
Stojanovic ● Simovic

T
he benefi ts of cloud-hosted serverless web apps are
undeniable: lower complexity, quicker time to market,
and easier scalability than traditional, server-dependent

designs. And thanks to JavaScript support in AWS Lambda
and powerful new serverless API tools like the Claudia.js
library, you can build and deploy serverless apps end to end
without learning a new language.

Serverless Applications with Node.js teaches you to design and
build serverless web apps on AWS using JavaScript, Node, and
Claudia.js. You’ll master the basics of writing AWS Lambda
functions, along with core serverless patterns like API Gate-
way. Along the way, you’ll practice your new skills by building
a working chatbot and a voice assistant with Amazon Alexa.
You’ll also discover techniques for migrating existing apps to a
serverless platform.

What’s Inside
● Authentication and database storage
● Asynchronous functions
● Interesting real-world examples
● Developing serverless microservices

For web developers comfortable with JavaScript and Node.js.

Slobodan Stojanovic and Aleksandar Simovic are AWS Serverless
Heroes and core contributors to the Claudia.js project. They
are also coauthors of Desolé, an open source serverless error-
tracking tool, and the lead developers of Claudia Bot Builder.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/serverless-applications-with-node-js

$44.99 / Can $59.99 [INCLUDING eBOOK]

Serverless Applications with Node.js

WEB DEVELOPMENT/CLOUD
Stojanovic

Simovic

M A N N I N G

Serverless Applications with Node.js

MANN I N G

“Teaches you how to get
simple stuff done in AWS
Lambda quickly, without

trying to change the way you
structure or run projects.”

—From the Foreword by
Gojko Adžić, Neuri Consulting

“A top-notch and hands-on
resource written by world-
renowned experts who will

get you up to speed in
no time with AWS Lambda

using Claudia.js.”
—Valentin Crettaz, Consulthys

“One of the most
comprehensive books

published on the topic;
contains a wealth of

resources that you will
not fi nd online.”—Damian Esteban, BetterPT

M A N N I N G

See first page

´´

Using AWS Lambda and Claudia.js´

´

´´

´

Slobodan Stojanovic
Aleksandar Simovic
Foreword by Gojko Adžic

´
´

MANN I NG
Shelter ISland

Serverless Applications
with Node.js

SLOBODAN STOJANOVIĆ

ALEKSANDAR SIMOVIĆ

For online information and ordering of this and other Manning books, please visit www.manning.com.
The publisher offers discounts on this book when ordered in quantity.

For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form
or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the
publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in the book, and Manning Publications was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books
we publish printed on acid- free paper, and we exert our best efforts to that end. Recognizing also our
responsibility to conserve the resources of our planet, Manning books are printed on paper that is at
least 15 percent recycled and processed without the use of elemental chlorine.

∞

 Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964

 Development editor: Toni Arritola
 Review editor: Ivan Martinović
 Project manager: Vincent Nordhaus
 Copy editor: Darren Meiss
 Proofreader: Sarah Boyer
 Technical proofreader: Valentin Crettaz
 Typesetter: Happenstance Type-O-Rama
 Cover designer: Marija Tudor

ISBN 9781617294723
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

iii

contents
foreword ix
preface xi
acknowledgments xiii
about this book xv
about the authors xix
about the cover illustration xx

Part 1 Serverless pizzeria1

1 Introduction to serverless with Claudia 3
 1.1 Servers and washing machines 4

 1.2 The core concepts 5

 1.3 How does serverless work? 6

 1.4 Serverless in practice 6
Aunt Maria’s serverless pizzeria 7 ■ A common
approach 7 ■ Serverless approach 9

 1.5 Serverless infrastructure — AWS 9

 1.6 What is Claudia, and how does it fit? 14

 1.7 When and where you should use it 16

iviv contents

 2 Building your first serverless API 19
 2.1 Assembling pizza ingredients: building the API 19

Which pizza can I GET? 22 ■ Structuring your
API 25 ■ POSTing an order 30

 2.2 How Claudia deploys your API 34

 2.3 Traffic control: How API Gateway works 35

 2.4 When a serverless API is not the solution 36

 2.5 Taste it! 37
Exercise 37 ■ Solution 37

 3 Asynchronous work is easy, we Promise() 42
 3.1 Storing the orders 43

 3.2 Promising to deliver in less than 30 minutes! 48

 3.3 Trying out your API 51

 3.4 Getting orders from the database 55

 3.5 Taste it! 57
Exercise 57 ■ Solution 58

 4 Pizza delivery: Connecting an external service 62
 4.1 Connecting to an external service 63

 4.2 Connecting to the delivery API 64
The Some Like It Hot Delivery API 64 ■ Creating your first
delivery request 65

 4.3 Potential issues with async communication 71
Forgetting to return a promise 72 ■ Not passing the value
from the promise 73 ■ Not wrapping the external service in a
promise 73 ■ Timeout issues with long async operations 74

 4.4 Taste it! 76
Exercise 76 ■ Solution 77

 5 Houston, we have a problem! 80
 5.1 Debugging a serverless app 81

 5.2 Debugging your Lambda function 82

 5.3 X-Ray your app 85

 5.4 Taste it! 88
Exercise 88 ■ Solution 88

 v vcontents

 6 Level up your API 90
 6.1 Serverless authentication and authorization 91

 6.2 Creating user and identity pools 94
Controlling API access with Cognito 97

 6.3 Taste it! 101
Exercise 101 ■ Solution 101

 7 Working with files 104
 7.1 Storing static files in a serverless application 104

 7.2 Generating thumbnails 108
Deploying your S3 function 114

 7.3 Taste it! 116
Exercise 116 ■ Solution 116

 7.4 End of part 1: Special exercise 118
Advanced task 118

Part 2 Let’s talk ... 121

 8 When pizza is one message away: Chatbots 123
 8.1 Pizza ordering beyond the browser 123

 8.2 Hello from Facebook Messenger 124

 8.3 What kinds of pizzas do you have? 128

 8.4 Speeding up the deployment 130

 8.5 Messenger templates 131

 8.6 How does Claudia Bot Builder work? 134

 8.7 Taste it! 136
Exercise 136 ■ Solution 136

 9 Typing... Async and delayed responses 138
 9.1 Making chatbots interactive 139

Tap to order: answering a postback 139

 9.2 Making the chatbot structure more scalable 145

 9.3 Connecting your chatbot to the DynamoDB
database 149

 9.4 Getting the user’s location from the chatbot 153

vivi contents

 9.5 Scheduling a delivery 156

 9.6 Small talk: Integrating simple NLP 161

 9.7 Taste it! 163
Exercise 163 ■ Solution 163 ■ Advanced exercise 165

 10 Jarvis, I mean Alexa, order me a pizza 166
 10.1 Can’t talk right now: sending an SMS with Twilio 167

An SMS pizza list 169 ■ Ordering a pizza 170

 10.2 Hey Alexa! 175
Preparing the skill 179 ■ Ordering pizza with Alexa 183

 10.3 Taste it! 187
Exercise 187 ■ Solution 187

 10.4 End of part 2: special exercise 188

Part 3 Next steps .. 189

 11 Testing, Testing, 1, 2, 3 191
 11.1 Testing server-hosted and serverless applications 191

 11.2 How to approach testing serverless applications 193

 11.3 Preparation 194

 11.4 Unit tests 197

 11.5 Mocking your serverless functions 201

 11.6 Integration tests 207

 11.7 Other types of automated testing 211

 11.8 A step beyond: Writing testable serverless functions 212

 11.9 Taste it! 216
Exercise 216 ■ Solution 217

 12 Paying for pizza 219
 12.1 Payment transactions 220

Implementing an online payment 221

 12.2 Implementing your payment service 225

 12.3 Could someone hack your payment service? 231
Standards 231 ■ Competence 232

 12.4 Taste it! 232
Exercise 232 ■ Solution 233

 vii viicontents

 13 Migrating your existing Express.js app to AWS Lambda 235
 13.1 Uncle Roberto’s taxi application 236

 13.2 Running an Express.js application in AWS Lambda 236
Proxy integration 239 ■ How serverless-express works 239

 13.3 Serving static content 240

 13.4 Connecting to MongoDB 242
Using a managed MongoDB database with your serverless Express.
js app 243

 13.5 Limitations of serverless Express.js applications 248

 13.6 Taste it! 249
Exercise 249 ■ Solution 249

 14 Migrating to serverless 251
 14.1 Analyzing your current serverless application 252

 14.2 Migrating your existing application to serverless 252

 14.3 Embrace the platform 256
Serving static files 256 ■ Storing
state 256 ■ Logs 257 ■ Continuous
integration 258 ■ Managing environments: production and
development 259 ■ Sharing secrets 260 ■ VPC (Virtual Private
Cloud) 262

 14.4 Optimizing your application 263
Bundled or single-purpose functions 263 ■ Choosing the right
memory size for your Lambda function 263

 14.5 Facing the challenges 264
Handling timeouts 264 ■ Cold starts 265 ■ DDoS
attacks 266 ■ Vendor lock-in 267

 14.6 Taste it! 268

 15 Real-world case studies 269
15.1 CodePen 270

Before serverless 270 ■ Serverless migration 271 ■ Cost of the
infrastructure 273 ■ Testing and challenges 274

 15.2 MindMup 275
Before serverless 275 ■ Serverless migration 276 ■ Cost of the
infrastructure 278 ■ Testing, logs, and challenges 280

viiiviii contents

 appendix A Installation and configuration 283

 appendix B Facebook Messenger, Twilio, and Alexa configuration 289

 appendix C Stripe and MongoDB setup 311

 appendix D The pizza recipe 321

 index 323

ix

foreword
Amazon forever changed IT infrastructure by making it easy to provision virtual
machines back in 2007. Since then, the architectural improvements for modern appli-
cations have mostly been incremental. A decade later, by making it easy to provision
functions, Amazon’s Lambda platform started another tectonic wave of change. This
“serverless” ecosystem is revolutionizing how we design, develop, and operate internet
applications.

As an early adopter of this platform, I've had the privilege of working with Slobodan
and Aleksandar and seeing first-hand the huge impact on time-to-market and on the
cost of operation that “serverless” thinking brings. At the same time, the platform
evolves so quickly that it's easy to get lost. To truly get the benefits of the new way of
operations, developers have to rethink authentication, session management, storage,
capacity planning, and distribution strategies. In Serverless Applications with Node.js, Slo-
bodan and Aleksandar provide a front seat report about this revolution and an invalu-
able guide for JavaScript developers who want to benefit from the new generation of
platforms.

What I love about this book is how it helps people get simple stuff done in AWS
Lambda quickly, without trying to change the way we structure or run projects. Many
serverless application frameworks abstract away AWS services, making framework
lock-in a big risk because the ecosystem is still evolving rapidly. The authors don't force
us to take a bet on their choice of frameworks, but explain how to use all the related
services easily. For people new to AWS, this book introduces not just AWS Lambda, but
also a whole host of related services such as DynamoDB (storage), Cognito (authenti-
cation), API Gateway (running web services), and Cloudwatch (event processing and

x forewordx

scheduling). Even if you outgrow the authors' choice of tools later, you'll be able to keep
all the code and just deploy it in a different way.

Another great reason to read this book is how it introduces several important
real-world use cases for serverless platforms, including web APIs, chat-bots, payment
processing, and order management. By incrementally building an online store for a
fictional pizzeria, the authors provide almost ready-made components that most people
will need to launch modern business scenarios in the cloud. This way of building up
knowledge lets the book explore deeper development process topics, such as organiz-
ing automated testing and designing applications so they are easy to maintain. The last
part of the book deals with migration strategies and answers some of the most common
questions from people who already have applications partially running in some other
cloud platform, and who want to get some quick wins and reduce time-to-market or cost
of operation.

I hope you'll have as much fun with this book as I did and that you’ll start finding
better ways to deliver value quickly with your software in the cloud.

Gojko Adzic,
Partner, Neuri Consulting LLP

xi

preface
We’ve both been developers for over 10 years. We started with our first computers in
the 90s, developing our first Pascal and BASIC functions and even went to program-
ming competitions. But everything changed when the Web appeared. We immediately
started building our first web applications and web pages playing with static HTML
and CSS. When JavaScript and jQuery became the new standard, we switched almost
immediately (even though, one was still playing with Flash and ActionScript). With the
appearance of Node.js, it was natural to switch from languages we used such as Python
and C#. Even though we're still sometimes writing a few functions in those languages,
our switch to Node.js was permanent.

Approximately three years ago, we turned our attention to serverless. Gojko Adzic
introduced AWS Lambda to us with his initial work on Claudia.js as a deployment tool.
We were amazed how fast and how easy was it to develop and deploy serverless applica-
tions, and how easy was it to scale them, and we began working together with him on
creating Claudia Bot Builder.

From one day to another, our whole perspective on building and maintaining web
applications completely changed with serverless. Backend services got replaced by
serverless functions and instead of writing bash scripts, logging into our servers, and
planning our capacity, we stopped caring about those issues and focused more on busi-
ness logic and application value.

We published our first serverless web applications into production, and developed
hundreds of chat bots. Our production increased almost five-fold. It was incredible.
The months spent learning how to configure and maintain application servers with
bash, ssh, rsync, and so on were no longer important. Everything changed. From our
starting point, the serverless ecosystem went a long way -- the serverless providers are

xii prefacexii

easier to use, and there are more and more serverless app components available each
year (with Amazon re:Invent).

It went so fast and a huge number of things happened -- we’ve made serverless our
career. We started giving talks about serverless, holding workshops, and giving serverless
consultations. We tried to gather our experience and knowledge, combined with mul-
tiple other sources and bring it together in an easy-to-learn and easy-to-follow format.

xiii

acknowledgments
It was hard writing this book, as it was our first one. Some of the chapters have been
rewritten over five times to get to the point that you, as a reader, would easily grasp it
and learn the most. During the process, we had lots of support from our friends and
families, but we’d like to thank a few people specifically that helped us tremendously
along the way.

First and foremost, we’d like to thank Gojko Adzic. He introduced the world of
serverless to us several years ago. Especially for his reviews during the development of
our book and comments such as “this page is worthless, delete it”, “don’t lie to your
readers about the steps,” and so on. We loved them.

Next we’d like to mention our editor at Manning, Toni Arritola. Thank you for work-
ing with us, when we struggled in the first few chapters, for being patient when we got
behind schedule and supporting us with everything we needed. You always pushed for
quality and made the book better for everyone who reads it. Also we’d like to thank
Michael Stephens and Bert Bates, who helped us better explain all the serverless details
and focus on important topics. We’d also like to thank the folks at Manning who worked
on the production and promotion of the book, it was a team effort. We’d also like to
thank Valentin Crettaz, our technical proofreader, and Kostas Passadis, our technical
development editor, for their careful reviews of the code.

Thanks, too, to the Manning reviewers who took the time to read our manuscript at
various stages and gave amazing feedback, including Arnaud Bailly, Barnaby Norman,
Claudio Bernardo Rodríguez Rodríguez, Damian Esteban, Dane Balia, Deepak
Bhaskaran, Jasba Simpson, Jeremy Lange, Kaj Ström, Kathleen R. Estrada, Kumar
Unnikrishnan, Luca Mezzalira, Martin Dehnert, Rami Abdelwahed, Surjeet Manhas,
Thomas Peklak, Umur Yilmaz, and Yvon Vieville.

xiv acknowledgmentsxiv

Our thanks also go to Amazon and AWS teams for creating such an amazing comput-
ing service: AWS Lambda. You are changing the world.

Lastly we’d like to thank Aunt Maria and all other imaginary characters from the book!

xv

about this book
Serverless Applications with Node.js is a book whose primary goal is to teach about and
help you build serverless Node.js applications. It features a pragmatic approach, where
you start with a story of your fictional Aunt Maria’s Pizzeria, whose problems you’re try-
ing to solve by going serverless. The book begins by explaining serverless, tackling each
problem Aunt Maria encountered by a separate serverless concept, which slowly start
to form a clear picture how to build effective and clean serverless Node.js applications.

Who should read this book
Serverless Apps with Node.js is for JavaScript web developers seeking to learn how to build
serverless applications and trying to understand how to properly organize, architect,
and test them. Even though lots of Node.js content is already available online, as well
as lots of tutorials on building basic serverless applications, this book introduces a step-
by-step process for combining all those serverless topics and concepts to help you build
big serverless applications and become a serverless Node.js developer.

How this book is organized
The book is organized in 3 parts with 15 chapters.

Part 1 explains the basics of serverless and how to build a serverless app with a data-
base, how to connect to third-party services, how to debug it, how to add authorization
and authentication, and how to work with files

¡	Chapter 1 introduces you to serverless on Amazon Web Services platform and
explains serverless with simple analogies. It also introduces you to Aunt Maria,
her pizzeria, and the problem she is facing. Finally, you’ll learn what a common

xvi about this bookxvi

serverless Node.js app looks like and find out what Claudia.js is and how it helps
you to deploy Node.js apps to AWS Lambda.

¡	Chapter 2 shows you how to develop a simple Pizzeria API using AWS Lambda,
API Gateway, and Claudia API Builder. It also teaches you how to deploy your API
with a single command using Claudia.

¡	Chapter 3 teaches you how databases work in serverless architecture, and it
teaches you how to connect your Pizzeria API with the DynamoDB, a serverless
database offered by AWS.

¡	Chapter 4 teaches you how to connect Pizzeria API with third-party services, such
as Some Like It Hot delivery API. It also shows you some common issues you
might face when using promises with Claudia API Builder.

¡	Chapter 5 helps you learn how to find errors in your serverless applications, how
to debug them, and what debugging tools you have at your disposal.

¡	Chapter 6 shows you how to implement authentication and authorization in your
serverless application. You’ll learn the difference between authentication and
authorization in a serverless environment, how to implement a web authoriza-
tion mechanism using AWS Cognito, and how to identify your users using a social
provider.

¡	Chapter 7 takes a dive into serverless file storage possibilities and examines how
to create a separate file processing function that uses the storage and provides
requested files to your other Lambda -- your serverless API.

Part 2 covers how to create additional serverless applications that work with the same
resources, how to create chatbots, voice assistants, SMS chatbots, how to add NLP, and
how you should organize all those serverless applications together.

¡	Chapter 8 shows how to develop your first Facebook Messenger chatbot and how
Claudia Bot Builder helps you do that in just several lines.

¡	Chapter 9 shows how to add simple NLP (natural language processing) to your
chat bot, connect your chatbot to your DynamoDB database, and send delayed
responses when a delivery is in progress (an asynchronous event).

¡	Chapter 10 shows how to develop your first Alexa skill and a Twilio SMS chatbot,
and how with Claudia Bot Builder you can do that incredibly fast.

Part 3 covers the more advanced topics on how to test, architect your serverless apps,
and migrate your existing applications to serverless. It also gives recommendations,
general patterns, and solutions to common issues and frequent questions. It also show-
cases two medium scaled companies that went serverless.

¡	Chapter 11 teaches you about testing serverless applications, writing testable
serverless functions, and running automated tests locally. Along with that, it
explains Hexagonal Architecture and how to refactor your serverless applica-
tions to make them easier to test and to remove potential risks.

 xviiabout this book xvii

¡	Chapter 12 covers processing payments with serverless applications, implement-
ing payments to your serverless API, and understanding the PCI compliance in
payment processing.

¡	Chapter 13 makes sure you know all about running Express.js applications in
AWS Lambda and the serverless ecosystem, serving static content from an
Express.js application, connecting to MongoDB from a serverless Express.js
application, and understanding the limitations and risks of Express.js apps in a
serverless ecosystem.

¡	Chapter 14 covers how to approach migrating to serverless, structuring your
app according to serverless provider characteristics, organizing your applica-
tion architecture so it's business-oriented and able to grow, and dealing with
the architectural differences between serverless and traditional server-hosted
applications.

¡	Chapter 15 teaches you how CodePen uses serverless for its preprocessors ensur-
ing hundreds of millions of requests, and how MindMup serves 400,000 active
users with a two-person team and serverless.

About the code
This book contains many examples of source code both in numbered listings and
inline with normal text. In both cases, source code is formatted in a fixed-width font
`like this` to separate it from ordinary text. Sometimes it is also in bold to highlight
code that has changed from previous steps in the chapter, such as when a new feature
adds to an existing line of code.

In many cases, the original source code has been reformatted; we’ve added line
breaks and reworked indentation to accommodate the available page space in the
book. Additionally, comments in the source code have often been removed from the
listings when the code is described in the text. Code annotations accompany many of
the listings, highlighting important concepts.

Source code for the examples in this book is available for download from the publish-
er’s website at https://manning.com/books/serverless-apps-with-node-and-claudiajs

Book forum
Your purchase of Serverless Applications with Node.js includes free access to a private web
forum section run by Manning Publications where you make comments about the
book, ask technical questions, and receive help from the authors and other users. To
access the forum, point your web browser to https://forums.manning.com/forums/
serverless-apps-with-node-and-claudiajs. You can also learn more about Manning’s
forums and the rules of conduct at https://forums.manning.com/forums/about.

Manning’s commitment to our readers is to provide a venue where a meaningful dia-
log between individual readers and between readers and the authors can take place. It
is not a commitment to any specific amount of participation on the part of the authors,

https://manning.com/books/serverless-apps-with-node-and-claudiajs
https://forums.manning.com/forums/serverless-apps-with-node-and-claudiajs
https://forums.manning.com/forums/serverless-apps-with-node-and-claudiajs
https://forums.manning.com/forums/about

xviii about this bookxviii

whose contributions to the forum remain voluntary (and unpaid). We suggest you ask
the authors challenging questions, lest their interest stray.

Online resources
If you need additional help, you can:

¡	Jump over to Claudia.js Gitter https://gitter.im/claudiajs/claudia, where the
authors usually respond to technical questions regarding Claudia.js, Claudia API
Builder, and Claudia Bot Builder

¡	See the claudiajs tag at Stack Overflow (http://stackoverflow.com/questions/
tagged/claudiajs), where you can post problems and questions you have about
developing serverless applications with Node.js and Claudia.js. You can also help
someone else stuck on an issue, too.

https://gitter.im/claudiajs/claudia
http://stackoverflow.com/questions/tagged/claudiajs
http://stackoverflow.com/questions/tagged/claudiajs

xix

about the authors
Slobodan Stojanović and Aleksandar Simović are AWS Serverless Heroes and core con-
tributors to the Claudia.js project. They are the lead developers and maintainers of
Claudia Bot Builder and co-authors of Serverless Applications with Node.js.

Aleksandar has been a senior software consultant and engineer for over seven years,
mostly but not only, in JavaScript. He also dabbles in Swift, Python, and Rust. He is
based in Belgrade and is co-organizer of the JS Belgrade meetups.

Slobodan is CTO of Cloud Horizon, a software development studio based in Mon-
treal. He is based in Belgrade and is the JS Belgrade meetup co-organizer.

xx

about the cover illustration
The figure on the cover of Serverless Applications with Node.js is captioned “Serbian from
Šumadija.” The illustration is taken from Vladimir Kirin’s “Serbian National Costumes.”
Kirin (1894–1963) studied graphic design in London and attended the Academy of Arts
in Vienna, and worked as an artist, draftsman, and illustrator. His work and influence
are credited with improving book design in Croatia.

Throughout its rich history, the central region of Serbia, known as Šumadija, has
been the cultural center of Serbia, and the traditional clothing of the area is the stan-
dard for the national costume. As shown in this image, traditional Serbian female dress
consisted of opanci, embroidered woolen socks that reached to the knees. Skirts varied,
being either plaited or gathered and embroidered linen, with the tkanice serving as a
belt. An important part of the costume was the apron (pregace) decorated with floral
motifs. Shirts were in the shape of tunics, richly decorated with silver thread and cords
was worn over the shirt. Girls also wore collars, or a string of gold coins around their
throats, earrings, bracelets, and their hair was decorated with metal coins or flowers.

At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers based
on the rich diversity of regional life of two centuries ago, brought back to life by Kirin’s
illustrations.

Part 1

Serverless pizzeria

Aunt Maria is a strong-willed person. For more than three decades, she has
been managing her pizzeria, a gathering place for many generations in the neigh-
borhood: Lots of people spent time there with their families, laughed, and even
went on romantic dates. But recently, her pizzeria has seen some rough times.
She told you she's seeing fewer and fewer customers. The rise in technology has
caused her customers to prefer ordering online via websites or their phones from
competitor's pizzerias.

Her pizzeria already has a website but needs a back-end application to process
and store information on pizzas and orders.

In the first part of this book, your goal will be to help Aunt Maria to catch up
with the competition by building a serverless API for her. But because you're still
new to serverless development, you'll first learn what serverless is and how it can
help you to build Pizzeria API (chapter 1). Then you'll continue by adding routes
to your API and deploying it to AWS Lambda using Claudia (chapter 2). To persist
and deliver all orders, you'll connect your new API to the DynamoDB table (chap-
ter 3) and communicate with a third-party service: Some Like It Hot delivery API
(chapter 4).

During the development, you'll face certain problems and learn how to debug
the serverless application (chapter 5).

To make the API fully functional, you'll need to learn how to authenticate and
authorize users (chapter 6) and keep and manipulate pizza images (chapter 7).

3

1Introduction to serverless
with Claudia

This chapter covers
¡	What serverless is

¡	The core concepts of serverless

¡	The difference between serverless and hosted
web applications

¡	How Claudia fits

¡	Why use serverless

Serverless is a method of deploying and running applications on cloud infrastructure,
on a pay-per-use basis and without renting or buying servers. Instead of you, the
serverless platform provider is responsible for capacity planning, scaling, balancing,
and monitoring; the provider is also able to treat your applications as functions.

Wait, no servers? Seems like a new buzzword, a hipster cloud trend promising to
revolutionize your life for the better.

This book explains what serverless is, what problems it solves, and where it does or
doesn’t fit into your application development process, without fanboyishly showing
off and selling serverless like some trendy cloud cult that everyone needs to follow. It
does so with a pragmatic approach, explaining the concepts by teaching you how to
build reliable and scalable serverless applications with Node.js and Claudia.js, while
saving time and resources.

4 chapter 1 Introduction to serverless with Claudia

This chapter focuses on the concepts of serverless: what it is, why it matters, and
how it compares to server-hosted web application development. Your main goal for this
chapter is to gain a good understanding of basic serverless concepts and build a good
foundation.

1.1 Servers and washing machines
To understand serverless, consider for a moment washing machines. A clothes- cleaning
appliance might sound like a crazy place to start, but owning a server nowadays is simi-
lar to owning a washing machine. Everybody needs clean clothes, and the most logical
solution seems to be buying a washing machine. But most of the time the washing
machine is plugged in, doing nothing. At best, it’s used 5 to 15 hours per week. The
same goes with servers. Most of the time, your average application server is just waiting
to receive a request, doing nothing.

Interestingly, servers and washing machines have many common issues. They both
have a maximum weight or volume they can process. Owning a small server is similar to
owning a small washing machine; if you accumulate a big pile of laundry, the machine
can’t process all of it at once. You can buy a bigger one that can take up to 20 pounds
of clothes, but then you’ll find yourself in a situation where you want to clean just one
shirt, and running a 20-pound machine for a single shirt seems wasteful. Also, setting
up all your applications to run safely together on one server is tricky, and sometimes
impossible. A correct setup for one app can completely mess up another one with a
different setting. Similarly, with washing machines you have to separate clothes by color,
and then choose the proper program, detergent, and softener combinations. If you
don’t handle setup properly, the machine can ruin your clothing.

These issues, along with the problem that not everyone is able to own a washing
machine, led to the rise of laundromats or launderettes—coin laundry machines that
you rent for the time needed to wash your clothes. For servers, the same need has led
many companies to start providing server rental services, either locally or in the cloud.
You can rent a server, and the server provider takes care of the storage, power, and basic
setup. But both laundromats and rental servers are just partial solutions.

For rentals of washing machines and servers, you still need to know how to combine
your clothes or applications and set up the machines, choosing appropriate detergents
or environments. You also still have to balance the number of machines and their size
limitations, planning how many you will need.

In the world of dirty laundry, in the second half of the twentieth century, a new trend
of “fluff and fold” services started. You can bring these services a single piece or a bag
of clothes, and they will clean, dry, and fold your laundry for you. Some even deliver
to your address. They usually charge by the piece, so you don’t need to wait to gather a
specifically sized batch to clean, and you don’t have to worry about washing machines,
detergents, and cleaning programs at all.

Compared to the clothes cleaning industry, the software industry is still in the era
of self-service laundromats, as many of us still rent servers or use Platform as a Service
(PaaS) providers. We are still estimating the number of potential requests (quantity of

 5The core concepts

clothes) that we’re going to handle and reserving enough servers to (we hope) deal
with the load, often wasting our money on servers that either are not operating at full
capacity or are overloaded and unable to process all our customer requests.

1.2 The core concepts
So how does serverless change that? The name, implying having no server at all, doesn’t
seem to be a logical solution. Go back to the definition:

What is serverless
Serverless is a method of deploying and running applications on cloud infrastructure, on
a pay-per-use basis and without renting or buying servers.

Contrary to its name, serverless does not exclude the existence of servers; software
requires hardware to run. Serverless just removes the need for companies, organiza-
tions, or developers to physically rent or buy a server.

You are probably wondering why serverless is so named. The answer lies in the server-
less abstraction of the server concept. Rather than renting a server for your applica-
tion, setting up the environment, and deploying it, you upload your application to your
serverless provider, which takes care of assigning servers, storage, application handling,
setup, and execution.

NOTE Some of you may be wondering whether serverless removes a company’s
need for large DevOps teams. For most situations, the answer is yes.

More precisely, the provider stores your application inside a certain container. The
container represents an isolated environment that contains everything your applica-
tion needs to run. You can think of the container as being a pot for houseplants. The
plant pot contains earth filled with all the minerals your plant needs to live.

Like the plant pot, the container allows the serverless provider to safely move and
store your application, and to execute it and make copies of it depending on your
needs. But the main benefit of serverless is that you don’t do any server configuration,
balancing, scaling—basically, any kind of server management. The serverless provider
manages all of that for you while also guaranteeing that if a large number of calls to
your application occur at the same time, it will clone enough containers to handle all
the calls, and each clone will be an exact copy of the first. If necessary, the provider will
create thousands of clones. The serverless provider decides to replicate a container
only when the number of requests to your application becomes so big that the current
container can’t handle all incoming requests.

Unless there is a request (a call) to your application, not a single instance of your
application is running, so it isn’t wasting space, server time, or energy. The serverless
provider is responsible for all the operational details, such as knowing where your appli-
cation is stored, how and where to replicate it, when to load new containers, and when
to reduce the number of replicated containers to unload the unused servers.

6 chapter 1 Introduction to serverless with Claudia

From the washing machine perspective, the process is like calling a fluff and fold
cleaning service; the delivery guy appears at your door to pick up your dirty laundry,
and the service cleans and then returns the laundry to you. No matter how much cloth-
ing you have and no matter what kinds (wool, cotton, leather, and so on), the cleaning
company is responsible for all the processes of separation, detergent choice, and pro-
gram selection.

Serverless and FaaS
Initially, the term serverless was interpreted differently from what it means now. In the
early days of serverless, it was defined as a Backend as a Service (BaaS), because it rep-
resents applications that are partly or completely dependent on third-party services for
server-based logic. Later, it was almost exclusively described as a Function as a Service
(FaaS), because the serverless providers treat applications as functions, invoking them
only when requested.

1.3 How does serverless work?
As previously described, serverless providers supply an isolated compute container for
your application. The compute container is event-driven, so it’s activated only when a
certain event triggers.

Events are specific external actions that behave exactly like physical triggers. Take
your home lights as an example: the events that turn them on can differ. A classic light
switch is invoked by pressure; a motion sensor is tied to motion detection; a daylight
sensor turns your lights on when the sun goes down. But containers are not limited
to listening to the specified events and invoking your contained functions; they also
provide a way for your functions to create events themselves, or, more precisely, to emit
them. In a more technical manner, with serverless, your function containers are both
event listeners and event emitters.

Finally, serverless providers offer various triggers that can run your functions. The
list of triggers depends on the provider and implementation, but some of the most
common triggers are HTTP requests, file uploads to file storage, database updates, and
Internet of Things (IoT) events. There are many more.

NOTE A serverless function runs only when triggered, and you pay only for
its execution time. After execution, the serverless provider shuts the function
down, while keeping its trigger active.

1.4 Serverless in practice
The whole serverless landscape contains lots of moving parts, so we introduce it gently.
We build an example application and bring in one piece at a time, so you can see how
it fits. As you slowly pick up each new concept, you’ll expand your example application.

 7Serverless in practice

This book takes a greenfield approach to its example application (it will be built
from scratch), and it handles the problems of a small company—more precisely, a piz-
zeria. The pizzeria is managed by your fictional Aunt Maria. During the course of the
book, Aunt Maria will face a lot of real-world problems, and your goal will be to help her
while grasping serverless concepts along the way. Serverless, like every new technology,
introduces a lot of new concepts that can be difficult to handle all at once.

NOTE For a brownfield situation (migrating your current application to server-
less), feel free to jump to the last part of the book. If you’re not familiar with
serverless, you should go through at least the first few chapters before jumping
to the last part of the book.

1.4.1 Aunt Maria’s serverless pizzeria

Aunt Maria is a strong-willed person. For more than three decades, she has been man-
aging her pizzeria, which was the place where many generations of people from the
neighborhood spent time with their families, laughed together, and even went on
romantic dates. But recently, her pizzeria has seen some rough times. She’s told you
that she’s seeing fewer and fewer customers. Many of her customers now prefer order-
ing online via websites or their phones rather than visiting in person. Some new com-
panies have started stealing her customers. The new Chess’s pizzeria, for example, has
a mobile app with pizza previews and online ordering, and also a chatbot for ordering
via various messenger applications. Your aunt’s customers like her pizzeria, but most
want to order from their homes, so her three-decades-old business has started to wane.
The pizzeria already has a website, but it needs a back-end application to process and
store information on pizzas and orders.

1.4.2 A common approach

Given Aunt Maria’s limited resources, the easiest solution is to build a small API with a
popular Node.js framework, such as Express.js or Hapi, and set up a pizza database in
the same instance (most likely MongoDB, MySQL, or PostgreSQL).

A typical API would have its code structured in a few layers resembling a three-tier
architecture, meaning that the code is split into presentational, business, and data tiers
or layers.

Three-tier architecture
Three-tier architecture is a client/server software architecture pattern in which the user
interface (presentation), functional process logic ("business rules"), and computer data
storage and data access are developed and maintained as independent modules, most
often on separate platforms.

To learn more about three-tier architecture, visit https://en.wikipedia.org/wiki/Multitier_
architecture#Three-tier_architecture.

https://en.wikipedia.org/wiki/Multitier_architecture#Three-tier_architecture
https://en.wikipedia.org/wiki/Multitier_architecture#Three-tier_architecture

8 chapter 1 Introduction to serverless with Claudia

The typical three-tier application design would be similar to figure 1.1, with separate
routes for pizzas, orders, and users. It would also have routes for webhooks for both
chatbots and a payment processor. All the routes would trigger some handler functions
in the business layer, and the processed data would be sent to the data layer—database
and file and image storage.

This approach fits perfectly for any given small application. It would work fine for
your Pizza API, at least until online pizza orders grow to a certain level. Then you would
need to scale your infrastructure.

But to be able to scale a monolithic application, it’s necessary to detach the data layer
(because you don’t want to replicate your database, for the sake of data consistency).
After that, your application would look like the one shown in figure 1.2. But you’d still
have one conglomerate of an application with all its API routes and the business logic
for everything. Your application could be replicated if you had too many users, but each
instance would have all its services replicated as well, regardless of their usage.

Monolithic application
A monolithic application is a software application in which the user interface and data
access code are combined into a single program on a single platform. A monolithic appli-
cation is self-contained and independent from other computing applications.

API

Server

Image and file storage Database

Storage layer

Business layer

Pizza and order
processing

Payment
processing

Image
processing

Whole application is
on a single server

Web and mobile apps are
communicating with your

app via an API.

Chatbot is using an API as a
webhook where it delivers

received messages

Payment system is using an
API as a webhook too after

the transaction

RESTful API represents
“presentation tier” of your three-
tier architecture application

“Logic tier” contains different
services, including processing of
pizzas and orders, processing of
images and files, and payments

“Data tier” of your application
is a storage layer that contains
images and other files,
and the database

/pizzas /orders /users /payments /chatbot

Figure 1.1 The typical three-tier design for the Pizza API

 9Serverless in practice

1.4.3 Serverless approach

Creating serverless applications requires a different approach, as these applications
are event-driven and fully distributed.

Instead of having one server with the API endpoints and your business logic, each
part of your application is isolated to independent and autoscalable containers.

In a serverless application, your requests are processed with an API router layer that
has only one job: it accepts HTTP requests and routes them to the underlying business
layer services. The API router in a serverless architecture is always independently man-
aged. That means that application developers don’t maintain the API router, and it’s
scaled automatically by the serverless provider to accept all the HTTP requests your API
is receiving. Also, you pay only for the requests that are processed.

In the case of your Pizza API, the router will receive all the API requests from the
mobile and web applications, and if necessary handle webhooks from chatbots and the
payment processor.

Database Image and file storage

API

Server

Storage layer

Business layer

Pizza and order
processing

Payment
processing

Image
processing

Most of the
application is still on

a single server.

Web and mobile apps are
communicating with your

app via an API.

Chatbot is using an API as a
webhook where it delivers

received messages

Payment system is using an
API as a webhook too after

the transaction

“Logic tier” of your application
is communicating directly
with the storage services

RESTful API represents
“presentation tier” of your three-
tier architecture application

“Logic tier” contains different
services, including processing
of pizzas and orders, processing
of images and files, and payments

“Data tier” of your application is
now distributed to some third-
party services

/pizzas /orders /users /payments /chatbot

Figure 1.2 A common approach with an external database and file storage for the Pizza API

10 chapter 1 Introduction to serverless with Claudia

After an API request is routed, it is passed to another container with the business
layer service to be processed.

Instead of having one monolithic application, the business logic of a serverless appli-
cation is often split into smaller units. The size of each unit depends on your prefer-
ences. A unit can be as small as a single function or as large as a monolithic application.
Most of the time, its size does not directly affect the infrastructure cost, because you are
paying for function execution. Units are also scaled automatically, and you won’t pay for
units that aren’t processing anything, so owning one or a dozen of them costs the same.

However, for small applications and situations in which you don’t have a lot of infor-
mation, you can save money on hosting and maintenance by bundling functionalities
related to one service into a single business unit. For your Pizza API, a sensible solution
is to have one unit for processing pizzas and orders, one for handling payments, one for
handling chatbot functionality, and one for processing images and files.

The last part of your serverless API is the data layer, which can be similar to the data
layer in a scaled monolithic application, with a separately scaled database and file stor-
age service. It would be best if the database and file storage were also independent and
autoscalable.

Another benefit of a serverless application is that the data layer can trigger a server-
less function out of the box. For example, when a pizza image is uploaded to the file
storage, an image processing service can be triggered, and it can resize the photo and
associate it with the specific pizza.

You can see the flow of the serverless Pizza API in figure 1.3.

1.5 Serverless infrastructure — AWS
Your serverless Pizza API needs infrastructure to run on. Serverless is very young and at
the moment has several infrastructure choices. Most of these choices are owned by big
vendors, because serverless requires a big infrastructure for scaling. The best-known
and most advanced infrastructures are Amazon’s AWS Lambda serverless compute
container, Microsoft’s Azure Functions, and Google’s Cloud Functions.

This book focuses on AWS Lambda because AWS has the most mature serverless
infrastructure available in the market, with a stable API and many successful stories
behind it.

AWS Lambda is an event-driven serverless computing platform provided by Amazon
as part of Amazon Web Services. It is a compute service that runs code in response to
events and automatically manages the compute resources required by that code.

Google Cloud Functions and Microsoft Azure Functions
Google launched Google Cloud Functions, its answer to Amazon’s AWS Lambda, in mid-
2016. Google Cloud Functions are explained as lightweight event-based microservices
that allow you to run JavaScript functions in a Node.js runtime. Your function can be trig-
gered by an HTTP request, Google Cloud Storage, and other Google Cloud Pub/Sub ser-
vices. At the time this book was written, Google Cloud Functions were still in alpha, so
pricing was not known. You can learn more at the official website: https://cloud.google
.com/functions/.

Router / Gateway

Business layer

API

Storage layer

Pizza and
order

processing

Image
processing

Payment
processing

Database Image and file
storage

Chatbot

Web and mobile apps are
communicating with your

app via an API.

Chatbot is using an API as a
webhook where it delivers

received messages.

Payment system is using an
API as a webhook too after

the transaction.

API routing and
presentation layer

of your app are
handled by a fully
managed router

that is processing the
requests and

passing them to the
business logic units.

Business layer consists
of multiple
business logic units

Each of the
business layer

units can be
triggered by an

event trigger
sent by another

service.

Each of the business
logic units is fully
managed, isolated,
and can autoscale
to process all of the
requests it receives,
or turn off when there
is nothing to process.

Storage layer is
distributed to some
third-party services

But now, even the
storage layer can act
as a presentational
layer—it can accept
the request and
trigger a business
logic unit.

Figure 1.3 The serverless approach for the Pizza API

https://cloud.google.com/functions/
https://cloud.google.com/functions/

 11Serverless infrastructure — AWS

Microsoft’s implementation of serverless—Azure Functions—is part of its Azure cloud
computing platform. Microsoft describes it as an event-based serverless compute expe-
rience that accelerates your development, scales based on demand, and charges you
for only the resources you consume. Azure Functions allows you to develop functions in
JavaScript, C#, F#, Python, and other scripting languages. Azure pricing is similar to that
of AWS Lambda: You’re charged 20 cents per 1 million executions and $0.000016 per
GB of resource consumption per month, with a free tier for the first 1 million requests
and 400,000 GB each month. For more information, visit the official website at https://
azure.microsoft.com/en-us/services/functions/.

After an API request is routed, it is passed to another container with the business
layer service to be processed.

Instead of having one monolithic application, the business logic of a serverless appli-
cation is often split into smaller units. The size of each unit depends on your prefer-
ences. A unit can be as small as a single function or as large as a monolithic application.
Most of the time, its size does not directly affect the infrastructure cost, because you are
paying for function execution. Units are also scaled automatically, and you won’t pay for
units that aren’t processing anything, so owning one or a dozen of them costs the same.

However, for small applications and situations in which you don’t have a lot of infor-
mation, you can save money on hosting and maintenance by bundling functionalities
related to one service into a single business unit. For your Pizza API, a sensible solution
is to have one unit for processing pizzas and orders, one for handling payments, one for
handling chatbot functionality, and one for processing images and files.

The last part of your serverless API is the data layer, which can be similar to the data
layer in a scaled monolithic application, with a separately scaled database and file stor-
age service. It would be best if the database and file storage were also independent and
autoscalable.

Another benefit of a serverless application is that the data layer can trigger a server-
less function out of the box. For example, when a pizza image is uploaded to the file
storage, an image processing service can be triggered, and it can resize the photo and
associate it with the specific pizza.

You can see the flow of the serverless Pizza API in figure 1.3.

1.5 Serverless infrastructure — AWS
Your serverless Pizza API needs infrastructure to run on. Serverless is very young and at
the moment has several infrastructure choices. Most of these choices are owned by big
vendors, because serverless requires a big infrastructure for scaling. The best-known
and most advanced infrastructures are Amazon’s AWS Lambda serverless compute
container, Microsoft’s Azure Functions, and Google’s Cloud Functions.

This book focuses on AWS Lambda because AWS has the most mature serverless
infrastructure available in the market, with a stable API and many successful stories
behind it.

AWS Lambda is an event-driven serverless computing platform provided by Amazon
as part of Amazon Web Services. It is a compute service that runs code in response to
events and automatically manages the compute resources required by that code.

Google Cloud Functions and Microsoft Azure Functions
Google launched Google Cloud Functions, its answer to Amazon’s AWS Lambda, in mid-
2016. Google Cloud Functions are explained as lightweight event-based microservices
that allow you to run JavaScript functions in a Node.js runtime. Your function can be trig-
gered by an HTTP request, Google Cloud Storage, and other Google Cloud Pub/Sub ser-
vices. At the time this book was written, Google Cloud Functions were still in alpha, so
pricing was not known. You can learn more at the official website: https://cloud.google
.com/functions/.

Router / Gateway

Business layer

API

Storage layer

Pizza and
order

processing

Image
processing

Payment
processing

Database Image and file
storage

Chatbot

Web and mobile apps are
communicating with your

app via an API.

Chatbot is using an API as a
webhook where it delivers

received messages.

Payment system is using an
API as a webhook too after

the transaction.

API routing and
presentation layer

of your app are
handled by a fully
managed router

that is processing the
requests and

passing them to the
business logic units.

Business layer consists
of multiple
business logic units

Each of the
business layer

units can be
triggered by an

event trigger
sent by another

service.

Each of the business
logic units is fully
managed, isolated,
and can autoscale
to process all of the
requests it receives,
or turn off when there
is nothing to process.

Storage layer is
distributed to some
third-party services

But now, even the
storage layer can act
as a presentational
layer—it can accept
the request and
trigger a business
logic unit.

Figure 1.3 The serverless approach for the Pizza API

(continued)

https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
https://cloud.google.com/functions/
https://cloud.google.com/functions/

12 chapter 1 Introduction to serverless with Claudia

NOTE Most of the things you’ll learn in this book are also feasible with other
serverless providers, but some services might differ, so some of the solutions
might need a slightly different approach.

In the Amazon platform, the word serverless is usually directly related to AWS Lambda.
But when you are building a serverless application such as your Pizza API, AWS Lambda
is just one of the building blocks. For a full application, you often need other services,
such as storage, database, and routing services. In table 1.1 you can see that AWS has
fully developed services for all of them:

¡	Lambda is used for computing.
¡	API Gateway is a router that accepts HTTP requests and invokes other services

depending on the routes.
¡	DynamoDB is an autoscalable database.
¡	Simple Storage Service (S3) is a storage service that abstracts the standard hard

drives and offers you unlimited storage.

Table 1.1 The building blocks of serverless applications in AWS

Functionality AWS service Short description

Computing Lambda Computing component, used for your business logic

Router API Gateway Routing component, used to route HTTP request data to your
Lambda function

Database DynamoDB Autoscalable document database

Storage S3 Autoscalable file storage service

Lambda is the most important serverless puzzle piece you need to understand, because
it contains your business logic. Lambda is AWS’s serverless computing container that
runs your function when an event trigger occurs. It gets scaled automatically if many
events trigger the function at the same time. To develop your Pizza API as a serverless
application, you will need to use AWS Lambda as its serverless compute container.

When a certain event occurs, such as an HTTP request, a Lambda function is triggered,
with the data from the event, context, and a way to reply to the event as its arguments. The
Lambda function is a simple function handler written in one of the supported languages.
At this time of this writing, AWS Lambda support the following languages:

¡	Node.js
¡	Python
¡	Java (Java 8 compatible) and other JVM languages
¡	C# (.NET Core)

In Node.js, event data, context, and a function callback are passed as JSON objects.
The context object contains details about your Lambda function and its current

 13Serverless infrastructure — AWS

execution, such as execution time, what triggered the function, and other informa-
tion. The third argument that your function receives is a callback function that allows
you to reply with some payload that will be sent back to the trigger, or an error. The
following listing shows a Node.js sample of a small AWS Lambda function that returns
the text Hello from AWS Lambda.

Listing 1.1 An example of the smallest working Lambda function with Node.js

function lambdaFunction(event, context, callback) {
 callback(null, 'Hello from AWS Lambda')
}

exports.handler = lambdaFunction

NOTE As shown in listing 1.1, a function is exported with an exports.handler
instead of the standard Node.js export, module.exports. This is because AWS
Lambda requires the module export to be an object with a named handler
method, rather than the function directly.

As mentioned before, the event in your Lambda function is the data passed by the ser-
vice that triggered your Lambda function. In AWS, functions can be invoked by many
things, from common events such as an HTTP request via API Gateway or file manipu-
lation by S3, to more exotic ones such as code deployment, changes in the infrastruc-
ture, and even console commands using the AWS SDK.

Here’s a list of the most important events and services that can trigger an AWS
Lambda function and how they would translate to your Pizza API:

¡	HTTP requests via API Gateway—A website pizza request is sent.
¡	Image uploading, deleting, and file manipulation via S3—A new pizza image is

uploaded.
¡	Changes in the database via DynamoDB—A new pizza order is received.
¡	Various notifications via the Simple Notification Service (AWS SNS)—A pizza is

delivered.
¡	Voice commands via Amazon Alexa—A customer orders a pizza from home using

voice commands.

For the full list of triggers, see http://docs.aws.amazon.com/lambda/latest/dg/invoking
-lambda-function.html.

Lambda functions come with some limitations, such as limited execution time and
memory. For example, by default, your Lambda function’s execution time is up to
three seconds, which means that it will time out if your code tries to process something
longer. It also has 128 MB of RAM, which means that it is not suitable for complex
computations.

A function accepts an event, a context,
and a callback function.

The callback function returns
a success message.

The function is exported as a handler.

http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html
http://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html

14 chapter 1 Introduction to serverless with Claudia

NOTE Both of those limitations can be configured in the function settings. Time-
out can be increased up to 15 minutes, and memory can be increased up to 3 GB.
Increasing both of the limits can affect the cost per execution of your function.

Another important characteristic of Lambda functions is that they are stateless, and
therefore state is lost between subsequent invocations.

Serverless pricing
One of the major selling points of serverless is the price. Amazon prices its standard
virtual servers, Elastic Compute Cloud (Amazon EC2) servers, per hour. AWS Lambda is
more expensive than EC2 in hourly cost, but by contrast, you don’t pay for it unless your
function is working. You pay 20 cents per million executions of your AWS Lambda func-
tion and $0.000016 per GB of resource consumption per month. Amazon also gives you
a free tier with 1 million requests and 400,000 GB at no cost each month.

For your Pizza API, Aunt Maria won’t have to pay anything until she reaches 1 million execu-
tions per month. If she reaches that number, you have succeeded in your goal of helping her.

For more information about pricing, visit the official website at https://aws.amazon
.com/lambda/pricing/.

As you can see in figure 1.4, the flow of a Lambda function goes like this:

¡	A certain event happens, and the service that handles the event triggers the
Lambda function.

¡	The function, such as the one shown in listing 1.1, starts its execution.
¡	The function execution ends, either with a success or error message, or by

timing out.

Another important thing that can affect your serverless Pizza API is function latency.
Because the Lambda function containers are managed by the provider, not the applica-
tion operators, there’s no way to know if a trigger will be served by an existing container
or if the platform will instantiate a new one. If a container needs to be created and ini-
tialized before the function executes, it requires a bit more time and is called a cold start,
as shown in figure 1.5. The time it takes to start a new container depends on the size of

Start

AWS Lambda function execution

Execution of each
AWS Lambda function has three phases.

Function is first starting
after it is triggered by

an event.

After being triggered,
function is running with

the event data as an argument.

Finally, function is ending by
responding with a success or

error message, or by timing out.

EndRun function

Figure 1.4 The flow of an AWS Lambda function

https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/

 15What is Claudia, and how does it fit?

the application and the platform used to run it. Empirically and at the time of writing of
this book, there are noticeably lower latencies with Node.js and Python than with Java.

COST OF THE PIZZA API Developing the Pizza API as described in the following
chapters of this book should cost less than a cup of coffee. AWS Lambda by
itself will be free, but some of the services used for Pizza API development,
such as DynamoDB and the Simple Storage Service, charge a small fee for the
storage of your data. Both of those services and their pricing are described in
later chapters. The final price of the application will depend on the amount of
data and its usage, but if you are following the book’s examples, it should be
less than $1 per month.

Lambda functions are quite easy to understand and use. The most complex part is the
deployment process.

There are a few ways to deploy your serverless application to AWS Lambda. You can
deploy through the visual UI on the AWS Lambda console or the terminal via the AWS
command-line interface using the AWS API, either directly or via the AWS SDK for one
of the supported languages. Deploying a serverless application is simpler than deploy-
ing a traditional one, but it can be made even easier.

1.6 What is Claudia, and how does it fit?
Claudia is a Node.js library that eases the deployment of Node.js projects to AWS
Lambda and API Gateway. It automates all the error-prone deployment and configura-
tion tasks, and sets everything up the way JavaScript developers expect out of the box.

Creation Initialization Function execution

Function invocation
time

Cold start

With a cold start, a
container for your function

needs to be created... and initialized...
before your function
starts its execution.

With a warm start, the container is
already ready and your function
starts its execution immediately.

Function stays warm for a certain amount of
time and waits for the next invocation.

Warm start

Function invocation
time

Function execution

Figure 1.5 Cold start versus hot start for an AWS Lambda function

16 chapter 1 Introduction to serverless with Claudia

Claudia is built on top of the AWS SDK to make development easier. It is not a
replacement for the AWS SDK or AWS CLI, but an extension that makes some common
tasks, such as deployment and setting triggers, easy and fast.

Some of the core values of Claudia are

¡	Creating and updating the function with a single command (removing the
need to manually zip your application and then upload the zip file via the AWS
Dashboard UI)

¡	Not using boilerplate, which allows you to focus on your work and keep your pre-
ferred project setup

¡	Managing multiple versions easily
¡	Getting started in minutes with a very flat learning curve

Claudia acts as a command-line tool, and it allows you to create and update your func-
tions from the terminal. But the Claudia ecosystem comes with two other useful Node.
js libraries: Claudia API Builder allows you to create the API on API Gateway, and Clau-
dia Bot Builder allows you to create chatbots for many messaging platforms.

As opposed to Claudia, which is a client-side tool never deployed to AWS, API Builder
and Bot Builder are always deployed to AWS Lambda (see figure 1.6).

You can work with AWS Lambda and API Gateway without Claudia, either by using
the AWS ecosystem directly or by using some of the alternatives.

The best-known alternatives are the following:

¡	Serverless Application Model (SAM), created by AWS, which allows you to create
and deploy serverless applications via AWS CloudFormation. For more informa-
tion, visit https://github.com/awslabs/serverless-application-model.

¡	Serverless Framework, which has a similar approach to SAM but also supports
other platforms, such as Microsoft Azure. To learn more about it, visit https://
serverless.com.

API Gateway
AWS Lambda

AWS

Claudia Bot Builder is a Node.js
module that is sent to the Lambda
function, where it handles the
requests and replies for many
chat platforms.

Claudia API Builder is a Node.js
module that is sent to the

Lambda function,
where it handles the internal

routing, CORS, and
other API related things.

Claudia is a command line tool that runs
on the client side and communicates with
the AWS platform using the AWS SDK
for Node.js.

AWS Lambda

Claudia API Builder

Claudia

Terminal

Claudia Bot Builder

Figure 1.6 A visual representation of the relationships of Claudia, API Builder, and Bot Builder with the
AWS platform

https://github.com/awslabs/serverless-application-model
https://serverless.com
https://serverless.com

 17What is Claudia, and how does it fit?

¡	Apex, another command-line tool that helps you deploy serverless applications
but has support for more programming languages, such as Go. To learn more
about it, visit http://apex.run.

NOTE Everything written in this book can most likely be done with one of these
Claudia alternatives.

You are probably wondering why we chose to use Claudia. The Claudia FAQs provide
the best explanation:

¡	Claudia is a deployment utility, not a framework. It does not abstract away AWS ser-
vices, but instead makes them easier to get started with. As opposed to Serverless
and Seneca, Claudia is not trying to change the way you structure or run projects.
The optional API Builder, which simplifies web routing, is the only additional
runtime dependency, and it’s structured to be minimal and standalone. Micros-
ervice frameworks have many nice plugins and extensions that can help kick-start
standard tasks, but Claudia intentionally focuses only on deployment. One of our
key design goals is not to introduce too much magic, and let people structure the
code the way they want to.

¡	Claudia is focused on Node.js. As opposed to Apex and similar deployers, Claudia
has a much narrower scope. It works only for Node.js, but does so really well.
Generic frameworks support more runtimes, but leave the developers to deal
with language-specific issues. Because Claudia focuses on Node.js, it automati-
cally installs templates to convert parameters and results into objects that Java-
Script can consume easily, and makes things work the way JavaScript developers
expect out of the box.

For more details, see https://github.com/claudiajs/claudia/blob/master/FAQ.md.
The idea of this book is to teach you how to think in a serverless way and how to easily

develop and deploy quality serverless applications. Using the AWS ecosystem directly
would involve a lot of distractions, such as learning how to interact with and configure
different parts of the AWS platform. Rather than try to replace the AWS SDK, Clau-
dia is built on top of it, and Claudia automates most common workflows with single
commands.

Claudia favors code over configuration and as a result has almost no configuration
at all. That makes it easier to learn, understand, and test. Writing a high-quality applica-
tion requires proper testing; having lots of configuration doesn’t mean you don’t need
to test it.

Claudia has a minimal set of commands that allow you to build serverless applica-
tions with a pleasant developer experience. Two of the main ideas behind Claudia are
to minimize the magic and to be transparent in showing what happened when a com-
mand was invoked.

Despite its small API, Claudia enables you to develop many things: you can build
serverless applications from scratch, migrate your current Express.js applications to
serverless, and even build your own serverless chatbots and voice assistants.

http://apex.run
https://github.com/claudiajs/claudia/blob/master/FAQ.md

18 chapter 1 Introduction to serverless with Claudia

1.7 When and where you should use it
Serverless architecture is not a silver bullet. It doesn’t solve all problems, and it might
not solve yours.

For example, if you are building an application that relies heavily on web sockets,
serverless is not for you. AWS Lambda can work for up to 15 minutes, and it can’t stay
awake to listen for web socket messages after that.

If latency is critical for your application, even though waking containers is fast, there
is always a price to pay for waking up them up. That price is a few dozen milliseconds,
but for some applications, that can be too much.

The absence of configuration is one of the main selling points for serverless, but
that advantage can be a huge setback for some application types. If you are building an
application requiring a system-level configuration, you should consider the traditional
approach instead. You can customize AWS Lambda to some extent; you can provide a
static binary and use Node.js to invoke it, but that can be overkill in many cases.

Another important disadvantage is so-called vendor lock-in. Functions themselves
are not a big problem because they are just standard Node.js functions, but if your full
application is built as a serverless application, some services are not easy to migrate.
However, this problem is a common one that is not related only to serverless, and it can
be minimized with good application architecture.

That said, serverless has many more upsides than downsides, and the rest of this
book shows you some of the good use cases.

Summary
¡	Serverless is abstracting servers away from software development.
¡	A serverless application differs from a traditional one in that serverless applica-

tions are event-driven, distributed, and autoscalable.
¡	There are a few choices for serverless infrastructure, and the most advanced one

is Amazon’s AWS Lambda.
¡	AWS Lambda is an event-driven, serverless computing platform that allows you to

run functions written in Node.js, Python, C#, or Java and other JVM languages.
¡	AWS Lambda has certain limitations, such as execution time, which can be up to

15 minutes, and available memory, which can be up to 3 GB.
¡	The most complex parts of a serverless application in AWS are deployment and

function configuration.
¡	Some tools and frameworks can help you deploy and configure your applica-

tion more easily. The easiest one to use is Claudia, with its API Builder and Bot
Builder.

¡	Claudia is a command-line tool that offers a minimal set of commands to allow
you to build serverless applications with a pleasant developer experience.

¡	Serverless architecture is not a silver bullet, and there are some situations in
which it isn’t the best choice, such as for real-time applications with web sockets.

19

2Building your first
serverless API

This chapter covers
¡	Creating and deploying an API using Claudia

¡	How Claudia deploys an API to AWS

¡	How API Gateway works

The main goal of this chapter for you is to build your first serverless API with Claudia
and deploy it to AWS Lambda and API Gateway. You’ll also see the differences between
a traditional and a serverless application structure and gain a better grasp of Claudia as
you learn what Claudia is doing under the hood. To get the most from this chapter, you
should understand the basic concepts of serverless described in chapter 1.

2.1 Assembling pizza ingredients: building the API
Your Aunt Maria is happy and grateful that you are going to help her get back on
her feet. She even made you her famous pepperoni pizza! (Try not to be hungry at
this moment!)

Aunt Maria already has a website, so you will build a back-end application—more
precisely, an API—to enable her customers to preview and order pizzas. The API
will be responsible for serving pizza and order information, as well as handling pizza
orders. Later, Aunt Maria would also like to add a mobile application, which would
consume your API services.

20 chapter 2 Building your first serverless API

To start gently, the first API endpoints will handle some simple business logic and
return static JSON objects. You can see the broad overview of your initial application
structure in figure 2.1. The figure also shows the crude HTTP requests flow through
your API.

Here is the list of features we cover for the initial API:

¡	Listing all pizzas
¡	Retrieving the pizza orders
¡	Creating a pizza order
¡	Updating a pizza order
¡	Canceling a pizza order

These features are all small and simple; therefore, you will implement them in a single
Lambda function.

Even though you might feel that you should separate each feature into a separate
function, for now it’s simplest to put everything in the same Lambda, because the func-
tions are tightly coupled. If you were to do inventory tracking as well, you would create
that as a separate function from the start.

Each of the listed features will need to have a separate route to the corresponding
handler within your function. You can implement the routing yourself, but Claudia has
a tool to help you with that task: Claudia API Builder.

Claudia API Builder is an API tool that helps you handle all your incoming API Gate-
way requests and responses, as well as their configuration, context, and parameters, and
enables you to have internal routing within your Lambda function. It has an Express-like
endpoint syntax, so if you are familiar with Express, Claudia API Builder will be easy to use.

API

Business
layer

Pizza and
order

processing

API Gateway

Requests from the web apps
and mobile app are accepted by
API Gateway.

After being processed by API
Gateway, the request is parsed
and passed to your business layer.

The business layer, or logic tier, at
the moment contains only the pizza
and order processing Lambda.

Figure 2.1 A broad overview of the Pizza API you will build in this chapter

Despite API Gateway being a
router itself, because you are
processing your pizzas and
orders in one function, you need
to do internal routing to
differentiate the intended
actions. For internal routing, you
will be using Claudia API Builder.

API Gateway receives the
request and passes parsed

request data to the
corresponding service.

User sends a request from a
mobile or web application.

Based on the received
request, Claudia API
Builder invokes
corresponding handlers.

After the request has been
processed, a response is
returned to the user. The
response is passed through
both Claudia API Builder
and API Gateway.

DELETE /
orders

Claudia
API Builder

Pizza and order
processing

PUT /
orders

POST /
orders

GET /
orders

GET /
 pizzas

Delete an
order

handler

Update an
order

handler

Create an
order

handler

Get orders
handler

Get pizzas
handler

API Gateway

Figure 2.2 A visual representation of the AWS Lambda function that handles pizza and order processing

 21Assembling pizza ingredients: building the API

Figure 2.2 shows a more detailed overview of how to route and handle the pizza and
order features within your Lambda function by using Claudia API Builder. The figure
shows that upon receiving requests from API Gateway, Claudia API Builder will redirect
the requests to your defined routes and their corresponding handlers.

NOTE At the time of this writing, you can use AWS API Gateway in two modes:

¡	With models and mapped templates for requests and responses
¡	With proxy pass-through

Claudia API Builder uses proxy pass-through to capture all the HTTP request details
and structure them in a JS developer-friendly way.

To learn more about proxy pass-through and models and mapped templates, you
can read the official documentation at http://docs.aws.amazon.com/apigateway/
latest/developerguide/how-to-method-settings.html.

To start gently, the first API endpoints will handle some simple business logic and
return static JSON objects. You can see the broad overview of your initial application
structure in figure 2.1. The figure also shows the crude HTTP requests flow through
your API.

Here is the list of features we cover for the initial API:

¡	Listing all pizzas
¡	Retrieving the pizza orders
¡	Creating a pizza order
¡	Updating a pizza order
¡	Canceling a pizza order

These features are all small and simple; therefore, you will implement them in a single
Lambda function.

Even though you might feel that you should separate each feature into a separate
function, for now it’s simplest to put everything in the same Lambda, because the func-
tions are tightly coupled. If you were to do inventory tracking as well, you would create
that as a separate function from the start.

Each of the listed features will need to have a separate route to the corresponding
handler within your function. You can implement the routing yourself, but Claudia has
a tool to help you with that task: Claudia API Builder.

Claudia API Builder is an API tool that helps you handle all your incoming API Gate-
way requests and responses, as well as their configuration, context, and parameters, and
enables you to have internal routing within your Lambda function. It has an Express-like
endpoint syntax, so if you are familiar with Express, Claudia API Builder will be easy to use.

API

Business
layer

Pizza and
order

processing

API Gateway

Requests from the web apps
and mobile app are accepted by
API Gateway.

After being processed by API
Gateway, the request is parsed
and passed to your business layer.

The business layer, or logic tier, at
the moment contains only the pizza
and order processing Lambda.

Figure 2.1 A broad overview of the Pizza API you will build in this chapter

Despite API Gateway being a
router itself, because you are
processing your pizzas and
orders in one function, you need
to do internal routing to
differentiate the intended
actions. For internal routing, you
will be using Claudia API Builder.

API Gateway receives the
request and passes parsed

request data to the
corresponding service.

User sends a request from a
mobile or web application.

Based on the received
request, Claudia API
Builder invokes
corresponding handlers.

After the request has been
processed, a response is
returned to the user. The
response is passed through
both Claudia API Builder
and API Gateway.

DELETE /
orders

Claudia
API Builder

Pizza and order
processing

PUT /
orders

POST /
orders

GET /
orders

GET /
 pizzas

Delete an
order

handler

Update an
order

handler

Create an
order

handler

Get orders
handler

Get pizzas
handler

API Gateway

Figure 2.2 A visual representation of the AWS Lambda function that handles pizza and order processing

http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-method-settings.html
http://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-method-settings.html

22 chapter 2 Building your first serverless API

2.1.1 Which pizza can I GET?

As the first method of your Pizza API you will create a GET pizza service that lists all
available pizzas. To do so, you will need to fulfill these prerequisites:

¡	Own an AWS account and properly set up the AWS credentials file
¡	Install Node.js and its package manager, NPM
¡	Install Claudia from NPM as a global dependency

If you’re not familiar with these steps or are not sure whether you have completed
them, jump to appendix A, which guides you through each setup process.

CODE EXAMPLES From this point onward, you’ll see a lot of code examples. We
highly recommend that you try them all, even if they feel familiar. You can use
your favorite code editor unless stated otherwise.

Now that you’re fully set up, you can start by creating an empty folder for your first
serverless application. You can name your project folder as you like, but in this book
the application folder’s name is pizza-api. After you’ve created it, open your terminal,
navigate to your new folder, and initialize the Node.js application. After your app is
initialized, install the claudia-api-builder module from NPM as a package depen-
dency, as explained in appendix A.

The next step is to create your application’s entry point. Create a file named api.js
inside your pizza-api folder, and open it with your favorite code editor.

ES6 SYNTAX FOR THE CODE EXAMPLES All the code examples in the book use
the ES6/ES2015 syntax. If you are not familiar with ES6 features, such as arrow
functions and/or template strings, see Manning’s ES6 in Motion, by Wes Hig-
bee, or the second edition of Secrets of the JavaScript Ninja, by John Resig.

To create an API route, you need an instance of Claudia API Builder, as it is a class
and not a utility function. At the beginning of your api.js file, require and instantiate
claudia-api-builder.

Now you’re able to use Claudia API Builder’s built-in router. To implement the GET
/pizzas route, you need to use the get method of your Claudia API Builder instance.
The get method receives two arguments: a route and a handler function. As the route
parameter, pass the string /pizzas, and as the handler, pass an anonymous function.

The Claudia API Builder anonymous handler function has one major difference
compared with Express.js. In Express.js, you have both the response and the request as
callback function arguments, but Claudia API Builder’s callback function has only the
request. To send back the response, you just return the result.

Your GET /pizzas route should show a list of pizzas, so for now, you will return a
static array of pizzas from Aunt Maria’s pizzeria: Capricciosa, Quattro Formaggi, Napo-
letana, and Margherita.

 23Assembling pizza ingredients: building the API

Finally, you need to export your API instance, which Claudia API Builder is fitting
into your Lambda function as middleware.

At this point, your code should look like the following listing.

Listing 2.1 The GET /pizzas handler of your Pizza API

'use strict'

const Api = require('claudia-api-builder')
const api = new Api()

api.get('/pizzas', () => {
 return [
 'Capricciosa',
 'Quattro Formaggi',
 'Napoletana',
 'Margherita'
]
})

module.exports = api

That’s all it takes to make a simple serverless function. Before popping a champagne
bottle in celebration, however, you should deploy your code to your Lambda function.
To do so, jump back to your terminal and unleash the power of Claudia.

Because one of Claudia’s main goals is single-command deployment, deploying your
API takes just a simple claudia create command. This command requires only two
options: the AWS region where you want your API to be deployed, and your applica-
tion’s entry point. The options are passed as flags, so to deploy your API, just execute
the claudia create command with --region and --api-module flags, as shown in list-
ing 2.2. The intricacies of the claudia create command are explained in more detail
in section 2.2.

SHELL COMMANDS FOR WINDOWS USERS Some of the commands in the book
are split into multiple lines for readability and annotation purposes. If you are
a Windows user, you might need to join those commands into a single line and
remove backslashes (\).

Listing 2.2 Deploying an API to AWS Lambda and API Gateway using Claudia

claudia create \
 --region eu-central-1 \
 --api-module api

Require the Claudia API
Builder module.

Create an instance of
Claudia API Builder.

Define a route and a handler.

Return a simple list of all pizzas.

Export your Claudia API Builder instance.

Create and deploy a new
Lambda function.

Select the region where you want your
function to be deployed.

Tell Claudia that you are building an API
and that your API’s entry point is api.js.

24 chapter 2 Building your first serverless API

For your region, choose the closest one to your users to minimize latency. The closest
region to Aunt Maria’s pizzeria is in Frankfurt, Germany, and it’s called eu-central-1.
You can see all the available regions in the official AWS documentation: http://docs
.aws.amazon.com/general/latest/gr/rande.html#lambda_region.

Your api.js file is your API’s entry point. Claudia automatically appends the .js exten-
sion, so just type api as your application’s entry point.

NOTE The name and location of your entry point are up to you; you just need
to provide a correct path to the entry point in the claudia create command.
For example, if you name it index.js and put it in the src folder, the flag in the
Claudia command should be --api-module src/index.

After a minute or so, Claudia will successfully deploy your API. You’ll see a response
similar to listing 2.3. The command response has useful information about your
Lambda function and your API, such as the base URL of your API, the Lambda func-
tion’s name, and the region.

DEPLOYMENT ISSUES If you encounter deployment issues, such as a credentials
error, make sure you’ve properly set up everything as described in appendix A.

Listing 2.3 The claudia create command response

{
 "lambda": {
 "role": "pizza-api-executor",
 "name": "pizza-api",
 "region": "eu-central-1"
 },
 "api": {
 "id": "g8fhlgccof",
 "module": "api",
 "url": "https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/latest"
 }
}

During the deployment, Claudia created a claudia.json file in the root of your project
along with some similar information, but without your base API URL. This file is for
Claudia to relate your code to a certain Lambda function and API Gateway instance.
The file is intended for Claudia only; don’t change it by hand.

Now it’s time to “taste” your API. You can try it directly from your favorite browser.
Just visit the base URL from your claudia create response, remembering to append
your route to the base URL. It should look similar to https://whpcvzntil.execute-api
.eu-central-1.amazonaws.com/latest/pizzas. When you open your modified base URL
link in your browser, you should see the following:

["Capricciosa","Quattro Formaggi","Napoletana","Margherita"]

Lambda function information

API information

Your API’s base URL

http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
http://docs.aws.amazon.com/general/latest/gr/rande.html#lambda_region
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/latest/pizzas
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/latest/pizzas

 25Assembling pizza ingredients: building the API

URLS FOR THE EXAMPLES FROM THE BOOK Instead of latest, each example from
the book will contain different versions in the following format: chapterX_Y,
where X is the number of the chapter and Y is the number of the example in
that chapter. We did this so you can run the examples simply by copying the
URL from the book. When you run the code by yourself, the output URL will
contain latest as a version, instead of chapterX_Y that you’ll see in the book.

For example, the first example can be accessed at the following URL: https://whp-
cvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_1/pizzas.

Congratulations—you just built a serverless API with Claudia! If this was your first time,
you should be proud of yourself, and this is a good time to pause.

2.1.2 Structuring your API

Before rushing to add more features, you should always try to spend a few minutes
rethinking your API structure and organization. Adding all the route processors
directly into the main file makes it difficult to understand and maintain, so you should
ideally split handlers from routing/wiring. Smaller code files are easier to understand
and work with than with one monster file.

Considering application organization, at the time of this writing there aren’t any
specific best practices. Also, Claudia gives you complete freedom on that topic. For your
Pizza API, because the part for handling pizzas and orders isn’t going to be huge, you
can move all route handlers to a separate folder and keep only the routes within your

js

json

json

json

pizza-api
Root folder for pizza API

Entry point for your API;
it contains all the routes

Your app is just a standard
Node.js project, so it contains
the package.json file.

Config file created by
Claudia

All static data for your app
is stored in the data folder;
at the moment that’s just
the pizza data.

Directory for all route
handlers

api.js

package.json

claudia.json

data

pizzas.json

handlers

get-pizzas.jsjs

Figure 2.3 The file structure of the Pizza API project

https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_1/pizzas
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_1/pizzas

26 chapter 2 Building your first serverless API

api.js file. After that, because the pizza list should have more pizza attributes than just
pizza names, you should move it to a separate file. You can even go a step further and
create a folder for the data, as you did for the pizza list we mentioned earlier. After you
apply these recommendations, your code structure should look similar to figure 2.3.

The first modification is moving the list of pizzas to a separate file and extending the
list with additional information, such as pizza IDs and ingredients. To do so, create
a folder in the root of your Pizza API project, and name it data. Then create a file in
your new folder, and name it pizzas.json. Add the content from the following listing
to the new file.

Listing 2.4 JSON containing the pizza info

[
 {
 "id": 1,
 "name": "Capricciosa",
 "ingredients": [
 "tomato sauce", "mozzarella", "mushrooms", "ham", "olives"
]
 },
 {
 "id": 2,
 "name": "Quattro Formaggi",
 "ingredients": [
 "tomato sauce", "mozzarella", "parmesan cheese", "blue cheese", "goat

cheese"
]
 },
 {
 "id": 3,
 "name": "Napoletana",
 "ingredients": [
 "tomato sauce", "anchovies", "olives", "capers"
]
 },
 {
 "id": 4,
 "name": "Margherita",
 "ingredients": [
 "tomato sauce", "mozzarella"
]
 }
]

Your next step is to move the getPizzas handler to a separate file. Create a folder
called handlers in your project root, and create a get-pizzas.js file inside it.

In your new get-pizzas.js file will be the getPizzas handler, which returns the list of
pizzas from listing 2.4. First, you need to import the pizza list from the JSON file you
created. Second, you need to create a getPizzas handler function and export it so

This JSON file is an array of pizza objects.

Each pizza object has a pizza ID,
name, and ingredients.

 27Assembling pizza ingredients: building the API

that you can require it from your entry file. Then, instead of just returning the pizza
list, go a step further and return just one pizza if a pizza ID was passed as a parameter to
your getPizzas handler. To return just one pizza, you can use the Array.find method,
which searches for a pizza by the pizza ID from your pizza list. If it finds a pizza, return
it as a handler result. If there aren’t any pizzas with that ID, have your application throw
an error.

The updated code of your new pizza handler should look similar to the next listing.

Listing 2.5 Your getPizzas handler with a pizza ID filter in a separate file

const pizzas = require('../data/pizzas.json')

function getPizzas(pizzaId) {
 if (!pizzaId)
 return pizzas

 const pizza = pizzas.find((pizza) => {
 return pizza.id == pizzaId
 })

 if (pizza)
 return pizza

 throw new Error('The pizza you requested was not found')
}

module.exports = getPizzas

You should also remove the previous getPizzas handler code from your API entry
point file, api.js. Delete everything between importing Claudia API Builder and the
end, where you’re exporting your Claudia API Builder instance.

After the line where you’re importing Claudia API Builder, import the new get-
pizzas handler from your handlers folder:

const getPizzas = require('./handlers/get-pizzas')

NOTE You should also create a handler for the GET route for the root path, /,
which should return a static message to the user. Though this is optional, we
highly recommend it. Your API is more user-friendly when it returns some
friendly message instead of an error when someone is querying just your API’s
base URL.

Next you should add the route for getting the pizza list, but this time, you’ll use the
get-pizzas handler you created for the route handling. You should import the file
at the beginning of your api.js entry file. If you remember, your get-pizzas handler

Import the list of pizzas from
the data directory.

Create the getPizzas
handler function.

If a pizza ID is not passed,
return the full pizza list.

Otherwise, search the list
by the passed pizza ID.

Note == instead of ===. That’s
because pizzaId is passed as a string, and
you don’t want it to be a strict match, as
in the database it may be an integer.

Throw an error if
the application
doesn’t find the
selected pizza.Export the getPizzas

handler.

28 chapter 2 Building your first serverless API

can also filter pizzas by ID, so you should add another route that returns a single pizza.
Write that route so that it accepts a GET request for the /pizzas/{id} url. The /{id}
part is the dynamic route parameter that tells your handler which pizza ID the user
requested. Like Express.js, Claudia API Builder supports dynamic route parameters,
but it uses a different syntax, which is why it has /{id} instead of /:id. The dynamic
path parameters are available in the request.pathParams object. Finally, if your han-
dler hasn’t found the pizza you wanted, return a 404 error:

api.get('/pizzas/{id}', (request) => {
 return getPizzas(request.pathParams.id)
}, {
 error: 404
})

By default, API Gateway returns HTTP status 200 for all requests. Claudia API Builder
helps you by setting some sane defaults, such as status 500 for errors, so your client
application can handle request errors in promise catch blocks.

To customize the error status, you can pass a third parameter to the api.get func-
tion. For example, in your get /pizza/{id} function handler, besides the path and your
handler function, you can pass an object with custom headers and statuses. To set the
status error to 404, pass an object with the error: 404 value in it.

You can see how your fully updated api.js file should look in the following listing.

Listing 2.6 The updated api.js

'use strict'

const Api = require('claudia-api-builder')
const api = new Api()

const getPizzas = require('./handlers/get-pizzas')

api.get('/', () => 'Welcome to Pizza API')

api.get('/pizzas', () => {
 return getPizzas()
})

api.get('/pizzas/{id}', (request) => {
 return getPizzas(request.pathParams.id)
}, {
 error: 404
})

module.exports = api

Now deploy your API again. To update your existing Lambda function along with its
API Gateway routes, run the Claudia update command from your terminal:

claudia update

Import the get-pizzas handler
from your handlers directory.

Add a simple root route that
returns static text to make
your API user-friendly.

Replace the inline handler function
with the new one you imported.

Add the route for finding
one pizza by its ID.

Customize success and
error status codes.

 29Assembling pizza ingredients: building the API

NOTE Because of the claudia.json file, the claudia update command knows
exactly which Lambda function the files are deployed to. The command can be
customized with a --config flag. For more information, see the official documen-
tation at https://github.com/claudiajs/claudia/blob/master/docs/update.md.

After a minute or so, you should see a response similar to the one in listing 2.7. After
processing the command and redeploying your application, Claudia will print out
some useful information about your Lambda function and your API in the terminal.
That information includes the function name, Node.js runtime, timeout, function
memory size, and base URL of your API.

Listing 2.7 The printed information after running the claudia update command

{
 "FunctionName": "pizza-api",
 "Runtime": "nodejs6.10",
 "Timeout": 3,
 "MemorySize": 128,
 "Version": "2",
 "url": "https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/

chapter2_2",
 "LastModified": "2017-07-15T14:48:56.540+0000",
 "CodeSha256": "0qhstkwwkQ4aEFSXhxV/zdiiS1JUIbwyKOpBup35l9M=",
 // Additional metadata
}

If you open this route link again from your browser (which should look similar to
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas), you
see the array of all pizza objects from your data/pizza.js file.

When you open the other route link (something similar to https://whpcvzntil
.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/1), you see only the first
pizza. This response should look something like this:

{"id":1,"name":"Capricciosa","ingredients":["tomato
sauce","mozzarella","mushrooms","ham","olives"]}

To test whether your API is working as expected, you should also try to get a pizza that
doesn’t exist. Visit your API URL with a nonexistent pizza ID, such as this one: https://
whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/42. In this case,
the response should look similar to this:

{"errorMessage" : "The pizza you requested wasn't found"}

The name of your AWS
Lambda function

The Node.js runtime used
to run the code

The function timeout
(in seconds)

The maximum amount of memory
your function can use

The deployment version

Your API’s
base URL

https://github.com/claudiajs/claudia/blob/master/docs/update.md
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/1
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/1
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/42
https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_2/pizzas/42

30 chapter 2 Building your first serverless API

Congratulations—your Pizza API is now capable of showing a list of pizzas to Aunt
Maria’s customers! This will make your Aunt Maria happy, but your API is not done yet.
You need to implement the core feature of the API: creating a pizza order.

2.1.3 POSTing an order

Being able to create a pizza order via your API is important to Aunt Maria. Even though
she is not as technically proficient as you are, she’s aware that it will speed up pizza
ordering and help her to quickly serve all the customers from her whole neighbor-
hood, or even the whole town.

NOTE In this example, you will learn about basic application structure, so to
simplify things you will not store the orders anywhere. You will work with per-
sistent storage in chapter 3.

To implement pizza order creation, you need to have a “create pizza order” route and
a “create an order” handler, which means that you will need to create a new file in the
handlers folder in your Pizza API project. As always, try to create simple and readable
filenames. In this case, a good name for your handler file would be create-order.js.

First, create the new handler file, and open it in your favorite code editor. Next,
create the createOrder function, and export it at the end of the file. Your handler func-
tion needs to accept some order data or an order object. At this moment, this order
object should have only two attributes: the ID of the pizza a customer ordered and the
customer address where the pizza should be delivered.

As a first step, check whether those two values have been passed within the order
object. If not, throw an error.

The following part should implement storing the order to the database, but at the
moment, you will just return an empty object if the order object is valid. You could store
the object in a file, but a Lambda function can be deployed on multiple containers,
and you have no control over that, so it’s important not to rely on the local state. In the
next chapter, you will learn how to connect your serverless function to a database and
actually save an order.

Your create-order.js file should look like the one in the next listing.

Listing 2.8 Creating a pizza order handler

function createOrder(order) {
 if (!order || !order.pizzaId || !order.address)
 throw new Error('To order pizza please provide pizza type and address

where pizza should be delivered')

 return {}
}

module.exports = createOrder

The createOrder handler function
accepts the order object.

If the order object doesn’t contain a pizzaId or a
customer address, throw an error.

Otherwise, return an empty object.

Export the handler function.

 31Assembling pizza ingredients: building the API

Now that you have the handler for creating an order, it’s time to create a route—but
this one should accept POST requests. To do that, you’ll need to go back to your api.
js file. Like api.get, Claudia API Builder has an api.post method that receives three
parameters: path, handler function, and options.

NOTE Besides GET, Claudia API Builder supports POST, PUT, and DELETE as
HTTP verbs.

For the route path, you should write /orders, as your app is creating a new order.
As the route handler function, import the create-order.js file you just made in your
handlers folder. Finally, for the options parameter, pass customized statuses for both
success and error: 201 and 400, respectively. Use the success attribute to add a custom
status for success.

The POST request body is automatically parsed for you and available in the request
.body attribute, which means that you don’t need to use any additional middleware to
parse the received data, such as the Express.js body_parser.

Parsing POST request body
The body of the POST request is automatically parsed by API Gateway. Claudia checks the
body and normalizes it. For example, if the content type of the request is application/
json, Claudia converts the empty body to an empty JSON object.

After you add the new route, your api.js file should look like the following listing.

Listing 2.9 Main API file updated with the new routes

'use strict'

const Api = require('claudia-api-builder')
const api = new Api()

const getPizzas = require('./handlers/get-pizzas')
const createOrder = require('./handlers/create-order')

api.get('/', () => 'Welcome to Pizza API')

api.get('/pizzas', () => {
 return getPizzas()
})

api.get('/pizzas/{id}', (request) => {
 return getPizzas(request.pathParams.id)
}, {
 error: 404
})

api.post('/orders', (request) => {
 return createOrder(request.body)
}, {

Import the
create-order
handler from the
handlers directory.

Add the POST /orders route to
create an order and pass the
request.body to the handler.

32 chapter 2 Building your first serverless API

 success: 201,
 error: 400
})

module.exports = api

Again, deploy the API by running the claudia update command.
Trying out a POST request can be a bit trickier than testing a GET. You can’t test it by

opening the route URL in the browser. Hence, for the POST routes, you should use one
of the free HTTP testing tools, such as curl or Postman.

NOTE From now on, you will see curl commands for all examples where you
should try out your API endpoints. They aren’t obligatory; you are free to use
any tool you prefer.

curl and Postman
curl is a tool used in command lines or scripts to transfer data. It is also used in cars,
television sets, routers, printers, audio equipment, mobile phones, tablets, set-top
boxes, and media players, and is the internet transfer backbone for thousands of soft-
ware applications affecting billions of humans daily. curl is designed to work without
user interaction.

Postman is an application with a graphical user interface (GUI) that can also help you
test your APIs. It can also speed up development, as you can build API requests and doc-
umentation through testing. It is available as an application for Mac, Windows, and Linux
and as a Chrome plug-in.

You are going to test your POST /orders endpoint by using a curl command. In this
command, you’ll send an empty request body so you can check the validation error.
Besides the POST body, you need to specify the method, provide a header to tell your
API you are sending a JSON request, and specify the full URL you want to send the
request to.

NOTE By default, curl doesn’t print out the response HTTP status code. To
check if your API is returning the correct status, use the -w flag and append the
HTTP status after the API response.

You can see the command format in the following listing. This command has an empty
body so you can test the error response.

Return the status “201 Created”
for a successful request.

Return the status “400 Bad Request”
in case of an error.

 33Assembling pizza ingredients: building the API

Listing 2.10 curl command for testing POST /orders route (error response)

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{}' https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/

chapter2_3/orders

After you run the curl command from listing 2.10 in your terminal, the response
should look like this, with a few additional headers:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Content-Length: 104
Date: Mon, 25 Sep 2017 06:53:36 GMT

{"errorMessage":"To order pizza please provide pizza type and address where
pizza should be delivered"}

Now that you’ve verified the returned error when no order data is passed, you should
also test a successful response. To do so, run a similar curl command from your termi-
nal; change only the request body, as now it needs to contain a pizza ID and an address.
The following listing shows the updated curl command. This command has a valid
body so you can test the successful response.

Listing 2.11 curl command for testing the POST /orders route (successful
response)

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizzaId":1,"address":"221B Baker Street"}' \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_3/orders

This command returns the following:

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 2
Date: Mon, 25 Sep 2017 06:53:36 GMT

{}

This confirms that your API works correctly.
Now that you’ve learned the serverless API basics, it’s time to take a look at what Clau-

dia did when you ran the claudia create command.

Tell the curl command to print the
response with HTTP headers.

Set the header to tell the server that you
want to send the request parameters in
the JSON format.

Set the POST method.
Send an empty object to your API URL
with the appended /orders path.

Send the pizza ID and
address as a POST body.

34 chapter 2 Building your first serverless API

2.2 How Claudia deploys your API
The previous examples demonstrated one of the main ideas of Claudia: single-command
application deployment. There is no magic behind the tool, so every command can be
explained easily.

Figure 2.4 represents the flow of events that happened when you ran the claudia
create command. This simplified diagram is focused on the most important parts of
the process for easier understanding. Also, some of the events described in this flow
can be skipped or modified if you provide some flags with the create command. For
example, Claudia can skip the first step and copy your code with all the local dependen-
cies if you provide the flag --use-local-dependencies. For the full list of options, see
https://github.com/claudiajs/claudia/blob/master/docs/create.md.

When you run the claudia create command, the first thing that Claudia does is zip
your code without the dependencies and hidden files, using the npm pack command.
Then it creates a copy of your project in a temporary folder in your system. This action
ensures a clean and reproducible release, always starting from a well-known point and
preventing problems caused by potential local dependencies. During this step, Claudia
ignores your node_modules folder and all files ignored by Git or NPM. It also installs
your production and optional dependencies using the npm install --production
command.

Because the Lambda function requires the code with all its dependencies to be
uploaded as a zip file, Claudia installs all production and optional NPM dependencies
before compressing your project into a zip file.

Duplicate code to /tmp

Code validation

Zip code

Create and deploy
Lambda function

Create
API Gateway definitions

Set permissions

npm pack

npm install --production

AWS

Claudia first uses the “npm pack”
command to create a zip archive

with your code, without the
dependencies and ignored files.

Claudia then creates a
zip archive with your
code and all the
installed dependencies.

Then, Claudia creates a
new Lambda function
and deploys your project
to it using the AWS SDK.

After the function, it does
the same with API
Gateway definitions if
your function is an API.

When you run the “claudia
create” command, Claudia
first makes a copy of your
code in a temporary directory.

Then it installs all the
production and optional
dependencies from NPM.

After the dependencies are
freshly installed from NPM,
Claudia validates your code
for some obvious issues.

Claudia also creates all the
required permissions for
both your Lambda function
and API Gateway.

When the command is successfully
executed, Claudia creates the claudia.json
file in your project and lets you know that
command is done.

Figure 2.4 The claudia create process

https://github.com/claudiajs/claudia/blob/master/docs/create.md

 35Traffic control: How API Gateway works

Also, because debugging Lambda functions isn’t straightforward, as you will see in
chapter 5, Claudia also verifies that your project doesn’t have any obvious issues, such as
typos or your application invoking an undefined module. Take this step with a grain of
salt, because it will do just a shallow validation. If you have a typo or an undefined func-
tion or module invocation inside the function or handler body, this step won’t catch it.

As the next step, Claudia creates a zip file with your code with all the dependencies
installed in the first step.

The last three steps in figure 2.4 aren’t executed sequentially, but in parallel.
When the zip file is created, Claudia invokes the AWS API to create your Lambda

function and uploads the archive. The interaction with the AWS platform is done
through the AWS SDK module for Node.js. Before the code is uploaded, Claudia cre-
ates a new IAM user and assigns to the IAM user certain permissions to allow it to inter-
act with AWS Lambda and API Gateway.

AWS IAM users, roles, and permissions
AWS Identity and Access Management (IAM) enables you to securely control access to
AWS services and resources for your users. Using IAM, you can create and manage AWS
users and groups, as well as use permissions to allow or deny any user or group access to
your AWS resources.

A deeper explanation of IAM is beyond the scope of this book, but we highly recommend
that you read more about it before progressing to the next few chapters. You can start
with the official documentation: https://aws.amazon.com/iam/.

After your Lambda function is fully set up, Claudia sets up an API Gateway instance to
it, defines all the routes, and sets their required permissions.

The claudia update command flow is almost identical to that of the claudia create
command, but without some steps that have already been completed, such as role cre-
ation and permissions setup.

If you want to dive even deeper into Claudia and its commands, you can see its source
code here: https://github.com/claudiajs/claudia.

Now that you know how Claudia works under the hood, the last piece of the API puz-
zle is understanding how API Gateway does the routing for your Pizza API.

2.3 Traffic control: How API Gateway works
In chapter 1 you learned that users can’t interact with AWS Lambda outside of the AWS
platform unless a trigger wakes up the function. One of Lambda’s most important trig-
gers is API Gateway.

As you can see in figure 2.5, API Gateway acts like a router or a traffic controller. It
accepts HTTP requests (such as Pizza API requests from your web or mobile applica-
tion), parses them to a common format, and routes them to one of your connected
AWS services.

https://aws.amazon.com/iam/
https://github.com/claudiajs/claudia

36 chapter 2 Building your first serverless API

API Gateway can be integrated with many AWS services, including AWS Lambda and
Amazon S3. Each API on API Gateway can be connected to multiple services. For
example, certain routes can invoke Lambda functions, whereas others can interact
with some other service.

API Gateway offers another approach to HTTP request routing, called a proxy router.
Instead of creating each route, a proxy router sends all requests to a single AWS Lambda
function. This approach can be useful when you are creating a small API or when you
want to speed up your deployment, because creating and updating multiple routes on
API Gateway can take a few minutes, depending on your internet connection speed and
the number of routes.

2.4 When a serverless API is not the solution
Even though we’ve just scratched the surface, you can already see how easy it is to build
serverless APIs with Claudia.js and Claudia API Builder. Serverless APIs can be power-
ful and incredibly scalable, but in certain situations traditional APIs are a much better
solution, such as the following:

¡	When request time and latency are critical. You can’t guarantee minimal latency
with serverless applications.

¡	When you need to guarantee a certain level of availability. In most cases, AWS will
provide a pretty good level of availability, but sometimes that’s not enough.

¡	When your application requires intensive and complex computing.
¡	When your API requires compliance with a specific standard. AWS Lambda and

API Gateway might not be flexible enough.

GET
/tasks

API Gateway

GET
/tasks/1

GET
/files/1

PUT
/files

POST
/tasks

AWS Lambda AWS Lambda Amazon S3

Web app

After the request is processed by the
back-end service, API Gateway maps the
response and passes it back to the web app.

API Gateway can have
multiple resources.

The web app sends an HTTP
(Ajax) request to the API
created using API Gateway.

Request is then processed
via API Gateway router.

Each resource has at least
one method.

When the service in the background
responds, that response is
processed by API Gateway.

Each method is integrated
with the service in the
background; API Gateway
supports many different
AWS services, including AWS
Lambda and Amazon S3.

HTTP
request

HTTP
response

Figure 2.5 API Gateway routes requests to your AWS services.

 37Taste it!

2.5 Taste it!
After going through each chapter, have a “do it yourself” session. Most of the chapters
give you a certain task, and you should try to implement it yourself. We provide a few
useful hints, and the solutions are in the next section.

2.5.1 Exercise

In this chapter, you implemented the GET /pizzas and POST /orders API routes.
To make your API more useful, there are two routes left: PUT /orders and DELETE /
orders.

For the first exercise, do the following:

1 Create a handler for updating a pizza order, and add an API route for it.

2 Create a handler for deleting a pizza order, and add an API route for it.

In case you need some hints, here are a few:

¡	To add a PUT route, use the api.put method provided by Claudia API Builder.
¡	To add a DELETE route, use the api.delete method provided by Claudia API

Builder.
¡	Both methods accept three arguments: a route path, a handler function, and an

options object.
¡	Both paths require a dynamic parameter: an order ID.
¡	The updateOrder handler also requires a body with the new order details.
¡	Because you don’t have the database yet, just return an empty object or a simple

text message as a response.

When you finish the exercise, the file structure of your Pizza API should look like the
one in figure 2.6.

If this exercise is too easy for you, and you want an additional challenge, try to add an
API route for listing the pizza orders. There’s no solution for this challenge in the next
section, but that handler exists in the source code of Pizza API included with this book,
so feel free to check the source and compare the solutions.

2.5.2 Solution

We hope you managed to finish the exercise on your own. Here are our solutions, so
you can compare.

The first part of the exercise was to create a handler to update an order. To begin,
you needed to create a file in your handlers folder, and name it update-order.js. In the
file, you needed to create and export an updateOrder function that accepts an ID and
the updated order details. The function should throw an error if the order ID or the
updated order details object is not provided, or return a success message if successful.
The code should look like the following listing.

38 chapter 2 Building your first serverless API

Listing 2.12 Updating an order handler

function updateOrder(id, updates) {
 if (!id || !updates)
 throw new Error('Order ID and updates object are required for updating

the order')

 return {
 message: `Order ${id} was successfully updated`
 }
}

module.exports = updateOrder

Root folder for Pizza API

Entry point for your API;
it contains all the routes.

Your app is just a standard
Node.js project, so it contains
the package.json file.

Config file created by
Claudia

All static data for your app
is stored in the data folder;
at the moment that’s just
the pizza data.

Directory for all route
handlers

js

json

json

json

pizza-api

api.js

package.json

claudia.json

data

pizzas.json

handlers

get-pizzas.jsjs

create-order.jsjs

update-order.jsjs

delete-order.jsjs

Figure 2.6 The updated file and folder structure of the Pizza API project

A handler function accepts the
order ID and the order updates.

If the ID or updates object is not passed,
throw an error.

Otherwise, return a
success message.

Export the handler function.

 39Taste it!

After you created the updateOrder function, you should have done the same for the
handler to delete an order. First, you needed to create the delete-order.js file in your han-
dlers folder. Then you should have created an exported deleteOrder function in the
file. That function should accept an order ID. If the order ID isn’t passed, the handler
should throw an error; otherwise, it should return an empty object. The code should
look like the following listing.

Listing 2.13 Deleting an order handler

function deleteOrder(id) {
 if (!id)
 throw new Error('Order ID is required for deleting the order')

 return {}
}

module.exports = deleteOrder

Now, with the handlers implemented, your next step is to import them to api.js and
create routes for updating and deleting the orders.

To update an order, use the api.put method, and use the /orders/{id} URL as
the path; then set the handler function and the options with 400 as the status code for
errors. You can’t just pass the handler function you created in the previous step because
it doesn’t accept the full request object; instead, pass an anonymous function that
invokes the updateOrder handler with an order ID from the received request body. The
DELETE /orders route is the same except for two differences: it uses the api.delete
method, and it doesn’t pass the request body to the deleteOrder handler function.

After this step, your api.js file should look like the following listing.

Listing 2.14 The Pizza API with PUT /orders and DELETE /orders routes

'use strict'

const Api = require('claudia-api-builder')
const api = new Api()

const getPizzas = require('./handlers/get-pizzas')
const createOrder = require('./handlers/create-order')
const updateOrder = require('./handlers/update-order')
const deleteOrder = require('./handlers/delete-order')

// Define routes
api.get('/', () => 'Welcome to Pizza API')

api.get('/pizzas', () => {
 return getPizzas()
})
api.get('/pizzas/{id}', (request) => {

A handler function
accepts the order ID.

If an ID is not passed,
throw an error.

 Otherwise, return an empty object.

 Export the handler function.

Import the
update-order
handler from the
handlers directory.

Import the
delete-order handler
from the handlers
directory.

40 chapter 2 Building your first serverless API

 return getPizzas(request.pathParams.id)
}, {
 error: 404
})

api.post('/orders', (request) => {
 return createOrder(request.body)
}, {
 success: 201,
 error: 400
})
api.put('/orders/{id}', (request) => {
 return updateOrder(request.pathParams.id, request.body)
}, {
 error: 400
})
api.delete('/orders/{id}', (request) => {
 return deleteOrder(request.pathParams.id)
}, {
 error: 400
})

module.exports = api

As always, open your terminal, navigate to your pizza-api folder, and run the claudia
update command from it to update your Lambda function and API Gateway definition.

When Claudia updates your Pizza API, you can use the curl commands from list-
ings 2.15 and 2.16 to test your new API endpoints. These commands are almost the
same as the command you used for the POST request, with the following differences:

¡	The HTTP method is different: You use PUT for updating and DELETE for deleting
the order.

¡	Updating the order needs to pass the body with the updates.
¡	Deleting the order doesn’t require the request body.

These commands each have a valid body and should return a successful response.

Listing 2.15 curl command for testing PUT /orders/{id} route

curl -i \
 -H "Content-Type: application/json" \
 -X PUT \
 -d '{"pizzaId":2}' \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_4/

orders/42

Add a route for PUT /orders and
connect a handler.

Both routes return status
400 in case of an error.

Add a route for DELETE /orders
and connect a handler.

Send the PUT request.

Add extra pepperoni
to your order.

Add an order ID as a
path parameter.

 41Summary

Listing 2.16 curl command for testing DELETE /orders/{id} route

curl -i \
 -H "Content-Type: application/json" \
 -X DELETE \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter2_4/

orders/42

When you execute the commands in your terminal, they return the responses
{"message":"Order 42 was successfully updated"} and {}, respectively, both with
status 200.

Summary
¡	Claudia enables you to deploy your API to API Gateway and AWS Lambda in a

single command.
¡	Updating your API takes a single Claudia command, too.
¡	A serverless API on AWS Lambda doesn’t require any specific folder structure or

organization.
¡	API Gateway acts as a router and can invoke various services.
¡	If you want to bundle more routes into a single AWS Lambda function, you need

internal routing.
¡	Claudia API Builder has a router identical to the routers in other popular Node.js

web API libraries.
¡	Serverless APIs are powerful, but they are not a silver bullet, so depending on

your case, a traditional API might work better.

Send the DELETE
request. Provide an

order ID as
the URL

parameter.

42

3Asynchronous work is easy,
we Promise()

This chapter covers
¡	Handling asynchronous operations with Claudia

¡	The basics of JavaScript promises

¡	Connecting to DynamoDB from Claudia and
AWS Lambda

In the previous chapter, you created a simple API for handling pizza information
and orders. You also learned that unlike with a traditional Node.js server, AWS
Lambda state is lost between subsequent invocations. Therefore, a database or an
external service is required to store Aunt Maria’s pizza orders or any other data you
want to keep.

As Node.js executes asynchronously, you will first learn how serverless affects asyn-
chronous communication: how it works with Claudia, and, more importantly, the
recommended way of developing your serverless applications. As you grasp these
concepts, you will see how easy it is to connect AWS Lambda to an external service,
and you will learn how to use it to store your pizza orders by using AWS DynamoDB.

Because our brains aren’t good at asynchronous reading, and books are written in
a synchronous manner, let’s go step by step.

 43Storing the orders

3
3.1 Storing the orders

Ring, ring! You just had a short phone call with Aunt Maria. She is impressed by your
speed, though she still can’t use your application, as you aren’t storing any of her pizza
orders. She still needs to use the old pen-and-paper method. To complete the basic
version of your Pizza API, you need to store your orders somewhere.

Before starting development, you should always have an idea of which details you
want to store. In your case, the most elementary pizza order is defined by the selected
pizza, the delivery address, and the order status. For clarity, this kind of information is
usually drawn as a diagram. So as a small exercise, take a minute to try to draw it yourself.

Your diagram should be similar to figure 3.1.
Now that you have an idea of what to store, let’s see how you should structure it for

the database. As you previously learned, you can’t rely on AWS Lambda to store state,
which means that storing order information in your Lambda filesystem is off the table.

In a traditional Node.js application, you would use some popular database, such as
MongoDB, MySQL, or PostgreSQL. In the serverless world, each of the serverless pro-
viders has a different combination of data storage systems. AWS doesn’t have an out-of-
the-box solution for any of those databases.

As the easiest alternative, you can use Amazon DynamoDB, a popular NoSQL data-
base that can be connected to AWS Lambda easily.

NOTE AWS Lambda is not limited to DynamoDB, and you can use it with other
databases, but that’s beyond the scope of this book.

So what is DynamoDB?
DynamoDB is a fully managed, proprietary NoSQL database service offered by Amazon
as part of its AWS portfolio. DynamoDB exposes a similar data model to and derives its
name from Dynamo, a highly available key-value structured storage system with a differ-
ent underlying implementation.

Each pizza order should have the
following information:

- Order status, so you know if
order is new or already delivered

- Address for the delivery

- Pizza that user selected

Selected
pizza

Delivery
address

Pizza order

Order
status

Figure 3.1 The most basic pizza order

44 chapter 3 Asynchronous work is easy, we Promise()

To put it simply, DynamoDB is just a database building block for serverless applica-
tions. DynamoDB is to NoSQL databases what AWS Lambda is to computing functions:
a fully managed, autoscaled, and relatively cheap cloud database solution.

DynamoDB stores the data in its data tables. A data table represents a collection of
data. Each table contains multiple items. An item represents a single concept described
by a group of attributes. You can think of an item as a JSON object, because it has the
following similar characteristics:

¡	Its keys are unique.
¡	It doesn’t limit how many attributes you can have.
¡	Values can be different types of data, including numbers, strings, and objects.

The table is just the storage representation of the model you previously defined, as
shown in figure 3.1.

Now you need to transform your previously defined model to the structure your data-
base understands: a database table. While you are doing that, keep in mind that Dyna-
moDB is almost schemaless, which means that you need to define only your primary key
and can add everything else later. As a first step, you’ll design a minimum viable table
for your orders.

Ready?
As in any other database, you want to store each order as one item in the database

table. For your pizza order storage, you’ll use a single DynamoDB table, which will be a
collection of your orders. You want to receive your orders via an API and store them to
the DynamoDB table. Each order can be described by a set of its characteristics:

¡	Unique order ID
¡	Pizza selection
¡	Delivery address
¡	Order status

You can use those characteristics as keys in your table. Your orders table should look
like table 3.1.

Table 3.1 The structure of an orders table in DynamoDB

Order ID Order status Pizza Address

1 pending Capricciosa 221B Baker Street

2 pending Napoletana 29 Acacia Road

The next step is to create your table—let’s name it pizza-orders. As with most things
in AWS, you can do this several ways; our preferred method is to use the AWS CLI. To
create a table for the orders, you can use the aws dynamodb create-table command,
as shown in listing 3.1.

 45Storing the orders

You need to supply a few required parameters when creating the table. First, you
need to define your table name; in your case, it will be pizza-orders. Then you need to
define your attributes. As we mentioned, DynamoDB requires only primary key defini-
tion, so you can define only the orderId attribute and tell DynamoDB that it will be of
type string. You also need to tell DynamoDB that orderId will be your primary key (or,
in DynamoDB’s world, hash key).

After that, you need to define the provisioned throughput, which tells DynamoDB
what read and write capacity it should reserve for your application. Because this is a devel-
opment version of your application, setting both read and write capacity to 1 will work
perfectly fine, and you can change that later through the AWS CLI. DynamoDB supports
autoscaling, but it requires the definition of the minimum and maximum capacity. At this
point, you won’t need to use autoscaling, but if you want to learn more about it, visit http://
docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html.

Finally, you need to select the region where you want to create your table. Pick the
same region as you did with your Lambda function to decrease latency in database com-
munication. The following listing shows the complete command.

Listing 3.1 Create a DynamoDB table using the AWS CLI

aws dynamodb create-table --table-name pizza-orders \
 --attribute-definitions AttributeName=orderId,AttributeType=S \
 --key-schema AttributeName=orderId,KeyType=HASH \
 --provisioned-throughput ReadCapacityUnits=1,WriteCapacityUnits=1 \
 --region eu-central-1 \
 --query TableDescription.TableArn --output text

TIP Adding the --query attribute in AWS CLI commands will filter the output
and return only the values you need. For example, --query TableDescription
.TableArn returns only the table’s ARN.

You can also define the type of your output by using the --output attribute along
with the value. For example, --output text returns the result as plain text.

When you run the command in listing 3.1, it prints the ARN of your DynamoDB table
and looks similar to this:

arn:aws:dynamodb:eu-central-1:123456789101:table/pizza-orders

That’s it! Now you have the pizza-orders DynamoDB table. Let’s see how you can
connect it to your API’s route handlers.

Create a pizza-orders table using the
AWS CLI.

Provide an attribute definition and tell DynamoDB
that your primary key is of type string (S).

Provide a
key schema.

Set the throughput (read and write
capacity) for the DynamoDB table.

Select the region for your DynamoDB table. Print back the table’s Amazon
Resource Name (ARN) to confirm

that everything is set up correctly.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/AutoScaling.html

46 chapter 3 Asynchronous work is easy, we Promise()

To be able to connect to your DynamoDB table from Node.js, you need to install the
AWS SDK for Node.js. You can get the aws-sdk from NPM, as you would any other mod-
ule. In case you are unfamiliar with that process, see appendix A.

You now have all the ingredients, and it’s time for the most important step: combine
all the pieces, just as you would prepare a pizza. (Fortunately for you, we have a pizza
recipe in the last appendix.)

The easiest way to communicate with DynamoDB from your Node.js application
is through the DocumentClient class, which requires asynchronous communication.
Document Client, like any part of the AWS SDK, works perfectly with Claudia, and you
will use it in the API route handlers you made in chapter 2.

DynamoDB DocumentClient
DocumentClient is a class of the DynamoDB subset of the AWS SDK. Its goal is to sim-
plify working with table items by abstracting the operations. It exposes a simple API, and
we’ll cover only the pieces you need later in this chapter. In case you want to see the API
documentation, it’s available here: http://docs.aws.amazon.com/AWSJavaScriptSDK/
latest/AWS/DynamoDB/DocumentClient.html.

Connecting your pizza order API to the newly created database is easy. Storing an order
to your DynamoDB table takes just two steps:

1 Import the AWS SDK, and initialize the DynamoDB DocumentClient.

2 Update your POST method to save an order.

Because you split your code into separate files in chapter 2, let’s start with the create
-order.js file in the handlers folder. The following listing shows how to update create
-order.js to save a new order to the pizza-orders DynamoDB table.

Listing 3.2 Saving an order to the DynamoDB table

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function createOrder(request) {
 if (!request || !request.pizza || !request.address)
 throw new Error('To order pizza please provide pizza type and address

where pizza should be delivered')

 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: 'some-id',
 pizza: request.pizza,
 address: request.address,
 orderStatus: 'pending'
 }
 }).promise()

Import the AWS SDK and
initialize the DynamoDB
DocumentClient.

Put the new pizza order in the
DynamoDB table.

The ID can be any string—
hardcode it for now.

The DocumentClient instance has a
.promise method that returns a promise.

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html

 47Storing the orders

 .then((res) => {
 console.log('Order is saved!', res)
 return res
 })
 .catch((saveError) => {
 console.log(`Oops, order is not saved :(`, saveError)
 throw saveError
 })
}

module.exports = createOrder

When you finish this step, the POST /orders method of your Pizza API should look and
work the way it is presented in figure 3.2.

Let’s explain what happens here. After importing the AWS SDK, you need to initial-
ize the DynamoDB DocumentClient. Then you can replace the empty object you are
returning on line 7 of your create-order.js handler with the code that saves an order to
your table, using the DocumentClient you imported previously.

Log the response and return the
data if the promise is fulfilled.

If the promise is rejected,
log an error and throw it
again so you can use the
error in the api.js file.

Export the
handler function.

HTTP Request

Pizza API
Lambda function

DynamoDB

Data: {},
success: true

{}, status 201

Order data

{}, status 201

HTTP Response

API Gateway

API Gateway

Claudia API Builder

Claudia API Builder

POST /orders
route handler “pizza-orders” table

POST /orders
Data:
{
 “pizza”: “Margherita”,
 “address”: “221b Baker Street”
}

POST to your /orders method,
with the details for the order

After the confirmation, your
handler function passes the
success value to Claudia API
Builder, which sends a
success response to the user
via API Gateway.

createOrder function sends the
order data to the DynamoDB
table and receives a
confirmation that order is
saved successfully.

Request is handled by the
POST /orders route handler
function.

API Gateway triggers the
function and Claudia API
Gateway takes the request.

Figure 3.2 The flow of the POST /orders method of your Pizza API with DynamoDB integration

48 chapter 3 Asynchronous work is easy, we Promise()

To save an order to DynamoDB, you use the DocumentClient.put method that puts a
new item in the database, either by creating a new one or replacing an existing item
with the same ID. The put method expects an object that describes your table by pro-
viding the TableName attribute and the item by providing the following Item attribute
as an object. In your database table plan, you decided that your item should have four
attributes—ID, pizza, address, and order status—and that’s exactly what you want to
add to the Item object you are passing to the DocumentClient.put method.

As Claudia API Builder expects a promise for async operations, you should use the
.promise method of DocumentClient.put. The .promise method converts a reply to a
JavaScript promise. Some of you are probably wondering if there are any differences in
how promises work in serverless applications and how Claudia handles asynchronous
communication. The following section gives a short explanation of promises and how
they work with Claudia and Claudia API Builder. If you are already familiar with these
concepts, jump to section 3.3.

3.2 Promising to deliver in less than 30 minutes!
The pizzeria processes include dough rising, baking, pizza ordering, and so on. These
are asynchronous operations. If they were synchronous, Aunt Maria’s pizzeria would
be blocked and stopped from working on anything else until the operation in prog-
ress finished. For example, you would wait until the dough had risen, and then do
something else. And for such time-wasting, Aunt Maria would fire anyone, even you!
Because most of the JavaScript runtimes are single-threaded, many longer operations,
such as network requests, are executed asynchronously. Asynchronous code execution
is handled by two known concepts: callbacks and promises. At the time of this writ-
ing, promises are the recommended way to go in all Node.js applications. We do not
explain callbacks, as you are most likely already familiar with them.

Asynchronous promise
A promise represents an eventual result of an asynchronous operation.

A promise is like a real-world promise made to partners, friends, parents, and kids:

¡	“Honey, will you please take out the garbage?”
¡	“Yes, dear, I promise!”

And a couple of hours later, guess who took out the garbage?
Promises are just pretty wrappers around callbacks. In real-world situations, you

wrap a promise around a certain action or operation. A promise can have two possible
outcomes: it can be resolved (fulfilled) or rejected (unfulfilled).

Promises can have conditions related to them, and this is where their asynchronous
power comes into play:

¡	“Johnny, when you finish your homework, you will be able to go out and play!”

 49Promising to deliver in less than 30 minutes!

This example displays how certain actions can occur only after fulfilling a certain asyn-
chronous operation. In the same way, the execution of certain code blocks waits for the
completion of a defined promise.

The following listing is a JavaScript promise representation of the example sentence.

Listing 3.3 Johnny’s play—the promise way

function tellJohhny(homework) {
 return finish(homework)
 .then(finishedHomework => {
 return getOut(finishedHomework);
 })
 .then(result => {
 return play();
 })
 .catch(error => {
 console.log(error);
 });
}

Promises have several features:

¡	Promise chaining—As in listing 3.3, you can easily chain one promise to another,
passing the results from one code block to the next without any hassle.

¡	Parallel execution—You can execute two functions at the same time and get the
results of both just once.

¡	Proper asynchronous operation rejection—If a function gives an error or doesn’t give a
good result, you can reject it and stop its execution at any time. By contrast, with
callbacks, rejecting the promise stops the full chain of promises.

¡	Error recovery—The promise catch block allows you to easily and properly man-
age errors and propagate them to the responsible error handler.

Some customers order multiple pizzas in one order, but those pizzas are not delivered
one by one. If they were, customers would be furious with such an inefficient process.
Instead, the pizza chef usually bakes them all at the same time; then the delivery per-
son waits until all of them are finished before delivery.

The following listing is a code representation of this process.

Listing 3.4 Pizza parallel baking

function preparePizza(pizzaName) {
 return new Promise((resolve, reject) => {
 // prepare pizza
 resolve(bakedPizza);
 });
}

function processOrder(pizzas) {
 return Promise.all([

finish, getOut, and play are async functions, but they
all return promises, which can be chained.

getOut is invoked only after Johnny
finishes his homework.

Catch the errors from any of the
functions in the promise chain.

50 chapter 3 Asynchronous work is easy, we Promise()

 preparePizza('extra-cheese'),
 preparePizza('anchovies')
]);
}

return processOrder(pizzas)
 .then((readyPizzas) => {
 console.log(readyPizzas[0]); // prints out the result from the extra-

cheese pizza
 console.log(readyPizzas[1]); // prints out the result from the anchovies

pizza
 return readyPizzas;
 })

As you can see in listings 3.3 and 3.4, promises help a lot. They allow you to handle any
situation Aunt Maria’s pizzeria could have and also help you properly describe all the
processes. Claudia fully supports all promise features, so you can easily use them.

In the next listing, you can see a simple Claudia example of a handler replying after
one second. Because setTimeout is not returning a promise, you need to wrap it by
using a new Promise statement.

Listing 3.5 Wrapping an async operation that doesn’t support promises with a promise

const Api = require('claudia-api-builder')
const api = new Api()

api.get('/', request => {
 return new Promise(resolve => {
 setTimeout(() => {
 resolve('Hello after 1 second')
 }, 1000)
 })
})

module.exports = api

As you see in listing 3.5, as opposed to some popular Node.js frameworks, Claudia API
Builder only exposes the request in the route handler. In chapter 2, to reply to it you
would return a value, but in the case of an asynchronous operation, you should return
a JavaScript promise. Claudia API Builder receives it, waits for it to be resolved, and
uses the value returned as a reply.

NOTE The AWS SDK has out-of-the-box support for JavaScript promises. All
the SDK classes have a promise method that can, instead of default callback
behavior, return a promise.

Wrap the async operation with a
JavaScript promise.

Execute setTimeout with a
one-second delay.

Use the resolve method to send a
response back to Claudia API Builder.

 51Trying out your API

3.3 Trying out your API
After the small detour into the world of promises, run claudia update again from
your pizza-api folder and deploy the code. In less than a minute, you’ll be able to test
your API and see if it works.

To test your API, reuse the curl command from chapter 2:

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizza":4,"address":"221b Baker Street"}'
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_1/orders

NOTE Don’t forget to replace the URL in your curl command with the URL
you got from the claudia update command.

Oh! The curl command returns this:

HTTP/1.1 400 Bad Request
Content-Type: application/json
Content-Length: 219
Date: Mon, 25 Sep 2017 06:53:36 GMT

{"errorMessage":"User: arn:aws:sts::012345678910:assumed-role/pizza-api
-executor/book-pizza-api

is not authorized to perform: dynamodb:PutItem on resource:
arn:aws:dynamodb:eu-central-1:012345678910:table/pizza-orders"}

What’s wrong?
This error is telling you that the role your Lambda function is using

(arn:aws:sts::012345678910:assumed-role/pizza-api-executor/book-pizza
-api) is not allowed to perform a dynamodb:PutItem command on your DynamoDB
database (arn:aws:dynamodb:eu-central-1:012345678910:table/pizza-orders).

To fix the issue, you need to add an IAM policy that allows your Lambda function to
communicate with your database. You can do that with claudia create by providing
a --policies flag. Be careful, though; that flag doesn’t work with the claudia update
command, as Claudia never duplicates things that you can do with a single AWS CLI
command.

NOTE In AWS, everything is enclosed in IAM policies, which are something
like authorization policies. An IAM policy is similar to a passport visa. To enter
a certain country, you need to have a valid visa.

First, define a role in a JSON file. Create a new folder in your project root, and call it
roles. Then create a role file for DynamoDB. Call it dynamodb.json, and use the con-
tent from the following listing. You want to allow your Lambda function to get, delete,
and put items in the table. Because you might have more tables in the future, apply this
rule to all tables, not just the one you have right now.

52 chapter 3 Asynchronous work is easy, we Promise()

Listing 3.6 JSON file that represents DynamoDB role

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:Scan",
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

TIP You probably want to have more precise roles in a production app, and you
definitely don’t want your Lambda function to be able to access all DynamoDB
tables. To read more about roles and policies, visit http://docs.aws.amazon
.com/IAM/latest/UserGuide/access_policies.html.

Now you can use the AWS CLI put-role-policy command to add a policy to your role,
as shown in the next listing. To do so, you’ll need to provide the role that your Lambda
function is using, the name of your policy, and the absolute path to your dynamodb.
json file. Where can you find the role? Remember the claudia.json file that Claudia cre-
ated in the root folder of your project? Open that file, and you’ll see the role attribute
in the lambda section.

Listing 3.7 Add a policy to the Lambda role to allow it to communicate with
DynamoDB tables.

aws iam put-role-policy \
 --role-name pizza-api-executor \
 --policy-name PizzaApiDynamoDB \
 --policy-document file://./roles/dynamodb.json

NOTE You need to provide a path to dynamodb.json with the file:// prefix.
If you are providing an absolute path, keep in mind that you will have three
slashes after file:. The first two are for file://, and the third one is from the
absolute path, because it starts with a slash.

Define a version.

Define a statement for this role.

Define the specific actions
this role allows or denies.

Enable (allow) the actions you defined.

This rule applies the role to all
DynamoDB tables, not a specific one.

Use the put-role-policy command from the iam
section of the AWS CLI to add the policy.

Attach the policy to the Lambda role you
got from the claudia.json file.

Name your policy.
Use the dynamodb.json file as a
source for creating the policy.

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

 53Trying out your API

When you run the command from listing 3.7, you won’t get any response. That’s OK,
because an empty response means that everything went well.

Now, rerun the same curl command and try to add an order:

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizza":4,"address":"221b Baker Street"}'
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_1/orders

NOTE You don’t need to redeploy your code, because you didn’t change it.
The only thing you updated was the role for your Lambda function.

The curl command should return {} with status 201. If that’s the case, congratula-
tions! Your database connection is working! But how do you see whether the order was
really saved to the table?

The AWS CLI has an answer to that question, too. To list all the items in your table,
you can use the scan command in the dynamodb section of the AWS CLI. The scan com-
mand returns all the items in the table unless you provide a filter. To list all the items in
the table, run the command in the following listing from your terminal.

Listing 3.8 An AWS CLI command that lists all the items from the pizza-orders table

aws dynamodb scan \
 --table-name pizza-orders \
 --region eu-central-1 \
 --output json

This command “scans” your pizza-orders table and returns the result as a JSON
object. You can change the output value to text, and you’ll get the result in text for-
mat. A few more formats are available, including XML.

The command should return something like the value in the following listing: a
JSON response with the count and an array of all your table items.

Listing 3.9 Response from the scan command for your pizza-orders table

{
 "Count": 1,
 "Items": [
 {
 "orderId": {
 "S": "some-id"
 },

The scan command lists all the items
from the table.

The command requires a table
name as a parameter.

You can specify the
format of the response.

This returns a count of all table items. Items are returned as objects in the
Items array.

Each attribute is returned as a key of the
Item object.

The value of each attribute is an object
that contains the attribute type as a key
and the attribute’s actual value as the
key value (S for string, N for number).

54 chapter 3 Asynchronous work is easy, we Promise()

 "orderStatus": {
 "S": "pending"
 },
 "pizza": {
 "N": 4
 },
 "address": {
 "S": "221b Baker Street"
 }
 }
],
 "ScannedCount": 1,
 "ConsumedCapacity": null
}

Awesome—it seems that your API is working as expected!
Try to add another pizza order now with the same curl command—for example, a

Napoletana for 29 Acacia Road. If you then run the AWS CLI command from listing 3.8
again to scan the database, you’ll see only one item in your table; the previous one
doesn’t exist anymore.

Why did that happen?
Remember that you hardcoded an orderId in your create-order.js handler, as shown

in listing 3.2?
Each of the orders should have a unique primary key, and you used the same one, so

your new entry replaced the previous one.
You can fix that by installing the uuid module from NPM and saving it as a depen-

dency. uuid is a simple module that generates universally unique identifiers.

Universally unique identifiers
A universally unique identifier is a 128-bit value used to identify information in computer
systems. It’s better known by the abbreviation UUID. Sometimes it’s called a globally
unique identifier (GUID).

UUIDs are standardized by the Open Software Foundation (OSF) as part of the Distributed
Computing Environment (DCE). To learn more about the UUID standard, see RFC 4122
(the specification that describes it), available here: http://www.ietf.org/rfc/rfc4122.txt.

After you download the module, update your create-order.js handler as shown in the
next listing. You can simply import and invoke the uuid function to get a unique ID for
the order. Keep in mind that this listing shows only the part of the create-order.js file
affected by this change; the rest of the file is the same as the one in listing 3.2.

Each attribute is returned as a key of the
Item object.

The value of each attribute is an object that contains the
attribute type as a key and the attribute’s actual value as
the key value (S for string, N for number).

The command also returns some
additional metadata, such as the
capacity your query consumed.

http://www.ietf.org/rfc/rfc4122.txt

 55Getting orders from the database

Listing 3.10 Adding UUIDs for the orders while creating them

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const uuid = require('uuid')

function createOrder(request) {
 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: uuid(),
 pizza: request.pizza,
 address: request.address,
 status: 'pending'
 }
 }).promise()
// Rest of the file stays the same

After you redeploy the code by invoking the claudia update function, use the same
curl command to test your API again and then scan the database with the AWS CLI
command from listing 3.8. As you can see, the new orderId for your new order is some
unique string like this one: 8c499027-a2d7-4ad9-8360-a49355021adc. If you add
more orders, you’ll see that all of them are now saved in the database, as expected.

3.4 Getting orders from the database
After storing an order in the database, retrieving one should be fairly easy. The
Document Client class has a scan method, which you can use to retrieve the orders.

The scan method works the same way as in the AWS CLI, with a small difference: You
need to pass an object to it as a parameter, along with some options. In the options, the
only required attribute is the name of your table.

Besides scanning the database, your get-orders.js handler can get a single item by
an ID. You can do that with a scan by filtering the results, but that’s inefficient. A more
efficient way is to use the get method, which works almost the same way but requires a
key for your item, too.

Let’s update your get-orders.js file in the handlers folder to scan the orders from your
table, or to get a single item if an order ID is provided. When you update your code, it
should look like the code in the following listing. Once you’ve made these changes,
deploy the code using the claudia update command.

Listing 3.11 get-orders.js handler reads the data from the pizza-orders table

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function getOrders(orderId) {
 if (typeof orderId === 'undefined')
 return docClient.scan({
 TableName: 'pizza-orders'
 }).promise()

Import the uuid module
that you’ve installed from NPM.

Invoke the uuid function to
get a unique ID for the order.

The rest of the file stays
as it is in listing 3.2.

Import and initialize
DocumentClient.

Scan the pizza-orders table.

56 chapter 3 Asynchronous work is easy, we Promise()

 .then(result => result.Items)

 return docClient.get({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 }
 }).promise()
 .then(result => result.Item)
}

module.exports = getOrders

Let’s test it! First, scan all the orders with the following curl command:

curl -i \
 -H "Content-Type: application/json" \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_2/orders

When you run it, it should display something like this:

HTTP/1.1 200 OK

[{
 "address": "29 Acacia Road",
 "orderId": "629d4ab3-f25e-4110-8b76-aa6d458b1fce",
 "pizza": 4,
 "orderStatus":"pending"
}, {
 "address": "29 Acacia Road",
 "orderId": "some-id",
 "pizza": 4,
 "status": "pending"
}]

Don’t worry if the order ID is different from yours; it should be unique.
Now try using an ID from one of the returned orders to get a single order. You can do

that by running the following curl command from your terminal:

curl -i \
 -H "Content-Type: application/json" \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_2/

orders/629d4ab3-f25e-4110-8b76-aa6d458b1fce

The result should look something like this:

HTTP/1.1 200 OK

{
 "address": "29 Acacia Road",
 "orderId": "629d4ab3-f25e-4110-8b76-aa6d458b1fce",
 "pizza": 4,
 "status": "pending"
}

It works! Awesome and easy, right?

You don’t care about the
metadata, so return only items.

If an order ID is provided, use the get method to
get only one item from the table.

The get method requires a primary
key—in this case, orderId.

Again, you don’t need metadata; you can
return only the item.

 57Taste it!

3.5 Taste it!
As you’ve seen, saving orders to the database and retrieving them is easy. But Aunt
Maria has told you that sometimes customers make mistakes and order the wrong
pizza, so she wants the capability to change or cancel a pizza order.

3.5.1 Exercise

To fulfill Aunt Maria’s request, you need to connect two more API endpoints to the
database:

1 Update the update-order.js handler to update an existing order in the pizza
- orders DynamoDB table.

2 Update the delete-order.js handler to delete an order from the pizza-orders
DynamoDB table.

When you finish both endpoints, your API should have the same structure as the one
in figure 3.3.

The solution’s code is in the next section. Before looking at it, try to complete the
exercise yourself, but if you’re struggling, peek a little.

A few hints:

¡	You should use DynamoDB’s DocumentClient for both updates and deletions.
¡	To update an existing order, use the DocumentClient.update method. Besides

TableName, this method requires a few more items in the object you are providing,
including Key, UpdateExpression, and others. See the official documentation

Claudia
API Builder api.js

data/
pizzas.json

handlers/
create-order.js

handlers/
update-order.js

handlers/
delete-order.js

handlers/get-
pizzas.js

“pizza-orders”
table

Incoming API requests are
processed by Claudia API

Builder, which passes them to
your api.js file and the routes

you defined.

Router in api.js file decides
which route handler it

should invoke, and as all of
your handlers are in the
separate files, it decides

which one to use.

get-pizzas.js from the handlers
folder returns a list of all pizzas,
which is defined in the static file

pizzas.json in the data folder.

But the rest of the API methods
are connected to your

pizza-orders DynamoDB table,
and are using it to store, update,

and delete orders.

Highlighted parts are the
parts that will be affected
by the exercise in this
section, connecting the
endpoints for updating
and deleting orders to the
DynamoDB table.

Lambda
function

DynamoDB

Figure 3.3 The Pizza API after connecting all order endpoints to the DynamoDB table, with the parts of
the app that need to be addressed by this exercise highlighted

58 chapter 3 Asynchronous work is easy, we Promise()

for the full list: http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/
DynamoDB/DocumentClient.html#update-property.

¡	If the update method seems too complex for you, remember that DocumentClient
.put will replace an existing order with a new one, so you can try using that one.

¡	To delete an existing order, use the DocumentClient.delete method. To delete an
item, you need to provide an object that contains the TableName and the Key for
that item. For more information, see the official documentation: http://docs.aws
.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/Document Client
.html#delete-property.

¡	Don’t forget to return a promise and to pass the value.

In case this is too easy, here are a few additional things you can do:

¡	Update update-order.js and delete-order.js to affect pending orders only, because
you don’t want customers to be able to change an order if the pizza is ready and
being delivered.

¡	Update get-orders.js to be able to filter by order status, and by default return only
pending orders.

The solutions to these additional tasks are available in the final application source
code, along with code annotations.

3.5.2 Solution

Finished already or peeking a little? If you’re finished, that’s great, but even if you
weren’t able to complete the exercise without any help, don’t worry. DynamoDB is a bit
different from the other popular noSQL databases, and you may need more time and
practice to understand it.

Let’s take a look at the solution. The following listing shows the updates for the
update-order.js file in the handlers folder of your project.

Listing 3.12 Updating an order in the pizza-orders DynamoDB table

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function updateOrder(orderId, options) {
 if (!options || !options.pizza || !options.address)
 throw new Error('Both pizza and address are required to update an order')

 return docClient.update({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 },
 UpdateExpression: 'set pizza = :p, address=:a',

Import and initialize the
DynamoDB DocumentClient.

Pass an ID and an object with the
attributes you want to update.

Define the key for
your order. Describe how the update will

modify attributes of an order.

http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#update-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#update-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#delete-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#delete-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#delete-property

 59Taste it!

 ExpressionAttributeValues: {
 ':p': options.pizza,
 ':a': options.address
 },
 ReturnValues: 'ALL_NEW'
 }).promise()
 .then((result) => {
 console.log('Order is updated!', result)
 return result.Attributes
 })
 .catch((updateError) => {
 console.log(`Oops, order is not updated :(`, updateError)
 throw updateError
 })
}

module.exports = updateOrder

It’s not that different from create-order.js. The two major differences are

¡	Using the DocumentClient.update method with a Key, which is orderId in
your case

¡	Passing more values to the function because you need an orderId and new values
to update (pizza and address)

TIP Update syntax can be a bit confusing because of its UpdateExpression,
ExpressionAttributeValues, and ReturnValues attributes. But the attributes
are quite simple. The annotations of listing 3.12 provide a basic explanation. For
more details, check the official documentation at http://docs.aws.amazon.com/
amazondynamodb/latest/developerguide/Expressions.Update Expressions
.html.

The following listing shows the updates for the delete-order.js file in your handlers
folder. The required updates are similar to those in both the create-order.js and
update-order.js files; the only difference is that you’re using the DocumentClient
.delete method here.

Listing 3.13 Deleting an order from the pizza-orders DynamoDB table

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function deleteOrder(orderId) {
 return docClient.delete({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 }
 }).promise()
 .then((result) => {

Provide the values to the
UpdateExpression expression.

Tell DynamoDB that you want a
whole new item to be returned.

Just log the response or error and pass
the value—you’ll use this in chapter 5
for debugging purposes.

Export the handler.

Import and initialize the
DynamoDB DocumentClient.

Pass an order ID.

Use the DocumentClient.delete
method to delete an order.

Provide an orderId, the
primary key for your table.

Don’t forget to use the .promise
method to return a promise.

for the full list: http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/
DynamoDB/DocumentClient.html#update-property.

¡	If the update method seems too complex for you, remember that DocumentClient
.put will replace an existing order with a new one, so you can try using that one.

¡	To delete an existing order, use the DocumentClient.delete method. To delete an
item, you need to provide an object that contains the TableName and the Key for
that item. For more information, see the official documentation: http://docs.aws
.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/Document Client
.html#delete-property.

¡	Don’t forget to return a promise and to pass the value.

In case this is too easy, here are a few additional things you can do:

¡	Update update-order.js and delete-order.js to affect pending orders only, because
you don’t want customers to be able to change an order if the pizza is ready and
being delivered.

¡	Update get-orders.js to be able to filter by order status, and by default return only
pending orders.

The solutions to these additional tasks are available in the final application source
code, along with code annotations.

3.5.2 Solution

Finished already or peeking a little? If you’re finished, that’s great, but even if you
weren’t able to complete the exercise without any help, don’t worry. DynamoDB is a bit
different from the other popular noSQL databases, and you may need more time and
practice to understand it.

Let’s take a look at the solution. The following listing shows the updates for the
update-order.js file in the handlers folder of your project.

Listing 3.12 Updating an order in the pizza-orders DynamoDB table

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function updateOrder(orderId, options) {
 if (!options || !options.pizza || !options.address)
 throw new Error('Both pizza and address are required to update an order')

 return docClient.update({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 },
 UpdateExpression: 'set pizza = :p, address=:a',

Import and initialize the
DynamoDB DocumentClient.

Pass an ID and an object with the
attributes you want to update.

Define the key for
your order. Describe how the update will

modify attributes of an order.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.UpdateExpressions.html
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#update-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#update-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#delete-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#delete-property
http://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/DynamoDB/DocumentClient.html#delete-property

60 chapter 3 Asynchronous work is easy, we Promise()

 console.log('Order is deleted!', result)
 return result
 })
 .catch((deleteError) => {
 console.log(`Oops, order is not deleted :(`, deleteError)
 throw deleteError
 })
}

module.exports = deleteOrder

Seems easy, right?
Now you need to run the claudia update command from your pizza-api folder one

more time to deploy your code. To test whether everything works, you can use the same
curl commands you were using in chapter 2. Copy them from listings 3.14 and 3.15,
and paste them in your terminal. Don’t forget to update your orderId value. Using the
one provided in those listings won’t work because it’s just a placeholder.

Listing 3.14 curl command for testing PUT /orders/{orderId} route

curl -i \
 -H "Content-Type: application/json" \
 -X PUT \
 -d '{"pizza": 3, "address": "221b Baker Street"}'
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_3/

orders/some-id

This command should return the following:

HTTP/1.1 200 OK

{
 "address": "221b Baker Street",
 "orderId": "some-id",
 "pizza": 3
 "status": "pending"
}

Listing 3.15 curl command for testing DELETE /orders/{orderId} route

curl -i \
 -H "Content-Type: application/json" \
 -X DELETE \
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter3_3/

orders/some-id

This command should return

HTTP/1.1 200 OK

{}

Log the response or the error,
and pass the value.

Export the handler.

Remember to replace some-id
with the real ID of your order.

Remember to replace some-id
with the real ID of your order.

 61Summary

Summary

¡	To build a useful serverless application, you’ll often need to use external services—
either for saving and retrieving data in a database, or to get needed information
from another API.

¡	Communication to an external service is asynchronous.
¡	Claudia allows you to handle asynchronous functions by using JavaScript

promises.
¡	JavaScript promises simplify the way you handle async operations. They also fix

the problem often known as “callback hell” by allowing you to chain async opera-
tions, pass the values, and bubble the errors up.

¡	The simplest way to store data with AWS Lambda is to use DynamoDB, a NoSQL
database offered as part of the AWS ecosystem.

¡	You can use DynamoDB in Node.js by installing the aws-sdk Node module.
Among other things, the AWS SDK also exposes the DynamoDB DocumentClient
class, which allows you to save, query, edit, and delete items in DynamoDB tables.

¡	DynamoDB tables are similar to collections in traditional NoSQL databases.
Unfortunately, they only allow queries by primary key, which can be a combina-
tion of hash and range keys.

62

4Pizza delivery: Connecting
an external service

This chapter covers
¡	Connecting your serverless function to an

external service using an HTTP API

¡	Dealing with common problems in async
communication with Claudia API Builder

As you learned in the previous chapter, handling asynchronous operations in AWS
Lambda is easy with Claudia API Builder. In that chapter, you also learned how
to create a database for your pizza orders and created functions to store, retrieve,
update, and delete them. But your application is capable of much more than that.

This chapter shows you how to connect your serverless application to an exter-
nal HTTP service by enabling Aunt Maria’s pizzeria to use the Some Like It Hot
Delivery Company’s API and offer more home delivery services. You will learn how
to formulate an HTTP request from AWS Lambda, handle response errors, and set
up a webhook with Claudia API Builder. You will also learn about the most common
problems and pitfalls, how to solve them, and how to avoid encountering them in the
first place.

 63Connecting to an external service

4
4.1 Connecting to an external service

Ring, ring! Aunt Maria is on the phone again. She sounds pleased and thanks you for
your current work, but you can sense that something is bothering her. It’s not long
until she asks you for a favor.

It’s about the deliveries. Each time the pizzeria wants to deliver a pizza order, they
need to phone the Some Like It Hot Delivery Company. That wasn’t a problem until
the recent rise in pizza orders (thanks to you!). But now the process is starting to take
up more and more time, so Aunt Maria wants you to find an alternative. Luckily for you,
the Some Like It Hot Delivery Company has an API. How can you connect to it?

As we discussed earlier, your serverless application can connect to any of the
following:

¡	A database (DynamoDB, Amazon RDS)
¡	Another Lambda function
¡	Another AWS service (SQS, S3, and many others)
¡	An external API

The Some Like It Hot Delivery API belongs to the last category.

Serverless application connections

¡	Connecting to a database —As mentioned in the previous chapter, some applica-
tions require a more structured database, so sometimes DynamoDB is not the
right tool for the job. AWS Lambda gives you many other options, and you can con-
nect to almost any other database, including MySQL or PostgreSQL, via Amazon
Relational Database Service (RDS).
Amazon RDS is a web service that makes it easier to set up, operate, and scale a
relational database in the cloud. It provides cost-efficient, resizable capacity for an
industry-standard relational database and manages common database adminis-
tration tasks. To learn more about RDS, visit https://aws.amazon.com/rds/.

¡	Connecting to a Lambda function —Sometimes you want to connect your Lambda
function to another Lambda function, or to invoke itself. You can do this via an
async call with the AWS SDK. This technique has many use cases—for example,
Claudia Bot Builder uses it to deliver delayed Slack messages. We talk more about
Claudia Bot Builder in part 2 of this book.

¡	Connecting to another AWS service —AWS offers a large variety of different ser-
vices, including the Simple Queue Service (SQS), Simple Storage Service (S3), and
many more. It’s common to make connections to other AWS services (such as
SQS and S3), but you can connect to third-party services using the AWS SDK, too.
Some of those services are covered in later chapters of this book.

All these connections are supported by Claudia and are covered in this book. The first
was covered in the previous chapter and the last is covered in this one. The chatbot chap-
ters (8 through 10) cover connections to Lambda functions.

https://aws.amazon.com/rds/

64 chapter 4 Pizza delivery: Connecting an external service

4.2 Connecting to the delivery API
Let’s start with the createOrder handler, which is in the create-order.js file in your
project’s handlers folder. After the createOrder handler saves the order to your data-
base, you want to contact the Some Like It Hot Delivery Company’s API to schedule a
delivery. The flow of your application should look like figure 4.1.

Before you start connecting the dots, take a quick look at the Some Like It Hot Deliv-
ery Company’s API, described in the following section.

4.2.1 The Some Like It Hot Delivery API

Aunt Maria is happy with the professionalism of Some Like It Hot Delivery Company.
For a reasonable price, they pick up and deliver the pizzas while they’re still hot. Even
their call center is good; the agents are polite and take orders quickly. But that’s still a
bottleneck—they don’t have many agents, and despite the speed of their service, you

Some Like It Hot API

DynamoDB

Claudia API Builder

Pizza API

Create an order

User orders a pizza and API
request is sent to Pizza API.

And waits for
the response

Claudia API Builder accepts the request
and passes it to the createOrder handler.

After validation of the order, the
createOrder handler contacts the Some
Like It Hot API to request a delivery.

After getting the response from the API,
the createOrder handler saves the order
to your pizza-orders table in DynamoDB.

When the response is received, the
createOrder handler formats it and
delivers it (and the pizza eventually) back
to the user.

Figure 4.1 Connecting the createOrder handler of the Pizza API to the Some Like It Hot Delivery API

 65Connecting to the delivery API

need to wait on the line for a free agent, which is a problem if you need to deliver a lot
of pizzas every day.

You decide to look at their website to see if there’s something that can simplify the
workflow. Even a simple web form would be better than a phone call. Surprise, surprise—
not only do they have a better solution, but they have a fully working API!

The API offers the following endpoints:

¡	POST /delivery creates a new delivery request and returns the delivery ID and a
time estimation.

¡	GET /delivery returns all the scheduled deliveries for your restaurant.
¡	GET /delivery/{id} returns information on the status of a selected delivery.
¡	DELETE /delivery/{id} cancels the delivery, but only in the first 10 minutes fol-

lowing the creation of the delivery request.

It’s not the best API ever, but it’s good enough to allow you to automate the process.

THE SOME LIKE IT HOT DELIVERY API IS NOT A REAL API. Keep in mind that the
Some Like It Hot Delivery API is…fake. We created a mock API using Claudia
and AWS Lambda so you can connect your test application. As you’ll see, it
returns mock data for the time and distance not related to the address you
enter.

The API is free and open source; to see the documentation and source code,
visit https://github.com/effortless-serverless/some-like-it-hot-delivery.

Feel free to use it—it will not set up any real deliveries!

We don’t dive deep into the Some Like It Hot Delivery API documentation right now.
Instead, you’ll see the most important things about each API endpoint as you connect
them.

4.2.2 Creating your first delivery request

As Aunt Maria described to you, when an order is placed she usually makes a phone
call to create a delivery request. Instead, you’d like to create the delivery request auto-
matically. Take a few seconds and, if you can, come up with a diagram of the flow.

When a customer orders a pizza, you need to

1 Validate the order.

2 Contact the Some Like It Hot Delivery API to see when the Some Like It Hot
Delivery Company can deliver it.

3 Save the order to the database.

NOTE Keep in mind that you are building a minimum viable product, so the
application logic is simplified a bit. In a real-world application, this logic would
need to take into account pizza prep time, working hours, and a few other
things.

https://github.com/effortless-serverless/some-like-it-hot-delivery

66 chapter 4 Pizza delivery: Connecting an external service

The flow is illustrated in figure 4.2.
Before implementing the flow from figure 4.2, you need to learn a bit more about

creating a delivery request via the Some Like It Hot Delivery API. Let’s look at that now.
The most important feature of the Some Like It Hot Delivery API is its POST

/delivery route, which creates a delivery request. This API endpoint accepts the fol-
lowing parameters:

¡	pickupAddress —The pickup address for the order. By default, it’ll use the
address from your account.

¡	deliveryAddress —The delivery address for the order.
¡	pickupTime —The pickup time for the order. If the time isn’t provided, the order

will be picked up as soon as possible.
¡	webhookUrl —The URL for a webhook that should be called to update the deliv-

ery status.

The Some Like It Hot Delivery API returns the delivery ID, the pickup time for the
order, and the initial delivery status, which is “pending.” When the order is picked up,
the Some Like It Hot Delivery API needs to make a POST request to your Pizza API web-
hook and send the new delivery status (“in-progress”) along with the delivery ID.

Pizza delivery
confirmation

Pizza order request

Customer

Pizza API
“Some Like

it Hot”
Delivery API

Ok

Ok

Ok

Database

Pizza delivered,
delivery status changed to “delivered”

Pizza picked up,
delivery status changed to “in-progress”

Ok

Pizza delivery request

Save an order

Save an order

Save an order

Figure 4.2 A detailed diagram illustrating the connection of the createOrder handler to the Some Like It
Hot Delivery API and then the database

 67Connecting to the delivery API

Webhooks
A webhook is just an endpoint on your API. Simply put, it is an HTTP callback: an HTTP
POST request sent to you when something happens. You can think of it as a simple event
notification via HTTP POST. A web application implementing webhooks will POST a mes-
sage to a URL when certain events happen.

It’s time to update your create-order.js handler. It needs to send a POST request to the
Some Like It Hot Delivery API, wait for its response, and then save the pizza order to
the database. But you need to add a delivery ID to the database, so you can update the
status of the order when your webhook receives the data.

The updated create-order.js with the delivery request should look something like the
following listing.

Listing 4.1 create-order.js updated to create a delivery request before saving the
delivery to the database

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const rp = require('minimal-request-promise')

module.exports = function createOrder(request) {
 if (!request || !request.pizza || !request.address)
 throw new Error('To order pizza please provide pizza type and address

where pizza should be delivered')

 return rp.post('https://some-like-it-hot.effortless-serverless.com/
delivery', {

 headers: {
 "Authorization": "aunt-marias-pizzeria-1234567890",
 "Content-type": "application/json"
 },
 body: JSON.stringify({
 pickupTime: '15.34pm',
 pickupAddress: 'Aunt Maria Pizzeria',
 deliveryAddress: request.address,
 webhookUrl: 'https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/

chapter4_1/delivery',
 })
 })
 .then(rawResponse => JSON.parse(rawResponse.body))
 .then(response => {
 return docClient.put({
 TableName: 'pizza-orders',
 Item: {

Send a POST request to the Some Like It
Hot Delivery API.

Add headers to the request, including
the Authorization header with an

authorization token.

Request body needs to be stringified
because the minimal-request
-promise module expects a string.

Send the pickupTime, pickupAddress, and
deliveryAddress in the body.

Send the delivery webhook URL in the request.

Parse the response body, because it’s returned as
a string—notice promise chaining here.

Save the data to the DynamoDB table.

68 chapter 4 Pizza delivery: Connecting an external service

 orderId: response.deliveryId,
 pizza: request.pizza,
 address: request.address,
 orderStatus: 'pending'
 }
 }).promise()
 })
 .then(res => {
 console.log('Order is saved!', res)
 return res
 })
 .catch(saveError => {
 console.log(`Oops, order is not saved :(`, saveError)
 throw saveError
 })
}

Note a few new things here:

¡	minimal-request-promise —As its name states, this is a minimal promise-based
API for HTTP requests. You can pick the module you like the most. We recom-
mend minimal-request-promise because of its minimal required implementa-
tion. For more details, you can take a look at its source code on GitHub: https://
github.com/gojko/minimal-request-promise.

¡	Authorization —Making a request to an external service usually requires some
kind of authorization, but because the Some Like It Hot Delivery API is not a real
API, anything you pass in the Authorization header will work.

¡	webhookURL —The Some Like It Hot Delivery API needs an endpoint where it
will send its delivery status updates.

As previously mentioned, a webhook is a simple API endpoint that accepts POST
requests. There are two things you need to do:

1 Create a route handler for the webhook

2 Create a route called /delivery that accepts POST requests

Let’s start with the first one. Go to the handlers directory in the root of your Pizza API
project, and create a new file named update-delivery-status.js.

The webhook route handler flow should be as follows:

1 Your webhook should receive a POST request with its delivery ID and the delivery
status in the request body.

2 Find the order in the table using the delivery ID you received from the Some Like
It Hot Delivery API.

3 Update that order with a new delivery status.

But there’s a tricky part here. DynamoDB has two actions: get and scan. The get com-
mand allows you to query the database only by key columns, whereas scan can query
on any column. Another important difference is that scan loads up the whole table
and then applies a filter on its collection; the get command directly queries the table.

Because the delivery ID is
unique, you can use it instead of
generating a new one with the
uuid module.

https://github.com/gojko/minimal-request-promise
https://github.com/gojko/minimal-request-promise

 69Connecting to the delivery API

These differences seem to be limiting, but in reality, you just need to do a bit more
planning. Besides a single primary key, DynamoDB supports a composite key, too—it
consists of a primary or hash key and a sort or range key, and requires the combination
of those two to be unique. Another way to handle similar problems is to add a secondary
index. To learn more about both approaches, see the official documentation: http://
docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html.

In your case, there’s an even easier solution—the delivery ID is unique, and you’ll
get it before you store the order to the pizza-orders table, so you can use the delivery
ID as an order ID. Doing so allows you to query the database by both order and delivery
ID, because they are the same, and also to remove the uuid module, because you don’t
need it anymore.

Let’s try to implement that. The following listing shows the code.

Listing 4.2 The update delivery status handler receives the data from the Some Like It
Hot Delivery API and updates the order in the table.

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

module.exports = function updateDeliveryStatus(request) {
 if (!request.deliveryId || !request.status)
 throw new Error('Status and delivery ID are required')

 return docClient.update({
 TableName: 'pizza-orders',
 Key: {
 orderId: request.deliveryId
 },
 AttributeUpdates: {
 deliveryStatus: {
 Action: 'PUT',
 Value: request.status
 }
 }
 }).promise()
 .then(() => {
 return {}
 })
}

Before you can test your webhook, you need to add a route to the api.js file in the
root of your project. To do that you need to require your new handler at the top
of the file by adding the const updateDeliveryStatus = require('./handlers/
update-delivery-status') line. Then you need to add another POST route, the
same way you did it in chapter 2. The following listing shows the last few lines of the
updated api.js file.

Validate.

Use DynamoDB DocumentClient to
update the value in the table.

Use deliveryId as a primary key for
the order, because it’s the same as the
order ID.

Update deliveryStatus for the
selected order.

Return an empty object to the Some Like
It Hot Delivery API.

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html

70 chapter 4 Pizza delivery: Connecting an external service

Listing 4.3 Last few lines of updated api.js file, with the new route for the delivery
webhook

// Rest of the file
api.delete('/orders/{id}', request => deleteOrder(request.pathParams.id), {
 success: 200,
 error: 400
})

api.post('/delivery', request => updateDeliveryStatus(request.body), {
 success: 200,
 error: 400
})

// Export a Claudia API Builder instance
module.exports = api

Awesome—you have the webhook, and all the ingredients are finally in place. Let’s
taste the webhook—pardon, let’s test it. To do so, you need to deploy your API using
the claudia update command. After updating the API, use the same curl command
you used in chapters 2 and 3 to test creating an order:

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizza":4,"address":"221b Baker Street"}'
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter4_1/orders

NOTE Don’t forget to replace the URL in these curl commands with the URL
you got from the claudia update command.

The curl command should return {}, status 200, so everything is fine. But what is hap-
pening in the background?

TIME IN THE SOME LIKE IT HOT DELIVERY API For easier testing, the Some Like It
Hot Delivery API sets each order status to “in-progress” after one minute, and
then to “delivered” after another minute—so the entire process, from “order-
ing” to “delivered pizza,” takes two minutes. It would be awesome if that were
the case in the real world too, right?

As you can see in figure 4.3, your Pizza API contacts the Some Like It Hot Deliv-
ery API first, then it saves the order to the pizza-orders table. Then, a bit later, the
Some Like It Hot Delivery API contacts your webhook and updates the delivery status to
“in-progress.” And finally, it contacts your webhook again to set the status to “delivered.”

That’s it!
What else do you need to connect to the Some Like It Hot Delivery API?
Because you have a webhook, you don’t need to contact the Some Like It Hot Deliv-

ery API to get the delivery status. But you do need to contact the API if you want to
cancel a delivery request. That would be a nice exercise, and you can try to do that in

The rest of the file is the same, except for
importing the delivery status handler.

Add another route that accepts POST requests and
uses updateDeliveryStatus, which was

imported at the top of the file.

Set status 200 for success.
Set status 400 for an error.

Some Like It Hot API

DynamoDB

Claudia API Builder

Pizza API

Create an order

User orders a pizza and API
request is sent to Pizza API.

And waits for
the response

Claudia API Builder accepts the request
and passes it to the createOrder handler.

After validation of the order, the
createOrder handler contacts the Some
Like It Hot API to request a delivery.

After getting the response from the API,
the createOrder handler saves the order
to your pizza-orders table in DynamoDB.

When the response is received, the
createOrder handler formats it and
delivers it (and the pizza eventually) back
to the user.

Figure 4.3 The flow from pizza ordering to delivery

 71Potential issues with async communication

section 4.4. But before the exercise, let’s explore some of the common issues with async
requests from AWS Lambda using Claudia.

4.3 Potential issues with async communication
As you’ve seen, handling asynchronous requests with AWS Lambda using Claudia is
easy. But sometimes issues arise when you want to connect to an external service or do
an async operation.

It’s hard to summarize all the potential issues, but here are the most common errors
people make:

¡	Forgetting to return a promise
¡	Not passing the value out of .then or .catch statements
¡	Not wrapping the external service in a promise if it doesn’t support JavaScript

promises out of the box
¡	Hitting the timeout before the async function finishes its execution

As you can see, most of the issues are promise-related. But let’s take a look at them one
by one.

Listing 4.3 Last few lines of updated api.js file, with the new route for the delivery
webhook

// Rest of the file
api.delete('/orders/{id}', request => deleteOrder(request.pathParams.id), {
 success: 200,
 error: 400
})

api.post('/delivery', request => updateDeliveryStatus(request.body), {
 success: 200,
 error: 400
})

// Export a Claudia API Builder instance
module.exports = api

Awesome—you have the webhook, and all the ingredients are finally in place. Let’s
taste the webhook—pardon, let’s test it. To do so, you need to deploy your API using
the claudia update command. After updating the API, use the same curl command
you used in chapters 2 and 3 to test creating an order:

curl -i \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizza":4,"address":"221b Baker Street"}'
 https://whpcvzntil.execute-api.eu-central-1.amazonaws.com/chapter4_1/orders

NOTE Don’t forget to replace the URL in these curl commands with the URL
you got from the claudia update command.

The curl command should return {}, status 200, so everything is fine. But what is hap-
pening in the background?

TIME IN THE SOME LIKE IT HOT DELIVERY API For easier testing, the Some Like It
Hot Delivery API sets each order status to “in-progress” after one minute, and
then to “delivered” after another minute—so the entire process, from “order-
ing” to “delivered pizza,” takes two minutes. It would be awesome if that were
the case in the real world too, right?

As you can see in figure 4.3, your Pizza API contacts the Some Like It Hot Deliv-
ery API first, then it saves the order to the pizza-orders table. Then, a bit later, the
Some Like It Hot Delivery API contacts your webhook and updates the delivery status to
“in-progress.” And finally, it contacts your webhook again to set the status to “delivered.”

That’s it!
What else do you need to connect to the Some Like It Hot Delivery API?
Because you have a webhook, you don’t need to contact the Some Like It Hot Deliv-

ery API to get the delivery status. But you do need to contact the API if you want to
cancel a delivery request. That would be a nice exercise, and you can try to do that in

The rest of the file is the same, except for
importing the delivery status handler.

Add another route that accepts POST requests and
uses updateDeliveryStatus, which was

imported at the top of the file.

Set status 200 for success.
Set status 400 for an error.

Some Like It Hot API

DynamoDB

Claudia API Builder

Pizza API

Create an order

User orders a pizza and API
request is sent to Pizza API.

And waits for
the response

Claudia API Builder accepts the request
and passes it to the createOrder handler.

After validation of the order, the
createOrder handler contacts the Some
Like It Hot API to request a delivery.

After getting the response from the API,
the createOrder handler saves the order
to your pizza-orders table in DynamoDB.

When the response is received, the
createOrder handler formats it and
delivers it (and the pizza eventually) back
to the user.

Figure 4.3 The flow from pizza ordering to delivery

72 chapter 4 Pizza delivery: Connecting an external service

4.3.1 Forgetting to return a promise

The most common problem with integration of an external service or an async oper-
ation is caused by omitting the return keyword. An example of this error is shown in
the following listing. This issue is hard to debug because the code will run without an
exception, but execution will be stopped before the async operation is done.

Listing 4.4 Breaking the code by not returning a promise

module.exports = function(pizza, address) {
 docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: uuid(),
 pizza: pizza,
 address: address,
 status: 'pending'
 }
 }).promise()

Why is this a problem? As you can see in figure 4.4, if your async operation doesn’t
return a promise, Claudia API Builder won’t know that the operation is asynchronous,
and it will tell AWS Lambda that the function has finished its execution. It will also
send undefined as the value of your function because you never returned anything
meaningful.

The solution for this problem is easy: make sure you always return a promise, and if
your code is not working, first check that all of your promises are returned.

This line is no longer
returning a promise.

Request flow

Claudia
API Builder

Handler
function

Async
operation

Handler
function

Claudia
API Builder

Your serverless
function

AWS Lambda
execution time

When something triggers
AWS Lambda, it triggers

your function, which
begins execution.

The function first runs
Claudia API Builder,
which invokes your

handler function and
expects to get a promise.

If your async operation
does return the promise,
Claudia API Builder will

not know that your
operation is async and

will let Lambda know that
request is finished.

The rest of your
function will never

be executed.

Figure 4.4 A visual representation of Lambda execution when an async operation
doesn’t return a promise

 73Potential issues with async communication

4.3.2 Not passing the value from the promise

This problem is almost the same as the previous one. The following listing shows an
example.

Listing 4.5 Breaking the code by not returning a value from the promise

module.exports = function(pizza, address) {
 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: uuid(),
 pizza: pizza,
 address: address,
 status: 'pending'
 }
 }).promise()
 .then(result => {
 console.log('Result', result)
 })

As you can see in figure 4.5, the main difference is that the async operation finishes
its execution in this case, but the result is never passed back to your handler function,
and your promise chain is broken. Again, undefined is returned as the result of your
serverless function.

The solution for this problem is the same as for the previous one—make sure you
always return the values.

4.3.3 Not wrapping the external service in a promise

Sometimes external or async services don’t have native support for promises. In that
case, another common mistake is not wrapping the operations in a promise, as you can
see in the next listing.

The promise is returned as it should be.

But after logging the request you never
return a value, so the next .then can’t
chain anything.

Request flow

Claudia
API Builder

Handler
function

Async
operation

Handler
function

Claudia
API Builder

Request flow

Claudia
API Builder

Handler
function

Async
operation

Handler
function

Claudia
API Builder

Your serverless
function

AWS Lambda
execution time

When something triggers
AWS Lambda, it triggers

your function, which
begins execution.

The function first runs
Claudia API Builder,
which invokes your

handler function and
expects to get a promise.

Your async operation returned a
promise, but the .then

statement after it didn’t, so
Claudia API Builder thought your

request was done and passed
that info to AWS Lambda.

The rest of your
function will never

be executed.

Figure 4.5 A visual representation of Lambda execution when the async operation doesn’t return a value

74 chapter 4 Pizza delivery: Connecting an external service

Listing 4.6 Breaking the code by not wrapping the non-promise async operation in a
promise

module.exports = function(pizza, address) {
 return setTimeout(() => {
 return 'Are we there yet?'
 }, 500)
})

As you can see in figure 4.6, the problem is exactly the same as the first one.
But the solution is a bit different. As shown in the following listing, you need to

return a new, empty promise. Then, execute an async operation inside it and finally
resolve it when the async operation has finished its execution.

Listing 4.7 Fixing the broken code by wrapping the non-promise async operation in a
promise

module.exports = function(pizza, address) {
 return new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve('Are we there yet?')
 }, 500)
 })
})

4.3.4 Timeout issues with long async operations

This last common problem is one with AWS Lambda timeouts. As you may remember
from chapter 1, the default execution time is three seconds. So what happens when
your asynchronous operation takes more than three seconds, as in the following listing?

You return a value, but setTimeout does not return the
promise, and this line breaks the promise chain.

You return a value again, but this is not a promise and
returning a value from the callback doesn’t do anything;
also, this part of the code is never executed.

Request flow

Claudia
API Builder

Handler
function

Non promise
async

operation

Handler
function

Claudia
API Builder

Your serverless
function

AWS Lambda
execution time

When something triggers
AWS Lambda, it triggers

your function, which
begins execution.

The function first runs
Claudia API Builder,
which invokes your

handler function and
expects to get a promise.

If your async operation
does return the promise,
Claudia API Builder will

not know that your
operation is async and

will let Lambda know that
request is finished.

The rest of your
function will never

be executed.

Figure 4.6 A visual representation of Lambda execution when the async operation is not wrapped in a
promise

You create and return an empty promise, and now you have
access to resolve and reject functions in its callback.

You execute your async operation, which
works only with callbacks.

When it returns a value, you resolve the
promise with the value you want to pass.

 75Potential issues with async communication

Listing 4.8 Breaking the code by executing a function that takes more time than an
AWS Lambda timeout

module.exports = function(pizza, address) {
 return new Promise((resolve, reject) => {
 setTimeout(() => {
 resolve('Are we there yet?')
 }, 3500)
 })
})

Well, as you can see in figure 4.7, it just stops, and your Lambda function never returns
any value. The main difference here is that even Claudia API Builder isn’t executed in
this case. Imagine someone unplugging your computer during some operation—the
effect is the same.

How do you fix this issue?
Unless you can optimize the speed of your async operation and be sure that your

function executes in less than three seconds, the solution is to update the timeout for
your function.

Claudia allows you to set the timeout only during the function’s creation. To do that,
invoke the create command with the --timeout option, like this:

claudia create --region eu-central-1 --api-module api --timeout 10

The value for this option is given in seconds.
If you already have a function, the best way to update it is by running the following

AWS CLI command:

claudia update --timeout 10

setTimeout is wrapped in a
promise, and it returns a value.

But the timeout is 3.5 seconds, and if AWS
Lambda execution time is set to the default
of 3 seconds, this async operation is stopped.

When something triggers
AWS Lambda, it triggers

your function, which
begins execution.

The function first runs
Claudia API Builder,
which invokes your

handler function and
expects to get a promise.

Your async operation was
too long—longer than a

Lambda function timeout, so
it didn’t finish it’s execution

before the timeout.

The rest of your
function will never

be executed.

Request flow

Claudia
API Builder

Handler
function

Handler
function

Claudia
API Builder

Long async
operation

Your serverless
function

AWS Lambda
execution time
(3 seconds)

Figure 4.7 A visual representation of Lambda execution stopped by a timeout

76 chapter 4 Pizza delivery: Connecting an external service

For more information about this command, see the official documentation at http://docs
.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html.

After running the command, your function should be updated with the 10- second
timeout. If you run the example from listing 4.9 again, it should work without a problem.

This list of potential issues is not complete, but the four we mentioned should cover
the clear majority of them.

Now go play a bit more with the options and try to break your serverless API in a
more creative way!

4.4 Taste it!
As you’ve seen, connecting external services is not that hard—so now, try to do it on
your own.

4.4.1 Exercise

Remember that you can integrate cancelation of a delivery request using the Some
Like It Hot Delivery API?

Your exercise for this chapter is exactly that—update the delete-order.js handler to
cancel the delivery request via the Some Like It Hot Delivery API before it deletes the
order from the database.

Before you start, here’s some info about the DELETE method of the Some Like It Hot
Delivery API:

¡	To delete the delivery request, you need to send a DELETE request to the
/ delivery/{deliveryId} route of the Some Like It Hot Delivery API.

¡	You need to provide the delivery ID as a path parameter in the URL.
¡	The full URL for the Some Like It Hot Delivery API is https://some-like-it-hot

.effortless-serverless.com/delivery.
¡	An order can be deleted only if the status is “pending.”

If that’s enough information, go ahead and try it on your own.
In case you need additional tips, here are a few:

¡	You need to read the order from the pizza-orders table first in order to get
its status.

¡	If the status is not “pending,” throw an error.
¡	If the status is “pending,” contact the Some Like It Hot Delivery API; only when you

receive a positive answer should you delete an order from the pizza-orders table.

If you need more help, or you want to see the solution, check out the next section.
In case this exercise was too easy and you want an additional challenge, try to build

the Some Like It Hot Delivery API you used in section 4.2.1. The solution for that

http://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
http://docs.aws.amazon.com/cli/latest/reference/lambda/update-function-configuration.html
https://some-like-it-hot.effortless-serverless.com/delivery
https://some-like-it-hot.effortless-serverless.com/delivery

 77Taste it!

exercise is not shown in the book, but feel free to compare your solution to the original
source code at https://github.com/effortless-serverless/some-like-it-hot-delivery.

4.4.2 Solution

Let’s start with the flow. As we said, first you need to contact the pizza-orders database
table to see if the order has the “pending” status. Cancel it using the DELETE method of
the Some Like It Hot Delivery API, and finally delete it from the pizza-orders table.
See figure 4.8 for a visualization of the flow.

How should you update your delete-order.js handler?
It’s easy. First, import the minimal-request-promise module, because you’ll want to

use it to contact the Some Like It Hot Delivery API.
Then update your deleteOrder function to read an order from the pizza-orders

DynamoDB table. If no order with the specified ID exists, the function automatically
throws an error and status 400 is returned to the customer. If the order does exist, check
if the status of that order is “pending”; if it’s not, you’ll need to throw an error manually.

If the order status is “pending,” use the minimal-request-promise module to send
a DELETE request to the Some Like It Hot Delivery API. Remember that the order ID
is the same as the delivery ID, so you can use that ID to delete the delivery request. An

Pizza API

?

DynamoDB

DynamoDB

Fake
Delivery

API

If order status is
not “pending,”
request id finished.

Customer is
canceling the order.

Pizza API gets the
order status from
the database.

If order status is
“pending,” Pizza API
contacts the Fake
Delivery API to cancel
the delivery request.

When delivery request
is canceled, Pizza API
deletes the order from
the pizza-orders table.

When both delivery
request and order are
canceled, API responds to
the customer with a
success status code (200).

Figure 4.8 The delete order flow for the Pizza API

https://github.com/effortless-serverless/some-like-it-hot-delivery

78 chapter 4 Pizza delivery: Connecting an external service

error from the API will automatically throw an error in your deleteOrder function, so
the response status will be 400 as expected.

When the API successfully deletes the delivery request, you need to delete the order
from the pizza-orders DynamoDB table—and that’s it!

See the following listing for the complete delete-order.js handler’s code after the
update.

Listing 4.9 Deleting an order from the pizza-orders DynamoDB table

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const rp = require('minimal-request-promise')

module.exports = function deleteOrder(orderId) {
 return docClient.get({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 }
 }).promise()
 .then(result => result.Item)
 .then(item => {
 if (item.orderStatus !== 'pending')
 throw new Error('Order status is not pending')

 return rp.delete(`https://some-like-it-hot.effortless-serverless.com/
delivery/${orderId}`, {

 headers: {
 "Authorization": "aunt-marias-pizzeria-1234567890",
 "Content-type": "application/json"
 }
 })
 })
 .then(() => {
 return docClient.delete({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 }
 }).promise()
 })
}

Summary

Import the minimal-request
-promise module.

Get an order from the
pizza-orders table.

If order status is not
“pending,” throw an error.

Delete a delivery request via the
Some Like It Hot Delivery API.

Delete an order from the
pizza-orders table.

Both .then and .catch are removed because the
result will be sent directly as an API response.

 79Summary

¡	With AWS Lambda, you can connect to any external service the same way you
would from any regular Node.js app, as long as your async operations are correct.

¡	If you are connecting to an external API, make sure that your HTTP library sup-
ports promises, or wrap the operations manually.

¡	There are some potential problems with connecting to external services; most of
the time they are related to a broken promise chain.

¡	Another common problem is with a timeout—if your Lambda function takes
more than three seconds to complete, increase the timeout of the function.

80

This chapter covers
¡	Reading console logs using CloudWatch

¡	The challenges of debugging serverless
applications

¡	Debugging serverless APIs

By our nature, we—humans—aren’t perfect. No matter what we do, there is always
the possibility of making a mistake, even if we do our best not to make one. This is
especially true when developing or interacting with software. Do you remember the
last time when a mobile application you were using crashed or a website stopped
responding? Chances are you have experienced this recently, and you had to refresh
your browser or restart your app.

We all make mistakes, and applications crash on a daily basis. Though usually harm-
less, application bugs can sometimes result in huge losses. Let’s take the example of
a bug occurring in your pizzeria application that prevents you from creating orders.
How would you find the bug in the first place? How does debugging work in serverless
applications?

This chapter helps you learn how to find errors in your serverless applications,
how to debug them, and what debugging tools you have at your disposal.

5Houston,
we have a problem!

 81Debugging a serverless app

5.1 Debugging a serverless app
Because you’re progressing quickly, Aunt Maria sends you a message saying that she’s
hired a mobile developer, Pierre. She wanted to increase the reach to her customers,
and a mobile application for making pizza orders seemed like a good start. Pierre
wanted to try out your serverless application. Unfortunately, as he tried creating a
pizza order, the application returned an invalid response. Pierre complained to your
aunt, and now you have your aunt on the phone. You’re probably scratching your head
thinking, “Where could I have gone wrong?” and “How can I debug this?”

In a traditional Node.js server application, you could just type in a console.log
("some text") command somewhere between the lines to log some text or objects to
the console, or even type in debugger to activate a breakpoint in your code to debug
your application. Afterwards you could start it locally and try it out, or log in to the server
and tail your application log to debug it.

Logging in a serverless application is quite different compared to a traditional one.
Although your serverless application consists of completely separated modules—an
API Gateway and a Lambda function—you cannot run it locally and properly debug the
whole application flow. Additionally, because your application is serverless, there isn’t a
server you can log into to tail its logs. Yes, this probably does sound weird and frustrating,
but don’t worry.

Each serverless provider has a tool to help you monitor and debug your serverless
functions. For AWS, it’s CloudWatch.

CloudWatch is the AWS service designed for tracking, logging, and monitoring your
AWS resources. Think of it as a serverless version of your old server tail log, though
capable of much more. As with other AWS services, CloudWatch is available in AWS
CLI, and you’ll use it from your terminal.

Because you are using AWS, CloudWatch is your default choice.

NOTE You can run your serverless function locally, but that doesn’t mean that it
will execute the same way as when it’s run by your serverless provider. Although
Azure has an option to run the function in Visual Studio, and Google Cloud
Platform has a Local Emulator for local debugging, neither serverless provider
recommends using its function emulator for production usage, because both
are in the alpha phase of development.

Here are several ways you can use AWS CloudWatch:

¡	Via the AWS web console from your browser
¡	Using the AWS CLI from your terminal
¡	With the AWS API
¡	With the AWS SDK (depending on your programming language)

You can use any of these you like, but in this book you will be working mostly with
the AWS CLI because it is developer-friendly and you can invoke it from your local
terminal.

82 chapter 5 Houston, we have a problem!

CloudWatch is a simple service that captures logs and errors from your serverless
functions. Whenever you log something in your function—for example, with a
console.log in Node.js—those logs are automatically sent to AWS CloudWatch. AWS
CloudWatch is responsible for their storage and grouping. You can access those logs
via the AWS CLI in your terminal or using the AWS web console UI. For a visual under-
standing of this handling process, see figure 5.1.

NOTE Capturing the logs in CloudWatch doesn’t affect your Lambda response
time. But the logs aren’t available immediately; there is a delay of at least
several seconds between the function call and when the logs are available in
CloudWatch.

By default, the CloudWatch logs are kept indefinitely, but you can configure
how long you want to keep them for each log group.

CloudWatch has a free tier, but the number of logs and the retention period
can affect your monthly price. For more info, see https://aws.amazon.com
/cloudwatch/pricing/.

5.2 Debugging your Lambda function
Now that you know what CloudWatch is, you’ll use it to find the source of Pierre’s
problems. Pierre let you know that the error occurs when he tries to create a pizza
order with a pizza type and a delivery address. You need to try to reproduce the issue
while monitoring the logs using CloudWatch. You will put a log statement at the begin-
ning of your create-order.js handler, redeploy your API, and ask Pierre to try again.

You should log the request with some prefix text—for example, “Save an order”—on
the first line of your createOrder function, as shown in the following listing. Adding
prefix text to your request logs will help you search the logs, but it is not required.

Lambda function sends all
console.log output to

CloudWatch automatically.

User can read logs from
CloudWatch using the web

console or AWS CLI.

Lambda
function

Terminal

CloudWatch

Figure 5.1 AWS Lambda sends console.log output
directly to CloudWatch.

https://aws.amazon.com/cloudwatch/pricing/
https://aws.amazon.com/cloudwatch/pricing/

 83Debugging your Lambda function

(The snippet in this listing shows just the beginning of the file; the rest of the file is
unchanged.)

Listing 5.1 Updated create-order.js handler

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const rp = require('minimal-request-promise')

module.exports = function createOrder(request) {
 console.log('Save an order', request)

 if (!request || !request.pizza || !request.address)
 throw new Error('To order pizza please provide pizza type and address

where pizza should be delivered')

 // ...

Pierre tries again, and receives the same error. Now you should search the logs for the
“Save an order” text. Looping through CloudWatch logs for your Lambda function can
be difficult, because there can be many entries with a bunch of metadata. Fortunately,
you can do it faster with the AWS CLI and the logs filter-log-events command for
filtering logs.

Because CloudWatch stores the logs in log groups, before running the logs filter
-log-events command you’ll need to find the name of your log group. To do this,
you’ll use the logs service of the AWS CLI once again—more precisely, the describe
-log-groups command, as shown in the next listing.

Listing 5.2 describe-logs-groups

aws logs describe-log-groups --region eu-central-1

This command will return a response that includes logGroupName, similar to the next one:

{
 "logGroups": [
 {
 "arn": "arn:aws:logs:eu-central-1:123456789101:log-group:/aws/

lambda/pizza-api:*",
 "creationTime": 1524828117184,
 "metricFilterCount": 0,
 "logGroupName": "/aws/lambda/pizza-api",
 "storedBytes": 1024
 }
]
}

NOTE Besides filter-log-events, the AWS CLI’s logs service provides several
other useful commands. If you want to see the full list of available commands,
run aws logs help from your terminal.

Log the request to the console and
add “Save an order” as prefix text.

The rest of the file remains unchanged.

84 chapter 5 Houston, we have a problem!

Run the logs filter-log-events command from your terminal and provide the “Save
an order” text as a filter, as shown in listing 5.3. You’ll also need to specify an output for-
mat, which will be JSON again. See the next listing for the full code example.

Listing 5.3 Filtering CloudWatch logs with a selected log group and by the “Save an
order” text

aws logs \
 filter-log-events \

 --filter='Save an order' \
 --log-group-name=/aws/lambda/pizza-api \
 --region=eu-central-1 \
 --output=json

Running the command in listing 5.3 finally allows you to read console.log from your
Lambda function. But, as you can see in listing 5.4, it returns it as a JSON with a lot of
metadata that isn’t relevant for your use case. The only info you care about is “mes-
sage” from each of the events. Everything else from the response is metadata about the
log streams you searched for and some additional info about the log messages.

Listing 5.4 Your Pizza API logs from CloudWatch with metadata

{
 "searchedLogStreams": [
 {
 "searchedCompletely": true,
 "logStreamName": "2017/06/18/

[$LATEST]353ce211793946dba5bb276b0bde3e0e"
 }
],
 "events": [
 {
 "ingestionTime": 1497802509940,
 "timestamp": 1497802509920,
 "message": "2017-06-18T16:15:09.860Z\t4cc844ea-5441-11e7-8919-

29f1e77e006c\tSave an order
 { pizza: 1,\n adress: '420 Paper St.' }\n",
 "eventId": "33402112131445556039184566359053029477419337484906135

552",
 "logStreamName": "2017/06/18/[$LATEST]

e24e0cab3d6f47f2b03005ba4ca16b8b"
 }
]
}

Also, the JSON output is not very readable when it’s formatted as single-line text. You
can improve readability by changing the output type to text and updating the filter to
return just the message, as shown in the next listing.

Use the logs
service from
the AWS CLI.

Use the filter-log-events
command to filter log events.

Provide filter
text.

Show only filtered logs for the /aws/
lambda/pizza-api log group.

Set JSON as the output format.

Tell the AWS CLI that you want only
the message of the latest event.

Change the response format to text.

 85X-Ray your app

Listing 5.5 Updated CloudWatch logs filtered by the selected log group and the
“Save an order” text

aws logs \
 filter-log-events \
 --filter='Save an order' \
 --log-group-name=/aws/lambda/pizza-api \
 --query='events[0].message' \
 --region=eu-central-1 \
 --output=text

Running this command from the terminal returns a much cleaner response, similar to
the one in the following listing.

Listing 5.6 The logged Pizza API message, without any metadata

2017-06-18T16:15:09.860Z 4cc844ea-5441-11e7-8919-29f1e77e006c
 Save an order { pizza: 1, adress: '420 Paper St.' }

This output looks a lot cleaner and more useful. And would you look at that, Pierre
made a typo! He was sending adress instead of address by mistake. Such a fuss about
a simple spelling mistake, right? Well, at least you won’t be the one on the phone
explaining the issue to your aunt.

5.3 X-Ray your app
Debugging serverless applications is sometimes hard because it’s not easy to visualize
the data flow—but AWS has a tool to help you out. AWS X-Ray is a service that shows
the data flow of your application and all its involved services in near real time. You can
use X-Ray with applications running on EC2, ECS, Lambda, and Elastic Beanstalk. In
addition, the X-Ray SDK automatically captures metadata for all API calls made to AWS
services using the AWS SDK. Figures 5.2 and 5.3 show the visual representation of your
Pizza API created with AWS X-Ray.

To enable AWS X-Ray for your Lambda function, you need to add a policy that allows
X-Ray to interact with it, and you need to set the tracing mode to Active in your func-
tion configuration.

AWS X-Ray and AWS Lambda
AWS Lambda uses Amazon CloudWatch to automatically emit metrics and logs for all
invocations of your function. But this mechanism might not be convenient for tracing
the event source that invoked your Lambda function or for tracing upstream calls your
function makes. That’s where AWS X-Ray jumps in. X-Ray integration for AWS Lambda is
seamless, because the AWS Lambda runtime already has an X-Ray daemon running.

This section shows just the basic integration of X-Ray and your Lambda function; if you
want to learn more, visit the official guide at http://docs.aws.amazon.com/lambda/
latest/dg/lambda-x-ray.html.

Tell the AWS CLI that you want only
the message of the latest event.

Change the response format to text.

The log returns just
the message.

http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html
http://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html

86 chapter 5 Houston, we have a problem!

NOTE You’ll use the AWS web console for AWS X-Ray because you can’t see the
visual representation of your application from the terminal.

Let’s see how to add a policy and to set the tracing mode to Active using the AWS CLI
from your terminal. To attach the policy, you’ll use the iam attach-role-policy com-
mand again, but now with arn:aws:iam::aws:policy/AWSXrayWriteOnlyAccess, as
shown in listing 5.7.

Figure 5.2 A visual representation of the “Create an order” flow of the Pizza API

Figure 5.3 A detailed view of the “Create an order” flow of the Pizza API

 87X-Ray your app

Listing 5.7 Attaching the X-Ray managed read-only policy to your Lambda role

aws iam \
 attach-role-policy \

 --policy-arn arn:aws:iam::aws:policy/AWSXrayWriteOnlyAccess \
 --role-name pizza-api-executor \
 --region eu-central-1 \
 --output json

As you already know, that command returns an empty result when it’s executed
successfully.

The next step is to update the function configuration. You can do that with the
lambda update-function-configuration AWS CLI command. This command expects
a function name and options; in this case, you want to update tracing-config by set-
ting its mode to Active. The following listing shows the full command.

Listing 5.8 Enabling active tracking using AWS X-Ray

aws lambda \
 update-function-configuration \
 --function-name pizza-api \
 --tracing-config Mode=Active \
 --region eu-central-1

This command returns the Lambda function configuration as JSON output, as shown in
the next listing. At this point, X-Ray displays your Lambda function flow, but by default
you won’t be able to see other AWS services your function is using, such as DynamoDB.

Listing 5.9 Response after activating the X-Ray tracing

{
 "TracingConfig": {
 "Mode": "Active"
 },
 "CodeSha256": "HwV+/VdUztZ782NBEqY9Dvzj3nxF6tigLOZPt8yyCoU=",
 "FunctionName": "pizza-api",
 // ...
}

To be able to see other AWS services supported by X-Ray, you’ll need to wrap the
AWS SDK for Node.js in the aws-xray-sdk-core module. After installing the aws
-xray-sdk-core module from NPM, update your create-order.js handler as shown in
the following listing.

Use the iam
service from
the AWS CLI.

Use the attach-role-policy command to
attach a policy.

Provide the ARN for the
policy you want to attach.Select a role you

want the policy to
be attached to.

Use the
lambda
service
from the
AWS CLI.

Update the configuration for your function.

Select your function by providing its name.

Set the tracing mode to Active.

Tracing mode is set to Active

Info about your function, including name,
ARN, version and other function metadata

88 chapter 5 Houston, we have a problem!

Listing 5.10 Update the create-order.js handler to wrap the AWS SDK in an
X-Ray function.

'use strict'

const AWSXRay = require('aws-xray-sdk-core')
const AWS = AWSXRay.captureAWS(require('aws-sdk'))
const docClient = new AWS.DynamoDB.DocumentClient()

module.exports = function updateDeliveryStatus(request) {
 console.log('Save an order', request)

 if (!request.deliveryId || !request.status)
 throw new Error('Status and delivery ID are required')

// ...

After you run the claudia update command to redeploy your API, X-Ray will be fully
set up.

To see the visual representation of your function, go to the X-Ray section of the AWS
web console. For this case, the URL is https://eu-central-1.console.aws.amazon.com/
xray/home?region=eu-central-1#/service-map. Your URL may be different if you used
a different region to deploy your function.

5.4 Taste it!
The exercise for this chapter is quite easy, but the next chapter brings in some more
serious topics.

5.4.1 Exercise

Now that you’ve learned how to debug your serverless applications, let’s revisit the
code listings from chapters 3 and 4 and try to read their logs.

Your exercise for this chapter is to try to read the CloudWatch logs for all success and
error messages from the create-order.js handler.

Because this is just a debug exercise, there will be no tips this time. In case you need
help, feel free to take a peek at the solution in the next section.

5.4.2 Solution

In chapter 3, you updated the create-order.js handler to log success messages and errors.
To read those logs with CloudWatch, use the aws logs filter-log-events command.
As you learned in this chapter, this command requires a filter. As a reminder, success
messages were logged with an “Order is saved!” prefix. For errors, you used the “Oops,
order is not saved :(” prefix. Use both of these prefixes to help you to filter the logs.

The command to filter with the “Order is saved!” prefix is shown in the following listing.

Import the aws-xray-sdk-core
module.

Wrap the
aws-sdk
module in the
AWSXRay
.captureAWS
command.

The rest of the file is not changed.

https://eu-central-1.console.aws.amazon.com/xray/home?region=eu-central-1#/service-map
https://eu-central-1.console.aws.amazon.com/xray/home?region=eu-central-1#/service-map

 89Summary

Listing 5.11 Command to filter the logs containing the text “Order is saved!” from
CloudWatch

aws logs \
 filter-log-events \
 --filter='Order is saved!' \
 --log-group-name=/aws/lambda/pizza-api \
 --query='events[0].message' \
 --output=text

NOTE You can use the same command for the “Oops, order is not saved :(” text
to filter the logs and read the errors. But because your message contains a comma
and a colon, which are considered special characters, it’s much safer to use just
part of the text as a filter—for example, “order is not saved.”

The responses for both commands will differ depending on the number of successful
and failed orders in your system. If there aren’t any errors, the output will display None.

Summary

¡	You need to use CloudWatch to read logs from Lambda functions.
¡	Instead of manually filtering the logs, you can use various commands from the

AWS CLI.
¡	To visualize your function flow, you can use the AWS X-Ray service.

Filter the logs from CloudWatch
by “Order is saved!” text.

90

This chapter covers
¡	How authentication and authorization work in

serverless applications

¡	Implementing authentication and authorization
in your serverless application

¡	Identifying your users through social identity
providers

Authentication and authorization are one of many challenges you face when devel-
oping distributed applications. The challenge lies in distributing the authorized
user, along with its permissions, across all application distributed services and
properly integrating third-party authentications.

This chapter shows you how to implement authentication and authorization in
your serverless application by enabling it for Aunt Maria’s customers and their pizza
orders. You’ll learn the difference between authentication and authorization in a
serverless environment and how to implement a web authorization mechanism using
AWS Cognito. Then you’ll learn how to identify your users using a social provider—
specifically, Facebook.

6Level up your API

 91Serverless authentication and authorization

6.1 Serverless authentication and authorization
Aunt Maria and Pierre, her mobile developer whom you so fondly remember from the
previous chapter, have informed you that your API call for pizza orders is showing all
pizza orders to everyone, no matter who is asking. Only employees should be able to
see all orders. Customers should be able to see only their own orders. Non-customers
and non-employees should not be able to see any order.

Here’s how you’ll correct this issue:

1 Enable your application users to authenticate themselves in two ways:

¡	Via email

¡	Via Facebook

2 Create a user list for your API, and restrict each user to seeing only their own orders.

Authentication vs. authorization
You have probably noticed that the two different verbs—authenticate and authorize—look
similar, especially if you’re coming from a non-English speaking region, but they cover two
different concepts. Combined with other concepts such as user identity and permissions,
they can cause headaches.

Let’s try to understand them using an example.

Think of your application as an enterprise company, which owns or rents an office build-
ing. Often, these office buildings include a building security that doesn’t allow anyone
except company employees to enter. Because the building security needs to know who
is allowed to enter, companies usually provide security staff with an employee list along
with their information, such as a photo.

If a person tries to enter the building, security stops them and asks for information about
their identity. If the person doesn’t provide any identifying information, security kicks
them out, denying entry. If the person provides proper identity information, security
checks it to confirm their identity. This process is called authentication.

If the person’s identity is trusted, the person is authenticated. But now security checks
whether the person trying to enter is on the company employee list. If the person is not
on the list, security doesn’t allow entry. If the person is on the employee list, their entry is
allowed. This process is called authorization.

But can every company’s employee spend money from the company’s bank account?
Unless the user is the company CEO, the answer is probably no (sometimes not even the
CEO). The right to spend the company’s money, or do something restrictive, is called a
permission.

To summarize:

¡	Authentication—Checking if the user is who they claim to be
¡	Authorization—Checking if the user is allowed access
¡	Identity—Information representing who the user is
¡	Permission—The right given to a user to do something

92 chapter 6 Level up your API

Based on your experience with Express.js or other more traditional applications, you
probably want to implement authentication as a part of your API and keep your users
in a database table. Though that option is feasible, we recommend another method
for serverless.

Most applications need authorization, and it’s usually an email/password combina-
tion. Each authorization is implemented in a similar, if not identical, manner. There-
fore, serverless providers have enabled almost literal plug-and-play authentication and
authorization services to handle their vast serverless resources. In your case, Amazon
has AWS Cognito—a user management and synchronization service that takes care of
user authentication, authorization, access management, and user and data synchroni-
zation across services.

There are two main concepts in Amazon Cognito, each with a different responsibility:

¡	User pools—A service responsible for identity management. Alongside that, it
also comes with a possibility of an out-of-the-box authorization. Put simply, it’s
a set of directories (user pools) for your users, with a capability of providing an
authorization mechanism as well. For your front-end web and mobile applica-
tion, you can implement the Cognito user pool authorization mechanism using
AWS Cognito SDK.
A user pool represents a single collection of users or a user directory.

¡	Federated identities (also called identity pools)—A service responsible for handling
authentication providers and providing temporary authorization to AWS resources.
Federated identities provide

¡	Integration with social identity providers (such as Facebook, Google, and
OpenId) and your Cognito user pool’s authentication identity provider

¡	Temporary access to your application’s AWS resources for authenticated users

Federated identities are directories of a single user’s identities. Those identity
pools keep track of each user logging in with different identity providers. To
store actual user data, identity pools require Cognito user pools.

One of the key benefits of AWS Cognito is that it authorizes the requests before they
hit your serverless application. It does that by setting the authorization on the API
Gateway level. If the user is not authorized, it stops the requests before they hit your
Lambda function and DynamoDB table, which can potentially save a lot of wasted
time and money. Even though AWS Lambda is inexpensive, additional cost cutting is
always welcome.

In the case of Aunt Maria’s pizzeria, you need to have both Congito identity pools
and Cognito user pools. An identity pool will allow you to integrate Facebook login, and
it will also give you a temporary access to your Cognito user pool without hardcoding

 93Serverless authentication and authorization

your AWS access token and secret in the front-end and mobile applications. A user pool
will manage the database of users that can order a pizza.

For Aunt Maria’s pizzeria, you need to enable your customers to authenticate via
Facebook. As shown in figure 6.1, your Facebook authentication flow should have the
following steps:

1 Ask the user to log in via Facebook in the web or mobile application.

2 When the Facebook access token is received, send that token to a Cognito iden-
tity pool that will grant the user temporary Cognito user pools access in the
browser.

3 Use a Cognito user pool to log in or register your user. After successful login or
registration, the user pool will return a JWT token.

4 Use that JWT token to contact the Pizza API when you want to create an order or
list existing orders.

As shown in figure 6.2, the flow for authentication with email and password is similar:

1 Ask the Cognito identity pool for a temporary access to Cognito user pools.

2 Log in or register to the Cognito user pool using email and password. After suc-
cessful login or registration, the user pool will return a JWT token.

3 Use that JWT token to contact the Pizza API when you want to create an order or
list existing orders.

Register the user in your user pool

Facebook

Login user with
Facebook

Authenticated
Facebook user data Send Facebook

access token

Create an order (with JWT token)

Return order creation response

Return the users JWT token

Authorize temporary
user pool access

Web or mobile
application

Cognito
identity pool

Cognito
user pool Pizza API

Figure 6.1 The responsibilities of user pools and identity pools

94 chapter 6 Level up your API

Other paths to authorization
Within AWS, besides Amazon Cognito, there are other ways to protect your API, such as

¡	Using IAM roles and policies—The most basic authorization mechanism. To allow
an API caller to invoke the API, you need to create IAM policies that permit the
specified API caller to invoke the API method for which the IAM user authentication
is enabled. In your case, that wouldn’t be the optimal solution, because you have a
single API on Gateway API and only certain routes that need to be protected.

¡	Using custom authorizers—Amazon API Gateway custom authorizers are Lambda
functions that you enable to control access to your APIs using bearer token au-
thentication strategies, such as OAuth or SAML. In practice, each time your API
on API Gateway is invoked, your authorizer Lambda function is invoked as well.
When the authorization Lambda confirms the access using authorization token,
your handler Lambda function will be invoked.

6.2 Creating user and identity pools
To implement the authentication flow, as described in the previous section, you need
to create both user and identity pools.

Start with a user pool. To create one, run the aws cognito-idp create-user-pool
command from your terminal. The only required option for this command is the name
for your new pool. In addition to the name, add the --username-attributes option,
which specifies an email as a unique ID of your user pool. You may also want to cus-
tomize the password policy by specifying the --policies option. The default password
policy requires a mix of lowercase letters, uppercase letters, numbers, and special char-
acters. The full command for creating a new user pool is shown in the next listing.

Request temporary access
to Cognito User Pools

as an unauthorized user

Authorize temporary
user pool access

Authenticate user in your user pool

Create an order (with JWT token)

Return order creation response

Return authenticated user JWT token

Web or mobile
application

Cognito
identity pool

Cognito
user pool Pizza API

Figure 6.2 A visual representation of Facebook authorization using identity pools and user pools for
your serverless Pizza API

 95Creating user and identity pools

Listing 6.1 Creating a user pool

aws cognito-idp create-user-pool \
 --pool-name Pizzeria \
 --policies "PasswordPolicy={MinimumLength=8,RequireUppercase=false,

RequireLowercase=false,
 RequireNumbers=false,RequireSymbols=false}" \
 --username-attributes email \
 --query UserPool.Id \
 --output text

The output is the ID of your new user pool, because the query flag was provided. Keep
this ID, because you’ll need it later.

NOTE For the sake of simplicity, this example uses only a small subset of Cog-
nito features. There are many more options you can set for your user pool,
such as automatic email or phone verification, a list of mandatory attributes.
For more information, visit the official documentation at https://console.aws
.amazon.com/cognito/home.

Your user pool needs to have at least one client so you can connect it. You can cre-
ate a client via the aws cognito-idp create-user-pool-client command, as shown
in the listing 6.2. To create a client, you need to pass your user pool ID, which
you received from the previous command, and your client name. You’ll test this
setup with a simple web app, so you should create a client without a client secret
(which means that you’ll need to create another client for Pierre’s mobile app in
the future).

Listing 6.2 Creating a client for the user pool

aws cognito-idp create-user-pool-client \
 --user-pool-id eu-central-1_userPoolId \
 --client-name PizzeriaClient \

 --no-generate-secret \
 --query UserPoolClient.ClientId \
 --output text

This command prints out the client ID; save it because you’ll need it in the next step.
Before implementing the Facebook authentication and permissions within your

application, you need to visit the Facebook developer portal to create an application
and obtain its ID.

NOTE If you are not familiar with how Facebook applications work, a step-by-
step tutorial is available in the Facebook developer documentation: https://
developers.facebook.com/docs/apps/register.

If you aren’t using Facebook and don’t want to implement a Facebook login for
your application, your application will work fine with the email and password
login with minor modifications. We let you know which parts to modify.

Create the
user pool.

Set the name for your user pool.

Set a
password
policy.

Define the email address
as a unique user ID.

Print the user pool ID as text.

Create the
user pool
client.

Specify the user pool ID you received
from the previous command.

Specify your client name.

Do not
generate
the client
secret.

Print out only the client ID as text.

https://console.aws.amazon.com/cognito/home
https://console.aws.amazon.com/cognito/home
https://developers.facebook.com/docs/apps/register
https://developers.facebook.com/docs/apps/register

96 chapter 6 Level up your API

The next step is to create an identity pool, which you can do using the aws cognito
-identity create-identity-pool command from the AWS CLI, as shown in list-
ing 6.3. To do so, provide the identity pool name, any supported login providers (in
your case, Facebook), and a Cognito identity provider. For the cognito- identity
-providers flag, you’ll need to provide the provider name and client ID and indicate
whether you need a server-side token check. The provider name is in the following for-
mat: cognito-idp.<REGION>.amazonaws.com/<USER_POOL_ID>. The client ID is what
you received from the previous command, and you don’t need server-side token valida-
tion, so that value is set to false.

Listing 6.3 Creating an identity pool

aws cognito-identity create-identity-pool \
 --identity-pool-name Pizzeria \

 --allow-unauthenticated-identities \
 --supported-login-providers graph.facebook.com=266094173886660 \
 --cognito-identity-providers ProviderName=cognito-idp.eu-central-1.

amazonaws.com/
 eu-central-1_qpPMn1Tip,ClientId=4q14u0qalmkangdkhieekqbjma,

ServerSideTokenCheck=false \
 --query IdentityPoolId \
 --output text

After the identity pool is successfully created, you’ll need to create two roles and
assign them to authenticated and unauthenticated users. If you need help with role
creation, see https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito
-authentication-part-3-roles-and-policies/.

TIP If you struggle with role creation from the AWS CLI, single-click role cre-
ation and assignment is available from the web console. Go to your identity
pool, click the Edit identity pool button, and then click the Create New Role
link for both the authenticated and unauthenticated roles.

To set the roles, use the aws cognito-identity set-identity-pool-roles command,
which expects the identity pool ID and roles for both authenticated and unauthenti-
cated users, as shown in the following listing. Make sure you replace the <ROLE1_ARN>
and <ROLE2_ARN> values with the ARNs of the two roles you just created.

Listing 6.4 Add roles to the identity pool

aws cognito-identity set-identity-pool-roles \
 --identity-pool-id eu-central-1:2a3b45c6-1234-123d-1234-1e23fg45hij6 \

 --roles authenticated=<ROLE1_ARN>,unauthenticated=<ROLE2_ARN>

This command returns an empty response if it successfully executes.

Create an
identity pool.

Set the name for
your identity pool.

Allow unauthenticated
users to log in with
your identity pool.

Add supported
login providers—
in your case,
Facebook.

Add a Cognito identity provider,
using the user pool ID and client ID
received in the previous steps.

Print out
the identity
pool ID
as text.

Set the
roles for
the identity
pool.

Provide the identity pool ID.

Add the roles for both authenticated
and unauthenticated users.

https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-authentication-part-3-roles-and-policies/
https://aws.amazon.com/blogs/mobile/understanding-amazon-cognito-authentication-part-3-roles-and-policies/

 97Creating user and identity pools

6.2.1 Controlling API access with Cognito

Now that you have user and identity pools, it’s time to connect the authentication flow
in your code.

Claudia, in combination with Claudia API Builder, supports all three authorization
methods mentioned earlier: IAM roles, custom authorizers, and Cognito user pools. This
book focuses on the last one, but the other two work in a similar way. For more informa-
tion about them, see the official documentation for Claudia API Builder: https://github
.com/claudiajs/claudia-api-builder/blob/master/docs/api.md#require-authorization.

NOTE The Cognito identity pool is not used by Claudia or your Lambda function.
It is used by the front-end applications to get temporary access to Cognito user
pools without having to hardcode the AWS profile access and secret keys.

To enable Cognito user pool authorization, you’ll need to register an authorizer using
the registerAuthorizer method of the Claudia API Builder instance. This method
requires two attributes: the authorizer name and an object with an array of Cognito
user pool ARNs. The following is a simple example usage:

api.registerAuthorizer('MyCognitoAuth', {
 providerARNs: ['<COGNITO_USER_POOL_ARN>']
});

After the authorizer is registered, add an object with the cognitoAuthorizer key and
the name you used to register your authorizer as a value, as a third argument to the
route definition. Your route definition should look like this:

api.post('/protectedRoute', request => {
 return doSomething(request)
}, { cognitoAuthorizer: 'MyCognitoAuth' })

Apply the same to the routes in your api.js file. The routes will look similar to the ones
shown in the following listing. All routes related to the orders will be protected with
the Cognito authorizer, but routes for pizzas will stay public.

Listing 6.5 API with a custom authorizer

'use strict'

const Api = require('claudia-api-builder')
const api = new Api()

const getPizzas = require('./handlers/get-pizzas')
const createOrder = require('./handlers/create-order')
const updateOrder = require('./handlers/update-order')
const deleteOrder = require('./handlers/delete-order')

api.registerAuthorizer('userAuthentication', {
 providerARNs: [process.env.userPoolArn]
})

Register a custom
authorizer.

Get the user pool ARN from an
environment variable, and set
it as the provider ARN.

https://github.com/claudiajs/claudia-api-builder/blob/master/docs/api.md#require-authorization
https://github.com/claudiajs/claudia-api-builder/blob/master/docs/api.md#require-authorization

98 chapter 6 Level up your API

// Define routes
api.get('/', () => 'Welcome to Pizza API')

api.get('/pizzas', () => {
 return getPizzas()
})
api.get('/pizzas/{id}', (request) => {
 return getPizzas(request.pathParams.id)
}, {
 error: 404
})

api.post('/orders', (request) => {
 return createOrder(request)
}, {
 success: 201,
 error: 400,
 cognitoAuthorizer: 'userAuthentication'
})
api.put('/orders/{id}', (request) => {
 return updateOrder(request.pathParams.id, request.body)
}, {
 error: 400,
 cognitoAuthorizer: 'userAuthentication'
})
api.delete('/orders/{id}', (request) => {
 return deleteOrder(request.pathParams.id)
}, {
 error: 400,
 cognitoAuthorizer: 'userAuthentication'
})
api.post('delivery', (request) => {
 return updateDeliveryStatus(request.body)
}, {
 success: 200,
 error: 400,
 cognitoAuthorizer: 'userAuthentication'
})

module.exports = api

The last piece of the authorization puzzle is updating the route handler to use the
authorizer.

For example, to update your create-order.js handler you need to do the following:

¡	Update the handler to receive the full request object instead of just the body. You
want to be able to read user data from the Cognito user pool; that information is
provided in the request object, but outside of the body.

¡	Get the user data from the authorizer. It is available in the request context, in the
authorizer object, under the key named claims.

¡	Update the code to get the user’s address from the request body, if provided, or
the default address of the authorized user if an address is not provided in the body.

¡	Save the Cognito username in the DynamoDB orders table.

Pass the whole request object, including
its body and authorization data.

Enable authorization
only on specific routes.

 99Creating user and identity pools

Figure 6.3 shows how the API is restricted by API Gateway and Amazon Cognito
user pools.

The updated create-order.js handler is shown in the following listing.

Listing 6.6 create-order.js handler with authorization

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const rp = require('minimal-request-promise')

function createOrder(request) {
 console.log('Save an order', request.body)
 const userData = request.context.authorizer.claims
 console.log('User data', userData)

 let userAddress = request.body && request.body.address
 if (!userAddress) {
 userAddress = JSON.parse(userData.address).formatted
 }

 if (!request.body || !request.body.pizza || userAddress)
 throw new Error('To order pizza please provide pizza type and address

where pizza should be delivered')

 return rp.post('https://fake-delivery-api.effortlessserverless.com/
delivery', {

 headers: {
 Authorization: 'aunt-marias-pizzeria-1234567890',
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 pickupTime: '15.34pm',
 pickupAddress: 'Aunt Maria Pizzeria',
 deliveryAddress: userAddress,

Mobile
application

API
Gateway

Cognito User
Pools

Lambda

API Gateway
checks with Cognito

User Pools.

Only authorized
users will be able to

access Lambda.

Figure 6.3 A visual representation of how access to
your API is controlled by API Gateway and Amazon Cognito
user pools

The createOrder function
receives a full request object.

Get the user data added by the
authorizer from the context
object and then log it.

By default, use an address
from the request body.

If the address is not provided,
use the user’s default address.

Pass the correct address to the
Some Like It Hot Delivery API.

100 chapter 6 Level up your API

 webhookUrl: 'https://g8fhlgccof.execute-api.eu-central-1.amazonaws.com/
latest/delivery',

 })
 })
 .then(rawResponse => JSON.parse(rawResponse.body))
 .then(response => {
 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 cognitoUsername: userAddress['cognito:username'],
 orderId: response.deliveryId,
 pizza: request.body.pizza,
 address: userAddress,
 orderStatus: 'pending'
 }
 }).promise()
 })
 .then(res => {
 console.log('Order is saved!', res)

 return res
 })
 .catch(saveError => {
 console.log(`Oops, order is not saved :(`, saveError)

 throw saveError
 })
}

module.exports = createOrder

After the code is updated, run claudia update to deploy your API. To test the working
authorization, you’ll need to implement the login/signup flow. The back-end part of
adding the authorization was easy. But most of the work, including the integration of
your user and identity pools, should be done on the front-end side. This part of the appli-
cation is beyond the scope of this book, but you can see the working example code with a
how-to guide on GitHub at https://github.com/effortless-serverless/pizzeria-web-app.

Before you run the code from that repository, however, you can confirm that unau-
thorized users will be rejected by running the following curl command:

curl -o - -s -w ", status: %{http_code}\n" \
 -H "Content-Type: application/json" \
 -X POST \
 -d '{"pizzaId":1,"address":"221B Baker Street"}' \
 https://21cioselv9.execute-api.us-east-1.amazonaws.com/latest/orders

This command should return an error and a 401 HTTP status.
The back-end part for adding authorization is easy. Most of the work, including inte-

gration of your user and identity pools, should be done on the client-side. This part of
the application is beyond the scope of this book, but you can see the working example
code with the how-to guide on Github here: https://github.com/effortless-serverless/
pizzeria-web-app.

Save the
username from
Cognito to the
database.

Save the correct address to the database.

Accept userData as an
additional argument.

https://github.com/effortless-serverless/pizzeria-web-app
https://github.com/effortless-serverless/pizzeria-web-app
https://github.com/effortless-serverless/pizzeria-web-app

 101Taste it!

6.3 Taste it!
Now that you know how authorizers work, it’s time to try it on your own.

6.3.1 Exercise

Your exercise for this chapter is to update the delete-order.js handler to allow users to
delete only their orders.

Here are a few hints, in case you need them:

¡	Authorization was added to the route in listing 6.5.
¡	Although the deleteOrder function currently accepts only orderId, you’ll need

to extend it to accept authorized user details, too.
¡	The deleteOrder method should use cognito:username from the request.

context.authorizer.claims object to check if the current user is the order
owner.

¡	If the user is not the owner, you should return an error.

Returning custom errors from Claudia
When an error is thrown, Claudia sends a 400 Bad Request status code to the customer,
as you defined earlier. But if users want to delete orders that don’t belong to them, you
might want to return an HTTP error such as 403 Forbidden or 401 Unauthorized.

In order to do so, you need to set a status code and response dynamically. Claudia API
Builder enables you to do that by exposing an ApiResponse method in the API Builder
instance. For example, to return a 403 status code you should use the following:

return new api.ApiResponse({ message: 'Action is forbidden' },
{ 'Content-Type': 'application/json' }, 403)

You can find more information about dynamic responses in the official Claudia API
Builder documentation: https://github.com/claudiajs/claudia-api-builder/blob/master/
docs/api.md#dynamic-responses.

In case you want an additional challenge, here are two more:

¡	Update an order’s primary key to be a combination of the order ID and the
owner’s Cognito username. Doing so would allow you to directly search for and
delete only orders owned by the authorized user.

¡	Modify the update-order.js handler in such a way as to allow users to update only
their own orders.

6.3.2 Solution

First, you need to update your delete-order.js handler to accept both orderId and the
authorized user data. You also want to get the order from the database and check if it
belongs to the authorized user. The following listing shows the updated delete-order.
js handler.

https://github.com/claudiajs/claudia-api-builder/blob/master/docs/api.md#dynamic-responses
https://github.com/claudiajs/claudia-api-builder/blob/master/docs/api.md#dynamic-responses

102 chapter 6 Level up your API

Listing 6.7 delete-order.js handler with authorization

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const rp = require('minimal-request-promise')

function deleteOrder(orderId, userData) {
 return docClient.get({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 }
 }).promise()
 .then(result => result.Item)
 .then(item => {
 if (item.cognitoUsername !== userData['cognito:username'])
 throw new Error('Order is not owned by your user')

 if (item.orderStatus !== 'pending')
 throw new Error('Order status is not pending')

 return rp.delete(`https://fake-delivery-api.effortlessserverless.com/
delivery/${orderId}`, {

 headers: {
 Authorization: 'aunt-marias-pizzeria-1234567890',
 'Content-type': 'application/json'
 }
 })
 })
 .then(() => {
 return docClient.delete({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 }
 }).promise()
 })
}

module.exports = deleteOrder

After updating your handler, you need to update the route to pass the correct data to the
handler. The following listing shows an excerpt from api.js where the order ID and user
data are passed to the delete-order.js handler. As you saw earlier, user data is available as
claims in the request.context.authorizer object.

Listing 6.8 Updating the delete order route to pass user data to the handler

api.delete('/orders/{id}', (request) => {
 return deleteOrder(request.pathParams.id, request.context.authorizer.claims)
}, {

Accept userData as an
additional argument.

Check whether the order is
owned by the authorized user.

Throw an error if the
order is not owned by
the authorized user.

Pass orderId and claims from the
authorizer object to the handler.

 103Summary

 error: 400,
 cognitoAuthorizer: 'userAuthentication'
})

Now that your code is updated, simply run claudia update to deploy it. After its comple-
tion, you can use the front-end code from the https://github.com/effortless-serverless/
pizzeria-web-app repository to implement retrieving the authorization token on your
front-end application or to test. If you try to delete an old order using that token, it
won’t work because it was already created without authorization; the Cognito user-
name won’t match.

Summary

¡	You can authenticate users of your serverless application using Amazon Cognito.
¡	For many user groups with different permissions, use Amazon Cognito identity

pools.
¡	Setting different authentication methods is easy; just remember that each authen-

tication method has its own user pool.
¡	Using Claudia, you can speed up your whole AWS Cognito authentication setup.

https://github.com/effortless-serverless/pizzeria-web-app
https://github.com/effortless-serverless/pizzeria-web-app

104

This chapter covers
¡	Storing media files and other static content

within serverless applications

¡	Maintaining and accessing your files with your
serverless API

¡	Processing static files using your serverless
function

In addition to requiring processing and database storage, applications often also
need file storage for static files. Static files are media such as photos, audio or video
files, and text files (for example, HTML, CSS, and JavaScript files).

Serverless applications need to store static files, too. Keeping your whole applica-
tion serverless implies that you need a storage solution that follows the same princi-
ples. This chapter takes a dive into serverless file storage possibilities and examines
how to create a separate file processing function that uses the storage and provides
requested files to your other Lambda—your serverless API.

7.1 Storing static files in a serverless application
In the case of your pizza application, it wouldn’t be complete without the images
of Aunt Maria’s delicious pizzas. Your cousin Michelangelo (also known as Mike)

7Working with files

 105Storing static files in a serverless application

already took awesome photos of all the pizzas, so you just need to store and serve these
static files. AWS has a service for that as well: the Simple Storage Service (S3), which
allows you to store the files—up to 5 TB—in a serverless manner.

Amazon S3 stores files in buckets—folder-like structures owned by an AWS account.
Each file, or object, stored in a bucket has a unique identification key. S3 buckets sup-
port triggers for Lambda functions that allow you to invoke a certain Lambda when
something happens in the bucket.

NOTE We recommend that you understand the basics of Amazon S3 before
reading this chapter. A good starting point is the official documentation avail-
able at http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html.

In S3 everything starts with the bucket, so you’ll create one using the AWS web console,
an API, or the AWS CLI, which is our preferred method. The mb command requires an
S3 URI as an argument. An S3 URI is the name of your S3 bucket prefixed with s3://.
If you want to specify the region, you can do that using the --region flag. In our exam-
ple, we’re naming the S3 bucket aunt-marias-pizzeria and specifying the region.

Run the following command at the CLI prompt:

aws s3 mb s3://aunt-marias-pizzeria --region eu-central-1

NOTE Note that the bucket name must be unique across all existing bucket
names in Amazon S3. Your command will fail if you use the same name you
used in the previous code listing. To run the command successfully, change the
name to something unique. For more information about S3 bucket naming
conventions and rules, visit: https://docs.aws.amazon.com/AmazonS3/latest/
dev/BucketRestrictions.html.

The response after running the command should be make_bucket: aunt-marias
-pizzeria. If your bucket name isn’t unique, you’ll receive the following error, and
you’ll have to rerun the command with a different bucket name:

 make_bucket failed: s3://bucket-name An error occurred
 (BucketAlreadyExists) when calling the CreateBucket operation: The

requested bucket name is
 not available. The bucket namespace is shared by all users of the system.

Please select a
 different name and try again.

Now that you have the bucket, you want to allow only certain users to upload files to it.
But before that, you should think about the folder structure of your bucket.

NOTE Amazon S3 buckets don’t really support folders; everything in the
bucket is just an object. But to simplify interactions with S3, Amazon displays
folder-like object names as real folders in its web console. For example, an
object named /images/large/pizza.jpg will be shown as the pizza.jpg image in
the folder named large, which will be inside the images folder.

http://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html

106 chapter 7 Working with files

As you can see in figure 7.1, you should upload your images to an images folder. Some-
times raw images can be too big for a mobile application, so you should also have a
thumbnails folder that will contain smaller versions of your images. Also, because there
will be only a single menu.pdf file at a time, it doesn’t need to be stored in the folder.

Now that you have the folder structure in place, you need to allow certain users to
upload images to the bucket. The easiest way to do so is to generate a presigned URL
that will be used for the image upload.

By default, all objects and buckets are private—only the user that created them can
access them. A presigned URL allows a user that does not have access permissions to
upload files to the bucket. This URL is generated by the user who has access to the
bucket and who will grant temporary permissions to anyone that knows it.

Because this URL needs to stay secret, you’ll create a new route in the Pizza API that
will generate and return that URL. This route should also be protected; in this example
you’ll allow all authorized users to use this API endpoint, but in a real-world application
you should have a special user group that can access certain API endpoints, such as an
administrators group.

NOTE The user groups mentioned here are Cognito user groups within Cognito
user pools. If you want to learn more about groups within Cognito user pools, see
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user
-pools-user-groups.html.

To generate a URL, you need to create a new handler. To do so, use the getSignedUrl
method of the S3 class. This method accepts two arguments: the first is the name of the
method that will be used via the signed URL (putObject), and the second is an options
object. This options object requires the following parameters:

¡	The name of the bucket that this signed URL is accessing.
¡	The unique key that will be used for signing the URL. Because generating a

unique key on your own isn’t easy, you should use the uuid module. You used
this module earlier, in chapter 3; just remember to reinstall it if you removed it
from your package.json file. (You only need the version 4 UUID, so you’ll directly
require uuid/v4.)

Amazon S3 bucket

A folder for raw images

A folder for resized
images, generated by
AWS Lambda

images

aunt-marias-pizzeria

thumbnails

Figure 7.1 The recommended structure of your Amazon S3 bucket

http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html
http://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-user-groups.html

 107Storing static files in a serverless application

¡	The access control list (ACL), which defines how the public can interact with
the objects in your bucket. In your case you want everyone to be able to see the
objects, so set it to public-read.

¡	The expiration time in seconds for the generated URL. Two minutes should be
enough, so set it to 120 seconds.

After generating the options object, use the getSignedUrl method to sign the URL
and then return it as a JSON object. Create a file named generate-presigned-url.js in
the handlers folder of your Pizza API, as shown in the following listing.

Listing 7.1 Pizza API handler for presigned URL generation

'use strict'

const uuidv4 = require('uuid/v4')
const AWS = require('aws-sdk')
const s3 = new AWS.S3()

function generatePresignedUrl() {
 const params = {
 Bucket: process.env.bucketName,
 Key: uuidv4(),
 ACL: 'public-read',
 Expires: 120
 }

 s3.getSignedUrl('putObject', params).promise()
 .then(url => {
 return {
 url: url
 }
 })
}

module.exports = generatePresignedUrl

Now that your handler is ready, to get the signed URL, you need to add a new
route in your api.js file. You can name it /upload-url. As mentioned previously,
you should protect this route in the same way the /orders routes are protected—
only users authorized through the Cognito authorizer called userAuthentication
should be able to get this URL. Listing 7.2 shows the end of the api.js file. The rest is
unchanged; just remember to require the getSignedUrl handler at the top of the
api.js file by adding the const getSignedUrl = require('./handlers/generate
-presigned-url.js') line.

Require the uuid module.

Require the AWS SDK and initialize
the S3 class.

Create a handler function.

Get the bucket name from an
environment variable named
bucketName.

Create a
unique ID.

Set the object to be
available for public reading.Set the URL expiration

time in seconds.

Get a signed URL for the
putObject method.

Return a JSON object and
return the signed URL.

108 chapter 7 Working with files

Listing 7.2 The new /delivery and /upload-url routes in the api.js file

api.post('delivery', (request) => {
 return updateDeliveryStatus(request.body)
}, {
 success: 200,
 error: 400
}, {
 cognitoAuthorizer: 'userAuthentication'
})

api.get('upload-url', (request) => {
 return getSignedUrl()
},
{ error: 400 },
{ cognitoAuthorizer: 'userAuthentication' })

module.exports = api

If you now update your API using the claudia update command and then visit your new
route with an authorization token (received from the web application, as explained in
the previous chapter), you’ll receive the signed URL that can be used for uploading
files to your bucket.

7.2 Generating thumbnails
Because each uploaded image can be quite large, and Aunt Maria also has a mobile
application, you’ll need to resize all the photos and create thumbnails. You don’t want
thumbnail creation to block your API in any way, so image processing is a perfect can-
didate for an independent microservice.

An independent service, in this case, represents a separate Lambda function that
will trigger automatically when a new photo is uploaded to Amazon S3. The flow of the
events (figure 7.2) proceeds as follows:

¡	User requests a new signed URL via /upload-url route of Pizza API.
¡	New photo is uploaded to the generated URL.
¡	Amazon S3 triggers your new Lambda function.
¡	Lambda function resizes the image and stores the thumbnail in the thumbnails

folder.

The new Lambda function won’t be triggered via an HTTP request, so you don’t
need Claudia API Builder. Instead, you’ll need to export a simple handler function
that will get the new object from S3 and then resize it using ImageMagick. Image-
Magick is available in AWS Lambda by default; you do not need to install it before
using it.

Add a new GET route.

Invoke the getSignedURL
handler.

In case of
an error,
return a

status 400.

Require authorization
for this new route.

 109Generating thumbnails

ImageMagick
ImageMagick is a free and open source software suite for displaying, converting, and
editing raster image and vector image files. It consists of multiple command-line inter-
faces, and it can read and write more than 200 different image file formats.

ImageMagick features include file format conversion, image scaling and transforma-
tions, color manipulation, composition, and many others.

To learn more about ImageMagick, visit http://imagemagick.org.

The first step when creating a separate service is to create a new project. You need to

1 Create a new folder outside of your pizza-api folder (a good name for it would be
pizza-image-processor).

2 Inside your new folder, initialize a new NPM package (npm init).

Your next step is creating a file that exports your service handler function. Because this
is just an image processor and not an API, you don’t need to use Claudia API Builder.

NOTE When you aren’t using Claudia API Builder, you can’t export your
handler function using module.exports from your initial file. Instead, your
“vanilla” Lambda requires you to do an exports.handler from your file.

This service will be small and could fit in a single file, but for easier maintenance and
a more test-friendly approach, you’ll split it into two files: the first is an initial file that
just extracts the data from a Lambda event, and the second is the actual converter.

Your initial file needs a handler function that receives three arguments:

¡	The event triggered by the Lambda function

Mobile
application

Image
processing

Lambda

Pizza API

Amazon S3
bucket

Mobile app contacts the API to
get the signed, or temporary
upload, URL.

API generates the signed URL
that is valid for 120 seconds and
returns it via the API.

Mobile app then uploads the file
derectly to Amazon S3 using the
temporary signed URL.

When file is uploaded, Amazon
S3 automatically triggers your
image processing Lambda
function; triggered Lambda
function will receive
information about the uploaded
file, including the bucket name
and filename.

Figure 7.2 The image upload and processing flow

http://imagemagick.org

110 chapter 7 Working with files

¡	The context of the Lambda function
¡	A callback that allows you to respond back from the Lambda function

In your initial file, you’ll first check if a valid event record exists and, if so, if it is coming
from Amazon S3. Because multiple services can trigger the same Lambda function,
you also need to check if it’s from your S3 storage. Then you need to extract your S3
bucket name and the filename with a path or an object key using a proper S3 query. Its
response will be an image that you’ll need to pass to the convert function.

NOTE The implementation of the convert function is promise-based, because
Claudia API Builder is promise-based by default. You should keep the same
coding style in all of your services, but if you prefer callbacks, this function can
use them, too.

The initial code is shown in the following listing.

Listing 7.3 The initial file for your new image processor Lambda function

'use strict'

const convert = require('./convert')

function handlerFunction(event, context, callback) {
 const eventRecord = event.Records && event.Records[0]

 if (eventRecord) {
 if (eventRecord.eventSource === 'aws:s3' && eventRecord.s3) {
 return convert(eventRecord.s3.bucket.name, eventRecord.s3.object.key)
 .then(response => {
 callback(null, response)
 })
 .catch(callback)
 }

 return callback('unsupported event source')
 }

 callback('no records in the event')
}

exports.handler = handlerFunction

Now that you have the initial file, it’s time to create the convert function. Because
this service is small, there’s no need for a complicated folder structure: just create the
convert.js file in the same project folder. As shown in figure 7.3, the flow of the convert
function is as follows:

¡	S3 triggers your AWS Lambda and your initial file invokes the convert function.
¡	The convert function downloads the image from S3 and stores it locally in the

/tmp folder.

Import the
convert function
from the
separate file.

Create a handler function that accepts an event,
a Lambda context, and a callback function.

Extract the event record
to a separate variable.

Check if
an event

record
exists.

Also check if it is
from S3, and

convert the new file.

If converting is successful, return a
success response through a callback.

Otherwise,
return an

error.
Return an error if
the event record
isn’t from S3.

Also return an error if the
event record doesn’t exist.

Export the handler function.

 111Generating thumbnails

¡	The image is converted using the convert command from ImageMagick, and a
thumbnail is saved in the /tmp folder.

¡	The convert function then uploads the new thumbnail to the S3 bucket.
¡	The convert function resolves the promise that tells the initial file that the oper-

ation was successful.

As shown in figure 7.3, your convert function first needs to download the file from S3
using the getObject method of the S3 class. This method accepts a bucket name and
S3 file path and returns a promise that will, when resolved, return a response that con-
tains the file body as a buffer.

Your convert.js file should export a convert function, which is a Node function that
accepts a bucket name and an S3 file path as parameters and returns a promise. For the
actual functionality, you need to import three core Node.js modules:

¡	fs, for manipulating your filesystem
¡	path, for file path manipulation
¡	child_process, for invoking an ImageMagick command

In addition to those three modules, you also need to install two additional packages
from NPM: mime, a package that determines the uploaded file’s MIME type, and aws-
sdk. The AWS SDK is required for programmatic usage of the S3 service.

Amazon S3 Bucket

Upload
thumbnail

Download
image

Resize
image

Handler
function
(index.js)

conversion function (convert.js)

Image Processing Lambda

1. After your file is
uploaded, Amazon S3
bucket will automatically
trigger image processing
Lambda function and
pass the info about the
file, including bucket
name and filename.

2. When a function is
triggered, your
handler file will
process the event and
invoke the convert
function with the
bucket and image
name, if the event is
coming from Amazon
S3; otherwise it will
stop its execution.

3. The conversion function
will first download the file
from Amazon S3, using the
AWS SDK and the bucket
and filname that the main
handler passed, and save
the downloaded file to the
local /tmp folder.

4. When the file is
downloaded, the conversion
function will execute
ImageMagick’s convert
command, using Node.js’s
child_process.exec, which
will create a thumbnail
version of your image and
store it in local /tmp.

5. When the thumbnail is
generated, Lambda function will
upload it from /tmp to
/thumbnails folder of Amazon S3
bucket using the AWS SDK, and
resolve the promise to tell the
main handler function that the
conversion was done
successfully; handler will just
send a callback to confirm that
Lambda function is executed
successfully.

Figure 7.3 The flow of the convert function

112 chapter 7 Working with files

Your next step is saving the downloaded file. In your Lambda function, only the /tmp
folder is writable. Therefore, you should create two folders inside your /tmp folder: one
called images, where you’ll store the downloaded images, and another called thumb-
nails, where you’ll store generated thumbnails.

NOTE Before creating those folders, check to see if they already exist—AWS can
reuse a single Lambda function, and the folders might have been created already.

When you are sure that the /images folder exists inside /tmp, use the fs.writeFile com-
mand with the same downloaded file as its argument to save to that folder. This method
is asynchronous, but it doesn’t return a promise, so you should wrap it in a promise.

Now that your file is saved locally, you can use ImageMagick to create a thumbnail.
To do so, you need to use the convert command, which allows you to resize or convert
image files. At the moment, you’ll keep the same file format, so the only thing you
should do is resize the given image. To do so, you invoke the convert command with
the following command-line arguments:

¡	The path to the full image
¡	The -resize flag, which tells the command to resize the image
¡	A 120x120\> value, which means that the image should be scaled so its larger

dimension has a maximum of 120 pixels. Note the \> after the value, which tells
the command to resize the image only if its larger dimension is greater than 120 px.

¡	The destination path

The complete command for creating an image named image.png as a 120 px thumb-
nail is the following:

convert /tmp/images/image.png -resize 120x120\> /tmp/thumbnails/image.png

To execute the command from your Lambda, you need to use the exec method of the
child_process module that you imported at the top of the file. Although exec is asyn-
chronous, it’s not promise-based, so you’ll need to wrap this function call in a promise.

exec vs. spawn
The Node.js core module child_process offers two methods for executing external
commands: exec and spawn. Although both can do the same job, there’s a slight differ-
ence between them.

spawn returns an object that contains stdout and stderr streams. This method is
more suitable for commands that return larger output, or output that should be pro-
cessed before the command is finished.

exec requires a callback function, which is triggered as soon as the command is fully fin-
ished. This callback returns an error, if one is raised, and also stdout and stderr outputs.
By default, exec has a limit of 200 k of output, so it’s more suitable for commands that
don’t return large output and whose final output is important whose but command prog-
ress is not.

For more information about both commands, see https://nodejs.org/api/child_process
.html#child_process_asynchronous_process_creation.

https://nodejs.org/api/child_process.html#child_process_asynchronous_process_creation
https://nodejs.org/api/child_process.html#child_process_asynchronous_process_creation

 113Generating thumbnails

As a final part of the convert function, you’ll upload the file to the Amazon S3 bucket.
You can do this using the putObject method of the S3 class. This method returns a
promise and requires the following:

¡	An options object with the bucket name
¡	The S3 file path
¡	The file body as a buffer
¡	The ACL
¡	The content type of your file

Because your image processor service can work with multiple file types, require the
mime package at the top of your file to get the MIME type of your original image and set
it as the content type of your thumbnail. If you don’t provide this value, S3 will assume
your file type is binary/octet-stream.

The following listing shows the full code of the convert.js file.

Listing 7.4 Convert images to thumbnails

'use strict'

const fs = require('fs')
const path = require('path')
const exec = require('child_process').exec
const mime = require('mime')
const aws = require('aws-sdk')
const s3 = new aws.S3()

function convert(bucket, filePath) {
 const fileName = path.basename(filePath)

 return s3.getObject({
 Bucket: bucket,
 Key: filePath
 }).promise()
 .then(response => {
 return new Promise((resolve, reject) => {
 if (!fs.existsSync('/tmp/images/'))
 fs.mkdirSync('/tmp/images/')

 if (!fs.existsSync('/tmp/thumbnails/'))
 fs.mkdirSync('/tmp/thumbnails/')

 const localFilePath = path.join('/tmp/images/', fileName)

 fs.writeFile(localFilePath, response.Body, (err, fileName) => {
 if (err)
 return reject(err)

Create a handler function that receives
the bucket name and S3 file path.

Wrap nonpromise
functions in a
JavaScript promise.

Create images and
thumbnails folders in /tmp
if they don’t already exist.

Save the S3 file to the local path.

114 chapter 7 Working with files

 resolve(filePath)
 })
 })
 })
 .then(filePath => {
 return new Promise((resolve, reject) => {
 const localFilePath = path.join('/tmp/images/', fileName)
 const localThumbnailPath = path.join('/tmp/thumbnails/', fileName)

 exec(`convert ${localFilePath} -resize 120x120\\>
${localThumbnailPath}`, (err, stdout, stderr) => {

 if (err)
 return reject(err)

 resolve(fileName)
 })
 })
 })
 .then(fileName => {
 const localThumbnailPath = path.join('/tmp/thumbnails/', fileName)

 return s3.putObject({
 Bucket: bucket,
 Key: `thumbnails/${fileName}`,
 Body: fs.readFileSync(localThumbnailPath),
 ContentType: mime.getType(localThumbnailPath),
 ACL: 'public-read'
 }).promise()
 })
}

module.exports = convert

7.2.1 Deploying your S3 function

Now that you’ve implemented your service, you need to use Claudia to deploy it.
Interestingly, in this scenario you don’t have an API. You’ll invoke claudia create
with a --region flag, just as you did in chapter 2 for your API, but instead of the
--api-module flag, for a function without an API you’ll use the --handler flag. You can
see the command in listing 7.5. The --handler flag expects the path to your handler
with a .handler suffix. For example, if you are using the handler export in a index.js
file your path will be index.handler; if your handler is exported in a lambda.js file,
you’ll specify lambda.handler.

NOTE The <insert-your-file-name>.handler is required by the --handler
flag and, unfortunately, the --handler command can’t catch any other option.

If you did a exports.somethingElse or module.exports in your main file,
and then ran the command with the --handler index and --handler index
.default flag, the command would fail, because it requires your main file to
export a handler property. Therefore the --handler flag works only with an
exports.handler.

Wrap nonpromise functions
in a JavaScript promise.

Resize the image using
ImageMagick.

Put the
object back

to S3.
Read the file contents
from the /tmp folder.

Get the MIME
type of the file.

Set the
thumbnail ACL.

 115Generating thumbnails

Listing 7.5 Deploying the image processing service using Claudia

claudia create \
 --region eu-central-1 \
 --handler index.handler

This command returns information about your Lambda function similar to that shown
in the following listing, and it creates a claudia.json file in the root of your project.

Listing 7.6 The response from the claudia create command upon successful
execution

{
 "lambda": {
 "role": "pizza-image-processor-executor",
 "name": "pizza-image-processor",
 "region": "eu-central-1"
 }
}

Before trying your new service, there is one more step. You need to set a trigger for
your Lambda function from your S3 bucket. Claudia has a command for that as
well—claudia add-s3-event-source. This command has several flags, but you’ll use
the following two:

¡	--bucket—A required flag specifying your bucket name
¡	--prefix—An optional flag that allows you to specify a folder

NOTE For the full list of options, see https://github.com/claudiajs/claudia/
blob/master/docs/add-s3-event-source.md.

As shown in the following listing, you should specify images/ as a prefix, because then
the command will accept triggers only from the images folder.

Listing 7.7 Adding the S3 trigger to the Lambda function

claudia add-s3-event-source \
 --bucket aunt-marias-pizzeria \
 --prefix images/

A successfully added trigger returns an empty object as a response; otherwise, an error
is shown.

One of the easiest ways to see if your new service is working is to manually upload a
file to your S3 bucket’s images folder. Try to do that, then wait a few seconds and check
the thumbnails folder in your S3 bucket.

If you want to try out the complete flow of your API and the image processor, you can
use the front-end application from https://github.com/effortless-serverless/pizzeria
-web-app.

Create a new function.Select a
region. Specify the path for

your handler function.

The name of your function
role, created by ClaudiaThe name

of your
Lambda
function The region where your Lambda

function was deployed

Add an S3 event source to the function.Specify the
bucket.

Specify a prefix—the S3 folder
that will trigger the events.

https://github.com/claudiajs/claudia/blob/master/docs/add-s3-event-source.md
https://github.com/claudiajs/claudia/blob/master/docs/add-s3-event-source.md
https://github.com/effortless-serverless/pizzeria-web-app
https://github.com/effortless-serverless/pizzeria-web-app

116 chapter 7 Working with files

7.3 Taste it!
This chapter was pretty easy, but because it’s the end of part 1 of this book, we’ve made
the exercise more complicated as a bonus.

7.3.1 Exercise

Some images that Michelangelo prepares are big—10 megapixels or more. Because
large file sizes can cause slow loading in both the web and mobile applications, you
need to resize those images with a height or width larger than 1,024 px.

Here are a few tips:

¡	Use the convert function one more time to resize the file.
¡	Be careful during the resizing, because you are modifying the file that you are

using for generating the thumbnail—maybe you shouldn’t do both actions in
parallel.

¡	Upload both files to S3 in the end.

7.3.2 Solution

As shown in listing 7.8, most of the code stays the same—you still need to download the
image from S3 and store it in a /tmp folder, then you need to generate the thumbnail,
and finally you need to upload it to S3.

But there are some differences. After you’ve downloaded the image from S3 and
stored it on your local filesystem, you need to resize it before you create a thumbnail.
Technically, you can resize after you create the thumbnail, but it’s better to create the
thumbnail from the smaller image than to use the original size.

After resizing the image and generating the thumbnail, you need to upload both
files to Amazon S3. You can do this operation in parallel, so you should use Promise
.all to parallelize the upload process.

Listing 7.8 shows the full code example for the sake of readability. Run claudia
upload and try to manually upload a large image to your bucket to test your solution.

TIP claudia update may appear slower than previous executions because
of the size of aws-sdk. It’s available on AWS Lambda by default, so to speed
up your deployment, you should reinstall it as an optional dependency and
run claudia update with the --no-optional-dependencies flag. Doing
so removes optional dependencies from the zip file that is deployed to your
Lambda function.

Listing 7.8 Convert images to thumbnails and resize big image to a reasonable size

'use strict'

const fs = require('fs')
const path = require('path')
const exec = require('child_process').exec
const mime = require('mime')

 117Taste it!

const aws = require('aws-sdk')
const s3 = new aws.S3()

function convert(bucket, filePath) {
 const fileName = path.basename(filePath)

 return s3.getObject({
 Bucket: bucket,
 Key: filePath
 }).promise()
 .then(response => {
 return new Promise((resolve, reject) => {
 if (!fs.existsSync('/tmp/images/'))
 fs.mkdirSync('/tmp/images/')

 if (!fs.existsSync('/tmp/thumbnails/'))
 fs.mkdirSync('/tmp/thumbnails/')

 const localFilePath = path.join('/tmp/images/', fileName)

 fs.writeFile(localFilePath, response.Body, (err, fileName) => {
 if (err)
 return reject(err)

 resolve(filePath)
 })
 })
 })
 .then(filePath => {
 return new Promise((resolve, reject) => {
 const localFilePath = path.join('/tmp/images/', fileName)

 exec(`convert ${localFilePath} -resize 1024x1024\\>
${localFilePath}`, (err, stdout, stderr) => {

 if (err)
 return reject(err)

 resolve(fileName)
 })
 })
 })
 .then(filePath => {
 return new Promise((resolve, reject) => {
 const localFilePath = path.join('/tmp/images/', fileName)
 const localThumbnailPath = path.join('/tmp/thumbnails/', fileName)

 exec(`convert ${localFilePath} -resize 120x120\\>
${localThumbnailPath}`, (err, stdout, stderr) => {

 if (err)
 return reject(err)

 resolve(fileName)
 })
 })
 })
 .then(fileName => {

Download the file from S3.

Save the file to the
local /tmp folder.

Resize the
original image. Wrap the convert command in a

JavaScript promise.

Execute the convert
command.

Generate a thumbnail and save
it on the local filesystem.

Upload the file to S3.

118 chapter 7 Working with files

 const localThumbnailPath = path.join('/tmp/thumbnails/', fileName)
 const localImagePath = path.join('/tmp/images/', fileName)

 return Promise.all([
 s3.putObject({
 Bucket: bucket,
 Key: `thumbnails/${fileName}`,
 Body: fs.readFileSync(localThumbnailPath),
 ContentType: mime.getType(localThumbnailPath),
 ACL: 'public-read'
 }).promise(),
 s3.putObject({
 Bucket: bucket,
 Key: `images/${fileName}`,
 Body: fs.readFileSync(localImagePath),
 ContentType: mime.getType(localImagePath),
 ACL: 'public-read'
 }).promise()
])
 })
}

module.exports = convert

7.4 End of part 1: Special exercise
You’ve come to the end of part 1 of the book. You’ve learned the basics of creating a
serverless API, and now it’s time to put them to the test. Each part of the book ends
with a special exercise where you’ll test the skills you learned throughout that part.
Each special exercise extensively challenges your gained knowledge and contains an
advanced task for those who need an extra challenge.

This special exercise builds on what you’ve learned in this chapter—your goal is to
create a new DynamoDB table pizzas that will keep your pizzas, add your static pizza
list there, and then add a new API call for better pizza image handling. Contrary to
the implementation you saw earlier in the chapter, this new API call should save the
uploaded pizza image to S3, and then send the generated URL to your DynamoDB
database to persist it as an extra column in your pizzas table. This means that each pizza
will have its corresponding image URL.

NOTE These special exercises have no hints, and we leave it up to you to test
and verify your solution.

7.4.1 Advanced task

If that’s too easy for you, this task brings another layer of complexity that is common in
many applications. The task is to extend the pizza object to have more than one image
assigned to it, and also allow the option to set one as the default.

NOTE The special exercise advanced task always has a limited description.

Return Promise.all, which
uploads both files to S3.Upload the

thumbnail.

Upload the image.

 119Summary

Summary

¡	Serverless applications don’t require serverless storage but need it to be fully
serverless.

¡	When using AWS, S3 is the serverless storage service you need.
¡	Always try to separate your serverless application into smaller microservices—

for example, for image processing you should always have a separate serverless
function.

¡	Claudia.js helps you easily connect your Lambda to your S3 storage events.
¡	You can use ImageMagick within your serverless function to process your images

and then store them to S3.

Part 2

Let’s talk

Now that Aunt Maria has a functional application, it’s time to bring the
pizzeria closer to the younger population by having some fun with chatbots and
voice assistants. Why would you use an app when you can ask Alexa to order a
pizza for you?!

You’ll start by building a simple Facebook messenger chatbot (chapter 8),
connecting it to your current database and delivery service (chapter 9). Then
you'll get to build an SMS chatbot for customers who aren’t so tech-savvy, such
as Uncle Frank, who want to order a pizza with a simple message (chapter 10).
Finally, because your young cousin Julia bought an Amazon Echo Dot as a Christ-
mas present for Aunt Maria, you’ll build an Alexa skill that will allow everyone to
order a pizza with voice commands.

123

8When pizza is one
message away: Chatbots

This chapter covers
¡	Building a serverless chatbot

¡	How serverless chatbots work, and how Claudia
Bot Builder helps

¡	Using a third-party chatbot platform (Facebook
Messenger)

Serverless applications aren’t always APIs or simple processing microservices. Soft-
ware is evolving, and people are finding different ways to use it. We’ve come a long
way from isolated desktop applications to websites and mobile apps, and recently
we’re starting to see an expansion of chatbots and voice assistants.

This chapter shows how you can interact with your users even more by building
a serverless chatbot on Facebook Messenger and integrating it with your Pizza API.
You’ll also learn how chatbots work and how to easily implement them in a serverless
way using Claudia.

8.1 Pizza ordering beyond the browser
While you were working on Aunt Maria’s Pizza API, her niece Julia dropped by the
pizzeria a few times to say hi. Julia is in high school and, of course, spends lots of
time on her phone. Even though she’s happy that you helped the pizzeria set up an

124 chapter 8 When pizza is one message away: Chatbots

online ordering service, she complains that it’s not cool enough. You’re way behind
Aunt Maria’s main competitor, Chess’s pizzeria, which has a Facebook Messenger chat-
bot that helps their customers order pizzas without leaving Facebook. Because Julia’s
classmates are always chatting on Facebook Messenger, they use it all the time. Having
a chatbot would definitely help Aunt Maria reach more young customers, so she asks if
you could help with that.

WHAT IS A CHATBOT? A chatbot is a computer program designed to simulate an
intelligent conversation with one or more human users via text-based or audi-
tory methods.

A short history of chatbots
For many, chatbots sound like a new hype thing, even though the idea is not new at all.
Chatbots emerged in the middle of the 20th century as a result of attempts to enable
human users to use computers in a more human-friendly way.

A chatbot interface is mentioned in the famous Turing test of 1950. Then there was
ELIZA in 1966, a simulation of a Rogerian psychotherapist and an early example of
primitive natural language processing (NLP). After that came PARRY in 1972, a simula-
tion of a person with paranoid schizophrenia (and yes, of course, PARRY met ELIZA—see
https://tools.ietf.org/html/rfc439.

In 1983, a book called The Policeman’s Beard Is Half Constructed was generated by
Racter, an artificial intelligence computer program that generated random English-
language prose. Racter was later released as a chatbot.

One of the most famous chatbots was Alice (also known as A.L.I.C.E., the Artificial Lin-
guistic Internet Computer Entity), released in 1995. It wasn’t able to pass the Turing test,
but it won the Loebner Prize three times. The Loebner Prize is an annual competition in
artificial intelligence that awards prizes to the most human-like computer programs. In
2005 and 2006, the same prize was won by two Jabberwocky bot characters.

In 2014, Slackbot made chatbots popular again. In 2015, Telegram and then Facebook
Messenger released chatbot support; in 2016 Skype did the same, and Apple and some
other companies announced even more chatbot platforms.

Building a chatbot nowadays is often more of a marketing initiative, with the goal of
reaching more potential customers on major social platforms without requiring them to
visit another website or install a mobile application or a desktop program.

8.2 Hello from Facebook Messenger
Because you are going to build a pizza chatbot on Facebook Messenger, it’s important
to understand how users will send messages to your chatbot and how a Facebook chat-
bot works.

https://tools.ietf.org/html/rfc439

 125Hello from Facebook Messenger

Facebook chatbots are support applications for Facebook pages, meaning that they
aren’t independent, separate applications, like games. Building a Facebook chatbot is
done in four steps:

1 Set up a Facebook page for your chatbot.

2 Create a Facebook application that will serve your chatbot and connect it to
your page.

3 Implement your chatbot and deploy it.

4 Connect your chatbot to your Facebook application.

To start interacting with your chatbot, users will need to open your Facebook page
and send it a message. The page’s Facebook application receives the message and
sends a request to your chatbot with the user’s message. Your chatbot receives and pro-
cesses the message and returns a response to your Facebook application, which in turn
responds in your Facebook page’s message box.

A detailed visual overview of this messaging process is shown in figure 8.1.
Before you jump into thinking about how to implement your chatbot service, there is

some good news. Besides its API Builder, Claudia also has a Bot Builder.
Claudia Bot Builder is a thin library that wraps Claudia API Builder. It abstracts away

the various messaging platform APIs and provides a simple, unified API for building
your chatbots. Claudia Bot Builder’s purpose is to help you build chatbots on various
messaging platforms, such as Facebook, Slack, Viber, and many more.

To start, you’ll need to create a new folder at the same directory level as your pizza-api
and pizza-image-processing folders. A good folder name would be pizza-fb-chatbot.
After creating the folder, open it and initiate a new NPM project. Then you need to
install Claudia Bot Builder as a project dependency. To do that, see appendix A.

Send a message to
Aunt Maria’s

pizzeria FB page

Message sent

Message seen

Message from chatbot

Status 200, OK

Reply

Trigger a webhook

Facebook
Messenger

Facebook
Platform

Pizza chatbot
Lambda

Figure 8.1 Chatbot message and reply flow

126 chapter 8 When pizza is one message away: Chatbots

After installing the Bot Builder you’ll need to set up your Facebook page and its Face-
book application and connect them. For instructions on how to do that, see appendix B.

Now that you have the project set up, you can start with the actual implementa-
tion. You’ll need to create an initial file for your chatbot, so create a bot.js file in the
root of your pizza-fb-bot folder and open the newly created file in your favorite code
editor.

At the top of the bot.js file, require Claudia Bot Builder.

TIP Unlike Claudia API Builder, Bot Builder is a module, not a class, so you do
not need to instantiate it.

The Bot Builder, module is a function that requires a message handler function as its
first argument and returns an instance of Claudia API Builder. The message handler
function is the function that will be invoked when your chatbot receives a message.
The easiest way to reply from your chatbot is to return a text message. Claudia Bot
Builder will format this text message in the template required by the chat platform you
are answering to—in your case, Facebook Messenger.

Because Claudia Bot Builder returns an instance of Claudia API Builder, as the last
step you’ll need to export the API Builder instance returned to you by the Bot Builder
function.

Your bot.js file should look like the following listing.

Listing 8.1 A simple chatbot that says hello

'use strict'

const botBuilder = require('claudia-bot-builder')

const api = botBuilder(() => {
 return `Hello from Aunt Maria's pizzeria!`
})

module.exports = api

Deploying your chatbot is similar to deploying your Pizza API. As shown in listing 8.2,
you need to run the claudia create command and provide your region and the
--api-module option with the path to your initial file (without the extension). Your
initial file is the bot.js file, so you need to provide bot as the API’s module path. In addi-
tion to the region and the API module, you also need to provide the --configure -fb-
bot option. This option will set up the Facebook Messenger chatbot configuration for
you. Let’s see it in action first, and we’ll explain what happens in the background when
you use this option later in this chapter.

Require the Claudia Bot
Builder module.

Set the Claudia Bot Builder message
handler function and save the
Claudia API Builder instance.

 Reply with simple text from the chatbot.

 127Hello from Facebook Messenger

Listing 8.2 Deploying your chatbot and setting up the Facebook Messenger
configuration

claudia create \
 --region eu-central-1 \
 --api-module bot \
 --configure-fb-bot

Running the claudia create command with the --configure-fb-bot option will
make the command interactive. If the deployment of your API was executed success-
fully, this command will then ask you to provide your Facebook page access token and
then print out the webhook URL with your verification token. (For a detailed explana-
tion of the Facebook setup process, see appendix B.)

NOTE When you deploy your chatbot, only users added to both the Face-
book page and the Facebook app will be able to talk to it. To make your
chatbot publicly available, you’ll need to submit it for review. For more infor-
mation on the review process, see https://developers.facebook.com/docs/
messenger-platform/app-review/.

When you provide the Facebook page access token, your bot will be ready and immedi-
ately available for testing. To test your bot, go to your Facebook page and send a mes-
sage to it. Your bot currently always replies with the static text “Hello from Aunt Maria’s
pizzeria!,” as shown in figure 8.2.

Set the API Gateway.

Configure the Facebook
Messenger chatbot.

Figure 8.2 The first message
from your chatbot

https://developers.facebook.com/docs/messenger-platform/app-review/
https://developers.facebook.com/docs/messenger-platform/app-review/

128 chapter 8 When pizza is one message away: Chatbots

8.3 What kinds of pizzas do you have?
Building a chatbot in a few minutes is satisfying, but at this point your chatbot is pretty
useless. To make it useful, you should allow customers to see all the available pizzas and
place an order. Let’s start with showing customers the list of pizzas.

If you remember from chapter 2, the currently available pizzas are stored in a static
JSON file. As a temporary solution, copy that JSON file to your new project. First create
the data folder, and then copy the pizzas.json file from your pizza-api folder to the data
folder in the pizza-fb-chatbot project you created.

The next thing you want to do is show the pizza list as a chatbot reply. Defining the
appropriate attitude and tone for your chatbot is beyond the scope of this book, so for
now try to come up with some friendly message before you list the pizzas, such as “Hello,
here’s our pizza menu,” and then ask users which one they want. To do this, you’ll need
to update your bot.js file.

First, import the list of pizzas from the pizzas.json file, which is in the data folder.
Then update the botBuilder message handler function to return the pizza list and ask
the user to pick one.

With Claudia Bot Builder, you can send multiple messages as responses to the user.
To enable this capability, you need to return an array of messages instead of a single
static text. Each message in the array will be sent separately, with the order determined
by the order of the messages in the array.

Now you want to get the list of pizzas from the JSON file and convert each one to a
string. To do so, you can map through the array of pizzas, get the name of each one, and
then convert the array to a string using the Array.join function.

The updated bot.js code should look like the following listing.

Listing 8.3 Your chatbot replying with a pizza list

'use strict'

const pizzas = require('./data/pizzas.json')

const botBuilder = require('claudia-bot-builder')

const api = botBuilder(() => {
 return [
 `Hello, here's our pizza menu: ` + pizzas.map(pizza => pizza.name).

join(', '),
 'Which one do you want?'
]
})

module.exports = api

Deploy the updated bot with the claudia update command—no arguments needed.
After a minute or so, your update command finishes and returns output similar to that
in the following listing.

Import the list of pizzas
from the JSON file.

Return multiple
messages as an array. In the first

message,
list all the

pizzas.

In the second message, ask
users which pizza they want.

 129What kinds of pizzas do you have?

Listing 8.4 Response for the claudia update command

{
 "FunctionName": "pizza-fb-bot",
 "FunctionArn": "arn:aws:lambda:eu-central-1:721177882564:function:pizza-fb-

bot:2",
 "Runtime": "nodejs6.10",
 "Role": "arn:aws:iam::721177882564:role/pizza-fb-bot-executor",
 "url": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/latest",
 "deploy": {
 "facebook": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/facebook",
 "slackSlashCommand": "https://wvztkdiz8c.execute-api.eu-central-1.

amazonaws.com/latest/slack/slash-command",
 "telegram": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/telegram",
 ...
 }
}

Try to send a new message to your chatbot and you’ll see the updated answer, as shown
in figure 8.3.

The name of your
Lambda function

 The ARN of your Lambda function

 The Node.js runtime used for
the function execution

 The role of
your function

 The API
Gateway URL

Webhook URLs for all the
supported platforms

Figure 8.3 The updated response
from your chatbot

130 chapter 8 When pizza is one message away: Chatbots

8.4 Speeding up the deployment
As you probably noticed, updating your chatbot takes a bit more time than updating
your API. That’s because Claudia Bot Builder doesn’t know if you changed the API
configuration, so it rebuilds the webhook routes for all supported platforms. A detailed
explanation of how Claudia Bot Builder works under the hood is given in section 8.6.

Fortunately, there is a way to skip the rebuilding step and speed up the deployment
process. To do so, you can use the --cache-api-config option, which requires a stage
variable name. When this option is provided, Claudia will create a hash of your API
Gateway configuration and store it in a stage variable with the name you provided as the
next argument in the update command. Each subsequent deployment will check if that
variable exists, and compare the hash to see if the API Gateway configuration should be
updated. This process speeds up the deployment, unless you add a new API route.

We recommend adding the claudia update command with the --cache-api-
config option as an NPM script in your package.json file. If you do that, you should
also install Claudia as a dev dependency, as explained in appendix A. Your package.json
file should then look similar to the next listing.

Listing 8.5 package.json file with the updated script

{
 "name": "pizza-fb-chatbot",
 "version": "1.0.0",
 "description": "A pizzeria chatbot",
 "main": "bot.js",
 "scripts": {
 "update": "claudia update --cache-api-config apiConfig"
 },
 "license": "MIT",
 "dependencies": {
 "claudia-bot-builder": "^2.15.0"
 },
 "devDependencies": {
 "claudia": "^2.13.0"
 }
}

The --cache-api-config option is useful when you aren’t updating the API definition
often, and it speeds up the deployment significantly. But Claudia Bot Builder creates
webhooks for all platforms, and if you are building a chatbot for a single platform only,
you don’t need the webhooks for other platforms. From version 2.7.0, Claudia Bot
Builder allows you to enable only the platforms you are using. To do so, you’ll need to
provide the options as the second argument to the botBuilder function. Claudia Bot
Builder expects the options, if provided, to be an object. To enable only the Facebook
Messenger platform, you need to add the platforms key in the options object, with an
array with the string "facebook" as a value, as shown in the next listing.

Add the claudia
update command
as an NPM script.

Install Claudia as a
dev dependency.

 131Messenger templates

To read more about selecting the platform, see https://github.com/claudiajs/claudia
-bot-builder/blob/master/docs/API.md.

Listing 8.6 A chatbot with Facebook Messenger as the only enabled platform

'use strict'

const pizzas = require('./data/pizzas.json')

const botBuilder = require('claudia-bot-builder')

const api = botBuilder(() => {
 return [
 'Hello, here's our pizza menu: ' + pizzas.map(pizza => pizza.name).

join(', '),
 'Which one do you want?'
]
}, {
 platforms: ['facebook']
})

module.exports = api

If you run the npm run update command from your project directory now, you’ll see
that the deployment is significantly faster.

8.5 Messenger templates
Aunt Maria’s chatbot is now capable of showing customers the available pizza list. But
even though it does the job, customers may not understand what to do next.

Building a good chatbot experience is hard. Most users aren’t accustomed to a tex-
tual interface, and a chatbot often requires some natural language processing and arti-
ficial intelligence—both are hard to set up correctly. For some spoken languages, it is
almost impossible at the moment. Many chatbot platforms have acknowledged those
problems and have simplified development and improved the user experience by add-
ing support for some application-like interfaces, such as buttons and lists.

Facebook Messenger is one of those platforms, and its user interface elements are
called templates. It offers several different templates, such as the following:

¡	Generic—Sends a message in the form of a carousel, or horizontally scrollable
list, with cards that can have a title, subtitle/description, image, and up to three
buttons

¡	Button—Sends a message with simple buttons (up to three) below the text
¡	List—Sends a message in the form of a vertical item list with names, descriptions,

and images, and a call-to-action button
¡	Receipt—Sends an order confirmation or receipt to the user after a transaction

For the full list of supported templates, visit https://developers.facebook.com/docs/
messenger-platform/send-messages/templates/.

Provide an options object as
the second argument in your
botBuilder function.

Provide an array of platforms you want
to enable—in your case, just Facebook.

https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md
https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md
https://developers.facebook.com/docs/messenger-platform/send-messages/templates/
https://developers.facebook.com/docs/messenger-platform/send-messages/templates/

132 chapter 8 When pizza is one message away: Chatbots

For your case, the generic or list templates seem like potential solutions. But the list
template has a limitation on the list size—it needs at least two items and can display four
at most. The generic template is more flexible; it can display 1 item, or up to 10. Because
you want to display more than four pizzas, you should use the generic template.

To return a template instead of a text with the pizza list, you need to reply with
a JSON object that has a specific structure. Doing so sounds simple enough, but these
JSON objects can be quite big, and because you are going to display up to 10 pizzas, the
readability of your code will be affected.

To improve the readability and simplify working with templates, Claudia Bot Builder
has wrapped templates for some of its supported platforms (including Facebook, Tele-
gram, and Viber) into template message builder classes. For Facebook, the template
message builder is available through the botBuilder.fbTemplate object, which is a col-
lection of classes for each of the supported templates.

NOTE To see Claudia Bot Builder’s full list of template message builder classes, see
https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/FB_
TEMPLATE_MESSAGE_BUILDER.md.

As mentioned earlier, the generic template displays a horizontal scrollable carousel of
items or elements. Each element is composed of an image attachment, title, optional
description, and buttons to request user input. The generic template buttons can have dif-
ferent actions, such as opening a URL or sending a postback to your webhook. For the full
list of button actions and more details about the generic template, visit https://developers
.facebook.com/docs/messenger-platform/send-messages/template/generic.

In Claudia Bot Builder, the generic template is exposed through the botBuilder
.fbTemplate.Generic class. You need to initialize the class without arguments and save
the instance to the message constant.

Then you should add a carousel item, also known as a bubble, for each pizza. To do
so, loop through the array of pizzas and for each one add a button using the message
.addButton method of the fbTemplate.Generic class. This method requires the bubble
title as an argument.

Then you’ll add an image and a button for each pizza, which you can do via the
addImage and addButton methods, respectively. For the addImage method, you need
to provide a valid image URL, and the addButton method requires a button name and
a value that will be passed when the button is tapped. For now, add a “Details” button
and send the pizza ID as a value. You’ll implement the button logic in the next chapter.

All class methods allow chaining, so you can chain them as follows:

message.addBubble(pizza.name).addImage(pizza.image).addButton('Details',
pizza.id)

At the chain’s end, you need to use the message.get method to convert the button to
the JSON response Facebook expects. Because users will use the template button to
order pizzas (you will implement this capability in the next chapter), you can replace
the label with a "Which one do you want?" message with message.get.

The updated code for your bot.js file should look like the next listing.

https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/FB_TEMPLATE_MESSAGE_BUILDER.md
https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/FB_TEMPLATE_MESSAGE_BUILDER.md
https://developers.facebook.com/docs/messenger-platform/send-messages/template/generic
https://developers.facebook.com/docs/messenger-platform/send-messages/template/generic

 133Messenger templates

Listing 8.7 The Bot Builder function that answers with the generic template

'use strict'

const pizzas = require('./data/pizzas.json')

const botBuilder = require('claudia-bot-builder')
const fbTemplate = botBuilder.fbTemplate

const api = botBuilder(() => {
 const message = new fbTemplate.Generic()

 pizzas.forEach(pizza => {
 message.addBubble(pizza.name)
 .addImage(pizza.image)
 .addButton('Details', pizza.id)
 })

 return [
 'Hello, here's our pizza menu:',
 message.get()
]
}, {
 platforms: ['facebook']
})

module.exports = api

After updating your bot.js file, run the npm run update command. As soon as it’s fin-
ished, you can send a new message to your chatbot. The reply should look similar to
the one in figure 8.4.

Create a new fbTemplate constant
that exposes the Facebook template
message builder.

Create a new instance of the
Generic template class.

Loop through the list of pizzas.

Add a bubble
for each pizza.

 Add an image
for each pizza.

Add a button for each pizza and
pass the pizza ID as its value
when user taps the button.

Figure 8.4 A chatbot response
with the generic template

134 chapter 8 When pizza is one message away: Chatbots

8.6 How does Claudia Bot Builder work?
Now that you have a nice-looking chatbot, it’s time to see what Claudia Bot Builder did
for you under the hood.

Most of the popular chatbot platforms use webhooks to notify your server that a new
message was received. But each platform sends the data with a different structure, and
also expects you to answer in a platform-specific way.

The main goal of Claudia Bot Builder is to abstract away the receiving and send-
ing messages' platform-specific structure to a simple API. It uses Claudia API Builder
to create webhooks for each supported platform. At the time of writing, Claudia Bot
Builder supports 10 platforms (including Facebook Messenger, Slack, Amazon Alexa,
and Telegram).

As shown in figure 8.5, the Claudia Bot Builder message-reply lifecycle looks like this:

1 The user sends a message via a messenger platform.

2 The platform API hits API Gateway via the webhook you provided in the platform
settings.

3 API Gateway triggers your Lambda function, where the request is routed to the
platform-specific API endpoint.

4 The request is parsed to a common format using the platform-specific message
parser.

5 The parsed message is passed to your chatbot logic.

6 The answer from your chatbot logic is wrapped in a platform-specific format.

7 Claudia Bot Builder invokes the platform API with a wrapped reply.

8 The platform API sends the reply back to the user’s messenger application.

You saw that the botBuilder function expects a message handler function, and you
can also pass it an object with options as an extra parameter. The handler function
is your chatbot logic, and the options object is used only for specifying the platforms
used, to speed up the deployment.

The handler function is invoked with two arguments: the message object and the
original Claudia API Builder request object.

The parsed message object contains the following properties:

¡	text—The text of the received message, extracted from a platform-specific mes-
sage format. In most cases, if you want to reply to text messages, this is the only
piece of information you’ll need.

¡	type—The platform that received the message. For list of platforms, see https://
github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md.

¡	sender—The identifier of the sender. It depends on the platform, but it is the
user ID in most cases.

API Gateway

Pizza chatbot Lambda function

Facebook
Messenger

Telegram
MessengerSlack

Facebook
Messenger

Telegram
MessengerSlack

Facebook
Messenger

API

Telegram
APISlack API

User sends the message
via one of the supported
messaging platforms.

Request is received by
API Gateway and sent to
your Lambda function.

Request is then processed
by a separate webhook for
each platform,

and parsed to a common
format by a parser
specific to each platform.

After parsing and converting to the
common format, message is
processed by your Bot Builder logic.

Finally, reply from your chatbot
logic function is converted to a
platform specific reply format,

and sent as a reply message to
platform API,

which will send it as a message
back to the user.

Facebook webhook Slack webhook Telegram webhook

Facebook parser Slack parser Telegram parser

Your chatbot logic

Facebook reply Slack reply Telegram reply

Figure 8.5 Claudia Bot Builder conversation flow

https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md
https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md

 135How does Claudia Bot Builder work?

¡	postback—A Boolean property. This will be true if the message is the result of a
Facebook postback (for example, tapping a generic template button). It will be
undefined (falsy) for completely new messages or platforms that don’t support
postbacks.

¡	originalRequest—The original message object received by your webhook. This
is useful if you want to do some platform-specific actions that are not provided by
Claudia Bot Builder.

Finally, replying to a message from Claudia Bot Builder is as simple as replying from
Claudia API Builder—if you want to reply with a text message, you need to return the

8.6 How does Claudia Bot Builder work?
Now that you have a nice-looking chatbot, it’s time to see what Claudia Bot Builder did
for you under the hood.

Most of the popular chatbot platforms use webhooks to notify your server that a new
message was received. But each platform sends the data with a different structure, and
also expects you to answer in a platform-specific way.

The main goal of Claudia Bot Builder is to abstract away the receiving and send-
ing messages' platform-specific structure to a simple API. It uses Claudia API Builder
to create webhooks for each supported platform. At the time of writing, Claudia Bot
Builder supports 10 platforms (including Facebook Messenger, Slack, Amazon Alexa,
and Telegram).

As shown in figure 8.5, the Claudia Bot Builder message-reply lifecycle looks like this:

1 The user sends a message via a messenger platform.

2 The platform API hits API Gateway via the webhook you provided in the platform
settings.

3 API Gateway triggers your Lambda function, where the request is routed to the
platform-specific API endpoint.

4 The request is parsed to a common format using the platform-specific message
parser.

5 The parsed message is passed to your chatbot logic.

6 The answer from your chatbot logic is wrapped in a platform-specific format.

7 Claudia Bot Builder invokes the platform API with a wrapped reply.

8 The platform API sends the reply back to the user’s messenger application.

You saw that the botBuilder function expects a message handler function, and you
can also pass it an object with options as an extra parameter. The handler function
is your chatbot logic, and the options object is used only for specifying the platforms
used, to speed up the deployment.

The handler function is invoked with two arguments: the message object and the
original Claudia API Builder request object.

The parsed message object contains the following properties:

¡	text—The text of the received message, extracted from a platform-specific mes-
sage format. In most cases, if you want to reply to text messages, this is the only
piece of information you’ll need.

¡	type—The platform that received the message. For list of platforms, see https://
github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md.

¡	sender—The identifier of the sender. It depends on the platform, but it is the
user ID in most cases.

API Gateway

Pizza chatbot Lambda function

Facebook
Messenger

Telegram
MessengerSlack

Facebook
Messenger

Telegram
MessengerSlack

Facebook
Messenger

API

Telegram
APISlack API

User sends the message
via one of the supported
messaging platforms.

Request is received by
API Gateway and sent to
your Lambda function.

Request is then processed
by a separate webhook for
each platform,

and parsed to a common
format by a parser
specific to each platform.

After parsing and converting to the
common format, message is
processed by your Bot Builder logic.

Finally, reply from your chatbot
logic function is converted to a
platform specific reply format,

and sent as a reply message to
platform API,

which will send it as a message
back to the user.

Facebook webhook Slack webhook Telegram webhook

Facebook parser Slack parser Telegram parser

Your chatbot logic

Facebook reply Slack reply Telegram reply

Figure 8.5 Claudia Bot Builder conversation flow

https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md
https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/API.md

136 chapter 8 When pizza is one message away: Chatbots

string. You can also reply with a platform-specific template, either by using the message
template builder or by returning a JSON object. To reply asynchronously, return text
or an object at the end of the promise chain.

8.7 Taste it!
You’ve now seen the basics of implementing Facebook Messenger chatbots with AWS
Lambda. It’s not enough to win the Loebner Prize, but it’s enough to have some fun.
As in all the previous chapters, we’ve prepared an exercise for you.

8.7.1 Exercise

The goal of your first chatbot exercise is to show you how easy it is to create a chatbot.
Using the same Facebook page and application, create a chatbot that will echo the

message text it received, in reverse.
Here are a few tips:

¡	Inspect the message parameter to get all its attributes and return the same text
message the user sent.

¡	Use the built-in methods to reverse a string.

8.7.2 Solution

The solution, shown in the following listing, is simple and obvious.

Listing 8.8 A simple reverse echo chatbot

'use strict'

const botBuilder = require('claudia-bot-builder')

const api = botBuilder((message) => {
 return message.text.split('').reverse().join('')
}, {
 platforms: ['facebook']
})

module.exports = api

This Reverse-O chatbot is easy, but don’t think future ones will be, too!

Import Claudia Bot Builder.

Invoke the botBuilder function with
a handler function that expects the
message attribute.

Return the text of the
received message.

Provide the options object, which filtered
platforms to Facebook Messenger only.

Export the returned instance
of Claudia API Builder that
botBuilder instantiated.

 137Summary

Summary

¡	Claudia enables you to deploy a chatbot for a few different platforms in a single
command.

¡	Claudia Bot Builder is a wrapper around Claudia API Builder that returns an API
instance.

¡	Claudia Bot Builder wraps the text reply in a format required by the platform you
are answering to.

¡	You can build platform-specific template messages using Bot Builder templates.

138

9Typing... Async and
delayed responses

This chapter covers
¡	Connecting your serverless chatbot to AWS

DynamoDB

¡	Sending a delayed message to the user when a
pizza is ready

¡	Integrating simple natural language
processing (NLP)

Being able to quickly build and deploy different applications is useful. As you’ve
seen, building chatbots with Claudia Bot Builder is easy, and you can build a simple
request/reply chatbot in just a few minutes.

But in the real world, chatbots need to do more complex operations than just
reply with static data. You’ll probably need to store customer information and
request data, and perhaps do some calculations or even answer some unrelated ques-
tions. This chapter covers all of that: you’ll learn how to make pizza orders from user
requests, send delivery messages when the orders are ready, and integrate some basic
natural language processing (NLP) to handle user input in a text format.

 139Making chatbots interactive

9.1 Making chatbots interactive
Your cousin Julia followed your progress and was excited when she saw you’d built the
scrollable list of available pizzas. She’s already started spreading the word at school
about the amazing pizza chatbot—much better than the one from Chess’s pizzeria.
That’s put you in the hot seat, but Aunt Maria is happy, because she’s already seen
increased website traffic as a result of that rumor.

The last thing you’d want now is to disappoint them, so you’re going to finish the pizza
ordering chatbot and add a few improvements to make your bot superior to Chess’s.

9.1.1 Tap to order: answering a postback

Displaying a list with pizza pictures within a chatbot reply is great, because customers
prefer a visual interface to a simple text reply. In the previous chapter, each pizza was
displayed in a visual block that also had a Details button. If you were to tap it, though,
it would do nothing.

Because your primary goal is enabling pizza ordering, you’ll do the following:

1 Add an Order button below the Details one, as shown in figure 9.1.

2 Implement the pizza ordering by storing pizza order information in your data-
base when the Order button is tapped.

3 Schedule an order feature.

4 Add NLP to your pizza chatbot, which will make your chatbot seem smarter and
more human-like and encourage customer interaction. It will be able to answer
any kinds of questions Julia’s high school friends can think of.

Figure 9.1 Chatbot reply with Details and Order buttons

140 chapter 9 Typing... Async and delayed responses

Natural language processing
Natural language processing is a branch of artificial intelligence that deals with analyz-
ing, understanding, and generating the languages that humans use naturally in order to
interface with computers in both written and spoken contexts using natural human lan-
guages instead of computer languages.

If you want to learn NLP in practice, see Manning’s Natural Language Processing in Action
by Hobson Lane, et al: https://www.manning.com/books/natural-language-processing
-in-action.

You are going to continue from the final chapter 8 listing as follows.

Listing 9.1 The current botBuilder function that answers with the generic template

'use strict'

const pizzas = require('./data/pizzas.json')

const botBuilder = require('claudia-bot-builder')
const fbTemplate = botBuilder.fbTemplate

const api = botBuilder(message => {
 const messageTemplate = new fbTemplate.Generic()

 pizzas.forEach(pizza => {
 messageTemplate.addBubble(pizza.name)
 .addImage(pizza.image)
 .addButton('Details', pizza.id)
 })

 return [
 'Hello, here\'s our pizmenu:',
 messageTemplate.get()
]
}, {
 platforms: ['facebook']
})

module.exports = api

As you can see from this code listing, the message attribute of the botBuilder function
contains useful information about the request your chatbot received, such as whether
the message was a button tap response or a text message.

To make your chatbot more useful, you should reply with the pizza details when the
customer taps the Details button. Tapping the Order button should allow customers to
order the selected pizza.

Now the flow of your chatbot will have three branches (figure 9.2):

¡	The user can see the details of the selected pizza.
¡	The user can order the selected pizza.
¡	If the user does anything else, show the initial message with the menu.

Create a new instance of the
Facebook message builder
Generic template class.

Prepare a Facebook
template menu of pizzas.

Send a greeting message
with the pizza menu.

https://www.manning.com/books/natural-language-processing-in-action
https://www.manning.com/books/natural-language-processing-in-action

 141Making chatbots interactive

Customer button actions are replied to as postback messages.
To implement the flow from figure 9.2, you’ll first need to check whether the mes-

sage is a postback by checking if message.postback is true or false.
If the message is a postback, you’ll check if the user wants to see the details of the

pizza or to order it (let’s call that action), and you’ll also need the ID of the selected
pizza. To save both values, you can update postback button value by serializing a JSON
value or providing a string with both action and pizza ID, separated by a delimiter, such
as pipe character (|). In the case of the pizza chatbot, doing the latter is easier because
the chatbot’s flow is quite simple. You can save the value in ACTION|ID format, where
ACTION represents an uppercase action name (ORDER or DETAILS in your case) and ID
represents the pizza ID.

If the message the chatbot received is a postback, its value will be in message.text.
You’ll split it by the pipe character (|) using the following built-in String.split
method:

const values = message.text.split('|')

The new values array will have the action as its first item, and the pizza ID as the
second. But ES6 destructuring can help with making this code more readable. If you
replace the const values with const [action, pizzaId], the first item of the new
array will be stored directly to the action constant and the second to pizzaId.

Now that you’ve extracted both the action and the pizza ID, you need to check if the
action is either ORDER or DETAILS.

Is postback?

Message

Is “DETAILS”?

Is “ORDER”?

Anything
else?

Pizza menu

Pizza details

Pizza order

Answer to
the request

Recognized
by NLP?

No

No

No

No

Yes

Yes

Order

Go back

Yes Yes

Then show

Click

Figure 9.2 A visual representation of your chatbot flow

142 chapter 9 Typing... Async and delayed responses

In any case, you need to use the pizza ID to find a pizza from the pizzas array. To do
so, you can use the built-in Array.find method like this:

const pizza = pizzas.find(pizza => pizza.id == pizzaId)

Note that this example uses == instead of ===. That’s because the pizzaId is of type
String, because you got it from the String.split function, whereas the IDs from the
pizzas array are integers.

Finding a pizza by its ID should take place with both if statements. It may seem
redundant, but you might add an additional action that doesn’t have a pizza ID in the
future.

NOTE If you moved the pizzas list to a DynamoDB table, you can stop here
and try to connect your chatbot to the DynamoDB table the same way you con-
nected your API in chapter 3. If you get stuck or aren’t able to do it on your
own, don’t worry: the DynamoDB connection is repeated later in this chapter.

When your chatbot receives the DETAILS action, you can join all the pizza ingredients
with commas and return the list of ingredients as a reply. But after receiving the pizza
ingredients list, what should the customer do? What is the next conversation step?

Unlike in web applications, where the user can see the next available actions
onscreen, the next step in a chatbot flow isn’t always obvious to the user. If you return
just a list of pizza ingredients, the user most likely won’t know what to do next, and you
may receive lots of unexpected user messages, like “Ew! Goat cheese!” and “What’s your
favorite kind of pizza?” or even “I love you,” because human creativity is endless.

Even with NLP integration, chatbots are still far from being able to have a conver-
sation on a human level, so the best thing you can do is add a nice, creative way of
handling errors while trying to direct the user to the flow your chatbot can handle.
Designing chatbot conversations is an interesting topic, but it is beyond the scope of
this book.

The easiest way to direct users to the next chatbot action is to show them a visual
menu with available options. This doesn’t guarantee that the user will tap one of those
buttons, but the menu will produce much better results than simply asking a question.

The two options you should show are the possibility to order the pizza the user just
previewed, or to go back to the pizza list. To do so, you can use the Button class from
fbTemplate. The Button class allows you to render a button template with up to three
buttons, which look like the buttons from the generic template, and show a text reply.
Using this class is similar to using the Generic class, so your reply should look some-
thing like the following:

return [
 `${pizza.name} has following ingredients: ` + pizza.ingredients.join(', '),
 new fbTemplate.Button('What else can I do for you?')
 .addButton('Order', `ORDER|${pizzaId}`)
 .addButton('Show all pizzas', 'ALL_PIZZAS')
 .get()
]

 143Making chatbots interactive

As you can see, the second button has the ALL_PIZZAS value, so this won’t pass any of
the if conditions you defined, and it will show the pizzas menu. Later, you can modify
that flow to show a slightly different message depending on the previous conversation
flow; for example “Not a big fan of mushrooms? Here are a few other pizzas you might
like more.”

NOTE For more information about the Button class of fbTemplate, you can
read the documentation at https://github.com/claudiajs/claudia-bot-builder/
blob/master/docs/FB_TEMPLATE_MESSAGE_BUILDER.md.

In the case of an ORDER action, your chatbot should find a pizza by the ID and tell the
user that the order was successful. You’ll handle that case later in this chapter.

Finally, if the message isn’t a postback, or if the action is neither DETAILS nor ORDER,
you can return a generic template message similar to the one you used in chapter 8.
The only difference is the addition of the Order button:

pizzas.forEach(pizza => {
 reply.addBubble(pizza.name)
 .addImage(pizza.image)
 .addButton('Details', `DETAILS|${pizza.id}`)
 .addButton('Order', `ORDER|${pizza.id}`)
})

Your updated bot.js file should look like the following listing.

Listing 9.2 Chatbot flow that accepts orders and details of selected pizza

'use strict'

const pizzas = require('./data/pizzas.json')

const botBuilder = require('claudia-bot-builder')
const fbTemplate = botBuilder.fbTemplate

const api = botBuilder((message) => {
 if (message.postback) {
 const [action, pizzaId] = message.text.split('|')
 if (action === 'DETAILS') {
 const pizza = pizzas.find(pizza => pizza.id == pizzaId)

 return [
 `${pizza.name} has following ingredients: ` + pizza.ingredients.

join(', '),

Add a message parameter
to the handler function.

Check if the message
is a postback.

If it is, split the message
text by the | character.

Check if the first part of
the text is DETAILS.

If it is, get the
pizza ID from the
split text array.

Return the
ingredients of the
selected pizza.

https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/FB_TEMPLATE_MESSAGE_BUILDER.md
https://github.com/claudiajs/claudia-bot-builder/blob/master/docs/FB_TEMPLATE_MESSAGE_BUILDER.md

144 chapter 9 Typing... Async and delayed responses

 new fbTemplate.Button('What else can I do for you?')
 .addButton('Order', `ORDER|${pizzaId}`)
 .addButton('Show all pizzas', 'ALL_PIZZAS')
 .get()
]
 } else if (action === 'ORDER') {
 const pizza = pizzas.find(pizza => pizza.id == pizzaId)

 return `Thanks for ordering ${pizza.name}! I will let you know as soon
as your pizza is ready.`

 }
 }

 const reply = new fbTemplate.Generic()

 pizzas.forEach(pizza => {
 reply.addBubble(pizza.name)
 .addImage(pizza.image)
 .addButton('Details', `DETAILS|${pizza.id}`)
 .addButton('Order', `ORDER|${pizza.id}`)
 })

 return [
 `Hello, here's our pizza menu:`,
 reply.get()
]
}, {
 platforms: ['facebook']
})

module.exports = api

Now run claudia update or npm run update to deploy the chatbot, and try the new
flow, which looks similar to figure 9.3.

Also return a menu so the
user can navigate further.

 In the else block, check if the
first part of the text is ORDER.

And get the pizza
ID again.

Then reply with the pizza
ID to confirm the order.

If the message wasn’t a
postback, show the main menu.

Figure 9.3 Screenshots of the three branches of chatbot flow

 145Making the chatbot structure more scalable

9.2 Making the chatbot structure more scalable
As with an API, managing the whole chatbot flow in a single file is not scalable. How
can you improve the structure?

The chatbot doesn’t have a router, but your if…else conditions act like a router, and
their actions look like handlers. The easiest way to improve the structure is to keep the
routing in the main file and move the handlers into separate files. You should have a
main bot.js file and a handlers folder containing three handler files, one for each chat-
bot dialog branch. Your folder structure should be similar to figure 9.4.

Create the handlers folder within your pizza-fb-chatbot project, with the following
three JavaScript files:

¡	order-pizza.js
¡	pizza-details.js
¡	pizza-menu.js

Then update your main bot.js file with the following changes:

¡	Remove the require for fbTemplate because it’s no longer used in this file.
¡	Require three new handler functions from the files you just created.

js

pizza-fb-bot

bot.js

json package.json

js pizza-details.js

json pizzas.json

js order-pizza.js

json claudia.json

js pizza-menu.js

data

handlers

Root folder for
pizza chatbot

Entry point for your bot—it
contains all the dialog branches

Your chatbot is just a standard
Node.js project, so it contains a
package.json file.

Config file created by Claudia

List of all pizzas

Directory for all handlers for
chatbot dialog branches

Figure 9.4 The folder structure of your chatbot

146 chapter 9 Typing... Async and delayed responses

¡	Replace the pizza details and pizza ordering logic with the pizzaDetails and
orderPizza handler functions, with the pizzaId as their argument.

¡	Replace the pizza menu generic template with the pizzaMenu handler.

After updates, the bot.js file should look like the following listing.

Listing 9.3 Main chatbot file

'use strict'

const botBuilder = require('claudia-bot-builder')

const pizzaDetails = require('./handlers/pizza-details')
const orderPizza = require('./handlers/order-pizza')
const pizzaMenu = require('./handlers/pizza-menu')

const api = botBuilder((message) => {
 if (message.postback) {
 const [action, pizzaId] = message.text.split('|')

 if (action === 'DETAILS') {
 return pizzaDetails(pizzaId)
 } else if (action === 'ORDER') {
 return orderPizza(pizzaId)
 }
 }

 return [
 `Hello, here's our pizza menu:`,
 pizzaMenu()
]
}, {
 platforms: ['facebook']
})

module.exports = api

Now, open the handlers/pizza-details.js file. First, require the list of pizzas from the
pizza.json file and the fbTemplate from Claudia Bot Builder by adding the following:

const pizzas = require('../data/pizzas.json')
const fbTemplate = require('claudia-bot-builder').fbTemplate

Then create the pizzaDetails function, which accepts one parameter: the pizzaId.
This function should find a single pizza by the provided pizza ID from the pizzas
array, and then return its ingredients and a button template message that allows the
user to order the pizza or go back to the full pizza menu.

Finally, you’ll need to export the pizzaDetails handler function by adding the line
module.exports = pizzaDetails at the end of your file.

Your handlers/pizza-details.js file should look like the following listing.

Import the handler
functions.

If the message is a postback
and the action verb is the
DETAILS text, invoke the
pizzaDetails handler.

If the message is a postback and
the action verb is the ORDER text,
invoke the orderPizza handler.

If the message is not a defined
action, reply with the main menu.

 147Making the chatbot structure more scalable

Listing 9.4 Pizza details handler

'use strict'

const pizzas = require('../data/pizzas.json')
const fbTemplate = require('claudia-bot-builder').fbTemplate

function pizzaDetails(id) {
 const pizza = pizzas.find(pizza => pizza.id == id)

 return [
 `${pizza.name} has following ingredients: ` + pizza.ingredients.join(',

'),
 new fbTemplate.Button('What else can I do for you?')
 .addButton('Order', `ORDER|${pizza.id}`)
 .addButton('Show all pizzas', 'ALL_PIZZAS')
 .get()
]
}

module.exports = pizzaDetails

Next, open the handlers/order-pizza.js file and do the same:

¡	Require the list of pizzas from the pizzas.json file.
¡	Implement an orderPizza handler function that will accept the pizza ID as a

parameter.
¡	Find the pizza by its ID and return a text message as a result from the orderPizza

function.
¡	Export the orderPizza function.

Your order-pizza.js file should look like the following listing.

Listing 9.5 Order pizza handler

'use strict'

const pizzas = require('../data/pizzas.json')

function orderPizza(id) {
 const pizza = pizzas.find(pizza => pizza.id == id)

 return `Thanks for ordering ${pizza.name}! I will let you know as soon as
your pizza is ready.`

}

module.exports = orderPizza

Import the list of pizzas.

Import fbTemplate from
Claudia Bot Builder.

 Create a handler function.

 Get the
pizza by

its ID.

Reply with the pizza
ingredients and menu.

Create a reply message with
two Facebook Messenger
buttons by instantiating
fbTemplate.Button with the
reply and adding two
buttons below it.

Export the handler function.

Import the list of pizzas.

 Create a
handler

function. Get the pizza
by its ID.

Reply with an order
confirmation.

 Export the handler function.

148 chapter 9 Typing... Async and delayed responses

After you update the pizza order handler, open the handlers/pizza-menu.js file and do
the following:

¡	Import both the list of pizzas and the fbTemplate.
¡	Create the pizzaMenu handler function.
¡	Create a new generic template inside that function.
¡	Loop through all the pizzas from the pizza.json file and add bubbles for each of

them in the generic template message.
¡	Return the message as the result.
¡	Export the pizzaMenu function.

Your pizza menu handler should look like the following listing.

Listing 9.6 Pizza menu handler

'use strict'

const pizzas = require('../data/pizzas.json')
const fbTemplate = require('claudia-bot-builder').fbTemplate

function pizzaMenu() {
 const message = new fbTemplate.Generic()

 pizzas.forEach(pizza => {
 message.addBubble(pizza.name)
 .addImage(pizza.image)
 .addButton('Details', `DETAILS|${pizza.id}`)
 .addButton('Order', `ORDER|${pizza.id}`)
 })

 return message.get()
}

module.exports = pizzaMenu

After you’ve updated all the files, run either the npm run update or the claudia
update command to deploy your chatbot. When you send a message to your chatbot
through Facebook Messenger, the response should stay the same, but now you have a
more scalable and testable structure.

Other techniques for organizing your chatbot flow
Organizing your chatbot flow is not an easy thing to do. These examples are organized in
a simple and easy way, but it’s not scalable because of the many if…else conditions or
switch statements, which are hard to maintain.

There are many alternatives—for example, by using an external library. Some of the exter-
nal libraries allow proper control of your chatbot flow, such as Dialogue Builder, built atop
of Claudia Bot Builder. See https://github.com/nbransby/dialogue-builder for more
information about this library.

Import the list of pizzas.

Import fbTemplate from
Claudia Bot Builder.

Create a handler
function.

Create a generic
template message.

Reply with the generic
template message.

Export the handler function.

https://github.com/nbransby/dialogue-builder

 149Connecting your chatbot to the DynamoDB database

Another option is to use natural language processing for your chatbot flow. Building an
NLP library is not an easy task, but fortunately there are many available NLP solutions,
and some are relatively cheap. With NLP integration, you can organize your code around
different entities and actions instead of having if…else loops (think of it as some kind
of a router for conversation interface). Some of the NLP libraries also have session stor-
age built-in. You’ll learn more about NLP in section 9.6.

9.3 Connecting your chatbot to the DynamoDB database
To make the chatbot useful to your customers, you’ll store pizza orders to your
pizza-orders DynamoDB table.

As shown in figure 9.5, when your chatbot receives a message, it should connect to
the same DynamoDB table your Pizza API is using and save the message. After that, it
should reply with an order confirmation.

For the sake of simplicity, this chapter shows you only how to save the order in the
database. A real-world chatbot should probably also allow the user to see the current
order and cancel it.

Saving the order requires several changes to the order-pizza.js handler.
First, you can use the DocumentClient to connect to DynamoDB. To do so, you’ll

need to install the aws-sdk module from NPM as a dependency (or an optional depen-
dency, if you want to optimize deployment speed). Then you need to import aws-sdk
and create an instance of the DocumentClient by adding following code:

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

Now, instead of presenting the static text, you’ll use the docClient.put method to save
the pizza in the DynamoDB table.

Order pizza

Trigger a webhook

Save the order to
pizza-orders table

Status 200, OK

Reply

Order saved

“Order confirmed”
message

Facebook
Messenger

Facebook
Platform

Pizza chatbot
Lambda

DynamoDB
table

Figure 9.5 The chatbot flow with a DynamoDB connection

150 chapter 9 Typing... Async and delayed responses

The main difference between your chatbot and your API is that you don’t have the
delivery address and the selected pizza in a single request. This means that you’ll need
to save partial data to the DynamoDB table and then ask the user for an address.
Facebook Messenger platform doesn’t save the state between sequential messages, so
you’ll need to save incomplete order state with some additional parameters in the
pizza-orders table (which is done in this section) or in another DynamoDB table.

For the same reason, you won’t be able to use the Some Like It Hot Delivery ID, so
you’ll need help from the uuid module again.

You’ll save the following data in DynamoDB:

¡	orderId—Use the uuid module to generate the unique ID.
¡	pizza—Use the ID of the selected pizza.
¡	orderStatus—Use in-progress as a status, because this order is not finished.
¡	platform—Add fb-messenger-chatbot as a platform, because in the future

your pizza bot might work on some other chat platforms.
¡	user—Save the ID of the user who sent the message.

When a pizza is successfully saved in the database, you want to ask the user for the deliv-
ery address. You can do this with a simple question, such as “Where do you want your
pizza to be delivered?” You’ll handle that later in this chapter.

You also want to handle errors, so you’ll send a friendly message to the user in case of
an error and show the pizza menu again.

When you’ve updated your code, the order-pizza.js handler should look like the fol-
lowing listing.

Listing 9.7 Order pizza handler connected to the DynamoDB database

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const pizzas = require('../data/pizzas.json')
const pizzaMenu = require('./pizza-menu')
const uuid = require('uuid/v4')

function orderPizza(pizzaId, sender) {
 const pizza = pizzas.find(pizza => pizza.id == pizzaId)

 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: uuid(),
 pizza: pizzaId,
 orderStatus: 'in-progress',
 platform: 'fb-messenger-chatbot',

Import the AWS SDK.

Create an instance of the
DocumentClient.

 Import
the uuid
module.

Save the order in the
DynamoDB table.

Use the uuid function to generate a
unique ID for the order. Set the order

status to
in-progress. Save the platform that was

used for this order.

 151Connecting your chatbot to the DynamoDB database

 user: sender
 }
 }).promise()
 .then((res) => {
 return 'Where do you want your pizza to be delivered?'
 })
 .catch((err) => {
 console.log(err)

 return [
 'Oh! Something went wrong. Can you please try again?',
 pizzaMenu()
]
 })
}

module.exports = orderPizza

In addition to the order-pizza.js handler, you’ll also need to update the main bot.js file
and pass the sender ID to the orderPizza function. The sender ID is available in the
message object as message.sender; in the case of a Facebook Messenger chatbot, it
represents a Facebook page-scoped unique user ID.

NOTE The page-scoped user ID in a Facebook Messenger chatbot is different
from a regular Facebook user ID, because Facebook tries to protect user pri-
vacy. To learn more about Messenger platform IDs, visit https://developers
.facebook.com/docs/messenger-platform/identity.

The following listing shows the updated part of your bot.js file. This code goes just
under the parsing of the values returned by your message.postback. The rest of the
file is unchanged.

Listing 9.8 Update main chatbot flow

if (values[0] === 'DETAILS') {
 return pizzaDetails(values[1])
} else if (values[0] === 'ORDER') {
 return orderPizza(values[1], message.sender)
}

Now that your chatbot code is updated, you’ll need to create a policy that allows the
user that executes the Lambda function to interact with DynamoDB. Create a roles
folder in your pizza-fb-chatbot folder and create a dynamodb.json file in it.

As shown in listing 9.9, the dynamodb.json file should allow the user to scan, get,
put, and update items in DynamoDB. For now, your chatbot will not be able to update
or cancel an order, but the dynamodb:UpdateItem action is required because the order
will be updated after the user shares their address.

Save the ID of the user
that sent the message.

 Ask the user
for the delivery

address.
Show a friendly error message and the
pizza menu again in the event of an error.

Pass the message sender as
the second argument of your
orderPizza function.

https://developers.facebook.com/docs/messenger-platform/identity
https://developers.facebook.com/docs/messenger-platform/identity

152 chapter 9 Typing... Async and delayed responses

Listing 9.9 DynamoDB policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:Scan",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Finally, run the aws iam put-role-policy command from the AWS CLI to add a
policy from the roles/dynamodb.json file to the Lambda executor role. You can find
the role-name in your claudia.json file. If you remember, on the initial deployment
Claudia creates the claudia.json file in your project root to store some of your Lambda
data. Claudia uses that data to do the later update deployments without requiring you
to add any other parameters. The claudia.json file also stores your Lambda executor,
which you need right now for your policy. Look for your role-name in it.

The aws iam put-role-policy command should look like the following listing.

Listing 9.10 Add a DynamoDB policy to the Pizza Bot role

aws iam put-role-policy \
 --role-name pizza-fb-chatbot-executor \
 --policy-name PizzaBotDynamoDB \
 --policy-document file://./roles/dynamodb.json

When the aws iam put-role-policy command executes successfully, it returns
an empty response, which means that the policy is in place. Your bot is ready for
deployment.

NOTE In the case of an unsuccessful execution of the aws iam put-role-policy
command, the error usually states what the issue is. The most common errors
are that the role does not exist or the policy-document is not in the specified
location. If the role doesn’t exist, try to run claudia create again with the
already mentioned parameters. In case of an incorrect policy-document loca-
tion, change the specified address so the aws iam put-role-policy picks it up
from the right one.

Run the npm run update or claudia update command to deploy your chatbot, and
then try to send a new message to your chatbot.

Allow Scan, GetItem, PutItem, and
UpdateItem actions in DynamoDB.

Name of the Lambda executor role
 Name of

the policy Document with
policy definition

 153Getting the user’s location from the chatbot

TIP As your codebase grows, frequently deploying can take up quite a chunk
of your time and can become tiresome. You have probably noticed that you are
deploying often in this book. But Claudia has a magic trick up its sleeve—
it is able to speed up your deployment times. To enable this option, add
--no-optional-dependencies to the NPM update script, which tells Claudia
not to deploy any optional dependencies, such as the AWS SDK, which are
already available within AWS Lambda:

"update": "claudia update --no-optional-dependencies"

9.4 Getting the user’s location from the chatbot
As already mentioned, a pizza order is not complete without the address to which the
pizza should be delivered. In a real-world project you’ll want to build your chatbot to
be as bulletproof as possible, so you’ll probably need some natural language process-
ing that will recognize addresses sent by users. But to keep this chapter simple, you’ll
use the built-in Facebook Messenger location share button.

As part of its platform, Facebook Messenger allows you to ask users to share their cur-
rent location via a quick reply button. Tapping this button sends the coordinates with
the rest of the payload. Claudia Bot Builder has support for that button in fbTemplate.
You can add the button by adding the .addQuickReplyLocation method to any
fbTemplate class.

Let’s update the order-pizza.js handler. First require fbTemplate from Claudia Bot
Builder by adding const fbTemplate = require('claudia-bot-builder').fbTemplate
to the top of the file.

Then replace the reply where you ask the user to share their address with the
fbTemplate.Text class and .addQuickReplyLocation method, as shown in the fol-
lowing listing.

Listing 9.11 Ask for the location after saving the order to the DynamoDB table

.then((res) => {
 return new fbTemplate.Text('Where do you want your pizza to be delivered?')
 .addQuickReplyLocation()
 .get()
})

When your customer shares their location, the chatbot will receive its coordinates: its
latitude and longitude. In addition to sending an address, the Some Like It Hot Deliv-
ery API also allows you to send position coordinates. (In a real-world example, you’d
need to provide a lot more information, such as the floor, the apartment number, or at
least a notes field for the delivery.)

Create an instance of the
fbTemplate.Text class.

Add a quick reply button for
location sharing.

Convert the
template to

JSON.

154 chapter 9 Typing... Async and delayed responses

In order to handle the location, you’ll need to create a new handler function. To
do so, create a save-location.js file in the handlers folder within your chatbot project.
This handler should accept the userId and coordinates as parameters and use them to
update the customer order.

To update the order, you’ll need to import the AWS SDK, instantiate the Document-
Client, and do the following:

1 Scan the database for the latest in-progress order for the specified customer
using the DocumentClient.scan method, because the sender ID is not a part of
the key.

2 Use the orderId from the returned result to update the order to the new status
using the DocumentClient.update method.

For now, let’s update the order status to pending and add the latitude and longitude
coordinates where the pizza should be delivered.

The following listing shows what your save-location.js handler should look like.

Listing 9.12 Save location handler

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function saveLocation(userId, coordinates) {
 return docClient.scan({
 TableName: 'pizza-orders',
 Limit: 1,
 FilterExpression: `user = :u, orderStatus: :s`,
 ExpressionAttributeNames: {
 ':u': { S: userId },
 ':s': { S: 'in-progress' }
 }
 }).promise()
 .then((result) => result.Items[0])
 .then((order) => {
 const orderId = order.orderId
 return docClient.update({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 },
 UpdateExpression: 'set orderStatus = :s, coords=:c',
 ExpressionAttributeValues: {
 ':s': 'pending',
 ':c': coordinates
 },
 ReturnValues: 'ALL_NEW'

Import the AWS SDK and instantiate
the DocumentClient.

Create a handler function
that expects userId and
coordinates as
parameters.

 Scan the
pizza

-orders
table.

 Limit the result to
only one item.

Search only for orders
sent by the selected user
with the specified status.

Define the customer (as sender) and
status (in-progress) for the filter
expression.

Get only the first item
from the response.

 Save the
order ID in

the local
variable. Update the pizza-orders table.

Specify the ID of an order that
you want to be updated. Specify the

update
expression.

Specify the update
expression values.

 Return all the updated data.

 155Getting the user’s location from the chatbot

 }).promise()
 })
}

module.exports = saveLocation

Finally, you’ll need to update your bot.js file to do the following:

1 Import the new save-location.js handler.

2 Invoke the new saveLocation handler function when the customer shares their
location.

To import the new save-location.js handler, add the following snippet at the top of your
bot.js file (for example, after the pizzaMenu handler function):

const saveLocation = require('./handlers/save-location')

To check if the customer shared their location, first you’ll need to verify that the mes-
sage is not a postback. After that check, use message.originalRequest to get the coor-
dinates, if they exist. Coordinates are sent as an attachment, so you can access them
via the message.originalRequest.message.attachments[0].payload.coordinates
object.

The following listing shows the last few lines of your bot.js file.

Listing 9.13 Handle user location in the main chatbot file

 if (
 message.originalRequest.message.attachments &&
 message.originalRequest.message.attachments.length &&
 message.originalRequest.message.attachments[0].payload.coordinates &&
 message.originalRequest.message.attachments[0].payload.coordinates.lat

&&
 message.originalRequest.message.attachments[0].payload.coordinates.long
) {
 return saveLocation(message.sender, message.originalRequest.message.

attachments[0].payload.coordinates)
 }

 return [
 `Hello, here's our pizza menu:`,
 pizzaMenu()
]
}, {
 platforms: ['facebook']
})

module.exports = api

After you update your bot.js file, deploy your chatbot using the npm run update
command and then try it. The result should look like figure 9.6.

Export the handler function.

Check if the customer
shared their location.

Invoke the saveLocation function with
the sender ID and coordinates.

156 chapter 9 Typing... Async and delayed responses

9.5 Scheduling a delivery
The last piece of the “making your chatbot useful” puzzle is to connect it to the Some
Like It Hot Delivery API. As shown in figure 9.7, after integrating with the API your
chatbot flow should look like the following:

1 A customer taps the Order button to order pizza.

2 The order is saved to the database with the status in-progress.

3 Your chatbot asks the customer to share their current location.

4 The customer shares their location.

5 Your chatbot contacts the delivery API.

6 The delivery request is accepted, and the chatbot updates the database and
replies to the customer.

7 When the order is picked up by the delivery service, its API triggers your webhook.

8 The chatbot notifies the customer.

9 When the order is delivered, the delivery API triggers the webhook again.

10 Your chatbot sends the final message to the customer.

Figure 9.6 The chatbot with location sharing

 157Scheduling a delivery

As you can see from the flow, there are two things to change in your chatbot:

¡	Update the save-location.js handler to send the request to the delivery API.
¡	Create a new webhook for the chatbot that will be sent to the delivery API.

Start with the easier part: the save-location.js handler update should be similar to the
integration you did in chapter 4. You’ll need to send a POST request to https://some
-like-it-hot-api.effortless-serverless.com/delivery. The only difference is that you’ll
need to send deliveryCoords instead of deliveryAddress.

Facebook
Messenger

Order pizza

Share location

“Please, share your
current location”

message

“Your pizza will be
delivered in X

minutes” message

“Your pizza
is on it’s way”

message

“Your pizza
is delivered, enjoy”

message

Trigger a webhook

Trigger a webhook

Create delivery request

Delivery request is accepted

Delivery is in progress

Delivery is done

Status 200,OK

Status 200,OK

Reply

Reply

Reply

Update the order

Order is updated

Reply

Save the order to
pizza-orders table

Order saved

Facebook
platform

Pizza chatbot
Lambda

DynamoDB
table

Some Like
It Hot

Delivery API

PHP response

Figure 9.7 The chatbot flow with location sharing and the integration of the Some Like It Hot Delivery API

https://some-like-it-hot-api.effortless-serverless.com/delivery
https://some-like-it-hot-api.effortless-serverless.com/delivery

158 chapter 9 Typing... Async and delayed responses

Another important difference is that you won’t be able to update the order’s primary
key. Because you won’t be able to use deliveryId as an orderId, you need to save the
delivery ID in your DynamoDB table. As you probably remember from chapter 3, you
used deliveryId as an orderId so you can find orders more efficiently when the deliv-
ery status is updated.

The following listing shows the modified section of your save-location.js handler with
the integration of the Some Like It Hot Delivery API.

Listing 9.14 Save location handler

// First part of the file was not changed
 .then((result) => result.Items[0])
 .then((order) => {
 return rp.post('https://some-like-it-hot-api.effortless-serverless.com/

delivery', {
 headers: {
 "Authorization": "aunt-marias-pizzeria-1234567890",
 "Content-type": "application/json"
 },
 body: JSON.stringify({
 pickupTime: '15.34pm',
 pickupAddress: 'Aunt Maria's Pizzeria',
 deliveryCoords: coordinates,
 webhookUrl: 'https://g8fhlgccof.execute-api.eu-central-1.amazonaws.

com/latest/delivery',
 })
 })
 .then(rawResponse => JSON.parse(rawResponse.body))
 .then((response) => {
 order.deliveryId = response.deliveryId
 return order
 })
 })
 .then((order) => {
 return docClient.update({
 TableName: 'pizza-orders',
 Key: {
 orderId: order.orderId
 },
 UpdateExpression: 'set orderStatus = :s, coords=:c, deliveryId=:d',
 ExpressionAttributeValues: {
 ':s': 'pending',
 ':c': coordinates,
 ':d': order.deliveryId
 },
 ReturnValues: 'ALL_NEW'
 }).promise()
 })
}

module.exports = saveLocation

 Send a POST request
to the delivery API.

Add headers to the request, including
the Authorization header with an
authorization token.

 Stringify the
request body. Provide a placeholder

for time.
Send the pickupTime,
pickupAddress,
and deliveryCoords in the body. Send the

delivery
webhook URL.

Parse the response body,
because it’s returned as a
string.

 Add the
delivery ID to

the order
object. Return the order object

for promise chaining.

Save the data to the
DynamoDB table.

Add the delivery ID to
the DynamoDB table.

 159Scheduling a delivery

Now that you are saving the delivery ID in DynamoDB, you’ll need to create a webhook
that you send to the Some Like It Hot Delivery API. But how should you add the route
to your chatbot?

As mentioned previously, Claudia Bot Builder exports an instance of Claudia API
Builder. This means that the botBuilder function in your bot.js file returns a fully func-
tional instance of Claudia API Builder.

Before adding the new route, you need to create a new handler for it. Create a file
named delivery-webhook.js in your handlers folder. Within this handler you’ll need to
find the order by its delivery ID, which is passed by the delivery API, then update the
order with the new status and send a message to the customer to let them know that the
delivery status has changed. Full delivery webhook flow is shown in figure 9.8.

Finding and updating an order is similar to the find and update you did in the save-
location.js handler file. The only tricky part is sending the message with the new status
to the user.

To send a message from Facebook Messenger, you’ll need to send an API request to
the Facebook Messenger platform API. Each API request requires a user’s page-scoped
ID, the message that you want to send, and a Facebook Messenger access token.

You can send the API request the same way you send a request to the delivery API, or
you can use the claudia-bot-builder library to send the message. This is an internal
library, but you can require it by requiring the specific reply.js file as follows:

const reply = require('claudia-bot-builder/lib/facebook/reply')

By doing this, you’ll require just the reply.js file, instead of a full Claudia Bot Builder,
and store the function in a reply constant.

When order
delivery status is

updated, Some Like
It Hot Delivery web

services trigger
your webhook.

API Gateway
triggers your

Lambda
function.

Finally, Delivery
webhook answers

back to the delivery
API via API Gateway.

Delivery webhook
than updates order
delivery status.

Then, Lambda sends the status
update message to the user via
Facebook Messenger.

Delivery webhook handler contacts
DynamoDB table with deliveryId to get an
order info, because you need primary key

to be able to update the order.

Some Like It
Hot Delivery
web services

Delivery webhook
handler

AWS Lambda

Facebook Messenger

DynamoDB
table

API
Gateway

Figure 9.8 Delivery webhook flow

160 chapter 9 Typing... Async and delayed responses

This reply function accepts three parameters: the sender ID, the message, and an
access token.

You can get the sender ID from the database. The message is simply the message you
want to send to the customer in the standard Claudia Bot Builder format. You can pass
text, a template object, or an array of multiple messages. Finally, the Facebook Messen-
ger access token is available as an API Gateway stage variable, and you can get it from
the request.env object. You can pass the token to your handler function as its second
parameter.

NOTE Facebook Messenger has certain limitations for sending messages to a
user. You can’t send a message to a user that is not a reply to a user message,
and you can only send a reply to a message up to 24 hours after receiving it.
To learn more about the limitations, visit https://developers.facebook.com/
docs/messenger-platform/send-messages#messaging_types.

The full delivery webhook handler is shown in the following listing.

Listing 9.15 The delivery webhook handler

'use strict'

const reply = require('claudia-bot-builder/lib/facebook/reply')

function deliveryWebhook(request, facebookAccessToken) {
 if (!request.deliveryId || !request.status)
 throw new Error('Status and delivery ID are required')

 return docClient.scan({
 TableName: 'pizza-orders',
 Limit: 1,
 FilterExpression: `deliveryId = :d`,
 ExpressionAttributeNames: {
 ':d': { S: deliveryId }
 }
 }).promise()
 .then((result) => result.Items[0])
 .then((order) => {
 return docClient.update({
 TableName: 'pizza-orders',
 Key: {
 orderId: order.orderId
 },
 UpdateExpression: 'set orderStatus = :s',
 ExpressionAttributeValues: {
 ':s': request.status
 },
 ReturnValues: 'ALL_NEW'

Import the reply function
from Claudia Bot Builder.

 Create a deliveryWebhook handler
function that accepts the request object

and access token as parameters.

 Validate
the basic
request. Scan the DynamoDB

table by delivery ID.

Get only the first item
of the response array.

Update the order status
in the DynamoDB table.

https://developers.facebook.com/docs/messenger-platform/send-messages#messaging_types
https://developers.facebook.com/docs/messenger-platform/send-messages#messaging_types

 161Small talk: Integrating simple NLP

 }).promise()
 })
 .then((order) => {
 return reply(order.user, `The status of your delivery is updated to:
 ${order.status}.`, facebookAccessToken)
 })
}

module.exports = deliveryWebhook

Finally, you need to add a webhook route to your bot.js file. To do so, require the deliv-
ery-webhook.js handler at the top of the file with the following snippet:

const deliveryWebhook = require('./handlers/delivery-webhook')

Then you’ll need to add the new POST /delivery route at the end of the file, just
before the module.exports = api line. This route invokes the deliveryWebhook han-
dler function with a request body and Facebook Messenger access token, and returns a
status 200 as the success response or returns status 400 for an error.

The following listing shows the last few lines of your updated bot.js file.

Listing 9.16 Add a delivery webhook

 return [
 `Hello, here's our pizza menu:`,
 pizzaMenu()
]
}, {
 platforms: ['facebook']
})

api.post('/delivery', (request) => deliveryWebhook(request.body, request.env.
facebookAccessToken), {

 success: 200,
 error: 400
})

module.exports = api

Now you need to deploy the chatbot using either npm run update or claudia update,
and it will be fully functional.

9.6 Small talk: Integrating simple NLP
Building a more complex chatbot flow often requires some NLP integration. Build-
ing an NLP library from scratch is hard, and it’s beyond the scope of this book. For-
tunately, several libraries offer easy-to-integrate NLP features, which can help you to
improve your chatbot experience. For example:

¡	Wit.ai (https://wit.ai), offered by Facebook, is an API that turns natural language
(speech or messages) into actionable data.

Reply to the customer by providing
the user ID, message, and Facebook
Messenger access token. Export the

handler
function.

Add the POST /delivery route and
invoke the deliveryWebhook
handler when the route is triggered.

Return status 200 for
a successful delivery
webhook request.

 Return
status 400

for an error.

162 chapter 9 Typing... Async and delayed responses

¡	DialogFlow (formerly API.ai; see https://dialogflow.com), offered by Google, is a
conversational user experience platform enabling natural language interactions
for devices, applications, and services.

¡	IBM Watson (https://www.ibm.com/watson/) is an IBM supercomputer that
combines artificial intelligence (AI) and sophisticated analytical software for
optimal performance as a "question answering" machine. Watson also offers nat-
ural language processing for advanced text analysis.

Both Wit.ai and DialogFlow can be used for free with some limitations; IBM Watson
has a free trial period.

Integrating any of these libraries into your chatbot is easy using their public APIs. All
are good and recommended, but each has certain strengths and weaknesses that are
not important at this point in the book. Claudia Bot Builder doesn’t limit or interfere
with any of their integrations.

Facebook Messenger also has built-in NLP, but unfortunately it offers only basic NLP
features and basic recognition. If you integrate it with your chatbot, it can recognize
greetings, thanks, and goodbyes. Besides that, it can also detect dates, times, locations,
amounts of money, phone numbers, and emails. For example, in the case of date and
time, expressions such as “tomorrow at 2pm” will be converted to timestamps.

NOTE For more information about Facebook Messenger’s built-in NLP, visit
https://developers.facebook.com/docs/messenger-platform/built-in-nlp.

Though it is limited, Facebook Messenger’s built-in NLP gives you everything you need
to allow customers to order a pizza for a specific time or day. Because this is already a
long chapter, you’ll use this to make the chatbot reply to “thanks.”

To do this, you’ll need to do the following:

1 Enable the built-in NLP. The setup and configuration are described in appen-
dix B.

2 Update your bot.js file to check whether the message is a postback. You don’t
want your NLP to get activated on your menu actions.

3 If the message is not a postback, check if the built-in NLP recognized the “thanks”
expression. If yes, it should reply with “You’re welcome!”; otherwise, you’ll show
the starting pizza menu.

The built-in NLP will add the recognized entities as an nlp key in your message object.
Each entity returns an array of parsed entity values, and each entity has a confidence
value and a value. The confidence value indicates the parser’s confidence in its rec-
ognition (the probability that it is correct). It ranges between 0 and 1. The value attri-
bute is the parsed entity value. In your case, if the entity is the word “thanks” it will
always be true. You’ll check if “thanks” exists, and if its confidence value is more than
0.8 (80%), you’ll return a “You’re welcome!” message.

The following listing shows the last few lines of the updated bot.js file.

https://dialogflow.com
https://www.ibm.com/watson/
https://developers.facebook.com/docs/messenger-platform/built-in-nlp

 163Taste it!

Listing 9.17 Reply to “thanks” message

 if (
 message.originalRequest.message.nlp &&
 message.originalRequest.message.nlp.entities &&
 message.originalRequest.message.nlp.entities['thanks'] &&
 message.originalRequest.message.nlp.entities['thanks'].length &&
 message.originalRequest.message.nlp.entities['thanks'][0].confidence >

0.8
) {
 return `You're welcome!`
 }

 return [
 `Hello, here's our pizza menu:`,
 pizzaMenu()
]
}, {
 platforms: ['facebook']
})

module.exports = api

9.7 Taste it!
Making your chatbot more interactive and a bit smarter is easy—but even though you
want your customers to play around with your chatbot, it needs to quickly and effi-
ciently fulfill a customer need.

9.7.1 Exercise

For this exercise, your primary goal is to show each of Aunt Maria’s customers their last
order in the user greeting message. When ordering from a specific restaurant chain,
customers often tend to order the same food. The main goal of this exercise is to greet
the customer with a reminder of their last order. In case you feel you can do something
extra, an advanced exercise is presented after the primary exercise’s solution.

9.7.2 Solution

The solution to this exercise is simple. You need to scan the order list for the custom-
er’s last order, using the sender ID in the message object, and for returning customers
display the pizza they last ordered while saying that you hope they liked it.

Listing 9.18 Handle the user greeting in the main chatbot file

'use strict'

const botBuilder = require('claudia-bot-builder')

const pizzaDetails = require('./handlers/pizza-details')
const orderPizza = require('./handlers/order-pizza')
const pizzaMenu = require('./handlers/pizza-menu')

Check if there is an nlp key
along with the entities, and
within it a thanks entity.

If no nlp response was captured,
return the pizza menu.

164 chapter 9 Typing... Async and delayed responses

const saveLocation = require('./handlers/save-location')
const getLastPizza = require('./handlers/get-last-pizza')

const api = botBuilder((message) => {
 if (message.postback) {
 const values = message.text.split('|')

 if (values[0] === 'DETAILS') {
 return pizzaDetails(values[1])
 } else if (values[0] === 'ORDER') {
 return orderPizza(values[1], message)
 }
 }

 if (
 message.originalRequest.message.attachments &&
 message.originalRequest.message.attachments.length &&
 message.originalRequest.message.attachments[0].payload.coordinates &&
 message.originalRequest.message.attachments[0].payload.coordinates.lat

&&
 message.originalRequest.message.attachments[0].payload.coordinates.long
) {
 return saveLocation()
 }

 return getLastPizza().then((lastPizza) => {
 let lastPizzaText = lastPizza ? `Glad to have you back! Hope you liked

your ${lastPizza} pizza` : ''
 return [
 `Hello, ${lastPizzaText} here's our pizza menu:`,
 pizzaMenu()
]
 })

}, {
 platforms: ['facebook']
})

module.exports = api

The changes inside your main chatbot file are quite small, because you are just retriev-
ing the exercise logic that should be contained inside your new get-last-pizza.js file.

Your get-last-pizza.js file should look like the following listing.

Listing 9.19 Get last pizza handler that retrieves the sender’s last pizza from
DynamoDB

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const pizzaMenu = require('./pizza-menu')
const pizzas = require('../data/pizzas.json')

Require the
get-last-pizza
module.

Invoke the module function
and retrieve the customer’s
last pizza data.

If there is a last pizza,
construct the last
pizza text.

 Return the
last pizza

greeting text.

 Import
the AWS

SDK. Create an instance of the
DocumentClient.

Retrieve the list of
available pizzas.

 165Summary

function getLastPizza(sender) {

 return docClient.scan({
 TableName: 'pizza-orders',
 ScanIndexForward: false,
 Limit: 1,
 FilterExpression: `sender = #{sender}`,
 }).promise()
 .then((lastPizzaOrder) => {
 let lastPizza
 if (lastPizzaOrder){
 lastPizza = pizzas.find(pizza => pizza.id == lastPizzaOrder.pizzaId)
 }
 return lastPizza
 })
 .catch((err) => {
 console.log(err)
 return [
 'Oh! Something went wrong. Can you please try again?',
 pizzaMenu()
]
 })
}

module.exports = getLastPizza

NOTE This solution covers the primary chapter exercise. No solution is pro-
vided for the advanced exercise, because it’s meant to be a challenge.

9.7.3 Advanced exercise

For those who feel adventurous and want to implement something more difficult, this
exercise is a good challenge. Its primary goal is to enable easy reordering of the cus-
tomer’s last pizza order. In the initial customer greeting, if the customer has previously
ordered a pizza, you’ll ask if the customer wants to order the same pizza again and pro-
vide two additional quick reply buttons as possible answers. If the customer taps “Yes,
order again,” you need to implement the same pizza order with the same address. If the
customer taps “No, show me the menu,” you’ll need to show the menu of available pizzas.

Summary

¡	Postback message values are parsed as message.text and message.post. If the
message is a postback, its post value will be true.

¡	Larger bot flows should be split into smaller files, either by a simple if…else or
with a more sophisticated method.

¡	As with Claudia API Builder, chatbots built with Claudia Bot Builder can be con-
nected to DynamoDB using DocumentClient.

¡	You can use a quick reply template to ask users to share their location.

 Scan the
pizza

-orders
table.

Formulate the scan operation to look
for the latest saved orders—that is, the
most recent database entries.

Limit the scan operation
to just one result.

Filter the pizza orders just
for the defined customer.

 Return the last
pizza order. Set an empty variable, lastPizza.

Check if there is a last pizza order.

 Find the last ordered pizza by retrieving
its ID from the last pizza order.

 Return the
last ordered

pizza.

Show a friendly error message and the
pizza menu again in case of an error.

166

10Jarvis, I mean Alexa,
order me a pizza

This chapter covers
¡	Creating a serverless SMS chatbot

¡	The challenges of having different serverless
chatbots

¡	Creating an Alexa skill using Claudia and
AWS Lambda

Chatbots are useful for businesses because they significantly reduce the need for
customer support while enabling your customers to interact with your applications
in a convenient and interesting way. Serverless chatbots improve the equation even
more, because you can support great user fluctuation, with many request peaks,
without requiring server configuration. The only limitation of chatbots is that
they’re tied to their respective messaging platforms, and there are many, which vary
greatly from market to market. For example, Facebook has been available for more
than 10 years, but a significant percentage of people still don’t use Facebook at all,
and they may be your customers. How should you approach that?

On the other hand, human-computer interaction is constantly evolving, and
recently we’ve witnessed the rise of voice assistants such as Apple’s Siri, Amazon’s
Alexa, Google’s Home, Microsoft’s Cortana, and many others. Instead of writing to
your chatbot, now you can just talk to it. And that technology is embraced completely

 167Can’t talk right now: sending an SMS with Twilio

by the other, opposing end of your customer base: the tech-savvy pioneers, who easily
adopt and promote new technologies. To target these two types of consumers, writing
just one chatbot isn’t enough. This chapter shows you how to handle both ends of the
spectrum by creating both an SMS (Short Message Service) chatbot and an Amazon
Alexa skill as serverless services using Claudia.js.

10.1 Can’t talk right now: sending an SMS with Twilio
Aunt Maria’s business has begun to flourish again, and that’s great news! Pierre, her
mobile application developer, has reported a big number of app downloads, and Julia’s
high school friends have spread the message about your Facebook chatbot, resulting in
hundreds of orders coming in. Naturally, Aunt Maria is happy because you’ve helped
get her business back on its feet, so she’s asked you to come for a free dinner to meet
with her and your Uncle Frank.

Uncle Frank is Maria’s brother. He’s an old, short, bulky guy, usually wearing his dark
shirt, sleeves up to his elbows. He owns a well-known bar just down the street from the
pizzeria. He loves to eat and frequently calls Maria to order pizzas for himself or his
customers. But he’s an old-school guy who doesn’t bother that much with technology.

You go to the pizzeria and meet with Aunt Maria and Uncle Frank. They’re happy,
and Uncle Frank congratulates you. He’s heard about your success, especially the case
of your Facebook Messenger chatbot. But as the meal proceeds, you find that “there’s
no such thing as a free dinner.” Aunt Maria and Uncle Frank explain that even though
they think you’ve done a great job with the younger customers, you may not be reaching
a significant portion of people, such as Uncle Frank’s customers and friends, who are
part of an older generation and don’t have a Facebook account. Some don’t have any
social media accounts at all. Aunt Maria’s pizzeria has become incredibly busy and at
the moment she can’t hire new workers just to answer the phone, so they ask if you can
build an SMS chatbot. All her customers own mobile phones and know how to send text
messages, so this might be a good solution. But where should you start?

Many cloud communications platforms are available, but Twilio is one of the best
known and most widely used. Twilio enables customers to make and receive phone calls
and text messages using its APIs.

NOTE This chapter covers only text messaging (SMS) with Twilio; phone calls
are out of the book’s scope. To read more about Twilio, you can visit http://
twilio.com.

Luckily, Claudia Bot Builder supports Twilio SMS chatbots, too. You can set up a Twilio
chatbot as easily as the Facebook chatbot. To start smoothly, you’ll first create a greet-
ing SMS chatbot for Aunt Maria’s pizzeria to get a grasp of the basic concepts. Then
you’ll continue with the complete pizza listing and ordering process.

First, create a separate project folder named sms-chatbot. Navigate to the folder, and
inside it create a file called sms-bot.js.

http://twilio.com
http://twilio.com

168 chapter 10 Jarvis, I mean Alexa, order me a pizza

NOTE You’re probably wondering why you’d create a separate chatbot. Won’t
it have lots of logic duplicated with the Facebook chatbot? There are two rea-
sons. First, SMS chatbots are substantially different from Facebook ones. They
don’t have interactive buttons, just simple text messages, so reusing the same
logic would be problematic. The other reason is that you want your services to
be independent and easier to maintain. Having both chatbots in one codebase
would increase code complexity and reduce maintainability. Upgrading one
would impact the other, and so on. Keeping the services separate also means that
your SMS chatbot will be in another Lambda. If they were both in one Lambda
and your Facebook chatbot crashed, your SMS chatbot wouldn’t work either.

Because initially you are just writing a greeting bot, it will return only a single line of
text stating “Hello from Aunt Maria’s pizzeria!” First, you’ll import Claudia Bot Builder
to help you out with chatbot creation. Then you’ll create your chatbot api, which will
use the Claudia Bot Builder callback function to process messages. Within the function
you’ll return a single-line string, Hello from Aunt Maria’s pizzeria!. After the func-
tion you’ll need to specify an object containing platforms that represents an array of
platforms you want your chatbot to support. Because you only want to support Twilio,
you’ll put twilio in the array. Your sms-bot.js file should look like the following listing.

Listing 10.1 A simple SMS chatbot that says hello

'use strict'

const botBuilder = require('claudia-bot-builder')

const api = botBuilder(() => {
 return `Hello from Aunt Maria's pizzeria!`
}, { platforms: ['twilio'] })

module.exports = api

This code is quite simple, but before seeing it in action, you’ll need to create a Twilio
account and provide a phone number from which it can send and receive SMS mes-
sages. After that, you’ll set up the Programmable SMS service on your Twilio dash-
board and assign it this phone number. For instructions about creating and setting up
your Twilio account, see appendix B.

After that setup, you’ll need to use Claudia to create your new AWS Lambda and
deploy your SMS chatbot to it. To do so, you run the following command: claudia
create --region <your-region> --api-module sms-bot.

As you probably remember, this command will return your newly created chatbot’s
URL. It should end with the /twilio suffix. Copy that URL and open your Twilio Pro-
grammable SMS service page, and paste it in the Inbound URL box. Don’t forget to
save your new Programmable SMS service configuration.

Require the Claudia Bot
Builder module.

Set the Claudia Bot Builder message handler
function and save the Claudia API Builder instance.

Reply with a
simple text
from your
SMS chatbot.

Specify Twilio as an intended platform.

Export the Claudia API Builder instance.

 169Can’t talk right now: sending an SMS with Twilio

The last step remaining before trying your SMS bot is to run the command claudia
update --configure-twilio-sms-bot. This command configures Twilio as your chat-
bot’s platform. That’s it.

Now try sending a “Hello” message to your Twilio phone number.

NOTE Due to mobile network traffic or network availability, receiving the initial
response from your SMS chatbot may sometimes take up to 30 seconds.

10.1.1 An SMS pizza list

In the previous two chapters, your Facebook chatbot first returned a greeting message
to customers. When the customer asked for the menu, the chatbot displayed a horizon-
tal pizza list. The customer clicked a pizza item, and the ordering process started.

This seems to be a good reasoning model for other chatbot platforms, too, but SMS
uses a different communication protocol that can’t send images. You’ll have to send
your pizza list as text, with an explicitly specified text reply for ordering each pizza. For
example, the specified reply to order a funghi pizza would be FUNGHI.

NOTE You can’t send images via SMS; instead, you would have to use the
Multimedia Messaging Service (MMS) to do that. Twilio provides support for
MMS messaging, but it’s limited to phone numbers in the United States and
Canada. MMS also is not within the scope of this book. To read more about
Twilio MMS, visit https://www.twilio.com/mms.

SMS sometimes also incurs hidden costs. Although in many countries it’s almost free,
in others it’s still a bit expensive. If you’re expecting thousands of users, the message
cost can rise quickly. Therefore, try to minimize the number of sent SMS chatbot mes-
sages, while taking care not to break the message flow.

For your pizzeria SMS chatbot, minimizing messages means that you’ll have to join
certain steps. For example, at the start of the conversation, you should join the greeting
and the pizza menu in a single message. It doesn’t break the flow, and it’s quite conve-
nient for the customer. You need only to go through the pizza list and concatenate the
pizza names, with their specified replies, into a single multiline string and send it back
to the customers.

In the previous chapters you learned that you should separate your handlers for bet-
ter application organization, so you’ll extract the pizza menu greeting to a handlers
folder from the start. You’ll need to create a folder named handlers inside your project
root folder, and inside it create a file named pizza-menu.js. Inside this file, you’ll first
import the static pizza list from the pizzas.json file into a pizzas variable. Then you’ll
create your pizzaMenu function, and within it a greeting variable with Hello from
Aunt Maria’s pizzeria! Would you like to order a pizza? This is our menu:
as its value. Then you’ll go through each of the loaded pizzas and concatenate to the
greeting variable each pizza name with its short code on a new line. Finally, you should
return the greeting variable as the result of your pizzaMenu function and export the
function as your module. The full code is shown in the following listing.

https://www.twilio.com/mms

170 chapter 10 Jarvis, I mean Alexa, order me a pizza

Listing 10.2 The pizza menu greeting

'use strict'

const pizzas = require('../data/pizzas.json')

function pizzaMenu() {
 let greeting = `Hello from Aunt Maria's pizzeria!
 Would you like to order a pizza?
 This is our menu:`

 pizzas.forEach(pizza => {
 greeting += `\n - ${pizza.name} to order reply with ${pizza.shortCode}`
 })

 return greeting
}

module.exports = pizzaMenu

This handler always returns the pizza list when invoked. The pizza list shows the pizzas'
names and short codes. To order, the user sends a text command instead of tapping a
button, because interactions with an SMS chatbot are limited to text messages.

You then need to change your sms-bot.js file to invoke the pizzaMenu handler when-
ever a customer sends your chatbot an SMS. Because you don’t have any other com-
mands at this point, you can return just the imported pizzaMenu handler. It should look
similar to the following listing.

Listing 10.3 The SMS chatbot entry

'use strict'

const botBuilder = require('claudia-bot-builder')
const pizzaMenu = require('./handlers/pizza-menu')

const api = botBuilder((message, originalApiRequest) => {
 return [
 pizzaMenu()
]
}, { platforms: ['twilio'] })

module.exports = api

Now, redeploy the project with the claudia update command. If you try it out, you
should receive the greeting from the chatbot, along with the list of pizzas and their
short codes.

10.1.2 Ordering a pizza

At this point, if a customer were to send your SMS chatbot a message, it would reply
with a greeting and the pizza list. But if the customer were to send one of the pizza
short codes as a response, the SMS chatbot would again reply with the pizza menu. In

Load the pizzas from
the pizzas.json file.

Define the pizzaMenu function.

Add each pizza menu item in a new line with
its shortCode, which customers can use as
the command to order this specific pizza.

Construct the pizza list menu as the
reply from your SMS chatbot.

Export the pizzaMenu handler.

Import Claudia Bot Builder.

Import the pizza
menu handler.

Return pizzaMenu in any case.

Specify Twilio as the supported
chatbot platform.

 171Can’t talk right now: sending an SMS with Twilio

the following section, you’ll enable your SMS chatbot to recognize the chosen pizza’s
short code and process the pizza order.

To start, you’ll first need to check if the received message contains a pizza shortCode.
You’ll have to load the available pizzas inside your sms-bot.js file and check the message
contents against each shortCode. If it finds a shortCode, it should ask the customer for
the delivery address.

Your sms-bot.js file should now look like the following listing.

Listing 10.4 Recognizing a pizza order

'use strict'

const botBuilder = require('claudia-bot-builder')
const pizzas = require('./data/pizzas.json')
const pizzaMenu = require('./handlers/pizza-menu'),
 orderPizza = require('./handlers/order-pizza')

const api = botBuilder((message, originalApiRequest) => {

 let chosenPizza
 pizzas.forEach(pizza => {
 if (message.indexOf(pizza.shortCode) != -1) {
 chosenPizza = pizza
 }
 })

 if (chosenPizza) {
 return orderPizza(chosenPizza, message.sender)
 }

 return [
 pizzaMenu()
]
}, { platforms: ['twilio'] })

module.exports = api

This code completes the first step, checking if the customer sent a pizza’s short code
and then passing the pizza and the sender (the customer) to the order pizza handler.
The remaining step is writing the handler. The order-pizza.js handler should receive
the chosen pizza object and the sender, and then store a new pizza order to the pizza
 -orders database table. For the new pizza order’s orderId, you’ll make use of the uuid
module, and for the pizza you’ll use the chosen pizza’s ID. You’ll set the orderStatus
to in-progress, because you don’t want the order to be delivered before you know
the delivery address. Also, for platform you’ll specify twilio-sms-chatbot, because if
you’re using the same database with multiple chatbots you want to have a way to differ-
entiate the orders from each chatbot. Finally, you want to store the sender as the user
attribute to be able to know which customer ordered it. The code for the order-pizza.js
handler is shown in the following listing.

Import the list of available pizzas.

Import the order pizza handler.

Go through the available short
codes and check if the message
sent by the user contains one.

If a pizza is chosen, invoke the order
pizza handler and pass the chosen pizza
and the message sender.

172 chapter 10 Jarvis, I mean Alexa, order me a pizza

Listing 10.5 The order pizza handler

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()
const uuid = require('uuid/v4')

function orderPizza(pizza, sender) {
 return docClient.put({
 TableName: 'pizza-orders',
 Item: {
 orderId: uuid(),
 pizza: pizza.id,
 orderStatus: 'in-progress',
 platform: 'twilio-sms-chatbot',
 user: sender
 }
 }).promise()
 .then((res) => {
 return 'Where do you want your pizza to be delivered? You can write

your address.'
 })
 .catch((err) => {
 console.log(err)

 return [
 'Oh! Something went wrong. Can you please try again?'
]
 })
}

module.exports = orderPizza

message.sender in this case represents the phone number of the customer that
requested the pizza. The missing piece of the puzzle at this point is the reply with the
customer’s address.

Handling SMS messages is not an easy task. SMS messages are plain text, so capturing
the customer’s address input is not provided as an additional option. With these limita-
tions, you really have to think a lot about your implementation.

Currently, an order can only reach the in-progress status. Until you know the custom-
er’s address, you can’t send the order to the delivery company. You’ll need to obtain the
address and save it—but at the moment, if the message does not contain a pizza’s short-
Code, your SMS chatbot will always reply with the greeting and pizza menu. You’ll need to
override that behavior and somehow manage to handle the address input properly.

Luckily, there is a solution. You are already storing the sender’s phone number
with the in-progress order, so you can first check if there is an in-progress order in
your database with a matching phone number. If that’s the case and there is no saved
address, you can then save the sent message as the address. Figure 10.1 shows the mes-
sage parsing process.

Import the AWS SDK. Create an instance of the
DocumentClient.

Import the uuid module.

Save the order in the
DynamoDB table.

Use uuid to generate a
unique ID for the order.

Set the order
status to
in-progress.

Save Twilio SMS as the platform
used for this order.

Save the ID of the user that sent the message.

Ask the user for the delivery address.

Show a friendly error message in case of an error.

Export the orderPizza handler.

 173Can’t talk right now: sending an SMS with Twilio

Understanding the process is the most important part, but you also need to learn how
to implement it.

NOTE In a real-world example, you probably shouldn’t change the order status
immediately, because the customer might have made a mistake or forgotten
to respond and might now want to try to make a new order. To handle that,
you may want to ask the customer for confirmation. If the answer is YES, you’ll
change the order status to pending; if it’s NO, you’ll delete the order from the
database. Walking you through this process, however, is beyond the scope of
the book.

First, you need to check for an in-progress order. It’s best to have a separate handler
file, check-order-progress.js, inside the handlers folder. Inside this file, implement the
logic for scanning your DynamoDB table for an order that belongs to the sender and
has an in-progress status. Because the DynamoDB scan command always returns an
array of found items, you’ll need to check if the scan result has any Items. If yes,
return the first one. If not, return an undefined value, because nothing was found.
Your check-order-progress.js file should look like the following listing.

Listing 10.6 The check order progress handler

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function checkProgressOrder(sender) {

 return docClient.scan({

Order the pizzaPizza?New Message

Order in
progress?

Yes

No

No

Save message
as address

Show
pizza menu

Yes

Import the AWS SDK.

Create an instance of the
DocumentClient.

Scan the table.

Figure 10.1 The serverless SMS
chatbot message parsing process

174 chapter 10 Jarvis, I mean Alexa, order me a pizza

 ExpressionAttributeValues: {':user': sender, ':status': 'in-progress'},
 FilterExpression: 'user = :user and orderStatus = :status',
 Limit: 1,
 TableName: 'pizza-orders'
 }).promise()
 .then((result) => {
 if (result.Items && result.Items.length > 0) {
 return result.Items[0]
 } else {
 return undefined
 }
 })
 .catch((err) => {
 console.log(err)
 return [
 'Oh! Something went wrong. Can you please try again?'
]
 })
 });
}

module.exports = checkProgressOrder

Now you need to update the main sms-bot.js file to check if there is an in-progress
order status and, if there is, save the location. If there isn’t, show the pizza menu. To
start, you’ll first need to import the save-address.js and check-order-progress.js han-
dlers. Then you’ll use them to write the order status check. Your sms-bot.js file should
look like the following listing.

Listing 10.7 The updated sms-bot.js file

'use strict'

const botBuilder = require('claudia-bot-builder')
const pizzas = require('./data/pizzas.json')
const pizzaMenu = require('./handlers/pizza-menu'),
 orderPizza = require('./handlers/order-pizza'),
 checkOrderProgress = require('./handlers/check-order-progress'),
 saveAddress = require('./handlers/save-address')

const api = botBuilder((message, originalApiRequest) => {

 let chosenPizza
 pizzas.forEach(pizza => {
 if (message.indexOf(pizza.shortCode) != -1) {
 chosenPizza = pizza
 }
 })

 if (chosenPizza) {
 return orderPizza(chosenPizza, message.sender)
 }

Specify the filter
expression values.

Specify the filter
by which to scan

the table—you
want to search
by sender and

order status
(in-progress).

Limit the result to one, because you need
to know only if a pizza order exists.

Specify which
DynamoDB
table to scan
with the
defined filter. Return the order if one that matches

the search was found, or undefined if
nothing was found.

Show a friendly error
message in case of an error.

Export the checkProgressOrder handler.

Import the check-order
-progress.js handler.

Import the
save-address.js handler.

 175Hey Alexa!

 return checkOrderProgress(message.sender)
 .then(orderInProgress => {
 if (orderInProgress) {
 return saveAddress(orderInProgress, message)
 } else {
 return pizzaMenu()
 }
 })
}, { platforms: ['twilio'] })

module.exports = api

You’re now missing only the save-address.js handler. Create the save-address.js file in the
handlers folder, open it, and write the code to update an order in your DynamoDB table
using the provided order ID as its key. You should also update the address and change
the status from in-progress to pending. The handler is shown in the following listing.

Listing 10.8 The save-address handler

'use strict'

const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

function saveAddress(order, message) {

 return docClient.put({
 TableName: 'pizza-orders',
 Key: {
 orderId: order.id
 },
 UpdateExpression: 'set orderStatus = :o, address = :a',
 ExpressionAttributeValues: {
 ':n': 'pending',
 ':a': message.text
 },
 ReturnValues: 'UPDATED_NEW'
 }).promise()
 });
}

module.exports = saveAddress

Now run the claudia update command and send a message to your Twilio phone
number to try it out. That’s it!

You’ve managed to build your first serverless SMS chatbot with Claudia.js and Twilio.

10.2 Hey Alexa!
Your SMS chatbot did its thing, and now even more people are ordering Aunt Maria’s
pizzas! Her pizzeria is getting crowded even on Mondays, so she’s thinking of opening

Check if there is an in-progress
order for the current sender.

If there is an in-progress
order, save the current order
and save the current
customer message as
the address.

If there isn’t an in-progress
order, return the pizza menu.

Specify the order to update
by its orderId.

Specify the update
expression.

Specify the update expression values.

Set the return value upon
successful execution.

Export the saveAddress handler.

176 chapter 10 Jarvis, I mean Alexa, order me a pizza

a second place in another neighborhood. Uncle Frank is happy, too, though he’s a bit
upset because he played with the SMS chatbot so much that his phone bill went sky-high.

Everything seems good—then your cousin Julia comes to you with a present,
smiling smugly.

She gives you an Amazon Echo.

Amazon Echo
Amazon Echo is a voice-controlled home device. It’s powered by Alexa, a smart voice
assistant to whom you can talk and give commands, and that you can even use to order
things online.

Julia explains that the she got it last Christmas, but was bored with it until she realized
that you can use it to order pizzas. She wants Aunt Maria to dominate the market and
surpass even Chess’s pizzeria (probably because they don’t give her free pizzas like
Aunt Maria, but you go along). Julia thinks that having pizza-ordering voice commands
for Echo before Chess’s pizzeria does will help on the marketing side and win Aunt
Maria many customers. It’s not a bad idea, so you decide to help her out.

But what is Amazon Echo, and how do you use it? Julia shows you that you need to
call the device “Alexa.”

Amazon Alexa availability
Alexa was first used in the Amazon Echo and Amazon Echo Dot devices. It was announced
in 2014, and it was inspired by the computer voice and conversational system onboard
the Starship Enterprise from Star Trek. Alexa is now available on many devices, including
the Amazon Echo family and Amazon Fire TV, and in mobile apps for most popular plat-
forms, such as iOS and Android. Most of the devices require a wake word to start the Alexa
conversation, but some will start an Alexa conversation on a button click.

The most interesting and powerful feature of Alexa is its custom skills. Skills are new com-
mands that Alexa can learn, and they can be published to Amazon’s Marketplace. At the
time of writing, more than 20,000 custom skills are available in the Marketplace. These
skills are analogous to computer applications.

Building a custom skill is quite simple. As shown in figure 10.2, an Alexa-enabled
device forwards the audio file to the cloud, where Alexa parses it to a common for-
mat with intents and slots and then passes it as JSON to your Lambda function or HTTP
webhook. Intents tell your skill what the user is trying to accomplish, and slots are the
variables, or dynamic parts, of the given intent. Then your Lambda function or HTTP
webhook replies with a JSON file that defines the Alexa voice reply that the user will hear.
Before building your first skill, let’s see how a skill works and how it differs from your
Facebook Messenger and Twilio chatbots.

 177Hey Alexa!

Anatomy of an Alexa skill
Alexa and other voice assistants operate a bit differently from most of the chatbot plat-
forms. Some notable differences are the following:

¡	Instead of just passing the message to your webhook, Alexa has a built-in natural
language processing (NLP) engine, and it will pass only a parsed request to your
webhook in the JSON format.

¡	Alexa conversation is command-based, and unlike most of the chatbot platforms,
it doesn’t allow free conversations. Your message must be recognized as one of
the predefined commands for Alexa to understand and process it.

¡	Voice assistants typically require a wake word or phrase—a sound that tells them
to expect a command immediately after.

As shown in figure 10.3, a typical Alexa command consists of the following:

1 Wake word

2 Launch phrase

3 Invocation name

4 Utterance with optional slots

Alexa-enabled
device

Cloud

Alexa
AWS Lambda

or
HTTP

webhook

1 User says the command, such as
“Alexa, ask Aunt Maria’s Pizzeria
for the list of pizzas.”

2 Alexa-enabled device, such as
Amazon Echo, sends the voice to the
Alexa in the cloud.

3 Alexa then parses the message into
intents and slots and passes it as JSON
to defined webhook or triggers the
Lambda function.

4 Webhook answers with the
JSON response that will be
returned to the user.

5 Alexa passes the message to the device.

6 Alexa-enabled device answers the user:
“You can order: Capricciosa, Quattro
Formaggi, Napoletana or Margherita.
Which pizza do you want?”

Figure 10.2 A custom Alexa skill

Alexa ask Aunt Maria’s Pizzeria for the list of pizzas

Wake word Invocation name UtteranceLaunch

Figure 10.3 Alexa skill invocation

178 chapter 10 Jarvis, I mean Alexa, order me a pizza

Other examples include “Alexa, start Aunt Maria’s Pizzeria” and “Alexa, tell Aunt
Maria’s Pizzeria to order a pizza.”

The default wake word is “Alexa,” but it can be customized in the device settings.
At the time of writing, available wake words are “Alexa,” “Amazon,” “Echo,” and
“Computer.”

The launch phrase tells Alexa to trigger a certain skill. Launch phrases include “ask,”
“launch,” “start,” “show,” and many others.

The invocation name is the name of the skill you want to trigger. To build a good
skill, choosing a good invocation name is important.

NOTE For some useful guidelines on invocation names, visit http://mng.bz/T6ly.

Finally, unless your launch phrase is “start,” you need to tell Alexa what the skill should
do. Those instructions are known as utterances. Having static utterances would not give
you much flexibility, so Alexa allows you to add some dynamic parts to the instructions;
those dynamic parts are called slots.

A user invokes the skill, and Alexa parses it and passes it to your AWS Lambda func-
tion or a webhook.

As shown in figure 10.4, once a voice command is processed by Alexa’s NLP, it is con-
verted to a recognized intent. If there are any slots in the invoked command, they are
converted to objects that contain a slot name and value. Once a voice command is suc-
cessfully parsed, Alexa builds a JSON object that contains the request type, intent name,
and slot values along with other data, such as session attributes and metadata.

Voice
command

Parsed
command

Alexa

Intent OrderPizza

Slot

Name Pizza

Value Capricciosa

Alexa enabled device

Alexa

ask Aunt Maria’s Pizzeria to order

Wake word

Voice command is
processed by Alexa on
Alexa-enabled device,
such as Amazon Echo.

Alexa invokes your
AWS Lambda function
or webhook with
parsed request values.

Invocation name

Parsed slot value Parsed slot name Parsed intent

Uterance

Capricciosa

Slot valueLaunch

Figure 10.4 Alexa skill invocation and parsing flow

http://mng.bz/T6ly

 179Hey Alexa!

Alexa can receive a few request types (table 10.1).

Table 10.1 Alexa request types

Request type Description

LaunchRequest Sent when a skill is triggered with the “start” or
“launch” phrases, such as “Alexa, launch Aunt
Maria’s Pizzeria”; does not receive custom slots

IntentRequest Sent whenever a user message is parsed that con-
tains an intent

SessionEndedRequest Sent when a user session ends

AudioPlayer or PlaybackController
(prefixes)

Triggered when a user uses any of the audio player
or playback functions, such as pausing audio or
playing the next song

Another important part of the Alexa command flow is the session. Unlike Facebook
Messenger, Alexa can save some session data between commands, but you need to keep
them in the session explicitly. An Alexa session is a conversation between a user and
Alexa. If the session is active, Alexa waits for the user’s next command after it replies.
While the session is active, subsequent commands don’t require a wake word, because
Alexa expects a reply in the following few seconds.

Before building the Alexa skill, you’ll need to design it. Designing voice assistant
skills is not about the UI, of course, but about designing interactions and the intent
schema. We cover that next.

10.2.1 Preparing the skill

The design is the most important part of building a skill. Voice assistants are often
called “smart assistants,” but in reality they’re still far from HAL 9000 from 2001: A
Space Odyssey, and NLP capabilities are still a limiting factor.

Interaction design is beyond the scope of this book, but there are many good
resources on the internet. As a good starting point, see Amazon’s official voice design
guide at https://developer.amazon.com/designing-for-voice/.

The skill you’ll build in this chapter will be simple. It should do the following:

1 Allow the user to get the list of the available pizzas.

2 Allow the user to order the selected pizza.

3 Ask the user for a delivery address.

The basic flow of the skill you’ll build is shown in figure 10.5.
To build an Alexa skill you need to prepare the following:

¡	Intent schema
¡	Custom slot types, if they exist
¡	List of sample utterances

https://developer.amazon.com/designing-for-voice/

180 chapter 10 Jarvis, I mean Alexa, order me a pizza

NOTE For instructions about setting up a new Alexa skill, connecting it to AWS
Lambda, and entering the intent schema, custom slots, and sample utterances,
see appendix B.

The intent schema is a JSON object that lists all the intents, or actions, that fulfill a user’s
spoken requests. Each intent can have slots, and each slot must have one type. Slot types
can be custom or built-in. Amazon offers many built-in slot types, such as names, dates,
and addresses. For the full list of built-in slot types, see https://developer.amazon.com/
docs/custom-skills/slot-type-reference.html.

Figure 10.5 Aunt Maria’s Pizzeria Alexa skill flow

Alexa, start Aunt Maria’s Pizzeria

LaunchRequest

Reply to user and keep session

IntentRequest (OrderPizza)
slot pizza: Capricciosa

I want Capricciosa

Reply to user and keep session

Reply to user

SessionEndedRequest

IntentRequest (DeliveryAddress)
slot address: 221b Baker Street

221b Baker Street

You can order: Capricciosa,
Quattro Formaggi, Napolet-

ana or Margherita. Which one
do you want?

What’s the address where
your Capricciosa should

be delivered?

Thanks for ordering pizza.
Your order is processed

and pizza should be
delivered shortly.

User Device Alexa

 181Hey Alexa!

In addition to the built-in slot types, you can define custom slot types. A custom slot
type consists of a name and a list of available values. The value list is a text file, in which
each row represents a single value your custom slot type can have.

The sample utterances list is a set of likely spoken phrases mapped to the intents. It
should include as many representative phrases as possible, and Alexa will use them to
train its NLP for your skill. Similar to custom slot types, sample utterances are defined
as a text file, where each sample utterance is entered on a new line. Each line starts with
the intent that text should be parsed into, followed by a space and the sample text, as
shown in figure 10.6.

Let’s prepare everything you’ll need, starting with the intent schema. This is a JSON
object that contains an intents array with a list of intent objects. Each of the intent
objects has an intent key, with the intent name as a value.

Your skill should have OrderPizza and DeliveryAddress intents, both with slots.
OrderPizza should have a pizza name as a slot value, and DeliveryAddress should
have an address as a slot value. There’s a built-in slot type for addresses, but not for pizza
names, so you’ll need to create a custom slot type for these. Call it LIST_OF_PIZZAS—
you’ll define it later.

To add slots, both intent objects should have another key, slots, with a slots array as
a value. The slots array will in both cases have just one slot object, with the slot name and
type as a key-value pair.

For the OrderPizza intent, the slot name should be Pizza and the slot type should
be LIST_OF_PIZZAS. For the DeliveryAddress intent, the slot name should be Address,
and for the slot type you can use the AMAZON.PostalAddress built-in type, which accepts
postal addresses.

Built-in slot types
The Alexa Skills Kit, which is a collection of APIs, tools, and documentation for building
Alexa skills, supports several built-in slot types that define how data in the slot is recog-
nized and handled. The provided types fall into the following general categories:

¡	Numbers, dates, and times
¡	List types

The first category contains slots that help you recognize numbers, such as AMAZON
.NUMBER and AMAZON.FOUR_DIGIT_NUMBER, and date/time values, such as AMAZON
.DATE and AMAZON.DURATION.

Intent Utterance Slot

OrderPizza I would like to order {Pizza}
Figure 10.6 Sample utterances for an Alexa skill

182 chapter 10 Jarvis, I mean Alexa, order me a pizza

In the second category, each slot type represents a list of items, such as addresses,
actors, cities, animals, and many more. For example, the AMAZON.Animal slot will rec-
ognize animal species, the AMAZON.Book slot will recognize book titles, and the AMAZON
.PostalAddress slot will recognize an address with a building or house number.

For more information, see https://developer.amazon.com/docs/custom-skills/slot-type
-reference.html.

Let’s also add one more intent: ListPizzas. This intent doesn’t have any slots, and it
should allow a user to ask Alexa for the list of all pizzas. It will trigger the same action
as LaunchRequest.

When you’ve finished, your intent schema should look similar to the following listing.

Listing 10.9 Intent schema

{
 "intents": [
 {
 "intent": "ListPizzas"
 }, {
 "intent": "OrderPizza",
 "slots": [
 {
 "name": "Pizza",
 "type": "LIST_OF_PIZZAS"
 }
]
 }, {
 "intent": "DeliveryAddress",
 "slots": [
 {
 "name": "Address",
 "type": "AMAZON.PostalAddress"
 }
]
 }
]
}

The next step is to define the LIST_OF_PIZZAS slot type. As mentioned previously, a
custom slot type definition is a simple text file, where each possible slot value is on a
separate line. Your LIST_OF_PIZZAS slot should be a list of all the pizzas, as shown in
the following listing.

Listing 10.10 Custom slot type: LIST_OF_PIZZAS

Capricciosa
Quattro Formaggi
Napoletana
Margherita

Array of intents
ListPizzas intent

OrderPizza intent

Pizza slot for OrderPizza intent

Custom slot type: LIST_OF_PIZZAS

DeliveryAddress intent

Address slot for
DeliveryAddress
intent

Address slot, which uses built-in
AMAZON.PostalAddress
slot type

https://developer.amazon.com/docs/custom-skills/slot-type-reference.html
https://developer.amazon.com/docs/custom-skills/slot-type-reference.html

 183Hey Alexa!

The final step is to prepare the sample utterances list. This list is, again, a simple text
file, where each of the sample utterances is on a separate line.

Each line should start with an intent name, followed by a space and a sample phrase;
for example, ListPizzas Pizza menu. Having more than a few sample phrases is better,
but Alexa will parse many other similar phrases, too. For example, if you define List-
Pizzas Pizza menu, Alexa will recognize phrases such as “Show me the pizza menu” or
“What’s on the pizza menu?”

Your sample utterances list should look similar to the following listing. You can leave
some lines blank for readability.

Listing 10.11 Sample utterances

ListPizzas Pizza menu
ListPizzas Which pizzas do you have
ListPizzas List all pizzas

OrderPizza {Pizza}
OrderPizza order {Pizza}
OrderPizza I want {Pizza}
OrderPizza I would like to order {Pizza}

DeliveryAddress {Address}
DeliveryAddress Deliver it to {Address}
DeliveryAddress address is {Address}

10.2.2 Ordering pizza with Alexa

Now that you have the intent schema and sample utterances list, it’s time to write the
code for your Alexa skill.

As mentioned earlier, Alexa can trigger your API or AWS Lambda function. Claudia
Bot Builder supports Alexa skills, and you can reuse the same AWS Lambda function you
used for your Facebook Messenger or Twilio chatbot. But that adds an API Gateway layer
between Alexa and your Lambda function, which increases cost and complexity. (It could
also make maintenance easier in some cases, because you can reuse parts of the code.)

Your Alexa skill is simple at the moment, so let’s create a separate AWS Lambda
function for it. Creating this additional Lambda function doesn’t have an initial cost—
unlike with traditional servers, where you would need to pay for and set up an instance,
both the setup cost and the deployment cost are zero.

Another big advantage of using Claudia Bot Builder is that it parses input in a com-
mon and simple format; it also removes the boilerplate for the answer. Input for the
Alexa skill is automatically parsed into JSON, and for formatting the reply message,
you can use the same thing that Claudia Bot Builder is using: alexa-message-builder
is published as a separate NPM module, so you can use it without importing the full
Claudia Bot Builder.

Create another folder at the same level as your pizza-api and pizza-fb-bot folders. You
can name it pizza-alexa-skill to be consistent.

Sample invocations for ListPizzas intent

Sample invocations for
OrderPizza intent

Sample invocations for
DeliveryAddress intent

184 chapter 10 Jarvis, I mean Alexa, order me a pizza

Then enter the folder and initialize an NPM project. Also install alexa-message
-builder as a dependency by running the command npm install alexa-message
-builder --save. Then create a file named skill.js and open it in your favorite editor.

Your skill.js file should be a standard AWS Lambda file that exports a handler func-
tion with event, context, and callback as parameters. It should also require the
alexa-message-builder module you just installed.

Because you are not using Claudia Bot Builder, you need to check if the event your
handler function receives is a valid Alexa request. You can check if event.request
exists and if its type is LaunchRequest, IntentRequest, or SessionEndedRequest. Your
skill will not have playback control or audio files, so you don’t need to check event
.request for those request types.

If the event is not a valid Alexa request, you need to return an error with the callback
function.

Next, you need to add an if…else statement to determine which intent was trig-
gered. You want to check the following states and provide the appropriate responses:

1 If event.request.type is LaunchRequest, or if it’s IntentRequest with the
ListPizzas intent, return the list of pizzas.

2 If the intent is OrderPizza and the Pizza slot is one of your pizzas, ask for the
delivery address.

3 If the intent is DeliveryAddress and it has an Address slot, tell the user that the
order is ready.

4 Otherwise, tell the user that there was an error.

If request.type is IntentRequest, you can get the intent from event.request
.intent.name. If it has slots, they will be in the event.request.intent.slots object.
For example, checking if the intent is DeliveryAddress and if the Address slot exists
would look like this:

if (
 event.request.type === 'IntentRequest' &&
 event.request.intent.name === 'DeliveryAddress' &&
 event.request.intent.slots.Address.value
) { /* ... */ }

You can create an instance of AlexaMessageBuilder before your if…else statements
with the following snippet:

const AlexaMessageBuilder = require('alexa-message-builder')

That snippet allows you to have just one callback after the if…else statements, by
adding the following:

callback(null, message)

Then add the messages in each block of your if…else statements. For LaunchRequest
and the ListPizzas intent, you should return the list of all pizzas, ask the user to pick

 185Hey Alexa!

one, and keep the session open. Keep in mind that the question you are asking must
be clear and simple, so the user knows how to answer it in a way Alexa can process. For
example, the code might look like this:

const message = new AlexaMessageBuilder()
 .addText('You can order: Capricciosa, Quattro Formaggi, Napoletana, or

Margherita. Which one do you want?')
 .keepSession()
 .get()

The question used here is not perfect, because a user might answer with “the first one,”
and Alexa will not be able to understand this reply. It will be good enough to illustrate
how the Alexa skill works, however.

Similar to Facebook Messenger templates, AlexaMessageBuilder is a class and its
methods return this to allow chaining. To keep the session open, you can use the
.keepSession method, and in the end you need to use the .get method to transform
the reply to a plain JavaScript object with the format requested by Alexa.

Replying to the OrderPizza intent should be similar. You can reply with “What’s the
address where your pizza should be delivered?” and keep the session open. The main
difference is that you want to save the selected pizza in the session attributes. You can do
that by adding the following code:

.addSessionAttribute('pizza', event.request.intent.slots.Pizza.value)

At this point, your skill.js file should look similar to the following listing.

Listing 10.12 Alexa skill

'use strict'

const AlexaMessageBuilder = require('alexa-message-builder')

function alexaSkill(event, context, callback) {
 if (
 !event ||
 !event.request ||
 ['LaunchRequest', 'IntentRequest', 'SessionEndedRequest'].indexOf(event.

request.type) < 0
) {
 return callback('Not valid Alexa request')
 }

 const message = new AlexaMessageBuilder()

 if (
 event.request.type === 'LaunchRequest' ||
 (event.request.type === 'IntentRequest' && event.request.intent.name ===

'ListPizzas')
) {
 message

Import the Alexa Message Builder library.

Provide the Lambda handler function.

Check if the message is an Alexa
event, and return an error if not.

Create an instance of
AlexaMessageBuilder.

Check if the message is a LaunchRequest
or the ListPizzas intent.

186 chapter 10 Jarvis, I mean Alexa, order me a pizza

 .addText('You can order: Capricciosa, Quattro Formaggi, Napoletana, or
Margherita.

 Which one do you want?')
 .keepSession()
 } else if (
 event.request.type === 'IntentRequest' &&
 event.request.intent.name === 'OrderPizza' &&
 ['Capricciosa', 'Quattro Formaggi', 'Napoletana',
 'Margherita'].indexOf(event.request.intent.slots.Pizza.value) > -1
) {
 const pizza = event.request.intent.slots.Pizza.value

 message
 .addText(`What's the address where your ${pizza} should be delivered?`)
 .addSessionAttribute('pizza', pizza)
 .keepSession()
 } else if (
 event.request.type === 'IntentRequest' &&
 event.request.intent.name === 'DeliveryAddress' &&
 event.request.intent.slots.Address.value
) {
 // Save pizza order

 message
 .addText(`Thanks for ordering pizza. Your order has been processed and

the pizza
 should be delivered shortly`)
 } else {
 message
 .addText('Oops, it seems there was a problem, please try again')
 }

 callback(null, message.get())
}

export.handler = alexaSkill

The next step is to deploy the Lambda function using the claudia create com-
mand. The two main differences in this case are the following:

¡	The supported regions are eu-west-1, us-east-1, and us-west-1.
¡	The default latest stage is not allowed, so you need to set some other version

name, such as skill.

The command should look similar to the one in the following listing.

Listing 10.13 Deploy the skill with Claudia

claudia create \
 --region eu-west-1 \
 --handler skill.handler \
 --version skill

Return a list of pizzas.

Check if the
message is the
OrderPizza
intent.

Keep the
selected pizza
in the session.

Ask the user for the delivery address.

Check if the message is
the DeliveryAddress
intent.

Save the order
to DynamoDB.

Let the user know that the order has been received.

Otherwise, tell the user that there was an error.

Return the message from the
AWS Lambda function.

Export the
handler
function.

Create the Lambda function.

Set the Lambda function region
(here, eu-west-1, for Ireland).

Set the
path to the
handler.

Set the version of the AWS Lambda
function (here, skill).

 187Taste it!

After your Lambda function is deployed, you’ll need to allow Alexa to trigger it. You can
do that with the claudia allow-alexa-skill-trigger command. Don’t forget to pro-
vide the version you defined with the claudia create command—in our example this
is skill, so you’ll need to run the claudia allow-alexa-skill-trigger --version
skill command.

After you upload your Lambda function and allow Alexa to trigger the skill, make
sure you follow the setup instructions described in appendix B. If you successfully con-
figured your skill, you can simply say “Alexa, start Aunt Maria’s Pizzeria.”

10.3 Taste it!
Chatbots and voice assistants are fun! Now it’s time for you to try to improve the skill
on your own.

10.3.1 Exercise

Your exercise for this chapter is to send a welcome message on Alexa LaunchRequest.
The message can be the following: “Welcome to Aunt Maria’s Pizzeria! You can order
pizza with this skill. We have Capricciosa, Quattro Formaggi, Napoletana, and Mar-
gherita. Which pizza do you want?”

To make this challenge a bit more fun, add a reprompt for both LaunchRequest and
the ListPizzas intent. A reprompt is a repeated question that is sent if the session is
still open but the user doesn’t answer within a few seconds.

Tips:

¡	Split LaunchRequest and the ListPizzas intent into two if…else statements.
¡	Make sure to keep the session open.
¡	For reprompt usage, see the alexa-message-builder documentation: https://

github.com/stojanovic/alexa-message-builder.

10.3.2 Solution

As you can see in the following listing, just a small part of the skill.js file should be
changed. You need to separate LaunchRequest and the ListPizzas intent into sepa-
rate if blocks and use the .addRepromptText method in both of the replies.

Listing 10.14 Modified skill.js file

 if (event.request.type === 'LaunchRequest') {
 message
 .addText('Welcome to Aunt Maria's Pizzeria! You can order pizza with

this skill.
 We have: Capricciosa, Quattro Formaggi, Napoletana, or Margherita.

Which pizza do you want?')
 .addRepromptText('You can order: Capricciosa, Quattro Formaggi,

Napoletana, or Margherita.
 Which pizza do you want?')

LaunchRequest is now
in a separate if block.

Add the
defined

text.

Add a reprompt for
LaunchRequest.

188 chapter 10 Jarvis, I mean Alexa, order me a pizza

 .keepSession()
 } else if (event.request.type === 'IntentRequest' && event.request.intent.

name === 'ListPizzas') {
 message
 .addText('You can order: Capricciosa, Quattro Formaggi, Napoletana, or

Margherita.
 Which pizza do you want?')
 .addRepromptText('You can order: Capricciosa, Quattro Formaggi,

Napoletana, or Margherita.
 Which pizza do you want?')
 .keepSession()
 }

After you’ve updated your code, deploy the code with the claudia update command
and your skill will be ready for testing.

10.4 End of part 2: special exercise
You’ve now come to the end of part 2 of this book. You’ve learned many things related
to serverless applications and chatbots, and it’s time to consolidate that knowledge.
The special exercise is to connect both your SMS chatbot and your Alexa skill to the
database and the delivery service. Keep in mind that it’s not possible to notify the user
about pizza delivery status changes in Alexa.

NOTE These special exercises have no hints.

Summary

¡	Claudia Bot Builder offers an easy and quick way to build SMS chatbots using Twilio.
¡	Providing a short and clear way for users to reply to your SMS chatbot is import-

ant because of its limitations.
¡	You can reuse chatbot code for multiple platforms, but sometimes splitting it into

more Lambda functions is easier.
¡	Claudia Bot Builder supports Alexa skills, but because Alexa can trigger a

Lambda function, you can save money and decrease latency if you deploy the
skill without an API Gateway.

¡	Even though Alexa skills are easy to develop, designing the voice interaction in a
bulletproof way is difficult.

The ListPizzas intent is
now in the else…if block.

Add a reprompt for the
ListPizzas intent.

The rest of the file
is not changed.

Part 3

Next steps

Thanks to your work, Aunt Maria’s pizzeria is blooming again. But even
though everything works, frequent changes started causing occasional errors in
the application. Now is the time to learn how automated testing works in server-
less applications and how apply it to your Pizzeria API (chapter 11). Also, many
customers inquired about online payments, so you'll need to integrate Stripe pay-
ments with AWS Lambda (chapter 12).

During your big family reunion, Aunt Maria bragged about her new online
business. Her brother, your Uncle Roberto, asked if you can move his existing
application to serverless. It’s using Express.js and working well, but he’s paying
much more for it than Aunt Maria is, and it has scaling issues. Your assignment
will be to learn and run his Express.js app in AWS Lambda (chapter 13). Then
you’ll learn more about migration of more complex existing apps to serverless
(chapter 14).

Finally, you’ll see how other real businesses are using serverless, how they
migrated existing applications, and learn the benefits they’ve realized from it
(chapter 15).

191

11Testing, Testing, 1, 2, 3

This chapter covers
¡	Testing serverless applications—the approach

¡	Writing testable serverless functions

¡	Running automated tests locally

Application development is not an easy and carefree process. Even with careful
implementation and checking, software bugs can slip through and put your com-
pany or your users at risk. In the past couple of decades, bug prevention and soft-
ware testing have become imperative. As the old English proverb says, an ounce of
prevention is worth a pound of cure.

Now with serverless, software testing seems to have gained a new layer of complex-
ity. Having no server configuration, along with using AWS Lambda and API Gateway,
can make testing your applications look scary. This chapter’s goal is to show how,
with just a minor change to your application testing approach, you can test your
serverless applications as easily as you did those that were server-hosted.

11.1 Testing server-hosted and serverless applications
Recently, Aunt Maria has noticed that pizza ordering occasionally doesn’t work for
some customers—and Pierre, her mobile developer, has been reporting “ghost”
bugs, sometimes even when displaying the pizza list. Aunt Maria is worried that she’s

192 chapter 11 Testing, Testing, 1, 2, 3

losing some customers and has asked you to take a look. You can try to debug the
Pizza API to find out where the issue is, but the bug might also be on the website or in
the mobile app. Testing all the services manually each time an issue occurs is tedious,
repetitive, and takes too long. The solution is to automate testing. Automated testing
requires an initial investment to write the code that will test your application, but then
you can rerun it to check your Pizza API whenever you alter its functionality, add a new
feature, or encounter a new issue.

Automated testing is a big field, and there are many different automated test types,
each taking a different approach: from testing small pieces (or units) of application
code to complete application features and their behavior.

Taking your Pizza API as an example, the smaller unit tests will test just the execution
of a single function within your pizza handlers, whereas the complete application tests
(also known as end-to-end, or E2E, tests) will check the whole pizza listing and ordering
flow from Aunt Maria’s website.

Many more types of automated tests exist. They are often grouped into three layers
based on their approach, from bottom to top:

¡	Unit layer—Tests that check the small (unit) application code pieces, such as
single functions

¡	Service layer—Tests that check how those small code pieces work together, in
integration; also called integration tests

¡	UI layer—Tests that check the complete application behavior from the UI perspective

In addition to those three automated test layers, there is another layer of manual test-
ing, usually performed by Quality Assurance teams.

These testing layers have different test costs. A visual representation of the layers,
along with their corresponding costs, is often called a testing pyramid. Usually, the testing
pyramid consists of only the three automated test layers, but to gain a better understand-
ing of the value and cost of each test type, you can also add the manual testing layer to
the picture. With all four layers combined, the test pyramid looks like figure 11.1. The
costs in the figure are based on testing server-hosted applications.

Manual session-based testing

Automated GUI tests

Automated unit tests

Automated API tests
Automated integration tests
Automated component tests

UI

Service

$$$

¢
Unit

Manual

Figure 11.1 The testing pyramid

 193How to approach testing serverless applications

The test automation pyramid
The concept of the three-tier test automation pyramid was first mentioned by Mike Cohn
in his book Succeeding with Agile (Addison Wesley, 2009). If you’re interested in reading
more about test automation, we highly recommend that book.

The figure shows that higher-level UI tests are more expensive than unit tests, because
they test the whole application’s behavior from the user’s perspective, including visual
details such as properly set inputs, displayed values, and so on. Besides being more
expensive, the UI tests are also significantly slower because of the quantity of checks
and the sheer volume of code executed.

In server-hosted applications, running automated tests usually requires a separate
testing server, because you don’t want to run the tests based on your production data.
As a result, a big chunk of the server-hosted testing costs are infrastructure-related.
That includes setting up a server with a setup identical to your production application,
importing database data, developer time expended, and so on.

With serverless, the test-running costs are substantially reduced, mostly because
there are no servers or server configuration. As a result, less developer time is invested.
That reclaimed time can be used for more tests and more coverage. An updated testing
pyramid for serverless applications, showing the difference in test costs, is presented in
figure 11.2. We call this the serverless testing pyramid.

11.2 How to approach testing serverless applications
Developing serverless applications is great, because you don’t have to worry about infra-
structure. But from a testing perspective, that benefit now becomes a problem. Hav-
ing no control over infrastructure requires you to rethink how to test. At first glance,
you might think having no control over infrastructure means having no responsibility
for whether AWS services are up or down, or if there is an AWS service down, or for

Manual session-based testing

Automated GUI tests

Automated unit tests

Automated API tests
Automated integration tests
Automated component tests

Unit

Service

$$$

¢

UI

Manual

Figure 11.2 The serverless testing pyramid

194 chapter 11 Testing, Testing, 1, 2, 3

network disconnects. But that instinct would be wrong. Even though you don’t have
control over infrastructure, that doesn’t mean you’re no longer responsible if it fails.
Your customers won’t know the difference between an AWS service malfunction and
your application crashing. Youll be held responsible, and at the very least, you’ll still
need to check if your application is handling those cases well.

The following step-by-step approach can help you remember those cases while
writing tests. Some of you might be using it in a different form already:

1 List all the different concerns.
A concern represents a single function or a single piece of code responsible for
one operation. In our example case, that might be calculating the discount for a
pizza order.

2 Test each concern separately.

3 Look at how these concerns are working (integrating) with each other.
It’s like checking how a discounted price affects the amount you’re charging the
customer credit card.

4 Test each of their integrations separately, too.

5 List all the end-to-end workflows.
An end-to-end workflow represents one complete feature workflow available
within your application. An example of this is loading your site, listing pizzas,
choosing one, ordering it, and paying for it. Listing all the workflows will give you
a better and more complete overview of the application.

6 Test each of the defined end-to-end workflows.

This approach might seem logical, but the quantity of bugs in software applications
nowadays tells us that something being logical doesn’t mean that it’s common practice.

NOTE End-to-end tests for serverless applications are identical to those for
server-hosted apps. Therefore, the last two steps are out of the scope of this
book. Because you don’t have access to Aunt Maria’s website or mobile UI,
writing the end-to-end tests isn’t your responsibility. Regardless, these tests are
important, because they test your serverless application as a whole product. To
learn more about end-to-end testing, see https://medium.freecodecamp.org/
why-end-to-end-testing-is-important-for-your-team-cb7eb0ec1504.

11.3 Preparation
A serverless Node.js application is still a Node.js application, and that means the tools
you use for testing any other Node.js application will work for the Pizza API. This chap-
ter uses Jasmine, which is one of the most popular Node.js testing frameworks, but you
can use others, such as Mocha, Tape, or Jest.

https://medium.freecodecamp.org/why-end-to-end-testing-is-important-for-your-team-cb7eb0ec1504
https://medium.freecodecamp.org/why-end-to-end-testing-is-important-for-your-team-cb7eb0ec1504

 195Preparation

Jasmine testing framework
Jasmine is a JavaScript testing framework. It doesn’t depend on other JavaScript frame-
works, and it doesn’t require a DOM, so you can use it from both the browser and Node.
js. Jasmine has a clean and obvious syntax that simplifies testing. To learn more about it,
visit https://jasmine.github.io.

Jasmine tests are called specs, so we’ll use the same name in the rest of this chapter.
Spec is a JavaScript function that defines what a piece of your application should do.
Specs are grouped in suites, which allow you to organize your specs. For example, if
you’re testing a form, you can have a validation suite, in which you’ll group all specs
related to form validation.

Jasmine uses runner to run your specs. You can either run all of your specs or filter
them and run a specific spec or a specific suite. Before writing tests, you need to prepare
your project for unit testing. To do so, you’ll need to create a folder where you’ll save
your specs, and then to create a runner that will run your specs.

To follow Jasmine’s naming convention, create a spec folder in your Pizza API project.
This folder will contain all the specs for your Pizza API, including unit and integration
specs. It will also include a configuration for Jasmine runner and some helpers, such as a
helper for mocking HTTP requests. The application folder structure, with the specs you’ll
create in this chapter, is shown in figure 11.3.

js

pizza-api

api.js

json package.json

json claudia.json

data

handlers

Root folder for
Pizza API

Entry point for your API,
contains all the routes;

Your app is just a standard
Node.js project, so it contains
package.json file.

Config file created by Claudia

All static data for your app is
stored in “data” folder.

Directory for all route
handlers

spec Directory for all
automated tests

support

handlers

Jasmine runner configuration

Unit and integration tests for
your handlers

Figure 11.3 The Pizza API folder
structure with specs

https://jasmine.github.io

196 chapter 11 Testing, Testing, 1, 2, 3

To configure your Jasmine runner, create a support folder in the specs folder of your
Pizza API project. Inside that folder, create a jasmine.json file. This file represents run-
ner configuration.

As shown in the following listing of this configuration, you need to define the location
of your specs relative to the project root, and the pattern Jasmine will use to find spec
files. In your case, it should be any file with a name that ends in “spec.js” or “Spec.js.”

Listing 11.1 Jasmine configuration

{
 "spec_dir": "specs",
 "spec_files": [
 "**/*[sS]pec.js"
]
}

Next, define how Jasmine will run. You want to configure it to run with the configura-
tion from the jasmine.json file and to give you an option to run only a specific spec or
spec suite. And finally, you want it to run in verbose mode and to print the description
of each spec as it runs.

To do so, create another file named jasmine-runner.js in the same folder, and open it
with your favorite editor.

At the beginning of the file, require jasmine and SpecReporter from the
jasmine-spec-reporter NPM package. Then create an instance of Jasmine.

The next step is to loop through the arguments passed in the command line. You can
ignore the first two arguments because they are the path to Node.js and to your current
file. For each remaining argument, check if they are full text and, if so, show the Jas-
mine spec reporter instead of the default reporter. If the argument is a filter, run only
the specs that contain the provided filter.

Finally, load the configuration by using Jasmine’s loadConfigFile method and
launch the Jasmine runner with the provided filters.

Your jasmine-runner.js file should look like the following listing.

Listing 11.2 Jasmine runner

'use strict'

const SpecReporter = require('jasmine-spec-reporter').SpecReporter
const Jasmine = require('jasmine')
const jrunner = new Jasmine()
let filter

process.argv.slice(2).forEach(option => {
 if (option === 'full') {
 jrunner.configureDefaultReporter({ print() {} })
 jasmine.getEnv().addReporter(new SpecReporter())
 }

Set the specs location to the specs folder,
relative to the root of the project.

All spec filenames end with “spec.js” or “Spec.js.”

Require the Jasmine SpecReporter library.

Require the jasmine library.

Create an
instance of
Jasmine.

Create the filter variable
that will be used later.

Get all but the first two
arguments from the
executed command and
loop through the
argument list.

If the passed argument is full,
remove the default reporter and add
the Jasmine spec reporter.

 197Unit tests

 if (option.match('^filter='))
 filter = option.match('^filter=(.*)')[1]
})

jrunner.loadConfigFile()
jrunner.execute(undefined, filter)

At this point, you can run your specs using the node spec/support/jasmine-runner
.js command. This will print the spec results to your terminal, with a green dot for
each passing spec. To see the spec messages instead of green dots, you can run the
node spec/support/jasmine-runner.js full command.

To simplify running your specs, you can add an NPM test script to your package.json
file. This modification allows you to use the shorthand “test” to run your specs with the
command npm test, or the even shorter npm t command. Add the following script to the
package.json file:

"test": "node specs/support/jasmine-runner.js”

To run the specs with full message output, run the command npm t-- full. The -- is
required and must be followed by a space, because the options after it—in this case
full—are not NPM options. Instead, they are passed to Jasmine directly.

TIP You can improve your code with two other NPM scripts. First, if you have a
linter, you can run it before your tests automatically if you add a pretest script
to your package.json file. For example, if you’re using ESLint, the command
looks like this:

"pretest": "eslint lib spec *.js"

Also, if you’re using the Node.js debugger, adding a debug script can be useful,
as shown here:

"debug": "node debug spec/support/jasmine-runner.js"

Running this script will start your tests with the Node.js debugger. For more
information about the debugger, see https://nodejs.org/api/debugger.html.

11.4 Unit tests
The foundation of the testing pyramid is the unit layer, which consists of unit tests. The
goal of unit testing is to isolate each part of the application and show that the individ-
ual parts are working as expected.

The unit size depends on the application; it can be as small as a function or as large as
a class or entire module. The smallest unit of code of the Pizza API that makes sense to
isolate and test is a handler function. You can start with the GetPizzas handler.

The only external connection in the getPizzas handler is the connection to the pizzas.
json file. Even though this is a static file, it represents an external connection that shouldn’t
be tested in a unit test. To prepare the handler for unit testing, you need to allow the han-
dler function to receive a custom list of pizzas that will overwrite the list from pizzas.json. By
doing this, you ensure your unit test will still work if the pizzas.json file is changed.

If the passed argument is filter, save
the filter value to the filter variable.

Load the
configuration
from the
jasmine.json file. Launch the Jasmine runner

with the provided filters.

https://nodejs.org/api/debugger.html

198 chapter 11 Testing, Testing, 1, 2, 3

As shown in the following listing, you can do that by adding the pizzas parameter to
your getPizzas handler, which defaults to the content of the pizzas.json file.

Listing 11.3 Updated getPizzas handler

'use strict'

const listOfPizzas = require('../data/pizzas.json')

function getPizzas(pizzaId, pizzas = listOfPizzas) {

Now that your handler is ready for testing, you can start writing specs. To do so, create
a file named get-pizzas.spec.js in the spec/handlers folder.

In this file, require your handler and create an array of pizzas. It should contain at
least two pizzas with names and IDs, and it can look like the following code snippet:

const pizzas = [{
 id: 1,
 name: 'Capricciosa'
}, {
 id: 2,
 name: 'Napoletana'
}]

Now describe your spec using Jasmine’s describe function. The description should be
short and easy to understand; for example:

describe('Get pizzas handler', ()
 => { })

TIP With Jasmine, you don’t need to require the describe, it, and expect
functions because they will be injected as global variables automatically. But if
you’re using a linter, don’t forget to tell it that Jasmine functions are global, so
it doesn’t report them as undefined.

Your describe block should contain multiple specs. For a simple function, such as the
getPizzas handler, you should test the following:

¡	Getting a list of all pizzas
¡	Getting a single pizza by ID
¡	An error for getting a pizza with an undefined ID

Each spec is a separate block defined by invoking the it function. This function
accepts two parameters: the spec description and a function that defines your spec.
Remember: descriptions should be short but clear, so you can easily understand what
is being tested.

Each spec contains one or more expectations that test the state of the code. Expecta-
tions are actually the verifications, where you define what you expect the current value to
be, compared with what that value is. Expectations are defined using expect statements.

NOTE For more information about using Jasmine with Node.js, see the official
documentation at https://jasmine.github.io/api/2.8/global.html.

Require the
list of pizzas. Pass the list of pizzas as the

second argument, and set its
value to listOfPizzas
by default.

https://jasmine.github.io/api/2.8/global.html

 199Unit tests

In your first spec, you want to check that the handler returns a list of all pizzas when
a pizza ID is not provided. To do so, you need to invoke the handler without the first
argument, but you also need to provide a list of pizzas as a second argument. You can
do this by passing undefined and a list of pizzas to the handler, respectively. The spec
can look like the following snippet:

it('should return a list of all pizzas if called without pizza ID', () => {
 expect(underTest(undefined, pizzas)).toEqual(pizzas)
})

To test the code with the existing pizza IDs, you should pass the IDs—1 and 2,
respectively—and the list of pizzas, and expect the results to be equal to the first and
second pizzas from your mocked array of pizzas. Your spec can look like this:

it('should return a single pizza if an existing ID is passed as the first
parameter', () => {

 expect(underTest(1, pizzas)).toEqual(pizzas[0])
 expect(underTest(2, pizzas)).toEqual(pizzas[1])
})

For the last spec in the unit tests for the getPizzas handler, you can be as creative as
you want in passing a nonexistent ID. For example, you should pass some edge cases
such as numbers smaller and larger than the existing IDs, but you should also try to test
some other values, such as strings or even other types.

The following example shows what your spec might look like:

it('should throw an error if nonexistent ID is passed', () => {
 expect(() => underTest(0, pizzas)).toThrow('The pizza you requested was not

found')
 expect(() => underTest(3, pizzas)).toThrow('The pizza you requested was not

found')
 expect(() => underTest(1.5, pizzas)).toThrow('The pizza you requested was

not found')
 expect(() => underTest(42, pizzas)).toThrow('The pizza you requested was

not found')
 expect(() => underTest('A', pizzas)).toThrow('The pizza you requested was

not found')
 expect(() => underTest([], pizzas)).toThrow('The pizza you requested was

not found')
})

Putting all this together, the following listing shows what your unit tests for the getPizzas
handler should look like.

Listing 11.4 Unit tests for getPizzas handler

'use strict'

const underTest = require('../../handlers/get-pizzas')
const pizzas = [{
 id: 1,
 name: 'Capricciosa'
}, {
 id: 2,
 name: 'Napoletana'
}]

Require the
getPizzas handler.

Create a mock pizzas object.

200 chapter 11 Testing, Testing, 1, 2, 3

describe('Get pizzas handler', () => {
 it('should return a list of all pizzas if called without pizza ID', () => {
 expect(underTest(undefined, pizzas)).toEqual(pizzas)
 })

 it('should return a single pizza if an existing ID is passed as the first
parameter', () => {

 expect(underTest(1, pizzas)).toEqual(pizzas[0])
 expect(underTest(2, pizzas)).toEqual(pizzas[1])
 })

 it('should throw an error if nonexistent ID is passed', () => {
 expect(() => underTest(0, pizzas)).toThrow('The pizza you requested was

not found')
 expect(() => underTest(3, pizzas)).toThrow('The pizza you requested was

not found')
 expect(() => underTest(1.5, pizzas)).toThrow('The pizza you requested was

not found')
 expect(() => underTest(42, pizzas)).toThrow('The pizza you requested was

not found')
 expect(() => underTest('A', pizzas)).toThrow('The pizza you requested was

not found')
 expect(() => underTest([], pizzas)).toThrow('The pizza you requested was

not found')
 })
})

Navigate to your project folder and run the npm test command from the terminal.
The output after running this command, as shown in the following listing, will indicate
that the spec failed.

Listing 11.5 Response after running specs

> node spec/support/jasmine-runner.js

Started
..F

Failures:
1) Get pizzas handler should throw an error if nonexistent ID is passed
 Message:
 Expected function to throw an exception.
 Stack:
 Error: Expected function to throw an exception.
 at UserContext.it (~/pizza-api/spec/handlers/get-pizzas-spec.

js:26:40)

3 specs, 1 failure
Finished in 0.027 seconds

The failed spec prevents that bug from being deployed to the AWS Lambda function
and creating an issue in production. It is important to test edge cases in your unit
specs, because they can save you a lot of debugging from CloudWatch logs.

Describe the
spec group.

Spec for the getPizzas
handler invoked without an ID.

Expect the getPizzas handler
to return the list of all pizzas if

an ID is not provided.

Spec for the getPizzas handler
invoked with a valid and existing ID.

Spec for the
getPizzas
handler
invoked with
a nonexistent
or invalid ID.

 201Mocking your serverless functions

In this case, zero is passed as a pizza ID, and the getPizzas handler returned a list of
all pizzas instead of an error, because zero is a false value in JavaScript and it will not pass
the following part of the getPizzas handler:

if (!pizzaId)
 return pizzas

To fix this problem, update the problematic part of the getPizzas handler to check
for an undefined pizzaId. For example, you can replace it with the following code:

if (typeof pizzaId === 'undefined')
 return pizzas

After updating your getPizzas handler, rerun the specs using the npm test command.
The specs should pass now, and the output should look like the following listing.

Listing 11.6 Response after running specs that are passing

> node spec/support/jasmine-runner.js

Started
...

3 specs, 0 failures
Finished in 0.027 seconds

Passed specs don’t guarantee that your code is bug-free, but if meaningful specs are
included in your code coverage, the number of production issues will be significantly
lower. But how do you unit test handlers that can’t be isolated easily—for example,
handlers that have a direct connection to the DynamoDB table? That’s where mock
functions prove effective.

11.5 Mocking your serverless functions
In contrast to the getPizzas handler, most of the other handlers in the Pizza API inter-
act with the database or send HTTP requests. To test those handlers in isolation, you’ll
need to mock all external interaction.

Mocking, primarily used in unit testing, refers to creating objects that simulate the behav-
ior of real objects. Using mocks—instead of the external objects and functions the handler
being tested interacts with—allows you to isolate the behavior of the handler.

Let’s try testing a more complex handler, such as createOrder. Two things require
mocking in the createOrder handler:

¡	The obvious functionality to mock is the HTTP request, because you don’t want
to contact the Some Like It Hot Delivery API from your specs. Some Like It Hot
Delivery API is an external dependency that you don’t own, and you don’t have
access to a test version. Any delivery request that you make in your tests can cause
real-world production issues.

¡	You also want to mock the DynamoDB DocumentClient, because you want to isolate
the test of the getPizzas handler from any dependency. If you test the fully inte-
grated handler, you would need to set up a test database to test handler validation.

202 chapter 11 Testing, Testing, 1, 2, 3

Mocking is important because unit specs are much faster to run than integration and
end-to-end specs. Running your full spec suite takes a few seconds, instead of minutes or
even hours in more complex systems. Also, unit specs are also much cheaper, because
you don’t need to pay for infrastructure when you want to check if your handler logic is
working as expected.

After mocking HTTP requests and DynamoDB communication, the handler you’re
testing should work as described in figure 11.4.

To create a unit spec for the createOrder handler, create a file named create-order.
spec.js in the specs/handlers folder of your Pizza API project. Then require this han-
dler at the top of your spec file and add a Jasmine describe block, because you want to
group your specs so you can easily read your Jasmine runner output.

At this point, your spec file should look like this:

const underTest = require('../../handlers/create-order')

describe('Create order handler', () => {
 // Place for your specs
})

Now let’s mock the HTTP request. There are many ways to do that in Node.js. For
example, you can use a full-featured module for mocking, such as Sinon (http://
sinonjs.org) or Nock (https://github.com/node-nock/nock), or even write your own.

In the spirit of Node.js and serverless development, we always recommend using small
and focused modules, and fake-http-request is exactly that—a small Node.js mod-
ule that mocks HTTP and HTTPS requests. You can install the module from NPM and
save it as a development dependency by running the npm install fake-http-request
--save-dev command.

In your new unit test, require the https module at the top of the file, too, because
the fake-http-request module uses it for tracking mocked HTTP requests.

Jasmine

Some Like It Hot
Delivery API

Amazon DynamoDB
pizza-orders table

createOrder handler

Specs running on local machine or CI server

Third-party services Amazon Web Services

1. Jasmine is running on
your computer or CI
server, and it invokes
the createOrder
handler in unit specs.

2. The handler is
executed with the data
passed by the Jasmine
runner, but it never
contacts the Some Like It
Hot delivery API, because
that request is mocked.

3. After the
successful Some
Like It Hot Delivery
API request and
response are
simulated, the
createOrder
handler continues,
but the DynamoDB
request is also
mocked, so the
handler never
contacts the real
AWS infrastructure.

4. Finally, the
handler returns
the result to the
Jasmine runner,
which validates it
against the data
you are expecting
in the spec.

Figure 11.4 The unit test flow for the createOrder handler

http://sinonjs.org
http://sinonjs.org
https://github.com/node-nock/nock

 203Mocking your serverless functions

NOTE You need to require the https module because the Some Like It Hot
Delivery API requires an HTTPS connection. If you want to mock HTTP requests
instead of HTTPS requests, you can require the http module instead of https.

To use the fake-http-request module, you’ll need to use Jasmine’s beforeEach and
afterEach functions, which allow you to do something before and after each spec is
executed. To install and uninstall the module, add the following snippet inside the
describe block of your spec file:

beforeEach(() => fakeHttpRequest.install('https'))
afterEach(() => fakeHttpRequest.uninstall('https'))

Now that HTTPS requests are mocked, you need to mock the AWS DocumentClient.
To do so, you’ll need to require aws-sdk and then replace the DocumentClient class
with a Jasmine spy. Remember to bind the Promise.resolve function; otherwise it’ll
have a different this and fail.

Jasmine spies
According to the Jasmine documentation, “Jasmine has test double functions called
spies. A spy can stub any function and tracks calls to it and all arguments. A spy only exists
in the describe or it block in which it is defined, and will be removed after each spec.”
To learn more about spies in Jasmine, visit https://jasmine.github.io/2.0/introduction.
html#section-Spies.

Because the AWS SDK uses a prototype to create the DocumentClient class, you can
replace the DocumentClient with your Jasmine spy by adding the following to the
beforeEach block:

AWS.DynamoDB.DocumentClient.prototype = docClientMock

At this point, your create-order.spec.js file should look like the following listing.

Listing 11.7 Base of the createOrder handler unit test

'use strict'

const underTest = require('../../handlers/create-order')
const https = require('https')
const fakeHttpRequest = require('fake-http-request')
const AWS = require('aws-sdk')
let docClientMock

describe('Create order handler', () => {
 beforeEach(() => {
 fakeHttpRequest.install('https')

 docClientMock = jasmine.createSpyObj('docClient', {
 put: { promise: Promise.resolve.bind(Promise) },

Require the
handler. Require the https and fake

-http-request modules.

Require aws-sdk.

Make a placeholder variable for
the DocumentClient mock.

Install the fake-http-request
library on https.

Create a Jasmine spy object to
fake DocumentClient.

Mock put and
configure functions.

https://jasmine.github.io/2.0/introduction.html#section-Spies
https://jasmine.github.io/2.0/introduction.html#section-Spies

204 chapter 11 Testing, Testing, 1, 2, 3

 configure() { }
 })
 AWS.DynamoDB.DocumentClient.prototype = docClientMock
 })

 afterEach(() => fakeHttpRequest.uninstall('https'))

 // Place for your specs

})

Because the createOrder handler is more complex than the getPizzas handler, it
requires more specs. To start with the most important parts, you should test the following:

¡	Sending a POST request to the Some Like It Hot Delivery API
¡	Reacting to both success and errors returned by the Some Like It Hot Delivery API
¡	Invoking DocumentClient to save an order only if the Some Like It Hot Delivery

API request was successful
¡	Resolving the promise if both the Some Like It Hot Delivery API and Document-

Client requests were successful
¡	Rejecting the promise if any integration fails
¡	Validating input

But you can add even more specs and test additional edge cases. To keep the page
count of this chapter reasonable, we show you only the most important ones, and you
can see a complete create-order.spec.js with all the important specs in the source code
that goes with the book.

For the first spec, add an it block that will check if a POST request is sent to the Some
Like It Hot Delivery API. Try to use a short and easily understood description; for example,
“should send POST request to Some Like It Hot Delivery API.”

In this spec, you want to invoke the createOrder handler with valid data, and then
use the https module to see if the request is sent with the expected body and headers.

fake-http-request adds a pipe method to https.request, so you can use that
method to check if the HTTPS request is sent with the expected values. For example,
you can check if the number of sent requests is 1, because only one API request should
be sent to the Some Like It Hot Delivery API. Also, you can check if the options passed
to https.request were correct, including the method, path, body, and headers.

NOTE Keep in mind that the body is sent as plain text, and you need to stringify
the object before checking if the body was correct; otherwise, your spec will fail
because it will compare different types of data: object and string.

Your spec should look like listing 11.8.

Replace the DocumentClient
class with a Jasmine spy.

Uninstall the fake-http
-request library.

 205Mocking your serverless functions

TIP When comparing two large objects to see if just a few properties match,
instead of writing all properties you can use jasmine.objectContaining and
compare just a subset of the properties.

Listing 11.8 Mocking a POST request

it('should send POST request to Some Like It Hot Delivery API', (done) => {
 underTest({
 body: {
 pizza: 1,
 address: '221b Baker Street'
 }
 })

 https.request.pipe((callOptions) => {
 expect(https.request.calls.length).toBe(1)
 expect(callOptions).toEqual(jasmine.objectContaining({
 protocol: 'https:',
 slashes: true,
 host: 'some-like-it-hot-api.effortlessserverless.com',
 path: '/delivery',
 method: 'POST',
 headers: {
 Authorization: 'aunt-marias-pizzeria-1234567890',
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 pickupTime: '15.34pm',
 pickupAddress: 'Aunt Maria Pizzeria',
 deliveryAddress: '221b Baker Street',
 webhookUrl: 'https://g8fhlgccof.execute-api.eu-central-1.amazonaws.

com/latest/delivery'
 })
 }))
 done()
 })
})

The next important test is whether the DocumentClient is invoked after a successful
HTTP request. To test that, you need to simulate a successful response from the Some
Like It Hot Delivery API by adding an https.request.calls[0].respond(200, 'Ok',
'{}') line in the https.request.pipe method.

Because the createOrder handler returns a promise, you can use .then to check if
the DocumentClient mock was invoked.

Remember to add done() after the expect statement, and also to invoke done.
fail() if the promise was rejected; otherwise, your specs will run until Jasmine times
out and fail.

it block with spec descriptionInvoke the handler that you’re testing.

Use https.request.pipe
to check if the request was sent.

Check if just one
request was sent.

Compare request
callOptions with the
expected object.

Convert body to string

Tell Jasmine that
async spec is done.

206 chapter 11 Testing, Testing, 1, 2, 3

The spec for testing the DocumentClient invocation should look like the follow-
ing listing.

Listing 11.9 Testing DocumentClient invocation

it('should call the DynamoDB DocumentClient.put
 if Some Like It Hot Delivery API request was successful', (done) => {
 underTest({
 body: { pizza: 1, address: '221b Baker Street' }
 })
 .then(() => {
 expect(docClientMock.put).toHaveBeenCalled()
 done()
 })
 .catch(done.fail)

 https.request.pipe((callOptions) => https.request.calls[0].respond(200,
'Ok', '{}'))

})

Another similar spec should show you that the DocumentClient mock was never
invoked if the HTTP request failed. The differences between this spec and the previ-
ous one are

¡	The spec should fail if the promise was resolved.
¡	The spec should check that docClientMock.put has not been called.
¡	The fake-http-request library should return an error (with an HTTP status

code greater than or equal to 400).

The spec for making sure that the DocumentClient mock is not invoked after a failed
HTTP request might look like the following listing.

Listing 11.10 Testing that DocumentClient mock is not invoked if HTTP request fails

it('should not call the DynamoDB DocumentClient.put
 if Some Like It Hot Delivery API request was not successful', (done) => {
 underTest({
 body: { pizza: 1, address: '221b Baker Street' }
 })
 .then(done.fail)
 .catch(() => {
 expect(docClientMock.put).not.toHaveBeenCalled()
 done()
 })

 https.request.pipe((callOptions) => https.request.calls[0].respond(500,
'Server Error', '{}'))

})

If you run the npm test or npm t command, the specs should run successfully.

Invoke the handler you’re testing
with valid data.

Check if docClientMock.put
has been called if the promise
was successfully resolved.

Tell Jasmine
that the async
spec is done.

Tell Jasmine that the async spec
failed if the promise was rejected.

Simulate a successful HTTP request with status 200.

Tell Jasmine that the async test
failed if the promise was resolved. Check that

docClientMock.put
has not been called if the
promise was rejected.

Respond with status 500.

 207Integration tests

NOTE Consult the source code you got with the book to see the full specs file.

11.6 Integration tests
Integration tests are another test type; they are even more important for serverless
functions that are larger than a few lines of code. Unlike unit tests, integration tests use
real integrations with other parts of your system. But they still can and should mock
some third-party libraries that you don’t control. For example, you don’t want your
automated tests to interact with a payment processor.

As shown in figure 11.5, integration tests of the createOrder handler would still
mock the Some Like It Hot Delivery API. Sending an HTTP request to a third-party
API can affect real-world users, but it would have a real integration with the DynamoDB
table prepared for testing.

The flow of the integration tests for the createOrder handler is as follows:

1 Create a new DynamoDB table before all the specs.

2 Mock only connections to the Some Like It Hot Delivery API before each spec.

3 Run a spec.

4 Remove the mock from the Some Like It Hot Delivery API HTTP request, and
run the next spec if it exists (by going back to step 2).

5 Delete the test DynamoDB table when all specs are done.

TIP Creating and deleting the DynamoDB table can be done before and after
each spec, but because both creating and deleting the database can take at least
a few seconds, you can reuse the same table for all specs from the integration
test suite to save time.

Jasmine

Some Like It Hot
Delivery API

Amazon DynamoDB
test table

createOrder handler

Specs running on local machine or CI server

Third-party services Amazon Web Services

1. Jasmine is running on
your computer or CI
server, and it invokes
the createOrder
handler in unit specs.

2. The handler is
executed with the data
passed by the Jasmine
runner, but it never
contacts the Some Like It
Hot delivery API, because
that request is mocked.

3. After the
successful Some
Like It Hot Delivery
API request and
response are
simulated, the
createOrder
handler continues,
but the DynamoDB
request is also
mocked, so the
handler never
contacts the real
AWS infrastructure.

4. Finally, the
handler returns
the result to the
Jasmine runner,
which validates it
against the data
you are expecting
in the spec.

Figure 11.5 The integration test flow for the createOrder handler

208 chapter 11 Testing, Testing, 1, 2, 3

Because there are just a few handlers, you can have both unit and integration tests in
the same folder. Just make sure you name them in such a way that you can understand the
difference easily. For example, integration tests for the createOrder handler can be in
the create-order-integration.spec.js file.

As shown in the next listing, preparation for integration testing of the createOrder
handler involves a few steps.

The first step is to require all the modules you need, such as the handler that
you’re testing and the aws-sdk (because you need the DynamoDB class), https, and
fake-http-request modules.

Then you need to generate the name for your test, DynamoDB. You could use the same
name each time, but a generated name will have a better chance of being unique. You
also need to increase Jasmine’s timeout to at least one minute, because creating and
deleting a DynamoDB table can take a while, and the initial five-second timeout is not
long enough.

NOTE By default, Jasmine will wait five seconds for an asynchronous spec to
finish before causing a timeout failure. If the timeout expires before done is
called, the current spec will be marked as failed and suite execution will con-
tinue as if done had been called.

Next, you need to create a DynamoDB table before all tests using Jasmine’s beforeAll
function. Keep in mind that the creation of a DynamoDB table is asynchronous, so
you’ll need to use the done callback to tell Jasmine when the operation is finished. If
you don’t do that, spec execution will start before the table is ready.

You can use the createTable method from the DynamoDB class for this. It needs to
have the same key definitions as your pizza-orders table, which means that it needs
to have orderId as a hash key.

Because the createTable promise will resolve before the DynamoDB table is ready,
you can use the waitFor method of the AWS SDK’s DynamoDB class to be sure that the
table exists before invoking the Jasmine done callback.

For deleting the table in Jasmine’s afterAll function, the flow should be similar:
delete the table using the deleteTable method of the DynamoDB class, and then use
the waitFor method to be sure that the table is deleted. Finally, you invoke the done
callback.

Mocking of HTTP requests to the Some Like It Hot Delivery API is similar to the
mocking you did for unit tests. The only difference is that you want to mock only HTTP
requests to this particular API; you want to allow other HTTP requests, because the
DynamoDB class uses them to interact with the AWS infrastructure. To do so, you can pass
an object that contains the request type—in your case, https—and regex matcher for
the domain name to the fakeHttpRequest.install function.

At this point, your create-order-integration.spec.js file should look like the next
listing.

 209Integration tests

Listing 11.11 Preparation for integration test for createOrder handler

'use strict'

const underTest = require('../../handlers/create-order')
const AWS = require('aws-sdk')
const dynamoDb = new AWS.DynamoDB({
 apiVersion: '2012-08-10',
 region: 'eu-central-1'
})
const https = require('https')
const fakeHttpRequest = require('fake-http-request')

const tableName = `pizzaOrderTest${new Date().getTime()}`
jasmine.DEFAULT_TIMEOUT_INTERVAL = 60000

describe('Create order (integration)', () => {
 beforeAll((done) => {
 const params = {
 AttributeDefinitions: [{
 AttributeName: 'orderId',
 AttributeType: 'S'
 }],
 KeySchema: [{
 AttributeName: 'orderId',
 KeyType: 'HASH'
 }],
 ProvisionedThroughput: {
 ReadCapacityUnits: 1,
 WriteCapacityUnits: 1
 },
 TableName: tableName
 }

 dynamoDb.createTable(params).promise()
 .then(() => dynamoDb.waitFor('tableExists', {
 TableName: tableName
 }).promise())
 .then(done)
 .catch(done.fail)
 })

 afterAll(done => {
 dynamoDb.deleteTable({
 TableName: tableName
 }).promise()
 .then(() => dynamoDb.waitFor('tableNotExists', {
 TableName: tableName
 }).promise())
 .then(done)
 .catch(done.fail)
 })

Import the handler that you’re testing.Import
aws-sdk.

Create an instance of the DynamoDB class.

Import the https and fake
-http-request modules.

Generate the
name of the test
DynamoDB table.

Increase the timeout for the
Jasmine runner to one minute.

Create a new DynamoDB
table before all specs.

Wait for the
tableExists status.

Delete the DynamoDB table
after all specs are done.

Wait for the tableNotExists
status before stopping the tests.

210 chapter 11 Testing, Testing, 1, 2, 3

 beforeEach(() => fakeHttpRequest.install({
 type: 'https',
 matcher: /some-like-it-hot-api/
 }))

 afterEach(() => fakeHttpRequest.uninstall('https'))

 // Place for your specs

})

Now that you have integration tests set up, you need to update the createOrder han-
dler to be able to receive the DynamoDB table name dynamically. You can do that
by passing the table name as a second argument, or you can set the table name as an
environment variable.

The easiest way is to pass the table name as the second argument. To do, so update
your createOrder handler to accept the DynamoDB table name, but remember to
set pizza-orders as the default value, so you don’t break the existing code. Your
createOrder handler function arguments should look like this:

function createOrder(request, tableName = 'pizza-orders') {

The last but most difficult step is to add the integration specs. The specs should check
all the critical parts of the integration of your handler with any other part of the system
or the infrastructure.

To keep the length of this chapter reasonable, we show you just the most important
spec, which tests whether the data is written to the database as expected. You can see the
full create-order-integration.spec.js file with more specs in the source code.

As shown in listing 11.12, to test if the order was saved to the database after the Some
Like It Hot Delivery API response, you need to do the following:

1 Invoke the createOrder handler with the valid data and the test DynamoDB
table name.

2 Mock the response from the Some Like It Hot Delivery API and return
deliveryId.

3 When the createOrder handler promise is resolved, use the DynamoDB class
instance to query the database for the item with the ID received from the Some
Like It Hot Delivery API.

4 Check if the order info returned by dynamoDb.getItem is correct.

5 Mark the test as done.

Listing 11.12 Testing if order is saved to the DynamoDB table

it('should save the order in the DynamoDB table
 if Some Like It Hot Delivery API request was successful', (done) => {
 underTest({
 body: { pizza: 1, address: '221b Baker Street' }
 }, tableName)

Install the fake-http-request
module only for the Some
Like It Hot Delivery API.

Invoke the handler you’re testing with
the data and test table name.

 211Other types of automated testing

 .then(() => {
 const params = {
 Key: {
 orderId: {
 S: 'order-id-from-delivery-api'
 }
 },
 TableName: tableName
 }
 dynamoDb.getItem(params).promise()
 .then(result => {
 expect(result.Item.orderId.S).toBe('order-id-from-delivery-api')
 expect(result.Item.address.S).toBe('221b Baker Street')
 expect(result.Item.pizza.N).toBe('1')
 done()
 })
 })
 .catch(done.fail)

 https.request.pipe((callOptions) => https.request.calls[0].respond(200,
'Ok', JSON.stringify({

 deliveryId: 'order-id-from-delivery-api'
 })))
})

If you run the npm test command again, you’ll notice that it takes more time, but it
should show all tests as passed, including your integration test.

TIP If you have a large number of integration tests, having a DynamoDB test
table predefined instead of creating it before running tests for the handler can
speed up your test execution time.

You can check the AWS Web Console to make sure that the DynamoDB table is deleted
successfully. Even after you’ve added a few more integration tests, your monthly AWS
bill for the application built in this book should still be just a few cents.

11.7 Other types of automated testing
You’ve seen that unit and integration tests in serverless apps are similar to the same
tests in non-serverless Node.js applications. As expected, the major impact is on the
speed of setting up the infrastructure copy for the tests (setup is fast because there’s no
server configuration to do) and the price of the infrastructure (you don’t have to pay
for it when it’s not in use).

There are many other types of automated tests, and serverless architecture affects
some of them. For example, running load and stress tests doesn’t make sense in a server-
less architecture that is auto-scalable within documented limits. This applies unless your
application is not fully serverless or you don’t trust your serverless provider, which is a
problem beyond the scope of this book.

Another type of automated test that can be affected by serverless architecture is
GUI tests. It might not sound intuitive, but despite serverless being mostly focused on
infrastructure, it can speed up GUI tests with its parallel execution and headless browsers,

Get an item by ID from
the test database. Check if the data in the

database is correct and
mark the test as done.

Mark the test as failed if
the promise was rejected.

Fake the response from the Some Like It
Hot Delivery API and return a delivery ID.

212 chapter 11 Testing, Testing, 1, 2, 3

such as headless Chrome and Phantom.js. Headless browsers are regular web browsers,
but they don’t have a graphical user interface; instead, you run them from the com-
mand line. The ability to run automated GUI tests on Google Chrome running on AWS
Lambda has already resulted in a lot of new tools that simplify GUI tests. But even more
importantly, those tools speed up the tests by an order of magnitude and drop the price
drastically. One of the tools that allows you to run GUI tests on AWS Lambda is Appraise,
a visual-approval testing tool that uses headless Chrome to take a screenshot and then
compares the screenshot with the expected output. To learn more about Appraise, visit
http://appraise.qa.

11.8 A step beyond: Writing testable serverless functions
So far, you’ve learned the basics of testing serverless applications, but that doesn’t
mean you’ve covered all the potential edge cases. Let’s take the example of our pizza
order-saving handler.

Listing 11.13 The current pizza order-saving handler

function createOrder(request, tableName) {
 tableName = tableName || 'pizza-orders'

 const docClient = new AWS.DynamoDB.DocumentClient({
 region: process.env.AWS_DEFAULT_REGION
 })
 let userAddress = request && request.body && request.body.address;
 if (!userAddress) {
 const userData = request && request.context && request.context.authorizer
 && request.context.authorizer.claims;
 if (!userData)
 throw new Error()
 // console.log('User data', userData)
 userAddress = JSON.parse(userData.address).formatted
 }

 if (!request || !request.body || !request.body.pizza || !userAddress)
 throw new Error('To order pizza please provide pizza type and address

where
 pizza should be delivered')

 return rp.post('https://some-like-it-hot-api.effortlessserverless.com/
delivery', {

 headers: {
 Authorization: 'aunt-marias-pizzeria-1234567890',
 'Content-type': 'application/json'
 },
 body: JSON.stringify({
 pickupTime: '15.34pm',
 pickupAddress: 'Aunt Maria Pizzeria',
 deliveryAddress: userAddress,
 webhookUrl: 'https://g8fhlgccof.execute-api.eu-central-1.amazonaws.com/

latest/delivery',
 })

Load DynamoDB.

Retrieve the
userAddress
for pizza delivery.

Check if the required pizza order
properties have been supplied.

Send a delivery request
to the Some Like It Hot
Delivery API.

http://appraise.qa

 213A step beyond: Writing testable serverless functions

 })
 .then(rawResponse => JSON.parse(rawResponse.body))
 .then(response => {
 return docClient.put({
 TableName: tableName,
 Item: {
 cognitoUsername: userAddress['cognito:username'],
 orderId: response.deliveryId,
 pizza: request.body.pizza,
 address: userAddress,
 orderStatus: 'pending'
 }
 }).promise()
 })
 .then(res => {
 console.log('Order is saved!', res)
 return res
 })
 .catch(saveError => {
 console.log(`Oops, order is not saved :(`, saveError)
 throw saveError
 })
}

This service looks fine—it’s your handler for storing pizza orders. It is properly struc-
tured in a separate file and is straightforward and simple. It also doesn’t do multiple
things at the same time—but there is a catch. As you’ve seen, it’s almost impossible to
automatically test without invoking AWS DynamoDB. Even though this seems to be a
good solution, you aren’t covering all the edge cases. For example, what if one part of
the AWS DynamoDB service changes abruptly and you don’t manage to follow up? Or
what if the DynamoDB service crashes? These conditions may occur only rarely, but
taking the risks out of the equation is important. In addition to these, there are many
more risks to consider. They can be categorized into four types. You may be wondering
what sorts of risks those types cover, so here’s a short list for the example of storing a
single pizza order to DynamoDB:

¡	Configuration risks—Are you storing to the correct DynamoDB table? Does the role
for the Lambda function have the correct access rights for the DynamoDB table?

¡	Technical workflow risks—How are you using and parsing the incoming requests?
Are you handling both successful responses and errors well?

¡	Business logic risks—Are you properly structuring the pizza order?
¡	Integration risks—Are you reading the incoming request structure correctly? Are

you storing the order to DynamoDB correctly?

You could test each of these as you did for the integration tests, but setting up and
configuring the service each time you want to test for one of these risks isn’t optimal.
Imagine if testing automobiles was done that way. That would mean that every time you
wanted to test a single screw or even a mirror in a car, you would have to assemble and
then disassemble the whole car. Therefore, to make it more testable, the obvious solu-
tion is to break up your serverless function into several smaller ones.

Save the new pizza order to DynamoDB
using its DocumentClient.

Return the response when done saving.

214 chapter 11 Testing, Testing, 1, 2, 3

If you’re struggling with figuring out how to do this, or if it’s your first time breaking
apart any kind of service into smaller functions, you might not know where to start.
Luckily, other people wanted to do it correctly and make their code more testable, too,
which resulted in an architectural practice called Hexagonal Architecture, or the ports and
adapters pattern.

Although the term “Hexagonal Architecture” sounds complex, it’s a simple design
pattern where your service code pieces don’t talk directly to external resources. Instead,
your service core talks to a layer of boundary interfaces. External services connect to
those interfaces and adapt the concepts they need to those important for the application.
For example, your createOrder handler in a Hexagonal Architecture wouldn’t directly
receive an API request; it would receive an OrderRequest object in an application-specific
format that contains the pizza and deliveryAddress objects describing the ordered
pizza and delivery address. An adapter would be responsible for converting between the
API request format and the createOrder format. You can see a visual representation of
this handler with the proposed Hexagonal Architecture in figure 11.6.

This architecture also means that your createOrder function won’t call DynamoDB
directly. Instead, it will talk to boundary interfaces that are specific for your needs. For
example, you could define an OrderRepository object that could be any object with
the function put. You would then define a separate DynamoOrderRepository object
that implements that particular interface and talks to DynamoDB. You would do the
same with the Some Like It Hot Delivery API.

This architecture allows you to test the integration of API requests and DynamoDB
with your code without worrying how your service interacts with DynamoDB or the deliv-
ery service. Even if DynamoDB completely changes its API or you change from Dyna-
moDB to some other AWS database service, your handler’s core will not change, just the

API Request

DynamoOrderRepository

So
m

e
Li

ke
 It

 H
ot

De
liv

er
y

re
po

sit
or

y

Delivery

OrderRequest

orderRepository

De
liv

er
yR

ep
os

ito
ry

Service
workflow

Separated API request
interaction

Boundary interfaces

Separated DynamoDB
interaction

Figure 11.6 Hexagonal Architecture

 215A step beyond: Writing testable serverless functions

DynamoOrderRepository object will. This improves testing of successful responses and
internal error handling, and keeps your application code safe and consistent. Also, it
shows what you need to mock in your integration tests.

To implement this architecture, you’ll need to break your createOrder handler into
several functions. You’ll show only the one with DynamoDB. You’ll need to pass the
orderRepository as an additional parameter into your createOrder function. Instead
of directly communicating with the AWS DynamoDB DocumentClient, you’ll call the
put on orderRepository. The next listing shows the applied orderRepository changes.

Listing 11.14 Updating pizza order saving handler with orderRepository

function createOrder(request, orderRepository) {

 // we have removed the code for initializing AWS DynamoDB, because that has
 moved inside the orderRepository

 let userAddress = request && request.body && request.body.address;
 if (!userAddress) {
 const userData = request && request.context && request.context.authorizer
&& request.context.authorizer.claims;
 if (!userData)
 throw new Error()
 // console.log('User data', userData)
 userAddress = JSON.parse(userData.address).formatted
 }

 // the previous code remains the same
 .then(rawResponse => JSON.parse(rawResponse.body))
 .then(response => orderRepository.createOrder({
 cognitoUsername: userAddress['cognito:username'],
 orderId: response.deliveryId,
 pizza: request.body.pizza,
 address: userAddress,
 orderStatus: 'pending'
 })
).promise()
 })
 // the rest of the code remains the same
}

This updated listing demonstrates how the createOrder handler has changed. Now,
if you wanted to refactor or change your database service, you wouldn’t need to edit
your createOrder handler at all. Also, it’s much easier to mock order Repository
compared with DynamoDB’s DocumentClient. The only thing remaining is to set
up the orderRepository. You can create it as a separate module, because you might
want to use it in the other handlers as well. The next listing demonstrates the order-
Repository setup.

Add the orderRepository
parameter to the
createOrder call.

The initialization code for the AWS DynamoDB
DocumentClient has been removed.

Instead of calling docClient.put, you’re now
calling orderRepository.createOrder.

216 chapter 11 Testing, Testing, 1, 2, 3

Listing 11.15 Wiring and configuring the orderRepository

var AWS = require('aws-sdk')

module.exports = function orderRepository() {
 var self = this
 const tableName = 'pizza-orders',
 docClient = new AWS.DynamoDB.DocumentClient({
 region: process.env.AWS_DEFAULT_REGION
 })
 self.createOrder = function (orderData) {
 return docClient.put({
 TableName: tableName,
 Item: {
 cognitoUsername: orderData.cognitoUsername,
 orderId: orderData.orderId,
 pizza: orderData.pizza,
 address: orderData.address,
 orderStatus: orderData.orderStatus
 }
 })
 }
}

Setting up boundary interfaces, such as the orderRepository from this listing, helps
you to separate the logic of interacting with the specifics of AWS DynamoDB from the
logic of saving pizza orders. Now, you can try to implement the other boundary inter-
faces (for DeliveryRequest and the API request) on your own.

Writing testable serverless functions makes your code simpler, easier to read, and
easier to debug, and also removes the potential risks from your services. Thinking about
testing first, before developing, can help you to avoid potential problems while at the
same time providing high-quality serverless applications.

We hope that this chapter has provided you with enough knowledge and resources to
at least make a start on testing your serverless functions. Now it’s time for your exercises!

11.9 Taste it!
Automated tests are an important part of any application. Serverless applications are
no different. We’ve prepared a small exercise for you, but you shouldn’t stop there.
Instead, you should go further and write more tests, until testing your serverless appli-
cations becomes part of your normal workflow.

11.9.1 Exercise

In Node.js applications, people often test API routes. You can do the same with Claudia
API Builder. So, your next exercise is to test whether Claudia API Builder set up all the
routes correctly. Here are a few tips on how to do that:

¡	You can use the .apiConfig method of Claudia API Builder to get the API config-
uration with the routes array.

¡	You can dynamically build specs by looping through the array of routes.

Import
aws-sdk.

Set up the
orderRepository object.

Set the table
name to
pizza-
orders.

Initialize the AWS DynamoDB
DocumentClient.

Define the createOrder method
for the orderRepository.

Call docClient.put to store
the needed orderData.

 217Taste it!

If you need an additional challenge, you can update your Pizza API to follow the Hex-
agonal Architecture guidelines, and then you can test the rest of your Pizza API service.
This additional challenge isn’t discussed in the next section, but you can take a look at
the source code to see our solution.

11.9.2 Solution

To test the API routes, create a file called api.spec.js in the specs folder of your Pizza
API project. Note that this file should not be in the handlers subfolder, because you’re
not testing handlers.

In this file, require the main api.js file and use Jasmine’s describe function to add a
description, which can be simple—for example, “API” or “API routes.”

Then define the array of objects that contain paths and methods for those paths. Define
paths without the leading slash (/), because Claudia API Builder stores them that way.

The next step is to loop through the array of routes and invoke Jasmine’s it function
for each. You can test whether the current route exists in the underTest.apiConfig()
.routes array and if its methods are the same methods you defined in the routes array.

For the full api.spec.js file, see the next listing.

Listing 11.16 Testing API routes

'use strict'

const underTest = require('../api')

describe('API', () => {
 [
 {
 path: '',
 methods: ['GET']
 }, {
 path: 'pizzas',
 methods: ['GET']
 }, {
 path: 'orders',
 methods: ['POST']
 }, {
 path: 'orders/{id}',
 methods: ['PUT', 'DELETE']
 }, {
 path: 'delivery',
 methods: ['POST']
 }, {
 path: 'upload-url',
 methods: ['GET']
 }
].forEach(route => {
 it(`should setup /${route.path} route`, () => {
 expect(Object.keys(underTest.apiConfig().routes[route.path])).

toEqual(route.methods)
 })
 })
})

Require the handler.

Define an array of existing routes.

Invoke the it function for
each route from the array.

Test whether the route is defined
with the expected methods.

218 chapter 11 Testing, Testing, 1, 2, 3

If you run the npm test command again, the tests should all pass. If you want to run
only tests for the API routes, you can run the npm t filter=“should setup” command.

Summary

¡	As it is for any other serious application, automated testing is an important part
of every serverless application.

¡	Serverless architecture affects traditionally slow and expensive tests, such as inte-
gration and GUI tests, by increasing the execution speed through parallel execu-
tion and decreasing the price of the testing infrastructure.

¡	Unit testing of Node.js serverless applications is almost the same as unit testing of
nonserverless applications.

¡	Integration tests in serverless architectures should connect to real AWS services,
because the price of the infrastructure is low.

¡	You should still mock some third-party services that you don’t own, such as pay-
ment processors or, in the case of the Pizza API, the Some Like It Hot Delivery API.

¡	Serverless architecture is changing the way we test software, because the infrastruc-
ture cost and the risk shift to the integration between the serverless components.

¡	Designing serverless functions with testing in mind is important, and Hexagonal
Architecture can help with that.

219

12Paying for pizza

This chapter covers
¡	Processing payments with serverless

applications

¡	Implementing payments to your serverless API

¡	Understanding the PCI compliance in payment
processing

Enter your card number and your card’s expiration date. Now, enter your card’s
security code. Everyone knows this sequence. Receiving payments for products or
services is the most valuable step for almost every business. So far, you’ve been learn-
ing mostly how to develop serverless applications that provide useful services, such
as pizza ordering and delivery. But you should also know how to receive payments
from Aunt Maria’s customers.

This chapter starts by analyzing how to enable online payments for Aunt Maria’s
pizzeria. You’ll see how a payment travels from your customer, to your payment pro-
cessor, and then to Aunt Maria’s company. Then, you’ll learn how to implement a
payment service for Aunt Maria. Afterward, you’ll examine the safety of your server-
less payment service and discover how standards compliance helps with that.

220 chapter 12 Paying for pizza

12.1 Payment transactions
According to Aunt Maria, “Everything should revolve around customer needs.” Her
business has begun to expand, and she has received more than a hundred requests
from customers to enable online payments in both the mobile and web applications.
Therefore, she has asked you to help her implement accepting payments with the
serverless Pizza API.

NOTE For some of you, enabling payments might sound scary because you’ve
never done it before, whereas others may fear even a slight error causing havoc.
This chapter’s goal is to alleviate those fears and get you more comfortable
with enabling payments, by teaching how payment processing works, how to
interact with a payment processor, and how to create your serverless payment
function.

Before implementing a payment service in your application, let’s briefly touch on how
payment transactions work internally.

A payment is a financial transaction between a customer and a seller. The customer
pays money to the seller for needed products or services. If the customer doesn’t have
any money, the transaction isn’t possible. If the customer has the needed amount, the
cash is transferred to the seller, after which the purchased product or service is trans-
ferred to the customer. The transaction flow is shown in figure 12.1.

For credit and debit cards, the process is slightly different, because you’re not dealing
with raw funds (cash). A customer connects a payment card to the seller’s card- reading
device. The device checks if it’s a valid credit card, reads the card number, displays
the charge amount, and asks the customer for the card’s confidential pin number to
certify that the intended transaction is authorized. Then the device sends a request to
the customer’s bank to transfer the funds from the customer’s account to the seller’s. If
there are sufficient available funds, the bank reserves the amount from the customer’s
account. This “reserving” process is also known as “charging” the customer. The bank
creates a charge instead of immediately taking the money out of the account because
there needs to be a delay in case a problem or an error occurs on either side. The flow
for a credit or debit card transaction is shown in figure 12.2.

Online payments are different from in-person credit card payments processed with a
card reader. First, because you can’t use a physical card reader, you need a payment pro-
cessor that can perform online payment processing. Second, again because you don’t
have a card reader, you need to verify the card with the payment processor directly. The
verification process is necessary because you need to ensure that the card is valid and
that it belongs to a valid authority (a bank, for example). Therefore, you need to send
sensitive customer data to the payment processor for verification. If it’s valid, you then

Customer
Product / Service

Money

Seller Figure 12.1 A diagram illustrating a cash
transaction between a customer and a seller

Customer

Card
Reader

Product / Service

Verification
response

Card data

Card
Transferred

funds Transferred
funds

Seller

Bank

Figure 12.2 A diagram illustrating
a credit card transaction between a
customer and a seller

 221Payment transactions

make a payment request. The third difference is that you can now optionally listen to
possible payment status changes, as some charges may be checked by the customer’s bank
and rejected a few minutes later (figure 12.3), but for the sake of this chapter’s length,
this isn’t covered.

The online payment process looks complicated, but from your side, it’s quite simple.
You have three responsibilities:

1 Securely send the payment information to the payment processor.

2 Create a charge on the card upon verification.

3 After a charge has been created, update the payment-related information.

Seems simple enough. Now that you’ve had a brief overview of the process, let’s see
how to implement it for Aunt Maria.

12.1.1 Implementing an online payment

As Aunt Maria has explained, when an order is placed, the customer can currently pay
only when the pizza is delivered. Most customers are happy to do it that way, but she’d
like to enable customer payment in advance with a card. To enable this capability, her
web application needs a page with a payment form, where the customer types in the
necessary information. After filling in the form, the customer taps Pay and a charge is
made to the customer’s credit card via a payment processor.

Card
data

Customer
Stripe

Checkout
Form

Stripe

Serverless
Payment
Service

DynamoDB
Card data Update the

pizza order

Verification
response

Charge

Transferred
funds

Payment status
notifications

1. The customer is
entering data on your
page, and the Stripe
Checkout Form is
automatically sending it
to Stripe.

2. After receiving a verification
response from the payment
processor, you create a charge
to the customer.

3. After the charge request,
you can receive notifications
about the payment status
such as processed or
rejected).

Figure 12.3 A diagram illustrating an online credit card transaction between a customer and a seller

12.1 Payment transactions
According to Aunt Maria, “Everything should revolve around customer needs.” Her
business has begun to expand, and she has received more than a hundred requests
from customers to enable online payments in both the mobile and web applications.
Therefore, she has asked you to help her implement accepting payments with the
serverless Pizza API.

NOTE For some of you, enabling payments might sound scary because you’ve
never done it before, whereas others may fear even a slight error causing havoc.
This chapter’s goal is to alleviate those fears and get you more comfortable
with enabling payments, by teaching how payment processing works, how to
interact with a payment processor, and how to create your serverless payment
function.

Before implementing a payment service in your application, let’s briefly touch on how
payment transactions work internally.

A payment is a financial transaction between a customer and a seller. The customer
pays money to the seller for needed products or services. If the customer doesn’t have
any money, the transaction isn’t possible. If the customer has the needed amount, the
cash is transferred to the seller, after which the purchased product or service is trans-
ferred to the customer. The transaction flow is shown in figure 12.1.

For credit and debit cards, the process is slightly different, because you’re not dealing
with raw funds (cash). A customer connects a payment card to the seller’s card- reading
device. The device checks if it’s a valid credit card, reads the card number, displays
the charge amount, and asks the customer for the card’s confidential pin number to
certify that the intended transaction is authorized. Then the device sends a request to
the customer’s bank to transfer the funds from the customer’s account to the seller’s. If
there are sufficient available funds, the bank reserves the amount from the customer’s
account. This “reserving” process is also known as “charging” the customer. The bank
creates a charge instead of immediately taking the money out of the account because
there needs to be a delay in case a problem or an error occurs on either side. The flow
for a credit or debit card transaction is shown in figure 12.2.

Online payments are different from in-person credit card payments processed with a
card reader. First, because you can’t use a physical card reader, you need a payment pro-
cessor that can perform online payment processing. Second, again because you don’t
have a card reader, you need to verify the card with the payment processor directly. The
verification process is necessary because you need to ensure that the card is valid and
that it belongs to a valid authority (a bank, for example). Therefore, you need to send
sensitive customer data to the payment processor for verification. If it’s valid, you then

Customer
Product / Service

Money

Seller Figure 12.1 A diagram illustrating a cash
transaction between a customer and a seller

Customer

Card
Reader

Product / Service

Verification
response

Card data

Card
Transferred

funds Transferred
funds

Seller

Bank

Figure 12.2 A diagram illustrating
a credit card transaction between a
customer and a seller

222 chapter 12 Paying for pizza

Try to visualize the steps of the payment transaction, corresponding to the transac-
tion diagrams. The following actions need to happen:

1 Show the customer the form with the amount due.

2 After the customer taps Pay, invoke the function to charge the customer’s card
via the payment processor’s API.

3 After a charge is created, update the order in the database.

NOTE Keep in mind that you’re building a minimum viable product, so the
payment logic is simplified. In a real-world application, the payment would
need to take into account a lot of other specifics, possibly even storing the pay-
ment history.

The flow is illustrated in figure 12.4.
Before you start implementing your payment service, you need to choose your pay-

ment processor. There are many online payment processors to choose from; in some
cases, your bank can do it for you. But the ones that are most renowned and most used
are Stripe and Braintree. We could have used either of these, but we chose Stripe: it’s
quick and easy to set up and provides multiple-platform support.

NOTE For those of you who wanted to see Braintree, we assure you that the
implementation differences are minimal, found in just the payment gateway
libraries used and parameter names. If you’re interested in that platform, you
can choose Braintree instead and follow the same process.

Show the
payment form.

Submit card
details.

Handling sensitive card
details is done by the
payment processor.

Card verification is also
done by the payment
processor.

Verify the card
details.

Create charge.

Update the order
in the database.

Figure 12.4 A detailed flow diagram
illustrating your payment service
process

 223Payment transactions

Now that you’ve chosen your payment gateway, you need to set up your Stripe account
and get your Stripe API keys (as described in appendix C, in the section “Setting up
your Stripe account and retrieving Stripe API keys”). If you have a Stripe account
already, please continue; if not, create one now.

Now that you’ve got your Stripe account set up, log in to Stripe and open the
Stripe Test Dashboard in your browser (or type https://dashboard.stripe.com/test/
dashboard in your browser’s address bar). Click the “Accept your first payment” link,
which opens a Stripe documentation page explaining how to set up card payments.

As the Stripe card payments setup page explains, there are two crucial steps:

1 Securely collect payment information using tokenization.

2 Use the payment information in a charge request.

NOTE The wording of these steps may vary, but the concept remains the same:
securely collect payment information and use the collected information to
charge the customer.

These steps actually change the previously described payment service process flow. Instead
of you requesting the customer’s payment details and sending them to Stripe, you’ll show
only the Stripe payment form, which will send the sensitive payment information directly
to Stripe. After the payment information is verified and stored, Stripe will send you a secure
token—a hexadecimal string that represents this information. This secure token has a lim-
ited lifespan of a few minutes and can be used only once. You won’t store the one-time
token, but use it to charge the card. The updated flow is shown in figure 12.5.

As you can see from the flow, your responsibility has been reduced to a minimum. Your
next step is to plan out what you need to implement. Let’s take a look at this step-by-step.

1 Show the payment form and send information to Stripe —This means you’re going
to need to display an HTML page, so you’ll need an HTML document or file.

Show the
payment form.

Submit and
verify card

details.

Stripe Checkout form
automatically sends and
verifies the card details.

Handling Stripe secure
token is necessary
because you no longer
have the card data.

Create a Stripe
charge with the
received token.

Update the order
in the database.

Figure 12.5 The updated flow diagram
illustrating the Stripe payment process
with the use of its secure token to
create a card charge

https://dashboard.stripe.com/test/dashboard
https://dashboard.stripe.com/test/dashboard

224 chapter 12 Paying for pizza

Usually this is done on the front end of a web application, but you’ll implement a
basic page so you can test your service and see it in action. Stripe offers a couple
of ways to create your own payment form:

¡	Mobile SDK

¡	Checkout

¡	Stripe.js and Elements

Because you want the form displayed in the browser, the Mobile SDK option
doesn’t suit you. Checkout is an already prepared, embedded HTML form, sim-
ple and quick to use, whereas using Stripe.js and Elements enables you to create
your own style of form. Because you’re using the form just to test, the best choice
is the Checkout option.

2 Receive the secure token from Stripe —The Stripe payment form, in your case Check-
out, requires a web service endpoint. This means that in addition to the payment
form, you’ll also need to implement a serverless payment API endpoint to receive
the secure Stripe data. You’ll create a serverless payment function that will receive
the token.

3 Create a charge using the secure token —Upon receiving the token, your serverless
payment service will invoke the Stripe API to charge the customer’s card with the
specified amount, currency, and token.

4 Update the pizza order information based on the payment —If the charge is successfully
created, you’ll need to find the customer’s order in the DynamoDB table and
update its status to paid (figure 12.6).

This all seems easy enough, so let’s get started.

Customer
Stripe

Checkout
Form

Stripe

Serverless
Payment
Service

DynamoDB
Card data

Card
data

Update
the order

Secure
Stripe
token

Charge

Reply

1. The customer is entering data
on your page, and the Stripe
Checkout form is automatically
sending it to Stripe.

2. After verification, Stripe will send a
token representing the securely stored
customer data to your payment
service endpoint, along with the data
from the payment form.

4. If the charge is successful,
you update the pizza order in
your database.

3. Using the secure token, you
create a Stripe charge request.

Figure 12.6 The flow diagram illustrating the Stripe payment process with the use of its
secure token to create a card charge

 225Implementing your payment service

12.2 Implementing your payment service
Your payment process consists of a payment service and an HTML document, so the
first step is to choose which one to start with. We recommend that you start with the
payment service, because you’ll need to specify the URL of your deployed payment
service on the Stripe Checkout form in the HTML document.

To start, create a new top-level project folder named pizzeria-payments and navigate
to it in your terminal.

NOTE You may be wondering why you’re creating a new, separate project. With
serverless and AWS Lambda functions, we recommend that you write your
services as independent functions or components. Having a loose coupling
between your services provides the following benefits:

¡	Increased service stability—If one of your services fails, the others will stay alive,
unlike in a monolithic application, where one service crashing brings the whole
application down.

¡	Increased maintainability—Smaller services have a smaller scope, providing clarity
and ease of maintenance.

¡	Reusability—Each function can later be slightly modified or even completely
reused by some other project your company might be working on.

While in the folder, create your NPM package.json file by running the command npm
init -y. Then install the required Claudia API Builder and AWS SDK libraries by run-
ning the npm install -S claudia-api-builder aws-sdk command. Because you’re
using Stripe as a payment processor, you’ll also need to run npm install -S stripe to
install Stripe’s open source Node.js SDK—a library to simplify making requests to Stripe.

Your payment service will receive a request with the Stripe secure token along with
the other information required to charge the customer, such as the currency, amount,
and the pizza order ID. It will then make a charge request to Stripe using the Stripe
Node.js SDK and the received payment information. If the charge is successful, Stripe
returns the charge made, so your service should then make another request to the
DynamoDB table pizza-orders to update the pizza order corresponding to the pro-
vided order ID. After that, your service should return a success message.

Before we show you the implementation, take a few minutes to think about how you
would write a testable serverless payment service using Hexagonal Architecture from
the start. Which boundary objects will you need?

This exercise should bring you to the conclusion that you need three boundary objects:

¡	PaymentRequest—A boundary object with values coming from the Stripe charge
request

¡	PaymentRepository—A boundary object with a createCharge method to create
a charge in the DynamoDB pizza-orders database table

¡	PizzaOrderRepository—A boundary object with an updateOrderStatus
method to update the DynamoDB pizza-orders database table

226 chapter 12 Paying for pizza

You’re going to have the following four files in your service:

¡	The main service file, payment.js, which is the starting file, with an exposed POST
endpoint built with Claudia API Builder

¡	A create-charge.js file, which is responsible for the business logic of creating a
payment charge

¡	A payment-repository.js file, which is responsible for communicating with Stripe
and has only one method, createCharge

¡	An order-repository.js file, which is responsible for communicating with
AWS DynamoDB to update the pizza order with the new processed payment
information

First, you’ll create your payment.js file. In this file, you’ll first define a charge request
to Stripe containing the Stripe token, charge amount, and currency, and the order ID
inside a metadata attribute. The reason for this request is because Stripe doesn’t allow
additional parameters to be sent through its calls. It allows only a metadata property
to pass a string. Stripe does not look into that property. Then you need to invoke the
createCharge function imported from the create-charge.js file. If it’s successful, send
a success message. If not, send a message containing the error report. The contents of
the payment.js file are shown in the following listing.

Listing 12.1 The payment.js file with a POST endpoint to accept incoming Stripe
requests

'use strict'

const ApiBuilder = require('claudia-api-builder')
const api = new ApiBuilder()
const createCharge = require('./create-charge')

api.post('/create-charge', request => {

 let paymentRequest = {
 token: request.body.stripeToken,
 amount: request.body.amount,
 currency: request.body.currency,
 orderId: request.body.metadata
 }

 return createCharge(paymentRequest)
 .then(charge => {
 return { message: 'Payment Initiated!', charge: charge }

Load the Claudia API
Builder instance.

Load the create-charge.js
business logic file.

Set up a POST /create-charge
API endpoint.

Create the paymentRequest
boundary object.

Set the orderId attribute in the
metadata attribute.

Invoke the createCharge
function.

If it’s
successful,
send a
success
message.

 227Implementing your payment service

 }).catch(err => {
 return { message: 'Payment Initialization Error', error: err }
 })
})

module.exports = api

Next, create the create-charge.js file inside the project root. It should first load the
payment- repository.js file (for dealing with Stripe API protocols) and the order- repository
.js file (for dealing with AWS DynamoDB pizza order protocols), then expose the func-
tion to accept a payment request. You should provide a payment description explaining
the charge to the customer, then invoke the paymentRepository.createCharge func-
tion with the provided token, amount, and currency values to create a payment charge.
When this is done, invoke the orderRepository.updateOrderStatus method with the
provided orderId representing the ID of the order for which the payment was made.
The contents of the create-charge.js file are shown in the following listing.

Listing 12.2 The create-charge.js file that contains the business logic

'use strict'
const paymentRepository = require('./repositories/payment-repository.js')
const orderRepository = require('./repositories/order-repository.js')

module.exports = function (paymentRequest) {
 let paymentDescription = 'Pizza order payment'
 return paymentRepository.createCharge(paymentRequest.token, paymentRequest.

amount,
 paymentRequest.currency, paymentDescription)
 .then(() => orderRepository.updateOrderStatus(paymentRequest.orderId))
}

Now let’s continue with the implementation of the createCharge method in the
payment -repository.js file. First, though, you need to organize the project properly, so
create a repositories folder in your project root and navigate to it. Then create the
payment-repository.js file, which defines an object containing a single method to cre-
ate a Stripe charge by invoking the stripe.charges.create method. The parame-
ters passed to the stripe.charges.create method are the stripeToken (the token
corresponding to the customer transaction), the amount to charge the customer, the
desired currency (the amount is in cents if the provided currency value is usd or eur),
and a description of the transaction. The contents of the file are shown in the follow-
ing listing.

In the case of an error, send back a
message with the error.

Export your payment service API.

Load the paymentRepository
boundary object. Load the orderRepository

boundary object.

Provide a
description

for the
charge.

Invoke the createCharge method.

Invoke the updateOrderStatus
method.

228 chapter 12 Paying for pizza

Listing 12.3 The payment-repository.js file defining the createCharge method

'use strict'
const stripe = require('stripe')(process.env.STRIPE_SECRET_KEY)

module.exports = {
 createCharge: function (stripeToken, amount, currency, description){
 return stripe.charges.create({
 source: stripeToken,
 amount: amount,
 currency: currency,
 description: description
 })
 }
}

The implementation of the Stripe protocol in the payment-repository.js file could eas-
ily be replaced with the implementation for Braintree or some other payment proces-
sor, but that’s left as an exercise for the reader.

Now let’s unwrap the last piece: the order-repository.js file, which is responsible for
updating the status of the order in the pizza-orders DynamoDB table to paid.

Listing 12.4 The order-repository.js file that updates the order status in the
DynamoDB database table

'use strict'
const AWS = require('aws-sdk')
const docClient = new AWS.DynamoDB.DocumentClient()

module.exports = {
 updateOrderStatus: function (orderId) {
 return docClient.put({
 TableName: 'pizza-orders',
 Key: {
 orderId: orderId
 },
 UpdateExpression: 'set orderStatus = :s',
 ExpressionAttributeValues: {
 ':s': 'paid'
 }
 }).promise()
 }
}

By applying the principles of Hexagonal Architecture, not only did you make this pay-
ment service more testable, but you can now easily replace DynamoDB and try out
Amazon Aurora or even the Amazon Relational Database Service (Amazon RDS).

Instantiate the Stripe SDK with
your STRIPE_SECRET_KEY.

Invoke the stripe.
charges.create
function to create a
charge.

Load the DynamoDB
DocumentClient.

Define the updateOrderStatus
function with orderId as a parameter.

Update the orderStatus of
the specified orderId key.

Set the attribute
value to paid.

 229Implementing your payment service

The last step in implementing your payment service is to use Claudia to deploy your
new API. In your terminal, while in the project root folder, run the following command
to return the URL of your newly created API:

claudia create --region us-east-1 --api-module payment --set-env STRIPE_
SECRET_KEY=<your-stripe-secret-key>

Copy and save the URL in a temporary document to use for the HTML form you’re
going to make. The only thing that remains is to create your HTML document.

Because you want this serverless payment service to be reusable and have a single pur-
pose, you can’t put the HTML document inside it. So, create a separate project folder
named payment-form, and inside it create an HTML document named payment-form.
html. In the HTML body element, you’ll create a form element with the action attri-
bute pointing to the URL of your newly created serverless payment service. Inside it,
create a script element to load the Stripe Checkout form. This script element needs

¡	A data-key attribute (starting with pk_test_)
¡	A data-amount attribute, representing the amount you want to charge (in cents,

for the USD or EUR currencies)
¡	A data-name attribute, showing the name of your Stripe payment window
¡	A data-description attribute, describing your Stripe payment transaction
¡	A data-image attribute, if you want to include a URL for a logo or image to dis-

play in the loaded form
¡	A data-locale attribute specifying the locale (you can set this to auto to display

the form in the user’s preferred language, if available)
¡	A data-zip-code attribute indicating whether to collect the customer’s zip code

(a Boolean value)
¡	A data-currency attribute, representing the currency short code for the

transaction

The contents of the payment-form.html file are shown in the following listing.

Listing 12.5 The payment-form.html file representing the payment page

<html>
<head>
</head>
<body>
<form action="<paste-your-function-url-here>" method="POST">
 <script
 src="https://checkout.stripe.com/checkout.js" class="stripe-button"
 data-key="<your-stripe-public-key>"
 data-amount="100"
 data-name="Demo Site"
 data-description="2 widgets"

Create a new
form element.

Create the script element to
load the Stripe Checkout form.

Your Stripe public key
The charge

amount

Your Stripe payment
window name

The Stripe payment transaction
description

230 chapter 12 Paying for pizza

 data-image="https://stripe.com/img/documentation/checkout/marketplace.
png"

 data-locale="auto"
 data-zip-code="true"
 data-currency="usd">
 </script>
</form>
</body>
</html>

After you’ve created the payment-form.html file, open it in your browser. You’ll see the
Pay button from Stripe in the loaded window. Click it, and the Stripe payment form will
appear with the $1 price defined in the example (data-amount="100"). The payment
form that loads should look something like figure 12.7.

NOTE If you don’t see the Pay button, make sure you followed all the steps
outlined in this chapter. If you haven’t obtained the Stripe API keys yet, please
refer to “Setting up your Stripe account and retrieving Stripe API keys” in
appendix C for instructions or, if you already have an account, log into the
Stripe Dashboard and go to the API keys page at https://dashboard.stripe
.com/account/apikeys.

To test your payment service in addition to the payment form, use the following data:

¡	A test card number of 4242 4242 4242 4242 (take a look at https://stripe.com/
docs/testing#cards, too)

¡	Any future month and year for the expiration date
¡	Any three-digit number for the card verification code

The URL for a logo or image to
display in the loaded form.

The locale

The zip
code check The currency short code

Figure 12.7 The payment form

https://dashboard.stripe.com/account/apikeys
https://dashboard.stripe.com/account/apikeys
https://stripe.com/docs/testing#cards
https://stripe.com/docs/testing#cards

 231Could someone hack your payment service?

¡	Any random zip code
¡	Any email address

Then tap “Pay $1”.
That’s it. After a moment or two, your payment should process. Take a look at your

pizza-orders DynamoDB table, and you should see that the pizza order status was
updated to paid. Also, be sure to look at your Stripe Dashboard (https://dashboard
.stripe.com/test/dashboard) to see the payment. You can look at your CloudWatch
logs, too, to see what went right or, in the case of errors, what went wrong.

As you can see, developing and maintaining a serverless payment service is quite easy
with Claudia.js and Claudia API Builder. But what about security?

12.3 Could someone hack your payment service?
Having no control over your infrastructure or your environment may be troubling.
How do you know there isn’t a malicious service running in the background, stealing
your customers' credit card details? And what about the risk of a big data breach or
fraud that could ruin your business?

You can’t know what’s going on in the background with your serverless provider.
These fears are plausible, because breaches or hacks can occur and wreak havoc in your
organization. But two factors are often overlooked that can play a big part in security:

¡	Standards
¡	Competence

12.3.1 Standards

Having a safe and secure payment processing service is essential, not just for you but
for your customers as well. Therefore, security is one of the top priorities in almost
every company—at least on paper. Security is evolving constantly, with new issues dis-
covered every day. Naturally, over time, most of the common best practices have con-
verged into a standard, and a body for standards has appeared as well.

The standards body is the Payment Card Industry Security Standards Council, or PCI
SSC, a security body responsible for defining and enforcing secure and safe payments
and customer data handling practices. The main standard enforced for payment secu-
rity is the Payment Card Industry Data Security Standard, or PCI DSS.

Services that adhere to the standard are termed PCI DSS-compliant.

what is pci dss compliance?
PCI DSS sets the requirements for organizations and sellers to safely and securely
accept, store, process, and transmit cardholder data during credit card transactions to
prevent fraud and data breaches. Being PCI DSS-compliant means that you’re securely
handling cardholder data during a transaction.

You need to meet many requirements to be PCI DSS-compliant, such as setting up
firewall configurations, encrypting transaction data, restricting physical access to data,

https://dashboard.stripe.com/test/dashboard
https://dashboard.stripe.com/test/dashboard

232 chapter 12 Paying for pizza

implementing internal company security policies, and so on. To read more about it,
download the standard directly from https://www.pcisecuritystandards.org/documents/
PCI_DSS_v3-1.pdf.

Currently, almost all the most-used serverless providers are PCI DSS-compliant,
including

¡	AWS Lambda
¡	Microsoft Azure Functions
¡	Google Cloud Functions
¡	IBM OpenWhisk

To read more about PCI DSS compliance, see the main portal at https://www
.pcisecuritystandards.org.

NOTE Even though AWS Lambda is PCI-DSS compliant it doesn’t mean that
your service is automatically PCI DSS-compliant, too. Your serverless provider
being compliant means that you don’t have to think about the infrastructure
layer for PCI compliance. But you still need to think about your codebase and
company way of processing and handling payment-sensitive information.

12.3.2 Competence

Security breaches and frauds are almost always possible. Many companies and engi-
neers question the security competence of their infrastructure providers, or in this
case their serverless providers. Some even try to develop security themselves, despite
the strictness required to achieve PCI compliance.

Even if this effort might be valid in some cases, if you’re tempted to do this, give some
thought to whether you or your company are likely to be more competent at securing
your data or implementing security than the most-used serverless providers, such as
Amazon AWS, Microsoft Azure, Google Cloud, or others.

The security responsibilities involved in payment processing are massive, and get-
ting it wrong can cause a significant blow to you or your customers. Therefore, having
a competent and PCI-compliant serverless provider should be one the top priorities
when developing your serverless applications.

12.4 Taste it!
As you can see, implementing a serverless payment service is easy and doesn’t take
much time. But it’s again time for you to try out what you’ve learned!

12.4.1 Exercise

Your exercise for this chapter is to create a new serverless function that will return a
list of the charges you’ve previously created. You must do this by applying Hexagonal
Architecture. Before you start, here’s some information about Stripe’s API:

¡	To retrieve all previously created charges, you’ll need to use the Stripe list-
Charges method; you can learn more about it at https://stripe.com/docs/
api#list_charges.

https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-1.pdf
https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-1.pdf
https://www.pcisecuritystandards.org
https://www.pcisecuritystandards.org
https://stripe.com/docs/api#list_charges
https://stripe.com/docs/api#list_charges

 233Taste it!

¡	You need to set it up with your STRIPE_SECRET_KEY and deploy the serverless
function using Claudia’s --set-env config option.

¡	The charge-listing service should return an empty list if there are no charges.

If that’s enough information, go ahead and try it on your own. If you need additional
tips, here are a few more:

¡	You need to create an API endpoint called GET /charges using Claudia API
Builder.

¡	You need to create a ChargeRepository.

If you need more help, or you want to see the solution, check out the next section.

12.4.2 Solution

It’s time to look at the solution. First, here’s an overview of the whole flow.
When a request arrives at your GET /charges API endpoint, you should parse it and

call the getAllCharges method of ChargesRepository. The getAllCharges method
should call stripe.charges.create with no passed parameters. Afterward, it should
parse the Stripe response object and return the list from the data attribute. This list
should be sent as an array to the client.

First, create a project folder named charges. Inside that folder, run the command
npm init -y and then the command npm install -S claudia-api-builder stripe.
Then create the following two files:

¡	payment.js, in the project root
¡	payment-repository.js, in the repositories folder inside your project

The following two listings are the complete charge-listing code. First is the payment.js
file, with a POST /charges endpoint to accept the incoming Stripe requests. The end-
point handler needs to call the paymentRepository.getAllCharges method to get all
charges. If it’s successful, it needs to return them, without any additional logic. If not,
send a message back to the client, with the error property containing the error.

Listing 12.6 The payment.js file

'use strict'

const ApiBuilder = require('claudia-api-builder')
const api = new ApiBuilder()
const paymentRepository = require('./repositories/payment-repository')

api.get('/charges', request => {

 return paymentRepository.getAllCharges()
 .catch(err => {

Load the Claudia API
Builder instance.

Load your payment-
repository.js file.

Set up a GET /charges
API endpoint.

Invoke the paymentRepository.
getAllCharges method.

If unsuccessful,
send the error.

234 chapter 12 Paying for pizza

 return { message: 'Charges Listing Error', error: err }
 })
})

module.exports = api

The following listing shows the content of the payment-repository.js file, responsible
for retrieving all the Stripe charges you’ve made. It exposes a getAllCharges method,
which invokes the stripe.charges.list method without any parameters, because
you need to display all charges.

Listing 12.7 The payment-repository.js file

'use strict'
const stripe = require('stripe')(process.env.STRIPE_SECRET_KEY)

module.exports = {
 getAllCharges: function (){
 return stripe.charges.list()
 .then(response => response.data)
 }
}

Summary

¡	Knowing how to implement payments is essential for every application, regard-
less of whether it’s serverless or not.

¡	Implementing payment processing as an independent serverless service is import-
ant, because you want it to be stable and independent from the other services
within your application.

¡	Integrating Stripe with your payment service on AWS Lambda is easy.
¡	A nicely designed and independent payment service can later be reused by your

other products or services.
¡	Having no control over your infrastructure is not an excuse for having less

security.
¡	A good indicator of whether your payment service is safe is whether your server-

less provider is PCI DSS-compliant.
¡	PCI compliance is necessary when using a serverless provider, because it provides

the level of safety and security you need.

Export your charge-listing
service API.

Instantiate the Stripe SDK with
the STRIPE_SECRET_KEY.

Invoke the stripe.charges.list
method.

Return the response.data
containing the list of charges.

235

13Migrating your existing
Express.js app to AWS Lambda

This chapter covers
¡	Running Express.js applications in AWS

Lambda and the serverless ecosystem

¡	Serving static content from an Express.js
application

¡	Connecting to MongoDB from a serverless
Express.js application

¡	Understanding the limitations and risks of
Express.js apps in a serverless ecosystem

Express.js is the most important and most used Node.js framework. That’s not with-
out reason: Express.js is easy to use and has a large ecosystem of middleware that
can help you build an API or server-rendered web application. But using Express.js
still requires a server that will host the application, which means we’re back to the
problems this book tries to solve by using serverless technologies. Is there a way to
keep your existing Express.js application and still have all the benefits of serverless?

The Express.js web application framework is basically an HTTP server. Serverless
applications do not need HTTP servers, because HTTP requests are handled by API
Gateway. But fortunately, there is a way to use an existing Express.js application in AWS
Lambda with minor modifications. This chapter teaches you how to do that, and it also
presents some of the most important limitations of serverless Express.js applications.

236 chapter 13 Migrating your existing Express.js app to AWS Lambda

13.1 Uncle Roberto’s taxi application
During your big family reunion, Aunt Maria brags about her new online business. It’s
better than ever, but she says best of all is that the new app just works—whether it needs
to handle a single order or a few dozen at the same time, everything works.

Her brother, your Uncle Roberto, tells her she’s lucky. He has many problems with
his taxi company’s app. The app itself is nice, but it crashes often when more ride
requests than usual are coming in—for example, when it’s raining. Unfortunately, his
IT team is not very responsive in those situations, and he’s losing customers and money.

Roberto asks how you performed your magic for Aunt Maria, and wonders if it would
work for his app, too. You explain that it depends on the technology his app is using.

A few days later, you receive a message explaining that the taxi app is using Express.js
and MongoDB. It’s hosted on some small virtual private server that serves the RESTful
API for the mobile app, and it uses server-rendered HTML pages for the admin panel.
Overall, it sounds like a typical Express.js application. You agree to do some research
and let Uncle Roberto know in a few days if you can do something to help him out.

13.2 Running an Express.js application in AWS Lambda
Before you start your investigation, you need to create a simple Express.js app. You’ll
use that app to test how Express.js works in AWS Lambda. To do so, create a new project
folder and name it simple-express-app. Then initiate a new NPM project in it, and install
Express.js as a dependency by running the npm i express -S command.

As a first test, you should create one file with one Express.js route, and try to run it in
AWS Lambda. Create the file app.js in your simple-express-app folder.

In this file, require the express module and create a new Express app with it. Then
add a GET / route that will return the text “Hello World.” Finally, define the port the
application will use and start the server using the server.listen function.

At this point, your app.js file should look similar to the next listing.

Listing 13.1 Express.js app

'use strict'

const express = require('express')
const app = express()

app.get('/', (req, res) => res.send('Hello World'))

const port = process.env.PORT || 3000
app.listen(port, () => console.log(`App listening on port ${port}`))

Then run your simple Express.js app using the following command:

node app.js

Create the Express.js application.

Create the GET route that answers
with the “Hello World” text.

Set the port to PORT passed via an
environment variable, or port 3000.

Start the application on the defined port.

 237Running an Express.js application in AWS Lambda

Unless something else is running on port 3000, this command will start your local
server. If you visit http://localhost:3000 in your web browser, you should see the “Hello
World” text.

The easiest way to run the existing Express.js app in AWS Lambda is by using the
aws-serverless-express Node.js module. This module requires only minor changes
in the Express.js app you created.

To prepare your app for AWS Lambda and API Gateway, open your app.js file and
replace the app.listen function with a simple export, as shown in the next listing. This
export allows the Express.js wrapper in AWS Lambda to require your app.

Listing 13.2 Express.js app modified for AWS Lambda

'use strict'

const express = require('express')
const app = express()

app.get('/', (req, res) => res.send('Hello World'))

module.exports = app

But doing this will break your Express.js app on localhost; you’ll no longer be able to
run a local version using the node app.js command.

To fix that issue, create another file in the project folder, and name it app.local.js.
This file should require your Express.js app from the app.js file, and then invoke the
app.listen function to start a local server on the port you provided.

Your app.local.js file should look like the following listing.

Listing 13.3 Running the wrapped Express.js app locally

'use strict'

const app = require('./app')

const port = process.env.PORT || 3000
app.listen(port, () => console.log(`App listening on port ${port}`))

To confirm that the local version of the Express.js app still works as expected, run the
following command:

node app.local.js

This command should show the “Hello World” text on http://localhost:3000 (unless
you specified another port).

Now that the local version works, it’s time to generate a wrapper for your Express.js
app. The easiest way to generate the wrapper is by using the claudia generate-server-
less-express-proxy command. This command requires the --express-module option
with a path to your main file without the .js extension. For example, you should run the
following command when your index file is app.js:

claudia generate-serverless-express-proxy --express-module app

Export the application
instance instead of running
the app.listen function.

Require the application from the app.js file.

Define the port and start the application.

238 chapter 13 Migrating your existing Express.js app to AWS Lambda

NOTE You need Claudia version 3.3.1 or higher to follow along with the rest of
the code in this chapter.

This command generates a file named lambda.js and installs the aws-serverless
-express module as a development dependency.

The file created by this command is a wrapper that runs your Express.js app in AWS
Lambda. It is using the awsServerlessExpress.createServer function to start your
Express.js app inside your Lambda function. Then, it uses the awsServerlessExpress.
proxy function to transform an API Gateway request to an HTTP request and pass it to
your Express.js app, and to transform and pass the response back to API Gateway.

The contents of the file are shown in the next listing.

Listing 13.4 AWS Lambda wrapper for Express.js apps

'use strict'
const awsServerlessExpress = require('aws-serverless-express')
const app = require('./app')
const binaryMimeTypes = [
 'application/octet-stream',
 'font/eot',
 'font/opentype',
 'font/otf',
 'image/jpeg',
 'image/png',
 'image/svg+xml'
]
const server = awsServerlessExpress.createServer(app, null, binaryMimeTypes)
exports.handler = (event, context) => awsServerlessExpress.proxy(server,

event, context)

The next step is to deploy your API to AWS Lambda and API Gateway. You can do that
with the claudia create command, but with an important difference from the APIs
used in the previous chapters: you need to invoke it with the --handler option instead
of --api-module, and also with --deploy-proxy-api. This will set up a proxy inte-
gration, which means that all requests to API Gateway will be passed directly to your
Lambda function.

To deploy your Express.js app, run the following command:

claudia create --handler lambda.handler --deploy-proxy-api --region eu-
central-1

When the command executes successfully, the response should look similar to the
next listing.

Require the aws
-serverless
-express module.Require the application

from the app.js file.

These are the whitelist
MIME types that will be
transformed and passed
to the Express.js app.

Create an
HTTP server.

Export a handler function that proxies
the event to the Express.js application.

 239Running an Express.js application in AWS Lambda

Listing 13.5 The deployment result

{
 "lambda": {
 "role": "simple-express-app-executor",
 "name": "simple-express-app",
 "region": "eu-central-1"
 },
 "api": {
 "id": "8qc6lgqcs5",
 "url": "https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest"
 }
}

As you can see, the response is extended with the url parameter. And if you visit the
URL (in our case, it’s https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/
latest), you should see the “Hello World” text.

13.2.1 Proxy integration

As you learned in chapter 2, API Gateway can be used in the following two modes:

¡	With models and mapped templates for requests and responses
¡	With proxy pass-through integration

The first mode is useful for typed languages, such as Java and .Net, but because Claudia
is focused only on JavaScript, it always uses the second approach. With this approach,
API Gateway passes any requests directly to your AWS Lambda function, which is
responsible for routing and managing the requests.

When you deploy a proxy API for Express.js app, Claudia does the following things
for you:

¡	Creates a proxy resource with a greedy path variable of {proxy+}
¡	Sets the ANY method on the proxy resource
¡	Integrates the resource and method with the Lambda function

To learn more about proxy integration, see https://docs.aws.amazon.com/apigateway/
latest/developerguide/api-gateway-set-up-simple-proxy.html.

13.2.2 How serverless-express works

The Express.js app is a small local HTTP server inside your AWS Lambda function, and
the serverless-express module acts as a proxy between an API Gateway event and that
local HTTP server.

When the user sends an HTTP request, API Gateway passes that request to your AWS
Lambda function. In your function, serverless-express spins up the Express.js server
and caches it for repeated invocations, and then transforms the API Gateway event to
an HTTP request passed to the local Express.js app.

A proxy API URL

https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-set-up-simple-proxy.html

240 chapter 13 Migrating your existing Express.js app to AWS Lambda

Then your Express.js app goes through its regular flow—the router routes the
request to the selected handler, and all middleware functions are applied. When
Express.js sends the response, the serverless-express module transforms it to the
format that is expected by API Gateway, which then sends the reply back to the user.
The request flow is depicted in figure 13.1.

Is running an HTTP server inside AWS Lambda an antipattern?
Serverless applications are still new, so patterns and best practices are still not fully
formed. They change with each new feature. Running an HTTP server inside AWS Lambda
sounds like an antipattern, and it has multiple downsides, such as increased execution
time and function size. But it also has many upsides, such as preserving the existing
codebase and avoiding vendor lock-in. Another reason why it can’t be called an antipat-
tern is that AWS Lambda with the GoLang runtime uses a similar approach to run the
function.

13.3 Serving static content
Another scenario you want to test is serving static content from an Express.js app,
because Uncle Roberto’s admin panel works that way.

To do so, you need a simple static HTML page to test. Any page that includes at least
one image and a simple CSS file will work for this test, because that will allow you to test
a few different file types.

Router

Handler

Express.js app

API Gateway

Browser

AWS Lambda function

Serverless
Express
wrapper

1. Browser sends
the HTTP request.

2. API Gateway receives
the request, parse it
and proxy it to AWS
Lambda function.

3. Lambda function receives the
request, starts the Express.js app,
and passes the request to it.

4. Express.js in
serverless
application works
the same as any
other Express.js
application; it uses
router to route the
request to the
handler function,
and then it process
the request in the
handler function
and middleware
functions, if they
are defined.

5. …6. …7. Browser receives
the HTTP response.

Figure 13.1 The flow of a serverless Express.js application

 241Serving static content

The first step is to create a new folder named static inside your Express.js project.
Then create an index.html file that loads style.css, shows some title text, and shows an
image such as the Claudia logo (claudiajs.png). Both the CSS and the logo image will
be loaded from the static folder.

Your index.html file should look like the following listing.

Listing 13.6 The index.html file

<!doctype html>
<html>
 <head>
 <title>Static site</title>
 <link rel="stylesheet" href="style.css">
 </head>
 <body>
 <h1>Hello from serverless Express.js app</h1>

 </body>
</html>

Next, add the Claudia logo to the static folder (you can find it in source code you
got with this book or on the Claudia website), and create the style.css file in the
same folder.

This CSS file doesn’t need to do anything specific, but feel free to be creative. As
a simple example, you can style the title to be in Claudia’s blue color and to have a
shadow, and center the logo below it. The next listing shows what your CSS file might
look like.

Listing 13.7 The style.css file

body {
 margin: 0;
}

h1 {
 color: #71c8e7;
 font-family: sans-serif;
 text-align: center;
 text-shadow: 1px 2px 0px #00a3da;
}

img {
 display: block;
 margin: 40px auto;
 width: 80%;
 max-width: 400px;
}

Then, update the app.js file to serve the static content from the static folder. To do
that, you should use the express.static middleware, and your code should look like
the following listing.

Load the CSS file.

This is the title text.

Show the claudiajs.png
image on the page.

242 chapter 13 Migrating your existing Express.js app to AWS Lambda

Listing 13.8 Serving static content in the Express.js app

'use strict'

const express = require('express')
const app = express()

app.use('/static', express.static('static'))

app.get('/', (req, res) => res.send('Hello World'))

module.exports = app

Now that everything is ready, you can confirm that the Express.js app is work-
ing locally by running the command node app.local.js again, and visiting http://
localhost:3000/static.

If everything is okay locally, update your app by running the following command:

claudia update

Wait for the command to finish, and load https://8qc6lgqcs5.execute-api.eu-central-1
.amazonaws.com/latest/static/ in your browser. You should see your static HTML page
with the Claudia logo, similar to figure 13.2.

NOTE A trailing slash is required for this URL. If you try to load the page with-
out it (if you enter https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws
.com/latest/static), the page load will fail.

13.4 Connecting to MongoDB
So far, everything seems to work just fine with only minor modifications. But can you
connect AWS Lambda to MongoDB?

You can connect AWS Lambda to any database, but if the database is not serverless,
you’ll run into problems when your function scales up and tries to establish too many
database connections, because the database will not scale automatically.

To make sure your database can work with an AWS Lambda function, you have the
following options:

¡	Make sure your database can scale quickly.
¡	Limit your AWS Lambda concurrency to something your database can handle.
¡	Use a managed database.

The first option requires DevOps and a good understanding of databases, both of
which are beyond the scope of this book.

The second option works, but having more users than your concurrent execution
limit would result in an error for each user after the limit is reached. If you want to learn
more about managing AWS concurrency, visit https://docs.aws.amazon.com/lambda/
latest/dg/concurrent-executions.html.

Serve static content
from the static folder.

Figure 13.2 A static HTML page served from Express.js on AWS Lambda.

https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static/
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static/
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html

 243Connecting to MongoDB

The last option is the easiest and probably the best one, so let’s take a look at it. For
MongoDB, which Uncle Roberto’s app is using, you can use MongoDB Atlas, offered by
MongoDB, Inc. It hosts the database on one of a few supported cloud providers, includ-
ing AWS. For more information about MongoDB Atlas, see https://www.mongodb.com/
cloud/atlas.

13.4.1 Using a managed MongoDB database with your serverless
Express.js app

Your first step is to create a MongoDB Atlas account and create the database, as
described in appendix C.

You need to modify the app.js file to connect to MongoDB. To do so, you’ll need to
install the mongodb and body-parser NPM modules as dependencies of your Express.
js projects. The first allows you to connect to your MongoDB database, and the second
allows your Express.js app to parse POST requests.

Listing 13.8 Serving static content in the Express.js app

'use strict'

const express = require('express')
const app = express()

app.use('/static', express.static('static'))

app.get('/', (req, res) => res.send('Hello World'))

module.exports = app

Now that everything is ready, you can confirm that the Express.js app is work-
ing locally by running the command node app.local.js again, and visiting http://
localhost:3000/static.

If everything is okay locally, update your app by running the following command:

claudia update

Wait for the command to finish, and load https://8qc6lgqcs5.execute-api.eu-central-1
.amazonaws.com/latest/static/ in your browser. You should see your static HTML page
with the Claudia logo, similar to figure 13.2.

NOTE A trailing slash is required for this URL. If you try to load the page with-
out it (if you enter https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws
.com/latest/static), the page load will fail.

13.4 Connecting to MongoDB
So far, everything seems to work just fine with only minor modifications. But can you
connect AWS Lambda to MongoDB?

You can connect AWS Lambda to any database, but if the database is not serverless,
you’ll run into problems when your function scales up and tries to establish too many
database connections, because the database will not scale automatically.

To make sure your database can work with an AWS Lambda function, you have the
following options:

¡	Make sure your database can scale quickly.
¡	Limit your AWS Lambda concurrency to something your database can handle.
¡	Use a managed database.

The first option requires DevOps and a good understanding of databases, both of
which are beyond the scope of this book.

The second option works, but having more users than your concurrent execution
limit would result in an error for each user after the limit is reached. If you want to learn
more about managing AWS concurrency, visit https://docs.aws.amazon.com/lambda/
latest/dg/concurrent-executions.html.

Serve static content
from the static folder.

Figure 13.2 A static HTML page served from Express.js on AWS Lambda.

https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static/
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static/
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/static
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html

244 chapter 13 Migrating your existing Express.js app to AWS Lambda

After you install the modules, you’ll create a connection to the database. AWS
Lambda functions are not really stateless, because the same container might be reused
if your function is invoked again within the next few minutes. This means that every-
thing outside of your handler function will be preserved, and you can reuse the same
MongoDB connection.

For example, if you store your database connection outside of your handler func-
tion, you can check if the connection is still active with the following function:

cachedDb.serverConfig.isConnected()

If the connection is still active, you should reuse it. If the database connection is not
active, you can create a new one using the MongoClient.connect function and cache it
before returning the connection. Then you should activate the body-parser module
using Express.js middleware.

Reusing the existing database connection is important, because each database has
a maximum number of concurrent incoming connections. For example, a free Mon-
goDB Atlas instance has a maximum of 100 concurrent connections, which means that
having more than 100 Lambda functions connecting at approximately the same time
will cause some failed requests. Reusing existing connections can help with this issue,
and it can also lower the latency, because each database connection takes some time to
be established.

The flow of the MongoDB connection from your Lambda function is shown in
figure 13.3.

At this point, the beginning of your app.js file should look like the next listing.

AWS Lambda
function

Create
MongoDB
connection

MongoDB queryTrigger

Cache
MongoDB
connection

is active ?

API Gateway
triggers AWS
Lambda function.

AWS Lambda checks
if MongoDB
connection is cached.

If connection is not
cached, create a new
MongoDB connection.

Cache connection

Do a MongoDB
query.

Return MongoDB
response to AWS
Lambda

AWS Lambda
function response

Figure 13.3 The flow of caching and reusing a MongoDB connection

 245Connecting to MongoDB

Listing 13.9 Beginning of app.js file

const express = require('express')
const app = express()
const { MongoClient } = require('mongodb')
const bodyParser = require('body-parser')

let cachedDb = null

function connectToDatabase(uri) {
 if (cachedDb && cachedDb.serverConfig.isConnected()) {
 console.log('=> using cached database instance')
 return Promise.resolve(cachedDb)
 }

 return MongoClient.connect(uri)
 .then(client => {
 cachedDb = client.db('taxi')
 console.log('Not cached')
 return cachedDb
 })
}

app.use(bodyParser.json())

Now that you’ve connected your Express.js function to MongoDB, it’s time to test your
database connection. The easiest way to test the connection is by writing something to a
MongoDB collection and then reading the collection to confirm that the item was saved.

To do so, you can add two routes that will be connected to your MongoDB database:
one for writing the data, and one for reading the collection. For example:

¡	A POST /orders route, which will add a new order
¡	A GET /orders route, which will return all the existing orders

With these two new routes, the flow for creating and immediately reading orders will
work like this:

1 A POST /orders request is received by API Gateway and passed to your AWS
Lambda function.

2 The Lambda function starts the Express.js app.

3 The Lambda function then transforms the API Gateway request into an HTTP
request to your Express.js app.

4 The Express.js app checks if a MongoDB connection already exists, and if not
creates a new connection.

5 Your Express.js handler function stores the order in MongoDB and returns the
response.

6 The Lambda function transforms the Express.js reply into the format that API
Gateway expects.

7 API Gateway returns the response to the user.

8 The user sends a GET /orders request immediately after, and API Gateway passes
it to your Lambda function.

Require the mongodb module.

Require the body-parser module.

Cache the database connection.

Connect to the database.

Check if the database
connection is cached,
and if it is, return that
connection.

Otherwise, create a new
connection and cache it.

Enable body parser middleware.

246 chapter 13 Migrating your existing Express.js app to AWS Lambda

9 The Lambda function transforms the request and passes it to an existing instance
of the Express.js app.

10 The Express.js app checks if a MongoDB connection exists and, because it does,
uses it to get all the orders from the database.

11 The Lambda function receives a response from Express.js, transforms it, and
passes it to API Gateway.

12 The user receives the response from API Gateway with a list of the orders.

NOTE Both the MongoDB connection and the Express.js app are cached. This
happens once per cold start of the function.

This flow is illustrated in figure 13.4.

API Gateway

Receive
POST /orders

HTTP response

Receive
GET /orders

HTTP response

Start
Express.js app

Connect to
MongoDB

Open
new connection

Store order

Read orders

Insert order into
MongoDB

Order stored

Reuse existing
MongoDB connection

Read orders from
MongoDB

List of orders

Invoke
Express.js app

Transform Express.js
response

Transform Express.js
response

Invoke
Express.js app

AWS Lambda Express.js app MongoDB Atlas

Figure 13.4 The flow for creating and reading orders from MongoDB

 247Connecting to MongoDB

To connect new route handlers to the MongoDB database, you can use the connect-
ToDatabase function you created in the previous step. Pass it the MongoDB connection
string, which can be stored in an environment variable.

After the connection is established, in your GET /orders route you should use the
db.collection('orders').find().toArray() function to get all the items from
the orders collection and convert them to a plain JavaScript array. This command
returns a promise, and when the promise is resolved, you can use the res.send func-
tion from Express.js to send a result or an error.

The only difference for the POST /orders route is that you should insert a new item
into the database instead of getting an item from the database. To do that, use the
db.collection('orders').insertOne function. An order can be a JSON object that
contains an address only.

The routes to add to your app.js file are shown in the following listing.

Listing 13.10 Routes for getting and adding new taxi rides

app.get('/orders', (req, res) => {
 connectToDatabase(process.env.MONGODB_CONNECTION_STRING)
 .then((db) => {
 return db.collection('orders').find().toArray()
 })
 .then(result => {
 return res.send(result)
 })
 .catch(err => res.send(err).status(400))
})

app.post('/orders', (req, res) => {
 connectToDatabase(process.env.MONGODB_CONNECTION_STRING)
 .then((db) => {
 return db.collection('orders').insertOne({
 address: req.body.address
 })
 })
 .then(result => res.send(result).status(201))
 .catch(err => res.send(err).status(400))
})

Now that the MongoDB connection is ready, you can test it locally by running node
app.local.js—but don’t forget to pass the MONGODB_CONNECTION_STRING environment
variable. For example:

MONGODB_CONNECTION_STRING=mongodb://localhost:27017 node app.local.js

If everything works fine locally, run the claudia update command with the --set-env or
--set-env-from-json option, and pass the MONGODB_CONNECTION_STRING. For example,
your command might look like this:

claudia update --set-env MONGODB_CONNECTION_STRING=mongodb://<user>:
<password>@robertostaxicompany-shard-00-00-rs1m4.mongodb.net:27017,
robertostaxicompany-shard-00-01-rs1m4.mongodb.net:27017,robertostaxicompany
-shard-00-02-rs1m4.mongodb.net:27017/taxi?ssl=true&replicaSet=
RobertosTaxiCompany-shard-0&authSource=admin

Add a GET
route.

Get the database
connection.

Find all orders and convert them to an array.

If successful,
return the
result.

If something failed, return
an error with status 400.

Add a POST route.

Insert an order into
the database.

If something failed, return
an error with status 400.

248 chapter 13 Migrating your existing Express.js app to AWS Lambda

NOTE In the source code that accompanies this book, we used the other
method to demonstrate the options you have: The MongoDB connection string
is in the env.json file, and then we used claudia update --set-env-from-json
env.json to pass it to the AWS Lambda function.

You have only one environment variable, so both options will work fine. But we
recommend having a JSON file with the variables if you need more than one vari-
able in your application, because that reduces the command length and decreases
the chance of human error (for example, mistyping a variable name or value).

After your app is deployed, you can try sending a POST request to https://8qc6lgqcs5
.execute-api.eu-central-1.amazonaws.com/latest/orders to add a new order. You can
also visit the same address in your browser to list all the orders: https://8qc6lgqcs5
.execute-api.eu-central-1.amazonaws.com/latest/orders.

13.5 Limitations of serverless Express.js applications
Now that you’ve tested all the most important cases, you can let Uncle Roberto know
that his Express.js application will work in AWS Lambda. He’ll be happy for sure, and
you might end up with a lot of free taxi rides.

But before you do that, it’s important to be aware that there are some limitations for
serverless Express.js apps. Let’s address the most important ones.

First, and probably most obvious, is that you can’t use WebSockets in serverless
Express.js apps. If Uncle Roberto is using WebSockets for real-time communication
between his mobile app and the back end, serverless Express.js will not work as expected.
Some limited support for WebSockets in AWS Lambda can be achieved through AWS
IoT MQTT over the WebSockets protocol. To read more about the MQTT protocol, see
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html#mqtt. For
an example project using Claudia, visit https://github.com/claudiajs/serverless-chat.

Another limitation is related to the file upload functionality. First, if your application
is trying to upload files to any folder except /tmp, the upload will fail, because the rest of
the AWS Lambda disk space is read-only. Even if you’re saving uploaded files to the /tmp
folder, they will exist for a short time. To make sure your upload feature is working, upload
files to AWS S3.

The next limitation is authentication. You can implement authentication in server-
less Express.js apps as you do in any other Express.js app, for example using the Pass-
port.js library, but you need to make sure that the session is not saved on the local
filesystem. Or, if you use native Node.js libraries, you’ll need to have them packaged
into the static binary using an EC2 machine running Amazon Linux. To learn more
about native libraries, also known as Addons, see https://nodejs.org/api/addons.html.

Also, API Gateway has stricter rules than traditionally hosted Express.js apps. For
example, in Node.js and Express.js, you can send a body with a GET request; API Gate-
way will not allow you to do that.

https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/orders
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/orders
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/orders
https://8qc6lgqcs5.execute-api.eu-central-1.amazonaws.com/latest/orders
https://docs.aws.amazon.com/iot/latest/developerguide/protocols.html#mqtt
https://github.com/claudiajs/serverless-chat
https://nodejs.org/api/addons.html

 249Taste it!

Additionally, there are certain execution limits—for example, API Gateway has a tim-
eout of 30 seconds, and AWS Lambda’s maximum execution time is 5 minutes. If your
Express.js app needs more than 30 seconds to reply, the request will fail. Also, if your
Express.js app needs to answer the HTTP request and continue the execution, that will
not work in AWS Lambda because AWS Lambda execution will stop as soon as the HTTP
response is sent. This behavior depends on a callbackWaitsForEmptyEventLoop prop-
erty of Lambda context; the default value for this property is true, and it means that the
callback will wait until the event loop is empty before freezing the process and returning
the results to the caller. You can set this property to false to request AWS Lambda to freeze
the process soon after the callback is called, even if there are events in the event loop.

As long as you have these limitations in mind, your Uncle Roberto’s taxi app will
work fine in AWS Lambda.

13.6 Taste it!
It’s time for a small exercise with Express.js.

13.6.1 Exercise

As an exercise, add a DELETE /order/:id route that will delete a request using the
request ID that is passed as a URL parameter.

Here are a few tips that should help you:

¡	URL parameters are defined in the Express.js way (using :id), not in the API
Gateway and Claudia API Builder way (using {id}).

¡	You can delete an item from MongoDB using the collection.deleteOne
function.

¡	Make sure you convert the order ID to a MongoDB ID using the new mongodb
.ObjectID function.

If you need an additional challenge, try implementing authentication in your Express.
js app. (You can also try running an existing Express.js app in AWS Lambda, if you have
one. There are no tips or a solution for this additional challenge in the next section.)

13.6.2 Solution

The solution for this exercise is similar to implementing the POST /orders route.
You need to add a new DELETE route to your app.js file, using the app.delete method.

Then you need to connect to the database and use the db.collection('orders')
.collection.deleteOne function to delete an item from the orders collection.
Because the order ID is passed as a string, you need to convert it to a MongoDB ID using
the new mongodb.ObjectID(req.params.id) function.

Your new route should look like the following listing.

250 chapter 13 Migrating your existing Express.js app to AWS Lambda

Listing 13.11 The delete order route

app.delete('/orders/id', (req, res) => {

 connectToDatabase(process.env.MONGODB_CONNECTION_STRING)
 .then((db) => {
 return db.collection('orders').collection.deleteOne({
 _id: new mongodb.ObjectID(req.params.id)
 })
 })
 .then(result => res.send(result))
 .catch(err => res.send(err).status(400))
})

After you deploy the function using claudia update, you can test the delete method
using curl or Postman.

NOTE Make sure you set up the MongoDB connection string, by running the
claudia update command with the --set-env or --set-env-from-json option.

Summary

¡	You can run Express.js apps in AWS Lambda using Claudia and the serverless
-express module.

¡	You can serve static pages using serverless Express.js without additional
modifications.

¡	For a MongoDB connection, use a managed MongoDB instance unless you want
to manage the scaling by yourself.

¡	Cache a database connection in a variable outside of the handler function.
¡	There are certain limitations, such as when using WebSockets and for requests

taking longer than 30 seconds.

Add a DELETE /orders/:id route.
Connect to
the database.

Delete an
item from the
database.

Convert the order
ID to a MongoDB ID.

Return the result.

Or return an error with status
400 if something failed.

251

14Migrating to serverless

This chapter covers
¡	Learning how to approach migrating

to serverless

¡	Structuring your app according to serverless
provider characteristics

¡	Organizing your application architecture so it’s
business-oriented and able to grow

¡	Dealing with the architectural differences
between serverless and traditional server-
hosted applications

At some point, you’ll start thinking about how to apply changes to your in-production
serverless applications, migrate your existing apps, and assess the impact of your busi-
ness needs on the migration.

You’ll be concerned with the quantity of your serverless functions and how to
organize and maintain them. You might also start wondering about your serverless
provider’s limitations, such as function “cold starts” and how they may affect your
application. In this chapter, we recap the architecture of a serverless app and then
examine some of these issues, helping you understand the basics of migrating to
serverless and how to take serverless apps into production.

252 chapter 14 Migrating to serverless

14.1 Analyzing your current serverless application
Before any migration to serverless, a good starting point is to look at an existing server-
less application and the organization of its underlying services. Throughout the book,
you’ve helped Aunt Maria and her pizzeria flourish, mostly due to the following server-
less services you’ve created:

¡	An API—This API lists pizzas, takes pizza orders, and stores them in a serverless data-
base. It connects to a delivery service, stores pizza images in a serverless storage, and
also enables authorization.

¡	An image-processing service—This service converts pizza photos from large scale
into thumbnails, preparing them for potential web or mobile usage.

¡	A Facebook Messenger chatbot—The chatbot can, on customer request, list pizzas, make
pizza orders, and create delivery requests. It also has natural language processing,
which you enabled, so it can respond to small talk initiated by your customers.

¡	A Twilio SMS chatbot—This chatbot can also list pizzas and take pizza orders.
¡	An Alexa skill—This Alexa skill enables the customer’s Echo device to list Aunt

Maria’s pizzas and helps customers order pizzas.
¡	A payment service—This independent payment service is connected to Stripe and

allows you to charge your online pizza customers for pizza orders.
¡	Uncle Roberto’s taxi application—You migrated your Uncle Roberto’s Express.js

taxi application to serverless with ease. This application is not connected to Aunt
Maria’s, but it’s worthwhile looking at its migration as a possible solution for one
or more of your current applications.

Having a list like this is great, but to have a better understanding of an application and
its service relationships, seeing them in a diagram is always more convenient. A complete
diagram of the serverless services you’ve developed for Aunt Maria is shown in figure 14.1.
Because Uncle Roberto’s application is outside of Aunt Maria’s system, it’s not displayed.

The diagram shows exactly how your serverless services are working and how they are
separated. But you may be wondering why Aunt Maria’s services are structured like that,
and how you can migrate your existing applications to serverless.

14.2 Migrating your existing application to serverless
Building serverless applications from scratch requires a mind shift. But once you start
thinking in a serverless way, all the dots connect quickly. With the help of tools such as
Claudia, development and deployment cycles are short and easy.

If you already have an application running and serving customers, it’s unlikely that
you’ll just start from scratch. Instead, you have an app with a few thousand lines of code
and a couple thousand daily active users, with a history of decisions caused by business
requests or other issues that shaped your code in a specific way.

Can you and should you migrate such an application to serverless? The answer is not
a simple one, because it depends on the specifics of your application, the structure of
your team, and many other things. But in most cases, serverless can be beneficial for
legacy applications.

Pizza
and order
processing

DynamoDB database
S3 Image and

file storage

Router /
Gateway

Router /
Gateway

Router /
Gateway

Router /
Gateway

Storage
layer

Business
layer

API

Payment
processing

Facebook
Messenger

Chatbot

Twilio
SMS

Chatbot

Image
processing

Alexa Skill

Web and mobile
apps are

communicating with
your app via an API.

Payment system is
using an API as a

webhook too after
the transaction.

Chatbots are using
different APIs.

Alexa is communicating
directly to our AWS

Lambda responsible for
handling Alexa

commands.

Figure 14.1 A detailed diagram illustrating Aunt Maria’s serverless services and their relationships

 253Migrating your existing application to serverless

Once you migrate your application, the serverless architecture will push you to keep
it in good shape. It encourages further refactorings, because they can reduce costs; hav-
ing a good and efficient codebase will become a business decision.

If you decide to try serverless, you might wonder how you should approach migra-
tion. The first and most obvious approach is to start small, with the less-important parts
of your application that can be easily decoupled from the monolith.

One of our clients had a service that converted PDF catalogs into JPG images, so they
could be annotated, linked, and served inside their mobile applications. The service
was a part of their bigger monolithic application. When a PDF file was uploaded, the
service processed the PDF, then generated a JPG image for each page, and notified
almost 100,000 users via mobile push notifications that a new catalog was available.

The problem arose when they tried to upload a second big PDF catalog immedi-
ately after the first one. Users that received the push notifications started opening the
app, but the same server had two things to do at the same time: serving API requests
and converting files. Because PDF-to-JPG conversion is CPU-intensive, and the auto-
scaling process took two to three minutes, API requests often failed at the worst possible
moment—when the users clicked the push notifications.

14.1 Analyzing your current serverless application
Before any migration to serverless, a good starting point is to look at an existing server-
less application and the organization of its underlying services. Throughout the book,
you’ve helped Aunt Maria and her pizzeria flourish, mostly due to the following server-
less services you’ve created:

¡	An API—This API lists pizzas, takes pizza orders, and stores them in a serverless data-
base. It connects to a delivery service, stores pizza images in a serverless storage, and
also enables authorization.

¡	An image-processing service—This service converts pizza photos from large scale
into thumbnails, preparing them for potential web or mobile usage.

¡	A Facebook Messenger chatbot—The chatbot can, on customer request, list pizzas, make
pizza orders, and create delivery requests. It also has natural language processing,
which you enabled, so it can respond to small talk initiated by your customers.

¡	A Twilio SMS chatbot—This chatbot can also list pizzas and take pizza orders.
¡	An Alexa skill—This Alexa skill enables the customer’s Echo device to list Aunt

Maria’s pizzas and helps customers order pizzas.
¡	A payment service—This independent payment service is connected to Stripe and

allows you to charge your online pizza customers for pizza orders.
¡	Uncle Roberto’s taxi application—You migrated your Uncle Roberto’s Express.js

taxi application to serverless with ease. This application is not connected to Aunt
Maria’s, but it’s worthwhile looking at its migration as a possible solution for one
or more of your current applications.

Having a list like this is great, but to have a better understanding of an application and
its service relationships, seeing them in a diagram is always more convenient. A complete
diagram of the serverless services you’ve developed for Aunt Maria is shown in figure 14.1.
Because Uncle Roberto’s application is outside of Aunt Maria’s system, it’s not displayed.

The diagram shows exactly how your serverless services are working and how they are
separated. But you may be wondering why Aunt Maria’s services are structured like that,
and how you can migrate your existing applications to serverless.

14.2 Migrating your existing application to serverless
Building serverless applications from scratch requires a mind shift. But once you start
thinking in a serverless way, all the dots connect quickly. With the help of tools such as
Claudia, development and deployment cycles are short and easy.

If you already have an application running and serving customers, it’s unlikely that
you’ll just start from scratch. Instead, you have an app with a few thousand lines of code
and a couple thousand daily active users, with a history of decisions caused by business
requests or other issues that shaped your code in a specific way.

Can you and should you migrate such an application to serverless? The answer is not
a simple one, because it depends on the specifics of your application, the structure of
your team, and many other things. But in most cases, serverless can be beneficial for
legacy applications.

Pizza
and order
processing

DynamoDB database
S3 Image and

file storage

Router /
Gateway

Router /
Gateway

Router /
Gateway

Router /
Gateway

Storage
layer

Business
layer

API

Payment
processing

Facebook
Messenger

Chatbot

Twilio
SMS

Chatbot

Image
processing

Alexa Skill

Web and mobile
apps are

communicating with
your app via an API.

Payment system is
using an API as a

webhook too after
the transaction.

Chatbots are using
different APIs.

Alexa is communicating
directly to our AWS

Lambda responsible for
handling Alexa

commands.

Figure 14.1 A detailed diagram illustrating Aunt Maria’s serverless services and their relationships

254 chapter 14 Migrating to serverless

They had a few options, including having a separate server for PDF processing
(which would be idle 99% of the time) or triggering autoscaling before they needed it.
But the cost of the infrastructure was already too high, so they decided to migrate that
service to AWS Lambda and make it 100% serverless.

Just a few days later, they had a fully operational PDF-to-JPG converter service that
was independent from the API server. They were able to upload PDFs directly to AWS
Simple Storage Service (S3), Amazon’s serverless static file storage service, from their
dashboard. S3 would then trigger their AWS Lambda function, which converted PDF
files to JPG images using ImageMagick. You can read more about S3 integration with
AWS Lambda in chapter 7, and you can read more about S3 service on its official web-
site: https://aws.amazon.com/s3/.

Because PDF conversion is slow, and some of the PDF catalogs had a few hundred
pages, they used the Fanout pattern: the first Lambda function receives the request and
downloads the PDF file, then it triggers a new Lambda function for each page using an
Amazon Simple Notification Service (SNS) event. When all pages are converted, the
converter tool contacts the API, which sends push notifications to all the users. The flow
of the converter service is shown in figure 14.2.

The Fanout pattern
In serverless architecture, functions are focused units that should have a limited scope
and do one thing or perform a small number of actions around a single business unit.
They are not good for processing long tasks or running background processes.

Non-serverless
Dashboard

Non-serverless
API

AWS Lambda
page converter

function

AWS S3 bucket

AWS Lambda
page counter

function
AWS SNS

Dashboard uploads
PDF file directly to
AWS S3 bucket.

When all PDF pages are converted to
JPG images, AWS Lambda function will
let the API know so it can send push
notification to the users (this can
happen multiple times, API listens to
the first event only).

Each Lambda function
converts single PDF page
to JPG, uploads that JPG to
S3, and checks if all pages
are uploaded to S3 already.

AWS SNS then triggers
new Lambda function
for each event.

AWS S3 triggers AWS
Lambda function.

AWS Lambda function counts the pages, and for each
page sends separate SNS notification to trigger
parallelized execution (so-called Fanout pattern).

Figure 14.2 Moving a small part of the application to serverless: PDF-to-JPG converter with Lambda
Fanout pattern

https://aws.amazon.com/s3/

 255Migrating your existing application to serverless

Because our applications often require processing large amounts of data or running long
tasks, a new set of patterns started evolving around serverless functions. One of the
most useful new patterns is Fanout. Fanout speeds up long processes or simulates back-
ground processes by splitting the work among many functions. The idea behind it is that
one function receives the request, but then it invokes multiple other functions and dele-
gates parts of the work to each of them.

This pattern is useful for slow processes, such as converting PDF files to JPG images, and
for batch processing—for example, of CSV data and many other cases. In AWS, you can
initiate fanout by using the AWS SDK or via another service, such as AWS SNS.

If moving one service to serverless goes well, your next step is to tackle the monolithic
application step by step. You can use the technique we explained in chapter 13 and
have your full Express.js app running in AWS Lambda. That’s a good way to start using
serverless, but don’t think of it as a final solution. Moving your monolithic applica-
tion to AWS Lambda won’t make it faster and cheaper; it may be exactly the opposite.
Going serverless requires a change in your development practices. We go over some of
the most important challenges, such as cold starts, later in this chapter.

The other approach is to put API Gateway in front of your application and try to
replace one route at a time with AWS Lambda functions or other serverless components
that fit your needs (figure 14.3). Then you can observe the way your services work and
optimize them.

Migrating routes to AWS Lambda functions is relatively easy; the hard part is migrat-
ing all the other parts of the application, such as authentication and authorization or
databases. To migrate your whole application to serverless, you’ll need to embrace the
whole serverless platform, not just the functions.

API Gateway

Monolithic, non-serverless app AWS Lambda AWS Lambda

1. Each API request goes first
to the Amazon API Gateway.

4. Response is then returned
to the user via API Gateway.

3. If the route is
not migrated,
API Gateway
will contact
your monolithic
application and
wait for the
response.

2. If your route is migrated to AWS Lambda, API Gateway will
trigger the Lambda function and wait for the response.

Figure 14.3 Migrating an API to serverless, step by step

256 chapter 14 Migrating to serverless

14.3 Embrace the platform
Serverless architecture promises certain benefits, such as cheaper, faster, and more
stable applications. But to get these promised benefits, you can’t use just a subset of
serverless by applying the same principles you would apply to nonserverless apps.
Instead, you need to go all in and adjust your application to use all serverless services
and let users connect directly to them.

Having a user connect directly to the database or the file storage is an antipattern.
But with serverless in combination with other services, such as Cognito, this becomes a
pattern that can reduce the cost of your infrastructure significantly.

This section discusses some of the questions we hear most frequently from people
who are trying to migrate their existing applications to serverless.

14.3.1 Serving static files

Similar to traditional servers (as you saw in chapter 13), API Gateway and AWS Lambda
can serve static files such as server-rendered HTML and images. But this increases the
cost (and possibly latency) of those static files significantly when you scale, because
each time a user wants to see the file, you’ll pay per use for API Gateway for receiv-
ing the request and returning the response, and for AWS Lambda for processing the
request and data transfer.

This cost may not seem like much, but API Gateway is significantly more expensive
than Amazon S3. Also, serving static files from API Gateway and AWS Lambda can inter-
fere with your limits and prevent more important requests from going through. So, how
do you best serve static files in a serverless architecture?

You should let the user talk directly to Amazon S3 whenever possible. If you need to
limit access to certain users, you can use Cognito to do that. If you want to grant only
certain users permission to upload files, you can use a presigned URL (see chapter 7).

14.3.2 Storing state

Another important question is how to manage state in serverless applications. There’s
a popular misconception that AWS Lambda is stateless. But it’s not, and treating it as
stateless can cost you in terms of execution time and, of course, money.

Instead of treating serverless as stateless, you should design for shared-nothing archi-
tecture, according to Gojko Adzic, creator of Claudia and MindMup, a popular mind
mapping tool. There is a virtual machine (VM) underneath each serverless function,
but you don’t know how long it will live or if the same VM will handle your next request.

Shared-nothing architecture
A shared-nothing (SN) architecture is a distributed computing architecture in which each
node is independent and self-sufficient, and there is no single point of contention across
the system. More specifically, none of the nodes share memory or disk storage. People
typically contrast SN systems with systems that keep a large quantity of centrally stored
state information, whether in a database, an application server, or any other similar sin-
gle point of contention. To read more about shared-nothing architecture, see https://
en.wikipedia.org/wiki/Shared-nothing_architecture.

https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://en.wikipedia.org/wiki/Shared-nothing_architecture

 257Embrace the platform

AWS Lambda shouldn’t be used for storing state, but it should be used for optimiza-
tion. For example, in chapter 13 you started an Express.js app outside of your handler
function; that way, you improved performance for all requests that reuse the same VM.
For persistent state storage, you should use another service, such as DynamoDB or
even S3, depending on the complexity of the state you want to save.

If you need a state machine, you might find AWS Step Functions helpful. With Step
Functions, you can easily coordinate the components of distributed applications and
microservices using visual workflows, and they allow you to have semi-persistent state.
To learn more about Step Functions, see https://aws.amazon.com/step-functions/.

14.3.3 Logs

As you learned in chapter 5, CloudWatch has an out-of-the-box integration with other
serverless components, such as AWS Lambda and API Gateway. But CloudWatch is not
a great solution when you want to search for logs or just have a better overview.

Fortunately, there are other options that improve the experience of working with
serverless logs, such as using a third-party solution or triggering Lambda functions or
Elasticsearch from CloudWatch.

One of the most popular third-party solutions is IOpipe (https://www.iopipe.com), a
metrics and monitoring service that allows you to see function performance metrics, real-
time alerts, and distributed stack traces in a nice real-time dashboard. Setting up IOpipe is
quite simple: you sign up for the service and get the client ID, then install the IOpipe mod-
ule from NPM by running the command npm install @iopipe/iopipe --save. Then
you need to wrap your handler with the iopipe function, as shown in the following listing.

Listing 14.1 Need Title FPO

const iopipe = require('@iopipe/iopipe')

const iopipeWrapper = iopipe({
 clientId: process.env.CLIENT_TOKEN
})

exports.handler = iopipeWrapper(
 function(event, context, callback) {
 // Your Code Here
 }
)

If you’re using IOpipe with Claudia API Builder, that integration should look like the
next listing.

Listing 14.2 Need Title FPO

const iopipe = require('@iopipe/iopipe')

const iopipeWrapper = iopipe({
 clientId: process.env.CLIENT_TOKEN
})

Import
the IOpipe

module. Generate the wrapper function
using your client ID.

Wrap your handler function
with the IOpipe wrapper.

https://aws.amazon.com/step-functions/
https://www.iopipe.com

258 chapter 14 Migrating to serverless

// Your routes

api.proxyRouter = iopipeWrapper(api.proxyRouter)
module.exports = api

Another option is to stream logs to an AWS Lambda function or Amazon Elasticsearch
service. This option streams all logs and allows you to connect logs to other tools you
would normally use, such as the Elastic stack. The Elastic stack—also known as the ELK
stack—is a combination of three open source products (Elasticsearch, Logstash, and
Kibana) that help you perform easy log analysis and visualization. To learn more about
the Elastic stack, see https://www.elastic.co/elk-stack.

TIP You can enable streaming logs to an AWS Lambda function or Amazon
Elasticsearch service on a log stream (for a single log stream) or log group level
(for all parts of the application) using CloudWatch log actions in the AWS web
console. To learn more about how to stream logs to the Amazon Elasticsearch
service, see https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
CWL_ES_Stream.html.

Which option is better?
The answer again is that it depends on your application, tools, and preferences.

Third-party logging libraries give you additional value and data that is not available in
CloudWatch. But as shown in figure 14.4, they also add additional latency to your func-
tion runtime. Most of the time, the runtime is just slightly longer, but because Lambda
function pricing is per 100 ms, it might directly increase your bill.

Starting with third-party logging is probably a good idea, and then you can observe
the effect and optimize it or replace it with built-in logging or, possibly, the Elastic stack.

14.3.4 Continuous integration

One of the big advantages of a serverless infrastructure is that you can have everyone
on your team deploying to any environment with a single command. But that setup
comes with a lot of potential issues, such as with running tests or doing a rollback if
something fails.

Traditionally, some of the problems with frequent deployments are solved by contin-
uous integration (CI). CI is a development practice that requires developers to integrate
code into a shared repository several times a day. Each check-in is then verified by an
automated build, allowing teams to detect problems early. CI therefore allows you to
detect errors quickly and locate them more easily.

Integrate IOpipe with your
AWS Lambda function using
api.proxyRouter.

AWS Lambda execution time

Request

Network latency

Your function
execution time Third-party

logging library

API Gateway execution time

Figure 14.4 Request-runtime duration with the third-party logging option

https://www.elastic.co/elk-stack
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stream.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/CWL_ES_Stream.html

 259Embrace the platform

Here are a few of the popular CI tools:

¡	Jenkins (https://jenkins.io)
¡	Travis CI (http://travis-ci.org)
¡	Semaphore CI (http://semaphoreci.com)

All of these tools can work with serverless apps on AWS without any problems. To inte-
grate them, you’ll need to commit a claudia.json file to your version control and run
the claudia update command after each test suite runs successfully. Just make sure
you add your AWS access key ID and secret access key to the environment variables.

In addition to the popular tools just listed, AWS offers a variety of integrated tools for
using CI in your serverless app, including the following:

¡	CodePipeline, which is used to model, visualize, and automate the steps
required to release your serverless application (http://docs.aws.amazon.com/
codepipeline/latest/APIReference/)

¡	CodeBuild, which is used to build, locally test, and package your serverless appli-
cation (http://docs.aws.amazon.com/codebuild/latest/userguide/)

¡	AWS CloudFormation, which can be used to deploy your serverless application
(http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/)

¡	CodeDeploy, which is used to gradually deploy updates to your serverless appli-
cations (https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome
.html)

NOTE Some of the tools available in the AWS platform don’t work well with
Claudia. For example, AWS CloudFormation is a free service that provides
the tools for creating and managing the AWS infrastructure. That particular
software application must be run on Amazon Web Services. It deploys AWS
Lambda functions and other parts of your serverless application.

If your app grows to include a high number of different components, take a
look at CloudFormation as a potential solution for managing the application.

14.3.5 Managing environments: production and development

Each time a Lambda function is published, it gets assigned a sequential build number. You
can invoke a particular version and set the triggers to a particular build number, which
makes it easy to roll back the deployment and use multiple versions at the same time.

In addition to the numeric build numbers, AWS Lambda also supports aliases. These
named pointers to a particular numeric version make it easy to use a single Lambda
function for development, production, and testing environments.

For example, during development, you can deploy a new Lambda version and
mark it with the development alias, then push the testing alias to the same version
and test it thoroughly. Finally, if your function works as expected, you can point the
production alias to the same numeric version and put that version into production.

https://jenkins.io
http://travis-ci.org
http://semaphoreci.com
http://docs.aws.amazon.com/codepipeline/latest/APIReference/
http://docs.aws.amazon.com/codepipeline/latest/APIReference/
http://docs.aws.amazon.com/codebuild/latest/userguide/
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html

260 chapter 14 Migrating to serverless

Because you can set most of the triggers to invoke an alias, as soon as your production
flag is pointing to the new numeric version, production triggers will invoke it directly
without additional changes.

NOTE Some of the event sources, such as a CloudFront trigger for Lambda@
Edge, don’t support aliases and require that you point to the numeric version
of your Lambda function. In most of those cases, Claudia will automatically get
the numeric version of your alias and assign the trigger to it. For more informa-
tion about Lambda@Edge, see https://docs.aws.amazon.com/lambda/latest/
dg/lambda-edge.html. If you want to deploy Lambda@Edge using Claudia, see
https://claudiajs.com/news/2018/01/04/claudia-3.html.

One of the most important things to keep in mind when you’re building serverless
functions that support different environments is to keep your function environment-
agnostic. You should never hardcode the services your function accesses—for example,
an S3 bucket or a DynamoDB table name. Instead, try to use the same bucket that sent
the event or get the table name from the environment variables.

14.3.6 Sharing secrets

One of the key parts of successful serverless applications with multiple environments
is managing app secrets. Throughout this book, we’ve managed secrets in two ways:
as API Gateway stage variables and AWS Lambda environment variables. Both have
their strengths and weaknesses, and which one you use will depend on your use case
and preferences.

If you’re using aliases to manage testing/production stages, Lambda environment
variables are tied to a numeric version of your Lambda function, not the aliases, which
means that all aliases that point to that same build version share the same environment
variables. For example, if you point both production and development aliases to build 42
of your Lambda function, they can’t have a different TABLE_NAME environment variable.
See visual representation of how Lambda environment variables work in figure 14.5.

As opposed to Lambda environment variables, API Gateway stage variables are tied
to the API Gateway stage so, as shown in figure 14.6, two API gateway stages can point to
the same Lambda build number and have different variable values.

On a new deployment, Lambda environment variables are reused from previous
versions, unless you provide the new set of variables. That means that variables from
your development environment will be passed to production if you deploy it using
claudia update --version production without overriding them using --set-env
or --set-env-from-json flags. Also, to update Lambda environment variables,
you need to provide all the active variables again, because each update overrides
all existing variables. For example, if you want to change TABLE_NAME but keep the
S3_BUCKET variable, you’ll need to provide both of them again, or the S3_BUCKET
variable will be lost. On the other hand, Claudia helps with that situation: it has an
additional command --update-env you can use to update a single environment vari-
able without having to specify the other environment variables.

API Gateway
development stage

AWS Lambda with
development label

AWS Lambda
function, build 1

Environment variables

API Gateway
production stage

AWS Lambda with
production label

“Development” stage of
your API points to
“development” label of
your AWS Lambda.

Both “development” and
“production” labels of your AWS
Lambda points to the same
numeric version.

Lambda environment variables are
tied to the numeric version, which
means that both of your
production and development
environment shares the same set
of environment variables.

“Production” stage of your API
points to “production” label of
your AWS Lambda.

Figure 14.5 Visual representation of how Lambda environment variables work

API Gateway
development stage

AWS Lambda with
development label

AWS Lambda
function, build 1

API Gateway
production stage

AWS Lambda with
production label

Stage variables Stage variables

“Development” stage of
your API points to
“development” label of
your AWS Lambda.

“Development” stage has
it’s own stage variables,
which will be available in
any AWS Lambda that API
Gateway points to,
regardless of numeric
version and label.

Both “development” and
“production” labels of your AWS

Lambda points to the same
numeric version.

“Production” stage has it’s own
stage variables, which will be
available in any AWS Lambda that
API Gateway points to, regardless
of numeric version and label.

“Production” stage of
your API points to
“production” label of
your AWS Lambda.

Figure 14.6 Visual representation of how API Gateway stage variables work

https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://claudiajs.com/news/2018/01/04/claudia-3.html

 261Embrace the platform

API Gateway stage variables are preserved for each API Gateway stage, which means
that if you push a new version to the development stage, it will still have all the stage
variables from the previous version of the development stage. Or you can add one
stage variable, and it will not affect other stage variables for the state you’re updating
or any other state.

Because you can set most of the triggers to invoke an alias, as soon as your production
flag is pointing to the new numeric version, production triggers will invoke it directly
without additional changes.

NOTE Some of the event sources, such as a CloudFront trigger for Lambda@
Edge, don’t support aliases and require that you point to the numeric version
of your Lambda function. In most of those cases, Claudia will automatically get
the numeric version of your alias and assign the trigger to it. For more informa-
tion about Lambda@Edge, see https://docs.aws.amazon.com/lambda/latest/
dg/lambda-edge.html. If you want to deploy Lambda@Edge using Claudia, see
https://claudiajs.com/news/2018/01/04/claudia-3.html.

One of the most important things to keep in mind when you’re building serverless
functions that support different environments is to keep your function environment-
agnostic. You should never hardcode the services your function accesses—for example,
an S3 bucket or a DynamoDB table name. Instead, try to use the same bucket that sent
the event or get the table name from the environment variables.

14.3.6 Sharing secrets

One of the key parts of successful serverless applications with multiple environments
is managing app secrets. Throughout this book, we’ve managed secrets in two ways:
as API Gateway stage variables and AWS Lambda environment variables. Both have
their strengths and weaknesses, and which one you use will depend on your use case
and preferences.

If you’re using aliases to manage testing/production stages, Lambda environment
variables are tied to a numeric version of your Lambda function, not the aliases, which
means that all aliases that point to that same build version share the same environment
variables. For example, if you point both production and development aliases to build 42
of your Lambda function, they can’t have a different TABLE_NAME environment variable.
See visual representation of how Lambda environment variables work in figure 14.5.

As opposed to Lambda environment variables, API Gateway stage variables are tied
to the API Gateway stage so, as shown in figure 14.6, two API gateway stages can point to
the same Lambda build number and have different variable values.

On a new deployment, Lambda environment variables are reused from previous
versions, unless you provide the new set of variables. That means that variables from
your development environment will be passed to production if you deploy it using
claudia update --version production without overriding them using --set-env
or --set-env-from-json flags. Also, to update Lambda environment variables,
you need to provide all the active variables again, because each update overrides
all existing variables. For example, if you want to change TABLE_NAME but keep the
S3_BUCKET variable, you’ll need to provide both of them again, or the S3_BUCKET
variable will be lost. On the other hand, Claudia helps with that situation: it has an
additional command --update-env you can use to update a single environment vari-
able without having to specify the other environment variables.

API Gateway
development stage

AWS Lambda with
development label

AWS Lambda
function, build 1

Environment variables

API Gateway
production stage

AWS Lambda with
production label

“Development” stage of
your API points to
“development” label of
your AWS Lambda.

Both “development” and
“production” labels of your AWS
Lambda points to the same
numeric version.

Lambda environment variables are
tied to the numeric version, which
means that both of your
production and development
environment shares the same set
of environment variables.

“Production” stage of your API
points to “production” label of
your AWS Lambda.

Figure 14.5 Visual representation of how Lambda environment variables work

API Gateway
development stage

AWS Lambda with
development label

AWS Lambda
function, build 1

API Gateway
production stage

AWS Lambda with
production label

Stage variables Stage variables

“Development” stage of
your API points to
“development” label of
your AWS Lambda.

“Development” stage has
it’s own stage variables,
which will be available in
any AWS Lambda that API
Gateway points to,
regardless of numeric
version and label.

Both “development” and
“production” labels of your AWS

Lambda points to the same
numeric version.

“Production” stage has it’s own
stage variables, which will be
available in any AWS Lambda that
API Gateway points to, regardless
of numeric version and label.

“Production” stage of
your API points to
“production” label of
your AWS Lambda.

Figure 14.6 Visual representation of how API Gateway stage variables work

https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-edge.html
https://claudiajs.com/news/2018/01/04/claudia-3.html

262 chapter 14 Migrating to serverless

With API Gateway, you can update a single stage variable without overriding others.
But the Lambda environment variables have their strengths, too. For example, they

are stored encrypted, which makes them more secure than API Gateway stage variables,
which are not encrypted. They also can be used regardless of the event that triggered
AWS Lambda.

The common weakness of both Lambda environment variables and API Gateway
stage variables is sharing them between different Lambda functions. If you have many
functions that should share secrets, such as DynamoDB table name, you can’t do it with-
out passing the same variable to each of them. For example, your pizza-orders Dyna-
moDB table is used by the Pizza API, but it is also used by your Alexa skill, so you pass the
name of the table to both of the Lambda functions.

That weakness can be solved using the AWS Systems Manager Parameter Store, which
provides access to central, secure, durable, and highly available storage for application
configuration and secrets. It also integrates with AWS Identity and Access Management
(IAM), to allow fine-grained access control to individual parameters or branches of a hier-
archical tree. One of the downsides of Parameter Store is an additional latency it intro-
duces. To read more about AWS Systems Manager Parameter Store, see https://docs.aws
.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html.

14.3.7 VPC (Virtual Private Cloud)

When deciding whether to migrate to serverless, your company might have the chal-
lenge of complying with specific rules or laws—for example, rules for personal data
storage and handling, or even special network security measures within the company
itself. Those restrictions might prevent you from using AWS Lambda or other server-
less resources.

Fortunately for these cases, serverless providers have a solution called the Virtual Pri-
vate Cloud (VPC). A VPC is a service that allows you to create serverless resources within
a virtual private network. It enables you to have complete control of your network
environment, such as IP ranges, network gateways, and so on. Having your serverless
resources in a virtual private network provides increased security and helps your com-
pany keep its resources in certain areas, regions, or countries. For example, if you’re
dealing with sensitive customer data (which may be required within the customer’s
country of residence), a VPC enables you to have your serverless resources within the
same network as your data center in that country.

Simply put, a VPC enables you to have a virtual private network with your serverless
provider resources (say AWS Lambda) and restrict access to these resources so that they
are accessible from only the instances or resources in your VPC.

There are drawbacks to a VPC, however. A closed network has problems with cold
starts, which are increased significantly, because AWS Lambdas are required to create
elastic network interfaces (ENIs) to your VPC. Creating an ENI on a single request can
easily add up to 10s to your cold starts. Also, by default, your Lambda function in a VPC
doesn’t have internet access, which can be configured using a network address transla-
tion (NAT) gateway. Therefore, you need to be careful when using them.

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-paramstore.html

 263Optimizing your application

14.4 Optimizing your application
Going serverless can indeed reduce the cost of your application infrastructure, but only
when it is done correctly. One of the most important things to understand is that server-
less architecture is a new architecture, and some common best practices are not important
anymore and can even be counterproductive. The cost savings of a serverless application
are seen not just in the bill from AWS; a serverless application can also provide many sav-
ings because of shorter time to market, increased efficiency, and easier pivoting.

Although good practices and patterns are emerging, the only way to have a good
serverless application is to continuously observe and optimize, which will reduce the
cost of your application and improve the user experience.

14.4.1 Bundled or single-purpose functions

You may have noticed in Aunt Maria’s serverless application diagram (figure 14.1) that
her pizza listing and ordering API is a single serverless function doing multiple tasks.
Isn’t this a monolith within a function? Some may argue that it’s an improper use of
serverless functions. The argument is based on the FaaS (Function as a Service) con-
cept that each of your functions should have a single purpose and that you shouldn’t
have monoliths in your serverless functions because of the benefits of looser coupling,
reusability, and easier maintenance.

Others may argue that you could have joined some of the independent services into
the same API—for example, the payment service. Because these services are not used
that much, the cold starts may be slower; you’d be better off having a warmed-up server-
less function and not making the user wait when paying for your services.

These are the viewpoints of opposing “tribes.” Now, which approach should you
take? First, you should remember the famous saying, “no size fits all.” Although this may
put you on the edge with both of those tribes, your goal is to create a customer-oriented
service. You should have a rational approach, and it will always depend on the type of
application you’re building.

Initially, it’s recommended that you divide your features based on domains, like the one
in Aunt Maria’s serverless application. Divide the features into a bundled “pizza-related”
service and a payment service, and then separate functions for each of the additional ser-
vices, such as chatbots or image processing. Later, when your system starts to grow, you
should strive for single-purpose functions; in this case, you can separate the pizza listing
and ordering application into two functions: one for showing a list of pizzas and the other
for ordering those pizzas. Because your customer base will have grown, the cold starts are
going to happen less and your response rate is going to be faster.

14.4.2 Choosing the right memory size for your Lambda function

Each of your serverless functions has a specified memory allocation. Even though server-
less architecture promises no server configuration, certain tasks can require more mem-
ory or more computing power. Therefore, serverless providers give you the ability to
specify how much memory to allocate. You may notice that we didn’t mention CPU power

264 chapter 14 Migrating to serverless

here, because it’s tied to memory size, meaning that if you want a larger CPU share, you
must increase memory. For example, if you configured your Lambda function to have
2 GB instead of 1 GB of memory, it most likely will have more CPU power. For precise
information and because it might change in the future, we suggest that you read more on
the AWS documentation page about Lambda configuration at https://docs.aws.amazon
.com/lambda/latest/dg/resource-model.html.

But specifying a bigger memory size also has a higher cost. That free 1 million
requests per month can easily turn into just a hundred thousand if you increase the
memory allocation for your Lambda to 1 GB. Choosing the right memory size for a
Lambda is tricky. You can easily get pulled into one of the two following traps:

¡	Minimizing the memory size for your Lambda to minimize the cost by trying to
guess how much memory or CPU power it will need.

¡	Maximizing the memory size for your Lambda to speed up all requests and sub-
sequent computation, and also to be ready for any kind of potential increase in
memory use.

Again, the best advice is that “no size fits all.” You should try to use logging or a monitor-
ing tool to inspect the function memory usage. For example, in CloudWatch logs you
can find how much function memory you used and how long it took to finish, among
many other details. Based on those facts, you may be able to get a proper estimate, but
always try to base your estimate on various times of the day and also specific events.

14.5 Facing the challenges
With a new architecture comes a new set of challenges, but there are also old chal-
lenges that still apply in the same or in a slightly different way. With serverless, some
of the new challenges are timeouts and cold starts. But you’ll also have to deal with
some old challenges such as vendor lock-in, security, and distributed denial of service
(DDoS) attacks. This section discusses some of the most important challenges you’ll
face when migrating to serverless architecture.

14.5.1 Handling timeouts

One of the first challenges you might face when migrating is understanding server-
less function limitations, one of which is the function timeout limit. Timeouts allow
functions to safely shut down without wasting your money or the functions' time if for
some reason they stop or block. The timeout limit forces you to think about how to
finish your request in the specified timeframe. Although that might be a challenge in
itself, the actual challenge is how you monitor, track, and debug issues when a timeout
occurs. Also, you might not have a bug, but a certain service may take longer than
expected to complete or return a response.

There are several ways to track this: the first and the simplest is to look at your Cloud-
Watch logs, which log all your Lambda functions that time out. Doing so might not be
useful though, because you still aren’t handling the timeout itself. There is a better
way to handle this. You want to be able to handle these timeout cases and at least log

https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html
https://docs.aws.amazon.com/lambda/latest/dg/resource-model.html

 265Facing the challenges

which service took too long or identify a bug. The solution is to create a watchdog timer,
an essential service whose only purpose is to detect when your application or software
is going to time out. It is a simple timer you put inside your Lambda function to check
how much time your Lambda function has left. It calculates the remaining time based
on your Lambda function timeout setting, which is defined in the Lambda function
dashboard on the AWS Console website.

The watchdog timer detects when the function is reaching its timeout, as you need to
handle situations when the function didn’t finish everything on time. When the Lambda
function is close to its timeout, the timer invokes another Lambda function. This other
Lambda function’s purpose is to log this event or handle it in some other way you might
need. To implement this watchdog timer, you need to create a timer function that is con-
stantly checking if there is less than one second until the Lambda function timeout, and
to invoke another Lambda in that situation and send it the current function context.
Then you can log the new timeout event details or just track this timeout occurrence.

As an alternative to another AWS Lambda function, you can also use some third-
party error-handling services, such as Bugsnag (https://www.bugsnag.com) or Sentry
(https://sentry.io).

14.5.2 Cold starts

Another challenge you’ll face with serverless applications is function latency, also
known as cold start. Because AWS manages scaling and containers for you, each func-
tion has additional latency when invoked the first time. This is because a container
needs to start, and your function needs to be initialized. After the first invocation, your
function will stay warm for a certain amount of time (a few minutes at most), so it can
handle the next requests faster (figure 14.7).

A cold start doesn’t happen only the first time your function is invoked, however. If
you have multiple parallel or nearly parallel executions, a cold start will occur for each,
because AWS may spin up multiple VMs to handle all your requests (figure 14.8).

How do you fight cold starts? You can’t avoid them completely. You can try pre-warm-
ing a certain number of your functions, but that adds an additional layer of complexity

With a cold start, a
container for your
function needs to be
created,

and initialized, before your
function starts its
execution.

Function stays warm for a
certain amount of time and
waits for the next invocation.

With a warm start, the
container is already ready
and your function starts its
execution immediately.

Creation Initialization Function execution

Function invocation time

Cold start

Warm start

Function invocation time

Function execution

Figure 14.7 Cold versus warm start of the function

https://www.bugsnag.com
https://sentry.io

266 chapter 14 Migrating to serverless

and forces you to try to predict the number of requests you’ll have under peak load.
Another and probably better option is to keep your functions as small as possible (up
to a few megabytes), because the cold start is faster if the application can initiate faster.

Also, with serverless, the choice of programming language and the set of libraries
you use directly affects the price of your application hosting, so it becomes an import-
ant business decision. Running Node.js or Golang functions will cost you significantly
less than using Java for writing your functions, because of faster initialization.

14.5.3 DDoS attacks

Serverless completely changes the business model by charging for time used instead
of time reserved. That is a marvelous change, but you may wonder about handling
DDoS attacks. These attacks send a large volume of junk data to your application
so your application servers can’t scale quickly enough to respond to valid customer
requests, thereby preventing your servers from providing service to your customers.
Now, because your serverless provider handles scaling and load balancing for you auto-
matically, you might think that a DDoS attack would bankrupt you. The chances of that
happening, however, are virtually nonexistent because your serverless provider (AWS,
for example) is able to do a much better job of providing security and stability in the
face of such attacks than typical server-hosted providers.

In addition to this, you can also specify the following:

¡	Max throttling on the API Gateway level (for more information, go to https://
docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway
-request-throttling.html)

¡	Max concurency of your AWS Lambda functions (for more information, go to
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html)

¡	Setting CloudWatch alarms to be notified about possible unknown spikes

When you invoke the
function for the first time,
it will have a cold start.

But all parallel or nearly
parallel requests will also
have a cold start.

AWS will keep and reuse the same VMs
(or containers) for a few minutes, to
optimize the function performance for
future requests.

Creation Initialization Function execution

Creation Initialization Function execution

Function execution

Function execution

VM 1 cold start

VM 2 cold start

VM 1 warm start

VM 2 warm start

Figure 14.8 Cold starts affect all VMs during parallel requests.

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-request-throttling.html
https://docs.aws.amazon.com/lambda/latest/dg/concurrent-executions.html

 267Facing the challenges

NOTE With serverless, DDoS attacks are instead called DDoW (distributed
denial of wallet) attacks. Because serverless providers charge you for each
request, increasing your bill translates to “denying your wallet.”

14.5.4 Vendor lock-in

When going serverless, one of the main concerns is vendor lock-in. It’s easy to become
reliant on your serverless provider’s resources and their corresponding APIs. This may
not sound so bad, but the issue comes when you want to move from one serverless pro-
vider to another. The original provider’s resources will no longer be available to you,
and that might necessitate a complete refactoring or even a rewrite of your application.

In some cases that may be a blocker. Businesses don’t want to tightly couple with a
single resource provider, requiring them to submit to any potential changes in pricing
or resource stability and availability. The counter-argument for server-hosted applica-
tions is that no matter which provider you use, you can always install the same versions
of the needed databases or tools on your servers.

But there is an occasional confusion of concerns. When analyzing vendor lock-in,
two distinct layers sometimes get confused and mixed together:

¡	Infrastructure
¡	Service

Coupling in the infrastructure layer refers to the coupling of your application to a specific
infrastructure, whereas coupling in the service layer refers to the coupling of your applica-
tion to a specific software service (a database, file store, search service, and so on).

When going serverless, you might be tempted to start comparing servers and server-
less computing services (such as AWS Lambda). But this is in fact comparing apples to
oranges, because a serverless computing service belongs to the service layer, whereas
a server belongs to the infrastructure layer. You might be asking yourself what the dif-
ference is or why you should care. The main point is that AWS Lambda doesn’t fill the
previous role of the server.

Even with an understanding of this separation of concerns, some might think, “But
I’m still locked in to a vendor. This doesn’t change anything, because I’m still required
to use AWS resources when using AWS.” This is correct, but this understanding reveals
two benefits that were hiding in plain sight:

¡	Switching serverless providers/vendors is like switching your MySQL database to
a PostgreSQL one.

¡	Applying Hexagonal Architecture instead of directly interacting with the server-
less resources can almost completely remove all potential vendor lock-in issues.

When switching serverless providers, the rules that apply are the same as when migrat-
ing one service to another—and you can safely migrate a single serverless service to
another just by changing the interaction with its API.

There are serverless frameworks that abstract away the serverless provider specifics,
but by using them you’ll then be locked in to your serverless framework, instead of the
vendor lock-in with your serverless provider. Also, you’ll still be tied to your serverless

268 chapter 14 Migrating to serverless

provider, because you’ll still be expecting that the responses and messages coming from
your serverless provider services are going to be in the serverless provider’s format. For
example, if you’re using AWS Kinesis and you’re expecting the Kinesis message format
in your code, you’re still locked in to a vendor; you won’t be able to just jump in to a
Google or someone else’s alternative.

For that reason, Claudia.js does not abstract away serverless provider details and
therefore is AWS-specific.

The recommended method for mitigating this “vendor lock-in” is to apply Hexag-
onal Architecture, where you’ll be defining boundary objects whose sole purpose will
be to interact with the specifics of the serverless provider’s resource APIs. Your busi-
ness logic will stay intact, meaning that switching to another serverless provider will just
require a change in the boundary object protocol logic.

14.6 Taste it!
The exercise for this chapter is simple, but it’s not easy: migrate one of your existing
Node.js applications to serverless.

Unfortunately, there’s no solution you can copy and paste. But we’re sure it will be fun,
and much more importantly, it will have a great business impact, both on your application
and on the way you’re going to develop applications from now on. Good luck!

TIP When migrating your application to serverless, you might want to check out
the AWS Serverless Application Repository, an open marketplace of serverless
applications and components. You might be able to find an existing component
you can simply plug in to your new serverless app. To learn more about the Appli-
cation Repository, see https://aws.amazon.com/serverless/serverlessrepo/.

Summary

¡	Running your existing application in AWS Lambda and API Gateway is a good
start when migrating to serverless, but it can end up costing you more if you don’t
fully embrace the platform.

¡	You can migrate your application to serverless by putting an API Gateway in front
of it, and then moving the routes one by one to serverless.

¡	To get the full benefits of serverless, such as lower cost and faster development
time, you’ll need to use all serverless services.

¡	With serverless, the choices you make with programming languages, libraries,
and when to refactor become business decisions and risks, because they directly
affect the cost of your infrastructure. Therefore, continuous observation and
optimization are important for a successful serverless application.

¡	Serverless is a new architecture that requires a new set of patterns and best
practices.

¡	Migrating to serverless brings a new set of challenges, such as cold starts and han-
dling timeouts. But some of the old challenges still apply—some more than ever,
such as vendor lock-in.

https://aws.amazon.com/serverless/serverlessrepo/

269

15Real-world case studies

This chapter covers
¡	How CodePen uses serverless for its

preprocessors

¡	How MindMup runs client APIs and file
conversions

We’ve come to the end of this serverless journey. Through this book, you’ve learned
what serverless is, how to use it in a new application, and how to migrate your existing
applications to a serverless architecture. But we know that there is one important
question you want to ask: Who is using serverless in production?

Hearing about companies using a new approach in production is always useful,
along with the problems they’ve encountered and how it’s worked for them. In this
case, another interesting question is why these companies felt serverless with Claudia.js
was the right solution for them.

To answer that question, we chose two companies to ask about the challenges
they’d faced, how and why they decided to go serverless, their architecture before
and after going serverless, and the approximate costs.

Many companies are using serverless in production, and it was hard to pick the
two best examples. But because you can read many success stories from enterprise

270 chapter 15 Real-world case studies

companies using serverless on the AWS blog, we chose two companies that have success-
ful products with small teams behind them. We think serverless allows you to move and
scale quickly with a small team and a relatively low infrastructure cost, and we decided
to show you how CodePen and MindMup are doing just that.

15.1 CodePen
CodePen (https://codepen.io) is a popular web application for creating, showcasing, and
testing snippets of user-created HTML, CSS, and JavaScript. It’s an online code editor and
open source learning environment where developers can create code snippets (creatively
named “pens”), test and share them with other developers, and work collaboratively.

The CodePen developers had already done an episode on their podcast regarding
their serverless applications with Node and Claudia.js. Alex Vazquez, one of the found-
ers of CodePen, said that they extensively use AWS Lambda with Claudia for preproces-
sors, so we contacted Alex for an interview. The following is a description of what we
learned.

15.1.1 Before serverless

CodePen allows developers to write and compile HTML, CSS, and JavaScript live in
the editor. To do so, it needs to be able to display the developer’s code; if the developer
is using preprocessors (such as SCSS, Sass, and LESS for CSS, and even Babel for
JavaScript), it needs to preprocess it, too.

Therefore, the initial CodePen architecture was based on two monolithic Ruby on
Rails applications—the main website and another application dedicated to preproces-
sors—and a single, relatively small database service.

You can see the CodePen architecture before moving to serverless in figure 15.1.

Babel preprocessor
Ruby on Rails

web app

Database

Preprocessors web service

…

Pug preprocessor

Sass preprocessor

Browser talks directly to
the main Ruby on
Rails-based application.

Main app is connected
to the database server. Isolated preprocessors

Main app then talks to a
separate server that holds
all preprocessors.

Figure 15.1 The CodePen architecture before migrating to serverless

https://codepen.io

 271CodePen

CodePen aims to allow its users to run their own code as frequently as they want.
Another goal of CodePen is for people to get excited about code examples they find
on the site and for pens to go viral—but there are moments that it gets “too awesome.”
Naturally, CodePen gets huge spikes for different pens, and they can be impossible
to predict. For these situations, CodePen needs to be able to scale quickly. Also, most
CodePen users use CodePen free of charge, so it needs both a quick and an inexpen-
sive way to make sure that it can serve all its users.

The team behind CodePen is small and distributed around the world, and they have
one DevOps engineer. Because CodePen is running other people’s code, they’re always
striving to keep security at a maximum. So, they started investigating how to separate
the users' code execution for security purposes. That was the first time they heard about
AWS Lambda: their DevOps engineer, Tim Sabat, suggested it as a possible solution.
Initially, the CodePen developers rejected the idea because they didn’t really see the
point, thinking it would be a hassle to set up and configure. They already had precon-
figured servers, and it didn’t seem as though they needed individual Lambda services.

But one day they had a need to format code on demand using a new tool, and this
“Lambda concept” seemed like a perfect solution for this task, especially with Claudia.js
as its deployment tool. Alex said that they learned a lot about all the different things you
can do with serverless functions, such as using API Gateway to set up a full HTTP API,
connecting to S3, and setting up cron jobs. It suddenly dawned upon the team how pow-
erful serverless applications are.

15.1.2 Serverless migration

CodePen runs a lot of preprocessors. Each of the preprocessors is dedicated to pro-
cessing a specific code type, whether it’s HTML, CSS, or JavaScript. They also perform
differently, have different CPU and memory requirements, and should run asynchro-
nously. You can see how the preprocessors work in figure 15.2.

Output is
generated
asynchronously,
and shown to
the user.

Preprocessors

Figure 15.2 CodePen preprocessors

272 chapter 15 Real-world case studies

As you can see, each preprocessor does a different job, and one’s execution could
affect another’s. Therefore, when the developers analyzed their current architecture,
they realized that separating them was important for both performance and security
reasons. Running all the individual preprocessors on the same server made it much
harder to optimize each one and to determine where any bugs were. They decided that
it made a lot of sense to split them up and run individual AWS Lambda functions, like
their previous “code-prettifying-on-demand” service.

The team decided to completely refactor their monolithic Ruby on Rails preprocessor
application, dividing it into a single serverless function called the router and many other
individual preprocessor serverless functions. The router’s job is to invoke the needed
preprocessor functions, each of which has the goal of preprocessing a certain code type.

Using Claudia, the team realized that even their front-end engineers could help with the
migration, taking the strain off the lone DevOps engineer. CodePen’s lead front-end devel-
oper, Rachel Smith, was able to handle the whole refactor of the router to AWS Lambda,
which has enabled CodePen to serve more than 200,000 concurrent requests during peak
times. At the same time, Alex and the other developers refactored and migrated the indi-
vidual preprocessors. You can see the resulting architecture in figure 15.3.

After migrating to serverless, CodePen still has the main monolithic Ruby on Rails
application, but instead of a monolithic preprocessor application, it has the router
serverless function and about a dozen serverless preprocessor functions. The router
is available over API Gateway and uses the AWS SDK to directly invoke every serverless
function it needs. It receives an array of tasks to accomplish in the payload. For exam-
ple, one of the preprocessors is Babel; it has a default version, and the payload sent
to the router states the version of Babel that it needs. The router knows which Babel

Ruby on Rails
web app

API
Gateway

Main Lambda
function

Babel v5
preprocessor

Babel v6
preprocessor

Sass
preprocessor

…

Database

Browser still talks
directly to the main
Ruby on Rails-based
application.

Main app is connected
to the database server.

Each preprocessor is now isolated in a separate
Lambda function; multiple versions of the same
preprocessor are in separate functions too.

Main app sends all data
that requires
preprocessing to API
Gateway.

API Gateway passes the
data to the routing
Lambda function.

Routing Lambda
function then
invokes
preprocessor
Lambda functions
using AWS SDK.

Figure 15.3 CodePen architecture using serverless

 273CodePen

versions are available, because each of the preprocessor Lambda functions comes with
an associated version number. The design follows the Command pattern, where you
provide the command to run and the router knows which Lambdas it needs to invoke.

NOTE The Command pattern is a behavioral design pattern where an object is
used to encapsulate all information needed to perform an action or an event
trigger. It is one of the design patterns explained in the popular book Design
Patterns: Elements of Reusable Object-Oriented Software. You can read more about the
Command pattern here: https://en.wikipedia.org/wiki/Command_pattern

In addition to the performance and security benefits, separating the monolithic pre-
processor application into serverless functions means that as CodePen grows, it will be
trivial to add more preprocessors as serverless functions and make them available to
users. For the CodePen developers, that’s the biggest benefit: before, everything was
stuck in the “mini-monolith,” as they called their previous Ruby on Rails preprocessor
application, and changing or adding new features wasn’t easy.

Marriage of AWS Lambda and Claudia
Alex said that AWS Lambda and Claudia came together as a perfect solution for Code-
Pen. Most of the development team’s problems and issues were resolved, and the AWS
Lambda/Claudia combination allowed them to do a lot more with their existing skillsets.
Before, the front-end engineers had to wait for the DevOps engineer to write the scripts, set
up the servers and tools, and automate all the tasks required for a deployment. With AWS
Lambda and Claudia, the front-end developers are now enabled to do everything them-
selves. The CodePen founder we spoke to stated that the level of integration ranges from
“We really love Claudia and AWS Lambda” to “We’re married to Claudia and AWS Lambda.”
That takes their relationship to a whole other level.

15.1.3 Cost of the infrastructure

Costs have decreased significantly for CodePen after going serverless, because it had to
reserve instances up front before; now it pays based on demand. The load fluctuates, so
when there isn’t a lot of traffic, it’s great that CodePen isn’t charged for extra capacity.
Additionally, with API Gateway caching, CodePen was able to save even more money.
Compared with paying for reserved servers, AWS Lambda costs are cheap.

Additionally, one important consideration most people don’t factor in is the amount
of time spent managing servers and the inherent complexity. To see what a difference
it made, CodePen even tried changing all of their Lambdas to the maximum (3 GB)
memory. Everything was even faster, because it was running on great hardware (better
than was required, really). The monthly cost went up $1,000, which is a lot, but even at
that level it was still affordable—and according to Alex Vasquez, even the additional
cost for the maxed-out AWS Lambdas didn’t compare with the cost of the developer
time required to set up and deploy a server.

https://en.wikipedia.org/wiki/Command_pattern

274 chapter 15 Real-world case studies

the right lambda size

CodePen doesn’t have a standard for defining the size of its serverless functions. The
monoliths and the functions (if they get bigger) are separated using the logical unit
approach. This approach specifies that, for example, if an image manipulation is
needed, a serverless function will be created that includes everything related to that
image manipulation.

Likewise, for an audio manipulation, a serverless function dedicated to that audio
type will be created.

In CodePen’s case, the preprocessors are the logical units: Babel, Autoprefixer, Sass,
LESS, and so on. For each one, an individual Node.js serverless function has been cre-
ated. This allows for deployment of multiple versions of a specified preprocessor. Break-
ing up the functionality even further doesn’t make sense for CodePen, because the
functions would become difficult to manage with all the directories and repositories.

Additionally, each CodePen serverless function must have a specific memory alloca-
tion. The general CodePen serverless function memory allocation is 512 MB. Babel is
the only preprocessor that has a slow start time, so it is allocated 1,024 MB.

15.1.4 Testing and challenges

CodePen mostly has unit tests, written with Jest. Because both CodePen’s serverless
functions are written in Node.js with Claudia, their front-end engineers are also able to
write tests. There aren’t many integrated tests, but there are many defined test cases—
mostly for debugging or manual testing of the entire system.

additional scaling

AWS Lambda’s default limit for the number of concurrent requests is 1,000, and because
of the unpredictable traffic patterns to its site, CodePen managed to hit this limit.

After sending a simple request to AWS, CodePen received an upgrade to 5,000 con-
current requests almost immediately.

cold starts

The asynchronous nature of CodePen’s preprocessors softens the impact of their
serverless function cold starts. It doesn’t affect their operations or the user experience.
CodePen also relies heavily on API Gateway cache. They create a unique URL for every
defined data set because API Gateway can cache only unique URLs.

monitoring

For monitoring their serverless system, the CodePen team use only CloudWatch. For
error reporting, they use HoneyBadger and its Node.js SDK. The entire system is moni-
tored, and whenever a timeout or an error occurs, it is reported to HoneyBadger.

security

CodePen uses JSON Web Token (JWT) for security. The token is generated by the
monolith and shared to the client so that the client can easily authenticate the requests
sent afterward to the router serverless function.

 275MindMup

15.2 MindMup
MindMup (https://www.mindmup.com) is a popular mind mapping web application
written primarily in JavaScript. According to Gojko Adzic, one of the company’s co-
founders, MindMup serves almost half a million active users monthly with just a two-
person team. To accomplish that, they started using serverless on AWS extensively, which
significantly reduced their costs. More importantly, serverless pushed them to improve
the architecture and is now allowing them to move quickly and experiment more.

Mind maps
A mind map is a diagram used to visually organize information. It’s hierarchical and
shows relationships among pieces of the whole. A mind map is often created around a
single concept, drawn as an image in the center of a blank page, to which associated rep-
resentations of ideas such as images, words, and parts of words are added. Major ideas
are connected directly to the central concept, and other ideas branch out from those. To
learn more, visit https://en.wikipedia.org/wiki/Mind_map.

15.2.1 Before serverless

From its inception in 2013, MindMup was optimized for a small team, relatively cheap
infrastructure, and rapid development. At the beginning, the developers chose to com-
bine Heroku with AWS to build an infrastructure that required minimal maintenance
but was still scalable.

Heroku
Heroku is a cloud Platform as a Service (PaaS) supporting several programming languages
that is used as a web application deployment model. It was released in June 2007 as one
of the first cloud platforms. Back then, it supported only the Ruby programming language,
but it now supports Java, Node.js, Scala, Clojure, Python, PHP, and Golang. As a polyglot
platform, it lets developers build, run, and scale applications in a similar manner across all
the languages.

To learn more about Heroku, visit https://www.heroku.com.

MindMup had one Heroku app that was the system core; it served a single-page web
app and an API. The API was in charge of authentication, authorization, providing
data, and subscriptions. MindMup began as a free service, but after almost two years,
the creators added a paid option for collaboration. To support paid users, they needed
a simple but scalable database, so they added AWS DynamoDB.

Along with the single-page application for mind map creation, one of the most
important parts of MindMup is exporters—a feature that allows users to export mind
maps they’ve created in different file formats, such as PDF, Word, or even as a Power-
Point presentation. They had lots of converters, and usage and memory consumption

https://www.mindmup.com
https://en.wikipedia.org/wiki/Mind_map
https://www.heroku.com

276 chapter 15 Real-world case studies

for each of them varied. For example, the PDF exporter was used all the time and
required a lot of CPU and memory for file generation. The text exporter required
only a small amount of resources, and the Markdown exporter was used much less fre-
quently. Also, different exporters required different applications:

¡	For PDF, they needed Ghostscript, a software suite for PDF manipulation.
¡	For Word, they used Apache POI, a library that provides Java libraries for reading

and writing files in Microsoft Office formats.
¡	For other exporters, they needed Ruby and Python.

To export mind maps in different formats, they used AWS S3 file storage. But instead
of uploading files from the API, they uploaded files directly from the browser to an
AWS S3 bucket, using signed URLs generated by the API. Notifications about newly
uploaded conversion request files were then pushed to an AWS Simple Queue Service
(SQS) queue. They had one SQS queue per conversion file type and a few applications
to read from the queue and convert the file to the specified file type.

The converter applications were Heroku apps, but supporting lots of independent
exporters required almost 30 dynos (Heroku’s lightweight Linux-based containers), which
was too expensive. To reduce the cost, they bundled the exporters into a few Heroku apps;
each app was a group of all the exporters that required the same programming language,
because Heroku dynos require programming language selection on setup. The MindMup
architecture at that point was similar to figure 15.4.

Bundling exporters reduced the cost of the infrastructure, but it also brought cer-
tain issues, such as the following:

¡	There was less isolation and more situations where different libraries could
collide.

¡	Adding a new exporter required a lot of coordination because it required a new
app and a new SQS queue. SQS queues were not too expensive, but they were an
additional layer of complexity.

¡	Because it was all bundled, performing small experiments was difficult.
¡	Updating packages for different Heroku apps with different programming lan-

guages was difficult to manage.

Also, there was bit of a scandal with the way Heroku was doing routing—it routed
requests to a random dyno instead of to a free one, even if the random dyno was
already busy. To learn more about this incident, see https://genius.com/James
-somers-herokus-ugly-secret-annotated.

At that time, exporters were the biggest pain point of the MindMup architecture.

15.2.2 Serverless migration

In January 2016, the developers were planning to add a new exporter, and they were
looking at AWS Lambda because they had seen that files saved in S3 could invoke
Lambda functions. As an experiment, Gojko created an exporter in Node.js with a bash
script to automate the deployment of a new Lambda function. They liked how it worked,

AWS DynamoDB
database

2. An API
communicates with
AWS DynamoDB
database, where
users and
transactions are
stored.

7. Heroku apps for file
generation and conversion
are grouped by the
programming language they
use, for cost optimization.

4. Then it polls the read
pre-signed URL to get
the converted file as
soon as it is generated.

3. Each time user wants to export
file, they save the JSON to AWS S3
bucket directly from the browser,
using pre-signed URL.

HTML

Heroku app

AWS S3
bucket for files All Node.js based converters

in a separate Heroku app

All Ruby based converters
in a separate Heroku app

All Java based converters
in a separate Heroku app

API

AWS SNS

PNG conversion
queue

PDF conversion
queue

Word conversion
queue

AWS SQS

1. Browser talks to
Heroku-based application that
hosts HTMLs and an API. This
API also returns pre-signed
URLs for writing and reading
S3 bucket with files.

5. AWS S3 then
triggers AWS SNS
event for each file
upload.

6. AWS SNS then triggers
SQS and puts each file
type in a queue.

8. Heroku apps gets the
conversion requests from
AWS SQS queues and
processes requests that
are directed to them.

Figure 15.4 The MindMup architecture before migration to serverless

https://genius.com/James-somers-herokus-ugly-secret-annotated
https://genius.com/James-somers-herokus-ugly-secret-annotated

 277MindMup

and in contrast with Heroku, which required them to reserve capacity, the AWS Lambda
model was pay-per-use. That meant they could conceivably have a separate function for
each exporter. At that moment, they decided to start gradually moving all the exporters
to AWS Lambda, one by one.

Gojko saw that for the first exporter he had 30 lines of Node.js code and more than
200 lines of bash script. He realized that the risk had shifted from the code to the
deployment and that he needed a tested tool to be able to fully migrate to serverless.
The ecosystem of serverless tools wasn’t developed enough, however, so he decided to
“roll his own” solution—which later was open-sourced and published as Claudia.js.

Because the MindMup website was a monolith that served an API and performed
server-side rendering, the developers decided to start moving each of the API services
to AWS Lambda functions. Migration of an API could be done through API Gateway,
but they used this opportunity to rewrite and refactor some of the legacy code and to fix
the three-year-old codebase that had grown “in many weird ways,” according to Gojko.

for each of them varied. For example, the PDF exporter was used all the time and
required a lot of CPU and memory for file generation. The text exporter required
only a small amount of resources, and the Markdown exporter was used much less fre-
quently. Also, different exporters required different applications:

¡	For PDF, they needed Ghostscript, a software suite for PDF manipulation.
¡	For Word, they used Apache POI, a library that provides Java libraries for reading

and writing files in Microsoft Office formats.
¡	For other exporters, they needed Ruby and Python.

To export mind maps in different formats, they used AWS S3 file storage. But instead
of uploading files from the API, they uploaded files directly from the browser to an
AWS S3 bucket, using signed URLs generated by the API. Notifications about newly
uploaded conversion request files were then pushed to an AWS Simple Queue Service
(SQS) queue. They had one SQS queue per conversion file type and a few applications
to read from the queue and convert the file to the specified file type.

The converter applications were Heroku apps, but supporting lots of independent
exporters required almost 30 dynos (Heroku’s lightweight Linux-based containers), which
was too expensive. To reduce the cost, they bundled the exporters into a few Heroku apps;
each app was a group of all the exporters that required the same programming language,
because Heroku dynos require programming language selection on setup. The MindMup
architecture at that point was similar to figure 15.4.

Bundling exporters reduced the cost of the infrastructure, but it also brought cer-
tain issues, such as the following:

¡	There was less isolation and more situations where different libraries could
collide.

¡	Adding a new exporter required a lot of coordination because it required a new
app and a new SQS queue. SQS queues were not too expensive, but they were an
additional layer of complexity.

¡	Because it was all bundled, performing small experiments was difficult.
¡	Updating packages for different Heroku apps with different programming lan-

guages was difficult to manage.

Also, there was bit of a scandal with the way Heroku was doing routing—it routed
requests to a random dyno instead of to a free one, even if the random dyno was
already busy. To learn more about this incident, see https://genius.com/James
-somers-herokus-ugly-secret-annotated.

At that time, exporters were the biggest pain point of the MindMup architecture.

15.2.2 Serverless migration

In January 2016, the developers were planning to add a new exporter, and they were
looking at AWS Lambda because they had seen that files saved in S3 could invoke
Lambda functions. As an experiment, Gojko created an exporter in Node.js with a bash
script to automate the deployment of a new Lambda function. They liked how it worked,

AWS DynamoDB
database

2. An API
communicates with
AWS DynamoDB
database, where
users and
transactions are
stored.

7. Heroku apps for file
generation and conversion
are grouped by the
programming language they
use, for cost optimization.

4. Then it polls the read
pre-signed URL to get
the converted file as
soon as it is generated.

3. Each time user wants to export
file, they save the JSON to AWS S3
bucket directly from the browser,
using pre-signed URL.

HTML

Heroku app

AWS S3
bucket for files All Node.js based converters

in a separate Heroku app

All Ruby based converters
in a separate Heroku app

All Java based converters
in a separate Heroku app

API

AWS SNS

PNG conversion
queue

PDF conversion
queue

Word conversion
queue

AWS SQS

1. Browser talks to
Heroku-based application that
hosts HTMLs and an API. This
API also returns pre-signed
URLs for writing and reading
S3 bucket with files.

5. AWS S3 then
triggers AWS SNS
event for each file
upload.

6. AWS SNS then triggers
SQS and puts each file
type in a queue.

8. Heroku apps gets the
conversion requests from
AWS SQS queues and
processes requests that
are directed to them.

Figure 15.4 The MindMup architecture before migration to serverless

https://genius.com/James-somers-herokus-ugly-secret-annotated
https://genius.com/James-somers-herokus-ugly-secret-annotated

278 chapter 15 Real-world case studies

As the migration progressed, they ended up with a single application on Heroku
that was responsible for rendering the index.html file. They replaced it with a static
site on an AWS S3 bucket, with AWS CloudFront as a CDN and caching layer. The only
exporter that was left on Heroku was the PowerPoint exporter, written in Java. It ran
fine for some time, but they eventually moved that to AWS Lambda, too.

The entire migration took about a year of slow rewriting, and MindMup was a fully
serverless application in February 2017. Everything was divided into small Lambda func-
tions that are organized in logical units, and a single function is not necessarily doing just
one small thing. In the current architecture, the MindMup website is loaded from AWS S3
and CloudFront. A browser communicates directly with the so-called Gold API, which is a
Lambda function behind an API Gateway. The Gold API is connected to the DynamoDB
database, and it is used by Stripe and PayPal webhooks.

The Gold API also generates presigned URLs that allow a browser to write files
directly to an S3 bucket and to poll the bucket to check if the files were generated.
When a file is uploaded to the S3 bucket, it triggers an SNS notification, which then
triggers the converters.

The biggest difference is with the exporters, because each exporter—regardless of
how many requests it handles—is in its own Lambda function.

TIP Isolating each exporter in its own Lambda function also allows MindMup
to optimize costs: they can have some of the exporters in Lambda functions
with minimum memory (128 MB) but use more memory for exporters that
require it.

When a file is converted, an exporter directly stores the result to an S3 bucket, and the
browser gets the converted file.

Even more Lambda functions are used for analytics purposes, triggered by the dif-
ferent parts of the system (for example, by an API or by one of the exporters) via SNS
notifications. Those Lambda functions process the data and store it to a few different
services, such as S3 buckets and DynamoDB tables.

There’s also an authorization component in front of an API that communicates with
the static website and the Gold API Lambda function. MindMup uses Cognito for Google
sign-in, but they also have a custom authorizer for the rest of the app.

The current MindMup architecture is shown in figure 15.5.
Although MindMup is fully serverless now, the team is constantly working on

improvements. For example, one of the next steps is to add scalable real-time collabora-
tion support, using Kinesis streams and AWS Lambda functions.

15.2.3 Cost of the infrastructure

One of the most amazing things about MindMup’s serverless migration was the
improvement in application infrastructure cost. A comparison of the infrastructure
costs and the number of users for December 2016 and December 2015 showed that the
user base had grown by about 50%, whereas the costs had decreased by about 50%. At

DynamoDB
database

1. Browser loads a
static files (HTMLs and
JavaScript app) from
AWS S3 and AWS
Cloud Front.

2. Browser also talks directly to the
API which, among other things,
generates pre-signed URLs for
saving and reading AWS S3 files.

4. When file is generated,
AWS Lambda function uploads
it directly to S3 bucket, and
browser reads it via
pre-signed URL.

3. AWS S3 then triggers SNS
notification for each file.
Each SNS notification
triggers AWS Lambda file for
file generation and
conversion.

8. MindMup also uses SNS
notifications to gather
analytics from different
parts of the system.
Analytics is now passed to
few different services, such
as DynamoDB and S3.

7. API is connected to
the DynamoDB table.

6. Website, API Gateway and
AWS Lambda are using Cognito
for users, via Google sign in
and custom auth.

5. Payment processors are
using webhooks to
communicate with an API
Lambda function via API
Gateway.

S3 bucket for
the website

Cognito

“Gold API”
Lambda functions SNS

notification

SNS
notification

for Analytics

PDF
converter
Lambda

PNG
converter
Lambda

SVG
Converter
Lambda

AWS S3,
DynamoDB

and other services

API Gateway S3 bucket
for files

Stripe
and

Paypal

Cloud
Front

Figure 15.5 MindMup architecture using serverless

 279MindMup

that point, they decided to drop Heroku and SQS completely; they moved everything
to AWS, reduced data transfers, and reduced latency. With Heroku, they had been pay-
ing for reserved capacity. That changed when they went serverless. The Gold API was
the gateway for everything else, and it had been their main bottleneck. As a serverless
function, it scales automatically, so it’s no longer a bottleneck.

In September 2017, MindMup had around 400,000 active users. Their total monthly
AWS bill was $102.92 USD. See table 15.1 for cost breakdown by services.

Table 15.1 Applications

AWS Resource Monthly cost

Lambda $0.53 USD

API Gateway $16.41 USD

DynamoDB $0 USD

CloudFront $65.20 USD

S3 $5.86 USD

Data transfer $4.27 USD

As the migration progressed, they ended up with a single application on Heroku
that was responsible for rendering the index.html file. They replaced it with a static
site on an AWS S3 bucket, with AWS CloudFront as a CDN and caching layer. The only
exporter that was left on Heroku was the PowerPoint exporter, written in Java. It ran
fine for some time, but they eventually moved that to AWS Lambda, too.

The entire migration took about a year of slow rewriting, and MindMup was a fully
serverless application in February 2017. Everything was divided into small Lambda func-
tions that are organized in logical units, and a single function is not necessarily doing just
one small thing. In the current architecture, the MindMup website is loaded from AWS S3
and CloudFront. A browser communicates directly with the so-called Gold API, which is a
Lambda function behind an API Gateway. The Gold API is connected to the DynamoDB
database, and it is used by Stripe and PayPal webhooks.

The Gold API also generates presigned URLs that allow a browser to write files
directly to an S3 bucket and to poll the bucket to check if the files were generated.
When a file is uploaded to the S3 bucket, it triggers an SNS notification, which then
triggers the converters.

The biggest difference is with the exporters, because each exporter—regardless of
how many requests it handles—is in its own Lambda function.

TIP Isolating each exporter in its own Lambda function also allows MindMup
to optimize costs: they can have some of the exporters in Lambda functions
with minimum memory (128 MB) but use more memory for exporters that
require it.

When a file is converted, an exporter directly stores the result to an S3 bucket, and the
browser gets the converted file.

Even more Lambda functions are used for analytics purposes, triggered by the dif-
ferent parts of the system (for example, by an API or by one of the exporters) via SNS
notifications. Those Lambda functions process the data and store it to a few different
services, such as S3 buckets and DynamoDB tables.

There’s also an authorization component in front of an API that communicates with
the static website and the Gold API Lambda function. MindMup uses Cognito for Google
sign-in, but they also have a custom authorizer for the rest of the app.

The current MindMup architecture is shown in figure 15.5.
Although MindMup is fully serverless now, the team is constantly working on

improvements. For example, one of the next steps is to add scalable real-time collabora-
tion support, using Kinesis streams and AWS Lambda functions.

15.2.3 Cost of the infrastructure

One of the most amazing things about MindMup’s serverless migration was the
improvement in application infrastructure cost. A comparison of the infrastructure
costs and the number of users for December 2016 and December 2015 showed that the
user base had grown by about 50%, whereas the costs had decreased by about 50%. At

DynamoDB
database

1. Browser loads a
static files (HTMLs and
JavaScript app) from
AWS S3 and AWS
Cloud Front.

2. Browser also talks directly to the
API which, among other things,
generates pre-signed URLs for
saving and reading AWS S3 files.

4. When file is generated,
AWS Lambda function uploads
it directly to S3 bucket, and
browser reads it via
pre-signed URL.

3. AWS S3 then triggers SNS
notification for each file.
Each SNS notification
triggers AWS Lambda file for
file generation and
conversion.

8. MindMup also uses SNS
notifications to gather
analytics from different
parts of the system.
Analytics is now passed to
few different services, such
as DynamoDB and S3.

7. API is connected to
the DynamoDB table.

6. Website, API Gateway and
AWS Lambda are using Cognito
for users, via Google sign in
and custom auth.

5. Payment processors are
using webhooks to
communicate with an API
Lambda function via API
Gateway.

S3 bucket for
the website

Cognito

“Gold API”
Lambda functions SNS

notification

SNS
notification

for Analytics

PDF
converter
Lambda

PNG
converter
Lambda

SVG
Converter
Lambda

AWS S3,
DynamoDB

and other services

API Gateway S3 bucket
for files

Stripe
and

Paypal

Cloud
Front

Figure 15.5 MindMup architecture using serverless

280 chapter 15 Real-world case studies

They managed to reduce the cost because they let the front-end application talk to
some services, such as S3, directly, without putting an API between the browser and
S3. This affects the cost because different AWS services have different pricing models.
For example:

¡	AWS charges for the number of requests, execution duration, and memory
consumption.

¡	API Gateway charges for the number of requests and for data transfer.
¡	Amazon S3 charges only for data transfer.

In a traditional application, you would upload images through the API, but by doing
this, you would incur costs for data transfer in S3 and API Gateway and for the number
of requests, request duration, and memory consumption in AWS Lambda. In a server-
less application, you can get the presigned URL for S3 from an API, which takes less
than 100 ms and requires minimal memory. You can then upload the file directly to an
S3 bucket from the front end and pay for only that data transfer.

15.2.4 Testing, logs, and challenges

Knowing that Claudia is well covered with automated tests, it was interesting to hear
from Gojko how they test MindMup. As expected, MindMup has a lot of unit and inte-
gration tests. Everything is separated into libraries, and they use Hexagonal Architec-
ture extensively.

Tests are written using the Jasmine framework. Each of the Lambda functions has
many unit tests, and a few integration tests where needed. For most of the Lambda
functions, they have a lambda.js file that does almost nothing, and is responsible just
for wiring other components. This lambda.js file is rarely covered with tests because it
contains only three to four lines of code. Then they have the main.js file, which is the
main file for that Lambda function; it receives an event from lambda.js and processes
it. This main.js file is connected to different libraries (for example, FileRepository),
configured, and passed from the lambda.js file.

The biggest chunk of their testing is unit tests for the main.js file. They also have inte-
gration tests that connect main.js with the MemoryRepository. The FileRepository is
tested with both unit and integration tests, but separately, because it’s a separate library.

The testing flow of the typical AWS Lambda function is depicted in figure 15.6.
For some of the exporters, they also conduct visual tests using Appraise, a tool for

visual approval testing that we mentioned in chapter 11. To learn more about Appraise,
see http://appraise.qa/.

For logs, MindMup uses CloudWatch. They also track errors, payment information,
and access; for example, front-end exceptions are tracked through Google Analytics.
They store some events in S3 so they can search them. They do not need real-time log-
ging with extensive search capabilities.

It’s important to note that MindMup uses labels for the environments, which is a bit
contrary to AWS best practices. MindMup labels functions for development; those func-
tions then talk to a development S3 bucket, DynamoDB table, and so on. Moving from

Unit tests

Integration tests
with Amazon S3

Integration tests
with MemoryRepository

Unit tests

lambda.js FileRepository

main.js

Typical Lambda function

Typical Lambda
function has lambda.js
and main.js files.

Lambda.js is just passing the event
and repositories to main.js function,
and it doesn’t have tests.

Repositories are separate Node.js
libraries, and they have their own
unit and integration tests.

Main.js file has its own unit and
integration tests, but integration
tests are using MemoryRepository.

Main.js file contains the business
logic of that Lambda function, and it
receives an event and repositories.

Figure 15.6 The testing flow of the typical AWS Lambda function

http://appraise.qa/

 281Summary

development to production requires only a label update. It’s safer to have different
accounts for different environments, but the small size of the team is what makes this
approach feasible and MindMup able to grow faster.

Summary

¡	Serverless architecture allows you to build a scalable product fast with a small
team and an inexpensive infrastructure.

¡	The combination of Claudia and AWS Lambda allows front-end developers
to develop and deploy production-ready services without extensive back-end
knowledge.

¡	Going serverless can lead to a significant cost reduction if you optimize your
application for the platform.

¡	With serverless, risk shifts from the code to deployment and integrations, and it’s
important to cover those things with tests.

¡	Using Hexagonal Architecture reduces code complexity and allows you to test
your serverless application more easily.

¡	Migration to serverless can be used to refactor a whole legacy application.

As well as learning a lot about the benefits of serverless, we hope you enjoyed Aunt
Maria’s company throughout this book, and haven’t become too hungry while reading
it. Bon appétit!

They managed to reduce the cost because they let the front-end application talk to
some services, such as S3, directly, without putting an API between the browser and
S3. This affects the cost because different AWS services have different pricing models.
For example:

¡	AWS charges for the number of requests, execution duration, and memory
consumption.

¡	API Gateway charges for the number of requests and for data transfer.
¡	Amazon S3 charges only for data transfer.

In a traditional application, you would upload images through the API, but by doing
this, you would incur costs for data transfer in S3 and API Gateway and for the number
of requests, request duration, and memory consumption in AWS Lambda. In a server-
less application, you can get the presigned URL for S3 from an API, which takes less
than 100 ms and requires minimal memory. You can then upload the file directly to an
S3 bucket from the front end and pay for only that data transfer.

15.2.4 Testing, logs, and challenges

Knowing that Claudia is well covered with automated tests, it was interesting to hear
from Gojko how they test MindMup. As expected, MindMup has a lot of unit and inte-
gration tests. Everything is separated into libraries, and they use Hexagonal Architec-
ture extensively.

Tests are written using the Jasmine framework. Each of the Lambda functions has
many unit tests, and a few integration tests where needed. For most of the Lambda
functions, they have a lambda.js file that does almost nothing, and is responsible just
for wiring other components. This lambda.js file is rarely covered with tests because it
contains only three to four lines of code. Then they have the main.js file, which is the
main file for that Lambda function; it receives an event from lambda.js and processes
it. This main.js file is connected to different libraries (for example, FileRepository),
configured, and passed from the lambda.js file.

The biggest chunk of their testing is unit tests for the main.js file. They also have inte-
gration tests that connect main.js with the MemoryRepository. The FileRepository is
tested with both unit and integration tests, but separately, because it’s a separate library.

The testing flow of the typical AWS Lambda function is depicted in figure 15.6.
For some of the exporters, they also conduct visual tests using Appraise, a tool for

visual approval testing that we mentioned in chapter 11. To learn more about Appraise,
see http://appraise.qa/.

For logs, MindMup uses CloudWatch. They also track errors, payment information,
and access; for example, front-end exceptions are tracked through Google Analytics.
They store some events in S3 so they can search them. They do not need real-time log-
ging with extensive search capabilities.

It’s important to note that MindMup uses labels for the environments, which is a bit
contrary to AWS best practices. MindMup labels functions for development; those func-
tions then talk to a development S3 bucket, DynamoDB table, and so on. Moving from

Unit tests

Integration tests
with Amazon S3

Integration tests
with MemoryRepository

Unit tests

lambda.js FileRepository

main.js

Typical Lambda function

Typical Lambda
function has lambda.js
and main.js files.

Lambda.js is just passing the event
and repositories to main.js function,
and it doesn’t have tests.

Repositories are separate Node.js
libraries, and they have their own
unit and integration tests.

Main.js file has its own unit and
integration tests, but integration
tests are using MemoryRepository.

Main.js file contains the business
logic of that Lambda function, and it
receives an event and repositories.

Figure 15.6 The testing flow of the typical AWS Lambda function

http://appraise.qa/

283

appendix a
Installation and configuration

This appendix provides details on how to install and configure Claudia and other
libraries for its ecosystem: Claudia API Builder and Bot Builder.

This appendix, like this book in general, assumes that you are familiar with the
basics of the AWS platform and that you have an account. If that assumption is incor-
rect, we strongly recommend that you create an account and try to become more familiar
with AWS in general, and with its user and permission system in particular, before read-
ing on. You can create an account on the AWS website: https://aws.amazon.com.
To better understand users and roles, the official documentation is a good starting
point: http://docs.aws.amazon.com/IAM/latest/UserGuide/id.html.

A.1 Installing Claudia
Claudia is a regular Node.js module, published on NPM.

To install Claudia and make the claudia command available in your terminal,
run the following:

npm install claudia -g

Another option is to install Claudia as a development dependency to your Node.js
project by running the following command in your project:

npm install claudia --save-dev

In this case Claudia will not be installed globally, so you can’t use it from your ter-
minal. Instead, you need to run it as an NPM script. The following listing shows the
minimal version of package.json with Claudia installed as a development depen-
dency, and with the required NPM scripts.

https://aws.amazon.com
http://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

284 appendix a Installation and configuration

Listing A.1 Example of package.json file with local version of Claudia

{
 "name": "pizza-api",
 "version": "1.0.0",
 "description": "",
 "main": "api.js",
 "scripts": {
 "create": "claudia create --region eu-central-1 --api-module api",
 "update": "claudia update"
 },
 "keywords": [],
 "license": "MIT",
 "devDependencies": {
 "claudia": "^4.0.0"
 },
}

After updating the package.json file with the content from listing A.1, you can create
your Lambda function and API Gateway definition by running the npm run create
command from the terminal in your project folder, or update it by running the npm
run update command.

The full process of Claudia installation is also explained on the Claudia website:
https://claudiajs.com/tutorials/installing.html.

A.1.1 Configuring Claudia prerequisites

Despite its easy installation, Claudia has one prerequisite: keys for the AWS profile.
If you haven’t created an AWS profile yet, see the next section.
Claudia uses the AWS SDK for Node.js to function, and that SDK requires AWS pro-

file keys. There are a few ways to configure the keys. The easiest is to create an .aws
folder in the home directory on your operating system. Then create the credentials file
inside that folder, without an extension, with the following content:

[default]
aws_access_key_id=YOUR_ACCESS_KEY
aws_secret_access_key=YOUR_ACCESS_SECRET

NOTE Make sure that you replace the YOUR_ACCESS_KEY and YOUR_ACCESS_
SECRET values with the actual keys.

If you named your profile with any other name than the default, you need to provide
that profile name to Claudia. You can do that by passing the --profile flag with a pro-
file name (for example, claudia update --profile yourProfileName) or by setting
an AWS_PROFILE environment variable (for example, AWS_PROFILE=yourProfileName
claudia update).

NPM script for creating the API in
the eu-central-1 region

NPM script for updating the API

Claudia saved as a
development dependency

The name of your AWS profile The access key ID for
your AWS profile

The secret access key
for your AWS profile

https://claudiajs.com/tutorials/installing.html

 285Installing Claudia

For a full guide on configuring the AWS SDK for Node.js, visit http://docs.aws
.amazon.com/sdk-for-javascript/v2/developer-guide/configuring-the-jssdk.html.

A.1.2 Creating an AWS profile and getting the keys

To create a new AWS profile for Claudia, go to the AWS web console (https://console
.aws.amazon.com) and log in.

Then go to the Users tab of the IAM section (https://console.aws.amazon.com/iam
/home#/users). Click the Add User button to create a new user, as shown in figure A.1.

To add a new user, you need to go through a four-step process. First, you need to
name your user (claudia is a good name for your first user) and set its access type.
Because you’ll use it only through the AWS CLI and AWS SDK for Node.js, select the
Programmatic Access option. Click the Next: Permissions button (see figure A.2).

For the second step, you need to add permissions to your user. Select the Attach
Existing Policies Directly tab, as shown in figure A.3. Then use the input field to search
for the policies you want to add.

The recommended policies you need for this book are

¡	IAMFullAccess—Required if you want Claudia to automatically create execution
roles for your Lambda function (which is recommended for beginners). The
other option is to do that on your own and pass the existing role name using the
--role flag when issuing the claudia create command.

¡	AWSLambdaFullAccess—Required for Claudia deployments.
¡	AmazonAPIGatewayAdministrator—Required for Claudia API Builder and Claudia

Bot Builder.

Figure A.1 The Users tab of the IAM section of the AWS web console

http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/configuring-the-jssdk.html
http://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/configuring-the-jssdk.html
https://console.aws.amazon.com
https://console.aws.amazon.com
https://console.aws.amazon.com/iam/home#/users
https://console.aws.amazon.com/iam/home#/users

286 appendix a Installation and configuration

The third step is reviewing your new user, as shown in figure A.4. If all the informa-
tion seems right, click the Create User button at the bottom of the page to create your
new user.

You finish with the confirmation step, as shown in figure A.5. This step is important
because it gives you an access key ID and a secret access key for your new user.

Now that you have your access key ID and secret access key, you can go back to the
previous section and set them up.

Figure A.3 The second step of adding an AWS user: setting user permissions

Figure A.4 The third step of adding an AWS user: review

Figure A.5 Getting the keys for the user

¡	AmazonDynamoDBFullAccess—Required for managing a DynamoDB database.
¡	AmazonAPIGatewayPushToCloudWatchLogs—Optional; used for logging full requests

and responses from API Gateway.

Production apps require careful selection; this topic is beyond the scope of this book,
but we recommend that you learn more about AWS roles and policies before deploy-
ing more serious applications to production.

Figure A.2 The first step of adding an AWS user: setting the user details

 287Installing Claudia

The third step is reviewing your new user, as shown in figure A.4. If all the informa-
tion seems right, click the Create User button at the bottom of the page to create your
new user.

You finish with the confirmation step, as shown in figure A.5. This step is important
because it gives you an access key ID and a secret access key for your new user.

Now that you have your access key ID and secret access key, you can go back to the
previous section and set them up.

Figure A.3 The second step of adding an AWS user: setting user permissions

Figure A.4 The third step of adding an AWS user: review

Figure A.5 Getting the keys for the user

288 appendix a Installation and configuration

A.1.3 Installing Claudia API Builder

Claudia API Builder is available on NPM as a package. It doesn’t require any configu-
ration, so to install it, save it as a dependency in your Node.js project by running the
following command:

npm install claudia-api-builder --save

The version we used for the examples in this book is 4.0.0.

A.1.4 Installing Claudia Bot Builder

Similar to the API Builder, Claudia Bot Builder is a regular NPM package that doesn’t
require any special configuration. To install it and save it as a dependency of your proj-
ect, run the following command:

npm install claudia-bot-builder --save

The version we used for the examples in this book is 4.0.0.

A.2 Installing the AWS CLI
The AWS Command Line Interface (CLI) is a unified tool to manage your AWS ser-
vices. This book uses the AWS CLI for many things, including creating roles and per-
missions and accessing the DynamoDB tables.

To install the AWS CLI on Windows, visit https://aws.amazon.com/cli/ and down-
load the Windows installer.

If you are a Mac or Linux user, you need to have Python version 2.6.5 or later, with
pip. With Python, you can run the following command to install the AWS CLI:

pip install awscli

For more information about the AWS CLI, visit https://aws.amazon.com/cli/.
To confirm that the command works, run aws --version.
The version we used for the examples in this book is

aws-cli/1.11.138 Python/2.7.10 Darwin/16.7.0 botocore/1.6.5

https://aws.amazon.com/cli/
https://aws.amazon.com/cli/

289

appendix b
Facebook Messenger, Twilio,

and Alexa configuration

This appendix provides details on how to set up the following items required by
chapters 8, 9, and 10:

¡	A Facebook Messenger page and application
¡	A Twilio account
¡	An Amazon Alexa account and skill

NOTE All the services we use are under active development, and at some
point the user interface or even certain steps might change. If the UI you
see is different from the screenshots we provide here, please visit the official
documentation for the service in question. Links are given in the text.

B.1 Facebook Messenger setup
Configuration of the Facebook Messenger chatbot for chapters 8 and 9 requires the
following steps:

1 Create a Facebook page.

2 Create a Facebook app.

3 Create a Facebook Messenger chatbot using Claudia Bot Builder.

4 Enable built-in natural language processing (NLP).

290 appendix b Facebook Messenger, Twilio, and Alexa configuration

B.1.1 Creating a Facebook page

To create a Facebook page, visit https://www.facebook.com/pages/create/. This page
will show you a list of categories, which looks like figure B.1. You need to choose the
type of page you want to create.

NOTE If the screenshots shown here do not match what you see on the site,
consult Facebook’s help article for creating pages at https://www.facebook
.com/business/help/104002523024878.

You can choose any category; we picked “Cause or Community” because it requires
minimal configuration. When you select the “Cause or Community” tile, Facebook
asks you for the name of your page. Name your page “Aunt Maria’s pizzeria,” like we
did in figure B.2, and click Get Started.

After you name your page, Facebook asks you to upload profile and header pictures
and fill in some additional data. When you’ve completed or skipped all the steps, your
new Facebook page should look like figure B.3.

B.1.2 Creating a Facebook app

The next step is to create a Facebook application. To do so, go to https://developers
.facebook.com, and from the My Apps menu, choose Add a New App, as shown in fig-
ure B.4.

Select.

Figure B.1 Create your Facebook page.

Fill the name and
Click on Get Started.

Figure B.2 Select the page category and name your page.

Figure B.3 The Facebook page for Aunt Maria’s pizzeria

https://www.facebook.com/pages/create/
https://www.facebook.com/business/help/104002523024878
https://www.facebook.com/business/help/104002523024878
https://developers.facebook.com
https://developers.facebook.com

 291Facebook Messenger setup

B.1.1 Creating a Facebook page

To create a Facebook page, visit https://www.facebook.com/pages/create/. This page
will show you a list of categories, which looks like figure B.1. You need to choose the
type of page you want to create.

NOTE If the screenshots shown here do not match what you see on the site,
consult Facebook’s help article for creating pages at https://www.facebook
.com/business/help/104002523024878.

You can choose any category; we picked “Cause or Community” because it requires
minimal configuration. When you select the “Cause or Community” tile, Facebook
asks you for the name of your page. Name your page “Aunt Maria’s pizzeria,” like we
did in figure B.2, and click Get Started.

After you name your page, Facebook asks you to upload profile and header pictures
and fill in some additional data. When you’ve completed or skipped all the steps, your
new Facebook page should look like figure B.3.

B.1.2 Creating a Facebook app

The next step is to create a Facebook application. To do so, go to https://developers
.facebook.com, and from the My Apps menu, choose Add a New App, as shown in fig-
ure B.4.

Select.

Figure B.1 Create your Facebook page.

Fill the name and
Click on Get Started.

Figure B.2 Select the page category and name your page.

Figure B.3 The Facebook page for Aunt Maria’s pizzeria

https://www.facebook.com/pages/create/
https://www.facebook.com/business/help/104002523024878
https://www.facebook.com/business/help/104002523024878
https://developers.facebook.com
https://developers.facebook.com

292 appendix b Facebook Messenger, Twilio, and Alexa configuration

NOTE If the screenshots shown here do not match what you see on the site, con-
sult Facebook’s help article for creating apps at https://developers.facebook
.com/docs/apps/register.

A pop-up titled “Create a New App ID” appears, as shown in figure B.5, asking you for
your app’s name and your email address. Fill in the form (use “Aunt Maria’s pizzeria”
for the application name) and click the Create App ID button to create a new Face-
book application.

A screen listing some recommended products appears. When you hover over prod-
ucts with your mouse cursor, two buttons appear: Read Docs and Set Up. Find the Mes-
senger product and hover over it with your mouse, as shown in figure B.6. Click Set Up.

Clicking this button takes you to the Messenger Platform settings screen, which looks
similar to figure B.7.

Do not close this browser page; you’ll need it again in a few moments.

B.1.3 Creating a Facebook Messenger chatbot using Claudia Bot Builder

Now that you have both a Facebook page and a Facebook application, it’s time to cre-
ate a chatbot.

NOTE Before performing the next step, make sure you have Claudia installed
globally, as described in appendix A. Also, you need to have an NPM project
initialized and Claudia Bot Builder installed as a dependency, as explained in
the same appendix.

Finally, you need to have the code for your chatbot ready, as shown in listing 8.

Click.

Figure B.4 The Facebook developers portal

2. Click.

1. Fill.

Figure B.5 Creating a new Facebook application

Hover with
mouse cursor
and click.

Figure B.6 The list of recommended products

https://developers.facebook.com/docs/apps/register
https://developers.facebook.com/docs/apps/register

 293Facebook Messenger setup

Open your terminal and navigate to your project folder. Then run the command from
listing A.1 to create your AWS Lambda function and configure your chatbot.

NOTE Multiline commands like the one shown in the next listing may not work
on every OS. If they are not supported by your OS, type the command on a single
line—just make sure you remove the backslashes (\), which are there to tell the
terminal that the command continues on another line.

NOTE If the screenshots shown here do not match what you see on the site, con-
sult Facebook’s help article for creating apps at https://developers.facebook
.com/docs/apps/register.

A pop-up titled “Create a New App ID” appears, as shown in figure B.5, asking you for
your app’s name and your email address. Fill in the form (use “Aunt Maria’s pizzeria”
for the application name) and click the Create App ID button to create a new Face-
book application.

A screen listing some recommended products appears. When you hover over prod-
ucts with your mouse cursor, two buttons appear: Read Docs and Set Up. Find the Mes-
senger product and hover over it with your mouse, as shown in figure B.6. Click Set Up.

Clicking this button takes you to the Messenger Platform settings screen, which looks
similar to figure B.7.

Do not close this browser page; you’ll need it again in a few moments.

B.1.3 Creating a Facebook Messenger chatbot using Claudia Bot Builder

Now that you have both a Facebook page and a Facebook application, it’s time to cre-
ate a chatbot.

NOTE Before performing the next step, make sure you have Claudia installed
globally, as described in appendix A. Also, you need to have an NPM project
initialized and Claudia Bot Builder installed as a dependency, as explained in
the same appendix.

Finally, you need to have the code for your chatbot ready, as shown in listing 8.

Click.

Figure B.4 The Facebook developers portal

2. Click.

1. Fill.

Figure B.5 Creating a new Facebook application

Hover with
mouse cursor
and click.

Figure B.6 The list of recommended products

https://developers.facebook.com/docs/apps/register
https://developers.facebook.com/docs/apps/register

294 appendix b Facebook Messenger, Twilio, and Alexa configuration

claudia create \
 --region eu-central-1 \
 --api-module bot \
 --configure-fb-bot

Figure B.7 The Messenger Platform settings screen

Select your region.

Select your main file (this listing assumes
you named it bot.js, as in chapter 8).

Tell Claudia that you want to configure a
Facebook Messenger chatbot.

Copy.

Figure B.8 Facebook Messenger bot setup with Claudia Bot Builder

 295Facebook Messenger setup

Unlike a regular Claudia deployment, the command with the --configure-fb-bot
option is interactive. After your code is deployed to an AWS Lambda function, the
command will print the webhook URL and verify token you’ll need to configure your
chatbot, as shown in figure B.8. You’ll need those values for the next step.

Keep the terminal open, because the process is not done yet.
Go back to the Messenger Platform settings screen in your browser (figure B.7),

and click the Setup Webhook button in the Webhooks section. This button opens a
pop-up similar to the one in figure B.9. In this pop-up, use the values that the terminal
printed for you in the previous step to fill out the webhook URL and verify token. In the
Subscription Fields section, select the “messages” and “messaging_postbacks” options.
Then click the Verify and Save button.

After a moment, the pop-up closes and you see your webhook configured, as in
figure B.10.

Click.

Select.

Paste.

Figure B.9 Set up the webhook and verification token

Figure B.10 Webhook activation confirmation

296 appendix b Facebook Messenger, Twilio, and Alexa configuration

The next step is to get your Facebook page access token. To do so, go to the Token
Generation section of the settings screen, select the page you created from the drop-
down menu, and copy the token, as shown in figure B.11.

Go back to your terminal, paste the access token from the previous step, and press
Enter, as shown in figure B.12.

The interactive command then asks you for the Facebook app secret. The app secret
is required because it is used to verify that a message is being received from your chat-
bot, not from some other source. Your secret will be stored in an API Gateway stage
variable.

Copy.Select.

Figure B.11 Generate the page token.

Copy.

Figure B.12 Configure the page token.

 297Facebook Messenger setup

To get your Facebook app secret, go back to your browser, and select the Dashboard
tab in the Facebook app’s menu on the left. Click the Show button next to the App
Secret field, as shown in figure B.13. Copy this value, and go back to your terminal
window.

Paste your App Secret and press Enter, as shown in figure B.14.
When the command finishes after a few moments, you should see a response similar

to listing B.1.

Show.

Copy.

Figure B.13 Copy the app secret.

Paste.

Figure B.14 Configure the app secret.

298 appendix b Facebook Messenger, Twilio, and Alexa configuration

Listing B.1 Bot creation response

{
 "lambda": {
 "role": "pizza-fb-bot-executor",
 "name": "pizza-fb-bot",
 "region": "eu-central-1"
 },
 "api": {
 "id": "wvztkdiz8c",
 "module": "bot",
 "url": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest",
 "deploy": {
 "facebook": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/facebook",
 "slackSlashCommand": "https://wvztkdiz8c.execute-api.eu-central-1.

amazonaws.com/latest/slack/slash-command",
 "telegram": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/telegram",
 "skype": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/skype",
 "twilio": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/twilio",
 "kik": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/kik",
 "groupme": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/groupme",
 "line": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/line",
 "viber": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/viber",
 "alexa": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/alexa"
 }
 }
}

This response prints out all the webhooks, but you don’t need them because Claudia
has already set everything up for you. Claudia also automatically subscribed your chat-
bot to your page, as shown in figure B.15.

Now try to find your page in Facebook Messenger. You should see something similar
to figure B.16.

AWS Lambda info

API Gateway info

Webhooks for all supported platforms,
including Facebook Messenger

Page is automatically
selected.

Figure B.15 Your chatbot is subscribed to the page.

Type the message.

Figure B.16 The Facebook Messenger bot start page

 299Facebook Messenger setup

And if you message the bot, it should reply as shown in figure B.17.

Chatbot answers.

Figure B.17 The Facebook Messenger bot’s answer

Listing B.1 Bot creation response

{
 "lambda": {
 "role": "pizza-fb-bot-executor",
 "name": "pizza-fb-bot",
 "region": "eu-central-1"
 },
 "api": {
 "id": "wvztkdiz8c",
 "module": "bot",
 "url": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest",
 "deploy": {
 "facebook": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/facebook",
 "slackSlashCommand": "https://wvztkdiz8c.execute-api.eu-central-1.

amazonaws.com/latest/slack/slash-command",
 "telegram": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/telegram",
 "skype": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/skype",
 "twilio": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/twilio",
 "kik": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/kik",
 "groupme": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/groupme",
 "line": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/line",
 "viber": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/viber",
 "alexa": "https://wvztkdiz8c.execute-api.eu-central-1.amazonaws.com/

latest/alexa"
 }
 }
}

This response prints out all the webhooks, but you don’t need them because Claudia
has already set everything up for you. Claudia also automatically subscribed your chat-
bot to your page, as shown in figure B.15.

Now try to find your page in Facebook Messenger. You should see something similar
to figure B.16.

AWS Lambda info

API Gateway info

Webhooks for all supported platforms,
including Facebook Messenger

Page is automatically
selected.

Figure B.15 Your chatbot is subscribed to the page.

Type the message.

Figure B.16 The Facebook Messenger bot start page

300 appendix b Facebook Messenger, Twilio, and Alexa configuration

B.1.4 Enabling built-in NLP

To enable built-in NLP, go back to the Messenger Platform settings screen in the Face-
book developers portal, and scroll down to the Built-In NLP section. Then select your
Facebook page in the Select a Page to Customize Built-In NLP drop-down, as shown in
figure B.18.

Now you can enable built-in NLP, select the default language, and see advanced set-
tings. For the pizzeria application, you’ll use English, so you need to enable built-in
NLP as shown in figure B.19.

B.2 Twilio setup
Configuration of the Twilio SMS chatbot for chapter 10 requires the following steps:

1 Sign up for a Twilio account.

2 Get a Twilio number.

3 Set up your Twilio Programmable SMS service.

4 Create a Twilio SMS chatbot using Claudia Bot Builder.

NOTE Twilio has a free trial period, so you won’t need to pay right away, but
after a certain period of time it will ask you to pay for the service.

Select your page.

Figure B.18 Select the page to enable built-in NLP.

Enable built-in NLP.

Figure B.19 Enable built-in NLP.

 301Twilio setup

B.2.1 Creating a Twilio account

If you already have a Twilio account, jump to the next section, “Getting a Twilio
number.”

To sign up for a Twilio account, visit https://www.twilio.com/try-twilio. Type in the
required account details. You’ll also see four drop-down fields, as in figure B.20.

In the drop-downs, make the following choices:

1 For the product you’re going to use, choose SMS.

2 For what you’re going to build, choose SMS Support.

3 For the language you’re going to use, choose Node.js.

4 For potential monthly interactions, choose Less Than 100,000 (or if you’re
already planning for more, feel free to choose a higher value).

After you fill out all of the fields, Twilio asks you to verify that you’re a human by send-
ing you a verification SMS. You need to type in your mobile phone number, and you’ll
receive an SMS with the authentication code. Type in that code on the following screen.

Figure B.20 Sign up for a Twilio account.

https://www.twilio.com/try-twilio

302 appendix b Facebook Messenger, Twilio, and Alexa configuration

Upon successful verification of your number, Twilio asks you to create a new project.
You can see that page in figure B.21.

Fill in the project name and click Create Project, and your project is created. You’ll
then see the Programmable SMS project page, shown in figure B.22.

Figure B.21 Create a new Twilio project.

Figure B.22 Your Programmable SMS project page

 303Twilio setup

B.2.2 Getting a Twilio number

If you already have a Twilio number, jump to the next section, “Setting up your Twilio
Programmable SMS service.”

Otherwise, on the Programmable SMS project page, click the Get a Number but-
ton. You’ll see a modal with a phone number suggested by Twilio. If you don’t like this
number, or you just want a different one, you can click the Search for a Different Num-
ber link in the modal. When you’re okay with the phone number, click Choose This
Number.

When Twilio finishes processing your new number request, you’ll see a “Congratu-
lations” modal with your chosen phone number. Click Done, and Twilio opens up your
Programmable SMS project page with the Learn & Build tab selected.

B.2.3 Setting up your Twilio Programmable SMS service

Your Twilio SMS chatbot should be able to both automatically send and receive mes-
sages. To enable this messaging, you need to configure it in your Programmable SMS
project page as a Messaging Service. You can find the Messaging Services menu item in
the navigation menu on the left side of the project page (see figure B.23).

Open that tab, and click Create New Service. A pop-up window appears, asking you
for the friendly name of your service and the use case. Set the name as “Aunt Maria’s
Pizzeria chatbot” and the use case as “Mixed.”

Figure B.23 The Messaging Services option in the Programmable SMS project navigation menu

304 appendix b Facebook Messenger, Twilio, and Alexa configuration

The configuration page for your newly added Messaging Service opens, as shown in
figure B.24.

On this page, select the Process Inbound Messages options. Two text fields appear:

¡	Request URL
¡	Fallback URL

In the Request URL text field, paste or type in the URL of your serverless Twilio SMS
chatbot you created with Claudia Bot Builder. Then click Save.

Next you need to add to this service the Twilio number you requested in the previous
section. To do that, click the Numbers link in the left navigation menu of the Messaging
Services tab.

In the Numbers page, click the Add an Existing Number button. A pop-up appears,
as shown in figure B.25.

In this pop-up, you can see your list of available Twilio numbers. If you don’t have
one, please go back to the previous section, “Getting a Twilio number.”

To add one or more of these numbers, use the checkboxes to select them, and then
click Add Selected. The numbers appear in the list on the Numbers page.

If you’ve also pasted the URL of the serverless Twilio SMS chatbot function you cre-
ated into the Request URL field, that’s it—you’ve properly set up your Twilio account

Check process inbound
messages, and in the

Request URL text, field,
type in the URL of your
serverless Twilio SMS

chatbot function.

Your messaging
service name

Your messaging service
ID; keep it for later

Figure B.24 Configure your Messaging Service.

To select this number,
click here.

Your Twilio number

Figure B.25 Add your Twilio number to your Messaging Service.

 305Alexa skill setup

and Programmable SMS project. Congratulations! You can now try out your SMS chat-
bot by sending an SMS to your selected Twilio number.

B.3 Alexa skill setup
To set up an Alexa skill, go to https://developer.amazon.com/alexa and log in with
your Amazon account. Then click the Add Capabilities to Alexa link, as shown in
figure B.26.

The Alexa Skills Kit screen appears, a place where you can find documentation and
tutorials for designing, building, and launching Alexa skills. You can also create new
skills here. To do so, click the Start a Skill button, as shown in figure B.27, which takes
you to the Create a New Alexa Skill screen.

Click.

Figure B.26 The Amazon Alexa dashboard

Click.

Figure B.27 The Alexa Skills Kit

https://developer.amazon.com/alexa

306 appendix b Facebook Messenger, Twilio, and Alexa configuration

The first part of the process is the Skill Information section. In this section you can
select the skill type, set the name and invocation name of your skill, and configure
global fields such as Audio Player, Video App, and Render Template.

The Custom Interaction Model type is selected by default; keep it selected because
it allows you to build a new custom skill. Besides this type, you can build a Smart Home
skill, a Flash Briefing skill, or a Video skill (for Amazon Echo Show or other visual Alexa
devices).

Set both the name and invocation name to “Aunt Maria’s Pizzeria,” make sure that
all the global fields are off, and click the Save button, as shown in figure B.28. Click the
Next button to go to the next section.

The next screen is the Interaction Model settings. For this screen, you need the
intent schema, custom slot, and sample utterances you built in chapter 10.

Save.

Fill out.

Figure B.28 Setting up your skill

 307Alexa skill setup

First, paste the intent schema you built (listing 10.9) into the Intent Schema text
field. Then fill out the Custom Slot Types form, adding a custom slot name (LIST_OF_
PIZZAS) and using the values from chapter 10 (listing 10.10). Then click the Add but-
ton, as shown in figure B.29.

Fill out
intent schema.

Fill out.

Custom slot

Click.

Figure B.29 Configuring the interaction model

308 appendix b Facebook Messenger, Twilio, and Alexa configuration

After adding your custom slot type, fill out the custom utterances from chapter 10,
then click the Next button, as shown in figure B.30.

The next screen is the Configuration section, where you set up your skill’s webhook
or AWS Lambda function. Before you complete this step, deploy your code to a Lambda
function if you haven’t done that already. Keep your browser page open while you are
doing this, because you’ll need to go back to the Configuration section of the Create a
New Alexa Skill page in a few moments.

To deploy your Lambda function, open your terminal, navigate to your Alexa skill
code folder, and run the following command:

claudia create --region eu-west-1 --handler skill.handler --version skill

Fill out.

Click.

Figure B.30 Adding the sample utterances

 309Alexa skill setup

This command deploys your code to AWS Lambda in the eu-west-1 region (only
us-east-1 and eu-west-1 regions are supported by Alexa), and sets the version to skill.

After a few moments, you’ll see the standard claudia create response, similar to
this one:

{
 "lambda": {
 "role": "pizza-alexa-skill-executor",
 "name": "pizza-alexa-skill",
 "region": "eu-west-1"
 }
}

Before you can use the Lambda function for your Alexa skill, you need to allow it to be
triggered by Alexa. To do so, run the following command:

claudia allow-alexa-skill-trigger --version skill

Select.

Click.

Fill out.

Select.

Figure B.31 Skill configuration

310 appendix b Facebook Messenger, Twilio, and Alexa configuration

This command allows the skill version of your Lambda function to be triggered by
Alexa. After a few moments, you’ll see a response similar to this one:

{
 "Sid": "Alexa-1518380119842",
 "Effect": "Allow",
 "Principal": {
 "Service": "alexa-appkit.amazon.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:eu-west-1:721177882564:function:pizza-alexa-

skill:skill"
}

Copy the Lambda ARN (Resource in the JSON response in your terminal), then go
back to the skill configuration page in your browser. Select AWS Lambda ARN as the
Service Endpoint Type and paste the ARN of your Lambda function into the input
field below, as shown in figure B.31.

You are not building a skill that will have multiple geographical region endpoints
(for example, different regions for the US and UK), so select No as the response to the
“Provide geographical region endpoints?” question, and then click Next.

After your skill is configured, the Test screen appears. This screen is where you can test
your skill, for example by entering an utterance in the Service Simulator and then listen-
ing to the response by clicking the Listen button, as shown in figure B.32. Your skill is also
active on your Alexa device, so you can also say, “Alexa, start Aunt Maria’s Pizzeria.”

This skill is now available on your Alexa device, but if you want to make it available
for everyone, you need to submit your skill for certification, as explained here: https://
developer.amazon.com/docs/custom-skills/submit-an-alexa-skill-for-certification.html.

Click.

Fill out.

Click.

Figure B.32 Testing your skill

https://developer.amazon.com/docs/custom-skills/submit-an-alexa-skill-for-certification.html
https://developer.amazon.com/docs/custom-skills/submit-an-alexa-skill-for-certification.html

311

appendix c
Stripe and MongoDB setup

This appendix covers

¡	Setting up your Stripe account and retrieving Stripe API keys
¡	Installing and configuring MongoDB

C.1 Setting up your Stripe account and retrieving
Stripe API keys
Creating and configuring a Stripe account and obtaining the API keys is required for
chapter 12 when you create your serverless payment service. The process consists of
the following steps:

1 Sign up for a Stripe account.

2 Retrieve your Stripe API keys.

3 Create the serverless Stripe payment service using Claudia API Builder.

If you have a Stripe account but haven’t retrieved your keys yet, skip to the section
“Getting your Stripe API keys.”

C.1.1 Creating a Stripe account

Creating a Stripe account is quick and easy. Open your browser and go to https://
stripe.com. Click Create Account, which takes you to the Stripe registration page.

Type in your email address, full name, and password. After you submit the form,
Stripe asks you to add a mobile recovery number. We recommend you do so in case
you forget your password.

https://stripe.com
https://stripe.com

312 appendix c Stripe and MongoDB setup

After that, your account is created, but don’t forget to confirm your email address—
Stripe will not allow you to accept live payments until you do this. That’s it; you have
your very first Stripe account!

C.1.2 Getting your Stripe API keys

When you want to use Stripe to accept payments in your applications, you are required
to use Stripe’s API. Stripe needs to be able to identify you when you’re using its API.
To identify your account, Stripe gives you a pair of secret hashed keys that are meant to
be used in all communications with its API. These keys are automatically generated for
you by Stripe when you initially create your Stripe account.

Once you’ve created your account, as described in the previous section, you need
to retrieve your API keys. To do that, open the Stripe Dashboard at https://dashboard
.stripe.com.

From the navigation menu, choose the API option (see figure C.1).
The API page contains two tables, for standard API keys and restricted API keys (fig-

ure C.2). You want standard API keys; they are the most commonly used and the key
type you’ll use for your serverless payment service.

Figure C.1 The Stripe Dashboard

The publishable
and secret key

The Standard API
keys table

Copy the
publishable key.

Click to reveal and
copy the secret key.

Figure C.2 The standard API keys table

https://dashboard.stripe.com
https://dashboard.stripe.com

 313Installing and configuring MongoDB

As mentioned before, two standard API keys are automatically generated for you
when you create your account: a publishable key and a secret key. The publishable key
can be used as a public key in your front-end web or mobile applications. It may be
publicly seen, as it is something as your email. But either way, you don’t want everyone
to have it.

The secret key provides your applications or APIs access to Stripe resources. This is
what lets Stripe know it’s you using its resources. It’s similar to a password, and you must
hide it from everyone—but don’t worry, if you suspect someone might have seen it, you
can regenerate both the public and secret key.

Copy both keys to a blank document on your computer for ease of access now, but be
sure to delete the document after you finish chapter 12.

WARNING Keep your secret key safely secured and hidden on your server only.
Take the utmost care with your secret key, because it can be used to access or
even manipulate your Stripe account.

C.2 Installing and configuring MongoDB
MongoDB Atlas is a cloud-hosted and managed MongoDB service, engineered and
run by the same team that built the database. In this section you’ll create and configure
a free instance of MongoDB, which is sufficient to follow along with the code examples
from chapter 13 and to run a small real-world application.

C.2.1 Creating an account

To learn more about the product and create a MongoDB Atlas account, go to https://
www.mongodb.com/cloud/atlas in your browser (see figure C.3).

Click.

Figure C.3 The MongoDB Atlas landing page

https://www.mongodb.com/cloud/atlas
https://www.mongodb.com/cloud/atlas

314 appendix c Stripe and MongoDB setup

Click Pricing to open the Pricing tab, where you can choose a cloud provider, region,
and instance size. Select AWS, as shown in figure C.4, and then scroll down.

Below the cloud provider section, select the region you used for your Lambda func-
tion (we used eu-central-1). Then choose the M0 instance, which costs $0 per month,
and click Get Started Free, as shown in figure C.5.

Then scroll down.

Select AWS.

Figure C.4 Choose a cloud provider on the Pricing tab.

Select
eu-central-1.

Select
M0 instance.

M0 instance
is free.

Click to get
started.

Figure C.5 Choose a region and instance size.

 315Installing and configuring MongoDB

In the sign-up form that appears, fill out the required fields and click Continue, as shown
in figure C.6. MongoDB Atlas does not require your credit card details for a free account,
so clicking Continue creates your account and take you to the configuration page.

C.2.2 Configuring your cluster

After you create an account, you need to create your first cluster. A database cluster is a
collection of databases that is managed by a single instance of a running database server.
As shown in figure C.7, you need to add a cluster name (for example, “RobertosTaxi-
Company”). Make sure the price is still $0, and then click the Confirm & Deploy button.

Now that your cluster is created, you’ll be able to see your MongoDB Atlas dash-
board. The next step is to create a new user for your MongoDB database. To do so,
select the Security tab and then click the Add New User button, as shown in figure C.8.

In the Add New User pop-up, enter a username (for example, “roberto”) and pass-
word for your new database. Then show the advanced options in the User Privileges
section. This allows you to select more granular permissions for your new user. To add
the user for a single database only, select readWrite from the drop-down on the left, and
then enter the database name in the database field as shown in figure C.9. Because your
database doesn’t exist yet, you can enter “taxi” and the database will be automatically
created for you. When you’re done, click Add User.

Fill out the form.

Then submit the form.

Agree to the terms.

Figure C.6 Create your MongoDB Atlas account.

316 appendix c Stripe and MongoDB setup

After creating your new user, you return to the Security tab of the MongoDB Atlas
dashboard. The last step in the database configuration is to get the connection string.
To do so, select the Overview tab, and then click on the RobertosTaxiCompany cluster,
as shown in figure C.10.

Make sure that the
price is still $0.

Do not change.

Set a cluster name.

Confirm the info and
deploy the cluster.

Figure C.7 Build a cluster.

Select tab.

Click.

Figure C.8 The Security tab of the MongoDB Atlas dashboard

 317Installing and configuring MongoDB

As shown in figure C.11, click the Connect button to open the connection pop-up.
To be able to create a connection string, you need to whitelist at least one IP address

that will communicate with your MongoDB cluster. To do so, click the Add Entry but-
ton, as shown in figure C.12.

Enter password.

Enter username.

Click.

Enter
DB name.

Select
readWrite.

Show
advanced
options.

Figure C.9 Create a new user.

Select.

Click.

Figure C.10 The cluster overview

318 appendix c Stripe and MongoDB setup

But because you don’t know all the IP addresses that AWS Lambda will use, you need to
open your MongoDB cluster to all IP addresses by adding the 0.0.0.0/0 value to the IP
address field. Then add a description and click the Save button, as shown in figure C.13.

Click.

Figure C.12 Connect to your cluster.

Click.

Figure C.11 The RobertosTaxiCompany cluster overview

 319Installing and configuring MongoDB

The last step is to select the connection method. Select Connect Your Application, as
shown in figure C.14, because you want to get a MongoDB connection string.

Enter.

Click.

Figure C.13 Whitelist all IP addresses because you don’t know the AWS Lambda IP addresses.

Select.

Figure C.14 Get a connection string (step 1).

320 appendix c Stripe and MongoDB setup

A connection string is shown in the pop-up (see figure C.15). Click the I Am Using
Driver 3.4 or Earlier button, because this is the driver you’ll use in chapter 13, and then
copy the connection string. Make sure you update the username value in the connec-
tion string to “roberto” (or whatever you used) and the password value to the password
you entered when you created the new user.

Now that you have a MongoDB connection string, you’ll be able to deploy and test
the Express.js application from chapter 13.

Select.

Copy.

Figure C.15 Get a connection string (step 2).

321

appendix d
The pizza recipe

One pizza consists of several ingredients. Each of those ingredients has a specific place
in your pizza timeline. The pizza ingredients can be separated into three categories:

¡	Dough ingredients
¡	Topping ingredients
¡	Spices/Sauce ingredients

Pizza dough ingredients seem very simple—isn’t dough just flour and water? But
don’t be fooled; the pizza dough is the most important and the most difficult part. It
has numerous variations based on the following:

¡	Shape
¡	Thickness
¡	Color
¡	Chewiness
¡	Additional variations (such as border crust filled with melted cheese—a blas-

phemy for Italians)

For the dough of one pizza based on this recipe, you will need the following ingredients:

¡	2 cups of flour (250g)
¡	1 teaspoon of yeast (5g)
¡	1/2 cup of mildly warm water (120ml)
¡	A pinch of salt
¡	1/2 tablespoon of sugar (6g)
¡	1/2 tablespoon of olive oil (7ml)

322 appendix d The pizza recipe

Mix half of the mildly warm water needed with yeast, sugar, and a spoon of flour. Mix it
all thoroughly and let it rise at warm room temperature for about half an hour.

Add the salt, olive oil, and the water and yeast mixture, plus the rest of the water to
the remaining flour. Mix it all up nicely. Knead it for about 10 minutes by hand. You can
also use a machine if you have one.

Put a handful of flour in an empty clean pot. Spread the flour evenly and then put
the mixture in the floured pot.

Put your oven heating to the max.

WARNING If you’re not sure how your oven behaves on max temperature, then
put it at 220°C. Some ovens may behave weirdly at their max setting—we don’t
want you to start a kitchen fire.

While the oven is heating up, prepare your sheet pan. Cut a piece of parchment paper
(baking paper) in the size of your sheet pan. Separate the pan and parchment paper
and put the sheet pan inside the oven to heat. When its well heated, it’s time to work
again with the dough.

Without any kneading or mixing, stretch the dough to the size of the parchment
paper and then put it on the paper. Spread the olive oil over it. Now, put your topping
ingredients on it. You can be as creative as you like when it comes to toppings, but to
get you started, here’s a reminder of what goes on Aunt Maria’s pizzas. First goes the
famous Aunt Maria’s tomato sauce.

NOTE If you’re wondering about Aunt Maria’s sauce or the recipe, well, that’s
a family secret that can never be revealed! You can use a regular tomato sauce
instead, though.

Now place several pieces of mozzarella cheese on top and then spread around several
pieces of pepperoni, then olives, and just a bit of oregano.

WARNING Always be careful not to put too many topping ingredients on any
kind of pizza!

Take out the heated sheet pan and put your pizza on the parchment paper. Quickly put
it back inside the oven.

It’s going to take about 5–10 minutes for the pizza to bake fully. The correct timing
depends on your oven but the indicators to look for are when the pizza’s edges start get-
ting golden or brownish. If you prefer, pour on a bit of olive oil.

323

index
Symbols
\> character 112

A
access permissions 106
ACL (access control list) 107
addButton method 132
addImage method 132
addQuickReplyLocation method 153
afterEach function 203
AI (artificial intelligence) 162
Alexa

overview of 175–186
skills

anatomy of 177–179
coding 183–187
preparing 179

AlexaMessageBuilder 183–184
Alexa, skill

setting up 305–310
Alexa Skills Kit 181
ALICE (Artificial Linguistic Internet Computer

Entity) 124
AmazonAPIGatewayAdministrator 285
AmazonAPIGatewayPushToCloudWatchLogs 286
AmazonDynamoDBFullAccess 286
Amazon Echo 176
Amazon S3 114–116
ANY method 239
api.delete method 37, 39
API Gateway 35–36
api.get function 28
api-module option 23, 126
api.put method 37

ApiResponse method 101
APIs (application program interfaces) 35

connecting to 64–71
controlling access with Cognito 97–100
structuring 25–30
testing 51–55

app.listen function 237
apps 81, 104, 193, 248, 252

Express.js
migrating to AWS Lambda 236
running in AWS Lambda 236–240

for Facebook 290–292
Array.find method 142
Array.join function 128
artificial intelligence (AI) 162
Artificial Linguistic Internet Computer Entity

(ALICE) 124
async communication, potential issues with 71–76

forgetting to return promises 72
not passing values from promises 73
not wrapping external services in promises 73
timeout issues with long async operations 74–75

asynchronous operations
promises 48–50
rejection 49
retrieving orders from database 55–56
storing orders 43–48
testing APIs 51–55
timeout issues with 74–75

ata-amount attribute 229
attach-role-policy command 87
authentication, serverless 91–94
Authorization header 68
authorizer function, Lambda 94
automated testing 192, 211–212

324 index

AWS (Amazon Web Services)
creating profiles 285–287
installing CLI 288

AWS CloudFormation 259
AWS Cognito 97–100
aws cognito-identity create-identity-pool command 96
aws cognito-identity set-identity-pool-roles command 96
aws cognito-idp create-user-pool-client command 95
aws cognito-idp create-user-pool command 94
aws dynamodb create-table command 44
aws iam put-role-policy command 152
AWS Lambda 85

migrating Express.js apps to 236
connecting to MongoDB 242–248
serving static content 240–242

running Express.js applications in 236–240
proxy integration 239
serverless-express 239–240

AWSLambdaFullAccess 285
aws logs filter-log-events command 88
AWS_PROFILE variable 284
aws-sdk module 149
awsServerlessExpress.createServer function 238
aws-serverless-express module 238
awsServerlessExpress.proxy function 238
AWSXRay.captureAWS command 88
aws-xray-sdk-core module 87
AWS X-Ray tool 85–88
Azure Functions 10

B
BaaS (Backend as a Service) 6
Babel 272
backslashes 23, 293
beforeAll function 208
beforeEach function 203
body-parser module 243
Bot Builder 125
botBuilder.fbTemplate.Generic class 132
botBuilder function 128, 130, 134, 140, 159
Braintree 222
bucket flag 115
buckets 105
Bugsnag 265
business logic risks 213
Button class 142
button template 131

C
cache-api-config option 130

cachedDb.serverConfig.isConnected() function 244
callbackWaitsForEmptyEventLoop property 249
callOptions function 205
case studies

CodePen 270–274
before serverless architecture 270–271
challenges 274
cost of infrastructure 273–274
migration to serverless architecture 271–273

MindMup 275–281
before serverless architecture 275–276
challenges 280–281
cost of infrastructure 278–280
logs 280–281
migration to serverless architecture 276–278
testing 280–281

chatbots 123, 130–131
Claudia Bot Builder 134–136
connecting to DynamoDB database 149–153
creating for Facebook Messenger 292–299
deploying 130–131
getting user location from 153–155
in Facebook Messenger 127–131, 124–133
in SMS 169–170
integrating NLP libraries 161–163
interactivity 139–144
making structure more scalable 145–149
scheduling deliveries 156–161

child_process module 111
claudia allow-alexa-skill-trigger command 187
Claudia API Builder 288
claudia-api-builder module 22
Claudia Bot Builder

creating Facebook Messenger chatbots with 292–299
installing 288
overview of 134–136

claudia create command 23, 34
claudia generate-serverless-express-proxy command 237
Claudia library

configuring prerequisites 284–285
installing 283–288

Claudia API Builder 288
Claudia Bot Builder 288
creating AWS profiles 285–287

overview of 14–17
claudia update command 29, 35, 40, 51, 70, 170
claudia update --configure-twilio-sms-bot command 169
claudia update function 55
CLI (command line interface) 288
CloudWatch 82
CodeBuild 259

 325index

CodeDeploy 259
CodePen 270–274

before serverless architecture 270–271
challenges 274

additional scaling 274
cold starts 274
monitoring 274
security 274

cost of infrastructure 273–274
migration to serverless architecture 271–273

CodePipeline 259
Cognito 97–100
cognitoAuthorizer key 97
cognito-identity-providers flag 96
cold starts 13, 265–266
collection.deleteOne function 249
Command pattern 273
competence of security 232
config flag 29
configuration risks 213
configure-fb-bot option 126, 295
configure function 203
configuring

Alexa 305–310
Claudia prerequisites 284–285
Facebook Messenger 289–300

creating Facebook apps 290–292
creating Facebook Messenger chatbots using Claudia

Bot Builder 292–299
creating Facebook pages 290
enabling built-in NLP 300

MongoDB 313–320
configuring clusters 315–320
creating account 313

Stripe 311–313
Twilio 300–305

creating Twilio accounts 301–302
getting Twilio numbers 303
setting up Twilio Programmable SMS

service 303–305
connectToDatabase function 247
continuous integration 258–259
convert function 111
coordinates as parameter 154
createCharge method 227
createOrder function 30, 64
curl tool 32
custom authorizers 94, 97
custom errors, returning 101
custom slot type 181

D
data-currency attribute 229
data-description attribute 229
data-image attribute 229
data-key attribute 229
data-locale attribute 229
data-name attribute 229
data-zip-code attribute 229
DCE (Distributed Computing Environment) 54
DDoS (distributed denial of service) attacks 264, 266–267
DDoW (distributed denial of wallet) attacks 267
debugging

AWS X-Ray tool 85–88
Lambda functions 82–85
serverless apps 81–82

DELETE method 37, 76
deleteOrder function 39, 77
deleteTable method 208
deliveryWebhook function 160
deploying

Amazon S3 functions 114–116
APIs 34–35

describe-log-groups command 83
DialogFlow 162
Dialogue Builder 148
Distributed Computing Environment (DCE) 54
distributed denial of service (DDoS) attacks 264, 266
distributed denial of wallet (DDoW) attacks 267
docClient.put method 149
DocumentClient class 46, 55, 149, 203
DocumentClient.scan method 154
DocumentClient.update method 154
done.fail() method 205
done() method 205
DynamoDB class 44, 208
DynamoDB database 149–153

E
E2E (end-to-end) tests 192
elastic network interfaces (ENIs) 262
endpoints 65
end-to-end (E2E) tests 192
ENIs (elastic network interfaces) 262
environments

development of 259–260
production of 259–260

error recovery 49
errors, returning 101
event emitters 6

326 index

event listeners 6
events 6
exec method 112
expectations 198
expect statements 198
exporters, MindMup 275
ExpressionAttributeValues 59
Express.js

migrating apps to AWS Lambda 236
connecting to MongoDB 242–248
serving static content 240–242

running applications in AWS Lambda 236–240
proxy integration 239
serverless-express 239–240

serverless apps
limitations of 248–249
managed MongoDB database with 243–248

express-module option 237
external services

connecting to 63
async communication, potential issues with 71–76
connecting to delivery APIs 64–71

wrapping in promises 73

F
FaaS (Function as a Service) 6, 263
Facebook Messenger

chatbots 124–127
configuring 289–300

creating Facebook apps 290–292
creating Facebook Messenger chatbots using Claudia

Bot Builder 292–299
creating Facebook pages 290
enabling built-in NLP 300

templates 131–133
fakeHttpRequest.install function 208
fake-http-request library 202, 206
Fanout pattern 254
fbTemplate constant 133
fbTemplate.Generic class 132
fbTemplate.Text class 153
federated identities 92
FileRepository 280
files, static

serving 256
storing in serverless applications 104–108

files, storing 105
filter variable 196
fs module 111
fs.writeFile command 112

fulfilled promises 48
Function as a Service (FaaS) 6, 263
functions 82, 254, 263

Amazon S3, deploying 114–116
bundled vs single-purpose 263
serverless

mocking 201
writing testable 212–216

G
generic templates 131
getAllCharges method 233
get method 55
getObject method 111
GET requests 22–25
getSignedUrl method 107
globally unique identifier (GUID) 54
Google Cloud Functions 10
GUID (globally unique identifier) 54
GUI (graphical user interface) 32

H
hacking payment services 231–232

security competence 232
security standards 231–232

handler flag 114
handler method 12
hash key 45
headless browsers 211
Hexagonal Architecture 214, 225
HoneyBadger 274
https.request.pipe method 205

I
iam attach-role-policy command 86
IAMFullAccess 285
IAM (Identity and Access Management) 35, 262
IBM Watson 162
identity pools 92, 96, 94–100
ImageMagick 109
images, converting to thumbnails 113
infrastructure layer, vendor lock-in 267
installing

AWS CLI 288
Claudia 283–288

configuring Claudia prerequisites 284–285
creating AWS profiles 285–287

Claudia API Builder 288
Claudia Bot Builder 288

 327index

MongoDB 313–320
Stripe 311–313

integration
continuous 258–259
proxy integration 239
risks 213
testing 207–211

IntentRequest 184
intents 176
intent schema 180
interactivity of chatbots 139–144
iopipe function 257
IoT (Internet of Things) events 6

J
Jasmine framework 195
jasmine-spec-reporter package 196
Jenkins tool 259
JWT (JSON Web Token) 274

K
keepSession method 185

L
Lambda functions

choosing memory size for 263–264
debugging 82–85

lambda update-function-configuration command 87
launch phrases, Alexa 178
LaunchRequest 184
listCharges method 232
list template 131
loadConfigFile method 196
locations of chatbot users 153–155
logs 257–258
logs filter-log-events command 83

M
MemoryRepository 280
message.addButton method 132
message attribute 140
message.get method 132
message parameter 136, 143
Microsoft Azure Functions 10
migrating

existing applications to serverless architecture 252–255
Express.js app to AWS Lambda 236

connecting to MongoDB 242–248
running Express.js applications in AWS

Lambda 236–240
serving static content 240–242

to serverless architecture 256–262
analyzing serverless applications 252
challenges of 264–268
continuous integration 258–259
existing applications 252–255
logs 257–258
managing environments 259–260
optimizing applications 263–264
serving static files 256
sharing secrets 260–262
storing state 256–257
VPC (Virtual Private Cloud) 262

mind maps 275
MindMup 275–281

before serverless architecture 275–276
challenges 280–281
cost of infrastructure 278–280
logs 280–281
migration to serverless architecture 276–278
testing 280–281

minimal-request-promise module 67, 77
MMS (Multimedia Messaging Service) 169
mocking serverless functions 201
MongoClient.connect function 244
MONGODB_CONNECTION_STRING variable 247
MongoDB database

configuring 313–320
configuring clusters 315–320
creating account 313

connecting to 242–248
installing 313–320
with serverless Express.js apps 243–248

mongodb module 243
monolithic application 8
Multimedia Messaging Service (MMS) 169

N
NAT (network address translation) 262
new mongodb.ObjectID function 249
nlp key 163
NLP libraries

built-in, enabling 300
integrating 161–163

NLP (natural language processing) 124, 138, 140, 177
node app.js command 237
no-optional-dependencies flag 116
npm install --production command 34
npm install -S stripe command 225
npm run update command 133, 155
npm test command 197

328 index

O
orderId attribute 45
orderRepository.updateOrderStatus method 227
originalRequest property 135
OSF (Open Software Foundation) 54
output attribute 45

P
PaaS (Platform as a Service) 4, 275
parallel execution, promises 49
path module 111
paymentRepository.createCharge function 227
paymentRepository.getAllCharges method 233
payments

online, implementing 221–224
transactions 220–224

payment services
hacking 231–232

security competence 232
security standards 231–232

implementing 225–231
PCI DSS compliance 231–232
PCI SSC (Payment Card Industry Security Standards

Council) 231
permissions 35, 91
pipe character 141, 143
pipe method 204
Platform as a Service (PaaS) 4, 275
platforms key 130
ports and adapters pattern 214
postback property 135
postbacks 139–144
Postman application 32
POST requests 30–33, 205
prefix flag 115
presigned URL generation 107
pricing 12
production flag 260
production of environments 259–260
promises 48–50

passing values from 73
returning 72
wrapping external services in 73

proxy integration 239
proxy router 36
put function 203
putObject method 106
put-role-policy command 52
PUT route 37

Q
query attribute 45
query flag 95

R
RDS (Relational Database Service) 63
receipt template 131
region flag 23, 105
registerAuthorizer method 97
rejected promises 48
Relational Database Service (RDS) 63
reply function 160
request.body attribute 31
request routing 36
Request URL text field 304
resize flag 112
resolved promises 48
return keyword 72
ReturnValues 59
reverse echo chatbot 136
role attribute 52
roles 35, 94
routers 36, 272
runner 195

S
S3_BUCKET variable 260
SAM (Serverless Application Model) 15
saveLocation function 155
scalability of chatbot structure 145–149
scan method 53, 55–56
secrets 260–262
security

competence 232
standards 231–232

Semaphore CI 259
sender property 134
server-hosted applications 191
serverless APIs

API Gateway 35–36
building 19–33

GET requests 22–25
POST requests 30–33
structuring APIs 25–30

deploying 34–35
pitfalls of 36

Serverless Application Model (SAM) 15
serverless apps

analyzing 252

 329index

debugging 81–82
Express.js

limitations of 248–249
managed MongoDB database with 243–248

storing static files in 104–108
testing 191–193

serverless architecture 256–262
AWS 9–14
benefits of 16
continuous integration 258–259
core concepts 5–6
environments

development of 259–260
production of 259–260

logs 257–258
migrating to 252–255

analyzing serverless applications 252
challenges of 264–268
optimizing applications 263–264

overview of 6
serving static files 256
sharing secrets 260–262
storing state 256–257
VPC (Virtual Private Cloud) 262

serverless-express 239–240
serverless-express module 239
serverless function 5
serverless testing pyramid 193
server.listen function 236
service layer

automated tests 192
vendor lock-in 267

SessionEndedRequest 184
sessions, Alexa 179
setTimeout 74
shared-nothing architecture 256
Simple Notification Service (SNS) 254
Simple Queue Service (SQS) 63
Simple Storage Service (S3) 63, 254
skills, Alexa 305–310

anatomy of 177–179
coding 183–187
preparing 179

slots 176, 178
slot types, built-in 182
SMS (short message service) 167

chatbots 169–170
sending with Twilio 167
setting up Twilio Programmable SMS service 303–305

SNS (Simple Notification Service) 254
social identity providers 92
spawn method 112

SpecReporter library 196
specs 195
SQS (Simple Queue Service) 63
standards

for security 231–232
PCI DSS compliance 231–232

states, storing 256–257
static content 240–242
static files

serving 256
storing in serverless applications 104–108

stderr stream 112
stdout stream 112
storing

orders 43–48
states 256–257
static files in serverless applications 104–108

String.split function 142
stripe.charges.create method 227
stripe.charges.list method 234
Stripe payment processing

API keys 312–313
configuring 311–313
creating accounts 311–312
installing 311–313

success attribute 31
suites 195
switch statements 148

T
tableExists status 209
TABLE_NAME variable 260
tableNotExists status 209
technical workflow risks 213
testing

APIs 51–55
automated testing 211–212
integration tests 207–211
mocking serverless functions 201
preparing for 194–197
server-hosted applications 191
serverless applications 191–193
unit tests 197–201
writing testable serverless functions 212–216

testing framework, Jasmine 195
testing pyramid 192
text property 134
third-party logging 258
three-tier architecture 7
throttling 266
thumbnails 108–116

330 index

timeout issues
handling 264–265
with asynchronous operations 74–75

timeout option 75
Travis CI 259
Twilio platform

creating accounts 301–302
getting numbers 303
sending SMS with 167
setting up 300–305
setting up Twilio Programmable SMS service 303–305

twilio-sms-chatbot command 171
type property 134

U
UI layer, automated tests 192
unfulfilled promises 48
unit layer, automated tests 192
unit tests 197–201
universally unique identifier 54
update command 130
UpdateExpression 59
updateOrder function 37, 39
URL generation 107
userAuthentication 107
userData argument 100, 102

user identity 91
userId parameter 154
username-attributes option 94
user pools 92, 95, 94–100
utterances 178, 181
uuid module 150

V
values, not passing from promise 73
vendor lock-ins 267–268
VM (virtual machine) 256
VPC (Virtual Private Cloud) 262

W
waitFor method 208
wake word, Alexa 176
warm starts 265
watchdog timer 265
webhookURL 68
Wit.ai library 161
wrapping external services 73

Y
YOUR_ACCESS_KEY value 284
YOUR_ACCESS_SECRET value 284

Stojanovic ● Simovic

T
he benefi ts of cloud-hosted serverless web apps are
undeniable: lower complexity, quicker time to market,
and easier scalability than traditional, server-dependent

designs. And thanks to JavaScript support in AWS Lambda
and powerful new serverless API tools like the Claudia.js
library, you can build and deploy serverless apps end to end
without learning a new language.

Serverless Applications with Node.js teaches you to design and
build serverless web apps on AWS using JavaScript, Node, and
Claudia.js. You’ll master the basics of writing AWS Lambda
functions, along with core serverless patterns like API Gate-
way. Along the way, you’ll practice your new skills by building
a working chatbot and a voice assistant with Amazon Alexa.
You’ll also discover techniques for migrating existing apps to a
serverless platform.

What’s Inside
● Authentication and database storage
● Asynchronous functions
● Interesting real-world examples
● Developing serverless microservices

For web developers comfortable with JavaScript and Node.js.

Slobodan Stojanovic and Aleksandar Simovic are AWS Serverless
Heroes and core contributors to the Claudia.js project. They
are also coauthors of Desolé, an open source serverless error-
tracking tool, and the lead developers of Claudia Bot Builder.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/serverless-applications-with-node-js

$44.99 / Can $59.99 [INCLUDING eBOOK]

Serverless Applications with Node.js

WEB DEVELOPMENT/CLOUD
Stojanovic

Simovic

M A N N I N G

Serverless Applications with Node.js

MANN I N G

“Teaches you how to get
simple stuff done in AWS
Lambda quickly, without

trying to change the way you
structure or run projects.”

—From the Foreword by
Gojko Adžić, Neuri Consulting

“A top-notch and hands-on
resource written by world-
renowned experts who will

get you up to speed in
no time with AWS Lambda

using Claudia.js.”
—Valentin Crettaz, Consulthys

“One of the most
comprehensive books

published on the topic;
contains a wealth of

resources that you will
not fi nd online.”—Damian Esteban, BetterPT

M A N N I N G

See first page

´´

Using AWS Lambda and Claudia.js´

´

´´

´

Slobodan Stojanovic
Aleksandar Simovic
Foreword by Gojko Adžic

´
´

	Severless Applications with Node.js
	contents
	foreword
	preface
	acknowledgments
	about this book
	about the authors
	about the cover illustration
	Part 1 Serverless pizzeria
	1 Introduction to serverless
	1.1 Servers and washing machines
	1.2 The core concepts
	1.3 How does serverless work?
	1.4 Serverless in practice
	1.4.1 Aunt Maria?s serverless pizzeria
	1.4.2 A common approach
	1.4.3 Serverless approach

	1.5 Serverless infrastructure ? AWS
	1.6 What is Claudia, and how does it fit?
	1.7 When and where you should use it

	2 Building your first
	2.1	Assembling pizza ingredients: building the API
	2.1.1	Which pizza can I GET?
	2.1.2	Structuring your API
	2.1.3	POSTing an order

	2.2	How Claudia deploys your API
	2.3	Traffic control: How API Gateway works
	2.4	When a serverless API is not the solution
	2.5	Taste it!
	2.5.1	Exercise
	2.5.2	Solution

	3 Asynchronous work is easy, we Promise()
	3.1	Storing the orders
	3.2	Promising to deliver in less than 30 minutes!
	3.3	Trying out your API
	3.4	Getting orders from the database
	3.5	Taste it!
	3.5.1	Exercise
	3.5.2	Solution

	4 Pizza delivery: Connecting an external service
	4.1	Connecting to an external service
	4.2	Connecting to the delivery API
	4.2.1	The Some Like It Hot Delivery API
	4.2.2	Creating your first delivery request

	4.3	Potential issues with async communication
	4.3.1	Forgetting to return a promise
	4.3.2	Not passing the value from the promise
	4.3.3	Not wrapping the external service in a promise
	4.3.4	Timeout issues with long async operations

	4.4	Taste it!
	4.4.1	Exercise
	4.4.2	Solution

	5 Houston,
	5.1	Debugging a serverless app
	5.2	Debugging your Lambda function
	5.3	X-Ray your app
	5.4	Taste it!
	5.4.1	Exercise
	5.4.2	Solution

	6 Level up your API
	6.1	Serverless authentication and authorization
	6.2	Creating user and identity pools
	6.2.1	Controlling API access with Cognito

	6.3	Taste it!
	6.3.1	Exercise
	6.3.2	Solution

	7 Working with files
	7.1	Storing static files in a serverless application
	7.2	Generating thumbnails
	7.2.1	Deploying your S3 function

	7.3	Taste it!
	7.3.1	Exercise
	7.3.2	Solution

	7.4	End of part 1: Special exercise
	7.4.1	Advanced task

	Part 2 Let?s talk
	8 When pizza is one
	8.1	Pizza ordering beyond the browser
	8.2	Hello from Facebook Messenger
	8.3	What kinds of pizzas do you have?
	8.4	Speeding up the deployment
	8.5	Messenger templates
	8.6	How does Claudia Bot Builder work?
	8.7	Taste it!
	8.7.1	Exercise
	8.7.2	Solution

	9 Typing... Async and
	9.1	Making chatbots interactive
	9.1.1	Tap to order: answering a postback

	9.2	Making the chatbot structure more scalable
	9.3	Connecting your chatbot to the DynamoDB database
	9.4	Getting the user?s location from the chatbot
	9.5	Scheduling a delivery
	9.6	Small talk: Integrating simple NLP
	9.7	Taste it!
	9.7.1	Exercise
	9.7.2	Solution
	9.7.3	Advanced exercise

	10 Jarvis, I mean Alexa,
	10.1	Can?t talk right now: sending an SMS with Twilio
	10.1.1	An SMS pizza list
	10.1.2	Ordering a pizza

	10.2	Hey Alexa!
	10.2.1	Preparing the skill
	10.2.2	Ordering pizza with Alexa

	10.3	Taste it!
	10.3.1	Exercise
	10.3.2	Solution

	10.4	End of part 2: special exercise

	Part 3 Next steps
	11 Testing, Testing, 1, 2, 3
	11.1	Testing server-hosted and serverless applications
	11.2	How to approach testing serverless applications
	11.3	Preparation
	11.4	Unit tests
	11.5	Mocking your serverless functions
	11.6	Integration tests
	11.7	Other types of automated testing
	11.8	A step beyond: Writing testable serverless functions
	11.9	Taste it!
	11.9.1	Exercise
	11.9.2	Solution

	12 Paying for pizza
	12.1	Payment transactions
	12.1.1	Implementing an online payment

	12.2	Implementing your payment service
	12.3	Could someone hack your payment service?
	12.3.1	Standards
	12.3.2	Competence

	12.4	Taste it!
	12.4.1	Exercise
	12.4.2	Solution

	13 Migrating your existing
	13.1	Uncle Roberto?s taxi application
	13.2	Running an Express.js application in AWS Lambda
	13.2.1	Proxy integration
	13.2.2	How serverless-express works

	13.3	Serving static content
	13.4	Connecting to MongoDB
	13.4.1	Using a managed MongoDB database with your serverless Express.js app

	13.5	Limitations of serverless Express.js applications
	13.6	Taste it!
	13.6.1	Exercise
	13.6.2	Solution

	14 Migrating to serverless
	14.1	Analyzing your current serverless application
	14.2	Migrating your existing application to serverless
	14.3	Embrace the platform
	14.3.1	Serving static files
	14.3.2	Storing state
	14.3.3	Logs
	14.3.4	Continuous integration
	14.3.5	Managing environments: production and development
	14.3.6	Sharing secrets
	14.3.7	VPC (Virtual Private Cloud)

	14.4	Optimizing your application
	14.4.1	Bundled or single-purpose functions
	14.4.2	Choosing the right memory size for your Lambda function

	14.5	Facing the challenges
	14.5.1	Handling timeouts
	14.5.2	Cold starts
	14.5.3	DDoS attacks
	14.5.4	Vendor lock-in

	14.6	Taste it!

	15 Real-world case studies
	15.1	CodePen
	15.1.1	Before serverless
	15.1.2	Serverless migration
	15.1.3	Cost of the infrastructure
	15.1.4	Testing and challenges

	15.2	MindMup
	15.2.1	Before serverless
	15.2.2	Serverless migration
	15.2.3	Cost of the infrastructure
	15.2.4	Testing, logs, and challenges

	index

