common tasks in, 238-247
navigating in your application, 240
optional route params, 244
required route params, 238

directly linking to routes within an applica‐
tion, 266

in lazy loading applications, 268-273, 278
route guards, 247-255

authenticated-only routes, 248-250
preloading data using Resolver, 253-255
preventing unload, 250-253

setting up Angular routing, 229-238

290 | Index

displaying route contents, 233
importing RouterModule, 230
navigating within the application,

234-235
server setup, 229
starting codebase, 230
wildcards and defaults, 236-238

routing modules, generating with ng new com‐
mand, 8

running applications, 9

S
scoped packages (NPM), 4
scripts section in package.json, 283
search engine optimization (SEO), 274-283
search-as-you-type application (example),

199-206
select menu, template-driven form, 108
selector attribute, components, 54
server-side rendering and handling SEO,

274-283
additions for the server side, 277
configuration, 280
dependencies, 275
making changes to the code, 276
running Angular Universal, 283

server.ts file, 278
servers

API/server calls in production apps, 265
setting up frontend server to serve requests

by priority, 267
setup for Angular routing, 229
setup for HTTP server, 176

service providers (see providers)
services, 147

(see also Angular services)
providing an instance of, 218

shadow DOM, 58
Single-Page Applications (SPAs), 1
snapshot (ActivatedRoute), 245
specifications (.spec.ts files), 85, 210
stock-item, generating, 16
structural directives, 35, 42-51

multiple sibling directives, 51
NgFor, 45-49
NgIf, 44-45
NgSwitchCase and NgSwitchDefault, 50

style binding
alternative syntax for, 42

documentation on, 42
styles

defining for components, 56
encapsulation by Angular, 58

styles attribute, 56
styleUrls attribute, 15, 56
synchronous vs. asynchronous forms, 124

T
template attribute, 55
template reference variables, 113, 116
template-driven forms, 97-121

complete form (example), 104-108
control state, 108-112
control validity, 112-118
differences from reactive forms, 124
event and property binding as alternative to

ngModel, 99
setting up forms, 98
using ngModel for two-way data binding,

102
working with FormGroups, 118-120

templates, 8
for components, 55
multiline, defining with backtick operator,

56
stock service (example), 150

templateUrl attribute, 15, 55
TestBed, 91

configuring for service unit testing, 209
handling service dependencies in, 213

testing, 2, 81-96
benefits of unit tests, 81
component interactions, 92-94
debugging tests, 95
frameworks and libraries used for, 82
running the tests, 87
setup for, 83-85

Karma configuration, 84
test.ts file, 85

unit testing services, 209-228
asynchronous code, 219-222
HTTP calls, 222-227
initial setup, 209
StockService (example), 211
testing components with a service

dependency, 213-218
writing Angular-aware unit test, 89
writing isolated unit test, 85-87

Index | 291

testing utilities (Angular), 83, 91
trackBy option, NgFor directive, 48
truthy and falsy in JavaScript, 37
ts-loader, 275, 281
two-way data binding, 98
TypeScript

advantage of using, 3
declaring a parameter and property simulta‐

neously, 155
decorators, 14
installing, 4
translation of code into JavaScript, 11
tsconfig.server.json file, 280

U
uglification of code in production builds, 260
unit testing, 85

(see also testing)
benefits of, 81

URLs
base path for relative URLs in an applica‐

tion, 262
templateUrl, 55

V
validation of forms

control state in template-driven forms,
108-112

control validity in reactive forms, 133
control validity in template-driven forms,

112-118
validators in reactive forms, 130

view projection, 77-78
view providers, 60
ViewEncapsulation.Emulated, 58
ViewEncapsulation.Native, 58
ViewEncapsulation.None, 58

W
web application development, current state of, x
webpack.server.config.js file, 280
whenStabilize function, 220
whitespaces, stripping or preserving in compo‐

nents, 59
wildcards in path matches, 237

X
XHR calls, testing code with, 224

292 | Index

About the Author
Shyam Seshadri is the CTO at ReStok Ordering Solutions based out of India. He has
previously worked at both Amazon and Google as a software engineer, and headed
the engineering for Hopscotch, an ecommerce startup based out of Mumbai. He has
written two books on Angular, is a polyglot when it comes to programming lan‐
guages, and enjoys working full stack and developing innovative solutions.

Colophon
The animal on the cover of Angular: Up and Running is a tub gurnard (Chelidonich‐
thys lucerna). This fish is a bottom-dweller found around the Mediterranean and
Atlantic coasts of Europe and Africa. Gurnards are also known as sea robins because
the swimming motion of their fins resembles that of a flying bird (and one species,
Prionotus carolinus, has an orange belly). The gurnard makes a unique croaking or
grunting noise, generated by squeezing a muscle against its swim bladder—this sound
is commonly heard when they are caught by fishermen.

The tub gurnard is the largest gurnard species. It is primarily red in color, with a bony
armored head and large blue pectoral fins. These fins contain sensitive feeler-like
spines that help the fish explore the seabed for food, such as smaller fish, crustaceans,
and carrion.

In the past, the bony gurnards were often considered bycatch and discarded (or used
to bait lobster and crab traps). But as other marine species have become overfished,
gurnards are becoming more popular in the seafood industry. Their flesh is firm and
holds together well in soups and stews, such as the French bouillabaisse.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Meyers Kleines Lexicon. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

