
Seventh Edition

Adam Freeman

Pro ASP.NET
Core MVC 2

Pro ASP.NET Core MVC 2

Adam Freeman
London, UK

ISBN-13 (pbk): 978-1-4842-3149-4 ISBN-13 (electronic): 978-1-4842-3150-0
https://doi.org/10.1007/978-1-4842-3150-0

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484231494. For more
detailed information, please visit www.apress.com/source-code.

Contents at a Glance

 ■Part I: Introducing ASP�NET Core MVC 2 ��� 1

 ■Chapter 1: ASP �NET Core MVC in Context ��� 3

 ■Chapter 2: Your First MVC Application �� 11

 ■Chapter 3: The MVC Pattern, Projects, and Conventions ������������������������������������� 53

 ■Chapter 4: Essential C# Features ��� 67

 ■Chapter 5: Working with Razor ��� 105

 ■Chapter 6: Working with Visual Studio �� 127

 ■Chapter 7: Unit Testing MVC Applications ��� 163

 ■Chapter 8: SportsStore: A Real Application ��� 193

 ■Chapter 9: SportsStore: Navigation ��� 237

 ■Chapter 10: SportsStore: Completing the Cart �� 271

 ■Chapter 11: SportsStore: Administration �� 295

 ■Chapter 12: SportsStore: Security and Deployment �� 323

 ■Chapter 13: Working with Visual Studio Code ��� 349

 ■Part II: ASP�NET Core MVC 2 in Detail ��� 373

 ■Chapter 14: Configuring Applications �� 375

 ■Chapter 15: URL Routing�� 429

 ■Chapter 16: Advanced Routing Features ��� 469

 ■Chapter 17: Controllers and Actions �� 507

 ■Chapter 18: Dependency Injection ��� 551

 ■Chapter 19: Filters ��� 585

 ■Chapter 20: API Controllers ��� 625

 ■Chapter 21: Views ��� 657

 ■Chapter 22: View Components �� 691

 ■Chapter 23: Understanding Tag Helpers �� 721

 ■Chapter 24: Using the Form Tag Helpers ��� 755

 ■Chapter 25: Using the Other Built-in Tag Helpers �� 781

 ■Chapter 26: Model Binding �� 811

 ■Chapter 27: Model Validation �� 849

 ■Chapter 28: Getting Started with Identity �� 881

 ■Chapter 29: Applying ASP�NET Core Identity �� 919

 ■Chapter 30: Advanced ASP�NET Core Identity �� 949

 ■Chapter 31: Model Conventions and Action Constraints ����������������������������������� 983

Index ��� 1013

Contents

 ■Part I: Introducing ASP�NET Core MVC 2 ��� 1

 ■Chapter 1: ASP �NET Core MVC in Context ��� 3

Understanding the History of ASP.NET Core MVC ... 3

ASP.NET Web Forms .. 4

The Original MVC Framework ... 5

Understanding ASP.NET Core .. 5

What’s New in ASP.NET Core MVC 2 ... 6

Key Benefits of ASP.NET Core MVC ... 6

What Do I Need to Know? ... 9

What Is the Structure of This Book? ... 9

Part 1: Introducing ASP.NET Core MVC .. 9

Part 2: ASP.NET Core MVC in Detail ... 9

Where Can You Get the Example Code? ... 9

Where Can You Get Corrections for This Book? .. 10

Contacting the Author ... 10

Summary .. 10

 ■Chapter 2: Your First MVC Application �� 11

Installing Visual Studio ... 11

Installing the .NET Core 2.0 SDK .. 12

Creating a New ASP.NET Core MVC Project .. 13

Adding the Controller .. 17

Understanding Routes .. 20

Rendering Web Pages .. 20

Creating and Rendering a View .. 20

Adding Dynamic Output .. 23

Creating a Simple Data-Entry Application .. 25

Setting the Scene ... 25

Designing a Data Model .. 26

Creating a Second Action and a Strongly Typed View ... 27

Linking Action Methods .. 29

Building the Form ... 30

Receiving Form Data .. 32

Displaying the Responses... 37

Adding Validation .. 39

Styling the Content ... 45

Summary .. 51

 ■Chapter 3: The MVC Pattern, Projects, and Conventions ������������������������������������� 53

The History of MVC ... 53

Understanding the MVC Pattern ... 53

Understanding Models .. 53

Understanding Controllers .. 54

Understanding Views .. 55

The ASP.NET Implementation of MVC ... 55

Comparing MVC to Other Patterns.. 56

Understanding the Smart UI Pattern ... 56

Understanding the Model-View Architecture .. 57

Understanding Classic Three-Tier Architecture .. 58

Understanding Variations on MVC .. 59

Understanding ASP.NET Core MVC Projects .. 60
Creating the Project .. 60

Understanding MVC Conventions ... 63

Summary .. 65

 ■Chapter 4: Essential C# Features ��� 67

Preparing the Example Project ... 68
Enabling ASP.NET Core MVC ... 69

Creating the MVC Application Components .. 70

Using the Null Conditional Operator ... 73
Chaining the Null Conditional Operator .. 74

Combining the Conditional and Coalescing Operators ... 75

Using Automatically Implemented Properties .. 76
Using Auto-Implemented Property Initializers .. 77

Creating Read-Only Automatically Implemented Properties ... 78

Using String Interpolation ... 79

Using Object and Collection Initializers .. 80
Using an Index Initializer .. 82

Pattern Matching .. 83
Pattern Matching in Switch Statements ... 84

Using Extension Methods ... 85
Applying Extension Methods to an Interface .. 86

Creating Filtering Extension Methods ... 88

Using Lambda Expressions .. 90
Defining Functions .. 91

Using Lambda Expression Methods and Properties ... 94

Using Type Inference and Anonymous Types .. 96
Using Anonymous Types ... 97

Using Asynchronous Methods .. 99
Working with Tasks Directly ... 99

Applying the async and await Keywords .. 101

Getting Names .. 102

Summary .. 104

 ■Chapter 5: Working with Razor ��� 105

Preparing the Example Project ... 106

Defining the Model ... 107

Creating the Controller ... 107

Creating the View ... 108

Working with the Model Object .. 109

Using View Imports ... 111

Working with Layouts ... 112

Creating the Layout .. 113

Applying a Layout ... 115

Using a View Start File .. 116

Using Razor Expressions .. 118

Inserting Data Values .. 119

Setting Attribute Values .. 121

Using Conditional Statements .. 122

Enumerating Arrays and Collections ... 124

Summary .. 126

 ■Chapter 6: Working with Visual Studio �� 127

Preparing the Example Project ... 127

Creating the Model ... 128

Creating the Controller and View .. 129

Managing Software Packages .. 131

Understanding NuGet.. 131

Understanding Bower ... 133

Understanding Iterative Development .. 137

Making Changes to Razor Views .. 138

Making Changes to C# Classes .. 139

Using Browser Link ... 147

Preparing JavaScript and CSS for Deployment .. 152

Enabling Static Content Delivery .. 153

Adding Static Content to the Project... 153

Updating the View ... 156

Bundling and Minifying in MVC Applications .. 157

Summary .. 161

 ■Chapter 7: Unit Testing MVC Applications ��� 163

Preparing the Example Project ... 164

Enabling the Built-in Tag Helpers ... 164

Adding Actions to the Controller ... 164

Creating the Data Entry Form ... 165

Updating the Index View ... 166

Unit Testing MVC Applications .. 167

Creating a Unit Test Project .. 168

Creating the Project Reference ... 169

Writing and Running Unit Tests ... 169

Isolating Components for Unit Testing .. 174

Improving Unit Tests ... 182

Parameterizing a Unit Test .. 182

Improving Fake Implementations ... 186

Summary .. 191

 ■Chapter 8: SportsStore: A Real Application ��� 193

Getting Started ... 194

Creating the MVC Project .. 194

Creating the Unit Test Project ... 198

Checking and Running the Application ... 199

Starting the Domain Model... 200

Creating a Repository ... 201

Creating a Fake Repository .. 202

Registering the Repository Service .. 202

Displaying a List of Products .. 203

Adding a Controller ... 204

Adding and Configuring the View ... 205

Setting the Default Route ... 207

Running the Application .. 208

Preparing a Database ... 208

Installing the Entity Framework Core Tools Package .. 209

Creating the Database Classes ... 210

Creating the Repository Class .. 210

Defining the Connection String ... 211

Configuring the Application .. 212

Creating the Database Migration .. 214

Creating the Seed Data ... 215

Adding Pagination .. 218

Displaying Page Links... 220

Improving the URLs .. 229

Styling the Content ... 231

Installing the Bootstrap Package .. 231

Applying Bootstrap Styles to the Layout ... 232

Creating a Partial View ... 235

Summary .. 236

 ■Chapter 9: SportsStore: Navigation ��� 237

Adding Navigation Controls .. 237

Filtering the Product List .. 237

Refining the URL Scheme ... 242

Building a Category Navigation Menu .. 246

Correcting the Page Count .. 253

Building the Shopping Cart... 257

Defining the Cart Model .. 257

Adding the Add to Cart Buttons .. 261

Enabling Sessions .. 263

Implementing the Cart Controller ... 264

Displaying the Contents of the Cart .. 266

Summary .. 270

 ■Chapter 10: SportsStore: Completing the Cart �� 271

Refining the Cart Model with a Service .. 271

Creating a Storage-Aware Cart Class ... 271

Registering the Service .. 272

Simplifying the Cart Controller ... 273

Completing the Cart Functionality .. 274

Removing Items from the Cart .. 274

Adding the Cart Summary Widget .. 276

Submitting Orders .. 279

Creating the Model Class .. 279

Adding the Checkout Process ... 280

Implementing Order Processing ... 284

Completing the Order Controller ... 287

Displaying Validation Errors .. 290

Displaying a Summary Page ... 292

Summary .. 293

 ■Chapter 11: SportsStore: Administration �� 295

Managing Orders .. 295

Enhancing the Model .. 295

Adding the Actions and View .. 296

Adding Catalog Management ... 299

Creating a CRUD Controller ... 300

Implementing the List View .. 302

Editing Products ... 303

Creating New Products ... 317

Deleting Products ... 318

Summary .. 322

 ■Chapter 12: SportsStore: Security and Deployment �� 323

Securing the Administration Features .. 323

Creating the Identity Database ... 323

Applying a Basic Authorization Policy ... 328

Creating the Account Controller and Views .. 330

Testing the Security Policy.. 334

Deploying the Application ... 334

Creating the Databases .. 334

Preparing the Application ... 336

Applying the Database Migrations .. 340

Managing Database Seeding .. 340

Deploying the Application ... 344

Summary .. 348

 ■Chapter 13: Working with Visual Studio Code ��� 349

Setting Up the Development Environment ... 349

Installing Node.js .. 349

Checking the Node Installation ... 351

Installing Git .. 351

Checking the Git Installation ... 351

Installing Bower .. 352

Installing .NET Core .. 352

Checking the .NET Core Installation ... 353

Installing Visual Studio Code .. 353

Checking the Visual Studio Code Installation ... 354

Installing the Visual Studio Code C# Extension ... 355

Creating an ASP.NET Core Project .. 355

Preparing the Project with Visual Studio Code ... 356

Managing Client-Side Packages ... 357

Configuring the Application .. 359

Building and Running the Project ... 359

Re-creating the PartyInvites Application .. 360
Creating the Model and Repository .. 360

Creating the Database .. 364

Creating the Controllers and Views .. 366

Unit Testing in Visual Studio Code .. 370
Creating a Unit Test ... 371

Running Tests ... 371

Summary .. 372

 ■Part II: ASP�NET Core MVC 2 in Detail ��� 373

 ■Chapter 14: Configuring Applications �� 375

Preparing the Example Project ... 376

Configuring the Project... 378
Adding Packages to the Project .. 379

Adding Tools Packages to the Project ... 381

Understanding the Program Class .. 382
Digging into the Configuration Detail .. 382

Understanding the Startup Class .. 386
Understanding ASP.NET Services .. 388

Understanding ASP.NET Middleware ... 391

Understanding How the Configure Method Is Invoked ... 400

Adding the Remaining Middleware Components .. 405

Configuring the Application .. 409
Creating the JSON Configuration File ... 411

Using Configuration Data .. 413

Configuring Logging ... 415

Configuring Dependency Injection .. 419

Configuring MVC Services .. 420

Dealing with Complex Configurations .. 422
Creating Different External Configuration Files .. 422

Creating Different Configuration Methods .. 424

Creating Different Configuration Classes .. 425

Summary .. 427

 ■Chapter 15: URL Routing�� 429

Preparing the Example Project ... 430

Creating the Model Class .. 431

Creating the Example Controllers ... 431

Creating the View ... 432

Introducing URL Patterns ... 434

Creating and Registering a Simple Route .. 435

Defining Default Values .. 437

Defining Inline Default Values ... 438

Using Static URL Segments .. 440

Defining Custom Segment Variables .. 445

Using Custom Variables as Action Method Parameters .. 448

Defining Optional URL Segments .. 449

Defining Variable-Length Routes .. 451

Constraining Routes ... 453

Constraining a Route Using a Regular Expression .. 457

Using Type and Value Constraints ... 458

Combining Constraints ... 459

Defining a Custom Constraint ... 461

Using Attribute Routing .. 463

Preparing for Attribute Routing ... 463

Applying Attribute Routing .. 464

Applying Route Constraints .. 467

Summary .. 468

 ■Chapter 16: Advanced Routing Features ��� 469

Preparing the Example Project ... 470

Generating Outgoing URLs in Views ... 471

Generating Outgoing Links ... 471

Generating URLs (and Not Links) .. 483

Customizing the Routing System ... 484

Changing the Routing System Configuration .. 484

Creating a Custom Route Class .. 486

Working with Areas .. 497

Creating an Area ... 497

Creating an Area Route ... 498

Populating an Area ... 499

Generating Links to Actions in Areas .. 502

URL Schema Best Practices ... 503

Making Your URLs Clean and Human-Friendly ... 503

GET and POST: Picking the Right One ... 504

Summary .. 505

 ■Chapter 17: Controllers and Actions �� 507

Preparing the Example Project ... 508

Preparing the Views .. 509

Understanding Controllers .. 511

Creating Controllers ... 512

Creating POCO Controllers .. 512

Using the Controller Base Class ... 514

Receiving Context Data .. 516

Getting Data from Context Objects ... 516

Using Action Method Parameters ... 520

Producing a Response .. 522

Producing a Response Using the Context Object .. 522

Understanding Action Results ... 524

Producing an HTML Response .. 526

Performing Redirections ... 535

Returning Different Types of Content .. 543

Responding with the Contents of Files ... 545

Returning Errors and HTTP Codes .. 547

Understanding the Other Action Result Classes ... 549

Summary .. 550

 ■Chapter 18: Dependency Injection ��� 551

Preparing the Example Project ... 552

Creating the Model and Repository .. 553

Creating the Controller and View .. 554

Creating the Unit Test Project ... 556

Creating Loosely Coupled Components .. 556

Examining Closely Coupled Components.. 557

Introducing ASP.NET Dependency Injection .. 564

Preparing for Dependency Injection ... 564

Configuring the Service Provider .. 565

Unit Testing a Controller with a Dependency .. 567

Using Dependency Chains .. 568

Using Dependency Injection for Concrete Types ... 570

Understanding Service Life Cycles ... 573

Using the Transient Life Cycle... 574

Using the Scoped Life Cycle ... 578

Using the Singleton Life Cycle .. 580

Using Action Injection ... 581

Using the Property Injection Attributes ... 582

Manually Requesting an Implementation Object .. 582

Summary .. 583

 ■Chapter 19: Filters ��� 585

Preparing the Example Project ... 586

Enabling SSL ... 587

Creating the Controller and View .. 587

Using Filters ... 589

Understanding Filters ... 592

Getting Context Data ... 593

Using Authorization Filters ... 594

Creating an Authorization Filter .. 594

Using Action Filters .. 597

Creating an Action Filter ... 598

Creating an Asynchronous Action Filter .. 600

Using Result Filters .. 601

Creating a Result Filter ... 602

Creating an Asynchronous Result Filter .. 604

Creating a Hybrid Action/Result Filter ... 605

Using Exception Filters ... 607

Creating an Exception Filter ... 608

Using Dependency Injection for Filters ... 610

Resolving Filter Dependencies ... 610

Managing Filter Life Cycles .. 615

Creating Global Filters .. 618

Understanding and Changing Filter Order .. 620

Changing Filter Order ... 622

Summary .. 623

 ■Chapter 20: API Controllers ��� 625

Preparing the Example Project ... 626

Creating the Model and Repository .. 626

Creating the Controller and Views .. 628

Understanding the Role of RESTful Controllers .. 632

Understanding the Speed Problem ... 632

Understanding the Efficiency Problem ... 632

Understanding the Openness Problem ... 633

Introducing REST and API Controllers .. 633

Creating an API Controller ... 634

Testing an API Controller ... 639

Using the API Controller in the Browser .. 643

Understanding Content Formatting .. 645

Understanding the Default Content Policy .. 646

Understanding Content Negotiation .. 647

Specifying an Action Data Format .. 650

Getting the Data Format from the Route or Query String ... 651

Enabling Full Content Negotiation .. 653

Receiving Different Data Formats ... 654

Summary .. 655

 ■Chapter 21: Views ��� 657

Preparing the Example Project ... 658

Creating a Custom View Engine ... 659

Creating a Custom IView .. 661

Creating an IViewEngine Implementation ... 662

Registering a Custom View Engine ... 663

Testing the View Engine .. 664

Working with the Razor Engine .. 666

Preparing the Example Project ... 667

Demystifying Razor Views .. 669

Adding Dynamic Content to a Razor View .. 673

Using Layout Sections .. 673

Using Partial Views ... 679

Adding JSON Content to Views ... 682

Configuring Razor ... 684

Understanding View Location Expanders ... 685

Summary .. 690

 ■Chapter 22: View Components �� 691

Preparing the Example Project ... 692

Creating the Models and Repositories .. 692

Creating the Controller and Views .. 694

Configuring the Application .. 697

Understanding View Components .. 698

Creating a View Component ... 698

Creating POCO View Components ... 699

Deriving from the ViewComponent Base Class ... 700

Understanding View Component Results .. 702

Getting Context Data ... 707

Creating Asynchronous View Components ... 713

Creating Hybrid Controller/View Component Classes .. 715

Creating the Hybrid Views .. 716

Applying the Hybrid Class ... 717

Summary .. 719

 ■Chapter 23: Understanding Tag Helpers �� 721

Preparing the Example Project ... 722

Creating the Model and Repository .. 722

Creating the Controller, Layout, and Views ... 723

Configuring the Application .. 726

Creating a Tag Helper ... 727

Defining the Tag Helper Class ... 728

Registering Tag Helpers .. 731

Using a Tag Helper .. 732

Managing the Scope of a Tag Helper .. 734

Advanced Tag Helper Features ... 739

Creating Shorthand Elements ... 739

Prepending and Appending Content and Elements .. 741

Getting View Context Data and Using Dependency Injection .. 745

Working with the View Model ... 747

Coordinating Between Tag Helpers ... 750

Suppressing the Output Element .. 752

Summary .. 753

 ■Chapter 24: Using the Form Tag Helpers ��� 755

Preparing the Example Project ... 756

Resetting the Views and Layout ... 756

Working with Form Elements ... 758

Setting the Form Target .. 759

Using the Anti-forgery Feature ... 760

Working with Input Elements ... 762

Configuring Input Elements .. 763

Formatting Data Values .. 765

Working with Label Elements ... 768

Working with Select and Option Elements ... 770

Using a Data Source to Populate a select Element ... 772

Generating Option Elements from an enum .. 772

Working with Text Areas ... 777

Understanding the Validation Form Tag Helpers .. 779

Summary .. 779

 ■Chapter 25: Using the Other Built-in Tag Helpers �� 781

Preparing the Example Project ... 782

Using the Hosting Environment Tag Helper .. 783

Using the JavaScript and CSS Tag Helpers .. 784

Managing JavaScript Files ... 784

Managing CSS Stylesheets ... 794

Working with Anchor Elements .. 797

Working with Image Elements ... 798

Using the Data Cache ... 799

Setting Cache Expiry .. 802

Using Cache Variations ... 804

Using Application-Relative URLs .. 806

Summary .. 809

 ■Chapter 26: Model Binding �� 811

Preparing the Example Project ... 812

Creating the Model and Repository .. 812

Creating the Controller and View .. 814

Configuring the Application .. 815

Understanding Model Binding .. 817

Understanding Default Binding Values ... 818

Binding Simple Types ... 820

Binding Complex Types ... 821

Binding to Arrays and Collections ... 832

Specifying a Model Binding Source.. 839

Selecting a Standard Binding Source ... 840

Using Headers As Binding Sources ... 841

Using Request Bodies as Binding Sources ... 845

Summary .. 847

 ■Chapter 27: Model Validation �� 849

Preparing the Example Project ... 850

Creating the Model ... 851

Creating the Controller ... 851

Creating the Layout and Views ... 852

Understanding the Need for Model Validation .. 855

Explicitly Validating a Model ... 855

Displaying Validation Errors to the User ... 858

Displaying Validation Messages ... 860

Displaying Property-Level Validation Messages ... 864

Displaying Model-Level Messages ... 866

Specifying Validation Rules Using Metadata .. 869

Creating a Custom Property Validation Attribute .. 872

Performing Client-Side Validation .. 874

Performing Remote Validation .. 877

Summary .. 880

 ■Chapter 28: Getting Started with Identity �� 881

Preparing the Example Project ... 882

Creating the Controller and View .. 883

Setting Up ASP.NET Core Identity.. 885

Creating the User Class .. 885

Creating the Database Context Class ... 887

Configuring the Database Connection String Setting ... 887

Creating the Identity Database ... 890

Using ASP.NET Core Identity ... 890

Enumerating User Accounts ... 890

Creating Users .. 893

Validating Passwords ... 897

Validating User Details .. 904

Completing the Administration Features .. 910

Implementing the Delete Feature ... 910

Implementing the Edit Feature ... 912

Summary .. 917

 ■Chapter 29: Applying ASP�NET Core Identity �� 919

Preparing the Example Project ... 919

Authenticating Users .. 920

Preparing to Implement Authentication .. 922

Adding User Authentication .. 925

Testing Authentication .. 927

Authorizing Users with Roles ... 928

Creating and Deleting Roles ... 929

Managing Role Memberships ... 934

Using Roles for Authorization ... 940

Seeding the Database .. 943

Summary .. 947

 ■Chapter 30: Advanced ASP�NET Core Identity �� 949

Preparing the Example Project ... 949

Adding Custom User Properties ... 951

Preparing for Database Migration .. 954

Testing the Custom Properties .. 955

Working with Claims and Policies .. 955

Understanding Claims .. 956

Creating Claims .. 960

Using Policies ... 964

Using Policies to Authorize Access to Resources ... 970

Using Third-Party Authentication .. 976

Registering the Application with Google ... 976

Enabling Google Authentication .. 976

Summary .. 981

 ■Chapter 31: Model Conventions and Action Constraints ����������������������������������� 983

Preparing the Example Project ... 983

Creating the View Model, Controller, and View ... 984

Using the Application Model and Model Conventions .. 986

Understanding the Application Model ... 987

Understanding the Role of Model Conventions ... 991

Creating a Model Convention .. 992

Understanding Model Convention Execution Order .. 997

Creating Global Model Conventions .. 998

Using Action Constraints .. 1000

Preparing the Example Project ... 1000

Understanding Action Constraints .. 1003

Creating an Action Constraint ... 1004

Resolving Dependencies in Action Constraints... 1008

Summary .. 1011

Index ��� 1013

PART I

Introducing ASP.NET
Core MVC 2

ASP.NET Core MVC is a radical shift for web developers using the Microsoft platform. It emphasizes
clean architecture, design patterns, and testability, and it doesn’t try to conceal how the Web works.

The first part of this book is designed to help you understand broadly the foundational ideas of
MVC development, including the new features in ASP.NET Core MVC, and to experience in practice
what the framework is like to use.

3© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_1

CHAPTER 1

ASP .NET Core MVC in Context

ASP.NET Core MVC is a web application development framework from Microsoft that combines the
effectiveness and tidiness of model-view-controller (MVC) architecture, ideas and techniques from agile
development, and the best parts of the .NET platform. In this chapter, you’ll learn why Microsoft created
ASP.NET Core MVC, see how it compares to its predecessors and alternatives, and, finally, get an overview
of what’s new in ASP.NET Core MVC and what’s covered in this book.

Understanding the History of ASP.NET Core MVC
The original ASP.NET was introduced in 2002, at a time when Microsoft was keen to protect a dominant
position in traditional desktop application development and saw the Internet as a threat. Figure 1-1
illustrates Microsoft’s technology stack as it appeared then.

Figure 1-1. The ASP.NET Web Forms technology stack

https://doi.org/10.1007/978-1-4842-3150-0_1

Chapter 1 ■ aSp .Net Core MVC iN CoNtext

4

ASP.NET Web Forms
With Web Forms, Microsoft attempted to hide both Hypertext Transfer Protocol (HTTP), with its intrinsic
statelessness, and Hypertext Markup Language (HTML), which at the time was unfamiliar to many
developers, by modeling the user interface (UI) as a hierarchy of server-side control objects. Each control
kept track of its own state across requests, rendering itself as HTML when needed and automatically
connecting client-side events (for example, a button click) with the corresponding server-side event handler
code. In effect, Web Forms is a giant abstraction layer designed to deliver a classic event-driven graphical
user interface (GUI) over the Web.

The idea was to make web development feel just the same as developing a desktop application.
Developers could think in terms of a stateful UI and didn’t need to work with a series of independent HTTP
requests and responses. Microsoft could seamlessly transition the army of Windows desktop developers into
the new world of web applications.

What Was Wrong with ASP.NET Web Forms?
Traditional ASP.NET Web Forms development was good in principle, but reality proved more complicated.

•	 View State weight: The actual mechanism for maintaining state across requests
(known as View State) resulted in large blocks of data being transferred between
the client and server. This data could reach hundreds of kilobytes in even modest
web applications, and it went back and forth with every request, leading to slower
response times and increasing the bandwidth demands of the server.

•	 Page life cycle: The mechanism for connecting client-side events with server-side
event handler code, part of the page life cycle, could be complicated and delicate.
Few developers had success manipulating the control hierarchy at runtime without
creating View State errors or finding that some event handlers mysteriously failed to
execute.

•	 False sense of separation of concerns: ASP.NET Web Forms’ code-behind model
provided a means to take application code out of its HTML markup and into a
separate code-behind class. This was done to separate logic and presentation, but,
in reality, developers were encouraged to mix presentation code (for example,
manipulating the server-side control tree) with their application logic (for example,
manipulating database data) in these same monstrous code-behind classes. The end
result could be fragile and unintelligible.

•	 Limited control over HTML: Server controls rendered themselves as HTML, but not
necessarily the HTML you wanted. In early versions of ASP.NET, the HTML output
failed to meet web standards or make good use of Cascading Style Sheets (CSS), and
server controls generated unpredictable and complex ID attributes that were hard
to access using JavaScript. These problems have improved in recent Web Forms
releases, but it can still be tricky to get the HTML you expect.

•	 Leaky abstraction: Web Forms tried to hide HTML and HTTP wherever possible. As
you tried to implement custom behaviors, you frequently fell out of the abstraction,
which forced you to reverse-engineer the postback event mechanism or perform
obtuse acts to make it generate the desired HTML.

•	 Low testability: The designers of Web Forms could not have anticipated that
automated testing would become an essential component of software development.
The tightly coupled architecture they designed was unsuitable for unit testing.
Integration testing could be a challenge, too.

Chapter 1 ■ aSp .Net Core MVC iN CoNtext

5

Web Forms wasn’t all bad, and eventually, Microsoft put effort into improving standards compliance
and simplifying the development process and even took some features from the original ASP.NET MVC
Framework and applied them to Web Forms. Web Forms excelled when you needed quick results, and you
could have a reasonably complex web app up and running within a day. But unless you were careful during
development, you would find that the application you created was hard to test and hard to maintain.

The Original MVC Framework
In October 2007, Microsoft announced a new development platform, built on the existing ASP.NET platform,
that was intended as a direct response to the criticisms of Web Forms and the popularity of competing
platforms such as Ruby on Rails. The new platform was called the ASP.NET MVC Framework and reflected
the emerging trends in web application development, such as HTML and CSS standardization, RESTful web
services, effective unit testing, and the idea that developers should embrace the stateless nature of HTTP.

The concepts that underpin the original MVC Framework seem natural and obvious now, but they were
lacking from the world of .NET web development in 2007. The introduction of the ASP.NET MVC Framework
brought Microsoft’s web development platform back into the modern age.

The MVC Framework also signaled an important change in attitude from Microsoft, which had
previously tried to control every component in the web application toolchain. With the MVC Framework,
Microsoft built on open source tools such as jQuery, took on design conventions and best practices from
competing (and more successful) platforms, and released the source code to the MVC Framework for
developers to inspect.

What Was Wrong with the Original MVC Framework?
At the time the MVC Framework was created, it made sense for Microsoft to create it on top of the existing
ASP.NET platform, which had a lot of solid low-level functionality that provided a head start in the
development process and which was already well-known and understood by ASP.NET developers.

But compromises were required to graft the MVC Framework onto a platform that was originally
designed for Web Forms. MVC Framework developers became used to using configuration settings and code
tweaks that disabled or reconfigured features that didn’t have any bearing on their web application but were
required to get everything working.

As the MVC Framework grew in popularity, Microsoft started to take some of the core features and
add them to Web Forms. The result was increasingly odd, where features with design quirks required to
support the MVC Framework were extended to support Web Forms, with further design quirks to make
everything fit together. At the same time, Microsoft started to expand ASP.NET with new frameworks for
creating web services (Web API) and real-time communication (SignalR). The new frameworks added their
own configuration and development conventions, each of which had its own benefits and oddities, and the
overall result was a fragmented mess.

Understanding ASP.NET Core
In 2015, Microsoft announced a new direction for ASP.NET and the MVC Framework, which would
eventually produce ASP.NET Core MVC, the topic of this book.

ASP.NET Core is built on .NET Core, which is a cross-platform version of the .NET Framework without
the Windows-specific application programming interfaces (APIs). Windows is still a dominant operating
system, but web applications are increasingly hosted in small and simple containers in cloud platforms,
and by embracing a cross-platform approach, Microsoft has extended the reach of .NET, made it possible
to deploy ASP.NET Core applications to a broader set of hosting environments, and, as a bonus, made it
possible for developers to create ASP.NET Core web applications on Linux and macOS.

Chapter 1 ■ aSp .Net Core MVC iN CoNtext

6

ASP.NET Core is a completely new framework. It is simpler, it is easier to work with, and it is free of the
legacy that comes from Web Forms. And, since it is based on .NET Core, it supports the development of web
applications on a range of platforms and containers.

ASP.NET Core MVC provides the functionality of the original ASP.NET MVC Framework built on the
new ASP.NET Core platform. It integrates the features that were previously provided by Web API, it includes
a more natural way of generating complex content, and it makes key development tasks, such as unit testing,
simpler and more predictable.

What’s New in ASP.NET Core MVC 2
The ASP.NET Core MVC 2 release focuses on consolidation, working through some of the tooling and
platform changes that were introduced in earlier versions. ASP.NET Core MVC 2 requires .NET Core 2,
which has a much-expanded API surface and is now supported on additional Linux distributions. Useful
changes include a new meta-package system, which simplifies the management of NuGet packages, a new
configuration system for ASP.NET Core, and support for Entity Framework Core 2. The biggest new feature is
Razor Pages, which is an attempt to re-create the development style associated with Web Pages using a more
modern platform, but Razor Pages will not be of interest for MVC developers (and I do not describe it in this
book).

Key Benefits of ASP.NET Core MVC
The following sections briefly describe how the new MVC platform overcomes the legacy of Web Forms and
the original MVC Framework and how it has brought ASP.NET back to the cutting edge.

MVC Architecture
ASP.NET Core MVC follows a pattern called model-view-controller, which guides the shape of an ASP.NET
web application and the interactions between the components it contains.

It is important to distinguish between the MVC architectural pattern and the ASP.NET Core MVC
implementation. The MVC pattern is not new—it dates back to 1978 and the Smalltalk project at Xerox
PARC—but it has gained popularity today as a pattern for web applications for the following reasons:

•	 User interaction with an application that adheres to the MVC pattern follows a
natural cycle: the user takes an action, and in response, the application changes its
data model and delivers an updated view to the user. Then the cycle repeats. This
is a convenient fit for web applications delivered as a series of HTTP requests and
responses.

•	 Web applications necessitate combining several technologies (databases, HTML,
and executable code, for example), usually split into a set of tiers or layers. The
patterns that arise from these combinations map naturally onto the concepts in the
MVC pattern.

ASP.NET Core MVC implements the MVC pattern and, in doing so, provides a greatly improved
separation of concerns when compared to Web Forms. In fact, ASP.NET Core MVC implements a variant of
the MVC pattern that is especially suitable for web applications. You will learn more about the theory and
practice of this architecture in Chapter 3.

http://dx.doi.org/10.1007/978-1-4842-3150-0_3

Chapter 1 ■ aSp .Net Core MVC iN CoNtext

7

Extensibility
ASP.NET Core and ASP.NET Core MVC are built as a series of independent components that have
well-defined characteristics, satisfy a .NET interface, or are built on an abstract base class. You can easily
replace key components with ones of your own implementation. In general, ASP.NET Core MVC gives you
these three options for each component:

•	 Use the default implementation of the component as it stands (which should be
enough for most applications).

•	 Derive a subclass of the default implementation to tweak its behavior.

•	 Replace the component entirely with a new implementation of the interface or
abstract base class.

You’ll learn all about the various components and how and why you might want to tweak or replace
each of them, starting in Chapter 14.

Tight Control over HTML and HTTP
ASP.NET Core MVC produces clean, standards-compliant markup. Its built-in tag helpers produce
standards-compliant output, but there is a more significant philosophical change compared with Web
Forms. Instead of generating out swathes of HTML over which you have little control, ASP.NET Core MVC
encourages you to craft simple, elegant markup styled with CSS.

Of course, if you do want to throw in some ready-made widgets for complex UI elements such as date
pickers or cascading menus, the “no special requirements” approach taken by ASP.NET Core MVC makes it
easy to use best-of-breed client-side libraries such as jQuery, Angular, React, or the Bootstrap CSS library.
ASP.NET Core MVC meshes so well with these libraries that Microsoft includes templates that incorporate
them to jump-start new development projects.

ASP.NET Core MVC works in tune with HTTP. You have control over the requests passing between the
browser and server, so you can fine-tune your user experience as much as you like. Ajax is made easy, and
creating web services to receive browser HTTP requests is a simple process, as described in Chapter 20.

Testability
The ASP.NET Core MVC architecture gives you a great start in making your application maintainable and
testable because you naturally separate different application concerns into independent pieces. In addition,
each piece of the ASP.NET Core platform and the ASP.NET Core MVC framework can be isolated and
replaced for unit testing, which can be performed using any popular open source testing framework, such as
xUnit, which I introduce in Chapter 7.

In this book, you will see examples of how to write clean, simple unit tests for ASP.NET MVC controllers
and actions that supply fake or mock implementations of framework components to simulate any scenario,
using a variety of testing and mocking strategies. Even if you have never written a unit test before, you will be
off to a great start.

Testability is not only a matter of unit testing. ASP.NET Core MVC applications work well with UI
automation testing tools, too. You can write test scripts that simulate user interactions without needing to
guess which HTML element structures, CSS classes, or IDs the framework will generate, and you do not have
to worry about the structure changing unexpectedly.

http://dx.doi.org/10.1007/978-1-4842-3150-0_14
http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_7

Chapter 1 ■ aSp .Net Core MVC iN CoNtext

8

Powerful Routing System
The style of uniform resource locators (URLs) has evolved as web application technology has improved.
URLs like this one:

/App_v2/User/Page.aspx?action=show%20prop&prop_id=82742

are increasingly rare, replaced by a simpler, cleaner format like this:

/to-rent/chicago/2303-silver-street

There are some good reasons for caring about the structure of URLs. First, search engines give weight
to keywords found in a URL. A search for “rent in Chicago” is much more likely to turn up the simpler URL.
Second, many web users are now savvy enough to understand a URL and appreciate the option of navigating
by typing it into their browser’s address bar. Third, when someone understands the structure of a URL, they
are more likely to link to it, share it with a friend, or even read it aloud over the phone. Fourth, it doesn’t
expose the technical details, folder, and file name structure of your application to the public Internet, so you
are free to change the underlying implementation without breaking all your incoming links.

Clean URLs were hard to implement in earlier frameworks, but ASP.NET Core MVC uses a feature
known as URL routing to provide clean URLs by default. This gives you control over your URL schema and its
relationship to your application, offering you the freedom to create a pattern of URLs that is meaningful and
useful to your users, without the need to conform to a predefined pattern. And, of course, this means you
can easily define a modern REST-style URL schema if you want. You’ll find a thorough description of URL
routing in Chapters 15 and 16.

Modern API
Microsoft’s .NET platform has evolved with each major release, supporting—and even defining—the
state-of-the-art aspects of modern programming. ASP.NET Core MVC is built for .NET Core, so its API
can take full advantage of language and runtime innovations familiar to C# programmers, including the
await keyword, extension methods, lambda expressions, anonymous and dynamic types, and Language
Integrated Query (LINQ).

Many of the ASP.NET Core MVC API methods and coding patterns follow a cleaner, more expressive
composition than was possible with earlier platforms. Don’t worry if you are not up to speed with the latest
C# language features; I provide a summary of the most important C# features for MVC development in
Chapter 4.

Cross-Platform
Previous versions of ASP.NET were specific to Windows, requiring a Windows desktop to write web
applications and a Windows server to deploy and run them. Microsoft made ASP.NET Core cross-
platform, both for development and for deployment. .NET Core is available for different platforms,
including macOS and a range of popular Linux distributions. Cross-platform support makes it easier to
deploy ASP.NET Core MVC applications, and there is good support for working with application container
platforms, such as Docker.

Most ASP.NET Core MVC development is likely to be done using Visual Studio for the immediate future,
but Microsoft has also created a cross-platform development tool called Visual Studio Code, which means
that ASP.NET Core MVC development is no longer restricted to Windows.

http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_16
http://dx.doi.org/10.1007/978-1-4842-3150-0_4

Chapter 1 ■ aSp .Net Core MVC iN CoNtext

9

ASP.NET Core MVC Is Open Source
Unlike previous Microsoft web development platforms, you are free to download the source code for ASP.
NET Core and ASP.NET Core MVC and even modify and compile your own version of it. This is invaluable
when your debugging trail leads into a system component and you want to step into its code (and even read
the original programmer’s comments). It is also useful if you are building an advanced component and want
to see what development possibilities exist or how the built-in components actually work.

You can download the ASP.NET Core and ASP.NET Core MVC source code from https://github.com/
aspnet.

What Do I Need to Know?
To get the most from this book, you should be familiar with the basics of web development, understand how
HTML and CSS work, and have a working knowledge of C#. Don’t worry if you are a little hazy on the client-
side details, such as JavaScript. My emphasis is on server-side development in this book, and you can pick
up what you need through the examples. In Chapter 4, I summarize the most useful C# language features
for MVC development, which you’ll find useful if you are moving to the latest .NET versions from an earlier
release.

What Is the Structure of This Book?
This book is split into two parts, each of which covers a set of related topics.

Part 1: Introducing ASP.NET Core MVC
I start this book by putting ASP.NET Core MVC in context. I explain the benefits and practical impact of the
MVC pattern, cover the way in which ASP.NET Core MVC fits into modern web development, and describe
the tools and C# language features that every ASP.NET Core MVC programmer needs.

In Chapter 2, you will dive right in by creating a simple web application and will get an idea of what the
major components and building blocks are and how they fit together. Most of this part of the book, however,
is given over to the development of a project called SportsStore, through which I show you a realistic
development process from inception to deployment, touching on the major features of ASP.NET Core MVC.

Part 2: ASP.NET Core MVC in Detail
In Part 2, I explain the inner workings of ASP.NET Core MVC features that I used to build the SportsStore
application. I show you how each feature works, explain the role it plays, and show you the configuration
and customization options that are available. Having set the broad context in Part 1, I dig right into the
details in Part 2.

Where Can You Get the Example Code?
You can download the example projects for all the chapters in this book from https://github.com/apress/
pro-asp.net-core-mvc-2. The download is available without charge and includes all the supporting
resources that are required to re-create the examples without having to type them in. You don’t have to
download the code, but it is the easiest way of experimenting with the examples and makes it easy to copy
and paste code into your own projects.

https://github.com/aspnet
https://github.com/aspnet
http://dx.doi.org/10.1007/978-1-4842-3150-0_4
http://dx.doi.org/10.1007/978-1-4842-3150-0_2
https://github.com/apress/pro-asp.net-core-mvc-2
https://github.com/apress/pro-asp.net-core-mvc-2

Chapter 1 ■ aSp .Net Core MVC iN CoNtext

10

Where Can You Get Corrections for This Book?
You can find corrections for this book in the Errata file in the GitHub repository for this book
(https://github.com/apress/pro-asp.net-core-mvc-2).

Contacting the Author
If you have problems making the examples in this chapter work or if you find a problem in the book, then
you can e-mail me at adam@adam-freeman.com, and I will try my best to help. Please check the errata for
this book at https://github.com/apress/pro-asp.net-core-mvc-2 to see if it contains a solution to your
problem before contacting me.

Summary
In this chapter, I explained the context in which ASP.NET Core MVC exists and how it has evolved from
Web Forms and the original ASP.NET MVC Framework. I described the benefits of using the ASP.NET Core
MVC and the structure of this book. In the next chapter, you’ll see ASP.NET Core MVC in action in a simple
demonstration of the features that deliver these benefits.

https://github.com/apress/pro-asp.net-core-mvc-2
https://github.com/apress/pro-asp.net-core-mvc-2

11© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_2

CHAPTER 2

Your First MVC Application

The best way to appreciate a software development framework is to jump right in and use it. In this chapter,
you’ll create a simple data-entry application using ASP.NET Core MVC. I take things one step at a time so
you can see how an MVC application is constructed. To keep things simple, I skip over some of the technical
details for the moment. But don’t worry. If you are new to MVC, you will find plenty to keep you interested.
Where I use something without explaining it, I provide a reference to the chapter in which you can find all
the details.

UPDATES TO THIS BOOK

Microsoft has an active development schedule for .NET Core and ASP.NET Core MVC, which means
that there may be new releases available by the time you read this book. It doesn’t seem fair to expect
readers to buy a new book every few months, especially since most changes are relatively minor.
Instead, I will post free updates to the GitHub repository for this book (https://github.com/apress/
pro-asp.net-core-mvc-2) for breaking changes caused by minor releases.

This kind of update is an experiment for me (and for Apress), and I don’t yet know what form those
updates may take—not least because I don’t know what the future major releases of ASP.NET Core MVC
will contain—but the goal is to extend the life of this book by supplementing the examples it contains.

I am not making any promises about what the updates will be like, what form they will take, or how
long I will produce them before folding them into a new edition of this book. Please keep an open mind
and check the repository for this book when new ASP.NET Core MVC versions are released. If you have
ideas about how the updates could be improved, then e-mail me at adam@adam-freeman.com and let
me know.

Installing Visual Studio
This book relies on Visual Studio 2017, which provides the development environment for ASP.NET Core
MVC projects. I use the free Visual Studio 2017 Community edition, which can be downloaded from
www.visualstudio.com. When installing Visual Studio 2017, you must select the .NET Core cross-platform
development workload, as shown in Figure 2-1.

https://doi.org/10.1007/978-1-4842-3150-0_2
https://github.com/apress/pro-asp.net-core-mvc-2
https://github.com/apress/pro-asp.net-core-mvc-2
http://www.visualstudio.com/

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

12

 ■ Note Visual Studio 2017 predates the release of ASP.NET Core MVC 2. You must apply the latest updates if
you have installed Visual Studio for earlier versions of ASP.NET Core MVC. You can apply updates by running the
Visual Studio installer and selecting update for the Visual Studio edition you are using.

 ■ Tip Visual Studio only supports Windows. You can create ASP.NET Core MVC applications on other
platforms using Visual Studio Code. Visual Studio Code doesn’t provide all of the features of Visual Studio, but it
is an excellent editor and does everything required for MVC application development. See Chapter 13 for details.

Installing the .NET Core 2.0 SDK
The Visual Studio installation includes all of the features required for ASP.NET Core MVC development, but
it doesn’t include .NET Core 2.0, which must be downloaded and installed separately.

Go to https://www.microsoft.com/net/core and download and run the .NET Core SDK installer for
Windows. Once the installer has finished, open a new command prompt or PowerShell window and run the
following command to display the version of .NET that has been installed:

dotnet --version

Figure 2-1. Selecting the Visual Studio workload

http://dx.doi.org/10.1007/978-1-4842-3150-0_13
https://www.microsoft.com/net/core

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

13

If the installation has been successful, the result of this command will be 2.0.0.

Creating a New ASP.NET Core MVC Project
I am going to start by creating a new ASP.NET Core MVC project in Visual Studio. Select New ➤ Project from
the File menu to open the New Project dialog. If you navigate to the Installed ➤ Visual C# ➤ Web section
in the left panel, you will see the ASP.NET Core Web Application (.NET Core) project template. Select this
project type, as shown in Figure 2-2.

 ■ Tip The choice of project template can be confusing because their names are so similar. The ASP.NET
Web Application (.NET Framework) template is for creating projects using the legacy versions of ASP.NET and
the MVC Framework, which predated ASP.NET Core. The other two templates are for creating ASP.NET Core
applications, and they differ in the runtime they use, allowing you to select either the .NET Framework or .NET
Core. I explain the difference between them in Chapter 6, but I use the .NET Core option throughout this book,
so it is the one you should select to ensure that you get the same results from the example applications.

Enter PartyInvites in the Name field for the new project. Click the OK button to continue and you will
see another dialog box, shown in Figure 2-3, which asks you to set the initial content for the project. Ensure
that .NET Core and ASP.NET Core 2.0 are selected from the drop-down menus, as shown in the figure.

Figure 2-2. The ASP.NET Core Web Application project template

http://dx.doi.org/10.1007/978-1-4842-3150-0_6

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

14

There are several template options, each of which creates a project with different starting content. For
this chapter, select the Web Application (Model-View-Controller) option, which sets up an MVC application
with predefined content to jump-start development.

 ■ Note This is the only chapter in which I use the Web Application (Model-View-Controller) project template.
I don’t like using predefined project templates because they encourage developers to treat some important
features, such as authentication, as black boxes. My goal in this book is to give you the knowledge to
understand and manage every aspect of your MVC applications, so I use the Empty template throughout the rest
of the book. This chapter is about getting started quickly, for which the Web Application (Model-View-Controller)
template is well-suited.

Click the Change Authentication button and ensure that the No Authentication option is selected, as
shown in Figure 2-4. This project doesn’t require any authentication, but I explain how to secure ASP.NET
applications in Chapters 28, 29, and 30.

Figure 2-3. Selecting the initial project configuration

http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_29
http://dx.doi.org/10.1007/978-1-4842-3150-0_30

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

15

Click OK to close the Change Authentication dialog. Ensure that the Enable Docker Support option is
unchecked and then click OK to create the PartyInvites project.

Once Visual Studio has created the project, you will see a number of files and folders displayed in the
Solution Explorer window, as shown in Figure 2-5. This is the default project structure for a new MVC project
created using the Web Application (Model-View-Controller) template, and you will soon understand the
purpose of each file and folder that Visual Studio creates.

 ■ Tip If you see a Pages folder, rather than Controllers, Models, and Views folders, then you have
selected the Web Application template and not the (confusingly similar) Web Application (Model-View-Controller)
template. I have no idea why Microsoft thought that such similar names were a good idea, but you will have to
delete the project you created and start over.

Figure 2-4. Selecting the authentication settings

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

16

You can run the application by selecting Start Debugging from the Debug menu (if it prompts you to
enable debugging, just click the OK button). When you do this, Visual Studio compiles the application,
uses an application server called IIS Express to run it, and opens a web browser to request the application
content. It can take Visual Studio some time to run the project for the first time, and when the process is
complete, you will see the results shown in Figure 2-6.

Figure 2-6. Running the example project

Figure 2-5. The initial file and folder structure of an ASP.NET Core MVC project

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

17

When Visual Studio creates a project with the Web Application (Model-View-Controller) template, it
adds some basic code and content, which is what you see when you run the application. Throughout the rest
of the chapter, I will replace this content to create a simple MVC application.

When you are finished, be sure to stop debugging by closing the browser window or by going back to
Visual Studio and selecting Stop Debugging from the Debug menu.

As you have just seen, Visual Studio opens the browser to display the project. You can select any
browser that you have installed by clicking the arrow to the right of the IIS Express toolbar button and
choosing from the list of options in the Web Browser menu, as shown in Figure 2-7.

From here on, I will use Google Chrome or Google Chrome Canary for all the screenshots in this book,
but you can use any modern browser to display the examples in the books, including Microsoft Edge.

Adding the Controller
In the MVC pattern, incoming requests are handled by controllers. In ASP.NET Core MVC, controllers are just
C# classes (usually inheriting from the Microsoft.AspNetCore.Mvc.Controller class, which is the built-in
MVC controller base class).

Each public method in a controller is known as an action method, meaning you can invoke it from
the Web via some URL to perform an action. The MVC convention is to put controllers in the Controllers
folder, which Visual Studio created when it set up the project.

 ■ Tip You do not need to follow this or most other MVC conventions, but I recommend that you do—not least
because it will help you make sense of the examples in this book.

Figure 2-7. Selecting a browser

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

18

Visual Studio adds a default controller class to the project, which you can see if you expand the
Controllers folder in the Solution Explorer. The file is called HomeController.cs. Controller classes contain
a name followed by the word Controller, which means that when you see a file called HomeController.
cs, you know that it contains a controller called Home, which is the default controller that is used in MVC
applications. Click the HomeController.cs file in the Solution Explorer so that Visual Studio opens it for
editing. You will see the C# code shown in Listing 2-1.

Listing 2-1. The Initial Contents of the HomeController.cs File in the Controllers Folder

using System;
using System.Collections.Generic;
using System.Diagnostics;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;

namespace PartyInvites.Controllers {
 public class HomeController : Controller {
 public IActionResult Index() {
 return View();
 }

 public IActionResult About() {
 ViewData["Message"] = "Your application description page.";

 return View();
 }

 public IActionResult Contact() {
 ViewData["Message"] = "Your contact page.";

 return View();
 }

 public IActionResult Error() {
 return View(new ErrorViewModel { RequestId = Activity.Current?.Id
 ?? HttpContext.TraceIdentifier });
 }
 }
}

Replace the code in the HomeController.cs file so that it matches Listing 2-2. I have removed all but
one of the methods, changed the result type and its implementation, and removed the using statements for
unused namespaces.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

19

Listing 2-2. Changing the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public string Index() {
 return "Hello World";
 }
 }
}

These changes don’t produce a dramatic effect, but they make for a nice demonstration. I have changed
the method called Index so that it returns the string Hello World. Run the project again by selecting Start
Debugging from the Visual Studio Debug menu.

 ■ Tip If you left the application running from the previous section, then select restart from the Debugging
menu or, if you prefer, select Stop Debugging and then Start Debugging.

The browser will make an HTTP request to the server. The default MVC configuration means that the
request will be handled using the Index method (known as an action method or just an action) and the result
from the method will be sent back to the browser, as shown in Figure 2-8.

 ■ Tip Notice that Visual Studio has directed the browser to port 57628. You will almost certainly see a
different port number in the url that your browser requests because Visual Studio allocates a random port
when the project is created. If you look in the Windows taskbar notification area, you will find an icon for IIS
Express. This is a cut-down version of the full IIS application server that is included with Visual Studio and is
used to deliver ASP.NET Core content and services during development. I'll show you how to deploy an MVC
project into a production environment in Chapter 12.

Figure 2-8. The output from the action method

http://dx.doi.org/10.1007/978-1-4842-3150-0_12

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

20

Understanding Routes
As well as models, views, and controllers, MVC applications use the ASP.NET routing system, which decides
how URLs map to controllers and actions. A route is a rule that is used to decide how a request is handled.
When Visual Studio creates the MVC project, it adds some default routes to get you started. You can request
any of the following URLs, and they will be directed to the Index action on the HomeController:

•	 /

•	 /Home

•	 /Home/Index

So, when a browser requests http://yoursite/ or http://yoursite/Home, it gets back the output
from HomeController’s Index method. You can try this yourself by changing the URL in the browser. At the
moment, it will be http://localhost:57628/, except that the port part may be different. If you append /
Home or /Home/Index to the URL, you will see the same Hello World result from the MVC application.

This is a good example of benefiting from following conventions implemented by ASP.NET Core MVC.
In this case, the convention is that I will have a controller called HomeController and it will be the starting
point for the MVC application. The default configuration that Visual Studio creates for a new project assumes
I will follow this convention. Since I did follow the convention, I automatically got support for the URLs in
the preceding list. If I had not followed the convention, I would need to modify the configuration to point to
whatever controller I had created instead. For this simple example, the default configuration is all I need.

Rendering Web Pages
The output from the previous example wasn’t HTML—it was just the string Hello World. To produce an
HTML response to a browser request, I need a view, which tells MVC how to generate a response to a request
from a browser.

Creating and Rendering a View
The first thing I need to do is modify my Index action method, as shown in Listing 2-3. The changes are
shown in bold, which is a convention I follow throughout this book to make the examples easier to follow.

Listing 2-3. Rendering a View in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 return View("MyView");
 }
 }
}

When I return a ViewResult object from an action method, I am instructing MVC to render a view. I
create the ViewResult object by calling the View method, specifying the name of the view that I want to use,
which is MyView. If you run the application, you can see MVC trying to find the view, as shown in the error
message displayed in Figure 2-9.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

21

This is a helpful error message. It explains that MVC could not find the view I specified for the action
method and also shows where it looked. Views are stored in the Views folder, organized into subfolders.
Views that are associated with the Home controller, for example, are stored in a folder called Views/Home.
Views that are not specific to a single controller are stored in a folder called Views/Shared. Visual Studio
creates the Home and Shared folders automatically when the Web Application (Model-View-Controller)
template is used and puts in some placeholder views to get the project started.

To create the view needed for this example, expand the Views folder in the Solution Explorer, right-click
the Home folder, and select Add ➤ New Item from the pop-up menu. Visual Studio will present you with a
list of item templates. Drill down to the ASP.NET Core ➤ Web ➤ ASP.NET category using the left pane and
then select the MVC View Page item in the central pane, as shown in Figure 2-10. (Don’t use the Razor Page
template, which is not related to the MVC Framework.)

 ■ Tip You will see some existing files in the Views folder, which were added to the project by Visual Studio to
provide some initial content, some of which you saw in Figure 2-6. You can ignore these files.

Figure 2-9. MVC trying to find a view

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

22

Set the Name field to MyView.cshtml and click the Add button to create the view. Visual Studio will
create the Views/Home/MyView.cshtml file and open it for editing. The initial content of the view file is just
some comments and a placeholder. Replace them with the content shown in Listing 2-4.

 ■ Tip It is easy to end up creating the view file in the wrong folder. If you didn’t end up with a file called
MyView.cshtml in the Views/Home folder, then delete the file you did create and try again.

Listing 2-4. Replacing the Content of the MyView.cshtml File in the Views/Home Folder

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <div>
 Hello World (from the view)
 </div>
</body>

Figure 2-10. Creating a view

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

23

</html>
The new contents of the view file are mostly HTML. The exception is the part that looks like
this:
...
@{
 Layout = null;
}
...

This is an expression that will be interpreted by the Razor view engine, which processes the contents of
views and generates HTML that is sent to the browser. This is a simple Razor expression, and it tells Razor
that I chose not to use a layout, which is like a template for the HTML that will be sent to the browser
(and which I describe in Chapter 5). I am going to ignore Razor for the moment and come back to it later.
To see the effect of creating the view, select Start Debugging from the Debug menu to run the application.
You should see the result in Figure 2-11.

When I first edited the Index action method, it returned a string value. This meant that MVC did
nothing except pass the string value as is to the browser. Now that the Index method returns a ViewResult,
MVC renders a view and returns the HTML it produces. I told MVC which view should be used, so it used
the naming convention to find it automatically. The convention is that the view has the name of the action
method and is contained in a folder named after the controller: /Views/Home/MyView.cshtml.

I can return other results from action methods besides strings and ViewResult objects. For
example, if I return a RedirectResult, the browser will be redirected to another URL. If I return an
HttpUnauthorizedResult, I can prompt the user to log in. These objects are collectively known as action
results. The action result system lets you encapsulate and reuse common responses in actions. I’ll tell you
more about them and explain the different ways they can be used in Chapter 17.

Adding Dynamic Output
The whole point of a web application platform is to construct and display dynamic output. In MVC, it is the
controller’s job to construct some data and pass it to the view, which is responsible for rendering it to HTML.

One way to pass data from the controller to the view is by using the ViewBag object, which is a member
of the Controller base class. ViewBag is a dynamic object to which you can assign arbitrary properties,
making those values available in whatever view is subsequently rendered. Listing 2-5 demonstrates passing
some simple dynamic data in this way in the HomeController.cs file.

Figure 2-11. Testing the view

http://dx.doi.org/10.1007/978-1-4842-3150-0_5
http://dx.doi.org/10.1007/978-1-4842-3150-0_17

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

24

Listing 2-5. Setting View Data in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }
 }
}

I provide data for the view when I assign a value to the ViewBag.Greeting property. The Greeting
property didn’t exist until the moment I assigned the value—this allows me to pass data from the controller
to the view in a free and fluid manner, without having to define classes ahead of time. I refer to the ViewBag.
Greeting property again in the view to get the data value, as illustrated in Listing 2-6, which shows the
corresponding change to the MyView.cshtml file.

Listing 2-6. Retrieving a ViewBag Data Value in the MyView.cshtml File in the Views/Home Folder

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <div>
 @ViewBag.Greeting World (from the view)
 </div>
</body>
</html>

The addition to the listing is a Razor expression that is evaluated when MVC uses the view to generate
a response. When I call the View method in the controller’s Index method, MVC locates the MyView.cshtml
view file and asks the Razor view engine to parse the file’s content. Razor looks for expressions like the one
I added in the listing and processes them. In this example, processing the expression means inserting the
value assigned to the ViewBag.Greeting property in the action method into the view.

There’s nothing special about the property name Greeting; you could replace this with any property name
and it would work the same, just as long as the name you use in the controller matches the name you use in the
view. You can pass multiple data values from your controller to the view by assigning values to more than one
property. You can see the effect of these changes by starting the project, as shown in Figure 2-12.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

25

Creating a Simple Data-Entry Application
In the rest of this chapter, I will explore more of the basic MVC features by building a simple data-entry
application. I am going to pick up the pace in this section. My goal is to demonstrate MVC in action, so I will
skip over some of the explanations as to how things work behind the scenes. But don’t worry; I’ll revisit these
topics in depth in later chapters.

Setting the Scene
Imagine that a friend has decided to host a New Year’s Eve party and that she has asked me to create a web
app that allows her invitees to electronically RSVP. She has asked for these four key features:

•	 A home page that shows information about the party

•	 A form that can be used to RSVP

•	 Validation for the RSVP form, which will display a thank-you page

•	 A summary page that shows who is coming to the party

In the following sections, I will build up the MVC project I created at the start of the chapter and add
these features. I can check the first item off the list by applying what I covered earlier and add some HTML
to my existing view to give details of the party. To get started, Listing 2-7 shows the additions I made to the
Views/Home/MyView.cshtml file.

Listing 2-7. Displaying Details of the Party in the MyView.cshtml File in the Views/Home Folder

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <div>

Figure 2-12. A dynamic response from MVC

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

26

 @ViewBag.Greeting World (from the view)
 <p>We're going to have an exciting party.

 (To do: sell it better. Add pictures or something.)
 </p>
 </div>
</body>
</html>

I am on my way. If you run the application, by selecting Start Debugging from the Debug menu,
you’ll see the details of the party (well, the placeholder for the details, but you get the idea), as shown in
Figure 2-13.

Designing a Data Model
In MVC, the M stands for model, and it is the most important part of the application. The model is the
representation of the real-world objects, processes, and rules that define the subject, known as the domain,
of the application. The model, often referred to as a domain model, contains the C# objects (known as
domain objects) that make up the universe of the application and the methods that manipulate them. The
views and controllers expose the domain to the clients in a consistent manner, and a well-designed MVC
application starts with a well-designed model, which is then the focal point as controllers and views are
added.

I don’t need a complex model for the PartyInvites project because it is such a simple application
and I need just one domain class that I will call GuestResponse. This object will be responsible for storing,
validating, and confirming a RSVP.

The MVC convention is that the classes that make up a model are placed inside a folder called Models,
which Visual Studio creates automatically when you use the Web Application (Model-View-Controller)
template.

To create the class file, right-click the Models folder in the Solution Explorer and select Add ➤ Class
from the pop-up menu. Set the name of the new class to GuestResponse.cs and click the Add button. Edit
the contents of the new class file to match Listing 2-8.

Figure 2-13. Adding to the view HTML

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

27

Listing 2-8. The Contents of the GuestResponse.cs File in the Models Folder

namespace PartyInvites.Models {

 public class GuestResponse {

 public string Name { get; set; }
 public string Email { get; set; }
 public string Phone { get; set; }
 public bool? WillAttend { get; set; }
 }
}

 ■ Tip You may have noticed that the WillAttend property is a nullable bool, which means that it can be
true, false, or null. I explain the rationale for this in the “Adding Validation” section later in the chapter.

Creating a Second Action and a Strongly Typed View
One of my application goals is to include an RSVP form, which means I need to define an action method
that can receive requests for that form. A single controller class can define multiple action methods, and the
convention is to group related actions together in the same controller. Listing 2-9 shows the addition of a
new action method to the Home controller.

Listing 2-9. Adding an Action Method in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 public ViewResult RsvpForm() {
 return View();
 }
 }
}

The RsvpForm action method calls the View method without an argument, which tells MVC to render
the default view associated with the action method, which is a view with the same name as the action
method, in this case, RsvpForm.cshtml.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

28

Right-click the Views/Home folder and select Add ➤ New Item from the pop-up menu. Select the MVC
View Page template, set the name of the new file to RsvpForm.cshtml, and click the Add button to create the
file. Change the content of the file so that it matches Listing 2-10.

Listing 2-10. Setting the Content of the RsvpForm.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
</head>
<body>
 <div>
 This is the RsvpForm.cshtml View
 </div>
</body>
</html>

This content is mostly HTML but with the addition of a @model Razor expression, which is used to create
a strongly typed view. A strongly typed view is intended to render a specific model type, and if I specify the
type I want to work with (the GuestResponse class in the PartyInvites.Models namespace in this case),
MVC can create some helpful shortcuts to make it easier. I will take advantage of the strongly typed feature
shortly.

To test the new action method and its view, start the application by selecting Start Debugging from the
Debug menu and use the browser to navigate to the /Home/RsvpForm URL.

MVC will use the naming convention I described earlier to direct the request to the RsvpForm action
method defined by the Home controller. This action method tells MVC to render the default view, which,
with another application of the naming convention, renders RsvpForm.cshml from the Views/Home folder.
Figure 2-14 shows the result.

Figure 2-14. Rendering the second view

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

29

Linking Action Methods
I want to be able to create a link from the MyView view so that guests can see the RsvpForm view without
having to know the URL that targets a specific action method, as shown in Listing 2-11.

Listing 2-11. Adding a Link to the RSVP Form in the MyView.cshtml File in the Views/Home Folder

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 <div>
 @ViewBag.Greeting World (from the view)
 <p>We're going to have an exciting party.

 (To do: sell it better. Add pictures or something.)
 </p>
 <a asp-action="RsvpForm">RSVP Now
 </div>
</body>
</html>

The addition to the listing is an a element that has an asp-action attribute. The attribute is an example
of a tag helper attribute, which is an instruction for Razor that will be performed when the view is rendered.
The asp-action attribute is an instruction to add an href attribute to the a element that contains a URL for
an action method. I explain how tag helpers work in Chapters 24, 25, and 26, but this is the simplest type
of tag helper attribute for a elements, and it tells Razor to insert a URL for an action method defined by the
same controller for which the current view is being rendered. You can see the link that the helper creates by
starting the project, as shown in Figure 2-15.

Figure 2-15. Linking between action methods

http://dx.doi.org/10.1007/978-1-4842-3150-0_24

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

30

Start the application and roll the mouse over the RSVP Now link the browser. You will see that the link
points to the following URL (allowing for the different port number that Visual Studio will have assigned to
your project):

http://localhost:57628/Home/RsvpForm

There is an important principle at work here, which is that you should use the features provided by
MVC to generate URLs, rather than hard-code them into your views. When the tag helper created the href
attribute for the a element, it inspected the configuration of the application to figure out what the URL
should be. This allows the configuration of the application to be changed to support different URL formats
without needing to update any views. I explain how this works in Chapter 15.

Building the Form
Now that I have created the strongly typed view and can reach it from the Index view, I am going to build out
the contents of the RsvpForm.cshtml file to make it into an HTML form for editing GuestResponse objects, as
shown in Listing 2-12.

Listing 2-12. Creating a Form View in the RsvpForm.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
</head>
<body>
 <form asp-action="RsvpForm" method="post">
 <p>
 <label asp-for="Name">Your name:</label>
 <input asp-for="Name" />
 </p>
 <p>
 <label asp-for="Email">Your email:</label>
 <input asp-for="Email" />
 </p>
 <p>
 <label asp-for="Phone">Your phone:</label>
 <input asp-for="Phone" /></p>

http://dx.doi.org/10.1007/978-1-4842-3150-0_15

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

31

 <p>
 <label>Will you attend?</label>
 <select asp-for="WillAttend">
 <option value="">Choose an option</option>
 <option value="true">Yes, I'll be there</option>
 <option value="false">No, I can't come</option>
 </select>
 </p>
 <button type="submit">Submit RSVP</button>
 </form>
</body>
</html>

I have defined a label and input element for each property of the GuestResponse model class (or, in
the case of the WillAttend property, a select element). Each element is associated with the model property
using the asp-for attribute, which is another tag helper attribute. The tag helper attributes configure the
elements to tie them to the model object. Here is an example of the HTML that the tag helpers produce and
that is sent to the browser:

<p>
 <label for="Name">Your name:</label>
 <input type="text" id="Name" name="Name" value="">
</p>

The asp-for attribute on the label element sets the value of the for attribute. The asp-for attribute
on the input element sets the id and name elements. This doesn’t look especially useful at the moment, but
you will see that associating elements with a model property offers additional advantages as the application
functionality is defined.

Of more immediate use is the asp-action attribute applied to the form element, which uses the
application’s URL routing configuration to set the action attribute to a URL that will target a specific action
method, like this:

<form method="post" action="/Home/RsvpForm">

As with the helper attribute I applied to the a element, the benefit of this approach is that you can
change the system of URLs that the application uses and the content generated by the tag helpers will reflect
the changes automatically.

You can see the form by running the application and clicking the RSVP Now link, as shown in Figure 2-16.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

32

Receiving Form Data
I have not yet told MVC what I want to do when the form is posted to the server. As things stand, clicking the
Submit RSVP button just clears any values you have entered into the form. That is because the form posts
back to the RsvpForm action method in the Home controller, which just tells MVC to render the view again.
To receive and process submitted form data, I am going to use a core controller feature. I will add a second
RsvpForm action method to create the following:

•	 A method that responds to HTTP GET requests: A GET request is what a browser
issues normally each time someone clicks a link. This version of the action will be
responsible for displaying the initial blank form when someone first visits /Home/
RsvpForm.

•	 A method that responds to HTTP POST requests: By default, forms rendered using
Html.BeginForm() are submitted by the browser as a POST request. This version of
the action will be responsible for receiving submitted data and deciding what to do
with it.

Handing GET and POST requests in separate C# methods helps to keep my controller code tidy since the
two methods have different responsibilities. Both action methods are invoked by the same URL, but MVC
makes sure that the appropriate method is called, based on whether I am dealing with a GET or POST request.
Listing 2-13 shows the changes to the HomeController class.

Listing 2-13. Adding a Method in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;

namespace PartyInvites.Controllers {

Figure 2-16. Adding an HTML form to the application

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

33

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 [HttpGet]
 public ViewResult RsvpForm() {
 return View();
 }

 [HttpPost]
 public ViewResult RsvpForm(GuestResponse guestResponse) {
 // TODO: store response from guest
 return View();
 }
 }
}

I have added the HttpGet attribute to the existing RsvpForm action method. This tells MVC that this
method should be used only for GET requests. I then added an overloaded version of the RsvpForm method,
which accepts a GuestResponse object. I applied the HttpPost attribute to this method, which tells MVC
that the new method will deal with POST requests. I explain how these additions to the listing work in the
following sections. I also imported the PartyInvites.Models namespace—this is just so I can refer to the
GuestResponse model type without needing to qualify the class name.

Using Model Binding
The first overload of the RsvpForm action method renders the same view as before—the RsvpForm.cshtml
file—to generate the form shown in Figure 2-16. The second overload is more interesting because of the
parameter, but given that the action method will be invoked in response to an HTTP POST request and that
the GuestResponse type is a C# class, how are the two connected?

The answer is model binding, a useful MVC feature whereby incoming data is parsed and the key/value
pairs in the HTTP request are used to populate properties of domain model types.

Model binding is a powerful and customizable feature that eliminates the grind of dealing with HTTP
requests directly and lets you work with C# objects rather than dealing with individual data values sent by
the browser. The GuestResponse object that is passed as the parameter to the action method is automatically
populated with the data from the form fields. I dive into the detail of model binding, including how it can be
customized, in Chapter 26.

One of the application goals is to present a summary page with details of who is attending, which means
that I need to keep track of the responses that I receive. I am going to do this by creating an in-memory
collection of objects. This isn’t useful in a real application because the response data will be lost when the
application is stopped or restarted, but this approach will allow me to keep the focus on MVC and create an
application that can easily be reset to its initial state.

 ■ Tip I demonstrate how MVC can be used to store and access data persistently in Chapter 8 as part of a
more realistic example application called SportsStore.

http://dx.doi.org/10.1007/978-1-4842-3150-0_26
http://dx.doi.org/10.1007/978-1-4842-3150-0_8

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

34

I added a file to the project by right-clicking the Models folder and selecting Add ➤ Class from the pop-
up menu. I set the name of the file to Repository.cs and used it to define the class shown in Listing 2-14.

Listing 2-14. The Contents of the Repository.cs File in the Models Folder

using System.Collections.Generic;

namespace PartyInvites.Models {
 public static class Repository {
 private static List<GuestResponse> responses = new List<GuestResponse>();

 public static IEnumerable<GuestResponse> Responses {
 get {
 return responses;
 }
 }

 public static void AddResponse(GuestResponse response) {
 responses.Add(response);
 }
 }
}

The Repository class and its members are set to static, which will make it easy for me to store and
retrieve data from different places in the application. MVC provides a more sophisticated approach for
defining common functionality, called dependency injection, which I describe in Chapter 18, but a static
class is a good way to get started for a simple application like this one.

Storing Responses
Now that I have somewhere to store the data, I can update the action method that receives the HTTP POST
requests, as shown in Listing 2-15.

Listing 2-15. Updating an Action Method in the HomeController.cs File

using System;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 [HttpGet]
 public ViewResult RsvpForm() {

http://dx.doi.org/10.1007/978-1-4842-3150-0_18

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

35

 return View();
 }

 [HttpPost]
 public ViewResult RsvpForm(GuestResponse guestResponse) {
 Repository.AddResponse(guestResponse);
 return View("Thanks", guestResponse);
 }
 }
}

All I have to do to deal with the form data sent in a request is to work with the GuestResponse object
that is passed to the action method—in this case, to pass it as an argument to the Repository.AddResponse
method so that the response can be stored.

WHY MODEL BINDING IS NOT LIKE WEB FORMS

In Chapter 1, I explained that one of the disadvantages of traditional ASP.NET Web Forms is that it hides
the details of HTTP and HTMl from the developers. You may be wondering whether the MVC model
binding that I used to create a GuestResponse object from an HTTP PoST request in listing 2-15 is
doing the same thing.

It isn’t. Model binding frees me from the tedious and error-prone task of having to inspect an HTTP
request and extract all the data values that I require, but (and this is the important part) if I wanted to
process a request manually, I could do so because MVC provides easy access to all of the request data.
Nothing is hidden from the developer, but there are a number of useful features that make working with
HTTP and HTMl simpler and easier; however, using these features is optional.

This may seem like a subtle difference, but as you learn more about MVC, you will see that the
development experience is completely different from traditional Web Forms and that you are always
aware of how the requests your application receives are handled.

The call to the View method in the RsvpForm action method tells MVC to render a view called Thanks
and to pass the GuestResponse object to the view. To create the view, right-click the Views/Home folder in the
Solution Explorer and select Add ➤ New Item from the pop-up menu. Select the MVC View Page template in
the ASP.NET category, set the name to Thanks.cshtml, and click the Add button. Visual Studio will create the
Views/Home/Thanks.cshtml file and open it for editing. Change the contents of the file to match Listing 2-16.

Listing 2-16. The Contents of the Thanks.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>

http://dx.doi.org/10.1007/978-1-4842-3150-0_1

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

36

<head>
 <meta name="viewport" content="width=device-width" />
 <title>Thanks</title>
</head>
<body>
 <p>
 <h1>Thank you, @Model.Name!</h1>
 @if (Model.WillAttend == true) {
 @:It's great that you're coming. The drinks are already in the fridge!
 } else {
 @:Sorry to hear that you can't make it, but thanks for letting us know.
 }
 </p>
 <p>Click <a asp-action="ListResponses">here to see who is coming.</p>
</body>
</html>

The Thanks.cshtml view uses Razor to display content based on the value of the GuestResponse
properties that I passed to the View method in the RsvpForm action method. The Razor @model expression
specifies the domain model type with which the view is strongly typed.

To access the value of a property in the domain object, I use Model.PropertyName. For example, to get
the value of the Name property, I call Model.Name. Don’t worry if the Razor syntax doesn’t make sense—I
explain it in more detail in Chapter 5.

Now that I have created the Thanks view, I have a basic working example of handling a form with MVC.
Start the application in Visual Studio by selecting Start Debugging from the Debug menu, click the RSVP
Now link, add some data to the form, and click the Submit RSVP button. You will see the result shown in
Figure 2-17 (although it will differ if your name is not Joe or you said you could not attend).

Figure 2-17. The Thanks view

http://dx.doi.org/10.1007/978-1-4842-3150-0_5

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

37

Displaying the Responses
At the end of the Thanks.cshtml view, I added an a element to create a link to display the list of people who
are coming to the party. I used the asp-action tag helper attribute to create a URL that targets an action
method called ListResponses, like this:

...
<p>Click <a asp-action="ListResponses">here to see who is coming.</p>
...

If you hover the mouse over the link that is displayed by the browser, you will see that it targets the /
Home/ListResponses URL. This doesn’t correspond to any of the action methods in the Home controller, and
if you click the link, you will see a 404 Not Found error page

I am going to fix the problem by creating the action method that the URL targets in the Home controller,
as shown in Listing 2-17.

Listing 2-17. Adding an Action Method in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;
using System.Linq;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 [HttpGet]
 public ViewResult RsvpForm() {
 return View();
 }

 [HttpPost]
 public ViewResult RsvpForm(GuestResponse guestResponse) {
 Repository.AddResponse(guestResponse);
 return View("Thanks", guestResponse);
 }

 public ViewResult ListResponses() {
 return View(Repository.Responses.Where(r => r.WillAttend == true));
 }
 }
}

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

38

The new action method is called ListResponses, and it calls the View method, using the
Repository.Responses property as the argument. This is how an action method provides data to a
strongly typed view. The collection of GuestResponse objects is filtered using LINQ so that only positive
responses are used.

The ListResponses action method doesn’t specify the name of the view that should be used to display
the collection of GuestResponse objects, which means that the default naming convention will be used and
MVC will look for a view called ListResponses.cshtml in the Views/Home and Views/Shared folders. To
create the view, right-click the Views/Home folder in the Solution Explorer and select Add ➤ New Item from
the pop-up menu. Select the MVC View Page template, set the name to ListResponses.cshtml, and click the
Add button. Edit the contents of the new view to match Listing 2-18.

Listing 2-18. Displaying the Acceptances in the ListResponses.cshtml File in the Views/Home Folder

@model IEnumerable<PartyInvites.Models.GuestResponse>

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Responses</title>
</head>
<body>
 <h2>Here is the list of people attending the party</h2>
 <table>
 <thead>
 <tr>
 <th>Name</th>
 <th>Email</th>
 <th>Phone</th>
 </tr>
 </thead>
 <tbody>
 @foreach (PartyInvites.Models.GuestResponse r in Model) {
 <tr>
 <td>@r.Name</td>
 <td>@r.Email</td>
 <td>@r.Phone</td>
 </tr>
 }
 </tbody>
 </table>
</body>
</html>

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

39

Razor view files have the cshtml file extension because they are a mix of C# code and HTML elements.
You can see this in Listing 2-18 where I have used a foreach loop to process each of the GuestResponse
objects that the action method passes to the view using the View method. Unlike a normal C# foreach
loop, the body of a Razor foreach loop contains HTML elements that are added to the response that will be
sent back to the browser. In this view, each GuestResponse object generates a tr element that contains td
elements populated with the value of an object property.

To see the list at work, run the application by selecting Start Debugging from the Start menu, submit
some form data, and then click the link to see the list of responses. You will see a summary of the data you
have entered since the application was started, as shown in Figure 2-18. The view does not present the data
in an appealing way, but it is enough for the moment, and I will address the styling of the application later in
this chapter.

Adding Validation
I am now in a position to add data validation to my application. Without validation, users could enter
nonsense data or even submit an empty form. In an MVC application, you typically apply validation to the
domain model rather than in the user interface. This means that you define validation in one place, but it
takes effect anywhere in the application that the model class is used. MVC supports declarative validation
rules defined with attributes from the System.ComponentModel.DataAnnotations namespace, meaning
that validation constraints are expressed using the standard C# attribute features. Listing 2-19 shows how I
applied these attributes to the GuestResponse model class.

Listing 2-19. Applying Validation in the GuestResponse.cs File in the Models Folder

using System.ComponentModel.DataAnnotations;

namespace PartyInvites.Models {

 public class GuestResponse {

 [Required(ErrorMessage = "Please enter your name")]
 public string Name { get; set; }

Figure 2-18. Showing a list of party attendees

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

40

 [Required(ErrorMessage = "Please enter your email address")]
 [RegularExpression(".+\\@.+\\..+",
 ErrorMessage = "Please enter a valid email address")]
 public string Email { get; set; }

 [Required(ErrorMessage = "Please enter your phone number")]
 public string Phone { get; set; }

 [Required(ErrorMessage = "Please specify whether you'll attend")]
 public bool? WillAttend { get; set; }
 }
}

MVC automatically detects the attributes and uses them to validate data during the model-binding
process. I imported the namespace that contains the validation attributes, so I can refer to them without
needing to qualify their names.

 ■ Tip As noted earlier, I used a nullable bool for the WillAttend property. I did this so that I could apply the
Required validation attribute. If I had used a regular bool, the value I received through model binding could be
only true or false, and I would not be able to tell whether the user had selected a value. A nullable bool has
three possible values: true, false, and null. The browser sends a null value if the user has not selected a
value, and this causes the Required attribute to report a validation error. This is a nice example of how MVC
elegantly blends C# features with HTMl and HTTP.

I check to see whether there has been a validation problem using the ModelState.IsValid property in
the controller class. Listing 2-20 shows how I have done this in the POST-enabled RsvpForm action method in
the Home controller class.

Listing 2-20. Checking for Validation Errors in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;
using System.Linq;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 [HttpGet]
 public ViewResult RsvpForm() {
 return View();
 }

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

41

 [HttpPost]
 public ViewResult RsvpForm(GuestResponse guestResponse) {
 if (ModelState.IsValid) {
 Repository.AddResponse(guestResponse);
 return View("Thanks", guestResponse);
 } else {
 // there is a validation error
 return View();
 }
 }

 public ViewResult ListResponses() {
 return View(Repository.Responses.Where(r => r.WillAttend == true));
 }
 }
}

The Controller base class provides a property called ModelState that provides information about the
conversion of HTTP request data into C# objects. If the ModelState.IsValid property returns true, then I
know that MVC has been able to satisfy the validation constraints I specified through the attributes on the
GuestResponse class. When this happens, I render the Thanks view, just as I did previously.

If the ModelState.IsValid property returns false, then I know that there are validation errors. The
object returned by the ModelState property provides details of each problem that has been encountered, but
I don’t need to get into that level of detail because I can rely on a useful feature that automates the process of
asking the user to address any problems by calling the View method without any parameters.

When MVC renders a view, Razor has access to the details of any validation errors associated with the
request, and tag helpers can access the details to display validation errors to the user. Listing 2-21 shows the
addition of validation tag helper attributes to the RsvpForm view.

Listing 2-21. Adding a Validation Summary to the RsvpForm.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
</head>
<body>
 <form asp-action="RsvpForm" method="post">
 <div asp-validation-summary="All"></div>
 <p>
 <label asp-for="Name">Your name:</label>
 <input asp-for="Name" />
 </p>
 <p>

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

42

 <label asp-for="Email">Your email:</label>
 <input asp-for="Email" />
 </p>
 <p>
 <label asp-for="Phone">Your phone:</label>
 <input asp-for="Phone" /></p>
 <p>
 <label>Will you attend?</label>
 <select asp-for="WillAttend">
 <option value="">Choose an option</option>
 <option value="true">Yes, I'll be there</option>
 <option value="false">No, I can't come</option>
 </select>
 </p>
 <button type="submit">Submit RSVP</button>
 </form>
</body>
</html>

The asp-validation-summary attribute is applied to a div element, and it displays a list of validation
errors when the view is rendered. The value for the asp-validation-summary attribute is a value from an
enumeration called ValidationSummary, which specifies what types of validation errors the summary will
contain. I specified All, which is a good starting point for most applications, and I describe the other values
and explain how they work in Chapter 27.

To see how the validation summary works, run the application, fill out the Name field, and submit the
form without entering any other data. You will see a summary of validation errors, as shown in Figure 2-19.

Figure 2-19. Displaying validation errors

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

43

The RsvpForm action method will not render the Thanks view until all of the validation constraints
applied to the GuestResponse class have been satisfied. Notice that the data entered into the Name field was
preserved and displayed again when Razor rendered the view with the validation summary. This is another
benefit of model binding, and it simplifies working with form data.

 ■ Note If you have worked with ASP.NET Web Forms, you will know that Web Forms has a concept of server
controls that retain state by serializing values into a hidden form field called __VIEWSTATE. MVC model binding
is not related to the Web Forms concepts of server controls, postbacks, or View State. MVC does not inject a
hidden __VIEWSTATE field into your rendered HTMl pages. Instead, it includes the data by setting the value
attributes of the input element.

Highlighting Invalid Fields
The tag helper attributes that associate model properties with elements have a handy feature that can be
used in conjunction with model binding. When a model class property has failed validation, the helper
attributes will generate slightly different HTML. Here is the input element that is generated for the Phone
field when there is no validation error:

<input type="text" data-val="true" data-val-required="Please enter your phone number"
id="Phone" name="Phone" value="">

For comparison, here is the same HTML element after the user has submitted the form without entering
any data into the text field (which is a validation error because I applied the Required validation attribute to
the Phone property of the GuestResponse class):

<input type="text" class="input-validation-error" data-val="true"
 data-val-required="Please enter your phone number" id="Phone"
 name="Phone" value="">

I have highlighted the difference: the asp-for tag helper attribute added the input element to a class
called input-validation-error. I can take advantage of this feature by creating a stylesheet that contains
CSS styles for this class and the others that different HTML helper attributes use.

The convention in MVC projects is that static content delivered to clients is placed into the wwwroot
folder, organized by content type, so that CSS stylesheets go into the wwwroot/css folder, JavaScript files go
into the wwwroot/js folder, and so on.

To create the stylesheet, right-click the wwwroot/css folder in the Visual Studio Solution Explorer, select
Add ➤ New Item, navigate to the ASP.NET Core ➤ Web ➤ Content section, and select Style Sheet from the
list of templates, as shown in Figure 2-20.

 ■ Tip Visual Studio creates a site.css file in the wwwroot/css folder when a project is created using the
Web Application template. You can ignore this file, which I don’t use in this chapter.

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

44

Set the name of the file to styles.css, click the Add button to create the stylesheet, and edit the new file
so that it contains the styles shown in Listing 2-22.

Listing 2-22. The Contents of the styles.css File in the wwwroot/css Folder

.field-validation-error {color: #f00;}

.field-validation-valid { display: none;}

.input-validation-error { border: 1px solid #f00; background-color: #fee; }

.validation-summary-errors { font-weight: bold; color: #f00;}

.validation-summary-valid { display: none;}
To apply this stylesheet, I have added a link element to the head section of the RsvpForm
view, as shown in Listing 2-23.

Listing 2-23. Applying a Stylesheet in the RsvpForm.cshtml File in the Views/Home Folder

...
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
 <link rel="stylesheet" href="/css/styles.css" />
</head>
...

The link element uses the href attribute to specify the location of the stylesheet. Notice that the
wwwroot folder is omitted from the URL. The default configuration for ASP.NET includes support for serving
static content, such as images, CSS stylesheets, and JavaScript files, and it maps requests to the wwwroot
folder automatically. I describe the ASP.NET and MVC configuration process in Chapter 14.

 ■ Tip There is a special tag helper for dealing with stylesheets that can be useful if you have a lot of files to
manage. See Chapter 25 for details.

Figure 2-20. Creating a CSS stylesheet

http://dx.doi.org/10.1007/978-1-4842-3150-0_14
http://dx.doi.org/10.1007/978-1-4842-3150-0_25

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

45

With the application of the stylesheet, a more visually obvious validation error will be displayed when
data is submitted that causes a validation error, as shown in Figure 2-21.

Styling the Content
All of the functional goals for the application are complete, but the overall appearance of the application
is poor. When you create a project using the Web Application template, as I did for the example in this
chapter, Visual Studio installs some common client-side development packages. While I am not a fan of
using template projects, I do like the client-side libraries that Microsoft has chosen. One of them is called
Bootstrap, which is a nice CSS framework originally developed by Twitter that has become a major open
source project in its own right and which has become a mainstay of web application development.

 ■ Note Bootstrap 3 is the current version as I write this, but version 4 is under development. Microsoft may
choose to update the version of Bootstrap used by the Web Application template in later releases of Visual
Studio, which may cause the content to display differently. This won’t be a problem for the other chapters in the
book because I show you how to explicitly specify a package version so that you get the expected results.

Styling the Welcome View
The basic Bootstrap features work by applying classes to elements that correspond to CSS selectors defined
in the files added to the wwwroot/lib/bootstrap folder. You can get full details of the classes that Bootstrap
defines from http://getbootstrap.com, but you can see how I have applied some basic styling to the
MyView.cshtml view file in Listing 2-24.

Figure 2-21. Automatically highlighted validation errors

http://getbootstrap.com/

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

46

Listing 2-24. Adding Bootstrap to the MyView.cshtml File in the Views/Home Folder

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body>
 <div class="text-center">
 <h3>We're going to have an exciting party!</h3>
 <h4>And you are invited</h4>
 RSVP Now
 </div>
</body>
</html>

I have added a link element whose href attribute loads the bootstrap.css file from the wwwroot/lib/
bootstrap/dist/css folder. The convention is that third-party CSS and JavaScript packages are installed
into the wwwroot/lib folder, and I describe the tool that is used to manage these packages in Chapter 6.

Having imported the Bootstrap stylesheets, I need to style my elements. This is a simple example, so I
only need to use a small number of Bootstrap CSS classes: text-center, btn, and btn-primary.

The text-center class centers the content of an element and its children. The btn class styles a button,
input, or a element as a pretty button, and the btn-primary class specifies which of a range of colors I want
the button to be. You can see the effect by running the application, as shown in Figure 2-22.

Figure 2-22. Styling a view

http://dx.doi.org/10.1007/978-1-4842-3150-0_6

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

47

It will be obvious to you that I am not a web designer. In fact, as a child, I was excused from art lessons on
the basis that I had absolutely no talent whatsoever. This had the happy result of making more time for math
lessons but meant that my artistic skills have not developed beyond those of the average 10-year-old child. For
a real project, I would seek a professional to help design and style the content, but for this example, I am going
it alone, and that means applying Bootstrap with as much restraint and consistency as I can muster.

Styling the RsvpForm View
Bootstrap defines classes that can be used to style forms. I am not going to go into detail, but you can see
how I have applied these classes in Listing 2-25.

Listing 2-25. Adding Bootstrap to the RsvpForm.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
 <link rel="stylesheet" href="/css/styles.css" />
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body>
 <div class="panel panel-success">
 <div class="panel-heading text-center"><h4>RSVP</h4></div>
 <div class="panel-body">
 <form class="p-a-1" asp-action="RsvpForm" method="post">
 <div asp-validation-summary="All"></div>
 <div class="form-group">
 <label asp-for="Name">Your name:</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Email">Your email:</label>
 <input class="form-control" asp-for="Email" />
 </div>
 <div class="form-group">
 <label asp-for="Phone">Your phone:</label>
 <input class="form-control" asp-for="Phone" />
 </div>
 <div class="form-group">
 <label>Will you attend?</label>
 <select class="form-control" asp-for="WillAttend">
 <option value="">Choose an option</option>
 <option value="true">Yes, I'll be there</option>
 <option value="false">No, I can't come</option>
 </select>

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

48

 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">
 Submit RSVP
 </button>
 </div>
 </form>
 </div>
 </div>
</body>
</html>

The Bootstrap classes in this example create a header, just to give structure to the layout. To style the
form, I have used the form-group class, which is used to style the element that contains the label and the
associated input or select element. You can see the effect of the styles in Figure 2-23.

Figure 2-23. Styling the RsvpForm view

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

49

Styling the Thanks View
The next view file to style is Thanks.cshtml, and you can see how I have done this in Listing 2-26, using CSS
classes that are similar to the ones I used for the other views. To make an application easier to manage, it is
a good principle to avoid duplicating code and markup wherever possible. MVC provides several features to
help reduce duplication, which I describe in later chapters. These features include Razor layouts (Chapter
5), partial views (Chapter 21), and view components (Chapter 22).

Listing 2-26. Applying Bootstrap to the Thanks.cshtml File in the Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Thanks</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body class="text-center">
 <p>
 <h1>Thank you, @Model.Name!</h1>
 @if (Model.WillAttend == true) {
 @:It's great that you're coming. The drinks are already in the fridge!
 } else {
 @:Sorry to hear that you can't make it, but thanks for letting us know.
 }
 </p>
 Click here
 to see who is coming.
</body>
</html>

Figure 2-24 shows the effect of the styles.

http://dx.doi.org/10.1007/978-1-4842-3150-0_5
http://dx.doi.org/10.1007/978-1-4842-3150-0_21
http://dx.doi.org/10.1007/978-1-4842-3150-0_22

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

50

Styling the List View
The final view to style is ListResponses, which presents the list of attendees. Styling the content follows the
same basic approach as used for all Bootstrap styles, as shown in Listing 2-27.

Listing 2-27. Adding Bootstrap to the ListResponses.cshtml File in the Views/Home Folder

@model IEnumerable<PartyInvites.Models.GuestResponse>

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
 <title>Responses</title>
</head>
<body>
 <div class="panel-body">
 <h2>Here is the list of people attending the party</h2>
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr>
 <th>Name</th>
 <th>Email</th>
 <th>Phone</th>
 </tr>
 </thead>
 <tbody>

Figure 2-24. Styling the Thanks view

CHAPTEr 2 ■ Your FIrST MVC APPlICATIoN

51

 @foreach (PartyInvites.Models.GuestResponse r in Model) {
 <tr>
 <td>@r.Name</td>
 <td>@r.Email</td>
 <td>@r.Phone</td>
 </tr>
 }
 </tbody>
 </table>
 </div>
</body>
</html>

Figure 2-25 shows the way that the table of attendees is presented. Adding these styles to the view
completes the example application, which now meets all of the development goals and has an improved
appearance.

Summary
In this chapter, I created a new MVC project and used it to construct a simple data-entry application, giving
you a first glimpse of the ASP.NET Core MVC architecture and approach. I skipped some key features
(including Razor syntax, routing, and testing), but I return to these topics in depth in later chapters. In the
next chapter, I describe the MVC design patterns, which form the foundation for effective development with
ASP.NET Core MVC.

Figure 2-25. Styling the ListResponses view

53© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_3

CHAPTER 3

The MVC Pattern, Projects,
and Conventions

Before digging into the details of ASP.NET Core MVC, I want to make sure you are familiar with the MVC design
pattern, the thinking behind it, and the way it is translated into ASP.NET Core MVC projects. You might already
know about some of the ideas and conventions I discuss in this chapter, especially if you have done advanced
ASP.NET or C# development. If not, I encourage you to read carefully—a good understanding of what lies behind
MVC can help put the features of the framework into context as you continue through the book.

The History of MVC
The term model-view-controller has been in use since the late 1970s and arose from the Smalltalk project
at Xerox PARC, where it was conceived as a way to organize some early GUI applications. Some of the fine
detail of the original MVC pattern was tied to Smalltalk-specific concepts, such as screens and tools, but the
broader concepts are still applicable to applications, and they are especially well-suited to web applications.

Understanding the MVC Pattern
In high-level terms, the MVC pattern means that an MVC application will be split into at least three pieces.

•	 Models, which contain or represent the data that users work with

•	 Views, which are used to render some part of the model as a user interface

•	 Controllers, which process incoming requests, perform operations on the model, and
select views to render to the user

Each piece of the MVC architecture is well-defined and self-contained, which is referred to as the
separation of concerns. The logic that manipulates the data in the model is contained only in the model, the
logic that displays data is only in the view, and the code that handles user requests and input is contained
only in the controller. With a clear division between each of the pieces, your application will be easier to
maintain and extend over its lifetime, no matter how large it becomes.

Understanding Models
Models—the M in MVC—contain the data that users work with. There are two broad types of model: view
models, which represent just data passed from the controller to the view, and domain models, which contain
the data in a business domain, along with the operations, transformations, and rules for creating, storing,
and manipulating that data, collectively referred to as the model logic.

https://doi.org/10.1007/978-1-4842-3150-0_3

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

54

Models are the definition of the universe your application works in. In a banking application, for
example, the model represents everything in the bank that the application supports, such as accounts, the
general ledger, and credit limits for customers, as well as the operations that can be used to manipulate the
data in the model, such as depositing funds and making withdrawals from the accounts. The model is also
responsible for preserving the overall state and consistency of the data—for example, making sure that all
transactions are added to the ledger and that a client doesn’t withdraw more money than he is entitled to or
more money than the bank has.

For each of the components in the MVC pattern, I’ll describe what should and should not be included.
The model in an application built using the MVC pattern should

•	 Contain the domain data

•	 Contain the logic for creating, managing, and modifying the domain data

•	 Provide a clean API that exposes the model data and operations on it

The model should not

•	 Expose details of how the model data is obtained or managed (in other words, details
of the data storage mechanism should not be exposed to controllers and views)

•	 Contain logic that transforms the model based on user interaction (because that is
the controller’s job)

•	 Contain logic for displaying data to the user (that is the view’s job)

The benefits of ensuring that the model is isolated from the controller and views are that you can test
your logic more easily (I describe unit testing in Chapter 7) and that enhancing and maintaining the overall
application is simpler and easier.

 ■ Tip Many developers new to the MVC pattern get confused with the idea of including logic in the data
model, believing that the goal of the MVC pattern is to separate data from logic. this is a misapprehension:
the goal of the MVC pattern is to divide an application into three functional areas, each of which may contain
both logic and data. the goal isn’t to eliminate logic from the model. rather, it is to ensure that the model only
contains logic for creating and managing the model data.

Understanding Controllers
Controllers are the connective tissue in the MVC pattern, acting as conduits between the data model and
views. Controllers define actions that provide the business logic that operates on the data model and that
provide the data that views display to the user.

A controller built using the MVC pattern should

•	 Contain the actions required to update the model based on user interaction

The controller should not

•	 Contain logic that manages the appearance of data (that is the job of the view)

•	 Contain logic that manages the persistence of data (that is the job of the model)

http://dx.doi.org/10.1007/978-1-4842-3150-0_7

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

55

Understanding Views
Views contain the logic required to display data to the user or to capture data from the user so that it can be
processed by a controller action. Views should

•	 Contain the logic and markup required to present data to the user

Views should not

•	 Contain complex logic (this is better placed in a controller)

•	 Contain logic that creates, stores, or manipulates the domain model

Views can contain logic, but it should be simple and used sparingly. Putting anything but the simplest
method calls or expressions in a view makes the overall application harder to test and maintain.

The ASP.NET Implementation of MVC
As its name suggests, the ASP.NET Core MVC adapts the abstract MVC pattern to the world of ASP.NET and
C# development. In ASP.NET Core MVC, controllers are C# classes, usually derived from the Microsoft.
AspNetCore.Mvc.Controller class. Each public method in a class derived from Controller is an action
method, which is associated with a URL. When a request is sent to the URL associated with an action
method, the statements in that action method are executed in order to perform some operation on the
domain model and then to select a view to display to the client. Figure 3-1 shows the interactions between
the controller, model, and view.

ASP.NET Core MVC uses a view engine, known as Razor, which is the component responsible for
processing a view in order to generate a response for the browser. Razor views are HTML templates that
contain C# logic that is used to process model data to generate dynamic content that responds to changes in
the model. I explain how Razor works in Chapter 5.

ASP.NET Core MVC doesn’t apply any constraints on the implementation of your domain model. You
can create a model using regular C# objects and implement persistence using any of the databases, object-
relational mapping frameworks, or other data tools supported by .NET.

UNDERSTANDING SINGLE-PAGE APPLICATIONS

the history of web application development has tended to treat browsers as a simple display device
for rendering htML and responding to mouse clicks. this is known as the round-trip style of web
application. each time the user clicks a link, an http request is sent to the asp.net Core MVC
application, where a controller selects a view that is rendered by razor and sent back to the browser so
that a new htML page can be displayed to the user. all the logic, data, and state resides in the asp.net

Figure 3-1. The interactions in an MVC application

http://dx.doi.org/10.1007/978-1-4842-3150-0_5

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

56

Core MVC server, which simplifies development and means you don’t have to pay much attention to the
browser, other than ensuring that it can handle the htML features you include in your razor views.

By contrast, single-page applications incorporate the browser into the application platform. the server
is responsible for managing the application’s data, while javascript code running the browser requests
that data, displays it to the user, and responds to user interaction. in a single-page application, the
responsibilities for the model, view, and controller are shared between the browser and the server.
rather than send complete htML pages to the browser, the asp.net Core MVC part of the application
provides access to the application’s data, which is queried and displayed by a javascript framework
such as angular or react.

single-page applications can be more responsive than round-trip applications, but they are more
complex to create and require both C# and javascript skills for effective development, the difficulty of
which should not be underestimated. in Chapter 20, i demonstrate how asp.net Core MVC can be used
to provide data in this kind of application, but i don’t demonstrate single-page application development,
which is a topic in its own right. My preferred javascript framework is angular, which i have written
about in Pro Angular. if you want to use angular with asp.net Core MVC, then see my book Essential
Angular for ASP.NET Core MVC.

Comparing MVC to Other Patterns
MVC is not the only software architecture pattern, of course. There are many others, and some of them are,
or at least have been, extremely popular. You can learn a lot about MVC by looking at the alternatives. In
the following sections, I briefly describe different approaches to structuring an application and contrast
them with MVC. Some of the patterns are close variations on the MVC theme, whereas others are entirely
different.

I am not suggesting that MVC is the perfect pattern for all situations. I am a proponent of picking the
best approach to solve the problem at hand. As you will see, there are situations where some competing
patterns are as useful as or better than MVC. I encourage you to make an informed and deliberate choice
when selecting a pattern. The fact that you are reading this book suggests that you already have a certain
commitment to the MVC pattern, but it is always helpful to maintain the widest possible perspective.

Understanding the Smart UI Pattern
One of the most common design patterns is known as the smart user interface (smart UI). Most programmers
have created a smart UI application at some point in their careers—I certainly have. If you have used
Windows Forms or ASP.NET Web Forms, you have too.

To build a smart UI application, developers construct a user interface, often by dragging a set of
components or controls onto a design surface or canvas. The controls report interactions with the user by
emitting events for button presses, keystrokes, mouse movements, and so on. The developer adds code to
respond to these events in a series of event handlers; these are small blocks of code that are called when
a specific event on a specific component is emitted. This creates a monolithic application, as shown
in Figure 3-2. The code that handles the user interface and the business is all mixed together with no
separation of concerns at all. The code that defines the acceptable values for data input and that queries for
data or modifies a user account ends up in little pieces, coupled together by the order in which events are
expected.

http://dx.doi.org/10.1007/978-1-4842-3150-0_20

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

57

Smart UIs are ideal for simple projects because you can get some good results quickly (by comparison
to MVC development, which, as you’ll see in Chapter 8, requires an initial investment of time before
delivering results). Smart UIs are also suited to user interface prototyping. These design surface tools can be
really good, and if you are sitting with a customer and want to capture the requirements for the look and flow
of the interface, a smart UI tool can be a quick and responsive way to generate and test different ideas.

The biggest drawback is that smart UIs are difficult to maintain and extend. Mixing the domain model
and business logic code in with the user interface code leads to duplication, where the same fragment of
business logic is copied and pasted to support a newly added component. Finding all the duplicate parts and
applying a fix can be difficult. It can be almost impossible to add a new feature without breaking an existing
one. Testing a smart UI application can also be difficult. The only way is to simulate user interactions, which
is far from ideal and a difficult basis from which to provide full test coverage.

In the world of MVC, the smart UI is often referred to as an anti-pattern: something that should be
avoided at all costs. This antipathy arises, at least in part, because people come to MVC looking for an
alternative after spending part of their careers trying to develop and maintain smart UI applications that
grew out of control.

That said, it is a mistake to reject the smart UI pattern out of hand. Not everything is rotten in the smart
UI pattern, and there are positive aspects to this approach. Smart UI applications are quick and easy to
develop. The component and design tool producers have put a lot of effort into making the development
experience a pleasant one, and even the most inexperienced programmer can produce something
professional-looking and reasonably functional in just a few hours.

The biggest weakness of smart UI applications—maintainability—doesn’t arise in small development
efforts. If you are producing a simple tool for a small audience, a smart UI application can be a good
solution. The additional complexity of an MVC application simply isn’t warranted.

Understanding the Model-View Architecture
The area in which maintenance problems tend to arise in a smart UI application is in the business logic,
which ends up so diffused across the application that making changes or adding features becomes a fraught
process. An improvement in this area is offered by the model-view architecture, which pulls out the business
logic into a separate domain model. In doing this, the data, processes, and rules are all concentrated in one
part of the application, as shown in Figure 3-3.

Figure 3-2. The smart UI pattern

http://dx.doi.org/10.1007/978-1-4842-3150-0_8

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

58

The model-view architecture can be an improvement over the monolithic smart UI pattern—it is much
easier to maintain, for example—but two problems arise. The first is that since the UI and the domain model
are closely integrated, it can be difficult to perform unit testing on either. The second problem arises from
practice, rather than the definition of the pattern. The model typically contains a mass of data access code—
this need not be the case, but it usually is—and this means that the data model does not contain just the
business data, operations, and rules.

Understanding Classic Three-Tier Architecture
To address the problems of the model-view architecture, the three-tier or three-layer pattern separates the
persistence code from the domain model and places it in a new component called the data access layer (DAL).
This is shown in Figure 3-4.

The three-tier architecture is the most widely used pattern for business applications. It has no
constraints on how the UI is implemented and provides good separation of concerns without being too
complicated. And, with some care, the DAL can be created so that unit testing is relatively easy. You can see
the obvious similarities between a classic three-tier application and the MVC pattern. The difference is that
when the UI layer is directly coupled to a click-and-event GUI framework (such as Windows Forms or
ASP.NET Web Forms), it becomes almost impossible to perform automated unit tests. And because the UI
part of a three-tier application can be complex, there’s a lot of code that can’t be rigorously tested.

In the worst scenario, the three-tier pattern’s lack of enforced discipline in the UI tier means that many
such applications end up as thinly disguised smart UI applications, with no real separation of concerns. This
gives the worst possible outcome: an untestable, unmaintainable application that is excessively complex.

Figure 3-3. The model-view pattern

Figure 3-4. The three-tier pattern

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

59

Understanding Variations on MVC
I have already described the core design principles of MVC applications, especially as they apply to the ASP.
NET Core MVC. Others interpret aspects of the pattern differently and have added to, adjusted, or otherwise
adapted MVC to suit the scope and subject of their projects. In the following sections, I provide a brief
overview of the two most prevalent variations on the MVC theme. Understanding these variations is not
essential to working with ASP.NET Core MVC, and I have included this information just for completeness
because you will hear the terms used in most discussions of software patterns.

Understanding the Model-View-Presenter Pattern
Model-view-presenter (MVP) is a variation on MVC that is designed to fit more easily with stateful GUI
platforms such as Windows Forms or ASP.NET Web Forms. This is a worthwhile attempt to get the best
aspects of the smart UI pattern without the problems it usually brings.

In this pattern, the presenter has the same responsibilities as an MVC controller, but it also takes a more
direct relationship to a stateful view, directly managing the values displayed in the UI components according
to the user’s inputs and actions. There are two implementations of this pattern.

•	 The passive view implementation, in which the view contains no logic. The view is a
container for UI controls that are directly manipulated by the presenter.

•	 The supervising controller implementation, in which the view may be responsible
for some elements of presentation logic, such as data binding, and has been given a
reference to a data source from the domain models.

The difference between these two approaches relates to how intelligent the view is. Either way, the
presenter is decoupled from the GUI framework, which makes the presenter logic simpler and suitable for
unit testing.

Understanding the Model-View-View Model Pattern
The model-view-view model (MVVM) pattern is a recent variation on MVC. It originated from Microsoft and
is used in the Windows Presentation Foundation (WPF). In the MVVM pattern, models and views have the
same roles as they do in MVC. The difference is the MVVM concept of a view model, which is an abstract
representation of a user interface. Typically the view model is a C# class that exposes both properties for
the data to be displayed in the UI and operations on the data that can be invoked from the UI. Unlike an
MVC controller, an MVVM view model has no notion that a view (or any specific UI technology) exists. An
MVVM view uses the WPF binding feature to bidirectionally associate properties exposed by controls in the
view (items in a drop-down menu or the effect of pressing a button) with the properties exposed by the view
model.

 ■ Tip the MVC pattern also uses the term view model but refers to a simple model class that is used only to
pass data from a controller to a view, as opposed to domain models, which are sophisticated representations of
data, operations, and rules.

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

60

Understanding ASP.NET Core MVC Projects
When you create a new ASP.NET Core MVC project, Visual Studio gives you some choices about the
initial content that you want in the project. The idea is to ease the learning process for new developers
and apply some time-saving best practices for common features and tasks. I am not a fan of this kind
of approach to cookie-cutter projects or code. The intent is good, but the execution is underwhelming.
One of the characteristics I like most about ASP.NET Core and MVC is just how much flexibility I have in
tailoring the platform to suit my development style. The projects, classes, and views that Visual Studio
creates and populates make me feel constrained to work in someone else’s style. I also find the content and
configuration too generic and too bland to be useful. Microsoft can’t possibly know what kind of application
is needed and so it covers all the bases, but in such a generalized way that I end up just ripping out the
default content anyway.

My advice (given to anyone who makes the mistake of asking) is to start with an empty project and add
the folders, files, and packages that you need. Not only will you learn more about the way that MVC works,
but you will have complete control over what your application contains.

But my preferences should not color your development experience. You may find the templates more
useful than I do, especially if you are new to ASP.NET development and you have not yet developed a
development style that suits you. You may also find the project templates a useful resource and a source
of ideas, although you should be cautious about adding any functionality to an application before you
completely understand how it works.

Creating the Project
When you first create a new ASP.NET Core project, you will be presented with a range of starting points, as
shown in Figure 3-5.

Figure 3-5. The ASP.NET Core project templates

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

61

The Empty project template contains the plumbing for ASP.NET Core but doesn’t include the libraries
or configuration required for an MVC application. The Web API project template includes ASP.NET Core and
MVC, with a sample application that demonstrates how to receive and process data requests from clients,
using an API controller, which I describe in Chapter 20.

The Web Application (Model-View-Controller) project template includes ASP.NET Core and MVC, with
a sample application that demonstrates how to generate HTML content. The Web API and Web Application
(Model-View-Controller) templates can be configured with different schemes for authenticating users and
authorizing their access to the application.

The other templates provide initial content suitable for working with single-page application
frameworks (Angular and React) and with Razor Pages (which allows code and markup to be mixed in a file,
merging the roles of controllers and views, and which trades off some of the benefits of the MVC model for
simplicity).

The project templates can give the impression that you need to follow a specific path to create a certain
kind of ASP.NET Core application, but that’s not the case. The templates are just different starting points into
the same functionality, and you can add whatever functionality you need to projects created with any of the
templates. For example, I explain how to deal with HTTP data requests in Chapter 20 and authentication and
authorization in Chapters 28, 29, and 30, all of which I do by starting with the Empty project template.

The real difference between the project templates is the initial set of libraries, configuration files, code,
and content that Visual Studio adds when it creates the project. There are a lot of differences between the
simplest template (Empty) and the most complex (Web Application (Model-View-Controller)), as you can
see in Figure 3-6, which shows the Solution Explorer after a project has been created with each one. For the
Web Application (Model-View-Controller) template, I had to focus the Solution Explorer on different folders
because a single listing was too long for the printed page.

Figure 3-6. The default content added to a project by the Empty and Web Application (MVC) templates

http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_29
http://dx.doi.org/10.1007/978-1-4842-3150-0_30

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

62

The extra files that the Web Application (Model-View-Controller) template adds to the project look
daunting, but many of them are just placeholders or example implementations of common features. Some
of the other files set up MVC or configure ASP.NET Core. Others are client-side libraries, which you will
incorporate into the HTML generated by an application. The list of files may seem overwhelming now, but
you’ll understand what everything does by the time you finish this book.

Regardless of the template you use to create a project, some common folders and files will appear.
Some of the items in a project have special roles that are hard-coded into ASP.NET Core or MVC or one of
the tools that Visual Studio provides support for. Others are subject to naming conventions that are used in
most ASP.NET Core or MVC projects. In Table 3-1, I have described the important files and folders that you
will encounter in an ASP.NET Core MVC project, some of which are not present in the project by default but
which I introduce in later chapters.

Table 3-1. Summary of MVC Project Items

Folder or File Description

/Areas Areas are a way of partitioning a large application into smaller pieces.
I describe areas in Chapter 16.

/Dependencies The Dependencies item provides details of all the packages a project
relies on. I describe the package managers that Visual Studio uses in
Chapter 6.

/Components This is where view component classes, which are used to display self-
contained features such as shopping carts, are defined. I describe view
components in Chapter 22.

/Controllers This is where you put your controller classes. This is a convention. You
can put your controller classes anywhere you like because they are all
compiled into the same assembly. I describe controllers in detail in
Chapter 17.

/Data This is where database context classes are defined, although I prefer
to ignore this convention and define them in the Models folder, as
demonstrated in Chapter 8.

/Data/Migrations This is where Entity Framework Core migrations are stored so
that databases can be prepared to store the application data. I use
migrations in Chapters 8, 9, 10, and 11 as part of the SportsStore
project.

/Models This is where you put your view model and domain model classes.
This is a convention. You can define your model classes anywhere in
the project or in a separate project.

/Views This directory holds views and partial views, usually grouped together
in folders named after the controller with which they are associated.
I describe views in detail in Chapter 21.

/Views/Shared This directory holds layouts and views that are not specific to a single
controller. I describe views in detail in Chapter 21.

/Views/_ViewImports.cshtml This file is used to specify the namespaces that will be included in
Razor view files, as described in Chapter 5. It is also used to set up tag
helpers, as described in Chapter 23.

(continued)

http://dx.doi.org/10.1007/978-1-4842-3150-0_16
http://dx.doi.org/10.1007/978-1-4842-3150-0_6
http://dx.doi.org/10.1007/978-1-4842-3150-0_22
http://dx.doi.org/10.1007/978-1-4842-3150-0_17
http://dx.doi.org/10.1007/978-1-4842-3150-0_8
http://dx.doi.org/10.1007/978-1-4842-3150-0_8
http://dx.doi.org/10.1007/978-1-4842-3150-0_9
http://dx.doi.org/10.1007/978-1-4842-3150-0_10
http://dx.doi.org/10.1007/978-1-4842-3150-0_21
http://dx.doi.org/10.1007/978-1-4842-3150-0_21
http://dx.doi.org/10.1007/978-1-4842-3150-0_5
http://dx.doi.org/10.1007/978-1-4842-3150-0_23

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

63

Understanding MVC Conventions
There are two kinds of conventions in an MVC project. The first kind is just suggestions as to how you
might like to structure your project. For example, it is conventional to put the third-party JavaScript and
CSS packages you rely on in the wwwroot/lib folder. This is where other MVC developers would expect to
find them and where the package manager will install them. But you are free to rename the lib folder or
remove it entirely and put your packages somewhere else. That would not prevent MVC from running your
application as long as the script and link elements in your views refer to the location you settle on.

,The other kind of convention arises from the principle of convention over configuration, which was one
of the main selling points that made Ruby on Rails so popular. Convention over configuration means that
you don’t need to explicitly configure associations between controllers and their views, for example. You
just follow a certain naming convention for your files, and everything just works. There is less flexibility in
changing your project structure when dealing with this kind of convention. The following sections explain
the conventions that are used in place of configuration.

 ■ Tip all of the conventions can be changed by replacing the standard MVC components with your own
implementations. i describe different ways of doing this throughout the book to help explain how MVC
applications work, but these are the conventions you will be dealing with in most projects.

Table 3-1. (continued)

Folder or File Description

/Views/_ViewStart.cshtml This file is used to specify a default layout for the Razor view engine, as
described in Chapter 5.

/appsettings.json This file contains configuration settings that can be tailored for different
environments, such as development, testing, and production. The most
common uses for this file are to define database server connection
strings and logging/debug settings, which I describe in Chapter 14.

/bower.json This file contains the list of packages managed by the Bower package
manager, as described in Chapter 6.

/<project>.csproj This file contains the configuration for the project, including the NuGet
packages that the application requires, as described in Chapters 6
and 14. This file is hidden and can be edited only by right-clicking the
project item in the Solution Explorer window and selecting the Edit
<project>.csproj menu item.

/Program.cs This class configures the hosting platform for the application, as
described in Chapter 14.

/Startup.cs This class configures the application, as described in Chapter 14.

/wwwroot This is where you put static content such as CSS files and images. It
is also where the Bower package manager installs JavaScript and CSS
packages, as described in Chapter 6.

http://dx.doi.org/10.1007/978-1-4842-3150-0_5
http://dx.doi.org/10.1007/978-1-4842-3150-0_14
http://dx.doi.org/10.1007/978-1-4842-3150-0_6
http://dx.doi.org/10.1007/978-1-4842-3150-0_6
http://dx.doi.org/10.1007/978-1-4842-3150-0_14
http://dx.doi.org/10.1007/978-1-4842-3150-0_14
http://dx.doi.org/10.1007/978-1-4842-3150-0_14
http://dx.doi.org/10.1007/978-1-4842-3150-0_6

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

64

Following Conventions for Controller Classes
Controller classes have names that end with Controller, such as ProductController, AdminController,
and HomeController. When referencing a controller from elsewhere in the project, such as when using an
HTML helper method, you specify the first part of the name (such as Product), and MVC automatically
appends Controller to the name and starts looking for the controller class.

 ■ Tip You can change this by creating a model convention, which i describe in Chapter 31.

Following Conventions for Views
Views go into the folder named /Views/Controllername. For example, a view associated with the
ProductController class would go in the /Views/Product folder.

 ■ Tip notice that i omit the Controller part of the class from the Views folder: /Views/Product, not
/Views/ProductController. this may seem counterintuitive at first, but it quickly becomes second nature.

MVC expects that the default view for an action method should be named after that method. For
example, the default view associated with an action method called List should be called List.cshtml.
Thus, for the List action method in the ProductController class, the default view is expected to be /Views/
Product/List.cshtml. The default view is used when you return the result of calling the View method in an
action method, like this:

...
return View();
...

You can specify a different view by name, like this:

...
return View("MyOtherView");
...

Notice that I do not include the file name extension or the path to the view. When looking for a view,
MVC looks in the folder named after the controller and then in the /Views/Shared folder. This means that I
can put views that will be used by more than one controller in the /Views/Shared folder and MVC will find
them.

http://dx.doi.org/10.1007/978-1-4842-3150-0_31

Chapter 3 ■ the MVC pattern, projeCts, and ConVentions

65

Following Conventions for Layouts
The naming convention for layouts is to prefix the file with an underscore (_) character, and layout files
are placed in the /Views/Shared folder. This layout is applied to all views by default through the /Views/_
ViewStart.cshtml file. If you do not want the default layout applied to views, you can change the settings in
_ViewStart.cshtml (or delete the file entirely) to specify another layout in the view, like this:

@{
 Layout = "~/_MyLayout.cshtml";
}

Or you can disable any layout for a given view, like this:

@{
 Layout = null;
}

Summary
In this chapter, I introduced you to the MVC architectural pattern and compared it to some other patterns
you may have seen or heard of before. I discussed the significance of the domain model and introduced
dependency injection, which allows you to decouple components to enforce a strict separation between
the parts of an application. In the next chapter, I describe the essential C# language features that are used in
MVC web application development.

67© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_4

CHAPTER 4

Essential C# Features

In this chapter, I describe C# features used in web application development that are not widely understood
or that often cause confusion. This is not a book about C#, however, and so I provide only a brief example for
each feature so that you can follow the examples in the rest of the book and take advantage of these features
in your own projects. Table 4-1 summarizes this chapter.

Table 4-1. Chapter Summary

Problem Solution Listing

Avoid accessing properties on null references Use the null conditional operator 5–8

Simplify C# properties Use automatically implemented
properties

9–11

Simplify string composition Use string interpolation 12

Create an object and set its properties in a single
step

Use an object or collection
initializer

13–16

Test an object’s type or characteristics Use pattern matching 17–18

Add functionality to a class that cannot be modified Use an extension method 19–26

Simplify the use of delegates and single-statement
methods

Use a lambda expression 27–34

Use implicit typing Use the var keyword 35

Create objects without defining a type Use an anonymous type 36–37

Simplify the use of asynchronous methods Use the async and await keywords 38–41

Get the name of a class method or property without
defining a static string

Use a nameof expression 42–43

https://doi.org/10.1007/978-1-4842-3150-0_4

Chapter 4 ■ essential C# Features

68

Preparing the Example Project
For this chapter, I created a new Visual Studio project called LanguageFeatures using the ASP.NET Core Web
Application (.NET Core) template, as shown in Figure 4-1.

When presented with the different project configurations, I selected the Empty template, as shown in
Figure 4-2. I selected .NET Core and ASP.NET Core 2.0 from the lists at the top of the dialog window, ensured
that Authentication option was set to No Authentication and that the Enable Docker Support option was
unchecked before clicking the OK button to create the project.

Figure 4-1. Selecting the project type

Chapter 4 ■ essential C# Features

69

Enabling ASP.NET Core MVC
The Empty project template creates a project that contains a minimal ASP.NET Core configuration without
any MVC support. This means that the placeholder content that is added by the Web Application (Model-
View-Controller) template isn’t present, but it also means that some extra steps are required to enable MVC
so that features such as controllers and views work. In this section, I make the changes required to add
enable an MVC setup in the project, but I won’t get into the details of what each step does for the moment.

Figure 4-2. Selecting the project template

Chapter 4 ■ essential C# Features

70

To enable the MVC framework, make the changes shown in Listing 4-1 to the Startup class.

Listing 4-1. Enabling MVC in the Startup.cs File in the LanguageFeatures Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace LanguageFeatures {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 if (env.IsDevelopment()) {
 app.UseDeveloperExceptionPage();
 }

 //app.Run(async (context) => {
 // await context.Response.WriteAsync("Hello World!");
 //});

 app.UseMvcWithDefaultRoute();
 }
 }
}

I explain how to configure ASP.NET Core MVC applications in Chapter 14, but the two statements
added in Listing 4-1 provide a basic MVC setup using the default configuration and conventions.

Creating the MVC Application Components
Now that MVC is set up, I can add the MVC application components that I will use to demonstrate important
C# language features.

Creating the Model
I started by creating a simple model class so that I can have some data to work with. I added a folder called
Models and created a class file called Product.cs within it, which I used to define the class shown in
Listing 4-2.

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

Chapter 4 ■ essential C# Features

71

Listing 4-2. The Contents of the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public string Name { get; set; }
 public decimal? Price { get; set; }

 public static Product[] GetProducts() {

 Product kayak = new Product {
 Name = "Kayak", Price = 275M
 };

 Product lifejacket = new Product {
 Name = "Lifejacket", Price = 48.95M
 };

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

The Products class defines Name and Price properties, and there is a static method called GetProducts
that returns a Products array. One of the elements contained in the array returned by the GetProducts
method is set to null, which I will use to demonstrate some useful language features later in the chapter.

Creating the Controller and View
For the examples in this chapter, I use a simple controller to demonstrate different language features.
I created a Controllers folder and added to it a class file called HomeController.cs, the contents of which
are shown in Listing 4-3. When using the default MVC configuration, the Home controller is where MVC will
send HTTP requests by default.

Listing 4-3. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 return View(new string[] { "C#", "Language", "Features" });
 }
 }
}

The Index action method tells MVC to render the default view and passes it an array of strings to be
included in the HTML sent to the client. To create the corresponding view, I added a Views/Home folder (by
creating a Views folder and then adding a Home folder within it) and added a view file called Index.cshtml,
the contents of which are shown in Listing 4-4.

Chapter 4 ■ essential C# Features

72

Listing 4-4. The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<string>
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Language Features</title>
</head>
<body>

 @foreach (string s in Model) {
 @s
 }

</body>
</html>

If you run the example application by selecting Start Debugging from the Debug menu, you will see the
output shown in Figure 4-3.

Since the output from all the examples in this chapter is text, I will show the messages displayed by the
browser like this:

C#
Language
Features

Figure 4-3. Running the example application

Chapter 4 ■ essential C# Features

73

Using the Null Conditional Operator
The null conditional operator allows for null values to be detected more elegantly. There can be a lot of
checking for nulls in MVC development as you work out whether a request contains a specific header or value
or whether the model contains a particular data item. Traditionally, dealing with nulls requires making an
explicit check, and this can become tedious and error-prone when both an object and its properties have to be
inspected. The null conditional operator makes this process simpler and more concise, as shown in Listing 4-5.

Listing 4-5. Detecting null Values in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 List<string> results = new List<string>();

 foreach (Product p in Product.GetProducts()) {
 string name = p?.Name;
 decimal? price = p?.Price;
 results.Add(string.Format("Name: {0}, Price: {1}", name, price));
 }

 return View(results);
 }
 }
}

The static GetProducts method defined by the Product class returns an array of objects that I inspect in
the controller’s Index action method in order to get a list of the Name and Price values. The problem is that
both the object in the array and the value of the properties could be null, which means I can’t just refer to
p.Name or p.Price within the foreach loop without causing a NullReferenceException. To avoid this, I used
the null conditional operator, like this:

...
string name = p?.Name;
decimal? price = p?.Price;
...

The null conditional operator is a single question mark (the ? character). If p is null, then name will be set to
null as well. If p is not null, then name will be set to the value of the Person.Name property. The Price property is
subject to the same test. Notice that the variable you assign to when using the null conditional operator must be
able to be assigned null, which is why the price variable is declared as a nullable decimal (decimal?).

Chapter 4 ■ essential C# Features

74

Chaining the Null Conditional Operator
The null conditional operator can be chained to navigate through a hierarchy of objects, which is where
it really becomes an effective tool for simplifying code and allowing safe navigation. In Listing 4-6, I have
added a property to the Product class that nests references, creating a more complex object hierarchy.

Listing 4-6. Adding a Property in the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public string Name { get; set; }
 public decimal? Price { get; set; }
 public Product Related { get; set; }

 public static Product[] GetProducts() {

 Product kayak = new Product {
 Name = "Kayak", Price = 275M
 };
 Product lifejacket = new Product {
 Name = "Lifejacket", Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

Each Product object has a Related property that can refer to another Product object. In the GetProducts
method, I set the Related property for the Product object that represents a kayak. Listing 4-7 shows how I can
chain the null conditional operator to navigate through the object properties without causing an exception.

Listing 4-7. Detecting Nested null Values in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 List<string> results = new List<string>();

 foreach (Product p in Product.GetProducts()) {
 string name = p?.Name;
 decimal? price = p?.Price;
 string relatedName = p?.Related?.Name;

Chapter 4 ■ essential C# Features

75

 results.Add(string.Format("Name: {0}, Price: {1}, Related: {2}",
 name, price, relatedName));
 }

 return View(results);
 }
 }
}

The null conditional operator can be applied to each part of a chain of properties, like this:

...
string relatedName = p?.Related?.Name;
...

The result is that the relatedName variable will be null when p is null or when p.Related is null.
Otherwise, the variable will be assigned the value of the p.Related.Name property. If you run the example,
you will see the following output in the browser window:

Name: Kayak, Price: 275, Related: Lifejacket
Name: Lifejacket, Price: 48.95, Related:
Name: , Price: , Related:

Combining the Conditional and Coalescing Operators
It can be useful to combine the null conditional operator (a single question mark) with the null coalescing
operator (two question marks) to set a fallback value to present null values being used in the application, as
shown in Listing 4-8.

Listing 4-8. Combining Null Operators in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 List<string> results = new List<string>();

 foreach (Product p in Product.GetProducts()) {
 string name = p?.Name ?? "<No Name>";
 decimal? price = p?.Price ?? 0;
 string relatedName = p?.Related?.Name ?? "<None>";
 results.Add(string.Format("Name: {0}, Price: {1}, Related: {2}",
 name, price, relatedName));
 }

Chapter 4 ■ essential C# Features

76

 return View(results);
 }
 }
}

The null conditional operator ensures that I don’t get a NullReferenceException when navigating
through the object properties, and the null coalescing operator ensures that I don’t include null values in
the results displayed in the browser. If you run the example, you will see the following results displayed in
the browser window:

Name: Kayak, Price: 275, Related: Lifejacket
Name: Lifejacket, Price: 48.95, Related: <None>
Name: <No Name>, Price: 0, Related: <None>

Using Automatically Implemented Properties
C# supports automatically implemented properties, and I used them when defining properties for the
Person class in the previous section, like this:

namespace LanguageFeatures.Models {
 public class Product {

 public string Name { get; set; }
 public decimal? Price { get; set; }
 public Product Related { get; set; }

 public static Product[] GetProducts() {

 Product kayak = new Product {
 Name = "Kayak", Price = 275M
 };
 Product lifejacket = new Product {
 Name = "Lifejacket", Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

This feature allows me to define properties without having to implement the get and set bodies. Using
the auto-implemented property feature means that defining a property like this:

...
public string Name { get; set; }
...
is equivalent to the following code:

Chapter 4 ■ essential C# Features

77

...
public string Name {
 get { return name; }
 set { name = value; }
}
...

This type of feature is known as syntactic sugar, which means that it makes C# more pleasant to work
with—in this case by eliminating redundant code that ends up being duplicated for every property—
without substantially altering the way the language behaves. The term sugar may seem pejorative, but
any enhancements that make code easier to write and maintain can be beneficial, especially in large and
complex projects.

Using Auto-Implemented Property Initializers
Automatically implemented properties have been supported since C# 3.0. The latest version of C# supports
initializers for automatically implemented properties, which allows an initial value to be set without having
to use the constructor, as shown in Listing 4-9.

Listing 4-9. Using an Auto-Implemented Property Initializer in the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public string Name { get; set; }
 public string Category { get; set; } = "Watersports";
 public decimal? Price { get; set; }
 public Product Related { get; set; }

 public static Product[] GetProducts() {
 Product kayak = new Product {
 Name = "Kayak",
 Category = "Water Craft",
 Price = 275M
 };
 Product lifejacket = new Product {
 Name = "Lifejacket", Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

Assigning a value to an auto-implemented property doesn’t prevent the setter from being used to
change the property later and just tidies up the code for simple types that ended up with a constructor that
contained a list of property assignments to provide default values. In the example, the initializer assigns a
value of Watersports to the Category property. The initial value can be changed, which I do when I create
the kayak object and specify a value of Water Craft instead.

Chapter 4 ■ essential C# Features

78

Creating Read-Only Automatically Implemented Properties
You can create a read-only property by using an initializer and omitting the set keyword from an auto-
implemented property that has an initializer, as shown in Listing 4-10.

Listing 4-10. Creating a Read-Only Property in the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public string Name { get; set; }
 public string Category { get; set; } = "Watersports";
 public decimal? Price { get; set; }
 public Product Related { get; set; }
 public bool InStock { get; } = true;

 public static Product[] GetProducts() {

 Product kayak = new Product {
 Name = "Kayak",
 Category = "Water Craft",
 Price = 275M
 };
 Product lifejacket = new Product {
 Name = "Lifejacket", Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

The InStock property is initialized to true and cannot be changed; however, the value can be assigned
to in the type’s constructor, as shown in Listing 4-11.

Listing 4-11. Assigning a Value to a Read-Only Property in the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public Product(bool stock = true) {
 InStock = stock;
 }

 public string Name { get; set; }
 public string Category { get; set; } = "Watersports";
 public decimal? Price { get; set; }
 public Product Related { get; set; }
 public bool InStock { get; }

Chapter 4 ■ essential C# Features

79

 public static Product[] GetProducts() {
 Product kayak = new Product {
 Name = "Kayak",
 Category = "Water Craft",
 Price = 275M
 };

 Product lifejacket = new Product(false) {
 Name = "Lifejacket",
 Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

The constructor allows the value for the read-only property to be specified as an argument and defaults
to true if no value is provided. The property value cannot be changed once set by the constructor.

Using String Interpolation
The string.Format method is the traditional C# tool for composing strings that contain data values. Here is
an example of this technique from the Home controller:

...
results.Add(string.Format("Name: {0}, Price: {1}, Related: {2}",
 name, price, relatedName));
...

C# also supports a different approach, known as string interpolation, that avoids the need to ensure that
the {0} references in the string template match up with the variables specified as arguments. Instead, string
interpolation uses the variable names directly, as shown in Listing 4-12.

Listing 4-12. Using String Interpolation in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 List<string> results = new List<string>();

 foreach (Product p in Product.GetProducts()) {
 string name = p?.Name ?? "<No Name>";

Chapter 4 ■ essential C# Features

80

 decimal? price = p?.Price ?? 0;
 string relatedName = p?.Related?.Name ?? "<None>";
 results.Add($"Name: {name}, Price: {price}, Related: {relatedName}");
 }

 return View(results);
 }
 }
}

Interpolated strings are prefixed with the $ character and contain holes, which are references to values
contained within the { and } characters. When the string is evaluated, the holes are filled in with the current
values of the variables or constants that are specified.

Visual Studio provides IntelliSense support for creating interpolated strings and offers a list of the
available members when the { character is typed; this helps to minimize typos, and the result is a string
format that is easier to understand.

 ■ Tip string interpolation supports all the format specifiers that are available with the string.Format
method. the format specifiers are included as part of the hole, so $"Price: {price:C2}" would format the
price value as a currency value with two decimal digits.

Using Object and Collection Initializers
When I create an object in the static GetProducts method of the Product class, I use an object initializer,
which allows me to create an object and specify its property values in a single step, like this:

...
Product kayak = new Product {
 Name = "Kayak",
 Category = "Water Craft",
 Price = 275M
};
...

This is another syntactic sugar feature that makes C# easier to use. Without this feature, I would have to
call the Product constructor and then use the newly created object to set each of the properties, like this:

...
Product kayak = new Product();
kayak.Name = "Kayak";
kayak.Category = "Water Craft";
kayak.Price = 275M;
...

Chapter 4 ■ essential C# Features

81

A related feature is the collection initializer, which allows the creation of a collection and its contents to
be specified in a single step. Without an initializer, creating a string array, for example, requires the size of
the array and the array elements to be specified separately, as shown in Listing 4-13.

Listing 4-13. Initializing an Object in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 string[] names = new string[3];
 names[0] = "Bob";
 names[1] = "Joe";
 names[2] = "Alice";
 return View("Index", names);
 }
 }
}

Using a collection initializer allows the contents of the array to be specified as part of the construction,
which implicitly provides the compiler with the size of the array, as shown in Listing 4-14.

Listing 4-14. Using a Collection Initializer in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 return View("Index", new string[] { "Bob", "Joe", "Alice" });
 }
 }
}

The array elements are specified between the { and } characters, which allows for a more concise
definition of the collection and makes it possible to define a collection inline within a method call. The code
in Listing 4-14 has the same effect as the code in Listing 4-13, and if you run the example application, you
will see the following output in the browser window:

Bob
Joe
Alice

Chapter 4 ■ essential C# Features

82

Using an Index Initializer
Recent versions of C# tidy up the way collections that use indexes, such as dictionaries, are initialized.
Listing 4-15 shows the Index action rewritten to define a collection using the traditional C# approach to
initializing a dictionary.

Listing 4-15. Initializing a Dictionary in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 Dictionary<string, Product> products = new Dictionary<string, Product> {
 { "Kayak", new Product { Name = "Kayak", Price = 275M } },
 { "Lifejacket", new Product{ Name = "Lifejacket", Price = 48.95M } }
 };
 return View("Index", products.Keys);
 }
 }
}

The syntax for initializing this type of collection relies too much on the { and } characters, especially
when the collection values are created using object initializers. The latest versions of C# support a more
natural approach to initializing indexed collections that is consistent with the way that values are retrieved
or modified once the collection has been initialized, as shown in Listing 4-16.

Listing 4-16. Using Collection Initializer Syntax in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 Dictionary<string, Product> products = new Dictionary<string, Product> {
 ["Kayak"] = new Product { Name = "Kayak", Price = 275M },
 ["Lifejacket"] = new Product { Name = "Lifejacket", Price = 48.95M }
 };

 return View("Index", products.Keys);
 }
 }
}

Chapter 4 ■ essential C# Features

83

The effect is the same—to create a dictionary whose keys are Kayak and Lifejacket and whose values
are Product objects—but the elements are created using the index notation that is used for other collection
operations. If you run the application, you will see the following results in the browser:

Kayak
Lifejacket

Pattern Matching
One of the most useful recent additions to C# is support for pattern matching, which can be used to test that
an object is of a specific type or has specific characteristics. This is another form is syntactic sugar, and it can
dramatically simplify complex blocks of conditional statements. The is keyword is used to perform a type
test, as demonstrated in Listing 4-17.

Listing 4-17. Performing a Type Test in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 object[] data = new object[] { 275M, 29.95M,
 "apple", "orange", 100, 10 };

 decimal total = 0;
 for (int i = 0; i < data.Length; i++) {
 if (data[i] is decimal d) {
 total += d;
 }
 }

 return View("Index", new string[] { $"Total: {total:C2}" });
 }
 }
}

The is keyword performs a type check, and if a value is of the specified type, it will assign the value to a
new variable, like this:

...
if (data[i] is decimal d) {
...

Chapter 4 ■ essential C# Features

84

This expression will evaluate as true if the value stored in data[i] is a decimal. The value of data[i]
will be assigned to the variable d, which allows it to be used in subsequent statements without needing to
perform any type conversions. The is keyword will only match the specified type, which means that only
two of the values in the data array will be processed (the other items in the array are string and int values).
If you run the application, you will see the following output in the browser window:

Total: $304.95

Pattern Matching in Switch Statements
Pattern matching can also be used in switch statements, which support the when keyword for restricting
when a value is matched by a case statement, as shown in Listing 4-18.

Listing 4-18. Pattern Matching in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 object[] data = new object[] { 275M, 29.95M,
 "apple", "orange", 100, 10 };
 decimal total = 0;
 for (int i = 0; i < data.Length; i++) {
 switch (data[i]) {
 case decimal decimalValue:
 total += decimalValue;
 break;
 case int intValue when intValue > 50:
 total += intValue;
 break;
 }
 }

 return View("Index", new string[] { $"Total: {total:C2}" });
 }
 }
}

To match any value of a specific type, use the type and variable name in the case statement, like this:

...
case decimal decimalValue:
...

Chapter 4 ■ essential C# Features

85

This case statement matches any decimal value and assigns it to a new variable called decimalValue.
To be more selective, the when keyword can be included, like this:

...
case int intValue when intValue > 50:
...

This case statement matches int values and assigns them to a variable called intValue, but only when
the value is greater than 50. If you run the application, you will see the following output in the browser
window:

Total: $404.95

Using Extension Methods
Extension methods are a convenient way of adding methods to classes that you do not own and cannot
modify directly. Listing 4-19 shows the definition of the ShoppingCart class, which I added to the Models
folder in a file called ShoppingCart.cs and which represents a collection of Product objects.

Listing 4-19. The Contents of the ShoppingCart.cs File in the Models Folder

using System.Collections.Generic;

namespace LanguageFeatures.Models {

 public class ShoppingCart {
 public IEnumerable<Product> Products { get; set; }
 }
}

This is a simple class that acts as a wrapper around a sequence of Product objects (I only need a basic
class for this example). Suppose I need to be able to determine the total value of the Product objects in the
ShoppingCart class but I cannot modify the class itself, perhaps because it comes from a third party and I do
not have the source code. I can use an extension method to add the functionality I need. Listing 4-20 shows
the MyExtensionMethods class that I added to the Models folder in the MyExtensionMethods.cs file.

Listing 4-20. The Contents of the MyExtensionMethods.cs File in the Models Folder

namespace LanguageFeatures.Models {

 public static class MyExtensionMethods {

 public static decimal TotalPrices(this ShoppingCart cartParam) {
 decimal total = 0;
 foreach (Product prod in cartParam.Products) {
 total += prod?.Price ?? 0;
 }
 return total;
 }
 }
}

Chapter 4 ■ essential C# Features

86

The this keyword in front of the first parameter marks TotalPrices as an extension method. The first
parameter tells .NET which class the extension method can be applied to—ShoppingCart in this case. I can
refer to the instance of the ShoppingCart class that the extension method has been applied to by using the
cartParam parameter. My method enumerates the Product objects in ShoppingCart and returns the sum
of the Product.Price property values. Listing 4-21 shows how I apply the extension method in the Home
controller’s action method.

 ■ Note extension methods do not let you break through the access rules that classes define for methods,
fields, and properties. You can extend the functionality of a class by using an extension method but only using
the class members that you had access to anyway.

Listing 4-21. Applying an Extension Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 ShoppingCart cart

= new ShoppingCart { Products = Product.GetProducts() };
 decimal cartTotal = cart.TotalPrices();
 return View("Index", new string[] { $"Total: {cartTotal:C2}" });
 }
 }
}

The key statement is this one:

...
decimal cartTotal = cart.TotalPrices();
...

I call the TotalPrices method on a ShoppingCart object as though it were part of the ShoppingCart
class, even though it is an extension method defined by a different class altogether. .NET will find extension
classes if they are in the scope of the current class, meaning that they are part of the same namespace or in
a namespace that is the subject of a using statement. If you run the application, you will see the following
output in the browser window:

Total: $323.95

Applying Extension Methods to an Interface
I can also create extension methods that apply to an interface, which allows me to call the extension method
on all the classes that implement the interface. Listing 4-22 shows the ShoppingCart class updated to
implement the IEnumerable<Product> interface.

Chapter 4 ■ essential C# Features

87

Listing 4-22. Implementing an Interface in the ShoppingCart.cs File in the Models Folder

using System.Collections;
using System.Collections.Generic;

namespace LanguageFeatures.Models {

 public class ShoppingCart : IEnumerable<Product> {
 public IEnumerable<Product> Products { get; set; }

 public IEnumerator<Product> GetEnumerator() {
 return Products.GetEnumerator();
 }

 IEnumerator IEnumerable.GetEnumerator() {
 return GetEnumerator();
 }
 }
}

I can now update the extension method so that it deals with IEnumerable<Product>, as shown in
Listing 4-23.

Listing 4-23. Updating an Extension Method in the MyExtensionMethods.cs File in the Models Folder

using System.Collections.Generic;

namespace LanguageFeatures.Models {

 public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product> products) {
 decimal total = 0;
 foreach (Product prod in products) {
 total += prod?.Price ?? 0;
 }
 return total;
 }
 }
}

The first parameter type has changed to IEnumerable<Product>, which means that the foreach loop
in the method body works directly on Product objects. The change to using the interface means that I can
calculate the total value of the Product objects enumerated by any IEnumerable<Product>, which includes
instances of ShoppingCart but also arrays of Product objects, as shown in Listing 4-24.

Listing 4-24. Applying an Extension Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

Chapter 4 ■ essential C# Features

88

 public ViewResult Index() {

 ShoppingCart cart
 = new ShoppingCart { Products = Product.GetProducts() };

 Product[] productArray = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M}
 };

 decimal cartTotal = cart.TotalPrices();
 decimal arrayTotal = productArray.TotalPrices();

 return View("Index", new string[] {
 $"Cart Total: {cartTotal:C2}",
 $"Array Total: {arrayTotal:C2}" });
 }
 }
}

If you start the project, you will see the following results, which demonstrate that I get the same result
from the extension method, irrespective of how the Product objects are collected:

Cart Total: $323.95
Array Total: $323.95

Creating Filtering Extension Methods
The last thing I want to show you about extension methods is that they can be used to filter collections of
objects. An extension method that operates on an IEnumerable<T> and that also returns an IEnumerable<T>
can use the yield keyword to apply selection criteria to items in the source data to produce a reduced set of
results. Listing 4-25 demonstrates such a method, which I have added to the MyExtensionMethods class.

Listing 4-25. A Filtering Extension Method in the MyExtensionMethods.cs File in the Controllers Folder

using System.Collections.Generic;

namespace LanguageFeatures.Models {

 public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product> products) {
 decimal total = 0;
 foreach (Product prod in products) {
 total += prod?.Price ?? 0;
 }
 return total;
 }

Chapter 4 ■ essential C# Features

89

 public static IEnumerable<Product> FilterByPrice(
 this IEnumerable<Product> productEnum, decimal minimumPrice) {

 foreach (Product prod in productEnum) {
 if ((prod?.Price ?? 0) >= minimumPrice) {
 yield return prod;
 }
 }
 }
 }
}

This extension method, called FilterByPrice, takes an additional parameter that allows me to filter
products so that Product objects whose Price property matches or exceeds the parameter are returned in
the result. Listing 4-26 shows this method being used.

Listing 4-26. Using the Filtering Extension Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 Product[] productArray = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };

 decimal arrayTotal = productArray.FilterByPrice(20).TotalPrices();

 return View("Index", new string[] { $"Array Total: {arrayTotal:C2}" });
 }
 }
}

When I call the FilterByPrice method on the array of Product objects, only those that cost more than
$20 are received by the TotalPrices method and used to calculate the total. If you run the application, you
will see the following output in the browser window:

Total: $358.90

Chapter 4 ■ essential C# Features

90

Using Lambda Expressions
Lambda expressions are a feature that causes a lot of confusion, not least because the feature they simplify
is also confusing. To understand the problem that is being solved, consider the FilterByPrice extension
method that I defined in the previous section. This method is written so that it can filter Product objects by
price, which means that if I want to filter by name, I have to create a second method, like the one shown in
Listing 4-27.

Listing 4-27. Adding a Filter Method in the MyExtensionMethods.cs File in the Models Folder

using System.Collections.Generic;

namespace LanguageFeatures.Models {

 public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product> products) {
 decimal total = 0;
 foreach (Product prod in products) {
 total += prod?.Price ?? 0;
 }
 return total;
 }

 public static IEnumerable<Product> FilterByPrice(
 this IEnumerable<Product> productEnum, decimal minimumPrice) {

 foreach (Product prod in productEnum) {
 if ((prod?.Price ?? 0) >= minimumPrice) {
 yield return prod;
 }
 }
 }

 public static IEnumerable<Product> FilterByName(
 this IEnumerable<Product> productEnum, char firstLetter) {

 foreach (Product prod in productEnum) {
 if (prod?.Name?[0] == firstLetter) {
 yield return prod;
 }
 }
 }
 }
}

Chapter 4 ■ essential C# Features

91

Listing 4-28 shows the use of both filter methods applied in the controller to create two different totals.

Listing 4-28. Using Two Filter Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 Product[] productArray = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };

 decimal priceFilterTotal = productArray.FilterByPrice(20).TotalPrices();
 decimal nameFilterTotal = productArray.FilterByName('S').TotalPrices();

 return View("Index", new string[] {
 $"Price Total: {priceFilterTotal:C2}",
 $"Name Total: {nameFilterTotal:C2}" });
 }
 }
}

The first filter selects all of the products with a price of $20 or more, and the second filter selects
products whose name starts with the letter S. You will see the following output in the browser window if you
run the example application:

Price Total: $358.90
Name Total: $19.50

Defining Functions
I can repeat this process indefinitely to create filter methods for every property and every combination of
properties that I am interested in. A more elegant approach is to separate out the code that processes the
enumeration from the selection criteria. C# makes this easy by allowing functions to be passed around as
objects. Listing 4-29 shows a single extension method that filters an enumeration of Product objects but that
delegates the decision about which ones are included in the results to a separate function.

Chapter 4 ■ essential C# Features

92

Listing 4-29. Creating a General Filter Method in the MyExtensionMethods.cs File in the Models Folder

using System.Collections.Generic;
using System;

namespace LanguageFeatures.Models {

 public static class MyExtensionMethods {

 public static decimal TotalPrices(this IEnumerable<Product> products) {
 decimal total = 0;
 foreach (Product prod in products) {
 total += prod?.Price ?? 0;
 }
 return total;
 }

 public static IEnumerable<Product> Filter(
 this IEnumerable<Product> productEnum,
 Func<Product, bool> selector) {

 foreach (Product prod in productEnum) {
 if (selector(prod)) {
 yield return prod;
 }
 }
 }
 }
}

The second argument to the Filter method is a function that accepts a Product object and that returns
a bool value. The Filter method calls the function for each Product object and includes it in the result if the
function returns true. To use the Filter method, I can specify a method or create a stand-alone function, as
shown in Listing 4-30.

Listing 4-30. Using a Function to Filter Objects in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 bool FilterByPrice(Product p) {
 return (p?.Price ?? 0) >= 20;
 }

 public ViewResult Index() {

 Product[] productArray = {

Chapter 4 ■ essential C# Features

93

 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };

 Func<Product, bool> nameFilter = delegate (Product prod) {
 return prod?.Name?[0] == 'S';
 };

 decimal priceFilterTotal = productArray
 .Filter(FilterByPrice)
 .TotalPrices();
 decimal nameFilterTotal = productArray
 .Filter(nameFilter)
 .TotalPrices();

 return View("Index", new string[] {
 $"Price Total: {priceFilterTotal:C2}",
 $"Name Total: {nameFilterTotal:C2}" });
 }
 }
}

Neither approach is ideal. Defining methods like FilterByPrice clutters up a class definition. Creating
a Func<Product, bool> object avoids this problem but uses an awkward syntax that is hard to read and hard
to maintain. It is this issue that lambda expressions address by allowing functions to be defined in a more
elegant and expressive way, as shown in Listing 4-31.

Listing 4-31. Using Lambda Expression in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 Product[] productArray = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };

 decimal priceFilterTotal = productArray
 .Filter(p => (p?.Price ?? 0) >= 20)
 .TotalPrices();
 decimal nameFilterTotal = productArray

Chapter 4 ■ essential C# Features

94

 .Filter(p => p?.Name?[0] == 'S')
 .TotalPrices();

 return View("Index", new string[] {
 $"Price Total: {priceFilterTotal:C2}",
 $"Name Total: {nameFilterTotal:C2}" });
 }
 }
}

The lambda expressions are shown in bold. The parameters are expressed without specifying a type,
which will be inferred automatically. The => characters are read aloud as “goes to” and link the parameter
to the result of the lambda expression. In my examples, a Product parameter called p goes to a bool result,
which will be true if the Price property is equal or greater than 20 in the first expression or if the Name
property starts with S in the second expression. This code works in the same way as the separate method and
the function delegate but is more concise and is—for most people—easier to read.

i don’t need to express the logic of my delegate in the lambda expression. i can as easily call a method,
like this:

prod => EvaluateProduct(prod)

if i need a lambda expression for a delegate that has multiple parameters, i must wrap the parameters
in parentheses, like this:

(prod, count) => prod.Price > 20 && count > 0

Finally, if i need logic in the lambda expression that requires more than one statement, i can do so by
using braces ({}) and finishing with a return statement, like this:

(prod, count) => {
 // ...multiple code statements...
 return result;
}

You do not need to use lambda expressions in your code, but they are a neat way of expressing complex
functions simply and in a manner that is readable and clear. i like them a lot, and you will see them used
liberally throughout this book.

Using Lambda Expression Methods and Properties
Lambda expressions can be used to implement constructors, methods, and properties. In MVC
development, especially when writing controllers, you will often end up with methods that contain a single
statement that selects the data to display and the view to render. In Listing 4-32, I have rewritten the Index
action method so that it follows this common pattern.

OTHER FORMS FOR LAMBDA EXPRESSIONS

Chapter 4 ■ essential C# Features

95

Listing 4-32. Creating a Common Action Pattern in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 return View(Product.GetProducts().Select(p => p?.Name));
 }
 }
}

The action method gets a collection of Product objects from the static Product.GetProducts method
and uses LINQ to project the values of the Name properties, which are then used as the view model for the
default view. If you run the application, you will see the following output displayed in the browser window:

Kayak
Lifejacket

There will be an empty list item in the browser window as well because the GetProducts method
includes a null reference in its results, but that doesn’t matter for this section of the chapter.

When a constructor or method body consists of a single statement, it can be rewritten as a lambda
expression, as shown in Listing 4-33.

Listing 4-33. An Action Method Expressed as a Lambda Expression in the HomeController.cs File

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() =>
View(Product.GetProducts().Select(p => p?.Name));

 }
}

Lambda expressions for methods omit the return keyword and use => (goes to) to associate the method
signature (including its arguments) with its implementation. The Index method shown in Listing 4-33 works
in the same way as the one shown in Listing 4-32 but is expressed more concisely. The same basic approach
can also be used to define properties. Listing 4-34 shows the addition of a property that uses a lambda
express to the Product class.

Chapter 4 ■ essential C# Features

96

Listing 4-34. Expressing a Property as a Lambda Expression in the Product.cs File in the Models Folder

namespace LanguageFeatures.Models {
 public class Product {

 public Product(bool stock = true) {
 InStock = stock;
 }

 public string Name { get; set; }
 public string Category { get; set; } = "Watersports";
 public decimal? Price { get; set; }
 public Product Related { get; set; }
 public bool InStock { get; }
 public bool NameBeginsWithS => Name?[0] == 'S';

 public static Product[] GetProducts() {

 Product kayak = new Product {
 Name = "Kayak",
 Category = "Water Craft",
 Price = 275M
 };

 Product lifejacket = new Product(false) {
 Name = "Lifejacket",
 Price = 48.95M
 };

 kayak.Related = lifejacket;

 return new Product[] { kayak, lifejacket, null };
 }
 }
}

Using Type Inference and Anonymous Types
The var keyword allows you to define a local variable without explicitly specifying the variable type, as
demonstrated by Listing 4-35. This is called type inference or implicit typing.

Listing 4-35. Using Type Inference in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

Chapter 4 ■ essential C# Features

97

 public ViewResult Index() {
 var names = new [] { "Kayak", "Lifejacket", "Soccer ball" };
 return View(names);
 }
 }
}

It is not that the names variable does not have a type; instead, I am asking the compiler to infer the type
from the code. The compiler examines the array declaration and works out that it is a string array. Running
the example produces the following output:

Kayak
Lifejacket
Soccer ball

Using Anonymous Types
By combining object initializers and type inference, I can create simple view model objects that are useful
for transferring data between a controller and a view without having to define a class or struct, as shown in
Listing 4-36.

Listing 4-36. Creating an Anonymous Type in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 var products = new [] {
 new { Name = "Kayak", Price = 275M },
 new { Name = "Lifejacket", Price = 48.95M },
 new { Name = "Soccer ball", Price = 19.50M },
 new { Name = "Corner flag", Price = 34.95M }
 };

 return View(products.Select(p => p.Name));
 }
 }
}

Chapter 4 ■ essential C# Features

98

Each of the objects in the products array is an anonymously typed object. This does not mean that it
is dynamic in the sense that JavaScript variables are dynamic. It just means that the type definition will be
created automatically by the compiler. Strong typing is still enforced. You can get and set only the properties
that have been defined in the initializer, for example. If you run the example, you will see the following
output in the browser window:

Kayak
Lifejacket
Soccer ball
Corner flag

The C# compiler generates the class based on the name and type of the parameters in the initializer.
Two anonymously typed objects that have the same property names and types will be assigned to the same
automatically generated class. This means that all the objects in the products array will have the same type
because they define the same properties.

 ■ Tip i have to use the var keyword to define the array of anonymously typed objects because the type isn’t
created until the code is compiled and so i don’t know the name of the type to use. the elements in an array of
anonymously typed objects must all define the same properties; otherwise, the compiler can’t work out what
the array type should be.

To demonstrate this, I have changed the output from the example in Listing 4-37 so that it shows the
type name rather than the value of the Name property.

Listing 4-37. Displaying the Type Name in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 var products = new [] {
 new { Name = "Kayak", Price = 275M },
 new { Name = "Lifejacket", Price = 48.95M },
 new { Name = "Soccer ball", Price = 19.50M },
 new { Name = "Corner flag", Price = 34.95M }
 };

 return View(products.Select(p => p.GetType().Name));
 }
 }
}

Chapter 4 ■ essential C# Features

99

All the objects in the array have been assigned the same type, which you can see if you run the example.
The type name isn’t user-friendly but isn’t intended to be used directly, and you may see a different name
than the one shown in the following output:

<>f__AnonymousType0`2
<>f__AnonymousType0`2
<>f__AnonymousType0`2
<>f__AnonymousType0`2

Using Asynchronous Methods
Asynchronous methods go off and do work in the background and notify you when they are complete,
allowing your code to take care of other business while the background work is performed. Asynchronous
methods are an important tool in removing bottlenecks from code and allow applications to take advantage
of multiple processors and processor cores to perform work in parallel.

In MVC, asynchronous methods can be used to improve the overall performance of an application by
allowing the server more flexibility in the way that requests are scheduled and executed. Two C# keywords—
async and await—are used to perform work asynchronously.

To prepare for this section, I need to add a new .NET assembly to the example project so that I can make
asynchronous HTTP requests. Right-click the LanguageFeatures project item in the Solution Explorer, select
Edit LanguageFeatures.csproj from the pop-up menu, and add the element shown in Listing 4-38.

Listing 4-38. Adding a Package in the LanguageFeatures.csproj File in the LanguageFeatures Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <PackageReference Include="System.Net.Http" Version="4.3.2" />
 </ItemGroup>

</Project>

When you save the file, Visual Studio will download the System.Net.Http assembly and add it to the
project. I describe this process in more detail in Chapter 6.

Working with Tasks Directly
C# and .NET have excellent support for asynchronous methods, but the code has tended to be verbose, and
developers who are not used to parallel programming often get bogged down by the unusual syntax. As
an example, Listing 4-39 shows an asynchronous method called GetPageLength, which I defined in a class
called MyAsyncMethods and added to the Models folder in a class file called MyAsyncMethods.cs.

http://dx.doi.org/10.1007/978-1-4842-3150-0_6

Chapter 4 ■ essential C# Features

100

Listing 4-39. The Contents of the MyAsyncMethods.cs File in the Models Folder

using System.Net.Http;
using System.Threading.Tasks;

namespace LanguageFeatures.Models {

 public class MyAsyncMethods {

 public static Task<long?> GetPageLength() {

 HttpClient client = new HttpClient();

 var httpTask = client.GetAsync("http://apress.com");

 return httpTask.ContinueWith((Task<HttpResponseMessage> antecedent) => {
 return antecedent.Result.Content.Headers.ContentLength;
 });
 }
 }
}

This method uses a System.Net.Http.HttpClient object to request the contents of the Apress home
page and returns its length. .NET represents work that will be done asynchronously as a Task. Task objects
are strongly typed based on the result that the background work produces. So, when I call the HttpClient.
GetAsync method, what I get back is a Task<HttpResponseMessage>. This tells me that the request will be
performed in the background and that the result of the request will be an HttpResponseMessage object.

 ■ Tip When i use words like background, i am skipping over a lot of detail to make just the key points that
are important to the world of MVC. the .net support for asynchronous methods and parallel programming is
excellent, and i encourage you to learn more about it if you want to create truly high-performing applications
that can take advantage of multicore and multiprocessor hardware. You will see how MVC makes it easy to
create asynchronous web applications throughout this book as i introduce different features.

The part that most programmers get bogged down with is the continuation, which is the mechanism by
which you specify what you want to happen when the background task is complete. In the example, I have
used the ContinueWith method to process the HttpResponseMessage object I get from the HttpClient.
GetAsync method, which I do using a lambda expression that returns the value of a property that contains
the length of the content I get from the Apress web server. Here is the continuation code:

...
return httpTask.ContinueWith((Task<HttpResponseMessage> antecedent) => {
 return antecedent.Result.Content.Headers.ContentLength;
});
...

Chapter 4 ■ essential C# Features

101

Notice that I use the return keyword twice. This is the part that causes confusion. The first use of the return
keyword specifies that I am returning a Task<HttpResponseMessage> object, which, when the task is complete,
will return the length of the ContentLength header. The ContentLength header returns a long? result (a nullable
long value), and this means that the result of my GetPageLength method is Task<long?>, like this:

...
public static Task<long?> GetPageLength() {
...

Do not worry if this does not make sense—you are not alone in your confusion. It is for this reason that
Microsoft added keywords to C# to simplify asynchronous methods.

Applying the async and await Keywords
Microsoft introduced two keywords to C# that are specifically intended to simplify using asynchronous
methods like HttpClient.GetAsync. The keywords are async and await, and you can see how I have used
them to simplify my example method in Listing 4-40.

Listing 4-40. Using the async and await Keywords in the MyAsyncMethods.cs File in the Models Folder

using System.Net.Http;
using System.Threading.Tasks;

namespace LanguageFeatures.Models {

 public class MyAsyncMethods {

 public async static Task<long?> GetPageLength() {

 HttpClient client = new HttpClient();

 var httpMessage = await client.GetAsync("http://apress.com");

 return httpMessage.Content.Headers.ContentLength;
 }
 }
}

I used the await keyword when calling the asynchronous method. This tells the C# compiler that
I want to wait for the result of the Task that the GetAsync method returns and then carry on executing other
statements in the same method.

Applying the await keyword means I can treat the result from the GetAsync method as though it were a
regular method and just assign the HttpResponseMessage object that it returns to a variable. Even better,
I can then use the return keyword in the normal way to produce a result from another method—in this case,
the value of the ContentLength property. This is a much more natural technique, and it means I do not have
to worry about the ContinueWith method and multiple uses of the return keyword.

Chapter 4 ■ essential C# Features

102

When you use the await keyword, you must also add the async keyword to the method signature, as
I have done in the example. The method result type does not change—my example GetPageLength method
still returns a Task<long?>. This is because await and async are implemented using some clever compiler
tricks, meaning that they allow a more natural syntax, but they do not change what is happening in the
methods to which they are applied. Someone who is calling my GetPageLength method still has to deal
with a Task<long?> result because there is still a background operation that produces a nullable long—
although, of course, that programmer can also choose to use the await and async keywords as well.

This pattern follows through into the MVC controller, which makes it easy to write asynchronous action
methods, as shown in Listing 4-41.

Listing 4-41. An Asynchronous Action Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;
using System.Threading.Tasks;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public async Task<ViewResult> Index() {
 long? length = await MyAsyncMethods.GetPageLength();
 return View(new string[] { $"Length: {length}" });
 }
 }
}

I have changed the result of the Index action method to Task<ViewResult>, which tells MVC that
the action method will return a Task that will produce a ViewResult object when it completes, which
will provide details of the view that should be rendered and the data that it requires. I have added the
async keyword to the method’s definition, which allows me to use the await keyword when calling the
MyAsyncMethods.GetPathLength method. MVC and .NET take care of dealing with the continuations,
and the result is asynchronous code that is easy to write, easy to read, and easy to maintain. If you run the
application, you will see output similar to the following (although with a different length since the content of
the Apress web site changes often):

Length: 54576

Getting Names
There are many tasks in web application development in which you need to refer to the name of an
argument, variable, method, or class. Common examples include when you throw an exception or create a
validation error when processing input from the user. The traditional approach has been to use a string value
hard-coded with the name, as shown in Listing 4-42.

Chapter 4 ■ essential C# Features

103

Listing 4-42. Hard-Coding a Name in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {

 var products = new [] {
 new { Name = "Kayak", Price = 275M },
 new { Name = "Lifejacket", Price = 48.95M },
 new { Name = "Soccer ball", Price = 19.50M },
 new { Name = "Corner flag", Price = 34.95M }
 };

 return View(products.Select(p => $"Name: {p.Name}, Price: {p.Price}"));
 }
 }
}

The call to the LINQ Select method generates a sequence of strings, each of which contains a hard-
coded reference to the Name and Price properties. Running the application produces the following output in
the browser window:

Name: Kayak, Price: 275
Name: Lifejacket, Price: 48.95
Name: Soccer ball, Price: 19.50
Name: Corner flag, Price: 34.95

The problem with this approach is that it is prone to errors, either because the name was mistyped or
the code was refactored and the name in the string isn’t correctly updated. The result can be misleading,
which can be especially problematic for messages that are displayed to the user. C# supports the nameof
expression, in which the compiler takes responsibility for producing a name string, as shown in Listing 4-43.

Listing 4-43. Using nameof Expressions in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using LanguageFeatures.Models;
using System;
using System.Linq;

namespace LanguageFeatures.Controllers {
 public class HomeController : Controller {

Chapter 4 ■ essential C# Features

104

 public ViewResult Index() {

 var products = new [] {
 new { Name = "Kayak", Price = 275M },
 new { Name = "Lifejacket", Price = 48.95M },
 new { Name = "Soccer ball", Price = 19.50M },
 new { Name = "Corner flag", Price = 34.95M }
 };

 return View(products.Select(p =>
 $"{nameof(p.Name)}: {p.Name}, {nameof(p.Price)}: {p.Price}"));
 }
 }
}

The compiler processes a reference such as p.Name so that only the last part is included in the string,
producing the same output as in previous examples. Visual Studio includes IntelliSense support for nameof
expressions, so you will be prompted to select references, and expressions will be correctly updated when
you refactor code. Since the compiler is responsible for dealing with nameof, using an invalid reference
causes a compiler error, which prevents incorrect or outdated references from escaping notice.

Summary
In this chapter, I gave you an overview of the key C# language features that an effective MVC programmer
needs to know. C# is a sufficiently flexible language that there are usually different ways to approach any
problem, but these are the features that you will encounter most often during web application development
and see throughout the examples in this book. In the next chapter, I introduce the Razor view engine and
explain how it is used to generate dynamic content in MVC web applications.

105© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_5

CHAPTER 5

Working with Razor

In an ASP.NET Core MVC application, a component called the view engine is used to produce the
content sent to clients. The default view engine is called Razor, and it processes annotated HTML files for
instructions that insert dynamic content into the output sent to the browser.

In this chapter, I give you a quick tour of the Razor syntax so you can recognize Razor expressions when
you see them. I am not going to supply an exhaustive Razor reference in this chapter; think of this more as
a crash course in the syntax. I explore Razor in depth as I continue through the book, within the context of
other MVC features. Table 5-1 puts Razor in context.

Table 5-1. Putting Razor in Context

Question Answer

What is it? Razor is the view engine responsible for incorporating data into HTML
documents.

Why is it useful? The ability to dynamically generate content is essential to being able to write
a web application. Razor provides features that make it easy to work with the
rest of the ASP.NET Core MVC using C# statements.

How is it used? Razor expressions are added to static HTML in view files. The expressions
are evaluated to generate responses to client requests.

Are there any pitfalls or
limitations?

Razor expressions can contain almost any C# statement, and it can be hard
to decide whether logic should belong in the view or in the controller, which
can erode the separation of concerns that is central to the MVC pattern.

Are there any alternatives? You can write your own view engine, as I explain in Chapter 21. There are
some third-party view engines available, but they tend to be useful for niche
situations and don’t attract long-term support.

https://doi.org/10.1007/978-1-4842-3150-0_5
http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 5 ■ Working With razor

106

Table 5-2 summarizes the chapter.

Preparing the Example Project
To demonstrate how Razor works, I created an ASP.NET Core Web Application (.NET Core) project called
Razor using the Empty template, just as in the previous chapter. I enabled the MVC framework by make the
changes shown in Listing 5-1 to the Startup class.

Listing 5-1. Enabling MVC in the Startup.cs File in the Razor Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace Razor {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 if (env.IsDevelopment()) {
 app.UseDeveloperExceptionPage();
 }

Table 5-2. Chapter Summary

Problem Solution Listing

Access the view model Use an @model expression to define the
model type and @Model expressions to
access the model object

5, 14, 17

Use type names without qualifying them with
namespaces

Create a view imports file 6, 7

Define content that will be used by multiple
views

Use a layout 8–10

Specify a default layout Use a view start file 11–13

Pass data from the controller to the view
outside of the view model

Use the view bag 15–16

Generate content selectively Use Razor conditional expressions 18, 19

Generate content for each item in an array or
collection

Use a Razor foreach expression 20–21

Chapter 5 ■ Working With razor

107

 //app.Run(async (context) => {
 // await context.Response.WriteAsync("Hello World!");
 //});
 app.UseMvcWithDefaultRoute();
 }
 }
}

Defining the Model
Next, I created a Models folder and added to it a class file called Product.cs, which I used to define the
simple model class shown in Listing 5-2.

Listing 5-2. The Contents of the Product.cs File in the Models Folder

namespace Razor.Models {

 public class Product {

 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { set; get; }
 }
}

Creating the Controller
The default configuration that I set up in the Startup.cs file follows the MVC convention of sending
requests to a controller called Home by default. I created a Controllers folder and added to it a class file
called HomeController.cs, which I used to define the simple controller shown in Listing 5-3.

Listing 5-3. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Razor.Models;

namespace Razor.Controllers {
 public class HomeController : Controller {

 public ViewResult Index() {
 Product myProduct = new Product {
 ProductID = 1,
 Name = "Kayak",
 Description = "A boat for one person",
 Category = "Watersports",
 Price = 275M
 };

 return View(myProduct);
 }
 }
}

Chapter 5 ■ Working With razor

108

The controller defines an action method called Index, in which I create and populate the properties
of a Product object. I pass the Product to the View method so that it is used as the model when the view is
rendered. I do not specify the name of a view file when I call the View method, so the default view for the
action method will be used.

Creating the View
To create the default view for the Index action method, I created a Views/Home folder and added to it an
MVC View Page file called Index.cshtml, to which I added the content shown in Listing 5-4.

Listing 5-4. The Contents of the Index.cshtml File in the Views/Home Folder

@model Razor.Models.Product

@{
 Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 Content will go here
</body>
</html>

In the sections that follow, I go through the different parts of a Razor view and demonstrate some of
the different things you can do with one. When learning about Razor, it is helpful to bear in mind that views
exist to express one or more parts of the model to the user—and that means generating HTML that displays
data that is retrieved from one or more objects. If you remember that I am always trying to build an HTML
page that can be sent to the client, then everything that Razor does begins to make sense. If you run the
application, you will see the simple output shown in Figure 5-1.

Figure 5-1. Running the example application

Chapter 5 ■ Working With razor

109

Working with the Model Object
Let’s start with the first line in the Index.cshtml view file:

...
@model Razor.Models.Product
...

Razor expressions start with the @ character. In this case, the @model expression declares the type of the
model object that I will pass to the view from the action method. This allows me to refer to the methods,
fields, and properties of the view model object through @Model, as shown in Listing 5-5, which displays a
simple addition to the Index view.

Listing 5-5. Referring to a View Model Object Property in the Index.cshtml File in the Views/Home Folder

@model Razor.Models.Product

@{
 Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 @Model.Name
</body>
</html>

 ■ Note notice that i declare the view model object type using @model (a lowercase m) and access the Name
property using @Model (an uppercase M). this is slightly confusing when you start working with razor, but it
quickly becomes second nature.

If you run the application, you will see the output shown in Figure 5-2.

Figure 5-2. The effect of reading a property value in the view

Chapter 5 ■ Working With razor

110

A view that uses the @model expression to specify a type is known as a strongly typed view. Visual Studio
is able to use the @model expression to pop up suggestions of member names when you type @Model followed
by a period, as shown in Figure 5-3.

The Visual Studio suggestions for member names help avoid errors in Razor views. You can ignore the
suggestions if you prefer, and Visual Studio will highlight problems with member names so that you make
corrections, just as it does with regular C# class files. You can see an example of problem highlighting in
Figure 5-4, where I have tried to reference @Model.NotARealProperty. Visual Studio has realized that the Product
class I specified at the model type does not have such a property and has highlighted an error in the editor.

Figure 5-3. Visual Studio offering suggestions for member names based on the @Model expression

Figure 5-4. Visual Studio reporting a problem with an @Model expression

Chapter 5 ■ Working With razor

111

Using View Imports
When I defined the model object at the start of the Index.cshtml file, I had to include the namespace that
contains the model class, like this:

...
@model Razor.Models.Product
...

By default, all types that are referenced in a strongly typed Razor view must be qualified with a
namespace. This isn’t a big deal when the only type reference is for the model object, but it can make a view
more difficult to read when writing more complex Razor expressions such as the ones I describe later in this
chapter.

You can specify a set of namespaces that should be searched for types by adding a view imports file to
the project. The view imports file is placed in the Views folder and is named _ViewImports.cshtml.

 ■ Note Files in the Views folder whose names begin with an underscore (the _ character) are not returned
to the user, which allows the file name to differentiate between views that you want to render and the files that
support them. View imports files and layouts (which i describe shortly) are prefixed with an underscore.

To create the view imports file, right-click the Views folder in the Solution Explorer, select Add ➤ New
Item from the pop-up menu, and select the MVC View Imports Page template from the ASP.NET Core ➤
Web category, as shown in Figure 5-5.

Figure 5-5. Creating a view imports file

Chapter 5 ■ Working With razor

112

Visual Studio will automatically set the name of the file to _ViewImports.cshtml, and clicking the Add
button will create the file, which will be empty. Add the expression shown in Listing 5-6.

Listing 5-6. The Content of the _ViewImports.cshtml File in the Views Folder

@using Razor.Models

The namespaces that should be searched for classes used in Razor views are specified using the @
using expression, followed by the namespace. In Listing 5-6, I have added an entry for the Razor.Models
namespace that contains the model class in the example application.

Now that the Razor.Models namespace is included in the view imports file, I can remove the
namespace from the Index.cshtml file, as shown in Listing 5-7.

Listing 5-7. Omitting the Model Namespace in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
</head>
<body>
 @Model.Name
</body>
</html>

 ■ Tip You can also add an @using expression to individual view files, which allows types to be used without
namespaces in a single view.

Working with Layouts
There is another important Razor expression in the Index.cshtml view file:

...
@{
 Layout = null;
}
...

This is an example of a Razor code block, which allows me to include C# statements in a view. The code
block is opened with @{ and closed with }, and the statements it contains are evaluated when the view is
rendered.

Chapter 5 ■ Working With razor

113

This code block sets the value of the Layout property to null. Razor views are compiled into C# classes
in an MVC application, and the base class that is used defines the Layout property. I’ll show you how this all
works in Chapter 21, but the effect of setting the Layout property to null is to tell MVC that the view is self-
contained and will render all of the content required for the client.

Self-contained views are fine for simple example apps, but a real project can have dozens of views,
and some views will have shared content. Duplicating shared content in views becomes hard to manage,
especially when you need to make a change and have to track down all of the views that need to be altered.

A better approach is to use a Razor layout, which is a template that contains common content and that
can be applied to one or more views. When you make a change to a layout, the change will automatically
affect all the views that use it.

Creating the Layout
Layouts are typically shared by views used by multiple controllers and are stored in a folder called Views/
Shared, which is one of the locations that Razor looks in when it tries to find a file. To create a layout, create
the Views/Shared folder, right-click it, and select Add ➤ New Item from the pop-up menu. Select the MVC
View Layout Page template from the ASP.NET category and set the file name to _BasicLayout.cshtml, as
shown in Figure 5-6. Click the Add button to create the file. (Like view import files, the names of layout files
begin with an underscore.)

Listing 5-8 shows the initial contents of the _BasicLayout.cshtml file, added by Visual Studio when it
creates the file.

Figure 5-6. Creating a layout

http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 5 ■ Working With razor

114

Listing 5-8. The Initial Contents of the _BasicLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
</head>
<body>
 <div>
 @RenderBody()
 </div>
</body>
</html>

Layouts are a specialized form of view, and there are two @ expressions in the listing. The call to the @
RenderBody method inserts the contents of the view specified by the action method into the layout markup,
like this:

...
<div>
 @RenderBody()
</div>
...

The other Razor expression in the layout looks for a property called ViewBag.Title in order to set the
contents of the title element, like this:

...
<title>@ViewBag.Title</title>
...

The ViewBag is a handy feature that allows data values to be passed around an application and, in this
case, between a view and its layout. You will see how this works when I apply the layout to a view.

The HTML elements in a layout will be applied to any view that uses it, providing a template for defining
common content. In Listing 5-9, I have added some simple markup to the layout so that its template effect
will be obvious.

Listing 5-9. Adding Content to the _BasicLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <style>
 #mainDiv {
 padding: 20px;
 border: solid medium black;
 font-size: 20pt
 }
 </style>

Chapter 5 ■ Working With razor

115

</head>
<body>
 <h1>Product Information</h1>
 <div id="mainDiv">
 @RenderBody()
 </div>
</body>
</html>

I have added a header element as well as some CSS to style the contents of the div element that
contains the @RenderBody expression, just to make it clear what content comes from the layout and what
comes from the view.

Applying a Layout
To apply the layout to the view, I need to set the value of the Layout property and remove the HTML that will
now be provided by the layout, such as the html, head, and body elements, as shown in Listing 5-10.

Listing 5-10. Applying a Layout in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 Layout = "_BasicLayout";
 ViewBag.Title = "Product Name";
}

Product Name: @Model.Name

The Layout property specifies the name of the layout file that will be used for the view, without the cshtml
file extension. Razor will look for the specified layout file in the /Views/Home and Views/Shared folders.

I also set the ViewBag.Title property in the listing. This will be used by the layout to set the contents of
the title element when the view is rendered.

The transformation of the view is dramatic, even for such a simple application. The layout contains all
the structure required for any HTML response, which leaves the view to focus on just the dynamic content
that presents the data to the user. When MVC processes the Index.cshtml file, it applies the layout to create
a unified HTML response, as shown in Figure 5-7.

Chapter 5 ■ Working With razor

116

Using a View Start File
I still have a tiny wrinkle to sort out, which is that I have to specify the layout file I want in every view. If
I need to rename the layout file, I am going to have to find every view that refers to it and make a change,
which will be an error-prone process and counter to the general theme of easy maintenance that runs
through MVC development.

I can resolve this by using a view start file. When it renders a view, MVC will look for a file called
_ViewStart.cshtml. The contents of this file will be treated as though they were contained in the view file
itself, and I can use this feature to automatically set a value for the Layout property.

To create a view start file, right-click the Views folder, select Add ➤ New Item from the pop-up menu,
and choose the MVC View Start Page template from the ASP.NET category, as shown in Figure 5-8.

Figure 5-7. The effect of applying a layout to a view

Chapter 5 ■ Working With razor

117

Visual Studio will set the name of the file to _ViewStart.cshtml, and clicking the Add button will create
the file with the initial content shown in Listing 5-11.

Listing 5-11. The Initial Contents of the _ViewStart.cshtml File in the Views Folder

@{
 Layout = "_Layout";
}

To apply my layout to all the views in the application, I changed the value assigned to the Layout
property, as shown in Listing 5-12.

Listing 5-12. Applying a Default View in the _ViewStart.cshtml File in the Views Folder

@{
 Layout = "_BasicLayout";
}

Since the view start file contains a value for the Layout property, I can remove the corresponding
expression from the Index.cshtml file, as shown in Listing 5-13.

Figure 5-8. Creating a view start file

Chapter 5 ■ Working With razor

118

Listing 5-13. Applying a View Start File in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

Product Name: @Model.Name

I do not have to specify that I want to use the view start file. MVC will locate the file and use its contents
automatically. The values defined in the view file take precedence, which makes it easy to override the view
start file.

You can also use multiple view start files to set defaults for different parts of the application. Razor looks
for the closest view start file to the view that it being processed, which means you can override the default
setting by adding a view start file to the Views/Home or Views/Shared folders, for example.

 ■ Caution it is important to understand the difference between omitting the Layout property from the view
file and setting it to null. if your view is self-contained and you do not want to use a layout, then set the Layout
property to null. if you omit the Layout property, then MVC will assume that you do want a layout and that it
should use the value it finds in the view start file.

Using Razor Expressions
Now that I have shown you the basics of views and layouts, I am going to turn to the different kinds
of expressions that Razor supports and how you can use them to create view content. In a good MVC
application, there is a clear separation between the roles that the action method and view perform.
The rules are simple; I have summarized them in Table 5-3.

I come back to this theme throughout this book. To get the best from MVC, you need to respect
and enforce the separation between the different parts of the app. As you will see, you can do quite a lot
with Razor, including using C# statements—but you should not use Razor to perform business logic or
manipulate your domain model objects in any way. Listing 5-14 shows the addition of a new expression to
the Index view.

Table 5-3. The Roles Played by the Action Method and the View

Component Does Do Doesn’t Do

Action method Passes a view model object to the view Passes formatted data to the view

View Uses the view model object to present
content to the user

Changes any aspect of the view model
object

Chapter 5 ■ Working With razor

119

Listing 5-14. Adding an Expression to the Index.cshtml File in the Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

<p>Product Name: @Model.Name</p>
<p>Product Price: @($"{Model.Price:C2}")</p>

I could have formatted the value of the Price property in the action method and passed it to the view.
It would have worked, but taking this approach undermines the benefit of the MVC pattern and reduces
my ability to respond to changes in the future. As I said, I will return to this theme again, but you should
remember that ASP.NET Core MVC does not enforce proper use of the MVC pattern and that you must
remain aware of the effect of the design and coding decisions you make.

PROCESSING VERSUS FORMATTING DATA

it is important to differentiate between processing data and formatting it. Views format data, which is
why i passed the Product object in the previous section to the view, rather than formatting the object’s
properties into a display string. processing data—including selecting the data objects to display—is the
responsibility of the controller, which will call on the model to get and modify the data it requires. it can
sometimes be hard to figure out where the line between processing and formatting is, but as a rule of
thumb, i recommend erring on the side of caution and pushing anything but the simplest of expressions
out of the view and into the controller.

Inserting Data Values
The simplest thing you can do with a Razor expression is to insert a data value into the markup. The most
common way to do this is with the @Model expression. The Index view already includes examples of this
approach, like this:

...
<p>Product Name: @Model.Name</p>
...

You can also insert values using the ViewBag feature, which is the feature I used in the layout to set
the content of the title element. The ViewBag can be used to pass data from the controller to the view,
supplementing the model, as shown in Listing 5-15.

Listing 5-15. Using the View Bag in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Razor.Models;

namespace Razor.Controllers {
 public class HomeController : Controller {

Chapter 5 ■ Working With razor

120

 public ViewResult Index() {
 Product myProduct = new Product {
 ProductID = 1,
 Name = "Kayak",
 Description = "A boat for one person",
 Category = "Watersports",
 Price = 275M
 };

 ViewBag.StockLevel = 2;

 return View(myProduct);
 }
 }
}

The ViewBag property returns a dynamic object that can be used to define arbitrary properties. In
the listing, I have defined a property called StockLevel and assigned a value of 2 to it. Since the ViewBag
property is dynamic, I don’t have to declare the property names in advance, but it does mean that Visual
Studio is unable to provide autocomplete suggestions for view bag properties.

Knowing when to use the view bag and when the model should be extended is a matter of experience
and personal preference. My personal style is to use the view bag only to give a view hints about how to
render data and not to use it for data values that are displayed to the user. But that’s just what works for me.
If you do use the view bag for data you want to display to the user, then you access values using the @ViewBag
expression, as shown in Listing 5-16.

Listing 5-16. Displaying a View Bag Value in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

<p>Product Name: @Model.Name</p>
<p>Product Price: @($"{Model.Price:C2}")</p>
<p>Stock Level: @ViewBag.StockLevel</p>

Chapter 5 ■ Working With razor

121

Figure 5-9 shows the result of the new data value.

Setting Attribute Values
All the examples so far have set the content of elements, but you can also use Razor expressions to set the
value of element attributes. Listing 5-17 shows the user of the @Model and @ViewBag expressions to set the
contents of attributes on elements in the Index view.

Listing 5-17. Set Attribute Values in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

<div data-productid="@Model.ProductID" data-stocklevel="@ViewBag.StockLevel">
 <p>Product Name: @Model.Name</p>
 <p>Product Price: @($"{Model.Price:C2}")</p>
 <p>Stock Level: @ViewBag.StockLevel</p>
</div>

I used the Razor expressions to set the value for some data attributes on a div element.

Figure 5-9. Using Razor expressions to insert data values

Chapter 5 ■ Working With razor

122

 ■ Tip Data attributes, which are attributes whose names are prefixed by data-, have been an informal way
of creating custom attributes for many years and have been made part of the formal standard as part of htML5.
they are most often applied so that JavaScript code can locate specific elements or so that CSS styles can be
more narrowly applied.

If you run the example application and look at the HTML source that is sent to the browser, you will see
that Razor has set the values of the attributes, like this:

<div data-productid="1" data-stocklevel="2">
 <p>Product Name: Kayak</p>
 <p>Product Price: £275.00</p>
 <p>Stock Level: 2</p>
</div>

Using Conditional Statements
Razor is able to process conditional statements, which means that I can tailor the output from a view based
on values in the view data. This kind of technique is at the heart of Razor and allows you to create complex
and fluid layouts that are still reasonably simple to read and maintain. In Listing 5-18, I have updated the
Index view so that it includes a conditional statement.

Listing 5-18. Using a Conditional Razor Statement in the Index.cshtml File in the Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

<div data-productid="@Model.ProductID" data-stocklevel="@ViewBag.StockLevel">
 <p>Product Name: @Model.Name</p>
 <p>Product Price: @($"{Model.Price:C2}")</p>
 <p>Stock Level:
 @switch (ViewBag.StockLevel) {
 case 0:
 @:Out of Stock
 break;
 case 1:
 case 2:
 case 3:
 Low Stock (@ViewBag.StockLevel)
 break;
 default:
 @: @ViewBag.StockLevel in Stock
 break;
 }
 </p>
</div>

Chapter 5 ■ Working With razor

123

To start a conditional statement, you place an @ character in front of the C# conditional keyword, which
is switch in this example. You terminate the code block with a close brace character (}) just as you would
with a regular C# code block.

Inside the Razor code block, you can include HTML elements and data values into the view output just
by defining the HTML and Razor expressions, like this:

...
Low Stock (@ViewBag.StockLevel)
...

I do not have to put the elements or expressions in quotes or denote them in any special way—the Razor
engine will interpret these as output to be processed. However, if you want to insert literal text into the view
when it is not contained in an HTML element, then you need to give Razor a helping hand and prefix the line
like this:

...
@: Out of Stock
...

The @: characters prevent Razor from interpreting this as a C# statement, which is the default behavior
when it encounters text. You can see the result of the conditional statement in Figure 5-10.

Conditional statements are important in Razor views because they allow content to be varied based on
the data values that the view receives from the action method. As an additional demonstration, Listing 5-19
shows the addition of an if statement to the Index.cshtml view. As you might imagine, this is a commonly
used conditional statement.

Figure 5-10. Using a switch statement in a Razor view

Chapter 5 ■ Working With razor

124

Listing 5-19. Using an if Statement in a Razor View in the Index.cshtml File in Views/Home Folder

@model Product

@{
 ViewBag.Title = "Product Name";
}

<div data-productid="@Model.ProductID" data-stocklevel="@ViewBag.StockLevel">
 <p>Product Name: @Model.Name</p>
 <p>Product Price: @($"{Model.Price:C2}")</p>
 <p>Stock Level:
 @if (ViewBag.StockLevel == 0) {
 @:Out of Stock
 } else if (ViewBag.StockLevel > 0 && ViewBag.StockLevel <= 3) {
 Low Stock (@ViewBag.StockLevel)
 } else {
 @: @ViewBag.StockLevel in Stock
 }
 </p>
</div>

This conditional statement produces the same results as the switch statement, but I wanted to
demonstrate how you can mesh C# conditional statements with Razor views. I explain how this works
in Chapter 21, when I describe views in depth.

Enumerating Arrays and Collections
When writing an MVC application, you will often want to enumerate the contents of an array or some other
kind of collection of objects and generate content that details each one. To demonstrate how this is done, in
Listing 5-20 I have revised the Index action in the Home controller to pass an array of Product objects to the
view.

Listing 5-20. Using an Array in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Razor.Models;

namespace Razor.Controllers {
 public class HomeController : Controller {

 public IActionResult Index() {
 Product[] array = {
 new Product {Name = "Kayak", Price = 275M},
 new Product {Name = "Lifejacket", Price = 48.95M},
 new Product {Name = "Soccer ball", Price = 19.50M},
 new Product {Name = "Corner flag", Price = 34.95M}
 };
 return View(array);
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 5 ■ Working With razor

125

This action method creates a Product[] object that contains simple data values and passes them to the
View method so that the data is rendered using the default view. In Listing 5-21, I have changed the model
type for the Index view and used a foreach loop to enumerate the objects in the array.

 ■ Tip the Model term in Listing 5-21 doesn’t need to be prefixed with an @ character because it is part of a
larger C# expression. it can be difficult to figure out when an @ character is required and when it is not, but the
Visual Studio intelliSense for razor files will tell you when you get it wrong by underlining errors.

Listing 5-21. Enumerating an Array in the Index.cshtml File in the Views/Home Folder

@model Product[]

@{
 ViewBag.Title = "Product Name";
}

<table>
 <thead>
 <tr><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (Product p in Model) {
 <tr>
 <td>@p.Name</td>
 <td>@($"{p.Price:C2}")</td>
 </tr>
 }
 </tbody>
</table>

The @foreach statement enumerates the contents of the model array and generates a row in a table for
each of them. You can see how I created a local variable called p in the foreach loop and then referred to its
properties using the Razor expressions @p.Name and @p.Price. You can see the result in Figure 5-11.

Chapter 5 ■ Working With razor

126

Summary
In this chapter, I gave you an overview of the Razor view engine and how it can be used to generate HTML.
I showed you how to refer to data passed from the controller via the view model object and the view bag
and how Razor expressions can be used to tailor responses to the user based on data values. You will see
many different examples of how Razor can be used in the rest of the book, and I describe how the MVC view
mechanism works in detail in Chapter 21. In the next chapter, I introduce some of the features provided by
Visual Studio for working with ASP.NET Core MVC projects.

Figure 5-11. Using Razor to enumerate an array

http://dx.doi.org/10.1007/978-1-4842-3150-0_21

127© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_6

CHAPTER 6

Working with Visual Studio

In this chapter, I describe the key features that Visual Studio provides for developing ASP.NET Core MVC
projects. Table 6-1 summarizes the chapter.

Preparing the Example Project
For this chapter, I created a new ASP.NET Core Web Application (.NET Core) project called Working
WithVisualStudio using the Empty template. I enabled MVC with its default configuration in the Startup.cs
file, as shown in Listing 6-1.

Listing 6-1. Enabling MVC in the Startup.cs File in the WorkingWithVisualStudio Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

Table 6-1. Chapter Summary

Problem Solution Listing

Add packages to a project Use the NuGet tool for .NET packages
and Bower for client-side packages

6-8

See the effect of view or class changes Use the iterative development model 9–11

Display detailed messages in the browser Use developer exception pages 12

Get detailed information and control about
application execution

Use the debugger 13

Reload one or more browsers using Visual Studio Use Browser Link 14–15

Reduce the number of HTTP requests and the
amount of bandwidth required for JavaScript and
CSS files

Use the Bundler & Minifier extension 16–23

https://doi.org/10.1007/978-1-4842-3150-0_6

Chapter 6 ■ Working With Visual studio

128

namespace WorkingWithVisualStudio {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseMvcWithDefaultRoute();
 }
 }
}

Creating the Model
I created a Models folder and added to it a class file called Product.cs, which I used to define the class
shown in Listing 6-2.

Listing 6-2. The Contents of the Product.cs File in the Models Folder

namespace WorkingWithVisualStudio.Models {

 public class Product {
 public string Name { get; set; }
 public decimal Price { get; set; }
 }
}

To create a simple store of Product objects, I added a class file called SimpleRepository.cs to the
Models folder and used it to define the class shown in Listing 6-3.

Listing 6-3. The Contents of the SimpleRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace WorkingWithVisualStudio.Models {
 public class SimpleRepository {
 private static SimpleRepository sharedRepository = new SimpleRepository();
 private Dictionary<string, Product> products
 = new Dictionary<string, Product>();

 public static SimpleRepository SharedRepository => sharedRepository;

 public SimpleRepository() {
 var initialItems = new[] {
 new Product { Name = "Kayak", Price = 275M },
 new Product { Name = "Lifejacket", Price = 48.95M },
 new Product { Name = "Soccer ball", Price = 19.50M },
 new Product { Name = "Corner flag", Price = 34.95M }
 };

Chapter 6 ■ Working With Visual studio

129

 foreach (var p in initialItems) {
 AddProduct(p);
 }
 }

 public IEnumerable<Product> Products => products.Values;

 public void AddProduct(Product p) => products.Add(p.Name, p);
 }
}

This class stores model objects in memory, which means that any changes to the model are lost when
the application is stopped or restarted. A nonpersistent store is sufficient for the examples in this chapter,
but it isn’t an approach that can be used in many real projects; see Chapter 8 for an example of creating a
repository that stores model objects persistently using a relational database.

 ■ Note in listing 6-3, i defined a static property called SharedRepository that provides access to a single
SimpleRepository object that can be used throughout the application. this isn’t best practice, but i want to
demonstrate a common problem that you will encounter in MVC development; i describe a better way to work
with shared components in Chapter 18.

Creating the Controller and View
I added a Controllers folder to the project and added to it a class file called HomeController.cs, which
I used to define the controller shown in Listing 6-4.

Listing 6-4. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using WorkingWithVisualStudio.Models;

namespace WorkingWithVisualStudio.Controllers {
 public class HomeController : Controller {

 public IActionResult Index()
 => View(SimpleRepository.SharedRepository.Products);
 }
}

There is a single action—called Index—that gets all of the model objects and passes them to the View
method to render the default view. To add that view, I created the Views/Home folder and added a view file
called Index.cshtml, the contents of which are shown in Listing 6-5.

http://dx.doi.org/10.1007/978-1-4842-3150-0_8
http://dx.doi.org/10.1007/978-1-4842-3150-0_18

Chapter 6 ■ Working With Visual studio

130

Listing 6-5. The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<WorkingWithVisualStudio.Models.Product>
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Working with Visual Studio</title>
</head>
<body>
 <table>
 <thead>
 <tr><td>Name</td><td>Price</td></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Name</td>
 <td>@p.Price</td>
 </tr>
 }
 </tbody>
 </table>
</body>
</html>

The view contains a table that uses a Razor foreach loop to create rows for each model object, where
each row contains cells for the Name and Price properties. If you run the example application, you will see
the results shown in Figure 6-1.

Figure 6-1. Running the example application

Chapter 6 ■ Working With Visual studio

131

Managing Software Packages
There are two different types of software package required for ASP.NET Core MVC projects. In the sections that
follow, I describe each type of package and the tools that are provided by Visual Studio for managing them.

Understanding NuGet
Visual Studio provides a graphical tool for managing the .NET packages that are included in a project. To
open the tool, select Manage NuGet Packages for Solution from the Tools ➤ NuGet Package Manager menu.
The NuGet tool opens and displays a list of the packages that are already installed, as shown in Figure 6-2.

Figure 6-2. Using the NuGet package manager

The Installed tab provides a summary of the packages that are already installed in the project. The
Browse tab can be used to locate and install new packages, and the Updates tab can be used to list packages
for which more recent versions have been released.

Chapter 6 ■ Working With Visual studio

132

if you have used earlier versions of asp.net Core, you will have become familiar with the need to add a
long list of nuget packages to a new project. asp.net Core 2 takes a different approach and relies on a
single package called Microsoft.AspNetCore.All.

the Microsoft.AspNetCore.All package is a meta-package, which contains all the individual nuget
packages required by asp.net Core and the MVC framework, which means you don’t need to add
packages one by one. When you publish your application, any individual packages that are part of the
meta-package but not used by the application will be removed, ensuring that you don’t deploy more
packages that you need.

Understanding the NuGet Packages List and Location
The NuGet tool keeps track of the project’s packages in the <projectname>.csproj file, where
<projectname> is replaced by the name of the project. For the example application, this means that details
of the NuGet packages are stored in a file called WorkingWithVisualStudio.csproj. Visual Studio doesn’t
display the .csproj file in the Solution Explorer window. To edit the file, right-click the project item in the
Solution Explorer window and select Edit WorkingWithVisualStudio.csproj from the pop-up menu. Visual
Studio will open the file for editing. The .csproj file is XML, and you will see an element like this one that
adds the ASP.NET Core meta-package to the project, like this:

...
<ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
</ItemGroup>
...

A package is specified with its name and the version number that is required. Although the meta-
package includes all the features required for ASP.NET Core MVC, you will still have to add packages to the
project so that additional features can be used. Packages can be added using the interface shown in Figure 6-2
or using command-line tools. You can also edit the .csproj file directly and Visual Studio will detect changes
and download and install the packages add.

When you use NuGet to add a package to a project, it is automatically installed along with any packages
it depends on. You can explore the NuGet packages and their dependencies by opening the Dependencies ➤
NuGet item in the Solution Explorer, which shows each of the packages in the .csproj file and its dependencies.
The ASP.NET Core meta-package has a large number of dependencies, some of which can be seen in Figure 6-3.

UNDERSTANDING THE MICROSOFT.ASPNETCORE.ALL PACKAGE

Chapter 6 ■ Working With Visual studio

133

Understanding Bower
A client-side package is one that contains content that is sent to the client, such as JavaScript files, CSS
stylesheets, or images. NuGet used to manage these projects as well, but ASP.NET Core MVC now relies on a
tool called Bower. Bower is an open source tool that has been developed outside of Microsoft and the .NET
world and is widely used in non-ASP.NET Core web application development.

 ■ Note Bower has recently been deprecated. You may see warnings that recommend alternative tools;
however, Bower is still being actively maintained, and support for Bower is integrated into Visual studio. at
some point, you can expect Microsoft to support a different tool for managing client-side packages, but you
should continue to use Bower until that happens.

Understanding the Bower Packages List
Bower packages are specified through the bower.json file. To create this file, right-click the
WorkingWithVisualStudio project item in the Solution Explorer, select Add ➤ New Item from the pop-up
menu, and choose the Bower Configuration File item template from the ASP.NET Core ➤ Web ➤ General
category, as shown in Figure 6-4.

Figure 6-3. The References section of the Solution Explorer

Chapter 6 ■ Working With Visual studio

134

Visual Studio sets the name to bower.json, and clicking the Add button adds the file to the project with
the default content shown in Listing 6-6.

Listing 6-6. The Default Contents of the bower.json File

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 }
}

Listing 6-7 shows the addition of a client-side package to the bower.json file, which is done by adding
an entry to the dependencies section.

 ■ Tip the repository for Bower packages is http://bower.io/search, where you can search for packages
to add to your project.

Figure 6-4. Creating the Bower configuration file

http://bower.io/search

Chapter 6 ■ Working With Visual studio

135

Listing 6-7. Adding Packages to the bower.json File

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "3.3.7"
 }
}

The addition in the listing adds the Bootstrap CSS package to the example project. When you edit the
bower.json file, Visual Studio will offer you a list of package names and list the versions of the packages that
are available, as shown in Figure 6-5.

At the time of writing, the latest version of the bootstrap package is 3.3.7. Notice, however, that there
are three options offered by Visual Studio: 3.3.7, ^3.3.7, and ~3.3.7. Version numbers can be specified in a
range of different ways in the bower.json file, the most useful of which are described in Table 6-2. The safest
way to specify a package is to use an explicit version number. This ensures you will always be working with
the same version unless you deliberately update the bower.json file to request a different one.

 ■ Tip For the examples in this book, i create and edit the bower.json file directly. the file is simple to edit,
and it helps ensure that you get the expected results if you are following along. Visual studio also provides a
graphical tool for managing Bower packages, which can be opened by right-clicking the bower.json file and
selecting Manage Bower packages from the pop-up menu.

Figure 6-5. Listing the available versions of the client-side package

Chapter 6 ■ Working With Visual studio

136

Visual Studio monitors the bower.json files for changes and automatically uses the Bower tool to
download and install packages. When you save the change to the file for Listing 6-7, Visual Studio will
download the Bootstrap package and install it into the wwwroot/lib folder, as shown in Figure 6-6.

Like NuGet, Bower manages the dependencies of the packages you add to a project. Bootstrap relies on
the jQuery JavaScript library for some of its advanced features, which is why there are two packages shown in
the figure. You can see the list of packages and their dependencies by expanding the Dependencies item in
the Solution Explorer, as shown in Figure 6-7.

Figure 6-6. Adding client-side packages to the project

Table 6-2. Common Formats for Version Numbers in the bower.json File

Format Description

3.3.7 Expressing a version number directly will install the package with the exact matching
version number, e.g., 3.3.7.

* Using an asterisk will allow Bower to download and install any version of the
package.

>3.3.7 >=3.3.7 Prefixing a version number with > or >= will allow Bower to install any version of the
package that is greater than or greater than or equal to a given version.

<3.3.7 <=3.3.7 Prefixing a version number with < or <= will allow Bower to install any version of the
package that is less than or less than or equal to a given version.

~3.3.7 Prefixing a version number with a tilde (the ~ character) will allow Bower to install
versions even if the patch level number (the last of the three version numbers)
doesn’t match). For example, specifying ~3.3.7 will allow Bower to install version
3.3.8 or 3.3.9 (which would be patches to version 3.3.7) but not version 3.4.0 (which
would be a new minor release).

^3.3.7 Prefixing a version number with a caret (the ^ character) will allow Bower to install
versions even if the minor release number (the second of the three version numbers)
or the patch number doesn’t match. For example, specifying ^3.3.0 will allow Bower
to install versions 3.3.1, 3.4.0, and 3.5.0, for example, but not version 4.0.0.

Chapter 6 ■ Working With Visual studio

137

Updating the Bootstrap Package
Throughout the rest of this book, I use a prerelease version of the Bootstrap CSS framework. As I write this,
the Bootstrap team is in the process of developing Bootstrap version 4 and has made several early releases.
These releases have been labeled as “alpha,” but the quality is high, and they are stable enough for use in the
examples in this book. Given the choice of writing this book using the soon-to-be-obsolete Bootstrap 3 and a
prerelease version of Bootstrap 4, I decided to use the new version even though some of the class names that
are used to style HTML elements are likely to change before the final release. This means you must use the
same version of Bootstrap to get the expected results from the examples.

To update the Bootstrap package, change the version number in the bower.json file, as shown in
Listing 6-8.

Listing 6-8. Changing a Package Version in the bower.json File in the WorkingWithVisualStudio Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

Visual Studio will download the new version of the Bootstrap package when you save the change to the
bower.json file.

Understanding Iterative Development
Web application development can often be an iterative process, where you make small changes to views
or classes and run the application to test their effect. MVC and Visual Studio work together to support this
iterative approach to make seeing the impact of changes quick and easy.

Figure 6-7. Examining the client-side packages and their dependencies

Chapter 6 ■ Working With Visual studio

138

Making Changes to Razor Views
During development, changes to Razor views take effect as soon as an HTTP request is received from the
browser. To demonstrate how this works, start the application by selecting Start Debugging from the Debug
menu and, once a browser tab has been opened and the data displayed, make the changes shown in Listing 6-9
to the Index.cshtml file.

Listing 6-9. Making Changes to the Index.cshtml File

@model IEnumerable<WorkingWithVisualStudio.Models.Product>
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Working with Visual Studio</title>
</head>
<body>
 <h3>Products</h3>
 <table>
 <thead>
 <tr><td>Name</td><td>Price</td></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Name</td>
 <td>@($"{p.Price:C2}")</td>
 </tr>
 }
 </tbody>
 </table>
</body>
</html>

Save the changes to the Index view and reload the web page using the browser reload button. The
changes to the view (the addition of a header element and formatting the Price model property as a
currency) take effect and are shown in the browser, as illustrated in Figure 6-8.

 ■ Tip i explain the process by which razor views are prepared for use in Chapter 21.

http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 6 ■ Working With Visual studio

139

Making Changes to C# Classes
For C# classes, including controllers and models, the way that changes are handled depend on how you
start the application. In the sections that follow, I describe the two approaches available, which are selected
through different items in the Debug menu, as described in Table 6-3 for quick reference.

Compiling Classes Automatically
During normal development, a fast iterative cycle lets you see the effect of your changes immediately,
whether it is the effect of adding a new action or changing the way that view model data is selected. For this
kind of development, Visual Studio supports detecting changes as soon as an HTTP request is received from
the browser and recompiling classes automatically. To see how this works, select Start Without Debugging
from the Visual Studio Debug menu. Once the browser displays the application data, make the changes
shown in Listing 6-10 to the Home controller.

Listing 6-10. Filtering Model Data in the HomeController.cs File

using Microsoft.AspNetCore.Mvc;
using WorkingWithVisualStudio.Models;
using System.Linq;

Figure 6-8. Making a change to a view

Table 6-3. The Debug Menu Items

Menu Item Description

Start Without Debugging The classes in the project are compiled automatically when an HTTP request
is received, allowing for a more dynamic development experience. The
application is run without the debugger, which cannot be used to take control
of code execution.

Start Debugging You must explicitly compile your project and restart the application for
changes to take effect. The debugger is attached to the application when it
runs, allowing inspection of its state and analysis of any problems.

Chapter 6 ■ Working With Visual studio

140

namespace WorkingWithVisualStudio.Controllers {
 public class HomeController : Controller {

 public IActionResult Index()
 => View(SimpleRepository.SharedRepository.Products
 .Where(p => p.Price < 50));
 }
}

The changes use LINQ to filter the Product objects so that only those whose Price property is less
than 50 are passed to the view. Save the changes to the controller class file and reload the browser window
without stopping or restarting the application in Visual Studio. The HTTP request from the browser will
trigger the compilation process, and the application will be restarted using the modified controller class,
producing the results shown in Figure 6-9, which omit the Kayak product from the table.

The automated compilation feature is useful when everything is going to plan. The drawback is that
compiler and runtime errors are displayed in the browser rather than Visual Studio, which can make it hard
to figure out what is happening when there is a problem. As an example, Listing 6-11 shows the addition of a
null reference to the collection of model objects in the repository.

Listing 6-11. Adding a null Reference in the SimpleRepository.cs File

using System.Collections.Generic;

namespace WorkingWithVisualStudio.Models {
 public class SimpleRepository {
 private static SimpleRepository sharedRepository = new SimpleRepository();
 private Dictionary<string, Product> products
 = new Dictionary<string, Product>();

 public static SimpleRepository SharedRepository => sharedRepository;

Figure 6-9. Automatically compiling classes

Chapter 6 ■ Working With Visual studio

141

 public SimpleRepository() {
 var initialItems = new[] {
 new Product { Name = "Kayak", Price = 275M },
 new Product { Name = "Lifejacket", Price = 48.95M },
 new Product { Name = "Soccer ball", Price = 19.50M },
 new Product { Name = "Corner flag", Price = 34.95M }
 };
 foreach (var p in initialItems) {
 AddProduct(p);
 }
 products.Add("Error", null);
 }

 public IEnumerable<Product> Products => products.Values;

 public void AddProduct(Product p) => products.Add(p.Name, p);
 }
}

A problem like a null reference won’t show up until the application is running. Reloading the
browser page will cause the SimpleRepository class to be compiled, and the application will be restarted.
When MVC creates an instance of the controller class to process the HTTP request from the browser, the
HomeController constructor will instantiate the SimpleRepository class, which will, in turn, try to process
the null reference added in the listing. The null value causes a problem, but it isn’t obvious what the
problem is because the browser doesn’t display a helpful message.

Enabling Developer Exception Pages
During the development process, it can be helpful to display more useful information in the browser
window when there is a problem. This can be done by enabling developer exception pages, which requires a
configuration change in the Startup class, as shown in Listing 6-12.

I explain the role of the Startup class in detail in Chapter 14, but for now, it is enough to know that
calling the UseDeveloperExceptionPage extension method sets up the descriptive error pages.

Listing 6-12. Enabling Developer Exception Pages in the Startup.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace WorkingWithVisualStudio {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

Chapter 6 ■ Working With Visual studio

142

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseMvcWithDefaultRoute();
 }
 }
}

If you reload the browser window, the automatically compilation process will rebuild the application
and produce a more useful error message in the browser, as shown in Figure 6-10.

The error message shown by the browser can be sufficient to figure out simple problems, especially
since the iterative style of development means that the most recent changes made are likely to be the cause.
But for more complex problems—and for problems that don't become immediately apparent—the Visual
Studio debugger is required.

Using the Debugger
Visual Studio also supports running an MVC application using a debugger, which allows execution to be
halted to inspect the application’s state and the path that a request follows through the code. This requires
a different style of development because modifications to C# classes are not applied until the application is
restarted (although changes to Razor views still take effect automatically).

This style of development isn’t as dynamic as using the automatic compilation feature, but the Visual
Studio debugger is excellent and can provide deeper insights into the way an application works.

To run an application using the debugger, select Start Debugging from the Visual Studio Debug menu.
Visual Studio will compile the C# classes in the project before launching the application, but you can also
manually compile your code by using the items in the Build menu.

Figure 6-10. A developer exception page

Chapter 6 ■ Working With Visual studio

143

The example application still contains the null reference, which means that the unhandled
NullReferenceException that is thrown by the SimpleRepository class will interrupt the application and
pass execution control to the developer, as shown in Figure 6-11.

 ■ Tip if the debugger doesn’t intercept the exception, then select Windows ➤ exception settings from
the Visual studio debug menu and make sure that all the exception types in the Common language runtime
exceptions list are checked.

Setting a Breakpoint

The debugger doesn’t indicate the root cause of the problem, only where it manifested itself. The statement
that Visual Studio highlights indicates that the problem occurs when filtering the objects using LINQ, but a
little work is required to dig into the detail and get to the underlying cause.

A breakpoint is an instruction that tells the debugger to halt execution of the application and hand
control to the programmer. You can inspect the state of the application and see what is happening and,
optionally, resume execution again.

To create a breakpoint, right-click a code statement and select Breakpoint ➤ Insert Breakpoint from the
pop-up menu. As a demonstration, apply a breakpoint to the AddProduct method in the SimpleRepository
class, as shown in Figure 6-12.

Figure 6-11. Dealing with an unhandled exception

Chapter 6 ■ Working With Visual studio

144

Select Debug ➤ Start Debugging to start the application using the debugger or Debug ➤ Restart if the
application is already running. During the initial HTTP request from the browser, the SimpleRepository
class will be instantiated, and the execution of the code will reach the breakpoint, at which point execution
of the application will stop.

At this point, you can use the Visual Studio Debug menu items or the controls at the top of the window
to control execution of the application or use the different debugger views available through the Debug ➤
Windows menu to inspect the application state.

Viewing Data Values in the Code Editor

The most common use for breakpoints is to track down bugs in your code. Before you can fix a bug, you have
to figure out what is going on, and one of the most useful features that Visual Studio provides is the ability to
view and monitor the values of variables right in the code editor.

If you move the mouse over the p argument to the AddProduct method highlighted by the debugger, a
pop-up will appear that shows you the current value of p, as shown in Figure 6-13. It can be hard to make out
the pop-up, so I have shown a magnified version in the figure.

Figure 6-12. Creating a breakpoint

Chapter 6 ■ Working With Visual studio

145

This may not seem impressive since the data object is defined in the same constructor as the
breakpoint, but this feature works for any variable. You can explore values to see their property and
field values. Each value has a small pin button to its right that you can use to monitor a value when code
execution continues.

Hover the mouse over the p variable and pin the Product reference. Expand the pinned reference so
that you can also pin the Name and Price properties, creating the effect shown in Figure 6-14.

Figure 6-13. Inspecting a data value

Figure 6-14. Pinning values in the code editor

Chapter 6 ■ Working With Visual studio

146

Select Continue from the Visual Studio Debug menu to continue execution of the application. Since the
application is executing a foreach loop, execution will be halted again when the breakpoint is encountered
again. The pinned values show how the object assigned to the p variable and its properties change, as
illustrated by Figure 6-15.

Using the Locals Window

A related feature is the Locals window, which is opened by selecting the Debug ➤ Windows ➤ Locals menu
item. The Locals window displays data values in a similar way to pinning, but it displays all of the local
objects relative to the breakpoint, as shown in Figure 6-16.

Each time you select Continue, execution of the application will resume, and another object will
be processed by the foreach loop. If you keep going, you will see the null reference appear, both in the
Locals window and in the pinned values displayed in the code editor. By using the debugger to control the
execution of the application, you can follow the flow through your code and get a sense of what is going on.

I could fix the null reference problem by cleaning up the collection of Product objects, but an
alternative approach is to make the controller more robust, as shown in Listing 6-13, where I have applied
the null conditional operator to check for null values (as described in Chapter 4).

Listing 6-13. Fixing the null Reference Problem in the HomeController.cs File

using Microsoft.AspNetCore.Mvc;
using WorkingWithVisualStudio.Models;
using System.Linq;

namespace WorkingWithVisualStudio.Controllers {
 public class HomeController : Controller {

Figure 6-15. Monitoring state change using pinned values

Figure 6-16. The Locals window

http://dx.doi.org/10.1007/978-1-4842-3150-0_4

Chapter 6 ■ Working With Visual studio

147

 public IActionResult Index()
 => View(SimpleRepository.SharedRepository.Products
 .Where(p => p?.Price < 50));
 }
}

Disable the breakpoint by right-clicking the code statement to which it has been applied and selecting
Delete Breakpoint from the pop-up menu. Restart the application and you will see the simple data table
shown in Figure 6-17.

This is a simple problem to solve compared to the problems that require real bug hunting, but the
Visual Studio debugger is excellent, and by using the many different views of the application that are
available and controlling execution, you can really dig into the detail to figure out what is going wrong.

Using Browser Link
The Browser Link feature can simplify the development process by putting one or more browsers under the
control of Visual Studio. This feature is especially useful if you need to see the effect of changes on a range of
browsers. The Browser Link feature works with or without the debugger, but I find it most useful when using
the automatic class compilation feature because it means I can modify any file in the project and see the
effect of the change without having to switch to the browser and manually reload the page.

Setting Up Browser Link
Enabling Browser Link requires a configuration change to the Startup class, as shown in Listing 6-14.

Figure 6-17. Fixing the bug

Chapter 6 ■ Working With Visual studio

148

Listing 6-14. Enabling Browser Link in the Startup.cs File in the WorkingWithVisualStudio Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace WorkingWithVisualStudio {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Using Browser Link
To understand how Browser Link works, select Start Without Debugging from the Visual Studio Debug
menu. Visual Studio will start the application and open a new browser tab to display the results. Inspect the
HTML sent to the browser and you will see that it contains an additional section like this:

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Working with Visual Studio</title>
</head>
<body>
 <h3>Products</h3>
 <table>
 <thead>
 <tr><td>Name</td><td>Price</td></tr>
 </thead>
 <tbody>
 <tr><td>Lifejacket</td><td>£48.95</td></tr>
 <tr><td>Soccer ball</td><td>£19.50</td></tr>
 <tr><td>Corner flag</td><td>£34.95</td></tr>
 </tbody>
 </table>

Chapter 6 ■ Working With Visual studio

149

<!-- Visual Studio Browser Link -->
<script type="application/json" id="__browserLink_initializationData">
 {"requestId":"968949d8affc47c4a9c6326de21dfa03","requestMappingFromServer":false}
</script>
<script type="text/javascript"
 src="http://localhost:55356/d1a038413c804e178ef009a3be07b262/browserLink"
 async="async">
</script>
<!-- End Browser Link -->
</body>
</html>

 ■ Tip if you don’t see the additional section, select enable Browser link from the menu shown in Figure 6-18
and reload the browser.

Visual Studio adds a pair of script elements to the HTML sent to the browser, which are used to open
a long-lived HTTP connection back to the application server so that Visual Studio can force the browser to
reload the page. (If you don’t see the script elements, then make sure that Enable Browser Link is selected
in the menu shown in Figure 6-18.) Listing 6-15 shows a change to the Index view that will illustrate the
effect of using Browser Link.

Listing 6-15. Adding a Timestamp in the Index.cshtml File

@model IEnumerable<WorkingWithVisualStudio.Models.Product>
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Working with Visual Studio</title>
</head>
<body>
 <h3>Products</h3>
 <p>Request Time: @DateTime.Now.ToString("HH:mm:ss")</p>
 <table>
 <thead>
 <tr><td>Name</td><td>Price</td></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Name</td>
 <td>@($"{p.Price:C2}")</td>
 </tr>
 }
 </tbody>
 </table>
</body>
</html>

Chapter 6 ■ Working With Visual studio

150

Save the change to the view file and select Refresh Linked Browsers from the Browser Link menu on the
Visual Studio toolbar, as shown in Figure 6-18. (If Browser Link doesn’t work, try reloading the browser or
restarting Visual Studio and trying again.)

The JavaScript code embedded in the HTML sent to the browser will reload the page, showing the effect
of the addition, which is to add a simple timestamp. Each time you select the Visual Studio menu item, the
browser will make a new request to the server. The request will result in the Index view being rendered to
generate a new HTML page with an updated timestamp.

 ■ Note Browser link’s script elements are embedded only in successful responses, meaning that if an
exception is thrown when compiling a class, rendering a razor view, or handling a request, then the connection
between the browser and Visual studio is lost and you will have to reload the page using the browser once you
have resolved the problem.

Using Multiple Browsers
Browser Link can be used to display an application in multiple browsers simultaneously, which can be
useful when you want to iron out implementation differences between browsers or see how an application is
rendered on a mix of desktop and mobile browsers.

To pick the browsers that will be used, select Browse With from the IIS Express button on the Visual
Studio toolbar, as shown in Figure 6-19.

Figure 6-18. Using Browser Link to reload a browser

Chapter 6 ■ Working With Visual studio

151

Visual Studio displays a list of the browsers that it knows about. Figure 6-20 shows the browsers I have
installed on my system, some of which are installed with Windows (Internet Explorer and Edge) and others
that I install because they are in widespread use.

Figure 6-20. Picking browsers from the list

Figure 6-19. Selecting multiple browsers

Chapter 6 ■ Working With Visual studio

152

Visual Studio looks for common browsers during the installation process, but you can use the Add
button to set up browsers that were not discovered automatically. You can also set up third-party testing
tools like Browser Stack, which run browsers on cloud-hosted virtual machines so that you don’t have to
manage a large matrix of operating systems and browsers for testing.

I selected three browsers in the figure: Chrome, Internet Explorer, and Edge. Clicking the Browse button
starts all three browsers and causes them to load the example application’s URL, as shown in Figure 6-21.

You can see which browsers Browser Link is managing by selecting the Browser Link Dashboard menu
item, which opens the window shown in Figure 6-22. The dashboard shows the URL displayed by each
browser, and each browser can be refreshed individually.

Preparing JavaScript and CSS for Deployment
When you create the client-side part of a web application, you will usually create a number of custom
JavaScript and CSS files, which are used to supplement those in the packages installed by Bower. These
files require processing to optimize them for delivery in a production environment in order to minimize
the number of HTTP requests and the amount of network bandwidth required to deliver them to the client.
This process is known as bundling and minification. In this section, I explain how to enable delivery of static
content and how that content can be prepared for deployment.

Figure 6-21. Working with multiple browsers

Figure 6-22. The Browser Link Dashboard window

Chapter 6 ■ Working With Visual studio

153

Enabling Static Content Delivery
ASP.NET Core includes support for delivering static files from the wwwroot folder to clients, but it isn’t
enabled by default when the Empty template is used to create the project. Enable support for static content
by adding the statement shown in Listing 6-16 to the Startup class.

Listing 6-16. Enabling Static Content in the Startup.cs File in the Working WithVisualStudio Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace WorkingWithVisualStudio {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseBrowserLink();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Adding Static Content to the Project
To demonstrate the bundling and minification process, I need to add some static content to the project and
incorporate it into the example application. First, I created the wwwroot/css folder, which is the conventional
location for custom CSS files. I then added a file called first.css using the Style Sheet item template, as
shown in Figure 6-23. The Style Sheet template is found in the ASP.NET Core ➤ Web ➤ Content section.

Chapter 6 ■ Working With Visual studio

154

I edited the first.css file to add the CSS styles shown in Listing 6-17.

Listing 6-17. The Contents of the first.css File in the wwwroot/css Folder

h3 {
 font-size: 18pt;
 font-family: sans-serif;
}
table, td {
 border: 2px solid black;
 border-collapse:collapse;
 padding: 5px;
 font-family: sans-serif;
}

I repeated the process to create another style sheet called second.css in the wwwroot/css folder, with
the content shown in Listing 6-18.

Listing 6-18. The Contents of the second.css File in the wwwroot/css Folder

p {
 font-family: sans-serif;
 font-size: 10pt;
 color: darkgreen;
 background-color:antiquewhite;
 border: 1px solid black;
 padding: 2px;
}

Figure 6-23. Creating a CSS stylesheet

Chapter 6 ■ Working With Visual studio

155

Custom JavaScript files are conventionally stored in the wwwroot/js folder. I created this folder and used
the JavaScript File item template to create a file called third.js, as shown in Figure 6-24. The JavaScript File
template is in the ASP.NET Core ➤ Web ➤ Scripts section.

I added some simple JavaScript code to the new file, as shown in Listing 6-19.

Listing 6-19. The Contents of the third.js File in the wwwroot/js Folder

document.addEventListener("DOMContentLoaded", function () {
 var element = document.createElement("p");
 element.textContent = "This is the element from the third.js file";
 document.querySelector("body").appendChild(element);
});

I need one more JavaScript file. I created a file called fourth.js in the wwroot/js folder and added the
code shown in Listing 6-20.

Listing 6-20. The Contents of the fourth.js File in the wwwroot/js Folder

document.addEventListener("DOMContentLoaded", function () {
 var element = document.createElement("p");
 element.textContent = "This is the element from the fourth.js file";
 document.querySelector("body").appendChild(element);
});

Figure 6-24. Creating a JavaScript File

Chapter 6 ■ Working With Visual studio

156

Updating the View
The final preparatory step is to update the Index.cshtml view to use the new CSS stylesheets and JavaScript
files, as shown in Listing 6-21.

Listing 6-21. Adding script and link Elements to the Index.cshtml File in the Views/Home Folder

@model IEnumerable<WorkingWithVisualStudio.Models.Product>
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Working with Visual Studio</title>
 <link rel="stylesheet" href="css/first.css" />
 <link rel="stylesheet" href="css/second.css" />
 <script src="js/third.js"></script>
 <script src="js/fourth.js"></script>
</head>
<body>
 <h3>Products</h3>
 <p>Request Time: @DateTime.Now.ToString("HH:mm:ss")</p>
 <table>
 <thead>
 <tr><td>Name</td><td>Price</td></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Name</td>
 <td>@($"{p.Price:C2}")</td>
 </tr>
 }
 </tbody>
 </table>
</body>
</html>

If you run the example application, you will see the content shown in Figure 6-25. The existing content
has been styled by the CSS stylesheets, and the JavaScript code has added new content.

Chapter 6 ■ Working With Visual studio

157

Bundling and Minifying in MVC Applications
At the moment, there are four static files, and the browser has to make four requests in order to get the static
files. And each of those files requires more bandwidth than it should to be delivered to the client because
they contain whitespace and variable names that are meaningful to the developer but have no significance
to the browser.

Combining files of the same type is called bundling. Making files smaller is called minification. Both of
these tasks are performed in ASP.NET Core MVC applications by the Bundler & Minifier extension for Visual
Studio.

Installing the Visual Studio Extension
The first step is to install an extension. Select the Tools ➤ Extensions and Updates menu and click the Online
category to display the gallery of available Visual Studio extensions. Enter Bundler into the search box in the
top-right corner of the window, as shown in Figure 6-26. Locate the Bundler & Minifier extension and click
the Download button to add it to Visual Studio. Restart Visual Studio to complete the installation process.

Figure 6-25. Running the example application

Chapter 6 ■ Working With Visual studio

158

Bundling and Minifying Files
Once the extension has been installed, restart Visual Studio and open the example project. With the addition of the
extension, you can select multiple files of the same type in the Solution Explorer, bundle them together, and minify
their contents. As an example, select the first.css and second.css files in the Solution Explorer, right-click, and
then select Bundler & Minifier ➤ Bundle and Minify Files from the pop-up menu, as shown in Figure 6-27.

Figure 6-26. Finding the Visual Studio extension

Figure 6-27. Bundling and minifying CSS files

Chapter 6 ■ Working With Visual studio

159

Save the output file as bundle.css, and the extension will process the CSS files. The Solution Explorer
will show a new bundle.css item, which you can expand to reveal the minified file, called bundle.min.css.
If you open the minified file, you will see that the contents of both separate CSS files have been combined
and all of the whitespace has been removed. You won’t want to work directly with this file, but it is smaller
and requires only a single HTTP connection to deliver the CSS styles to the client.

Repeat the process with the third.js and fourth.js files in order to create new files called bundle.js
and bundle.min.js in the wwwroot/js folder.

 ■ Caution Make sure you select the files in the order in which they are loaded by the browser in order to
preserve the order of the styles or code statements in the output files. so, for example, ensure that you select
the third.js file before selecting the fourth.js file to ensure that the code is executed in the right order.

In Listing 6-22, I have replaced the link elements for the separate files with one that requests the
bundled and minified files in the Index.cshtml view.

Listing 6-22. Using the Bundled and Minified Files in the Index.cshtml File

@model IEnumerable<WorkingWithVisualStudio.Models.Product>
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Working with Visual Studio</title>
 <link rel="stylesheet" href="css/bundle.min.css" />
 <script src="js/bundle.min.js"></script>
</head>
<body>
 <h3>Products</h3>
 <p>Request Time: @DateTime.Now.ToString("HH:mm:ss")</p>
 <table>
 <thead>
 <tr><td>Name</td><td>Price</td></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Name</td>
 <td>@($"{p.Price:C2}")</td>
 </tr>
 }
 </tbody>
 </table>
</body>
</html>

Chapter 6 ■ Working With Visual studio

160

There isn’t any visual change if you run the application, but the bundled and minified files are used to
provide the browser with all the styles and code that were defined in the separate files.

As you perform bundling and minification operations, the extension keeps a record of the files that have
been processed in a file called bundleconfig.json in the root folder of the project. Here is the configuration
that was produced for the files in the example application:

[
 {
 "outputFileName": "wwwroot/css/bundle.css",
 "inputFiles": [
 "wwwroot/css/first.css",
 "wwwroot/css/second.css"
]
 },
 {
 "outputFileName": "wwwroot/js/bundle.js",
 "inputFiles": [
 "wwwroot/js/third.js",
 "wwwroot/js/fourth.js"
]
 }
]

The extension automatically monitors the input files for changes and regenerates the output files when
there are changes, ensuring that any edits you make are reflected in the bundled and minified files. To
demonstrate, Listing 6-23 shows a change to the third.js file.

Listing 6-23. Making a Change in the third.js File

document.addEventListener("DOMContentLoaded", function () {
 var element = document.createElement("p");
 element.textContent = "This is the element from the (modified) third.js file";
 document.querySelector("body").appendChild(element);
});

As soon as the file is saved, the extension regenerates the bundle.min.js file. If you reload the browser,
you will see the change shown in Figure 6-28.

Chapter 6 ■ Working With Visual studio

161

Summary
In this chapter, I described the features that Visual Studio provides for web application development,
including automatic class compilation, Browser Link, and bundling and minification. In the next chapter,
I explain how ASP.NET Core MVC projects lend themselves to unit testing.

Figure 6-28. Change detection in bundled and minified files

163© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_7

CHAPTER 7

Unit Testing MVC Applications

In this chapter, I demonstrate how to unit test MVC applications. Unit testing is a form of testing in which
individual components are isolated from the rest of the application so their behavior can be thoroughly
validated. ASP.NET Core MVC has been designed to make it easy to create unit tests, and Visual Studio
provides support for a wide range of unit testing frameworks. I show you how to set up a unit test project,
explain how to install one of the most popular testing frameworks, and describe the process for writing and
running tests. Table 7-1 summarizes the chapter.

DECIDING WHETHER TO UNIT TEST

Being able to easily perform unit testing is one of the benefits of using ASP.NET Core MVC, but it isn’t for
everyone, and I have no intention of pretending otherwise.

I like unit testing and I use it in my own projects, but not in all of them and not as consistently as you
might expect. I tend to focus on writing unit tests for features and functions that I know will be hard to
write and that are likely to be the source of bugs in deployment. In these situations, unit testing helps
structure my thoughts about how to best implement what I need. I find that just thinking about what I
need to test helps produce ideas about potential problems, and that’s before I start dealing with actual
bugs and defects.

That said, unit testing is a tool and not a religion, and only you know how much testing you require.
If you don’t find unit testing useful or if you have a different methodology that suits you better, then
don’t feel you need to unit test just because it is fashionable. (However, if you don’t have a better
methodology and you are not testing at all, then you are probably letting users find your bugs, which is
rarely ideal. You don’t have to unit test, but you really should consider doing some testing of some kind.)

If you have not encountered unit testing before, then I encourage you to give it a try and see how it
works. If you are not a fan unit testing, then you can skip this chapter and move on to Chapter 8, where
I start to build a more realistic MVC application.

https://doi.org/10.1007/978-1-4842-3150-0_7
http://dx.doi.org/10.1007/978-1-4842-3150-0_8

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

164

Preparing the Example Project
In this chapter, I continue to use the WorkingWithVisualStudio project that I created in Chapter 6. For this
chapter, I will add support for creating new Product objects in the repository.

Enabling the Built-in Tag Helpers
I use one of the built-in tag helpers in this chapter to set the href attribute of an anchor element. I explain
how tag helpers work in detail in Chapters 23, 24, and 25, but to simply enable them, I created a view imports
file by right-clicking the Views folder, selecting Add ➤ New Item from the pop-up menu, and choosing the
MVC View Imports Page item template from the ASP.NET category. Visual Studio automatically sets the
name of the file to _ViewImports.cshtml, and clicking the Add button created the file, which allowed me to
add the statements shown in Listing 7-1.

Listing 7-1. The Contents of the _ViewImports.cshtml File in the Views Folder

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

This statement enables the built-in tag helpers, including the one that I use in the Index view shortly.
I could add using statements to import namespaces from the projects, but the views are not important
parts of the example application in this chapter, and referring to model types with their namespaces isn’t a
problem.

Adding Actions to the Controller
The first step is to add actions to the Home controller that will render a view for entering data and for receiving
that data from the browser, as shown in Listing 7-2. These actions follow the same pattern that I used in
Chapter 2 and that I explain in detail in Chapter 17.

Listing 7-2. Adding Action Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using WorkingWithVisualStudio.Models;
using System.Linq;

Table 7-1. Chapter Summary

Problem Solution Listing

Create a unit test Create a unit test project, install a test package, and
add classes that contain tests

5, 6

Isolate components for unit
testing

Use interfaces to separate application components
and use fake implementations with restricted test data
in the unit tests

7–14

Run the same xUnit tests with
different data values

Use a parameterized unit test or get the test data from
a method or property

15–17

Simplify the process of creating
fake test objects

Use a mocking framework 18–19

http://dx.doi.org/10.1007/978-1-4842-3150-0_6
http://dx.doi.org/10.1007/978-1-4842-3150-0_23
http://dx.doi.org/10.1007/978-1-4842-3150-0_24
http://dx.doi.org/10.1007/978-1-4842-3150-0_25
http://dx.doi.org/10.1007/978-1-4842-3150-0_2
http://dx.doi.org/10.1007/978-1-4842-3150-0_17

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

165

namespace WorkingWithVisualStudio.Controllers {
 public class HomeController : Controller {

 SimpleRepository Repository = SimpleRepository.SharedRepository;

 public IActionResult Index() => View(Repository.Products
 .Where(p => p?.Price < 50));

 [HttpGet]
 public IActionResult AddProduct() => View(new Product());

 [HttpPost]
 public IActionResult AddProduct(Product p) {
 Repository.AddProduct(p);
 return RedirectToAction("Index");
 }
 }
}

Creating the Data Entry Form
To allow the user to create a new product, I created a Razor view called AddProduct.cshtml in the Views/
Home folder. This is the file name and location conventions that correspond to the default view rendered by
the AddProduct method in the Home controller. Listing 7-3 shows the contents of the new view, which relies
on the Bootstrap package that I added to the project using Bower in Chapter 6.

Listing 7-3. The Contents of the AddProduct.cshtml File in the Views/Home Folder

@model WorkingWithVisualStudio.Models.Product
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Working with Visual Studio</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.min.css" />
</head>
<body class="p-2">
 <h3 class="text-center">Create Product</h3>
 <form asp-action="AddProduct" method="post">
 <div class="form-group">
 <label asp-for="Name">Name:</label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Price">Price:</label>
 <input asp-for="Price" class="form-control" />
 </div>
 <div class="text-center">
 <button type="submit" class="btn btn-primary">Add</button>

http://dx.doi.org/10.1007/978-1-4842-3150-0_6

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

166

 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
 </form>
</body>
</html>

This view contains an HTML form that uses an HTTP POST request to send Name and Price values to the
AddProduct action on the Home controller. The content is styled using the Bootstrap CSS package.

Updating the Index View
The final preparatory step is to update the Index view so that it contains a link to the new form, as shown
in Listing 7-4. I have also taken the opportunity to remove the JavaScript files I used in the previous chapter
and to replace the custom CSS stylesheets with Bootstrap, which I have applied to the HTML elements in the
view.

Listing 7-4. Updating the Content in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<WorkingWithVisualStudio.Models.Product>
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Working with Visual Studio</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.min.css" />
</head>
<body class="p-1">
 <h3 class="text-center">Products</h3>
 <table class="table table-bordered table-striped">
 <thead>
 <tr><td>Name</td><td>Price</td></tr>
 </thead>
 <tbody>
 @foreach (var p in Model) {
 <tr>
 <td>@p.Name</td>
 <td>@($"{p.Price:C2}")</td>
 </tr>
 }
 </tbody>
 </table>
 <div class="text-center">

 Add New Product

 </div>
</body>
</html>

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

167

If you run the example, you will see the newly styled content and the Add New Product button, which
leads to the data entry form. Submitting the form will add a new Product object to the repository and
redirect the browser so that the initial application view is displayed, as shown in Figure 7-1.

 ■ Tip remember that the repository in this example stores its objects only in memory, which means that any
new products you create will be lost when the application is restarted.

Unit Testing MVC Applications
Unit tests are used to validate the behavior of individual components and features in an application, and
ASP.NET Core and the MVC framework have been designed to make it as easy as possible to set up and run
unit tests for web applications. In the sections that follow, I explain how to set up unit testing in Visual Studio
and demonstrate how to write unit tests for MVC applications. I also introduce some useful tools that make
unit testing simpler and more reliable.

There is a range of different unit test packages available. The one I use in this book is called xUnit.net;
I selected it because it integrates well with Visual Studio and because it is used by the Microsoft team to write
its unit tests for ASP.NET Core. Table 7-2 puts xUnit.net in context.

 ■ Note Just about everything in unit testing is a matter of personal preference and a subject of vociferous
disagreement. Some developers don’t like separating their unit tests from their application code and prefer to
define tests in the same project or even in the same class file. The approach I describe here is commonly used
and is the approach that I follow, but if it doesn’t feel right, you should experiment with different styles of testing
until you find something you like.

Figure 7-1. Running the example application

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

168

Creating a Unit Test Project
For ASP.NET Core applications, you generally create a separate Visual Studio project to hold the unit tests,
each of which is defined as a method in a C# class. Using a separate project means you can deploy your
application without also deploying the tests.

To create the test project, right-click the WorkingWithVisualStudio solution item in the Solution
Explorer and select Add ➤ New Project from the pop-up menu. Select the xUnit Test Project (.NET Core)
template from the Visual C# ➤ .NET Core category, as shown in Figure 7-2.

Table 7-2. Putting xUnit.net in Context

Question Answer

What is it? xUnit.net is a unit test framework that can be used to test ASP.NET Core MVC
applications.

Why is it useful? xUnit is a well-written test framework that integrates easily into Visual
Studio.

How is it used? Tests are defined as methods that are annotated with the Fact or Theory
attribute. Within the method body, methods defined by the Assert class are
used to compare the expected result of a test with what actually happened.

Are there any pitfalls or
limitations?

The main pitfall with unit testing is not effectively isolating the component
under test. See the “Isolating Components for Unit Testing” section for
more details. The biggest problem that is specific to xUnit.net is a lack of
documentation. There is some basic information available at http://xunit.
github.io, but advanced use requires some trial and error.

Are there any alternatives? Lots of test frameworks are available. Two popular alternatives are MSTest
(which comes from Microsoft) and NUnit.

Figure 7-2. Selecting the unit test project template

http://xunit.github.io/
http://xunit.github.io/

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

169

 ■ Caution Make sure you select the right project template. Visual Studio provides a number of templates for
unit test projects and they have similar names.

The convention is to name the unit test project <ApplicationName>.Tests. Set the name of the new
project to WorkingWithVisualStudio.Tests and click the OK button to create the new project. Visual Studio
will create the project and install the NuGet packages for xUnit and its dependencies.

Removing the Default Test Class
Visual Studio adds a C# class file to the test project, which will confuse the results of later examples. Right-
click the UnitTest1.cs file in the WorkingWithVisualStudio.Tests project and select Delete from the pop-
up menu. Click OK when prompted and Visual Studio will delete the class file.

Creating the Project Reference
To make the classes in the main project available for testing, right-click the WorkingWithVisualStudio.Tests
item in the Solution Explorer and select Add ➤ Reference from the pop-up menu.

Check the option for the WorkingWithVisualStudio item in the Solution section, as shown in Figure 7-3.

Click the OK button to create the reference to the application project. You may see a working icon
displayed on the Dependencies item for the test project in the Solution Explorer, but this will disappear once
you have built the projects.

Writing and Running Unit Tests
Now that all the preparation is complete, I can write some tests. To get started, I added a class file called
ProductTests.cs to the WorkingWithVisualStudio.Tests project and defined the class shown in Listing 7-5.
This is a simple class, but it contains everything required to get started with unit testing.

Figure 7-3. Creating a reference to the application project

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

170

 ■ Note The CanChangeProductPrice method contains a deliberate error that I resolve later in this section.

Listing 7-5. The Contents of the ProductTests.cs File in the WorkingWithVisualStudio.Tests Folder

using WorkingWithVisualStudio.Models;
using Xunit;

namespace WorkingWithVisualStudio.Tests {

 public class ProductTests {

 [Fact]
 public void CanChangeProductName() {

 // Arrange
 var p = new Product { Name = "Test", Price = 100M };

 // Act
 p.Name = "New Name";

 //Assert
 Assert.Equal("New Name", p.Name);
 }

 [Fact]
 public void CanChangeProductPrice() {

 // Arrange
 var p = new Product { Name = "Test", Price = 100M };

 // Act
 p.Price = 200M;

 //Assert
 Assert.Equal(100M, p.Price);
 }
 }
}

There are two unit tests in the ProductTests class, each of which tests a different behavior of the
Product model class from the WorkingWithVisualStudio project. A test project can contain many classes,
each of which can contain many unit tests.

Conventionally, the name of the test methods describes what the test does, and the name of the class
describes what is being tested. This makes it easier to structure the tests in a project and to understand what
the results of all the tests are when they are run by Visual Studio. The name ProductTests indicates that the
class contains tests for the Product class, and the method names indicate that they test the ability to change
the name and price of a Product object.

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

171

The Fact attribute is applied to each method to indicate that it is a test. Within the method body, a
unit test follows a pattern called arrange, act, assert (A/A/A). Arrange refers to setting up the conditions for
the test, act refers to performing the test, and assert refers to verifying that the result was the one that was
expected.

The arrange and act sections of these tests are regular C# code, but the assert section is handled by
xUnit.net, which provides a class called Assert, whose methods are used to check that the outcome of an
action is the one that is expected.

 ■ Tip The Fact attribute and the Asset class are defined in the Xunit namespace, for which there must be
a using statement in every test class.

The methods of the Assert class are static and are used to perform different kinds of comparison
between the expected and actual results. Table 7-3 shows the most commonly used Assert methods.

Table 7-3. Commonly Used xUnit.net Assert Methods

Name Description

Equal(expected, result) This method asserts that the result is equal to the expected
outcome. There are overloaded versions of this method for
comparing different types and for comparing collections. There is
also a version of this method that accepts an additional argument
of an object that implements the IEqualityComparer<T> interface
for comparing objects.

NotEqual(expected, result) This method asserts that the result is not equal to the expected
outcome.

True(result) This method asserts that the result is true.

False(result) This method asserts that the result is false.

IsType(expected, result) This method asserts that the result is of a specific type.

IsNotType(expected, result) This method asserts that the result is not a specific type.

IsNull(result) This method asserts that the result is null.

IsNotNull(result) This method asserts that the result is not null.

InRange(result, low, high) This method asserts that the result falls between low and high.

NotInRange(result, low, high) This method asserts that the result falls outside low and high.

Throws(exception, expression) This method asserts that the specified expression throws a
specific exception type.

Each Assert method allows different types of comparison to be made and throws an exception if the result
is not what was expected. The exception is used to indicate that a test has failed. In the tests in Listing 7-5,
I used the Equal method to determine whether the value of a property has been changed correctly.

...
Assert.Equal("New Name", p.Name);
...

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

172

Running Tests with the Test Explorer
Visual Studio includes support for finding and running unit tests through the Test Explorer window, which is
available through the Test ➤ Windows ➤ Test Explorer menu and which is shown in Figure 7-4.

 ■ Tip Build the solution if you don’t see the unit tests in the Test Explorer window. Compilation triggers the
process by which unit tests are discovered.

Run the tests by clicking Run All in the Test Explorer window. Visual Studio will use xUnit.net to run the tests
in the project and display the results. As noted, the CanChangeProductPrice test contains an error that causes the
test to fail. The problem is with the arguments to the Assert.Equal method, which compares the test result to the
original Price property value rather than the value it has been changed to. Listing 7-6 corrects the problem.

 ■ Tip When a test fails, it is always a good idea to check the accuracy of the test before looking at the
component it targets, especially if the test is new or has been recently modified.

Listing 7-6. Correcting a Test in the ProductTests.cs File

using WorkingWithVisualStudio.Models;
using Xunit;

namespace WorkingWithVisualStudio.Tests {

 public class ProductTests {

 [Fact]
 public void CanChangeProductName() {

Figure 7-4. The Visual Studio Test Explorer

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

173

 // Arrange
 var p = new Product { Name = "Test", Price = 100M };

 // Act
 p.Name = "New Name";

 //Assert
 Assert.Equal("New Name", p.Name);
 }

 [Fact]
 public void CanChangeProductPrice() {

 // Arrange
 var p = new Product { Name = "Test", Price = 100M };

 // Act
 p.Price = 200M;

 //Assert
 Assert.Equal(200M, p.Price);
 }
 }
}

If you have a lot of tests, it can take a while for them all to be performed. So that you can work rapidly
and iteratively, the Test Explorer window offers different options for selecting subsets of tests to perform. The
most useful subset is the set of tests that have failed, as shown in Figure 7-5. Run the corrected test again and
the Test Explorer will show that no tests have failed.

Figure 7-5. Selectively running tests

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

174

Isolating Components for Unit Testing
Writing unit tests for model classes like Product is easy. Not only is the Product class simple, but it is self-
contained, which means that when I perform an action on a Product object, I can be confident that I am
testing the functionality provided by the Product class.

The situation is more complicated with other components in an MVC application because there are
dependencies between them. The next set of tests that I define will operate on the controller, examining the
sequence of Product objects that are passed between the controller and the view.

When comparing objects instantiated from custom classes, you will need to use the xUnit.net Assert.
Equal method that accepts an argument that implements the IEqualityComparer<T> interface so that the
objects can be compared. My first step is to add a class file called Comparer.cs to the unit test project and
use it to define the helper classes shown in Listing 7-7.

Listing 7-7. The Contents of the Comparer.cs File in the WorkingWithVisualStudio.Tests Folder

using System;
using System.Collections.Generic;

namespace WorkingWithVisualStudio.Tests {

 public class Comparer {

 public static Comparer<U> Get<U>(Func<U, U, bool> func) {
 return new Comparer<U>(func);
 }
 }

 public class Comparer<T> : Comparer, IEqualityComparer<T> {
 private Func<T, T, bool> comparisonFunction;

 public Comparer(Func<T, T, bool> func) {
 comparisonFunction = func;
 }

 public bool Equals(T x, T y) {
 return comparisonFunction(x, y);
 }

 public int GetHashCode(T obj) {
 return obj.GetHashCode();
 }
 }
}

These classes will allow me to create IEqualityComparer<T> objects using lambda expressions rather
than having to define a new class for each type of comparison that I want to make. This isn’t essential, but it
will simplify the code in my unit test classes and make them easier to read and maintain.

Now that I can easily make comparisons, I can illustrate the problem of dependencies between
components in the application. I added a new class called HomeControllerTests.cs to the WorkingWith
VisualStudio.Tests project and used it to define the unit test shown in Listing 7-8.

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

175

Listing 7-8. The HomeControllerTests.cs File in the WorkingWithVisualStudio.Tests Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using WorkingWithVisualStudio.Controllers;
using WorkingWithVisualStudio.Models;
using Xunit;

namespace WorkingWithVisualStudio.Tests {
 public class HomeControllerTests {

 [Fact]
 public void IndexActionModelIsComplete() {
 // Arrange
 var controller = new HomeController();

 // Act
 var model = (controller.Index() as ViewResult)?.ViewData.Model
 as IEnumerable<Product>;

 // Assert
 Assert.Equal(SimpleRepository.SharedRepository.Products, model,
 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name
 && p1.Price == p2.Price));
 }
 }
}

The unit test in the listing checks that the Index action method passes all the objects in the repository
to the view. (Ignore the act section of the test for the moment; I explain the ViewResult class and the role it
plays in MVC applications in Chapter 17. For the moment, it is enough to know that I am getting the model
data returned by the Index action method.)

If you run the test, you will see that it fails, indicating that the set of objects in the repository differs
from the set of objects returned by the Index method. But when it comes to figuring out why the test fails,
there is a problem: the test is supposed to act on the Home controller, but the controller class depends on the
SimpleRepository class, which makes it difficult to figure out whether the test is revealing a problem with
the class it is intended to target or a problem with another part of the application.

The example application is simple enough that you could easily figure out the problem just by looking
at the code for the HomeController and SimpleRepository classes. Visual inspection isn’t as easy in a real
application, where the chain of dependencies can make it difficult to understand what causes a test to fail.
Typically, the repository would rely on some kind of persistent storage system, such as a database, and a
library that provides access to it, and a unit test can act on a whole chain of complex components, any of
which could be causing the problem.

Unit tests are effective when they target small parts of an application, such as an individual method
or class. What I need is the ability to isolate the Home controller from the rest of the application so that I can
limit the scope of the test and rule out any impact caused by the repository.

Isolating a Component
The key to isolating components is to use C# interfaces. To separate the controller from the repository, I
added a new class file called IRepository.cs to the Models folder and used it to define the interface shown
in Listing 7-9.

http://dx.doi.org/10.1007/978-1-4842-3150-0_17

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

176

Listing 7-9. The Contents of the IRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace WorkingWithVisualStudio.Models {

 public interface IRepository {

 IEnumerable<Product> Products { get; }
 void AddProduct(Product p);
 }
}

There is nothing special about this interface (except that it doesn’t define the full set of operations that
would usually be needed in a web application; see Chapter 8 for a more realistic and complete example).
However, adding an interface like this allows me to easily isolate a component for testing. The first step is to
update the SimpleRepository class so that it implements the new interface, as shown in Listing 7-10.

Listing 7-10. Implementing an Interface in the SimpleRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace WorkingWithVisualStudio.Models {
 public class SimpleRepository : IRepository {
 private static SimpleRepository sharedRepository = new SimpleRepository();
 private Dictionary<string, Product> products
 = new Dictionary<string, Product>();

 public static SimpleRepository SharedRepository => sharedRepository;

 public SimpleRepository() {
 var initialItems = new[] {
 new Product { Name = "Kayak", Price = 275M },
 new Product { Name = "Lifejacket", Price = 48.95M },
 new Product { Name = "Soccer ball", Price = 19.50M },
 new Product { Name = "Corner flag", Price = 34.95M }
 };
 foreach (var p in initialItems) {
 AddProduct(p);
 }
 products.Add("Error", null);
 }

 public IEnumerable<Product> Products => products.Values;

 public void AddProduct(Product p) => products.Add(p.Name, p);
 }
}

The next step is to modify the controller so that the property used to refer to the repository uses the
interface and not the class type, as shown in Listing 7-11.

http://dx.doi.org/10.1007/978-1-4842-3150-0_8

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

177

 ■ Tip ASP.NET Core MVC supports a more elegant approach for solving this problem, known as dependency
injection, which I describe in Chapter 18. Dependency injection often causes confusion, so I isolate components
in a simpler and more manual way in this chapter.

Listing 7-11. Adding a Repository Property in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using WorkingWithVisualStudio.Models;
using System.Linq;

namespace WorkingWithVisualStudio.Controllers {
 public class HomeController : Controller {
 public IRepository Repository = SimpleRepository.SharedRepository;

 public IActionResult Index() => View(Repository.Products
 .Where(p => p?.Price < 50));

 [HttpGet]
 public IActionResult AddProduct() => View();

 [HttpPost]
 public IActionResult AddProduct(Product p) {
 Repository.AddProduct(p);
 return RedirectToAction("Index");
 }
 }
}

This may not seem like a significant change, but it allows me to change the repository that the controller
uses during testing, which is how I can isolate the controller. In Listing 7-12, I have updated the controller
unit tests so they use a special version of the repository.

Listing 7-12. Isolating the Controller in the Unit Test in the HomeControllerTests.cs File

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using WorkingWithVisualStudio.Controllers;
using WorkingWithVisualStudio.Models;
using Xunit;

namespace WorkingWithVisualStudio.Tests {
 public class HomeControllerTests {

 class ModelCompleteFakeRepository : IRepository {

 public IEnumerable<Product> Products { get; } = new Product[] {
 new Product { Name = "P1", Price = 275M },
 new Product { Name = "P2", Price = 48.95M },
 new Product { Name = "P3", Price = 19.50M },
 new Product { Name = "P3", Price = 34.95M }};

http://dx.doi.org/10.1007/978-1-4842-3150-0_18

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

178

 public void AddProduct(Product p) {
 // do nothing - not required for test
 }
 }

 [Fact]
 public void IndexActionModelIsComplete() {
 // Arrange
 var controller = new HomeController();
 controller.Repository = new ModelCompleteFakeRepository();

 // Act
 var model = (controller.Index() as ViewResult)?.ViewData.Model
 as IEnumerable<Product>;

 // Assert
 Assert.Equal(controller.Repository.Products, model,
 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name
 && p1.Price == p2.Price));
 }
 }
}

I have defined a fake implementation of the IRepository interface that implements only the property I
need for the test and uses test data that will always be consistent (something that may not be the case when
working with a real database, especially if you are sharing it with other developers who will be making their
own changes).

The revised unit test still fails, which indicates that the problem is caused by the Index action method in
the HomeController class and not the components it depends on. The action method that is being acted on
by the unit test is sufficiently simple that the problem is obvious from inspecting it.

...
public IActionResult Index() => View(Repository.Products.Where(p => p.Price < 50));
...

The problem is caused by the use of the LINQ Where method, which is being used to filter out any
Product objects whose Price property has a value of 50 or more. At this point, I have a solid lead as to the
cause of the problem, but it is good practice to create a test that confirms the problem before making a
corrective change, as shown in Listing 7-13.

 ■ Tip There is a lot of duplication in these tests. I describe how to simplify tests in the next section.

Listing 7-13. Adding a Test to HomeControllerTests.cs in the WorkingWithVisualStudio.Tests Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using WorkingWithVisualStudio.Controllers;
using WorkingWithVisualStudio.Models;
using Xunit;

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

179

namespace WorkingWithVisualStudio.Tests {
 public class HomeControllerTests {

 class ModelCompleteFakeRepository : IRepository {

 public IEnumerable<Product> Products { get; } = new Product[] {
 new Product { Name = "P1", Price = 275M },
 new Product { Name = "P2", Price = 48.95M },
 new Product { Name = "P3", Price = 19.50M },
 new Product { Name = "P3", Price = 34.95M }};

 public void AddProduct(Product p) {
 // do nothing - not required for test
 }
 }

 [Fact]
 public void IndexActionModelIsComplete() {
 // Arrange
 var controller = new HomeController();
 controller.Repository = new ModelCompleteFakeRepository();

 // Act
 var model = (controller.Index() as ViewResult)?.ViewData.Model
 as IEnumerable<Product>;

 // Assert
 Assert.Equal(controller.Repository.Products, model,
 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name
 && p1.Price == p2.Price));
 }

 class ModelCompleteFakeRepositoryPricesUnder50 : IRepository {

 public IEnumerable<Product> Products { get; } = new Product[] {
 new Product { Name = "P1", Price = 5M },
 new Product { Name = "P2", Price = 48.95M },
 new Product { Name = "P3", Price = 19.50M },
 new Product { Name = "P3", Price = 34.95M }};

 public void AddProduct(Product p) {
 // do nothing - not required for test
 }
 }

 [Fact]
 public void IndexActionModelIsCompletePricesUnder50() {
 // Arrange
 var controller = new HomeController();
 controller.Repository = new ModelCompleteFakeRepositoryPricesUnder50();

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

180

 // Act
 var model = (controller.Index() as ViewResult)?.ViewData.Model
 as IEnumerable<Product>;

 // Assert
 Assert.Equal(controller.Repository.Products, model,
 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name
 && p1.Price == p2.Price));
 }
 }
}

I have defined a new fake repository that only contains Product objects with Price values that are less
than 50 and used it in a new test. If you run this test, you will see that it succeeds, which adds weight to the
idea that the problem is caused by the use of the Where method in the Index action method.

In a real project, understanding why a test fails is the point at which you need to reconcile the purpose
of the test with the specification for the application. It may well be the case that the Index method is
supposed to filter Product objects by Price, in which case the test will need to be revised. This is a common
outcome, and a failed test doesn’t always indicate a real problem in the application. On the other hand, if the
Index action method shouldn’t be filtering the model objects, then a corrective change is required, as shown
in Listing 7-14.

I have followed the most commonly used unit testing style in this chapter, in which an application
feature is written and then tested to make sure it works as required. This is popular because most
developers think about application code first and testing comes second (this is certainly the category
that I fall into).

The problem with this approach is that it tends to produce unit tests that focus only on the parts of
the application code that were difficult to write or that needed some serious debugging, leaving some
aspects of a feature only partially tested or untested altogether.

An alternative approach is Test-Driven Development (TDD). There are lots of variations on TDD, but
the core idea is that you write the tests for a feature before implementing the feature itself. Writing the
tests first makes you think more carefully about the specification you are implementing and how you
will know that a feature has been implemented correctly. rather than diving into the implementation
detail, TDD makes you consider what the measures of success or failure will be in advance.

The tests that you write will all fail initially because your new feature will not be implemented. But as
you add code to the application, your tests will gradually move from red to green and all of your tests
will pass by the time that the feature is complete. TDD requires discipline, but it does produce a more
comprehensive set of tests and can lead to more robust and reliable code.

UNDERSTANDING TEST-DRIVEN DEVELOPMENT

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

181

Listing 7-14. Removing the LINQ Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using WorkingWithVisualStudio.Models;
using System.Linq;

namespace WorkingWithVisualStudio.Controllers {
 public class HomeController : Controller {
 public IRepository Repository = SimpleRepository.SharedRepository;

 public IActionResult Index() => View(Repository.Products);

 [HttpGet]
 public IActionResult AddProduct() => View(new Product());

 [HttpPost]
 public IActionResult AddProduct(Product p) {
 Repository.AddProduct(p);
 return RedirectToAction("Index");
 }
 }
}

If you run the tests again, you will see that they all pass, as shown in Figure 7-6.

Figure 7-6. Passing all tests

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

182

This may seem like a lot of work to go to for such a simple problem, but the ability to test a specific
component is essential in a real application. Reaching the point where you have identified the problem and
have written tests to validate the fix is possible only when you can effectively isolate components.

Improving Unit Tests
The previous section introduced the basic approach to writing unit tests and running tests in Visual
Studio and emphasized the importance of isolating the component that is being tested. In this section, I
will introduce some more advanced tools and features that you can use to write tests more concisely and
expressively. If you get immersed in the culture of unit testing, then you can end up with a lot of test code
and the clarity of that code becomes important, especially as you will need to revise tests to reflect changes
in the application they apply to during development and into maintenance.

Parameterizing a Unit Test
The tests I wrote for the HomeController class revealed a problem that was present only for some data
values. To test for this condition, I ended up creating two similar tests, each of which had its own fake
repository. This is a duplicative approach, especially since the only difference between these tests is the set
of decimal values used for the Price properties of the Product objects in the fake repositories.

xUnit.net provides supports for parameterized tests, where the data used in a test is removed from the
test so that a single method can be used for multiple tests. In Listing 7-15, I have used the parameterized test
feature to remove duplication in tests for the HomeController class.

Listing 7-15. Parameterizing a Unit Test in the HomeControllerTests.cs File in the Tests Project

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using WorkingWithVisualStudio.Controllers;
using WorkingWithVisualStudio.Models;
using Xunit;

namespace WorkingWithVisualStudio.Tests {
 public class HomeControllerTests {

 class ModelCompleteFakeRepository : IRepository {

 public IEnumerable<Product> Products { get; set; }

 public void AddProduct(Product p) {
 // do nothing - not required for test
 }
 }

 [Theory]
 [InlineData(275, 48.95, 19.50, 24.95)]
 [InlineData(5, 48.95, 19.50, 24.95)]
 public void IndexActionModelIsComplete(decimal price1, decimal price2,
 decimal price3, decimal price4) {

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

183

 // Arrange
 var controller = new HomeController();
 controller.Repository = new ModelCompleteFakeRepository {
 Products = new Product[] {
 new Product {Name = "P1", Price = price1 },
 new Product {Name = "P2", Price = price2 },
 new Product {Name = "P3", Price = price3 },
 new Product {Name = "P4", Price = price4 },
 }
 };

 // Act
 var model = (controller.Index() as ViewResult)?.ViewData.Model
 as IEnumerable<Product>;

 // Assert
 Assert.Equal(controller.Repository.Products, model,
 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name
 && p1.Price == p2.Price));
 }
 }
}

Parameterized unit tests are denoted with the Theory attribute rather than the Fact attribute that is
used for standard tests. I have also used the InlineData attribute, which allows me to specify values for
arguments defined by the unit test method. C# restricts the way that data values are expressed in attributes,
so I have defined four decimal arguments on the test method and used the InlineData attribute to provide
values for them. I use the decimal values within the test method to generate an array of Product objects,
which I use to set the Products property of the fake repository object.

Each Inline attribute defines a separate unit test that is shown as a distinct item in the Visual Studio
Test Explorer, as Figure 7-7 illustrates. The Test Explorer entry reveals the values that will be used for the unit
test method arguments.

Getting Test Data from a Method or Property
The limitations imposed on expressing data in attributes restrict the usefulness of the InlineData attribute,
but an alternative approach is to create a static method or property that returns the object required for
testing. In this situation, there are no restrictions on the way that data is defined, and you can create a wider
range of test values. To demonstrate how this works, I added a class file called ProductTestData.cs to the
unit test project and used it to define the class shown in Listing 7-16.

Figure 7-7. Parameterized tests in the Visual Studio Test Explorer

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

184

Listing 7-16. The Contents of the ProductTestData.cs File in the WorkingWithVisualStudio.Tests Folder

using System.Collections;
using System.Collections.Generic;
using WorkingWithVisualStudio.Models;

namespace WorkingWithVisualStudio.Tests {

 public class ProductTestData : IEnumerable<object[]> {

 public IEnumerator<object[]> GetEnumerator() {
 yield return new object[] { GetPricesUnder50() };
 yield return new object[] { GetPricesOver50 };
 }

 IEnumerator IEnumerable.GetEnumerator() {
 return this.GetEnumerator();
 }

 private IEnumerable<Product> GetPricesUnder50() {
 decimal[] prices = new decimal[] { 275, 49.95M, 19.50M, 24.95M };
 for (int i = 0; i < prices.Length; i++) {
 yield return new Product { Name = $"P{i + 1}", Price = prices[i] };
 }
 }

 private Product[] GetPricesOver50 => new Product[] {
 new Product { Name = "P1", Price = 5 },
 new Product { Name = "P2", Price = 48.95M },
 new Product { Name = "P3", Price = 19.50M },
 new Product { Name = "P4", Price = 24.95M }};
 }
}

Test data is provided through a class that implemented the IEnumerable<object[]> interface, which
returns a sequence of object arrays. Each object array in the sequence contains one set of arguments that
will be passed to a test method. I am going to redefine my test method so that it accepts an array of Product
objects, which adds another layer to the test data. The layer is an enumeration of object arrays, each of which
contains a single array of Product objects. This depth of structure in the test data can be confusing, but it is
important to get right because your tests won’t work if the number of arguments that Xunit.net tries to pass
to the test method doesn’t match the method signature.

I like to structure my test data classes so that private methods or properties define individual sets
of test data, which is then combined into sequences of object arrays by the GetEnumerator method. To
demonstrate different techniques, I have created arrays of Product objects using both a method and a
property, but I tend to use one approach in my own projects (the choice of which is driven by the kind of
data that I am testing with). Listing 7-17 shows how I can use the test data class with the Theory attribute to
set up my tests.

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

185

 ■ Tip If you want to include the test data in the same class as the unit tests, then you can use the
MemberData attribute instead of ClassData. The MemberData attribute is configured using a string that specifies
the name of a static method that will provide an IEnumerable<object[]>, where each object array in the
sequence is a set of arguments for the test method.

Listing 7-17. Using a Test Data Class in the HomeControllerTests.cs File in the Tests Project

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using WorkingWithVisualStudio.Controllers;
using WorkingWithVisualStudio.Models;
using Xunit;

namespace WorkingWithVisualStudio.Tests {
 public class HomeControllerTests {

 class ModelCompleteFakeRepository : IRepository {

 public IEnumerable<Product> Products { get; set; }

 public void AddProduct(Product p) {
 // do nothing - not required for test
 }
 }

 [Theory]
 [ClassData(typeof(ProductTestData))]
 public void IndexActionModelIsComplete(Product[] products) {
 // Arrange
 var controller = new HomeController();
 controller.Repository = new ModelCompleteFakeRepository {
 Products = products
 };

 // Act
 var model = (controller.Index() as ViewResult)?.ViewData.Model
 as IEnumerable<Product>;

 // Assert
 Assert.Equal(controller.Repository.Products, model,
 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name
 && p1.Price == p2.Price));
 }
 }
}

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

186

The ClassData attribute is configured with the type of the test data class, which is ProductTestData in
this case. When the tests are run, Xunit.net will create a new instance of the ProductTestData class and use
it to get the sequence of test data for the test.

 ■ Note If you look at the list of tests in the Test Explorer, you will see that there is a single entry for the
IndexActionModelIsComplete tests, even though the ProductTestData class provides two sets of test
data. This happens when the test data objects cannot be serialized and can be resolved by applying the
Serializable attribute to the test objects.

Improving Fake Implementations
Isolating components effectively requires fake implementations of classes to provide test data or to check
that a component behaves the way it should. In previous examples, I created a class that implemented the
IRepository interface. This can be an effective approach, but it does lead to creating implementation classes
for every kind of test you want to run. As an example, Listing 7-18 shows the addition of a test that checks
that the Index action method calls the Products method in the repository only once. (This kind of test is
common when there is concern that a component is making duplicate queries to the repository, leading to
multiple database queries.)

Listing 7-18. Adding a Unit Test to the HomeControllerTests.cs File in the Tests Folder

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using WorkingWithVisualStudio.Controllers;
using WorkingWithVisualStudio.Models;
using Xunit;
using System;

namespace WorkingWithVisualStudio.Tests {
 public class HomeControllerTests {

 class ModelCompleteFakeRepository : IRepository {

 public IEnumerable<Product> Products { get; set; }

 public void AddProduct(Product p) {
 // do nothing - not required for test
 }
 }

 [Theory]
 [ClassData(typeof(ProductTestData))]
 public void IndexActionModelIsComplete(Product[] products) {
 // Arrange
 var controller = new HomeController();
 controller.Repository = new ModelCompleteFakeRepository {
 Products = products
 };

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

187

 // Act
 var model = (controller.Index() as ViewResult)?.ViewData.Model
 as IEnumerable<Product>;

 // Assert
 Assert.Equal(controller.Repository.Products, model,
 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name
 && p1.Price == p2.Price));
 }

 class PropertyOnceFakeRepository : IRepository {
 public int PropertyCounter { get; set; } = 0;

 public IEnumerable<Product> Products {
 get {
 PropertyCounter++;
 return new[] { new Product { Name = "P1", Price = 100 } };
 }
 }

 public void AddProduct(Product p) {
 // do nothing - not required for test
 }
 }

 [Fact]
 public void RepositoryPropertyCalledOnce() {
 // Arrange
 var repo = new PropertyOnceFakeRepository();
 var controller = new HomeController { Repository = repo };

 // Act
 var result = controller.Index();

 // Assert
 Assert.Equal(1, repo.PropertyCounter);
 }
 }
}

Fake implementations are not always simple sources of data; they can also be used to assess the way
that components perform their work. In this case, I added a simple counter property that is incremented
each time that the Products property of the fake repository is read, and I used the Assert.Equal method to
make sure that the property is called only once.

Adding a Mocking Framework
Creating fake objects like this gets out of hand, and the best way to get things back under control is to
use a fakes framework, also known as a mocking framework. (There is a technical difference between
fake and mock objects, but modern test tools blur them together for ease of use, so I will use these terms
interchangeably.) The framework I use in this chapter is called Moq and is described in Table 7-4.

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

188

To install Moq, right-click the WorkingWithVisualStudio.Tests project in the Solution Explorer and select
Manage NuGet Packages from the pop-up menu. Click on Browse and enter Moq into the search box. Select
Moq from the list of packages, as shown in Figure 7-8, and click Install to add the package to the project.

 ■ Note The Moq package is added to the unit test project and not the application project.

Table 7-4. Putting Moq in Context

Question Answer

What is it? Moq is a software package for creating fake implementations of
components in an application.

Why is it useful? A mocking framework makes it easier to create fake components to
isolate parts of the application for unit testing.

How is it used? Moq uses lambda expressions to define functionality for the fake
component and only requires the features that are used for testing
to be defined.

Are there any pitfalls or limitations? Getting used to the syntax can take some effort. See https://
github.com/Moq/moq4 for documentation and examples.

Are there any alternatives? There are several alternatives frameworks available including
NSubstitute (http://nsubstitute.github.io) and FakeItEasy
(http://fakeiteasy.github.io). All of these frameworks offer
similar features, and choosing between them is a matter of selecting
the syntax that you prefer.

Figure 7-8. Adding a package to the unit test project

https://github.com/Moq/moq4
https://github.com/Moq/moq4
http://nsubstitute.github.io/
http://fakeiteasy.github.io/

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

189

Close the NuGet package management window once Visual Studio has installed the Moq package.

Creating a Mock Object
Creating a mock object means telling Moq what kind of object you want, configuring its behavior, and
applying the object to the subject of the test. In Listing 7-19, I have used Moq to replace the two fake
repositories in the tests for the HomeController.

Listing 7-19. Using Mock Objects in the HomeControllerTests.cs File

using Microsoft.AspNetCore.Mvc;
using System.Collections.Generic;
using WorkingWithVisualStudio.Controllers;
using WorkingWithVisualStudio.Models;
using Xunit;
using System;
using Moq;

namespace WorkingWithVisualStudio.Tests {
 public class HomeControllerTests {

 [Theory]
 [ClassData(typeof(ProductTestData))]
 public void IndexActionModelIsComplete(Product[] products) {

 // Arrange
 var mock = new Mock<IRepository>();
 mock.SetupGet(m => m.Products).Returns(products);
 var controller = new HomeController { Repository = mock.Object };

 // Act
 var model = (controller.Index() as ViewResult)?.ViewData.Model
 as IEnumerable<Product>;

 // Assert
 Assert.Equal(controller.Repository.Products, model,
 Comparer.Get<Product>((p1, p2) => p1.Name == p2.Name
 && p1.Price == p2.Price));
 }

 [Fact]
 public void RepositoryPropertyCalledOnce() {

 // Arrange
 var mock = new Mock<IRepository>();
 mock.SetupGet(m => m.Products)
 .Returns(new[] { new Product { Name = "P1", Price = 100 } });
 var controller = new HomeController { Repository = mock.Object };

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

190

 // Act
 var result = controller.Index();

 // Assert
 mock.VerifyGet(m => m.Products, Times.Once);
 }
 }
}

The use of Moq has allowed me to remove the fake implementations of the IRepository interface and
replace them with just a few lines of code. I am not going to go into detail about the different features that
Moq supports, but I will explain the way that I used Moq in the examples. (See https://github.com/Moq/
moq4 for examples and documentation for Moq. There are also examples in later chapters as I explain how to
unit test different types of MVC component.)

The first step is to create a new instance of the Mock object, specifying the interface that should be
implemented, like this:

...
var mock = new Mock<IRepository>();
...

The Mock object I created will fake the IRepository interface. The next step is to define the functionality
that is required for the test. Unlike a regular class implementation of an interface, a mock object is only
configured with the behavior required for the test. For the first mock repository, I need to implement the
Product property so that it returns the set of Product objects that are passed to the test method through the
ClassData attribute, as follows:

...
mock.SetupGet(m => m.Products).Returns(products);
...

The SetupGet method is used to implement the getter for a property. The argument to this method is
a lambda expression that specifies the property to be implemented, which is Products in this example. The
Returns method is called on the result of the SetupGet method to specify the result that will be returned
when the property value is read. I used the same approach for the second mock repository but specified a
fixed value, like this:

...
mock.SetupGet(m => m.Products)
 .Returns(new[] { new Product { Name = "P1", Price = 100 } });
...

The Mock class defines an Object property, which returns the object that implements the specified
interface and with the behaviors that have been defined. In both unit tests, I use the Object property to get
the repository to configure the controller, like this:

...
var controller = new HomeController { Repository = mock.Object };
...

https://github.com/Moq/moq4
https://github.com/Moq/moq4

CHAPTEr 7 ■ UNIT TESTINg MVC APPlICATIoNS

191

The final Moq feature I used was to check that the Products property was called once, like this:

...
mock.VerifyGet(m => m.Products, Times.Once);
...

The VerifyGet method is one of the methods defined by the Mock class to inspect the state of the mock
object when the test has completed. In this case, the VerifyGet method allows me to check the number of
times that the Products property method has been read. The Times.Once value specifies that the VerifyGet
method should throw an exception if the property has not been read exactly once, which will cause the test
to fail. (The Assert methods usually used in tests work by throwing an exception when a test fails, which is
why the VerifyGet method can be used to replace an Assert method when working with mock objects.)

Summary
This chapter focused on unit testing, which can be a powerful tool for improving the quality of code. Unit
testing doesn’t suit every developer, but it is worth experimenting with and can be useful even if used only
for complex features or problem diagnosis. I described the use of the xUnit.net test framework, explained
the importance of isolating components for testing, and demonstrated some tools and techniques for
simplifying unit test code. In the next chapter, I start the process of creating a more realistic MVC application
called SportsStore.

193© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_8

CHAPTER 8

SportsStore: A Real Application

In the previous chapters, I built quick and simple MVC applications. I described the MVC pattern, the
essential C# features, and the kinds of tools that good MVC developers require. Now it is time to put
everything together and build a simple but realistic e-commerce application.

My application, called SportsStore, will follow the classic approach taken by online stores everywhere.
I will create an online product catalog that customers can browse by category and page, a shopping cart
where users can add and remove products, and a checkout where customers can enter their shipping details.
I will also create an administration area that includes create, read, update, and delete (CRUD) facilities for
managing the catalog, and I will protect it so that only logged-in administrators can make changes.

My goal in this chapter and those that follow is to give you a sense of what real MVC development is like
by creating as realistic an example as possible. I want to focus on ASP.NET Core MVC, of course, so I have
simplified the integration with external systems, such as the database, and omitted others entirely, such as
payment processing.

You might find the going a little slow as I build up the levels of infrastructure I need, but the initial
investment in an MVC application pays dividends, resulting in maintainable, extensible, well-structured
code with excellent support for unit testing.

UNIT TESTING

I have made quite a big deal about the ease of unit testing in MVC and about how unit testing can be an
important and useful part of the development process. You will see this demonstrated throughout this
part of the book because I have included details of unit tests and techniques as they relate to key MVC
features.

I know this is not a universal opinion. If you do not want to unit test, that is fine with me. To that end,
when I have something to say that is purely about testing, I put it in a sidebar like this one. If you are
not interested in unit testing, you can skip right over these sections, and the SportsStore application will
work just fine. You do not need to do any kind of unit testing to get the technology benefits of ASP.NET
Core MVC, although, of course, support for testing is a key reason for adopting ASP.NET Core MVC.

Most of the MVC features I use for the SportsStore application have their own chapters later in the book.
Rather than duplicate everything here, I tell you just enough to make sense for the example application and
point you to the other chapter for in-depth information.

I will call out each step needed to build the application so that you can see how the MVC features fit
together. You should pay particular attention when I create views. You will get some odd results if you do not
follow the examples closely.

https://doi.org/10.1007/978-1-4842-3150-0_8

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

194

Getting Started
You will need to install Visual Studio if you are planning to code the SportsStore application on your own
computer as you read through this part of the book and make sure that you install the LocalDB option, which
is required to store data persistently. LocalDB will be installed automatically if you follow the instructions in
Chapter 2.

 ■ Note If you just want to follow the project without having to re-create it, then you can download the
SportsStore project from the Github repository for this book, https://github.com/apress/pro-asp.net-
core-mvc-2. You do not need to follow along, of course. I have tried to make the screenshots and code listings
as easy to follow as possible, just in case you are reading this book on a train, in a coffee shop, or the like.

Creating the MVC Project
I am going to follow the same basic approach that I used in earlier chapters, which is to start with an empty
project and add all of the configuration files and components that I require. I started by selecting New ➤
Project from the Visual Studio File menu and selecting the ASP.NET Core Web Application project template,
as shown in Figure 8-1. I set the name of the project to be SportsStore and clicked the OK button.

Figure 8-1. Selecting the project type

http://dx.doi.org/10.1007/978-1-4842-3150-0_2
https://github.com/apress/pro-asp.net-core-mvc-2
https://github.com/apress/pro-asp.net-core-mvc-2

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

195

I selected the Empty template, as shown in Figure 8-2. I ensured that .NET Core and ASP.NET Core 2.0
were selected in the menus at the top of the dialog window and that the Enable Docker Support option was
unchecked before clicking the OK button to create the SportsStore project.

Creating the Folder Structure
The next step is to add the folders that will contain the application components required for an MVC
application: models, controllers, and views. For each of the folders described in Table 8-1, right-click the
SportsStore project item in the Solution Explorer, select Add ➤ New Folder from the pop-up menu, and
set the folder name. Additional folders will be required later, but these reflect the main parts of the MVC
application and are enough to get started with.

Figure 8-2. Selecting the project template

Table 8-1. The Folders Required for the SportsStore Project

Name Description

Models This folder will contain the model classes.

Controllers This folder will contain the controller classes.

Views This folder holds everything related to views, including individual Razor files, the view
start file, and the view imports file.

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

196

Configuring the Application
The Startup class is responsible for configuring the ASP.NET Core application. Listing 8-1 shows the
changes I made to the Startup class to enable the MVC framework and some related features that are useful
for development.

 ■ Note The Startup class is an important ASP.NET Core feature. I describe it in detail in Chapter 14.

Listing 8-1. Enabling Features in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace SportsStore {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {

 });
 }
 }
}

The ConfigureServices method is used to set up shared objects that can be used throughout the
application through the dependency injection feature, which I describe in Chapter 18. The AddMvc method
that I call in the ConfigureServices method is an extension method that sets up the shared objects used in
MVC applications.

The Configure method is used to set up the features that receive and process HTTP requests. Each
method that I call in the Configure method is an extension method that sets up an HTTP request processor,
as described in Table 8-2.

http://dx.doi.org/10.1007/978-1-4842-3150-0_14
http://dx.doi.org/10.1007/978-1-4842-3150-0_18

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

197

Next, I need to prepare the application for Razor views. Right-click the Views folder, select Add ➤ New
Item from the pop-up menu, and select the MVC View Imports Page item from the ASP.NET category, as
shown in Figure 8-3.

Table 8-2. The Initial Feature Methods Called in the Start Class

Method Description

UseDeveloperExceptionPage() This extension method displays details of exceptions that occur in the
application, which is useful during the development process. It should
not be enabled in deployed applications, and I disable this feature
when I deploy the application in Chapter 12.

UseStatusCodePages() This extension method adds a simple message to HTTP responses
that would not otherwise have a body, such as 404 - Not Found
responses.

UseStaticFiles() This extension method enables support for serving static content from
the wwwroot folder.

UseMvc() This extension method enables ASP.NET Core MVC.

Figure 8-3. Creating the view imports file

http://dx.doi.org/10.1007/978-1-4842-3150-0_12

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

198

Click the Add button to create the _ViewImports.cshtml file and set the contents of the new file to
match Listing 8-2.

Listing 8-2. The Contents of the _ViewImports.cshtml File in the Views Folder

@using SportsStore.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The @using statement will allow me to use the types in the SportsStore.Models namespace in views
without needing to refer to the namespace. The @addTagHelper statement enables the built-in tag helpers,
which I use later to create HTML elements that reflect the configuration of the SportsStore application.

Creating the Unit Test Project
Creating the unit test project requires the same process as described Chapter 7. Right-click the SportsStore
solution item in the Solution Explorer and select Add ➤ New Project from the pop-up menu. Select the
xUnit Test Project (.NET Core) project template, as shown in Figure 8-4, and set the name of the project to
SportsStore.Tests. Click OK to create the unit test project.

Figure 8-4. Creating the unit test project

http://dx.doi.org/10.1007/978-1-4842-3150-0_7

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

199

Once the unit test project has been created, right-click the SportsStore.Tests project in the Solution
Explorer and select Edit SportsStore.Tests.csproj from the pop-up menu. Add the new elements shown in
Listing 8-3 to add the Moq package to the tests project and to create a reference to the main SportsStore
project. Ensure that you specify the version shown in the listing for the Moq package.

Listing 8-3. Adding a Package in the SportsStore.Tests.csproj File in the SportsStore.Tests Folder

<Project Sdk="Microsoft.NET.Sdk">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>

 <IsPackable>false</IsPackable>
 </PropertyGroup>

 <ItemGroup>
 <ProjectReference Include="..\SportsStore\SportsStore.csproj" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.NET.Test.Sdk"
 Version="15.3.0-preview-20170628-02" />
 <PackageReference Include="xunit" Version="2.2.0" />
 <PackageReference Include="xunit.runner.visualstudio" Version="2.2.0" />
 <PackageReference Include="Moq" Version="4.7.99" />
 </ItemGroup>

</Project>

When you save the changes to the csproj file, Visual Studio will download and install the Moq package
into the unit test project and create a reference to the main SportsStore project so that the classes it contains
can be used in tests.

Checking and Running the Application
The application and unit test projects are created and configured and ready for development. The
Solution Explorer should contain the items shown in Figure 8-5. You will have problems if you see
different items or items are not in the same locations, so take a moment to check that everything is present
and in the right place.

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

200

If you select Start Debugging from the Debug menu (or Start Without Debugging if you prefer the
iterative development style I described in Chapter 6), you will see an error page, as shown in Figure 8-6.
The error message is shown because there are no controllers in the application to handle requests at the
moment, which is something that I will address shortly.

Starting the Domain Model
All projects start with the domain model, which is the heart of an MVC application. Since this is an
e-commerce application, the most obvious model I need is for a product. I added a class file called Product.
cs to the Models folder and used it to define the class shown in Listing 8-4.

Figure 8-5. The Solution Explorer for the SportsStore application and unit test projects

Figure 8-6. Running the SportsStore application

http://dx.doi.org/10.1007/978-1-4842-3150-0_6

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

201

Listing 8-4. The Contents of the Product.cs File in the Models Folder

namespace SportsStore.Models {

 public class Product {
 public int ProductID { get; set; }
 public string Name { get; set; }
 public string Description { get; set; }
 public decimal Price { get; set; }
 public string Category { get; set; }
 }
}

Creating a Repository
I need some way of getting Product objects from a database. As I explained in Chapter 3, the model includes
the logic for storing and retrieving the data from the persistent data store. I won’t worry about how I am
going to implement data persistence for the moment, but I will start the process of defining an interface for
it. I added a new C# interface file called IProductRepository.cs to the Models folder and used it to define
the interface shown in Listing 8-5.

Listing 8-5. The Contents of the IProductRepository.cs File in the Models Folder

using System.Linq;

namespace SportsStore.Models {

 public interface IProductRepository {

 IQueryable<Product> Products { get; }
 }
}

This interface uses IQueryable<T> to allow a caller to obtain a sequence of Product objects. The
IQueryable<T> interface is derived from the more familiar IEnumerable<T> interface and represents a
collection of objects that can be queried, such as those managed by a database.

A class that depends on the IProductRepository interface can obtain Product objects without needing
to know the details of how they are stored or how the implementation class will deliver them.

UNDERSTANDING IENUMERABLE<T> AND IQUERYABLE<T>
INTERFACES

The IQueryable<T> interface is useful because it allows a collection of objects to be queried efficiently.
later in this chapter, I add support for retrieving a subset of Product objects from a database, and using
the IQueryable<T> interface allows me to ask the database for just the objects that I require using
standard lINQ statements and without needing to know what database server stores the data or how it
processes the query. Without the IQueryable<T> interface, I would have to retrieve all of the Product
objects from the database and then discard the ones I don’t want, which becomes an expensive operation
as the amount of data used by an application increases. It is for this reason that the IQueryable<T>
interface is typically used instead of IEnumerable<T> in database repository interfaces and classes.

http://dx.doi.org/10.1007/978-1-4842-3150-0_3

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

202

however, care must be taken with the IQueryable<T> interface because each time the collection of
objects is enumerated, the query will be evaluated again, which means that a new query will be sent to
the database. This can undermine the efficiency gains of using IQueryable<T>. In such situations, you
can convert IQueryable<T> to a more predictable form using the ToList or ToArray extension method.

Creating a Fake Repository
Now that I have defined an interface, I could implement the persistence mechanism and hook it up to a
database, but I want to add some of the other parts of the application first. To do this, I am going to create a
fake implementation of the IProductRepository interface that will stand in until I return to the topic of data
storage. To create the fake repository, I added a class file called FakeProductRepository.cs to the Models
folder and used it to define the class shown in Listing 8-6.

Listing 8-6. The Contents of FakeProductRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class FakeProductRepository : IProductRepository {

 public IQueryable<Product> Products => new List<Product> {
 new Product { Name = "Football", Price = 25 },
 new Product { Name = "Surf board", Price = 179 },
 new Product { Name = "Running shoes", Price = 95 }
 }.AsQueryable<Product>();
 }
}

The FakeProductRepository class implements the IProductRepository interface by returning a fixed
collection of Product objects as the value of the Products property. The AsQueryable method is used to
convert the fixed collection of objects to an IQueryable<Product>, which is required to implement the
IProductRepository interface and allows me to create a compatible fake repository without having to deal
with real queries.

Registering the Repository Service
MVC emphasizes the use of loosely coupled components, which means you can make a change in one part
of the application without having to make corresponding changes elsewhere. This approach categorizes
parts of the application as services, which provide features that other parts of the application use. The class
that provides a service can then be altered or replaced without requiring changes in the classes that use
it. I explain this in depth in Chapter 18, but for the SportsStore application, I want to create a repository
service, which allows controllers to get objects that implement the IProductRepository interface without
knowing which class is being used. This will allow me to start developing the application using the simple
FakeProductRepository class I created in the previous section and then replace it with a real repository
later without having to make changes in all of the classes that need access to the repository. Services are
registered in the ConfigureServices method of the Startup class, and in Listing 8-7, I have defined a new
service for the repository.

http://dx.doi.org/10.1007/978-1-4842-3150-0_18

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

203

Listing 8-7. Creating the Repository Service in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;

namespace SportsStore {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddTransient<IProductRepository, FakeProductRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {

 });
 }
 }
}

The statement I added to the ConfigureServices method tells ASP.NET Core that when a component,
such as a controller, needs an implementation of the IProductRepository interface, it should receive
an instance of the FakeProductRepository class. The AddTransient method specifies that a new
FakeProductRepository object should be created each time the IProductRepository interface is needed.
Don’t worry if this doesn’t make sense at the moment; you will see how it fits into the application shortly,
and I explain what is happening in detail in Chapter 18.

Displaying a List of Products
I could spend the rest of this chapter building out the domain model and the repository and not touch the
rest of the application at all. I think you would find that boring, though, so I am going to switch tracks and
start using MVC in earnest and come back to add model and repository features as I need them.

In this section, I am going to create a controller and an action method that can display details of the
products in the repository. For the moment, this will be for only the data in the fake repository, but I will sort
that out later. I will also set up an initial routing configuration so that MVC knows how to map requests for
the application to the controller I create.

http://dx.doi.org/10.1007/978-1-4842-3150-0_18

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

204

Throughout this book, I create MVC controllers and views by right-clicking a folder in the Solution Explorer,
selecting Add ➤ New Item from the pop-up menu, and then choosing an item template from the Add
New Item window. There is an alternative, known as scaffolding, in which Visual Studio provides items in
the Add menu specifically for creating controllers and views. When you select these menu items, you are
prompted to choose a scenario for the component that you want to create, such as a controller with read/
write actions or a view that contains a form that will be used to create a specific model object.

I don’t use the scaffolding in this book. The code and markup that the scaffolding generates are so generic
as to be all but useless, while the set of scenarios that are supported are narrow and don’t address
common development problems. My goal in this book is not only to make sure you know how to create
MVC applications but also to explain how everything works behind the scenes, and that is harder to do
when responsibility for creating components is handed to the scaffolding.

That said, this is another situation where your development style may be different from mine, and you
may find that you prefer working with the scaffolding in your own projects. That’s perfectly reasonable,
although I recommend you take the time to understand what the scaffolding does so you know where to
look if you don’t get the results you expect.

Adding a Controller
To create the first controller in the application, I added a class file called ProductController.cs to the
Controllers folder and defined the class shown in Listing 8-8.

Listing 8-8. The Contents of the ProductController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class ProductController : Controller {
 private IProductRepository repository;

 public ProductController(IProductRepository repo) {
 repository = repo;
 }
 }
}

When MVC needs to create a new instance of the ProductController class to handle an HTTP request,
it will inspect the constructor and see that it requires an object that implements the IProductRepository
interface. To determine what implementation class should be used, MVC consults the configuration in
the Startup class, which tells it that FakeRepository should be used and that a new instance should be
created every time. MVC creates a new FakeRepository object and uses it to invoke the ProductController
constructor in order to create the controller object that will process the HTTP request.

This is known as dependency injection, and its approach allows the ProductController constructor to
access the application’s repository through the IProductRepository interface without having any need to
know which implementation class has been configured. Later, I’ll replace the fake repository with the real
one, and dependency injection means that the controller will continue to work without changes.

USING THE VISUAL STUDIO MVC SCAFFOLDING

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

205

 ■ Note Some developers don’t like dependency injection and believe it makes applications more
complicated. That’s not my view, but if you are new to dependency injection, then I recommend you wait until
you have read Chapter 18 before you make up your mind.

Next, I have added an action method, called List, which will render a view showing the complete list of
the products in the repository, as shown in Listing 8-9.

Listing 8-9. Adding an Action Method in the ProductController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class ProductController : Controller {
 private IProductRepository repository;

 public ProductController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult List() => View(repository.Products);
 }
}

Calling the View method like this (without specifying a view name) tells MVC to render the default view
for the action method. Passing the collection of Product objects from the repository to the View method
provides the framework with the data with which to populate the Model object in a strongly typed view.

Adding and Configuring the View
I need to create a view to present the content to the user, but there are some preparatory steps required that
will make writing the view simpler. The first is to create a shared layout that will define common content that
will be included in all HTML responses sent to clients. Shared layouts are a useful way of ensuring that views
are consistent and contain important JavaScript files and CSS stylesheets, and I explained how they worked
in Chapter 5.

I created the Views/Shared folder and added to it a new MVC View Layout Page called _Layout.cshtml,
which is the default name that Visual Studio assigns to this item type. Listing 8-10 shows the _Layout.
cshtml file. I made one change to the default content, which is to set the contents of the title element to
SportsStore.

Listing 8-10. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>SportsStore</title>

http://dx.doi.org/10.1007/978-1-4842-3150-0_18
http://dx.doi.org/10.1007/978-1-4842-3150-0_5

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

206

</head>
<body>
 <div>
 @RenderBody()
 </div>
</body>
</html>

Next, I need to configure the application so that the _Layout.cshtml file is applied by default. This
is done by adding an MVC View Start Page file called _ViewStart.cshtml to the Views folder. The default
content added by Visual Studio, shown in Listing 8-11, selects a layout called _Layout.cshtml, which
corresponds to the file shown in Listing 8-10.

Listing 8-11. The Contents of the _ViewStart.cshtml File in the Views Folder

@{
 Layout = "_Layout";
}

Now I need to add the view that will be displayed when the List action method is used to handle a
request. I created the Views/Product folder and added to it a Razor view file called List.cshtml. I then
added the markup shown in Listing 8-12.

Listing 8-12. The Contents of the List.cshtml File in the Views/Product Folder

@model IEnumerable<Product>

@foreach (var p in Model) {
 <div>
 <h3>@p.Name</h3>
 @p.Description
 <h4>@p.Price.ToString("c")</h4>
 </div>
}

The @model expression at the top of the file specifies that the view will receive a sequence of Product
objects from the action method as its model data. I use a @foreach expression to work through the sequence
and generate a simple set of HTML elements for each Product object that is received.

The view doesn’t know where the Product objects came from, how they were obtained, or whether
they represent all of the products known to the application. Instead, the view deals only with how details of
each Product is displayed using HTML elements, which is consistent with the separation of concerns that I
described in Chapter 3.

 ■ Tip I converted the Price property to a string using the ToString("c") method, which renders numerical
values as currency according to the culture settings that are in effect on your server. For example, if the server
is set up as en-US, then (1002.3).ToString("c") will return $1,002.30, but if the server is set to en-GB, then
the same method will return £1,002.30.

http://dx.doi.org/10.1007/978-1-4842-3150-0_3

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

207

Setting the Default Route
I need to tell MVC that it should send requests that arrive for the root URL of my application (http://
mysite/) to the List action method in the ProductController class. I do this by editing the statement in the
Startup class that sets up the MVC classes that handle HTTP requests, as shown in Listing 8-13.

Listing 8-13. Changing the Default Route in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;

namespace SportsStore {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddTransient<IProductRepository, FakeProductRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Product}/{action=List}/{id?}");
 });
 }
 }
}

The Configure method of the Startup class is used to set up the request pipeline, which consists of
classes (known as middleware) that will inspect HTTP requests and generate responses. The UseMvc method
sets up the MVC middleware, and one of the configuration options is the scheme that will be used to map
URLs to controllers and action methods. I describe the routing system in detail in Chapters 15 and 16, but
the change in Listing 8-13 tells MVC to send requests to the List action method of the Product controller
unless the request URL specifies otherwise.

 ■ Tip Notice that I have set the name of the controller in listing 8-13 to be Product and not
ProductController, which is the name of the class. This is part of the MVC naming convention, in which
controller class names generally end in Controller, but you omit this part of the name when referring to the
class. I explain the naming convention and its effect in Chapter 31.

http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_16
http://dx.doi.org/10.1007/978-1-4842-3150-0_31

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

208

Running the Application
All the basics are in place. I have a controller with an action method that MVC will use when the default URL
for the application is requested. MVC will create an instance of the FakeRepository class and use it to create
a new controller object to handle the request. The fake repository will provide the controller with some
simple test data, which its action method passes to the Razor view so that the HTML response to the browser
will include details for each Product object. When generating the HTML response, MVC will combine the
data from the view selected by the action method with the content from the shared layout, producing a
complete HTML document that the browser can parse and display. You can see the result by starting the
application, as shown in Figure 8-7.

This is the typical pattern of development for ASP.NET Core MVC. An initial investment of time setting
everything up is necessary, and then the basic features of the application snap together quickly.

Preparing a Database
I can display a simple view that contains details of the products, but it uses the test data that the fake
repository contains. Before I can implement a real repository with real data, I need to set up a database and
populate it with some data.

I am going to use SQL Server as the database, and I will access the database using the Entity Framework
Core (EF Core), which is the Microsoft .NET object-relational mapping (ORM) framework. An ORM
framework presents the tables, columns, and rows of a relational database through regular C# objects.

 ■ Note This is an area where you can choose from a wide range of tools and technologies. Not only are
there different relational databases available, but you can also work with object repositories, document stores,
and some esoteric alternatives. There are other .NET orM frameworks as well, each of which takes a slightly
different approach; these variations may give you a better fit for your projects.

Figure 8-7. Viewing the basic application functionality

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

209

I am using Entity Framework Core for several reasons: it is simple to get working, the integration with
LINQ is first-rate (and I like using LINQ), and it works nicely with ASP.NET Core MVC. The earlier releases
were a bit hit-and-miss, but the current versions are elegant and feature-rich.

A nice feature of SQL Server is LocalDB, which is an administration-free implementation of the basic SQL
Server features specifically designed for developers. Using this feature, I can skip the process of setting up a
database while I build my project and then deploy to a full SQL Server instance later. Most MVC applications
are deployed to hosted environments that are run by professional administrators, so the LocalDB feature
means that database configuration can be left in the hands of DBAs, and developers can get on with coding.

 ■ Tip If you didn’t select the localDB when you installed Visual Studio, then you need to do so now. It can be
selected through the Individual Components section of the Visual Studio installer. If you followed the instructions
in Chapter 2, then the localDB feature should be installed and ready to use.

Installing the Entity Framework Core Tools Package
The main Entity Framework Core functionality is added to the project by default when Visual Studio creates
the project. One additional NuGet package is required to provide the command-line tools that are used to
create the classes that prepare the database to store the application data, known as migrations.

To add the package to the project, right-click the SportsStore project item in the Solution Explorer, select Edit
SportsStore.csproj from the pop-up window, and make the change to the file shown in Listing 8-14. Take care to
use the version specified in the listing, and note that the package is added using the DotNetCliToolReference
element and not the PackageReference element that is used for the existing package.

 ■ Note You must install this package by editing the file. This type of package cannot be added using the
NuGet Package Manager or the dotnet command-line tools.

Listing 8-14. Adding a Package in the SportsStore.csproj File in the SportsStore Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0" />
 </ItemGroup>

</Project>

http://dx.doi.org/10.1007/978-1-4842-3150-0_2

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

210

When you save the file, Visual Studio will download and install the Entity Framework Core command-
line tools and add them to the project.

Creating the Database Classes
The database context class is the bridge between the application and Entity Framework Core and provides
access to the application’s data using model objects. To create the database context class for the SportsStore
application, I added a class file called ApplicationDbContext.cs to the Models folder and defined the class
shown in Listing 8-15.

Listing 8-15. The Contents of the ApplicationDbContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Design;
using Microsoft.Extensions.DependencyInjection;

namespace SportsStore.Models {

 public class ApplicationDbContext : DbContext {

 public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
 : base(options) { }

 public DbSet<Product> Products { get; set; }
 }
}

The DbContext base class provides access to the Entity Framework Core’s underlying functionality,
and the Products property will provide access to the Product objects in the database. The
ApplicationDbContext class is derived from DbContext and adds the properties that will be used to read and
write the application’s data. There is only one property at the moment, which will provide access to Product
objects.

Creating the Repository Class
It may not seem like it at the moment, but most of the work required to set up the database is complete. The
next step is to create a class that implements the IProductRepository interface and gets its data using Entity
Framework Core. I added a class file called EFProductRepository.cs to the Models folder and used it to
define the repository class shown in Listing 8-16.

Listing 8-16. The Contents of the EFProductRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class EFProductRepository : IProductRepository {
 private ApplicationDbContext context;

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

211

 public EFProductRepository(ApplicationDbContext ctx) {
 context = ctx;
 }

 public IQueryable<Product> Products => context.Products;
 }
}

I’ll add functionality as I add features to the application, but for the moment, the repository
implementation just maps the Products property defined by the IProductRepository interface onto the
Products property defined by the ApplicationDbContext class. The Products property in the context class
returns a DbSet<Product> object, which implements the IQueryable<T> interface and makes it easy to
implement the IProductRepository interface when using Entity Framework Core. This ensures that queries
to the database will retrieve only the objects that are required, as explained earlier in this chapter.

Defining the Connection String
A connection string specifies the location and name of the database and provides configuration settings
for how the application should connect to the database server. Connection strings are stored in a JSON file
called appsettings.json, which I created in the SportsStore project using the ASP.NET Configuration File
item template in the General section of the Add New Item window.

Visual Studio adds a placeholder connection string to the appsettings.json file when it creates the file,
which I have replaced in Listing 8-17.

 ■ Tip Connection strings must be expressed as a single unbroken line, which is fine in the Visual Studio editor
but doesn’t fit on the printed page and explains the awkward formatting in listing 8-17. When you define the
connection string in your own project, make sure that the value of the ConnectionString item is on a single line.

Listing 8-17. Editing the Connection String in the appsettings.json File in the SportsStore Folder

{
 "Data": {
 "SportStoreProducts": {
 "ConnectionString": "Server=(localdb)\\MSSQLLocalDB;Database=SportsStore;Trusted_Conne

ction=True;MultipleActiveResultSets=true"
 }
 }
}

Within the Data section of the configuration file, I have set the name of the connection string to
SportsStoreProducts. The value of the ConnectionString item specifies that the LocalDB feature should be
used for a database called SportsStore.

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

212

Configuring the Application
The next steps are to read the connection string and to configure the application to use it to connect to the
database. Listing 8-18 shows the changes required to the Startup class required to receive details of the
configuration data contained in the appsettings.json file and use it to configure Entity Framework Core.
(The job of reading the JSON file is handled by the Program class, which I describe in Chapter 14).

Listing 8-18. Configuring the Application in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;

namespace SportsStore {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));
 services.AddTransient<IProductRepository, EFProductRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Product}/{action=List}/{id?}");
 });
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

213

The constructor I added to the Startup class receives the configuration data loaded from the
appsettings.json file, which is presented through an object that implements the IConfiguration interface.
The constructor assigns the IConfiguration object to a property called Configuration so that it can be used
by the rest of the Startup class.

I explain how to read and access configuration data in Chapter 14. For the SportsStore application,
I have added a sequence of method calls that set up Entity Framework Core within the ConfigureServices
method.

...
services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(Configuration["Data:SportStoreProducts:ConnectionString"]));
...

The AddDbContext extension method sets up the services provided by Entity Framework Core for the
database context class I created in Listing 8-15. As I explain in Chapter 14, many of the methods that are
used in the Startup class allow services and middleware features to be configured using options arguments.
The argument to the AddDbContext method is a lambda expression that receives an options object that
configures the database for the context class. In this case, I configured the database with the UseSqlServer
method and specified the connection string, which is obtained from the Configuration property.

The next change I made in the Startup class was to replace the fake repository with the real one, like
this:

...
services.AddTransient<IProductRepository, EFProductRepository>();
...

The components in the application that use the IProductRepository interface, which is just the Product
controller at the moment, will receive an EFProductRepository object when they are created, which will
provide them with access to the data in the database. I explain how this works in detail in Chapter 18,
but the effect is that the fake data will be seamlessly replaced by the real data in the database without having
to change the ProductController class.

Disabling Scope Verification
Using Entity Framework Core requires a configuration change to the dependency injection feature, which I
describe in Chapter 18. The Program class is responsible for starting and configuring ASP.NET Core before
handing control to the Startup class, and Listing 8-19 shows the change required. Without this change, an
exception will be thrown when you try to create the database schema in the next section.

Listing 8-19. Preparing for Entity Framework Core in the Program.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;

http://dx.doi.org/10.1007/978-1-4842-3150-0_14
http://dx.doi.org/10.1007/978-1-4842-3150-0_14
http://dx.doi.org/10.1007/978-1-4842-3150-0_18
http://dx.doi.org/10.1007/978-1-4842-3150-0_18

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

214

namespace SportsStore {
 public class Program {
 public static void Main(string[] args) {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .UseDefaultServiceProvider(options =>
 options.ValidateScopes = false)
 .Build();
 }
}

I explain how ASP.NET Core is configured in detail in Chapter 14, but this is the only change to the
Program class required by the SportsStore application.

Creating the Database Migration
Entity Framework Core is able to generate the schema for the database using the model classes through a feature
called migrations. When you prepare a migration, EF Core creates a C# class that contains the SQL commands
required to prepare the database. If you need to modify your model classes, then you can create a new migration
that contains the SQL commands required to reflect the changes. In this way, you don’t have to worry about
manually writing and testing SQL commands and can just focus on the C# model classes in the application.

Entity Framework Core commands are performed from the command line. Open a new command
prompt or PowerShell window, navigate to the SportsStore project folder (the one that contains the Startup.
cs and appsettings.json files), and run the following command to create the migration class that will
prepare the database for its first use:

dotnet ef migrations add Initial

When this command has finished, you will see a Migrations folder in the Visual Studio Solution
Explorer window. This is where Entity Framework Core stores its migration classes. One of the file names will
be a timestamp followed by _Initial.cs, and this is the class that will be used to create the initial schema
for the database. If you examine the contents of this file, you can see how the Product model class has been
used to create the schema.

WHAT ABOUT THE ADD-MIGRATION AND UPDATE-DATABASE
COMMANDS?

If you are an experienced Entity Framework developer, you may be used to using the Add-Migration
command to create a database migration and the Update-Database command to apply it to a database.

With the introduction of .NET Core, Entity Framework Core has added commands that are integrated into
the dotnet command-line tool, using the Microsoft.EntityFrameworkCore.Tools.DotNet package
added to the project in listing 8-14. These are the commands that I have used in this chapter because
they are consistent with other .NET commands and they can be used in any command prompt or
PowerShell window, unlike the Add-Migration and Update-Database commands, which work only in a
specific Visual Studio window.

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

215

Creating the Seed Data
To populate the database and provide some sample data, I added a class file called SeedData.cs to the
Models folder and defined the class shown in Listing 8-20.

Listing 8-20. The Contents of the SeedData.cs File in the Models Folder

using System.Linq;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public static class SeedData {

 public static void EnsurePopulated(IApplicationBuilder app) {
 ApplicationDbContext context = app.ApplicationServices
 .GetRequiredService<ApplicationDbContext>();
 context.Database.Migrate();
 if (!context.Products.Any()) {
 context.Products.AddRange(
 new Product {
 Name = "Kayak", Description = "A boat for one person",
 Category = "Watersports", Price = 275 },
 new Product {
 Name = "Lifejacket",
 Description = "Protective and fashionable",
 Category = "Watersports", Price = 48.95m },
 new Product {
 Name = "Soccer Ball",
 Description = "FIFA-approved size and weight",
 Category = "Soccer", Price = 19.50m },
 new Product {
 Name = "Corner Flags",
 Description = "Give your playing field a professional touch",
 Category = "Soccer", Price = 34.95m },
 new Product {
 Name = "Stadium",
 Description = "Flat-packed 35,000-seat stadium",
 Category = "Soccer", Price = 79500 },
 new Product {
 Name = "Thinking Cap",
 Description = "Improve brain efficiency by 75%",
 Category = "Chess", Price = 16 },
 new Product {
 Name = "Unsteady Chair",
 Description = "Secretly give your opponent a disadvantage",
 Category = "Chess", Price = 29.95m },
 new Product {
 Name = "Human Chess Board",
 Description = "A fun game for the family",

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

216

 Category = "Chess", Price = 75 },
 new Product {
 Name = "Bling-Bling King",
 Description = "Gold-plated, diamond-studded King",
 Category = "Chess", Price = 1200
 }
);
 context.SaveChanges();
 }
 }
 }
}

The static EnsurePopulated method receives an IApplicationBuilder argument, which is the interface
used in the Configure method of the Startup class to register middleware components to handle HTTP
requests, and this is where I will ensure that the database has content.

The EnsurePopulated method obtains an ApplicationDbContext object through the
IApplicationBuilder interface and calls the Database.Migrate method to ensure that the migration has
been applied, which means that the database will be created and prepared so that it can store Product
objects. Next, the number of Product objects in the database is checked. If there are no objects in the
database, then the database is populated using a collection of Product objects using the AddRange method
and then written to the database using the SaveChanges method.

The final change is to seed the database when the application starts, which I have done by adding a call
to the EnsurePopulated method from the Startup class, as shown in Listing 8-21.

Listing 8-21. Seeding the Database in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;

namespace SportsStore {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

217

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));
 services.AddTransient<IProductRepository, EFProductRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Product}/{action=List}/{id?}");
 });
 SeedData.EnsurePopulated(app);
 }
 }
}

Start the application, and the database will be created and seeded and used to provide the application
with its data. (Be patient; it can take a moment for the database to be created).

When the browser requests the default URL for the application, the application configuration tells
MVC that it needs to create a Product controller to handle the request. Creating a new Product controller
means invoking the ProductController constructor, which requires an object that implements the
IProductRepository interface, and the new configuration tells MVC that an EFProductRepository object
should be created and used for this. The EFProductRepository object taps into the Entity Framework Core
functionality that loads data from SQL Server and converts it into Product objects. All of this is hidden
from the ProductController class, which just receives an object that implements the IProductRepository
interface and works with the data it provides. The result is that the browser window shows the sample data in
the database, as illustrated in Figure 8-8.

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

218

This approach to getting Entity Framework Core to present a SQL Server database as a series of model
objects is simple and easy to work with, and it allows me to keep my focus on ASP.NET Core MVC. I am
skipping over a lot of the detail in how EF Core operates and the huge number of configuration options that
are available. I like Entity Framework Core a lot, and I recommend that you spend some time getting to know
it in detail. A good place to start is the Microsoft site for Entity Framework Core (http://ef.readthedocs.io)
or my forthcoming book on Entity Framework Core, which will be published by Apress.

Adding Pagination
You can see from Figure 8-8 that the List.cshtml view displays the products in the database on a single
page. In this section, I will add support for pagination so that the view displays a smaller number of products
on a page and the user can move from page to page to view the overall catalog. To do this, I am going to add a
parameter to the List method in the Product controller, as shown in Listing 8-22.

Listing 8-22. Adding Pagination in the ProductController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

Figure 8-8. Using the database repository

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

219

namespace SportsStore.Controllers {

 public class ProductController : Controller {
 private IProductRepository repository;
 public int PageSize = 4;

 public ProductController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult List(int productPage = 1)
 => View(repository.Products
 .OrderBy(p => p.ProductID)
 .Skip((productPage - 1) * PageSize)
 .Take(PageSize));
 }
}

The PageSize field specifies that I want four products per page. I have added an optional parameter to
the List method, which means that if I call the method without a parameter (List()), my call is treated as
though I had supplied the value specified in the parameter definition (List(1)). The effect is that the action
method displays the first page of products when MVC invokes it without an argument. Within the body of
the action method, I get the Product objects, order them by the primary key, skip over the products that
occur before the start of the current page, and take the number of products specified by the PageSize field.

UNIT TEST: PAGINATION

I can unit test the pagination feature by creating a mock repository, injecting it into the constructor
of the ProductController class, and then calling the List method to request a specific page. I can
then compare the Product objects I get with what I would expect from the test data in the mock
implementation. See Chapter 7 for details of how to set up unit tests. here is the unit test I created for
this purpose, in a class file called ProductControllerTests.cs that I added to the SportsStore.
Tests project:

using System.Collections.Generic;
using System.Linq;
using Moq;
using SportsStore.Controllers;
using SportsStore.Models;
using Xunit;

namespace SportsStore.Tests {

 public class ProductControllerTests {

 [Fact]
 public void Can_Paginate() {
 // Arrange
 Mock<IProductRepository> mock = new Mock<IProductRepository>();

http://dx.doi.org/10.1007/978-1-4842-3150-0_7

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

220

 mock.Setup(m => m.Products).Returns((new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 new Product {ProductID = 4, Name = "P4"},
 new Product {ProductID = 5, Name = "P5"}
 }).AsQueryable<Product>());

 ProductController controller = new ProductController(mock.Object);
 controller.PageSize = 3;

 // Act
 IEnumerable<Product> result =
 controller.List(2).ViewData.Model as IEnumerable<Product>;

 // Assert
 Product[] prodArray = result.ToArray();
 Assert.True(prodArray.Length == 2);
 Assert.Equal("P4", prodArray[0].Name);
 Assert.Equal("P5", prodArray[1].Name);
 }
 }
}

It is a little awkward to get the data returned from the action method. The result is a ViewResult object,
and I have to cast the value of its ViewData.Model property to the expected data type. I explain the
different result types that can be returned by action methods and how to work with them in Chapter 17.

Displaying Page Links
If you run the application, you will see that there are now four items shown on the page. If you want to view
another page, you can append query string parameters to the end of the URL, like this:

http://localhost:5000/?productPage=2

You will need to change the port part of the URL to match whatever port has been assigned to your
project. Using these query strings, you can navigate through the catalog of products.

There is no way for customers to figure out that these query string parameters exist, and even if there
were, they are not going to want to navigate this way. Instead, I need to render some page links at the bottom
of each list of products so that customers can navigate between pages. To do this, I am going to create a tag
helper, which generates the HTML markup for the links I require.

Adding the View Model
To support the tag helper, I am going to pass information to the view about the number of pages available,
the current page, and the total number of products in the repository. The easiest way to do this is to create a
view model class, which is used specifically to pass data between a controller and a view. I created a Models/
ViewModels folder in the SportsStore project and added to it a class file called PagingInfo.cs defined in
Listing 8-23.

http://dx.doi.org/10.1007/978-1-4842-3150-0_17

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

221

Listing 8-23. The Contents of the PagingInfo.cs File in the Models/ViewModels Folder

using System;

namespace SportsStore.Models.ViewModels {

 public class PagingInfo {
 public int TotalItems { get; set; }
 public int ItemsPerPage { get; set; }
 public int CurrentPage { get; set; }

 public int TotalPages =>
 (int)Math.Ceiling((decimal)TotalItems / ItemsPerPage);
 }
}

Adding the Tag Helper Class
Now that I have a view model, I can create a tag helper class. I created the Infrastructure folder in the
SportsStore project and added to it a class file called PageLinkTagHelper.cs, which I used to define the
class shown in Listing 8-24. Tag helpers are a big part of ASP.NET Core MVC, and I explain how they work
and how to create them in Chapters 23, 24, and 25.

 ■ Tip The Infrastructure folder is where I put classes that deliver the plumbing for an application but that
are not related to the application’s domain.

Listing 8-24. The Contents of the PageLinkTagHelper.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.Routing;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;
using SportsStore.Models.ViewModels;

namespace SportsStore.Infrastructure {

 [HtmlTargetElement("div", Attributes = "page-model")]
 public class PageLinkTagHelper : TagHelper {
 private IUrlHelperFactory urlHelperFactory;

 public PageLinkTagHelper(IUrlHelperFactory helperFactory) {
 urlHelperFactory = helperFactory;
 }

 [ViewContext]
 [HtmlAttributeNotBound]

http://dx.doi.org/10.1007/978-1-4842-3150-0_23
http://dx.doi.org/10.1007/978-1-4842-3150-0_24
http://dx.doi.org/10.1007/978-1-4842-3150-0_25

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

222

 public ViewContext ViewContext { get; set; }

 public PagingInfo PageModel { get; set; }

 public string PageAction { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {
 IUrlHelper urlHelper = urlHelperFactory.GetUrlHelper(ViewContext);
 TagBuilder result = new TagBuilder("div");
 for (int i = 1; i <= PageModel.TotalPages; i++) {
 TagBuilder tag = new TagBuilder("a");
 tag.Attributes["href"] = urlHelper.Action(PageAction,
 new { productPage = i });
 tag.InnerHtml.Append(i.ToString());
 result.InnerHtml.AppendHtml(tag);
 }
 output.Content.AppendHtml(result.InnerHtml);
 }
 }
}

This tag helper populates a div element with a elements that correspond to pages of products. I am not
going to go into detail about tag helpers now; it is enough to know that they are one of the most useful ways
that you can introduce C# logic into your views. The code for a tag helper can look tortured because C# and
HTML don’t mix easily. But using tag helpers is preferable to including blocks of C# code in a view because a
tag helper can be easily unit tested.

Most MVC components, such as controllers and views, are discovered automatically, but tag helpers
have to be registered. In Listing 8-25, I have added a statement to the _ViewImports.cshtml file in the Views
folder that tells MVC to look for tag helper classes in the SportsStore.Infrastructure namespace. I also
added a @using expression so that I can refer to the view model classes in views without having to qualify
their names with the namespace.

Listing 8-25. Registering a Tag Helper in the _ViewImports.cshtml File in the Views/Shared Folder

@using SportsStore.Models
@using SportsStore.Models.ViewModels
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper SportsStore.Infrastructure.*, SportsStore

UNIT TEST: CREATING PAGE LINKS

To test the PageLinkTagHelper tag helper class, I call the Process method with test data and provide a
TagHelperOutput object that I inspect to see the hTMl that is generated, as follows, which I defined in
a new PageLinkTagHelperTests.cs file in the SportsStore.Tests project:

using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Routing;
using Microsoft.AspNetCore.Razor.TagHelpers;

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

223

using Moq;
using SportsStore.Infrastructure;
using SportsStore.Models.ViewModels;
using Xunit;

namespace SportsStore.Tests {

 public class PageLinkTagHelperTests {

 [Fact]
 public void Can_Generate_Page_Links() {
 // Arrange
 var urlHelper = new Mock<IUrlHelper>();
 urlHelper.SetupSequence(x => x.Action(It.IsAny<UrlActionContext>()))
 .Returns("Test/Page1")
 .Returns("Test/Page2")
 .Returns("Test/Page3");

 var urlHelperFactory = new Mock<IUrlHelperFactory>();
 urlHelperFactory.Setup(f =>
 f.GetUrlHelper(It.IsAny<ActionContext>()))
 .Returns(urlHelper.Object);

 PageLinkTag Helper helper =
 new PageLinkTagHelper(urlHelperFactory.Object) {

 PageModel = new PagingInfo {
 CurrentPage = 2,
 TotalItems = 28,
 ItemsPerPage = 10
 },
 PageAction = "Test"
 };

 TagHelperContext ctx = new TagHelperContext(
 new TagHelperAttributeList(),
 new Dictionary<object, object>(), "");

 var content = new Mock<TagHelperContent>();
 TagHelperOutput output = new TagHelperOutput("div",
 new TagHelperAttributeList(),
 (cache, encoder) => Task.FromResult(content.Object));

 // Act
 helper.Process(ctx, output);

 // Assert
 Assert.Equal(@"1"
 + @"2"
 + @"3",
 output.Content.GetContent());
 }

 }
}

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

224

The complexity in this test is in creating the objects that are required to create and use a tag helper. Tag
helpers use IUrlHelperFactory objects to generate Urls that target different parts of the application,
and I have used Moq to create an implementation of this interface and the related IUrlHelper interface
that provides test data.

The core part of the test verifies the tag helper output by using a literal string value that contains double
quotes. C# is perfectly capable of working with such strings, as long as the string is prefixed with @
and uses two sets of double quotes ("") in place of one set of double quotes. You must remember not
to break the literal string into separate lines unless the string you are comparing to is similarly broken.
For example, the literal I use in the test method has wrapped onto several lines because the width of a
printed page is narrow. I have not added a newline character; if I did, the test would fail.

Adding the View Model Data
I am not quite ready to use the tag helper because I have yet to provide an instance of the PagingInfo view
model class to the view. I could do this using the view bag feature, but I would rather wrap all of the data I
am going to send from the controller to the view in a single view model class. To do this, I added a class file
called ProductsListViewModel.cs to the Models/ViewModels folder of the SportsStore project. Listing 8-26
shows the contents of the new file.

Listing 8-26. The Contents of the ProductsListViewModel.cs File in the Models/ViewModels Folder

using System.Collections.Generic;
using SportsStore.Models;

namespace SportsStore.Models.ViewModels {

 public class ProductsListViewModel {
 public IEnumerable<Product> Products { get; set; }
 public PagingInfo PagingInfo { get; set; }
 }
}

I can update the List action method in the ProductController class to use the
ProductsListViewModel class to provide the view with details of the products to display on the page and
details of the pagination, as shown in Listing 8-27.

Listing 8-27. Updating the List Method in the ProductController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;
using SportsStore.Models.ViewModels;

namespace SportsStore.Controllers {

 public class ProductController : Controller {
 private IProductRepository repository;
 public int PageSize = 4;

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

225

 public ProductController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult List(int productPage = 1)
 => View(new ProductsListViewModel {
 Products = repository.Products
 .OrderBy(p => p.ProductID)
 .Skip((productPage - 1) * PageSize)
 .Take(PageSize),
 PagingInfo = new PagingInfo {
 CurrentPage = productPage,
 ItemsPerPage = PageSize,
 TotalItems = repository.Products.Count()
 }
 });
 }
}

These changes pass a ProductsListViewModel object as the model data to the view.

UNIT TEST: PAGE MODEL VIEW DATA

I need to ensure that the controller sends the correct pagination data to the view. here is the unit test I
added to the ProductControllerTests class in the test project to make sure:

...
[Fact]
public void Can_Send_Pagination_View_Model() {

 // Arrange
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns((new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 new Product {ProductID = 4, Name = "P4"},
 new Product {ProductID = 5, Name = "P5"}
 }).AsQueryable<Product>());

 // Arrange
 ProductController controller =
 new ProductController(mock.Object) { PageSize = 3 };

 // Act
 ProductsListViewModel result =
 controller.List(2).ViewData.Model as ProductsListViewModel;

 // Assert
 PagingInfo pageInfo = result.PagingInfo;

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

226

 Assert.Equal(2, pageInfo.CurrentPage);
 Assert.Equal(3, pageInfo.ItemsPerPage);
 Assert.Equal(5, pageInfo.TotalItems);
 Assert.Equal(2, pageInfo.TotalPages);
}
...

I also need to modify the earlier pagination unit test, contained in the Can_Paginate method. It relies
on the List action method returning a ViewResult whose Model property is a sequence of Product
objects, but I have wrapped that data inside another view model type. here is the revised test:

...
[Fact]
public void Can_Paginate() {
 // Arrange
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns((new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 new Product {ProductID = 4, Name = "P4"},
 new Product {ProductID = 5, Name = "P5"}
 }).AsQueryable<Product>());

 ProductController controller = new ProductController(mock.Object);
 controller.PageSize = 3;

 // Act
 ProductsListViewModel result =
 controller.List(2).ViewData.Model as ProductsListViewModel;

 // Assert
 Product[] prodArray = result.Products.ToArray();
 Assert.True(prodArray.Length == 2);
 Assert.Equal("P4", prodArray[0].Name);
 Assert.Equal("P5", prodArray[1].Name);
}
...

I would usually create a common setup method, given the degree of duplication between these two test
methods. however, since I am delivering the unit tests in individual sidebars like this one, I am going to
keep everything separate so you can see each test on its own.

The view is currently expecting a sequence of Product objects, so I need to update the List.cshtml file,
as shown in Listing 8-28, to deal with the new view model type.

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

227

Listing 8-28. Updating the List.cshtml File in the Views/Product Folder

@model ProductsListViewModel

@foreach (var p in Model.Products) {
 <div>
 <h3>@p.Name</h3>
 @p.Description
 <h4>@p.Price.ToString("c")</h4>
 </div>
}

I have changed the @model directive to tell Razor that I am now working with a different data type.
I updated the foreach loop so that the data source is the Products property of the model data.

Displaying the Page Links
I have everything in place to add the page links to the List view. I created the view model that contains the
paging information, updated the controller so that it passes this information to the view, and changed the @
model directive to match the new model view type. All that remains is to add an HTML element that the tag
help will process to create the page links, as shown in Listing 8-29.

Listing 8-29. Adding the Pagination Links in the List.cshtml File in the Views/Product Folder

@model ProductsListViewModel

@foreach (var p in Model.Products) {
 <div>
 <h3>@p.Name</h3>
 @p.Description
 <h4>@p.Price.ToString("c")</h4>
 </div>
}

<div page-model="@Model.PagingInfo" page-action="List"></div>

If you run the application, you will see the new page links, as illustrated in Figure 8-9. The style is still
basic, which I will fix later in the chapter. What is important for the moment is that the links take the user
from page to page in the catalog and allow for exploration of the products for sale. When Razor finds the
page-model attribute on the div element, it asks the PageLinkTagHelper class to transform the element,
which produces the set of links shown in the figure.

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

228

WHY NOT JUST USE A GRIDVIEW?

If you have worked with ASP.NET before, you might think that was a lot of work for an unimpressive
result. It has taken me pages and pages just to get a simple paginated product list. If I were using Web
Forms, I could have done the same thing using the ASP.NET Web Forms GridView or ListView control,
right out of the box, by hooking them up directly to the Products database table.

What I have accomplished in this chapter may not look like much, but it is profoundly different
from dragging a control onto a design surface. First, I am building an application with a sound and
maintainable architecture that involves proper separation of concerns. Unlike the simplest use of the
ListView control, I have not directly coupled the UI and the database, which is an approach that gives
quick results but that causes pain and misery over time. Second, I have been creating unit tests as I go,
and these allow me to validate the behavior of the application in a natural way that is nearly impossible
with a complex Web Forms control. Finally, bear in mind that I have given over a lot of this chapter to the
process of creating the underlying infrastructure on which I am building the application. I need to define
and implement the repository only once, for example, and now that I have, I will be able to build and test
new features quickly and easily, as the following chapters will demonstrate.

Figure 8-9. Displaying page navigation links

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

229

None of this detracts from the immediate results that Web Forms can deliver, of course, but as I
explained in Chapter 3, that immediacy comes with a cost that can be expensive and painful in large
and complex projects.

Improving the URLs
I have the page links working, but they still use the query string to pass page information to the server,
like this:

http://localhost/?productPage=2

I can create URLs that are more appealing by creating a scheme that follows the pattern of composable
URLs. A composable URL is one that makes sense to the user, like this one:

http://localhost/Page2

MVC makes it easy to change the URL scheme in an application because it uses the ASP.NET Core
routing feature, which is responsible for processing URLs to figure out what part of the application they
target. All I need to do is add a new route when registering the MVC middleware in the Configure method of
the Startup class, as shown in Listing 8-30.

Listing 8-30. Adding a New Route in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;

namespace SportsStore {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));

http://dx.doi.org/10.1007/978-1-4842-3150-0_3

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

230

 services.AddTransient<IProductRepository, EFProductRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "pagination",
 template: "Products/Page{productPage}",
 defaults: new { Controller = "Product", action = "List" });

 routes.MapRoute(
 name: "default",
 template: "{controller=Product}/{action=List}/{id?}");
 });
 SeedData.EnsurePopulated(app);
 }
 }
}

It is important that you add the new route before the Default one that is already in the method. As you
will learn in Chapter 15, the routing system processes routes in the order they are listed, and I need the new
route to take precedence over the existing one.

This is the only alteration required to change the URL scheme for product pagination. MVC and the
routing function are tightly integrated, so the application automatically reflects a change like this in the URLs
used by the application, including those generated by tag helpers like the one I use to generate the page
navigation links. Do not worry if routing does not make sense to you now. I explain it in detail in Chapters 15
and 16.

If you run the application and click a pagination link, you will see the new URL scheme in action, as
illustrated in Figure 8-10.

Figure 8-10. The new URL scheme displayed in the browser

http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_16

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

231

Styling the Content
I have built a great deal of infrastructure and the basic features of the application are starting to come
together, but I have not paid any attention to appearance. Even though this book is not about design or CSS,
the SportsStore application design is so miserably plain that it undermines its technical strengths. In this
section, I will put some of that right. I am going to implement a classic two-column layout with a header, as
shown in Figure 8-11.

Installing the Bootstrap Package
I am going to use the Bootstrap package to provide the CSS styles I will apply to the application. I will rely
on the Visual Studio support for Bower to install the Bootstrap package for me, so I selected the Bower
Configuration File item template from the General category of the Add New Item dialog to create a file called
bower.json in the SportsStore project, as demonstrated in Chapter 6. I then added the Bootstrap package to
the dependencies section of the file that was created, as shown in Listing 8-31. As explained previously, I am
using a prerelease version of Bootstrap for the examples in this book.

Listing 8-31. Adding Bootstrap to the bower.json File in the SportsStore Project

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

When the changes to the bower.json file are saved, Visual Studio uses Bower to download the Bootstrap
package into the wwwroot/lib/bootstrap folder. Bootstrap depends on the jQuery package, and this will be
automatically added to the project as well.

Figure 8-11. The design goal for the SportsStore application

http://dx.doi.org/10.1007/978-1-4842-3150-0_6

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

232

Applying Bootstrap Styles to the Layout
In Chapter 5, I explained how Razor layouts work, how they are used, and how they incorporate layouts. The
view start file that I added at the start of the chapter specified that a file called _Layout.cshtml should be used
as the default layout, and that is where the initial Bootstrap styling will be applied, as shown in Listing 8-32.

Listing 8-32. Applying Bootstrap CSS to the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet"
 asp-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-href-exclude="**/*-reboot*,**/*-grid*" />
 <title>SportsStore</title>
</head>
<body>
 <div class="navbar navbar-inverse bg-inverse" role="navigation">
 SPORTS STORE
 </div>
 <div class="row m-1 p-1">
 <div id="categories" class="col-3">
 Put something useful here later
 </div>
 <div class="col-9">
 @RenderBody()
 </div>
 </div>
</body>
</html>

The link element in this listing has asp-href-include and asp-href-exclude attributes, which
represents an example of a built-in tag helper class. In this case, the tag helper looks at the value of the
attributes and generates link elements for all the files that match the path specified by the include attribute
and by the paths specified by the exclude attributes. The paths used by the attributes can contain wildcards,
which makes this a useful feature to ensure that you can add and remove files from the wwwroot folder
structure without breaking the application. But, as I explain in Chapter 25, caution is required to make sure
that the paths you specify select only the files you expect.

Adding the Bootstrap CSS stylesheet to the layout means that I can use the styles it defines in any of the
views that rely on the layout. In Listing 8-33, you can see the styling I applied to the List.cshtml file.

Listing 8-33. Styling Content in the List.cshtml File in the Views/Product Folder

@model ProductsListViewModel

@foreach (var p in Model.Products) {
 <div class="card card-outline-primary m-1 p-1">
 <div class="bg-faded p-1">
 <h4>
 @p.Name

http://dx.doi.org/10.1007/978-1-4842-3150-0_5
http://dx.doi.org/10.1007/978-1-4842-3150-0_25

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

233

 <small>@p.Price.ToString("c")</small>

 </h4>
 </div>
 <div class="card-text p-1">@p.Description</div>
 </div>
}

<div page-model="@Model.PagingInfo" page-action="List" page-classes-enabled="true"
 page-class="btn" page-class-normal="btn-secondary"
 page-class-selected="btn-primary" class="btn-group pull-right m-1">
</div>

I need to style the buttons that are generated by the PageLinkTagHelper class, but I don’t want to
hardwire the Bootstrap classes into the C# code because it makes it harder to reuse the tag helper elsewhere
in the application or change the appearance of the buttons. Instead, I have defined custom attributes on
the div element that specify the classes that I require, and these correspond to properties I added to the tag
helper class, which are then used to style the a elements that are produced, as shown in Listing 8-34.

Listing 8-34. Adding Classes to Generated Elements in the PageLinkTagHelper.cs File

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.Routing;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;
using SportsStore.Models.ViewModels;

namespace SportsStore.Infrastructure {

 [HtmlTargetElement("div", Attributes = "page-model")]
 public class PageLinkTagHelper : TagHelper {
 private IUrlHelperFactory urlHelperFactory;

 public PageLinkTagHelper(IUrlHelperFactory helperFactory) {
 urlHelperFactory = helperFactory;
 }

 [ViewContext]
 [HtmlAttributeNotBound]
 public ViewContext ViewContext { get; set; }

 public PagingInfo PageModel { get; set; }

 public string PageAction { get; set; }

 public bool PageClassesEnabled { get; set; } = false;
 public string PageClass { get; set; }
 public string PageClassNormal { get; set; }
 public string PageClassSelected { get; set; }

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

234

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {
 IUrlHelper urlHelper = urlHelperFactory.GetUrlHelper(ViewContext);
 TagBuilder result = new TagBuilder("div");
 for (int i = 1; i <= PageModel.TotalPages; i++) {
 TagBuilder tag = new TagBuilder("a");
 tag.Attributes["href"] = urlHelper.Action(PageAction,
 new { productPage = i });
 if (PageClassesEnabled) {
 tag.AddCssClass(PageClass);
 tag.AddCssClass(i == PageModel.CurrentPage
 ? PageClassSelected : PageClassNormal);
 }
 tag.InnerHtml.Append(i.ToString());
 result.InnerHtml.AppendHtml(tag);
 }
 output.Content.AppendHtml(result.InnerHtml);
 }
 }
}

The values of the attributes are automatically used to set the tag helper property values, with the
mapping between the HTML attribute name format (page-class-normal) and the C# property name format
(PageClassNormal) taken into account. This allows tag helpers to respond differently based on the attributes
of an HTML element, creating a more flexible way to generate content in an MVC application.

If you run the application, you will see that the appearance of the application has been improved—at
least a little, anyway—as illustrated by Figure 8-12.

Figure 8-12. The design-enhanced SportsStore application

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

235

Creating a Partial View
As a finishing flourish for this chapter, I am going to refactor the application to simplify the List.cshtml
view. I am going to create a partial view, which is a fragment of content that you can embed into another
view, rather like a template. I describe partial views in detail in Chapter 21, and they help reduce duplication
when you need the same content to appear in different places in an application. Rather than copy and paste
the same Razor markup into multiple views, you can define it once in a partial view. To create the partial
view, I added a Razor view file called ProductSummary.cshtml to the Views/Shared folder and added the
markup shown in Listing 8-35.

Listing 8-35. The Contents of the ProductSummary.cshtml File in the Views/Shared Folder

@model Product

<div class="card card-outline-primary m-1 p-1">
 <div class="bg-faded p-1">
 <h4>
 @Model.Name

 <small>@Model.Price.ToString("c")</small>

 </h4>
 </div>
 <div class="card-text p-1">@Model.Description</div>
</div>

Now I need to update the List.cshtml file in the Views/Products folder so that it uses the partial view,
as shown in Listing 8-36.

Listing 8-36. Using a Partial View in the List.cshtml File

@model ProductsListViewModel

@foreach (var p in Model.Products) {
 @Html.Partial("ProductSummary", p)
}

<div page-model="@Model.PagingInfo" page-action="List" page-classes-enabled="true"
 page-class="btn" page-class-normal="btn-secondary"
 page-class-selected="btn-primary" class="btn-group pull-right m-1">
</div>

I have taken the markup that was previously in the foreach loop in the List.cshtml view and moved
it to the new partial view. I call the partial view using the Html.Partial helper method, with arguments for
the name of the view and the view model object. Switching to a partial view like this is good practice because
it allows the same markup to be inserted into any view that needs to display a summary of a product. As
Figure 8-13 shows, adding the partial view doesn’t change the appearance of the application; it just changes
where Razor finds the content that is used to generate the response sent to the browser.

http://dx.doi.org/10.1007/978-1-4842-3150-0_21

ChAPTEr 8 ■ SPorTSSTorE: A rEAl APPlICATIoN

236

Summary
In this chapter, I built the core infrastructure for the SportsStore application. It does not have many features
that you could demonstrate to a client at this point, but behind the scenes, there are the beginnings of a
domain model with a product repository backed by SQL Server and Entity Framework Core. There is a single
controller, ProductController, that can produce paginated lists of products, and I have set up a clean and
friendly URL scheme.

If this chapter felt like a lot of setup for little benefit, then the next chapter will balance the equation.
Now that the fundamental structure is in place, we can forge ahead and add all the customer-facing features:
navigation by category, a shopping cart, and the start of a checkout process.

Figure 8-13. Applying a partial view

237© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_9

CHAPTER 9

SportsStore: Navigation

In this chapter, I continue to build out the SportsStore example app. In this chapter, I add support for
navigating around the application and start building a shopping cart.

Adding Navigation Controls
The SportsStore application will be more useful if customers can navigate products by category. I will do this
in three phases.

•	 Enhance the List action model in the ProductController class so that it is able to
filter the Product objects in the repository

•	 Revisit and enhance the URL scheme

•	 Create a category list that will go into the sidebar of the site, highlighting the current
category and linking to others

Filtering the Product List
I am going to start by enhancing the view model class, ProductsListViewModel, which I added to the
SportsStore project in the previous chapter. I need to communicate the current category to the view in order
to render the sidebar, and this is as good a place to start as any. Listing 9-1 shows the changes I made to the
ProductsListViewModel.cs file in the Models/ViewModels folder.

Listing 9-1. Adding a Property in the ProductsListViewModel .cs File in the Models/ViewModels Folder

using System.Collections.Generic;
using SportsStore.Models;

namespace SportsStore.Models.ViewModels {

 public class ProductsListViewModel {
 public IEnumerable<Product> Products { get; set; }
 public PagingInfo PagingInfo { get; set; }
 public string CurrentCategory { get; set; }
 }
}

https://doi.org/10.1007/978-1-4842-3150-0_9

Chapter 9 ■ SportSStore: NavigatioN

238

I added a property called CurrentCategory. The next step is to update the Product controller so that
the List action method will filter Product objects by category and use the new property I added to the view
model to indicate which category has been selected. Listing 9-2 shows the changes.

Listing 9-2. Adding Category Support to the List Action in the ProductController.cs File in the Controllers

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;
using SportsStore.Models.ViewModels;

namespace SportsStore.Controllers {

 public class ProductController : Controller {
 private IProductRepository repository;
 public int PageSize = 4;

 public ProductController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult List(string category, int productPage = 1)
 => View(new ProductsListViewModel {
 Products = repository.Products
 .Where(p => category == null || p.Category == category)
 .OrderBy(p => p.ProductID)
 .Skip((productPage - 1) * PageSize)
 .Take(PageSize),
 PagingInfo = new PagingInfo {
 CurrentPage = productPage,
 ItemsPerPage = PageSize,
 TotalItems = repository.Products.Count()
 },
 CurrentCategory = category
 });
 }
}

I made three changes to the action method. First, I added a parameter called category. This category
parameter is used by the second change in the listing, which is an enhancement to the LINQ query: if
category is not null, only those Product objects with a matching Category property are selected. The last
change is to set the value of the CurrentCategory property I added to the ProductsListViewModel class.
However, these changes mean that the value of PagingInfo.TotalItems is incorrectly calculated because it
doesn’t take the category filter into account. I will fix this in a while.

Chapter 9 ■ SportSStore: NavigatioN

239

UNIT TEST: UPDATING EXISTING UNIT TESTS

i changed the signature of the List action method, which will prevent some of the existing unit test
methods from compiling. to address this, i need to pass null as the first parameter to the List
method in those unit tests that work with the controller. For example, in the Can_Paginate test in the
ProductControllerTests.cs file, the action section of the unit test becomes as follows:

...
[Fact]
public void Can_Paginate() {
 // Arrange
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns((new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 new Product {ProductID = 4, Name = "P4"},
 new Product {ProductID = 5, Name = "P5"}
 }).AsQueryable<Product>());

 ProductController controller = new ProductController(mock.Object);
 controller.PageSize = 3;

 // Act
 ProductsListViewModel result =
 controller.List(null, 2).ViewData.Model as ProductsListViewModel;

 // Assert
 Product[] prodArray = result.Products.ToArray();
 Assert.True(prodArray.Length == 2);
 Assert.Equal("P4", prodArray[0].Name);
 Assert.Equal("P5", prodArray[1].Name);
}
...

By using null for the category argument, i receive all the Product objects that the controller gets from
the repository, which is the same situation i had before adding the new parameter. i need to make the
same change to the Can_Send_Pagination_View_Model test.

...
[Fact]
public void Can_Send_Pagination_View_Model() {

Chapter 9 ■ SportSStore: NavigatioN

240

 // Arrange
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns((new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 new Product {ProductID = 4, Name = "P4"},
 new Product {ProductID = 5, Name = "P5"}
 }).AsQueryable<Product>());

 // Arrange
 ProductController controller =
 new ProductController(mock.Object) { PageSize = 3 };

 // Act
 ProductsListViewModel result =
 controller.List(null, 2).ViewData.Model as ProductsListViewModel;

 // Assert
 PagingInfo pageInfo = result.PagingInfo;
 Assert.Equal(2, pageInfo.CurrentPage);
 Assert.Equal(3, pageInfo.ItemsPerPage);
 Assert.Equal(5, pageInfo.TotalItems);
 Assert.Equal(2, pageInfo.TotalPages);
}
...

Keeping your unit tests synchronized with your code changes quickly becomes second nature when you
get into the testing mind-set.

To see the effect of the category filtering, start the application and select a category using the following
query string, changing the port to match the one that Visual Studio assigned for your project (and taking care
to use an uppercase S for Soccer):

http://localhost:60000/?category=Soccer

You will see only the products in the Soccer category, as shown in Figure 9-1.

Chapter 9 ■ SportSStore: NavigatioN

241

Obviously, users won’t want to navigate to categories using URLs, but you can see how small changes
can have a big impact in an MVC application once the basic structure is in place.

UNIT TEST: CATEGORY FILTERING

i need a unit test to properly test the category filtering function to ensure that the filter can
correctly generate products in a specified category. here is the test method i added to the
ProductControllerTests class:

...
[Fact]
public void Can_Filter_Products() {

 // Arrange
 // - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns((new Product[] {
 new Product {ProductID = 1, Name = "P1", Category = "Cat1"},
 new Product {ProductID = 2, Name = "P2", Category = "Cat2"},
 new Product {ProductID = 3, Name = "P3", Category = "Cat1"},
 new Product {ProductID = 4, Name = "P4", Category = "Cat2"},

Figure 9-1. Using the query string to filter by category

Chapter 9 ■ SportSStore: NavigatioN

242

 new Product {ProductID = 5, Name = "P5", Category = "Cat3"}
 }).AsQueryable<Product>());

 // Arrange - create a controller and make the page size 3 items
 ProductController controller = new ProductController(mock.Object);
 controller.PageSize = 3;

 // Action
 Product[] result =
 (controller.List("Cat2", 1).ViewData.Model as ProductsListViewModel)
 .Products.ToArray();

 // Assert
 Assert.Equal(2, result.Length);
 Assert.True(result[0].Name == "P2" && result[0].Category == "Cat2");
 Assert.True(result[1].Name == "P4" && result[1].Category == "Cat2");
}
...

this test creates a mock repository containing Product objects that belong to a range of categories.
one specific category is requested using the action method, and the results are checked to ensure that
the results are the right objects in the right order.

Refining the URL Scheme
No one wants to see or use ugly URLs such as /?category=Soccer. To address this, I am going to change the
routing configuration in the Configure method of the Startup class to create a more useful set of URLs, as
shown in Listing 9-3.

 ■ Caution it is important to add the new routes in Listing 9-3 in the order they are shown. routes are
applied in the order in which they are defined, and you will get some odd effects if you change the order.

Listing 9-3. Changing the Routing Schema in the Startup.cs File in the SportsStore Folder

...
public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {

 routes.MapRoute(
 name: null,
 template: "{category}/Page{productPage:int}",
 defaults: new { controller = "Product", action = "List" }
);

Chapter 9 ■ SportSStore: NavigatioN

243

 routes.MapRoute(
 name: null,
 template: "Page{productPage:int}",
 defaults: new { controller = "Product",
 action = "List", productPage = 1 }
);

 routes.MapRoute(
 name: null,
 template: "{category}",
 defaults: new { controller = "Product",
 action = "List", productPage = 1 }
);

 routes.MapRoute(
 name: null,
 template: "",
 defaults: new { controller = "Product", action = "List",
 productPage = 1 });

 routes.MapRoute(name: null, template: "{controller}/{action}/{id?}");
 });
 SeedData.EnsurePopulated(app);
}
...

Table 9-1 describes the URL scheme that these routes represent. I explain the routing system in detail in
Chapters 15 and 16.

Table 9-1. Route Summary

URL Leads To

/ Lists the first page of products from all categories

/Page2 Lists the specified page (in this case, page 2), showing items from all categories

/Soccer Shows the first page of items from a specific category (in this case, the Soccer
category)

/Soccer/Page2 Shows the specified page (in this case, page 2) of items from the specified category
(in this case, Soccer)

The ASP.NET Core routing system is used by MVC to handle incoming requests from clients, but it also
generates outgoing URLs that conform to the URL scheme and that can be embedded in web pages. By using
the routing system both to handle incoming requests and to generate outgoing URLs, I can ensure that all
the URLs in the application are consistent.

The IUrlHelper interface provides access to the URL-generating functionality. I used this interface
and the Action method it defines in the tag helper I created in the previous chapter. Now that I want to
start generating more complex URLs, I need a way to receive additional information from the view without
having to add extra properties to the tag helper class. Fortunately, tag helpers have a nice feature that allows
properties with a common prefix to be received all together in a single collection, as shown in Listing 9-4.

http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 9 ■ SportSStore: NavigatioN

244

Listing 9-4. Receiving Prefixed Values in the PageLinkTagHelper.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.Routing;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;
using SportsStore.Models.ViewModels;
using System.Collections.Generic;

namespace SportsStore.Infrastructure {

 [HtmlTargetElement("div", Attributes = "page-model")]
 public class PageLinkTagHelper : TagHelper {
 private IUrlHelperFactory urlHelperFactory;

 public PageLinkTagHelper(IUrlHelperFactory helperFactory) {
 urlHelperFactory = helperFactory;
 }

 [ViewContext]
 [HtmlAttributeNotBound]
 public ViewContext ViewContext { get; set; }

 public PagingInfo PageModel { get; set; }

 public string PageAction { get; set; }

 [HtmlAttributeName(DictionaryAttributePrefix = "page-url-")]
 public Dictionary<string, object> PageUrlValues { get; set; }
 = new Dictionary<string, object>();

 public bool PageClassesEnabled { get; set; } = false;
 public string PageClass { get; set; }
 public string PageClassNormal { get; set; }
 public string PageClassSelected { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {
 IUrlHelper urlHelper = urlHelperFactory.GetUrlHelper(ViewContext);
 TagBuilder result = new TagBuilder("div");
 for (int i = 1; i <= PageModel.TotalPages; i++) {
 TagBuilder tag = new TagBuilder("a");
 PageUrlValues["productPage"] = i;
 tag.Attributes["href"] = urlHelper.Action(PageAction, PageUrlValues);
 if (PageClassesEnabled) {
 tag.AddCssClass(PageClass);
 tag.AddCssClass(i == PageModel.CurrentPage
 ? PageClassSelected : PageClassNormal);
 }

Chapter 9 ■ SportSStore: NavigatioN

245

 tag.InnerHtml.Append(i.ToString());
 result.InnerHtml.AppendHtml(tag);
 }
 output.Content.AppendHtml(result.InnerHtml);
 }
 }
}

Decorating a tag helper property with the HtmlAttributeName attribute allows me to specify a prefix
for attribute names on the element, which in this case will be page-url-. The value of any attribute whose
name begins with this prefix will be added to the dictionary that is assigned to the PageUrlValues property,
which is then passed to the IUrlHelper.Action method to generate the URL for the href attribute of the a
elements that the tag helper produces.

In Listing 9-5, I have added a new attribute to the div element that is processed by the tag helper,
specifying the category that will be used to generate the URL. I have added only one new attribute to the
view, but any attribute with the same prefix would be added to the dictionary.

Listing 9-5. Adding a New Attribute in the List.cshtml File in the Views/Home Folder

@model ProductsListViewModel

@foreach (var p in Model.Products) {
 @Html.Partial("ProductSummary", p)
}

<div page-model="@Model.PagingInfo" page-action="List" page-classes-enabled="true"
 page-class="btn" page-class-normal="btn-secondary"
 page-class-selected="btn-primary" page-url-category="@Model.CurrentCategory"
 class="btn-group pull-right m-1">
</div>

Prior to this change, the links generated for the pagination links were like this:

http://<myserver>:<port>/Page1

If the user clicked a page link like this, the category filter would be lost, and the application would
present a page containing products from all categories. By adding the current category, taken from the view
model, I generate URLs like this instead:

http://<myserver>:<port>/Chess/Page1

When the user clicks this kind of link, the current category will be passed to the List action method,
and the filtering will be preserved. After you have made this change, you can visit a URL such as /Chess or /
Soccer, and you will see that the page links at the bottom of the page correctly includes the category.

Chapter 9 ■ SportSStore: NavigatioN

246

Building a Category Navigation Menu
I need to provide customers with a way to select a category that does not involve typing in URLs. This means
presenting them with a list of the categories available and indicating which, if any, is currently selected. As
I build out the application, I will use this list of categories in more than one controller, so I need something
that is self-contained and reusable.

ASP.NET Core MVC has the concept of view components, which are perfect for creating items such
as a reusable navigation control. A view component is a C# class that provides a small amount of reusable
application logic with the ability to select and display Razor partial views. I describe view components in
detail in Chapter 22.

In this case, I will create a view component that renders the navigation menu and integrates it into the
application by invoking the component from the shared layout. This approach gives me a regular C# class
that can contain whatever application logic I need and that can be unit tested like any other class. It is a nice
way of creating smaller segments of an application while preserving the overall MVC approach.

Creating the Navigation View Component
I created a folder called Components, which is the conventional home of view components, and added to it a
class called NavigationMenuViewComponent.cs, which I used to define the class shown in Listing 9-6.

Listing 9-6. The Contents of the NavigationMenuViewComponent.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;

namespace SportsStore.Components {

 public class NavigationMenuViewComponent : ViewComponent {

 public string Invoke() {
 return "Hello from the Nav View Component";
 }
 }
}

The view component’s Invoke method is called when the component is used in a Razor view, and the
result of the Invoke method is inserted into the HTML sent to the browser. I have started with a simple view
component that returns a string, but I’ll replace this with dynamic HTML content shortly.

I want the category list to appear on all pages, so I am going to use the view component in the shared
layout, rather than in a specific view. Within a view, view components are used through the @await
Component.InvokeAsync expression, as shown in Listing 9-7.

Listing 9-7. Using View Component in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet"
 asp-href-include="/lib/bootstrap/dist/**/*.min.css"

http://dx.doi.org/10.1007/978-1-4842-3150-0_22

Chapter 9 ■ SportSStore: NavigatioN

247

 asp-href-exclude="**/*-reboot*,**/*-grid*" />
 <title>SportsStore</title>
</head>
<body>
 <div class="navbar navbar-inverse bg-inverse" role="navigation">
 SPORTS STORE
 </div>
 <div class="row m-1 p-1">
 <div id="categories" class="col-3">
 @await Component.InvokeAsync("NavigationMenu")
 </div>
 <div class="col-9">
 @RenderBody()
 </div>
 </div>
</body>
</html>

I removed the placeholder text and replaced it with a call to the Component.InvokeAsync method.
The argument to this method is the name of the component class, omitting the ViewComponent part of
the class name, such that NavigationMenu specifies the NavigationMenuViewComponent class. If you run
the application, you will see that the output from the Invoke method is included in the HTML sent to the
browser, as shown in Figure 9-2.

Generating Category Lists
I can now return to the navigation view controller and generate a real set of categories. I could build the
HTML for the categories programmatically, as I did for the page tag helper, but one of the benefits of working
with view components is they can render Razor partial views. That means I can use the view component to
generate the list of components and then use the more expressive Razor syntax to render the HTML that will
display them. The first step is to update the view component, as shown in Listing 9-8.

Figure 9-2. Using a view component

Chapter 9 ■ SportSStore: NavigatioN

248

Listing 9-8. Adding Categories in the NavigationMenuViewComponent.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using SportsStore.Models;

namespace SportsStore.Components {

 public class NavigationMenuViewComponent : ViewComponent {
 private IProductRepository repository;

 public NavigationMenuViewComponent(IProductRepository repo) {
 repository = repo;
 }

 public IViewComponentResult Invoke() {
 return View(repository.Products
 .Select(x => x.Category)
 .Distinct()
 .OrderBy(x => x));
 }
 }
}

The constructor defined in Listing 9-8 defines an IProductRepository argument. When MVC needs to
create an instance of the view component class, it will note the need to provide this argument and inspect
the configuration in the Startup class to determine which implementation object should be used. This is
the same dependency injection feature that I used in the controller in Chapter 8, and it has the same effect,
which is to allow the view component to access data without knowing which repository implementation will
be used, as described in Chapter 18.

In the Invoke method, I use LINQ to select and order the set of categories in the repository and pass
them as the argument to the View method, which renders the default Razor partial view, details of which
are returned from the method using an IViewComponentResult object, a process I describe in more detail in
Chapter 22.

UNIT TEST: GENERATING THE CATEGORY LIST

the unit test for my ability to produce a category list is relatively simple. the goal is to create a list that
is sorted in alphabetical order and contains no duplicates, and the simplest way to do this is to supply
some test data that does have duplicate categories and that is not in order, pass this to the tag helper
class, and assert that the data has been properly cleaned up. here is the unit test, which i defined in a
new class file called NavigationMenuViewComponentTests.cs in the SportsStore.Tests project:

using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Moq;
using SportsStore.Components;
using SportsStore.Models;
using Xunit;

http://dx.doi.org/10.1007/978-1-4842-3150-0_8
http://dx.doi.org/10.1007/978-1-4842-3150-0_18
http://dx.doi.org/10.1007/978-1-4842-3150-0_22

Chapter 9 ■ SportSStore: NavigatioN

249

namespace SportsStore.Tests {

 public class NavigationMenuViewComponentTests {

 [Fact]
 public void Can_Select_Categories() {
 // Arrange
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns((new Product[] {
 new Product {ProductID = 1, Name = "P1", Category = "Apples"},
 new Product {ProductID = 2, Name = "P2", Category = "Apples"},
 new Product {ProductID = 3, Name = "P3", Category = "Plums"},
 new Product {ProductID = 4, Name = "P4", Category = "Oranges"},
 }).AsQueryable<Product>());

 NavigationMenuViewComponent target =
 new NavigationMenuViewComponent(mock.Object);

 // Act = get the set of categories
 string[] results = ((IEnumerable<string>)(target.Invoke()
 as ViewViewComponentResult).ViewData.Model).ToArray();

 // Assert
 Assert.True(Enumerable.SequenceEqual(new string[] { "Apples",
 "Oranges", "Plums" }, results));
 }
 }
}

i created a mock repository implementation that contains repeating categories and categories that are
not in order. i assert that the duplicates are removed and that alphabetical ordering is imposed.

Creating the View
Razor uses different conventions for dealing with views that are selected by view components. Both the
default name of the view and the locations that are searched for the view are different from those used for
controllers. To that end, I created the Views/Shared/Components/NavigationMenu folder and added to it a
view file called Default.cshtml, to which I added the content shown in Listing 9-9.

Listing 9-9. Contents of the Default.cshtml File in the Views/Shared/Components/NavigationMenu Folder

@model IEnumerable<string>

<a class="btn btn-block btn-secondary"
 asp-action="List"
 asp-controller="Product"
 asp-route-category="">
 Home

Chapter 9 ■ SportSStore: NavigatioN

250

@foreach (string category in Model) {
 <a class="btn btn-block btn-secondary"
 asp-action="List"
 asp-controller="Product"
 asp-route-category="@category"
 asp-route-productPage="1">
 @category

}

This view uses one of the built-in tag helpers, which I describe in Chapters 24 and 25, to create a
elements whose href attribute contains a URL that selects a different product category.

You can see the category links if you run the application, as shown in Figure 9-3. If you click a category,
the list of items is updated to show only items from the selected category.

Highlighting the Current Category
There is no feedback to the user to indicate which category has been selected. It might be possible to infer
the category from the items in the list, but some clear visual feedback seems like a good idea. ASP.NET Core
MVC components such as controllers and view components can receive information about the current
request by asking for a context object. Most of the time, you can rely on the base classes that you use to
create components to take care of getting the context object for you, such as when you use the Controller
base class to create controllers.

The ViewComponent base class is no exception and provides access to context objects through a set of
properties. One of the properties is called RouteData, which provides information about how the request
URL was handled by the routing system.

In Listing 9-10, I use the RouteData property to access the request data in order to get the value for the
currently selected category. I could pass the category to the view by creating another view model class (and
that’s what I would do in a real project), but for variety, I am going to use the view bag feature I introduced in
Chapter 2.

Figure 9-3. Generating category links with a view component

http://dx.doi.org/10.1007/978-1-4842-3150-0_24
http://dx.doi.org/10.1007/978-1-4842-3150-0_25
http://dx.doi.org/10.1007/978-1-4842-3150-0_2

Chapter 9 ■ SportSStore: NavigatioN

251

Listing 9-10. Passing the Selected Category in the NavigationMenuViewComponent.cs File

using Microsoft.AspNetCore.Mvc;
using System.Linq;
using SportsStore.Models;

namespace SportsStore.Components {

 public class NavigationMenuViewComponent : ViewComponent {
 private IProductRepository repository;

 public NavigationMenuViewComponent(IProductRepository repo) {
 repository = repo;
 }

 public IViewComponentResult Invoke() {
 ViewBag.SelectedCategory = RouteData?.Values["category"];
 return View(repository.Products
 .Select(x => x.Category)
 .Distinct()
 .OrderBy(x => x));
 }
 }
}

Inside the Invoke method, I have dynamically assigned a SelectedCategory property to the ViewBag
object and set its value to be the current category, which is obtained through the context object returned
by the RouteData property. As I explained in Chapter 2, the ViewBag is a dynamic object that allows me to
define new properties simply by assigning values to them.

UNIT TEST: REPORTING THE SELECTED CATEGORY

i can test that the view component correctly adds details of the selected category by reading the value
of the ViewBag property in a unit test, which is available through the ViewViewComponentResult class,
described in Chapter 22. here is the test, which i added to the NavigatioMenuViewComponentTests
class:

...
[Fact]
public void Indicates_Selected_Category() {

 // Arrange
 string categoryToSelect = "Apples";
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns((new Product[] {
 new Product {ProductID = 1, Name = "P1", Category = "Apples"},
 new Product {ProductID = 4, Name = "P2", Category = "Oranges"},
 }).AsQueryable<Product>());
 NavigationMenuViewComponent target =
 new NavigationMenuViewComponent(mock.Object);

http://dx.doi.org/10.1007/978-1-4842-3150-0_2
http://dx.doi.org/10.1007/978-1-4842-3150-0_22

Chapter 9 ■ SportSStore: NavigatioN

252

 target.ViewComponentContext = new ViewComponentContext {
 ViewContext = new ViewContext {
 RouteData = new RouteData()
 }
 };
 target.RouteData.Values["category"] = categoryToSelect;

 // Action
 string result = (string)(target.Invoke() as
 ViewViewComponentResult).ViewData["SelectedCategory"];

 // Assert
 Assert.Equal(categoryToSelect, result);
}
...

this unit test provides the view component with routing data through the ViewComponentContext
property, which is how view components receive all of their context data. the ViewComponentContext
property provides access to view-specific context data through its ViewContext property, which in turns
provides access to the routing information through its RouteData property. Most of the code in the unit test
goes into creating the context objects that will provide the selected category in the same way that it would
be presented when the application is running and the context data is provided by aSp.Net Core MvC.

Now that I am providing information about which category is selected, I can update the view selected
by the view component to take advantage of this and vary the CSS classes used to style the links to make the
one representing the current category distinct from the others. Listing 9-11 shows the change I made to the
Default.cshtml file.

Listing 9-11. Highlighting in the Default.cshtml File in the Views/Shared/Components/NavigationMenu
Folder

@model IEnumerable<string>

<a class="btn btn-block btn-secondary"
 asp-action="List"
 asp-controller="Product"
 asp-route-category="">
 Home

@foreach (string category in Model) {
 <a class="btn btn-block
 @(category == ViewBag.SelectedCategory ? "btn-primary": "btn-secondary")"
 asp-action="List"
 asp-controller="Product"
 asp-route-category="@category"
 asp-route-productPage="1">
 @category

}

Chapter 9 ■ SportSStore: NavigatioN

253

I have used a Razor expression within the class attribute to apply the btn-primary class to the element
that represents the selected category and the btn-secondary class otherwise. These classes apply different
Bootstrap styles and make the active button obvious, as shown in Figure 9-4.

Correcting the Page Count
I need to correct the page links so that they work correctly when a category is selected. Currently, the
number of page links is determined by the total number of products in the repository and not the number
of products in the selected category. This means that the customer can click the link for page 2 of the Chess
category and end up with an empty page because there are not enough chess products to fill two pages. You
can see the problem in Figure 9-5.

Figure 9-4. Highlighting the selected category

Chapter 9 ■ SportSStore: NavigatioN

254

I can fix this by updating the List action method in the Product controller so that the pagination
information takes the categories into account, as shown in Listing 9-12.

Listing 9-12. Creating Category Pagination Data in the ProductController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;
using SportsStore.Models.ViewModels;

namespace SportsStore.Controllers {

 public class ProductController : Controller {
 private IProductRepository repository;
 public int PageSize = 4;

 public ProductController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult List(string category, int productPage = 1)
 => View(new ProductsListViewModel {
 Products = repository.Products
 .Where(p => category == null || p.Category == category)
 .OrderBy(p => p.ProductID)
 .Skip((productPage - 1) * PageSize)
 .Take(PageSize),

Figure 9-5. Displaying the wrong page links when a category is selected

Chapter 9 ■ SportSStore: NavigatioN

255

 PagingInfo = new PagingInfo {
 CurrentPage = productPage,
 ItemsPerPage = PageSize,
 TotalItems = category == null ?
 repository.Products.Count() :
 repository.Products.Where(e =>
 e.Category == category).Count()
 },
 CurrentCategory = category
 });
 }
}

If a category has been selected, I return the number of items in that category; if not, I return the total
number of products. Now when I view a category, the links at the bottom of the page correctly reflect the
number of products in the category, as shown in Figure 9-6.

Figure 9-6. Displaying category-specific page counts

Chapter 9 ■ SportSStore: NavigatioN

256

UNIT TEST: CATEGORY-SPECIFIC PRODUCT COUNTS

testing that i am able to generate the current product count for different categories is simple. i
create a mock repository that contains known data in a range of categories and then call the List
action method requesting each category in turn. here is the unit test method that i added to the
ProductControllerTests class:

...
[Fact]
public void Generate_Category_Specific_Product_Count() {
 // Arrange
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns((new Product[] {
 new Product {ProductID = 1, Name = "P1", Category = "Cat1"},
 new Product {ProductID = 2, Name = "P2", Category = "Cat2"},
 new Product {ProductID = 3, Name = "P3", Category = "Cat1"},
 new Product {ProductID = 4, Name = "P4", Category = "Cat2"},
 new Product {ProductID = 5, Name = "P5", Category = "Cat3"}
 }).AsQueryable<Product>());

 ProductController target = new ProductController(mock.Object);
 target.PageSize = 3;

 Func<ViewResult, ProductsListViewModel> GetModel = result =>
 result?.ViewData?.Model as ProductsListViewModel;

 // Action
 int? res1 = GetModel(target.List("Cat1"))?.PagingInfo.TotalItems;
 int? res2 = GetModel(target.List("Cat2"))?.PagingInfo.TotalItems;
 int? res3 = GetModel(target.List("Cat3"))?.PagingInfo.TotalItems;
 int? resAll = GetModel(target.List(null))?.PagingInfo.TotalItems;

 // Assert
 Assert.Equal(2, res1);
 Assert.Equal(2, res2);
 Assert.Equal(1, res3);
 Assert.Equal(5, resAll);
}
...

Notice that i also call the List method, specifying no category, to make sure i get the correct total count
as well.

Chapter 9 ■ SportSStore: NavigatioN

257

Building the Shopping Cart
The application is progressing nicely, but I cannot sell any products until I implement a shopping cart. In
this section, I will create the shopping cart experience shown in Figure 9-7. This will be familiar to anyone
who has ever made a purchase online.

An Add to Cart button will be displayed alongside each of the products in the catalog. Clicking this
button will show a summary of the products the customer has selected so far, including the total cost. At this
point, the user can click the Continue Shopping button to return to the product catalog or click the Checkout
Now button to complete the order and finish the shopping session.

Defining the Cart Model
I started by adding a class file called Cart.cs to the Models folder in and used it to define the classes shown
in Listing 9-13.

Listing 9-13. The Contents of the Cart.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class Cart {
 private List<CartLine> lineCollection = new List<CartLine>();

 public virtual void AddItem(Product product, int quantity) {
 CartLine line = lineCollection
 .Where(p => p.Product.ProductID == product.ProductID)
 .FirstOrDefault();

 if (line == null) {
 lineCollection.Add(new CartLine {
 Product = product,
 Quantity = quantity
 });

Figure 9-7. The basic shopping cart flow

Chapter 9 ■ SportSStore: NavigatioN

258

 } else {
 line.Quantity += quantity;
 }
 }

 public virtual void RemoveLine(Product product) =>
 lineCollection.RemoveAll(l => l.Product.ProductID == product.ProductID);

 public virtual decimal ComputeTotalValue() =>
 lineCollection.Sum(e => e.Product.Price * e.Quantity);

 public virtual void Clear() => lineCollection.Clear();

 public virtual IEnumerable<CartLine> Lines => lineCollection;
 }

 public class CartLine {
 public int CartLineID { get; set; }
 public Product Product { get; set; }
 public int Quantity { get; set; }
 }
}

The Cart class uses the CartLine class, defined in the same file, to represent a product selected by
the customer and the quantity the user wants to buy. I defined methods to add an item to the cart, remove
a previously added item from the cart, calculate the total cost of the items in the cart, and reset the cart
by removing all the items. I also provided a property that gives access to the contents of the cart using an
IEnumerable<CartLine>. This is all straightforward stuff, easily implemented in C# with the help of a little
LINQ.

UNIT TEST: TESTING THE CART

the Cart class is relatively simple, but it has a range of important behaviors that must work properly.
a poorly functioning cart would undermine the entire SportsStore application. i have broken down
the features and tested them individually. i created a new unit test file called CartTests.cs in the
SportsStore.Tests project called to contain these tests.

the first behavior relates to when i add an item to the cart. if this is the first time that a given Product
has been added to the cart, i want a new CartLine to be added. here is the test, including the unit test
class definition:

using System.Linq;
using SportsStore.Models;
using Xunit;

namespace SportsStore.Tests {

 public class CartTests {

Chapter 9 ■ SportSStore: NavigatioN

259

 [Fact]
 public void Can_Add_New_Lines() {

 // Arrange - create some test products
 Product p1 = new Product { ProductID = 1, Name = "P1" };
 Product p2 = new Product { ProductID = 2, Name = "P2" };

 // Arrange - create a new cart
 Cart target = new Cart();

 // Act
 target.AddItem(p1, 1);
 target.AddItem(p2, 1);
 CartLine[] results = target.Lines.ToArray();

 // Assert
 Assert.Equal(2, results.Length);
 Assert.Equal(p1, results[0].Product);
 Assert.Equal(p2, results[1].Product);
 }
 }
}

however, if the customer has already added a Product to the cart, i want to increment the quantity of
the corresponding CartLine and not create a new one. here is the test:

...
[Fact]
public void Can_Add_Quantity_For_Existing_Lines() {
 // Arrange - create some test products
 Product p1 = new Product { ProductID = 1, Name = "P1" };
 Product p2 = new Product { ProductID = 2, Name = "P2" };

 // Arrange - create a new cart
 Cart target = new Cart();

 // Act
 target.AddItem(p1, 1);
 target.AddItem(p2, 1);
 target.AddItem(p1, 10);
 CartLine[] results = target.Lines
 .OrderBy(c => c.Product.ProductID).ToArray();

 // Assert
 Assert.Equal(2, results.Length);
 Assert.Equal(11, results[0].Quantity);
 Assert.Equal(1, results[1].Quantity);
}
...

Chapter 9 ■ SportSStore: NavigatioN

260

i also need to check that users can change their mind and remove products from the cart. this feature
is implemented by the RemoveLine method. here is the test:

...
[Fact]
public void Can_Remove_Line() {
 // Arrange - create some test products
 Product p1 = new Product { ProductID = 1, Name = "P1" };
 Product p2 = new Product { ProductID = 2, Name = "P2" };
 Product p3 = new Product { ProductID = 3, Name = "P3" };

 // Arrange - create a new cart
 Cart target = new Cart();
 // Arrange - add some products to the cart
 target.AddItem(p1, 1);
 target.AddItem(p2, 3);
 target.AddItem(p3, 5);
 target.AddItem(p2, 1);

 // Act
 target.RemoveLine(p2);

 // Assert
 Assert.Equal(0, target.Lines.Where(c => c.Product == p2).Count());
 Assert.Equal(2, target.Lines.Count());
}
...

the next behavior i want to test is the ability to calculate the total cost of the items in the cart. here’s
the test for this behavior:

...
[Fact]
public void Calculate_Cart_Total() {
 // Arrange - create some test products
 Product p1 = new Product { ProductID = 1, Name = "P1", Price = 100M };
 Product p2 = new Product { ProductID = 2, Name = "P2", Price = 50M };

 // Arrange - create a new cart
 Cart target = new Cart();

 // Act
 target.AddItem(p1, 1);
 target.AddItem(p2, 1);
 target.AddItem(p1, 3);
 decimal result = target.ComputeTotalValue();

 // Assert
 Assert.Equal(450M, result);
}
...

Chapter 9 ■ SportSStore: NavigatioN

261

the final test is simple. i want to ensure that the contents of the cart are properly removed when reset.
here is the test:

...
[Fact]
public void Can_Clear_Contents() {
 // Arrange - create some test products
 Product p1 = new Product { ProductID = 1, Name = "P1", Price = 100M };
 Product p2 = new Product { ProductID = 2, Name = "P2", Price = 50M };

 // Arrange - create a new cart
 Cart target = new Cart();

 // Arrange - add some items
 target.AddItem(p1, 1);
 target.AddItem(p2, 1);

 // Act - reset the cart
 target.Clear();

 // Assert
 Assert.Equal(0, target.Lines.Count());
}
...

Sometimes, as in this case, the code required to test the functionality of a class is longer and more
complex than the class itself. Do not let that put you off writing the unit tests. Defects in simple classes
can have huge impacts, especially ones that play such an important role as Cart does in the example
application.

Adding the Add to Cart Buttons
I need to edit the Views/Shared/ProductSummary.cshtml partial view to add the buttons to the product
listings. To prepare for this, I added a class file called UrlExtensions.cs to the Infrastructure folder and
defined the extension method shown in Listing 9-14.

Listing 9-14. The Contents of the UrlExtensions.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Http;

namespace SportsStore.Infrastructure {

 public static class UrlExtensions {

 public static string PathAndQuery(this HttpRequest request) =>
 request.QueryString.HasValue
 ? $"{request.Path}{request.QueryString}"
 : request.Path.ToString();
 }
}

Chapter 9 ■ SportSStore: NavigatioN

262

The PathAndQuery extension method operates on the HttpRequest class, which ASP.NET uses to
describe an HTTP request. The extension method generates a URL that the browser will be returned to after
the cart has been updated, taking into account the query string if there is one. In Listing 9-15, I have added
the namespace that contains the extension method to the view imports file so that I can use it in the partial
view.

Listing 9-15. Adding a Namespace in the _ViewImports.cshtml File in the Views Folder

@using SportsStore.Models
@using SportsStore.Models.ViewModels
@using SportsStore.Infrastructure
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper SportsStore.Infrastructure.*, SportsStore

In Listing 9-16, I have updated the partial view that describes each product to contain an Add To Cart
button.

Listing 9-16. Adding the Buttons to the ProductSummary.cshtml File View in the Views/Shared Folder

@model Product

<div class="card card-outline-primary m-1 p-1">
 <div class="bg-faded p-1">
 <h4>
 @Model.Name

 <small>@Model.Price.ToString("c")</small>

 </h4>
 </div>
 <form id="@Model.ProductID" asp-action="AddToCart"
 asp-controller="Cart" method="post">
 <input type="hidden" asp-for="ProductID" />
 <input type="hidden" name="returnUrl"
 value="@ViewContext.HttpContext.Request.PathAndQuery()" />

 @Model.Description
 <button type="submit"
 class="btn btn-success btn-sm pull-right" style="float:right">
 Add To Cart
 </button>

 </form>
</div>

I have added a form element that contains hidden input elements specifying the ProductID value from
the view model and the URL that the browser should be returned to after the cart has been updated. The
form element and one of the input elements are configured using built-in tag helpers, which are a useful way
of generating forms that contain model values and that target controllers and actions in the application, as
described in Chapter 24. The other input element uses the extension method I created to set the return URL.
I also added a button element that will submit the form to the application.

http://dx.doi.org/10.1007/978-1-4842-3150-0_24

Chapter 9 ■ SportSStore: NavigatioN

263

 ■ Note Notice that i have set the method attribute on the form element to post, which instructs the browser
to submit the form data using an http POST request. You can change this so that forms use the GET method,
but you should think carefully about doing so. the http specification requires that GET requests must be
idempotent, meaning that they must not cause changes, and adding a product to a cart is definitely a change.
i have more to say on this topic in Chapter 16, including an explanation of what can happen if you ignore the
need for idempotent GET requests.

Enabling Sessions
I am going to store details of a user’s cart using session state, which is data that is stored at the server
and associated with a series of requests made by a user. ASP.NET provides a range of different ways to
store session state, including storing it in memory, which is the approach that I am going to use. This has
the advantage of simplicity, but it means that the session data is lost when the application is stopped or
restarted. Enabling sessions requires adding services and middleware in the Startup class, as shown in
Listing 9-17.

Listing 9-17. Enabling Sessions in the Startup.cs File in the SportsStore Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;

namespace SportsStore {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));
 services.AddTransient<IProductRepository, EFProductRepository>();
 services.AddMvc();
 services.AddMemoryCache();
 services.AddSession();
 }

http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 9 ■ SportSStore: NavigatioN

264

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseSession();
 app.UseMvc(routes => {

 // ...routing configuration omitted for brevity...

 });
 SeedData.EnsurePopulated(app);
 }
 }
}

The AddMemoryCache method call sets up the in-memory data store. The AddSession method
registers the services used to access session data, and the UseSession method allows the session system to
automatically associate requests with sessions when they arrive from the client.

Implementing the Cart Controller
I need a controller to handle the Add to Cart button presses. I added a new class file called CartController.
cs to the Controllers folder and used it to define the class shown in Listing 9-18.

Listing 9-18. The Contents of the CartController.cs File in the Controllers Folder

using System.Linq;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using SportsStore.Infrastructure;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class CartController : Controller {
 private IProductRepository repository;

 public CartController(IProductRepository repo) {
 repository = repo;
 }

 public RedirectToActionResult AddToCart(int productId, string returnUrl) {
 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);

 if (product != null) {
 Cart cart = GetCart();
 cart.AddItem(product, 1);
 SaveCart(cart);
 }

Chapter 9 ■ SportSStore: NavigatioN

265

 return RedirectToAction("Index", new { returnUrl });
 }

 public RedirectToActionResult RemoveFromCart(int productId,
string returnUrl) {

 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);

 if (product != null) {
 Cart cart = GetCart();
 cart.RemoveLine(product);
 SaveCart(cart);
 }
 return RedirectToAction("Index", new { returnUrl });
 }

 private Cart GetCart() {
 Cart cart = HttpContext.Session.GetJson<Cart>("Cart") ?? new Cart();
 return cart;
 }

 private void SaveCart(Cart cart) {
 HttpContext.Session.SetJson("Cart", cart);
 }
 }
}

There are a few points to note about this controller. The first is that I use the ASP.NET session state
feature to store and retrieve Cart objects, which is the purpose of the GetCart method. The middleware that
I registered in the previous section uses cookies or URL rewriting to associate multiple requests from a user
together to form a single browsing session. A related feature is session state, which associates data with a
session. This is an ideal fit for the Cart class: I want each user to have their own cart, and I want the cart to
be persistent between requests. Data associated with a session is deleted when a session expires (typically
because a user has not made a request for a while), which means that I do not need to manage the storage or
life cycle of the Cart objects.

For the AddToCart and RemoveFromCart action methods, I have used parameter names that match
the input elements in the HTML forms created in the ProductSummary.cshtml view. This allows MVC to
associate incoming form POST variables with those parameters, meaning I do not need to process the form
myself. This is known as model binding and is a powerful tool for simplifying controller classes, as I explain
in Chapter 26.

Defining Session State Extension Methods
The session state feature in ASP.NET Core stores only int, string, and byte[] values. Since I want to
store a Cart object, I need to define extension methods to the ISession interface, which provides access
to the session state data to serialize Cart objects into JSON and convert them back. I added a class file
called SessionExtensions.cs to the Infrastructure folder and defined the extension methods shown
in Listing 9-19.

http://dx.doi.org/10.1007/978-1-4842-3150-0_26

Chapter 9 ■ SportSStore: NavigatioN

266

Listing 9-19. The Contents of the SessionExtensions.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Http;
using Newtonsoft.Json;

namespace SportsStore.Infrastructure {

 public static class SessionExtensions {

 public static void SetJson(this ISession session, string key, object value) {
 session.SetString(key, JsonConvert.SerializeObject(value));
 }

 public static T GetJson<T>(this ISession session, string key) {
 var sessionData = session.GetString(key);
 return sessionData == null

? default(T) : JsonConvert.DeserializeObject<T>(sessionData);
 }
 }
}

These methods rely on the Json.Net package to serialize objects into the JavaScript Object Notation
format, which you will encounter again in Chapter 20. The Json.Net package doesn’t have to be added to
the project because it is already used behind the scenes by MVC to provide the JSON helper feature, as
described in Chapter 21. (See www.newtonsoft.com/json for information on working directly with Json.Net.)

The extension methods make it easy to store and retrieve Cart objects. To add a Cart to the session state
in the controller, I make an assignment like this:

...
HttpContext.Session.SetJson("Cart", cart);
...

The HttpContext property is provided the Controller base class from which controllers are usually derived
and returns an HttpContext object that provides context data about the request that has been received and the
response that is being prepared. The HttpContext.Session property returns an object that implements the
ISession interface, which is the type on which I defined the SetJson method, which accepts arguments that
specify a key and an object that will be added to the session state. The extension method serializes the object and
adds it to the session state using the underlying functionality provided by the ISession interface.

To retrieve the Cart again, I use the other extension method, specifying the same key, like this:

...
Cart cart = HttpContext.Session.GetJson<Cart>("Cart");
...

The type parameter lets me specify the type that I expecting to be retrieved, which is used in the
deserialization process.

Displaying the Contents of the Cart
The final point to note about the Cart controller is that both the AddToCart and RemoveFromCart methods
call the RedirectToAction method. This has the effect of sending an HTTP redirect instruction to the client
browser, asking the browser to request a new URL. In this case, I have asked the browser to request a URL
that will call the Index action method of the Cart controller.

http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_21
http://www.newtonsoft.com/json

Chapter 9 ■ SportSStore: NavigatioN

267

I am going to implement the Index method and use it to display the contents of the Cart. If you refer
back to Figure 9-7, you will see that this is the workflow when the user clicks the Add to Cart button.

I need to pass two pieces of information to the view that will display the contents of the cart: the Cart
object and the URL to display if the user clicks the Continue Shopping button. I created a new class file
called CartIndexViewModel.cs in the Models/ViewModels folder of the SportsStore project and used it to
define the class shown in Listing 9-20.

Listing 9-20. The Contents of the CartIndexViewModel.cs File in the Models/ViewModels Folder

using SportsStore.Models;

namespace SportsStore.Models.ViewModels {

 public class CartIndexViewModel {
 public Cart Cart { get; set; }
 public string ReturnUrl { get; set; }
 }
}

Now that I have the view model, I can implement the Index action method in the Cart controller class,
as shown in Listing 9-21.

Listing 9-21. Implementing the Index Action Method in the CartController.cs File in the Controllers Folder

using System.Linq;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using SportsStore.Infrastructure;
using SportsStore.Models;
using SportsStore.Models.ViewModels;

namespace SportsStore.Controllers {

 public class CartController : Controller {
 private IProductRepository repository;

 public CartController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index(string returnUrl) {
 return View(new CartIndexViewModel {
 Cart = GetCart(),
 ReturnUrl = returnUrl
 });
 }

 // ...other methods omitted for brevity...
 }
}

Chapter 9 ■ SportSStore: NavigatioN

268

The Index action retrieves the Cart object from the session state and uses it to create a CartIndexView
Model object, which is then passed to the View method to be used as the view model.

The last step to display the contents of the cart is to create the view that the Index action will render.
I created the Views/Cart folder and added to it a Razor view file called Index.cshtml with the markup
shown in Listing 9-22.

Listing 9-22. The Contents of the Index.cshtml File in the Views/Cart Folder

@model CartIndexViewModel

<h2>Your cart</h2>
<table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>Quantity</th>
 <th>Item</th>
 <th class="text-right">Price</th>
 <th class="text-right">Subtotal</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var line in Model.Cart.Lines) {
 <tr>
 <td class="text-center">@line.Quantity</td>
 <td class="text-left">@line.Product.Name</td>
 <td class="text-right">@line.Product.Price.ToString("c")</td>
 <td class="text-right">
 @((line.Quantity * line.Product.Price).ToString("c"))
 </td>
 </tr>
 }
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3" class="text-right">Total:</td>
 <td class="text-right">
 @Model.Cart.ComputeTotalValue().ToString("c")
 </td>
 </tr>
 </tfoot>
</table>

<div class="text-center">
 Continue shopping
</div>

Chapter 9 ■ SportSStore: NavigatioN

269

The view enumerates the lines in the cart and adds rows for each of them to an HTML table, along with
the total cost per line and the total cost for the cart. The classes to which I assigned the elements correspond
to Bootstrap styles for tables and text alignment.

The result is that the basic functions of the shopping cart are in place. First, products are listed along
with a button to add them to the cart, as shown in Figure 9-8.

Figure 9-8. The Add to Cart button

Second, when the user clicks the Add to Cart button, the appropriate product is added to their cart, and
a summary of the cart is displayed, as shown in Figure 9-9. Clicking the Continue Shopping button returns
the user to the product page they came from.

Chapter 9 ■ SportSStore: NavigatioN

270

Summary
In this chapter, I started to flesh out the customer-facing parts of the SportsStore app. I provided the means
by which the user can navigate by category and put the basic building blocks in place for adding items to
a shopping cart. I have more work to do, and I continue the development of the application in the next
chapter.

Figure 9-9. Displaying the contents of the shopping cart

271© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_10

CHAPTER 10

SportsStore: Completing the Cart

In this chapter, I continue to build the SportsStore example app. In the previous chapter, I added the basic
support for a shopping cart, and now I am going to improve on and complete that functionality.

Refining the Cart Model with a Service
I defined a Cart model class in the previous chapter and demonstrated how it can be stored using the
session feature, allowing the user to build up a set of products for purchase. The responsibility for managing
the persistence of the Cart class fell to the Cart controller, which explicitly defines methods for getting and
storing Cart objects.

The problem with this approach is that I will have to duplicate the code that obtains and stores Cart
objects in any component that uses them. In this section, I am going to use the services feature that sits at
the heart of ASP.NET Core to simplify the way that Cart objects are managed, freeing individual components
such as the Cart controller from needing to deal with the details directly.

Services are most commonly used to hide details of how interfaces are implemented from
the components that depend on them. You saw an example of this when I created a service for the
IProductRepository interface, which allowed me to seamlessly replace the fake repository class with the
Entity Framework Core repository. But services can be used to solve lots of other problems as well and can
be used to shape and reshape an application, even when you are working with concrete classes such as Cart.

Creating a Storage-Aware Cart Class
The first step in tidying up the way that the Cart class is used will be to create a subclass that is aware of how
to store itself using session state. I added a class file called SessionCart.cs to the Models folder and used it
to define the class shown in Listing 10-1.

Listing 10-1. The Contents of the SessionCart.cs File in the Models Folder

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Newtonsoft.Json;
using SportsStore.Infrastructure;

namespace SportsStore.Models {

 public class SessionCart: Cart {

https://doi.org/10.1007/978-1-4842-3150-0_10

Chapter 10 ■ SportSStore: Completing the Cart

272

 public static Cart GetCart(IServiceProvider services) {
 ISession session = services.GetRequiredService<IHttpContextAccessor>()?
 .HttpContext.Session;
 SessionCart cart = session?.GetJson<SessionCart>("Cart")
 ?? new SessionCart();
 cart.Session = session;
 return cart;
 }

 [JsonIgnore]
 public ISession Session { get; set; }

 public override void AddItem(Product product, int quantity) {
 base.AddItem(product, quantity);
 Session.SetJson("Cart", this);
 }

 public override void RemoveLine(Product product) {
 base.RemoveLine(product);
 Session.SetJson("Cart", this);
 }

 public override void Clear() {
 base.Clear();
 Session.Remove("Cart");
 }
 }
}

The SessionCart class subclasses the Cart class and overrides the AddItem, RemoveLine, and Clear
methods so they call the base implementations and then store the updated state in the session using the
extension methods on the ISession interface I defined in Chapter 9. The static GetCart method is a factory
for creating SessionCart objects and providing them with an ISession object so they can store themselves.

Getting hold of the ISession object is a little complicated. I have to obtain an instance of the
IHttpContextAccessor service, which provides me with access to an HttpContext object that, in turn,
provides me with the ISession. This indirect approach is required because the session isn’t provided as a
regular service.

Registering the Service
The next step is to create a service for the Cart class. My goal is to satisfy requests for Cart objects with
SessionCart objects that will seamlessly store themselves. You can see how I created the service in Listing 10-2.

Listing 10-2. Creating the Cart Service in the Startup.cs File in the SportsStore Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));
 services.AddTransient<IProductRepository, EFProductRepository>();

http://dx.doi.org/10.1007/978-1-4842-3150-0_9

Chapter 10 ■ SportSStore: Completing the Cart

273

 services.AddScoped<Cart>(sp => SessionCart.GetCart(sp));
 services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();
 services.AddMvc();
 services.AddMemoryCache();
 services.AddSession();
}
...

The AddScoped method specifies that the same object should be used to satisfy related requests for Cart
instances. How requests are related can be configured, but by default, it means that any Cart required by
components handling the same HTTP request will receive the same object.

Rather than provide the AddScoped method with a type mapping, as I did for the repository, I have
specified a lambda expression that will be invoked to satisfy Cart requests. The expression receives the
collection of services that have been registered and passes the collection to the GetCart method of the
SessionCart class. The result is that requests for the Cart service will be handled by creating SessionCart
objects, which will serialize themselves as session data when they are modified.

I also added a service using the AddSingleton method, which specifies that the same object
should always be used. The service I created tells MVC to use the HttpContextAccessor class when
implementations of the IHttpContextAccessor interface are required. This service is required so I can
access the current session in the SessionCart class in Listing 10-1.

Simplifying the Cart Controller
The benefit of creating this kind of service is that it allows me to simplify the controllers where Cart objects
are used. In Listing 10-3, I have reworked the CartController class to take advantage of the new service.

Listing 10-3. Using the Cart Service in the CartController.cs File in the Controllers Folder

using System.Linq;
using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using SportsStore.Models.ViewModels;

namespace SportsStore.Controllers {

 public class CartController : Controller {
 private IProductRepository repository;
 private Cart cart;

 public CartController(IProductRepository repo, Cart cartService) {
 repository = repo;
 cart = cartService;
 }

 public ViewResult Index(string returnUrl) {
 return View(new CartIndexViewModel {
 Cart = cart,
 ReturnUrl = returnUrl
 });
 }

Chapter 10 ■ SportSStore: Completing the Cart

274

 public RedirectToActionResult AddToCart(int productId, string returnUrl) {
 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);
 if (product != null) {
 cart.AddItem(product, 1);
 }
 return RedirectToAction("Index", new { returnUrl });
 }

 public RedirectToActionResult RemoveFromCart(int productId,
 string returnUrl) {
 Product product = repository.Products
 .FirstOrDefault(p => p.ProductID == productId);

 if (product != null) {
 cart.RemoveLine(product);
 }
 return RedirectToAction("Index", new { returnUrl });
 }
 }
}

The CartController class indicates that it needs a Cart object by declaring a constructor argument,
which has allowed me to remove the methods that read and write data from the session and the steps
required to write updates. The result is a controller that is simpler and remains focused on its role in the
application without having to worry about how Cart objects are created or persisted. And, since services are
available throughout the application, any component can get hold of the user’s cart using the same technique.

Completing the Cart Functionality
Now that I have introduced the Cart service, it is time to complete the cart functionality by adding two new
features. The first will allow the customer to remove an item from the cart. The second feature will display a
summary of the cart at the top of the page.

Removing Items from the Cart
I already defined and tested the RemoveFromCart action method in the controller, so letting the customer
remove items is just a matter of exposing this method in a view, which I am going to do by adding a Remove
button in each row of the cart summary. Listing 10-4 shows the changes to the Views/Cart/Index.cshtml file.

Listing 10-4. Introducing a Remove Button to the Index.cshtml File in the Views/Cart Folder

@model CartIndexViewModel

<h2>Your cart</h2>
<table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>Quantity</th>
 <th>Item</th>

Chapter 10 ■ SportSStore: Completing the Cart

275

 <th class="text-right">Price</th>
 <th class="text-right">Subtotal</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var line in Model.Cart.Lines) {
 <tr>
 <td class="text-center">@line.Quantity</td>
 <td class="text-left">@line.Product.Name</td>
 <td class="text-right">@line.Product.Price.ToString("c")</td>
 <td class="text-right">
 @((line.Quantity * line.Product.Price).ToString("c"))
 </td>
 <td>
 <form asp-action="RemoveFromCart" method="post">
 <input type="hidden" name="ProductID"
 value="@line.Product.ProductID" />
 <input type="hidden" name="returnUrl"
 value="@Model.ReturnUrl" />
 <button type="submit" class="btn btn-sm btn-danger">
 Remove
 </button>
 </form>
 </td>
 </tr>
 }
 </tbody>
 <tfoot>
 <tr>
 <td colspan="3" class="text-right">Total:</td>
 <td class="text-right">
 @Model.Cart.ComputeTotalValue().ToString("c")
 </td>
 </tr>
 </tfoot>
</table>

<div class="text-center">
 Continue shopping
</div>

I added a new column to each row of the table that contains a form with hidden input elements that
specify the product to be removed and the return URL, along with a button that submits the form.

You can see the Remove buttons at work by running the application and adding items to the shopping
cart. Remember that the cart already contains the functionality to remove it, which you can test by clicking
one of the new buttons, as shown in Figure 10-1.

Chapter 10 ■ SportSStore: Completing the Cart

276

Adding the Cart Summary Widget
I may have a functioning cart, but there is an issue with the way it is integrated into the interface. Customers
can tell what is in their cart only by viewing the cart summary screen. And they can view the cart summary
screen only by adding a new a new item to the cart.

To solve this problem, I am going to add a widget that summarizes the contents of the cart and that can
be clicked to display the cart contents throughout the application. I will do this in much the same way that I
added the navigation widget—as a view component whose output I can include in the Razor shared layout.

Adding the Font Awesome Package
As part of the cart summary, I am going to display a button that allows the user to check out. Rather than
display the word checkout in the button, I want to use a cart symbol. Since I have no artistic skills, I am going
to use the Font Awesome package, which is an excellent set of open source icons that are integrated into
applications as fonts, where each character in the font is a different image. You can learn more about Font
Awesome, including inspecting the icons it contains, at http://fortawesome.github.io/Font-Awesome.

I selected the SportsStore project and clicked the Show All Items button at the top of the Solution
Explorer to reveal the bower.json file. I then added the Font Awesome package to the dependencies section,
as shown in Listing 10-5.

Listing 10-5. Adding the Font Awesome Package in the bower.json File in the SportsStore Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",
 "fontawesome": "4.7.0"
 }
}

Figure 10-1. Removing an item from the shopping cart

http://fortawesome.github.io/Font-Awesome

Chapter 10 ■ SportSStore: Completing the Cart

277

When the bower.json file is saved, Visual Studio uses Bower to download and install the Font Awesome
package in the www/lib/fontawesome folder.

Creating the View Component Class and View
I added a class file called CartSummaryViewComponent.cs in the Components folder and used it to define the
view component shown in Listing 10-6.

Listing 10-6. The Contents of the CartSummaryViewComponent.cs File in the Components Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Components {

 public class CartSummaryViewComponent : ViewComponent {
 private Cart cart;

 public CartSummaryViewComponent(Cart cartService) {
 cart = cartService;
 }

 public IViewComponentResult Invoke() {
 return View(cart);
 }
 }
}

This view component is able to take advantage of the service that I created earlier in the chapter in order
to receive a Cart object as a constructor argument. The result is a simple view component class that passes
on the Cart object to the View method in order to generate the fragment of HTML that will be included in the
layout. To create the layout, I created the Views/Shared/Components/CartSummary folder, added to it a Razor
view file called Default.cshtml, and added the markup shown in Listing 10-7.

Listing 10-7. The Default.cshtml File in the Views/Shared/Components/CartSummary Folder

@model Cart

<div class="">
 @if (Model.Lines.Count() > 0) {
 <small class="navbar-text">
 Your cart:
 @Model.Lines.Sum(x => x.Quantity) item(s)
 @Model.ComputeTotalValue().ToString("c")
 </small>
 }
 <a class="btn btn-sm btn-secondary navbar-btn"
 asp-controller="Cart" asp-action="Index"
 asp-route-returnurl="@ViewContext.HttpContext.Request.PathAndQuery()">
 <i class="fa fa-shopping-cart"></i>

</div>

Chapter 10 ■ SportSStore: Completing the Cart

278

The view displays a button with the Font Awesome cart icon and, if there are items in the cart, provides
a snapshot that details the number of items and their total value. Now that I have a view component and a
view, I can modify the shared layout so that the cart summary is included in the responses generated by the
application’s controllers, as shown in Listing 10-8.

Listing 10-8. Adding the Cart Summary in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet"
 asp-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-href-exclude="**/*-reboot*,**/*-grid*" />
 <link rel="stylesheet" asp-href-include="/lib/fontawesome/css/*.css" />
 <title>SportsStore</title>
</head>
<body>
 <div class="navbar navbar-inverse bg-inverse" role="navigation">
 <div class="row">
 SPORTS STORE
 <div class="col-4 text-right">
 @await Component.InvokeAsync("CartSummary")
 </div>
 </div>
 </div>
 <div class="row m-1 p-1">
 <div id="categories" class="col-3">
 @await Component.InvokeAsync("NavigationMenu")
 </div>
 <div class="col-9">
 @RenderBody()
 </div>
 </div>
</body>
</html>

You can see the cart summary by starting the application. When the cart is empty, only the checkout
button is shown. If you add items to the cart, then the number of items and their combined cost are shown,
as illustrated in Figure 10-2. With this addition, customers know what is in their cart and have an obvious
way to check out from the store.

Chapter 10 ■ SportSStore: Completing the Cart

279

Submitting Orders
I have now reached the final customer feature in SportsStore: the ability to check out and complete an order.
In the following sections, I will extend the domain model to provide support for capturing the shipping
details from a user and add the application support to process those details.

Creating the Model Class
I added a class file called Order.cs to the Models folder and edited it to match the contents shown in
Listing 10-9. This is the class I will use to represent the shipping details for a customer.

Listing 10-9. The Contents of the Order.cs File in the Models Folder

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace SportsStore.Models {

 public class Order {

 [BindNever]
 public int OrderID { get; set; }
 [BindNever]
 public ICollection<CartLine> Lines { get; set; }

 [Required(ErrorMessage = "Please enter a name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter the first address line")]
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string Line3 { get; set; }

Figure 10-2. Displaying a summary of the cart

Chapter 10 ■ SportSStore: Completing the Cart

280

 [Required(ErrorMessage = "Please enter a city name")]
 public string City { get; set; }

 [Required(ErrorMessage = "Please enter a state name")]
 public string State { get; set; }

 public string Zip { get; set; }

 [Required(ErrorMessage = "Please enter a country name")]
 public string Country { get; set; }

 public bool GiftWrap { get; set; }
 }
}

I am using the validation attributes from the System.ComponentModel.DataAnnotations namespace,
just as I did in Chapter 2. I describe validation further in Chapter 27.

I also use the BindNever attribute, which prevents the user from supplying values for these properties in
an HTTP request. This is a feature of the model binding system, which I describe in Chapter 26; it stops MVC
using values from the HTTP request to populate sensitive or important model properties.

Adding the Checkout Process
The goal is to reach the point where users are able to enter their shipping details and submit their order.
To start, I need to add a Checkout button to the cart summary view. Listing 10-10 shows the change I applied
to the Views/Cart/Index.cshtml file.

Listing 10-10. Adding the Checkout Now Button to the Index.cshtml File in the Views/Cart Folder

...
<div class="text-center">
 Continue shopping

 Checkout

</div>
...

This change generates a link that I have styled as a button and that, when clicked, calls the Checkout
action method of the Order controller, which I create in the following section. You can see how this button
appears in Figure 10-3.

http://dx.doi.org/10.1007/978-1-4842-3150-0_2
http://dx.doi.org/10.1007/978-1-4842-3150-0_27
http://dx.doi.org/10.1007/978-1-4842-3150-0_26

Chapter 10 ■ SportSStore: Completing the Cart

281

I now need to define the Order controller. I added a class file called OrderController.cs to the
Controllers folder and used it to define the class shown in Listing 10-11.

Listing 10-11. The Contents of the OrderController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class OrderController : Controller {

 public ViewResult Checkout() => View(new Order());
 }
}

The Checkout method returns the default view and passes a new ShippingDetails object as the view
model. To create the view, I created the Views/Order folder and added a Razor view file called Checkout.cs
html with the markup shown in Listing 10-12.

Figure 10-3. The Checkout button

Chapter 10 ■ SportSStore: Completing the Cart

282

Listing 10-12. The Contents of the Checkout.cshtml File in the Views/Order Folder

@model Order

<h2>Check out now</h2>
<p>Please enter your details, and we'll ship your goods right away!</p>

<form asp-action="Checkout" method="post">
 <h3>Ship to</h3>
 <div class="form-group">
 <label>Name:</label><input asp-for="Name" class="form-control" />
 </div>
 <h3>Address</h3>
 <div class="form-group">
 <label>Line 1:</label><input asp-for="Line1" class="form-control" />
 </div>
 <div class="form-group">
 <label>Line 2:</label><input asp-for="Line2" class="form-control" />
 </div>
 <div class="form-group">
 <label>Line 3:</label><input asp-for="Line3" class="form-control" />
 </div>
 <div class="form-group">
 <label>City:</label><input asp-for="City" class="form-control" />
 </div>
 <div class="form-group">
 <label>State:</label><input asp-for="State" class="form-control" />
 </div>
 <div class="form-group">
 <label>Zip:</label><input asp-for="Zip" class="form-control" />
 </div>
 <div class="form-group">
 <label>Country:</label><input asp-for="Country" class="form-control" />
 </div>
 <h3>Options</h3>
 <div class="checkbox">
 <label>
 <input asp-for="GiftWrap" /> Gift wrap these items
 </label>
 </div>
 <div class="text-center">
 <input class="btn btn-primary" type="submit" value="Complete Order" />
 </div>
</form>

For each of the properties in the model, I have created a label element and an input element to
capture the user input, formatted with Bootstrap. The asp-for attribute on the input elements is handled
by a built-in tag helper that generates the type, id, name, and value attributes based on the specified model
property, as described in Chapter 24.

You can see the effect of the new action method and view by starting the application, clicking the cart
button at the top of the page, and then clicking the Checkout button, as shown in Figure 10-4. You can also
reach this point by requesting the /Cart/Checkout URL.

http://dx.doi.org/10.1007/978-1-4842-3150-0_24

Chapter 10 ■ SportSStore: Completing the Cart

283

Figure 10-4. The shipping details form

Chapter 10 ■ SportSStore: Completing the Cart

284

Implementing Order Processing
I will process orders by writing them to the database. Most e-commerce sites would not simply stop there, of
course, and I have not provided support for processing credit cards or other forms of payment. But I want to
keep things focused on MVC, so a simple database entry will do.

Extending the Database
Adding a new kind of model to the database is simple once the basic plumbing that I created in Chapter 8 is
in place. First, I added a new property to the database context class, as shown in Listing 10-13.

Listing 10-13. Adding a Property in the ApplicationDbContext.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore.Design;
using Microsoft.EntityFrameworkCore.Infrastructure;
using Microsoft.Extensions.DependencyInjection;

namespace SportsStore.Models {

 public class ApplicationDbContext : DbContext {

 public ApplicationDbContext(DbContextOptions<ApplicationDbContext> options)
 : base(options) { }

 public DbSet<Product> Products { get; set; }
 public DbSet<Order> Orders { get; set; }
 }
}

This change is enough for Entity Framework Core to create a database migration that will allow Order
objects to be stored in the database. To create the migration, open a new command prompt or PowerShell
window, navigate to the SportsStore project folder (which contains the Startup.cs file), and run the
following command:

dotnet ef migrations add Orders

This command tells Entity Framework Core to take a new snapshot of the application data model, work
out how it differs from the previous database version, and generate a new migration called Orders. The new
migration will be applied automatically when the application starts because SeedData calls the Migrate
method provided by Entity Framework Core.

RESETTING THE DATABASE

When you are making frequent changes to the model, there will come a point when your migrations
and your database schema get out of sync. the easiest thing to do is delete the database and start over.
however, this applies only during development, of course, because you will lose any data you have stored.

http://dx.doi.org/10.1007/978-1-4842-3150-0_8

Chapter 10 ■ SportSStore: Completing the Cart

285

to delete the database, run the following command in the SportsStore project folder:

dotnet ef database drop --force

once the database has been removed, run the following command from the SportsStore folder to re-
create the database and apply the migrations you have created by running the following command:

dotnet ef database update

this will reset the database so that it accurately reflects your model and allow you to return to
developing your application.

Creating the Order Repository
I am going to follow the same pattern I used for the product repository to provide access to the Order objects.
I added a class file called IOrderRepository.cs to the Models folder and used it to define the interface
shown in Listing 10-14.

Listing 10-14. The Contents of the IOrderRepository.cs File in the Models Folder

using System.Linq;

namespace SportsStore.Models {

 public interface IOrderRepository {

 IQueryable<Order> Orders { get; }
 void SaveOrder(Order order);
 }
}

To implement the order repository interface, I added a class file called EFOrderRepository.cs to the
Models folder and defined the class shown in Listing 10-15.

Listing 10-15. The Contents of the EFOrderRepository.cs File in the Models Folder

using Microsoft.EntityFrameworkCore;
using System.Linq;

namespace SportsStore.Models {

 public class EFOrderRepository : IOrderRepository {
 private ApplicationDbContext context;

 public EFOrderRepository(ApplicationDbContext ctx) {
 context = ctx;
 }

Chapter 10 ■ SportSStore: Completing the Cart

286

 public IQueryable<Order> Orders => context.Orders
 .Include(o => o.Lines)
 .ThenInclude(l => l.Product);

 public void SaveOrder(Order order) {
 context.AttachRange(order.Lines.Select(l => l.Product));
 if (order.OrderID == 0) {
 context.Orders.Add(order);
 }
 context.SaveChanges();
 }
 }
}

This class implements IOrderRepository using Entity Framework Core, allowing the set of Order
objects that have been stored to be retrieved and allowing orders to be created or changed.

UNDERSTANDING THE ORDER REPOSITORY

there is a little extra work required to implement the repository for the orders in listing 10-15. entity
Framework Core requires instruction to load related data if it spans multiple tables. in the listing, i
used the Include and ThenInclude methods to specify that when an Order object is read from the
database, the collection associated with the Lines property should also be loaded along with each
Product object associated with each collection object.

...
public IQueryable<Order> Orders => context.Orders
 .Include(o => o.Lines)
 .ThenInclude(l => l.Product);
...

this ensures that i receive all the data objects that i need without having to perform the queries and
assemble the data directly.

an additional step is required when i store an Order object in the database. When the user’s cart data
is deserialized from the session store, the JSon package creates new objects that are not known to
entity Framework Core, which then tries to write all the objects into the database. For the Product
objects, this means that entity Framework Core tries to write objects that have already been stored,
which causes an error. to avoid this problem, i notify entity Framework Core that the objects exist and
shouldn’t be stored in the database unless they are modified, as follows:

...
context.AttachRange(order.Lines.Select(l => l.Product));
...

this ensures that entity Framework Core won’t try to write the deserialized Product objects that are
associated with the Order object.

Chapter 10 ■ SportSStore: Completing the Cart

287

In Listing 10-16, I have registered the order repository as a service in the ConfigureServices method of
the Startup class.

Listing 10-16. Registering the Order Repository Service in the Startup.cs File in the SportsStore Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));
 services.AddTransient<IProductRepository, EFProductRepository>();
 services.AddScoped<Cart>(sp => SessionCart.GetCart(sp));
 services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();
 services.AddTransient<IOrderRepository, EFOrderRepository>();
 services.AddMvc();
 services.AddMemoryCache();
 services.AddSession();
}
...

Completing the Order Controller
To complete the OrderController class, I need to modify the constructor so that it receives the services it
requires to process an order, and I need to add a new action method that will handle the HTTP form POST
request when the user clicks the Complete Order button. Listing 10-17 shows both changes.

Listing 10-17. Completing the Controller in the OrderController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class OrderController : Controller {
 private IOrderRepository repository;
 private Cart cart;

 public OrderController(IOrderRepository repoService, Cart cartService) {
 repository = repoService;
 cart = cartService;
 }

 public ViewResult Checkout() => View(new Order());

 [HttpPost]
 public IActionResult Checkout(Order order) {
 if (cart.Lines.Count() == 0) {
 ModelState.AddModelError("", "Sorry, your cart is empty!");
 }

Chapter 10 ■ SportSStore: Completing the Cart

288

 if (ModelState.IsValid) {
 order.Lines = cart.Lines.ToArray();
 repository.SaveOrder(order);
 return RedirectToAction(nameof(Completed));
 } else {
 return View(order);
 }
 }

 public ViewResult Completed() {
 cart.Clear();
 return View();
 }
 }
}

The Checkout action method is decorated with the HttpPost attribute, which means that it will be
invoked for a POST request—in this case, when the user submits the form. Once again, I am relying on the
model binding system so that I can receive the Order object, which I then complete using data from the Cart
and store in the repository.

MVC checks the validation constraints that I applied to the Order class using the data annotation
attributes, and any validation problems are passed to the action method through the ModelState property.
I can see whether there are any problems by checking the ModelState.IsValid property. I call the
ModelState.AddModelError method to register an error message if there are no items in the cart. I will
explain how to display such errors shortly, and I have much more to say about model binding and validation
in Chapters 27 and 28.

UNIT TEST: ORDER PROCESSING

to perform unit testing for the OrderController class, i need to test the behavior of the POST version
of the Checkout method. although the method looks short and simple, the use of mVC model binding
means that there is a lot going on behind the scenes that needs to be tested.

i want to process an order only if there are items in the cart and the customer has provided valid
shipping details. Under all other circumstances, the customer should be shown an error. here is the
first test method, which i defined in a class file called OrderControllerTests.cs in the SportsStore.
Tests project:

using Microsoft.AspNetCore.Mvc;
using Moq;
using SportsStore.Controllers;
using SportsStore.Models;
using Xunit;

namespace SportsStore.Tests {

 public class OrderControllerTests {

 [Fact]
 public void Cannot_Checkout_Empty_Cart() {

http://dx.doi.org/10.1007/978-1-4842-3150-0_27
http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 10 ■ SportSStore: Completing the Cart

289

 // Arrange - create a mock repository
 Mock<IOrderRepository> mock = new Mock<IOrderRepository>();
 // Arrange - create an empty cart
 Cart cart = new Cart();
 // Arrange - create the order
 Order order = new Order();
 // Arrange - create an instance of the controller
 OrderController target = new OrderController(mock.Object, cart);

 // Act
 ViewResult result = target.Checkout(order) as ViewResult;

 // Assert - check that the order hasn't been stored
 mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Never);
 // Assert - check that the method is returning the default view
 Assert.True(string.IsNullOrEmpty(result.ViewName));
 // Assert - check that I am passing an invalid model to the view
 Assert.False(result.ViewData.ModelState.IsValid);
 }
 }
}

this test ensures that i cannot check out with an empty cart. i check this by ensuring that SaveOrder
of the mock IOrderRepository implementation is never called, that the view the method returns is the
default view (which will redisplay the data entered by customers and give them a chance to correct it), and
that the model state being passed to the view has been marked as invalid. this may seem like a belt-and-
braces set of assertions, but i need all three to be sure that i have the right behavior. the next test method
works in much the same way but injects an error into the view model to simulate a problem reported by
the model binder (which would happen in production when the customer enters invalid shipping data):

...
[Fact]
public void Cannot_Checkout_Invalid_ShippingDetails() {

 // Arrange - create a mock order repository
 Mock<IOrderRepository> mock = new Mock<IOrderRepository>();
 // Arrange - create a cart with one item
 Cart cart = new Cart();
 cart.AddItem(new Product(), 1);
 // Arrange - create an instance of the controller
 OrderController target = new OrderController(mock.Object, cart);
 // Arrange - add an error to the model
 target.ModelState.AddModelError("error", "error");

 // Act - try to checkout
 ViewResult result = target.Checkout(new Order()) as ViewResult;

 // Assert - check that the order hasn't been passed stored
 mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Never);
 // Assert - check that the method is returning the default view
 Assert.True(string.IsNullOrEmpty(result.ViewName));

Chapter 10 ■ SportSStore: Completing the Cart

290

 // Assert - check that I am passing an invalid model to the view
 Assert.False(result.ViewData.ModelState.IsValid);
}
...

having established that an empty cart or invalid details will prevent an order from being processed, i
need to ensure that i process orders when appropriate. here is the test:

...
[Fact]
public void Can_Checkout_And_Submit_Order() {
 // Arrange - create a mock order repository
 Mock<IOrderRepository> mock = new Mock<IOrderRepository>();
 // Arrange - create a cart with one item
 Cart cart = new Cart();
 cart.AddItem(new Product(), 1);
 // Arrange - create an instance of the controller
 OrderController target = new OrderController(mock.Object, cart);

 // Act - try to checkout
 RedirectToActionResult result =
 target.Checkout(new Order()) as RedirectToActionResult;

 // Assert - check that the order has been stored
 mock.Verify(m => m.SaveOrder(It.IsAny<Order>()), Times.Once);
 // Assert - check that the method is redirecting to the Completed action
 Assert.Equal("Completed", result.ActionName);
}
...

i did not need to test that i can identify valid shipping details. this is handled for me automatically by the
model binder using the attributes applied to the properties of the Order class.

Displaying Validation Errors
MVC will use the validation attributes applied to the Order class to validate user data. However, I need to
make a simple change to display any problems. This relies on another built-in tag helper that inspects the
validation state of the data provided by the user and adds warning messages for each problem that has been
discovered. Listing 10-18 shows the addition of an HTML element that will be processed by the tag helper to
the Checkout.cshtml file.

Chapter 10 ■ SportSStore: Completing the Cart

291

Listing 10-18. Adding a Validation Summary to the Checkout.cshtml File in the Views/Order Folder

@model Order

<h2>Check out now</h2>
<p>Please enter your details, and we'll ship your goods right away!</p>

<div asp-validation-summary="All" class="text-danger"></div>

<form asp-action="Checkout" method="post">
 <h3>Ship to</h3>
...

With this simple change, validation errors are reported to the user. To see the effect, go to the /Order/
Checkout URL and try to check out without selecting any products or filling in any shipping details, as shown
in Figure 10-5. The tag helper that generates these messages is part of the model validation system, which I
describe in detail in Chapter 27.

Figure 10-5. Displaying validation messages

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 10 ■ SportSStore: Completing the Cart

292

 ■ Tip the data submitted by the user is sent to the server before it is validated, which is known as server-
side validation and for which mVC has excellent support. the problem with server-side validation is that the
user isn’t told about errors until after the data has been sent to the server and processed and the result page
has been generated—something that can take a few seconds on a busy server. For this reason, server-side
validation is usually complemented by client-side validation, where JavaScript is used to check the values that
the user has entered before the form data is sent to the server. i describe client-side validation in Chapter 27.

Displaying a Summary Page
To complete the checkout process, I need to create the view that will be shown when the browser is
redirected to the Completed action on the Order controller. I added a Razor view file called Completed.
cshtml to the Views/Order folder and added the markup shown in Listing 10-19.

Listing 10-19. The Contents of the Completed.cshtml File in the Views/Order Folder

<h2>Thanks!</h2>
<p>Thanks for placing your order.</p>
<p>We'll ship your goods as soon as possible.</p>

I don’t need to make any code changes to integrate this view into the application because I already
added the required statements when I defined the Completed action method. Now customers can go
through the entire process, from selecting products to checking out. If they provide valid shipping details
(and have items in their cart), they will see the summary page when they click the Complete Order button,
as shown in Figure 10-6.

Figure 10-6. The completed order summary view

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 10 ■ SportSStore: Completing the Cart

293

Summary
I have completed all the major parts of the customer-facing portion of SportsStore. It might not be enough to
worry Amazon, but I have a product catalog that can be browsed by category and page, a neat shopping cart,
and a simple checkout process.

The well-separated architecture means I can easily change the behavior of any piece of the application
without causing problems or inconsistencies elsewhere. For example, I could change the way that orders are
stored and it would not have any impact on the shopping cart, the product catalog, or any other area of the
application. In the next chapter, I add the features required to administer the SportsStore application.

295© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_11

CHAPTER 11

SportsStore: Administration

In this chapter, I continue to build the SportsStore application to give the site administrator a way of
managing orders and products.

Managing Orders
In the previous chapter, I added support for receiving orders from customers and storing them in a database.
In this chapter, I am going to create a simple administration tool that will let me view the orders that have
been received and mark them as shipped.

Enhancing the Model
The first change I need to make is to enhance the model so that I can record which orders have been
shipped. Listing 11-1 shows the addition of a new property to the Order class, which is defined in the
Order.cs file in the Models folder.

Listing 11-1. Adding a Property in the Order.cs File in the Models Folder

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace SportsStore.Models {

 public class Order {

 [BindNever]
 public int OrderID { get; set; }
 [BindNever]
 public ICollection<CartLine> Lines { get; set; }

 [BindNever]
 public bool Shipped { get; set; }

 [Required(ErrorMessage = "Please enter a name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter the first address line")]
 public string Line1 { get; set; }

https://doi.org/10.1007/978-1-4842-3150-0_11

Chapter 11 ■ SportSStore: adminiStration

296

 public string Line2 { get; set; }
 public string Line3 { get; set; }

 [Required(ErrorMessage = "Please enter a city name")]
 public string City { get; set; }

 [Required(ErrorMessage = "Please enter a state name")]
 public string State { get; set; }

 public string Zip { get; set; }

 [Required(ErrorMessage = "Please enter a country name")]
 public string Country { get; set; }

 public bool GiftWrap { get; set; }
 }
}

This iterative approach of extending and adapting the model to support different features is typical of MVC
development. In an ideal world, you would be able to completely define the model classes at the start of the
project and just build the application around them, but that happens only for the simplest of projects, and, in
practice, iterative development is to be expected as the understanding of what is required develops and evolves.

Entity Framework Core migrations make this process easier because you don’t have to manually keep
the database schema synchronized to the model class by writing your own SQL commands. To update the
database to reflect the addition of the Shipped property to the Order class, open a new command prompt or
PowerShell window, navigate to the SportsStore project folder (which is the one that contains the Startup.cs
file) and run the following command:

dotnet ef migrations add ShippedOrders

The migration will be applied automatically when the application is started and the SeedData class calls
the Migrate method provided by Entity Framework Core.

Adding the Actions and View
The functionality required to display and update the set of orders in the database is relatively simple because
it builds on the features and infrastructure that I created in previous chapters. In Listing 11-2, I have added
two new action methods to the Order controller.

Listing 11-2. Adding Action Methods in the OrderController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class OrderController : Controller {
 private IOrderRepository repository;
 private Cart cart;

Chapter 11 ■ SportSStore: adminiStration

297

 public OrderController(IOrderRepository repoService, Cart cartService) {
 repository = repoService;
 cart = cartService;
 }

 public ViewResult List() =>
 View(repository.Orders.Where(o => !o.Shipped));

 [HttpPost]
 public IActionResult MarkShipped(int orderID) {
 Order order = repository.Orders
 .FirstOrDefault(o => o.OrderID == orderID);
 if (order != null) {
 order.Shipped = true;
 repository.SaveOrder(order);
 }
 return RedirectToAction(nameof(List));
 }

 public ViewResult Checkout() => View(new Order());

 [HttpPost]
 public IActionResult Checkout(Order order) {
 if (cart.Lines.Count() == 0) {
 ModelState.AddModelError("", "Sorry, your cart is empty!");
 }
 if (ModelState.IsValid) {
 order.Lines = cart.Lines.ToArray();
 repository.SaveOrder(order);
 return RedirectToAction(nameof(Completed));
 } else {
 return View(order);
 }
 }

 public ViewResult Completed() {
 cart.Clear();
 return View();
 }
 }
}

The List method selects all the Order objects in the repository that have a Shipped value of false and
passes them to the default view. This is the action method that I will use to display a list of the unshipped
orders to the administrator.

The MarkShipped method will receive a POST request that specifies the ID of an order, which is used to
locate the corresponding Order object from the repository so that the Shipped property can be set to true
and saved.

To display the list of unshipped orders, I added a Razor view file called List.cshtml to the Views/Order
folder and added the markup shown in Listing 11-3. A table element is used to display some of the details
from each other, including details of which products have been purchased.

Chapter 11 ■ SportSStore: adminiStration

298

Listing 11-3. The Contents of the List.cshtml File in the Views/Order Folder

@model IEnumerable<Order>

@{
 ViewBag.Title = "Orders";
 Layout = "_AdminLayout";
}

@if (Model.Count() > 0) {

 <table class="table table-bordered table-striped">
 <tr><th>Name</th><th>Zip</th><th colspan="2">Details</th><th></th></tr>
 @foreach (Order o in Model) {
 <tr>
 <td>@o.Name</td><td>@o.Zip</td><th>Product</th><th>Quantity</th>
 <td>
 <form asp-action="MarkShipped" method="post">
 <input type="hidden" name="orderId" value="@o.OrderID" />
 <button type="submit" class="btn btn-sm btn-danger">
 Ship
 </button>
 </form>
 </td>
 </tr>
 @foreach (CartLine line in o.Lines) {
 <tr>
 <td colspan="2"></td>
 <td>@line.Product.Name</td><td>@line.Quantity</td>
 <td></td>
 </tr>

 }
 }
 </table>
} else {
 <div class="text-center">No Unshipped Orders</div>
}

Each order is displayed with a Ship button that submits a form to the MarkShipped action method. I
specified a different layout for the List view using the Layout property, which overrides the layout specified
in the _ViewStart.cshtml file.

To add the layout, I used the MVC View Layout Page item template to create a file called _AdminLayout.
cshtml in the Views/Shared folder, and I added the markup shown in Listing 11-4.

Listing 11-4. The Contents of the _AdminLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
 <title>@ViewBag.Title</title>

Chapter 11 ■ SportSStore: adminiStration

299

</head>
<body class="m-1 p-1">
 <div class="bg-info p-2"><h4>@ViewBag.Title</h4></div>
 @RenderBody()
</body>
</html>

To see and manage the orders in the application, start the application, select some products, and then check
out. Then navigate to the /Order/List URL and you will see a summary of the order you created, as shown in
Figure 11-1. Click the Ship button; the database will be updated, and the list of pending orders will be empty.

 ■ Note at the moment, there is nothing to stop customers from requesting the /Order/List UrL and
administering their own orders. i explain how to restrict access to action methods in Chapter 12.

Adding Catalog Management
The convention for managing more complex collections of items is to present the user with two types of
pages: a list page and an edit page, as shown in Figure 11-2.

Figure 11-1. Managing orders

http://dx.doi.org/10.1007/978-1-4842-3150-0_12

Chapter 11 ■ SportSStore: adminiStration

300

Together, these pages allow a user to create, read, update, and delete items in the collection.
Collectively, these actions are known as CRUD. Developers need to implement CRUD so often that Visual
Studio scaffolding includes scenarios for creating CRUD controllers with predefined action methods
(I explained how to enable the scaffolding feature in Chapter 8). But like all the Visual Studio templates,
I think it is better to learn how to use the features of the ASP.NET Core MVC directly.

Creating a CRUD Controller
I am going to start by creating a separate controller for managing the product catalog. I added a class file
called AdminController.cs to the Controllers folder and added the code shown in Listing 11-5.

Listing 11-5. The Contents of the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;

namespace SportsStore.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);
 }
}

The controller constructor declares a dependency on the IProductRepository interface, which will be
resolved when instances are created. The controller defines a single action method, Index, that calls the View
method to select the default view for the action, passing the set of products in the database as the view model.

Figure 11-2. Sketch of a CRUD UI for the product catalog

http://dx.doi.org/10.1007/978-1-4842-3150-0_8

Chapter 11 ■ SportSStore: adminiStration

301

UNIT TEST: THE INDEX ACTION

the behavior that i care about for the Index method of the Admin controller is that it correctly returns the
Product objects that are in the repository. i can test this by creating a mock repository implementation and
comparing the test data with the data returned by the action method. here is the unit test, which i placed
into a new unit test file called AdminControllerTests.cs in the SportsStore.UnitTests project:

using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Mvc;
using Moq;
using SportsStore.Controllers;
using SportsStore.Models;
using Xunit;

namespace SportsStore.Tests {

 public class AdminControllerTests {

 [Fact]
 public void Index_Contains_All_Products() {
 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable<Product>());

 // Arrange - create a controller
 AdminController target = new AdminController(mock.Object);

 // Action
 Product[] result
 = GetViewModel<IEnumerable<Product>>(target.Index())?.ToArray();

 // Assert
 Assert.Equal(3, result.Length);
 Assert.Equal("P1", result[0].Name);
 Assert.Equal("P2", result[1].Name);
 Assert.Equal("P3", result[2].Name);
 }

 private T GetViewModel<T>(IActionResult result) where T : class {
 return (result as ViewResult)?.ViewData.Model as T;
 }
 }
}

i added a GetViewModel method to the test to unpack the result from the action method and get the
view model data. i’ll be adding more tests that use this method later in the chapter.

Chapter 11 ■ SportSStore: adminiStration

302

Implementing the List View
The next step is to add a view for the Index action method of the Admin controller. I created the Views/Admin
folder and added a Razor file called Index.cshtml, the contents of which are shown in Listing 11-6.

Listing 11-6. The Contents of the Index.cshtml File in the Views/Admin Folder

@model IEnumerable<Product>

@{
 ViewBag.Title = "All Products";
 Layout = "_AdminLayout";
}

<table class="table table-striped table-bordered table-sm">
 <tr>
 <th class="text-right">ID</th>
 <th>Name</th>
 <th class="text-right">Price</th>
 <th class="text-center">Actions</th>
 </tr>
 @foreach (var item in Model) {
 <tr>
 <td class="text-right">@item.ProductID</td>
 <td>@item.Name</td>
 <td class="text-right">@item.Price.ToString("c")</td>
 <td class="text-center">
 <form asp-action="Delete" method="post">
 <a asp-action="Edit" class="btn btn-sm btn-warning"
 asp-route-productId="@item.ProductID">
 Edit

 <input type="hidden" name="ProductID" value="@item.ProductID" />
 <button type="submit" class="btn btn-danger btn-sm">
 Delete
 </button>
 </form>
 </td>
 </tr>
 }
</table>
<div class="text-center">
 <a asp-action="Create" class="btn btn-primary">Add Product
</div>

This view contains a table that has a row for each product with cells that contain the name of the product,
the price, and buttons that will allow the product to be edited or deleted by sending requests to Edit and
Delete actions. In addition to the table, there is an Add Product button that targets the Create action. I’ll
add the Edit, Delete, and Create actions in the sections that follow, but you can see how the products are
displayed by starting the application and requesting the /Admin/Index URL, as shown in Figure 11-3.

Chapter 11 ■ SportSStore: adminiStration

303

 ■ Tip the edit button is inside the form element in Listing 11-6 so that the two buttons sit next to each other,
working around the spacing that Bootstrap applies. the edit button will send an http GET request to the server to
get the current details of a product; this doesn’t require a form element. however, since the delete button will make
a change to the application state, i need to use an http POST request—and that does require the form element.

Editing Products
To provide create and update features, I will add a product-editing page like the one shown in Figure 11-2.
These are the two parts of this job:

•	 Display a page that will allow the administrator to change values for the properties of
a product

•	 Add an action method that can process those changes when they are submitted

Figure 11-3. Displaying the list of products

Chapter 11 ■ SportSStore: adminiStration

304

Creating the Edit Action Method
Listing 11-7 shows the Edit action method I added to the Admin controller, which will receive the HTTP
request sent by the browser when the user clicks an Edit button.

Listing 11-7. Adding an Edit Action Method in the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);

 public ViewResult Edit(int productId) =>
 View(repository.Products
 .FirstOrDefault(p => p.ProductID == productId));
 }
}

This simple method finds the product with the ID that corresponds to the productId parameter and
passes it as a view model object to the View method.

UNIT TEST: THE EDIT ACTION METHOD

i want to test for two behaviors in the Edit action method. the first is that i get the product i ask for
when i provide a valid id value to make sure that i am editing the product i expected. the second
behavior to test is that i do not get any product at all when i request an id value that is not in the
repository. here are the test methods i added to the AdminControllerTests.cs class file:

...
[Fact]
public void Can_Edit_Product() {
 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable<Product>());

Chapter 11 ■ SportSStore: adminiStration

305

 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);

 // Act
 Product p1 = GetViewModel<Product>(target.Edit(1));
 Product p2 = GetViewModel<Product>(target.Edit(2));
 Product p3 = GetViewModel<Product>(target.Edit(3));

 // Assert
 Assert.Equal(1, p1.ProductID);
 Assert.Equal(2, p2.ProductID);
 Assert.Equal(3, p3.ProductID);
}

[Fact]
public void Cannot_Edit_Nonexistent_Product() {
 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 new Product {ProductID = 2, Name = "P2"},
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable<Product>());

 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);

 // Act
 Product result = GetViewModel<Product>(target.Edit(4));

 // Assert
 Assert.Null(result);
}
...

Creating the Edit View
Now that I have an action method, I can create a view for it to display. I added a Razor view file called
Edit.cshtml to the Views/Admin folder and added the markup shown in Listing 11-8.

Listing 11-8. The Contents of the Edit.cshtml File in the Views/Admin Folder

@model Product
@{
 ViewBag.Title = "Edit Product";
 Layout = "_AdminLayout";
}

<form asp-action="Edit" method="post">
 <input type="hidden" asp-for="ProductID" />

Chapter 11 ■ SportSStore: adminiStration

306

 <div class="form-group">
 <label asp-for="Name"></label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Description"></label>
 <textarea asp-for="Description" class="form-control"></textarea>
 </div>
 <div class="form-group">
 <label asp-for="Category"></label>
 <input asp-for="Category" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <input asp-for="Price" class="form-control" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

The view contains an HTML form that uses tag helpers to generate much of the content, including
setting the target for the form and a elements, setting the content of the label elements, and producing the
name, id, and value attributes for the input and textarea elements.

You can see the HTML produced by the view by starting the application, navigating to the /Admin/Index
URL, and clicking the Edit button for one of the products, as shown in Figure 11-4.

 ■ Tip i have used a hidden input element for the ProductID property for simplicity. the value of the
ProductID is generated by the database as a primary key when a new object is stored by entity Framework
Core, and safely changing it can be a complex process. For most applications, the simplest approach is to
prevent the user from changing the value.

Chapter 11 ■ SportSStore: adminiStration

307

Updating the Product Repository
Before I can process edits, I need to enhance the product repository so that it is able to save changes. First,
I added a new method to the IProductRepository interface, as shown in Listing 11-9.

Listing 11-9. Adding a Method to the IProductRespository.cs File in the Models Folder

using System.Linq;

namespace SportsStore.Models {

 public interface IProductRepository {

 IQueryable<Product> Products { get; }

 void SaveProduct(Product product);
 }
}

Figure 11-4. Displaying product values for editing

Chapter 11 ■ SportSStore: adminiStration

308

I can then add the new method to the Entity Framework Core implementation of the repository, which
is defined in the EFProductRepository.cs file, as shown in Listing 11-10.

Listing 11-10. Implementing the New Method in the EFProductRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class EFProductRepository : IProductRepository {
 private ApplicationDbContext context;

 public EFProductRepository(ApplicationDbContext ctx) {
 context = ctx;
 }

 public IQueryable<Product> Products => context.Products;

 public void SaveProduct(Product product) {
 if (product.ProductID == 0) {
 context.Products.Add(product);
 } else {
 Product dbEntry = context.Products
 .FirstOrDefault(p => p.ProductID == product.ProductID);
 if (dbEntry != null) {
 dbEntry.Name = product.Name;
 dbEntry.Description = product.Description;
 dbEntry.Price = product.Price;
 dbEntry.Category = product.Category;
 }
 }
 context.SaveChanges();
 }
 }
}

The implementation of the SaveChanges method adds a product to the repository if the ProductID is 0;
otherwise, it applies any changes to the existing entry in the database.

I do not want to go into details of Entity Framework Core because, as I explained earlier, it is a topic
in itself and not part of ASP.NET Core MVC. But there is something in the SaveProduct method that has a
bearing on the design of the MVC application.

I know I need to perform an update when I receive a Product parameter that has a ProductID that is not
zero. I do this by getting a Product object from the repository with the same ProductID and updating each of
the properties so they match the parameter object.

I can do this because Entity Framework Core keeps track of the objects that it creates from the database.
The object passed to the SaveChanges method is created by the MVC model binding feature, which means
that Entity Framework Core does not know anything about the new Product object and will not apply an
update to the database when it is modified. There are lots of ways of resolving this issue, and I have taken the
simplest one, which is to locate the corresponding object that Entity Framework Core does know about and
update it explicitly.

Chapter 11 ■ SportSStore: adminiStration

309

The addition of a new method in the IProductRepository interface has broken the fake repository
class—FakeProductRepository—that I created in Chapter 8. I used the fake repository to kick-start
the development process and demonstrate how services can be used to seamlessly replace interface
implementations without needing to modify the components that rely on them. I don’t need the fake
repository any further, and in Listing 11-11, you can see that I have removed the interface from the class
declaration so that I don’t have to keep modifying the class as I add repository features.

Listing 11-11. Removing the Interface in the FakeProductRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class FakeProductRepository /* : IProductRepository */ {

 public IQueryable<Product> Products => new List<Product> {
 new Product { Name = "Football", Price = 25 },
 new Product { Name = "Surf board", Price = 179 },
 new Product { Name = "Running shoes", Price = 95 }
 }.AsQueryable<Product>();
 }
}

Handling Edit POST Requests
I am ready to implement an overload of the Edit action method in the Admin controller that will handle POST
requests when the administrator clicks the Save button. Listing 11-12 shows the new action method.

Listing 11-12. Defining an Action Method in the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);

 public ViewResult Edit(int productId) =>
 View(repository.Products
 .FirstOrDefault(p => p.ProductID == productId));

 [HttpPost]
 public IActionResult Edit(Product product) {

http://dx.doi.org/10.1007/978-1-4842-3150-0_8

Chapter 11 ■ SportSStore: adminiStration

310

 if (ModelState.IsValid) {
 repository.SaveProduct(product);
 TempData["message"] = $"{product.Name} has been saved";
 return RedirectToAction("Index");
 } else {
 // there is something wrong with the data values
 return View(product);
 }
 }
 }
}

I check that the model binding process has been able to validate the data submitted by the user
by reading the value of the ModelState.IsValid property. If everything is OK, I save the changes to the
repository and redirect the user to the Index action so they see the modified list of products. If there is a
problem with the data, I render the default view again so that the user can make corrections.

After I have saved the changes in the repository, I store a message using the temp data feature, which is part
of the ASP.NET Core session state feature. This is a key/value dictionary similar to the session data and view bag
features I used previously. The key difference from session data is that temp data persists until it is read.

I cannot use ViewBag in this situation because ViewBag passes data between the controller and view
and it cannot hold data for longer than the current HTTP request. When an edit succeeds, the browser
is redirected to a new URL, so the ViewBag data is lost. I could use the session data feature, but then the
message would be persistent until I explicitly removed it, which I would rather not have to do.

So, the temp data feature is the perfect fit. The data is restricted to a single user’s session (so that users
do not see each other’s TempData) and will persist long enough for me to read it. I will read the data in the
view rendered by the action method to which I have redirected the user, which I define in the next section.

UNIT TEST: EDIT SUBMISSIONS

For the POST-processing Edit action method, i need to make sure that valid updates to the Product
object, which is received as the method argument, are passed to the product repository to be saved.
i also want to check that invalid updates (where a model validation error exists) are not passed to the
repository. here are the test methods, which i added to the AdminControllerTests.cs file:

...
[Fact]
public void Can_Save_Valid_Changes() {
 // Arrange - create mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 // Arrange - create mock temp data
 Mock<ITempDataDictionary> tempData = new Mock<ITempDataDictionary>();
 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object) {
 TempData = tempData.Object
 };
 // Arrange - create a product
 Product product = new Product { Name = "Test" };

 // Act - try to save the product
 IActionResult result = target.Edit(product);

Chapter 11 ■ SportSStore: adminiStration

311

 // Assert - check that the repository was called
 mock.Verify(m => m.SaveProduct(product));
 // Assert - check the result type is a redirection
 Assert.IsType<RedirectToActionResult>(result);
 Assert.Equal("Index", (result as RedirectToActionResult).ActionName);
}

[Fact]
public void Cannot_Save_Invalid_Changes() {
 // Arrange - create mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);
 // Arrange - create a product
 Product product = new Product { Name = "Test" };
 // Arrange - add an error to the model state
 target.ModelState.AddModelError("error", "error");

 // Act - try to save the product
 IActionResult result = target.Edit(product);

 // Assert - check that the repository was not called
 mock.Verify(m => m.SaveProduct(It.IsAny<Product>()), Times.Never());
 // Assert - check the method result type
 Assert.IsType<ViewResult>(result);
}
...

Displaying a Confirmation Message
I am going to deal with the message I stored using TempData in the _AdminLayout.cshtml layout file, as
shown in Listing 11-13. By handling the message in the template, I can create messages in any view that uses
the template without needing to create additional Razor expressions.

Listing 11-13. Handling the ViewBag Message in the _AdminLayout.cshtml File

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
 <title>@ViewBag.Title</title>
</head>
<body class="m-1 p-1">
 <div class="bg-info p-2"><h4>@ViewBag.Title</h4></div>
 @if (TempData["message"] != null) {
 <div class="alert alert-success">@TempData["message"]</div>
 }
 @RenderBody()
</body>
</html>

Chapter 11 ■ SportSStore: adminiStration

312

 ■ Tip the benefit of dealing with the message in the template like this is that users will see it displayed on
whatever page is rendered after they have saved a change. at the moment, i return them to the list of products,
but i could change the workflow to render some other view, and the users will still see the message (as long as
the next view also uses the same layout).

I now have all the pieces in place to edit products. To see how it all works, start the application, navigate
to the /Admin/Index URL, click the Edit button, and make a change. Click the Save button. You will be
redirected to the /Admin/Index URL, and the TempData message will be displayed, as shown in Figure 11-5.
The message will disappear if you reload the product list screen because TempData is deleted when it is read.
That is convenient since I do not want old messages hanging around.

Adding Model Validation
I have reached the point where I need to add validation rules to the model classes. At the moment, the
administrator could enter negative prices or blank descriptions, and SportsStore would happily store that
data in the database. Whether or not the bad data would be successfully persisted would depend on whether
it conformed to the constraints in the SQL tables created by Entity Framework Core, and that is not enough
protection for most applications. To guard against bad data values, I decorated the properties of the Product
class with attributes, as shown in Listing 11-14, just as I did for the Order class in Chapter 10.

Figure 11-5. Editing a product and seeing the TempData message

http://dx.doi.org/10.1007/978-1-4842-3150-0_10

Chapter 11 ■ SportSStore: adminiStration

313

Listing 11-14. Applying Validation Attributes in the Product.cs File in the Models Folder

using System.ComponentModel.DataAnnotations;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace SportsStore.Models {

 public class Product {
 public int ProductID { get; set; }

 [Required(ErrorMessage = "Please enter a product name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter a description")]
 public string Description { get; set; }

 [Required]
 [Range(0.01, double.MaxValue,
 ErrorMessage = "Please enter a positive price")]
 public decimal Price { get; set; }

 [Required(ErrorMessage = "Please specify a category")]
 public string Category { get; set; }
 }
}

In Chapter 10, I used a tag helper to display a summary of validation errors at the top of the form.
For this example, I am going to use a similar approach, but I am going to display error messages next to
individual form elements in the Edit view, as shown in Listing 11-15.

Listing 11-15. Adding Validation Error Elements in the Edit.cshtml File in the Views/Admin Folder

@model Product
@{
 ViewBag.Title = "Edit Product";
 Layout = "_AdminLayout";
}

<form asp-action="Edit" method="post">
 <input type="hidden" asp-for="ProductID" />
 <div class="form-group">
 <label asp-for="Name"></label>
 <div></div>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Description"></label>
 <div></div>
 <textarea asp-for="Description" class="form-control"></textarea>
 </div>
 <div class="form-group">
 <label asp-for="Category"></label>

http://dx.doi.org/10.1007/978-1-4842-3150-0_10

Chapter 11 ■ SportSStore: adminiStration

314

 <div></div>
 <input asp-for="Category" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Price"></label>
 <div></div>
 <input asp-for="Price" class="form-control" />
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
 </div>
</form>

When applied to a span element, the asp-validation-for attribute applies a tag helper that will add a
validation error message for the specified property if there are any validation problems.

The tag helpers will insert an error message into the span element and add the element to the input-
validation-error class, which makes it easy to apply CSS styles to error message elements, as shown in
Listing 11-16.

Listing 11-16. Adding CSS to the _AdminLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
 <title>@ViewBag.Title</title>
 <style>
 .input-validation-error { border-color: red; background-color: #fee ; }
 </style>
</head>
<body class="m-1 p-1">
 <div class="bg-info p-2"><h4>@ViewBag.Title</h4></div>
 @if (TempData["message"] != null) {
 <div class="alert alert-success mt-1">@TempData["message"]</div>
 }
 @RenderBody()
</body>
</html>

The CSS style I defined selects elements that are members of the input-validation-error class and
applies a red border and background color.

 ■ Tip explicitly setting styles when using a CSS library like Bootstrap can cause inconsistencies when content
themes are applied. in Chapter 27, i show an alternative approach that uses JavaScript code to apply Bootstrap
classes to elements with validation errors, which keeps everything consistent but is also more complex.

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 11 ■ SportSStore: adminiStration

315

You can apply the validation message tag helpers anywhere in the view, but it is conventional (and
sensible) to put it somewhere near the problem element to give the user some context. Figure 11-6 shows
the validation messages and cues that are displayed, which you can see by running the application, editing a
product, and submitting invalid data.

Enabling Client-Side Validation
Currently, data validation is applied only when the administration user submits edits to the server, but
most users expect immediate feedback if there are problems with the data they have entered. This is why
developers often want to perform client-side validation, where the data is checked in the browser using
JavaScript. MVC applications can perform client-side validation based on the data annotations I applied to
the domain model class.

The first step is to add the JavaScript libraries that provide the client-side feature to the application,
which is done in the bower.json file, as shown in Listing 11-17.

Figure 11-6. Data validation when editing products

Chapter 11 ■ SportSStore: adminiStration

316

Listing 11-17. Adding JavaScript Packages in the bower.json File

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",
 "fontawesome": "4.7.0",
 "jquery": "3.2.1",
 "jquery-validation": "1.17.0",
 "jquery-validation-unobtrusive": "3.2.6"
 }
}

Client-side validation is built on top of the popular jQuery library, which simplifies working with the
browser’s DOM API. The next step is to add the JavaScript files to the layout so they are loaded when the
SportsStore administration features are used, as shown in Listing 11-18.

Listing 11-18. Adding the Validation Libraries to the _AdminLayout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
 <title>@ViewBag.Title</title>
 <style>
 .input-validation-error { border-color: red; background-color: #fee ; }
 </style>
 <script src="/lib/jquery/dist/jquery.min.js"></script>
 <script src="/lib/jquery-validation/dist/jquery.validate.min.js"></script>
 <script
 src="/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.min.js">
 </script>
</head>
<body class="m-1 p-1">
 <div class="bg-info p-2"><h4>@ViewBag.Title</h4></div>
 @if (TempData["message"] != null) {
 <div class="alert alert-success mt-1">@TempData["message"]</div>
 }
 @RenderBody()
</body>
</html>

Enabling client-side validation doesn’t cause any visual change, but the constraints specified by the
attributes applied to the C# model class are enforced at the browser, preventing the user from submitting the
form with bad data and providing immediate feedback when there is a problem. See Chapter 27 for more details.

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 11 ■ SportSStore: adminiStration

317

Creating New Products
Next, I will implement the Create action method, which is the one specified by the Add Product link in the
main product list page. This will allow the administrator to add new items to the product catalog. Adding
the ability to create new products will require one small addition to the application. This is a great example
of the power and flexibility of a well-structured MVC application. First, add the Create method, shown in
Listing 11-19, to the Admin controller.

Listing 11-19. Adding the Create Action to the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);

 public ViewResult Edit(int productId) =>
 View(repository.Products
 .FirstOrDefault(p => p.ProductID == productId));

 [HttpPost]
 public IActionResult Edit(Product product) {
 if (ModelState.IsValid) {
 repository.SaveProduct(product);
 TempData["message"] = $"{product.Name} has been saved";
 return RedirectToAction("Index");
 } else {
 // there is something wrong with the data values
 return View(product);
 }
 }

 public ViewResult Create() => View("Edit", new Product());
 }
}

The Create method does not render its default view. Instead, it specifies that the Edit view should be used.
It is perfectly acceptable for one action method to use a view that is usually associated with another view. In this
case, I provide a new Product object as the view model so that the Edit view is populated with empty fields.

Chapter 11 ■ SportSStore: adminiStration

318

 ■ Note i have not added a unit test for this action method. doing so would only be testing the aSp.net Core
mVC ability to process the result from the action method result, which is something you can take for granted.
(tests are not usually written for framework features unless you suspect there is a defect.)

That is the only change that is required because the Edit action method is already set up to receive
Product objects from the model binding system and store them in the database. You can test this
functionality by starting the application, navigating to /Admin/Index, clicking the Add Product button, and
populating and submitting the form. The details you specify in the form will be used to create a new product
in the database, which will then appear in the list, as shown in Figure 11-7.

Deleting Products
Adding support for deleting items is also simple. The first step is to add a new method to the
IProductRepository interface, as shown in Listing 11-20.

Figure 11-7. Adding a new product to the catalog

Chapter 11 ■ SportSStore: adminiStration

319

Listing 11-20. Adding a Method to Delete Products to the IProductRepository.cs File in the Models Folder

using System.Linq;

namespace SportsStore.Models {

 public interface IProductRepository {

 IQueryable<Product> Products { get; }

 void SaveProduct(Product product);

 Product DeleteProduct(int productID);
 }
}

Next, I implement this method in the Entity Framework Core repository class, EFProductRepository, as
shown in Listing 11-21.

Listing 11-21. Implementing Deletion Support in the EFProductRepository.cs File in the Models Folder

using System.Collections.Generic;
using System.Linq;

namespace SportsStore.Models {

 public class EFProductRepository : IProductRepository {
 private ApplicationDbContext context;

 public EFProductRepository(ApplicationDbContext ctx) {
 context = ctx;
 }

 public IQueryable<Product> Products => context.Products;

 public void SaveProduct(Product product) {
 if (product.ProductID == 0) {
 context.Products.Add(product);
 } else {
 Product dbEntry = context.Products
 .FirstOrDefault(p => p.ProductID == product.ProductID);
 if (dbEntry != null) {
 dbEntry.Name = product.Name;
 dbEntry.Description = product.Description;
 dbEntry.Price = product.Price;
 dbEntry.Category = product.Category;
 }
 }
 context.SaveChanges();
 }

Chapter 11 ■ SportSStore: adminiStration

320

 public Product DeleteProduct(int productID) {
 Product dbEntry = context.Products
 .FirstOrDefault(p => p.ProductID == productID);
 if (dbEntry != null) {
 context.Products.Remove(dbEntry);
 context.SaveChanges();
 }
 return dbEntry;
 }
 }
}

The final step is to implement a Delete action method in the Admin controller. This action method should
support only POST requests because deleting objects is not an idempotent operation. As I explain in Chapter 16,
browsers and caches are free to make GET requests without the user’s explicit consent, so I must be careful to
avoid making changes as a consequence of GET requests. Listing 11-22 shows the new action method.

Listing 11-22. Adding the Delete Action Method in the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;

namespace SportsStore.Controllers {

 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);

 public ViewResult Edit(int productId) =>
 View(repository.Products
 .FirstOrDefault(p => p.ProductID == productId));

 [HttpPost]
 public IActionResult Edit(Product product) {
 if (ModelState.IsValid) {
 repository.SaveProduct(product);
 TempData["message"] = $"{product.Name} has been saved";
 return RedirectToAction("Index");
 } else {
 // there is something wrong with the data values
 return View(product);
 }
 }

http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 11 ■ SportSStore: adminiStration

321

 public IActionResult Create() => View("Edit", new Product());

 [HttpPost]
 public IActionResult Delete(int productId) {
 Product deletedProduct = repository.DeleteProduct(productId);
 if (deletedProduct != null) {
 TempData["message"] = $"{deletedProduct.Name} was deleted";
 }
 return RedirectToAction("Index");
 }
 }
}

UNIT TEST: DELETING PRODUCTS

i want to test the basic behavior of the Delete action method, which is that when a valid ProductID
is passed as a parameter, the action method calls the DeleteProduct method of the repository
and passes the correct ProductID value to be deleted. here is the test that i added to the
AdminControllerTests.cs file:

...
[Fact]
public void Can_Delete_Valid_Products() {
 // Arrange - create a Product
 Product prod = new Product { ProductID = 2, Name = "Test" };

 // Arrange - create the mock repository
 Mock<IProductRepository> mock = new Mock<IProductRepository>();
 mock.Setup(m => m.Products).Returns(new Product[] {
 new Product {ProductID = 1, Name = "P1"},
 prod,
 new Product {ProductID = 3, Name = "P3"},
 }.AsQueryable<Product>());

 // Arrange - create the controller
 AdminController target = new AdminController(mock.Object);

 // Act - delete the product
 target.Delete(prod.ProductID);

 // Assert - ensure that the repository delete method was
 // called with the correct Product
 mock.Verify(m => m.DeleteProduct(prod.ProductID));
}

...

Chapter 11 ■ SportSStore: adminiStration

322

You can see the delete feature by starting the application, navigating to /Admin/Index, and clicking one
of the Delete buttons in the product list page, as shown in Figure 11-8. As shown in the figure, I have taken
advantage of the TempData variable to display a message when a product is deleted from the catalog.

 ■ Note You will find that you get an error if you delete a product for which you have previously created an
order. When an Order object is stored in the database, it is transformed into an entry in a database table that
contains a reference to the Product object with which it is associated, known as a foreign key relationship.
the means that, by default, the database won’t allow a Product object to be deleted if an Order has been
created for that Product because doing so would create an inconsistency in the database. there are a number
of ways to approach this issue, including automatically deleting Order objects when the Product they relate
to is deleted or changing the relationship between Product and Order objects. See the entity Framework Core
documentation for details.

Summary
In this chapter, I introduced the administration capability and showed you how to implement CRUD
operations that allow the administrator to create, read, update, and delete products from the repository and
mark orders as shipped. In the next chapter, I show you how to secure the administration functions so that
they are not available to all users, and I deploy the SportsStore application into production.

Figure 11-8. Deleting a product from the catalog

323© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_12

CHAPTER 12

SportsStore: Security and
Deployment

In the previous chapter, I added support for administering the SportsStore application, and it probably did
not escape your attention that anyone could modify the product catalog if I deploy the application as it is.
All they would need to know is that the administration features are available using the /Admin/Index and
/Order/List URLs. In this chapter, I am going to show you how to prevent random people from using the
administration functions by password-protecting them. Once I have the security in place, I will show you
how to prepare and deploy the SportsStore application into production.

Securing the Administration Features
Authentication and authorization are provided by the ASP.NET Core Identity system, which integrates
neatly into both the ASP.NET Core platform and MVC applications. In the sections that follow, I will create
a basic security setup that allows one user, called Admin, to authenticate and access the administration
features in the application. ASP.NET Core Identity provides many more features for authenticating users
and authorizing access to application features and data, and you can find more detailed information in
Chapters 28, 29, and 30, where I show you how to create and manage user accounts, how to use roles and
policies, and how to support authentication from third parties such as Microsoft, Google, Facebook, and
Twitter. In this chapter, however, my goal is just to get enough functionality in place to prevent customers
from being able to access the sensitive parts of the SportsStore application and, in doing so, give you a flavor
of how authentication and authorization fit into an MVC application.

Creating the Identity Database
The ASP.NET Identity system is endlessly configurable and extensible and supports lots of options for how
its user data is stored. I am going to use the most common, which is to store the data using Microsoft SQL
Server accessed using Entity Framework Core.

Creating the Context Class
I need to create a database context file that will act as the bridge between the database and the Identity
model objects it provides access to. I added a class file called AppIdentityDbContext.cs to the Models folder
and used it to define the class shown in Listing 12-1.

https://doi.org/10.1007/978-1-4842-3150-0_12
http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 12 ■ SportSStore: SeCurity and deployment

324

 ■ Note you might be used to adding packages to the project to get additional features like security working.
But, with the release of aSp.net Core 2, the nuGet packages required for identity are already included in the
project through the meta-package that was added to the SportsStore.csproj file as part of the project template.

Listing 12-1. The Contents of the AppIdentityDbContext.cs File in the Models Folder

using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;

namespace SportsStore.Models {

 public class AppIdentityDbContext : IdentityDbContext<IdentityUser> {

 public AppIdentityDbContext(DbContextOptions<AppIdentityDbContext> options)
 : base(options) { }
 }
}

The AppIdentityDbContext class is derived from IdentityDbContext, which provides Identity-specific
features for Entity Framework Core. For the type parameter, I used the IdentityUser class, which is the
built-in class used to represent users. In Chapter 28, I demonstrate how to use a custom class that you can
extend to add extra information about the users of your application.

Defining the Connection String
The next step is to define the connection string that will be for the database. In Listing 12-2, you can see the
additions I made to the appsettings.json file of the SportsStore project, which follows the same format as
the connection string that I defined for the product database in Chapter 8.

Listing 12-2. Defining a Connection String in the appsettings.json File

{
 "Data": {
 "SportStoreProducts": {
 "ConnectionString": " Server=(localdb)\\MSSQLLocalDB;Database=SportsStore;Trusted_

Connection=True;MultipleActiveResultSets=true"
 },
 "SportStoreIdentity": {
 "ConnectionString": " Server=(localdb)\\MSSQLLocalDB;Database=Identity;Trusted_

Connection=True;MultipleActiveResultSets=true"
 }
 }
}

Remember that the connection string has to be defined in a single unbroken line in the appsettings.
json file and is shown across multiple lines in the listing only because of the fixed width of a book page. The
addition in the listing defines a connection string called SportsStoreIdentity that specifies a LocalDB
database called Identity.

http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_8

Chapter 12 ■ SportSStore: SeCurity and deployment

325

Configuring the Application
Like other ASP.NET Core features, Identity is configured in the Start class. Listing 12-3 shows the additions
I made to set up Identity in the SportsStore project, using the context class and connection string defined
previously.

Listing 12-3. Configuring Identity in the Startup.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Identity;

namespace SportsStore {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {

 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<IdentityUser, IdentityRole>()
 .AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddTransient<IProductRepository, EFProductRepository>();
 services.AddScoped<Cart>(sp => SessionCart.GetCart(sp));
 services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();
 services.AddTransient<IOrderRepository, EFOrderRepository>();
 services.AddMvc();
 services.AddMemoryCache();
 services.AddSession();
 }

Chapter 12 ■ SportSStore: SeCurity and deployment

326

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseSession();
 app.UseAuthentication();
 app.UseMvc(routes => {

 // ...routes omitted for brevity...

 });
 SeedData.EnsurePopulated(app);
 }
 }
}

In the ConfigureServices method, I extended the Entity Framework Core configuration to register the
context class and used the AddIdentity method to set up the Identity services using the built-in classes to
represent users and roles. In the Configure method, I called the UseAuthentication method to set up the
components that will intercept requests and responses to implement the security policy.

Creating and Applying the Database Migration
The basic configuration is in place, and it is time to use the Entity Framework Core migrations feature to
define the schema and apply it to the database. Open a new command prompt or PowerShell window and run
the following command in the SportsStore project folder to create a new migration for the Identity database:

dotnet ef migrations add Initial --context AppIdentityDbContext

The important difference from previous database commands is that I have used the -context argument
to specify the name of the context class associated with the database that I want to work with, which is
AppIdentityDbContext. When you have multiple databases in the application, it is important to ensure that
you are working with the right context class.

Once Entity Framework Core has generated the initial migration, run the following command to create
the database and run the migration commands:

dotnet ef database update --context AppIdentityDbContext

The result is a new LocalDB database called Identity that you can inspect using the Visual Studio SQL
Server Object Explorer.

Defining the Seed Data
I am going to explicitly create the Admin user by seeding the database when the application starts. I added a
class file called IdentitySeedData.cs to the Models folder and defined the static class shown in Listing 12-4.

Chapter 12 ■ SportSStore: SeCurity and deployment

327

Listing 12-4. The Contents of the IdentitySeedData.cs File in the Models Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Identity;
using Microsoft.Extensions.DependencyInjection;

namespace SportsStore.Models {

 public static class IdentitySeedData {
 private const string adminUser = "Admin";
 private const string adminPassword = "Secret123$";

 public static async void EnsurePopulated(IApplicationBuilder app) {

 UserManager<IdentityUser> userManager = app.ApplicationServices
 .GetRequiredService<UserManager<IdentityUser>>();

 IdentityUser user = await userManager.FindByIdAsync(adminUser);
 if (user == null) {
 user = new IdentityUser("Admin");
 await userManager.CreateAsync(user, adminPassword);
 }
 }
 }
}

This code uses the UserManager<T> class, which is provided as a service by ASP.NET Core Identity for
managing users, as described in Chapter 28. The database is searched for the Admin user account, which is
created—with a password of Secret123$—if it is not present. Do not change the hard-coded password in
this example because Identity has a validation policy that requires passwords to contain a number and range
of characters. See Chapter 28 for details of how to change the validation settings.

 ■ Caution hard-coding the details of an administrator account is often required so that you can log into
an application once it has been deployed and start administering it. When you do this, you must remember to
change the password for the account you have created. See Chapter 28 for details of how to change passwords
using identity.

To ensure that the Identity database is seeded when the application starts, I added the statement shown
in Listing 12-5 to the Configure method of the Startup class.

Listing 12-5. Seeding the Identity Database in the Startup.cs File in the SportsStore Folder

...
public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseSession();
 app.UseAuthentication();
 app.UseMvc(routes => {

http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 12 ■ SportSStore: SeCurity and deployment

328

 // ...routes omitted for brevity...

 });
 SeedData.EnsurePopulated(app);
 IdentitySeedData.EnsurePopulated(app);
}
...

Applying a Basic Authorization Policy
Now that I have configured ASP.NET Core Identity, I can apply an authorization policy to the parts of the
application that I want to protect. I am going to use the most basic authorization policy possible, which is
to allow access to any authenticated user. Although this can be a useful policy in real applications as well,
there are also options for creating finer-grained authorization controls (as described in Chapters 28,29,
and 30), but since the SportsStore application has only one user, distinguishing between anonymous and
authenticated requests is sufficient.

The Authorize attribute is used to restrict access to action methods, and in Listing 12-6, you can see
that I have used the attribute to protect access to the administrative actions in the Order controller.

Listing 12-6. Restricting Access in the OrderController.cs File

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;
using Microsoft.AspNetCore.Authorization;

namespace SportsStore.Controllers {

 public class OrderController : Controller {
 private IOrderRepository repository;
 private Cart cart;

 public OrderController(IOrderRepository repoService, Cart cartService) {
 repository = repoService;
 cart = cartService;
 }

 [Authorize]
 public ViewResult List() =>
 View(repository.Orders.Where(o => !o.Shipped));

 [HttpPost]
 [Authorize]
 public IActionResult MarkShipped(int orderID) {
 Order order = repository.Orders
 .FirstOrDefault(o => o.OrderID == orderID);
 if (order != null) {
 order.Shipped = true;
 repository.SaveOrder(order);
 }
 return RedirectToAction(nameof(List));
 }

http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 12 ■ SportSStore: SeCurity and deployment

329

 public ViewResult Checkout() => View(new Order());

 [HttpPost]
 public IActionResult Checkout(Order order) {
 if (cart.Lines.Count() == 0) {
 ModelState.AddModelError("", "Sorry, your cart is empty!");
 }
 if (ModelState.IsValid) {
 order.Lines = cart.Lines.ToArray();
 repository.SaveOrder(order);
 return RedirectToAction(nameof(Completed));
 } else {
 return View(order);
 }
 }

 public ViewResult Completed() {
 cart.Clear();
 return View();
 }
 }
}

I don’t want to stop unauthenticated users from accessing the other action methods in the Order
controller, so I have applied the Authorize attribute only to the List and MarkShipped methods. I want to
protect all of the action methods defined by the Admin controller, and I can do this by applying the Authorize
attribute to the controller class, which then applies the authorization policy to all the action methods it
contains, as shown in Listing 12-7.

Listing 12-7. Restricting Access in the AdminController.cs File

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;
using Microsoft.AspNetCore.Authorization;

namespace SportsStore.Controllers {

 [Authorize]
 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);

 public ViewResult Edit(int productId) =>
 View(repository.Products
 .FirstOrDefault(p => p.ProductID == productId));

Chapter 12 ■ SportSStore: SeCurity and deployment

330

 [HttpPost]
 public IActionResult Edit(Product product) {
 if (ModelState.IsValid) {
 repository.SaveProduct(product);
 TempData["message"] = $"{product.Name} has been saved";
 return RedirectToAction("Index");
 } else {
 // there is something wrong with the data values
 return View(product);
 }
 }

 public ViewResult Create() => View("Edit", new Product());

 [HttpPost]
 public IActionResult Delete(int productId) {
 Product deletedProduct = repository.DeleteProduct(productId);
 if (deletedProduct != null) {
 TempData["message"] = $"{deletedProduct.Name} was deleted";
 }
 return RedirectToAction("Index");
 }
 }
}

Creating the Account Controller and Views
When an unauthenticated user sends a request that requires authorization, they are redirected to the /
Account/Login URL, which the application can use to prompt the user for their credentials. In preparation,
I added a view model to represent the user’s credentials by adding a class file called LoginModel.cs to the
Models/ViewModels folder and using it to define the class shown in Listing 12-8.

Listing 12-8. The Contents of the LoginModel.cs File in the Models/ViewModels Folder

using System.ComponentModel.DataAnnotations;

namespace SportsStore.Models.ViewModels {

 public class LoginModel {

 [Required]
 public string Name { get; set; }

 [Required]
 [UIHint("password")]
 public string Password { get; set; }

 public string ReturnUrl { get; set; } = "/";
 }
}

Chapter 12 ■ SportSStore: SeCurity and deployment

331

The Name and Password properties have been decorated with the Required attribute, which uses model
validation to ensure that values have been provided. The Password property has been decorated with the
UIHint attribute so that when I use the asp-for attribute on the input element in the login Razor view, the
tag helper will set the type attribute to password; that way, the text entered by the user isn’t visible on-
screen. I describe the use of the UIHint attribute in Chapter 24.

Next, I added a class file called AccountController.cs to the Controllers folder and used it to define
the controller shown in Listing 12-9. This is the controller that will respond to requests to the /Account/
Login URL.

Listing 12-9. The Contents of the AccountController.cs File in the Controllers Folder

using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using SportsStore.Models.ViewModels;

namespace SportsStore.Controllers {

 [Authorize]
 public class AccountController : Controller {
 private UserManager<IdentityUser> userManager;
 private SignInManager<IdentityUser> signInManager;

 public AccountController(UserManager<IdentityUser> userMgr,
 SignInManager<IdentityUser> signInMgr) {
 userManager = userMgr;
 signInManager = signInMgr;
 }

 [AllowAnonymous]
 public ViewResult Login(string returnUrl) {
 return View(new LoginModel {
 ReturnUrl = returnUrl
 });
 }

 [HttpPost]
 [AllowAnonymous]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> Login(LoginModel loginModel) {
 if (ModelState.IsValid) {
 IdentityUser user =
 await userManager.FindByNameAsync(loginModel.Name);
 if (user != null) {
 await signInManager.SignOutAsync();
 if ((await signInManager.PasswordSignInAsync(user,
 loginModel.Password, false, false)).Succeeded) {
 return Redirect(loginModel?.ReturnUrl ?? "/Admin/Index");
 }
 }
 }

http://dx.doi.org/10.1007/978-1-4842-3150-0_24

Chapter 12 ■ SportSStore: SeCurity and deployment

332

 ModelState.AddModelError("", "Invalid name or password");
 return View(loginModel);
 }

 public async Task<RedirectResult> Logout(string returnUrl = "/") {
 await signInManager.SignOutAsync();
 return Redirect(returnUrl);
 }
 }
}

When the user is redirected to the /Account/Login URL, the GET version of the Login action method
renders the default view for the page, providing a view model object that includes the URL that the browser
should be redirected to if the authentication request is successful.

Authentication credentials are submitted to the POST version of the Login method, which uses the
UserManager<IdentityUser> and SignInManager<IdentityUser> services that have been received through
the controller’s constructor to authenticate the user and log them into the system. I explain how these classes
work in Chapters 28, 29, and 30, but for now it is enough to know that if there is an authentication failure, then
I create a model validation error and render the default view; however, if authentication is successful, then I
redirect the user to the URL that they want to access before they are prompted for their credentials.

 ■ Caution in general, using client-side data validation is a good idea. it offloads some of the work from your
server and gives users immediate feedback about the data they are providing. however, you should not be tempted
to perform authentication at the client, as this would typically involve sending valid credentials to the client so they
can be used to check the username and password that the user has entered, or at least trusting the client’s report
of whether they have successfully authenticated. authentication should always be done at the server.

To provide the Login method with a view to render, I created the Views/Account folder and added a
Razor view file called Login.cshtml with the contents shown in Listing 12-10.

Listing 12-10. The Contents of the Login.cshtml File in the Views/Account Folder

@model LoginModel
@{
 ViewBag.Title = "Log In";
 Layout = "_AdminLayout";
}

<div class="text-danger" asp-validation-summary="All"></div>

<form asp-action="Login" asp-controller="Account" method="post">
 <input type="hidden" asp-for="ReturnUrl" />
 <div class="form-group">
 <label asp-for="Name"></label>
 <div></div>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Password"></label>

http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 12 ■ SportSStore: SeCurity and deployment

333

 <div></div>
 <input asp-for="Password" class="form-control" />
 </div>
 <button class="btn btn-primary" type="submit">Log In</button>
</form>

The final step is a change to the shared administration layout to add a button that will log the current
user out by sending a request to the Logout action, as shown in Listing 12-11. This is a useful feature that
makes it easier to test the application, without which you would need to clear the browser’s cookies in order
to return to the unauthenticated state.

Listing 12-11. Adding a Logout Button in the _AdminLayout.cshtml File

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
 <title>@ViewBag.Title</title>
 <style>
 .input-validation-error {
 border-color: red;
 background-color: #fee;
 }
 </style>
 <script src="/lib/jquery/dist/jquery.min.js"></script>
 <script src="/lib/jquery-validation/dist/jquery.validate.min.js"></script>
 <script
 src="/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.min.js">
 </script>
</head>
<body class="m-1 p-1">
 <div class="bg-info p-2 row">
 <div class="col">
 <h4>@ViewBag.Title</h4>
 </div>
 <div class="col-2">
 <a class="btn btn-sm btn-primary"
 asp-action="Logout" asp-controller="Account">Log Out
 </div>
 </div>
 @if (TempData["message"] != null) {
 <div class="alert alert-success mt-1">@TempData["message"]</div>
 }
 @RenderBody()
</body>
</html>

Chapter 12 ■ SportSStore: SeCurity and deployment

334

Testing the Security Policy
Everything is in place, and you can test the security policy by starting the application and requesting
the /Admin/Index URL. Since you are presently unauthenticated and you are trying to target an action
that requires authorization, your browser will be redirected to the /Account/Login URL. Enter Admin
and Secret123$ as the name and password and submit the form. The Account controller will check the
credentials you provided with the seed data added to the Identity database and—assuming you entered the
right details—authenticate you and redirect you back to the /Account/Login URL, to which you now have
access. Figure 12-1 illustrates the process.

Deploying the Application
All the features and functionality for the SportsStore application are in place, so it is time to prepare the
application and deploy it into production. Lots of hosting options are available for ASP.NET Core MVC
applications, and the one that I use in this chapter is the Microsoft Azure platform, which I have chosen
because it comes from Microsoft and because it offers free accounts, which means you can follow the
SportsStore example all the way through, even if you don’t want to use Azure for your own projects.

 ■ Note you will need an azure account for this section. if you don’t have one, you can create a free account
at http://azure.microsoft.com.

Creating the Databases
The starting point is to create the databases that the SportsStore application will use in production. This
is something that you can do as part of the Visual Studio deployment process, but it is a chicken-and-egg
situation because you need to know the connection strings for the databases before you deploy, which is the
process that creates the databases.

Figure 12-1. The administration authentication/authorization process

http://azure.microsoft.com/

Chapter 12 ■ SportSStore: SeCurity and deployment

335

 ■ Caution the azure portal changes often as microsoft adds new features and revises existing ones. the
instructions in this section were accurate when i wrote them, but the required steps may have changed slightly
by the time you read this. the basic approach should still be the same, but the names of data fields and the
exact order of steps may require some experimentation to get the right results.

The simplest approach is to log in to http://portal.azure.com using your Azure account and create
the databases manually. Once you are logged in, select the SQL Databases resource category and click the
Add button to create a new database.

For the first database enter the name products. Click the Configure Required Settings link and then
the Create a New Server link. Enter a new server name—which must be unique across Azure—and select a
database administrator username and password. I entered the server name sportsstorecore2db, with the
administrator name of sportsstoreadmin and a password of Secret123$. You will have to use a different
server name, and I suggest that you use a more robust password. Select a location for your database; click the
Select button to close the options and then the Create button to create the database itself. Azure will take a few
minutes to perform the creation process, after which it will appear in the SQL Databases resource category.

Create another SQL server, this time entering the name identity. You can use the database server that
you created a moment ago, rather than creating a new one. The result is two SQL Server databases hosted by
Azure with the details shown in Table 12-1. You will have a different database server name and—ideally—
better passwords.

Opening Firewall Access for Configuration
I need to populate the databases with their schemas, and the simplest way to do that is by opening Azure
firewall access so that I can run the Entity Framework Core commands from my development machine.

Select either of the databases in the SQL Databases resource category, click the Tools button, and
then click the Open in Visual Studio link. Now click the Configure Your Firewall link, click the Add Client IP
button, and then click Save. This allows your current IP address to reach the database server and perform
configuration commands. (You can inspect the database schema by clicking the Open In Visual Studio
button, which will open Visual Studio and use the SQL Server Object Explorer to examine the database.)

Getting the Connection Strings
I will need the connection strings for the new database shortly. Azure provides this information when you click a
database in the SQL Databases resource category through a Show Database Connection Strings link. Connection
strings are provided for different development platforms, and it is the ADO.NET strings that are required for .NET
applications. Here is the connection string that the Azure portal provides for the products database:

Server=tcp:sportsstorecore2db.database.windows.net,1433;Initial Catalog=products;Persist
Security Info=False;User ID={your_username};Password={your_password};MultipleActiveResultS
ets=True;Encrypt=True;TrustServerCertificate=False;Connection Timeout=30;

Table 12-1. The Azure Databases for the SportsStore Application

Database Name Server Name Administrator Password

products sportsstorecore2db sportsstoreadmin Secret123$

identity sportsstorecore2db sportsstoreadmin Secret123$

http://portal.azure.com/

Chapter 12 ■ SportSStore: SeCurity and deployment

336

You will see different configuration options depending on how Azure provisioned your database. Notice
that there are placeholders for the username and password, which I have marked in bold, that must be
changed when you use the connection string to configure the application.

Preparing the Application
I have some basic preparation to do before I can deploy the application, to make it ready for the production
environment. In the sections that follow, I change the way that errors are displayed and set up the
production connection strings for the databases.

Creating the Error Controller and View
At the moment, the application is configured to use the developer-friendly error pages, which provide
helpful information when a problem occurs. This is not information that end users should see, so I added a
class file called ErrorController.cs to the Controllers folder and used it to define the simple controller
shown in Listing 12-12.

Listing 12-12. The Contents of the ErrorController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace SportsStore.Controllers {

 public class ErrorController : Controller {

 public ViewResult Error() => View();
 }
}

The controller defines an Error action that renders the default view. To provide the controller with the
view, I created the Views/Error folder, added a Razor view file called Error.cshtml, and applied the markup
shown in Listing 12-13.

Listing 12-13. The Contents of the Error.cshtml File in the Views/Error Folder

@{
 Layout = null;
}
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" href="~/lib/bootstrap/dist/css/bootstrap.min.css" />
 <title>Error</title>
</head>
<body>
 <h2 class="text-danger">Error.</h2>
 <h3 class="text-danger">An error occurred while processing your request.</h3>
</body>
</html>

Chapter 12 ■ SportSStore: SeCurity and deployment

337

This kind of error page is the last resort, and it is best to keep it as simple as possible and not to rely
on shared views, view components, or other rich features. In this case, I have disabled shared layouts
and defined a simple HTML document that explains that there has been an error, without providing any
information about what has happened.

Defining the Production Database Settings
The next step is to create a file that will provide the application with its database connection strings in
production. I added a new ASP.NET Configuration File called appsettings.production.json to the
SportsStore project and added the content shown in Listing 12-14.

 ■ Tip the Solution explorer nests this file inside appsettings.json in the file listing, which you will have to
expand if you want to edit the file again later.

Listing 12-14. The Contents of the appsettings.production.json File

{
 "Data": {
 "SportStoreProducts": {
 "ConnectionString": "Server=tcp:sportsstorecore2db.database.windows.net,1433;Initial

Catalog=products;Persist Security Info=False;User ID={your_username};Password={your_
password};MultipleActiveResultSets=True;Encrypt=True;TrustServerCertificate=False;
Connection Timeout=30;"

 },
 "SportStoreIdentity": {
 "ConnectionString": "Server=tcp:sportsstorecore2db.database.windows.net,1433;Initial

Catalog=identity;Persist Security Info=False;User ID={your_username};Password={your_
password};MultipleActiveResultSets=True;Encrypt=True;TrustServerCertificate=False;
Connection Timeout=30;"

 }
 }
}

This file is hard to read because connection strings cannot be split across multiple lines. The contents
of this file duplicate the connection strings section of the appsettings.json file but use the Azure
connection strings. (Remember to replace the username and password placeholders.) I have also set the
MultipleActiveResultSets to True, which allows multiple concurrent queries and avoids a common error
condition that arises when performing complex LINQ queries of application data.

 ■ Note remove the brace characters when you insert your username and password into the connection
strings so that you end up with Password=MyPassword and not Password={MyPassword}.

Chapter 12 ■ SportSStore: SeCurity and deployment

338

Configuring the Application
Now I can change the Startup class so that the application behaves differently when in production.
Listing 12-15 shows the changes I made.

Listing 12-15. Configuring the Application in the Startup.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using SportsStore.Models;
using Microsoft.Extensions.Configuration;
using Microsoft.EntityFrameworkCore;
using Microsoft.AspNetCore.Identity;

namespace SportsStore {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<ApplicationDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreProducts:ConnectionString"]));

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<IdentityUser, IdentityRole>()
 .AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddTransient<IProductRepository, EFProductRepository>();
 services.AddScoped<Cart>(sp => SessionCart.GetCart(sp));
 services.AddSingleton<IHttpContextAccessor, HttpContextAccessor>();
 services.AddTransient<IOrderRepository, EFOrderRepository>();
 services.AddMvc();
 services.AddMemoryCache();
 services.AddSession();
 }

Chapter 12 ■ SportSStore: SeCurity and deployment

339

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {

 if (env.IsDevelopment()) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 } else {
 app.UseExceptionHandler("/Error");
 }

 app.UseStaticFiles();
 app.UseSession();
 app.UseAuthentication();
 app.UseMvc(routes => {
 routes.MapRoute(name: "Error", template: "Error",
 defaults: new { controller = "Error", action = "Error" });
 routes.MapRoute(name: null,
 template: "{category}/Page{productPage:int}",
 defaults: new { controller = "Product", action = "List" }
);
 routes.MapRoute(name: null,template: "Page{productPage:int}",
 defaults: new { controller = "Product",
 action = "List", productPage = 1 }
);
 routes.MapRoute(name: null, template: "{category}",
 defaults: new { controller = "Product",
 action = "List", productPage = 1 }
);
 routes.MapRoute(name: null,template: "",
 defaults: new { controller = "Product",
 action = "List", productPage = 1 });
 routes.MapRoute(name: null, template: "{controller}/{action}/{id?}");
 });
 //SeedData.EnsurePopulated(app);
 //IdentitySeedData.EnsurePopulated(app);
 }
 }
}

The IHostingEnvironment interface is used to provide information about the environment in which
the application is running, such as development or production. When the hosting environment is set to
Production, then ASP.NET Core will load the appsettings.production.json file and its contents to override
the settings in the appsettings.json file, which means that the Entity Framework Core will connect to the
Azure databases instead of LocalDB. There are a lot of options available for tailoring the configuration of an
application in different environments, which I explain in Chapter 14.

I have also commented out the statements that seed the databases, which I explain in the “Managing
Database Seeding” section.

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

Chapter 12 ■ SportSStore: SeCurity and deployment

340

Applying the Database Migrations
To set up the databases with the schemas required for the application, open a new command prompt or
PowerShell window and navigate to the SportsStore project directory. Setting the environment so that
the dotnet command-line tool will use the connection strings for Azure requires setting an environment
variable. If you are using PowerShell, use this command to set the environment variable:

$env:ASPNETCORE_ENVIRONMENT="Production"

If you are using a command prompt, then use this command to set the environment variable instead:

set ASPNETCORE_ENVIRONMENT=Production

Run the following commands in the SportsStore project folder to apply the migrations in the project to
the Azure databases:

dotnet ef database update --context ApplicationDbContext
dotnet ef database update --context AppIdentityDbContext

The environment variable specifies the hosting environment that is used to obtain the connection
strings to reach the databases. If these commands do not work, ensure that you have configured the Azure
firewall to allow access to your development machine, as described earlier in this chapter, and that you have
correctly copied and modified the connection strings.

Managing Database Seeding
In Listing 12-15, I commented out the statements in the Startup class that seeded the databases. I did this
because the Entity Framework Core commands used in the previous section to apply the migrations to the
database rely on the services set up by the Startup class, which means that, with those statements enabled,
the code to seed the databases would have been called before the migrations were applied, which would
have resulted in an error and prevented the migrations from working. This didn’t cause a problem when
the databases were set up. For the products database, this was because the SeedData.EnsurePopulated
method applies the migrations before seeding the data and because I didn’t add the Identity seed data to the
application until after I had applied the migration to the database.

For the production environment, I want to take a different approach to seed data. For the user accounts,
I am going to populate the database with the administrator account when there is a login attempt. I am going
to add a feature to the administration tool for seeding the product database so that the production system
can be populated with data for testing data or left empty for real data as required.

 ■ Note Seeding authentication data in a production system should be done with care, and your application
should use the features described in Chapters 28, 29, and 30 to change the password as soon as the
application is deployed.

http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 12 ■ SportSStore: SeCurity and deployment

341

Seeding Identity Data
The first step in changing the way that user data is seeded is to simplify the code in the IdentitySeedData
class, as shown in Listing 12-16.

Listing 12-16. Simplifying Code in the IdentitySeedData.cs File in the Models Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Identity;
using Microsoft.Extensions.DependencyInjection;
using System.Threading.Tasks;

namespace SportsStore.Models {

 public static class IdentitySeedData {
 private const string adminUser = "Admin";
 private const string adminPassword = "Secret123$";

 public static async Task EnsurePopulated(UserManager<IdentityUser>
 userManager) {

 IdentityUser user = await userManager.FindByIdAsync(adminUser);
 if (user == null) {
 user = new IdentityUser("Admin");
 await userManager.CreateAsync(user, adminPassword);
 }
 }
 }
}

Rather than obtaining the UserManager<IdentityUser> service itself, the EnsurePopulated
method receives the object as an argument. This allows me to integrate the database seeding in the
AccountController class, as shown in Listing 12-17.

Listing 12-17. Seeding Data in the AccountController.cs File in the Controllers Folder

using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using SportsStore.Models.ViewModels;
using SportsStore.Models;

namespace SportsStore.Controllers {

 [Authorize]
 public class AccountController : Controller {
 private UserManager<IdentityUser> userManager;
 private SignInManager<IdentityUser> signInManager;

 public AccountController(UserManager<IdentityUser> userMgr,
 SignInManager<IdentityUser> signInMgr) {
 userManager = userMgr;
 signInManager = signInMgr;

Chapter 12 ■ SportSStore: SeCurity and deployment

342

 IdentitySeedData.EnsurePopulated(userMgr).Wait();
 }

 // ...other methods omitted for brevity...
 }
}

These changes will ensure that the Identity database is seeded every time that an AccountController
object is created to handle an HTTP request. This is not ideal, of course, but there is no good way to seed a
database, and this approach will ensure that the application can be administered both in production and
development, albeit at the cost of some additional database queries.

Seeding the Product Data
For the product data, I am going to present the administrator with a button that will seed the database when
it is empty. The first step is to change the seeding code so that it uses an interface that will allow it to access
services provided through a controller, rather than through the Startup class, as shown in Listing 12-18. I
have also commented out the statement that automatically applies any pending migrations, which can cause
data loss and should be used only with the greatest care in production systems.

Listing 12-18. Preparing for Manual Seeding in the SeedData.cs File in the Models Folder

using System.Linq;
using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.EntityFrameworkCore;
using System;

namespace SportsStore.Models {

 public static class SeedData {

 public static void EnsurePopulated(IServiceProvider services) {
 ApplicationDbContext context =
 services.GetRequiredService<ApplicationDbContext>();
 //context.Database.Migrate();
 if (!context.Products.Any()) {
 context.Products.AddRange(

 // ...statements omiited for brevity...

);
 context.SaveChanges();
 }
 }
 }
}

The next step is to update the Admin controller to add an action method that will trigger the seeding
operation, as shown in Listing 12-19.

Chapter 12 ■ SportSStore: SeCurity and deployment

343

Listing 12-19. Seeding the Database in the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using SportsStore.Models;
using System.Linq;
using Microsoft.AspNetCore.Authorization;

namespace SportsStore.Controllers {

 [Authorize]
 public class AdminController : Controller {
 private IProductRepository repository;

 public AdminController(IProductRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Products);

 // ...other methods omitted for brevity...

 [HttpPost]
 public IActionResult SeedDatabase() {
 SeedData.EnsurePopulated(HttpContext.RequestServices);
 return RedirectToAction(nameof(Index));
 }
 }
}

The new action is decorated with the HttpPost attribute so that it can be targeted with POST requests, and
it will redirect the browser to the Index action method once the database has been seeded. All that remains is
to create a button to seed the database that will be displayed when it is empty, as shown in Listing 12-20.

Listing 12-20. Adding a Button in the Index.cshtml File in the Views/Admin Folder

@model IEnumerable<Product>

@{
 ViewBag.Title = "All Products";
 Layout = "_AdminLayout";
}

@if (Model.Count() == 0) {
 <div class="text-center m-2">
 <form asp-action="SeedDatabase" method="post">
 <button type="submit" class="btn btn-danger">Seed Database</button>
 </form>
 </div>
} else {
 <table class="table table-striped table-bordered table-sm">
 <tr>
 <th class="text-right">ID</th>

Chapter 12 ■ SportSStore: SeCurity and deployment

344

 <th>Name</th>
 <th class="text-right">Price</th>
 <th class="text-center">Actions</th>
 </tr>
 @foreach (var item in Model) {
 <tr>
 <td class="text-right">@item.ProductID</td>
 <td>@item.Name</td>
 <td class="text-right">@item.Price.ToString("c")</td>
 <td class="text-center">
 <form asp-action="Delete" method="post">
 <a asp-action="Edit" class="btn btn-sm btn-warning"
 asp-route-productId="@item.ProductID">
 Edit

 <input type="hidden" name="ProductID"
 value="@item.ProductID" />
 <button type="submit" class="btn btn-danger btn-sm">
 Delete
 </button>
 </form>
 </td>
 </tr>
 }
 </table>
}
<div class="text-center">
 <a asp-action="Create" class="btn btn-primary">Add Product
</div>

Deploying the Application
To deploy the application, right-click the SportsStore project in the Solution Explorer (the project, not
the solution) and select Publish from the pop-up menu. Visual Studio will present you with a choice of
publishing methods, as shown in Figure 12-2.

WHERE TO START IF DEPLOYMENT FAILS

the single biggest cause of failed deployments is connection strings, either because they were not
copied correctly from azure or because they were edited incorrectly to insert the username and
password. if your deployment fails, then the connection strings are the place to start. if you don’t get
the expected results from the dotnet ef database update commands in the “applying the database
migrations” sections, then your deployment will fail. if the commands do work but deployment fails,
then make sure you have set the environment variable because it is possible that you are preparing the
local database and not the one in the cloud.

Chapter 12 ■ SportSStore: SeCurity and deployment

345

Select the Microsoft Azure App Service option and make sure that Create New is selected (the Select
Existing option is used to update an existing deployed application). You will be prompted to provide details
for the deployment. Start by clicking Add an Account and enter your Azure credentials.

Once you have entered your credentials, you can select a name for the deployed application and enter
the details for the service, which will depend on the type of Azure account you have, the region you want to
deploy to, and the deployment service you require, as shown in Figure 12-3.

Figure 12-2. Selecting a publishing method

Figure 12-3. Creating a new Azure app service

Chapter 12 ■ SportSStore: SeCurity and deployment

346

Once you have configured the service, click the Create button. Once the service has been set up, you
will be prompted with a summary of the publishing operation, which will send the application to the hosted
service, as shown in Figure 12-4.

Click the Publish button to begin the deployment process. You can see details of the publishing progress
by selecting Web Publish Activity from the Visual Studio View ➤ Other Windows menu. Be patient during
this process because it can take a while to send all of the files in the project to the Azure service. Subsequent
updates will be quicker because only modified files will be transferred.

Once deployment has completed, Visual Studio will open a new browser window for the deployed
application. Since the product database is empty, you will see the layout shown in Figure 12-5.

Figure 12-4. The service publishing summary

Figure 12-5. The initial state of the deployed application

Chapter 12 ■ SportSStore: SeCurity and deployment

347

Navigate to the /Admin/Index URL and authenticate with the username Admin and the password
Secret123$. The Identity database will be seeded on-demand, allowing you to log into the administration
part of the application, as shown in Figure 12-6.

Click the Seed Database button to populate the product database, which will produce the result shown
in Figure 12-7. You can then navigate back to the root URL for the application and use it as normal.

Figure 12-7. The populated database

Figure 12-6. The administration screen

Chapter 12 ■ SportSStore: SeCurity and deployment

348

Summary
In this and previous chapters, I demonstrated how ASP.NET Core MVC can be used to create a realistic
e-commerce application. This extended example introduced many key MVC features: controllers, action
methods, routing, views, metadata, validation, layouts, authentication, and more. You also saw how some
of the key technologies related to MVC can be used. These included Entity Framework Core, dependency
injection, and unit testing. The result is an application that has a clean, component-oriented architecture
that separates the various concerns and a code base that will be easy to extend and maintain. That’s the end
of the SportsStore application. In the next chapter, I show you how to use Visual Studio Code to create ASP.
NET Core MVC applications.

349© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_13

CHAPTER 13

Working with Visual Studio Code

In this chapter, I show you how to create an ASP.NET Core MVC application using Visual Studio Code, which
is an open source, cross-platform editor produced by Microsoft. Despite the name, Visual Studio Code is
unrelated to Visual Studio and is based on the Electron framework, which is used by the Atom editor popular
with developers of other web application frameworks such as Angular.

Visual Studio Code supports Windows, macOS, and the most popular Linux distributions. Visual Studio
Code has matured into a useful and fully featured development environment, even if it lacks all of the bells
and whistles provided by Visual Studio. I find myself using Visual Studio Code more and more because it is
simple to work with, is fast, and has good support for other languages, such as JavaScript and TypeScript.

Setting Up the Development Environment
The process for setting up Visual Studio Code requires a little work because some of the functionality that
is included in Visual Studio is handled by external tools. Some of these tools are the same ones that Visual
Studio uses behind the scenes, but others are new to the world of .NET development and may be unfamiliar.
The good news is that these tools are widely used by developers of other web application frameworks, and
the quality and features are good. In the sections that follow, I walk you through the process of installing
Visual Studio Code and the essential tools and add-ons that are required for MVC development.

Installing Node.js
In the world of client-side development, Node.js (also known as Node) has emerged as the runtime on which
many popular development tools rely. Node was created in 2009 as a simple and efficient runtime for server-
side applications written in JavaScript. It is based on the JavaScript engine used in the Chrome browser and
provides an API for executing JavaScript code outside of the browser environment.

Node.js has enjoyed some success as an application server, but for this chapter, it is interesting because
it has provided the foundation for a new generation of cross-platform build tools and package managers.
Some smart design decisions by the Node team and the cross-platform support provided by the Chrome
JavaScript runtime have created an opportunity that has been seized upon by enthusiastic tool writers,
especially those who want to support web application development.

 ■ Note Two versions of Node.js are available. The Long Term Support (LTS) version provides a stable
foundation for deployment into production environments where changes are to be minimized. LTS updates are
released every 6 months and maintained for 18 months. The Current version is a more rapidly changing release
that favors new features over stability. For this chapter, I have used the Current release.

https://doi.org/10.1007/978-1-4842-3150-0_13

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

350

Installing Node.js on Windows
Download and run the Node.js installer for Windows from http://nodejs.org. When you install Node.js,
ensure that it is added to the path. Figure 13-1 shows the Windows installer, which offers to modify the PATH
environment variable as an installation option.

Installing Node.js on macOS
You can download an installer for macOS from http://nodejs.org. Run the installer and accept the
defaults. When the installation has completed, ensure that /usr/local/bin is in your $PATH.

Installing Node.js on Linux
The easiest way to install Node.js on Linux is to use a package manager; the Node team has provided
instructions for the main distributions at http://nodejs.org/en/download/package-manager. For Ubuntu,
I used the commands in Listing 13-1 to download and install Node.js.

Listing 13-1. Installing Node.js

sudo curl -sL https://deb.nodesource.com/setup_6.x | sudo -E bash -
sudo apt-get install -y nodejs

Figure 13-1. Adding Node to the path

http://nodejs.org/
http://nodejs.org/
http://nodejs.org/en/download/package-manager

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

351

Checking the Node Installation
Once you have completed the installation, open a new command prompt and run the command shown in
Listing 13-2 to check that Node is working and to display the version that has been installed.

Listing 13-2. Checking the Node Installation

node -v

You will see the version number if the installation has been successful and Node has been added to
the path. At the time of writing, the current version of Node is 6.11.2. If you get unexpected results while
following the examples in this chapter, try using this specific version.

Installing Git
Visual Studio Code includes integrated Git support, but a separate installation is required to support the
Bower tool, which is used to manage client-side packages.

Installing Git on Windows or macOS
Download and run the installer from https://git-scm.com/downloads.

Installing Git on Linux
Git is already installed on most Linux distributions. If you want to install it anyway, then consult the
installation instructions for your distribution at https://git-scm.com/download/linux. For Ubuntu,
I used the command shown in Listing 13-3.

Listing 13-3. Installing Git on Ubuntu

sudo apt-get install git

Checking the Git Installation
Once you have completed the installation, run the command shown in Listing 13-4 in a new command
prompt/Terminal to check that Git is installed and available.

Listing 13-4. Checking the Git Installation

git --version

This command prints out the version of the Git package that has been installed. At the time of writing,
the latest version of Git for Windows and macOS is 2.14.1, and the latest version of Git for Linux is 2.7.4.

https://git-scm.com/downloads
https://git-scm.com/download/linux

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

352

Installing Bower
 Node.js comes with the Node Package Manager (NPM), which is used to download and install development
packages that are written in JavaScript. The only package required for this chapter is Bower, which is used to
manage client-side packages and which I described in Chapter 6. Run the command shown in Listing 13-5 to
download and install Bower on Windows.

Listing 13-5. Installing the Bower Package on Windows

npm install -g bower@1.8.0

For Linux and macOS, the same command is used but requires sudo, as shown in Listing 13-6.

Listing 13-6. Installing the Bower Package on Linux or macOS

sudo npm install -g bower@1.8.0

Installing .NET Core
The .NET Core runtime is required for ASP.NET Core MVC development. Each supported platform has its
own installation process, which is described at www.microsoft.com/net/core. Microsoft provides installers
for Windows and macOS and provides instructions for Linux using tar archives.

Installing .NET Core on Windows and macOS
To install .NET Core on Windows or macOS, simply download and run the .NET Core SDK installer.

Installing .NET Core on Linux
Microsoft provides instructions for installing .NET Core on the most popular Linux distributions at www.
microsoft.com/net/core. I have used Ubuntu for this chapter, and the process requires first setting up a
new feed for apt-get using the commands shown in Listing 13-7.

Listing 13-7. Preparing to Install .NET Core on Ubuntu Linux

sudo sh -c 'echo "deb [arch=amd64] https://apt-mo.trafficmanager.net/repos/dotnet-release/
xenial main" > /etc/apt/sources.list.d/dotnetdev.list'
sudo apt-key adv --keyserver hkp://keyserver.ubuntu.com:80 --recv-keys 417A0893
sudo apt-get update

The next step is to install .NET Core, as shown in Listing 13-8.

http://dx.doi.org/10.1007/978-1-4842-3150-0_6
http://www.microsoft.com/net/core
http://www.microsoft.com/net/core
http://www.microsoft.com/net/core

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

353

Listing 13-8. Installing .NET Core on Ubuntu Linux

sudo apt-get install dotnet-sdk-2.0.0

Checking the .NET Core Installation
Regardless of the platform you are using, you can check that .NET Core has been installed and is ready for
use. Open a new command prompt or Terminal and run the command in Listing 13-9.

Listing 13-9. Checking the .NET Core Version

dotnet --version

The dotnet command starts the .NET runtime, and the version number for the .NET package you
installed will be displayed. At the time of writing, the current release is 2.0.0, but this is likely to have been
superseded by the time you read this book.

Installing Visual Studio Code
The most important step is to download and install Visual Studio Code, which is available from http://
code.visualstudio.com. Installation packages are available for Windows, macOS, and popular Linux
distributions. Download and install the package for your chosen platform.

 ■ Note Microsoft makes a new release of Visual Studio Code every month, which means the version you
install will be different from the version that is current as I write this. This means some experimentation may be
required to complete some of the examples in this chapter, although the fundamentals should remain the same.

Installing Visual Studio Code on Windows
To install Visual Studio Code for Windows, simply run the installer. When the process is complete, Visual
Studio Code will start, and you will see the editor window, as shown in Figure 13-2.

Installing Visual Studio Code on macOS
Visual Studio Code is provided as a zip archive for the Mac, which can be downloaded from https://
go.microsoft.com/fwlink/?LinkID=620882. Expand the archive and double-click the Visual Studio
Code.app file that it contains to start Visual Studio Code, producing the editor window shown in Figure 13-2.

http://code.visualstudio.com/
http://code.visualstudio.com/
https://go.microsoft.com/fwlink/?LinkID=620882
https://go.microsoft.com/fwlink/?LinkID=620882

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

354

Installing Visual Studio Code on Linux
Microsoft provides a .deb file for Debian and Ubuntu and an .rpm file for Red Hat, Fedora, and CentOS.
Download and install the file for your preferred Linux. Since I am using Ubuntu for this chapter, I
downloaded the .deb file and installed it using the Ubuntu Software tool.

When the installation is complete, run the command in Listing 13-10 to start Visual Studio Code, which
will produce the editor window shown in Figure 13-2.

Listing 13-10. Starting Visual Studio Code on Linux

/usr/share/code/code

Checking the Visual Studio Code Installation
The test of a successful installation of Visual Studio Code is simply being able to start the application and see
the editor, as shown in Figure 13-2. (I have changed the color scheme because the dark default colors are not
well-suited to creating screenshots for a book.)

Figure 13-2. Running Visual Studio Code on Windows, macOS, and Ubuntu Linux

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

355

Installing the Visual Studio Code C# Extension
Visual Studio Code supports language-specific functionality through extensions, although these are not the
same extensions that are supported by Visual Studio 2015. The most important extension for ASP.NET Core
MVC development adds support for C#, which may seem like an odd omission from the basic install but
reflects the fact that Microsoft has positioned Visual Studio Code as a general-purpose cross-platform editor
that supports the widest possible range of languages and frameworks.

To install the C# extension, click the Extensions icon on the left side of the Visual Studio Code window.
Enter csharp into the search box and locate the C# for Visual Studio Code extension in the list, as shown in
Figure 13-3.

Click the Install button and Visual Studio Code will download and install the extension. Click the
Reload button to restart Visual Studio Code and activate the extension, as shown in Figure 13-4.

Creating an ASP.NET Core Project
Visual Studio Code doesn’t have integrated support for creating ASP.NET Core projects, but you can create
new projects using the dotnet command line.

It is important to create the right folder structure to get the project set up correctly, especially when it
comes to working with unit tests. Create a project called InvitesProjects in a convenient location. This will be
the folder that will contain both the ASP.NET Core MVC and unit test projects.

Figure 13-3. Locating the C# extension

Figure 13-4. Enabling the C# extension

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

356

Next, create a folder called PartyInvites inside the InvitesProjects folder and use a command
prompt to navigate to that folder and run the command shown in Listing 13-11.

Listing 13-11. Creating a New Project in the PartyInvites Folder

dotnet new web --language C# --framework netcoreapp2.0

The dotnet new command provides command-line access to project templates, and the web template
specified in Listing 13-11 corresponds to the Visual Studio Empty template that I used in earlier chapters.
Table 13-1 describes the set of project templates that are available for ASP.NET Core development. (Other
templates are available, but they are not used for ASP.NET Core. Run the dotnet new --help command to
see the complete list.)

Preparing the Project with Visual Studio Code
To open the project in Visual Studio Code, select Open Folder from the File menu, navigate to the
InvitesProjects folder, and click the Select Folder button. Visual Studio Code will open the project and
automatically install some package required for editing and debugging C# applications. A few seconds after
you first start editing a file, you will see a message offering to add items to the project, as shown in Figure 13-5.

Click the Yes button. Visual Studio Code will create a .vscode folder and add some files that configure
the build process. Visual Studio Code uses a three-section layout by default. The sidebar, which is
highlighted in Figure 13-6, provides access to the main areas of functionality.

Table 13-1. The dotnet new Templates for ASP.NET Core Development

Name Description

web This is the Empty template used in earlier chapters, which creates an ASP.NET Core project
but does not enable the MVC framework.

mvc This is the Web Application (Model-View-Controller) template used in Chapter 2, which
creates an ASP.NET Core project that includes the MVC framework and placeholder
controllers and views.

xunit This is the xUnit Test Project (.NET Core) template that sets up unit testing with the xUnit
package, as described in Chapter 7.

Figure 13-5. The prompt to add assets to the project

http://dx.doi.org/10.1007/978-1-4842-3150-0_2
http://dx.doi.org/10.1007/978-1-4842-3150-0_7

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

357

The topmost button opens the explorer pane, which shows the contents of the folder that has been
opened. The other buttons provide access to the search feature, the integrated source code management, the
debugger, and the set of installed extensions.

Click a file in the explorer pane to open it for editing. Multiple files can be edited simultaneously, and
you can create new editor panes by clicking the Split Editor button in the top right of the window. The Visual
Studio Code editor is pretty good, with decent IntelliSense support and assistance in completing NuGet and
Bower package names and versions.

In addition to the contents of the project folder, the explorer pane shows which files are currently being
edited, which makes it easy to remain focused on the subset of files that you are working with, which is a
helpful addition when working on a subset of related files in a large project.

Managing Client-Side Packages
Bower is used to manage client-side packages in Visual Studio Code projects, just as it is in Visual Studio,
although some additional work is required.

The first step is to add a file called .bowerrc, which is used to tell Bower where to install its packages.
Right-click the PartyInvites folder and select New File from the pop-up menu, as shown in Figure 13-7.

Figure 13-6. The Visual Studio Code sidebar

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

358

Set the name of the file to .bowerrc (note that there are two r’s in the file name) and add the content
shown in Listing 13-12.

Listing 13-12. The Contents of the .bowerrc File

{
 "directory": "wwwroot/lib"
}

Next, create a file called bower.json and add the content shown in Listing 13-13.

Listing 13-13. The Contents of the bower.json File

{
 "name": "PartyInvites",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

Using the command prompt/Terminal to run the command shown in Listing 13-14 in the PartyInvites
folder. This command uses the Bower tool to download and install the client-side packages specified in the
bower.json file.

Figure 13-7. Creating a new file

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

359

Listing 13-14. Installing the Client-Side Packages

bower install

Configuring the Application
The project initialization process has created an empty project without support for MVC. Listing 13-15
shows the changes to the Startup.cs file to set up MVC using the most basic configuration, the statements
for which are described Chapter 14.

Listing 13-15. Adding Support for MVC in the Startup.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace PartyInvites {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Building and Running the Project
To build and run the project, run the command shown in Listing 13-16 in the PartyInvites directory.

Listing 13-16. Running the Application

dotnet run

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

360

Visual Studio Code will compile the code in the project and use the Kestrel application server, described
in Chapter 14, to run the application, waiting for HTTP requests on port 5000.

Visual Studio Code doesn’t provide support for detecting changes to C# class files, which means that
you must stop the application and start it again when you make changes.

To test the application, use a browser to navigate to http://localhost:5000. You will see the response
shown in Figure 13-8. The 404 error is shown because there are no controllers in the project to handle
requests at the moment.

Re-creating the PartyInvites Application
All of the preparation is complete, which means that I can switch my focus to creating an MVC application.
I am going to re-create the simple PartyInvites application from Chapter 2 but with some changes and
additions to highlight working with Visual Studio Code.

Creating the Model and Repository
To get started, right-click the PartyInvites folder and select New Folder from the pop-up menu, as shown
in Figure 13-9. Set the name of the folder to Models.

Figure 13-8. Testing the example application

http://dx.doi.org/10.1007/978-1-4842-3150-0_14
http://dx.doi.org/10.1007/978-1-4842-3150-0_2

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

361

Right-click the Models folder in the explorer pane, select New File from the pop-up menu, set the name
of the file to GuestResponse.cs, and add the C# code shown in Listing 13-17.

WORKING WITH THE VISUAL STUDIO CODE EDITOR

Visual Studio Code (and the C# extension installed earlier in the chapter) provides a full editing
experience for C# files, as well as for common web formats such as JavaScript, CSS, and plain
hTML files. In many ways, writing an MVC application in Visual Studio Code has a lot in common with
the Visual Studio editor: there is IntelliSense support, color coding, and highlighting for errors (with
suggestions to fix them).

The main deficit in Visual Studio Code is a lack of customization, especially when it comes to formatting
code. as I write this, there are configuration options available for other languages, but the C# extension
doesn’t allow customization, which can make it a little difficult to work with if your preferred coding
style isn’t the one it supports by default. But overall, the editor is responsive and easy to work with, and
writing MVC applications on macoS or Linux doesn’t feel like a second-class experience.

Figure 13-9. Creating a new folder

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

362

Listing 13-17. The Contents of the GuestResponse.cs File in the PartyInvites/Models Folder

using System.ComponentModel.DataAnnotations;

namespace PartyInvites.Models {

 public class GuestResponse {

 public int id {get; set; }

 [Required(ErrorMessage = "Please enter your name")]
 public string Name { get; set; }

 [Required(ErrorMessage = "Please enter your email address")]
 [RegularExpression(".+\\@.+\\..+",
 ErrorMessage = "Please enter a valid email address")]
 public string Email { get; set; }

 [Required(ErrorMessage = "Please enter your phone number")]
 public string Phone { get; set; }

 [Required(ErrorMessage = "Please specify whether you'll attend")]
 public bool? WillAttend { get; set; }
 }
}

Next, add a file called IRepository.cs to the Models folder and use it to define the interface shown in
Listing 13-18. The most important difference between the application in this chapter and the one in
Chapter 2 is that I am going to store the model data in a persistent database. The IRepository interface
describes how the application will access the model data without specifying its implementation.

Listing 13-18. The Contents of the IRepository.cs File in the PartyInvites/Models Folder

using System.Collections.Generic;

namespace PartyInvites.Models {

 public interface IRepository {
 IEnumerable<GuestResponse> Responses {get; }

 void AddResponse(GuestResponse response);
 }
}

Add a file called ApplicationDbContext.cs to the Models folder and use it to define the database
context class shown in Listing 13-19.

Listing 13-19. The Contents of the ApplicationDbContext.cs File in the PartyInvites/Models Folder

using Microsoft.EntityFrameworkCore;

namespace PartyInvites.Models {
 public class ApplicationDbContext : DbContext {

http://dx.doi.org/10.1007/978-1-4842-3150-0_2

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

363

 public ApplicationDbContext() {}

 protected override void OnConfiguring(DbContextOptionsBuilder builder) {
 builder.UseSqlite("Filename=./PartyInvites.db");
 }

 public DbSet<GuestResponse> Invites {get; set;}
 }
}

SQLite stores its data in a file, which is specified by the context class. For the example application, the
data will be stored in a file called PartyInvites.db, which is defined in the OnConfiguring method.

To complete the set of classes required to store and access the model data, an implementation of the
IRepository interface is required that uses the database context class. Add a new file called EFRepository.cs
to the Models folder and add the code shown in Listing 13-20.

Listing 13-20. The Contents of the EFRepository.cs File in the PartyInvites/Models Folder

using System.Collections.Generic;

namespace PartyInvites.Models {
 public class EFRepository : IRepository {
 private ApplicationDbContext context = new ApplicationDbContext();

 public IEnumerable<GuestResponse> Responses => context.Invites;

 public void AddResponse(GuestResponse response) {
 context.Invites.Add(response);
 context.SaveChanges();
 }
 }
}

The EFRepository class follows a similar pattern to the one I used in Chapter 8 to set up the SportsStore
database. In Listing 13-21, I have added a configuration statement to the ConfigureServices method of the
Startup class that tells ASP.NET to create the EFRepository class when implementations of the IRepository
interface are demanded by the dependency injection feature (which is described in Chapter 18).

Listing 13-21. Configuring the Repository in the Startup.cs File in the PartyInvites Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using PartyInvites.Models;

namespace PartyInvites {
 public class Startup {

http://dx.doi.org/10.1007/978-1-4842-3150-0_8
http://dx.doi.org/10.1007/978-1-4842-3150-0_18

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

364

 public void ConfigureServices(IServiceCollection services) {
 services.AddTransient<IRepository, EFRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Creating the Database
In the rest of the book, whenever I need to demonstrate a feature that requires data persistence, I use
the LocalDB feature, which is a simplified version of Microsoft SQL Server. But the LocalDB feature is
available only on Windows, which means that an alternative is required when creating ASP.NET Core
MVC applications on other platforms. The best alternative to LocalDB is SQLite, which is a cross-platform
zero-configuration database that can be embedded in applications and for which Microsoft has included
support in Entity Framework Core, which is the data access layer typically used with ASP.NET Core MVC
applications. In the sections that follow, I walk through the process of adding SQLite to the project and using
it as the data store for party responses.

USING SQLITE FOR DEVELOPMENT

one of the reasons that LocaldB is such a useful tool is because it allows development using the SQL
Server database engine, which makes the transition to a production SQL Server environment simple and
largely risk-free. SQLite is an excellent database, but it isn’t well-suited to large-scale web applications,
and that means a transition to another database is required when an MVC application is deployed.
The configuration changes can be simplified using the project configuration features that I describe
in Chapter 14, but you need to test the application thoroughly in a staging environment to surface any
differences introduced by the production database.

See https://www.sqlite.org/whentouse.html if you are unsure whether to use SQLite in production.
This page provides a good summary of where SQLite excels and where it doesn’t.

one issue to be aware of is that SQLite doesn’t support the full set of schema changes that entity
Framework Core can generate for other databases. This isn’t generally a problem when using SQLite in
development because you can delete the database file and generate a new one with a clean schema. It
does complicate matters if you are considering deploying an application using SQLite, however.

If you want to use the same database in development and production, then consult the list of supported
entity Framework Core databases at http://ef.readthedocs.io/en/latest/providers/index.html.
The list is short as I write this, but Microsoft has announced support for databases that are more suited
to deployment than SQLite and that can also run on non-Windows platforms.

http://dx.doi.org/10.1007/978-1-4842-3150-0_14
https://www.sqlite.org/whentouse.html
http://ef.readthedocs.io/en/latest/providers/index.html

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

365

Adding the Database Package
The NuGet package that contains the command-line tools used to create and apply database migrations
must be added to the project manually. Open the PartyInvites.csproj file and add the element shown in
Listing 13-22.

Listing 13-22. Adding NuGet Package to the PartyInvites.csproj File in the PartyInvites Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0" />
 </ItemGroup>

</Project>

Save the change and run the command shown in Listing 13-23 in the PartyInvites folder to ensure that
the new packages are downloaded and installed.

Listing 13-23. Installing the NuGet Packages

dotnet restore

Creating and Applying the Database Migration
Creating the database follows the same process as used by Visual Studio. To create an initial database
migration, run the command in Listing 13-24 in the PartyInvites folder.

Listing 13-24. Creating a Database Migration

dotnet ef migrations add Initial

Entity Framework Core will create a folder called Migrations that contains the C# classes that
will be used to set up the database schema. To apply the database migration, run the command shown in
Listing 13-25 in the PartyInvites folder, which will create the database in the PartyInvites folder.

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

366

Listing 13-25. Applying the Database Migration

dotnet ef database update

Visual Studio Code doesn’t include support for inspecting SQLite databases, but you can find an
excellent open source tool for Windows, macOS, and Linux at http://sqlitebrowser.org.

Creating the Controllers and Views
In this section, I add the controller and views to the application. I started by creating a PartyInvites/
Controllers folder and adding a file called HomeController.cs to it, which I used to create the controller
shown in Listing 13-26.

Listing 13-26. The Contents of the HomeController.cs File in the PartyInvites/Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using PartyInvites.Models;
using System.Linq;

namespace PartyInvites.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) =>
 this.repository = repo;

 public ViewResult Index() {
 int hour = DateTime.Now.Hour;
 ViewBag.Greeting = hour < 12 ? "Good Morning" : "Good Afternoon";
 return View("MyView");
 }

 [HttpGet]
 public ViewResult RsvpForm() => View();

 [HttpPost]
 public ViewResult RsvpForm(GuestResponse guestResponse) {
 if (ModelState.IsValid) {
 repository.AddResponse(guestResponse);
 return View("Thanks", guestResponse);
 } else {
 // there is a validation error
 return View();
 }
 }

http://sqlitebrowser.org/

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

367

 public ViewResult ListResponses() =>
 View(repository.Responses.Where(r => r.WillAttend == true));
 }
}

To set up the built-in tag helpers, I created a PartyInvites/Views folder and added a file called
_ViewImports.cshtml containing the expression shown in Listing 13-27.

Listing 13-27. The Contents of the _ViewImports.cshtml File in the PartyInvites/Views Folder

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Next, I created a Views/Home folder and added a file called MyView.cshtml, which is the view selected by
the Index action method in Listing 13-26. I added the markup shown in Listing 13-28

Listing 13-28. The Contents of the MyView.cshtml File in the PartyInvites/Views/Home Folder

@{
 Layout = null;
}

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Index</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body class="p-2">
 <div class="text-center">
 <h3>We're going to have an exciting party!</h3>
 <h4>And you are invited</h4>
 RSVP Now
 </div>
</body>
</html>

I added a file called RsvpForm.cshtml to the Views/Home folder and added the content shown in
Listing 13-29. This view provides the HTML form that invitees will fill in to accept or decline their invitation
to the party.

Listing 13-29. The Contents of the RsvpForm.cshtml File in the PartyInvites/Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

<!DOCTYPE html>

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

368

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RsvpForm</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body>
 <div class="m-2">
 <div class="text-center"><h4>RSVP</h4></div>
 <form class="p-1" asp-action="RsvpForm" method="post">
 <div asp-validation-summary="All"></div>
 <div class="form-group">
 <label asp-for="Name">Your name:</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Email">Your email:</label>
 <input class="form-control" asp-for="Email" />
 </div>
 <div class="form-group">
 <label asp-for="Phone">Your phone:</label>
 <input class="form-control" asp-for="Phone" />
 </div>
 <div class="form-group">
 <label>Will you attend?</label>
 <select class="form-control" asp-for="WillAttend">
 <option value="">Choose an option</option>
 <option value="true">Yes, I'll be there</option>
 <option value="false">No, I can't come</option>
 </select>
 </div>
 <div class="text-center">
 <button class="btn btn-primary" type="submit">
 Submit RSVP
 </button>
 </div>
 </form>
 </div>
</body>
</html>

The next view file is called Thanks.cshtml and is also created in the Views/Home folder, with the content
shown in Listing 13-30 that is displayed when the guest has submitted their response.

Listing 13-30. The Contents of the Thanks.cshtml File in the PartyInvites/Views/Home Folder

@model PartyInvites.Models.GuestResponse

@{
 Layout = null;
}

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

369

<!DOCTYPE html>

<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Thanks</title>
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
</head>
<body class="text-center">
 <p>
 <h1>Thank you, @Model.Name!</h1>
 @if (Model.WillAttend == true) {
 @:It's great that you're coming. The drinks are already in the fridge!
 } else {
 @:Sorry to hear that you can't make it, but thanks for letting us know.
 }
 </p>
 Click <a asp-action="ListResponses">here
 to see who is coming.
</body>
</html>

The final view is called ListResponses.cshtml and, like the other views in this example, is added to the
Views/Home folder. This view displays the list of guest responses using the markup shown in Listing 13-31.

Listing 13-31. The Contents of the ListResponses.cshtml File in the PartyInvites/Views/Home Folder

@model IEnumerable<PartyInvites.Models.GuestResponse>

@{
 Layout = null;
}

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link rel="stylesheet" href="/lib/bootstrap/dist/css/bootstrap.css" />
 <title>Responses</title>
</head>
<body>
 <div class="m-1 p-1">
 <h2>Here is the list of people attending the party</h2>
 <table class="table table-sm table-striped table-bordered">
 <thead>
 <tr><th>Name</th><th>Email</th><th>Phone</th></tr>
 </thead>
 <tbody>
 @foreach (PartyInvites.Models.GuestResponse r in Model) {
 <tr><td>@r.Name</td><td>@r.Email</td><td>@r.Phone</td></tr>
 }
 </tbody>

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

370

 </table>
 </div>
</body>
</html>

Run the dotnet run command in the PartyInvites project to compile the project and start the ASP.
NET Core runtime. Once the application has started, you can see the completed application by navigating to
http://localhost:5000, as shown in Figure 13-10.

Unit Testing in Visual Studio Code
The process for unit testing with Visual Studio Code is similar to Visual Studio. The first step is to create
a separate project for unit testing. Create a folder called Tests in the InvitesProject folder and run the
command shown in Listing 13-32 in the new folder to create the unit test project.

Listing 13-32. Creating the Unit Test Project

dotnet new xunit --language C# --framework netcoreapp2.0

Run the command shown in Listing 13-33 in the Tests folder to add a reference to the application
project so that the classes it contains are available for testing.

Listing 13-33. Adding a Reference to the Application Project

dotnet add reference ../PartyInvites/PartyInvites.csproj

Figure 13-10. Running the completed application

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

371

Creating a Unit Test
Unit tests are created as described in Chapter 7. I added a new class file called HomeControllerTests.cs to
the Tests folder, with the content shown in Listing 13-34.

Listing 13-34. The Contents of the HomeControllerTests.cs File in the Tests Folder

using System;
using System.Collections.Generic;
using PartyInvites.Controllers;
using PartyInvites.Models;
using Xunit;
using Microsoft.AspNetCore.Mvc;
using System.Linq;

namespace Tests {
 public class HomeControllerTests {

 [Fact]
 public void ListActionFiltersNonAttendees() {
 //Arrange
 HomeController controller = new HomeController(new FakeRepository());
 // Act
 ViewResult result = controller.ListResponses();
 // Assert
 Assert.Equal(2, (result.Model as IEnumerable<GuestResponse>).Count());
 }
 }

 class FakeRepository : IRepository {
 public IEnumerable<GuestResponse> Responses =>
 new List<GuestResponse> {
 new GuestResponse { Name = "Bob", WillAttend = true },
 new GuestResponse { Name = "Alice", WillAttend = true },
 new GuestResponse { Name = "Joe", WillAttend = false }
 };

 public void AddResponse(GuestResponse response) {
 throw new NotImplementedException();
 }
 }
}

This is a standard xUnit test that checks the ListResponses action in the Home controller and correctly
filters out GuestResponse objects in the repository for which the WillAttend property is false.

Running Tests
To execute the unit tests in the project, run the command shown in Listing 13-35 in the Tests folder.

http://dx.doi.org/10.1007/978-1-4842-3150-0_7

ChapTer 13 ■ WorkINg WITh VISuaL STudIo Code

372

Listing 13-35. Running Unit Tests

dotnet test

All the tests in the project will be run and the results shown, producing output like this:

Starting test execution, please wait...
[xUnit.net 00:00:00.6731479] Discovering: Tests
[xUnit.net 00:00:00.7900132] Discovered: Tests
[xUnit.net 00:00:00.8432715] Starting: Tests
[xUnit.net 00:00:00.9967614] Finished: Tests

Total tests: 2. Passed: 2. Failed: 0. Skipped: 0.
Test Run Successful.
Test execution time: 1.6974 Seconds

Two tests are shown in the results because the project template includes a file called UnitTest1.cs that
contains an empty unit test. You can delete this file, as demonstrated in Chapter 7.

Summary
In this chapter, I provided a brief overview of working with Visual Studio Code, which is a light-weight
development tool that supports ASP.NET Core MVC development on Windows, macOS, and Linux. Visual
Studio Code isn’t a full replacement for the complete Visual Studio product yet, but it provides the core
features required to create MVC applications and is being enhanced by Microsoft with monthly releases.

That’s the end of this part of the book. In Part 2, I begin the process of digging into the details and
showing you how the features I used to create the application work in depth.

http://dx.doi.org/10.1007/978-1-4842-3150-0_7

PART II

ASP.NET Core MVC 2 in Detail

So far, you’ve learned about why ASP.NET Core MVC exists and have gained an understanding of
its architecture and underlying design goals. You’ve taken it for a good, long test-drive by building a
realistic e-commerce application. Now it’s time to open the hood and expose the full details of the
framework’s machinery.

In Part 2 of this book, I dig into the details. I start with an exploration of the structure of an
ASP.NET Core MVC application and the way that requests are processed. I then focus on individual
features, such as routing, controllers and actions, the MVC view and tag helper system, and the way
that MVC works with domain models.

375© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_14

CHAPTER 14

Configuring Applications

The topic of configuration may not seem interesting, but it reveals a lot about how MVC applications
work and how HTTP requests are handled. Resist the temptation to skip this chapter, and take the time to
understand the way that the configuration system shapes MVC web applications. It will give you a solid
foundation for understanding the chapters that follow.

In this chapter, I explain how these are used to configure MVC applications and show how MVC builds
on features provided by the ASP.NET Core platform. Table 14-1 puts configuring applications in context.

Table 14-2 summarizes the chapter.

Table 14-1. Putting Configuration in Context

Question Answer

What is it? The Program and Startup classes and the JSON files are used to
configure how an application works and what packages it depends
on.

Why is it useful? The configuration system allows applications to be tailored to their
environments and to manage their package dependencies.

How is it used? The most important component is the Startup class, which is
used to create services (which are objects that provide common
functionality throughout an application) and middleware
components (which are used to handle HTTP requests).

Are there any pitfalls or limitations? In complex applications, the configuration can become difficult to
manage. See the “Dealing with Complex Configurations” section for
ASP.NET features intended to manage this problem.

Are there any alternatives? No. The configuration system is an integral part of ASP.NET and the
means by which MVC applications are set up.

https://doi.org/10.1007/978-1-4842-3150-0_14

Chapter 14 ■ Configuring appliCations

376

Preparing the Example Project
For this chapter, I created a new project called ConfiguringApps using the Empty template. I am going
to configure the application later in the chapter, but there are some basics that I need to put in place in
preparation for the changes I make.

I am going to use Bootstrap to style the HTML content in this chapter, so I created the bower.json file
using the Bower Configuration File item template and added the package shown in Listing 14-1.

Table 14-2. Chapter Summary

Problem Solution Listing

Add functionality to the
application

Add NuGet packages to the csproj file 5–8

Manage the initialization of the
ASP.NET application

Use the Program class 9–11

Configure the application Use the ConfigureServices and Configure methods
of the Startup class

12–13

Create common functionality Use the ConfigureServices method to create services 14–16

Generate content responses Create content-generating middleware 17–19

Prevent requests from traversing
the request pipeline

Create short-circuiting middleware 20–21

Edit a request before it is processed
by other middleware components

Create request-editing middleware 22–24

Edit a response that has been
processed by other middleware
components

Create response-editing middleware 25–26

Set up MVC functionality Use the UseMvc or UseMvcWithDefaultRoute method 27

Change the application
configuration for different
environments

Use the hosting environment service 28

Handle application errors Use the developer or production error-handling
middleware

29–30

Manage multiple browsers during
development

Use Browser Link 31

Enable images, JavaScript files, and
CSS files

Enable the static content middleware 32

Separate configuration data from
C# code

Create external configuration sources, such as JSON
files

33–35

Log application data Use the logging middleware 36–38

Prepare dependency injection for
use with Entity Framework Core

Disable scope validation 39

Configure MVC services Use the options features 40

Configure complex applications Use multiple external files or classes 41–45

Chapter 14 ■ Configuring appliCations

377

Listing 14-1. Adding Bootstrap in the bower.json File in the ConfiguringApps Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

Next, I created the Controllers folder and added a class file called HomeController.cs, which I used to
define the controller shown in Listing 14-2.

Listing 14-2. The Contents of the HomeController.cs File in the Controllers Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;

namespace ConfiguringApps.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View(new Dictionary<string, string> {
 ["Message"] = "This is the Index action"
 });
 }
}

I created the Views/Home folder and added a view file called Index.cshtml with the content shown in
Listing 14-3.

Listing 14-3. The Contents of the Index.cshtml File in the Views/Home Folder

@model Dictionary<string, string>
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
 <title>Result</title>
</head>
<body class="p-1">
 <table class="table table-condensed table-bordered table-striped">
 @foreach (var kvp in Model) {
 <tr><th>@kvp.Key</th><td>@kvp.Value</td></tr>
 }
 </table>
</body>
</html>

Chapter 14 ■ Configuring appliCations

378

The link element in the view relies on a built-in tag helper to select the Bootstrap CSS files. To enable
the built-in tag helpers, I used the MVC View Imports Page item template to create the _ViewImports.
cshtml file in the Views folder and added the expression shown in Listing 14-4.

Listing 14-4. The Contents of the _ViewImports.cshtml File in the Views Folder

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Start the application and you will see the message shown in Figure 14-1.

Configuring the Project
The most important configuration file is <projectname>.csproj, which replaces the project.json file
used in earlier versions of ASP.NET Core. This file, which is called ConfiguringApps.csproj in the example
project, is hidden by Visual Studio and must be accessed by right-clicking the project item in the Solution
Explorer window and selecting Edit ConfiguringApps.csproj from the pop-up menu. Listing 14-5 shows the
initial content of the ConfiguringApps.csproj file, which was created by Visual Studio as part of the Empty
project template.

Listing 14-5. The Contents of the ConfiguringApps.csproj File in the ConfiguringApps Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 </ItemGroup>

</Project>

Figure 14-1. Running the example application

Chapter 14 ■ Configuring appliCations

379

The csproj file is used to configure the MSBuild tool, which is used to build .NET projects.
Configuration is performed using XML elements, and Table 14-3 describes the elements that are in the
default configuration file. I use other configuration elements in later examples, but the elements in the table
are enough to start development on an ASP.NET Core MVC project.

Adding Packages to the Project
The most important role for the csproj file is to list the packages that the project depends on. When Visual
Studio detects a change to the csproj file, it inspects the list of packages, downloads any new additions, and
removes any packages that are no longer required.

With the release of ASP.NET Core 2, all of the basic functionality required for ASP.NET Core MVC, the
MVC Framework, and Entity Framework Core is included in the Microsoft.AspNetCore.All meta-package,
which is a convenience feature that avoids the need to start a new development effort by adding a long list of
NuGet packages to the project.

Even so, you will still need to add NuGet packages for third-party or advanced features. There are three
ways to add packages to a project. The first is to select Tools ➤ NuGet Package Manager ➤ Manage NuGet
Packages for Solution, which allows the management of NuGet packages through an easy-to-use interface.
If you are new to .NET development, then this is the best approach because it reduces the chance of making
a mistake when selecting a package.

To add the System.Net.Http package, for example, which provides support for making (rather than
receiving) HTTP requests, you can go to the Browse section of the package manager, search by name, and
see a complete list of the versions available, including any prerelease versions, as shown in Figure 14-2.

Table 14-3. The XML Configuration Elements in the Default csproj File

Element Description

Project This is the root element, which denotes that this is an MSBuild configuration file.
The Sdk attribute is set to Microsoft.NET.Sdk.Web to provide the set of implicit
package imports that are required to build the project.

PropertyGroup This element groups related configuration properties to add structure to the file.

TargetFramework This element specifies the .NET Framework that is targeted by the build process
and must be defined within a PropertyGroup element. The default value is
netcoreapp2.0, which targets .NET Core 2.0.

ItemGroup This element groups related configuration items to add structure to the file.

Folder This element tells MSBuild how to deal with a folder in the project. The element
in the listing tells MSBuild to include the wwwroot folder when the application is
published.

PackageReference This element is used to specify a dependency on the NuGet package, which is
identified through the Include and Version attributes. The Microsoft.AspNetCore.
All package is used to provide access to all of the individual packages that provide
ASP.NET Core and MVC Framework functionality.

Chapter 14 ■ Configuring appliCations

380

Select the package and version you need, select the projects that the package is required for, and click
the Install button. Visual Studio will download the package and update the csproj file.

You can also add packages using the command line, although this requires you to know the name of
the package you require (and, ideally, the version). Listing 14-6 shows the command you would run in the
ConfiguringApps folder to add the System.Net.Http package to the project.

Listing 14-6. Adding a Package to the Project

dotnet add package System.Net.Http --version 4.3.2

The NuGet package manager and the dotnet add package command both add PackageReference
elements to the csproj file. If you prefer, you can add packages by editing the configuration file to add the
PackageReference element manually. This is the most direct approach but requires care to avoid mistyping
the name of the package or specifying a version number that doesn’t exist. In Listing 14-7, you can see the
addition to the csproj file for the System.Net.Http package.

Listing 14-7. Adding a Package in the ConfiguringApps.csproj File in the ConfiguringApps Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

Figure 14-2. Adding a package using the NuGet package manager

Chapter 14 ■ Configuring appliCations

381

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <PackageReference Include="System.Net.Http" Version="4.3.2" />
 </ItemGroup>

The PackageReference element has an Include attribute that specifies the package name and a
Version attribute that specifies the version number.

Adding Tools Packages to the Project
Although you can add regular packages in different ways, some packages extend the range of tasks that can
be performed with the dotnet command-line tool, and these packages require a different kind of element in
the csproj file, which is a DotNetCliToolReference element instead of the PackageReference element used
by packages that contain features used directly by the application. These packages can be added to projects
only by editing the csproj file directly.

Listing 14-8 shows the addition of the package that allows database migrations to be created and
applied using the dotnet ef commands used in Part 1 of this book.

Listing 14-8. Adding Tools Packages to the ConfiguringApps.csprog File in the ConfiguringApps Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <PackageReference Include="System.Net.Http" Version="4.3.2" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0 " />
 </ItemGroup>

</Project>

When you add tools packages to a project, you can either include the DotNetCliToolReference
elements in the same ItemGroup as the regular PackageReference elements, as I have done in Listing 14-8,
or create a separate ItemGroup element. When you save the changes to the csproj file, Visual Studio will
download and install the packages and use them to configure the dotnet command-line tool.

Chapter 14 ■ Configuring appliCations

382

Understanding the Program Class
The Program class is defined in a file called Program.cs and provides the entry point for running the
application, providing .NET with a main method that can be executed to configure the hosting environment
and select the class that completes the configuration for the ASP.NET Core application. The default contents
of the Program class are enough to get most projects up and running, and Listing 14-9 shows the default code
added to projects by Visual Studio.

Listing 14-9. The Default Contents of the Program.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;

namespace ConfiguringApps {
 public class Program {

 public static void Main(string[] args) {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .Build();
 }
}

The Main method provides the entry point that all .NET applications must provide so they can be
executed by the runtime. The Main method in the Program class calls the BuildWebHost method, which is
responsible for configuring ASP.NET Core.

The BuildWebHost method uses static methods defined by the WebHost class to configure ASP.NET Core.
With the release of ASP.NET Core 2, the configuration is simplified by the use of the CreateDefaultBuilder
method, which configures ASP.NET Core using settings that are likely to suit most projects. The UseStartup
method is called to identify the class that will provide application-specific configuration; the convention
is to use a class called Startup, which I describe later in this chapter. The Build method processes all the
configuration settings and creates an object that implements the IWebHost interface, which is returned to the
Main method, which calls Run to start handling HTTP requests.

Digging into the Configuration Detail
The CreateDefaultBuilder method is a convenient way to jump-start the configuration of ASP.NET Core,
but it does hide a lot of important detail, which can be a problem if you need to change the way that your
application is configured. Listing 14-10 replaces the CreateDefaultBuilder method with individual
statements that are called to create the default configuration.

Chapter 14 ■ Configuring appliCations

383

Listing 14-10. Detailed Configuration Statements in the Program.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;
using System.Reflection;

namespace ConfiguringApps {
 public class Program {

 public static void Main(string[] args) {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) {
 return new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration((hostingContext, config) => {
 var env = hostingContext.HostingEnvironment;
 config.AddJsonFile("appsettings.json", optional: true,
 reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json",
 optional: true, reloadOnChange: true);

 if (env.IsDevelopment()) {
 var appAssembly =
 Assembly.Load(new AssemblyName(env.ApplicationName));
 if (appAssembly != null) {
 config.AddUserSecrets(appAssembly, optional: true);
 }
 }

 config.AddEnvironmentVariables();

 if (args != null) {
 config.AddCommandLine(args);
 }
 })
 .ConfigureLogging((hostingContext, logging) => {
 logging.AddConfiguration(
 hostingContext.Configuration.GetSection("Logging"));
 logging.AddConsole();
 logging.AddDebug();
 })

Chapter 14 ■ Configuring appliCations

384

 .UseIISIntegration()
 .UseDefaultServiceProvider((context, options) => {
 options.ValidateScopes =
 context.HostingEnvironment.IsDevelopment();
 })
 .UseStartup<Startup>()
 .Build();
 }
 }
}

Table 14-4 lists each of the configuration methods added to the BuildWebHost method and provides a
brief description of what they do.

I explain some of the more complex statements shown in Listing 14-10 later in the chapter. For now,
I am going to remove some of the configuration statements so that only the basic configuration remains, as
shown in Listing 14-11.

Listing 14-11. Simplifying the Configuration in the Program.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;

Table 14-4. The Default ASP.NET Core Configuration Methods

Name Description

UseKestrel This method configures the Kestrel web server, as described in the “Using
Kestrel Directly” sidebar.

UseContentRoot This method configures the root directory for the application, which is
used for loading configuration files and delivering static content such as
images, JavaScript, and CSS.

ConfigureAppConfiguration This method is used to prepare the configuration data for the application,
as described in the “Configuring the Application” section later in this
chapter.

AddUserSecrets This method is used to store sensitive data outside of code files, as
described at https://docs.microsoft.com/en-us/aspnet/core/
security/app-secrets. This is a somewhat awkward feature, which I do
not use in this book.

ConfigureLogging This method is used to configure logging for the application, as described
in the “Configuring Logging” section later in this chapter.

UseIISIntegration This method enables integration with IIS and IIS Express.

UseDefaultServiceProvider This method is used to configure dependency injection, as described in
the “Configuring Dependency Injection” section.

UseStartup This method specifies the class that will be used to configure ASP.NET, as
described in the “Understanding the Startup Class” section.

https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets
https://docs.microsoft.com/en-us/aspnet/core/security/app-secrets

Chapter 14 ■ Configuring appliCations

385

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;
using System.Reflection;

namespace ConfiguringApps {
 public class Program {

 public static void Main(string[] args) {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) {

 return new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();
 }
 }
}

These are the statements that provide a basic configuration that will work for most ASP.NET Core MVC
applications. I’ll add back in the other statements as I explain the features they relate to.

USING KESTREL DIRECTLY

Kestrel is a cross-platform web server designed to run asp.net Core applications. it is used
automatically when you run an asp.net Core application using iis express (which is the server provided
by Visual studio for use during development) or the full version of iis, which has been the traditional
web platform for .net applications.

You can also run Kestrel directly if you want, which means you can run your asp.net Core MVC
applications on any of the supported platforms, bypassing the Windows-only restriction of iis. there are
two ways to run an application using Kestrel. the first is to click the arrow at the right edge of the iis
express button on the Visual studio toolbar and select the entry that matches the name of the project.
this will open a new command prompt and run the application using Kestrel.

You can achieve the same effect by opening your own command prompt, navigating to the folder that
contains the application’s configuration files (the one that contains the csproj file), and running the
following command:

dotnet run

By default, the Kestrel server starts listening for http requests on port 5000. if there is a Properties/
launchSettings.json file in the project, the http port and environment for the application will be read
from this file.

Chapter 14 ■ Configuring appliCations

386

Understanding the Startup Class
The Program class is responsible for jump-starting the application, but the most important configuration
work is delegated through the UseStartup method, like this:

...

.UseStartup<Startup>()

...

The UseStartup method relies on a type parameter to identify the class that will configure ASP.NET
Core. The conventional name for this class is Startup, which is the name used by the ASP.NET Core MVC
project templates, including the Empty template used to create the example project for this chapter.

Examining how the Startup class works provides insights into the way that HTTP requests are
processed and how MVC integrates into the rest of the ASP.NET Core platform.

In this section, I start with the simplest possible Startup class and add features to demonstrate the
effect of different configuration options, ending up with a configuration that is suitable for most MVC
projects. As the starting point, Listing 14-12 shows the Startup class that Visual Studio adds to Empty
projects, which sets up just enough functionality to get ASP.NET Core to handle HTTP requests.

Listing 14-12. The Initial Contents of the Startup.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace ConfiguringApps {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {

 if (env.IsDevelopment()) {
 app.UseDeveloperExceptionPage();
 }

 app.Run(async (context) => {
 await context.Response.WriteAsync("Hello World!");
 });
 }
 }
}

The Startup class defines two methods, ConfigureServices and Configure, that set up the shared
features required by an application and tell ASP.NET Core how they should be used.

Chapter 14 ■ Configuring appliCations

387

When the application starts, ASP.NET Core creates a new instance of the Startup class and calls its
ConfigureServices method so that the application can create its services. As I explain in the “Understanding
ASP.NET Services” section, services are objects that provide functionality to other parts of the application.
This is a vague description, but that’s because services can be used to provide just about any functionality.

Once the services have been created, ASP.NET calls the Configure method. The purpose of the
Configure method is to set up the request pipeline, which is the set of components—known as middleware—
that are used to handle incoming HTTP requests and produce responses for them. I explain how the request
pipeline works and demonstrate how to create middleware components in the “Understanding ASP.NET
Middleware” section. Figure 14-3 shows the way that ASP.NET uses the Startup class.

It isn’t especially useful to have a Startup class that just returns the same “Hello, World” message for
all requests, so before I explain what the methods in the class do in detail, I need to jump ahead a little and
enable MVC, as shown in Listing 14-13.

Listing 14-13. Enabling MVC in the Startup.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace ConfiguringApps {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseMvcWithDefaultRoute();
 }
 }
}

With these additions—which I explain in the sections that follow—there is enough infrastructure
in place to process HTTP requests and generate responses using controllers and views. If you run the
application, you will see the output shown in Figure 14-4.

Figure 14-3. How ASP.NET uses the Startup class to configure an application

Chapter 14 ■ Configuring appliCations

388

Notice that the content is not styled. The minimal configuration in Listing 14-13 doesn’t provide any
support for serving up static content, such as CSS stylesheets and JavaScript files, so the link element in
the HTML rendered by the Index.cshtml view produces a request for the Bootstrap CSS style sheet that the
application can’t process, which prevents the browser from getting the style information it required. I fix this
problem in the “Adding the Remaining Middleware Components” section.

Understanding ASP.NET Services
ASP.NET Core calls the Startup.ConfigureServices method so that the application can set up the services
it requires. The term service refers to any object that provides functionality to other parts of the application.
As noted, this is a vague description because services can do anything that your application requires. As an
example, I added an Infrastructure folder to the project and added to it a class file called UptimeService.
cs, which I used to define the class shown in Listing 14-14.

Listing 14-14. The Contents of the UptimeService.cs File in the Infrastructure Folder

using System.Diagnostics;

namespace ConfiguringApps.Infrastructure {

 public class UptimeService {
 private Stopwatch timer;

 public UptimeService() {
 timer = Stopwatch.StartNew();
 }

 public long Uptime => timer.ElapsedMilliseconds;
 }
}

When this class is created, its constructor starts a timer that keeps track of how long the application has
been running. This is a nice example of a service because it provides functionality that can be used in the
rest of the application and it benefits from being created when the application is started.

ASP.NET services are registered using the ConfigureServices method of the Startup class, and in
Listing 14-15, you can see how I have registered the UptimeService class.

Figure 14-4. The effect of enabling MVC

Chapter 14 ■ Configuring appliCations

389

Listing 14-15. Registering a Custom Service in the Startup.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseMvcWithDefaultRoute();
 }
 }
}

As its argument, the ConfigureServices method receives an object that implements the
IServiceCollection interface. Services are registered using extension methods called on the
IServiceCollection interface that specify different configuration options. I describe the options available
for creating services in Chapter 18, but for the moment, I have used the AddSingleton method, which means
that a single UptimeService object will be shared throughout the application.

Services are closely related to a feature called dependency injection, which allows components such
as controllers to easily obtain services and which I describe in depth in Chapter 18. Services registered in
Startup.ConfigureServices can be accessed by creating a constructor that accepts an argument of the
service type you require. Listing 14-16 shows the constructor I added to the Home controller to receive the
shared UptimeService object that I created in Listing 14-15. I have also updated the controller’s Index action
method so that it includes the value of the service’s Update property in the view data it produces.

Listing 14-16. Accessing a Service in the HomeController.cs File in the Controllers Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps.Controllers {

 public class HomeController : Controller {
 private UptimeService uptime;

 public HomeController(UptimeService up) => uptime = up;

http://dx.doi.org/10.1007/978-1-4842-3150-0_18
http://dx.doi.org/10.1007/978-1-4842-3150-0_18

Chapter 14 ■ Configuring appliCations

390

 public ViewResult Index()
 => View(new Dictionary<string, string> {
 ["Message"] = "This is the Index action",
 ["Uptime"] = $"{uptime.Uptime}ms"
 });
 }
}

When MVC needs an instance of the Home controller class to handle an HTTP request, it inspects the
HomeController constructor and finds that it requires an UptimeService object. MVC then inspects the set
of services that have been configured in the Startup class, finds that UptimeService has been configured
so that a single UptimeService object is used for all requests, and passes that object as the constructor
argument when the HomeController is created.

Services can be registered and consumed in more complex ways, but this example demonstrates the
central idea behind services and shows how defining a service in the Startup class allows you to define
functionality or data that be used throughout an application.

If you run the application and request the default URL, you will see a response that includes the number
of milliseconds since the application has started, which is obtained from the UptimeService object that
was created in the Startup class, as illustrated in Figure 14-5. (Strictly speaking, it is the time since the
UptimeService service object was created but this is close enough to the application startup to make no
difference for the purpose of this chapter).

Each time a request for the default URL is received, MVC creates a new HomeController object and provides
it with the shared UptimeService object as a constructor argument. This allows the Home controller access to the
application’s uptime without being concerned about how this information is provided or implemented.

Understanding the Built-In MVC Services
A package as complex as MVC uses many services; some are for its internal use, and others offer
functionality to developers. Packages define extension methods that set up all the services they require in a
single method call. For MVC, this method is called AddMvc, and it is one of the two methods I added to the
Startup class to get MVC working.

...
public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
}
...

Figure 14-5. Using a simple service

Chapter 14 ■ Configuring appliCations

391

This method sets up every service that MVC needs without filling up the ConfigureServices method
with an enormous list of individual services.

 ■ Note the Visual studio intellisense feature will show you a long list of other extension methods that you
can call on the IServiceCollection object in the ConfigureServices method. some of these methods, such
as AddSingleton and AddScoped, are used to register services in different ways. the other methods, such as
AddRouting or AddCors, add individual services that are already applied by the AddMvc method. the result is
that for most applications, the ConfigureServices method contains a small number of custom services, the
call to the AddMvc method, and, optionally, some statements to configure the built-in services, which i describe
in the “Configuring MVC services” section.

Understanding ASP.NET Middleware
In ASP.NET Core, middleware is the term used for the components that are combined to form the request
pipeline. The request pipeline is arranged like a chain, and when a new request arrives, it is passed to the
first middleware component in the chain. This component inspects the request and decides whether to
handle it and generate a response or to pass it to the next component in the chain. Once a request has been
handled, the response that will be returned to the client is passed back along the chain, which allows all of
the earlier components to inspect or modify it.

The way that middleware components work may seem a little odd, but it allows for a lot of flexibility in
the way that applications are put together. Understanding how the use of middleware shapes an application
can be important, especially if you are not getting the responses you expect. To explain how the middleware
system works, I am going to create some custom components that demonstrate each of the four types of
middleware that you will encounter.

Creating Content-Generating Middleware
The most important type of middleware generates content for clients, and it is this category to which MVC
belongs. To create a content-generating middleware component without the complexity of MVC, I added a
class called ContentMiddleware.cs to the Infrastructure folder and used it to define the class shown in
Listing 14-17.

Listing 14-17. The Contents of the ContentMiddleware.cs File in the Infrastructure Folder

using System.Text;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;

namespace ConfiguringApps.Infrastructure {

 public class ContentMiddleware {
 private RequestDelegate nextDelegate;

 public ContentMiddleware(RequestDelegate next) => nextDelegate = next;

Chapter 14 ■ Configuring appliCations

392

 public async Task Invoke(HttpContext httpContext) {
 if (httpContext.Request.Path.ToString().ToLower() == "/middleware") {
 await httpContext.Response.WriteAsync(

"This is from the content middleware", Encoding.UTF8);
 } else {
 await nextDelegate.Invoke(httpContext);
 }
 }
 }
}

Middleware components don’t implement an interface or derive from a common base class. Instead,
they define a constructor that takes a RequestDelegate object and define an Invoke method. The
RequestDelegate object represents the next middleware component in the chain, and the Invoke method is
called when ASP.NET receives an HTTP request.

Information about the HTTP request and the response that will be returned to the client is provided
through the HttpContext argument to the Invoke method. I describe the HttpContext class and its
properties in Chapter 17, but for this chapter, it is enough to know that the Invoke method in Listing 14-17
inspects the HTTP request and checks to see whether the request has been sent to the /middleware URL. If
it has, then a simple text response is sent to the client; if a different URL has been used, then the request is
forwarded to the next component in the chain.

The request pipeline is set up inside the Configure method of the Startup class. In Listing 14-18, I have
removed MVC methods from the example application and used the ContentMiddleware class as the sole
component in the pipeline.

Listing 14-18. Using a Custom Middleware in the Startup.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseMiddleware<ContentMiddleware>();
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-3150-0_17

Chapter 14 ■ Configuring appliCations

393

Custom middleware components are registered with the UseMiddleware extension method within the
Configure method. The UseMiddleware method uses a type parameter to specify the middleware class. This
so that ASP.NET Core can build up a list of all the middleware components that are going to be used and
then instantiate them to create the chain. If you run the application and request the /middleware URL, you
will see the result shown in Figure 14-6.

Figure 14-7 illustrates the middleware pipeline that I created using the ContentMiddleware class. When
ASP.NET Core receives an HTTP request, it passes it to the only middleware component registered in the
Startup class. If the URL is /middleware, then the component generates a result, which is returned to ASP.
NET Core and sent to the client.

If the URL isn’t /middleware, then the ContentMiddleware class passes on the request to the next
component in the chain. Since there is no other component, the request reaches a backstop handler provided
by ASP.NET Core when it creates the pipeline, which sends the request back along the pipeline in the other
direction (a process that will make more sense once you see how the other types of middleware work).

Using Services in Middleware

It isn’t just controllers that can use services that have been set up in the ConfigureServices method. ASP.
NET Core inspects the constructors of middleware classes and uses services to provide values for any
arguments that have been defined. In Listing 14-19, I have added an argument to the constructor of the
ContentMiddleware class, which tells ASP.NET Core that it requires an UptimeService object.

Figure 14-6. Generating content from a custom middleware component

Figure 14-7. The example middleware pipeline

Chapter 14 ■ Configuring appliCations

394

Listing 14-19. Using a Service in the ContentMiddleware.cs File in the Infrastructure Folder

using System.Text;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;

namespace ConfiguringApps.Infrastructure {

 public class ContentMiddleware {
 private RequestDelegate nextDelegate;
 private UptimeService uptime;

 public ContentMiddleware(RequestDelegate next, UptimeService up) {
 nextDelegate = next;
 uptime = up;
 }

 public async Task Invoke(HttpContext httpContext) {
 if (httpContext.Request.Path.ToString().ToLower() == "/middleware") {
 await httpContext.Response.WriteAsync(
 "This is from the content middleware "+
 $"(uptime: {uptime.Uptime}ms)", Encoding.UTF8);
 } else {
 await nextDelegate.Invoke(httpContext);
 }
 }
 }
}

Being able to use services means that middleware components can share common functionality and
avoid code duplication. Run the application and request the /middleware URL and you will see the output
shown in Figure 14-8.

Creating Short-Circuiting Middleware
The next type of middleware intercepts requests before they reach the content generation components in
order to short-circuit the pipeline process, often for performance purposes. Listing 14-20 shows the contents
of a class file called ShortCircuitMiddleware.cs that I added to the Infrastructure folder.

Figure 14-8. Using a service in custom middleware

Chapter 14 ■ Configuring appliCations

395

Listing 14-20. The Contents of the ShortCircuitMiddleware.cs File in the Infrastructure Folder

using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;

namespace ConfiguringApps.Infrastructure {

 public class ShortCircuitMiddleware {
 private RequestDelegate nextDelegate;

 public ShortCircuitMiddleware(RequestDelegate next) => nextDelegate = next;

 public async Task Invoke(HttpContext httpContext) {
 if (httpContext.Request.Headers["User-Agent"]
 .Any(h => h.ToLower().Contains("edge"))) {
 httpContext.Response.StatusCode = 403;
 } else {
 await nextDelegate.Invoke(httpContext);
 }
 }
 }
}

This middleware component inspects the request’s User-Agent header, which is used by browsers to
identify themselves. Using the User-Agent header to identify specific browsers isn’t reliable enough to use in
a real application, but it is sufficient for this example.

The term short-circuiting is used because this type of middleware doesn’t always forward requests to the
next component in the chain. In this case, if the User-Agent header contains the term edge, the component
sets the status code to 403 – Forbidden and doesn’t forward the request to the next component. Since the
request is being rejected, there is no point in allowing the request to be handled by other components, which
would needlessly consume system resources. Instead, the request handling is terminated early, and the 403
response is sent to the client.

Middleware components receive requests in the order in which they are set up in the Startup class,
which means that short-circuiting middleware must be set up before content-generating middleware, as
shown in Listing 14-21.

Listing 14-21. Registering Short-Circuiting Middleware in the Startup.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps {
 public class Startup {

Chapter 14 ■ Configuring appliCations

396

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseMiddleware<ShortCircuitMiddleware>();
 app.UseMiddleware<ContentMiddleware>();
 }
 }
}

If you run the application and request any URL using the Microsoft Edge browser, then you will see the
403 error. Requests from other browsers are ignored by the ShortCircuitMiddleware component and are
passed on to the next component in the chain, which means that a response will be generated when the
requested URL is /middleware. Figure 14-9 shows the addition of the short-circuiting component to the
middleware pipeline.

Creating Request-Editing Middleware
The next type of middleware component examined doesn’t generate a response. Instead, it changes requests
before they reach other components later in the chain. This kind of middleware is mainly used for platform
integration to enrich the ASP.NET Core representation of an HTTP request with platform-specific features.
It can also be used to prepare requests so that they are easier to process by subsequent components. As a
demonstration, I added the BrowserTypeMiddleware.cs file to the Infrastructure folder and used it to
define the middleware component shown in Listing 14-22.

Listing 14-22. The Contents of the BrowserTypeMiddleware.cs File in the Infrastructure Folder

using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;

namespace ConfiguringApps.Infrastructure {

 public class BrowserTypeMiddleware {
 private RequestDelegate nextDelegate;

Figure 14-9. Adding a short-circuiting component to the middleware pipeline

Chapter 14 ■ Configuring appliCations

397

 public BrowserTypeMiddleware(RequestDelegate next) => nextDelegate = next;

 public async Task Invoke(HttpContext httpContext) {
 httpContext.Items["EdgeBrowser"]
 = httpContext.Request.Headers["User-Agent"]
 .Any(v => v.ToLower().Contains("edge"));
 await nextDelegate.Invoke(httpContext);
 }
 }
}

This component inspects the User-Agent header of the request and looks for the term edge, which
suggests that the request may have been made using the Edge browser. The HttpContext object provides a
dictionary through the Items property that is used to pass data between components, and the outcome of
the header search is stored with the key EdgeBrowser.

To demonstrate how middleware components can cooperate, Listing 14-23 shows the
ShortCircuitMiddleware class, which rejects requests when they are from Edge, making its decision based
on the data produced by the BrowserTypeMiddleware component.

Listing 14-23. Cooperating with Another Component in the ShortCircuitMiddleware.cs File

using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;

namespace ConfiguringApps.Infrastructure {

 public class ShortCircuitMiddleware {
 private RequestDelegate nextDelegate;

 public ShortCircuitMiddleware(RequestDelegate next) => nextDelegate = next;

 public async Task Invoke(HttpContext httpContext) {
 if (httpContext.Items["EdgeBrowser"] as bool? == true) {
 httpContext.Response.StatusCode = 403;
 } else {
 await nextDelegate.Invoke(httpContext);
 }
 }
 }
}

By their nature, middleware components that edit requests need to be placed before those components
that they cooperate with or that rely on the changes they make. In Listing 14-24, I have registered the
BrowserTypeMiddleware class as the first component in the pipeline.

Listing 14-24. Registering a Middleware Component in the Startup.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;

Chapter 14 ■ Configuring appliCations

398

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseMiddleware<BrowserTypeMiddleware>();
 app.UseMiddleware<ShortCircuitMiddleware>();
 app.UseMiddleware<ContentMiddleware>();
 }
 }
}

Placing the component at the start of the pipeline ensures that the request has already been modified
before it is received by the other components, as shown in Figure 14-10.

Creating Response-Editing Middleware
The final type of middleware operates on the responses generated by other components in the pipeline. This
is useful for logging details of requests and their responses or for dealing with errors. Listing 14-25 shows the
contents of the ErrorMiddleware.cs file, which I added to the Infrastructure folder to demonstrate this
type of middleware component.

Listing 14-25. The Contents of the ErrorMiddleware.cs File in the Infrastructure Folder

using System.Text;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Http;

Figure 14-10. Adding a response-editing component to the middleware pipeline

Chapter 14 ■ Configuring appliCations

399

namespace ConfiguringApps.Infrastructure {

 public class ErrorMiddleware {
 private RequestDelegate nextDelegate;

 public ErrorMiddleware(RequestDelegate next) {
 nextDelegate = next;
 }

 public async Task Invoke(HttpContext httpContext) {
 await nextDelegate.Invoke(httpContext);

 if (httpContext.Response.StatusCode == 403) {
 await httpContext.Response
 .WriteAsync("Edge not supported", Encoding.UTF8);
 } else if (httpContext.Response.StatusCode == 404) {
 await httpContext.Response
 .WriteAsync("No content middleware response", Encoding.UTF8);
 }
 }
 }
}

The component isn’t interested in a request until it has made its way through the middleware pipeline
and a response has been generated. If the response status code is 403 or 404, then the component adds a
descriptive message to the response. All other responses are ignored. Listing 14-26 shows the registration of
the component class in the Startup class.

 ■ Tip You may be wondering where the 404 – Not Found status code comes from since it isn’t set by any
of the three middleware components i have created. the answer is that this is how the response is configured
by asp.net when the request enters the pipeline and is the result returned to the client if no middleware
component changes the response.

Listing 14-26. Registering a Response-Editing Middleware Component in the Startup.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps {
 public class Startup {

Chapter 14 ■ Configuring appliCations

400

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseMiddleware<ErrorMiddleware>();
 app.UseMiddleware<BrowserTypeMiddleware>();
 app.UseMiddleware<ShortCircuitMiddleware>();
 app.UseMiddleware<ContentMiddleware>();
 }
 }
}

I registered the ErrorMiddleware class so that it occupies the first position in the pipeline. This may
seem odd for a component that is interested only in responses, but registering the component at the start of
the chain ensures that it is able to inspect the responses generated by any other component, as illustrated in
Figure 14-11. If this component is placed later in the pipeline, then it will only be able to inspect responses
generated by some of the other components.

You can see the effect of the new middleware by starting the application and requesting any URL except
/middleware. The result will be the error message shown in Figure 14-12.

Understanding How the Configure Method Is Invoked
The ASP.NET Core platform inspects the Configure method before it is invoked and gets a list of its
arguments, which it provides using the services set up in the ConfigureServices method or using the
special services shown in Table 14-5.

Figure 14-11. Adding a response-editing component to the middleware pipeline

Figure 14-12. Editing the responses of other middleware components

Chapter 14 ■ Configuring appliCations

401

Using the Application Builder
Although you don’t have to define any arguments at all for the Configure method, most Startup classes will
use at least the IApplicationBuilder interface because it allows the middleware pipeline to be created, as
demonstrated earlier in the chapter. For custom middleware components, the UseMiddleware extension
method is used to register classes. Complex content-generating middleware packages provide a single
method that sets up all of their middleware components in a single step, just like they provide a single
method for defining the services they use. In the case of MVC, two extension methods are available, as
described in Table 14-6.

Routing is the process by which request URLs are mapped to controllers and actions are defined by
the application; I describe routing in detail in Chapters 15 and 16. The UseMvcWithDefaultRoute method
is useful for getting started with MVC development, but most applications call the UseMvc method, even
if the result is to explicitly define the same routing configuration that would have been created by the
UseMvcWithDefaultRoute method, as shown in Listing 14-27. This makes the routing configuration used
by the application obvious to other developers and makes it easy to add new routes later (which almost all
applications require at some point).

Listing 14-27. Setting Up the MVC Middleware in the Startup.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps {
 public class Startup {

Table 14-5. The Special Services Available As Configure Method Arguments

Type Description

IApplicationBuilder This interface defines the functionality required to set up an application’s
middleware pipeline.

IHostingEnvironment This interface defines the functionality required to differentiate between
different types of environment, such as development and production.

Table 14-6. The MVC IApplicationBuilder Extension Methods

Name Description

UseMvcWithDefaultRoute This method sets up the MVC middleware components with the default route.

UseMvc This method sets up the MVC middleware components using a custom
routing configuration specified using a lambda expression.

http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 14 ■ Configuring appliCations

402

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseMiddleware<ErrorMiddleware>();
 app.UseMiddleware<BrowserTypeMiddleware>();
 app.UseMiddleware<ShortCircuitMiddleware>();
 app.UseMiddleware<ContentMiddleware>();

 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

Since MVC sets up content-generating middleware components, the UseMvc method is called after all
the other middleware components have been registered. To prepare the services that MVC depends on, the
AddMvc method must be called in the ConfigureServices method.

Using the Hosting Environment
The IHostingEnvironment interface provides some basic—but important—information about the hosting
environment in which the application is running using the properties described in Table 14-7.

Table 14-7. The IHostingEnvironment Properties

Name Description

ApplicationName This property returns the name of the application, which is set by the hosting
platform.

EnvironmentName This property returns a string that describes the current environment, as
described after this table.

ContentRootPath This property returns the path that contains the application’s content files
and configuration files.

WebRootPath This property returns a string that specifies the directory that contains the
static content for the application. This is usually the wwwroot folder.

ContentRootFileProvider This property returns an object that implements the IFileProvider
interface and that can be used to read files from the folder specified by the
ContentRootPath property.

WebRootFileProvider This property returns an object that implements the IFileProvider
interface and that can be used to read files from the folder specified by the
WebRootPath property.

Chapter 14 ■ Configuring appliCations

403

The ContentRootPath and WebRootPath properties are interesting but not needed in most applications
because there is a built-in middleware component that can be used to deliver static content, as described in
the “Enabling Static Content” section later in this chapter.

The important property is EnvironmentName, which allows the configuration of the application to be
modified based on the environment in which it is running. There are three conventional environments
(development, staging, and production), and each represents a commonly used environment.

The current hosting environment is set using an environment variable called ASPNETCORE_ENVIRONMENT.
To set the environment variable, select ConfiguringApps Properties from the Visual Studio Project menu
and switch to the Debug tab. Double-click the Value field for the environment variable, which is set to
Development by default, and change it to Staging, as shown in Figure 14-13. Save your changes to have the
new environment name take effect.

 ■ Tip environment names are not case-sensitive, so Staging and staging are treated as the same
environment. although development, staging, and production are the conventional environments, you can use
any name you like. this can be useful if there are multiple developers on a project and each requires different
configuration settings, for example. see the “Dealing with Complex Configurations” section later in the chapter
for details on how to deal with complex differences between environment configurations.

Within the Configure method, you can determine which hosting environment is being used by reading
the IHostingEnvironment.EnvironmentName property or using one of the extension methods that operate
on IHostingEnvironment objects, as described in Table 14-8.

Figure 14-13. Setting the name of the hosting environment

Table 14-8. IHostingEnvironment Extension Methods

Name Description

IsDevelopment() This method returns true if the hosting environment name is Development.

IsStaging() This method returns true if the hosting environment name is Staging.

IsProduction() This method returns true if the hosting environment name is Production.

IsEnvironment(env) This method returns true if the hosting environment name matches the env argument.

Chapter 14 ■ Configuring appliCations

404

The extension methods are used to alter the set of middleware components in the pipeline to tailor the
behavior of the application to different hosting environments. In Listing 14-28, I use one of the extension
methods to ensure that the custom middleware components created earlier in the chapter are only present
in the pipeline in the Development hosting environment.

Listing 14-28. Using the Hosting Environment in the Startup.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {

 if (env.IsDevelopment()) {
 app.UseMiddleware<ErrorMiddleware>();
 app.UseMiddleware<BrowserTypeMiddleware>();
 app.UseMiddleware<ShortCircuitMiddleware>();
 app.UseMiddleware<ContentMiddleware>();
 }

 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

The three custom middleware components won’t be added to the pipeline with the current configuration,
which has set the hosting environment to Staging. If you run the application and request the /middleware
URL, you will receive a 404 – Not Found error because the only middleware components available are the
ones set up by the UseMvc method, which have no controllers available that can process this URL.

 ■ Note once you have tested the effect of changing the hosting environment, be sure to change it back to
Development; otherwise, the examples in the rest of the chapter won’t work properly.

Chapter 14 ■ Configuring appliCations

405

Adding the Remaining Middleware Components
There are a set of commonly used middleware components that are useful in most MVC projects and that I
use in the examples in this book. In the sections that follow, I add these components to the request pipeline
and explain how they work.

Enabling Exception Handling
Even the most carefully written application will encounter exceptions, and it is important to handle them
appropriately. In Listing 14-29, I have added middleware components that deal with exceptions to the
request pipeline to the Startup class. I have also removed the custom middleware components so that I can
focus on MVC.

Listing 14-29. Adding Exception-Handling Middleware in the Startup.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {

 if (env.IsDevelopment()) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 } else {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

Chapter 14 ■ Configuring appliCations

406

The UseStatusCodePages method adds descriptive messages to responses that contain no content, such as
404 - Not Found responses, which can be useful since not all browsers show their own messages to the user.

The UseDeveloperExceptionPage method sets up an error-handling middleware component that
displays details of the exception in the response, including the exception trace. This isn’t information that
should be displayed to users, so the call to UseDeveloperExceptionPage is made only in the development
hosting environment, which is detected using the IHostingEnvironmment object.

For the staging or production environment, the UseExceptionHandler method is used instead. This
method sets up an error handling that allows a custom error message to be displayed that won’t reveal the
inner workings of the application. The argument to the UseExceptionHandler method is the URL that the
client should be redirected to in order to receive the error message. This can be any URL provided by the
application, but the convention is to use /Home/Error.

In Listing 14-30, I have added the ability to generate exceptions on demand to the Index action of
the Home controller and have added an Error action so requests generated by the UseExceptionHandler
component can be processed.

Listing 14-30. Generating and Handling Exceptions in the HomeController.cs File in the Controllers Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps.Controllers {

 public class HomeController : Controller {
 private UptimeService uptime;

 public HomeController(UptimeService up) => uptime = up;

 public ViewResult Index(bool throwException = false) {
 if (throwException) {
 throw new System.NullReferenceException();
 }
 return View(new Dictionary<string, string> {
 ["Message"] = "This is the Index action",
 ["Uptime"] = $"{uptime.Uptime}ms"
 });
 }

 public ViewResult Error() => View(nameof(Index),
 new Dictionary<string, string> {
 ["Message"] = "This is the Error action"});
 }
}

The changes to the Index action rely on the model binding feature, which I describe in Chapter 26,
to obtain a throwException value from the request. The action throws a NullReferenceException if
throwException is true and executes normally if it is false.

The Error action uses the Index view to display a simple message. You can see the effect of the different
exception-handling middleware components by running the application and requesting the /Home/
Index?throwException=true URL. The query string provides the value for the Index action argument,
and the response that you see will depend on the hosting environment name. Figure 14-14 shows the
output produced by the UseDeveloperExceptionPage (for the Development hosting environment) and
UseExceptionHandler middleware (for all other hosting environments).

http://dx.doi.org/10.1007/978-1-4842-3150-0_26

Chapter 14 ■ Configuring appliCations

407

The developer exception page provides details of the exception and options to explore its stack trace
and the request that caused it. By contrast, the user exception page should be used simply to indicate that
something has gone wrong.

Enabling Browser Link
I described the Browser Link feature in Chapter 6 and demonstrated how it can be used to manage browsers
during development. The server-side part of Browser Link is implemented as a middleware component that
must be added to the Startup class as part of the application configuration, without which the Visual Studio
integration won’t work. Browser Link is useful only during development and should not be used in staging
or production because it edits the responses generated by other middleware components to insert JavaScript
code that opens HTTP connections back to the server side so that it can receive reload notifications. In
Listing 14-31, you can see how the UseBrowserLink method, which registers the middleware component, is
called only for the Development hosting environment.

Listing 14-31. Enabling Browser Link in the Startup.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

Figure 14-14. Handling exceptions in development and staging/production

http://dx.doi.org/10.1007/978-1-4842-3150-0_6

Chapter 14 ■ Configuring appliCations

408

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {

 if (env.IsDevelopment()) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseBrowserLink();
 } else {
 app.UseExceptionHandler("/Home/Error");
 }

 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

Enabling Static Content
The final middleware component that is useful for most projects provides access to the files in the wwwroot
folder so that applications can include images, JavaScript files, and CSS stylesheets. The UseStaticFiles
method adds a component that short-circuits the request pipeline for static files, as shown in Listing 14-32.

Listing 14-32. Enabling Static Content in the Startup.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {

 if (env.IsDevelopment()) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseBrowserLink();
 } else {

Chapter 14 ■ Configuring appliCations

409

 app.UseExceptionHandler("/Home/Error");
 }
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

Static content is typically required regardless of the hosting environment, which is why I call the
UseStaticFiles section for all environments. This addition means that the link element in the Index view
will work properly and allow the browser to load the Bootstrap CSS style sheet. You can see the effect by
starting the application, as shown in Figure 14-15.

Configuring the Application
Some configuration data changes often, such as when the application moves from the development to the
production environment and different details are required for database servers. Rather than hard-code this
information in the Startup class, ASP.NET Core allows configuration data to be provided from a range of
more easily changed sources, such as environment variables, command-line arguments, and files written in
the JavaScript Object Notation (JSON) format.

Configuration data is usually handled automatically, but since I have replaced the default settings in the
Program class, I need to explicitly add the code that will get the data and make it available for use in the rest
of the application, as shown in Listing 14-33.

Listing 14-33. Loading Configuration Data in the Program.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;

Figure 14-15. Enabling static content

Chapter 14 ■ Configuring appliCations

410

using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;
using System.Reflection;

namespace ConfiguringApps {
 public class Program {

 public static void Main(string[] args) {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) {

 return new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration((hostingContext, config) => {
 config.AddJsonFile("appsettings.json",
 optional: true, reloadOnChange: true);
 config.AddEnvironmentVariables();
 if (args != null) {
 config.AddCommandLine(args);
 }
 })
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();
 }
 }
}

The ConfigureAppConfiguration method is used to handle the configuration data and its arguments
are a WebHostBuilderContext object and an object that implements the IConfigurationBuilder interface.
The WebBostBuilderContext class defines the properties described in Table 14-9.

The IConfigurationBuilder interface is used to prepare the configuration data for the rest of the
application, which is typically done using extension methods. The three methods used in Listing 14-33 to
add configuration data are described in Table 14-10.

Table 14-9. The Properties Defined by the WebBostBuilderContext Class

Name Description

HostingEnvironment This property returns an object that implements the IHostingEnvironment
interface and provides information about the hosting environment in which the
application is running. See the “Using the Hosting Environment” section earlier in
the chapter for details.

Configuration This property returns an object that implements the IConfiguration interface,
which provides read-only access to the configuration data in the application.

Chapter 14 ■ Configuring appliCations

411

Of the three methods that are used to load configuration data in Listing 14-33, it is the AddJsonFile
method that is the most interesting. The arguments to the method specify the file name, whether the file is
optional, and whether the configuration data should be reloaded if the file changes:

...
config.AddJsonFile("appsettings.json", optional: true, reloadOnChange: true);
...

The values used for the arguments specify a file called appsettings.json file, which is the conventional
name for the JSON configuration file. This file is optional, meaning that an exception will not be thrown if the file
doesn’t exist, and will be monitored for changes so that the configuration data can be refreshed automatically.

RELOADING CONFIGURATION DATA

the asp.net Core configuration system supports reloading data when configuration files change. some
of the built-in middleware components, such as the logging system, support this feature, which means
logging levels can be changed at runtime without restarting the application. You can incorporate similar
capabilities in custom middleware components as well.

But just because a feature makes something possible doesn’t mean it’s sensible. Making changes
to configuration files on production systems is a recipe for downtime. it is all too easy to mistype the
changes you want and create a malfunctioning configuration. there can be unforeseen consequences
even if you make the change successfully, such as logging data filling up disks or crippling
performance.

My advice is to avoid live edits and make sure all changes are pushed through your standard testing
process before being deployed into production. it can be tempting to poke around a live system to
diagnose a problem, but it rarely ends well. if you find yourself editing production configuration files,
then you should ask yourself whether you are about to make a small problem into a much larger one.

Creating the JSON Configuration File
The most common uses for the appsettings.json file are to store database connection strings and logging
settings, but you can store any data that your application requires.

To see how the configuration system works, add a new JSON file called appsettings.json to the root
folder of the project with the content shown in Listing 14-34.

Table 14-10. The IConfigurationBuilder Extension Methods for Adding Configuration Data

Name Description

AddJsonFile This method is used to load configuration data from a JSON file, such as
appsettings.json.

AddEnvironmentVariables This method is used to load configuration data from environment variables.

AddCommandLine This method is used to load configuration data from the command-line
arguments used to start the application.

Chapter 14 ■ Configuring appliCations

412

Listing 14-34. The Contents of the appsettings.json File in the ConfiguringApps Folder

{
 "ShortCircuitMiddleware": {
 "EnableBrowserShortCircuit": true
 }
}

The JSON format allows a structure to be defined for configuration settings. The JSON content in the
listing defines a configuration category called ShortCircuitMiddleware that contains a configuration
property called EnableBrowserShortCircuit, which is set to true.

JSON: QUOTING AND COMMAS

if you are new to working with Json, then it is worth taking some time to read the specification at www.
json.org. the format is simple to work with, and there is good support for generating and parsing
Json data on most platforms, including within MVC applications (see Chapters 20 and 21 for examples)
and at the client using a simple Javascript api. in fact, most MVC developers won’t deal directly with
Json at all, and it is only in the configuration files that hand-crafting Json is required.

there are two pitfalls that many developers new to Json fall into, and while you should still take
the time to read the specification, knowing the most common problems will give you somewhere
to start when Visual studio or asp.net Core can’t parse your Json files. here is an addition to the
appsettings.json file to show the two most common problems:

{
 "ShortCircuitMiddleware": {
 "EnableBrowserShortCircuit": true
 }
 mysetting : [fast, slow]
}

first, almost everything in Json is quoted. it is easy to forget that you are writing C# code and expect
property names and values to be accepted without quotes. in Json, anything other than Boolean values
and numbers has to be quoted, like this:

{
 "ShortCircuitMiddleware": {
 "EnableBrowserShortCircuit": true
 }
 "mysetting" : ["fast", "slow"]
}

http://www.json.org/
http://www.json.org/
http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 14 ■ Configuring appliCations

413

second, when you add a new property to the Json description of an object, you must remember to add
a comma to the previous brace character, like this:

{
 "ShortCircuitMiddleware": {
 "EnableBrowserShortCircuit": true
 },
 "mysetting" : ["fast", "slow"]
}

it can be hard to see the difference even when it is highlighted—which is why it is such a common
error—but i have added a comma following the } character that closes the ShortCircuitMiddleware
section. Be careful, though, because a trailing comma that has no following section is also illegal. if your
Json changes are causing problems, there are the two errors to check for first.

Using Configuration Data
The Startup class can access the configuration data by defining a constructor with an IConfiguration
argument. When the UseStartup method is called in the Program class, the configuration data prepared by
the ConfigureAppConfiguration is used to create the Startup object. Listing 14-35 shows the addition of
the constructor to the Startup class and shows how the configuration data can be accessed.

Listing 14-35. Receiving and Using Configuration Data in the Startup.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;
using Microsoft.Extensions.Configuration;

namespace ConfiguringApps {
 public class Startup {

 public Startup(IConfiguration configuration) {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

Chapter 14 ■ Configuring appliCations

414

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {

 if ((Configuration.GetSection("ShortCircuitMiddleware")?
 .GetValue<bool>("EnableBrowserShortCircuit")).Value) {
 app.UseMiddleware<BrowserTypeMiddleware>();
 app.UseMiddleware<ShortCircuitMiddleware>();
 }

 if (env.IsDevelopment()) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseBrowserLink();
 } else {
 app.UseExceptionHandler("/Home/Error");
 }
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

The IConfiguration object is received by the constructor and assigned to a property called
Configuration, which can then be used to access the configuration data that has been loaded from
environment variables, the command line, and the appsettings.json file.

To obtain a value, you navigate through the structure of the data to the configuration section you
require, which is represented by another object that implements the IConfiguration interface, which
provides a subset of members available for IConfigurationRoot, as shown in Table 14-11.

There are also extension methods that can be used to operate on IConfiguration objects to get values
and convert them from strings into other types, as described in Table 14-12.

Table 14-11. The Members Defined by the IConfiguration Interface

Name Description

[key] The indexer is used to obtain a string value for a specific key.

GetSection(name) This method returns an IConfiguration object that represents a section of the
configuration data.

GetChildren() This method returns an enumeration of the IConfiguration objects that represent
the subsections of the current configuration object.

Chapter 14 ■ Configuring appliCations

415

It is important not to assume that a configuration value will be specified. In the listing, I use the null
conditional operator to ensure that I have received the ShortCircuitMiddleware section before trying to
get the EnableBrowserShortCircuit value. The result is that the custom middleware will be added to the
request pipeline only if the ShortCircuitMiddleware/EnableBrowserShortCircuit value has been defined
and set to true.

Configuring Logging
ASP.NET Core includes support for capturing and handling logging data, and many of the built-in
middleware components have been written to generate logging messages. Logging is set up automatically in
most projects, but since I am using individual configuration statements in the Program class, I need to add
the statements shown in Listing 14-36 to set up the logging feature.

Listing 14-36. Configuring Logging in the Program.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;
using System.Reflection;

namespace ConfiguringApps {
 public class Program {

 public static void Main(string[] args) {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) {

 return new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration((hostingContext, config) => {
 config.AddJsonFile("appsettings.json",
 optional: true, reloadOnChange: true);

Table 14-12. Extension Methods for the IConfiguration Interface

Name Description

GetValue<T>(keyName) This method gets the value associated with the specified key
and attempts to convert it to the type T.

GetValue<T>(keyName, defaultValue) This method gets the value associated with the specified key
and attempts to convert it to the type T. The default value will be
used if there is no value for the key in the configuration data.

Chapter 14 ■ Configuring appliCations

416

 config.AddEnvironmentVariables();
 if (args != null) {
 config.AddCommandLine(args);
 }
 })
 .ConfigureLogging((hostingContext, logging) => {
 logging.AddConfiguration(
 hostingContext.Configuration.GetSection("Logging"));
 logging.AddConsole();
 logging.AddDebug();
 })
 .UseIISIntegration()
 .UseStartup<Startup>()
 .Build();
 }
 }
}

The ConfigureLogging method sets up the logging system using a lambda function that receives
a WebHostBuilderContext object (described earlier in the chapter) and an object that implements the
ILoggingBuilder interface. A set of extension methods operate on the ILoggingBuilder interface to
configure the logging system, as described in Table 14-13.

Understanding the Logging Configuration Data
The AddConfiguration method is used to configure the logging system using configuration data that is
typically defined in the appsettings.json file. Listing 14-37 adds a configuration section called Logging
to the appsettings.json file, which corresponds to the name used for the AddConfiguration method in
Listing 14-36.

Listing 14-37. Adding a Configuration Section to the appsettings.json File in the ConfiguringApps Folder

{
 "ShortCircuitMiddleware": {
 "EnableBrowserShortCircuit": true
 },

Table 14-13. Extension Methods for the ILoggingBuilder Interface

Name Description

AddConfiguration This method is used to configure the logging system using the configuration data that
has been loaded from the appsettings.json file, from the command line, or from
environment variables.

AddConsole This method sends logging messages to the console, which is useful when starting
the application using the dotnet run command.

AddDebug This method sends logging messages to the debug output window when the Visual
Studio debugger is running.

AddEventLog This method sends logging messages to the Windows Event Log, which is useful if
you deploy to Windows Server and want the log messages from the ASP.NET Core
MVC application to be incorporated with those from other types of application.

Chapter 14 ■ Configuring appliCations

417

 "Logging": {
 "LogLevel": {
 "Default": "Debug",
 "System": "Information",
 "Microsoft": "Information"
 }
 }
}

The logging configuration specified the level of message that should be displayed from different sources
of logging data. The logging system supports six levels of debugging information, as described in Table 14-14
in order of importance.

The Default entry in Listing 14-37 sets the threshold for displaying logging messages to Debug, which
means that only messages of the Debug level or greater will be displayed. The remaining entries override
the default for logging messages from specific namespaces so that logging messages that originate from the
System or Microsoft namespaces will be displayed only if they are of the Information level or greater.

To see the effect of enabling logging, start the application using the Visual Studio debugger by selecting
Debug ➤ Start Debugging. Look at the Output window and you will see logging messages that show how
each HTTP request is handled, like this:

info: Microsoft.AspNetCore.Hosting.Internal.WebHost[1]
 Request starting HTTP/1.1 GET http://localhost:65417/
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[1]
 Executing action method ConfiguringApps.Controllers.HomeController.Index
 (ConfiguringApps) with arguments (False) - ModelState is Valid
info: Microsoft.AspNetCore.Mvc.ViewFeatures.Internal.ViewResultExecutor[1]
 Executing ViewResult, running view at path /Views/Home/Index.cshtml.
info: Microsoft.AspNetCore.Mvc.Internal.ControllerActionInvoker[2]
 Executed action ConfiguringApps.Controllers.HomeController.Index
 (ConfiguringApps) in 1597.3535ms
info: Microsoft.AspNetCore.Hosting.Internal.WebHost[2]
 Request finished in 1695.6314ms 200 text/html; charset=utf-8

Table 14-14. The ASP.NET Debugging Levels

Level Description

Trace This level is used for messages that are useful during development but that are not
required in production.

Debug This level is used for detailed messages required by developers to debug problems.

Information This level is used for messages that describe the general operation of the application.

Warning This level is used for messages that describe events that are unexpected but that do not
interrupt the application.

Error This level is used for messages that describe errors that interrupt the application.

Critical This level is used for messages that describe catastrophic failures.

None This level is used to disable logging messages.

Chapter 14 ■ Configuring appliCations

418

Creating Custom Log Messages
The logging messages in the previous section were generated by the ASP.NET Core and MVC components
that handled the HTTP request and generated the response. This kind of message can provide useful
information, but you can also generate custom log messages that are specific to your application, as shown
in Listing 14-38.

Listing 14-38. Custom Logging in the HomeController.cs File in the Controllers Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using ConfiguringApps.Infrastructure;
using Microsoft.Extensions.Logging;

namespace ConfiguringApps.Controllers {

 public class HomeController : Controller {
 private UptimeService uptime;
 private ILogger<HomeController> logger;

 public HomeController(UptimeService up, ILogger<HomeController> log) {
 uptime = up;
 logger = log;
 }

 public ViewResult Index(bool throwException = false) {
 logger.LogDebug($"Handled {Request.Path} at uptime {uptime.Uptime}");

 if (throwException) {
 throw new System.NullReferenceException();
 }
 return View(new Dictionary<string, string> {
 ["Message"] = "This is the Index action",
 ["Uptime"] = $"{uptime.Uptime}ms"
 });
 }

 public ViewResult Error() => View(nameof(Index),
 new Dictionary<string, string> {
 ["Message"] = "This is the Error action"});
 }
}

The ILogger interface defines the functionality required to create log entries and to obtain an object
that implements this interface, and the HomeController class has a constructor argument whose type is
ILogger<HomeController>. The type parameter allows the logging system to use the name of the class in the
log messages, and the value for the constructor argument is provided automatically through the dependency
injection feature that I describe in Chapter 18.

http://dx.doi.org/10.1007/978-1-4842-3150-0_18

Chapter 14 ■ Configuring appliCations

419

Once you have an ILogger, you can create log messages using extension methods defined in the
Microsoft.Extensions.Logging namespace. There are methods for each of the logging levels described in
Table 14-14. The HomeController class uses the LogDebug method to create a message at the Debug level. To
see the effect, run the application using the Visual Studio debugger and examine the Output window for the
log message, like this:

dbug: ConfiguringApps.Controllers.HomeController[0]
 Handled / at uptime 12

There are a lot of messages displayed when the application starts up, which can make it hard to pick
out individual messages. It is easier to see single messages if you click the Clear All button at the top of the
Output window and then reload the browser—this will ensure that only the log messages that relate to a
single request are displayed.

Configuring Dependency Injection
The default configuration for ASP.NET Core applications includes preparing the service provider, which is
used by the dependency injection feature that I describe in detail in Chapter 18. Listing 14-39 shows the
addition of the configuration statements to the Program class.

Listing 14-39. Configuring Services in the Program.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;
using System.Reflection;

namespace ConfiguringApps {
 public class Program {

 public static void Main(string[] args) {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) {

 return new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration((hostingContext, config) => {
 config.AddJsonFile("appsettings.json",
 optional: true, reloadOnChange: true);
 config.AddEnvironmentVariables();
 if (args != null) {

http://dx.doi.org/10.1007/978-1-4842-3150-0_18

Chapter 14 ■ Configuring appliCations

420

 config.AddCommandLine(args);
 }
 })
 .ConfigureLogging((hostingContext, logging) => {
 logging.AddConfiguration(
 hostingContext.Configuration.GetSection("Logging"));
 logging.AddConsole();
 logging.AddDebug();
 })
 .UseIISIntegration()
 .UseDefaultServiceProvider((context, options) => {
 options.ValidateScopes =
 context.HostingEnvironment.IsDevelopment();
 })
 .UseStartup<Startup>()
 .Build();
 }
 }
}

The UseDefaultServiceProvider method uses the built-in ASP.NET Core service provider. There
are alternative service providers available, but the built-in features are acceptable for most projects, and I
recommend that you use a third-party component only if you have a specific problem to solve and you have
a good understanding of dependency injection, which I describe in Chapter 18.

The UseDefaultServiceProvider accepts a lambda function that receives a WebHostBuilderContext
object and a ServiceProviderOptions object, which is used to configure the built-in service provider. The
only configuration property is called ValidateScopes, and disabling the feature is required when working
with Entity Framework Core, as explained in Chapter 8.

Configuring MVC Services
When you call AddMvc in the ConfigureServices method of the Startup class, it sets up all the services that
are required for MVC applications. This has the advantage of convenience because it registers all the MVC
services in a single step but does mean that some additional work is required to reconfigure the services to
change the default behavior.

The AddMvc method returns an object that implements the IMvcBuilder interface, and MVC provides
a set of extension methods that can be used for advanced configuration, the most useful of which are
described in Table 14-15. Many of these configuration options relate to features that I describe in detail in
later chapters.

http://dx.doi.org/10.1007/978-1-4842-3150-0_18
http://dx.doi.org/10.1007/978-1-4842-3150-0_8

Chapter 14 ■ Configuring appliCations

421

The AddMvcOptions method configures the most important MVC services. It accepts a function that
receives an MvcOptions object, which provides a set of configuration properties, the most useful of which are
described in Table 14-16.

These configuration options are used to fine-tune the way that MVC operates, and you will find detailed
descriptions of the features they relate to in the chapters specified in the table. As a quick demonstration,
however, Listing 14-40 shows how the AddMvcOptions method can be used to change a configuration option.

Table 14-16. Selected MvcOptions Properties

Name Description

Conventions This property returns a list of the model conventions that are used to
customize how MVC creates controllers and actions, as described in
Chapter 31.

Filters This property returns a list of the global filters, as described in Chapter 19.

FormatterMappings This property returns the mappings used to allow clients to specify the
data format they receive, as described in Chapter 20.

InputFormatters This property returns a list of the objects used to parse request data, as
described in Chapter 20.

ModelValidatorProviders This property returns a list of the objects used to validate data, as
described in Chapter 27.

OutputFormatters This property returns a list of the classes that format data sent from API
controllers, as described in Chapter 20.

RespectBrowserAcceptHeader This property specifies whether the Accept header is taken into account
when deciding what data format to use for a response, as described in
Chapter 20.

Table 14-15. Useful IMvcBuilder Extension Methods

Name Description

AddMvcOptions This method configures the services used by MVC, as described after the table.

AddFormatterMappings This method is used to configure a feature that allows clients to specify the data
format they receive, as described in Chapter 20.

AddJsonOptions This method is used to configure the way that JSON data is created, as described
in Chapter 20.

AddRazorOptions This method is used to configure the Razor view engine, as described in
Chapter 21.

AddViewOptions This method is used to configure how MVC handles views, including which view
engines are used. See Chapter 21 for details.

http://dx.doi.org/10.1007/978-1-4842-3150-0_31
http://dx.doi.org/10.1007/978-1-4842-3150-0_19
http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_27
http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_21
http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 14 ■ Configuring appliCations

422

Listing 14-40. Changing a Configuration Option in the Startup.cs File in the ConfiguringApps Folder

...
public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc().AddMvcOptions(options => {
 options.RespectBrowserAcceptHeader = true;
 });
}
...

The lambda expression passed to the AddMvcOptions method receives an MvcOptions object, which
I use to set the RespectBrowserAcceptHeader property to true. This change allows clients to have more
influence over the data format selected by the content negotiation process, as described in Chapter 20.

Dealing with Complex Configurations
If you need to support a large number of hosting environments or if there are a lot of differences between
your hosting environments, then using if statements to branch configurations in the Startup class can
result in a configuration that is hard to read and hard to edit without causing unexpected changes. In the
sections that follow, I describe different ways that the Startup class can be used for complex configurations.

Creating Different External Configuration Files
The default configuration for the application performed by the Program class looks for JSON configuration
files that are specific to the hosting environment being used to run the application, so a file called
appsettings.production.json can be used to store settings that are specific to the production platform.
Listing 14-41 restores the statement that loads the JSON file to the Program class, which I removed at the start
of the chapter.

Listing 14-41. Loading Environment Files in the Program.cs File in the ConfiguringApps Folder

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;
using System.Reflection;

namespace ConfiguringApps {
 public class Program {

 public static void Main(string[] args) {
 BuildWebHost(args).Run();
 }

http://dx.doi.org/10.1007/978-1-4842-3150-0_20

Chapter 14 ■ Configuring appliCations

423

 public static IWebHost BuildWebHost(string[] args) {

 return new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration((hostingContext, config) => {
 var env = hostingContext.HostingEnvironment;
 config.AddJsonFile("appsettings.json",
 optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json",
 optional: true, reloadOnChange: true);
 config.AddEnvironmentVariables();
 if (args != null) {
 config.AddCommandLine(args);
 }
 })
 .ConfigureLogging((hostingContext, logging) => {
 logging.AddConfiguration(
 hostingContext.Configuration.GetSection("Logging"));
 logging.AddConsole();
 logging.AddDebug();
 })
 .UseIISIntegration()
 .UseDefaultServiceProvider((context, options) => {
 options.ValidateScopes =
 context.HostingEnvironment.IsDevelopment();
 })
 .UseStartup<Startup>()
 .Build();
 }
 }
}

When you load configuration data from a platform-specific file, the configuration settings it contains
override any existing data with the same names. As an example, I used the ASP.NET Configuration File item
template to create a file called appsettings.development.json with the configuration data shown in
Listing 14-42. The configuration data in this file sets the EnableBrowserShortCircuit value to false.

 ■ Tip the appsettings.development.json file might seem to disappear after you create it. if you extend
the arrow to the left of the appsettings.json entry in the solution explorer window, you will see that Visual
studio groups items with similar names together.

Listing 14-42. The Contents of the appsettings.development.json File in the ConfiguringApps Folder

{
 "ShortCircuitMiddleware": {
 "EnableBrowserShortCircuit": false
 }
}

Chapter 14 ■ Configuring appliCations

424

The appsettings.json file will be loaded when the application starts, followed by the appsettings.
development.json file the application is running in the development environment. The result is that the
EnableBrowserShortCircuit value will be false when the application is running in the development
environment and true when in staging and production.

Creating Different Configuration Methods
Selecting different configuration data files can be useful but doesn’t provide a complete solution for
complex configurations because data files don’t contain C# statements. If you want to vary the configuration
statements used to create services or register middleware components, then you can use different methods,
where the name of the method includes the hosting environment, as shown in Listing 14-43.

Listing 14-43. Using Different Method Names in the Startup.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;
using Microsoft.Extensions.Configuration;

namespace ConfiguringApps {
 public class Startup {

 public Startup(IConfiguration configuration) {
 Configuration = configuration;
 }

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc().AddMvcOptions(options => {
 options.RespectBrowserAcceptHeader = true;
 });
 }

 public void ConfigureDevelopmentServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseExceptionHandler("/Home/Error");
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",

Chapter 14 ■ Configuring appliCations

425

 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }

 public void ConfigureDevelopment(IApplicationBuilder app,
 IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseBrowserLink();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

When ASP.NET Core looks for the ConfigureServices and Configure methods in the Startup
class, it first checks to see whether there are methods that include the name of the hosting environment.
In the listing, I added a ConfigureDevelopmentServices method, which will be used instead of the
ConfigureServices method in the Development environment, and a ConfigureDevelopment method,
which will be used instead of the Configure method. You can define separate methods for each of the
environments that you need to support and rely on the default methods being called if there are no
environment-specific methods available. In the example, this means the ConfigureServices and Configure
methods will be used for the staging and production environments.

 ■ Caution the default methods are not called if there are environment-specific methods defined. in
listing 14-43, for example, asp.net Core will not call the Configure method in the Development environment
because there is a ConfigureDevelopment method. this means each method is responsible for the complete
configuration required for its environment.

Creating Different Configuration Classes
Using different methods means you don’t have to use if statements to check the hosting environment name,
but it can result in large classes, which is a problem in itself. For especially complex configurations, the final
progression is to create a different configuration class for each hosting environment. When ASP.NET looks
for the Startup class, it first checks to see whether there is a class whose name includes the current hosting
environment. To this end, I added a class file called StartupDevelopment.cs to the project and used it to
define the class shown in Listing 14-44.

Listing 14-44. The Contents of the StartupDevelopment.cs File in the ConfiguringApps Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.DependencyInjection;
using ConfiguringApps.Infrastructure;

namespace ConfiguringApps {
 public class StartupDevelopment {

Chapter 14 ■ Configuring appliCations

426

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UptimeService>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseBrowserLink();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

This class contains ConfigureServices and Configure methods that are specific to the development
hosting environment. To enable ASP.NET to find the environment-specific Startup class, a change is
required to the Program class, as shown in Listing 14-45.

Listing 14-45. Enabling Environment-Specific Startup in the Program.cs File

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;
using System.Reflection;

namespace ConfiguringApps {
 public class Program {

 public static void Main(string[] args) {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) {

 return new WebHostBuilder()
 .UseKestrel()
 .UseContentRoot(Directory.GetCurrentDirectory())
 .ConfigureAppConfiguration((hostingContext, config) => {
 var env = hostingContext.HostingEnvironment;
 config.AddJsonFile("appsettings.json",
 optional: true, reloadOnChange: true)
 .AddJsonFile($"appsettings.{env.EnvironmentName}.json",
 optional: true, reloadOnChange: true);
 config.AddEnvironmentVariables();
 if (args != null) {

Chapter 14 ■ Configuring appliCations

427

 config.AddCommandLine(args);
 }
 })
 .ConfigureLogging((hostingContext, logging) => {
 logging.AddConfiguration(
 hostingContext.Configuration.GetSection("Logging"));
 logging.AddConsole();
 logging.AddDebug();
 })
 .UseIISIntegration()
 .UseDefaultServiceProvider((context, options) => {
 options.ValidateScopes =
 context.HostingEnvironment.IsDevelopment();
 })
 .UseStartup(nameof(ConfiguringApps))
 .Build();
 }
 }
}

Rather than specifying a class, the UseStartup method is given the name of the assembly that it
should use. When the application starts, ASP.NET will look for a class whose name includes the hosting
environment, such as StartupDevelopment or StartupProduction, and fall back to using the regular
Startup class if one does not exist.

Summary
In this chapter, I explained how MVC applications are configured. I described the role of the Program
and Startup classes and the default configuration options they provide. I showed you how requests are
processed using a pipeline and how different types of middleware are used to control the flow of requests
and the responses they elicit. In the next chapter, I introduce the routing system, which is how MVC deals
with mapping request URLs to controllers and actions.

429© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_15

CHAPTER 15

URL Routing

Early versions of ASP.NET assumed that there was a direct relationship between requested URLs and the
files on the server hard disk. The job of the server was to receive the request from the browser and deliver the
output from the corresponding file. This approach worked just fine for Web Forms, where each ASPX page is
both a file and a self-contained response to a request.

It doesn’t make sense for an MVC application, where requests are processed by action methods in
controller classes and there is no one-to-one correlation to the files on the disk.

To handle MVC URLs, the ASP.NET platform uses the routing system, which has been overhauled for
ASP.NET Core. In this chapter, I will show you how to use the routing system to create powerful and flexible
URL handling for your projects. As you will see, the routing system lets you create any pattern of URLs you
desire and express them in a clear and concise manner. The routing system has two functions.

•	 Examine an incoming URL and select the controller and action to handle the request.

•	 Generate outgoing URLs. These are the URLs that appear in the HTML rendered
from views so that a specific action will be invoked when the user clicks the link
(at which point it becomes an incoming URL again).

In this chapter, I will focus on defining routes and using them to process incoming URLs so that the
user can reach the controllers and actions. There are two ways to create routes in an MVC application:
convention-based routing and attribute routing. I explain both approaches in this chapter.

Then, in the next chapter, I will show you how to use those same routes to generate the outgoing URLs
you will need to include in your views, as well as show you how to customize the routing system and use a
related feature called areas. Table 15-1 puts routing into context.

Table 15-1. Putting Routing in Context

Question Answer

What is it? The routing system is responsible for processing incoming requests and selecting
controllers and action methods to process them. The routing system is also used
to generate routes in views, known as outgoing URLs.

Why is it useful? The routing system allows requests to be handled flexibly without URLs being
tied to the structure of classes in the Visual Studio project.

How is it used? The mapping between URLs and the controllers and action methods is defined in
the Startup.cs file or by applying the Route attribute to controllers.

Are there any pitfalls or
limitations?

The routing configuration for a complex application can become hard to manage.

Are there any
alternatives?

No. The routing system is an integral part of ASP.NET Core.

https://doi.org/10.1007/978-1-4842-3150-0_15

Chapter 15 ■ UrL roUting

430

Table 15-2 summarizes the chapter.

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called UrlsAndRoutes. To add support for the MVC Framework, developer error pages, and static
files, I add the statements shown in Listing 15-1 to the Startup class.

Listing 15-1. Configuring the Application in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc();
 }
 }
}

Table 15-2. Chapter Summary

Problem Solution Listing

Map between URLs and action methods Define a route 9

Allow URL segments to be omitted Define default values for route segments 10–12

Match URL segments that don’t have
corresponding routing variables

Define static segments 13–16

Pass URL segments to action methods Define custom segment variables 17–19

Allow URL segments for which there are no
default values to be omitted

Define optional segments 20–21

Define routes that match any number of URL
segments

Use a catchall segment 22–23

Restrict the URLs that a route can match Apply route constraints 24–33

Define a route within a controller Use attribute routing 34–38

Chapter 15 ■ UrL roUting

431

Creating the Model Class
All the effort in this chapter is about matching request URLs to actions. The only model class I need passes
details about the controller and action method that has been selected to process a request. I created the
Models folder and added a class file called Result.cs, which I used to define the class shown in Listing 15-2.

Listing 15-2. The Contents of the Result.cs File in the Models Folder

using System.Collections.Generic;

namespace UrlsAndRoutes.Models {

 public class Result {
 public string Controller { get; set; }

 public string Action { get; set; }

 public IDictionary<string, object> Data { get; }
 = new Dictionary<string, object>();
 }
}

The Controller and Action properties will be used to indicate how a request has been processed, and
the Data dictionary will be used to store other details about the request produced by the routing system.

Creating the Example Controllers
I need some simple controllers to demonstrate how routing works. I created the Controllers folder and
added a class file called HomeController.cs, the contents of which are shown in Listing 15-3.

Listing 15-3. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });
 }
}

The Index action method defined by the Home controller calls the View method to render a view called
Result (which I define in the next section) and provides a Result object as the model object. The properties
of the model object are set using the nameof function and will be used to indicate which controller and
action method have been used to service a request.

Chapter 15 ■ UrL roUting

432

I followed the same pattern by adding a CustomerController.cs file to the Controllers folder and
using it to define the Customer controller shown in Listing 15-4.

Listing 15-4. The Contents of the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class CustomerController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

 public ViewResult List() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(List)
 });
 }
}

The third and final controller is defined in a file called AdminController.cs, which I added to the
Controllers folder, as shown in Listing 15-5. It follows the same pattern as the other controllers.

Listing 15-5. The Contents of the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class AdminController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(AdminController),
 Action = nameof(Index)
 });
 }
}

Creating the View
I specified the Result view in all the action methods defined in the previous section, which allows me to
create one view that will be shared by all the controllers. I created the Views/Shared folder and added a new
view called Result.cshtml to it, the contents of which are shown in Listing 15-6.

Chapter 15 ■ UrL roUting

433

Listing 15-6. The Contents of the Result.cshtml File in the Views/Shared Folder

@model Result
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Routing</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Controller:</th><td>@Model.Controller</td></tr>
 <tr><th>Action:</th><td>@Model.Action</td></tr>
 @foreach (string key in Model.Data.Keys) {
 <tr><th>@key :</th><td>@Model.Data[key]</td></tr>
 }
 </table>
</body>
</html>

The view contains a table that displays the properties from the model object in a table that is styled
using Bootstrap. To add Bootstrap to the project, I used the Bower Configuration File item template to create
the bower.json file and added the Bootstrap package to the dependencies section, as shown in Listing 15-7.

Listing 15-7. Adding the Bootstrap Package in the bower.json File in the UrlsAndRoutes Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

The final preparation is to create the _ViewImports.cshtml file in the Views folder, which sets up the
built-in tag helpers for use in Razor views and imports the model namespace, as shown in Listing 15-8.

Listing 15-8. The Contents of the _ViewImports.cshtml File in the Views Folder

@using UrlsAndRoutes.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The configuration in the Startup class doesn’t contain any instructions for how MVC should map HTTP
requests to controllers and actions. When you start the application, any URL that you request will result in a
404 - Not Found response, as shown in Figure 15-1.

Chapter 15 ■ UrL roUting

434

Introducing URL Patterns
The routing system works its magic using a set of routes. These routes collectively comprise the URL schema
or scheme for an application, which is the set of URLs that your application will recognize and respond to.

I do not need to manually type out all of the individual URLs I am willing to support in my application.
Instead, each route contains a URL pattern, which is compared to incoming URLs. If an incoming URL
matches the pattern, then it is used by the routing system to process that URL. Here is a simple URL to get
started with:

http://mysite.com/Admin/Index

URLs can be broken down into segments. These are the parts of the URL, excluding the hostname and
query string, that are separated by the / character. In the example URL, there are two segments, as shown in
Figure 15-2.

The first segment contains the word Admin, and the second segment contains the word Index. To the
human eye, it is obvious that the first segment relates to the controller and the second segment relates to the
action. But, of course, I need to express this relationship using a URL pattern that can be understood by the
routing system. Here is a URL pattern that matches the example URL:

{controller}/{action}

When processing an incoming HTTP request, the job of the routing system is to match the URL that has
been requested to a pattern and extract values from the URL for the segment variables defined in the pattern.

The segment variables are expressed using braces (the { and } characters). The example pattern has two
segment variables with the names controller and action, so the value of the controller segment variable
will be Admin, and the value of the action segment variable will be Index.

Figure 15-1. Running the example application

Figure 15-2. The segments in an example URL

http://mysite.com/Admin/Index

Chapter 15 ■ UrL roUting

435

An MVC application will usually have several routes, and the routing system will compare the incoming
URL to the URL pattern of each route until it finds a match. By default, a pattern will match any URL that has
the correct number of segments. For example, the pattern {controller}/{action} will match any URL that
has two segments, as described in Table 15-3.

Table 15-3 highlights two key behaviors of URL patterns.

•	 URL patterns are conservative about the number of segments they match. They will
match only URLs that have the same number of segments as the pattern. You can see
this in the second and third examples in the table.

•	 URL patterns are liberal about the contents of segments they match. If a URL has the
correct number of segments, the pattern will extract the value of each segment for a
segment variable, whatever it might be.

These are the default behaviors, which are the keys to understanding how URL patterns function. I show
you how to change the defaults later in this chapter.

Creating and Registering a Simple Route
Once you have a URL pattern in mind, you can use it to define a route. Routes are defined in the Startup.cs
file and are passed as arguments to the UseMvc method that is used to set up MVC in the Configure method.
Listing 15-9 shows a basic route that maps requests to the controllers in the example application.

Listing 15-9. Defining a Basic Route in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

Table 15-3. Matching URLs

Request URL Segment Variables

http://mysite.com/Admin/Index controller = Admin action = Index

http://mysite.com/Admin No match—too few segments

http://mysite.com/Admin/Index/Soccer No match—too many segments

http://mysite.com/Admin/Index
http://mysite.com/Admin
http://mysite.com/Admin/Index/Soccer

Chapter 15 ■ UrL roUting

436

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "default", template: "{controller}/{action}");
 });
 }
 }
}

Routes are created using a lambda expression passed as an argument to the UseMvc configuration
method. The expression receives an object that implements the IRouteBuilder interface from the
Microsoft.AspNetCore.Routing namespace, and routes are defined using the MapRoute extension method.
To make routes easier to understand, the convention is to specify argument names when calling the
MapRoute method, which is why I have explicitly named the name and template arguments in the listing.
The name argument specified a name for a route, and the template argument is used to define the pattern.

 ■ Tip naming your routes is optional, and there is a philosophical argument that doing so sacrifices some of
the clean separation of concerns that otherwise comes from routing. i explain why this can be a problem in the
“generating a UrL from a Specific route” section in Chapter 16.

You can see the effect of the changes I made to the routing by starting the example application. There is
no change when the application first starts—you will still see a 404 error—but if you navigate to a URL that
matches the {controller}/{action} pattern, you will see a result like the one shown in Figure 15-3, which
illustrates the effect of navigating to /Admin/Index.

The reason that the root URL for the application doesn’t work is that the route that I added to the
Startup.cs file doesn’t tell MVC how to select a controller class and action method when the requested URL
has no segments. I’ll fix this in the next section.

Figure 15-3. Navigating using a simple route

http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 15 ■ UrL roUting

437

Defining Default Values
The example application returns a 404 message when the default URL is requested because it didn’t match
the pattern of the route defined in the Startup class. Since there are no segments in the default URL that
can be matched to the controller and action variables defined by the routing pattern, the routing system
doesn’t make a match.

I explained earlier that URL patterns will match only URLs with the specified number of segments. One
way to change this behavior is to use default values. A default value is applied when the URL doesn’t contain
a segment that can be matched by the routing pattern. Listing 15-10 defines a route that uses a default value.

Listing 15-10. Providing a Default Value in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller}/{action}",
 defaults: new { action = "Index" });
 });
 }
 }
}

Default values are supplied as properties in an anonymous type, passed to the MapRoute method as the
defaults argument. In the listing, I provided a default value of Index for the action variable.

This route will match all two-segment URLs, as it did previously. For example, if the URL http://
mydomain.com/Home/Index is requested, the route will extract Home as the value for the controller and will
extract Index as the value for the action.

But now that there is a default value for the action segment, the route will also match single-segment
URLs. When processing a single-segment URL, the routing system will extract the controller value from the
URL and use the default value for the action variable. In this way, the user can request /Home and MVC will
invoke the Index action method on the Home controller, as shown in Figure 15-4.

http://mydomain.com/Home/Index
http://mydomain.com/Home/Index

Chapter 15 ■ UrL roUting

438

Defining Inline Default Values
Default values can also be expressed as part of the URL pattern, which is a more concise way to express
routes, as shown in Listing 15-11. The inline syntax can be used only to provide defaults for variables that are
part of the URL pattern, but, as you will learn, it is often useful to be able to provide defaults outside of that
pattern. For this reason, it is useful to understand both ways of expressing defaults.

Listing 15-11. Defining Inline Default Values in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller}/{action=Index}");
 });
 }
 }
}

Figure 15-4. Using a default action

Chapter 15 ■ UrL roUting

439

I can go further and match URLs that do not contain any segment variables at all, relying on just the
default values to identify the action and controller. And as an example, Listing 15-12 shows how I have
mapped the root URL for the application by providing default values for both segments.

Listing 15-12. Providing Default Values in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}");
 });
 }
 }
}

By providing default values for both the controller and action variables, the route will match URLs
that have zero, one, or two segments, as shown in Table 15-4.

The fewer segments received in the incoming URL, the more the route relies on the default values, up
until the point where a URL with no segments is matched using only default values.

Table 15-4. Matching URLs

Segments Example Maps To

0 / controller = Home action = Index

1 /Customer controller = Customer action = Index

2 /Customer/List controller = Customer action = List

3 /Customer/List/All No match—too many segments

Chapter 15 ■ UrL roUting

440

You can see the effect of the default values by starting the example app. When the browser requests the
root URL for the application, the default values for the controller and action segment variables will be used,
which will lead MVC to invoke the Index action method on the Home controller, as shown in Figure 15-5.

Using Static URL Segments
Not all the segments in a URL pattern need to be variables. You can also create patterns that have static
segments. Suppose that the application needs to match URLs that are prefixed with Public, like this:

http://mydomain.com/Public/Home/Index

This can be done by using a URL pattern like the one shown in Listing 15-13.

Listing 15-13. Using Static Segments in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(

Figure 15-5. Using default values to broaden the scope of a route

http://mydomain.com/Public/Home/Index

Chapter 15 ■ UrL roUting

441

 name: "default",
 template: "{controller=Home}/{action=Index}");

 routes.MapRoute(name: "",
 template: "Public/{controller=Home}/{action=Index}");
 });
 }
 }
}

This new pattern will match only URLs that contain three segments, the first of which must be Public.
The other two segments can contain any value and will be used for the controller and action variables.
If the last two segments are omitted, then the default values will be used.

You can also create URL patterns that have segments containing both static and variable elements, such
as the one shown in Listing 15-14.

Listing 15-14. Mixing Segments in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute("", "X{controller}/{action}");

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}");

 routes.MapRoute(name: "",
 template: "Public/{controller=Home}/{action=Index}");

 });
 }
 }
}

Chapter 15 ■ UrL roUting

442

The pattern in this route matches any two-segment URL where the first segment starts with the letter X.
The value for controller is taken from the first segment, excluding the X. The action value is taken from
the second segment. You can see the effect of this route if you start the application and navigate to /XHome/
Index, the result of which is illustrated in Figure 15-6.

ROUTE ORDERING

in Listing 15-14, i defined a new route and placed it before all the others. i did this because routes are
applied in the order in which they are defined. the MapRoute method adds a route to the end of the
routing configuration, which means that routes are generally applied in the order in which they are
defined. i say “generally” because there are methods that insert routes in specific locations. i tend not
to use these methods because having routes applied in the order in which they are defined makes
understanding the routing for an application simpler.

the routing system tries to match an incoming UrL against the UrL pattern of the route that was
defined first and proceeds to the next route only if there is no match. the routes are tried in sequence
until a match is found or the set of routes has been exhausted. as a consequence, the most specific
routes must be defined first. the route i added in Listing 15-14 is more specific than the route that
follows. Suppose that i reversed the order of the routes, like this:

...
routes.MapRoute("MyRoute", "{controller=Home}/{action=Index}");
routes.MapRoute("", "X{controller}/{action}");
...

then the first route, which matches any UrL with zero, one, or two segments, will always be the one
that is used. the more specific route, which is now second in the list, will never be reached. the new
route excludes the leading X of a UrL, but this won’t be done by the older route. therefore, a UrL such
as this:

http://mydomain.com/XHome/Index

will be targeted to a controller called XHome, assuming that there is an XHomeController class in the
application and it has an action method called Index.

Figure 15-6. Mixing static and variable elements in a single segment

http://mydomain.com/XHome/Index

Chapter 15 ■ UrL roUting

443

Static URL segments and default values can be combined to create an alias for a specific URL.
The URL schema that you use forms a contract with your users when you deploy your application, and if
you subsequently refactor an application, you need to preserve the previous URL format so that any URL
favorites, macros, or scripts the user has created continue to work.

Imagine that there used to be a controller called Shop, which has now been replaced by the Home
controller. Listing 15-15 shows how I can create a route to preserve the old URL schema.

Listing 15-15. Segments and Default Values in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "ShopSchema",
 template: "Shop/{action}",
 defaults: new { controller = "Home" });

 routes.MapRoute("", "X{controller}/{action}");

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}");

 routes.MapRoute(name: "",
 template: "Public/{controller=Home}/{action=Index}");

 });
 }
 }
}

The route matches any two-segment URL where the first segment is Shop. The action value is taken
from the second URL segment. The URL pattern doesn’t contain a variable segment for controller, so the
default value is used. The defaults argument provides the controller value because there is no segment to
which the value can be applied to as part of the URL pattern.

Chapter 15 ■ UrL roUting

444

The result is that a request for an action on the Shop controller is translated to a request for the Home
controller. You can see the effect of this route by starting the app and navigating to the /Shop/Index URL. As
Figure 15-7 shows, the new route causes MVC to target the Index action method in the Home controller.

I can go one step further and create aliases for action methods that have been refactored away as well
and are no longer present in the controller. To do this, I create a static URL and provide the controller and
action values as defaults, as shown in Listing 15-16.

Listing 15-16. Aliasing a Controller and an Action in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {

 routes.MapRoute(
 name: "ShopSchema2",
 template: "Shop/OldAction",
 defaults: new { controller = "Home", action = "Index" });

Figure 15-7. Creating an alias to preserve URL schemas

Chapter 15 ■ UrL roUting

445

 routes.MapRoute(
 name: "ShopSchema",
 template: "Shop/{action}",
 defaults: new { controller = "Home" });

 routes.MapRoute("", "X{controller}/{action}");

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}");

 routes.MapRoute(name: "",
 template: "Public/{controller=Home}/{action=Index}");

 });
 }
 }
}

Notice that the new route is defined first because it is more specific than the routes that follow.
If a request for Shop/OldAction were processed by the next defined route, for example, I may get a different
result from the one I want if there is a controller with an OldAction action method.

Defining Custom Segment Variables
The controller and action segment variables have special meaning in MVC applications and correspond
to the controller and action method that will be used to service the request. These are only the built-in
segment variables, and custom segment variables can also be defined, as shown in Listing 15-17. (I have
removed the existing routes from the previous section so I can start over).

Listing 15-17. Defining Additional Variables in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();

Chapter 15 ■ UrL roUting

446

 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id=DefaultId}");
 });
 }
 }
}

The URL pattern defines the standard controller and action variables, as well as a custom variable
called id. This route will match any zero-to-three-segment URL. The contents of the third segment will be
assigned to the id variable, and if there is no third segment, the default value will be used.

 ■ Caution Some names are reserved and not available for custom segment variable names. these are
controller, action, area, and page. the meaning of the first two is obvious. i explain areas in the next
chapter, and page is used by the razor pages feature.

The Controller class, which is the base for controllers, defines a RouteData property that returns a
Microsoft.AspNetCore.Routing.RouteData object that provides details about the routing system and the
way that the current request has been routed. Within a controller, I can access any of the segment variables
in an action method by using the RouteData.Values property, which returns a dictionary containing
the segment variables. To demonstrate, I have added an action method to the Home controller called
CustomVariable, as shown in Listing 15-18.

Listing 15-18. Accessing a Segment Variable in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 public ViewResult CustomVariable() {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(CustomVariable),
 };
 r.Data["Id"] = RouteData.Values["id"];
 return View("Result", r);
 }
 }
}

Chapter 15 ■ UrL roUting

447

This action method obtains the value of the custom id variable in the route URL pattern using the
RouteData.Values property, which returns a dictionary of the variables produced by the routing system.
The custom variable is added to the view model object and can be seen by running the application and
requesting the following URL:

/Home/CustomVariable/Hello

The routing template matches the third segment in this URL as the value for the id variable, producing
the results shown in Figure 15-8.

The URL pattern in Listing 15-17 defines a default value for the id segment, which means that the route
can also match URLs that have two segments. You can see the use of the default value by requesting this URL:

/Home/CustomVariable

The routing system uses the default value for the custom variable, as shown in Figure 15-9.

Figure 15-8. Displaying the value of a custom segment variable

Figure 15-9. The default value for a custom segment variable

Chapter 15 ■ UrL roUting

448

Using Custom Variables as Action Method Parameters
Using the RouteData.Values collection is only one way to access custom route variables, and the other
way can be more elegant. If an action method defines parameters with names that match the URL pattern
variables, MVC will automatically pass the values obtained from the URL as arguments to the action method.

The custom variable defined in the route in Listing 15-17 is called id. I can modify the CustomVariable
action method in the Home controller so that it has a parameter of the same name, as shown in Listing 15-19.

Listing 15-19. Adding an Action Parameter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 public ViewResult CustomVariable(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(CustomVariable),
 };
 r.Data["Id"] = id;
 return View("Result", r);
 }
 }
}

When the routing system matches a URL against the route defined in Listing 15-17, the value of the third
segment in the URL is assigned to the custom variable id. MVC compares the list of segment variables with
the list of action method parameters and, if the names match, passes the values from the URL to the method.

The type of the id parameter is a string, but MVC will try to convert the URL value to whatever
parameter type is used. If the action method declared the id parameter as an int or a DateTime, then it
would receive the value from the URL converted to an instance of that type. This is an elegant and useful
feature that removes the need for me to handle the conversion myself. You can see the effect of the action
method parameter by starting the application and requesting /Home/CustomVariable/Hello, which
produces the result shown in Figure 15-10. If you omit the third segment, then the action method will be
provided with the default segment value, which is also shown in the figure.

 ■ Note MVC uses the model binding feature to convert the values contained in the UrL to .net types, and
model binding can handle much more complex situations than shown in this example. i describe model binding
in Chapter 26.

http://dx.doi.org/10.1007/978-1-4842-3150-0_26

Chapter 15 ■ UrL roUting

449

Defining Optional URL Segments
An optional URL segment is one that the user does not need to specify and for which no default value is
specified. An optional segment is denoted by a question mark (the ? character) after the segment name, as
shown in Listing 15-20.

Listing 15-20. Specifying an Optional Segment in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

This route will match URLs whether or not the id segment has been supplied. Table 15-5 shows how
this works for different URLs.

Figure 15-10. Accessing segment variables using action method parameters

Chapter 15 ■ UrL roUting

450

As you can see from the table, the id variable is added to the set of variables only when there is a
corresponding segment in the incoming URL. This feature is useful if you need to know whether the user
supplied a value for a segment variable. When no value has been supplied for an optional segment variable,
the value of the corresponding parameter will be null. I have updated the Home controller to respond when
no value is provided for the id segment variable in Listing 15-21.

Listing 15-21. Checking for a Segment in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 public ViewResult CustomVariable(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(CustomVariable),
 };
 r.Data["Id"] = id ?? "<no value>";
 return View("Result", r);
 }
 }
}

Figure 15-11 shows the result of starting the application and navigating to the /Home/CustomVariable
URL, which doesn’t include a value for the id segment variable.

Table 15-5. Matching URLs with an Optional Segment Variable

Segments Example URL Maps To

0 / controller = Home action = Index

1 /Customer controller = Customer action = Index

2 /Customer/List controller = Customer action = List

3 /Customer/List/All controller = Customer action = List id = All

4 /Customer/List/All/Delete No match—too many segments

Chapter 15 ■ UrL roUting

451

UNDERSTANDING THE DEFAULT ROUTING CONFIGURATION

When you add MVC to the Startup class, you can do so using the UseMvcWithDefaultRoute method.
this is just a convenience method for setting up the most common routing configuration and is
equivalent to the following code:

...
app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
});
...

this default configuration matches UrLs that target controller classes and action method by name, with
an optional id segment. if the controller or action segments are missing, then default values are
used to target the Home controller and the Index action method, respectively.

Defining Variable-Length Routes
Another way of changing the default conservatism of URL patterns is to accept a variable number of URL
segments. This allows you to route URLs of arbitrary lengths in a single route. You define support for variable
segments by designating one of the segment variables as a catchall, done by prefixing it with an asterisk (the
* character), as shown in Listing 15-22.

Listing 15-22. Designating a Catchall Variable in the Startup.cs File in the UrlsAndRoutes Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {

 public class Startup {

Figure 15-11. Detecting when a URL doesn’t contain a value for an optional segment variable

Chapter 15 ■ UrL roUting

452

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id?}/{*catchall}");
 });
 }
 }
}

I have extended the route from the previous example to add a catchall segment variable, which I
imaginatively called catchall. This route will now match any URL, irrespective of the number of segments
it contains or the value of any of those segments. The first three segments are used to set values for the
controller, action, and id variables, respectively. If the URL contains additional segments, they are all
assigned to the catchall variable, as shown in Table 15-6.

In Listing 15-23, I have updated the Customer controller so that the List action passes the value of the
catchall variable to the view via the model object.

Listing 15-23. Updating an Action in the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {
 public class CustomerController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

Table 15-6. Matching URLs with a Catchall Segment Variable

Segments Example URL Maps To

0 / controller = Home action = Index

1 /Customer controller = Customer action = Index

2 /Customer/List controller = Customer action = List

3 /Customer/List/All controller = Customer action = List id = All

4 /Customer/List/All/Delete controller = Customer action = List id = All
catchall = Delete

5 /Customer/List/All/Delete/Perm controller = Customer action = List id = All
catchall = Delete/Perm

Chapter 15 ■ UrL roUting

453

 public ViewResult List(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(List),
 };
 r.Data["Id"] = id ?? "<no value>";
 r.Data["catchall"] = RouteData.Values["catchall"];
 return View("Result", r);
 }
 }
}

To test the catchall segment, run the application and request the following URL:

/Customer/List/Hello/1/2/3

There is no upper limit to the number of segments that the URL pattern in this route will match.
Figure 15-12 shows the effect of the catchall segment. Notice that the segments captured by the catchall are
presented in the form segment/segment/segment and that I am responsible for processing the string to break
out the individual segments.

Constraining Routes
At the start of the chapter, I described how URL patterns are conservative when they match the number of
segments in the URL and liberal when they match the content of segments. The previous few sections have
explained different techniques for controlling the degree of conservatism: making a route match more or
fewer segments using default values, optional variables, and so on.

It is now time to look at how to control the liberalism in matching the content of URL segments, namely,
how to restrict the set of URLs that a route will match against. Listing 15-24 demonstrates the use of a simple
constraint that limits the URLs that a route will match.

Listing 15-24. Constraining a Route in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;

Figure 15-12. Using a catchall segment

Chapter 15 ■ UrL roUting

454

using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id:int?}");
 });
 }
 }
}

Constraints are separated from the segment variable name with a colon (the : character).
The constraint in the listing is int, and it has been applied to the id segment. This is an example of an
inline constraint, which is defined as part of the URL pattern applied to a single segment:

...
template: "{controller}/{action}/{id:int?}",
...

The int constraint only allows the URL pattern to match segments whose value can be parsed to an
integer value. The id segment is optional, so the route will match segments that omit the id segment, but if
the segment is present, then it must be an integer value, as summarized in Table 15-7.

Table 15-7. Matching URLs with a Constraint

Example URL Maps To

/ controller = Home
action = Index
id = null

/Home/CustomVariable/Hello No match—id segment cannot be parsed to an int value.

/Home/CustomVariable/1 controller = Home
action = CustomVariable
id = 1

/Home/CustomVariable/1/2 No match—too many segments

Chapter 15 ■ UrL roUting

455

Constraints can also be specified outside of the URL pattern, using the constraints argument to the
MapRoute method when defining a route. This technique is useful if you prefer to keep the URL pattern
separate from its constraints or if you prefer to follow the routing style used by earlier versions of MVC,
which did not support inline constraints. Listing 15-25 shows the same integer constraint on the id
segment variable, expressed using a separate constraint. When using this format, the default values are also
expressed externally.

Listing 15-25. Expressing a Constraint in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" },
 constraints: new { id = new IntRouteConstraint() });
 });
 }
 }
}

The constraints argument to the MapRoute method is defined using an anonymous type whose
property names correspond to the segment variable being constrained. The Microsoft.AspNetCore.
Routing.Constraints namespace contains a set of classes that can be used to define individual constraints.
In Listing 15-25, the constraints argument is configured to use an IntRouteConstraint object for the id
segment, creating the same effect as the inline constraint shown in Listing 15-24.

Table 15-8 describes the complete set of constraint classes in the Microsoft.AspNetCore.Routing.
Constraints namespace and their inline equivalents for the constraints that can be applied to single
segments in the URL pattern, some of which I describe in the sections that follow.

Chapter 15 ■ UrL roUting

456

 ■ Tip You can restrict access to action methods to requests made with specific http verbs, such as GET or
POST, using a set of attributes provided by MVC, such as the HttpGet and HttpPost attributes. See Chapter 7
for details of using these attributes to handle forms in controllers, and see Chapter 20 for a full list of the
attributes available.

Table 15-8. Segment-Level Route Constraints

Inline Constraint Description Class Name

alpha Matches alphabet characters,
irrespective of case (A–Z, a–z)

AlphaRouteConstraint()

bool Matches a value that can be
parsed into a bool

BoolRouteConstraint()

datetime Matches a value that can be
parsed into a DateTime

DateTimeRouteConstraint()

decimal Matches a value that can be
parsed into a decimal

DecimalRouteConstraint()

double Matches a value that can be
parsed into a double

DoubleRouteConstraint()

float Matches a value that can be
parsed into a float

FloatRouteConstraint()

guid Matches a value to a globally
unique identifier

GuidRouteConstraint()

int Matches a value that can be
parsed into an int

IntRouteConstraint()

length(len) length(min, max) Matches a value with the specified
number of characters or that is
between min and max characters
in length (inclusive)

LengthRouteConstraint(len)
LengthRouteConstraint
(min, max)

long Matches a value that can be
parsed into a long

LongRouteConstraint()

maxlength(len) Matches a string with no more
than len characters

MaxLengthRouteConstraint(len)

max(val) Matches an int value if the value
is less than val

MaxRouteConstraint(val)

minlength(len) Matches a string with at least len
characters

MinLengthRouteConstraint(len)

min(val) Matches an int value if the value
is more than val

MinRouteConstraint(val)

range(min, max) Matches an int value if the value
is between min and max (inclusive)

RangeRouteConstraint
(min, max)

regex(expr) Matches a regular expression RegexRouteConstraint(expr)

http://dx.doi.org/10.1007/978-1-4842-3150-0_7
http://dx.doi.org/10.1007/978-1-4842-3150-0_20

Chapter 15 ■ UrL roUting

457

Constraining a Route Using a Regular Expression
The constraint that offers the most flexibility is regex, which matches a segment using a regular expression.
In Listing 15-26, I have constrained the controller segment to limit the range of URLs that it will match.

Listing 15-26. Using a Regular Expression in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller:regex(^H.*)=Home}/{action=Index}/{id?}");
 });
 }
 }
}

The constraint I used restricts the route so that it will only match URLs where the controller segment
starts with the letter H.

 ■ Note Default values are applied before constraints are checked. So, for example, if i request the UrL /,
the default value for controller, which is Home, is applied. the constraints are then checked, and since the
controller value begins with H, the default UrL will match the route.

Regular expressions can constrain a route so that only specific values for a URL segment will cause a
match. This is done using the bar (|) character, as shown in Listing 15-27. (I split the URL pattern into two so
that it will fit onto the page, which you won’t need to worry about in a real project).

Chapter 15 ■ UrL roUting

458

Listing 15-27. Constraining a Route in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller:regex(^H.*)=Home}/"
 + "{action:regex(^Index$|^About$)=Index}/{id?}");
 });
 }
 }
}

This constraint will allow the route to match only URLs where the value of the action segment is Index
or About. Constraints are applied together, so the restrictions imposed on the value of the action variable are
combined with those imposed on the controller variable. This means that the route in Listing 15-27 will match
URLs only when the controller variable begins with the letter H and the action variable is Index or About.

Using Type and Value Constraints
Most of the constraints are used to restrict routes so they only match URLs with segments that can be
converted to specified types or have a specific format. The int constraint I used at the start of this section
is a good example: it will match routes only when the value of the constrained segment can be parsed to a
.NET int value. Listing 15-28 demonstrates the use of the range constraint, which restricts a route so that it
matches URLs only when a segment value can be converted to an int and falls between specified values.

Listing 15-28. Constraining Based on Type and Value in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;

Chapter 15 ■ UrL roUting

459

using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id:range(10,20)?}");
 });
 }
 }
}

The constraint in this example has been applied to the optional id segment. The constraint will be
ignored if the request URL doesn’t have at least three segments. If the id segment is present, the route will
match the URL only if the segment value can be converted to an int and the value is between 10 and 20. The
range constraint is inclusive, meaning that values of 10 and 20 are considered to be within the range.

Combining Constraints
If you need to apply multiple constraints to a single segment, then you chain them together so that each
constraint is separated by a colon, as shown in Listing 15-29.

Listing 15-29. Combining Inline Constraints in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

Chapter 15 ■ UrL roUting

460

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}"
 + "/{id:alpha:minlength(6)?}");
 });
 }
 }
}

In this listing, I have applied both the alpha and minlength constraints to the id segment. The question
mark that denotes an optional segment is applied after all of the constraints. The effect of combining these
constraints is that the route will match URLs only where the id segment is omitted (because it is optional) or
when it is present and contains at least six alphabet characters.

If you are not using inline constraints, then you must use the Microsoft.AspNetCore.Routing.
CompositeRouteConstraint class, which allows multiple constraints to be associated with a single property in
an anonymously typed object. Listing 15-30 shows the combination of constraints that I used in Listing 15-29.

Listing 15-30. Combining Separate Constraints in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" },
 constraints: new {
 id = new CompositeRouteConstraint(
 new IRouteConstraint[] {

Chapter 15 ■ UrL roUting

461

 new AlphaRouteConstraint(),
 new MinLengthRouteConstraint(6)
 })
 });
 });
 }
 }
}

The constructor for the CompositeRouteConstraint class accepts an enumeration of objects that
implement the IRouteConstraint objects, which is the interface that defines route constraints. The routing
system will allow the route to match a URL only if all the constraints are satisfied.

Defining a Custom Constraint
If the standard constraints are not sufficient for your needs, you can define your own custom constraints by
implementing the IRouteConstraint interface, which is defined in the Microsoft.AspNetCore.Routing
namespace. To demonstrate this feature, I added an Infrastructure folder to the example project and
created a new class file called WeekDayConstraint.cs, the contents of which are shown in Listing 15-31.

Listing 15-31. The Contents of the WeekDayConstraint.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Routing;
using System.Linq;

namespace UrlsAndRoutes.Infrastructure {
 public class WeekDayConstraint : IRouteConstraint {
 private static string[] Days = new[] { "mon", "tue", "wed", "thu",
 "fri", "sat", "sun" };

 public bool Match(HttpContext httpContext, IRouter route,
 string routeKey, RouteValueDictionary values,
 RouteDirection routeDirection) {

 return Days.Contains(values[routeKey]?.ToString().ToLowerInvariant());
 }
 }
}

The IRouteConstraint interface defines the Match method, which is called to allow a constraint to
decide whether a request should be matched by the route. The parameters for the Match method provide
access to the request from the client, the route, the name of the segment that is being constrained, the
segment variables that have been extracted from the URL, and whether the request is to check for an
incoming or outgoing URL (I explain outgoing URLs in Chapter 16).

In the example, I use the routeKey parameter to get the value of the segment variable to which the
constraint has been applied from the values parameter, convert it to a lowercase string, and see whether it
matches one of the days of the week that are defined in the static Days field. Listing 15-32 applies the new
constraint to the example route using the separate technique.

http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 15 ■ UrL roUting

462

Listing 15-32. Applying a Custom Constraint in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller}/{action}/{id?}",
 defaults: new { controller = "Home", action = "Index" },
 constraints: new { id = new WeekDayConstraint() });
 });
 }
 }
}

This route will match a URL only if the id segment is absent (such as /Customer/List) or if it matches
one of the days of the week defined in the constraint class (such as /Customer/List/Fri).

Defining an Inline Custom Constraint
Setting up a custom constraint so that it can be used inline requires an additional configuration step, as
shown in Listing 15-33.

Listing 15-33. Using a Custom Constraint Inline in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;

Chapter 15 ■ UrL roUting

463

using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options =>
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller=Home}/{action=Index}/{id:weekday?}");
 });
 }
 }
}

In the ConfigureService method I configure the RouteOptions object, which controls some of the
behaviors of the routing system. The ConstraintMap property returns the dictionary that is used to translate
the names of inline constraints to the IRouteConstraint implementation classes that provide the constraint
logic. I add a new mapping to the dictionary so that I can refer to the WeekDayConstraint class inline as
weekday, like this:

...
template: "{controller=Home}/{action=Index}/{id:weekday?}",
...

The effect of the constraint is the same, but setting up the mapping allows custom classes to be used inline.

Using Attribute Routing
All the examples so far in this chapter have been defined using a technique known as convention-based
routing. MVC also supports for a technique known as attribute routing, in which routes are defined by C#
attributes that are applied directly to the controller classes. In the sections that follow, I show you how to
create and configure routes using attributes, which can be mixed freely with the convention-based routes
shown in earlier examples.

Preparing for Attribute Routing
Attribute routing is enabled when you call the UseMvc method in the Startup.cs file. MVC examines the
controller classes in the application, finds any that have routing attributes, and creates routes for them.

Chapter 15 ■ UrL roUting

464

For this section of the chapter, I have returned the example application to the default routing
configuration described in the “Understanding the Default Routing Configuration” sidebar, as shown in
Listing 15-34.

Listing 15-34. Using the Default Routing Configuration in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options =>
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The default route will match URLs using the following pattern:

{controller}/{action}/{id?}

Applying Attribute Routing
The Route attribute is used to specify routes for individual controllers and actions. In Listing 15-35, I have
applied the Route attribute to the CustomerController class.

Chapter 15 ■ UrL roUting

465

Listing 15-35. Applying the Route Attribute in the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {
 public class CustomerController : Controller {

 [Route("myroute")]
 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

 public ViewResult List(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(List),
 };
 r.Data["id"] = id ?? "<no value>";
 r.Data["catchall"] = RouteData.Values["catchall"];
 return View("Result", r);
 }
 }
}

The Route attribute works by defining a route to the action method or controller it is applied to. In the
listing, I applied the attribute to the Index action method and specified myroute as the route that should
be used. The effect is to change the set of routes that are used to reach the action methods defined by the
Customer controller, as described in Table 15-9.

There are two important points to note. The first is that when you use the Route attribute, the value you
provide to configure the attribute is used to define a complete route so that myroute becomes the complete
URL to reach the Index action method. The second point to note is that using the Route attribute prevents
the default routing configuration from being used so that the Index action method can no longer be reached
by using the /Customer/Index URL.

Changing the Name of an Action Method
Defining a unique route for a single action method isn’t useful in most applications, but the Route attribute
can also be used more flexibly. In Listing 15-36, I have used the special [controller] token in the route to
refer to the controller and set up the base section of the route.

Table 15-9. The Routes for the Customer Controller

Route Description

/Customer/List This URL targets the List action method, relying on the default route in the Startup.
cs file.

/myroute This URL targets the Index action method.

Chapter 15 ■ UrL roUting

466

 ■ Tip You can also change the name of an action using the ActionName attribute, which i describe in
Chapter 31.

Listing 15-36. Renaming an Action in the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {
 public class CustomerController : Controller {

 [Route("[controller]/MyAction")]
 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

 public ViewResult List(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(List),
 };
 r.Data["id"] = id ?? "<no value>";
 r.Data["catchall"] = RouteData.Values["catchall"];
 return View("Result", r);
 }
 }
}

Using the [controller] token in the argument for the Route attribute is rather like using a nameof
expression and allows for the route to the controller to be specified without hard-coding the class name.
Table 15-10 describes the effect of the attribute in Listing 15-36.

Creating a More Complex Route
The Route attribute can also be applied to the controller class, allowing for the structure of the route to be
defined, as shown in Listing 15-37.

Table 15-10. The Routes for the Customer Controller

Route Description

/Customer/List This URL targets the List action method.

/Customer/MyAction This URL targets the Index action method.

http://dx.doi.org/10.1007/978-1-4842-3150-0_31

Chapter 15 ■ UrL roUting

467

Listing 15-37. Applying the Route Attribute in the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 [Route("app/[controller]/actions/[action]/{id?}")]
 public class CustomerController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

 public ViewResult List(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(List),
 };
 r.Data["id"] = id ?? "<no value>";
 r.Data["catchall"] = RouteData.Values["catchall"];
 return View("Result", r);
 }
 }
}

This route defines mixes static segments and variable segments and uses the [controller] and
[action] tokens to refer to the names of the controller class and the action methods. Table 15-11 shows the
effect of the route.

Applying Route Constraints
Routes defined using attributes can be constrained just like those defined in the Startup.cs file, using
the same inline technique used for convention-based routes. In Listing 15-38, I have applied the custom
constraint created earlier in the chapter to the optional id segment defined with the Route attribute.

Table 15-11. The Routes for the Customer Controller

Route Description

app/customer/actions/index This URL targets the Index action method.

app/customer/actions/index/myid This URL targets the Index action method with the optional id
segment set to myid.

app/customer/actions/list This URL targets the List action method.

app/customer/actions/list/myid This URL targets the List action method with the optional id
segment set to myid.

Chapter 15 ■ UrL roUting

468

Listing 15-38. Constraining a Route in the CustomerController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 [Route("app/[controller]/actions/[action]/{id:weekday?}")]
 public class CustomerController : Controller {

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(CustomerController),
 Action = nameof(Index)
 });

 public ViewResult List(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(List),
 };
 r.Data["id"] = id ?? "<no value>";
 r.Data["catchall"] = RouteData.Values["catchall"];
 return View("Result", r);
 }
 }
}

You can use all the constraints described in Table 15-8 or, as shown in the listing, use custom
constraints that have been registered with the RouteOptions service. Multiple constraints can be applied by
chaining them together and separating them with colons.

Summary
In this chapter, I took an in-depth look at the routing system. You have seen how routes are defined by
convention or with attributes. You have seen how incoming URLs are matched and handled and how to
customize routes by changing the way that they match URL segments and by using default values and
optional segments. I also showed you how to constrain routes to narrow the range of requests that they will
match, both using built-in constraints and using custom constraint classes.

In the next chapter, I show you how to generate outgoing URLs from routes in your views and how to use
the areas feature, which relies on the routing system and which can be used to manage large and complex
MVC applications.

469© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_16

CHAPTER 16

Advanced Routing Features

In the previous chapter, I showed you how to use the routing system to handle incoming URLs, but this is
only part of the story. You also need to be able use your URL schema to generate outgoing URLs you can
embed in your views so that users can click links and submit forms back to your application in a way that will
target the correct controller and action.

In this chapter, I show you different techniques for generating outgoing URLs, how to customize the
routing system by replacing the standard MVC routing implementation classes, and how to use the MVC
areas feature, which allows you to break a large and complex MVC application into manageable chunks.
I finish this chapter with some best-practice advice about URL schemas in MVC applications. Table 16-1 puts
advanced routing features in context.

Table 16-2 summarizes the chapter.

Table 16-1. Putting Advanced Routing Features in Context

Question Answer

What is it? The routing system provides features that go beyond matching the
URLs for HTTP requests. There is also support for generating URLs
in views, replacing the built-in routing functionality with custom
classes, and structuring the application into isolated sections.

Why is it useful? Each feature is useful for a different reason. Being able to generate
URLs makes it easy to change the URL schema without having to
update all of your views, being able to use custom classes allows
the routing system to be tailored to your needs, and being able to
structure the application makes it easier to build complex projects.

How is it used? See the sections in this chapter for details.

Are there any pitfalls or limitations? The routing configuration for a complex application can become
hard to manage.

Are there any alternatives? No. The routing system is an integral part of ASP.NET.

https://doi.org/10.1007/978-1-4842-3150-0_16

Chapter 16 ■ advanCed routing Features

470

Preparing the Example Project
I am going to continue to use the UrlsAndRoutes project from the previous chapter. The only change
required is in the Startup class, where I have replaced the UseMvcWithDefaultRoute method with an explicit
route that has the same effect, as shown in Listing 16-1.

Listing 16-1. Changing the Routing Configuration in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options =>
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();

Table 16-2. Chapter Summary

Problem Solution Listing

Generate an anchor element with a
URL

Use the asp-action and asp-controller
attributes

2–5

Provide values for routing segments Use attributes with the asp-route- prefix 6–7

Generate fully qualified URLs Use the asp-procotol, asp-host, and asp-
fragment attributes

8

Select a route to generate a URL Use the asp-route attribute 9–10

Generate a URL without an HTML
element

Use the Url.Action helper method in a view or
in an action method

11–12

Customize the routing system Use the Configure method in the Startup class 13

Create a custom routing class Implement the IRouter interface 14–21

Break an application into functional
sections

Create areas and use the Area attribute 22–28

Chapter 16 ■ advanCed routing Features

471

 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

If you start the application, the browser will request the default URL, which will be sent to the Index
action on the Home controller, as shown in Figure 16-1.

Generating Outgoing URLs in Views
In almost every MVC application, you will want to allow the user to navigate from one view to another, which
will usually rely on including a link in the first view that targets the action method that generates the second
view. It is tempting to just add a static a element (known as an anchor element) whose href attribute targets
the action method, like this:

This is an outgoing URL

Assuming that the application is using the default routing configuration, this HTML element creates a
link that will target the CustomVariable action method on the Home controller. Manually defined URLs like
this one are quick and simple to create. They are also extremely dangerous, and you will break all the URLs
you have hard-coded when you change the URL schema for your application. You then must trawl through
all the views in your application and update all the references to your controllers and action methods, a
process that is tedious, error-prone, and difficult to test. A better alternative is to use the routing system to
generate outgoing URLs, which ensures that the URL scheme is used to produce the URLs dynamically and
in a way that is guaranteed to reflect the URL schema of the application.

Generating Outgoing Links
The simplest way to generate an outgoing URL in a view is to use the anchor tag helper, which will generate
the href attribute for an HTML a element, as illustrated by Listing 16-2, which shows an addition I made to
the /Views/Shared/Result.cshtml view.

Figure 16-1. Running the example application

Chapter 16 ■ advanCed routing Features

472

 ■ Tip i explain how tag helpers work in detail in Chapter 23.

Listing 16-2. Using the Anchor Tag Helper in the Result.cshtml File in the Views/Shared Folder

@model Result
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Routing</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Controller:</th><td>@Model.Controller</td></tr>
 <tr><th>Action:</th><td>@Model.Action</td></tr>
 @foreach (string key in Model.Data.Keys) {
 <tr><th>@key :</th><td>@Model.Data[key]</td></tr>
 }
 </table>
 <a asp-action="CustomVariable">This is an outgoing URL
</body>
</html>

The asp-action attribute is used to specify the name of the action method that the URL in the href
attribute should target. You can see the result by starting the application, as shown in Figure 16-2.

The tag helper sets the href attribute on the a element using the current routing configuration. If you
inspect the HTML sent to the browser, you will see that it contains the following element:

This is an outgoing URL

Figure 16-2. Using a tag helper to generate a link

http://dx.doi.org/10.1007/978-1-4842-3150-0_23

Chapter 16 ■ advanCed routing Features

473

This may seem like a lot of additional effort to re-create the manually defined URL I showed you earlier,
but the benefit of this approach is that it automatically responds to changes in the routing configuration. To
demonstrate, I have added a new route to the Startup.cs file, as shown in Listing 16-3.

Listing 16-3. Adding a Route to the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options =>
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {

 routes.MapRoute(
 name: "NewRoute",
 template: "App/Do{action}",
 defaults: new { controller = "Home" });

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

The new route changes the URL schema for requests that target the Home controller. If you start the app,
you will see that this change is reflected in the HTML that is generated by the ActionLink HTML helper
method, as follows:

This is an outgoing URL

Chapter 16 ■ advanCed routing Features

474

Generating links using a tag helper addresses an important maintenance issue. I am able to change the
routing schema and have the outgoing links in the views reflect the change automatically without having to
manually edit the views in the application.

When you click the link, the outgoing URL is used to create an incoming HTTP request, and the same route
is then used to target the action method and controller that will handle the request, as shown in Figure 16-3.

UNDERSTANDING OUTBOUND URL ROUTE MATCHING

You have seen how changing the routes that define your urL schema changes the way that outgoing
urLs are generated. applications will usually define several routes, and it is important to understand
how they are selected for urL generation. the routing system processes the routes in the order that
they were defined, and each route is inspected in turn to see whether it is a match, which requires
these three conditions to be met:

• a value must be available for every segment variable defined in the urL pattern. to find
values for each segment variable, the routing system looks first at the values you have
provided (using the properties of an anonymous type), then at the variable values for
the current request, and finally at the default values defined in the route. (i return to the
second source of these values later in this chapter).

• none of the values provided for the segment variables may disagree with the
default-only variables defined in the route. these are variables for which default
values have been provided but which do not occur in the urL pattern. For example,
in this route definition, myVar is a default-only variable:

 routes.MapRoute("MyRoute", "{controller}/{action}",
 new { myVar = "true" });

For this route to be a match, i must take care to not supply a value for myvar or to make sure that the
value i do supply matches the default value.

• the values for all the segment variables must satisfy the route constraints. see the
“Constraining routes” section in the previous chapter for examples of different kinds of
constraints.

Figure 16-3. The effect of clicking a link is to make an outgoing URL into an incoming request

Chapter 16 ■ advanCed routing Features

475

to be clear, the routing system doesn’t try to find the route that provides the best matching route. it
finds only the first match, at which point it uses the route to generate the urL; any subsequent routes
are ignored. For this reason, you should define your most specific routes first. it is important to check
your outgoing urL generation. if you try to generate a urL for which no matching route can be found,
you will create a link that contains an empty href attribute, like this:

This is an outgoing URL

the link will render in the view properly but won’t function as intended when the user clicks it. if you are
generating just the urL (which i show you how to do later in the chapter), then the result will be null,
which renders as the empty string in views. You can exert some control over route matching by using
named routes. see the “generating a urL from a specific route” section later in this chapter for details.

Targeting Other Controllers
When you specify the asp-action attribute on an a element, the tag helper assumes you want to target an
action in the same controller that has caused the view to be rendered. To create an outgoing URL that targets
a different controller, you can use the asp-controller attribute, as shown in Listing 16-4.

Listing 16-4. Targeting a Different Controllers in the Result.cshtml File in the Views/Shared Folder

@model Result
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Routing</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Controller:</th><td>@Model.Controller</td></tr>
 <tr><th>Action:</th><td>@Model.Action</td></tr>
 @foreach (string key in Model.Data.Keys) {
 <tr><th>@key :</th><td>@Model.Data[key]</td></tr>
 }
 </table>
 <a asp-controller="Admin" asp-action="Index">
 This targets another controller

</body>
</html>

Chapter 16 ■ advanCed routing Features

476

When you render the view, you will see the following HTML generated:

This targets another controller

The request for a URL that targets the Index action method on the Admin controller has been expressed
as /Admin by the tag helper. The routing system knows that the route defined in the application will use the
Index action method by default, allowing it to omit unneeded segments.

The routing system includes routes that have been defined using the Route attribute when determining
how to target a given action method. In Listing 16-5, the asp-controller attribute targets the Index action in
the Customer controller, to which the Route attribute was applied in Chapter 15.

Listing 16-5. Targeting an Action in the Result.cshtml File in the Views/Shared Folder

@model Result
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Routing</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="panel-body">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Controller:</th><td>@Model.Controller</td></tr>
 <tr><th>Action:</th><td>@Model.Action</td></tr>
 @foreach (string key in Model.Data.Keys) {
 <tr><th>@key :</th><td>@Model.Data[key]</td></tr>
 }
 </table>
 <a asp-controller="Customer" asp-action="Index">This is an outgoing URL
</body>
</html>

The link that is generated is as follows:

This is an outgoing URL

This corresponds to the Route attribute I applied to the Customer controller in Chapter 15.

...
[Route("app/[controller]/actions/[action]/{id:weekday?}")]
public class CustomerController : Controller {
...

http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_15

Chapter 16 ■ advanCed routing Features

477

Passing Extra Values
You can pass values for segment variables to the routing system by defining attributes whose name starts
with asp-route- followed by the segment name so that asp-route-id is used to set the value of the id
segment, as shown in Listing 16-6.

Listing 16-6. Supplying Values for Segment Variables in the Result.cshtml File in the Views/Shared Folder

@model Result
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Routing</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Controller:</th><td>@Model.Controller</td></tr>
 <tr><th>Action:</th><td>@Model.Action</td></tr>
 @foreach (string key in Model.Data.Keys) {
 <tr><th>@key :</th><td>@Model.Data[key]</td></tr>
 }
 </table>
 <a asp-controller="Home" asp-action="Index" asp-route-id="Hello">
 This is an outgoing URL

</body>
</html>

I have supplied a value for a segment variable called id. If the application uses the route shown in
Listing 16-6, then the following HTML will be rendered in the view:

This is an outgoing URL

Notice that the segment value has been added as part of the query string to fit into the URL pattern
described by the route. This is because there is no segment variable that corresponds to id in that route. To
address this, I edited the routes in the Startup.cs file to leave only a route that does have an id segment, as
shown in Listing 16-7.

Listing 16-7. Editing the Routes in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;

Chapter 16 ■ advanCed routing Features

478

using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options =>
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {

 //routes.MapRoute(
 // name: "NewRoute",
 // template: "App/Do{action}",
 // defaults: new { controller = "Home" });

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

Run the application again and you will see that tag helper produces the following HTML element, in
which the value of the id property is included as a URL segment:

This is an outgoing URL

UNDERSTANDING SEGMENT VARIABLE REUSE

When i described the way that routes are matched for outbound urLs, i explained that when trying to
find values for each of the segment variables in a route’s urL pattern, the routing system will look at the
values from the current request. this is a behavior that confuses many programmers and can lead to a
lengthy debugging session.

Chapter 16 ■ advanCed routing Features

479

imagine the application has a single route, as follows:

...
app.UseMvc(routes => {
 routes.MapRoute(name: "MyRoute",
 template: "{controller}/{action}/{color}/{page}");

});
...

now imagine that a user is currently at the urL /Home/Index/Red/100, and i render a link as follows:

...
<a asp-controller="Home" asp-action="Index" asp-route-page="789">
 This is an outgoing URL

...

You might expect that the routing system would be unable to match the route because i have not
supplied a value for the color segment variable and there is no default value defined. You would,
however, be wrong. the routing system will match against the route i defined. it will generate the
following htML:

...
This is an outgoing URL
...

the routing system is keen to make a match against a route, to the extent that it will reuse segment
variable values from the incoming urL when generating an outgoing urL. in this case, i end up with the
value Red for the color variable because of the urL from which my imaginary user started.

this is not a behavior of last resort. the routing system will apply this technique as part of its regular
assessment of routes, even if there is a subsequent route that would match without requiring values
from the current request to be reused.

i strongly recommend that you do not rely on this behavior and that you supply values for all of the
segment variables in a urL pattern. relying on this behavior will not only make your code harder to
read, but you end up making assumptions about the order in which your users make requests, which is
something that will ultimately bite you as your application enters maintenance.

Generating Fully Qualified URLs
All of the links that have been generated so far contained relative URLs, but the anchor element tag helper
can also generate fully qualified URLs, as shown in Listing 16-8.

Chapter 16 ■ advanCed routing Features

480

Listing 16-8. Generating a Fully Qualified URL in the Result.cshtml File in the Views/Shared Folder

@model Result
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Routing</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Controller:</th><td>@Model.Controller</td></tr>
 <tr><th>Action:</th><td>@Model.Action</td></tr>
 @foreach (string key in Model.Data.Keys) {
 <tr><th>@key :</th><td>@Model.Data[key]</td></tr>
 }
 </table>
 <a asp-controller="Home" asp-action="Index" asp-route-id="Hello"
 asp-protocol="https" asp-host="myserver.mydomain.com"
 asp-fragment="myFragment">
 This is an outgoing URL

</body>
</html>

The asp-protocol, asp-host, and asp-fragment attributes are used to specify the protocol (https in
the listing), the name of the server (myserver.mydomain.com), and the URL fragment (myFragment). These
values are combined with the output from the routing system to create a fully qualified URL, which you can
see if you run the application and examine the HTML sent to the browser.

 This is an outgoing URL

Be careful when you use fully qualified URLs because they create dependencies on the application
infrastructure and, when the infrastructure changes, you will have to remember to make corresponding
changes to the MVC views.

Generating a URL from a Specific Route
In the previous examples, the routing system selected the route that will be used to generate a URL. If it is
important to generate a URL in a specific format, then you can specify the route that will be used to generate
an outgoing URL. To demonstrate how this works, I added a new route to the Startup.cs file so that there
are two routes in the example application, as shown in Listing 16-9.

Chapter 16 ■ advanCed routing Features

481

Listing 16-9. Adding a Route in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options =>
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint)));
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {

 //routes.MapRoute(
 // name: "NewRoute",
 // template: "App/Do{action}",
 // defaults: new { controller = "Home" });

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapRoute(
 name: "out",
 template: "outbound/{controller=Home}/{action=Index}");
 });
 }
 }
}

The view shown in Listing 16-10 contains two anchor elements, each of which specifies the same
controller and action. The difference is that the second element uses the asp-route tag helper attribute to
specify that the out route should be used to generate the URL for the href attribute.

Chapter 16 ■ advanCed routing Features

482

Listing 16-10. Generating URLs in the Result.cshtml File in the Views/Shared Folder

@model Result
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Routing</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Controller:</th><td>@Model.Controller</td></tr>
 <tr><th>Action:</th><td>@Model.Action</td></tr>
 @foreach (string key in Model.Data.Keys) {
 <tr><th>@key :</th><td>@Model.Data[key]</td></tr>
 }
 </table>
 <a asp-controller="Home" asp-action="CustomVariable">This is an outgoing URL
 <a asp-route="out">This is an outgoing URL
</body>
</html>

The asp-route attribute can be used only when the asp-controller and asp-action attributes are
absent, which means you can only select a specific route for the controller and action that caused the view
to be rendered. If you run the example and request the /Home/CustomVariable URL, you will see the two
different URLs that the routes generate.

This is an outgoing URL
This is an outgoing URL

THE CASE AGAINST NAMED ROUTES

the problem with relying on route names to generate outgoing urLs is that doing so breaks through the
separation of concerns that is so central to the MvC design pattern. When generating a link or a urL in
a view or action method, i want to focus on the action and controller that the user will be directed to,
not the format of the urL that will be used. By bringing knowledge of the different routes into the views
or controllers, i am creating dependencies that could be avoided. in my own projects, i tend to avoid
naming my routes (by specifying null for the name argument) and prefer to use code comments to
remind myself of what each route is intended to do.

Chapter 16 ■ advanCed routing Features

483

Generating URLs (and Not Links)
The limitation of tag helpers is that they transform HTML elements and cannot be readily repurposed if you
need to generate a URL for your application without the surrounding HTML.

MVC provides a helper class that can be used to create URLs directly, available through the Url.Action
method, as shown in Listing 16-11.

Listing 16-11. Generating a URL in the Result.cshtml File in the Views/Shared Folder

@model Result
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Routing</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Controller:</th><td>@Model.Controller</td></tr>
 <tr><th>Action:</th><td>@Model.Action</td></tr>
 @foreach (string key in Model.Data.Keys) {
 <tr><th>@key :</th><td>@Model.Data[key]</td></tr>
 }
 </table>
 <p>URL: @Url.Action("CustomVariable", "Home", new { id = 100 })</p>
</body>
</html>

The arguments to the Url.Action method specify the action method, the controller, and the values for
any segment variables. The result of the addition in Listing 16-11 generates the following output:

<p>URL: /Home/CustomVariable/100</p>

Generating URLs in Action Methods
The Url.Action method can also be used in action methods to create URLs in C# code. In Listing 16-12,
I have modified one of the action methods of the Home controller to generate a URL using Url.Action.

Listing 16-12. Generating a URL in an Action Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Models;

namespace UrlsAndRoutes.Controllers {

 public class HomeController : Controller {

Chapter 16 ■ advanCed routing Features

484

 public ViewResult Index() => View("Result",
 new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 public ViewResult CustomVariable(string id) {
 Result r = new Result {
 Controller = nameof(HomeController),
 Action = nameof(CustomVariable),
 };
 r.Data["Id"] = id ?? "<no value>";
 r.Data["Url"] = Url.Action("CustomVariable", "Home", new { id = 100 });
 return View("Result", r);
 }
 }
}

If you run the example and request the /Home/CustomVariable URL, you will see that there is a row in
the table that displays the URL, as shown in Figure 16-4.

Customizing the Routing System
You have seen how flexible and configurable the routing system is, but if it does not meet your requirements,
you can customize the behavior. In this section, I will show you the different ways this can be done.

Changing the Routing System Configuration
In Chapter 15, I showed you how to configure the RouteOptions object in the Startup.cs file to set up a
custom route constraint. The RouteOptions object is also used to configure some routing features, using the
properties described in Table 16-3.

Figure 16-4. Generating a URL in an action method

http://dx.doi.org/10.1007/978-1-4842-3150-0_15

Chapter 16 ■ advanCed routing Features

485

In Listing 16-13, I have added statements to the Startup.cs file to set both of the configuration
properties described in Table 16-3.

Listing 16-13. Configuring the Routing System in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options => {
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint));
 options.LowercaseUrls = true;
 options.AppendTrailingSlash = true;
 });
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapRoute(
 name: "out",
 template: "outbound/{controller=Home}/{action=Index}");
 });

Table 16-3. The RouteOptions Configuration Properties

Name Description

AppendTrailingSlash When true, this bool property appends a trailing slash to the URLs generated by
the routing system. The default value is false.

LowercaseUrls When true, this bool property converts URLs to lowercase when the controller,
action, or segment values contain uppercase characters. The default value is false.

Chapter 16 ■ advanCed routing Features

486

 }
 }
}

If you run the application and examine the URLs that are generated by the routing system, you will see
that changing the configuration properties has made the URLs all lowercase and appended a trailing slash,
as shown in Figure 16-5.

Creating a Custom Route Class
If you don’t like the way that the routing system matches URLs or you need to implement something
specific for your application, you can create your own routing classes and use them to handle URLs. ASP.
NET provides the Microsoft.AspNetCore.Routing.IRouter interface, which you can implement to create a
custom route. Here is the definition of the IRouter interface:

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Routing {

 public interface IRouter {

 Task RouteAsync(RouteContext context);

 VirtualPathData GetVirtualPath(VirtualPathContext context);
 }
}

To create a custom route, you implement the RouteAsync method to handle incoming requests and
implement the GetVirtualPath method if you want to generate outgoing URLs.

To demonstrate, I am going to create a custom routing class that will handle legacy URL requests.
Imagine that I have migrated an existing application to MVC, but some users have bookmarked the pre-MVC
URLs or hard-coded them into scripts. I still want to support those old URLs. I could handle this using the
regular routing system, but this problem provides a nice example for this section.

Figure 16-5. Configuring the routing system

Chapter 16 ■ advanCed routing Features

487

Routing Incoming URLs
To understand how custom routes work, I am going to begin by creating one that handles every aspect of
the request itself, without using a controller and view. I created a class file called LegacyRoute.cs in the
Infrastructure folder and used it to implement the IRouter interface, as shown in Listing 16-14.

Listing 16-14. The Contents of the LegacyRoute.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Routing;
using System;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace UrlsAndRoutes.Infrastructure {
 public class LegacyRoute : IRouter {
 private string[] urls;

 public LegacyRoute(params string[] targetUrls) {
 this.urls = targetUrls;
 }

 public Task RouteAsync(RouteContext context) {

 string requestedUrl = context.HttpContext.Request.Path
 .Value.TrimEnd('/');

 if (urls.Contains(requestedUrl, StringComparer.OrdinalIgnoreCase)) {
 context.Handler = async ctx => {
 HttpResponse response = ctx.Response;
 byte[] bytes = Encoding.ASCII.GetBytes($"URL: {requestedUrl}");
 await response.Body.WriteAsync(bytes, 0, bytes.Length);
 };
 }
 return Task.CompletedTask;
 }

 public VirtualPathData GetVirtualPath(VirtualPathContext context) {
 return null;
 }
 }
}

The LecagyRoute class implements the IRouter interface but only defines code for the RouteAsync
method, which is used to handle incoming requests; I add support for outgoing URLs shortly.

There are only a few statements in the RouteAsync method, but they rely on a number of important ASP.
NET types to do their work. The best place to start is with the method signature.

...
public async Task RouteAsync(RouteContext context) {
...

Chapter 16 ■ advanCed routing Features

488

The RouteAsync method is responsible for assessing whether a request can be handled and, if it can,
managing the process through to generating the response sent back to the client. This process is performed
asynchronously, which is why the RouteAsync method returns a Task.

The RouteAsync method is invoked with a RouteContext argument, which provides access to everything
that is known about the request and provides the features required to send the response back to the client.
The RouteContext class is defined in the Microsoft.AspNetCore.Routing namespace and defines the three
properties shown in Table 16-4.

The routing system calls the RouteAsync method of each of the routes in the application and examines
the value of the Handler property after each call. If the property has been set to a RequestDelegate, then
the route has provided the routing system with a delegate that can handle the request and the delegate is
invoked to generate the response. Here is the signature of the RequestDelegate, which is defined in the
Microsoft.AspNetCore.Http namespace:

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Http {
 public delegate Task RequestDelegate(HttpContext context);
}

The delegate accepts an HttpContext object and returns a Task that will generate the response. If none
of the routes sets the Handler property, then the routing system knows that the application cannot handle
the request and will generate a 404 - Not Found response.

With this in mind, the implementation of the RouteAsync method has to establish whether it can handle
the request, for which the HttpContext is usually required. In the example, I use the HttpContext.Request
property, which returns a Microsoft.AspNetCore.Http.HttpRequest object that describes the request. The
HttpRequest object provides access to all the information available about the request, including the headers,
the body, and the details of where the request originated, but it is the Path property that I am interested
in because it provides details of the URL requested by the client. The Path property returns a PathString
object, which provides useful methods for composing and comparing URL paths, but I use the Value
property because it gives me the entire path section of the URL as a string, which I can compare with the set
of supported URLs that are received by the LegacyRoute constructor.

...
string requestedUrl = context.HttpContext.Request.Path.Value.TrimEnd('/');
if (urls.Contains(requestedUrl, StringComparer.OrdinalIgnoreCase)) {
...

Table 16-4. The Properties Defined in by the RouteContext Class

Name Description

RouteData This property returns a Microsoft.AspNetCore.Routing.RouteData object. When writing
a custom route that relies on MVC features (as described in the next section), this object
is used to define the controller, the action method, and the arguments that will be used to
handle the request.

HttpContext This property returns a Microsoft.AspNetCore.Http.HttpContext object, which provides
access to details of the HTTP request and the means to produce the HTTP response.

Handler This property is used to provide the routing system with a RequestDelegate that
will handle the request. If the RouteAsync method doesn’t set this property, then the
routing system will continue working its way through the set of routes in the application
configuration.

Chapter 16 ■ advanCed routing Features

489

I use the TrimEnd method on the URL to remove the trailing slash if there is one, which can be added
either by the user or by the AppendTrailingSlash configuration option described in the “Changing the
Routing System Configuration” section.

If the requested path is one that the LegacyRoute has been configured to support, then I set the Handler
property using a lambda function that will generate the response, like this:

...
context.Handler = async ctx => {
 HttpResponse response = ctx.Response;
 byte[] bytes = Encoding.ASCII.GetBytes($"URL: {requestedUrl}");
 await response.Body.WriteAsync(bytes, 0, bytes.Length);
};
...

The HttpContext.Response property returns an HttpResponse object, which can be used to create the
response to the client, providing access to the headers and content that will be sent to the client. I use the
HttpResponse.Body.WriteAsync method to asynchronously write a simple ASCII string as the response.
This isn’t something you would do in a real project, but it allows me to produce a response without having to
select and render views (although I show you how to get MVC to do this for you in the next section).

When the Handler property is set, then the routing system knows that its search for a route is complete
and that it can invoke the delegate to generate the response to the client.

Applying a Custom Route Class

The MapRoute extension method that I have been using to create routes so far doesn’t support the use of
custom routing classes. To apply my LegacyRoute class, I have to take a different approach, as shown in
Listing 16-15.

Listing 16-15. Applying a Custom Routing Class in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options => {
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint));
 options.LowercaseUrls = true;
 options.AppendTrailingSlash = true;
 });

Chapter 16 ■ advanCed routing Features

490

 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.Routes.Add(new LegacyRoute(
 "/articles/Windows_3.1_Overview.html",
 "/old/.NET_1.0_Class_Library"));

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapRoute(
 name: "out",
 template: "outbound/{controller=Home}/{action=Index}");
 });
 }
 }
}

When using custom classes, you have to use the Add method on the route collection to register the
IRouter implementation class. In the example, the arguments to the LegacyRoute constructor are the
legacy URLs that I want the custom route to support. You can see the effect by starting the application and
requesting /articles/Windows_3.1_Overview.html. The custom route displays the requested URL, as
shown in Figure 16-6.

Routing to MVC Controllers

There is a big gap between matching simple URL strings and using the MVC system of controllers, actions,
and Razor views. Fortunately, you don’t have to implement this functionality yourself when creating custom
routes because the class that MVC uses behind the scenes can be used to do all the heavy lifting. To prepare
for using the MVC infrastructure, I added a class file called LegacyController.cs in the Controllers folder
and used it to define the controller shown in Listing 16-16.

Figure 16-6. Using a custom route

Chapter 16 ■ advanCed routing Features

491

Listing 16-16. The Contents of the LegacyController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace UrlsAndRoutes.Controllers {

 public class LegacyController : Controller {

 public ViewResult GetLegacyUrl(string legacyUrl)
 => View((object)legacyUrl);
 }
}

In this controller, the GetLegacyUrl action method accepts a parameter that contains the legacy URL
requested by the client. If I were implementing this controller in a real project, I would use this method to
retrieve the files that were requested. But as it is, I am simply going to display the URL in a view.

 ■ Tip notice that i cast the argument to the View method in Listing 16-16 to object. one of the overloaded
versions of the View method takes a string specifying the name of the view to render, and without the
cast, this would be the overload that the C# compiler thinks i want. to avoid this, i cast to object so that i
unambiguously call the overload that passes a view model and uses the default view. i could also have solved
this by using the overload that takes both the view name and the view model, but i prefer not to make explicit
associations between action methods and views if i can help it. see Chapter 17 for more details.

I created the Views/Legacy folder and added a view called GetLegacyUrl.cshtml, as shown in
Listing 16-17. The view displays the model value, which will show the URL the client asked for.

Listing 16-17. The Contents of the GetLegacyUrl.cshtml File in the Views/Legacy Folder

@model string
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Routing</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <h2>GetLegacyURL</h2>
 The URL requested was: @Model
</body>
</html>

In Listing 16-18, I have updated the LegacyRoute class so that URLs it handles are routed to the
GetLegacyUrl action on the Legacy controller.

http://dx.doi.org/10.1007/978-1-4842-3150-0_17

Chapter 16 ■ advanCed routing Features

492

Listing 16-18. Routing to a Controller in the LegacyRoute.cs File

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Routing;
using System;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Internal;
using Microsoft.Extensions.DependencyInjection;

namespace UrlsAndRoutes.Infrastructure {
 public class LegacyRoute : IRouter {
 private string[] urls;
 private IRouter mvcRoute;

 public LegacyRoute(IServiceProvider services, params string[] targetUrls) {
 this.urls = targetUrls;
 mvcRoute = services.GetRequiredService<MvcRouteHandler>();
 }

 public async Task RouteAsync(RouteContext context) {

 string requestedUrl = context.HttpContext.Request.Path
 .Value.TrimEnd('/');

 if (urls.Contains(requestedUrl, StringComparer.OrdinalIgnoreCase)) {
 context.RouteData.Values["controller"] = "Legacy";
 context.RouteData.Values["action"] = "GetLegacyUrl";
 context.RouteData.Values["legacyUrl"] = requestedUrl;
 await mvcRoute.RouteAsync(context);
 }
 }

 public VirtualPathData GetVirtualPath(VirtualPathContext context) {
 return null;
 }
 }
}

The Microsoft.AspNetCore.Mvc.Internal.MvcRouteHandler class provides the mechanism by which
the controller and action segment variables are used to locate a controller class, execute the action
method, and return the result to the client. This class has been written so that it can be called by a custom
IRouter implementation that provides the controller and action values, as well as any other values that
are required, such as for action method arguments.

In Listing 16-18, I create a new instance of the MvcRouteHandler class, to which the task of locating a
controller class is delegated. To do this, I need to provide routing data, as follows:

...
context.RouteData.Values["controller"] = "Legacy";
context.RouteData.Values["action"] = "GetLegacyUrl";
context.RouteData.Values["legacyUrl"] = requestedUrl;
...

Chapter 16 ■ advanCed routing Features

493

The RouteContext.RouteData.Vales property returns a dictionary that is used to provide data values
to the MvcRouteHandler class. In the default routing system, the data values are created by applying the URL
pattern to the request, but in my custom route class, I have hard-coded the values so that the GetLegacyUrl
action on the Legacy controller is always targeted. The only thing that changes between requests is the
legacyUrl data value, which is set to the request URL and which will be used as the argument of the same
name received by the action method.

The final change in Listing 16-18 delegates the responsibility of finding and using the controller class to
handle the request.

...
await mvcRoute.RouteAsync(context);
...

The RouteContext object, which now contains the controller, action, and legacyUrl values, is
passed to the RouteAsync method of the MvcRouteHandler object, which takes responsibility for any further
processing of the request, including setting the Handler property. The result is that the LegacyRoute class
can focus on deciding which URLs it will handle without getting bogged down in the detail of working with
controllers directly.

The MvcRouteHandler object that is doing the work in this example has to be requested as a service,
which I explain in Chapter 18. To provide the LegacyRoute constructor with the IServiceProvider object it
needs to create the MvcRouteHandler, I have updated the statement that defines the route to provide it with
access to the application’s services in the Startup class, as shown in Listing 16-19.

Listing 16-19. Providing Access to Services in the Startup Class in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options => {
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint));
 options.LowercaseUrls = true;
 options.AppendTrailingSlash = true;
 });
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();

http://dx.doi.org/10.1007/978-1-4842-3150-0_18

Chapter 16 ■ advanCed routing Features

494

 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.Routes.Add(new LegacyRoute(
 app.ApplicationServices,
 "/articles/Windows_3.1_Overview.html",
 "/old/.NET_1.0_Class_Library"));

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapRoute(
 name: "out",
 template: "outbound/{controller=Home}/{action=Index}");
 });
 }
 }
}

If you start the application and request /articles/Windows_3.1_Overview.html again, you will see that
the simple text response is now replaced with the output from the view, as shown in Figure 16-7.

Generating Outgoing URLs
To support outgoing URL generation, I need to implement the GetVirtualPath method in the LegacyRoute
class, as shown in Listing 16-20.

Listing 16-20. Generating Outgoing URLs in the LegacyRoute.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Routing;
using System;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Internal;
using Microsoft.Extensions.DependencyInjection;

Figure 16-7. Delegating dealing with controllers and actions

Chapter 16 ■ advanCed routing Features

495

namespace UrlsAndRoutes.Infrastructure {
 public class LegacyRoute : IRouter {
 private string[] urls;
 private IRouter mvcRoute;

 public LegacyRoute(IServiceProvider services, params string[] targetUrls) {
 this.urls = targetUrls;
 mvcRoute = services.GetRequiredService<MvcRouteHandler>();
 }

 public async Task RouteAsync(RouteContext context) {

 string requestedUrl = context.HttpContext.Request.Path
 .Value.TrimEnd('/');

 if (urls.Contains(requestedUrl, StringComparer.OrdinalIgnoreCase)) {
 context.RouteData.Values["controller"] = "Legacy";
 context.RouteData.Values["action"] = "GetLegacyUrl";
 context.RouteData.Values["legacyUrl"] = requestedUrl;
 await mvcRoute.RouteAsync(context);
 }
 }

 public VirtualPathData GetVirtualPath(VirtualPathContext context) {
 if (context.Values.ContainsKey("legacyUrl")) {
 string url = context.Values["legacyUrl"] as string;
 if (urls.Contains(url)) {
 return new VirtualPathData(this, url);
 }
 }
 return null;
 }
 }
}

The routing system calls the GetVirtualPath method of each route that has been defined in the
Startup class, giving each a chance to generate the outgoing URL that the application requires. The
argument to the GetVirtualPath method is a VirtualPathContext object, which provides information
about the URL that is needed. Table 16-5 describes the properties of the VirtualPathContext class.

Table 16-5. The Properties Defined in by the VirtualPath Context Class

Name Description

RouteName This property returns the name of the route.

Values This property returns a dictionary of all the values that can be used for segment
variables, indexed by name.

AmbientValues This property returns a dictionary of the values that are helpful for generating the URL
but that will not be incorporated into the result. This dictionary is usually empty when
you implement your own routing class.

HttpContext This property returns an HttpContext object that provides information about the
request and the response that is being prepared for it.

Chapter 16 ■ advanCed routing Features

496

In the example, I use the Values property to get a value called legacyUrl, and if it matches one of the
URLs the route has been configured to support, I return a VirtualPathData object, which provides the
routing system with details of the URL. The constructor arguments for the VirtualPathData class are the
IRouter that generates the URL and the URL itself.

...
return new VirtualPathData(this, url);
...

In Listing 16-21, I have changed the Result.cshtml view to require outgoing URLs that target the
custom view.

Listing 16-21. Generating Outgoing URLs in the Result.cshtml File in the Views/Shared Folder

@model Result
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Routing</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Controller:</th><td>@Model.Controller</td></tr>
 <tr><th>Action:</th><td>@Model.Action</td></tr>
 @foreach (string key in Model.Data.Keys) {
 <tr><th>@key :</th><td>@Model.Data[key]</td></tr>
 }
 </table>
 <a asp-route-legacyurl="/articles/Windows_3.1_Overview.html"
 class="btn btn-primary">
 This is an outgoing URL

 <p>
 URL: @Url.Action(null, null,
 new { legacyurl = "/articles/Windows_3.1_Overview.html" })
 </p>
</body>
</html>

In this example, I don’t need to specify the controller and action for the outgoing route for the tag helper
because they are not used in the URL generation. With that in mind, I have omitted the asp-controller
and asp-action tag helper attributes from the a element. When generating just the URL, I set the first two
arguments for the Url.Action helper to null for the same reason.

Chapter 16 ■ advanCed routing Features

497

If you run the application and examine the HTML in the response for the default URL, you will see that
the custom route class has been used to create the URLs, like this:

 This is an outgoing URL

<p>URL: /articles/windows_3.1_overview.html/</p>

The trailing slashes that are appended to the URLs are the result of setting the AppendTrailingSlash
configuration option to true in the Startup.cs file, and it is important that the incoming route matching is
able to match URLs to which the slash character has been added.

 ■ Tip if the urL that you see in the htML response has a different format, such as /?legacyurl=%2Fart
icles%2FWindows_3.1_Overview.html, then your custom route has not been used to generate the urL, and
one of the other routes in the application has been called upon instead. since there is no controller or action
specified, the Index action on the Home controller will be targeted, and the legacyUrl value is added to the
urL query string. if this happens, ensure that you have remembered to set the IsBound property to true in the
GetVirtualPath method and check that the configuration in the Startup.cs file specifies the correct urLs for
the LegacyRoute constructor and that the custom route is defined before any other routes.

Working with Areas
ASP.NET Core MVC supports organizing a web application into areas, where each area represents a
functional segment of the application, such as administration, billing, customer support, and so on. This is
useful in a large project, where having a single set of folders for all of the controllers, views, and models can
become difficult to manage.

Each MVC area has its own folder structure, allowing you to keep everything separate. This makes it
more obvious which project elements relate to each functional area of the application, helping multiple
developers to work on the project without colliding with one another. Areas are supported largely by the
routing system, which is why I have described this feature alongside URLs and routes. In this section, I will
show you how to set up and use areas in your MVC projects.

Creating an Area
Creating an area requires adding folders to the project. The top-level folder is called Areas and within it is a
folder for each of the areas that you require, each of which contains its own Controllers, Views, and Models
folders. For this chapter, I am going to create an area called Admin, which means creating the set of folders
described in Table 16-6. To prepare the example project, create all the folders shown in the table.

Chapter 16 ■ advanCed routing Features

498

Although each area is used separately, many MVC features rely on standard C# or .NET features such as
namespaces. To make an area easier to use, the first addition that I made is a view imports file, which allows
me to use the models in an area in views without having to include namespaces and to take advantage of
tag helpers. I created a view imports file called _ViewImports.cshtml in the Areas/Admin/Views folder and
added the statements shown in Listing 16-22.

Listing 16-22. The Contents of the _ViewImports.cshtml File in the Areas/Admin/Views Folder

@using UrlsAndRoutes.Areas.Admin.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Creating an Area Route
To take advantage of areas, you must add a route to the Startup.cs file that includes an area segment
variable, as shown in Listing 16-23.

Listing 16-23. Adding a Route for Areas in the Startup.cs File in the UrlsAndRoutes Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Routing.Constraints;
using Microsoft.AspNetCore.Routing;
using UrlsAndRoutes.Infrastructure;

namespace UrlsAndRoutes {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.Configure<RouteOptions>(options => {
 options.ConstraintMap.Add("weekday", typeof(WeekDayConstraint));
 options.LowercaseUrls = true;
 options.AppendTrailingSlash = true;
 });

Table 16-6. Folders Required to Prepare for Areas

Name Description

Areas This folder will contain all the areas in the MVC application.

Areas/Admin This folder will contain the classes and views for the Admin area.

Areas/Admin/Controllers This folder will contain the controllers for the Admin area.

Areas/Admin/Views This folder will contain the views for the Admin area.

Areas/Admin/Views/Home The folder will contain the views for the Home controller in the Admin area.

Areas/Admin/Models This folder will contain the models for the Admin area.

Chapter 16 ■ advanCed routing Features

499

 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseDeveloperExceptionPage();
 app.UseStatusCodePages();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "areas",
 template: "{area:exists}/{controller=Home}/{action=Index}");

 routes.Routes.Add(new LegacyRoute(
 app.ApplicationServices,
 "/articles/Windows_3.1_Overview.html",
 "/old/.NET_1.0_Class_Library"));

 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");

 routes.MapRoute(
 name: "out",
 template: "outbound/{controller=Home}/{action=Index}");
 });
 }
 }
}

The area segment variable is used to match URLs that target controllers in specific areas. I have
followed the standard URL pattern in the listing, but you can add the area segment to any pattern you
require. The route that adds support for areas should appear before less specific routes to ensure that URLs
are correctly matched. The exists constraint is used to ensure that requests are matched only to areas that
have been defined in the application.

Populating an Area
You can create controllers, views, and models in an area just as you would in the main part of an MVC
application. To create a model, I right-clicked the Areas/Admin/Models folder, selected Add ➤ Class from the
pop-up menu, and created a class file called Person.cs, the contents of which are shown in Listing 16-24.

Listing 16-24. The Contents of the Person.cs File in the Areas/Admin/Models Folder

namespace UrlsAndRoutes.Areas.Admin.Models {
 public class Person {
 public string Name { get; set; }
 public string City { get; set; }
 }
}

Chapter 16 ■ advanCed routing Features

500

To create a controller, I right-clicked the Areas/Admin/Controllers folder, selected Add ➤ Class from
the pop-up menu, and created a class file called HomeController.cs, which I used to define the controller
shown in Listing 16-25.

Listing 16-25. The Contents of the HomeController.cs File in the Areas/Admin/Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UrlsAndRoutes.Areas.Admin.Models;

namespace UrlsAndRoutes.Areas.Admin.Controllers {

 [Area("Admin")]
 public class HomeController : Controller {
 private Person[] data = new Person[] {
 new Person { Name = "Alice", City = "London" },
 new Person { Name = "Bob", City = "Paris" },
 new Person { Name = "Joe", City = "New York" }
 };

 public ViewResult Index() => View(data);

 }
}

The new controller is entirely standard, except in one regard. To associate a controller with an area, the
Area attribute must be applied to the class.

...
[Area("Admin")]
public class HomeController : Controller {
...

Without the Area attribute, controllers are not part of an area even if they are defined in the main part
of the application. Omitting the Area attribute can cause odd results. This is the first thing to check if you are
not getting the results you expect when working with areas.

 ■ Tip if you are using attributes to set up routes, as described in Chapter 15, then you can use the
[area] token in the argument for the Route attribute to refer to the area specified by the Area attribute:
[Route("[area]/app/[controller]/actions/[action]/{id:weekday?}")].

The final item I added was a Razor view called Index.cshtml in the Areas/Admin/Views/Home folder.
I used this file to define the view shown in Listing 16-26.

Listing 16-26. The Contents of the Index.cshtml File in the Areas/Admin/Views/Home Folder

@model Person[]
@{ Layout = null; }

<!DOCTYPE html>
<html>

http://dx.doi.org/10.1007/978-1-4842-3150-0_15

Chapter 16 ■ advanCed routing Features

501

<head>
 <meta name="viewport" content="width=device-width" />
 <title>Areas</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Name</th><th>City</th></tr>
 @foreach (Person p in Model) {
 <tr><td>@p.Name</td><td>@p.City</td></tr>
 }
 </table>
</body>
</html>

The model for this view is an array of Person objects. I am able to refer to the Person type without
needing a namespace because of the view imports file that I created in Listing 16-26. Run the application
and request the /Admin URL to test the area, which will produce the result shown in Figure 16-8.

UNDERSTANDING THE EFFECT OF AN AREA ON AN
MVC APPLICATION

it is important to understand the effect that areas have on the rest of the application. i created an area
called Admin, but there is also an Admin controller in the main part of the application. Before the area
was created, a request for /Admin would target the Index action on the Admin controller in the main
part of the application; now it will target the Index action on the Home controller in the Admin area
(the area root provides default values for the controller and action segment variables). this kind
of change can cause unexpected behavior, and the best way to use areas is to incorporate their use
into the initial controller naming scheme for the project. if you do have to go back and add areas to an
established application, then you must consider the effect on your routes carefully.

Figure 16-8. Using an area

Chapter 16 ■ advanCed routing Features

502

Generating Links to Actions in Areas
You do not need to take any special steps to create links that refer to actions in the same MVC area that the
current request relates to. MVC detects that a request relates to a particular area and ensures that outbound
URL generation will find a match only among routes defined for that area. As an example, Listing 16-27
shows the addition of an a element to the Index.cshtml file in the Areas/Admin/Views/Home folder.

Listing 16-27. Adding an Anchor in the Index.cshtml File in the Areas/Admin/Views/Home Folder

@model Person[]
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Areas</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Name</th><th>City</th></tr>
 @foreach (Person p in Model) {
 <tr><td>@p.Name</td><td>@p.City</td></tr>
 }
 </table>
 <a asp-action="Index" asp-controller="Home">Link
</body>
</html>

If you run the application and request the /admin URL, you will see that the response contains the
following element:

Link

The routing system has selected the area route to generate the outgoing link and taken into account the
default values that are available for the controller and action segment variables.

You must provide the routing system with a value for the area segment in order to create a link to an
action in a different area or the main part of the application, as shown in Listing 16-28.

Listing 16-28. Targetting a Different Area in the Index.cshtml File in the Areas/Admin/Views/Home Folder

@model Person[]
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Areas</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />

Chapter 16 ■ advanCed routing Features

503

</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-striped table-sm">
 <tr><th>Name</th><th>City</th></tr>
 @foreach (Person p in Model) {
 <tr><td>@p.Name</td><td>@p.City</td></tr>
 }
 </table>
 <a asp-action="Index" asp-controller="Home">Link
 <a asp-action="Index" asp-controller="Home" asp-route-area="">Link
</body>
</html>

The asp-route-area attribute sets the value for the area segment variable. In this case, the attribute is
set to the empty string, which specifies the main part of the application and produces the following HTML
element:

Link

If you have multiple areas in your controllers and want to route to them, then use the area name in
place of the empty string.

URL Schema Best Practices
After all of this, you may be left wondering where to start in designing your own URL schema. You could just
accept the default schema, but there are benefits in giving your schema some thought. In recent years, the
design of an application’s URLs has been taken increasingly seriously, and a few important design principles
have emerged. If you follow these design patterns, you will improve the usability, compatibility, and search-
engine rankings of your applications.

Making Your URLs Clean and Human-Friendly
Users notice the URLs in your applications. Just think back to the last time you tried to send someone an
Amazon URL. Here is the URL for an earlier edition of this book:

https://www.amazon.com/Pro-ASP-NET-Core-ADAM-FREEMAN/dp/1484203984

It is bad enough sending someone such a URL by e-mail but try reading this over the phone. When
I needed to do this recently, I ended up quoting the ISBN number and asking the caller to look it up for
himself. It would be nice if I could access the book with a URL like this:

http://www.amazon.com/books/pro-aspnet-mvc6-framework

That is the kind of URL that I could read over the phone and it doesn’t look like I dropped something on
the keyboard while composing an e-mail message.

https://www.amazon.com/Pro-ASP-NET-Core-ADAM-FREEMAN/dp/1484203984
http://www.amazon.com/books/pro-aspnet-mvc6-framework

Chapter 16 ■ advanCed routing Features

504

 ■ Note to be clear, i have only the highest respect for amazon, which sells more of my books than everyone
else combined. i know for a fact that each and every member of the amazon team is a strikingly intelligent and
beautiful person. not one of them would be so petty as to stop selling my books over something so minor as
criticism of their urL format. i love amazon. i adore amazon. i just wish they would fix their urLs.

Here are some simple guidelines to make friendly URLs:

•	 Design URLs to describe their content, not the implementation details of
your application. Use /Articles/AnnualReport rather than /Website_v2/
CachedContentServer/FromCache/AnnualReport.

•	 Prefer content titles over ID numbers. Use /Articles/AnnualReport rather than /
Articles/2392. If you must use an ID number (to distinguish items with identical
titles or to avoid the extra database query needed to find an item by its title), then
use both (/Articles/2392/AnnualReport). It takes longer to type, but it makes more
sense to a human and improves search-engine rankings. Your application can just
ignore the title and display the item matching that ID.

•	 Do not use file name extensions for HTML pages (for example, .aspx or .mvc), but
do use them for specialized file types (such as .jpg, .pdf, and .zip). Web browsers
do not care about file name extensions if you set the MIME type appropriately, but
humans still expect PDF files to end with .pdf.

•	 Create a sense of hierarchy (for example, /Products/Menswear/Shirts/Red) so your
visitor can guess the parent category’s URL.

•	 Be case-insensitive. (Someone might want to type in the URL from a printed page).
The ASP.NET Core routing system is case-insensitive by default.

•	 Avoid symbols, codes, and character sequences. If you want a word separator, use
a dash (as in /my-great-article). Underscores are unfriendly, and URL-encoded
spaces are bizarre (/my+great+article) or disgusting (/my%20great%20article).

•	 Do not change URLs. Broken links equal lost business. When you do change URLs,
continue to support the old URL schema for as long as possible via redirections.

•	 Be consistent. Adopt one URL format across your entire application.

URLs should be short, easy to type, hackable (human-editable), and persistent, and they should
visualize site structure. Jakob Nielsen, the usability guru, expands on this topic at www.useit.com/
alertbox/990321.html. Tim Berners-Lee, the inventor of the Web, offers similar advice (see www.w3.org/
Provider/Style/URI).

GET and POST: Picking the Right One
The rule of thumb is that GET requests should be used for all read-only information retrieval, while POST
requests should be used for any operation that changes the application state. In standards-compliance
terms, GET requests are for safe interactions (having no side effects besides information retrieval), and POST
requests are for unsafe interactions (making a decision or changing something). These conventions are set
by the World Wide Web Consortium (W3C), at www.w3.org/Protocols/rfc2616/rfc2616-sec9.html.

GET requests are addressable: all the information is contained in the URL, so it’s possible to bookmark
and link to these addresses.

http://www.useit.com/alertbox/990321.html
http://www.useit.com/alertbox/990321.html
http://www.w3.org/Provider/Style/URI
http://www.w3.org/Provider/Style/URI
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

Chapter 16 ■ advanCed routing Features

505

Do not use GET requests for operations that change state. Many web developers learned this the hard
way in 2005 when Google Web Accelerator was released to the public. This application prefetched all
the content linked from each page, which is legal within the HTTP because GET requests should be safe.
Unfortunately, many web developers had ignored the HTTP conventions and placed simple links to “delete
item” or “add to shopping cart” in their applications. Chaos ensued.

One company believed its content management system was the target of repeated hostile attacks
because all their content kept getting deleted. The company later discovered that a search-engine crawler
had hit upon the URL of an administrative page and was crawling all the delete links. Authentication might
protect you from this, but it wouldn’t protect you from web accelerators.

Summary
In this chapter, I showed you the advanced features of the routing system, showing you how to generate
outgoing links and URLs and how to customize the routing system. Along the way, I introduced the concept
of areas and set out my views on how to create a useful and meaningful URL schema. In the next chapter,
I turn to controllers and actions, which are the heart of ASP.NET Core MVC. I explain how these work in
detail and show you how to use them to get the best results in your application.

507© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_17

CHAPTER 17

Controllers and Actions

Every request that comes to your application is handled by a controller. In ASP.NET Core MVC, controllers
are .NET classes that contain the logic required to handle a request. In Chapter 3, I explained that the role of
the controller is to encapsulate your application logic. This means controllers are responsible for processing
incoming requests, performing operations on the domain model, and selecting views to render to the user.

The controller is free to handle the request any way it sees fit as long as it doesn’t stray into the areas of
responsibility that belong to the model and view. This means controllers do not contain or store data, nor do
they generate user interfaces.

In this chapter, I show you how controllers are implemented and the different ways that you can use
controllers to receive and generate output. Table 17-1 puts controllers in context.

Table 17-1. Putting Controllers in Context

Question Answer

What are they? Controllers contain the logic for receiving requests, updating the
application state or model, and selecting the response that will be sent to
the client.

Why are they useful? Controllers are the heart of MVC projects and contain the domain logic for
a web application.

How are they used? Controllers are C# classes whose public methods are invoked to handle an
HTTP request. Methods can take responsibility for producing the response
to the client directly, but a more common approach is to return an action
result, which tells MVC how the response should be prepared.

Are there any pitfalls or
limitations?

When you are new to MVC development, it can be easy to create
controllers that contain functionality that is better suited to the model
or in views. A more specific issue is that any public class whose name
ends with Controller is assumed to be a controller by MVC; this means
it is possible to accidentally handle HTTP requests in classes that are not
intended to be controllers.

Are there any alternatives? No, controllers are a core part of MVC applications.

https://doi.org/10.1007/978-1-4842-3150-0_17
http://dx.doi.org/10.1007/978-1-4842-3150-0_3

Chapter 17 ■ Controllers and aCtions

508

Table 17-2 summarizes the chapter.

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called ControllersAndActions. In Listing 17-1, I added statements to the Startup class to enable the
MVC framework and enable other middleware components.

 ■ Note this chapter includes unit tests for key features. For brevity, i have not included the unit test project
in the instructions for creating the example project. You can create the test project by following the process
described in Chapter 7 or download the project from this book’s Github repository (https://github.com/
apress/pro-asp.net-core-mvc-2).

Listing 17-1. Adding MVC and Other Middleware in the Startup.cs File the ControllersAndActions Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace ControllersAndActions {
 public class Startup {

Table 17-2. Chapter Summary

Problem Solution Listing

Define a controller Create a public class whose name ends with Controller
or derive from the Controller class

7–9

Get details of the HTTP request Use the context objects or define action methods
parameters

10–13

Produce a result from an action
method

Work directly with the result context object or create an
action result object

14–16

Produce an HTML result Create a view result 17–24

Redirect the client Create a redirection result 25–30

Return content to the client Create a content result 31–35

Return an HTTP status code Create an HTTP result 36–37

http://dx.doi.org/10.1007/978-1-4842-3150-0_7
https://github.com/apress/pro-asp.net-core-mvc-2
https://github.com/apress/pro-asp.net-core-mvc-2

Chapter 17 ■ Controllers and aCtions

509

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 services.AddMemoryCache();
 services.AddSession();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseSession();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The AddMemoryCache and AddSession methods create services that are required for session
management. The UseSession method adds a middleware component to the pipeline that associates
session data with requests and adds cookies to responses to ensure that future requests can be identified.
The UseSession method must be called before the UseMvc method so that the session component can
intercept requests before they reach MVC middleware and can modify responses after they have been
generated. The other methods set up the standard packages that I described in Chapter 14.

Preparing the Views
The focus of this chapter is controllers and their action methods, and I will be defining controller classes
throughout the chapter. To prepare for this, I will define some views that will help me demonstrate how they
work. The views I create in this section are defined in the Views/Shared folder so that I can use them from
any of the controllers that I create later in the chapter. I created the Views/Shared folder, added to it a Razor
view file called Result.cshtml, and applied the markup shown in Listing 17-2.

Listing 17-2. The Contents of the Result.cshtml File in the Views/Shared Folder

@model string
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Controllers and Actions</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 Model Data: @Model
</body>
</html>

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

Chapter 17 ■ Controllers and aCtions

510

The model for this view is a string, which will allow me to display simple messages. Next, I created
a file called DictionaryResult.cshtml, also in the Views/Shared folder, and added the markup shown in
Listing 17-3. This model for this view is a dictionary, which displays more complex data than the previous view.

Listing 17-3. The Contents of the DictionaryResult.cshtml File in the Views/Shared Folder

@model IDictionary<string, string>
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Controllers and Actions</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <table class="table table-bordered table-sm table-striped">
 <tr><th>Name</th><th>Value</th></tr>
 @foreach (string key in Model.Keys) {
 <tr><td>@key</td><td>@Model[key]</td></tr>
 }
 </table>
</body>
</html>

Next, I created a file called SimpleForm.cshtml, also in the Views/Shared folder, and used it to define
the view shown in Listing 17-4. As its name suggests, this view contains a simple HTML form that will collect
data from the user.

Listing 17-4. The Contents of the SimpleForm.cshtml File in the Views/Shared Folder

@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Controllers and Actions</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <form method="post" asp-action="ReceiveForm">
 <div class="form-group">
 <label for="name">Name:</label>
 <input class="form-control" name="name" />
 </div>

Chapter 17 ■ Controllers and aCtions

511

 <div class="form-group">
 <label for="name">City:</label>
 <input class="form-control" name="city" />
 </div>
 <button class="btn btn-primary center-block" type="submit">Submit</button>
 </form>
</body>
</html>

The views use built-in tag helpers to generate URLs from the routing system. To enable the tag helpers, I
created a view imports file called _ViewImports.cshtml in the Views folder and added the expression shown
in Listing 17-5.

Listing 17-5. The Contents of the _ViewImports.cshtml File in the Views Folder

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The views I created in the Views/Shared folder all depend on the Bootstrap CSS package. To add
Bootstrap to the project, I used the Bower Configuration File template to create the bower.json file and
added the package shown in Listing 17-6.

Listing 17-6. Adding a Package in the bower.json File in the ControllersAndActions Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

Understanding Controllers
Controllers are C# classes whose public methods (known as actions or action methods) are responsible for
handling an HTTP request and preparing the response that will be returned to the client. MVC uses the
routing system, described in Chapters 15 and 16, to work out which controller class and action method it
needs to handle a request. MVC creates a new instance of the controller class, invokes the action method,
and uses the method’s result to produce the response to the client.

MVC provides action methods with context data so they can figure out how to handle a request. There
is a wide range of context data available, and it describes everything about the current request, the response
that is being prepared, the data extracted by the routing system, and details of the user’s identity.

When MVC invokes an action method, the method’s response describes the response that should be
sent to the client. The most common kind of response is created by rendering a Razor view, so the action
method uses its response to tell MVC which view to use and what view model data it should be provided
with. But there are other kinds of responses available as well, and action methods can do everything from
asking MVC to send an HTTP redirection to the client to sending complex data objects.

This means that there are three areas of functionality that are important to understanding controllers.
The first is understanding how to define controllers so that MVC can use them to handle requests.
Controllers are just C# classes, but there are different ways to create them, and understanding the differences
is important. I explain how to controllers are defined in the “Creating Controllers” section.

http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 17 ■ Controllers and aCtions

512

Second, it is important to understand how MVC provides action methods with context data. Getting the
context data that you need is important for effective web application development, but MVC makes it easy
by defining a set of classes that are used to describe everything that an action method requires. I explain how
MVC describes requests and responses in the “Receiving Context Data” section.

Finally, it is important to understand how action methods produce a response. Action methods rarely
need to produce an HTTP response themselves, and you need to know how to instruct MVC to produce the
responses you need, which I explain in the “Producing a Response” section.

Creating Controllers
You have seen the use of controllers in almost all the chapters so far. Now it is time to take a step back and
look behind the scenes to see how they are defined. In the sections that follow, I describe the different ways
that controllers can be created and explain the differences between them.

Creating POCO Controllers
MVC favors convention over configuration, which means the controllers in an MVC application are
discovered automatically, rather than being defined in a configuration file. The basic discovery process
is simple: any public class whose name ends with Controller is a controller, and any public method it
defines is an action. To demonstrate how this works, I added a Controllers folder to the project and added
to it a class file called PocoController.cs, which I used to define the class shown in Listing 17-7.

 ■ Tip although the convention is to put controllers in the Controllers folder, you can put them anywhere in
the project and MVC will still find them.

Listing 17-7. The Contents of the PocoController.cs File in the Controllers Folder

namespace ControllersAndActions.Controllers {

 public class PocoController {

 public string Index() => "This is a POCO controller";
 }
}

The PocoController class meets the simple criteria that MVC looks for in a controller. It defines a
public method called Index, which will be used as an action method and which returns a string.

The PocoController class is an example of a POCO controller, where POCO means “plain old CLR
object” and refers to the fact the controller is implemented using standard .NET features without any direct
dependency on the API provided by the ASP.NET Core MVC.

To test the POCO controller, start the application and request the URL /Poco/Index. The routing system
will match the request using the default URL pattern and direct the request to the Index method of the
PocoController class, producing the results shown in Figure 17-1.

Chapter 17 ■ Controllers and aCtions

513

USING ATTRIBUTES TO ADJUST CONTROLLER IDENTIFICATION

the support for poCo controllers doesn’t always work the way you want. a common problem is that
MVC will identify fake classes created for unit testing as controllers. the simplest way to avoid this
problem is to pay attention to the names of your classes and avoid names like FakeController. if that
isn’t possible, then you can apply the NonController attribute, defined in the Microsoft.AspNetCore.
Mvc namespace, to a class to tell MVC that it is not a controller. there is also a NonAction attribute that
can be applied to methods to stop them from being used as action methods.

in some projects, you might not be able to follow the naming convention on a class that should be
used as a poCo controller. You can tell MVC that a class is a controller even when it doesn’t meet the
poCo selection criteria by applying the Controller attribute, which is also defined in the Microsoft.
AspNetCore.Mvc namespace.

Using the MVC Controller API
The PocoController class is a useful demonstration of the way MVC identifies controllers and how simple
controllers can be. But pure POCO controllers, which have no dependencies on the Microsoft.AspnetCore
namespaces, are not especially useful because they don’t have access to the features that MVC provides for
processing requests.

Some parts of the MVC API can be accessed by creating new instances of classes from the Microsoft.
AspnetCore namespaces. As a simple example, a POCO class can ask MVC to render a Razor view by
returning a ViewResult object from its action methods, as shown in Listing 17-8. (I come back to the
ViewResult class in the “Producing a Response” section.)

Listing 17-8. Using the ASP.NET API in the PocoController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ViewFeatures;

Figure 17-1. Using a POCO controller

Chapter 17 ■ Controllers and aCtions

514

namespace ControllersAndActions.Controllers {

 public class PocoController {

 public ViewResult Index() => new ViewResult() {
 ViewName = "Result",
 ViewData = new ViewDataDictionary(
 new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) {
 Model = $"This is a POCO controller"
 }
 };
 }
}

This is no longer a pure POCO controller because it has direct dependencies on the MVC API. But
purity aside, it is a lot more useful than the previous example because it asks MVC to render a Razor view.
Unfortunately, the code is complex. To create a ViewResult object, I need to create ViewDataDictionary,
EmptyModelMetadataProvider, and ModelStateDictionary objects, which requires access to three different
namespaces. (I describe the features that these types relate to in later chapters.) The point of this example is to
demonstrate that the features provided by MVC can be accessed directly, even if the result is a bit of a mess.

The changes in the listing render the Result.cshtml view using a string as the view model. If you run
the application and request the /Poco/Index URL, you will see the response shown in Figure 17-2.

Using the Controller Base Class
The previous examples show how you can start with a POCO controller and build on it to access MVC
features. This approach sheds light on how MVC works, which is useful knowledge if you find yourself
inadvertently creating controllers, but POCO controllers are awkward to write, read, and maintain.

An easier way to create controllers is to derive classes from the Microsoft.AspNetCore.Mvc.Controller
class, which defines methods and properties that provide access to MVC features in a more concise and
useful manner. To demonstrate, I added a class file called DerivedController.cs to the Controllers folder
and used it to define the controller shown in Listing 17-9.

Figure 17-2. Using the MVC API directly

Chapter 17 ■ Controllers and aCtions

515

Listing 17-9. Deriving from the Controller Class in the DerivedController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace ControllersAndActions.Controllers {

 public class DerivedController : Controller {

 public ViewResult Index() =>
 View("Result", $"This is a derived controller");
 }
}

If you run the application and request the /Derived/Index URL, you will see the results shown in
Figure 17-3.

The controller in Listing 17-9 does the same thing as the one in Listing 17-8 (it asks MVC to render a
view with a string view model), but using the Controller base class means that the result can be achieved
more simply.

The key change is that I can create the ViewResult object required to render the Razor view using
the View method, rather than having to instantiate it (and the other types it requires) directly in the action
method. The View method is inherited from the Controller base class, and the ViewResult object is still
being created in the same way, just without the code cluttering up my action method. Deriving from the
Controller class doesn’t change the way that your controllers work; it just simplifies the code that you write
to get common tasks done.

 ■ Note MVC creates a new instance of a controller class for each request that it is asked to handle. this
means you don’t need to synchronize access to your action methods or instance properties and fields. shared
objects, including databases and singleton services, which i describe in Chapter 18, can be used concurrently
and must be written accordingly.

Figure 17-3. Using the Controller base class

http://dx.doi.org/10.1007/978-1-4842-3150-0_18

Chapter 17 ■ Controllers and aCtions

516

Receiving Context Data
Regardless of how you define your controllers, they will rarely exist in isolation and usually need to access
data from the incoming request, such as query string values, form values, and parameters parsed from the
URL by the routing system, collectively known as context data. There are three main ways to access context
data.

•	 Extract it from a set of context objects

•	 Receive the data as a parameter to an action method

•	 Explicitly invoke the framework’s model binding feature

Here, I look at the approaches for getting input for your action methods, focusing on using context
objects and action method parameters. I cover model binding in Chapter 26.

Getting Data from Context Objects
One of the main advantages of using the Controller base class to create controllers is convenient access to a
set of context objects that describe the current request, the response that is being prepared, and the state of
the application. In Table 17-3 I have described the most useful Controller context properties.

Many controllers are written without needing to use the properties shown in Table 17-3 because the
context data is also available through features that I describe in later chapters, which are more in keeping
with the MVC development style. For example, most controllers don’t need to use the Request property to
get details of the HTTP request that is being processed because the same information is available through
the model binding process that I describe in Chapter 26.

But it can still be useful to understand and use the context objects, and they are useful for debugging. In
Listing 17-10, I have used the Request property to access the headers in the HTTP request.

Table 17-3. Useful Controller Class Properties for Context Data

Name Description

Request This property returns an HttpRequest object that describes the request received from
the client, as described in Table 17-4.

Response This property returns an HttpResponse object that is used to create the response to the
client, as described in Table 17-7.

HttpContext This property returns an HttpContext object, which is the source of many of the
objects returned by other properties, such as Request and Response. It also provides
information about the HTTP features available and access to lower-level features like
web sockets.

RouteData This property returns the RouteData object produced by the routing system when it
matched the request, as described in Chapters 15 and 16.

ModelState This property returns a ModelStateDictionary object, which is used to validate data
sent by the client, as described in Chapter 27.

User This property returns a ClaimsPrincipal object that describes the user who has made
the request, as described in Chapters 29 and 30.

http://dx.doi.org/10.1007/978-1-4842-3150-0_26
http://dx.doi.org/10.1007/978-1-4842-3150-0_26
http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_16
http://dx.doi.org/10.1007/978-1-4842-3150-0_27
http://dx.doi.org/10.1007/978-1-4842-3150-0_29
http://dx.doi.org/10.1007/978-1-4842-3150-0_30

Chapter 17 ■ Controllers and aCtions

517

Listing 17-10. Using Context Data in the DerivedController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Linq;

namespace ControllersAndActions.Controllers {

 public class DerivedController : Controller {

 public ViewResult Index() =>
 View("Result", $"This is a derived controller");

 public ViewResult Headers() => View("DictionaryResult",
 Request.Headers.ToDictionary(kvp => kvp.Key,
 kvp => kvp.Value.First()));
 }
}

Using the context objects means navigating through a range of different types and namespaces. The
Controller.Request property that I used to get context data about the HTTP request in the listing returns
an HttpRequest object. Table 17-4 describes the HttpRequest properties that are most useful when writing
controllers.

I used the Request.Headers property to get a dictionary of the headers, which I processed using LINQ.

...
View("DictionaryResult", Request.Headers.ToDictionary(kvp => kvp.Key,
 kvp => kvp.Value.First()));
...

The dictionary that is returned by the Request.Headers property stores the value of each header using
the StringValues struct, which is used in ASP.NET to represent a sequence of string values. An HTTP
client can send several values for HTTP headers, but I want to display only the first value. I used the LINQ
ToDictionary method to receive a KeyValuePair<string, StringValues> object for each header and
selected the first value. The result is a dictionary containing string values, which can be displayed by the
DictionaryResult view. If you run the application and request the /Derived/Headers URL, you will see
output similar to that shown in Figure 17-4. (The set of headers and their values will differ based on the
browser you use.)

Table 17-4. Commonly Used HttpRequest Properties

Name Description

Path This property returns the path section of the request URL.

QueryString This property returns the query string section of the request URL.

Headers This property returns a dictionary of the request headers, indexed by name.

Body This property returns a stream that can be used to read the request body.

Form This property returns a dictionary of the form data in the request, indexed by name.

Cookies This property returns a dictionary of the request cookies, indexed by name.

Chapter 17 ■ Controllers and aCtions

518

Getting Context Data in a POCO Controller
Even if they are not especially useful in regular projects, POCO controllers let us peek behind the curtain
to see how MVC does things. Getting context data in a POCO controller is a problem because you can’t just
instantiate your own HttpRequest or HttpResponse objects; you need the ones that have been created by
ASP.NET and updated by all of the middleware components that have populated their data fields as the
request has been processed.

To get context data, a POCO controller has to ask MVC to provide it. In Listing 17-11, I have updated the
PocoController class to add an action method that displays the HTTP request headers.

Listing 17-11. Displaying Context Data in the PocoController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using System.Linq;

namespace ControllersAndActions.Controllers {

 public class PocoController {

 [ControllerContext]
 public ControllerContext ControllerContext { get; set; }

 public ViewResult Index() => new ViewResult() {
 ViewName = "Result",
 ViewData = new ViewDataDictionary(new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) {
 Model = $"This is a POCO controller"
 }
 };

Figure 17-4. Displaying context data

Chapter 17 ■ Controllers and aCtions

519

 public ViewResult Headers() =>
 new ViewResult() {
 ViewName = "DictionaryResult",
 ViewData = new ViewDataDictionary(
 new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) {
 Model = ControllerContext.HttpContext.Request.Headers
 .ToDictionary(kvp => kvp.Key, kvp => kvp.Value.First())
 }
 };
 }
}

To get the context data, I defined a property called ControllerContext whose type is
ControllerContext, which has been decorated with an attribute that is also called ControllerContext.

It is worth unpacking these three different uses of the term ControllerContext. First, the
ControllerContext class, which is defined in the Microsoft.AspNetCore.Mvc namespace, is a class that
brings together all the context objects that are required by a controller’s action method, using the properties
described in Table 17-5.

HTTP-related data is accessed through the ControllerContext.HttpContext property, which returns a
Microsoft.AspNetCore.Http.HttpContext object. The HttpContext class consolidates several objects that
describe different aspects of the request, accessed through the properties shown in Table 17-6.

Table 17-5. The Most Important ControllerContext Properties

Name Description

ActionDescriptor This property returns an ActionDescriptor object, which describes the action
method.

HttpContext This property returns an HttpContext object, which provides details of the HTTP
request and the HTTP response that will be sent in return. See Table 17-6 for details.

ModelState This property returns a ModelStateDictionary object, which is used to validate
data sent by the client, as described in Chapter 27.

RouteData This property returns a RouteData object that describes the way that the routing
system has processed the request, as described in Chapter 15.

http://dx.doi.org/10.1007/978-1-4842-3150-0_27
http://dx.doi.org/10.1007/978-1-4842-3150-0_15

Chapter 17 ■ Controllers and aCtions

520

The ControllerContext attribute is used to decorate the property in Listing 17-11 and tells MVC to
set the property value with a ControllerContext object that describes the current request. This uses a
technique known as dependency injection, which I describe in Chapter 18, and MVC will use this property to
provide the controller with context data before using an action method to handle a request.

Finally, the third use of the term ControllerContext is the name of the property. You can use any legal
C# property name in your own POCO controllers, but I chose this name because it is the one used by the
Controller class. Behind the scenes, the Controller class relies on the same ControllerContext class
for its context data, which is decorated with the same ControllerContext attribute. All of the Controller
properties that I described in Table 17-3 are just more convenient and concise alternatives to using the
ControllerContext properties directly, which is exactly what’s happening in the properties provided by the
Controller class. As an example, here is the definition of the HttpContext property from the Controller class:

...
public HttpContext HttpContext {
 get {
 return ControllerContext.HttpContext;
 }
}
...

The HttpContext property is just a more convenient way to get the value of the ControllerContext.
HttpContext property. There is no magic in the Controller base class: it results in simpler and clearer
controllers because it consolidates common tasks into convenience methods and properties, all of which
you could re-create yourself in a POCO controller if you needed. A lot of the functionality in ASP.NET Core
MVC is surprisingly simple when you dig into the detail, and there is no special sauce—just well-thought-out
functionality provided in a carefully designed set of NuGet packages. If you have the time, I recommend you
confirm this yourself by downloading the MVC source code from http://github.com/aspnet and exploring.

Using Action Method Parameters
Some context data can also be received through action method parameters, which can produce more
natural and elegant code. A common example is when an action method needs to receive form data values
submitted by the user. For comparison, I will demonstrate how to get form data through context objects and
then through action method parameters.

Table 17-6. Commonly Used HttpContext Properties

Name Description

Connection This property returns a ConnectionInfo object that describes the low-level connection
to the client.

Request This property returns an HttpRequest object that describes the HTTP request received
from the client, as described earlier in this chapter.

Response This property returns an HttpResponse object that is used to create the response that will
be returned to the client, as described in the “Producing a Response” section.

Session This property returns an ISession object that describes the session with which the
request is associated.

User This property returns a ClaimsPrincipal object that describes the user associated with
the request, as described in Chapter 28.

http://dx.doi.org/10.1007/978-1-4842-3150-0_18
http://github.com/aspnet
http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 17 ■ Controllers and aCtions

521

Form data values are accessed through the Controller class’s Request.Form property.
To demonstrate, I added a class file called HomeController.cs and used it to define the derived
controller shown in Listing 17-12.

Listing 17-12. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace ControllersAndActions.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("SimpleForm");

 public ViewResult ReceiveForm() {
 var name = Request.Form["name"];
 var city = Request.Form["city"];
 return View("Result", $"{name} lives in {city}");
 }
 }
}

The Index action method in this controller renders the SimpleForm view that I created in the Views/
Shared folder at the start of the chapter. It is the ReceiveForm method that is of interest because it uses the
HttpRequest context object to get form data values from the request.

As described in Table 17-4, the Form property defined by the HttpRequest class returns a collection
containing the form data values, indexed by the name of the associated HTML element. There are two input
elements in the SimpleForm view (name and city), and I extract their values from the context object and use
them to create a string that is passed to the Result view as its model.

If you run the application and request the /Home URL, you will be presented with a form. If you fill out
the fields and click the Submit button, the browser will send the form data as part of an HTTP POST request
that will be handled by the ReceiveForm method, producing the result shown in Figure 17-5.

Figure 17-5. Getting form data from the context objects

Chapter 17 ■ Controllers and aCtions

522

This approach shown in Listing 17-12 works perfectly well, but there is a more elegant alternative.
Action methods can define parameters that are used by MVC to pass context data to a controller, including
details of the HTTP request. This is neater than extracting it from the context objects directly, and it produces
action methods that are easier to read. To receive the form data, declare parameters on the action method
whose names correspond to the form data values, as shown in Listing 17-13.

Listing 17-13. Receiving Context Data as Parameters in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace ControllersAndActions.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("SimpleForm");

 public ViewResult ReceiveForm(string name, string city)
 => View("Result", $"{name} lives in {city}");
 }
}

The revised action method produces the same result, but the code is easier to read and understand.
MVC will provide values for action method parameters by checking context objects automatically, including
Request.QueryString, Request.Form, and RouteData.Values. The names of the parameters are treated
case-insensitively so that an action method parameter called city can be populated by a value from
Request.Form["City"], for example. This approach also produces action methods that are easier to unit
test because the values that the action method operates on are received as regular C# parameters and don’t
require context objects to be mocked.

Producing a Response
After an action method has finished processing a request, it needs to generate a response. There are many
features available for generating output from action methods, which I describe in the sections that follow.

Producing a Response Using the Context Object
The lowest-level way to generate output is to use the HttpResponse context object, which is how ASP.
NET Core provides access to the HTTP response that will be sent to the client. Table 17-7 describes the
basic features provided by the HttpResponse class, which is defined in the Microsoft.AspNetCore.Http
namespace.

Chapter 17 ■ Controllers and aCtions

523

In Listing 17-14, I have updated the Home controller so that its ReceivedForm action generates a response
using the HttpResponse object returned by the Controller.Request property.

Listing 17-14. Producing a Response in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Text;

namespace ControllersAndActions.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("SimpleForm");

 public void ReceiveForm(string name, string city) {
 Response.StatusCode = 200;
 Response.ContentType = "text/html";
 byte[] content = Encoding.ASCII
 .GetBytes($"<html><body>{name} lives in {city}</body>");
 Response.Body.WriteAsync(content, 0, content.Length);
 }
 }
}

This is a terrible way to generate a response because it hard-codes HTML in the action method using C#
strings, which is error-prone and hard to unit test. But it does provide a starting point for understanding how
responses are created behind the scenes.

There are better alternatives than working directly with the HttpResponse object. MVC builds on the
low-level response with a much more useful feature that is at the heart of how controllers work: the action
result.

Table 17-7. Commonly Used HttpResponse Properties

Name Description

StatusCode This property is used to set the HTTP status code for the response.

ContentType This property is used to set the Content-Type header of the response.

Headers This property returns a dictionary of the HTTP headers that will be included in the
response.

Cookies This property returns a collection that is used to add cookies to the response.

Body This property returns a System.IO.Stream object that is used to write the body data for
the response.

Chapter 17 ■ Controllers and aCtions

524

Understanding Action Results
MVC uses action results to separate stating intentions from executing intentions. The concept is simple once
you have mastered it, but it can take a while to get your head around the approach at first because there is a
bit of indirection going on.

Instead of working directly with the HttpResponse object, action methods return an object that
implements the IActionResult interface from the Microsoft.AspNetCore.Mvc namespace. The
IActionResult object—known as the action result—describes what the response from the controller should
be, such as rendering a view or redirecting the client to another URL. But—and this is where the indirection
comes in—you don’t generate the response directly. Instead, MVC processes the action result to produce the
result for you.

 ■ Note the system of action results is an example of the command pattern. this pattern describes
scenarios where you store and pass around objects that describe operations to be performed. see http://
en.wikipedia.org/wiki/Command_pattern for more details.

Here is the definition of the IActionResult interface from MVC source code:

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Mvc {

 public interface IActionResult {
 Task ExecuteResultAsync(ActionContext context);
 }
}

This interface may seem simple, but that’s because MVC doesn’t dictate what kinds of response
an action result can produce. When an action method returns an action result, MVC calls its
ExecuteResultAsync method, which is responsible generating the response on behalf of the action
method. The ActionContext argument provides context data for generating the response, including the
HttpResponse object. (The ActionContext class is the superclass of ControllerContext and defines all the
properties described in Table 17-5.)

To demonstrate how action results work, I added an Infrastructure folder to the project and added a
class file to it called CustomHtmlResult.cs, which I used to define the action result shown in Listing 17-15.

Listing 17-15. The Contents of the CustomHtmlResult.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Mvc;
using System.Text;
using System.Threading.Tasks;

namespace ControllersAndActions.Infrastructure {

 public class CustomHtmlResult : IActionResult {

 public string Content { get; set; }

http://en.wikipedia.org/wiki/Command_pattern
http://en.wikipedia.org/wiki/Command_pattern

Chapter 17 ■ Controllers and aCtions

525

 public Task ExecuteResultAsync(ActionContext context) {
 context.HttpContext.Response.StatusCode = 200;
 context.HttpContext.Response.ContentType = "text/html";
 byte[] content = Encoding.ASCII.GetBytes(Content);
 return context.HttpContext.Response.Body.WriteAsync(content,
 0, content.Length);
 }
 }
}

The CustomHtmlResult class implements the IActionResult interface, and its ExecuteResultAsync
method uses the HttpResponse object to write an HTML response that contains the value of a property
called Content. The ExecuteResultAsync method must return a Task so that the response can be produced
asynchronously; this fits nicely with the implementation in the CustomHtmlResult class, which relies on
the WriteAsync method of the Stream object that represents the response body and which returns a Task
method that I can use as the method result.

In Listing 17-16, I have applied the action result class to the Home controller, simplifying the ReceiveForm
action method of the Home controller.

Listing 17-16. Using an Action Result in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Text;
using ControllersAndActions.Infrastructure;

namespace ControllersAndActions.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("SimpleForm");

 public IActionResult ReceiveForm(string name, string city)
 => new CustomHtmlResult {
 Content = $"{name} lives in {city}"
 };
 }
}

The code that sends the response is now defined separately from the data that the response contains,
which simplifies the action method and allows the same type of response to be produced in other action
methods without duplicating the same code.

Chapter 17 ■ Controllers and aCtions

526

UNIT TESTING CONTROLLERS AND ACTIONS

Many parts of asp.net Core MVC are designed to facilitate unit testing, and this is especially true for
actions and controllers. there are a few reasons for this support.

• You can test actions and controllers outside a web server.

• You do not need to parse any htMl to test the result of an action method. You can
inspect the IActionResult object that is returned to ensure that you received the
expected result.

• You do not need to simulate client requests. the MVC model binding system allows
you to write action methods that receive input as method parameters. to test an action
method, you simply call the action method directly and provide the parameter values
that interest you.

i will show you how to create unit tests for the different kinds of action results throughout this chapter.
see Chapter 7 for instructions for setting up a unit test project or download the example projects from
this book’s Github repository (https://github.com/apress/pro-asp.net-core-mvc-2).

Producing an HTML Response
In the previous section, I was able to take the code that generates the response out of the controller class
using an action result. ASP.NET Core MVC comes complete with a more flexible approach to producing
responses: the ViewResult class.

The ViewResult class is the action result that provides access to the Razor view engine, which processes
.cshtml files to incorporate model data and sends the result to the client through the HttpResponse context
engine. I explain how view engines work in Chapter 21, but for this chapter, my focus is on the use of the
ViewResult class as an action result.

In Listing 17-17, I have replaced the custom action result class with a ViewResult, which is created
through the View method provided by the Controller base class.

Listing 17-17. Using the ViewResult Class in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Text;
using ControllersAndActions.Infrastructure;

namespace ControllersAndActions.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("SimpleForm");

 public ViewResult ReceiveForm(string name, string city)
 => View("Result", $"{name} lives in {city}");
 }
}

http://dx.doi.org/10.1007/978-1-4842-3150-0_7
https://github.com/apress/pro-asp.net-core-mvc-2
http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 17 ■ Controllers and aCtions

527

You can create ViewResult objects directly, as I demonstrated in the POCO controller at the start of
the chapter, but using the View method is simpler and more concise. The Controller class provides several
different versions of the View method that allow the view that will be rendered to be selected and provided
with model data, as described in Table 17-8.

If you run the application and submit the form, you will see the familiar result shown in Figure 17-6.

Figure 17-6. Using a ViewResult to generate an HTML response

Table 17-8. The Controller View Methods

Method Description

View() This method creates a ViewResult object for the default view associated with the
action method, such that calling View() in a method called MyAction will render a
view called MyAction.cshtml. No model data is used.

View(view) This method creates a ViewResult that will render the specified view, such that
calling View("MyView") will render a view called MyView.cshtml. No model data
is used.

View(model) This method creates a ViewResult object for the default view associated with the
action method and uses the specified object as the model data.

View(view, model) This method creates a ViewResult object for the specified view and uses the
specified object as the model data.

Chapter 17 ■ Controllers and aCtions

528

Understanding the Search for a View File
When MVC calls the ExecuteResultAsync method of the ViewResult object, a search will begin for the
view that you have specified. The sequence of directories that MVC searches for a view is an example of
convention over configuration. You do not need to register your view files with the framework. You just put
them in one of a set of known locations and the framework will find them. By default, MVC will look for a
view in the following locations:

/Views/<ControllerName>/<ViewName>.cshtml
/Views/Shared/<ViewName>.cshtml

The search starts with the folder that contains views that are dedicated to the current controller. The
name of this folder omits the Controller part of the class name so that the folder for the HomeController
class is Views/Home.

If the view name is not specified in the ViewResult object, then the value of the action variable from
the routing data will be used. For most controllers, this means that the name of the method will be used so
that the default view file associated with the Index method is Index.cshtml. However, if you have used the
Route attribute, then the view name associated with an action method may be different.

If your controller is part of an area, as described in Chapter 16, then the search locations are different.

/Areas/<AreaName>/Views/<ControllerName>/<ViewName>.cshtml
/Areas/<AreaName>/Views/Shared/<ViewName>.cshtml
/Views/Shared/<ViewName>.cshtml

MVC checks to see whether each of these files exists in turn. As soon as it locates a match, it uses that
view to render the result of the action method. I am not using areas in the example project, so the action
method in Listing 17-17 causes MVC to start its search by looking for the Views/Home/Result.cshtml file.
There is no such file, so the search continues, with MVC looking for Views/Shared/Result.cshtml, which
does exist and so will be used to render the HTML response.

UNIT TEST: RENDERING A VIEW

to test the view that an action method renders, you can inspect the ViewResult object that it returns.
this is not quite the same thing (after all, you are not following the process through to check the final
htMl that is generated), but it is close enough, as long as you have reasonable confidence that the MVC
view system works properly. i added a new unit test file called ActionTests.cs to the test project to
hold the unit tests for this chapter.

the first situation i want to test is when an action method selects a specific view, like this:

...
public ViewResult ReceiveForm(string name, string city)
 => View("Result", $"{name} lives in {city}");
...

http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 17 ■ Controllers and aCtions

529

You can determine which view has been selected by reading the ViewName property of the ViewResult
object, as shown in this test method:

using ControllersAndActions.Controllers;
using Microsoft.AspNetCore.Mvc;
using Xunit;

namespace ControllersAndActions.Tests {

 public class ActionTests {

 [Fact]
 public void ViewSelected() {
 // Arrange
 HomeController controller = new HomeController();

 // Act
 ViewResult result = controller.ReceiveForm("Adam", "London");

 // Assert
 Assert.Equal("Result", result.ViewName);
 }
 }
}

a variation arises when you are testing an action method that selects the default view, like this:

...
public ViewResult Result() => View();
...

in such situations, you need to ensure that the view name is null, like this:

...
Assert.Null(result.ViewName);
...

a null value is how the ViewResult object signals to MVC that the default view associated with the
action method has been selected.

Chapter 17 ■ Controllers and aCtions

530

SPECIFYING A VIEW BY ITS PATH

the naming convention approach for views is convenient and simple, but it does limit the views you can
render. if you want to render a specific view, you can do so by providing an explicit path and bypass the
search phase. here is an example:

using Microsoft.AspNetCore.Mvc;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() {
 return View("/Views/Admin/Index");
 }
 }
}

When you specify a view like this, the path must begin with / or ~/ and can include the file name
extension (which is assumed to be .cshtml if unspecified).

if you find yourself using this feature, i suggest that you take a moment and ask yourself what you are
trying to achieve. if you are attempting to render a view that belongs to another controller, then you
might be better off redirecting the user to an action method in that controller (see the “redirecting to an
action Method” section later in this chapter for an example). if you are trying to work around the view
file naming scheme because it doesn’t suit the way you have organized your project, then see Chapter
21, which explains how to implement a custom search sequence.

Passing Data from an Action Method to a View
When you use a ViewResult to select a view, you can pass data from the action method to be used when the
HTML content is generated. MVC provides different ways for an action method to pass data to a view, which
I describe in the following sections. These features naturally touch on the topic of views, which I describe in
depth in Chapter 21. In this chapter, I discuss only enough view functionality to demonstrate the controller
features.

Using a View Model Object

You can send an object to the view by passing it as a parameter to the View method, which has the effect
of setting the ViewData.Model property of the ViewResult object that is created. I set this property directly
earlier in the chapter to explain how POCO controllers work, but the View method takes care of this more
concisely. Listing 17-18 shows a new ExampleController class that I added to the Controllers folder and
that passes a view model object to the View method.

Listing 17-18. The Contents of the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System;

http://dx.doi.org/10.1007/978-1-4842-3150-0_21
http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 17 ■ Controllers and aCtions

531

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() => View(DateTime.Now);
 }
}

I passed a DateTime object to the View method to use as the view model. To access the object from
within the view, I use the Razor Model keyword. I created the Views/Example folder and added a view called
Index.cshtml, which is shown in Listing 17-19.

Listing 17-19. The Contents of the Index.cshtml File in the Views/Example Folder

@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Controllers and Actions</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 Model: @(((DateTime)Model).DayOfWeek)
</body>
</html>

This is an untyped or weakly typed view. The view does not know anything about the view model object
and treats it as an instance of object. To get the value of the DayOfWeek property, I need to cast the object to
an instance of DateTime, like this:

...
Model: @(((DateTime)Model).DayOfWeek)
...

This works but produces messy views. I can tidy this up by creating strongly typed views, in which the
view includes details of the type of the view model object, as demonstrated in Listing 17-20.

Listing 17-20. Adding Strong Typing to the Index.cshtml File in the Views/Example Folder

@model DateTime
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Controllers and Actions</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>

Chapter 17 ■ Controllers and aCtions

532

<body class="m-1 p-1">
 Model: @Model.DayOfWeek
</body>
</html>

I specified the view model type using the Razor model keyword. Notice that I use a lowercase m when
specifying the model type and an uppercase M when reading the value.

Not only does strong typing help tidy up the view, but Visual Studio supports IntelliSense for strongly
typed views, as shown in Figure 17-7.

UNIT TEST: VIEW MODEL OBJECTS

View model objects are assigned to the ViewResult.ViewData.Model property, which means you
can test that an action method sends the expected data when the View method is used. here is a test
method that checks the model type for the action method in listing 17-20:

...
[Fact]
public void ModelObjectType() {
 //Arrange
 ExampleController controller = new ExampleController();

 // Act
 ViewResult result = controller.Index();

 // Assert
 Assert.IsType<System.DateTime>(result.ViewData.Model);
}
...

the Assert.IsType method is used to check that the view model object is an instance of DateTime.

Figure 17-7. IntelliSense support for strongly typed views

Chapter 17 ■ Controllers and aCtions

533

There is one wrinkle to be aware of when using the View method, which arises when you want to use
the default view associated with an action and provide that view with a string model object, as shown in
Listing 17-21.

Listing 17-21. Using the View Method in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() => View(DateTime.Now);

 public ViewResult Result() => View("Hello World");
 }
}

In the new Result action method, I want to use the View method that renders the default view for the
action and specify the model data, which is the third version of the method in Table 17-8. But if you run the
application and request the /Example/Result URL, you will see an error like this one:

InvalidOperationException: The view 'Hello, World' was not found.
The following locations were searched:
/Views/Example/Hello, World.cshtml
/Views/Shared/Hello, World.cshtml

The problem is that my call to the View method with a string was a match to the second version of the
View method in Table 17-8, which means that the string argument was interpreted as the name of the view
to render, so MVC tries to find a view file called Hello, World.cshtml instead of Result.cshtml. This is a
common problem, but it is easy to fix by casting the model data to object, as shown in Listing 17-22.

Listing 17-22. Selecting the Correct View Method in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() => View(DateTime.Now);

 public ViewResult Result() => View((object)"Hello World");
 }
}

Explicitly casting the model data to object ensures that the call matches the right version of the View
method and renders the Result.cshtml file.

Chapter 17 ■ Controllers and aCtions

534

Passing Data with the View Bag
I introduced the view bag feature in Chapter 2. This feature allows you to define properties on a dynamic
object and access them in a view. The dynamic object is accessed through the ViewBag property provided by
the Controller class, as demonstrated in Listing 17-23.

Listing 17-23. Using the View Bag Feature in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() {
 ViewBag.Message = "Hello";
 ViewBag.Date = DateTime.Now;
 return View();
 }

 public ViewResult Result() => View((object)"Hello World");
 }
}

I have defined view bag properties called Message and Date by assigning values to them. Before this
point, no such properties existed, and I made no preparations to create them. To read the data back in the
view, I get the same properties that I set in the action method, as shown in Listing 17-24.

Listing 17-24. Reading Data from the ViewBag in the Index.cshtml File in the Views/Example Folder

@model DateTime
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Controllers and Actions</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 <p>The day is: @ViewBag.Date.DayOfWeek</p>
 <p>The message is: @ViewBag.Message</p>
</body>
</html>

The ViewBag has an advantage over using a view model object in that it is easy to send multiple objects
to the view. If MVC only supported view models, then I would need to create a new type that had string and
DateTime members in order to get the same effect.

http://dx.doi.org/10.1007/978-1-4842-3150-0_2

Chapter 17 ■ Controllers and aCtions

535

 ■ Caution Visual studio cannot provide intellisense support for any dynamic objects, including the ViewBag,
and errors won’t be revealed until the view is rendered.

UNIT TEST: VIEWBAG

the ViewResult.ViewData property returns a dictionary whose keys are the names of the view bag
properties defined by the action method. here is a test method for the action method in listing 17-24:

...
[Fact]
public void ModelObjectType() {
 //Arrange
 ExampleController controller = new ExampleController();

 // Act
 ViewResult result = controller.Index();

 // Assert
 Assert.IsType<string>(result.ViewData["Message"]);
 Assert.Equal("Hello", result.ViewData["Message"]);
 Assert.IsType<System.DateTime>(result.ViewData["Date"]);
}
...

this test method checks the types for both the Message and Date properties using the Assert.IsType
method and checks the value of the Message property using the Assert.Equal method.

Performing Redirections
A common result from an action method is not to produce any output directly but to redirect the client to
another URL. Most of the time, this URL is another action method in the application that generates the
output you want the users to see. When you perform a redirect, you send one of two HTTP codes to the
browser.

HTTP code 302, which is a temporary redirection. This is the most frequently used type of redirection,
and when using the Post/Redirect/Get pattern, this is the code that you want to send.

HTTP code 301, which indicates a permanent redirection. This should be used with caution because it
instructs the recipient of the HTTP code not to request the original URL ever again and to use the new URL
that is included alongside the redirection code. If you are in doubt, use temporary redirections; that is, send
code 302.

Several different action results can be used to perform a redirection, as described in Table 17-9.

Chapter 17 ■ Controllers and aCtions

536

Redirecting to a Literal URL
The most basic way to redirect a browser is to call the Redirect method provided by the Controller class,
which returns an instance of the RedirectResult class, as shown in Listing 17-25.

Listing 17-25. Redirecting to a Literal URL in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() {
 ViewBag.Message = "Hello";
 ViewBag.Date = DateTime.Now;
 return View();
 }

 public ViewResult Result() => View((object)"Hello World");

 public RedirectResult Redirect() => Redirect("/Example/Index");
 }
}

The redirection URL is expressed as a string argument to the Redirect method, which produces a
temporary redirection. You can perform a permanent redirection using the RedirectPermanent method, as
shown in Listing 17-26.

Table 17-9. The Redirection Action Results

Name Controller Method Description

RedirectResult Redirect RedirectPermanent This action result sends a response
with the HTTP 301 or 302 status code,
redirecting the client to a new URL.

LocalRedirectResult LocalRedirect
LocalRedirectPermanent

This action result redirects the client
to a local URL.

RedirectToActionResult RedirectToAction
RedirectionToActionPermanent

This action result redirects the client
to a specific action and controller.

RedirectToRouteResult RedirectToRoute
RedirectToRoutePermanent

This action result redirects the client to
a URL generated from a specific route.

Chapter 17 ■ Controllers and aCtions

537

 ■ Tip the LocalRedirectionResult is an alternative action result that will throw an exception if a controller
tries to perform a redirection to any Url that is not local. this is useful when you are redirecting to Urls provided
by users, where an open redirection attack is attempted to redirect another user to an untrusted site. this kind of
action result can be created through the LocalRedirect method inherited from the Controller class.

Listing 17-26. Permanently Redirecting in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() {
 ViewBag.Message = "Hello";
 ViewBag.Date = DateTime.Now;
 return View();
 }

 public ViewResult Result() => View((object)"Hello World");

 public RedirectResult Redirect() => RedirectPermanent("/Example/Index");
 }
}

UNIT TEST: LITERAL REDIRECTIONS

literal redirections are easy to test. You can read the Url and test whether the redirection is permanent
or temporary using the Url and Permanent properties of the RedirectResult class. the following is a
test method for the permanent redirection shown in listing 17-26:

...
[Fact]
public void Redirection() {
 // Arrange
 ExampleController controller = new ExampleController();
 // Act
 RedirectResult result = controller.Redirect();
 // Assert
 Assert.Equal("/Example/Index", result.Url);
 Assert.True(result.Permanent);
}
...

notice that i have updated the test to receive a RedirectResult when i call the action method.

Chapter 17 ■ Controllers and aCtions

538

Redirecting to a Routing System URL
If you are redirecting the user to a different part of your application, you need to make sure that the URL you
send is valid within your URL schema. The problem with using literal URLs for redirection is that any change
in your routing schema means that you need to go through your code and update the URLs. Fortunately,
you can use the routing system to generate valid URLs with the RedirectToRoute method, which creates an
instance of the RedirectToRouteResult, as shown in Listing 17-27.

 ■ Tip if you are following the examples in this chapter in sequence, then you may have to clear your
browser’s history for the code in listing 17-27 to work. this is because the browser remembers the permanent
redirection in listing 17-26 and will translate a request for the /Example/Redirect Url into a request to /
Example/Index without contacting the server.

Listing 17-27. Redirecting to a Routing URL in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() {
 ViewBag.Message = "Hello";
 ViewBag.Date = DateTime.Now;
 return View();
 }

 public ViewResult Result() => View((object)"Hello World");

 public RedirectToRouteResult Redirect() =>
 RedirectToRoute(new { controller = "Example",
 action = "Index",
 ID = "MyID" });
 }
}

The RedirectToRoute method issues a temporary redirection. Use the RedirectToRoutePermanent
method for permanent redirections. Both methods take an anonymous type whose properties are then
passed to the routing system to generate a URL, as described in Chapter 16.

http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 17 ■ Controllers and aCtions

539

UNIT TESTING: ROUTED REDIRECTIONS

here is the unit test for the action method in listing 17-27:

...
[Fact]
public void Redirection() {
 // Arrange
 ExampleController controller = new ExampleController();
 // Act
 RedirectToRouteResult result = controller.Redirect();
 // Assert
 Assert.False(result.Permanent);
 Assert.Equal("Example", result.RouteValues["controller"]);
 Assert.Equal("Index", result.RouteValues["action"]);
 Assert.Equal("MyID", result.RouteValues["ID"]);
}
...

i have tested the result indirectly by looking at the routing information provided by the
RedirectToRouteResult object, which means that i don’t have to parse a Url, which would require
the unit test to make assumptions about the Url schema used by the application.

Redirecting to an Action Method
You can redirect to an action method more elegantly by using the RedirectToAction method (for temporary
redirections) or the RedirectToActionPermanent method (for permanent redirections). These are just
wrappers around the RedirectToRoute method that let you specify values for the action method and the
controller without needing to create an anonymous type, as shown in Listing 17-28.

Listing 17-28. Using the RedirectToAction Method in the ExampleController.cs File in the Controllers
Folder

using Microsoft.AspNetCore.Mvc;
using System;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ViewResult Index() {
 ViewBag.Message = "Hello";
 ViewBag.Date = DateTime.Now;
 return View();
 }

 public RedirectToActionResult Redirect() => RedirectToAction(nameof(Index));
 }
}

Chapter 17 ■ Controllers and aCtions

540

If you specify just an action method, then it is assumed that you are referring to an action method in the
current controller. If you want to redirect to another controller, you need to provide the controller’s name as
a parameter, like this:

...
public RedirectToActionResult Redirect()
 => RedirectToAction(nameof(HomeController), nameof(HomeController.Index));
...

There are other overloaded versions that you can use to provide additional values for the URL
generation. These are expressed using an anonymous type, which does tend to undermine the purpose of
the convenience method but can still make your code easier to read.

 ■ Note the values that you provide for the action method and controller are not verified before they are
passed to the routing system. You are responsible for making sure that the targets you specify actually exist.

UNIT TESTING: ACTION METHOD REDIRECTIONS

here is the unit test for the action method in listing 17-28:

...
[Fact]
public void Redirection() {
 // Arrange
 ExampleController controller = new ExampleController();
 // Act
 RedirectToActionResult result = controller.Redirect();
 // Assert
 Assert.False(result.Permanent);
 Assert.Equal("Index", result.ActionName);
}
...

the RedirectToActionResult class provides ControllerName and ActionName properties that make it
easy to inspect the redirection created by the controller without having to parse Urls.

Using the Post/Redirect/Get Pattern
The most frequent use of redirection is in action methods that process HTTP POST requests. As I explained in
the previous chapter, POST requests are used when you want to change the state of an application. If you just
return an HTML response after you process a POST request, there is a risk that the user will click the browser
reload button and resubmit the form a second time, which can have unexpected and undesirable results.

You can see this problem in the Home controller in the example application. The ReceiveForm method
accepts parameters whose values are obtained from form data, and it uses the View method to return a
ViewResult.

Chapter 17 ■ Controllers and aCtions

541

...
public ViewResult ReceiveForm(string name, string city)
 => View("Result", $"{name} lives in {city}");
...

To see the problem, run the application and request the /Home URL. Submit the form and then click
the browser reload button. Use the F12 tools to study the HTTP requests made by the browser and you
will see that a new POST request is sent to the server. There is no impact in such a simple application, but
this problem can wreak havoc if the POST requests end up repeatedly deleting data, submitting orders, or
performing other important tasks that the user didn’t intend.

To avoid this problem, you can follow the pattern called Post/Redirect/Get. In this pattern, you receive
a POST request, process it, and then redirect the browser so that a GET request is made by the browser for
another URL. GET requests should not modify the state of your application, so any inadvertent resubmissions
of this request won’t cause any problems. In Listing 17-29, I have added a redirection so that the browser is
redirected to a different URL with a GET request.

Listing 17-29. The Post/Redirect/Get Pattern in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Text;
using ControllersAndActions.Infrastructure;

namespace ControllersAndActions.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("SimpleForm");

 [HttpPost]
 public RedirectToActionResult ReceiveForm(string name, string city)
 => RedirectToAction(nameof(Data));

 public ViewResult Data() => View("Result");
 }
}

The RedirectToActionResult method receives the data from the user via a POST request and redirects
the client to the Data action method. A harmless GET request will be sent to the Data action method if
the user reloads the page. The HttpPost attribute, which I describe in Chapter 20, ensures that only POST
requests can be sent to the ReceiveForm action.

Using Temp Data
A redirection causes the browser to send an entirely new HTTP request, which means that there is no access
to the form data from the original request. This means that the Data method doesn’t have any knowledge of
the name and city values that should be displayed to the user.

You can use the temp data feature to preserve data from one request to another. Temp data is similar to
session data, which I used in Chapter 9, except that temp data values are marked for deletion when they are
read and removed from the data store when the request has been processed. This is an ideal arrangement for
short-lived data that is needed to make a redirection work in the Post/Redirect/Get pattern. The temp data
feature is available through a Controller class property called TempData, as shown in Listing 17-30.

http://dx.doi.org/10.1007/978-1-4842-3150-0_20
http://dx.doi.org/10.1007/978-1-4842-3150-0_9

Chapter 17 ■ Controllers and aCtions

542

 ■ Note temp data relies on the session middleware. see the start of this chapter for the middleware
components required in the Startup class for this feature.

Listing 17-30. Using Temp Data in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System.Text;
using ControllersAndActions.Infrastructure;

namespace ControllersAndActions.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 return View("SimpleForm");
 }

 [HttpPost]
 public RedirectToActionResult ReceiveForm(string name, string city) {
 TempData["name"] = name;
 TempData["city"] = city;
 return RedirectToAction(nameof(Data));
 }

 public ViewResult Data() {
 string name = TempData["name"] as string;
 string city = TempData["city"] as string;
 return View("Result", $"{name} lives in {city}");
 }
 }
}

The ReceiveForm method uses the TempData property, which returns a dictionary, to store the name
and city values before redirecting the client to the Data action. The Data method uses the same TempData
property to retrieve the data values and uses them to create the model data that will be displayed by the view.

 ■ Tip the TempData dictionary also provides a Peek method that allows you to get a data value without
marking it for deletion and a Keep method, which can be used to prevent a previously read value from being
deleted. the Keep method doesn’t protect a value forever. if the value is read again, it will be marked for
removal once more. Use session data if you want to store items so that they won’t be removed when the
request is processed.

Chapter 17 ■ Controllers and aCtions

543

Returning Different Types of Content
HTML isn’t the only kind of response that your action methods can generate, and Table 17-10 shows the
built-in action results that can be used for different types of data.

Producing a JSON Response
The JavaScript Object Notation (JSON) format has become the standard way to transfer data between a web
application and its clients. JSON has largely replaced XML as a data exchange format because it is simpler
to work with, especially when writing client-side JavaScript since JSON is closely related to the syntax that
JavaScript uses to define literal data values. I return to the topic of JSON and its role in web applications in
Chapter 20, and Listing 17-31 shows the use of the Json method to create a JsonResult object.

Listing 17-31. Generating a JSON Response in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using System;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public JsonResult Index() => Json(new[] { "Alice", "Bob", "Joe" });
 }
}

Run the example and request the /Example URL and you will see a response that expresses the C#
string array from the action method in JSON, like this:

["Alice","Bob","Joe"]

Most browsers display JSON results inline, but some, including Microsoft Internet Explorer, require you
to save the data into a file before you can inspect it.

Table 17-10. The Content Action Results

Name Controller Method Description

JsonResult Json This action result serializes an object into JSON and
returns it to the client.

ContentResult Content This action result sends a response whose body
contains a specified object.

ObjectResult Not Available This action result will use content negotiation to send
an object to the client.

OkObjectResult Ok This action result will use content negotiation to send
an object to the client with an HTTP 200 status code if
the content negotiation is successful.

NotFoundObjectResult NotFound This action result will use content negotiation to send
an object to the client with an HTTP 404 status code if
the content negotiation is successful.

http://dx.doi.org/10.1007/978-1-4842-3150-0_20

Chapter 17 ■ Controllers and aCtions

544

UNIT TESTING: NON-HTML ACTION RESULTS

it is important to remember that your unit tests on an action method should focus on the data that is
returned to be formatted and not the formatting itself, which is handled by MVC and which will generally
be out of scope for most testing projects. as an example, here is a unit test for the action method in
listing 17-31:

...
[Fact]
public void JsonActionMethod() {
 // Arrange
 ExampleController controller = new ExampleController();
 // Act
 JsonResult result = controller.Index();
 // Assert
 Assert.Equal(new[] { "Alice", "Bob", "Joe" }, result.Value);
}
...

the JsonResult class provides a Value property that returns the data that will be converted into Json
to produce the response to the client. in the unit test, i compare the Value property with the data that i
expect.

Using Objects to Generate Responses
Many applications need just HTML and JSON responses from controllers and rely on support for static
files to deliver other types of content, such as images, JavaScript files, and CSS stylesheets. There can be
occasions, however, when you need to return a specific content type in a response, and there are action
results available to help with this. The simplest is the ContentResult class, created through the Content
method, which is used to send a string value with an optional MIME content type. In Listing 17-32, I have
used the Content method to manually re-create the JSON result from the previous section.

Listing 17-32. Manually Creating a JSON Result in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ContentResult Index()
 => Content("[\"Alice\",\"Bob\",\"Joe\"]", "application/json");
 }
}

Chapter 17 ■ Controllers and aCtions

545

This type of action result is useful when you have content that is conveniently in a string format and
you know that the client is able to accept the MIME type you specify. The danger with this approach is that
you send a response to the client in a format that it doesn’t know how to process. A more robust approach is
to rely on content negotiation, which is performed by the ObjectResult, as shown in Listing 17-33.

Listing 17-33. Using Content Negotiation in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public ObjectResult Index() => Ok(new string[] { "Alice", "Bob", "Joe" });
 }
}

The term content negotiation suggests a complex system of figuring out a common format between the
browser and the application, but in fact, it is a simple process. When the browser makes an HTTP request,
it includes the Accept header, which indicates which formats it can handle. Here is the header from the
version of Google Chrome I used to test the example:

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

The supported formats are expressed as MIME types. MVC has a set of formats it can use for data values,
and it compares these to the formats that the browser supports. The preferred format used by MVC is JSON,
and this will be used most of the time, except when an action returns a string value, in which case plain text
is used. See Chapter 20 for more details about the content negotiation process and how it is implemented.

Responding with the Contents of Files
Most applications rely on the static files middleware to deliver the contents of files, but there is also a set of
action results that can be used to send files to the client, as described in Table 17-11.

 ■ Caution Be careful when you use these action results and make sure that you do not create an application
that allows the contents of arbitrary files to be requested. in particular, do not get the path of the file to send
from any part of the request or from any data store that a user can modify through a request.

http://dx.doi.org/10.1007/978-1-4842-3150-0_20

Chapter 17 ■ Controllers and aCtions

546

In Listing 17-34, I have used the File method inherited from the Controller class to return the
Bootstrap CSS file as the result of the Index action method on the Example controller.

Listing 17-34. Using a File as a Response in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public VirtualFileResult Index()
 => File("/lib/bootstrap/dist/css/bootstrap.css", "text/css");
 }
}

To use this action method, I have modified the link element in the SimpleForm.cshtml file so that it
uses the Url helper, as shown in Listing 17-35.

Listing 17-35. Targeting an Action Method in the SimplerForm.cshtml File

@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Controllers and Actions</title>
 <link rel="stylesheet" href="@Url.Action("Index", "Example")" />
</head>

Table 17-11. The File Action Results

Name Controller Method Description

FileContentResult File This action result sends a byte array to the client with a
specified MIME type.

FileStreamResult File This action result reads a stream and sends the content
to the client.

VirtualFileResult File This action result reads a stream from a virtual path
(relative to the application on the host).

PhysicalFileResult PhysicalFile This action result reads the contents of a file from a
specified path and sends the contents to the client.

Chapter 17 ■ Controllers and aCtions

547

<body class="m-1 p-1">
 <form method="post" asp-action="ReceiveForm">
 <div class="form-group">
 <label for="name">Name:</label>
 <input class="form-control" name="name" />
 </div>
 <div class="form-group">
 <label for="name">City:</label>
 <input class="form-control" name="city" />
 </div>
 <button class="btn btn-primary center-block" type="submit">Submit</button>
 </form>
</body>
</html>

If you run the example and request the /Home URL, the HTML response that is sent to the browser will
include the following element:

<link rel="stylesheet" href="/Example" />

This will cause the browser to send an HTTP request that targets the action method in Listing 17-35,
which will send the CSS file required to style the content in the view.

 ■ Note tag helpers are a much more useful tool for delivering Css, as i describe in Chapter 25.

Returning Errors and HTTP Codes
The final set of built-in ActionResult classes can be used to send specific error messages and HTTP result
codes to the client, as described in Table 17-12. Most applications do not require these features because ASP.
NET Core and MVC will automatically generate these kinds of results. However, they can be useful if you
need to take more direct control over the responses sent to the client.

http://dx.doi.org/10.1007/978-1-4842-3150-0_25

Chapter 17 ■ Controllers and aCtions

548

Sending a Specific HTTP Result Code
You can send a specific HTTP status code to the browser using the StatusCode method, which creates a
StatusCodeResult object, as shown in Listing 17-36.

Listing 17-36. Sending a Specific Status Code in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public StatusCodeResult Index()
 => StatusCode(StatusCodes.Status404NotFound);
 }
}

The StatusCode method accepts an int value, which you can use to specify a status code directly. The
StatusCodes class in the Microsoft.AspNetCore.Http namespace defines fields for all the status codes
supported by HTTP. In the listing, I used the Status404NotFound field to return code 404, which signifies that
the requested resource does not exist.

Table 17-12. The Status Code Action Result

Name Controller Method Description

StatusCodeResult StatusCode This action result sends a specified HTTP status
code to the client.

OkResult Ok This action result sends an HTTP 200 status code
to the client.

CreatedResult Created This action result sends an HTTP 201 status code
to the client.

CreatedAtActionResult CreatedAtAction This action result sends an HTTP 201 status code
to the client along with a URL in the Location
header that targets an action and controller.

CreatedAtRouteResult CreatedAtRoute This action result sends an HTTP 201 status code
to the client along with a URL in the Location
header that is generated from a specific route.

BadRequestResult BadRequest This action result sends an HTTP 400 status code
to the client.

UnauthorizedResult Unauthorized This action result sends an HTTP 401 status code
to the client.

NotFoundResult NotFound This action result sends an HTTP 404 status code
to the client

UnsupportedMediaTypeResult None This action result sends an HTTP 415 status code
to the client.

Chapter 17 ■ Controllers and aCtions

549

Sending a 404 Result Using a Convenience Class
The other action results shown in Table 17-12 extend or rely on the StatusCodeResult class, which provides
a more convenient way to send specific status codes. I can achieve the same effect as Listing 17-36 using the
more convenient NotFoundResult class, which is derived from StatusCodeResult and can be created using
the controller NotFound convenience method, as shown in Listing 17-37.

Listing 17-37. Generating a 404 Result in the ExampleController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;

namespace ControllersAndActions.Controllers {

 public class ExampleController : Controller {

 public StatusCodeResult Index() => NotFound();
 }
}

UNIT TEST: HTTP STATUS CODES

the StatusCodeResult class follows the pattern you have seen for the other result types and makes
its state available through a set of properties. in this case, the StatusCode property returns the numeric
http status code, and the StatusDescription property returns the associated descriptive string. the
following test method is for the action method in listing 17-37:

...
[Fact]
public void NotFoundActionMethod() {
 // Arrange
 ExampleController controller = new ExampleController();
 // Act
 StatusCodeResult result = controller.Index();
 // Assert
 Assert.Equal(404, result.StatusCode);
}

...

Understanding the Other Action Result Classes
Some additional action result classes are closely linked with MVC features that I describe in other chapters.
Table 17-13 lists these classes along with the chapters that describe the feature they relate to.

Chapter 17 ■ Controllers and aCtions

550

Summary
Controllers are one of the key building blocks in the MVC design pattern and are at the heart of MVC
development. In this chapter, you have seen how to create POCO controllers using basic C# classes and how
to benefit from the convenience offered by the Controller base class. You saw the role that action results
play in MVC controllers and how they ease unit testing. I showed you the different ways that you can receive
input and generate output from an action method, and I demonstrated the built-in action result that makes
this a simple and flexible process. In the next chapter, I describe one of the features that causes the most
confusion for ASP.NET Core developers but that is essential for effective MVC development: dependency
injection.

Table 17-13. Other Action Result Classes

Name Controller Method Description

PartialViewResult PartialView This action result is used to select a partial view, as
described in Chapter 21.

ViewComponentResult ViewComponent This action result is used to select a view component,
as described in Chapter 22.

EmptyResult None This action result class does nothing and produces an
empty response to the client.

ChallengeResult None This action result is used to enforce security policies in
requests. See Chapter 30 for details.

http://dx.doi.org/10.1007/978-1-4842-3150-0_21
http://dx.doi.org/10.1007/978-1-4842-3150-0_22
http://dx.doi.org/10.1007/978-1-4842-3150-0_30

551© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_18

CHAPTER 18

Dependency Injection

In this chapter, I describe dependency injection (DI), a technique that helps create flexible applications and
simplifies unit testing. Dependency injection can be a difficult topic to understand, both in terms of why
it can be useful and how it is performed. To that end, I build up slowly, starting with the conventional way
of building application components and gradually explaining how dependency injection works and why it
matters. Table 18-1 puts dependency injection into context.

Table 18-1. Putting Dependency Injection in Context

Question Answer

What is it? Dependency injection makes it easy to create loosely coupled
components, which typically means that components consume
functionality defined by interfaces without having any first-hand
knowledge of which implementation classes are being used.

Why is it useful? Dependency injection makes it easier to change the behavior
of an application by changing the components that implement
the interfaces that define application features. It also results in
components that are easier to isolate for unit testing.

How is it used? The Startup class is used to specify which implementation classes
are used to deliver the functionality specified by the interfaces used
by the application. When new objects—such as controllers—are
created to handle requests, they are automatically provided with
instances of the implementation classes they require.

Are there any pitfalls or limitations? The main limitation is that classes declare their use of services as
constructor arguments, which can result in constructors whose
only role is to receive dependencies and assign them to instance
fields.

Are there any alternatives? You don’t have to use dependency injection in your own code,
but it is helpful to know how it works because it is used by MVC to
provide features to developers.

https://doi.org/10.1007/978-1-4842-3150-0_18

Chapter 18 ■ DepenDenCy InjeCtIon

552

Table 18-2 summarizes the chapter.

Table 18-2. Chapter Summary

Problem Solution Listing

Create loosely coupled components Isolate classes through interfaces and connect
them together using external mappings

9–16

Declare a dependency in a
component, such as a controller

Define a constructor argument of the type that the
component requires

17

Configure a service mapping Add the mapping to the Startup class 18, 20–26

Unit test a component with a
dependency

Create a mock implementation of the service
interface and pass it as a constructor argument
when the component is created in the unit test

19

Specify the way in which
implementation objects are created

Create the service mapping using the life-cycle
method that suits the service being managed

27–31

Receive dependencies for individual
action methods in a controller

Use action injection 32

Manually request an implementation
object in a controller

Use the HttpContext.RequestServices property 33

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called DependencyInjection. Listing 18-1 shows the Startup class, which configures the services and
middleware components for the project.

Listing 18-1. The Contents of the Startup.cs File in the DependencyInjection Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace DependencyInjection {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

Chapter 18 ■ DepenDenCy InjeCtIon

553

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Creating the Model and Repository
The examples in this chapter require a simple model that I created by creating the Models folder and adding
a class file called Product.cs, which I used to define the class shown in Listing 18-2.

Listing 18-2. The Contents of the Product.cs File in the Models Folder

namespace DependencyInjection.Models {

 public class Product {

 public string Name { get; set; }
 public decimal Price { get; set; }
 }
}

To manage the model, I added a class called IRepository.cs to the Models folder and used it to define
the interface shown in Listing 18-3.

Listing 18-3. The Contents of the IRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace DependencyInjection.Models {

 public interface IRepository {

 IEnumerable<Product> Products { get; }

 Product this[string name] { get; }

 void AddProduct(Product product);
 void DeleteProduct(Product product);
 }
}

The interface defines the operations that can be performed on the collection of Product objects. To
provide an implementation of the interface, I added a class file called MemoryRepository.cs to the Models
folder and defined the class shown in Listing 18-4.

Chapter 18 ■ DepenDenCy InjeCtIon

554

Listing 18-4. The Contents of the MemoryRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace DependencyInjection.Models {

 public class MemoryRepository : IRepository {
 private Dictionary<string, Product> products;

 public MemoryRepository() {
 products = new Dictionary<string, Product>();
 new List<Product> {
 new Product { Name = "Kayak", Price = 275M },
 new Product { Name = "Lifejacket", Price = 48.95M },
 new Product { Name = "Soccer ball", Price = 19.50M }
 }.ForEach(p => AddProduct(p));
 }

 public IEnumerable<Product> Products => products.Values;

 public Product this[string name] => products[name];

 public void AddProduct(Product product) =>
 products[product.Name] = product;

 public void DeleteProduct(Product product) =>
 products.Remove(product.Name);
 }
}

The MemoryRepository class stores its model objects in memory, using a dictionary. This means that
there is no persistent storage and stopping or restarting the application will reset the model to the sample
data objects that are created in the constructor. This isn’t a sensible approach for a real project, but it will be
enough for this chapter, where the focus is on a different aspect of how applications work.

Creating the Controller and View
I created the Controllers folder, added a class file called HomeController.cs, and used it to define the class
shown in Listing 18-5.

Listing 18-5. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace DependencyInjection.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View();
 }
}

Chapter 18 ■ DepenDenCy InjeCtIon

555

The controller has only one action method, which uses the View method to create a ViewResult that
will render the default view. To create the view associated with the action method, I created the Views/Home
folder and added a Razor file called Index.cshtml. Listing 18-6 shows the markup I added to the view.

Listing 18-6. The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Dependency Injection</title>
 <link rel="stylesheet" asp-href-include="lib/bootstrap/dist/css/*.min.css" />
</head>
<body class="m-1 p-1">
 @if (ViewData.Count > 0) {
 <table class="table table-bordered table-sm table-striped">
 @foreach (var kvp in ViewData) {
 <tr><td>@kvp.Key</td><td>@kvp.Value</td></tr>
 }
 </table>
 }
 <table class="table table-bordered table-sm table-striped">
 <thead>
 <tr><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody>
 @if (Model == null) {
 <tr><td colspan="3" class="text-center">No Model Data</td></tr>
 } else {
 @foreach (var p in Model) {
 <tr>
 <td>@p.Name</td>
 <td>@string.Format("{0:C2}", p.Price)</td>
 </tr>
 }
 }
 </tbody>
 </table>
</body>
</html>

The view is strongly typed using an enumeration of Product objects, and the main content of the view
is an HTML table. If the controller doesn’t provide any model data, then a message is shown as the only
content of the table. If there is model data, then a row is added to the table for each Product object in the
enumeration. There is also a table that will enumerate the keys and values in the view bag if there are any but
is otherwise hidden. I use this table later in the chapter.

The view depends on the Bootstrap CSS package for styling the HTML elements. To add Bootstrap to
the project, I used the Bower Configuration File item template to create the bower.json file and added the
Bootstrap package to the dependencies section, as shown in Listing 18-7.

Chapter 18 ■ DepenDenCy InjeCtIon

556

Listing 18-7. Adding Bootstrap in the bower.json File in the DependencyInjection Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

The final preparation is to create the _ViewImports.cshtml file in the Views folder, which sets up the
built-in tag helpers for use in Razor views and imports the model namespace, as shown in Listing 18-8.

Listing 18-8. The Contents of the _ViewImports.cshtml File in the Views Folder

@using DependencyInjection.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Creating the Unit Test Project
I used the xUnit Test Project (.NET Core) template to create a project called DependencyInjection.Tests,
following the process described in Chapter 7. I removed the UnitTest1.cs file so there are no tests in the
project.

If you run the application, you will see the result shown in Figure 18-1.

Figure 18-1. Running the example application

Creating Loosely Coupled Components
The reason that Figure 18-1 shows no model data is because there is no relationship between the
HomeController class, which needs to pass model data to its view, and the MemoryRepository class, which
contains the model data. The goal when connecting components together in an MVC application is to able
to easily replace a component with an alternative implementation of the same functionality.

Being able to replace components allows effective unit testing, makes it possible to easily change
the behavior of the application in different hosting environments (such as development and production
servers), and simplifies long-term application maintenance.

http://dx.doi.org/10.1007/978-1-4842-3150-0_7

Chapter 18 ■ DepenDenCy InjeCtIon

557

In the sections that follow, I start by explaining the alternative approach and the problems it presents.
This may seem like an indirect way to explain the dependency injection feature, but one of the challenges
with DI is that it solves a problem that isn’t always obvious when writing code and that appears only later in
the development cycle.

TAKING A VIEW ON DEPENDENCY INJECTION

Dependency injection is one of the topics that readers contact me about most often. about half of the emails
complain that I am “forcing” DI upon them. oddly, the other half are complaints that I did not emphasize the
benefits of DI strongly enough and other readers may not have realized how useful it can be.

Dependency injection can be a difficult topic to understand and its value is contentious. DI can be a
useful tool, but not everyone likes it—or needs it.

DI offers limited benefit if you are not doing unit testing or if you are working on a small, self-contained
and stable project. It is still helpful to understand how DI works because DI is used to access some
important MVC features, but you don’t always need to embrace DI in the controllers and other classes
you write.

I use DI in my own projects, largely because I find that projects often go in unexpected directions and
being able to easily replace a component with a new implementation can save me a lot of tedious and
error-prone changes. I’d rather put in some effort at the start of the project than have to do a complex
set of edits later. I am not dogmatic about dependency injection—it solves a problem that doesn’t
arise in every project. only you can determine whether you need DI on your project, and only you can
evaluate the benefits and costs.

Examining Closely Coupled Components
For most developers, the natural inclination is to take the most direct path to solve a problem. For the
example application, that means using the new keyword to create the repository object that is required by the
controller in order to get hold of the model data, as shown in Listing 18-9.

Listing 18-9. Instantiating the Repository in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DependencyInjection.Models;

namespace DependencyInjection.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View(new MemoryRepository().Products);
 }
}

The good news about this code is that it works. If you run the application, you will see the details of the
model objects displayed in the browser, as shown in Figure 18-2.

Chapter 18 ■ DepenDenCy InjeCtIon

558

The bad news is that the Home controller and the MemoryRepository class are now tightly coupled,
which means that I can’t replace the repository without altering the HomeController class. As I explained in
Chapter 7, performing effective unit tests means being able to isolate a single component, but I can’t test the
Index action method in Listing 18-9 without also implicitly testing the repository class. If my unit test fails,
I won’t know whether the problem is in the controller, the repository, or some other component that the
repository depends on. For all practical purposes, the Home controller and MemoryRepository form a single
individual unit, as illustrated by Figure 18-3.

Figure 18-3. The effect of tightly coupled components

Figure 18-2. Displaying the model data

Decoupling Components for Unit Testing
In Chapter 7, I used a property to store a reference to the repository class through the interface it
implements, which allowed me to create a mock repository for the purposes of unit testing. Listing 18-10
shows this approach applied to the controller in this example application for this chapter.

Listing 18-10. Using a Repository Property in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DependencyInjection.Models;

namespace DependencyInjection.Controllers {

 public class HomeController : Controller {

 public IRepository Repository { get; set; } = new MemoryRepository();

 public ViewResult Index() => View(Repository.Products);
 }
}

http://dx.doi.org/10.1007/978-1-4842-3150-0_7
http://dx.doi.org/10.1007/978-1-4842-3150-0_7

Chapter 18 ■ DepenDenCy InjeCtIon

559

This technique is perfectly serviceable if you want to do unit testing because it lets you isolate the
controller class by setting the Repository property before calling the action method in a unit test.

I added a class file called DITests.cs to the DependencyInjection.Tests project and used it to define the
unit test shown in Listing 18-11, which uses the Repository property to set up a fake repository before acting
on the controller.

Listing 18-11. Testing the Controller in the DITests.cs File in the Unit Test Project

using DependencyInjection.Controllers;
using DependencyInjection.Models;
using Microsoft.AspNetCore.Mvc;
using Moq;
using Xunit;

namespace Tests {

 public class DITests {

 [Fact]
 public void ControllerTest() {
 // Arrange
 var data = new[] { new Product { Name = "Test", Price = 100 } };
 var mock = new Mock<IRepository>();
 mock.SetupGet(m => m.Products).Returns(data);
 HomeController controller = new HomeController {
 Repository = mock.Object
 };

 // Act
 ViewResult result = controller.Index();

 // Assert
 Assert.Equal(data, result.ViewData.Model);
 }
 }
}

The Repository property allows me to isolate the controller and supply test data that I can inspect in
the ViewResult created by the action method. This provides only a partial solution to the tightly coupled
component problem because you can’t set the Repository property when the application is running. As I
explained in Chapter 17, MVC is responsible for instantiating controllers to process requests, and it knows
nothing about the special importance attached to the Repository property. The effect that this technique
creates is that the controller and repository are loosely coupled for the purposes of unit testing but tightly
coupled when the application is running, as shown in Figure 18-4.

http://dx.doi.org/10.1007/978-1-4842-3150-0_17

Chapter 18 ■ DepenDenCy InjeCtIon

560

Using a Type Broker
The next logical step is to take the decision about which implementation of the repository interface is used
out of the controller class and put it elsewhere in the application. To demonstrate how this can work, I added
an Infrastructure folder to the example application and added a class file to it called TypeBroker.cs, the
contents of which are shown in Listing 18-12.

Listing 18-12. The Contents of the TypeBroker.cs File in the Infrastructure Folder

using DependencyInjection.Models;
using System;

namespace DependencyInjection.Infrastructure {
 public static class TypeBroker {
 private static Type repoType = typeof(MemoryRepository);
 private static IRepository testRepo;

 public static IRepository Repository =>
 testRepo ?? Activator.CreateInstance(repoType) as IRepository;

 public static void SetRepositoryType<T>() where T : IRepository =>
 repoType = typeof(T);

 public static void SetTestObject(IRepository repo) {
 testRepo = repo;

 }
}

The TypeBroker class defines a Repository property that returns new objects that implement the
IRepository interface. The implementation class used by the Repository property is determined by the
value of the repoType field, which defaults to MemoryRepository but which can be changed by calling the
SetRepositoryType method.

To support unit testing, the SetTestObject method allows a specific object to be used. In Listing 18-13,
I have updated the Home controller so that it obtains the repository object from the broker.

Figure 18-4. The effect of adding a repository property

Chapter 18 ■ DepenDenCy InjeCtIon

561

Listing 18-13. Using the Type Broker in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DependencyInjection.Models;
using DependencyInjection.Infrastructure;

namespace DependencyInjection.Controllers {

 public class HomeController : Controller {

 public IRepository Repository { get; } = TypeBroker.Repository;

 public ViewResult Index() => View(Repository.Products);
 }
}

There is now a more complex set of relationships in the example application, as shown in Figure 18-5.
The key point to note is that there is no direct relationship between the controller class and the repository
class—everything is mediated through the interface and the broker. This means it is possible to change the
repository class without having to make any change to the controller.

Figure 18-5. The effect of adding a type broker

To demonstrate the use of the type broker, I added a class file called AlternateRepository.cs to the
Models folder and used it to define another implementation of the IRepository interface, as shown in
Listing 18-14.

Listing 18-14. The Contents of the AlternateRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace DependencyInjection.Models {
 public class AlternateRepository : IRepository {
 private Dictionary<string, Product> products;

 public AlternateRepository() {
 products = new Dictionary<string, Product>();
 new List<Product> {
 new Product { Name = "Corner Flags", Price = 34.95M },
 new Product { Name = "Stadium", Price = 79500M }
 }.ForEach(p => AddProduct(p));
 }

Chapter 18 ■ DepenDenCy InjeCtIon

562

 public IEnumerable<Product> Products => products.Values;

 public Product this[string name] => products[name];

 public void AddProduct(Product product) =>
 products[product.Name] = product;

 public void DeleteProduct(Product product) =>
 products.Remove(product.Name);
 }
}

In a real application, an alternative repository might store its data in a different format or use a
different kind of persistence. In this example, the difference between the AlternateRepository class
and the MemoryRepository class is the model data they create when the class is instantiated. To use the
AlternateRepository class, I configured the type broker in the ConfigureServices method of the Startup
class, as shown in Listing 18-15.

Listing 18-15. Configuring the Broker in the Startup.cs File in the DependencyInjection Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using DependencyInjection.Infrastructure;
using DependencyInjection.Models;

namespace DependencyInjection {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 TypeBroker.SetRepositoryType<AlternateRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

You can see the effect of the change by starting the application, which will show the data provided by
the new repository class, as shown in Figure 18-6.

Chapter 18 ■ DepenDenCy InjeCtIon

563

The type broker allows a specific object to be used as the repository, which allows unit tests to be
written like the one in Listing 18-16.

Listing 18-16. Testing Through the Broker in the DITests.cs File in the Tests Project

using DependencyInjection.Controllers;
using DependencyInjection.Infrastructure;
using DependencyInjection.Models;
using Microsoft.AspNetCore.Mvc;
using Moq;
using Xunit;

namespace Tests {

 public class DITests {

 [Fact]
 public void ControllerTest() {
 // Arrange
 var data = new[] { new Product { Name = "Test", Price = 100 } };
 var mock = new Mock<IRepository>();
 mock.SetupGet(m => m.Products).Returns(data);
 TypeBroker.SetTestObject(mock.Object);
 HomeController controller = new HomeController();

 // Act
 ViewResult result = controller.Index();

 // Assert
 Assert.Equal(data, result.ViewData.Model);
 }
 }
}

Figure 18-6. Changing the repository class

Chapter 18 ■ DepenDenCy InjeCtIon

564

Introducing ASP.NET Dependency Injection
In the previous section, I walked through the process of separating a controller class and the repository that
supplies its model data. The HomeController class can now obtain an implementation of the IRepository
interface without having any knowledge of which class is being used or how it is instantiated. The knowledge
about which IRepository class is being used is contained in the TypeBroker class, which can be used by any
other controller that requires access to the repository and which can be used to apply a test object.

The overall effect is a more flexible application, but there are some rough edges. The biggest drawback
is that I have to add new methods and properties for each new type that I want to manage the broker. I could
rewrite the TypeBroker class to be more general, but there isn’t any need because ASP.NET Core provides a
slicker version of the same functionality, packaged in a way that makes it easier to use and doesn’t require
any special classes.

Preparing for Dependency Injection
The term dependency injection (DI) describes an alternative approach to creating loosely coupled
components, which is integrated into the ASP.NET Core platform and used automatically by MVC, which
means that controllers and other components don’t need to have any knowledge of how the types they
require are created. Listing 18-17 shows how I have prepared the Home controller for DI.

Listing 18-17. Preparing for DI in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DependencyInjection.Models;
using DependencyInjection.Infrastructure;

namespace DependencyInjection.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) => repository = repo;

 public ViewResult Index() => View(repository.Products);
 }
}

The controller declares its dependencies as constructor arguments. This accounts for the first part of the
term: the dependencies in dependency injection are the objects that are required to create a new instance of
a class. In this case, the controller class has declared a dependency on the IRepository interface.

In ASP.NET Core, a component called the service provider is responsible for mapping interfaces to the
implementation types that are used to satisfy dependencies.

When a new controller is required, MVC asks the service provider to create a new instance of the
HomeController class. The service provider inspects the HomeController constructor to determine its
dependencies, creates the service objects that are required, and injects them into the HomeController
constructor to create a new controller that can be used to handle a request. This is the core process of
dependency injection, so I am going to spell it out for clarity.

 1. MVC receives an incoming request to an action method on the Home controller.

 2. MVC asks the ASP.NET service provider component for a new instance of the
HomeController class.

Chapter 18 ■ DepenDenCy InjeCtIon

565

 3. The service provider inspects the HomeController constructor and discovers that
it has a dependency on the IRepository interface.

 4. The service provider consults its mappings to find the implementation class it
has been told to use for dependencies on the IRepository interface.

 5. The service provider creates a new instance of the implementation class.

 6. The service provider creates a new HomeController object, using the
implementation object as a constructor argument.

 7. The service provider returns the newly created HomeController object to MVC,
which uses it to handle the incoming HTTP request.

The overall effect is the same as for the custom type broker class, but an important advantage is that the
dependency injection process is integrated into MVC, which means that the service provider component
will be used whenever a controller class is created. This allows for controller classes to declare dependencies
without needing any knowledge of how they will be resolved. You just write controller classes that declare
their dependencies as constructor parameters and let MVC and the service provider component figure out
the rest.

 ■ Note all the examples in this chapter use the built-in dependency injection system that comes as part
of aSp.net Core. there are third-party packages that can be used as drop-in replacements for the built-in
functionality and that can offer enhancements and additional features. popular packages include autofac and
StructureMap, although at the time of writing additional packages are required to integrate them into aSp.net
Core. you can find details at http://github.com/aspnet/DependencyInjection/blob/dev/README.md.

Configuring the Service Provider
Declaring a dependency through the HomeController constructor has broken the application, which you
can see if you run the project. When MVC tries to create an instance of the HomeController class to service a
request, it encounters the error shown in Figure 18-7.

Figure 18-7. Running the example project

http://github.com/aspnet/DependencyInjection/blob/dev/README.md

Chapter 18 ■ DepenDenCy InjeCtIon

566

To resolve dependencies, the service provider has to be configured so that it knows how to resolve
service dependencies. At the moment, the service provider doesn’t have that information, and it threw
an exception when asked to create a HomeController object because it doesn’t know how to resolve the
dependency on the IRepository interface.

The configuration for the service provider is defined in the Startup class so that the service is in place
before the application starts to receive requests. In Listing 18-18, I have configured the service provider so
that it knows how to deal with dependencies on the IRepository interface.

Listing 18-18. Configuring the Service Provider in the Startup.cs File in the DependencyInjection Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using DependencyInjection.Infrastructure;
using DependencyInjection.Models;

namespace DependencyInjection {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddTransient<IRepository, MemoryRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Dependency injection is configured using extension methods that are called on the
IServiceCollection object received by the ConfigureServices method. The AddTransient extension
method that I used in the listing tells the service provider how to handle a dependency (which I describe in
more detail later in the chapter). The mapping is expressed using type parameters, with the first type being
the interface and the second type being the implementation class.

...
services.AddTransient<IRepository, MemoryRepository>();
...

This statement tells the service provider to resolve dependencies on the IRepository interface by
creating a MemoryRepository object. If you run the application, you will see that the dependency declared
by the HomeController constructor is resolved and the controller is provided with access to model data, as
shown in Figure 18-8.

Chapter 18 ■ DepenDenCy InjeCtIon

567

Unit Testing a Controller with a Dependency
Using the constructor to receive dependencies makes it easy to unit test controllers. Listing 18-19 shows a
unit test for the controller in Listing 18-18.

Listing 18-19. Testing a Controller in the DITests.cs File in the Unit Test Project

using DependencyInjection.Controllers;
using DependencyInjection.Models;
using Microsoft.AspNetCore.Mvc;
using Moq;
using Xunit;

namespace Tests {

 public class DITests {

 [Fact]
 public void ControllerTest() {
 // Arrange
 var data = new[] { new Product { Name = "Test", Price = 100 } };
 var mock = new Mock<IRepository>();
 mock.SetupGet(m => m.Products).Returns(data);
 HomeController controller = new HomeController(mock.Object);

 // Act
 ViewResult result = controller.Index();

 // Assert
 Assert.Equal(data, result.ViewData.Model);
 }
 }
}

Figure 18-8. Configuring dependency injection

Chapter 18 ■ DepenDenCy InjeCtIon

568

The controller doesn’t know—or care—what kind of object is passed to the constructor as long as it
implements the correct interface. This allows me to use my fake repository without having to rely on any
external class, such as a type broker, that may affect the outcome of the test.

Using Dependency Chains
When the service provider needs to resolve a dependency, it inspects the type that it has been configured
to use to see whether it, too, has dependencies to resolve. The result is that you can create a chain
of dependencies, all of which are resolved at runtime and all of which can be managed through the
configuration in the Startup class. To demonstrate a dependency chain, I added a class file called
IModelStorage.cs to the Models folder and used it to define the interface shown in Listing 18-20.

Listing 18-20. The Contents of the IModelStorage.cs File in the Models Folder

using System.Collections.Generic;

namespace DependencyInjection.Models {

 public interface IModelStorage {
 IEnumerable<Product> Items { get; }
 Product this[string key] { get; set; }
 bool ContainsKey(string key);
 void RemoveItem(string key);
 }
}

This interface defines the behavior of a simple storage mechanism for Product objects. To implement
this interface, I added a class file called DictionaryStorage.cs to the Models folder and used it to define the
class shown in Listing 18-21.

Listing 18-21. The Contents of the DictionaryStorage.cs File in the Models Folder

using System.Collections.Generic;

namespace DependencyInjection.Models {
 public class DictionaryStorage : IModelStorage {
 private Dictionary<string, Product> items
 = new Dictionary<string, Product>();

 public Product this[string key] {
 get { return items[key]; }
 set { items[key] = value; }
 }

 public IEnumerable<Product> Items => items.Values;
 public bool ContainsKey(string key) => items.ContainsKey(key);
 public void RemoveItem(string key) => items.Remove(key);
 }
}

Chapter 18 ■ DepenDenCy InjeCtIon

569

The DictionaryStorage class implements the IModelStorage interface by using a strongly
typed dictionary to store model objects. This is functionality that is currently contained within the
MemoryRepository class and there would be little value in separating using an interface in a real project, but
it makes for a useful example of how dependency injection can be used without adding too much additional
complexity to the example application.

In Listing 18-22, I have updated the MemoryRepository class so that it declares a dependency on the
IModelStorage interface but without any knowledge about the implementation class that will be used at
runtime.

Listing 18-22. Declaring a Dependency in the MemoryRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace DependencyInjection.Models {
 public class MemoryRepository : IRepository {
 private IModelStorage storage;

 public MemoryRepository(IModelStorage modelStore) {
 storage = modelStore;
 new List<Product> {
 new Product { Name = "Kayak", Price = 275M },
 new Product { Name = "Lifejacket", Price = 48.95M },
 new Product { Name = "Soccer ball", Price = 19.50M }
 }.ForEach(p => AddProduct(p));
 }

 public IEnumerable<Product> Products => storage.Items;

 public Product this[string name] => storage[name];

 public void AddProduct(Product product) =>
 storage[product.Name] = product;

 public void DeleteProduct(Product product) =>
 storage.RemoveItem(product.Name);
 }
}

If you run the application, you will see that the service provider throws an exception with the following
message:

InvalidOperationException: Unable to resolve service for type
'DependencyInjection.Models.IModelStorage' while attempting to activate
'DependencyInjection.Models.MemoryRepository'.

This demonstrates that the service provider is working its way through the chain of dependencies.
When it was asked to create a new controller, it inspected the HomeController constructor and found a
dependency on the IRepository interface, which it knows should be resolved with a MemoryRepository
object. The service provider then inspected the MemoryRepository constructor, which has a dependency on
the IModelStorage interface. The configuration doesn’t specify how IModelStorage dependencies should
be resolved, which means that the MemoryRepository object cannot be created, and this, in turn, means that

Chapter 18 ■ DepenDenCy InjeCtIon

570

the HomeController object can’t be created either. The service provider is unable to provide MVC with the
object it needs to handle the request, and an exception is thrown.

What I need is a type mapping that tells the service provider how it should resolve dependencies on
IModelStorage, which I have added to the application configuration in Listing 18-23.

Listing 18-23. An Additional Type Mapping in the Startup.cs File in the DependencyInjection Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using DependencyInjection.Infrastructure;
using DependencyInjection.Models;

namespace DependencyInjection {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddTransient<IRepository, MemoryRepository>();
 services.AddTransient<IModelStorage, DictionaryStorage>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

With this addition, the service provider can satisfy both of the dependencies in the chain and is able to
create the set of objects required to service the request: a DictionaryStorage object that is injected into the
MemoryRepository constructor, which in turn is injected into the HomeController constructor. Dependency
chains are not just a clever trick; they allow complex functionality to be composed by combining
components that can be easily isolated for testing and that can be easily changed to suit the evolving
requirements of a project as it matures.

Using Dependency Injection for Concrete Types
Dependency injection can also be used for concrete types, which are not accessed through interfaces. While
this doesn’t provide the loose-coupling advantages of using an interface, it is a useful technique in its own
right because it allows objects to be accessed anywhere in an application and puts concrete types under life-
cycle management, which I describe later in this chapter.

To demonstrate, I added a class file called ProductTotalizer.cs to the Models folder and used it to
define the class shown in Listing 18-24.

Chapter 18 ■ DepenDenCy InjeCtIon

571

Listing 18-24. The Contents of the ProductTotalizer.cs File in the Models Folder

using System.Linq;

namespace DependencyInjection.Models {
 public class ProductTotalizer {

 public ProductTotalizer(IRepository repo) => Repository = repo;

 public IRepository Repository { get; set; }

 public decimal Total => Repository.Products.Sum(p => p.Price);
 }
}

This class doesn’t do anything especially useful, but it does have a dependency on the IRepository
interface, which means using dependency injection will resolve this dependency using the configuration
that applies to the rest of the application as well. In Listing 18-25, I have declared the ProductTotalizer
class as a dependency of the HomeController class.

Listing 18-25. Adding a Dependency in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DependencyInjection.Models;
using DependencyInjection.Infrastructure;

namespace DependencyInjection.Controllers {

 public class HomeController : Controller {
 private IRepository repository;
 private ProductTotalizer totalizer;

 public HomeController(IRepository repo, ProductTotalizer total) {
 repository = repo;
 totalizer = total;
 }

 public ViewResult Index() {
 ViewBag.Total = totalizer.Total;
 return View(repository.Products);
 }
 }
}

The Index action adds a view bag property that contains the total produced by the ProductTotalizer
class, which will be displayed in the table for view bag values that I added to the Index.cshtml view at the
start of the chapter. The final step is to tell the service provider how to deal with ProductTotalizer requests,
as shown in Listing 18-26.

Chapter 18 ■ DepenDenCy InjeCtIon

572

Listing 18-26. Configuring the Service Provider in the Startup.cs File in the DependencyInjection Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using DependencyInjection.Infrastructure;
using DependencyInjection.Models;

namespace DependencyInjection {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddTransient<IRepository, MemoryRepository>();
 services.AddTransient<IModelStorage, DictionaryStorage>();
 services.AddTransient<ProductTotalizer>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

There is no mapping between a service type and an implementation type in this situation, so there is
an override of the AddTransient extension method that accepts a single type parameter that tells the service
provider that it should instantiate the ProductTotalizer class to resolve a dependency on this type.

The advantages of this approach—as opposed to simply instantiating the concrete class in the
controller—are that the service provider will resolve any dependencies declared by the concrete class and
that you can change the configuration so that more specialized subclasses are used to resolve dependencies
for a concrete class. Concrete classes are managed by the service provider and are also subject to the life-
cycle features that I describe in the next chapter. If you run the application, you will see that the total value of
the Product objects in the model is displayed, as shown in Figure 18-9.

Chapter 18 ■ DepenDenCy InjeCtIon

573

Understanding Service Life Cycles
In the previous section, I used the AddTransient extension method to tell the service provider how it should
handle dependencies on the IRepository and IModelStorage interfaces. The AddTransient method is
one of four different ways that type mappings can be defined. Table 18-3 describes the extension methods
that tell the service provider how to resolve dependencies. The methods shown in Table 18-3 all use type
parameters, but there are also extension methods available that accept Type objects as arguments instead,
which can be useful if you need to generate mappings at runtime.

Table 18-3. The Service Provider Dependency Injection Extension Methods

Name Description

AddTransient<service, implType>() This method tells the service provider to create a new instance
of the implementation type for every dependency on the
service type. See the “Using the Transient Life Cycle” section.

AddTransient<service>() This method is used to register a single type, which will be
instantiated for every dependency, as described in the “Using
Dependency Injection for Concrete Types” section.

AddTransient<service>(factoryFunc) This method is used to register a factory function that will
be invoked to create an implementation object for every
dependency on the service type, as described in the “Using a
Factory Function” section.

AddScoped<service, implType>()
AddScoped<service>() AddScoped<servi
ce>(factoryFunc)

These methods tell the service provider to reuse instances
of the implementation type so that all service requests made
by components associated with a common scope, which is
usually a single HTTP request, share the same object. These
methods follow the same pattern as the corresponding
AddTransient methods. See the “Using the Scoped Life
Cycle” section.

Figure 18-9. Using dependency injection for classes

(continued)

Chapter 18 ■ DepenDenCy InjeCtIon

574

Using the Transient Life Cycle
The simplest way to start using dependency injection is to use the AddTransient method, which tells
the service provider to create a new instance of the implementation type whenever it needs to resolve a
dependency. This is the configuration that is already present in the Startup class, as follows:

...
public void ConfigureServices(IServiceCollection services) {
 services.AddTransient<IRepository, MemoryRepository>();
 services.AddTransient<IModelStorage, DictionaryStorage>();
 services.AddTransient<ProductTotalizer>();
 services.AddMvc();
}
...

All of the life cycles described in Table 18-3 offer trade-offs. The transient life cycle incurs the cost of
creating a new instance of the implementation class every time a dependency is resolved, but the advantage
is that you don’t have to worry about managing concurrent access or ensure that objects can be safely reused
for multiple requests.

To demonstrate the transient life cycle, I have overridden the ToString method in the
MemoryRepository class so that it generates a globally unique identifier (GUID), as shown in Listing 18-27.

Listing 18-27. Overriding ToString in the MemoryRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace DependencyInjection.Models {
 public class MemoryRepository : IRepository {
 private IModelStorage storage;
 private string guid = System.Guid.NewGuid().ToString();

 public MemoryRepository(IModelStorage modelStore) {
 storage = modelStore;
 new List<Product> {
 new Product { Name = "Kayak", Price = 275M },
 new Product { Name = "Lifejacket", Price = 48.95M },
 new Product { Name = "Soccer ball", Price = 19.50M }
 }.ForEach(p => AddProduct(p));
 }

Name Description

AddSingleton<service, implType>()
AddSingleton<service>()
AddSingleton<service(factoryFunc)

These methods tell the service provider to create a new
instance of the implementation type for the first service
request and then reuse it for every subsequent service
request. See the “Using the Singleton Life Cycle” section.

AddSingleton<service>(instance) This method provides the service provider with an object that
should be used to service all service requests. The service
provider will not create any new objects.

Table 18-3. (continued)

Chapter 18 ■ DepenDenCy InjeCtIon

575

 public IEnumerable<Product> Products => storage.Items;

 public Product this[string name] => storage[name];

 public void AddProduct(Product product) =>
 storage[product.Name] = product;

 public void DeleteProduct(Product product) =>
 storage.RemoveItem(product.Name);

 public override string ToString() {
 return guid;
 }
 }
}

The GUID will make it easy to identify a specific instance of the MemoryRepository class and see how
the different lifecycle methods change the way that the service provider behaves. In Listing 18-28, I updated
the Index action method on the Home controller so that it creates a Controller property to the view bag that
is set to the GUID from the repository.

Listing 18-28. Using the View Bag in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DependencyInjection.Models;
using DependencyInjection.Infrastructure;

namespace DependencyInjection.Controllers {

 public class HomeController : Controller {
 private IRepository repository;
 private ProductTotalizer totalizer;

 public HomeController(IRepository repo, ProductTotalizer total) {
 repository = repo;
 totalizer = total;
 }

 public ViewResult Index() {
 ViewBag.HomeController = repository.ToString();
 ViewBag.Totalizer = totalizer.Repository.ToString();
 return View(repository.Products);
 }
 }
}

The Index action method adds values to the view bag that contains the GUIDs for the repository objects
received directly to the constructor and through the constructor of the ProductTotalizer class, which
you can see if you run the application. The two GUIDs are different because the service provider has been
configured with the AddTransient method, which means that it creates a new MemoryRepository object to
resolve the dependency of the HomeController and a second one for the ProductTotalizer, as shown in
Figure 18-10.

Chapter 18 ■ DepenDenCy InjeCtIon

576

Each time you reload the web page, the new HTTP request causes MVC to create a new
HomeController, which leads to the creation of two new MemoryRepository objects, each with their own
GUIDs.

 ■ Tip GUIDs are unique—or as close to unique as to make no real difference—and so you will see different
values when you run the application on your machine.

Using a Factory Function
One version of the AddTransient method accepts a factory function that is invoked every time there
is a dependency on the service type. This allows the object that is created to be varied so that different
dependencies receive instances of different types or instances that are configured differently. In Listing 18-29,
I have used a factory function to select different implementations of the IRepository interface based on the
hosting environment in which the application is running.

Listing 18-29. Using a Factory in the Startup.cs File in the DependencyInjection Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using DependencyInjection.Infrastructure;
using DependencyInjection.Models;

namespace DependencyInjection {
 public class Startup {
 private IHostingEnvironment env;

Figure 18-10. The effect of the transient life cycle

Chapter 18 ■ DepenDenCy InjeCtIon

577

 public Startup(IHostingEnvironment hostEnv) => env = hostEnv;

 public void ConfigureServices(IServiceCollection services) {
 services.AddTransient<IRepository>(provider => {
 if (env.IsDevelopment()) {
 var x = provider.GetService<MemoryRepository>();
 return x;
 } else {
 return new AlternateRepository();
 }
 });
 services.AddTransient<MemoryRepository>();
 services.AddTransient<IModelStorage, DictionaryStorage>();
 services.AddTransient<ProductTotalizer>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

In Chapter 14, I described how ASP.NET Core provides the Startup class with services to help set up
the application, including an implementation of the IHostingEnvironment interface for determining the
hosting environment. You can receive these services as arguments to the Configure method but not the
ConfigureServices method, so I have added a constructor to the Startup class, which does provide access
to an IHostingEnvironment object, and assigned it to a field called env.

Within the ConfigureServices method, I use the AddTransient method to define a factory function
using a lambda expression. The expression receives a System.IServiceProvider object, which can be used
to create instances of other types that have been registered with the service provider using the methods
shown in Table 18-4.

Table 18-4. The IServiceProvider Methods and Extension Methods

Name Description

GetService<service>() This method uses the service provider to create a new instance
of the service type. It returns null if there is no mapping for the
requested type.

GetRequiredService<service>() This method uses the service provider to create a new instance of
the service type. It throws an exception if there is no mapping for the
requested type.

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

Chapter 18 ■ DepenDenCy InjeCtIon

578

Within the factory function, I use the IHostingEnvironment to determine whether the application is
running in the development environment, and if it is, I use the GetService method to create an instance of
the MemoryRepository class and return it from the factory function as the object to use for the IRepository
dependency. I use the GetService to create the object because MemoryRepository has its own dependency
on the IModelStorage interface and using the service provider to create the object means that detecting and
resolving the dependency will be managed automatically—but it does mean I have to specify the life cycle
that should be used for MemoryRepository objects, like this:

...
services.AddTransient<MemoryRepository>();
...

Without this statement, the service provider would not have the information it needs to create and
manage MemoryRepository objects.

If the application is not running in the development environment, then the factory function returns a
new instance of the AlternateRepository class. This class can be created directly using the new keyword
because it doesn’t declare any dependencies in its constructor.

Using the Scoped Life Cycle
This life cycle creates a single object from the implementation class that is used to resolve all of the
dependencies associated with a single scope, which generally means a single HTTP request. (You can create
your own scopes, but this isn’t useful in most applications.)

Since the default scope is the HTTP request, this life cycle allows for a single object to be shared by
all the components that process a request and is most often used for sharing common context data when
writing custom classes, such as routes. The scoped life cycle is created by using the AddScoped extension
method to configure the service provider, as shown in Listing 18-30.

 ■ Tip as described in table 18-4, there are also versions of the AddScoped method that accept a factory
function and that can be used to register a concrete type. these methods work in the same way as the
AddTransient method demonstrated in the previous section, with the obvious exception that the life cycle of
the objects they create is different.

Listing 18-30. Using the Scoped Life Cycle in the Startup.cs File in the DependencyInjection Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using DependencyInjection.Infrastructure;
using DependencyInjection.Models;

Chapter 18 ■ DepenDenCy InjeCtIon

579

namespace DependencyInjection {
 public class Startup {
 private IHostingEnvironment env;

 public Startup(IHostingEnvironment hostEnv) => env = hostEnv;

 public void ConfigureServices(IServiceCollection services) {
 services.AddScoped<IRepository, MemoryRepository>();
 services.AddTransient<IModelStorage, DictionaryStorage>();
 services.AddTransient<ProductTotalizer>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

In the example application, the HomeController and ProductTotalizer are instantiated together to
handle a request, and both require the service repository to resolve a dependency on the IRepository
interface. Using the AddScoped method ensures that both objects’ dependencies are resolved with a single
MemoryRepository object. You can see the effect by running the example; both of the GUIDs shown by the
browser are the same, as shown in Figure 18-11. Reloading the page creates a new HTTP request, which
means a new MemoryRepository object is created.

Figure 18-11. The effect of the scope life cycle

Chapter 18 ■ DepenDenCy InjeCtIon

580

Using the Singleton Life Cycle
The singleton life cycle ensures that a single object is used to resolve all the dependencies for a given
service type. When using this life cycle, you must ensure that the implementation classes used to resolve
dependencies are safe for concurrent access. In Listing 18-31, I have changed the scope for the IRepository
configuration.

Listing 18-31. Using the Scope Life Cycle in the Startup.cs File in the DependencyInjection Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using DependencyInjection.Infrastructure;
using DependencyInjection.Models;

namespace DependencyInjection {
 public class Startup {
 private IHostingEnvironment env;

 public Startup(IHostingEnvironment hostEnv) => env = hostEnv;

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<IRepository, MemoryRepository>();
 services.AddTransient<IModelStorage, DictionaryStorage>();
 services.AddTransient<ProductTotalizer>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The AddSingleton method creates a new instance of the MemoryRepository class the first time that it
has to resolve a dependency on the IRepository interface and then reuses that instance for any subsequent
dependencies, even if they are associated with different HTTP requests, as shown in Figure 18-12.

Chapter 18 ■ DepenDenCy InjeCtIon

581

Using Action Injection
The standard way to declare a dependency is through a constructor, which is a technique that can be used in
any class and that relies on the dependency injection features that are part of the core ASP.NET platform.

MVC supplements the standard functionality with an alternative approach called action injection,
which allows dependencies to be declared through parameters to action methods. Strictly speaking, action
injection is provided by the model binding system that I describe in Chapter 26, but I have described it in
this chapter because it allows services to be used in a different way. Action injection is performed using the
FromServices attribute, which is applied to an action method parameter, as shown in Listing 18-32.

Listing 18-32. Using Action Injection in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DependencyInjection.Models;
using DependencyInjection.Infrastructure;

namespace DependencyInjection.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public ViewResult Index([FromServices]ProductTotalizer totalizer) {
 ViewBag.HomeController = repository.ToString();
 ViewBag.Totalizer = totalizer.Repository.ToString();

Figure 18-12. The effect of the singleton life cycle

http://dx.doi.org/10.1007/978-1-4842-3150-0_26

Chapter 18 ■ DepenDenCy InjeCtIon

582

 return View(repository.Products);
 }
 }
}

MVC uses the service provider to get an instance of the ProductTotalizer class and provides it as an
argument when the Index action method is invoked. Using action injection is less common than standard
constructor injection, but it can be useful when you have a dependency on an object that is expensive to
create and that is required in only one of the action methods defined by a controller. Using constructor
injection resolves the dependency for all action methods, even if the one used to handle the request doesn’t
use the implementation object. Decorating an action method with the FromServices attribute narrows the
focus of the dependency and ensures that the implementation type is instantiated only when it is required.

Using the Property Injection Attributes
In Chapter 17, I explained how to receive context data in a POCO controller by declaring a property
and decorating it with the ControllerContext attribute. Now that you have read this chapter, you will
understand that this was a special form of dependency injection. It is known as property injection.

MVC provides a set of specialized attributes that can be used to receive specific types via property
injection in controllers and in view components (which I describe in Chapter 22). You won’t need to
use these attributes if you derive your controllers from the Controller base class because the context
information is exposed through convenience properties, but Table 18-5 lists the attributes for use in POCO
controllers.

Table 18-5. The Specialized Property Injection Attributes

Name Description

ControllerContext This attribute sets a ControllerContext property, which provides a superset
of the functionality of the ActionContext class, as described in Chapter 31.

ActionContext This attribute sets an ActionContext property to provide context information
to action methods. The Controller classes expose the context information
through an ActionContext property, as well as a set of convenience
properties described in Chapter 31.

ViewContext This attribute sets a ViewContext property to provide context data for view
operations, including tag helpers (as described in Chapter 23).

ViewComponentContext This attribute sets a ViewComponentContext property for view components,
which I describe in Chapter 22.

ViewDataDictionary This attribute sets a ViewDataDictionary property to provide access to the
model binding data, as described in Chapter 26.

Manually Requesting an Implementation Object
The main ASP.NET dependency injection feature and the additional attributes that MVC provides for
property and action injection provide all the support that most applications will require for creating
loosely coupled components. There can be occasions, however, when it can be useful to create get an
implementation for an interface without relying on injection. In these situations, you can work directly with
the service provider, as shown in Listing 18-33.

http://dx.doi.org/10.1007/978-1-4842-3150-0_17
http://dx.doi.org/10.1007/978-1-4842-3150-0_22
http://dx.doi.org/10.1007/978-1-4842-3150-0_31
http://dx.doi.org/10.1007/978-1-4842-3150-0_31
http://dx.doi.org/10.1007/978-1-4842-3150-0_23
http://dx.doi.org/10.1007/978-1-4842-3150-0_22
http://dx.doi.org/10.1007/978-1-4842-3150-0_26

Chapter 18 ■ DepenDenCy InjeCtIon

583

Listing 18-33. Using the Service Provider Directly in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using DependencyInjection.Models;
using DependencyInjection.Infrastructure;
using Microsoft.Extensions.DependencyInjection;

namespace DependencyInjection.Controllers {

 public class HomeController : Controller {

 public ViewResult Index([FromServices]ProductTotalizer totalizer) {

 IRepository repository =
 HttpContext.RequestServices.GetService<IRepository>();

 ViewBag.HomeController = repository.ToString();
 ViewBag.Totalizer = totalizer.Repository.ToString();
 return View(repository.Products);
 }
 }
}

The HttpContext object returned by the property of the same name defines a RequestServices method
that returns an IServiceProvider object, on which the methods described in Table 18-4 can be called.
In the listing, I removed the Repository property, which was set using property injection, and used the
HttpContext.RequestServices property to obtain an implementation of the IRepository interface.

This is known as the service locator pattern, which some developers believe should be avoided. Mark
Seemann wrote a good description of the problems it can cause at http://blog.ploeh.dk/2010/02/03/
ServiceLocatorisanAnti-Pattern. My view is more relaxed in that obtaining services in this way is
perfectly reasonable when the normal technique of receiving dependencies through the constructor cannot
be used for some reason.

Summary
In this chapter, I explained the role that dependency injection plays in an MVC application, helping to create
loosely coupled components that can be easily replaced and isolated for testing. I demonstrated the ASP.
NET Core dependency injection feature and the attributes that MVC provides for injecting dependencies
into properties and action methods. I described the different life-cycle options that are available when
configuring the service provider and explained how they affect the way that objects are created. In the next
chapter, I introduce filters, which add extra logic into the request-handling process.

http://blog.ploeh.dk/2010/02/03/ServiceLocatorisanAnti-Pattern
http://blog.ploeh.dk/2010/02/03/ServiceLocatorisanAnti-Pattern

585© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_19

CHAPTER 19

Filters

Filters inject extra logic into MVC request processing. They provide a simple and elegant way to implement
crosscutting concerns—a term that refers to functionality that is used all over an application and doesn’t fit
neatly into any one place, where it would break the separation of concerns. Classic examples of crosscutting
concerns are logging, authorization, and caching. In this chapter, I show you the different categories of filters
that MVC supports, how to create and use custom filters, and how to control their execution. Table 19-1 puts
filters in context.

Table 19-1. Putting Filters in Context

Question Answer

What are they? Filters are used to apply logic to action methods without having to
add code to the controller class.

Why are they useful? Filters allow code to be applied that isn’t part of the classic MVC
pattern definition of an action. The result is simpler controller
classes and reusable functionality that can be applied throughout
an application.

How are they used? There are different types of filters that are used by MVC in different
ways. The most common way to create a filter is to create a class
that subclasses an attribute provided by MVC for the filter type you
require.

Are there any pitfalls or limitations? The functionality provided by the different types of filters overlap,
and it can be hard to figure out which type is required.

Are there any alternatives? No, filters are a core MVC feature and are used to implement
commonly required functionality such as authorization.

https://doi.org/10.1007/978-1-4842-3150-0_19

Chapter 19 ■ Filters

586

Table 19-2 summarizes the chapter.

Table 19-2. Chapter Summary

Problem Solution Listing

Inject extra logic into request processing Apply filters to controllers or their action
methods

6–9

Restrict access to actions Use authorization filters 10,11

Inject general-purpose logic into the
request-handling process

Use action filters 12–14

Inspect or alter the results produced by
action methods

Use result filters 15–19

Handle errors Use exception filters 20, 21

Use services in filters Declare dependencies in the filter constructor,
register the service in the Startup class, and
apply the filter using the TypeFilter attribute

22–26

Put filters under life-cycle management Use the dependency injection life cycles to
register the filters in the Startup class and apply
the filters using the ServiceFilter attribute

27–29

Apply filters to every action method in
the application

Use a global filter 30–32

Change the order in which filters are
executed

Use the Order parameter 33–36

Preparing the Example Project
For this chapter, I followed the same approach to create the example application as in recent chapters.
I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty project called
Filters. Listing 19-1 shows the changes I made to the Startup class to enable the MVC framework and the
other middleware required for development.

Listing 19-1. The Contents of the Startup.cs File in the Filters Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace Filters {
 public class Startup {
 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

Chapter 19 ■ Filters

587

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Enabling SSL
Some of the examples in this chapter require the use of SSL, which is disabled by default. To enable SSL,
select Filter Properties from the Visual Studio Project menu and check the Enable SSL option in the Debug
tab, as shown in Figure 19-1. Make a note of the port that is assigned, which will be different for each project.

Figure 19-1. Enabling SSL

Creating the Controller and View
The controllers in this chapter are simple because the focus is on placing logic elsewhere in the application.
I created the Controllers folder, added a class file called HomeController.cs, and used it to define the
controller shown in Listing 19-2.

Listing 19-2. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace Filters.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");
 }
}

The action method renders a view called Message and passes a string as the view data. I created the
Views/Shared folder and added a Razor view file called Message.cshtml file with the markup shown in
Listing 19-3.

Chapter 19 ■ Filters

588

Listing 19-3. The Contents of the Message.cshtml File in the Views/Shared Folder

@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Filters</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 @if (Model is string) {
 @Model
 } else if (Model is IDictionary<string, string>) {
 var dict = Model as IDictionary<string, string>;
 <table class="table table-sm table-striped table-bordered">
 <thead><tr><th>Name</th><th>Value</th></tr></thead>
 <tbody>
 @foreach (var kvp in dict) {
 <tr><td>@kvp.Key</td><td>@kvp.Value</td></tr>
 }
 </tbody>
 </table>
 }
</body>
</html>

This view is weakly typed and will display either a string or a Dictionary<string, string>, in which
case a table is displayed.

The view depends on the Bootstrap CSS package for styling the HTML elements. To add Bootstrap to the
project, I used the Bower Configuration File item template to create the bower.json file in the root project
folder and added the Bootstrap package to the dependencies section, as shown in Listing 19-4.

Listing 19-4. Adding the Bootstrap Package in the bower.json File in the Filters Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

The final preparation is to create the _ViewImports.cshtml file in the Views folder, which sets up the
built-in tag helpers for use in Razor views, as shown in Listing 19-5.

Listing 19-5. The Contents of the _ViewImports.cshtml File in the Views Folder

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Chapter 19 ■ Filters

589

If you run the application, you will see the output shown in Figure 19-2.

Figure 19-2. Running the example application

 ■ Tip You may be prompted to trust a certificate generated by Visual studio. accept this option, which is
related to the examples in this chapter that rely on ssl.

Using Filters
Filters allow logic that would otherwise be applied in the action method to be removed from the controller
and defined in a reusable class. As an example, imagine that I wanted to ensure that action methods could
be accessed only using HTTPS and not with regular nonencrypted HTTP. The HttpRequest context object
provides the information I need to figure out whether HTTPS is used, as shown in Listing 19-6.

Listing 19-6. Testing for HTTPS in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Http;

namespace Filters.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() {
 if (!Request.IsHttps) {
 return new StatusCodeResult(StatusCodes.Status403Forbidden);
 } else {
 return View("Message",
 "This is the Index action on the Home controller");
 }
 }
 }
}

This is how you would approach the HTTPS issue without filters. If you run the application, your
browser will request the non-HTTPs default URL for the project, which the Index action method deals with
by returning a StatusCodeResult, which sends the HTTP 403 status code in the response (as described
in Chapter 17). If you request the HTTPS default URL, which for me is https://localhost:44318, the
Index action method will respond by rendering the Message view (you may need to acknowledge a security
warning before the browser will display the result). Figure 19-3 shows both outcomes.

http://dx.doi.org/10.1007/978-1-4842-3150-0_17

Chapter 19 ■ Filters

590

Figure 19-3. Restricting access to HTTPS requests

 ■ Tip Clear your browser’s history if you don’t get the results you expect from the examples in this section.
Browsers will often refuse to send requests to servers that have generated ssl errors, which is a good security
practice but can be frustrating during development.

The code in Listing 19-6 works but has problems. The first problem is that the action method contains
code that is more about implementing a security policy than about handling the request, updating the
model, and selecting the response. A more serious problem is that including the HTTP-detecting code
within the action method doesn’t scale well and must be duplicated in every action method in the controller,
as shown in Listing 19-7.

Listing 19-7. Adding an Action Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;

namespace Filters.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() {
 if (!Request.IsHttps) {
 return new StatusCodeResult(StatusCodes.Status403Forbidden);
 } else {
 return View("Message",
 "This is the Index action on the Home controller");
 }
 }

 public IActionResult SecondAction() {
 if (!Request.IsHttps) {
 return new StatusCodeResult(StatusCodes.Status403Forbidden);
 } else {
 return View("Message",
 "This is the SecondAction action on the Home controller");
 }
 }
 }
}

Chapter 19 ■ Filters

591

I have to remember to implement the same check in every action method in every controller for which
I want to require HTTPS. The code to implement the security policy is a substantial part of the—admittedly
simple—controller, which makes the controller harder to understand, and it is only a matter of time before
I forget to add it to a new action method, creating a hole in my security policy. This is the kind of problems
that filters can address, as shown in Listing 19-8.

Listing 19-8. Applying a Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;

namespace Filters.Controllers {

 public class HomeController : Controller {

 [RequireHttps]
 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");

 [RequireHttps]
 public ViewResult SecondAction() => View("Message",
 "This is the SecondAction action on the Home controller");
 }
}

The RequireHttps attribute applies one of the built-in filters to the HomeController class. It restricts
access to action methods so that only HTTPS requests are supported and allows me to remove the security
code from each method and focus on handling the successful requests.

 ■ Note the RequireHttps filter doesn’t work in quite the same way as my custom code in listing 19-7. For
GET requests, the RequireHttps attribute redirects the client to the originally requested Url, but it does so by
using the https scheme so that a request to http://localhost/Home/Index will be redirected to https://
localhost/Home/Index. this makes sense for most deployed applications but not during development because
http and https are on different local ports. the RequireHttpsAttribute class defines a protected method
called HandleNonHttpsRequest that you can override to change the behavior. alternatively, i re-create the
original functionality from scratch in the “Using authorization Filters” section.

Of course, I still have to remember to apply the RequireHttps attribute to each action method, which
means that I might forget. But filters have a useful trick: applying the attribute to a controller class has the
same effect as applying it to each individual action method, as shown in Listing 19-9.

Chapter 19 ■ Filters

592

Listing 19-9. Applying a Filter to All Action Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;

namespace Filters.Controllers {

 [RequireHttps]
 public class HomeController : Controller {

 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");

 public ViewResult SecondAction() => View("Message",
 "This is the SecondAction action on the Home controller");
 }
}

Filters can be applied with differing levels of granularity. If you want to restrict access to some actions
but not others, then you can apply the RequireHttps attribute to just those methods. If you want to protect
all the action methods, including any that you add to the controller in the future, then the RequireHttps
attribute can be applied to the class. If you want to apply a filter to every action in an application, then you
can use global filters, which I describe later in this chapter.

Understanding Filters
Now that you have seen how filters are used, it is time to explain what happens behind the scenes.
Filters implement the IFilterMetadata interface, which is in the Microsoft.AspNetCore.Mvc.Filters
namespace. Here is the definition:

namespace Microsoft.AspNetCore.Mvc.Filters {
 public interface IFilterMetadata { }
}

The interface is empty and doesn’t require a filter class to implement any specific behaviors. This is
because there are several distinct types of filter, and each of them works in a different way and is used for a
different purpose.

Table 19-3 lists each type of filter, the interfaces that define them, and what they do. (There are some
other types of filter supported by MVC, but they are not used directly. Instead, they are integrated into
features that I describe in other chapters and applied through specific attributes, including the Produces and
Consumes attributes I describe in Chapter 20.)

http://dx.doi.org/10.1007/978-1-4842-3150-0_20

Chapter 19 ■ Filters

593

The descriptions in the table are vague because you can use filters for a wide range of tasks, limited only
by your imagination and the problems you need to solve. This will become clear as I get into the detail of
how filters work, but for now, there are two important points to understand.

First, there are two different interfaces for each type of filter in Table 19-3. Filters can do their work
synchronously or asynchronously so that a synchronous result filter, for example, implements the
IResultFilter interface, while an asynchronous one would implement the IAsyncResultFilter interface.

Second, filters are executed in a specific order. Authorization filters are executed first, followed by action
files and then result filters. Exception filters are executed only if an exception is thrown, which disrupts the
normal sequence.

Getting Context Data
Filters are provided with context data in the form of a FilterContext object. The FilterContext class is
derived from ActionContext, which is also the base class for the ControllerContext class that I described
in Chapter 17. For convenience, Table 19-4 lists the properties inherited from the ActionContext class, along
with the additional property that FilterContext defines.

Table 19-3. The Different Types of Filter

Filter Interfaces Description

Authorization IAuthorizationFilter
IAsyncAuthorizationFilter

This type of filter is used to apply the
application’s security policy, including user
authorization.

Action IActionFilter IAsyncActionFilter This type of filter is used to perform work
immediately before or after an action method
is performed.

Result IResultFilter IAsyncResultFilter This type of filter is used to perform work
immediately before or after the result from an
action method is processed.

Exception IExceptionFilter
IAsyncExceptionFilter

This type of filter is used to handle exceptions.

Table 19-4. The FilterContext Properties

Name Description

ActionDescriptor This property returns an ActionDescriptor object, which describes the action
method.

HttpContext This property returns an HttpContext object, which provides details of the HTTP
request and the HTTP response that will be sent in return.

ModelState This property returns a ModelStateDictionary object, which is used to validate
data sent by the client, as described in Chapter 27.

RouteData This property returns a RouteData object that describes the way that the routing
system has processed the request, as described in Chapter 15.

Filters This property returns a list of filters that have been applied to the action method,
expressed as an IList<IFilterMetadata>.

http://dx.doi.org/10.1007/978-1-4842-3150-0_17
http://dx.doi.org/10.1007/978-1-4842-3150-0_27
http://dx.doi.org/10.1007/978-1-4842-3150-0_15

Chapter 19 ■ Filters

594

Using Authorization Filters
Authorization filters are used to implement an application’s security policy. Authorization filters are
executed before other types of filter and before the action method is executed. Here is the definition of the
IAuthorizationFilter interface:

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IAuthorizationFilter : IFilterMetadata {

 void OnAuthorization(AuthorizationFilterContext context);
 }
}

The OnAuthorization method is called to provide the filter with the opportunity to authorize the
request. For asynchronous authorization filters, here is the definition of the IAsyncAuthorizationFilter
interface:

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IAsyncAuthorizationFilter : IFilterMetadata {

 Task OnAuthorizationAsync(AuthorizationFilterContext context);
 }
}

The OnAuthorizationAsync method is called so that the filter can authorize the request.
Whichever interface is used, the filter receives context data describing the request through an
AuthorizationFilterContext object, which is derived from the FilterContext class and adds one
important property, as described in Table 19-5.

Table 19-5. The AuthorizationFilterContext Property

Name Description

Result This IActionResult property is set by authorization filters when the request doesn’t comply
with the application’s authorization policy. If this property is set, then MVC renders the
IActionResult instead of invoking the action method.

Creating an Authorization Filter
To demonstrate how authorization filters work, I created an Infrastructure folder in the example project,
added a class file called HttpsOnlyAttribute.cs, and used it to define the filter shown in Listing 19-10.

Listing 19-10. The Contents of the HttpsOnlyAttribute.cs File in the Infrastructure Folder

using System;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;

Chapter 19 ■ Filters

595

namespace Filters.Infrastructure {
 public class HttpsOnlyAttribute : Attribute, IAuthorizationFilter {

 public void OnAuthorization(AuthorizationFilterContext context) {
 if (!context.HttpContext.Request.IsHttps) {
 context.Result =
 new StatusCodeResult(StatusCodes.Status403Forbidden);
 }
 }
 }
}

An authorization filter does nothing if a request complies with the authorization policy, and this
inaction allows MVC to move on to the next filter and, eventually, to execute the action method.

 ■ Note the Authorize attribute, which can be used to restrict access to specific users and groups, was
implemented as a filter, but this is no longer the case in asp.Net Core MVC. the Authorize attribute is still
used, but it works in a different way. Behind the scenes, a global filter (i describe global filters later in this
chapter) is used to detect the Authorize attribute and enforce policies defined by asp.Net Core identity
system, but the Authorize attribute isn’t a filter and doesn’t implement the IAuthorizationFilter interface. i
describe how to use asp.Net Core identity and the Authorize attribute in Chapter 29.

If there is a problem, then the filter sets the Result property of the AuthorizationFilterContext
object that is passed to the OnAuthorization method. This prevents further execution from happening and
provides MVC with a result to return to the client. In the listing, my HttpsOnlyAttribute class inspects the
IsHttps property of the HttpRequest context object and sets the Result property to interrupt execution if
the request has been made without HTTPS. Listing 19-11 shows the new filter applied to the Home controller.

Listing 19-11. Applying the Custom Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Filters.Infrastructure;

namespace Filters.Controllers {

 [HttpsOnly]
 public class HomeController : Controller {

 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");

 public ViewResult SecondAction() => View("Message",
 "This is the SecondAction action on the Home controller");
 }
}

http://dx.doi.org/10.1007/978-1-4842-3150-0_29

Chapter 19 ■ Filters

596

This filter re-creates the functionality that I included in the action methods in Listing 19-7. This is less
useful in real projects than doing a redirection like the built-in RequireHttps filter because users won’t
understand the meaning of a 403 status code, but it does provide a useful example of how authorization
filters work.

UNIT TESTING FILTERS

Most of the work in unit testing a filter is setting up the context object that is passed to the filter’s
methods. The amount of mocking required depends on the context information used by the filter. As
an example, here is a unit test for the HttpsOnly filter from Listing 19-10:

using System.Linq;
using Filters.Infrastructure;
using Microsoft.AspNetCore.Http;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Abstractions;
using Microsoft.AspNetCore.Mvc.Filters;
using Moq;
using Xunit;

namespace Tests {

 public class FilterTests {

 [Fact]
 public void TestHttpsFilter() {

 // Arrange
 var httpRequest = new Mock<HttpRequest>();
 httpRequest.SetupSequence(m => m.IsHttps).Returns(true)
 .Returns(false);
 var httpContext = new Mock<HttpContext>();
 httpContext.SetupGet(m => m.Request).Returns(httpRequest.Object);

 var actionContext = new ActionContext(httpContext.Object,
 new Microsoft.AspNetCore.Routing.RouteData(),
 new ActionDescriptor());
 var authContext = new AuthorizationFilterContext(actionContext,
 Enumerable.Empty<IFilterMetadata>().ToList());

 HttpsOnlyAttribute filter = new HttpsOnlyAttribute();

 // Act and Assert
 filter.OnAuthorization(authContext);
 Assert.Null(authContext.Result);

 filter.OnAuthorization(authContext);
 Assert.IsType(typeof(StatusCodeResult), authContext.Result);

Chapter 19 ■ Filters

597

 Assert.Equal(StatusCodes.Status403Forbidden,
 (authContext.Result as StatusCodeResult).StatusCode);
 }
 }
}

i start by mocking the HttpRequest and HttpContext context objects, which allows me to present a
request with or without https. i want to test both conditions, which i do like this:

...
httpRequest.SetupSequence(m => m.IsHttps).Returns(true).Returns(false);
...

this statement sets up the HttpRequest.IsHttps property so that it returns a sequence of values:
the property returns true the first time it is read and returns false the second time it is read. Once
i have an HttpContext object, i can use it to create an ActionContext object, which allows me
to create the AuthorizationContext object i need to do the unit tests. By inspecting the Result
property of the AuthorizationFilterContext object, i test how the filter responds to non-https
requests and then test what happens with http requests. there are lots of types required to set up the
AuthorizationFilterContext object, and they rely on many asp.Net Core and MVC namespaces, but
once you have the context object, then writing the rest of the test is relatively simple.

Using Action Filters
The best way to understand action filters is to look at the interface that defines them. Here is the
IActionFilter interface:

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IActionFilter : IFilterMetadata {

 void OnActionExecuting(ActionExecutingContext context);

 void OnActionExecuted(ActionExecutedContext context);
 }
}

When an action filter has been applied to an action method, the OnActionExecuting method is called
just before the action method is invoked, and the OnActionExecuted method is called just after. Action
filters are provided with context data through two different context classes: ActionExecutingContext for the
OnActionExecuting method and ActionExecutedContext for the OnActionExecuted method. Both of the
context classes extend the FilterContext class, which I described in Table 19-4.

The ActionExecutingContext class, which is used to describe an action that is about to be invoked,
defines the additional properties described in Table 19-6.

Chapter 19 ■ Filters

598

The ActionExecutedContext class is used to represent an action that has been executed and defines the
properties described in Table 19-7.

Table 19-6. The ActionExecutingContext Property

Name Description

Controller This property returns the controller whose action method is about to be invoked.
(Details of the action method are available through the ActionDescriptor property
inherited from the base classes.)

ActionArguments This property returns a dictionary of the arguments that will be passed to the action
method, indexed by name. The filter can insert, remove, or change the arguments.

Result If the filter assigns an IActionResult to this property, then the request process will
be short-circuited, and the action result will be used to generate the response to the
client without invoking the action method.

Table 19-7. The ActionExecutedContext Properties

Name Description

Controller This property returns the Controller object whose action method will be
invoked.

Canceled This bool property is set to true if another action filter has short-circuited
the request-handling process by assigning an action result to the Result
property of the ActionExecutingContext object.

Exception This property contains any Exception that was thrown by the action
method.

ExceptionDispatchInfo This method returns an ExceptionDispatchInfo object that contains the
stack trace details of any exception thrown by the action method.

ExceptionHandled Setting this property to true indicates that the filter has handled the
exception, which will not be propagated any further.

Result This property returns the IActionResult returned by the action method.
The filter can change or replace the action result if required.

Creating an Action Filter
Action filters are a general-purpose tool and can be used to implement any crosscutting concern in the
application. Action filters can be used to interrupt the request process before an action is invoked and to
change the result after an action is performed. The simplest way to create an action filter is to derive a class
from the ActionFilterAttribute class, which implements the IActionFilter interface. To demonstrate, I
added a class file called ProfileAttribute.cs to the Infrastructure folder and used it to define the filter
shown in Listing 19-12.

Listing 19-12. The Contents of the ProfileAttribute.cs File in the Infrastructure Folder

using System.Diagnostics;
using System.Text;
using Microsoft.AspNetCore.Mvc.Filters;

Chapter 19 ■ Filters

599

namespace Filters.Infrastructure {

 public class ProfileAttribute : ActionFilterAttribute {
 private Stopwatch timer;

 public override void OnActionExecuting(ActionExecutingContext context) {
 timer = Stopwatch.StartNew();
 }

 public override void OnActionExecuted(ActionExecutedContext context) {
 timer.Stop();
 string result = "<div>Elapsed time: "
 + $"{timer.Elapsed.TotalMilliseconds} ms</div>";
 byte[] bytes = Encoding.ASCII.GetBytes(result);
 context.HttpContext.Response.Body.Write(bytes, 0, bytes.Length);
 }
 }
}

In the listing, I use a Stopwatch object to measure the number of milliseconds that it takes for an
action method to be executed by starting a timer in the OnActionExecuting method and stop it in the
OnActionExecuted method. To note the result, I use the context object to get the HttpResponse and include a
simple fragment of HTML in the response.

Listing 19-13 shows the Profile attribute applied to the Home controller. (I also removed the previous
filter so that requests over standard HTTP will be accepted.)

 ■ Tip as an odd quirk, controllers are also action filters. the Controller base class implements the
IActionFilter and IAsyncActionFilter interfaces, which means you can override the methods defined by
these interfaces to create action filter functionality. For pOCO controllers, MVC inspects classes and checks to
see whether they implement either of the action filter interfaces and automatically uses them as action filters.

Listing 19-13. Applying a Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Filters.Infrastructure;

namespace Filters.Controllers {

 [Profile]
 public class HomeController : Controller {

 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");

 public ViewResult SecondAction() => View("Message",
 "This is the SecondAction action on the Home controller");
 }
}

Chapter 19 ■ Filters

600

If you run the application, you will see a message like the one shown in Figure 19-4. The number of
milliseconds you see will vary based on the speed of your development machine.

Figure 19-4. Using an action filter

 ■ Note Writing htMl fragments directly to the response relies on the browser being tolerant of badly formed
htMl documents: the div element that i generate in the filter appears at the start of the response body, before
the DOCTYPE and html elements that indicate the start of the htMl document generated by the razor view. this
technique works and can be useful for producing diagnostic information, but it isn’t something you should rely
on for production features.

Creating an Asynchronous Action Filter
The IAsyncActionFilter interface is used to define action filters that operate asynchronously. Here is the
definition of the interface:

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IAsyncActionFilter : IFilterMetadata {

 Task OnActionExecutionAsync(ActionExecutingContext context,
 ActionExecutionDelegate next);
 }
}

There is a single method that relies on task continuation to allow the filter to run before and after the
action method has been executed. Listing 19-14 shows the use of the OnActionExecutionAsync method in
the Profile filter.

Listing 19-14. Creating an Asynchronous Action Filter in the ProfileAttribute.cs File in the Infrastructure
Folder

using System.Diagnostics;
using System.Text;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Filters;

Chapter 19 ■ Filters

601

namespace Filters.Infrastructure {

 public class ProfileAttribute : ActionFilterAttribute {

 public override async Task OnActionExecutionAsync(
 ActionExecutingContext context,
 ActionExecutionDelegate next) {

 Stopwatch timer = Stopwatch.StartNew();

 await next();

 timer.Stop();
 string result = "<div>Elapsed time: "
 + $"{timer.Elapsed.TotalMilliseconds} ms</div>";
 byte[] bytes = Encoding.ASCII.GetBytes(result);
 await context.HttpContext.Response.Body.WriteAsync(bytes,
 0, bytes.Length);
 }
 }
}

The ActionExecutingContext object provides context data to the filter, and the
ActionExectionDelegate object represents the action method (or the next filter) to execute. The filter does
its preparatory work before invoking the delegate and then completes its work when the delegate finishes.
The delegate returns a Task, which is why I have used the await keyword in the listing.

Using Result Filters
Result filters are applied before and after MVC processes the action result returned by an action method.
Result filters are able to change or replace the action result or cancel the request entirely (even though the
action method has already been invoked). Here is the IResultFilter interface that defines result filters:

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IResultFilter : IFilterMetadata {

 void OnResultExecuting(ResultExecutingContext context);

 void OnResultExecuted(ResultExecutedContext context);
 }
}

Result filters follow the same pattern as action filters. The OnResultExecuting method is called before
the action result produced by the action method is processed and is provided with context information
through a ResultExecutingContext object. The ResultExecutingContext class is derived from
FilterContext and defines the additional properties described in Table 19-8.

Chapter 19 ■ Filters

602

The OnResultExecuted method is called after MVC has processed the action result and is provided with
context data through an instance of the ResultExecutedContext class, which defines the properties shown
in Table 19-9 in addition to those inherited from FilterContext.

Table 19-8. The ResultExecutingContext Properties

Name Description

Controller This property returns the controller whose action method was executed.

Cancel Setting this bool property to true will stop the action result from being processed to
generate a response.

Result This property returns the IActionResult object returned by the action method.

Table 19-9. The ResultExecutedContext Properties

Name Description

Controller This property returns the controller whose action method was executed.

Canceled This bool property indicates whether the request was canceled.

Exception This property contains any Exception that was thrown by the action method.

ExceptionDispatchInfo This method returns an ExceptionDispatchInfo object that contains the
stack trace details of any exception thrown by the action method.

ExceptionHandled Setting this property to true indicates that the filter has handled the
exception, which will not be propagated any further.

Result This property returns the IActionResult object that was used to generate
the response to the client.

Creating a Result Filter
The ResultFilterAttribute class implements the result filter interfaces and provides the easiest way to
create a result filter that can be applied as an attribute. To demonstrate how a result filter works, I added a
class file called ViewResultDetailsAttribute.cs to the Infrastructure folder and used it to define the
filter shown in Listing 19-15.

Listing 19-15. The Contents of the ViewResultDetailsAttribute.cs File in the Infrastructure Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ViewFeatures;

namespace Filters.Infrastructure {

 public class ViewResultDetailsAttribute : ResultFilterAttribute {

 public override void OnResultExecuting(ResultExecutingContext context) {

Chapter 19 ■ Filters

603

 Dictionary<string, string> dict = new Dictionary<string, string> {
 ["Result Type"] = context.Result.GetType().Name,
 };

 ViewResult vr;
 if ((vr = context.Result as ViewResult) != null) {
 dict["View Name"] = vr.ViewName;
 dict["Model Type"] = vr.ViewData.Model.GetType().Name;
 dict["Model Data"] = vr.ViewData.Model.ToString();
 }

 context.Result = new ViewResult {
 ViewName = "Message",
 ViewData = new ViewDataDictionary(
 new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) { Model = dict }
 };
 }
 }
}

This class overrides only the OnResultExecuting method and uses the context object to change the
action result used to generate a response to the client. The filter creates a ViewResult object that renders the
Message view, using a dictionary containing simple diagnostic information as the view model.

The OnResultExecuting method is called after the action method has produced the action result but
before it is processed to generate a result, and changing the value of the context object’s Result object allows
me to supply a different type of result from the action method to which the filter is applied. Listing 19-16
shows the result filter applied to the Home controller.

Listing 19-16. Applying the Result Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Filters.Infrastructure;

namespace Filters.Controllers {

 [ViewResultDetails]
 public class HomeController : Controller {

 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");

 public ViewResult SecondAction() => View("Message",
 "This is the SecondAction action on the Home controller");
 }
}

Chapter 19 ■ Filters

604

If you run the application, you will see the effect of the result filter, as shown in Figure 19-5.

Creating an Asynchronous Result Filter
The IAsyncResultFilter interface can be used to create asynchronous result filters. Here is the definition of
the interface:

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IAsyncResultFilter : IFilterMetadata {

 Task OnResultExecutionAsync(ResultExecutingContext context,
 ResultExecutionDelegate next);
 }
}

This interface is similar to the one for asynchronous action filters. In Listing 19-17, I have rewritten the
ViewResultDetailsAttribute class to implement the IAsyncResultFilter interface.

Listing 19-17. Creating an Asynchronous Filter in the ViewResultDetailsAttribute.cs File in the
Infrastructure Folder

using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ViewFeatures;

namespace Filters.Infrastructure {

Figure 19-5. The effect of a result filter

Chapter 19 ■ Filters

605

 public class ViewResultDetailsAttribute : ResultFilterAttribute {

 public override async Task OnResultExecutionAsync(
 ResultExecutingContext context,
 ResultExecutionDelegate next) {

 Dictionary<string, string> dict = new Dictionary<string, string> {
 ["Result Type"] = context.Result.GetType().Name,
 };

 ViewResult vr;
 if ((vr = context.Result as ViewResult) != null) {
 dict["View Name"] = vr.ViewName;
 dict["Model Type"] = vr.ViewData.Model.GetType().Name;
 dict["Model Data"] = vr.ViewData.Model.ToString();
 }

 context.Result = new ViewResult {
 ViewName = "Message",
 ViewData = new ViewDataDictionary(
 new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) {
 Model = dict
 }
 };

 await next();
 }
 }
}

Notice that I am responsible for invoking the delegate received as an argument to the
OnResultExecutionAsync method. If don’t invoke the delegate, the request processing pipeline won’t
complete and the action result won’t be rendered.

Creating a Hybrid Action/Result Filter
It isn’t always helpful to distinguish between the action and the result stages of request processing. This can
be because you want to treat both stages as a single step or because your filter responds to the way that an
action is executed but does so by interfering with the result. It can be useful to be able to create a filter that is
both an action filter and a result filter and is able to perform work at each stage.

This is such a common requirement that the ActionFilterAttribute class implements the interfaces
for both kinds of filter, which means you can mix and match filter types in a single attribute. To demonstrate
how this works, I have revised the ProfileAttribute class in Listing 19-18 so that it combines an action filter
with a result filter.

Listing 19-18. Creating a Hybrid Filter in the ProfileAttribute.cs File in the Infrastructure Folder

using System.Diagnostics;
using System.Text;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Filters;

Chapter 19 ■ Filters

606

namespace Filters.Infrastructure {

 public class ProfileAttribute : ActionFilterAttribute {
 private Stopwatch timer;
 private double actionTime;

 public override async Task OnActionExecutionAsync(
 ActionExecutingContext context,
 ActionExecutionDelegate next) {

 timer = Stopwatch.StartNew();

 await next();

 actionTime = timer.Elapsed.TotalMilliseconds;
 }

 public override async Task OnResultExecutionAsync(
 ResultExecutingContext context,
 ResultExecutionDelegate next) {

 await next();

 timer.Stop();
 string result = "<div>Action time: "
 + $"{actionTime} ms</div><div>Total time: "
 + $"{timer.Elapsed.TotalMilliseconds} ms</div>";
 byte[] bytes = Encoding.ASCII.GetBytes(result);

 await context.HttpContext.Response.Body.WriteAsync(bytes,
 0, bytes.Length);
 }
 }
}

I have used the asynchronous methods for both types of filter, but you can mix and match to get the
functionality you require because the default implementations of these methods call their synchronous
counterparts. Within the filter, I use the Stopwatch to measure how long it takes the action to be processed
and what the total elapsed time is and write the results to the response. In Listing 19-19, I have applied the
combined filter to the Home controller.

Listing 19-19. Applying a Hybrid Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Filters.Infrastructure;

namespace Filters.Controllers {

 [Profile]
 [ViewResultDetails]
 public class HomeController : Controller {

Chapter 19 ■ Filters

607

 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");

 public ViewResult SecondAction() => View("Message",
 "This is the SecondAction action on the Home controller");
 }
}

If you run the application, you will see output similar to that shown in Figure 19-6. The output appears
after the content provided by ViewResultDetails because it is written in the post-processed stage of the
result filter, rather than from the action filter method used in the previous version.

Figure 19-6. Output from a hybrid action/result filter

Using Exception Filters
Exception filters allow you to respond to exceptions without having to write try...catch blocks in
every action method. Exception filters can be applied to controller classes or action methods. They are
invoked when an exception is not handled by the action method or by the action or result filters that have
been applied to the action method. (Action and result filters can deal with an unhandled exception by
setting the ExceptionHandled property of their context objects to true.) Exception filters implement the
IExceptionFilter interface, which is defined as follows:

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IExceptionFilter : IFilterMetadata {

 void OnException(ExceptionContext context);
 }
}

Chapter 19 ■ Filters

608

The OnException method is called if an unhandled exception is encountered. The
IAsyncExceptionFilter interface can be used to create asynchronous exception filters, which is useful if
you need to respond to exceptions using an asynchronous API. Here is the definition of the asynchronous
interface:

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IAsyncExceptionFilter : IFilterMetadata {

 Task OnExceptionAsync(ExceptionContext context);
 }
}

The OnExceptionAsync method is the asynchronous counterpart to the OnException method from the
IExceptionFilter interface and is called when there is an unhandled exception.

For both interfaces, context data is provided through the ExceptionContext class, which is derived from
FilterContext and defines the additional properties shown in Table 19-10.

Table 19-10. The ExceptionContext Properties

Name Description

Exception This property contains any Exception that was thrown.

ExceptionDispatchInfo This method returns an ExceptionDispatchInfo object that contains the
stack trace details for the exception.

ExceptionHandled This bool property is used to indicate if the exception has been handled.

Result This property sets the IActionResult that will be used to generate the
response.

Creating an Exception Filter
The ExceptionFilterAttribute class implements both of the exception filter interfaces and is the easiest
way to create a filter so that it can be applied as an attribute. The most common use for an exception filter
is to present a custom error page for a specific exception type in order to provide the user with more useful
information than the standard error-handling capabilities can provide. As a demonstration, I added a class
file called RangeExceptionAttribute.cs to the Infrastructure folder and used it to define the filter shown
in Listing 19-20.

Listing 19-20. The Contents of the RangeExceptionAttribute.cs File in the Infrastructure Folder

using System;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;
using Microsoft.AspNetCore.Mvc.ModelBinding;
using Microsoft.AspNetCore.Mvc.ViewFeatures;

namespace Filters.Infrastructure {

Chapter 19 ■ Filters

609

 public class RangeExceptionAttribute : ExceptionFilterAttribute {

 public override void OnException(ExceptionContext context) {
 if (context.Exception is ArgumentOutOfRangeException) {
 context.Result = new ViewResult() {
 ViewName = "Message",
 ViewData = new ViewDataDictionary(
 new EmptyModelMetadataProvider(),
 new ModelStateDictionary()) {
 Model = @"The data received by the
 application cannot be processed"
 }
 };
 }
 }
 }
}

This filter uses the ExceptionContext object to get the type of the unhandled exception and, if the
type is ArgumentOutOfRangeException, creates an action result that displays a message to the user. In
Listing 19-21, I have added an action method to the Home controller and applied the exception filter to it.

Listing 19-21. Applying an Exception Filter in the HomeController.cs File in the Controllers Folder

using Filters.Infrastructure;
using Microsoft.AspNetCore.Mvc;
using System;

namespace Filters.Controllers {

 [Profile]
 [ViewResultDetails]
 [RangeException]
 public class HomeController : Controller {

 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");

 public ViewResult SecondAction() => View("Message",
 "This is the SecondAction action on the Home controller");

 public ViewResult GenerateException(int? id) {
 if (id == null) {
 throw new ArgumentNullException(nameof(id));
 } else if (id > 10) {
 throw new ArgumentOutOfRangeException(nameof(id));
 } else {
 return View("Message", $"The value is {id}");
 }
 }
 }
}

Chapter 19 ■ Filters

610

The GenerateException action method relies on the default routing pattern to receive a nullable int
value from the request URL. The action method throws an ArgumentNullException if there is no matching
URL segment and throws an ArgumentOutOfRangeException if its value is greater than 50. If there is a value
and it is in range, then the action method returns a ViewResult.

You can test the exception filter by running the application and requesting the /Home/
GenerateException/100 URL. The final segment will exceed the range expected by the action method,
which will throw the exception type that is handled by the filter, producing the result shown in Figure 19-7.
If you request /Home/GenerateException, then the exception thrown by the action method won’t be
handled by the filter, and the default error handling will be used.

Figure 19-7. Using an exception filter

Using Dependency Injection for Filters
When you derive a filter from one of the convenience attribute classes, such as ExceptionFilterAttribute,
MVC creates a new instance of the filter class to handle every request. This is a reasonable approach because
it avoids any possible reuse or concurrency problems and it suits the needs of most filter classes that
developers require.

An alternative approach is to use the dependency injection system to select a different life cycle for
filters. There are two different approaches to using dependency injection in filters, which I describe in the
following sections.

Resolving Filter Dependencies
The first approach is to use dependency injection to manage context data for filters, which allows different
types of filters to share data or for a single filter to share data with instances of itself used to process
other requests. To demonstrate how this works, I added a class file called FilterDiagnostics.cs to the
Infrastructure folder and used it to define the interface and implementation class shown in Listing 19-22.

Listing 19-22. The Contents of the FilterDiagnostics.cs File in the Infrastructure Folder

using System.Collections.Generic;

namespace Filters.Infrastructure {

 public interface IFilterDiagnostics {
 IEnumerable<string> Messages { get; }
 void AddMessage(string message);
 }

Chapter 19 ■ Filters

611

 public class DefaultFilterDiagnostics : IFilterDiagnostics {
 private List<string> messages = new List<string>();

 public IEnumerable<string> Messages => messages;

 public void AddMessage(string message) =>
 messages.Add(message);
 }
}

The IFilterDiagnostics interface defines a simple model for collecting diagnostic messages
during filter execution. The DefaultFilterDiagnostics class is the implementation I will use.
In Listing 19-23, I have updated the Startup class to configure the service provider with the new
interface and its implementation.

Listing 19-23. Configuring the Service Provider in the Startup.cs File in the Filters Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Filters.Infrastructure;

namespace Filters {
 public class Startup {
 public void ConfigureServices(IServiceCollection services) {
 services.AddScoped<IFilterDiagnostics, DefaultFilterDiagnostics>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

I used the AddScoped extension method to configure the service provider, which means that all the
filters instantiated to deal with a single request will receive the same DefaultFilterDiagnostics object.
This is the basis for sharing custom context data between filters.

Chapter 19 ■ Filters

612

Creating Filters with Dependencies
The next step is to create filters that declare dependencies on the IFilterDiagnostics interface. I created
a class file called TimeFilter.cs in the Infrastructure folder and used it to define the class shown in
Listing 19-24.

Listing 19-24. The Contents of the TimeFilter.cs File in the Infrastructure Folder

using System.Diagnostics;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Filters;

namespace Filters.Infrastructure {

 public class TimeFilter : IAsyncActionFilter, IAsyncResultFilter {
 private Stopwatch timer;
 private IFilterDiagnostics diagnostics;

 public TimeFilter(IFilterDiagnostics diags) {
 diagnostics = diags;
 }

 public async Task OnActionExecutionAsync(
 ActionExecutingContext context,
 ActionExecutionDelegate next) {

 timer = Stopwatch.StartNew();
 await next();
 diagnostics.AddMessage($@"Action time:
 {timer.Elapsed.TotalMilliseconds}");
 }

 public async Task OnResultExecutionAsync(
 ResultExecutingContext context,
 ResultExecutionDelegate next) {

 await next();
 timer.Stop();
 diagnostics.AddMessage($@"Result time:
 {timer.Elapsed.TotalMilliseconds}");
 }
 }
}

The TimeFilter is a hybrid action/result filter that re-creates the timer functionality from a previous
example but stores its timing information using an implementation of the IFilterDiagnostics interface,
which is declared as a constructor argument and will be provided by the dependency injection system when
the filter is created.

Notice that the TimeFilter class implements the filter interfaces directly, rather than deriving from the
convenience attribute class. As you will see, filters that rely on dependency injection are applied through a
different attribute and are not used to decorate controllers or actions directly.

Chapter 19 ■ Filters

613

To demonstrate how filters can use dependency injection to share context data, I added a class file
called DiagnosticsFilter.cs to the Infrastructure folder and used it to create the filter shown in
Listing 19-25.

Listing 19-25. The Contents of the DiagnosticsFilter.cs File in the Infrastructure Folder

using System.Text;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Filters;

namespace Filters.Infrastructure {

 public class DiagnosticsFilter : IAsyncResultFilter {
 private IFilterDiagnostics diagnostics;

 public DiagnosticsFilter(IFilterDiagnostics diags) {
 diagnostics = diags;
 }

 public async Task OnResultExecutionAsync(
 ResultExecutingContext context,
 ResultExecutionDelegate next) {

 await next();

 foreach (string message in diagnostics?.Messages) {
 byte[] bytes = Encoding.ASCII
 .GetBytes($"<div>{message}</div>");
 await context.HttpContext.Response.Body
 .WriteAsync(bytes, 0, bytes.Length);
 }
 }
 }
}

The DiagnosticsFilter class is a result filter that receives an implementation of the
IFilterDiagnostics interface as a constructor argument and writes out the messages it contains
to the response.

Applying the Filters
The final step is to apply the filters to the controller class. Standard C# attributes don’t have integral support
for resolving constructor dependencies, which is why the filters in the previous sections are not attributes.
Instead, the TypeFilter attribute is applied and is configured with the type of the filter that is needed, as
shown in Listing 19-26.

 ■ Tip the order in which i applied the filters in listing 19-26 is important, as i explain in the “Understanding
and Changing Filter Order” section later in the chapter.

Chapter 19 ■ Filters

614

Listing 19-26. Applying Filters with Dependencies in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Filters.Infrastructure;
using System;

namespace Filters.Controllers {

 [TypeFilter(typeof(DiagnosticsFilter))]
 [TypeFilter(typeof(TimeFilter))]
 public class HomeController : Controller {

 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");

 public ViewResult SecondAction() => View("Message",
 "This is the SecondAction action on the Home controller");

 public ViewResult GenerateException(int? id) {
 if (id == null) {
 throw new ArgumentNullException(nameof(id));
 } else if (id > 10) {
 throw new ArgumentOutOfRangeException(nameof(id));
 } else {
 return View("Message", $"The value is {id}");
 }
 }
 }
}

The TypeFilter attribute creates a new instance of the filter class for each request but does so using
the dependency injection feature, which allows for loosely coupled components to be created and puts the
objects used to resolve dependencies under life-cycle management.

In the example, this means that both of the filters applied in Listing 19-26 will receive the same
IFilterDiagnostics implementation object and so the messages written by the TimeFilter class will be
written out to the response by the DiagnosticsFilter class. Figure 19-8 shows the effect, which you can see
by starting the application and requesting the default URL for the application.

Figure 19-8. Using filters with dependencies

Chapter 19 ■ Filters

615

Managing Filter Life Cycles
When using the TypeFilter attribute, a new instance of the filter class is created for every request. This is the
same behavior as applying a filter directly as an attribute, except that the TypeFilter attribute allows a filter
class to declare dependencies that are resolved through the service provider.

The ServiceFilter attribute goes a step further and uses the service provider to create the filter object.
This allows filter objects to be placed under life-cycle management as well. As a demonstration, in Listing
19-27, I have modified the TimeFilter class so that it keeps a simple average of the times it records.

Listing 19-27. Keeping Averages in the TimeFilter.cs File in the Infrastructure Folder

using System.Collections.Concurrent;
using System.Diagnostics;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Filters;

namespace Filters.Infrastructure {

 public class TimeFilter : IAsyncActionFilter, IAsyncResultFilter {
 private ConcurrentQueue<double> actionTimes = new ConcurrentQueue<double>();
 private ConcurrentQueue<double> resultTimes = new ConcurrentQueue<double>();
 private IFilterDiagnostics diagnostics;

 public TimeFilter(IFilterDiagnostics diags) {
 diagnostics = diags;
 }

 public async Task OnActionExecutionAsync(
 ActionExecutingContext context, ActionExecutionDelegate next) {

 Stopwatch timer = Stopwatch.StartNew();
 await next();
 timer.Stop();
 actionTimes.Enqueue(timer.Elapsed.TotalMilliseconds);
 diagnostics.AddMessage($@"Action time:
 {timer.Elapsed.TotalMilliseconds}
 Average: {actionTimes.Average():F2}");
 }

 public async Task OnResultExecutionAsync(
 ResultExecutingContext context, ResultExecutionDelegate next) {

 Stopwatch timer = Stopwatch.StartNew();
 await next();
 timer.Stop();
 resultTimes.Enqueue(timer.Elapsed.TotalMilliseconds);
 diagnostics.AddMessage($@"Result time:
 {timer.Elapsed.TotalMilliseconds}
 Average: {resultTimes.Average():F2}");
 }
 }
}

Chapter 19 ■ Filters

616

The filter now uses a thread-safe collection to store the times it records for the action and result phases of
request processing and uses a separate Stopwatch each time it is asked to process a request. In Listing 19-28,
I have registered the TimeFilter class as a singleton with the service provider in the Startup class.

Listing 19-28. Configuring the Service Provider in the Startup.cs File in the Filters Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Filters.Infrastructure;

namespace Filters {
 public class Startup {
 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<IFilterDiagnostics, DefaultFilterDiagnostics>();
 services.AddSingleton<TimeFilter>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Notice that I also changed the life cycle for IFilterDiagnostics so that is a singleton. If I had
continued to create a new instance for each request, then the singleton TimeFilter would receive a different
IFilterDiagnostics object from the DiagnosticsFilter, which continues to be instantiated through the
TypeFilter attribute and will be created for each request.

Applying the Filter
The final step is to apply the filter to the controller using the ServiceType attribute, as shown in Listing 19-29.

Listing 19-29. Applying a Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Filters.Infrastructure;
using System;

namespace Filters.Controllers {

Chapter 19 ■ Filters

617

 [TypeFilter(typeof(DiagnosticsFilter))]
 [ServiceFilter(typeof(TimeFilter))]
 public class HomeController : Controller {

 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");

 public ViewResult SecondAction() => View("Message",
 "This is the SecondAction action on the Home controller");

 public ViewResult GenerateException(int? id) {
 if (id == null) {
 throw new ArgumentNullException(nameof(id));
 } else if (id > 10) {
 throw new ArgumentOutOfRangeException(nameof(id));
 } else {
 return View("Message", $"The value is {id}");
 }
 }
 }
}

You can see the effect by running the application and requesting the default URL. Since a single
implementation object for the IFilterDiagnostics interface is used to resolve all dependencies, the set of
messages displayed builds up with each request, as shown in Figure 19-9.

Figure 19-9. Using the service provider to manage the filter life cycle

Chapter 19 ■ Filters

618

Creating Global Filters
At the start of the chapter, I explained that you can apply filters to a controller class so that you don’t have to
apply them to individual action methods. Global filters go a step further and are applied once in the Startup
class and, as their name suggests, are automatically applied to every action method in every controller
in the application. Any filter can be used as a global filter; to demonstrate, I created a class file called
ViewResultDiagnostics.cs to the Infrastructure folder and used it to define the filter shown in Listing 19-30.

Listing 19-30. The Contents of the ViewResultDiagnostics.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Filters;

namespace Filters.Infrastructure {
 public class ViewResultDiagnostics : IActionFilter {
 private IFilterDiagnostics diagnostics;

 public ViewResultDiagnostics(IFilterDiagnostics diags) {
 diagnostics = diags;
 }

 public void OnActionExecuting(ActionExecutingContext context) {
 // do nothing - not used in this filter
 }

 public void OnActionExecuted(ActionExecutedContext context) {
 ViewResult vr;
 if ((vr = context.Result as ViewResult) != null) {
 diagnostics.AddMessage($"View name: {vr.ViewName}");
 diagnostics.AddMessage($@"Model type:
 {vr.ViewData.Model.GetType().Name}");
 }
 }
 }
}

The filter uses an IFilterDiagnostics object to store messages about the view name and model type of
ViewResult action results. In Listing 19-31, I applied this filter globally, along with the DiagnosticsFilter
class that it depends on to write out the diagnostics messages.

Listing 19-31. Registering Global Filters in the Startup.cs File in the Filters Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Filters.Infrastructure;

Chapter 19 ■ Filters

619

namespace Filters {
 public class Startup {
 public void ConfigureServices(IServiceCollection services) {
 services.AddScoped<IFilterDiagnostics, DefaultFilterDiagnostics>();
 services.AddScoped<TimeFilter>();
 services.AddScoped<ViewResultDiagnostics>();
 services.AddScoped<DiagnosticsFilter>();
 services.AddMvc().AddMvcOptions(options => {
 options.Filters.AddService(typeof(ViewResultDiagnostics));
 options.Filters.AddService(typeof(DiagnosticsFilter));
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Global filters are set up by configuring the MVC services package. In the example, I used the
MvcOptions.Filters.AddService method to register filters globally. The AddService method accepts a
.NET type that will be instantiated using the life-cycle rules specified elsewhere in the ConfigureServices
method. I changed the life cycle of the other filter types to scoped so that new instances are created for each
request. The result is that new instances of the ViewResultDiagnostics and DiagnosticsFilter filters will
be created and applied for every request to every controller.

 ■ Tip You can also add global filters using an Add method instead of the AddService method, which allows a
filter object to be registered as a global filter without relying on dependency injection and the service provider. i
use the Add method in the next section.

I added a class file called GlobalController.cs to the Controllers folder and used it to define the
controller shown in Listing 19-32.

Listing 19-32. The Contents of the GlobalController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;

namespace Filters.Controllers {

 public class GlobalController : Controller {

 public ViewResult Index() => View("Message",
 "This is the global controller");
 }
}

Chapter 19 ■ Filters

620

No filters have been applied to the Global controller, but if you start the application and request the /
global URL, you will see the output from the two global filters, as shown in Figure 19-10.

Figure 19-10. Using global filters

Understanding and Changing Filter Order
Filters run in a specific sequence: authorization, action, and then result. But if there are multiple filters
of a given type, then the order in which they are applied is driven by the scope through which the filters
have been applied. To demonstrate how this works, I added a class file called MessageAttribute.cs to the
Infrastructure folder and used it to define the filter shown in Listing 19-33.

Listing 19-33. The Contents of the MessageAttribute.cs File in the Infrastructure Folder

using System.Text;
using Microsoft.AspNetCore.Mvc.Filters;

namespace Filters.Infrastructure {

 public class MessageAttribute : ResultFilterAttribute {
 private string message;

 public MessageAttribute(string msg) {
 message = msg;
 }

 public override void OnResultExecuting(ResultExecutingContext context) {
 WriteMessage(context, $"<div>Before Result:{message}</div>");
 }

 public override void OnResultExecuted(ResultExecutedContext context) {
 WriteMessage(context, $"<div>After Result:{message}</div>");
 }

 private void WriteMessage(FilterContext context, string msg) {
 byte[] bytes = Encoding.ASCII
 .GetBytes($"<div>{msg}</div>");

Chapter 19 ■ Filters

621

 context.HttpContext.Response
 .Body.Write(bytes, 0, bytes.Length);
 }
 }
}

This is a result filter that writes out fragments of HTML to the response before and after the action result
is processed. The message written by the filter is configured through a constructor argument that can be
used when applied as an attribute. In Listing 19-34, I have simplified the Home controller and replaced the
filters from previous examples with multiple instances of the Message filter.

Listing 19-34. Applying a Filter in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Filters.Infrastructure;

namespace Filters.Controllers {

 [Message("This is the Controller-Scoped Filter")]
 public class HomeController : Controller {

 [Message("This is the First Action-Scoped Filter")]
 [Message("This is the Second Action-Scoped Filter")]
 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");
 }
}

I have changed the set of global filters so that the Message filter is used there as well, as shown Listing 19-35.

Listing 19-35. Creating a Global Filter in the Startup.cs File in the Filters Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Filters.Infrastructure;

namespace Filters {
 public class Startup {
 public void ConfigureServices(IServiceCollection services) {
 services.AddScoped<IFilterDiagnostics, DefaultFilterDiagnostics>();
 services.AddScoped<TimeFilter>();
 services.AddScoped<ViewResultDiagnostics>();
 services.AddScoped<DiagnosticsFilter>();
 services.AddMvc().AddMvcOptions(options => {

Chapter 19 ■ Filters

622

 options.Filters.Add(new
 MessageAttribute("This is the Globally-Scoped Filter"));
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Four instances of the filter will be used when the Index method responds to a request. If you run the
application and request the default URL, you will see the following output displayed in the browser:

Before Result:This is the Globally-Scoped Filter
Before Result:This is the Controller-Scoped Filter
Before Result:This is the First Action-Scoped Filter
Before Result:This is the Second Action-Scoped Filter
After Result:This is the Second Action-Scoped Filter
After Result:This is the First Action-Scoped Filter
After Result:This is the Controller-Scoped Filter
After Result:This is the Globally-Scoped Filter

By default, MVC runs global filters, then filters applied to controller filter, and finally filters applied to
action methods. Once the action method has been invoked or the action result has been processed, the stack
of filters is unwound, which is why the After Result messages in the output are shown in reverse order.

Changing Filter Order
The default order can be changed by implementing the IOrderedFilter interface, which MVC looks for
when it is working out how to stack filters in sequence. Here is the definition of the interface:

namespace Microsoft.AspNetCore.Mvc.Filters {

 public interface IOrderedFilter : IFilterMetadata {
 int Order { get; }
 }
}

The Order property returns an int value; a low value tells MVC to apply a filter before those with higher
Order values. The convenience attributes already implement the IOrder value, and in Listing 19-36, I have
set the Order property for the filters applied to the Home controller.

 ■ Tip the TypeFilter and ServiceFilter attributes also implement the IOrderedFilter interface, which
means you can change the filter order when using dependency injection as well.

Chapter 19 ■ Filters

623

Listing 19-36. Setting Filter Order in the HomeController.cs File in the Controllers Folder

using Filters.Infrastructure;
using Microsoft.AspNetCore.Mvc;

namespace Filters.Controllers {

 [Message("This is the Controller-Scoped Filter", Order = 10)]
 public class HomeController : Controller {

 [Message("This is the First Action-Scoped Filter", Order = 1)]
 [Message("This is the Second Action-Scoped Filter", Order = -1)]
 public ViewResult Index() => View("Message",
 "This is the Index action on the Home controller");
 }
}

Order values can also be negative, which is a helpful way of ensuring that a filter is applied before any
global filters with the default order (although you can also set the order when creating global filters, too).
If you run the example, you will see that the order of the output messages has changed to reflect the new
priorities.

Before Result:This is the Second Action-Scoped Filter
Before Result:This is the Globally-Scoped Filter
Before Result:This is the First Action-Scoped Filter
Before Result:This is the Controller-Scoped Filter
After Result:This is the Controller-Scoped Filter
After Result:This is the First Action-Scoped Filter
After Result:This is the Globally-Scoped Filter
After Result:This is the Second Action-Scoped Filter

Summary
In this chapter, you saw how to encapsulate the logic that addresses crosscutting concerns as filters.
I showed you the different kinds of filters available and how to implement them. You saw how filters can
be applied as attributes to controllers and action methods and how they can be applied as global filters.
In the next chapter, I show you how to use controllers to create web services.

625© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_20

CHAPTER 20

API Controllers

Not all controllers are used to send HTML documents to clients. There are also API controllers, which are
used to provide access to an application’s data. This is a feature that was previously provided through the
separate Web API framework but has now been integrated into ASP.NET Core MVC. In this chapter, I explain
the role that API controllers play in a web application, describe the problems they solve, and demonstrate
how they are created, tested, and used. Table 20-1 puts API controllers in context.

Table 20-1. Putting API Controllers in Context

Question Answer

What are they? API controllers are like regular controllers, except that the
responses produced by their action methods are data objects that
are sent to the client without HTML markup.

Why are they useful? API controllers allow clients to access the data in an application
without also receiving the HTML markup that is required to
present that content to the user. Not all clients are browsers, and
not all clients present data to a user. An API controller makes an
application open for supporting new types of clients or clients
developed by a third-party.

How are they used? API controllers are used like regular HTML controllers.

Are there any pitfalls or limitations? The most common problems relate to the way that data objects are
serialized so they can be sent to the client. See the “Understanding
Content Formatting” section for details.

Are there any alternatives? You don’t have to use API controllers in your project, but doing so
can increase the value of your platform to your clients.

https://doi.org/10.1007/978-1-4842-3150-0_20

Chapter 20 ■ apI Controllers

626

Table 20-2 summarizes the chapter.

Table 20-2. Chapter Summary

Problem Solution Listing

Provide access to the data in an
application

Create an API controller 10

Request data from an API controller Use an Ajax query, either directly using the
browser’s API or through a library like jQuery

11–13

Override the content negotiation
process

Use the Produces attribute 14-16

Allow clients to override the Accept
header by specifying the data format in
the URL

Add formatter mappings in the Startup class,
add a segment variable that captures the data
format, and, optionally, apply the FormatFilter
attribute

17–18

Provide full support for the content
negotiation process

Enable the
HttpNotAcceptableOutputFormatter formatter
and set the RespectBrowserAcceptHeader
configuration property

19–20

Receive data in different formats using
different action methods

Apply the Consumes attribute 21

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called ApiControllers.

Creating the Model and Repository
I started by creating the Models folder, adding a class file called Reservation.cs, and using it to define the
model class shown in Listing 20-1.

Listing 20-1. The Contents of the Reservation.cs File in the Models Folder

namespace ApiControllers.Models {

 public class Reservation {
 public int ReservationId { get; set; }
 public string ClientName { get; set; }
 public string Location { get; set; }
 }
}

Chapter 20 ■ apI Controllers

627

I also added a file called IRepository.cs to the Models folder and used it to define the interface for a
model repository, as shown in Listing 20-2.

Listing 20-2. The Contents of the IRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace ApiControllers.Models {

 public interface IRepository {

 IEnumerable<Reservation> Reservations { get; }
 Reservation this[int id] { get; }

 Reservation AddReservation(Reservation reservation);
 Reservation UpdateReservation(Reservation reservation);
 void DeleteReservation(int id);
 }
}

I added a class file called MemoryRepository.cs to the Models folder and used it to define a
nonpersistent implementation of the IRepository interface, as shown in Listing 20-3.

Listing 20-3. The Contents of the MemoryRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace ApiControllers.Models {

 public class MemoryRepository : IRepository {
 private Dictionary<int, Reservation> items;

 public MemoryRepository() {
 items = new Dictionary<int, Reservation>();
 new List<Reservation> {
 new Reservation { ClientName = "Alice", Location = "Board Room" },
 new Reservation { ClientName = "Bob", Location = "Lecture Hall" },
 new Reservation { ClientName = "Joe", Location = "Meeting Room 1" }
 }.ForEach(r => AddReservation(r));
 }

 public Reservation this[int id] => items.ContainsKey(id) ? items[id] : null;

 public IEnumerable<Reservation> Reservations => items.Values;

 public Reservation AddReservation(Reservation reservation) {
 if (reservation.ReservationId == 0) {
 int key = items.Count;
 while (items.ContainsKey(key)) { key++; };
 reservation.ReservationId = key;
 }

Chapter 20 ■ apI Controllers

628

 items[reservation.ReservationId] = reservation;
 return reservation;
 }

 public void DeleteReservation(int id) => items.Remove(id);

 public Reservation UpdateReservation(Reservation reservation)
 => AddReservation(reservation);

 }
}

The repository creates a simple set of model objects when it is instantiated, and since there is no
persistent storage, any changes will be lost when the application is stopped or restarted. (See Chapter 8 for
an example of how to create a persistent repository as part of the SportsStore example application.)

Creating the Controller and Views
Later in the chapter, I will be creating RESTful controllers, but in preparation, I need to create a regular
controller to provide a foundation for later examples. I created the Controllers folder, added a file called
HomeController.cs, and used it to define the controller shown in Listing 20-4.

Listing 20-4. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using ApiControllers.Models;

namespace ApiControllers.Controllers {

 public class HomeController : Controller {
 private IRepository repository { get; set; }

 public HomeController(IRepository repo) => repository = repo;

 public ViewResult Index() => View(repository.Reservations);

 [HttpPost]
 public IActionResult AddReservation(Reservation reservation) {
 repository.AddReservation(reservation);
 return RedirectToAction("Index");
 }
 }
}

This controller defines the Index action, which is the default for the application and renders the data
model. It also defines an AddReservation action, which is accessible only for HTTP POST requests and will
be used to receive form data from the user. These actions follow the Post/Redirect/Get pattern described in
Chapter 17 so that reloading the web page won’t create a duplicate form submission.

I created a layout so that I can separate the HTML content from the document header, which will
simplify some changes I make later in the chapter. I created the Views/Shared folder, added a layout called
the _Layout.cshtml file, and added the markup shown in Listing 20-5.

http://dx.doi.org/10.1007/978-1-4842-3150-0_8
http://dx.doi.org/10.1007/978-1-4842-3150-0_17

Chapter 20 ■ apI Controllers

629

Listing 20-5. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RESTful Controllers</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 @RenderBody()
</body>
</html>

Next, I created the Views/Home folder, added a view file called Index.cshtml, and added the content
shown in Listing 20-6.

Listing 20-6. The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Reservation>
@{ Layout = "_Layout"; }

<form id="addform" asp-action="AddReservation" method="post">
 <div class="form-group">
 <label for="ClientName">Name:</label>
 <input class="form-control" name="ClientName" />
 </div>
 <div class="form-group">
 <label for="Location">Location:</label>
 <input class="form-control" name="Location" />
 </div>
 <div class="text-center panel-body">
 <button type="submit" class="btn btn-sm btn-primary">Add</button>
 </div>
</form>

<table class="table table-sm table-striped table-bordered m-2">
 <thead><tr><th>ID</th><th>Client</th><th>Location</th></tr></thead>
 <tbody>
 @foreach (var r in Model) {
 <tr>
 <td>@r.ReservationId</td>
 <td>@r.ClientName</td>
 <td>@r.Location</td>
 </tr>
 }
 </tbody>
</table>

This strongly typed view receives a sequence of Reservation objects as its model and uses a Razor
foreach loop to populate a table with them. There is also a form that has been configured to send POST
requests to the AddReservation action.

Chapter 20 ■ apI Controllers

630

The examples in this chapter depend on the Bootstrap CSS package. To add Bootstrap to the project,
I used the Bower Configuration File item template to create the bower.json file in the root of the project
and added the package to the dependencies section, as shown in Listing 20-7.

Listing 20-7. Adding a Package in the bower.json File

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

Next, I created a _ViewImports.cshtml file in the Views folder and used it to set up the built-in tag
helpers for use in Razor views and to import the model namespace, as shown in Listing 20-8.

Listing 20-8. The Contents of the _ViewImports.cshtml File in the Views Folder

@using ApiControllers.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

To enable the MVC Framework and the middleware components required for development, I made
the changes shown in Listing 20-9 to the Startup class. I also used the AddSingleton method to set up the
service mapping for the model repository.

Listing 20-9. Enabling Middleware in the Startup.cs File in the ApiControllers Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ApiControllers.Models;

namespace ApiControllers {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<IRepository, MemoryRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Chapter 20 ■ apI Controllers

631

Setting the HTTP Port
Some of the examples in this chapter are tested by manually typing URLs. To make this easier to
describe, I will set the port that will be used to receive HTTP requests. Select ApiControllers Properties
from the Visual Studio Project menu, display the Debug tab, and change the value of the App URL field
to http://localhost:7000/, as shown in Figure 20-1. Make sure you save the changes after you have set
the port number.

Figure 20-1. Setting the application URL

Start the application, fill out the form, and click the Add button; the application will add a new
Reservation to the model, as shown in Figure 20-2. The changes you make to the repository are not
persistent and will be lost when the application is stopped or restarted.

Figure 20-2. Using the example application

Chapter 20 ■ apI Controllers

632

Understanding the Role of RESTful Controllers
The example application is an example of a classic web application. All of the logic in the application
exists at the server, contained in C# classes, which makes them easy to manage, test, and maintain. But
an application designed in this way can have serious deficiencies with regard to speed, efficiency, and
openness.

Understanding the Speed Problem
At the moment, the example application is a synchronous web application. When the user clicks the Add
button, the browser sends the POST request to the server, waits for a response, and then renders the HTML
it receives. During this period, the user can’t do anything but wait. The waiting period can be imperceptible
during development when the browser and the server are on the same machine; however, deployed
applications are subject to real-world capacity limits and delays, and the amount of time that a synchronous
application requires the user to wait for a response can be substantial.

A synchronous application won’t always have a speed problem. For example, if you are writing a line-
of-business application for use in a single location where all the clients are connected by a fast and reliable
LAN, then you may not have a problem to solve. On the other hand, if you are writing an application for
mobile clients in areas with poor infrastructure, then a speed problem can be substantial.

 ■ Tip some browsers let you simulate different types of network, which can be a useful tool for seeing
whether your users are likely to accept working with a synchronous application for a range of scenarios. Google
Chrome, for example, offers a feature called network throttling, which is available in the network section of
the F12 developer tools. there is a range of predefined networks available, or you can create your own by
specifying the upload and download rates and the latency.

Understanding the Efficiency Problem
The efficiency problem arises from the way that a synchronous web application treats the browser as an
HTML rendering engine used only to display the HTML documents sent by the server.

When the user first requests the default URL for the example application, for instance, the HTML
document that is sent back contains everything that the browser needs to display the content for the
application, including the following information:

•	 The content relies on the Bootstrap CSS file, which should be downloaded if a
cached copy isn’t available.

•	 The content contains a form that is configured to send a POST request to the
AddReservation action.

•	 The content contains a table whose body contains three populated rows.

The example application is simple, and the initial request results in the server sending about 1.3KB
of data to the client. However, when the user submits the form, the client is redirected to the Index action
again, which results in another 1.3KB of data to reflect the addition of a single table row. The browser
had already rendered the form and the table, but these are discarded and replaced with an entirely new
representation of what is largely the same content.

Chapter 20 ■ apI Controllers

633

You may think that 1.3KB of data isn’t much and, of course, you would be right. But if you consider the
ratio of useful content to duplicate content, you will see that the vast majority of the data sent to the browser is
wasted. And the example application is deliberately simple; few real applications require so little HTML, and
the amount of duplicated content will be substantially increased as the complexity of the application rises.

Understanding the Openness Problem
The final problem presented by traditional web applications is that the design is closed, meaning that
the data in the model can be accessed only through the actions provided by the Home controller. Closed
applications become a problem when there is a need to use the underlying data in another application,
especially when that application is being developed by a different team or even a different organization.
Developers often believe that the value in an application is in the user interactions that it offers users,
largely because those are the parts that we spend time thinking about and writing. But once an application
is established and has an active user base, it is often the data that the application contains that becomes
important.

Introducing REST and API Controllers
An API controller is an MVC controller that is responsible for providing access to the data in an application
without encapsulating it in HTML. This allows the data in the model to be retrieved or modified without
having to use the actions provided by the regular controllers, such as the Home controller in the example
application.

The most common approach for delivering data from an application is to use the Representational State
Transfer pattern, known as REST. There is no detailed specification for REST, which leads to a lot of different
approaches that fall under the RESTful banner. There are, however, some unifying ideas that are useful in
client-side web application development.

The core premise of a RESTful web service is to embrace the characteristics of HTTP so that request
methods—also known as verbs—specify an operation for the server to perform, and the request URL
specifies one or more data objects to which the operation will be applied.

As an example, here is a URL that might refer to a specific Reservation in the example application:

/api/reservations/1

The first part of the URL—api—is used to separate out the data part of the application from the
standard controllers that generate HTML. The next part—reservations—indicates the collection of
objects that will be operated on. The final part—1—specifies an individual object within the reservations
collection. In the example application, it is the value of the ReservationId property that uniquely identifies
an object and that would be used in the URL.

URLs that identify an object are combined with HTTP methods to specify operations. In Table 20-3,
I have listed the most common HTTP methods and what they represent when combined with an example
URL. I have also included details of what data—the payload—is included in the request and response for
each method and URL combination. The API controller that processes these requests uses the response
status code to report on the outcome of the request.

Chapter 20 ■ apI Controllers

634

Following the RESTful convention isn’t a requirement, but it does help make your application easier to
work with because the same broad approach has been adopted by many established web applications.

Creating an API Controller
The process for creating an API controller builds on the approach used for standard controllers, with some
additional features to help specify the API that is presented to clients. To demonstrate, I added a class
file called ReservationController.cs to the Controllers folder and used it to define the class shown in
Listing 20-10. I break down the functionality provided by this controller in the sections that follow.

 ■ Tip remember that controller classes can be defined anywhere in the project and not just in the
Controllers folder. For large and complex projects, it can be helpful to define the apI controllers separately
from the regular htMl controllers and place them in a subfolder or even separate folder entirely.

Table 20-3. Combining HTTP Methods with URLs to Specify a RESTful Web Service

Verb URL Description Payloads

GET /api/reservations This combination retrieves all
the objects.

This response contains
the complete collection of
Reservation objects.

GET /api/reservations/1 This combination retrieves
the reservation object whose
ReservationId is 1.

The response contains the
specified Reservation object.

POST /api/reservation This combination creates
a new Reservation.

The request contains the values
for the other properties required
to create a Reservation object.
The response contains the
object that was stored, ensuring
that the client receives the saved
data.

PUT /api/reservation This combination replaces
an existing Reservation.

The request contains the
values required to change the
properties of the specified
Reservation. The response
contains the object that was
stored, ensuring that the client
receives the saved data.

PATCH /api/reservation/1 This combination modifies the
existing Reservation object
whose ReservationId is 1.

This request contains a set
of modifications that should
be applied to the specified
Reservation object. This
response is a confirmation that
the changes have been applied.

DELETE /api/reservation/1 This combination deletes the
Reservation object whose
ReservationId is 1.

There is no payload in the
request or response.

Chapter 20 ■ apI Controllers

635

Listing 20-10. The Contents of the ReservationController.cs File in the Controllers Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using ApiControllers.Models;
using Microsoft.AspNetCore.JsonPatch;

namespace ApiControllers.Controllers {

 [Route("api/[controller]")]
 public class ReservationController : Controller {
 private IRepository repository;

 public ReservationController(IRepository repo) => repository = repo;

 [HttpGet]
 public IEnumerable<Reservation> Get() => repository.Reservations;

 [HttpGet("{id}")]
 public Reservation Get(int id) => repository[id];

 [HttpPost]
 public Reservation Post([FromBody] Reservation res) =>
 repository.AddReservation(new Reservation {
 ClientName = res.ClientName,
 Location = res.Location
 });

 [HttpPut]
 public Reservation Put([FromBody] Reservation res) =>
 repository.UpdateReservation(res);

 [HttpPatch("{id}")]
 public StatusCodeResult Patch(int id,
 [FromBody]JsonPatchDocument<Reservation> patch) {
 Reservation res = Get(id);
 if (res != null) {
 patch.ApplyTo(res);
 return Ok();
 }
 return NotFound();
 }

 [HttpDelete("{id}")]
 public void Delete(int id) => repository.DeleteReservation(id);
 }
}

API controllers work in the same basic way as regular controllers, which means that you can create a
POCO controller or derive a class from the Controller base class, which provides more convenient access to
the request context data.

Chapter 20 ■ apI Controllers

636

ADAPTING THE RESTFUL PATTERN

rest has encouraged a certain amount of dogmatism about how web application apIs should be
presented to clients. rest isn’t a standard or even a well-defined pattern, and there are some helpful
approaches that make rest easier to adopt with an asp.net Core MVC application but that have a
tendency to upset those programmers who have fixed views about what counts as restful.

In table 20-3, the Urls that I listed for the POST and PUT operations do not uniquely identify a resource,
which some people consider an essential rest characteristic. In the case of the POST operation,
the unique identifier of a Reservation object is assigned by the model, which means that the client
is unable to provide it as part of the Url. In the case of the PUT operation, the MVC model binding
feature—which I describe in Chapter 26 and is the reason I applied the FromBody attribute in listing
20-10—makes it easier to receive details of the Reservation object that is to be modified from the
request body. so, that’s where the Reservation controller expects to find the ReservationId value that
identifies the model object that is to be modified.

In common with all patterns, rest is a starting point that contains helpful and useful ideas. It is not a
rigid standard that must be followed at all costs, and the only important thing is to write code that can
be understood, tested, and maintained. accommodating the nature of MVC applications and the design
of the repository makes for a simpler application while still providing a useful apI for clients to consume.
My advice is to consider patterns to be a guiding principle that you adapt to your own needs—
something that is as true for rest as it is for MVC itself.

Defining the Route
The route by which API controllers are reached can be defined only using the Route attribute and cannot
be defined in the application configuration in the Startup class. The convention for API controllers is to
use a route prefixed with api, followed by the name of the controller, so that the ReservationController
controller shown in Listing 20-10 is reached through the URL /api/reservation, like this:

...
[Route("api/[controller]")]
public class ReservationController : Controller {
...

Declaring Dependencies
API controllers are instantiated in the same way as regular controllers, which means that they can declare
dependencies that will be resolved using the service provider. The ReservationController class declares a
constructor dependency on the IRepository interface, which will be resolved to provide access to the data
in the model.

...
public ReservationController(IRepository repo) => repository = repo;
...

http://dx.doi.org/10.1007/978-1-4842-3150-0_26

Chapter 20 ■ apI Controllers

637

Defining the Action Methods
Each action method is decorated with an attribute that specifies the HTTP method that it accepts, like this:

...
[HttpGet]
public IEnumerable<Reservation> Get() => repository.Reservations;
...

The HttpGet attribute is one of a set that is used to restrict access to action methods to requests that
have a specific HTTP method or verb. The complete set of attributes is described in Table 20-4.

Table 20-4. The HTTP Method Attributes

Name Description

HttpGet This attribute specifies that the action can be invoked only by HTTP requests that use
the GET verb.

HttpPost This attribute specifies that the action can be invoked only by HTTP requests that use
the POST verb.

HttpDelete This attribute specifies that the action can be invoked only by HTTP requests that use
the DELETE verb.

HttpPut This attribute specifies that the action can be invoked only by HTTP requests that use
the PUT verb.

HttpPatch This attribute specifies that the action can be invoked only by HTTP requests that use
the PATCH verb.

HttpHead This attribute specifies that the action can be invoked only by HTTP requests that use
the HEAD verb.

AcceptVerbs This attribute is used to specify multiple HTTP verbs.

Routes are further refined by including a routing fragment as the argument to the HTTP method
attribute, like this:

...
[HttpGet("{id}")]
public Reservation Get(int id) => repository[id];
...

The routing fragment, {id}, is combined with the route defined by the Route attribute applied to the
controller and a constraint based on the HTTP method. In this case, it means that this action can be reached
by sending a GET request whose URL matches the /api/reservations/{id} routing pattern, where the id
segment is then used to identify the reservation object that should be retrieved.

Notice that the routes generated for an API controller don’t include an {action} segment variable,
which means that the name of the action method isn’t part of the URL required to target a specific method.
All the actions in an API controller are reached through the same base URL (/api/reservation for the
example), and the HTTP method and optional segments are used to differentiate between them.

Chapter 20 ■ apI Controllers

638

Defining the Action Results
Action methods for API controllers don’t rely on ViewResult objects to present their results since there are
no views required when delivering data. Instead, API controller action methods return data objects, like this:

...
[HttpGet]
public IEnumerable<Reservation> Get() => repository.Reservations;
...

This action returns a sequence of Reservation objects and leaves MVC to take responsibility for
serializing them into a format that can be processed by the client. I explain this process in more detail in the
“Understanding Content Formatting” section.

CUSTOMIZING API RESULTS

one of the most appealing aspects of apI controllers is that you can just return C# objects from action
methods and let MVC figure out what to do with them. MVC is pretty good at working out what to do. For
example, if you return null from an apI controller action method, then the client will be sent a 204 – No
Content response.

But apI controllers are able to use the features available to regular controllers, too, and that means
you can override the default behavior by returning an IActionResult from your action methods that
specifies what kind of result you want to send. as an example, here is an implementation of an action
method from the example controller that sends a 404 – Not Found response for queries that don’t
correspond to an object in the model:

...
[HttpGet("{id}")]
public IActionResult Get(int id) {
 Reservation result = repository[id];
 if (result == null) {
 return NotFound();
 } else {
 return Ok(result);
 }
}
...

If there is no object in the repository for the specified ID, then I call the NotFound method, which creates
a NotFoundResult object that, in turn, leads to a 404 – Not Found response being sent to the client.
If there is an object in the repository, then I call the Ok method to create an ObjectResult object. the
Ok method allows me to send an object to the client within an action that returns an IActionResult, as
described in Chapter 17. You won’t often need to override the default apI controller responses, but the
full range of action results are available if the need does arise.

http://dx.doi.org/10.1007/978-1-4842-3150-0_17

Chapter 20 ■ apI Controllers

639

Testing an API Controller
There are lots of tools available to help test web application APIs. Good examples include Fiddler (www.
telerik.com/fiddler), which is a stand-alone HTTP debugging tool, and Swashbuckle (http://github.
com/domaindrivendev/Swashbuckle), which is a NuGet package that adds a summary page to an application
that describes its API operations and allows them to be tested.

But the simplest way to make sure that an API controller is to use PowerShell, which makes it easy to
create HTTP requests from the command line and which lets you focus on the results of API operations
without needing to dig into the details. PowerShell originated on Windows but is now available for Linux and
macOS as well.

In the sections that follow, I show you how to use PowerShell to test each of the operations provided by
the Reservation controller. You can open a new PowerShell window to run the test commands or use the
Visual Studio Package Manager Console window, which uses PowerShell.

Testing the GET Operations
To test the GET operation provided by the Reservation API controller, start the application by selecting Start
Without Debugging from the Visual Studio Debug menu and wait until you see the synchronous response
provided by the Home controller. Once the application is running, open a PowerShell window and type the
following command:

Invoke-RestMethod http://localhost:7000/api/reservation -Method GET

This command uses the Invoke-RestMethod PowerShell cmdlet to send a GET request to the /api/
reservation URL. The result is parsed and formatted to make the data easy to read, as follows:

reservationId clientName location
------------- ---------- --------
 0 Alice Board Room
 1 Bob Lecture Hall
 2 Joe Meeting Room 1

The server responds to the GET request with a JSON representation of the Reservation objects
contained in the model, which the Invoke-RestMethod cmdlet presents in a table format.

UNDERSTANDING JSON

the JavaScript Object Notation (Json) has become the standard data format for web applications. Json
has become popular because it is simple, concise, and easy to work with. It is especially easy to process
Json data in Javascript code because the Json format is similar to the way that literal objects are
expressed in Javascript code. Modern browsers include built-in support for generating and parsing Json
data, and popular Javascript libraries, such as jQuery, will automatically convert to and from Json.

http://www.telerik.com/fiddler
http://www.telerik.com/fiddler
http://github.com/domaindrivendev/Swashbuckle
http://github.com/domaindrivendev/Swashbuckle

Chapter 20 ■ apI Controllers

640

although Json has evolved from Javascript, its structure is easy for C# developers to read and
understand. as an example, here is a response from the apI controller in the example application:

...
[{"reservationId":0,"clientName":"Alice","location":"Board Room"},
 {"reservationId":1,"clientName":"Bob","location":"Lecture Hall"},
 {"reservationId":2,"clientName":"Joe","location":"Meeting Room 1"}]
...

this Json string describes an array of objects. the array is denoted by the [and] characters, and
each object is denoted using the { and } characters. the objects are a collection of key/value pairs,
where each key is separated from its value with a colon (the : character) and pairs are separated
with commas (the , character). this is loosely similar to the C# literal syntax that I used in the
MemoryRepository class to define the data in listing 20-3.

...
new List<Reservation> {
 new Reservation { ClientName = "Alice", Location = "Board Room" },
 new Reservation { ClientName = "Bob", Location = "Lecture Hall" },
 new Reservation { ClientName = "Joe", Location = "Meeting Room 1" }
...

notice, however, that MVC changes the capitalization of property names from the C# convention
(ClientName, with an initial uppercase letter) to the Javascript convention (clientName, with an initial
lowercase letter).

even though the formats are not identical, there is sufficient similarity that a C# developer can read
and understand Json data with little effort. You don’t need to get into the detail of Json for most web
applications because MVC does all the heavy lifting, but you can learn more about Json at www.json.org.

There are two GET operations provided by the Reservation controller. When a GET request is sent to
/api/reservation, then a response containing all the objects is returned. To retrieve a single object, its
ReservationId value is specified as the final segment in the URL, like this:

Invoke-RestMethod http://localhost:7000/api/reservation/1 -Method GET

This command requests the Reservation object whose ReservationId value is 1 and produces the
following result:

reservationId clientName location
------------- ---------- --------
 1 Bob Lecture Hall

http://www.json.org/

Chapter 20 ■ apI Controllers

641

Testing the POST Operation
All the operations provided by the API controller can be tested using PowerShell, although the format of the
commands can be a little awkward. Here is a command that sends a POST request to the API controller to
create a new Reservation object in the repository and writes out the data sent back in the response:

Invoke-RestMethod http://localhost:7000/api/reservation -Method POST -Body
(@{clientName="Anne"; location="Meeting Room 4"} | ConvertTo-Json) -ContentType
"application/json"

This command uses the -Body argument to specify the body for the request, which is encoded as JSON.
The -ContentType argument is used to set the Content-Type header for the request. The command will
produce the following result:

reservationId clientName location
------------- ---------- --------
 3 Anne Meeting Room 4

The POST operation uses the clientName and location values to create a Reservation object and
returns a JSON representation of the new object to the client, which includes the ReservationId value
that has been assigned to the new object. This may seem like the client is simply receiving data values that
it has sent to the server in the request, but this approach ensures that the client is working with the same
data that the server is using and caters for any formatting or translations that the server performs on the
data it receives from the client. To see the effect of the POST request, send another GET request to the /api/
reservation API, like this:

Invoke-RestMethod http://localhost:7000/api/reservation -Method GET

The data that is returned by the client reflects the addition of the new Reservation object.

reservationId clientName location
------------- ---------- --------
 0 Alice Board Room
 1 Bob Lecture Hall
 2 Joe Meeting Room 1
 3 Anne Meeting Room 4

Testing the PUT Operation
The PUT method is used to replace existing objects in the model. The ReservationId value of the object is
specified as part of the request URL, and the clientName and location values are provided in the request
body. Here is a PowerShell command that sends a PUT request to modify a Reservation object:

Invoke-RestMethod http://localhost:7000/api/reservation -Method PUT -Body
(@{reservationId="1"; clientName="Bob"; location="Media Room"} | ConvertTo-Json)
-ContentType "application/json"

Chapter 20 ■ apI Controllers

642

This request changes the Reservation object whose ReservationId value is 1 and specifies a new value
for the Location property. If you run the command, you will see the following response, which indicates that
the change has been made:

reservationId clientName location
------------- ---------- --------
 1 Bob Media Room

To see the effect of the PUT request, send a GET request to the /api/reservation API, like this:

Invoke-RestMethod http://localhost:7000/api/reservation -Method GET

The data that is returned by the client reflects the addition of the new Reservation object.

reservationId clientName location
------------- ---------- --------
 0 Alice Board Room
 1 Bob Media Room
 2 Joe Meeting Room 1
 3 Anne Meeting Room 4

Testing the Patch Operation
The PATCH method is used to modify an existing object in the model. Many applications use PUT requests and
ignore PATCH entirely, which is a reasonable approach if your clients have access to all the properties defined
by the objects in the model. But in complex applications, clients may receive a specific set of property values
for security reasons, which prevents them from sending a complete object as part of a PUT request. PATCH
requests are more selective and allow clients to specify a set of granular changes to an object.

ASP.NET Core MVC has support for working with the JSON Patch standard, which allows changes to be
specified in a uniform way. I am not going to go into the detail of the JSON Patch standard, which you can
read at https://tools.ietf.org/html/rfc6902, but for the example application, the client is going to send
the API controller JSON data like this in its HTTP PATCH request:

[
 { "op": "replace", "path": "clientName", "value": "Bob"},
 { "op": "replace", "path": "location", "value": "Lecture Hall"}
]

A JSON Patch document is expressed as an array of operations. Each operation has an op property,
which specifies the type of operation, and a path property, which specifies where the operation will be
applied.

For the example application—and, in fact, for most applications—only the replace operation is
required, which is used to change the value of a property. This JSON Patch data sets new values for the
clientName and location properties, while the object that is to be modified will be identified by the
request URL. ASP.NET Core MVC will automatically process the JSON data and present it to the action
method as a JsonPatchDocument<T> object, where T is the type of the model object to be modified. The
JsonPatchDocument<T> object can then be used to modify an object from the repository using the ApplyTo
method. Here is a PowerShell command that sends a PATCH request:

https://tools.ietf.org/html/rfc6902

Chapter 20 ■ apI Controllers

643

Invoke-RestMethod http://localhost:7000/api/reservation/2 -Method PATCH -Body (@
{ op="replace"; path="clientName"; value="Bob"},@{ op="replace"; path="location";
value="Lecture Hall"} | ConvertTo-Json) -ContentType "application/json"

This request asks the server to modify the clientName and location properties of the Reservation
object whose ReservationId is 2. To see the effect of the PUT request, send a get request to the /api/
reservation API, like this:

Invoke-RestMethod http://localhost:7000/api/reservation -Method GET

The data that is returned by the client reflects the addition of the new Reservation object.

reservationId clientName location
------------- ---------- --------
 0 Alice Board Room
 1 Bob Media Room
 2 Bob Lecture Hall
 3 Anne Meeting Room 4

Testing the Delete Operation
The final test is to send a DELETE request, which will remove a Reservation object from the repository, as
follows:

Invoke-RestMethod http://localhost:7000/api/reservation/2 -Method DELETE

The action that accepts DELETE requests in the Reservation controller doesn’t return a result, so no data
is displayed when the command has completed. To see the effect of the deletion, request the contents of the
repository using the following command:

Invoke-RestMethod http://localhost:7000/api/reservation -Method GET

The Reservation object whose ReservationId value is 2 was removed from the repository.

reservationId clientName location
------------- ---------- --------
 0 Alice Board Room
 1 Bob Media Room
 3 Anne Meeting Room 4

Using the API Controller in the Browser
Defining an API controller has addressed the openness issue for my application, but it hasn’t done anything
for my speed or efficiency issues. For this, I need to update the HTML part of the application so that it relies
on JavaScript to make HTTP requests to the API controller to perform data operations.

Chapter 20 ■ apI Controllers

644

In the browser, asynchronous HTTP requests are typically known as Ajax requests, where Ajax used to
be an acronym for Asynchronous JavaScript and XML. The XML data format has lost popularity in recent
years, but the name Ajax is still used to refer to asynchronous HTTP requests, even when they return JSON
data. More broadly, the technique described in this section is the foundation for single-page applications,
where JavaScript in a single HTML page is used to pull in the data for multiple sections of the application,
generating the content to display dynamically.

 ■ Note Client-side development is a topic in its own right and outside the scope of this book. In this section,
I create only a basic asynchronous http request without detailed explanations, just to give a sense of how it
is done. see my Pro Angular and Essential Angular for ASP.NET Core MVC books, also published by Apress, for
detailed coverage of client-side development with the angular framework and supporting angular clients using
asp.net Core MVC.

There is a JavaScript API provided by browsers for making Ajax requests, but it is a little awkward to
deal with, and there are some differences in the way that browsers implement some optional features. The
simplest way to make Ajax requests is to use the jQuery library, which is an endlessly useful tool for client-
side development. In Listing 20-11, I added the jQuery package to the bower.json file.

Listing 20-11. Adding jQuery in the bower.json File in the ApiControllers Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",
 "jquery": "3.2.1"
 }
}

In fact, since some Bootstrap features depend on jQuery, Bower will have already installed the package
in the wwwroot/lib folder. The addition in Listing 20-11 has the effect of making the dependency explicit.
To use the features provided by jQuery, I created the wwwroot/js folder and added a JavaScript file called
client.js, the contents of which are shown in Listing 20-12.

Listing 20-12. The Contents of the client.js File in the wwwroot/js Folder

$(document).ready(function () {

 $("form").submit(function (e) {
 e.preventDefault();
 $.ajax({
 url: "api/reservation",
 contentType: "application/json",
 method: "POST",
 data: JSON.stringify({
 clientName: this.elements["ClientName"].value,
 location: this.elements["Location"].value
 }),

Chapter 20 ■ apI Controllers

645

 success: function(data) {
 addTableRow(data);
 }
 })
 });
});

var addTableRow = function (reservation) {
 $("table tbody").append("<tr><td>" + reservation.reservationId + "</td><td>"
 + reservation.clientName + "</td><td>"
 + reservation.location + "</td></tr>");
}

The JavaScript file in this file responds when the user submits the form in the browser, encodes the form
data as JSON, and sends it to the server using an HTTP POST request. The JSON data that is returned by the
server is automatically parsed by jQuery and then used to add a row to the HTML table. In Listing 20-13, I
have updated the layout to include script elements for the jQuery library for the client.js file.

Listing 20-13. Adding JavaScript References in the _Layout.cshtml File

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>RESTful Controllers</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
 <script src="lib/jquery/dist/jquery.js"></script>
 <script src="js/client.js"></script>
</head>
<body class="m-1 p-1">
 @RenderBody()
</body>
</html>

The first script element tells the browser to load the jQuery library, and the second specifies the file
that will contain my custom code. There is no obvious visual difference if you run the application and use
the HTML form to create a Reservation in the application repository, but if you examine the HTTP request
that is sent by the browser, you will see that it requires much less data than the synchronous version of the
application did. In my simple testing, the asynchronous request required 440 bytes of data, which is about 40
percent of what the synchronous request required. The improvement is more substantial in real applications
where the size of data tends to be much less than the size of the HTML document that is used to display it.

Understanding Content Formatting
When an action method returns a C# object as its result, MVC has to work out which data format should be
used to encode the object and send it to the client. In this section, I explain what the default process is and
how it is influenced by the request sent by the client and the configuration of the application. To help explain
how the process works, I added a class file called ContentController.cs to the Controllers folder and used
it to define the API controller shown in Listing 20-14.

Chapter 20 ■ apI Controllers

646

Listing 20-14. The Contents of the ContentController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using ApiControllers.Models;

namespace ApiControllers.Controllers {

 [Route("api/[controller]")]
 public class ContentController : Controller {

 [HttpGet("string")]
 public string GetString() => "This is a string response";

 [HttpGet("object")]
 public Reservation GetObject() => new Reservation {
 ReservationId = 100,
 ClientName = "Joe",
 Location = "Board Room"
 };
 }
}

I specified static segment variables as the arguments to the HttpGet attribute for two of the actions
in this controller, which means that they can be reached by the /api/controller/string and /api/
controller/object URLs. The Content controller doesn’t follow the REST pattern even loosely, but it will
make it easy to understand how content negotiation works.

The content format selected by MVC depends on four factors: the formats that the client will accept, the
formats that MVC can produce, the content policy specified by the action, and the type returned by the action
method. Figuring out how everything fits together can be daunting, but the good news is that the default
policy works just fine for most applications, and you only need to understand what happens behind the
scenes when you need to make a change or when you are not getting results in the format that you expect.

Understanding the Default Content Policy
The starting point is the standard application configuration that is used when neither the client nor the
action method applies any restrictions to the formats that can be used. In this situation, the outcome is
simple and predictable.

•	 If the action method returns a string, the string is sent unmodified to the client, and
the Content-Type header of the response is set to text/plain.

•	 For all other data types, including other simple types such as int, the data
is formatted as JSON, and the Content-Type header of the response is set to
application/json.

The reason that strings get special treatment is that they cause problems when they are encoded as
JSON. When you encode other simple types, such as the C# int value 2, then the result is a quoted string,
such as "2". When you encode a string, you end up with two sets of quotes so that "Hello" becomes
""Hello"". Not all clients cope well with this double encoding, so it is more reliable to use the text/plain
format and sidestep the issue entirely. This is rarely an issue because few applications send string values;

Chapter 20 ■ apI Controllers

647

it is more common to send objects in the JSON format. You can see both outcomes by using PowerShell.
Here is a command that invokes the GetString method, which returns a string:

Invoke-WebRequest http://localhost:7000/api/content/string | select
@{n='Content-Type';e={ $_.Headers."Content-Type" }}, Content

This command sends a GET request to the /api/content/string URL and processes the response to
display the Content-Type header and the content from the response.

 ■ Tip You may receive an error when you use the Invoke-WebRequest cmdlet if you have not performed the
initial setup for Internet explorer. this is especially likely on a Windows 10 machine where edge has replaced it.
the problem can be fixed by running Ie and selecting the initial configurations you require.

The command produces the following output:

Content-Type Content
------------ -------
text/plain; charset=utf-8 This is a string response

The same command can also be used to show the JSON format by changing just the URL that is
requested, like this:

Invoke-WebRequest http://localhost:7000/api/content/object | select
@{n='Content-Type';e={ $_.Headers."Content-Type" }}, Content

This command produces output, formatted for clarity, that shows that the response has been encoded
as JSON:

Content-Type Content
------------ -------
application/json; charset=utf-8 {"reservationId":100,
 "clientName":"Joe",
 "location":"Board Room"}

Understanding Content Negotiation
Most clients will include an Accept header in a request, which specifies the set of formats that they are
willing to receive in the response, expressed as a set of MIME types. Here is the Accept header that Google
Chrome sends in requests:

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

Chapter 20 ■ apI Controllers

648

This header indicates that Chrome can handle the HTML and XHTML formats (XHTML is an XML-
compliant dialect of HTML), XML, and the WEBP image format. The q values in the header specify relative
preference, where the value is 1.0 by default. Specifying a q value for 0.9 for application/xml tells the server
that Chrome will accept XML data but prefers to deal with HTML or XHTML. The final item, */*, tells the
server that Chrome will accept any format, but its q value specifies that it is the lowest preference of the
specified types. Putting all of this together means that the Accept header sent by Chrome provides the server
with the following information:

 1. Chrome prefers to receive HTML or XHTML data or WEBP images.

 2. If those formats are not available, then the next most preferred format is XML.

 3. If none of the preferred formats is available, then Chrome will accept any format.

You might assume from this that you can change the format a request receives from an MVC application
by setting the Accept header, but it doesn’t work that way—or, rather, it doesn’t work that way just yet
because there is some preparation required. First, here is a PowerShell command that sends a GET request to
the GetObject method with an Accept header that specifies the client will only accept XML data:

Invoke-WebRequest http://localhost:7000/api/content/object -Headers @{Accept="application/
xml"} | select @{n='Content-Type';e={ $_.Headers."Content-Type" }}, Content

Here are the results, which show that the server has sent an application/json response:

Content-Type Content
------------ -------
application/json; charset=utf-8 {"reservationId":100,
 "clientName":"Joe",
 "location":"Board Room"}

Including the Accept header has no effect on the format, even though the server has sent the client a
format that it hasn’t specified. The problem is that, by default, MVC is configured to support JSON only, so it
has no other formats it can use. Rather than return an error, MVC sends JSON data in the hope that the client
can process it, even though it was not one of the formats specified by the request Accept header.

CONFIGURING THE JSON SERIALIZER

asp.net Core MVC uses a popular third-party Json package called Json.net to serialize objects into
Json. the default configuration is suitable for most projects but can be changed if you need to create
Json in a specific way. the AddMvc().AddJsonOptions extension method is used in the Startup class
and provides access to a MvcJsonOptions object, through which the Json.net package is configured.
see www.newtonsoft.com/json for details of the configuration options available.

Enabling XML Formatting
To see content negotiation at work, you have to give MVC some choice in the formats it uses to encode
response data. Although JSON has become the default format for web applications, MVC can also support
encoding data as XML, as shown in Listing 20-15.

http://www.newtonsoft.com/json

Chapter 20 ■ apI Controllers

649

 ■ Tip You can create your own content format by deriving from the Microsoft.AspNetCore.Mvc.
Formatters.OutputFormatter class. this is rarely used because creating a custom data format isn’t a useful
way of exposing the data in your application and because the most common formats—Json and XMl—are
already implemented.

Listing 20-15. Enabling XML Formatting in the Startup.cs File in the ApiControllers Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ApiControllers.Models;

namespace ApiControllers {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<IRepository, MemoryRepository>();
 services.AddMvc().AddXmlDataContractSerializerFormatters();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

When MVC had only the JSON format available, it had no choice but to encode responses as JSON. Now
that there is a choice, you can see the content negotiation process working more fully.

 ■ Tip I used the AddXmlDataContractSerializerFormatters extension method in listing 20-15, but
you can also use the AddXmlSerializerFormatters extension method, which provides access to an older
serialization class. the difference can be helpful if you are generating XMl content for older .net clients.

Here is the PowerShell command that requests XML data again:

Invoke-WebRequest http://localhost:7000/api/content/object -Headers @{Accept="application/
xml"} | select @{n='Content-Type';e={ $_.Headers."Content-Type" }}, Content

Chapter 20 ■ apI Controllers

650

Run this command and you will see that now the server returns XML data, rather than JSON, as follows
(I have omitted the XML namespace attributes for brevity):

Content-Type Content
------------ -------
application/xml; charset=utf-8 <Reservation>
 <ClientName>Joe</ClientName>
 <Location>Board Room</Location>
 <ReservationId>100</ReservationId>
 </Reservation>

Specifying an Action Data Format
You can override the content negotiation system and specify a data format directly on an action method by
applying the Produces attribute, as shown in Listing 20-16.

Listing 20-16. Specifying a Data Format in the ContentController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using ApiControllers.Models;

namespace ApiControllers.Controllers {

 [Route("api/[controller]")]
 public class ContentController : Controller {

 [HttpGet("string")]
 public string GetString() => "This is a string response";

 [HttpGet("object")]
 [Produces("application/json")]
 public Reservation GetObject() => new Reservation {
 ReservationId = 100,
 ClientName = "Joe",
 Location = "Board Room"
 };
 }
}

The Produces attribute is a filter that changes the content type of ObjectResult objects, which are used
behind the scenes by MVC to represent action results in API controllers. The argument for the attribute
specifies the format that will be used for the result from the action, and additional allowed types can also be
specified. The Produces attribute forces the format used by the response, which can be seen by running the
following PowerShell command:

(Invoke-WebRequest http://localhost:7000/api/content/object -Headers
@{Accept="application/xml"}).Headers."Content-Type"

Chapter 20 ■ apI Controllers

651

This command displays the value of the Content-Type header from the response to a GET request to the
/api/content/object URL. Running the command shows that JSON is used, as specified by the Produces
attribute, even though the Accept header of the request specifies that XML should be used.

Getting the Data Format from the Route or Query String
The Accept header isn’t always under the control of the programmer who is writing the client, especially
if development is being done using an old browser or toolkit. For such situations, it can be helpful to allow
the data format for the response to be requested through the route used to target an action method or in the
query string section of the request URL. The first step is to define shorthand values in the Startup class that
can be used to refer to formats in the route or the query string. There is one mapping by default, in which json
is used as shorthand for application/json. In Listing 20-17, I have added an additional mapping for XML.

Listing 20-17. Adding a Format Shorthand in the Startup.cs File in the ApiControllers Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ApiControllers.Models;
using Microsoft.Net.Http.Headers;

namespace ApiControllers {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<IRepository, MemoryRepository>();
 services.AddMvc()
 .AddXmlDataContractSerializerFormatters()
 .AddMvcOptions(opts => {
 opts.FormatterMappings.SetMediaTypeMappingForFormat("xml",
 new MediaTypeHeaderValue("application/xml"));
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The MvcOptions.FormatterMappings property is used to set and manage the mappings. In the listing,
I used the SetMediaTypeMappingForFormat method to create a new mapping so that the shorthand xml
will refer to the application/xml format. The next step is to apply the FormatFilter attribute to an action
method and, optionally, adjust the route for the action so that it includes a format segment variable, as
shown in Listing 20-18.

Chapter 20 ■ apI Controllers

652

Listing 20-18. Applying the FormatFilter Attribute in the ContentController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using ApiControllers.Models;

namespace ApiControllers.Controllers {

 [Route("api/[controller]")]
 public class ContentController : Controller {

 [HttpGet("string")]
 public string GetString() => "This is a string response";

 [HttpGet("object/{format?}")]
 [FormatFilter]
 [Produces("application/json", "application/xml")]
 public Reservation GetObject() => new Reservation {
 ReservationId = 100,
 ClientName = "Joe",
 Location = "Board Room"
 };
 }
}

I have applied the FormatFilter attribute to the GetObject method and modified the route for the
action so that it includes an optional format segment. You don’t have to use the Produces attribute in
conjunction with the FormatFilter attribute, but if you do, only requests that specify formats for which the
Produces attribute has been configured will work. Requests that specify a format for which the Produces
attribute has not been configured will receive a 404 – Not Found response. If you don’t apply the Produces
attribute, then the request can specify any format that MVC has been configured to use.

I also added the application/xml format to the Produces attribute so that the action method will
support requests for both JSON and XML.

This PowerShell command specifies the xml format as part of the request URL:

(Invoke-WebRequest http://localhost:7000/api/content/object/xml).Headers."Content-Type"

Running this command shows the content type of the response, as follows:

application/xml; charset=utf-8

The FormatFilter attribute looks for a routing segment variable called format, gets the shorthand value
that it contains, and retrieves the associated data format from the application configuration. This format is
then used for the response. If there is no routing data available, then the query string is inspected as well.
Here is a PowerShell command that requests XML using the query string:

(Invoke-WebRequest http://localhost:7000/api/content/object?format=xml).Headers.
"Content-Type"

Chapter 20 ■ apI Controllers

653

The format found by the FormatFilter attribute overrides any formats specified by the Accept header,
which puts the format selection in the hands of the client developer, even when working with toolkits and
browsers that don’t allow the Accept header to be set.

Enabling Full Content Negotiation
For most applications, sending JSON data when there is no other format available is a sensible policy since
a web application client is more likely to have incorrectly set its Accept header than be unable to process
JSON. That said, some applications will have to deal with clients that cause problems if JSON is returned
regardless of what the Accept headers say. Getting content negotiation working requires two configuration
changes in the Startup class, as shown in Listing 20-19.

Listing 20-19. Enabling Full Content Negotiation in the Startup.cs File in the ApiControllers Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ApiControllers.Models;
using Microsoft.Net.Http.Headers;

namespace ApiControllers {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<IRepository, MemoryRepository>();
 services.AddMvc()
 .AddXmlDataContractSerializerFormatters()
 .AddMvcOptions(opts => {
 opts.FormatterMappings.SetMediaTypeMappingForFormat("xml",
 new MediaTypeHeaderValue("application/xml"));
 opts.RespectBrowserAcceptHeader = true;
 opts.ReturnHttpNotAcceptable = true;
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Chapter 20 ■ apI Controllers

654

The RespectBrowserAcceptHeader option is used to control whether the Accept header is fully
respected. The ReturnHttpNotAcceptable option is used to control whether a 406 - Not Acceptable
response will be sent to the client if there is no suitable format available.

I also have to remove the Produces attribute from the action method so that the content negotiation
process isn’t overridden, as shown in Listing 20-20.

Listing 20-20. Removing the Produces Attribute in the ContentController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using ApiControllers.Models;

namespace ApiControllers.Controllers {

 [Route("api/[controller]")]
 public class ContentController : Controller {

 [HttpGet("string")]
 public string GetString() => "This is a string response";

 [HttpGet("object/{format?}")]
 [FormatFilter]
 //[Produces("application/json", "application/xml")]
 public Reservation GetObject() => new Reservation {
 ReservationId = 100,
 ClientName = "Joe",
 Location = "Board Room"
 };
 }
}

Here is a PowerShell command that sends a GET request to the /api/content/object URL with an
Accept header that specifies a content type that the application cannot provide:

Invoke-WebRequest http://localhost:7000/api/content/object -Headers
@{Accept="application/custom"}

If you run this command, you will see that the 406 error message is displayed, indicating to the client
that the server has been unable to provide the requested format.

Receiving Different Data Formats
When the client sends data to the controller, such as in a POST request, you can specify different action
methods to handle specific data formats using the Consumes attribute, as shown in Listing 20-21.

Listing 20-21. Handling Different Data Formats in the ContentController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using ApiControllers.Models;

namespace ApiControllers.Controllers {

Chapter 20 ■ apI Controllers

655

 [Route("api/[controller]")]
 public class ContentController : Controller {

 [HttpGet("string")]
 public string GetString() => "This is a string response";

 [HttpGet("object/{format?}")]
 [FormatFilter]
 //[Produces("application/json", "application/xml")]
 public Reservation GetObject() => new Reservation {
 ReservationId = 100,
 ClientName = "Joe",
 Location = "Board Room"
 };

 [HttpPost]
 [Consumes("application/json")]
 public Reservation ReceiveJson([FromBody] Reservation reservation) {
 reservation.ClientName = "Json";
 return reservation;
 }

 [HttpPost]
 [Consumes("application/xml")]
 public Reservation ReceiveXml([FromBody] Reservation reservation) {
 reservation.ClientName = "Xml";
 return reservation;
 }
 }
}

The ReceiveJson and ReceiveXml actions both accept POST requests, and the difference between them
is the data format that is specified with the Consumes attribute, which examines the Content-Type header
to work out whether the action method can process the request. The result is that when there is a request
whose Content-Type is set to application/json, the ReceiveJson method will be used, but if the Content-
Type header is set to application/xml, then the ReceiveXml method will be used.

Summary
In this chapter, I explained the role that an API controller plays in an MVC application. I demonstrated how
to create and test an API controller, briefly demonstrated how to make asynchronous HTTP requests using
jQuery, and explained the content formatting process. In the next chapter, I explain how views and view
engines work in more detail.

657© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_21

CHAPTER 21

Views

In Chapter 17, you saw how action methods can return ViewResult objects, which tells MVC to render a view
and return an HTML response to the client.

Throughout this book, you have seen views being used in many examples already, so you know roughly
what they do, but I dig into the details in this chapter.

I begin by showing you how MVC handles ViewResult objects using view engines, including
demonstrating how to create a custom view engine. I also describe techniques for working effectively with
the built-in Razor view engine, including the use of partial views and layout sections, which are essential
topics for effective MVC development. Table 21-1 puts views into context.

Table 21-1. Putting Views in Context

Question Answer

What are they? Views are the part of the MVC pattern used to display content
to the user. In an ASP.NET Core MVC application, a view is a file
that contains HTML elements and C# code, which is processed to
generate a response.

Why are they useful? Views allow the presentation of data to be separated from the logic
that processes requests. Views also allow the same presentation to
be applied throughout the application since many controllers can
use the same view.

How are they used? Most MVC applications use the Razor view engine, which makes
it easy to mix HTML and C# content. Views are selected by
returning a ViewResult object as the result of an action method, as
described in Chapter 17.

Are there any pitfalls or limitations? It can take a while to get used to using Razor and its mix of HTML
and C#. In this chapter, I explain how Razor works, which helps
demystify some of its operations.

Are there any alternatives? There are a number of third-party view engines available for MVC,
but their use is limited.

https://doi.org/10.1007/978-1-4842-3150-0_21
http://dx.doi.org/10.1007/978-1-4842-3150-0_17
http://dx.doi.org/10.1007/978-1-4842-3150-0_17

Chapter 21 ■ Views

658

Table 21-2 summarizes the chapter.

Table 21-2. Chapter Summary

Problem Solution Listing

Create a custom view engine Implement the IViewEngine and
IView interfaces

3–6

Easily create responses that mix HTML and
C# code

Use the Razor view engine 7–11

Define regions of content for use in a layout Use Razor sections 12–18

Create reusable fragments of markup Use partial views 19–22

Add JSON content to views Use the @Json.Serialze expression 23–25

Change the locations that Razor searches
for views

Create a view location expander 26–30

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called Views. To enable the MVC Framework and the other middleware components useful for
developments, I made the changes shown in Listing 21-1 to the Startup class.

Listing 21-1. The Contents of the Startup.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace Views {
 public class Startup {
 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Chapter 21 ■ Views

659

I created the Controllers folder, added a class file called HomeController.cs, and used it to define the
controller shown in Listing 21-2.

Listing 21-2. The Contents of the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;

namespace Views.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() {
 ViewBag.Message = "Hello, World";
 ViewBag.Time = DateTime.Now.ToString("HH:mm:ss");
 return View("DebugData");
 }

 public ViewResult List() => View();
 }
}

Creating a Custom View Engine
I am going to dive in at the deep end and create a custom view engine. You do not need to do this for most
projects because MVC includes the Razor view engine, whose syntax I described in Chapter 5 and which I
have been using for all the examples so far in this book (and will continue to use again shortly).

The value in creating a custom view engine is to see what happens behind the scenes and expand your
knowledge of how MVC works, including understanding just how much freedom view engines have in
translating a ViewResult into a response to the client.

View engines are classes that implement the IViewEngine interface, which is defined in the Microsoft.
AspNetCore.Mvc.ViewEngines namespace. Here is the definition of the IViewEngine interface:

namespace Microsoft.AspNetCore.Mvc.ViewEngines {
 public interface IViewEngine {

 ViewEngineResult GetView(string executingFilePath, string viewPath,
 bool isMainPage);

 ViewEngineResult FindView(ActionContext context, string viewName,
 bool isMainPage);
 }
}

The role of a view engine is to translate requests for views into ViewEngineResult objects. When MVC
needs a view, it starts by calling the GetView method, which gives the view engine the opportunity to provide
the view just using its name.

If the GetView method cannot provide the view, then the FindView method is called so that the view
engine has a chance to search for the view using the ActionContext object, which provides information
about the action method that created the ViewResult object.

http://dx.doi.org/10.1007/978-1-4842-3150-0_5

Chapter 21 ■ Views

660

When writing a view engine, you choose one of the methods described in Table 21-3 to indicate the
outcome of a request for a view. The Found method creates a ViewEngineResult that indicates a successful
request and provides MVC with a view to process. The NotFound method creates a ViewEngineResult that
indicates an unsuccessful request and provides MVC with a list of locations that the view engine searched
when looking for the view (and which will be displayed to the developer as part of an error message).

The other building block of the view engine system is the IView interface, which is used to describe the
functionality provided by views, regardless of the view engine that created them. Here is the IView interface:

using Microsoft.AspNetCore.Mvc.Rendering;
using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Mvc.ViewEngines {

 public interface IView {

 string Path { get; }
 Task RenderAsync(ViewContext context);
 }
}

The Path property returns the path of the view, which assumes that views are defined as files on disk.
The RenderAsync method is called by MVC to generate the response to the client. Context data is provided
to the view through an instance of the ViewContext class, which is derived from ActionContext. In addition
to the context properties inherited from its parent (which provide access to the request, the routing data, the
controller, and so on), the ViewContext class provides properties that are useful in rendering responses, the
most useful of which I have described in Table 21-4.

The job of the view engine is to provide MVC with ViewEngineResult objects that can be used to
generate responses. The ViewEngineResult class cannot be instantiated directly but provides static methods
that are used to create instances, as described in Table 21-3.

Table 21-3. The Static Methods of the ViewEngineResult Class

Name Description

Found(name, view) Calling this method provides MVC with the requested view, which is set
using the view parameter. Views implement the IView interface.

NotFound(name, locations) Calling this method creates a ViewEngineResult object that tells MVC
that the requested view could not be found. The locations parameter
is an enumeration of string values that describe where the view engine
has looked for the view.

Table 21-4. Useful ViewContext Properties

Name Description

ViewData This property returns a ViewDataDictionary object that contains the view data provided by
the controller.

TempData This property returns a dictionary containing the temp data (as described in Chapter 17).

Writer This property returns a TextWriter that should be used to write the output from the view.

http://dx.doi.org/10.1007/978-1-4842-3150-0_17

Chapter 21 ■ Views

661

The most interesting of these properties is ViewData, which returns a ViewDataDictionary object. The
ViewDataDictionary class defines a number of useful properties that give access to the view model, the view
bag, and the view model metadata. I have described the most useful of these properties in Table 21-5.

Table 21-5. Useful ViewDataDictionary Properties

Name Description

Model This object property returns the model data provided by the controller.

ModelMetadata This property returns a ModelMetadata object that can be used to reflect on the type of
the model data.

ModelState This property returns the state of the model, which I describe in Chapter 27.

Keys This property returns an enumeration of key values that can be used to
access ViewBag data.

The simplest way to see how this works—how IViewEngine, ViewEngineResult, and IView fit
together—is to create a view engine. I am going to create a simple view engine that returns one kind of view.
This view will render a result that contains information about the request and the view data produced by
the action method. This approach lets me demonstrate the way that view engines operate without getting
bogged down in parsing view templates and re-creating other features that Razor provides.

Creating a Custom IView
I am going to start by creating an implementation of the IView interface. I added an Infrastructure folder
to the example project and created a new class file called DebugDataView.cs, which is shown in Listing 21-3.

Listing 21-3. The Contents of the DebugDataView.cs in the Infrastructure Folder

using System;
using System.Text;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.ViewEngines;

namespace Views.Infrastructure {

 public class DebugDataView : IView {
 public string Path => String.Empty;

 public async Task RenderAsync(ViewContext context) {
 context.HttpContext.Response.ContentType = "text/plain";

 StringBuilder sb = new StringBuilder();

 sb.AppendLine("---Routing Data---");
 foreach (var kvp in context.RouteData.Values) {
 sb.AppendLine($"Key: {kvp.Key}, Value: {kvp.Value}");
 }

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 21 ■ Views

662

 sb.AppendLine("---View Data---");
 foreach (var kvp in context.ViewData) {
 sb.AppendLine($"Key: {kvp.Key}, Value: {kvp.Value}");
 }

 await context.Writer.WriteAsync(sb.ToString());
 }
 }
}

When this view is rendered, it writes out details of the routing data and the view data, obtained using
the ViewContext argument to the RenderAsync method. The response is simple text, so I have used the
context objects to set the Content-Type header on the response to text/plain. Without this, ASP.NET
defaults to using text/html, which will cause the browser to display the data as a single unbroken line of
characters.

Creating an IViewEngine Implementation
The purpose of the view engine is to produce a ViewEngineResult object that contains either an IView or a
list of the places that searched for a suitable view. Now that I have an IView implementation to work with,
I can create the view engine. I added a class file called DebugDataViewEngine.cs in the Infrastructure
folder, the contents of which are shown in Listing 21-4.

Listing 21-4. The Contents of the DebugDataViewEngine.cs File in the Infrastructure Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ViewEngines;

namespace Views.Infrastructure {

 public class DebugDataViewEngine : IViewEngine {

 public ViewEngineResult GetView(string executingFilePath, string viewPath,
 bool isMainPage) {
 return ViewEngineResult.NotFound(viewPath,
 new string[] { "(Debug View Engine - GetView)" });
 }

 public ViewEngineResult FindView(ActionContext context, string viewName,
 bool isMainPage) {
 if (viewName == "DebugData") {
 return ViewEngineResult.Found(viewName, new DebugDataView());
 } else {
 return ViewEngineResult.NotFound(viewName,
 new string[] { "(Debug View Engine - FindView)" });
 }
 }
 }
}

Chapter 21 ■ Views

663

The GetView method in this view engine always returns a NotFound response. The FindView method
supports only a single view, which is called DebugData. When it receives a request for a view with that name,
it returns a new instance of the DebugDataView class, like this:

...
if (viewName == "DebugData") {
 return ViewEngineResult.Found(viewName, new DebugDataView());
}
...

If I were implementing a complete view engine, I would use this opportunity to search for templates.
As it is, this simple example only requires a new instance of the DebugDataView class. If I receive a request for
a view other than DebugData, I create a NotFound response, like this:

...
return ViewEngineResult.NotFound(viewName,
 new string[] { "(Debug View Engine - FindView)" });
...

The ViewEngineResult.NotFound method assumes that the view engine has places it needs to look to
find views. This is a reasonable assumption because views are typically template files that are stored as files
in the project. In this case, I do not have anywhere to look, so I just return a dummy location, which will
indicate which method was invoked to locate the view.

Registering a Custom View Engine
View engines are registered in the Startup class by configuring the MvcViewOptions object, as shown in
Listing 21-5.

Listing 21-5. Registering a Custom View Engine in the Startup.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Mvc;
using Views.Infrastructure;

namespace Views {
 public class Startup {
 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 services.Configure<MvcViewOptions>(options => {
 options.ViewEngines.Insert(0, new DebugDataViewEngine());
 });

 }

Chapter 21 ■ Views

664

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The MvcViewOptions class defines a ViewEngines property, which is a collection of IViewEngine
objects. Razor is added to the ViewEngine collection by the AddMvc method, and I supplemented the default
view engine with my custom class.

When MVC receives a ViewResult from an action method, it calls the FindView methods of each view
engine contained in the MvcViewOptions.ViewEngines collection until it receives a ViewEngineResult that
has been created using the Found method.

The order in which engines are added to the ViewEngines.Engines collection is significant if two or
more engines are able to service a request for the same view name. If you want your view to take precedence,
then it should be inserted at the start of view engines collection, as shown in Listing 21-5.

Testing the View Engine
When the application is started, the browser will automatically navigate to the root URL for the project,
which will be mapped to the Index action in the Home controller. The action method uses the View method to
return a ViewResult that specifies the DebugData view.

MVC will turn to the collection of view engines and start calling their FindView methods. Since the
requested view is the one that the custom view engine is set up to handle, it provides MVC with a view that
produces the results shown in Figure 21-1.

Figure 21-1. Using a custom view engine

To see what happens when no view engine can provide a view, request the /Home/List URL. This will
create a ViewResult that specifies a view called List, which neither Razor nor the custom view engine can
provide. You will see the error shown in Figure 21-2.

Chapter 21 ■ Views

665

You can see that the messages produced by the custom view engine are reported in the list of locations
that have been searched for the List view, alongside the locations that Razor has checked.

If I want to ensure that only my view engine is used, then I have to call the Clear method on the
collection of view engines to remove Razor, as shown in Listing 21-6.

Listing 21-6. Removing Other View Engines in the Startup.cs File in the Views Project

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Mvc;
using Views.Infrastructure;

namespace Views {
 public class Startup {
 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 services.Configure<MvcViewOptions>(options => {
 options.ViewEngines.Clear();
 options.ViewEngines.Insert(0, new DebugDataViewEngine());
 });
 }

Figure 21-2. Requesting a view that cannot be provided

Chapter 21 ■ Views

666

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

If you start the application and navigate to /Home/List again, only the custom view engine will be used,
as shown in Figure 21-3.

Figure 21-3. Using only the custom view engine in the example application

Working with the Razor Engine
In the previous section, I was able to create a custom view engine by implementing just two interfaces.
Admittedly, I ended up with something simple that generated ugly content, but you saw how easy MVC
makes it to add or replace core functionality.

The complexity in a view engine comes from the system of view templates that includes code fragments,
support layouts, and performance optimization. I did not do any of these things in the simple custom view
engine—and there isn’t much need to—because the built-in Razor engine provides all of these features
and more. In fact, the functionality that almost all MVC applications require is available in Razor. Only a
vanishingly small number of projects need to go to the trouble of creating a custom view engine.

I gave you a primer on the Razor syntax in Chapter 5, and in this section, I show you how to use other
features to create and render Razor views. You will also learn how to customize the Razor engine.

http://dx.doi.org/10.1007/978-1-4842-3150-0_5

Chapter 21 ■ Views

667

Preparing the Example Project
Some changes are required to prepare the example project to take advantage of Razor. First, I changed the
Index action of the Home controller so that it selects the default view and provides some model data, as
shown in Listing 21-7.

Listing 21-7. Changing the Index Action in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;

namespace Views.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() =>
 View(new string[] { "Apple", "Orange", "Pear" });

 public ViewResult List() => View();
 }
}

To provide the Index action method with a view, I created the Views/Home folder and added a view file
called Index.cshtml with the content shown in Listing 21-8.

Listing 21-8. The Contents of the Index.cshtml File in the Views/Home Folder

@model string[]
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Razor</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 This is a list of fruit names:
 @foreach (string name in Model) {
 @name
 }
</body>
</html>

The view relies on the Bootstrap CSS library. To add Bootstrap to the example project, I used the Bower
Configuration File template to create the bower.json file in the root folder of the project, with the addition
shown in Listing 21-9.

Chapter 21 ■ Views

668

Listing 21-9. The Contents of the bower.json File

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

I created a view imports file called _ViewImports.cshtml in the Views folder, with the expression shown
in Listing 21-10 to enable the built-in tag helpers.

Listing 21-10. The Contents of the _ViewImports.cshtml File in the Views Folder

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The final preparatory step is to reset the view engines in the Startup class to remove the custom engine
and remove the call to the Clear method that disabled Razor, as shown in Listing 21-11.

Listing 21-11. Resetting the View Engines in the Startup.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Mvc;
using Views.Infrastructure;

namespace Views {
 public class Startup {
 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 //services.Configure<MvcViewOptions>(options => {
 // options.ViewEngines.Clear();
 // options.ViewEngines.Insert(0, new DebugDataViewEngine());
 //});
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Chapter 21 ■ Views

669

If you run the project, you will see the result shown in Figure 21-4.

Figure 21-4. Running the example application

Demystifying Razor Views
Understanding a little of how Razor works can help put a lot of functionality into context and take the
mystery out of how CSHTML files are processed.

So, how does Razor take the mix of HTML elements and C# statements and produce content for an
HTTP response? The answer is simple and clever and builds on MVC functionality that you have already
learned about in earlier chapters. Razor converts CSHTML files into C# classes, compiles them, and then
creates new instances each time a view is required to generate a result. Here is the C# class that Razor creates
for the Index.cshtml view shown in Listing 21-8:

using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Razor;
using Microsoft.AspNetCore.Mvc.Razor.Internal;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace Asp {

 public class ASPV_Views_Home_Index_cshtml : RazorPage<string[]> {

 public IUrlHelper Url { get; private set; }

 public IViewComponentHelper Component { get; private set; }

 public IJsonHelper Json { get; private set; }

 public IHtmlHelper<string[]> Html { get; private set; }

 public override async Task ExecuteAsync() {
 Layout = null;

 WriteLiteral(@"<!DOCTYPE html><html><head>
 <meta name=""viewport"" content=""width=device-width"" />
 <title>Razor</title>
 <link asp-href-include=""lib/bootstrap/dist/css/*.min.css""
 rel=""stylesheet"" />
 </head><body class=""m-1 p-1"">This is a list of fruit names:");

Chapter 21 ■ Views

670

 foreach (string name in Model) {
 WriteLiteral("");
 Write(name);
 WriteLiteral("");
 }
 WriteLiteral("</body></html>");
 }
 }
}

I have tidied up the code in the class to make it easier to read and removed some C# statements that
Razor adds for instrumentation when it generates the class. I’ll break down the class in the sections that
follow and explain how compiled views work.

 ■ Note it used to be easy to look at the classes created by earlier versions of razor because each view
produced a C# file on disk that was then compiled for use in the application. inspecting the class was just a
matter of finding the right file. the current version of razor relies on advances in the C# compiler that allow
code to be generated and compiled in memory, which offers performance enhancements but makes it more
difficult to see what’s happening. to get the class shown previously, i had to repurpose some of the unit
tests included with the asp.Net Core MVC source code, which provided me with fake implementations of the
classes that razor relies on to locate and process view files. this isn’t something you need to do in day-to-day
development, but it is a process that reveals much about how views work.

Understanding the Class Name
The best place to start is the name of the class that Razor creates.

...
public class ASPV_Views_Home_Index_cshtml : RazorPage<string[]> {
...

Razor needs some way to translate the name and path of a CSHTML file into the class that it creates
when it parses the file, and it does this by encoding the information in the class name. Razor prefixes the
class name with ASPV, followed by the project name, the controller name, and finally the view file name; this
combination makes it easy to check to see whether a class is available when MVC requests a view through
the IViewEngine described earlier in the chapter.

Understanding the Base Class
A lot of the core features of Razor, such as being able to refer to the view model as @Model are possible
because of the base class that the generated classes are derived from.

...
public class ASPV_Views_Home_Index_cshtml : RazorPage<string[]> {
...

Chapter 21 ■ Views

671

View classes inherit from the RazorPage class or the RazorPage<T> class if the @model directive has been
used to specify a model type. The RazorPage class provides methods and properties that can be used in
CSHTML files to access MVC features, the most useful of which are described in Table 21-6.

Table 21-6. Useful RazorPage<T> Properties for View Development

Name Description

Model This property returns the model data provided by the action method.

ViewData This property returns a ViewDataDictionary object that provides access to other
view data features.

ViewContext This property returns a ViewContext object, which is described in Table 21-4.

Layout This property is used to specify a layout, as described in Chapter 5 and revisited
in the “Using Layout Sections” section of this chapter.

ViewBag This property provides access to the view bag object, as described in Chapter 17.

TempData This property provides access to the temp data, as described in Chapter 17.

Context This property returns an HttpContext object that describes the current request
and the response that is being prepared.

User This property returns the profile of the user associated with this request. See
Chapter 28 for details of user authentication and authorization.

RenderSection() This method is used to insert a section of content from the view into a layout, as
described in the “Using Layout Sections” section of this chapter.

RenderBody() This method inserts all the content in a view that is not contained in a section
into a layout. See “Using Layout Sections” for details.

IsSectionDefined() This method is used to determine whether a view defines a section.

UNDERSTANDING RAZOR PAGES

with asp.Net Core 2, Microsoft has added support for razor pages, which breaks the MVC model and
associates the code required to support a view in a file that is associated with a razor view. this is
similar to how asp.Net web Forms was structured, and it is a design approach that Microsoft returns to
periodically to try recapture the simplicity of the old web pages platforms without the drawbacks, which
were described in Chapter 1.

Don’t confuse the RazorPage base class described in this section with the razor pages feature.
although they share a similar name, the RazorPage base class provides the foundation for the razor
view engine as used by the MVC Framework. i don’t describe the razor pages feature in this book
because it doesn’t conform to the MVC model and isn’t part of the MVC platform.

http://dx.doi.org/10.1007/978-1-4842-3150-0_5
http://dx.doi.org/10.1007/978-1-4842-3150-0_17
http://dx.doi.org/10.1007/978-1-4842-3150-0_17
http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_1

Chapter 21 ■ Views

672

Razor also provides some helper properties that can be used in views to generate content, as described
in Table 21-7.

The properties described in Table 21-6 and Table 21-7 are the ones that you will use in everyday MVC
development to access model data, configure views, and perform other important tasks. These properties
take the mystery out of using Razor and put it firmly back into the well-understood world of C#. When you
access the view model object using the @Model directive or retrieve a temp data value using @TempData, for
example, you are referring to the properties that are defined by the RazorPage class.

Understanding the View Rendering
In addition to the properties and methods that provide features to developers, the RazorPage class is also
responsible for generating response content through its ExecuteAsyc method. This method shows how
Razor processed the Index.cshtml file into a set of C# statements:

...
public override async Task ExecuteAsync() {
 Layout = null;
 WriteLiteral(@"<!DOCTYPE html><html><head>
 <meta name=""viewport"" content=""width=device-width"" />
 <title>Razor</title>
 <link asp-href-include=""lib/bootstrap/dist/css/*.min.css""
 rel=""stylesheet"" />
 </head><body class=""m-1 p-1"">This is a list of fruit names:");
 foreach (string name in Model) {
 WriteLiteral("");
 Write(name);
 WriteLiteral("");
 }
 WriteLiteral("</body></html>");
}
...

Data values, such as the values from the Model property, are sent to the client using the Write method,
which escapes strings so that they won’t be interpreted as HTML elements by the browser. This is important
because it prevents malicious data values from adding content to the output of your application.

Table 21-7. The Razor Helper Properties

Name Description

HtmlEncoder This property returns an HtmlEncoder object that can be used to safely encode HTML
content in a view.

Component This property returns a view component helper, as described in Chapter 22.

Json This property returns a JSON helper, as described in the “Adding JSON Content to
Views” section.

Url This property returns a URL helper that can be used to generate URLs using the routing
configuration, as described in Chapter 16.

Html This property returns an HTML helper, which can be used to generate dynamic content.
This feature has been largely superseded by tag helpers but is still used for partial views,
as described in the “Using Partial Views” section of this chapter.

http://dx.doi.org/10.1007/978-1-4842-3150-0_22
http://dx.doi.org/10.1007/978-1-4842-3150-0_16

Chapter 21 ■ Views

673

The WriteLiteral method doesn’t escape strings and is used for the static content in the Index.cshtml file,
which, of course, the browser should interpret as HTML elements. The result is that the static and dynamic
content of a CSHTML file is contained in a regular C# class and emitted through a simple method call.

Adding Dynamic Content to a Razor View
The whole purpose of views is to allow you to render parts of your domain model to the user. To do that,
you need to be able to add dynamic content to views. Dynamic content is generated at runtime and can be
different for every request. This is opposed to static content, such as HTML, which you create when you are
writing the application and is the same for each and every request. You can add dynamic content to views in
the different ways described in Table 21-8.

Table 21-8. Adding Dynamic Content to a View

Technique When to Use

Inline code Use for small, self-contained pieces of view logic, such as if and foreach
statements. This is the fundamental tool for creating dynamic content in views,
and some of the other approaches are built on it. I introduced this technique in
Chapter 5, and you have seen countless examples in the chapters since.

Tag helpers Used to generate attributes on HTML elements. I describe tag helpers in Chapters
23, 24, and 25.

Sections Use for creating sections of content that will be inserted into layout at specific
locations, as described later in this section.

Partial views Use for sharing subsections of view markup between views. Partial views can
contain inline code, HTML helper methods, and references to other partial views.
Partial views do not invoke an action method, so they cannot be used to perform
business logic. Partial views are described later in this section.

View components Use for creating reusable UI controls or widgets that need to contain business logic.
I describe view components in Chapter 22.

Using Layout Sections
The Razor view engine supports the concept of sections, which allow you to provide regions of content within
a layout. Razor sections give greater control over which parts of the view are inserted into the layout and
where they are placed. To demonstrate the sections feature, I have edited the /Views/Home/Index.cshtml
file, as shown in Listing 21-12.

Listing 21-12. Defining Sections in the Index.cshtml File in the Views/Home Folder

@model string[]
@{ Layout = "_Layout"; }

@section Header {
 <div class="bg-success">
 @foreach (string str in new [] {"Home", "List", "Edit"}) {
 @str
 }
 </div>
}

http://dx.doi.org/10.1007/978-1-4842-3150-0_5
http://dx.doi.org/10.1007/978-1-4842-3150-0_23
http://dx.doi.org/10.1007/978-1-4842-3150-0_22

Chapter 21 ■ Views

674

This is a list of fruit names:
@foreach (string name in Model) {
 @name
}

@section Footer {
 <div class="bg-success">
 This is the footer
 </div>
}

I have removed some of the HTML elements from the view and set the Layout property to specify that a
layout file called _Layout.cshtml should be used to render the content.

I have also added some sections to the view. Sections are defined using the Razor @section expression
followed by a name for the section. I created sections called Header and Footer. The content of a section
contains the usual mix of HTML markup and Razor expressions that you have seen outside sections in other
examples.

Sections are defined in the view but applied in a layout with the @RenderSection expression. To
demonstrate how this works, I created the Views/Shared folder and added a layout called _Layout.cshtml
file with the content shown in Listing 21-13.

Listing 21-13. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 @RenderSection("Header")

 <div class="bg-info">
 This is part of the layout
 </div>

 @RenderBody()

 <div class="bg-info">
 This is part of the layout
 </div>

 @RenderSection("Footer")

 <div class="bg-info">
 This is part of the layout
 </div>
</body>
</html>

Chapter 21 ■ Views

675

When Razor parses the layout, the RenderSection helper method is replaced with the contents of the
section in the view with the specified name. The parts of the view that are not contained within a section are
inserted into the layout using the RenderBody helper.

You can see the effect of the sections by starting the application, as shown in Figure 21-5. I used some
Bootstrap styles to help make it clear which sections of the output are from the view and which are from the
layout. This result is not pretty, but it neatly demonstrates how you can put regions of content from the view
into specific locations in the layout.

Figure 21-5. Using sections in a view to locate content in a layout

 ■ Note a view can define only the sections that are referred to in the layout. MVC will throw an exception if
you attempt to define sections in the view for which there is no corresponding @RenderSection expression in
the layout.

Mixing the sections in with the rest of the view is unusual. The convention is to define the sections
at either the start or the end of the view to make it easier to see which regions of content will be treated as
sections and which will be captured by the RenderBody helper. Another approach is to define the view solely
in terms of sections, including one for the body, as shown in Listing 21-14.

Listing 21-14. Defining a View Using Razor Sections in the Index.cshtml File in the Views/Home Folder

@model string[]
@{ Layout = "_Layout"; }

@section Header {
 <div class="bg-success">
 @foreach (string str in new [] {"Home", "List", "Edit"}) {
 @str
 }
 </div>
}

Chapter 21 ■ Views

676

@section Body {
 This is a list of fruit names:
 @foreach (string name in Model) {
 @name
 }
}

@section Footer {
 <div class="bg-success">
 This is the footer
 </div>
}

I find this makes for clearer views and reduces the chances of extraneous content being captured
by RenderBody. To use this approach, I have to replace the call to the RenderBody helper with
RenderSection("Body"), as shown in Listing 21-15.

Listing 21-15. Rendering the Body as a Section in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 @RenderSection("Header")

 <div class="bg-info">
 This is part of the layout
 </div>

 @RenderSection("Body")

 <div class="bg-info">
 This is part of the layout
 </div>

 @RenderSection("Footer")

 <div class="bg-info">
 This is part of the layout
 </div>
</body>
</html>

Chapter 21 ■ Views

677

Testing for Sections
You can check to see whether a view has defined a specific section from the layout. This is a useful way to provide
default content for a section when a view does not need or want to provide specific content. I have modified the
_Layout.cshtml file to check to see whether a Footer section is defined, as shown in Listing 21-16.

Listing 21-16. Checking Whether a Section Is Defined in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 @RenderSection("Header")

 <div class="bg-info">
 This is part of the layout
 </div>

 @RenderSection("Body")

 <div class="bg-info">
 This is part of the layout
 </div>

 @if (IsSectionDefined("Footer")) {
 @RenderSection("Footer")
 } else {
 <h4>This is the default footer</h4>
 }

 <div class="bg-info">
 This is part of the layout
 </div>
</body>
</html>

The IsSectionDefined helper takes the name of the section you want to check and returns true if the
view you are rendering defines that section. In the example, I used this helper to determine whether I should
render some default content when the view does not define the Footer section.

Rendering Optional Sections
By default, a view has to contain all the sections for which there are RenderSection calls in the layout.
If sections are missing, then MVC will report an exception to the user. To demonstrate, I added a new
RenderSection call to the _Layout.cshtml file for a section called scripts, as shown in Listing 21-17.

Chapter 21 ■ Views

678

Listing 21-17. Rendering a Nonexistent Section in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 @RenderSection("Header")

 <div class="bg-info">
 This is part of the layout
 </div>

 @RenderSection("Body")

 <div class="bg-info">
 This is part of the layout
 </div>

 @if (IsSectionDefined("Footer")) {
 @RenderSection("Footer")
 } else {
 <h4>This is the default footer</h4>
 }

 @RenderSection("scripts")

 <div class="bg-info">
 This is part of the layout
 </div>
</body>
</html>

When you start the application and the Razor engine attempts to render the layout and the view, you
will see the error shown in Figure 21-6.

Figure 21-6. The error shown when there is a missing section

Chapter 21 ■ Views

679

You can use the IsSectionDefined method to avoid making RenderSection calls for sections that the
view does not define, but a more elegant approach is to use optional sections, which you do by passing an
additional false argument to the RenderSection method, as shown in Listing 21-18.

Listing 21-18. Making a Section Optional

...
@RenderSection("scripts", false)
...

This creates an optional section, the contents of which will be inserted into the result if the view defines
it and which will not throw an exception otherwise.

Using Partial Views
You will often need to use the same fragments of Razor tags and HTML markup in several different places in
the application. Rather than duplicate the content, you can use partial views, which are separate view files
that contain fragments of tags and markup that can be included in other views. In this section, I show you
how to create and use partial views, explain how they work, and demonstrate the techniques available for
passing view data to a partial view.

Creating a Partial View
Partial views are just regular CSHTML files, and it is their use that differentiates them from regular Razor
views. Visual Studio provides some tooling support for creating prepopulated partial views, but the
simplest way to create a partial view is to create a regular view using the MVC View Page item template. To
demonstrate, I added a file called MyPartial.cshtml to the Views/Home folder and added the content shown
in Listing 21-19.

Listing 21-19. The Contents of the MyPartial.cshtml File in the Views/Home Folder

<div class="bg-info">
 <div>This is the message from the partial view.</div>
 <a asp-action="Index">This is a link to the Index action
</div>

I want to demonstrate that you can mix static and dynamic content in a partial view, so I have defined a
simple message and added an anchor element that uses a tag helper.

Applying a Partial View
A partial view is consumed by calling the @Html.Partial expression from within another view. To
demonstrate, I created a new file called List.cshtml in the Views/Home folder and added the content shown
in Listing 21-20.

Chapter 21 ■ Views

680

Listing 21-20. The Contents of the List.cshtml File in the Views/Home Folder

@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Razor</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 This is the List View
 @Html.Partial("MyPartial")
</body>
</html>

The Partial method is an extension method that is applied to the Html property added to the class that
Razor generates from the view file. This is an example of an HTML helper, which used to be the way that
dynamic content was generated in views in earlier versions of MVC but which has largely been replaced by
tag helpers. The argument passed to the Partial method is the name of the partial view, the contents of
which are inserted into the output sent to the client.

 ■ Tip razor looks for partial views in the same way that it looks for regular views (in the
Views/<controller> and Views/Shared folders). this means you can create specialized versions of partial
views that are controller-specific and override partial views of the same name in the Shared folder.

You can see the effect of consuming the partial view by starting the application and navigating to the /
Home/List URL, as shown in Figure 21-7.

Figure 21-7. Using a partial view

Chapter 21 ■ Views

681

Using Strongly Typed Partial Views
You can create strongly typed partial views and provide them with view model objects to be used
when the partial view is rendered. To demonstrate this feature, I created a new view file called
MyStronglyTypedPartial.cshtml in the Views/Home folder and added the content shown in Listing 21-21.

Listing 21-21. The Contents of the MyStronglyTypedPartial.cshtml File in the Views/Home Folder

@model IEnumerable<string>

<div class="bg-info">
 This is the message from the partial view.

 @foreach (string str in Model) {
 @str
 }

</div>

The view model type is defined using the standard @model expression, and I used a @foreach loop to
display the contents of the view model object as items in an HTML list. To demonstrate the use of this partial
view, I updated the /Views/Common/List.cshtml file, as shown in Listing 21-22.

Listing 21-22. Using a Strongly Typed Partial View in the List.cshtml File in the Views/Common Folder

@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Razor</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 This is the List View
 @Html.Partial("MyStronglyTypedPartial",
 new string[] { "Apple", "Orange", "Pear" })
</body>
</html>

The difference from the previous example is that I pass an additional argument to the Partial helper
method that supplies the view model. You can see the strongly typed partial view in use by starting the
application and navigating to the /Home/List URL, as shown in Figure 21-8.

Chapter 21 ■ Views

682

Adding JSON Content to Views
JSON is often included in views to provide client-side JavaScript code with data that can be used to generate
content dynamically. To prepare for this example, I added the jQuery package to the application by editing
the bower.json file, as shown in Listing 21-23. This will make it easy to process the JSON data when it is
received by the browser as part of the HTML document.

Listing 21-23. Adding jQuery in the bower.json File

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",
 "jquery": "3.2.1"
 }
}

Listing 21-24 shows additions to the List.cshtml view that uses Razor to include JSON data in the
response sent to the browser.

Listing 21-24. Working with JSON Data in the List.cshtml File in the Views/Common Folder

@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Razor</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
 <script id="jsonData" type="application/json">
 @Json.Serialize(new string[] { "Apple", "Orange", "Pear" })
 </script>
</head>

Figure 21-8. Using a strongly typed partial view

Chapter 21 ■ Views

683

<body class="m-1 p-1">
 This is the List View
 <ul id="list">
</body>
</html>

The @Json.Serialize expression accepts an object and serializes it into the JSON format. In the listing,
I have added a script element to the view that contains the JSON data. When the view is rendered and sent
to the browser, it includes an element like this:

...
<script id="jsonData" type="application/json">["Apple","Orange","Pear"]</script>
...

To make use of the JSON data, Listing 21-25 shows the addition of the jQuery library and some inline
JavaScript code that uses jQuery to parse the JSON data and creates some HTML elements dynamically.

Listing 21-25. Using the JSON Data in the List.cshtml File in the Views/Common Folder

@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Razor</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
 <script id="jsonData" type="application/json">
 @Json.Serialize(new string[] { "Apple", "Orange", "Pear" })
 </script>
 <script asp-src-include="lib/jquery/dist/*.min.js"></script>
 <script type="text/javascript">
 $(document).ready(function () {
 var list = $("#list")
 JSON.parse($("#jsonData").text()).forEach(function (val) {
 console.log("Val: " + val);
 list.append($("").text(val));
 });
 });
 </script>
</head>
<body class="m-1 p-1">
 This is the List View
 <ul id="list">
</body>
</html>

If you run the example application and request the /Home/List URL, you will see the content shown in
Figure 21-9. This isn’t the most exciting use of JSON data, but it does demonstrate how it can be included in
views.

Chapter 21 ■ Views

684

Configuring Razor
Razor can be configured using the RazorViewEngineOptions class, which is defined in the Microsoft.
AspNetCore.Mvc.Razor namespace. This class defines two configuration properties, which are described in
Table 21-9.

 ■ Tip if you really want to dig deep, then you can replace the internal razor components by creating classes
that implement interfaces in the Microsoft.AspNetCore.Mvc.Razor namespace and registering them with
the service provider in the Startup class. this is something that most developers will never need to do and
shouldn’t be undertaken lightly, but it is a useful option if you want to get complete control of how the content in
your application is handled. Download the razor source code from http://github.com/aspnet to get started.

The FileProvider property isn’t one that many applications will need to change because reading view
files from disk is exactly what most projects require, and Razor only uses the provider to load the views so
they can be compiled when the application first runs. The ViewLocationExpanders property is more useful,
however, because it allows applications to apply custom logic to the way that Razor locates views.

Figure 21-9. Using JSON data in a view

Table 21-9. The RazorViewEngineOptions Properties

Name Description

FileProvider This property is used to set the object that provides Razor with the contents
of files and directories. The functionality is defined by the Microsoft.
AspNetCore.FileProviders.IFileProvider interface, and the default
implementation is PhysicalFileProvider, which reads files from a disk.

ViewLocationExpanders The property is used to configure the view expanders, which are used to
change how Razor locates a view.

http://github.com/aspnet

Chapter 21 ■ Views

685

Understanding View Location Expanders
Razor uses view location expanders to build up a list of locations that should be searched for a view. View
location expanders implement the IViewLocationExpander interface, which is defined as follows:

using System.Collections.Generic;

namespace Microsoft.AspNetCore.Mvc.Razor {

 public interface IViewLocationExpander {

 void PopulateValues(ViewLocationExpanderContext context);

 IEnumerable<string> ExpandViewLocations(ViewLocationExpanderContext context,
 IEnumerable<string> viewLocations);
 }
}

In the sections that follow, I explain how view location expanders work and create a custom
implementation of the IViewLocationExpander interface. To prepare for creating view location expanders,
in Listing 21-26 I have changed the Index action method of the Home controller so that it requests a
nonexistent view. The error message that this causes will show the locations that Razor searches for the view
and the effect on them that the view location expanders have.

Listing 21-26. Requesting a Nonexistent View in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;

namespace Views.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() =>
 View("MyView", new string[] { "Apple", "Orange", "Pear" });

 public ViewResult List() => View();
 }
}

If you start the application and request the default URL, you will see the default view search locations
displayed in the error message, as follows:

/Views/Home/MyView.cshtml
/Views/Shared/MyView.cshtml

Chapter 21 ■ Views

686

Creating a Simple View Location Expander
The simplest view location expanders simply change the set of locations where Razor looks for all views. This
is done by implementing the ExpandViewLocations method and returning the list of locations that you want
to support. To demonstrate, I added a class file called SimpleExpander.cs to the Infrastructure folder and
created the class shown in Listing 21-27.

Listing 21-27. The Contents of the SimpleExpander.cs File in the Infrastructure Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc.Razor;

namespace Views.Infrastructure {

 public class SimpleExpander : IViewLocationExpander {

 public void PopulateValues(ViewLocationExpanderContext context) {
 // do nothing - not required
 }

 public IEnumerable<string> ExpandViewLocations(
 ViewLocationExpanderContext context,
 IEnumerable<string> viewLocations) {

 foreach (string location in viewLocations) {
 yield return location.Replace("Shared", "Common");
 }
 yield return "/Views/Legacy/{1}/{0}/View.cshtml";
 }
 }
}

Razor calls the ExpandViewLocations method when it requires the list of search locations, and it
provides the default locations as a sequence of strings in the viewLocations parameter. Locations are
expressed as templates with placeholders for the name of the action and controller. Here are the location
templates that are used by default in an application that doesn’t use routing areas:

"/Views/{1}/{0}.cshtml"
"/Views/Shared/{0}.cshtml"

The placeholder {0} is used to refer to the name of the action method, and {1} is the placeholder for
the controller name. The job of the view location expander is to return the set of locations that should be
searched, and in the listing, I use the string.Replace method to change Shared with Common in the default
locations as well as adding my own location that follows a different file and folder structure.

Applying the View Location Expander

In Listing 21-28, I set up my view location expander by configuring Razor in the Startup class. The
ViewLocationExpanders property returns a List<IViewLocationExpander> object on which I call the Add
method.

Chapter 21 ■ Views

687

Listing 21-28. Configuring Razor in the Startup.cs File

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Mvc;
using Views.Infrastructure;
using Microsoft.AspNetCore.Mvc.Razor;

namespace Views {
 public class Startup {
 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 services.Configure<RazorViewEngineOptions>(options => {
 options.ViewLocationExpanders.Add(new SimpleExpander());
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

If you run the example, the error message will show the set of locations that the custom view location
expander has provided to Razor.

/Views/Home/MyView.cshtml
/Views/Common/MyView.cshtml
/Views/Legacy/Home/MyView/View.cshtml

Selecting Specific Views for Requests
View location expanders make it easy to change the search locations for all requests but can also change
the search locations for individual requests. I implemented only the ExpandViewLocations method in
the previous example, but the real power comes through the PopulateValues method, which is the other
method in the IViewLocationExpander interface.

Each time that Razor requires a view, it calls the PopulateValues method of its view location expanders,
providing a ViewLocationExpanderContext object for context data. The ViewLocationExpanderContext
class defines the properties shown in Table 21-10.

Chapter 21 ■ Views

688

The purpose of the PopulateValues method is to categorize the request by adding key/value pairs to
the dictionary returned by the Values property of the context object. Razor doesn’t care how the request is
categorized, and the method used to populate the dictionary is left entirely to the view location expander.
This is most readily explained by an example, so I added a class file called ColorExpander.cs to the
Infrastructure folder and used it to define the class shown in Listing 21-29.

Listing 21-29. The Contents of the ColorExpander.cs File in the Infrastructure Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc.Razor;

namespace Views.Infrastructure {

 public class ColorExpander : IViewLocationExpander {
 private static Dictionary<string, string> Colors
 = new Dictionary<string, string> {
 ["red"] = "Red", ["green"] = "Green", ["blue"] = "Blue"
 };

 public void PopulateValues(ViewLocationExpanderContext context) {

 var routeValues = context.ActionContext.RouteData.Values;
 string color;

 if (routeValues.ContainsKey("id")
 && Colors.TryGetValue(routeValues["id"] as string, out color)
 && !string.IsNullOrEmpty(color)) {
 context.Values["color"] = color;
 }
 }

 public IEnumerable<string> ExpandViewLocations(
 ViewLocationExpanderContext context,
 IEnumerable<string> viewLocations) {

Table 21-10. The ViewLocationExpanderContext Properties

Name Description

ActionContext This property returns an ActionContext object that describes the action method
that has requested a view and also includes details about the request and response.

ViewName This property returns the name of the view that the action method has requested.

ControllerName This property returns the name of the controller that contains the action method.

AreaName This property returns the name of the area that contains the controller if areas have
been defined.

IsMainPage This property returns false if Razor is looking for a partial view and true otherwise.

Values This property returns an IDictionary<string, string> to which the view location
expander adds key/value pairs that uniquely identify the category of request, as
explained in the following text.

Chapter 21 ■ Views

689

 string color;
 context.Values.TryGetValue("color", out color);
 foreach (string location in viewLocations) {
 if (!string.IsNullOrEmpty(color)) {
 yield return location.Replace("{0}", color);
 } else {
 yield return location;
 }
 }
 }
 }
}

The PopulateValues method uses ActionContext to get the routing data and looks for the value of
the id URL segment. If there is an id segment and its value is red, green, or blue, then the view location
expander adds a color property to the Values dictionary. This is the categorization process: requests whose
id segment matches a color are categorized with a color key whose value is derived from the segment value.

Next, Razor calls the ExpandViewLocations method and provides the same context object that was
used for the PopulateValues method. This allows the view location expander to look at the categorization
performed previously and generate the set of locations that Razor should look in for views. In the example, I
using the string.Replace method to swap the {0} placeholder with the color name.

 ■ Tip razor calls the PopulateValues method for every view request but caches the set of search
locations returned by the ExpandViewLocations method. this means that subsequent requests for which
the PopulateValues method generates the same set of categorization keys, and values won’t require the
ExpandViewLocations method to be called.

In Listing 21-30, I have configured Razor to use the ColorExpander class.

Listing 21-30. Adding a View Location Expander in the Startup.cs File in the Views Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.AspNetCore.Mvc;
using Views.Infrastructure;
using Microsoft.AspNetCore.Mvc.Razor;

namespace Views {
 public class Startup {
 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 services.Configure<RazorViewEngineOptions>(options => {
 options.ViewLocationExpanders.Add(new SimpleExpander());

Chapter 21 ■ Views

690

 options.ViewLocationExpanders.Add(new ColorExpander());
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

You can see the effect of the new view location expander by starting the application and requesting the /
Home/Index/red URL, which will cause Razor to search in the following locations:

/Views/Home/Red.cshtml
/Views/Common/Red.cshtml
/Views/Legacy/Home/Red/View.cshtml

Similarly, a request for the /Home/Index/green URL will cause Razor to search in these locations:

/Views/Home/Green.cshtml
/Views/Common/Green.cshtml
/Views/Legacy/Home/Green/View.cshtml

The order in which view location expanders are registered is important because the set of locations
generated by the ExpandViewLocations method of one expander is used as the viewLocations argument for
the next expander in the list. You can see this in the locations shown previously, where Views/Common and
Views/Legacy locations are generated by the SimpleExpander class, which appears before ColorExpander in
the Startup class.

Summary
In this chapter, I demonstrated how to create a custom view engine and explained how Razor works by
translating CSHTML files into C# classes. I showed you how to use layout sections and partial views and
demonstrated how to change the locations that Razor uses to locate view files. In the next chapter, I describe
view components, which are used to provide logic to support partial views.

691© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_22

CHAPTER 22

View Components

I describe view components in this chapter, which are a new addition in ASP.NET Core MVC and replace the
child action feature from previous versions. View components are classes that provide action-style logic to
support partial views, which means complex content can be embedded in views while allowing the C# code
that supports it to be easily maintained and unit tested. Table 22-1 puts view components in context.

Table 22-1. Putting View Components in Context

Question Answer

What are they? View components are classes that provide application logic to
support partial views or to inject small fragments of HTML or
JSON data into a parent view.

Why are they useful? Without view components, it is hard to create embedded
functionality such as shopping baskets or login panels in a way
that is easy to maintain and unit test.

How are they used? View components are typically derived from the ViewComponent
class and are applied in a parent view using the @await
Component.InvokeAsync expression.

Are there any pitfalls or limitations? No, view components are a simple and predictable feature. The
main pitfall is not using them and trying to include application
logic within views where it is difficult to test and maintain.

Are there any alternatives? You could put the data access and processing logic directly in a
partial view, but the result is difficult to work with and hard to
test effectively.

https://doi.org/10.1007/978-1-4842-3150-0_22

Chapter 22 ■ View Components

692

Table 22-2 summarizes the chapter.

Table 22-2. Chapter Summary

Problem Solution Listing

Provide a partial view with its own
logic and data

Use a view component 12

Invoke a view component Use the @await Component.InvokeAsync
expression in a view

13

Simplify access to context data and
results

Derive from the ViewComponent class 14–16

Select a partial view Use the View method to create and return a
ViewViewComponentResult object

17–19

Create a fragment of HTML Return the Content method to create
a ContentViewComponentResult
object or explicitly create an
HtmlContentViewComponentResult object if you
don’t want the fragment to be encoded

20, 21

Use details of the request to
generate the result

Use the view component context data 22

Provide context data when invoking
a view component

Provide arguments to the InvokeAsync method 23–25

Create an asynchronous view
component

Implement the InvokeAsync method and return
a Task that yields the result you require

26–29

Create a hybrid controller/view
component

Apply the ViewComponent attribute to a
controller class

30–33

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called UsingViewComponents.

Creating the Models and Repositories
I need two different sources of data to demonstrate how view components work. Part of the application will
operate on a set of product descriptions; to prepare for this, I created the Models folder and added a file
called Product.cs, which I used to define the class shown in Listing 22-1.

Listing 22-1. The Contents of the Product.cs File in the Models Folder

namespace UsingViewComponents.Models {

 public class Product {
 public string Name { get; set; }
 public decimal Price { get; set; }
 }
}

Chapter 22 ■ View Components

693

To create a repository for the Product objects, I added a file called ProductRepository.cs to the Models
folder and defined the interface and implementation class shown in Listing 22-2.

Listing 22-2. The Contents of the ProductRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace UsingViewComponents.Models {

 public interface IProductRepository {
 IEnumerable<Product> Products { get; }
 void AddProduct(Product newProduct);
 }

 public class MemoryProductRepository : IProductRepository {
 private List<Product> products = new List<Product> {
 new Product { Name = "Kayak", Price = 275M },
 new Product { Name = "Lifejacket", Price = 48.95M },
 new Product { Name = "Soccer ball", Price = 19.50M }
 };

 public IEnumerable<Product> Products => products;

 public void AddProduct(Product newProduct) {
 products.Add(newProduct);
 }
 }
}

The IProductRepository interface defines a limited set of repository features, and the
MemoryProductRepository class implements the interface using an in-memory List.

The other part of the application will operate on descriptions of cities. To that end, I added a class file
called City.cs to the Models folder and used it to define the class shown in Listing 22-3.

Listing 22-3. The Contents of the City.cs File in the Models Folder

namespace UsingViewComponents.Models {

 public class City {
 public string Name { get; set; }
 public string Country { get; set; }
 public int Population { get; set; }
 }
}

For the repository of City objects, I created a class file called CityRepository.cs and used it to define
the interface and implementation class shown in Listing 22-4.

Chapter 22 ■ View Components

694

Listing 22-4. The Contents of the CityRepository.cs File in the Models Folder

using System.Collections.Generic;

namespace UsingViewComponents.Models {

 public interface ICityRepository {
 IEnumerable<City> Cities { get; }

 void AddCity(City newCity);
 }

 public class MemoryCityRepository : ICityRepository {

 private List<City> cities = new List<City> {
 new City { Name = "London", Country = "UK", Population = 8539000},
 new City { Name = "New York", Country = "USA", Population = 8406000 },
 new City { Name = "San Jose", Country = "USA", Population = 998537 },
 new City { Name = "Paris", Country = "France", Population = 2244000 }
 };

 public IEnumerable<City> Cities => cities;

 public void AddCity(City newCity) {
 cities.Add(newCity);
 }
 }
}

The ICityRepository interface provides a limited set of repository features, and the
MemoryCityRepository class implements the interface using an in-memory list.

Creating the Controller and Views
I need only one controller to get started, so I created the Controllers folder, added a file called
HomeController.cs to the Controllers folder, and used it to define the class shown in Listing 22-5.

Listing 22-5. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using UsingViewComponents.Models;

namespace UsingViewComponents.Controllers {

 public class HomeController : Controller {
 private IProductRepository repository;

 public HomeController(IProductRepository repo) {
 repository = repo;
 }

Chapter 22 ■ View Components

695

 public ViewResult Index() => View(repository.Products);

 public ViewResult Create() => View();

 [HttpPost]
 public IActionResult Create(Product newProduct) {
 repository.AddProduct(newProduct);
 return RedirectToAction("Index");
 }
 }
}

The Home controller uses its constructor to declare a dependency on the IProductRepository interface,
which will be resolved by the service provider when the controller is used to handle requests. The Index
action retrieves all the Product objects from the repository and renders them using the default view. The
two Create methods use the Post/Redirect/Get pattern to add new objects to the repository using form data
provided by the client.

The views for this example will share a common layout. I created the Views/Shared folder, and I added
a file called _Layout.cshtml with the markup shown in Listing 22-6.

Listing 22-6. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div class="bg-primary m-1 p-1">
 <div class="row text-white">
 <div class="col-7"><h1>Products</h1></div>
 <div class="col-5">
 <div class="bg-info text-center m-1 p-1">City Placeholder</div>
 </div>
 </div>
 </div>
 <div class="m-1 p-1">@RenderBody()</div>
</body>
</html>

The layout defines a header that includes a placeholder for content that I will create later in the chapter
using the city repository. Next, I created the Views/Home folder and added a file called Index.cshtml with the
markup shown in Listing 22-7, which lists the details of Product objects in a table.

Listing 22-7. The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<Product>
@{
 ViewData["Title"] = "Products";
 Layout = "_Layout";
}

Chapter 22 ■ View Components

696

<table class="table table-sm table-striped table-bordered">
 <thead>
 <tr><th>Name</th><th>Price</th></tr>
 </thead>
 <tbody>
 @foreach (var product in Model) {
 <tr>
 <td>@product.Name</td>
 <td>@product.Price</td>
 </tr>
 }
 </tbody>
</table>
<a asp-action="Create" class="btn btn-primary">Create

The final element in the Index view is an a element that I have styled as a button and that targets the
Create action so the user can create a new Product object in the repository. To provide the form that the user
fills in, I added a Create.cshtml file to the Views/Home folder and added the markup shown in Listing 22-8.

Listing 22-8. The Contents of the Create.cshtml File in the Views/Home Folder

@model Product
@{
 ViewData["Title"] = "Create Product";
 Layout = "_Layout";
}

<form method="post" asp-action="Create">
 <div class="form-group">
 <label asp-for="Name">Name:</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Price">Price:</label>
 <input class="form-control" asp-for="Price" />
 </div>
 <button type="submit" class="btn btn-primary">Create</button>
 Cancel
</form>

The views use the built-in tag helpers, which I enabled by creating the _ViewImports.cshtml file in the
Views folder and adding the expressions shown in Listing 22-9, which also make the classes in the Models
folder available without namespaces.

Listing 22-9. The Contents of the _ViewImports.cshtml File in the Views Folder

@using UsingViewComponents.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The views also rely on the Bootstrap CSS package to style content. I used the Bower Configuration File
item template to create the bower.json file in the root folder of the project and added the Bootstrap package
to the dependencies section, as shown in Listing 22-10.

Chapter 22 ■ View Components

697

Listing 22-10. Adding Bootstrap to the bower.json File in the UsingViewComponents Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

Configuring the Application
The final preparatory step is to configure the application, as shown in Listing 22-11. In addition to setting up
the MVC services and middleware, I have created singleton services for the two data repositories.

Listing 22-11. The Contents of the Startup.cs File in the UsingViewComponents Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using UsingViewComponents.Models;

namespace UsingViewComponents {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<IProductRepository, MemoryProductRepository>();
 services.AddSingleton<ICityRepository, MemoryCityRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

If you run the application, you will see a list of the Product objects in the product repository. You can
add new products by clicking the Create button, filling in the form, and submitting it to the server, which will
then redirect the browser back to the list, as shown in Figure 22-1. Since the views in the application share a
common layout, there is a placeholder for city data shown throughout this process.

Chapter 22 ■ View Components

698

Understanding View Components
Applications commonly need to embed content in views that isn’t related to the main purpose of the
application. Common examples include site navigation tools and authentication panels that let the user log
in without visiting a separate page.

The common thread that all these examples have is that the data required to display the embedded
content isn’t part of the model data passed from the action to the view. It is for this reason that I have created
two repositories in the example application: I am going to display some content generated using the City
repository, which isn’t easily done in a view that receives data from the Product repository from its actions.

In Chapter 21, I described how partial views are used to create reusable markup that is required in
views, avoiding the need to duplicate the same content in multiple places in the application. Partial views
are a useful feature, but they just contain fragments of HTML and Razor directives, and the data they operate
on is received from the parent view. If you need to display different data, then you run into a problem. You
could access the data you need directly from the partial view, but this breaks the separation of concerns
that underpins the MVC pattern and results in data retrieval and processing logic being placed in a view file
where it cannot be unit tested. Alternatively, you could extend the view models used by the application so
that it includes the data you require, but this means you have to change every action method and it is hard to
isolate the functionality of action methods for effective testing.

This is where view components come in. A view component is a C# class that provides a partial view
with the data that it needs, independently from the parent view and the action that renders it. In this regard,
a view component can be thought of as a specialized action, but one that is used only to provide a partial
view with data; it cannot receive HTTP requests, and the content that it provides will always be included in
the parent view.

Creating a View Component
View components can be created in three different ways: by defining a POCO view component, by deriving
from the ViewComponent base class, and by using the ViewComponent attribute. I describe the POCO and
base class techniques in the sections that follow and explain the use of the attribute in the “Creating Hybrid
Controller/View Component Classes” section, later in the chapter.

Figure 22-1. Running the example application

http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 22 ■ View Components

699

Creating POCO View Components
A POCO view component is a class that provides view component functionality without relying on any of
the MVC APIs. As with POCO controllers, this kind of view component is awkward to work with but can
be helpful in understanding how they work. A POCO view component is any class whose name ends with
ViewComponent and that defines an Invoke method. View component classes can be defined anywhere in an
application, but the convention is to group them together in a folder called Components at the root level of
the project. I created this folder and added a class file called PocoViewComponent.cs, which I used to define
the class shown in Listing 22-12.

Listing 22-12. The Contents of the PocoViewComponent.cs File in the Components Folder

using System.Linq;
using UsingViewComponents.Models;

namespace UsingViewComponents.ViewComponents {

 public class PocoViewComponent {
 private ICityRepository repository;

 public PocoViewComponent(ICityRepository repo) {
 repository = repo;
 }

 public string Invoke() {
 return $"{repository.Cities.Count()} cities, "
 + $"{repository.Cities.Sum(c => c.Population)} people";
 }
 }
}

View components can take advantage of dependency injection to receive the services they require. In this
example, the POCO view component declares a dependency on the ICityRepository interface, which is then
used in the Invoke method to create a string that describes the number of cities and the population total.

To use a view component, the Razor @await Component.Invoke expression is required. The view
component is selected by providing the name of the class, without the ViewComponent ending, as an
argument. In Listing 22-13, I have removed the placeholder in the shared layout and applied the POCO view
component instead.

Listing 22-13. Applying a View Component in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div class="bg-primary m-1 p-1">
 <div class="row text-white">
 <div class="col-7"><h1>Products</h1></div>

Chapter 22 ■ View Components

700

 <div class="col-5">
 @await Component.InvokeAsync("Poco")
 </div>
 </div>
 </div>
 <div class="m-1 p-1">@RenderBody()</div>
</body>
</html>

To apply the view component, I specified Poco as the argument to the Invoke method. When the layout
is used by a view, it locates the PocoViewComponent class, calls its Invoke method, and inserts the result into
the parent view’s output, as shown in Figure 22-2.

Figure 22-2. Using a simple view component

This is a simple example, but it illustrates some important characteristics of view components. First,
the PocoViewComponent class was able to get access to the data it required without depending on the action
handling the HTTP request or its parent view. Second, defining the logic required to obtain and process the
City summary in a C# class means that it can be readily unit tested (see the “Unit Testing View Components”
sidebar later in the chapter for an example). Third, the application hasn’t been twisted out of shape trying
to include City objects in view models that are focused on Product objects. In short, a view component is
a self-contained chunk of reusable functionality that can be applied throughout the application and can be
developed and tested in isolation.

 ■ Caution You must include the await keyword when you apply a view component in a view. You won’t see
an error if you just call @Component.Invoke but a string representation of a Task will be displayed, similar to
this: System.Threading.Tasks.Task`1[Microsoft.AspNetCore.Html.IHtmlContent].

Deriving from the ViewComponent Base Class
POCO view components are limited in functionality unless they take advantage of the MVC API, which
is possible but requires a lot more effort than the more common approach, which is to derive from the
ViewComponent class. The ViewComponent class, which is defined in the Microsoft.AspNetCore.Mvc

Chapter 22 ■ View Components

701

namespace, provides convenient access to context data and makes it easier to generate results. Listing 22-14
shows the contents of the CitySummary.cs file, which I added to the Components folder.

Listing 22-14. The Contents of the CitySummary.cs File in the Components Folder

using System.Linq;
using Microsoft.AspNetCore.Mvc;
using UsingViewComponents.Models;

namespace UsingViewComponents.Components {

 public class CitySummary : ViewComponent {
 private ICityRepository repository;

 public CitySummary(ICityRepository repo) {
 repository = repo;
 }

 public string Invoke() {
 return $"{repository.Cities.Count()} cities, "
 + $"{repository.Cities.Sum(c => c.Population)} people";
 }
 }
}

You don’t need to include ViewComponent in the class name when you derive from the base class. Aside
from using the base class, this view component is functionally identical to the POCO. In the sections that
follow, I’ll show you how to use the convenience features provided by the base class to use different view
component features.

 ■ Tip notice that the Invoke method isn’t overridden in Listing 22-14. the ViewComponent class doesn’t
provide a default implementation of the Invoke method, which must be defined explicitly.

In preparation for demonstrating the view component features, I changed the component used in
the shared layout, as shown in Listing 22-15. Instead of using a literal string to specify the view component
name, I used nameof, as described in Chapter 4, which reduces the chances of mistyping the class name.

Listing 22-15. Changing the View Component in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div class="bg-primary m-1 p-1">
 <div class="row text-white">
 <div class="col-7"><h1>Products</h1></div>

http://dx.doi.org/10.1007/978-1-4842-3150-0_4

Chapter 22 ■ View Components

702

 <div class="col-5">
 @await Component.InvokeAsync(nameof(CitySummary))
 </div>
 </div>
 </div>
 <div class="m-1 p-1">@RenderBody()</div>
</body>
</html>

So that I can refer to the CitySummary class in the nameof expression without a namespace, I make the
change shown in Listing 22-16 to the view imports file.

Listing 22-16. Adding a Namespace in the _ViewImports.cshtml File in the Views Folder

@using UsingViewComponents.Models
@using UsingViewComponents.Components
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Understanding View Component Results
The ability to insert simple string values into a parent view isn’t especially useful, but fortunately, view
components are capable of much more. More complex effects can be achieved by having the Invoke method
return an object that implements the IViewComponentResult interface. Three built-in classes implement the
IViewComponentResult interface, and they are described in Table 22-3, along with the convenience methods
for creating them provided by the ViewComponent base class. I describe the use of each result type in the
sections that follow.

 ■ Note if you are using poCo view components, you can create instances of these classes directly, although
they can be awkward to work with because they have complex constructor arguments that the convenience
methods provided by the ViewComponent class provide.

Table 22-3. The Built-in IViewComponentResult Implementation Classes

Name Description

ViewViewComponentResult This class is used to specify a Razor view, with optional view model
data. Instances of this class are created using the View method.

ContentViewComponentResult This class is used to specify a text result that will be safely encoded
for inclusion in an HTML document. Instances of this class are
created using the Content method.

HtmlContentViewComponentResult This class is used to specify a fragment of HTML that will be
included in the HTML document without further encoding. There
is no ViewComponent method to create this type of result.

Chapter 22 ■ View Components

703

There is special handling for two result types. If a view component returns a string, then it is used to create
a ContentViewComponentResult object, which is what I relied on in earlier examples. If a view component
returns an IHtmlContent object, then it is used to create an HtmlContentViewComponentResult object.

Returning a Partial View
The most useful response is the awkwardly named ViewViewComponentResult object, which tells Razor to
render a partial view and include the result in the parent view. The ViewComponent base class provides the
View method for creating ViewViewComponentResult objects, and there are four versions of the method
available, as described in Table 22-4.

Table 22-4. The ViewComponent.View Methods

Name Description

View() Using this method selects the default view for the view component and does
not provide a view model.

View(model) Using the method selects the default view and uses the specified object as the
view model.

View(viewName) Using this method selects the specified view and does not provide a view
model.

View(viewName, model) Using this method selects the specified view and uses the specified object as
the view model.

These methods correspond to those provided by the Controller base class and are used in much the
same way. I added a class file called CityViewModel.cs to the Models folder and used it to define the view
model shown in Listing 22-17.

Listing 22-17. The Contents of the CityViewModel.cs File in the Models Folder

namespace UsingViewComponents.Models {

 public class CityViewModel {
 public int Cities { get; set; }
 public int Population { get; set; }
 }
}

In Listing 22-18, I have modified the Invoke method of the CitySummary view component so that it uses
the View method to select a partial view and provides view data using a CityViewModel object.

Listing 22-18. Selecting a Partial View in the CitySummary.cs File in the Components Folder

using System.Linq;
using Microsoft.AspNetCore.Mvc;
using UsingViewComponents.Models;

Chapter 22 ■ View Components

704

namespace UsingViewComponents.Components {

 public class CitySummary : ViewComponent {
 private ICityRepository repository;

 public CitySummary(ICityRepository repo) {
 repository = repo;
 }

 public IViewComponentResult Invoke() {
 return View(new CityViewModel{
 Cities = repository.Cities.Count(),
 Population = repository.Cities.Sum(c => c.Population)
 });
 }
 }
}

Selecting a partial view in a view component is similar to selecting a view in a controller but with two
important differences: Razor looks for views in different locations and uses a different default view name if
one isn’t specified.

Since I have not created a partial view for the view component, you will see an error message when you
run the application that reveals the files that Razor is looking for.

•	 /Views/Home/Components/CitySummary/Default.cshtml

•	 /Views/Shared/Components/CitySummary/Default.cshtml

If no name is specified, then Razor looks for a file called Default.cshtml. Razor looks in two locations
for the partial view. The first location takes into account the name of the controller handling the HTTP
request, which allows each controller to have its own custom view. The second location is shared between
all controllers.

 ■ Tip notice that shared partial views are still distinguished by view component, which means that view
components do not share partial views. You can override this behavior by including a path in the name of the
view when you call the View method, such that calling View("Views/Shared/Components/Common/Default.
html") will override the normal search locations.

To complete the example, I created the Views/Home/Components/CitySummary folder and added to it a
new file called Default.cshtml, to which I added the markup shown in Listing 22-19.

Listing 22-19. The Content of the Default.cshtml File in the Views/Home/Components/CitySummary
Folder

@model CityViewModel

<table class="table table-sm table-bordered">
 <tr>
 <td>Cities:</td>
 <td class="text-right">

Chapter 22 ■ View Components

705

 @Model.Cities
 </td>
 </tr>
 <tr>
 <td>Population:</td>
 <td class="text-right">
 @Model.Population.ToString("#,###")
 </td>
 </tr>
</table>

Partial views for view components work in the same way as they do for controllers. In this case, I have
created a strongly typed view that expects a CityViewModel object and displays its Cities and Population
values in a table, as shown in Figure 22-3.

Figure 22-3. Rendering a view using a view component

Returning HTML Fragments
The ContentViewComponentResult class is used to include fragments of HTML in the parent view without
using a view. Instances of the ContentViewComponentResult class are created using the Content method
inherited from the ViewComponent base class, which accepts a string value. Listing 22-20 demonstrates the
use of the Content method. In addition to the Content method, the Invoke method can return a string, and
MVC will automatically convert to a ContentViewComponentResult.

Listing 22-20. Using the Content Method in the CitySummary.cs File in the Components Folder

using System.Linq;
using Microsoft.AspNetCore.Mvc;
using UsingViewComponents.Models;

namespace UsingViewComponents.Components {

 public class CitySummary : ViewComponent {
 private ICityRepository repository;

Chapter 22 ■ View Components

706

 public CitySummary(ICityRepository repo) {
 repository = repo;
 }

 public IViewComponentResult Invoke() {
 return Content("This is a <h3><i>string</i></h3>");
 }
 }
}

The string received by the Content method is encoded to make it safe to include in an HTML document.
This is particularly important when dealing with content that has been provided by users or external systems
because it prevents JavaScript content from being embedded into the HTML generated by the application.
In this example, the string that I passed to the Content method contains some basic HTML tags, and if you
run the application, you will see that they have been encoded safely, as shown in Figure 22-4.

Figure 22-4. Returning an encoded HTML fragment using a view component

If you look at the HTML that the view component produced, you will see that the angle brackets have
been replaced so that the browser doesn’t interpret the content as HTML elements, as follows:

...
<div class="col-5">This is a <h3><i>string</i></h3></div>
...

You don’t need to encode content if you trust its source and want it to be interpreted as HTML. The
Content method always encodes its argument, so you must create the HtmlContentViewComponentResult
object directly and provide its constructor with an HtmlString object, which represents a string that you
know is safe to display, either because it comes from a source that you trust or because you are confident
that it has already been encoded, as shown in Listing 22-21.

Chapter 22 ■ View Components

707

Listing 22-21. Returning a Trusted HTML Fragment in the CitySummary.cs File in the Components Folder

using System.Linq;
using Microsoft.AspNetCore.Mvc;
using UsingViewComponents.Models;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.Html;

namespace UsingViewComponents.Components {

 public class CitySummary : ViewComponent {
 private ICityRepository repository;

 public CitySummary(ICityRepository repo) {
 repository = repo;
 }

 public IViewComponentResult Invoke() {
 return new HtmlContentViewComponentResult(
 new HtmlString("This is a <h3><i>string</i></h3>"));
 }
 }
}

This technique should be used with caution and only with sources of content that cannot be tampered
with and that perform their own encoding. If you run the application, you will see that the angle brackets
have been included in the parent view without modification, which allows the browser to interpret the
output of the view component as HTML elements, illustrated in Figure 22-5.

Figure 22-5. Returning an unencoded HTML fragment using a view component

Getting Context Data
Details about the current request and the parent view are provided to a view component through properties
of the ViewComponentContext class; Table 22-5 describes the most useful properties it provides.

Chapter 22 ■ View Components

708

The ViewComponent base class provides a set of convenience properties that make it easier to access
specific context information, as described in Table 22-6.

Table 22-6. The ViewComponent Convenience Properties

Name Description

ViewComponentContext This property returns the ViewComponentContext object.

HttpContext This property returns an HttpContext object that describes the current
request and the response that is being prepared.

Request This property returns an HttpRequest object that describes the current
HTTP request.

User This property returns an IPrincipal object that describes the current user,
as described in Chapter 28.

RouteData This property returns a RouteData object that describes the routing data for
the current request, as described in Chapter 15.

ViewBag This property returns the dynamic view bag object, which can be used to
pass data between the view component and the view.

ModelState This property returns a ModelStateDictionary, which provides details of
the model binding process, as described in Chapter 26.

ViewContext This property returns the ViewContext object that was provided to the
parent view, as described in Chapter 21.

ViewData This property returns a ViewDataDictionary, which provides access to the
view data provided for the view component.

Url This property returns an IUrlHelper object that can be used to generate
URLs, as described in Chapter 15.

Table 22-5. The ViewComponentContext Properties

Name Description

Arguments This property returns a dictionary of the arguments provided by the view,
which can also be received via the Invoke method.

HtmlEncoder This property returns an HtmlEncoder object that can be used to safely
encode HTML fragments.

ViewComponentDescriptor This property returns a ViewComponentDescriptor, which provides a
description of the view component.

ViewContext This property returns the ViewContext object from the parent view. See
Chapter 21 for details of the features this class provides.

ViewData This property returns a ViewDataDictionary, which provides access to the
view data provided for the view component.

The context data can be used in whatever way helps the view component do its work, including varying
the way that data is selected or rendering different content or views. In Listing 22-22, I have used the routing
data to narrow the selection of City objects.

http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_26
http://dx.doi.org/10.1007/978-1-4842-3150-0_21
http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_21

Chapter 22 ■ View Components

709

Listing 22-22. Using Context Data in the CitySummary.cs File in the Components Folder

using System.Linq;
using Microsoft.AspNetCore.Mvc;
using UsingViewComponents.Models;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace UsingViewComponents.Components {

 public class CitySummary : ViewComponent {
 private ICityRepository repository;

 public CitySummary(ICityRepository repo) {
 repository = repo;
 }

 public IViewComponentResult Invoke() {
 string target = RouteData.Values["id"] as string;
 var cities = repository.Cities
 .Where(city => target == null ||
 string.Compare(city.Country, target, true) == 0);
 return View(new CityViewModel{
 Cities = cities.Count(),
 Population = cities.Sum(c => c.Population)
 });
 }
 }
}

The browser uses the id segment from the route to specify the country that is used by LINQ to filter the
objects in the repository. All the cities are displayed if you start the application and request the default URL.
You can narrow the selection by requesting a URL such as /Home/Index/USA, which will narrow the selection
to cities in the United States, as shown in Figure 22-6.

Figure 22-6. Using context data in a view component

Chapter 22 ■ View Components

710

Providing Context from the Parent View Using Arguments
Parent views can provide additional context data as arguments to the @await Component.Invoke expression.
This feature can be used to provide data from the parent view model or to give guidance about the type of
content that the view component should produce. To demonstrate this feature, I created a view file called
CityList.cshtml in the Views/Home/Component/CitySummary folder and added the markup shown in
Listing 22-23.

Listing 22-23. The Contents of the CityList.cshtml File in the Views/Home/Component/CitySummary
Folder

@model IEnumerable<City>

<table class="table table-sm table-bordered">
 @foreach (var city in Model) {
 <tr>
 <td>@city.Name</td>
 <td class="text-right">
 @city.Population.ToString("#,###")
 </td>
 </tr>
 }
 <tr>
 <th>Total:</th>
 <td class="text-right">
 @Model.Sum(p => p.Population).ToString("#,###")
 </td>
 </tr>
</table>

Adding a second view allows the view component to choose between them, which it does based on an
argument added to the Invoke method, as shown in Listing 22-24.

Listing 22-24. Selecting Views in the CitySummary.cs File in the Components Folder

using System.Linq;
using Microsoft.AspNetCore.Mvc;
using UsingViewComponents.Models;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace UsingViewComponents.Components {

 public class CitySummary : ViewComponent {
 private ICityRepository repository;

 public CitySummary(ICityRepository repo) {
 repository = repo;
 }

Chapter 22 ■ View Components

711

 public IViewComponentResult Invoke(bool showList) {
 if (showList) {
 return View("CityList", repository.Cities);
 } else {
 return View(new CityViewModel {
 Cities = repository.Cities.Count(),
 Population = repository.Cities.Sum(c => c.Population)
 });
 }
 }
 }
}

If the showList argument to the Invoke method is true, then the view component selects the CityList
and passes all the City objects in the repository as the view model. If the showList argument is false, then
the default view is selected and provided with a CitySummary object for the view model.

The final step is to provide context data when applying the view component in the parent view, which is
done by passing an anonymous object to the Invoke method, as shown in Listing 22-25.

Listing 22-25. Providing Context Data in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div class="bg-primary m-1 p-1">
 <div class="row text-white">
 <div class="col-7"><h1>Products</h1></div>
 <div class="col-5">
 @await Component.InvokeAsync("CitySummary", new { showList = true })
 </div>
 </div>
 </div>
 <div class="m-1 p-1">@RenderBody()</div>
</body>
</html>

If you run the application, the view component will receive the value specified by the parent view and
respond accordingly, as shown in Figure 22-7.

Chapter 22 ■ View Components

712

UNIT TESTING VIEW COMPONENTS

View components follow the general mVC approach of separating out the logic that selects and
processes the model data from the view markup that formats and presents it, which makes it easy to
perform unit tests. here is an example unit test for CitySummary from the example application:

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Moq;
using UsingViewComponents.Models;
using UsingViewComponents.Components;
using Xunit;

namespace UsingViewComponents.Tests {

 public class SummaryViewComponentTests {

 [Fact]
 public void TestSummary() {

 // Arrange
 var mockRepository = new Mock<ICityRepository>();
 mockRepository.SetupGet(m => m.Cities).Returns(new List<City> {
 new City { Population = 100 },
 new City { Population = 20000 },
 new City { Population = 1000000 },
 new City { Population = 500000 }
 });

Figure 22-7. Providing context data to a view component

Chapter 22 ■ View Components

713

 var viewComponent
 = new CitySummary(mockRepository.Object);

 // Act
 ViewViewComponentResult result
 = viewComponent.Invoke(false) as ViewViewComponentResult;

 // Assert
 Assert.IsType(typeof(CityViewModel), result.ViewData.Model);
 Assert.Equal(4, ((CityViewModel)result.ViewData.Model).Cities);
 Assert.Equal(1520100,
 ((CityViewModel)result.ViewData.Model).Population);
 }
 }
}

to arrange the test, i created a fake repository and passed it to the constructor of the CitySummary
class to create a new instance of the view component. For the act section of the test, i called the Invoke
method, which provided me with a result object. the view component selects a razor view, so i cast the
result to a ViewViewComponentResult and access the view model object through the ViewData.Model
property it provides. For the assert section of the test, i check the type of the view model data and the
values it contains.

Creating Asynchronous View Components
All of the examples so far in this chapter have been synchronous view components, which can be recognized
because they define the Invoke method. If your view component relies on asynchronous APIs, then you can
create an asynchronous view component by defining an InvokeAsync method that returns a Task. When
Razor receives the Task from the InvokeAsync method, it will wait for it to complete and then insert the
result into the main view. To prepare for this example, right-click the UsingViewComponents project item in
the Solution Explorer, select Edit UsingViewComponents.csproj, and make the change shown in
Listing 22-26 to add a new package to the project.

Listing 22-26. Adding a Package in the UsingViewComponents.csproj File

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0 " />
 <PackageReference Include="System.Net.Http" Version="4.3.2" />
 </ItemGroup>

</Project>

Chapter 22 ■ View Components

714

The System.Net.Http package provides an API for making asynchronous HTTP requests, which I will
use to query the Apress.com web site. Listing 22-27 shows the contents of a class file called PageSize.cs,
which I added to the Components folder and used to create an asynchronous view component.

Listing 22-27. The Contents of the PageSize.cs File in the Components Folder

using System.Net.Http;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Mvc;

namespace UsingViewComponents.Components {

 public class PageSize : ViewComponent {

 public async Task<IViewComponentResult> InvokeAsync() {
 HttpClient client = new HttpClient();
 HttpResponseMessage response
 = await client.GetAsync("http://apress.com");
 return View(response.Content.Headers.ContentLength);
 }
 }
}

The InvokeAsync method uses the async and await keywords, described in Chapter 4, to consume the
asynchronous API provided by the HttpClient class and get the length of the content returned by sending
a GET request to Apress.com. The length is passed to the View method, which selects the default partial view
associated with the view component.

To create the view, I added the Views/Shared/Components/PageSize folder to the project and added a
view file called Default.cshtml, with the content shown in Listing 22-28.

Listing 22-28. The Contents of the Default.cshtml File in the Views/Shared/Components/PageSize Folder

@model long
<div class="m-1 p-1 bg-info text-white">Page size: @Model</div>

The final step is to use the component, which I have done in the _Layout.cshtml file, as shown in
Listing 22-29.

Listing 22-29. Using an Asynchronous Component in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div class="bg-primary m-1 p-1">
 <div class="row text-white">
 <div class="col-7"><h1>Products</h1></div>
 <div class="col-5">
 @await Component.InvokeAsync("CitySummary",

http://dx.doi.org/10.1007/978-1-4842-3150-0_4

Chapter 22 ■ View Components

715

 new { showList = true })
 </div>
 </div>
 </div>
 <div class="m-1 p-1">@RenderBody()</div>
 @await Component.InvokeAsync("PageSize")
</body>
</html>

If you start the application, you will see a new addition in the content presented by the browser, as
shown in Figure 22-8. The number displayed may change when you run the example, since Apress updates
its web site often.

Creating Hybrid Controller/View Component Classes
View components often provide a summary or snapshot of functionality that is handled in-depth by a
controller. For a view component that summarizes a shopping basket, for example, there will often be a link
that targets a controller that provides a detailed list of the products in the basket and that can be used to
check out and complete the purchase.

In this situation, you can create a class that is a controller and a view component, which allows for related
functionality to be grouped together and reduces code duplication. To demonstrate, I added a class file called
CityController.cs to the Controllers folder and used it to define the controller shown in Listing 22-30.

Listing 22-30. The Contents of the CityController.cs File in the Controllers Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ViewComponents;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using UsingViewComponents.Models;

namespace UsingViewComponents.Controllers {

 [ViewComponent(Name = "ComboComponent")]
 public class CityController : Controller {
 private ICityRepository repository;

 public CityController(ICityRepository repo) {
 repository = repo;
 }

Figure 22-8. Creating an asynchronous view component

Chapter 22 ■ View Components

716

 public ViewResult Create() => View();

 [HttpPost]
 public IActionResult Create(City newCity) {
 repository.AddCity(newCity);
 return RedirectToAction("Index", "Home");
 }

 public IViewComponentResult Invoke() => new ViewViewComponentResult() {
 ViewData = new ViewDataDictionary<IEnumerable<City>>(ViewData,
 repository.Cities)
 };
 }
}

The ViewComponent attribute is applied to classes that don’t inherit from the ViewComponent base
class and whose name doesn’t end with ViewComponent, meaning that the normal discovery process
wouldn’t normally categorize the class as a view component. The Name property sets the name by which
the class can be referred to when applying the class using the @Component.Invoke expression in the parent
view. In this example, I used the Name property to set the name of the view component part of the class to
ComboComponent. This name will be used to invoke the view component and used to locate its views.

Since hybrid classes don’t inherit from the ViewComponent base class, they don’t have access to the
convenience methods for creating IViewComponentResult objects, which means that I have to create the
ViewViewComponentResult object directly, just as would be required in a POCO view component.

Creating the Hybrid Views
A hybrid class requires two sets of views: those that are rendered when the class is used as a controller and
those that are rendered when the class is used as a view component. First, I created the Views/City folder
and added a view file called Create.cshtml, the contents of which are shown in Listing 22-31.

Listing 22-31. The Contents of the Create.cshtml File in the Views/City Folder

@model City
@{
 ViewData["Title"] = "Create City";
 Layout = "_Layout";
}

<form method="post" asp-action="Create">
 <div class="form-group">
 <label asp-for="Name">Name:</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Country">Country:</label>
 <input class="form-control" asp-for="Country" />
 </div>
 <div class="form-group">
 <label asp-for="Population">Population:</label>
 <input class="form-control" asp-for="Population" />
 </div>

Chapter 22 ■ View Components

717

 <button type="submit" class="btn btn-primary">Create</button>
 <a class="btn btn-secondary" asp-controller="Home"
 asp-action="Index">
 Cancel

</form>

This view presents a simple form for creating new City objects. The Create button sends a POST request
to the Create action on the City controller, while the Cancel button sends a GET request to the Index action
on the Home controller.

Next, I created the Views/Shared/Components/ComboComponent folder and added a view file called
Default.cshtml with the content shown in Listing 22-32. I placed the partial view in the Views/Shared
folder because it will be the controller whose view uses the view component whose name will be included in
the path used to locate the view.

Listing 22-32. The Default.cshtml File in the Views/Shared/Components/ComboComponent Folder

@model IEnumerable<City>

<table class="table table-sm table-bordered">
 <tr>
 <td>Biggest City:</td>
 <td>
 @Model.OrderByDescending(c => c.Population).First().Name
 </td>
 </tr>
</table>

 Create City

This partial view receives a sequence of City objects that it sorts using LINQ to select the one with the
largest Population value. There is also an anchor element, formatted to appear as a button, which targets
the Create action on the City controller.

 ■ Tip notice that i explicitly specified the City controller for the a element in Listing 22-32. UrLs are
generated using the context data provided by the parent view, which means that the default controller is the one
that is handling the request, not the one that is also a view component. if i had omitted the asp-controller
attribute, the link would have targeted the Create method on the Home controller.

Applying the Hybrid Class
The final step is to apply the hybrid class as a view component in the shared layout using the name specified
by the ViewComponent attribute, as shown in Listing 22-33.

Chapter 22 ■ View Components

718

Listing 22-33. Applying a Hybrid Class in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>
 <link asp-href-include="lib/bootstrap/dist/css/*.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div class="bg-primary m-1 p-1">
 <div class="row text-white">
 <div class="col-7"><h1>Products</h1></div>
 <div class="col-5">
 @await Component.InvokeAsync("ComboComponent")
 </div>
 </div>
 </div>
 <div class="m-1 p-1">@RenderBody()</div>
 @await Component.InvokeAsync("PageSize")
</body>
</html>

The result is a view component that is backed up by its own integrated controller (or, if you prefer, a
controller that has its own integrated view component). If you run the application, you will see that London is
listed as the most populous city. Click the Create City button and you will be presented with a form that lets
you add a new City to the application. Fill in and submit the form, and the controller will receive the data,
update the repository, and redirect the browser to the default URL for the application. If you have added a
City whose population exceeds the others in the repository, then the output from the view component will
change, as shown in Figure 22-9.

Chapter 22 ■ View Components

719

Summary
I introduced view components in this chapter, which is a new feature in ASP.NET Core MVC that replaces the
child actions feature from previous MVC versions. I demonstrated how to create POCO view components
and how to use the ViewComponent base class, and I showed you the three different types of result that view
components can produce, including the selection of partial views for including in the parent view. I finished
the chapter by demonstrating how to add view component functionality to a controller class to reduce
code duplication and simplify an application. In the next chapter, I introduce tag helpers, which are used to
transform HTML elements in views.

Figure 22-9. Using a hybrid controller/view component class

721© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_23

CHAPTER 23

Understanding Tag Helpers

Tag helpers are a new feature that has been introduced in ASP.NET Core MVC and are C# classes that
transform HTML elements in a view. Common uses for tag helpers include generating URLs for forms using
the application’s routing configuration, ensuring that elements of a specific type are styled consistently, and
replacing custom shorthand elements with commonly used fragments of content. In this chapter, I describe
how tag helpers work and how custom tag helpers are created and applied. In Chapter 24, I describe the
built-in tag helpers that support HTML forms, and in Chapter 25 I describe the other built-in tag helpers that
are provided by MVC. Table 23-1 puts tag helpers in context.

TAG HELPER COMPONENTS

The ASP.NET Core 2 platform introduces tag helper components, which are classes that modify a
specific piece of HTML in the responses sent to clients and that can be used by tag helpers. I don’t
describe this feature because the implementation is awkwad and of little use to most MVC developers.
If you want to transform content in the responses sent to clients, then use the tag helper features
described in this chapter.

Table 23-1. Putting Tag Helpers in Context

Question Answer

What are they? Tag helpers are classes that manipulate HTML elements, either to change
them in some way, to supplement them with additional content, or to replace
them entirely with new content.

Why are they useful? Tag helpers allow view content to be generated or transformed using C# logic,
ensuring that the HTML sent to the client reflects the state of the application.

How are they used? The HTML elements to which tag helpers are applied are selected based on
the name of the class or through the use of the HTMLTargetElement attribute.
When a view is rendered, elements are transformed by tag helpers and
included in the HTML sent to the client.

Are there any pitfalls or
limitations?

It can be easy to get carried away and generate complex sections of HTML
content using tag helpers, which is something that is more readily achieved
using view components, as described in Chapter 22.

Are there any alternatives? You don’t have to use tag helpers, but they make it easy to generate complex
HTML in MVC applications.

https://doi.org/10.1007/978-1-4842-3150-0_23
http://dx.doi.org/10.1007/978-1-4842-3150-0_24
http://dx.doi.org/10.1007/978-1-4842-3150-0_25
http://dx.doi.org/10.1007/978-1-4842-3150-0_22

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

722

Table 23-2 summarizes the chapter.

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called Cities.

Creating the Model and Repository
I created the Models folder, added a file called City.cs, and used it to define the class shown in Listing 23-1.

Listing 23-1. The Contents of the City.cs File in the Models Folder

namespace Cities.Models {

 public class City {
 public string Name { get; set; }
 public string Country { get; set; }
 public int? Population { get; set; }
 }
}

Table 23-2. Chapter Summary

Problem Solution Listing

Transform an HTML element Create a tag helper and register it using the @
addTagHelper expression in a view or in a view
imports file

10–12

Manage the scope of a tag helper Use the HtmlTargetElement attribute 13–17

Support a shorthand element Use the TagHelperOutput object to generate
replacements elements

18, 19

Insert content around or inside
the target element

Use the Pre- and Post- properties provided by the
TagHelperOutput class

22–23

Receive context data in a tag
helper

Decorate a property with the ViewContext and
HtmlAttributeNotBound attributes

24, 25

Access the view model Use a ModelExpression property 26, 27

Coordinate tag helpers Use the TagHelperContext.Items property 28, 29

Suppress an element Use the SuppressOutput method 30, 31

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

723

To create a repository for the City objects, I added a class file called Repository.cs to the Models folder
and used it to define the interface and implementation class shown in Listing 23-2.

Listing 23-2. The Contents of the Repository.cs File in the Models Folder

using System.Collections.Generic;

namespace Cities.Models {

 public interface IRepository {

 IEnumerable<City> Cities { get; }
 void AddCity(City newCity);
 }

 public class MemoryRepository : IRepository {

 private List<City> cities = new List<City> {
 new City { Name = "London", Country = "UK", Population = 8539000},
 new City { Name = "New York", Country = "USA", Population = 8406000 },
 new City { Name = "San Jose", Country = "USA", Population = 998537 },
 new City { Name = "Paris", Country = "France", Population = 2244000 }
 };

 public IEnumerable<City> Cities => cities;

 public void AddCity(City newCity) {
 cities.Add(newCity);
 }
 }
}

Creating the Controller, Layout, and Views
Only one controller is required for the examples in this chapter. I created the Controllers folder, added a
class file called HomeController.cs, and used it to define the controller shown in Listing 23-3.

Listing 23-3. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Cities.Models;

namespace Cities.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

724

 public ViewResult Index() => View(repository.Cities);

 public ViewResult Create() => View();

 [HttpPost]
 public IActionResult Create(City city) {
 repository.AddCity(city);
 return RedirectToAction("Index");
 }
 }
}

The controller provides an Index action that lists the objects in the repository and a pair of Create
methods that will allow the user to use a form to create new City objects, following the same pattern as
examples in earlier chapters.

The views in this application will use a shared layout. I created the Views/Shared folder, added a layout
a file called _Layout.cshtml in the Views/Shared folder, and added the markup shown in Listing 23-4.

 ■ Note Since the purpose of this chapter is to demonstrate how tag helpers work, the layout and the views
for the example application are written using standard HTML elements only, which will be replaced as different
tag helpers are introduced.

Listing 23-4. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

Next, I created the Views/Home folder and added a file called Index.cshtml with the markup shown in
Listing 23-5.

Listing 23-5. The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<City>

@{ Layout = "_Layout"; }

<table class="table table-sm table-bordered">
 <thead class="bg-primary text-white">
 <tr>

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

725

 <th>Name</th>
 <th>Country</th>
 <th class="text-right">Population</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var city in Model) {
 <tr>
 <td>@city.Name</td>
 <td>@city.Country</td>
 <td class="text-right">@city.Population?.ToString("#,###")</td>
 </tr>
 }
 </tbody>
</table>
Create

This view uses the sequence of City objects to populate a table and includes an a element that targets
the /Home/Create URL, styled as a button using Bootstrap. For the second view, I added a file called Create.
cshtml to the Views/Home folder, with the markup shown in Listing 23-6.

Listing 23-6. The Contents of the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" action="/Home/Create">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" name="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" name="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" name="Population" />
 </div>

 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

726

I created a view imports file called _ViewImports.cshtml in the Views folder and added the expression
shown in Listing 23-7. This allows me to refer to the classes in the Models folder without using namespaces.

Listing 23-7. The Contents of the _ViewImports.cshtml File in the Views Folder

@using Cities.Models

The views in this example rely on the Bootstrap CSS package. To add Bootstrap to the example project,
I used the Bower Configuration File item template to create a file called bower.json in the root folder of the
project and added the package shown in Listing 23-8 to the dependencies section.

Listing 23-8. Adding Bootstrap in the bower.json File in the Cities Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

Configuring the Application
The final preparatory step is to configure the application, as shown in Listing 23-9. This is the same basic
configuration that I have been using in all the example projects in this part of the book, with an additional
statement that registers the repository as a service using the singleton life cycle.

Listing 23-9. The Contents of the Startup.cs File in the Cities Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Cities.Models;

namespace Cities {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<IRepository, MemoryRepository>();
 services.AddMvc();
 }

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

727

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

If you run the application, you will see the list of the City objects that the repository creates by default.
Click the Create button, fill out the form, and click the Add button; a new object will be added to the
repository, as shown in Figure 23-1.

Creating a Tag Helper
As with many MVC features, the best way to understand tag helpers is to create one, which reveals how they
operate and how they fit into an application. In the sections that follow, I go through the process of creating
and applying a tag helper that will apply the Bootstrap CSS classes for a button element so that an element
like this:

...
<button type="submit" bs-button-color="danger">Add</button>
...

will be transformed into this:

...
<button type="submit" class="btn btn-danger">Add</button>
...

Figure 23-1. Running the application

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

728

The tag helper will recognize the bs-button-color attribute and use its value to set the class attribute
on the element sent to the browser. This isn’t the most dramatic—or useful—transformation, but it provides
a foundation for explaining how tag helpers work.

Defining the Tag Helper Class
Tag helpers can be defined anywhere in the project, but it helps to keep them together because, unlike most
MVC components, they need to be registered before they can be used. I am going to create the tag helpers in
the Infrastructure/TagHelpers folder, which I added to the project.

Tag helpers are derived from the TagHelper class, which is defined in the Microsoft.AspNetCore.
Razor.TagHelpers namespace. To create a tag helper, I added a file called ButtonTagHelper.cs file to
the Infrastructure/TagHelpers folder and used it to define the class shown in Listing 23-10.

Listing 23-10. The Contents of the ButtonTagHelper.cs File in the Infrastructure/TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 public class ButtonTagHelper : TagHelper {

 public string BsButtonColor { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 output.Attributes.SetAttribute("class", $"btn btn-{BsButtonColor}");
 }
 }
}

The TagHelper class defines a Process method, which is overridden by subclasses to implement
the behavior that transforms elements. The name of the tag helper combines the name of the element it
transforms followed by TagHelper. In the case of the example, the class name ButtonTagHelper tells MVC
that this is a tag helper that operates on button elements. The scope of a tag helper can be broadened or
narrowed using attributes, which I describe in the “Managing the Scope of a Tag Helper” section, but this is
the default behavior.

 ■ Tip Asynchronous tag helpers can be created by overriding the ProcessAsync method instead of the
Process method, but this isn’t required for most helpers, which tend to make small and focused changes to
HTML elements. The default implementation of ProcessAsync calls the Process method anyway. You can see
an example of an asynchronous tag helper in Chapter 24.

http://dx.doi.org/10.1007/978-1-4842-3150-0_24

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

729

Receiving Context Data
Tag helpers receive information about the element they are transforming through an instance of the
TagHelperContext class, which is received as an argument to the Process method and which defines the
properties described in Table 23-3.

Although you can access details of the element’s attributes through the AllAttributes dictionary,
a more convenient approach is to define a property whose name corresponds to the attribute you are
interested in, like this:

...
public string BsButtonColor { get; set; }
...

When a tag helper is being used, MVC inspects the properties it defines and sets the value of any whose
name matches attributes applied to the HTML element. As part of this process, MVC will try to convert an
attribute value to match the type of the C# property so that bool properties can be used to receive true and
false attribute values and int properties can be used to receive numeric attribute values such as 1 and 2.

WHAT HAPPENED TO HTML HELPERS?

Earlier versions of ASP.NET MVC used HTML helpers to generate form elements. HTML helpers were
methods accessed through razor expressions that begin with @Html so that creating an input element
for the Population property would be done like this:

...
@Html.TextBoxFor(m => m.Population)
...

The problem with HTML helper expressions is that they don’t fit with the structure of HTML elements, which
leads to awkward expressions like this one, which adds Bootstrap styles to the element that is produced:

...
@Html.TextBoxFor(m => m.Population, new { @class = "form-control" })
...

Table 23-3. The TagHelperContext Properties

Name Description

AllAttributes This property returns a read-only dictionary of the attributes
applied to the element being transformed, indexed by name
and by index.

Items This property returns a dictionary that is used to coordinate
between tag helpers, as described in the “Coordinating
Between Tag Helpers” section.

UniqueId This property returns a unique identifier for the element
being transformed.

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

730

Attributes have to be expressed in a dynamic object and have to be prefixed with @ if they are reserved
C# words, such as class. As the HTML elements that are required become more complex, the HTML
helper expression becomes more awkward. Tag helpers remove the awkwardness by using HTML
attributes, like this:

...
<input class="form-control" asp-for="Population" />
...

The result is a more natural fit with the nature of HTML and produces views that are easier to read and
understand. MVC still supports HTML helpers (and, in fact, tag helpers use HTML helpers behind the
scenes), so you can use them for backward compatibility in views originally developed for MVC 5, but
new views should take advantage of the more natural approach that tag helpers provide.

The name of the attribute is automatically converted from the default HTML style, bs-button-color, to
the C# style, BsButtonColor. You can use any attribute prefix except asp- (which Microsoft uses) and data-
(which is reserved for custom attributes that are sent to the client). In the example, I use this attribute to
receive the color scheme to apply to the button element in the Process method, as follows:

...
output.Attributes.SetAttribute("class", $"btn btn-{BsButtonColor}");
...

Properties for which there are no corresponding HTML element attributes are not set, which means you
should check to ensure that you are not dealing with null or default values. See the “Managing the Scope of
Tag Helper” section for details of changing the scope of a tag helper so that it is used only on elements that
define the attributes you depend on.

 ■ Tip Using the HTML attribute name for tag helper properties doesn’t always lead to readable or
understandable classes. You can break the link between the name of the property and the attribute it represents
using the HtmlAttributeName attribute, which can be used to specify the HTML attribute that the property will
represent.

Producing Output
The Process method transforms an element by configuring the TagHelperOutput object that is received as
an argument. The TagHelperOuput starts out describing the HTML element as it appears in the Razor view
and is modified through the properties and methods described in Table 23-4.

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

731

In the ButtonTagHelper class, I used the Attributes dictionary to add a class attribute to the HTML
element that specifies the Bootstrap styles for a button, including the value of the BsButtonColor property,
which means that different colors can be specified using the Bootstrap names such as primary, info, and
danger.

Registering Tag Helpers
Tag helper classes can be used only once they have been registered using the Razor @addTagHelper
expression. The set of views to which a tag helper will be applied depends on where the @addTagHelper
expression is used. For a single view, the expression appears in the view itself. For a subset of the views in
an application, the expression appears in a _ViewImports.cshtml file in the folder that contains the views
or a parent folder, such that the @addTagHelper expression in the /Views/Home/_ViewImports.cshtml file
registers tag helpers for all of the views associated with the Home controller. I want the tag helpers that I create
in this chapter to be available in all the views in the application, so I used the final option, which is to add the
@addTagHelper expression to the Views/_ViewImports.cshtml file, as shown in Listing 23-11.

Listing 23-11. Registering Tag Helpers in the _ViewImports.cshtml File in the Views Folder

@using Cities.Models
@addTagHelper Cities.Infrastructure.TagHelpers.*, Cities

Table 23-4. The TagHelperOutput Properties and Methods

Name Description

TagName This property is used to get or set the tag name for the output element.

Attributes This property returns a dictionary containing the attributes for the output element.

Content This property returns a TagHelperContent object that is used to set the content of
the element.

PreElement This property returns a TagHelperContext object that is used to insert content in
the view before the output element. See the “Prepending and Appending Content
and Elements” section.

PostElement This property returns a TagHelperContext object that is used to insert content in
the view after the output element. See the “Prepending and Appending Content
and Elements” section.

PreContent This property returns a TagHelperContext object that is used to insert content
before the output element’s content. See the “Prepending and Appending Content
and Elements” section.

PostContent This property returns a TagHelperContext object that is used to insert content
after the output element’s content. See the “Prepending and Appending Content
and Elements” section.

TagMode This property specifies how the output element will be written, using a value from
the TagMode enumeration. See the “Creating Shorthand Elements” section.

SupressOuput() Calling this method excludes an element from the view. See the “Suppressing the
Output Element” section.

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

732

The first part of the argument specifies the names of the tag helper classes, with support for wildcards,
and the second part specifies the name of the assembly in which they are defined. In the listing, I have
registered any tag helper in the Cities.Infrastructure.TagHelpers namespace from the Cities assembly.

Using a Tag Helper
The final step is to use the tag helper to transform an element. In Listing 23-12, I have removed the class
attribute from the button element in the Create.cshtml view and replaced it with the attribute that the
ButtonTagHelper class looks for.

Listing 23-12. Using a Tag Helper in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" action="/Home/Create">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" name="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" name="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" name="Population" />
 </div>

 <button type="submit" bs-button-color="danger">Add</button>
 Cancel
</form>

If you run the application and click the Create button, the browser will request the /Home/Create URL,
and you will see that the style and color of the Add button has changed, as shown in Figure 23-2.

Figure 23-2. Using a tag helper to style a button

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

733

UNIT TESTING A TAG HELPER

Unit testing a tag helper class is a relatively simple process that hinges on providing the Process
method with meaningful content to work with. Here is an example unit test for the tag helper in
Listing 23-12:

using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Cities.Infrastructure.TagHelpers;
using Microsoft.AspNetCore.Razor.TagHelpers;
using Xunit;

namespace Cities.Tests {

 public class TagHelperTests {

 [Fact]
 public void TestTagHelper() {
 // Arrange
 var context = new TagHelperContext(
 new TagHelperAttributeList(),
 new Dictionary<object, object>(),
 "myuniqueid");

 var output = new TagHelperOutput("button",
 new TagHelperAttributeList(), (cache, encoder) =>
 Task.FromResult<TagHelperContent>
 (new DefaultTagHelperContent()));

 // Act
 var tagHelper = new ButtonTagHelper {
 BsButtonColor = "testValue"
 };
 tagHelper.Process(context, output);

 // Assert
 Assert.Equal($"btn btn-{tagHelper.BsButtonColor}",
 output.Attributes["class"].Value);
 }
 }
}

Most of the work in this unit test sets up the TagHelperContext and TagHelperOutput objects so they
can be passed to the Process method of the tag helper and inspected to ensure that the HTML element
has been transformed correctly. The amount of effort required to prepare a tag helper for testing
depends, naturally enough, on the complexity of the HTML it operates on and the degree by which it is
transformed. Most tag helpers are relatively simple, however, and can be tested by following the basic
pattern shown earlier.

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

734

Managing the Scope of a Tag Helper
Tag helpers are applied to all the elements of a given type, which means that the Process method of the
ButtonTagHelper class created in the previous section will be invoked for every button element in every
view in the application. This isn’t always useful. To give an example of the problem, I added another button
element to the Create.cshtml view, as shown in Listing 23-13.

Listing 23-13. Adding a Button Element in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" action="/Home/Create">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" name="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" name="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" name="Population" />
 </div>

 <button type="submit" bs-button-color="danger">Add</button>
 <button type="reset" class="btn btn-primary" >Reset</button>
 Cancel
</form>

The new button element already has a class attribute and doesn’t require the transformation
performed by the ButtonTagHelper class. But if you run the application and request the /Home/Create URL,
you will see that a problem has arisen, as illustrated by Figure 23-3.

Figure 23-3. The effect of the default scope of a tag helper

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

735

You can see the cause of the poor formatting by looking at the HTML sent to the browser, which reveals
a problem with the class attribute, as follows:

<button type="reset" class="btn btn-">Reset</button>

MVC applied the ButtonTagHelper to the new button element but doesn’t set a value for the
BsButtonColor property because there is no corresponding bs-button-color attribute on the HTML
element. As a consequence, the tag helper replaces the class attribute with one that doesn’t correctly
specify Bootstrap styles and produces a poorly formatted element.

Narrowing the Scope of a Tag Helper
There are two possible approaches to solving this problem. The first is to modify the ButtonTagHelper class
so that it is sensitive to the different button elements it might encounter. For the example application, this
would invoke checking to see whether there is a bs-button-color attribute and making sure not to replace
a class attribute if one has been defined. The problem with this approach is that the tag helper class gets
more and more complicated as views that contain button elements are added to the application, and all
of the new additional complexity describes the conditions under which the ButtonTagHelper class won’t
perform its transformation.

The second approach is to allow a tag helper to describe restrictions on how it is used, narrowing the
scope in which it will be applied. Tag helper restrictions are applied using the HtmlTargetElement attribute,
as shown in Listing 23-14.

Listing 23-14. Narrowing Scope in the ButtonTagHelper.cs File in the Infrastructure/TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 [HtmlTargetElement("button", Attributes = "bs-button-color", ParentTag = "form")]
 public class ButtonTagHelper : TagHelper {

 public string BsButtonColor { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 output.Attributes.SetAttribute("class", $"btn btn-{BsButtonColor}");
 }
 }
}

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

736

The HtmlTargetElement attribute describes the elements to which the tag helper applies. The first
argument specifies the element type and supports the additional named properties described in Table 23-5.

In Listing 23-14, I restricted the ButtonTagHelper class so that it is applied only to button elements
that have the bs-button-color attribute and whose parent is a form element. If you run the application and
request the /Home/Create URL, you will see that the Reset button is no longer transformed since it lacks the
required attribute, as shown in Figure 23-4.

Widening the Scope of a Tag Helper
The HtmlTargetElement attribute can also be used to widen the scope of a tag helper so that it matches a
broader range of elements. This is useful when you need to perform the same transformation on multiple
element types, which goes against the premise of matching elements based on the tag helper class name, as
shown in Listing 23-15.

Table 23-5. The HtmlTargetElement Properties

Name Description

Attributes This property is used to specify that a tag helper should be applied only to elements that
have a given set of attributes, supplied as a comma-separated list. An element must have
all of the specified attributes. An attribute name that ends with an asterisk will be treated
like a prefix so that bs-button-* will match bs-button-color, bs-button-size, and so
on.

ParentTag This property is used to specify that a tag helper should be applied only to elements that
are contained within an element of a given type.

TagStructure This property is used to specify that a tag helper should be applied only to elements
whose tag structure corresponds to the given value from the TagStructure enumeration,
which defines Unspecified, NormalOrSelfClosing, and WithoutEndTag.

Figure 23-4. Narrowing the scope of a tag helper

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

737

Listing 23-15. Widening Scope in the ButtonTagHelper.cs File in the Infrastructure/TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 [HtmlTargetElement(Attributes = "bs-button-color", ParentTag = "form")]
 public class ButtonTagHelper : TagHelper {

 public string BsButtonColor { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 output.Attributes.SetAttribute("class", $"btn btn-{BsButtonColor}");
 }
 }
}

This listing omits the element type for HtmlTargetElement, which means that the tag helper will be
applied to any element that has a bs-button-color attribute, regardless of the element type. In Listing 23-16,
I have modified the a element in the form, which uses the same set of Bootstrap styles as button elements so
that it will be transformed by the tag helper.

Listing 23-16. Modifying an Anchor Element in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" action="/Home/Create">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" name="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" name="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" name="Population" />
 </div>

 <button type="submit" bs-button-color="danger">Add</button>
 <button type="reset" class="btn btn-primary" >Reset</button>
 <a bs-button-color="primary" href="/Home/Index">Cancel
</form>

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

738

Broadening the scope of a tag helper means you don’t have to create tag helpers that repeat the same
operation on different element types. Some care is required, however, because it is easy to create a tag helper
that will start matching elements too broadly in the future as the contents of the views in the application
evolves. A more balanced approach is to apply the HtmlTargetElement attribute multiple times, specifying
the complete set of elements that will be transformed as a combination of narrowly defined matches, as
shown in Listing 23-17.

Listing 23-17. Balancing Scope in the ButtonTagHelper.cs File in the Infrastructure/TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 [HtmlTargetElement("button", Attributes = "bs-button-color", ParentTag = "form")]
 [HtmlTargetElement("a", Attributes = "bs-button-color", ParentTag = "form")]
 public class ButtonTagHelper : TagHelper {

 public string BsButtonColor { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 output.Attributes.SetAttribute("class", $"btn btn-{BsButtonColor}");
 }
 }
}

This configuration has the same effect on the application but ensures that the tag helper doesn’t cause
problems if I start adding bs-button-color attributes to different element types for a different reason later in
the development process.

ORDERING TAG HELPER EXECUTION

As a general rule, it is a good idea to use only one tag helper on any given HTML element. That’s
because it is easy to create a situation where one tag helper tramples on the transformation applied
by another, overwriting attribute values or content. If you do need to apply multiple tag helpers, then
you can control the sequence in which they execute by setting the Order property, which is inherited
from the TagHelper base class. Managing the sequence can help minimize the conflicts between tag
helpers, although it is still easy to encounter problems.

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

739

Advanced Tag Helper Features
The previous section demonstrated how to create a basic tag helper, but that just scratches the surface of
what’s possible. In the sections that follow, I show more advanced uses for tag helpers and the features they
provide.

Creating Shorthand Elements
Tag helpers are not restricted to transforming the standard HTML elements and can also be used to replace
custom elements with commonly used content. This can be a useful feature for making views more concise
and making their intent more obvious. To demonstrate, I replaced the button elements in the Create.
cshtml view with the custom elements shown in Listing 23-18.

Listing 23-18. Adding Custom HTML Elements in the Create.cshtml File

@model City

@{ Layout = "_Layout"; }

<form method="post" action="/Home/Create">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" name="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" name="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" name="Population" />
 </div>
 <formbutton type="submit" bg-color="danger" />
 <formbutton type="reset" />
 <a bs-button-color="primary" href="/Home/Index">Cancel
</form>

The formbutton element isn’t part of the HTML specification and won’t be understood by browsers.
Instead, I am going to use these elements as a shorthand for generating the button elements that the form
requires. I added a class file called FormButtonTagHelper.cs to the Infrastructure/TagHelper folder and
defined the class shown in Listing 23-19.

 ■ Tip When dealing with custom elements that are not part of the HTML specification, you must apply the
HtmlTargetElement attribute and specify the element name, as shown in Listing 23-19. The convention of
applying tag helpers to elements based on the class name works only for standard element names.

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

740

Listing 23-19. The FormButtonTagHelper.cs File in the Infrastructure/TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 [HtmlTargetElement("formbutton")]
 public class FormButtonTagHelper : TagHelper {

 public string Type { get; set; } = "Submit";

 public string BgColor { get; set; } = "primary";

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 output.TagName = "button";
 output.TagMode = TagMode.StartTagAndEndTag;
 output.Attributes.SetAttribute("class", $"btn btn-{BgColor}");
 output.Attributes.SetAttribute("type", Type);
 output.Content.SetContent(Type == "submit" ? "Add" : "Reset");
 }
 }
}

The Process method uses the properties of the TagHelperOuput object to generate a completely
different element: the TagName property is used to specify a button element, the TagMode property is used to
specify that the element is written using start and end tags, the Attributes.SetAttribute method is used to
define a class attribute with Bootstrap styles, and the Content property is used to set the element content.

 ■ Tip Notice that I set the type attribute on the output element in Listing 23-19. This is because any
attribute for which there is a property defined by a tag helper is omitted from the output element. This is usually
a good idea because it stops the attributes used to configure tag helpers from appearing in the HTML sent
to the browser. However, in this case, I used the type attribute to configure the tag helper, and I want it to be
present in the output element as well.

Setting the TagName property is important because the output element is written in the same style as the
custom element by default. In Listing 23-18, I used a self-closing tag, like this:

...
<formbutton type="submit" bg-color="danger" />
...

Since I want the output element to contain content, I have to explicitly specify the TagMode.Start
TagAndEndTag enumeration value so that separate start and end tags are used.

The Content property returns an instance of the TagHelperContent class, which is used to set the
content of elements. Table 23-6 describes the most important TagHelperContent methods.

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

741

In Listing 23-19, the tag helper uses the SetContent method to set the content of the output element
based on the value of the type attribute, which is provided through the Type property. If you run the
application and request the /Home/Create URL, you will see that the custom formbutton elements have
been replaced with standard HTML elements so that these elements:

...
<formbutton type="submit" bg-color="danger" />
<formbutton type="reset" />
...

are transformed into these elements:

<button class="btn btn-danger" type="submit">Add</button>
<button class="btn btn-primary" type="reset">Reset</button>

Prepending and Appending Content and Elements
The TagHelperOutput class provides four properties that make it easy to inject new content into a view so
that it surrounds an element or the element’s content, as described in Table 23-7. In the sections that follow,
I explain how you can insert content around and inside the target element.

Table 23-7. The TagHelperOutput Properties for Appending Context and Elements

Name Description

PreElement This property is used to insert elements into the view before the target element.

PostElement This property is used to insert elements into the view after the target element.

PreContent This property is used to insert content into the target element, before any existing
content.

PostContent This property is used to insert content into the target element, after any existing
content.

Table 23-6. Useful TagHelperContent Methods

Name Description

SetContent(text) This method sets the content of the output element. The string argument is
encoded so that it is safe for inclusion in an HTML element.

SetHtmlContent(html) This method sets the content of the output element. The string argument is
assumed to be safely encoded. Use with caution.

Append(text) This method safely encodes the specified string and adds it to the content of
the output element.

AppendHtml(html) This method adds the specified string to the content of the output element
without performing any encoding. Use with caution.

Clear() This method removes the content of the output element.

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

742

Inserting Content Around the Output Element
The first TagHelperOuput properties are PreElement and PostElement, which are used to insert elements
into the view before and after the output element. As a demonstration, I added a class file called
ContentWrapperTagHelper.cs and used it to create the tag helper class shown in Listing 23-20.

Listing 23-20. The ContentWrapperTagHelper.cs File in the Infrastructure/TagHelpers Folder

using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 [HtmlTargetElement("div", Attributes = "title")]
 public class ContentWrapperTagHelper : TagHelper {

 public bool IncludeHeader { get; set; } = true;
 public bool IncludeFooter { get; set; } = true;

 public string Title { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 output.Attributes.SetAttribute("class", "m-1 p-1");

 TagBuilder title = new TagBuilder("h1");
 title.InnerHtml.Append(Title);

 TagBuilder container = new TagBuilder("div");
 container.Attributes["class"] = "bg-info m-1 p-1";

 container.InnerHtml.AppendHtml(title);

 if (IncludeHeader) {
 output.PreElement.SetHtmlContent(container);
 }

 if (IncludeFooter) {
 output.PostElement.SetHtmlContent(container);
 }
 }
 }
}

This tag helper transforms div elements that have a title attribute, and it works by using the PreElement
and PostElement properties to add a header and a footer element that will surround the output element.

When generating new HTML elements, you can use standard C# string formatting to create the content
you require, but this is an awkward and error-prone process for all but the simplest elements. A more robust
approach is to use the TagBuilder class, which is defined in the Microsoft.AspNetCore.Mvc.Rendering
namespace and which allows elements to be created in a more structured manner. The TagHelperContent class
defines methods that accept TagBuilder objects, which makes it easy to create HTML content in tag helpers.

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

743

This tag helper uses the TagBuilder class to create an h1 element that is contained in a div element
that has been styled with Bootstrap classes. There are optional bool include-header and include-footer
attributes used to specify where the content is injected, and the default is to add elements before and after
the output element. In Listing 23-21, I have updated the shared layout so that it contains an element that will
be transformed by the tag helper.

Listing 23-21. Enabling a Tag Helper in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div title="Cities">@RenderBody()</div>
</body>
</html>

If you run the application, you will see that the tag helper is applied throughout the application and
adds a header and footer to every page, as illustrated by Figure 23-5.

Figure 23-5. Inserting HTML elements with a tag helper

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

744

Inserting Content Inside the Output Element
The PreContent and PostContent properties are used to insert content inside the output element,
surrounding the original contents. As a demonstration, I added a class called TableCellTagHelper.cs to the
Infrastructure/TagHelpers folder and used it to define the class shown in Listing 23-22.

Listing 23-22. The TableCellTagHelper.cs File in the Infrastructure/TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 [HtmlTargetElement("td", Attributes = "wrap")]
 public class TableCellTagHelper : TagHelper {

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 output.PreContent.SetHtmlContent("<i>");
 output.PostContent.SetHtmlContent("</i>");
 }
 }
}

This tag helper operates on td elements with the wrap attribute and inserts b and i elements around
the output element’s content. In Listing 23-23, I have added the wrap attribute to one of the table cells in the
Index.cshtml view file.

Listing 23-23. Adding an HTML Attribute in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<City>

@{ Layout = "_Layout"; }

<table class="table table-sm table-bordered">
 <thead class="bg-primary text-white">
 <tr>
 <th>Name</th>
 <th>Country</th>
 <th class="text-right">Population</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var city in Model) {
 <tr>
 <td wrap>@city.Name</td>
 <td>@city.Country</td>
 <td class="text-right">@city.Population?.ToString("#,###")</td>
 </tr>
 }
 </tbody>
</table>
Create

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

745

If you run the application, you will see that the first column of cells in the table that lists the City objects
is shown in bold, italic text. Examine the HTML sent to the browser and you will see how the content added
through PreContent and PostContent properties appears on both sides of the element’s original content, as
follows:

...
<tr>
 <td wrap><i>London</i></td>
 <td>UK</td>
 <td class="text-right">8,539,000</td>
</tr>
...

 ■ Tip Notice that the wrap attribute has been left on the output element. This is because I didn’t define a
property in the tag helper class that corresponds to this attribute. If you want to prevent attributes from being
included in the output, then define a property for them in the tag helper class, even if you don’t need to use the
attribute value.

Getting View Context Data and Using Dependency Injection
One of the most common uses for tag helpers—including the built-in helpers that I described in Chapters 24
and 25—is to transform elements so they contain details of the current request or the current view model.
As an example, I added a class file called FormTagHelper.cs to the Infrastructure/TagHelpers folder and
defined the class shown in Listing 23-24.

Listing 23-24. The Contents of the FormTagHelper.cs File in the Infrastructure/TagHelpers Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.Routing;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 public class FormTagHelper : TagHelper {
 private IUrlHelperFactory urlHelperFactory;

 public FormTagHelper(IUrlHelperFactory factory) {
 urlHelperFactory = factory;
 }

 [ViewContext]
 [HtmlAttributeNotBound]
 public ViewContext ViewContextData { get; set; }

http://dx.doi.org/10.1007/978-1-4842-3150-0_24
http://dx.doi.org/10.1007/978-1-4842-3150-0_25

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

746

 public string Controller { get; set; }
 public string Action { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 IUrlHelper urlHelper = urlHelperFactory.GetUrlHelper(ViewContextData);

 output.Attributes.SetAttribute("action", urlHelper.Action(
 Action ??
 ViewContextData.RouteData.Values["action"].ToString(),
 Controller ??
 ViewContextData.RouteData.Values["controller"].ToString()));
 }
 }
}

As its name suggests, the FormTagHelper class operates on form elements, setting their action attributes
to specify where form data will be sent. If the form element has controller and action attributes, then
these values will be used to generate the target URL; otherwise, the controller and action values from the
routing data for the current request will be used.

To get context data, I added a property called ViewContextData and decorated it with two attributes, like this:

...
[ViewContext]
[HtmlAttributeNotBound]
public ViewContext ViewContextData { get; set; }
...

The ViewContext attribute denotes that the value of this property should be assigned a ViewContext
object when a new instance of the FormTagHelper class is created, as described in Chapter 18. The
ViewContext class provides details of the view that is being rendered, the routing data, and the current HTTP
request, as described in Chapter 21.

The HtmlAttributeNotBound attribute prevents MVC from assigning a value to this property if there is
a view-context attribute on the input HTML element. This is good practice, especially if you are writing tag
helpers for other developers to use.

 ■ Tip There is a built-in tag helper for the form class that can be used to target action methods and that you
should use in real projects. The helper in this section is just to demonstrate how context data can be used. See
Chapter 24 for details of the built-in tag helper.

Tag helpers can declare dependencies on services in their constructor, which are resolved using the
dependency injection feature. In this example, I declared a dependency on the IUrlHelperFactory service,
which allows outgoing URLs to be created from routing data (and is the service behind the Url property
provided by the Controller class that I described in Chapter 16). Within the Process method, the tag helper
uses the IUrlHelperFactory.GetUrlHelper method to get an IUrlHelper object that is configured using
the ViewContext object and that is then used to create a URL for the action attribute on the output element.
Listing 23-25 shows the preparation of the view, in which I have removed the action attribute so that it can
be set by the tag helper.

http://dx.doi.org/10.1007/978-1-4842-3150-0_18
http://dx.doi.org/10.1007/978-1-4842-3150-0_21
http://dx.doi.org/10.1007/978-1-4842-3150-0_24
http://dx.doi.org/10.1007/978-1-4842-3150-0_16

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

747

Listing 23-25. Removing a Form Element Attribute in the Create.cshtml File

@model City

@{ Layout = "_Layout"; }

<form method="post">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" name="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" name="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" name="Population" />
 </div>
 <formbutton type="submit" bg-color="danger" />
 <formbutton type="reset" />
 <a bs-button-color="primary" href="/Home/Index">Cancel
</form>

If you run the application, request the /Home/Create URL, and examine the HTML that is sent to the
browser, you will see that the form element has an action attribute whose value is obtained using context
data, as follows:

...
<form method="post" action="/Home/Create">
...

Working with the View Model
Tag helpers can operate on the view model, tailoring the transformations they perform or the output
they create. To demonstrate, I added a file called LabelAndInputTagHelper.cs to the Infrastructure/
TagHelpers folder and used it to define the class shown in Listing 23-26.

Listing 23-26. The LabelAndInputTagHelper.cs File in the Infrastructure/TagHelpers Folder

using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 [HtmlTargetElement("label", Attributes = "helper-for")]
 [HtmlTargetElement("input", Attributes = "helper-for")]
 public class LabelAndInputTagHelper : TagHelper {

 public ModelExpression HelperFor { get; set; }

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

748

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 if (output.TagName == "label") {
 output.TagMode = TagMode.StartTagAndEndTag;
 output.Content.Append(HelperFor.Name);
 output.Attributes.SetAttribute("for", HelperFor.Name);

 } else if (output.TagName == "input") {
 output.TagMode = TagMode.SelfClosing;
 output.Attributes.SetAttribute("name", HelperFor.Name);
 output.Attributes.SetAttribute("class", "form-control");
 if (HelperFor.Metadata.ModelType == typeof(int?)) {
 output.Attributes.SetAttribute("type", "number");
 }
 }
 }
 }
}

This tag helper transforms label and input elements that have a helper-for attribute. The important
part of this tag helper is the type of the HelperFor property, which is used to receive the value of the helper-
for attribute.

...
public ModelExpression HelperFor { get; set; }
...

The ModelExpression class is used when you want to operate on part of the view model, which is most
easily explained by jumping forward and showing how the tag helper is applied in the view, as shown in
Listing 23-27.

Listing 23-27. Applying a Tag Helper in the Create.cshtml File in the Views/Home Folder

@model Cities.Models.City

@{ Layout = "_Layout"; }

<form method="post">
 <div class="form-group">
 <label helper-for="Name" />
 <input helper-for="Name" />
 </div>
 <div class="form-group">
 <label helper-for="Country" />
 <input helper-for="Country" />
 </div>
 <div class="form-group">
 <label helper-for="Population"/>
 <input helper-for="Population" />
 </div>

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

749

 <formbutton type="submit" bg-color="danger" />
 <formbutton type="reset" />
 <a bs-button-color="primary" href="/Home/Index">Cancel
</form>

The value of the helper-for attribute is a property from the Model class, which is detected by MVC and
presented to the tag helper as a ModelExpression object.

I am not going to describe the ModelExpression class in any detail because any introspection on types
leads to endless lists of classes and properties. Further, MVC comes with a useful set of built-in tag helpers
that use the view model to transform elements, as described in Chapter 24, and which means that you don’t
need to create your own.

For the example tag helper, I use two basic features that are worth describing. The first is to get the
name of the model property so that I can include it in the output element, like this:

...
output.Content.Append(HelperFor.Name);
output.Attributes.SetAttribute("for", HelperFor.Name);
...

The Name property returns the name of the model property. The second feature is to get the type of the
model property so that I can change the value of the type attribute on input elements, like this:

...
if (HelperFor.Metadata.ModelType == typeof(int?)) {
 output.Attributes.SetAttribute("type", "number");
}
...

If you run the example, request the /Home/Create URL, and examine the HTML sent to the browser, you
will see that the following elements:

<div class="form-group">
 <label for="Name">Name</label>
 <input name="Name" class="form-control" />
</div>
<div class="form-group">
 <label for="Country">Country</label>
 <input name="Country" class="form-control" />
</div>
<div class="form-group">
 <label for="Population">Population</label>
 <input name="Population" class="form-control" type="number" />
</div>

The type attribute for the Population input element has been set to number to reflect the fact that the
City.Population property in the C# class is an int, showing how the HTML produced by a tag helper can
reflect different characteristics of the model. Depending on which browser you use, this input element will
only allow numbers to be entered.

http://dx.doi.org/10.1007/978-1-4842-3150-0_24

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

750

Coordinating Between Tag Helpers
The TagHelperContext.Items property provides a dictionary that is used to coordinate between tag helpers
that operate on elements and those that operate on their descendants. To demonstrate the use of the Items
collection, I added a class file called CoordinatingTagHelpers.cs to the Infrastructure/TagHelpers folder
and used it to define the pair of tag helpers shown in Listing 23-28.

Listing 23-28. The CoordinatingTagHelpers.cs File in the Infrastructure/TagHelpers Folder

using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 [HtmlTargetElement("div", Attributes = "theme")]
 public class ButtonGroupThemeTagHelper : TagHelper {

 public string Theme { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {
 context.Items["theme"] = Theme;
 }
 }

 [HtmlTargetElement("button", ParentTag = "div")]
 [HtmlTargetElement("a", ParentTag = "div")]
 public class ButtonThemeTagHelper : TagHelper {

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 if (context.Items.ContainsKey("theme")) {
 output.Attributes.SetAttribute("class",
 $"btn btn-{context.Items["theme"]}");
 }
 }
 }
}

The first tag helper is the ButtonGroupThemeTagHelper class, which operates on div elements that have
a theme attribute. Coordinating tag helpers can transform their own elements, but this example simply adds
the value of the theme attribute to the Items dictionary so that it is available to tag helpers that operate on
elements contained within the div element.

The second tag helper is the ButtonThemeTagHelper class, which operates on button and a elements
that are contained within a div element. This helper uses the theme value from the Items dictionary to set
the Bootstrap style for its output elements. Listing 23-29 shows a set of elements to which these helpers will
be applied.

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

751

Listing 23-29. Applying Coordinating Tag Helpers in the Create.cshtml File in the Views/Home Folder

@model Cities.Models.City

@{ Layout = "_Layout"; }

<form method="post">
 <div class="form-group">
 <label helper-for="Name" />
 <input helper-for="Name" />
 </div>
 <div class="form-group">
 <label helper-for="Country" />
 <input helper-for="Country" />
 </div>
 <div class="form-group">
 <label helper-for="Population" />
 <input helper-for="Population" />
 </div>
 <div theme="primary">
 <button type="submit">Add</button>
 <button type="reset">Reset</button>
 Cancel
 </div>
</form>

If you run the application and request the /Home/Create URL, you will see that the group of buttons
are all styled in the same way. If you change the value of the theme attribute on the div element to another
Bootstrap theme setting, such as info or danger, and reload the page, you will see the change reflected in the
styles of the buttons, as shown in Figure 23-6.

Figure 23-6. Coordinating tag helpers

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

752

Suppressing the Output Element
Tag helpers can be used to prevent an element from being included in the HTML sent to the browser by
calling the SuppressOuput method on the TagHelperOutput object that is received as an argument to the
Process method. In Listing 23-30, I have added an element to the shared layout that displays a highly visible
message but that I only want to be shown for requests to a given action.

Listing 23-30. Adding a Visible Message in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div show-for-action="Index" class="m-1 p-1 bg-danger">
 <h2>Important Message</h2>
 </div>
 <div title="Cities">@RenderBody()</div>
</body>
</html>

The show-for-action attribute specifies the name of the action for which I want to display the warning.
This wouldn’t be a useful way of controlling the inclusion of content in a real application, but it is sufficient
for an example application with only one controller and two action names. Listing 23-31 shows the contents
of the SelectiveTagHelper.cs class file, which I added to the Infrastructure/TagHelpers folder.

Listing 23-31. The SelectiveTagHelper.cs File in the Infrastructure/TagHelpers Folder

using System;
using Microsoft.AspNetCore.Mvc.Rendering;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 [HtmlTargetElement(Attributes = "show-for-action")]
 public class SelectiveTagHelper : TagHelper {

 public string ShowForAction { get; set; }

 [ViewContext]
 [HtmlAttributeNotBound]
 public ViewContext ViewContext { get; set; }

CHAPTEr 23 ■ UNdErSTANdINg TAg HELPErS

753

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {

 if (!ViewContext.RouteData.Values["action"].ToString()
 .Equals(ShowForAction, StringComparison.OrdinalIgnoreCase)) {
 output.SuppressOutput();
 }
 }
 }
}

This tag helper uses the ViewContext to get the action value from the routing data and compares
it to the value of the show-for-action attribute on the HTML element. If they don’t match, then the
SuppressOutput method is called. To see the effect, start the application and request the /Home/Index and
/Home/Create URLs. As Figure 23-7 shows, the message is displayed only when the Index action is targeted.

Summary
In this chapter, I described the use of tag helpers, which are a new addition to ASP.NET Core MVC.
I explained the role they play in a Razor view and demonstrated how custom tag helpers are created,
registered, and applied. I showed you how to control the scope of a tag helper and described the different
ways that tag helpers can transform HTML elements. In the next chapter, I describe the tag helpers that are
used to work with HTML form elements.

Figure 23-7. Suppressing elements using a tag helper

755© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_24

CHAPTER 24

Using the Form Tag Helpers

MVC provides a set of built-in tag helpers that are used to perform commonly required transformations on
HTML elements. In this chapter, I describe the tag helpers that operate on HTML forms, which include the
form, input, label, select, option, and textarea elements. In Chapter 25, I describe the other built-in tag
helpers, which provide features that are not related to forms. Table 24-1 puts the form tag helpers in context.

Table 24-1. Putting the Form Tag Helpers in Context

Question Answer

What are they? The form tag helpers are used to transform HTML form elements so that you
don’t have to write custom tag helpers to solve the most common problems.

Why are they useful? The form tag helpers ensure that HTML form elements, which include the
elements inside forms, such as label and input, are generated consistently.
For the most part, the tag helpers ensure that important attributes such as id,
name, and for are set directly using view model classes, but some of the tag
helpers can generate content as well, such as populating select elements
with option elements.

How are they used? The built-in tag helpers look for attributes prefixed with asp-, such as asp-for.

Are there any pitfalls or
limitations?

The only limitation is the way that model data has to be provided to the tag
helper that generates option elements inside of select elements. In the
“Working with Select and Option Elements” section, I describe the problem
and provide a custom tag helper that solves it.

Are there any alternatives? You can write HTML forms in views without using the tag helper attributes
at all. You could also write your own tag helpers, using the techniques that I
described Chapter 23.

https://doi.org/10.1007/978-1-4842-3150-0_24
http://dx.doi.org/10.1007/978-1-4842-3150-0_25
http://dx.doi.org/10.1007/978-1-4842-3150-0_23

Chapter 24 ■ Using the Form tag helpers

756

Table 24-2 summarizes the chapter.

Preparing the Example Project
In this chapter, I continue using the Cities project that I created in Chapter 23. For this chapter, I want
to enable the built-in tag helpers that come with MVC and disable the custom helpers that I created in
Chapter 23. Listing 24-1 shows the changes that I made to the view imports file, in which I replaced the @
addTagHelper expression for the helper classes in the Cities assembly with one that sets up the MVC tag
helpers instead, which are defined in an assembly called Microsoft.AspNetCore.Mvc.TagHelpers.

Listing 24-1. Changing the Tag Helpers in the _ViewImports.cshtml File in the Views Folder

@using Cities.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Resetting the Views and Layout
Listing 24-2 shows the contents of the Index.cshtml view, in which I have removed the attributes that are
used by the custom tag helper classes.

Table 24-2. Chapter Summary

Problem Solution Listing

Set the action attribute on a form
element

Use the form element tag helper 5

Prevent cross-site request forgery Apply the ValidateAntiForgeryToken attribute to the
action method and, optionally, set the asp-antiforgery
attribute to true on the form element

6, 7

Set the id, name, and value
attributes on an input element

Apply the asp-for attribute 8

Format a value displayed by an
input element

Apply the asp-format attribute to the input element or
apply the DisplayFormat attribute in the model class

9–12

Set the for attribute and content
of a label element

Apply the asp-for attribute 13

Change the content of label
elements to which the asp-for
attribute has been applied

Apply the Display attribute to the model class property
and use the Name property to specify the content

14

Set the id and name attributes on a
select element

Apply the asp-for attribute 15

Generate option elements Apply the asp-items attribute 16–21

Set the id and name attributes on a
textarea element

Apply the asp-for attribute 22, 23

http://dx.doi.org/10.1007/978-1-4842-3150-0_23
http://dx.doi.org/10.1007/978-1-4842-3150-0_23

Chapter 24 ■ Using the Form tag helpers

757

Listing 24-2. The Contents of the Index.cshtml File in the Views/Home Folder

@model IEnumerable<City>

@{ Layout = "_Layout"; }

<table class="table table-sm table-bordered">
 <thead class="bg-primary text-white">
 <tr>
 <th>Name</th>
 <th>Country</th>
 <th class="text-right">Population</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var city in Model) {
 <tr>
 <td>@city.Name</td>
 <td>@city.Country</td>
 <td class="text-right">@city.Population?.ToString("#,###")</td>
 </tr>
 }
 </tbody>
</table>
Create

Listing 24-3 shows the corresponding changes to the Create.cshtml file, which I have returned to using
standard HTML elements without the attributes used in Chapter 23.

Listing 24-3. The Contents of the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" action="/Home/Create">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" name="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" name="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" name="Population" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

http://dx.doi.org/10.1007/978-1-4842-3150-0_23

Chapter 24 ■ Using the Form tag helpers

758

The final change is to the shared layout, as shown in Listing 24-4.

Listing 24-4. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

If you run the application, you will see the list of cities, and you can click the Create button and fill in the
form to submit new data to the server, as shown in Figure 24-1.

Working with Form Elements
The FormTagHelper class is the built-in tag helper for form elements and is used to manage the configuration
of HTML forms so that they target the right action method based on the application’s routing configuration.
This tag helper supports the attributes described in Table 24-3.

Figure 24-1. Running the example application

Chapter 24 ■ Using the Form tag helpers

759

Setting the Form Target
The main purpose of the FormTagHelper class is to set the action attribute of the form element using the
application’s routing configuration, ensuring that the form data is always sent to the correct URL, even when
the routing scheme changes. In Listing 24-5, I have used the asp-action and asp-controller attributes to
target the Create action method on the Home controller.

 ■ Note the tag helper doesn’t set the method attribute, and if you omit it from the form element, then
the browser will use a GET request to send the form data to the client. as i explained in Chapter 17, this can
cause problems if the form data is used to modify the data in the application. it is good practice to set the
method attribute, even if you do want GET requests so that it is obvious that you have not forgotten to select
a method type.

Table 24-3. The Built-In Tag Helper Attributes for Form Elements

Name Description

asp-controller This attribute is used to specify the controller value to the
routing system for the action attribute URL. If omitted, then the
controller rendering the view will be used.

asp-action This attribute is used to specify the action method for the action
value to the routing system for the action attribute URL. If
omitted, then the action rendering the view will be used.

asp-route-* Attributes whose names begin with asp-route- are used to specify
additional values for the action attribute URL so that the asp-
route-id attribute is used to provide a value for the id segment to
the routing system.

asp-route This attribute is used to specify the name of the route that will be
used to generate the URL for the action attribute.

asp-area This attribute is used to specify the name of the area that will be
used to generate the URL for the action attribute.

asp-antiforgery This attribute controls whether anti-forgery information is added
to the view, as described in the “Using the Anti-forgery Feature”
section.

http://dx.doi.org/10.1007/978-1-4842-3150-0_17

Chapter 24 ■ Using the Form tag helpers

760

Listing 24-5. Setting the Form Target in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" asp-controller="Home" asp-action="Create">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" name="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" name="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" name="Population" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

If you run the application, request the /Home/Create URL, and examine the HTML that is sent to the
client, you will see that the tag helper adds an action attribute to the form element and sets its value using
the routing system, as follows:

<form method="post" action="/Home/Create">

Using the Anti-forgery Feature
Cross-site request forgery (CSRF) is a way to exploit a web application to take advantage of the way that
user requests are authenticated. Most web applications—including those created using ASP.NET Core—use
cookies to identify which requests are related to a specific session, with which a user identity is usually
associated.

CSRF—also known as session riding—is described in detail at http://en.wikipedia.org/wiki/Cross-
site_request_forgery but relies on the user visiting a malicious web site after using your web application
and without explicitly ending their sessions by clicking a Logout button. The application still regards the
user’s session as being active, and the cookie that the browser has stored has not yet expired. The malicious
site contains some JavaScript code that sends a form request to your application that performs an operation
without the user’s consent, where the nature of the operation will depend on the application being attacked.
Since the JavaScript code is executed by the user’s browser, the request to the application includes the
session cookie, and the application performs the operation without the user’s knowledge or consent.

If a form element doesn’t contain an action attribute—because it is being generated from the routing
system with the asp-controller and asp-acton attributes—then the FormTagHelper class automatically
enables the anti-CSRF feature, whereby a security token is added to the form in a hidden input element to
the HTML sent to the client along with a cookie. The application will process the request only if it contains
both the cookie and the hidden value from the form, which the malicious site cannot access. Each request
for the form generates a new and unique set of security tokens.

http://en.wikipedia.org/wiki/Cross-site_request_forgery
http://en.wikipedia.org/wiki/Cross-site_request_forgery

Chapter 24 ■ Using the Form tag helpers

761

If you run the application, request the /Home/Create URL, and look at the HTML sent to the browser,
you will see a hidden input element like this one:

<input name="__RequestVerificationToken" type="hidden" value="CfDJ8KuVkH8hFlRApe
 FBxTrhCFTKZe0B9BKwnWDJqLRUDk__PrEwaeCJmiBbGkwW1ZI816c_TrM5XQkJBeqNI5IL8FhuO
 RvjZuYIL-GZvnWZ62OThsZYT02HNX_Lu5LWDNWDdVoS5O5hZtzaoHLeY5lNto" />

If you use the browser’s F12 tools, you can also see the corresponding cookie that is added to the
response. Adding the security tokens to HTML responses is only part of the process; they must also be
validated by the controller, as shown in Listing 24-6.

Listing 24-6. Validating Anti-forgery Tokens in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Cities.Models;

namespace Cities.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Cities);

 public ViewResult Create() => View();

 [HttpPost]
 [ValidateAntiForgeryToken]
 public IActionResult Create(City city) {
 repository.AddCity(city);
 return RedirectToAction("Index");
 }
 }
}

The ValidateAntoForgeryToken attribute ensures that a request contains valid anti-CSRF tokens and
will throw an exception if they are absent or do not contain the expected values.

The FormTagHelper class provides the asp-antiforgery attribute to override the default anti-CSRF
behavior. If the value of the attribute is true, then the security tokens will be included in responses, even if
the form element has an action attribute. If the value of the attribute is false, then the security tokens will
be disabled. In Listing 24-7, I have explicitly enabled the feature, even though the security tokens would have
been added anyway because there is no action attribute defined on the form element.

Chapter 24 ■ Using the Form tag helpers

762

Listing 24-7. Enabling the Anti-CSRF Feature in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" asp-controller="Home" asp-action="Create"
 asp-antiforgery="true">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" name="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" name="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" name="Population" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

 ■ Tip testing the anti-CsrF feature is a little tricky. i do it by requesting the Url that contains the form
(/Home/Create for the example) and then using the browser’s F12 developer tools to locate and remove the
hidden input element from the form (or change the element’s value). When i populate the form and send it to
the application, the browser doesn’t have one part of the required data, and the request should fail and show an
error page.

Working with Input Elements
The input element is the backbone of HTML forms and provides the main means by which a user can
provide an application with unstructured data. The InputTagHelper class is used to transform input
elements so they reflect the data type and format of the view model property they are used to gather, using
the attributes described in Table 24-4.

Table 24-4. The Built-in Tag Helper Attributes for Input Elements

Name Description

asp-for This attribute is used to specify the view model property that the input element represents.

asp-format This attribute is used to specify a format for the value of the view model property that the
input element represents.

Chapter 24 ■ Using the Form tag helpers

763

Configuring Input Elements
The asp-for attribute is set to the name of a view model property, which is then used to set the name, id,
type, and value attributes of the input element. In Listing 24-8, I have applied the asp-for attribute to the
input elements in the Create.cshtml view.

Listing 24-8. Configuring Input Elements in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" asp-controller="Home" asp-action="Create"
 asp-antiforgery="true">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" asp-for="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" asp-for="Population" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

If you run the application and request the /Home/Create URL, you will see that the tag helper has used
the property specified by the asp-for attribute to tailor each input element, like this fragment (which omits
the anti-CSRF security token):

<form method="post" action="/Home/Create">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" type="text" id="Name" name="Name" value="" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" type="text" id="Country"
 name="Country" value="" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" type="number" id="Population"
 name="Population" value="" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

Chapter 24 ■ Using the Form tag helpers

764

The type attribute of the input element tells the browser how to display the element in a form. You can
see a simple outcome of this process in the input element for the Population property, for which the type
attribute has been set to number. This has been done because the C# type of the Population property is int?
and so the tag helper used the type attribute to indicate to the browser that only numeric values will be
accepted.

 ■ Note the way that the type attribute is interpreted is left to the browser. not all browsers respond to all
the type values that are defined in the html5 specification, and even when they do, there are differences in
how they are implemented. the type attribute can be a useful hint for the kind of data you are expecting in a
form, but you should use the model validation feature to ensure that users provide usable data, as described in
Chapter 27.

Table 24-5 describes the way that different C# property types are used to set the type attribute of input
elements.

Table 24-5. C# Property Types and the Input Type Elements They Generate

C# Type Input Element Type Attribute

byte, sbyte, int, uint,
short, ushort, long,
ulong

number

float, double, decimal text, with additional attributes for model
validation, as described in the following text

bool checkbox

string text

DateTime datetime

The float, double, and decimal types produce input elements whose type is text because not all
browsers allow the full range of characters that can be used to express legal values of this type. To provide
assistance to the user, the tag helper adds attributes to the input element that are used with the model
validation feature, which I describe in Chapter 27.

You can override the default mappings shown in Table 24-5 by defining the type attribute on the input
element. The tag helper won’t override the value you define, which allows you to take advantage of the
different input element types available, such as password or hidden, or the new types added in HTML5 such
as number.

One drawback of this approach is that you have to remember to set the type attribute in all the views
where input elements are generated for a given model property. If you need to override the default mapping
in multiple views, then you can apply the UIHint attribute to the property in the C# model class, specifying
one of the values shown in Table 24-6 as the attribute argument.

 ■ Tip the tag helper will set the type attribute of input elements to text if the model property isn’t one of
the types in table 24-5 and has not been decorated with the UIHint attribute.

http://dx.doi.org/10.1007/978-1-4842-3150-0_27
http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 24 ■ Using the Form tag helpers

765

Formatting Data Values
When the action method provides the view with a view model object, the tag helper uses the value of the
property given to the asp-for attribute to set the input element’s value attribute. The asp-format attribute
is used to specify how that data value is formatted.

To demonstrate, I added a new action method to the Home controller, as shown in Listing 24-9. The
action method selects the first City object from the repository and uses it as the view model for the
Create view.

Listing 24-9. Adding an Action Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Cities.Models;
using System.Linq;

namespace Cities.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Cities);

 public ViewResult Edit() => View("Create", repository.Cities.First());

Table 24-6. The UIHint Arguments and the Input Type Elements They Generate

Value Input Element Type Attribute

HiddenInput hidden

Password password

Text text

PhoneNumber tel

Url url

EmailAddress email

Time time (this value is used to display the time component of a DateTime object)

Date date (this value is used to display the date component of a DateTime object)

DateTime-local datetime-local (this value is used to display a DateTime object without
providing time zone information)

Chapter 24 ■ Using the Form tag helpers

766

 public ViewResult Create() => View();

 [HttpPost]
 [ValidateAntiForgeryToken]
 public IActionResult Create(City city) {
 repository.AddCity(city);
 return RedirectToAction("Index");
 }
 }
}

If you run the application, request the /Home/Edit URL, and examine the HTML that has been sent to
the browser, you will see that the value attributes have been populated using the view model object, like
this:

<input class="form-control" type="number" id="Population"
 name="Population" value="8539000" />

The asp-format attribute accepts a value that will be passed to the standard C# string formatting
system, as shown in Listing 24-10.

Listing 24-10. Formatting a Data Value in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" asp-controller="Home" asp-action="Create"
 asp-antiforgery="true">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" asp-for="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" asp-for="Population" asp-format="{0:#,###}" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

The attribute value is used verbatim, which means you have to include the curly brace characters and
the 0: reference, as well as the format you require. If you run the application and request the /Home/Edit
URL, you will see that the Population value has been formatted like this:

Chapter 24 ■ Using the Form tag helpers

767

<input class="form-control" type="number" id="Population"
 name="Population" value="8,539,000" />

This feature should be used with caution because you must ensure that the rest of the application
is configured to support the format you use. In this case, I have created a problem by formatting the
Population value. The tag helper has set the type attribute of the input element to number, using the default
mappings described in Table 24-5 for the Population property, but the format string I have specified has
generated a value attribute that contains non-numeric characters. The result is that browsers that respect
the number element type (not all do, remember) may not display any value in the element.

You must also ensure that the application is able to parse values in the format you use. The example
application expects to receive a Population value that can be parsed into an int, and values that contain
non-numeric characters will cause validation errors, as described in Chapter 27.

Applying Formatting via the Model Class
If you always want to use the same formatting for a model property, then you can decorate the C# class with
the DisplayFormat attribute, which is defined in the System.ComponentModel.DataAnnotations namespace.
The DisplayFormat attribute requires two arguments to format a data value: the DataFormatString
argument specifies the formatting string, and the ApplyFormatInEditMode argument specifies that
formatting should be used when values are being edited. In Listing 24-11, I have decorated the Population
attribute with the DisplayFormat attribute, using a format that can be processed by both the application and
the browser as a number.

Listing 24-11. Applying a Formatting Attribute to the Model Class in the City.cs File in the Models Folder

using System.ComponentModel.DataAnnotations;

namespace Cities.Models {

 public class City {

 public string Name { get; set; }
 public string Country { get; set; }

 [DisplayFormat(DataFormatString = "{0:F2}", ApplyFormatInEditMode = true)]
 public int? Population { get; set; }
 }
}

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 24 ■ Using the Form tag helpers

768

The asp-format attribute takes precedence over the DisplayFormat attribute, so I have removed the
attribute from the view, as shown in Listing 24-12.

Listing 24-12. Removing the Formatting Attribute in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" asp-controller="Home" asp-action="Create"
 asp-antiforgery="true">
 <div class="form-group">
 <label for="Name">Name:</label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label for="Country">Country:</label>
 <input class="form-control" asp-for="Country" />
 </div>
 <div class="form-group">
 <label for="Population">Population:</label>
 <input class="form-control" asp-for="Population" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

If you run the application and request the /Home/Edit URL, you will see that the Population value has
been formatted with two decimal fractions, like this:

<input class="form-control" type="number" id="Population"
 name="Population" value="8539000.00" />

Working with Label Elements
The label element is transformed by the LabelTagHelper class, which uses the view model class to ensure
that labels are typo-free and consistent. There is only one supported attribute, which is described in
Table 24-7.

The tag helper will use the name of the view model property to set the value of the for attribute and the
contents of the label element. In Listing 24-13, I have applied the asp-for attribute to the label elements in
the form they will be transformed by the tag helper.

Table 24-7. The Built-in Tag Helper Attribute for Label Elements

Name Description

asp-for This attribute is used to specify the view model property that the label element represents.

Chapter 24 ■ Using the Form tag helpers

769

Listing 24-13. Applying the Label Tag Helper in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" asp-controller="Home" asp-action="Create"
 asp-antiforgery="true">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Country"></label>
 <input class="form-control" asp-for="Country" />
 </div>
 <div class="form-group">
 <label asp-for="Population"></label>
 <input class="form-control" asp-for="Population" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

Since the label elements are empty, the tag helper will use the model property names as the elements’
content and set the for attribute, which tells the browser which input element each label is associated
with. If you run the example, request the /Home/Create or /Home/Edit URL, and inspect the HTML sent to
the browser, you will see the following output elements:

<form method="post" action="/Home/Create">
 <div class="form-group">
 <label for="Name">Name</label>
 <input class="form-control" type="text" id="Name"
 name="Name" value="London" />
 </div>
 <div class="form-group">
 <label for="Country">Country</label>
 <input class="form-control" type="text" id="Country"
 name="Country" value="UK" />
 </div>
 <div class="form-group">
 <label for="Population">Population</label>
 <input class="form-control" type="number" id="Population"
 name="Population" value="8539000.00" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

You can override the value used as the label element’s content by applying the Display attribute to the
model class property, as shown in Listing 24-14.

Chapter 24 ■ Using the Form tag helpers

770

Listing 24-14. Changing the Description for a Model Property in the City.cs File in the Models Folder

using System.ComponentModel.DataAnnotations;

namespace Cities.Models {

 public class City {

 [Display(Name = "City")]
 public string Name { get; set; }

 public string Country { get; set; }

 [DisplayFormat(DataFormatString = "{0:F2}", ApplyFormatInEditMode = true)]
 public int? Population { get; set; }
 }
}

The Name argument specifies the value to use instead of the property name. If you run the example,
request the /Home/Create URL, and examine the HTML sent to the browser, you will see that the content of
the label element has changed, like this:

<div class="form-group">
 <label for="Name">City</label>
 <input class="form-control" type="text" id="Name" name="Name" value="London" />
</div>

Notice that the value of the for attribute has not changed, so the browser knows that the label element
is associated with a specific input element, which is not affected by the Display attribute.

 ■ Tip You can prevent the tag helper from setting the content of a label element by defining it yourself. this
is useful if you want your label elements to contain more than just the name of a property, which is all that the
built-in tag helper can provide.

Working with Select and Option Elements
The select and option elements are used to provide the user with a fixed set of choices, rather than the
open data entry that is possible with an input element. The SelectTagHelper is responsible for transforming
select elements and supports the attributes described in Table 24-8.

Table 24-8. The Built-in Tag Helper Attributes for select Elements

Name Description

asp-for This attribute is used to specify the view model property that the select element represents.

asp-items This attribute is used to specify a source of values for the option elements contained within
the select element.

Chapter 24 ■ Using the Form tag helpers

771

The asp-for attribute sets the value of the for and id attributes to reflect the model property that it
receives. In Listing 24-15, I have replaced the input element for the Country property with a select element
that defines the asp-for attribute.

Listing 24-15. Using a select Element in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" asp-controller="Home" asp-action="Create"
 asp-antiforgery="true">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Country"></label>
 <select class="form-control" asp-for="Country">
 <option disabled selected value="">Select a Country</option>
 <option>UK</option>
 <option>USA</option>
 <option>France</option>
 <option>China</option>
 </select>
 </div>
 <div class="form-group">
 <label asp-for="Population"></label>
 <input class="form-control" asp-for="Population" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

I have manually populated the select element with option elements that provide a range of countries
for the user to choose from. If you run the application and request the /Home/Create URL, you will see that
the HTML sent to the browser contains the following select element:

<select class="form-control" id="Country" name="Country">
 <option disabled selected value="">Select a Country</option>
 <option>UK</option>
 <option>USA</option>
 <option>France</option>
 <option>China</option>
</select>

Chapter 24 ■ Using the Form tag helpers

772

If you request the /Home/Edit URL and examine the HTML sent to the browser, you will see that
the value of the Country property of the view model object has been used to change the selected option
element, like this:

<select class="form-control" id="Country" name="Country">
 <option disabled selected value="">Select a Country</option>
 <option selected="selected">UK</option>
 <option>USA</option>
 <option>France</option>
 <option>China</option>
</select>

The task of selecting an option element is performed by the OptionTagHelper class, which receives
instructions from the SelectTagHelper through the TagHelperContext.Items collection. As I explained in
Chapter 23, this collection is used by tag helpers that need to work together, and I take advantage of the data
that the SelectTagHelper adds to the Items collection in the next section when I create a custom tag helper
to work around a limitation of the built-in one.

Using a Data Source to Populate a select Element
Explicitly defining the option elements for a select element is a useful approach for choices that always
have the same possible values but doesn’t help when you need to provide options that are taken from
the data model or where you need the same set of options in multiple views and don’t want to manually
maintain duplicated content.

Generating Option Elements from an enum
If you have a fixed set of options to present to the user and don’t want to duplicate them in views throughout
the application, then you can use an enum. I added a class file called CountryNames.cs to the Models folder
and used it to define the enum shown in Listing 24-16.

Listing 24-16. The Contents of the CountryNames.cs File in the Models Folder

namespace Cities.Models {

 public enum CountryNames {
 UK,
 USA,
 France,
 China
 }
}

You can’t use an enum directly in the asp-items attribute because the tag helper expects to work with a
sequence of SelectListItem objects. However, there is a convenient helper method available that performs
the conversion that is required, as shown in Listing 24-17.

http://dx.doi.org/10.1007/978-1-4842-3150-0_23

Chapter 24 ■ Using the Form tag helpers

773

Listing 24-17. Using an enum in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" asp-controller="Home" asp-action="Create"
 asp-antiforgery="true">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Country"></label>
 <select class="form-control" asp-for="Country"
 asp-items="@new SelectList(Enum.GetNames(typeof(CountryNames)))">
 <option disabled selected value="">Select a Country</option>
 </select>
 </div>
 <div class="form-group">
 <label asp-for="Population"></label>
 <input class="form-control" asp-for="Population" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

When using an enumeration, the best way to generate the option elements is to provide the asp-
items attribute with a SelectList object that is populated with the enum value names. Behind the scenes,
the SelectTagHelper class generates option elements from an IEnumerable<SelectListItem>, and the
SelectList class implements this interface.

If you run the application and request the /Home/Create or /Home/Edit URL, you will see that the
HTML sent to the browser includes a set of option elements that correspond to the values in the enum, as
follows:

<select class="form-control" id="Country" name="Country">
 <option disabled selected value="">Select a Country</option>
 <option>UK</option>
 <option>USA</option>
 <option>France</option>
 <option>China</option>
</select>

Notice that the tag helper has left the placeholder option element alone. Any option elements you define
explicitly remain in place, which means that you don’t have to mix placeholders with your data values.

Chapter 24 ■ Using the Form tag helpers

774

Generating Option Elements from the Model
If you need to generate option elements to reflect the data in the model, then the simplest approach is to
provide the data required to generate the elements through the view bag, as shown in Listing 24-18.

Listing 24-18. Providing Data via the View Bag in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using Cities.Models;
using System.Linq;
using Microsoft.AspNetCore.Mvc.Rendering;

namespace Cities.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public ViewResult Index() => View(repository.Cities);

 public ViewResult Edit() {
 ViewBag.Countries = new SelectList(repository.Cities
 .Select(c => c.Country).Distinct());
 return View("Create", repository.Cities.First());
 }

 public ViewResult Create() {
 ViewBag.Countries = new SelectList(repository.Cities
 .Select(c => c.Country).Distinct());
 return View();
 }

 [HttpPost]
 [ValidateAntiForgeryToken]
 public IActionResult Create(City city) {
 repository.AddCity(city);
 return RedirectToAction("Index");
 }
 }
}

The Edit and Create action methods set the ViewBag.Countries property to a SelectList object that
is populated with the unique values for the City.Country property in the repository. In Listing 24-19, I have
used the asp-items attribute to tell the tag helper to obtain the data for the option elements from this view
bag property.

Chapter 24 ■ Using the Form tag helpers

775

Listing 24-19. Using the View Bag for option Elements in the Create.cshtml File in the Views/Home Folder

@model City

@{ Layout = "_Layout"; }

<form method="post" asp-controller="Home" asp-action="Create"
 asp-antiforgery="true">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Country"></label>
 <select class="form-control" asp-for="Country" asp-items="ViewBag.Countries">
 <option disabled selected value="">Select a Country</option>
 </select>
 </div>
 <div class="form-group">
 <label asp-for="Population"></label>
 <input class="form-control" asp-for="Population" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

If you run the application and request the /Home/Create or /Home/Edit URL, you will see that option
elements are created as follows:

<select class="form-control" id="Country" name="Country">
 <option disabled selected value="">Select a Country</option>
 <option selected>UK</option>
 <option>USA</option>
 <option>France</option>
</select>

Using a Custom Tag Helper to Generate Option Elements from the Model
The problem with passing the data required for option elements through the view bag is that you must
remember to generate the data in every action method that renders the view that uses the tag helper. This
leads to code duplication, which you can get a sense of in Listing 24-18, and makes it harder to test and
maintain a controller properly.

A better approach is to create a custom tag helper that supplements the built-in SelectTagHelper class.
I added a class file called SelectOptionTagHelper.cs to the Infrastructure/TagHelper folder and defined
the class shown in Listing 24-20.

Chapter 24 ■ Using the Form tag helpers

776

Listing 24-20. The SelectOptionTagHelper.cs File in the Infrastructure/TagHelper Folder

using System;
using System.Linq;
using System.Reflection;
using System.Threading.Tasks;
using Cities.Models;
using Microsoft.AspNetCore.Mvc.ViewFeatures;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Cities.Infrastructure.TagHelpers {

 [HtmlTargetElement("select", Attributes = "model-for")]
 public class SelectOptionTagHelper : TagHelper {
 private IRepository repository;

 public SelectOptionTagHelper(IRepository repo) {
 repository = repo;
 }

 public ModelExpression ModelFor { get; set; }

 public override async Task ProcessAsync(TagHelperContext context,
 TagHelperOutput output) {

 output.Content.AppendHtml(
 (await output.GetChildContentAsync(false)).GetContent());

 string selected = ModelFor.Model as string;

 PropertyInfo property = typeof(City)
 .GetTypeInfo().GetDeclaredProperty(ModelFor.Name);
 foreach (string country in repository.Cities
 .Select(c => property.GetValue(c)).Distinct()) {
 if (selected != null && selected.Equals(country,
 StringComparison.OrdinalIgnoreCase)) {
 output.Content
 .AppendHtml($"<option selected>{country}</option>");
 } else {
 output.Content.AppendHtml($"<option>{country}</option>");
 }
 }
 output.Attributes.SetAttribute("Name", ModelFor.Name);
 output.Attributes.SetAttribute("Id", ModelFor.Name);
 }
 }
}

This tag helper operates on select elements with a model-for attribute and uses the dependency
injection to receive a repository object that it can use to access model data independently from the controller
that is rendering the view. This tag helper defines the asynchronous ProcessAsync method because it

Chapter 24 ■ Using the Form tag helpers

777

simplifies the process of obtaining and preserving any existing content of the select element, which is done
through the GetChildContentAsync method.

The SelectTagHelper indicates the names of the option elements that should be selected through an
entry in the Items collection using its own type as the key. The tag helper gets a list of the selected items and
uses it in combination with the results of a LINQ query to generate option elements for each unique value
in the repository. In Listing 24-21, I have updated the select element so that the asp-items attribute is
replaced with the model-for attribute, and I’ve added an @addTagHelper expression that enables the custom
tag helper just for this view.

Listing 24-21. Enabling the Custom Tag Helper in the Create.cshtml File in the Views/Home Folder

@model City
@addTagHelper Cities.Infrastructure.TagHelpers.SelectOptionTagHelper, Cities

@{ Layout = "_Layout"; }

<form method="post" asp-controller="Home" asp-action="Create"
 asp-antiforgery="true">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Country"></label>
 <select class="form-control" model-for="Country">
 <option disabled selected value="">Select a Country</option>
 </select>
 </div>
 <div class="form-group">
 <label asp-for="Population"></label>
 <input class="form-control" asp-for="Population" />
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

The new tag helper generates the same output but does so without needing the view bag data that the
built-in helper requires. I like this approach because it keeps the action methods focused on their specific
tasks and preserves the overall shape of the application.

Working with Text Areas
The textarea element is used to solicit a larger amount of text from the user and is typically used for
unstructured data, such as notes or observations. The TextAreaTagHelper is responsible for transforming
textarea elements and supports the single attribute described in Table 24-9.

Chapter 24 ■ Using the Form tag helpers

778

The TextAreaTagHelper is relatively simple, and the value provided for the asp-for attribute is used
to set the id and name attributes on the textarea element. To demonstrate this tag helper, I added a new
property to the City model class, as shown in Listing 24-22.

Listing 24-22. Adding a Property in the City.cs File in the Models Folder

using System.ComponentModel.DataAnnotations;

namespace Cities.Models {

 public class City {

 [Display(Name = "City")]
 public string Name { get; set; }

 public string Country { get; set; }

 [DisplayFormat(DataFormatString = "{0:F2}", ApplyFormatInEditMode = true)]
 public int? Population { get; set; }

 public string Notes { get; set; }
 }
}

In Listing 24-23, I added a textarea element to the Create.cshtml view, using the asp-for attribute to
associate the element with the Notes property of the City class.

Listing 24-23. Adding a Text Area in the Create.cshtml File in the Views/Home Folder

@model City
@addTagHelper Cities.Infrastructure.TagHelpers.SelectOptionTagHelper, Cities

@{ Layout = "_Layout"; }

<form method="post" asp-controller="Home" asp-action="Create"
 asp-antiforgery="true">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input class="form-control" asp-for="Name" />
 </div>
 <div class="form-group">
 <label asp-for="Country"></label>
 <select class="form-control" asp-for="Country" asp-items="ViewBag.Countries">
 <option disabled selected value="">Select a Country</option>
 </select>
 </div>

Table 24-9. The Built-in Tag Helper Attributes for TextArea Elements

Name Description

asp-for This attribute is used to specify the view model property that the textarea element represents.

Chapter 24 ■ Using the Form tag helpers

779

Table 24-10. The Validation Tag Helper Classes

Name Description

ValidationMessage This tag helper is used to provide validation feedback about a single form
element.

ValidationSummary This tag helper is used to provide validation feedback about all the elements in
a form.

 <div class="form-group">
 <label asp-for="Population"></label>
 <input class="form-control" asp-for="Population" />
 </div>
 <div class="form-group">
 <label asp-for="Notes"></label>
 <textarea class="form-control" asp-for="Notes"></textarea>
 </div>
 <button type="submit" class="btn btn-primary">Add</button>
 Cancel
</form>

If you run the application and request the /Home/Create or /Home/Edit URL, you will see that the
HTML sent to the browser includes a textarea element like this:

<div class="form-group">
 <label for="Notes">Notes</label>
 <textarea id="Notes" name="Notes"></textarea>
</div>

The TextAreaTagHelper is relatively simple, but it provides consistency with the rest of the form
element tag helpers that I have described in this chapter.

Understanding the Validation Form Tag Helpers
There are two other tag helpers that relate to HTML forms, which I have described in Table 24-10 for
completeness but which I describe in more detail in Chapter 27. These helpers are used to provide the user
with feedback when the data the user provides doesn’t meet the expectations of the application.

Summary
In this chapter, I described the built-in tag helpers that are used to transform the HTML form elements.
These tag helpers ensure that forms are generated directly from the model class, which reduces the potential
for errors and provides a consistent approach for writing Razor views. In the next chapter, I describe the
remaining built-in tag helpers, which operate on a range of HTML elements.

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

781© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_25

CHAPTER 25

Using the Other Built-in Tag
Helpers

The tag helpers that I described in Chapter 24 are focused on producing HTML forms, but they are not the
only built-in tag helpers that are provided by ASP.NET Core MVC. In this chapter, I describe tag helpers that
manage JavaScript and CSS stylesheets, create URLs for anchor elements, provide cache busting for image
elements, and support data caching. I also describe the tag helper that provides support for application-
relative URLs, which help ensure that browsers can access static content when an application is deployed
into an environment shared with other applications. Table 25-1 summarizes the chapter.

Table 25-1. Chapter Summary

Problem Solution Listing

Include content based on the
hosting environment

Use the environment element 2, 8

Select JavaScript files Apply the asp-src-include and asp-src-
exclude attributes to a script element

3–7

Use a CDN for JavaScript files Apply the asp-fallback attributes to a script
element

9, 10

Select CSS files Apply the asp-href-include and asp-href
-exclude attributes to a link element

11

Use a CDN for CSS files Apply the asp-fallback attributes to a link
element

12

Generate a URL for an anchor
element

Use the AnchorTagHelper helper 13

Ensure that changes to images are
detected

Apply the asp-append-version attribute to an
img element

14

Cache data Use the cache element 15–23

Create application relative URLs Prefix URLs with a ~ character 24–26

https://doi.org/10.1007/978-1-4842-3150-0_25
http://dx.doi.org/10.1007/978-1-4842-3150-0_24

Chapter 25 ■ Using the Other BUilt-in tag helpers

782

Preparing the Example Project
I am going to continue using the Cities project from Chapter 24. To prepare for this chapter, I created the
wwwroot/images folder and added an image file called city.png. This is a public domain panorama of the
New York City skyline, as shown in Figure 25-1.

Figure 25-1. Adding an image to the project

This image file is included in the source code for this chapter, which is available in the GitHub
repository for this book (https://github.com/apress/pro-asp.net-core-mvc-2). You can substitute your
own image if you don’t want to download the example project.

The other change required for this chapter is to add jQuery to the project using Bower, as shown in
Listing 25-1.

Listing 25-1. Add jQuery to the bower.json File in the Cities Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",
 "jquery": "3.2.1"
 }
}

If you run the application, you will be able to list the objects in the repository and create new ones, as
illustrated in Figure 25-2.

http://dx.doi.org/10.1007/978-1-4842-3150-0_24
https://github.com/apress/pro-asp.net-core-mvc-2

Chapter 25 ■ Using the Other BUilt-in tag helpers

783

Using the Hosting Environment Tag Helper
The EnvironmentTagHelper class is applied to the custom environment element and determines whether
a region of content is included in the HTML sent to the browser based on the hosting environment, which I
described in Chapter 14. This may not seem like the most exciting place to start, but this tag helper is needed
to make the best use of some related features that I describe later. The environment element relies on the
names attribute, which I have described in Table 25-2 for future quick reference.

Figure 25-2. Running the example application

Table 25-2. The Built-in Tag Helper Attribute for environment Elements

Name Description

names This attribute is used to specify a comma-separated list of hosting environment names for
which the content contained within the environment element will be included in the HTML
sent to the client.

In Listing 25-2, I have added environment elements to the shared layout including different content in
the view for the development and production hosting environments.

Listing 25-2. Using the environment Element in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

Chapter 25 ■ Using the Other BUilt-in tag helpers

784

<body class="m-1 p-1">
 <environment names="development">
 <div class="m-1 p-1 bg-info"><h2>This is Development</h2></div>
 </environment>
 <environment names="production">
 <div class="m-1 p-1 bg-danger"><h2>This is Production</h2></div>
 </environment>
 <div>@RenderBody()</div>
</body>
</html>

Figure 25-3 shows the effect of running the application in both the development and production hosting
environments. The environment element checks the current hosting environment name and either includes
the content it contains or omits it (the environment element itself is always omitted from the HTML sent to
the client).

Figure 25-3. Managing content using the hosting environment

Using the JavaScript and CSS Tag Helpers
The next category of built-in tag helpers is used to manage JavaScript files and CSS stylesheets through the
script and link elements, which are usually included in a shared layout. As you will see in the sections that
follow, these tag helpers are powerful and flexible but require close attention to avoid creating unexpected
results.

Managing JavaScript Files
The ScriptTagHelper class is the built-in tag helper for script elements and is used to manage the
inclusion of JavaScript files in views using the attributes described in Table 25-3, which I describe in
the sections that follow.

Chapter 25 ■ Using the Other BUilt-in tag helpers

785

Selecting JavaScript Files
The asp-src-include attribute is used to include JavaScript files in a view using globbing patterns. Globbing
patterns support a set of wildcards that are used to match files and Table 25-4 describes the most common
globbing patterns.

Table 25-3. The Built-in Tag Helper Attributes for script Elements

Name Description

asp-src-include This attribute is used to specify JavaScript files that will be included in the
view.

asp-src-exclude This attribute is used to specify JavaScript files that will be excluded from
the view.

asp-append-version This attribute is used for cache busting, as described in the
“Understanding Cache Busting” sidebar.

asp-fallback-src This attribute is used to specify a fallback JavaScript file to use if there is a
problem with a content delivery network.

asp-fallback-src-include This attribute is used to select JavaScript files that will be used if there is a
content delivery network problem.

asp-fallback-src-exclude This attribute is used to exclude JavaScript files to present their use when
there is a content delivery network problem.

asp-fallback-test This attribute is used to specify a fragment of JavaScript that will be used
to determine whether JavaScript code has been correctly loaded from a
content delivery network.

Table 25-4. Common Globbing Patterns

Pattern Example Description

? js/src?.js This pattern matches any single character except /. The example matches
any file contained in the js directory whose name is src, followed by any
character, followed by .js, such as js/src1.js and js/srcX.js but not js/
src123.js or js/mydir/src1.js.

* js/*.js This pattern matches any number of characters except /. The example
matches any file contained in the js directory with the .js file extension,
such as js/src1.js and js/src123.js but not js/mydir/src1.js.

** js/**/*.js This pattern matches any number of characters including /. The example
matches any file with the .js extension that is contained within the js
directory or any subdirectory, such as /js/src1.js and /js/mydir/src1.js.

Using a globbing pattern with the asp-src-include attribute means that a view will always include the
JavaScript files in the application, even if the name or path of the files changes or files are added or removed.
In Listing 25-3, I have selected the JavaScript files for the jQuery package, which Bower installs into the
wwwroot/lib/jquery/dist folder.

Chapter 25 ■ Using the Other BUilt-in tag helpers

786

Listing 25-3. Selecting JavaScript Files in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script asp-src-include="/lib/jquery/dist/**/*.js"></script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

The pattern that I used in this example is a common one. Patterns are evaluated within the wwwroot
folder, and the jQuery library is delivered as a single JavaScript file called jquery.js.

The globbing pattern tries to select the jQuery file while accommodating any future changes in the way
that jQuery is distributed, such as changing the JavaScript file name. If you run the example and examine the
HTML sent to the client, you will see that it contains a problem, as follows:

<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script src="/lib/jquery/dist/core.js"></script>
 <script src="/lib/jquery/dist/jquery.js"></script>
 <script src="/lib/jquery/dist/jquery.min.js"></script>
 <script src="/lib/jquery/dist/jquery.slim.js"></script>
 <script src="/lib/jquery/dist/jquery.slim.min.js"></script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>

The ScriptTagHelper class generates a script element for every file that matches the pattern passed
to the asp-src-include attribute. Rather than just selecting the jquery.js file, there are also elements for
the jquery.min.js file, which is the minified version of the jquery.js file, as well as regular and minified
version of the core and slim versions of the jQuery library.

You might not have realized that the jQuery distribution contains so many files because Visual Studio
hides them by default. To reveal the full contents of the wwwroot/lib/jquery/dist folder, you have to
expand the jquery.js item in the Solution Explorer and then do the same again to the items it contains, as
shown in Figure 25-4.

Chapter 25 ■ Using the Other BUilt-in tag helpers

787

The pattern that I used in Listing 25-3 has sent the jQuery code to the browser several times, which
wastes bandwidth and slows the application down. For some libraries, it can also result in errors or
unexpected behavior. There are three ways to solve this problem, which I describe in the following sections.

USING SOURCE MAPS

Javascript files are minified to make them smaller, which means they can be delivered to the client
faster and using less bandwidth. the minification process removes all the whitespace from the file and
renames functions and variables so that meaningful names such as myHelpfullyNamedFunction will
be represented by a smaller number of characters, such as x1. When using the browser’s Javascript
debugger to track down problems in your minified code, names like x1 make it almost impossible to
follow progress through the code.

the jquery.min.map file is a source map, which some browsers can use to help debug minified code
by providing a map between the minified code and the developer-readable, un-minified source file.

as i write this, source maps are not a universally supported feature, but you can use them on the most
recent versions of Chrome and edge. in the case of Chrome, for example, the browser will automatically
request the source map file if the developer tools window is open, which means that you don’t can
always send the minified version of your Javascript files to the browser and still be able to debug them
easily.

Figure 25-4. Revealing the full contents of a directory in the Solution Explorer

Chapter 25 ■ Using the Other BUilt-in tag helpers

788

Narrowing the Globbing Pattern
Many packages provide regular and minified versions of their JavaScript files, and if you are only ever going
to use the minified version, then you can restrict the set of files that the globbing pattern matches, as shown
in Listing 25-4. This is a good approach if you don’t expect to have to debug the jQuery library, which is well-
written and causes few problems, or if you know that your target browsers support source maps.

Listing 25-4. Selecting Only Minified JavaScript Files in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script asp-src-include="/lib/jquery/dist/**/*.min.js"></script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

If you run the example and examine the HTML sent to the browser, you will see that only the minified
files have been included:

<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script src="/lib/jquery/dist/jquery.min.js">
 </script><script src="/lib/jquery/dist/jquery.slim.min.js"></script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>

Narrowing the pattern for the JavaScript files has helped but the browser will still end up with the
normal and slim versions of the jQuery library (the slim version omits some less commonly- used functions -
see jquery.com for details). To narrow the selection further, I can include slim in the globbing pattern, as
shown in Listing 25-5.

Listing 25-5. Narrowing the Focus in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script asp-src-include="/lib/jquery/dist/**/*.slim.min.js"></script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

Chapter 25 ■ Using the Other BUilt-in tag helpers

789

The result is that only one version of the jQuery file will be sent to the browser, while still preserving the
flexibility for the location of the file:

<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script src="/lib/jquery/dist/jquery.slim.min.js"></script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>

Excluding Files

Narrowing the pattern for the JavaScript files helps when you want to select a file whose name contains a
specific term, such as slim. It isn’t helpful when the file you want doesn’t have that term, such as when you
want the full version of the minified file. Fortunately, you can use the asp-src-exclude attribute to remove
files from the list matched by the asp-src-include attribute, as shown in Listing 25-6.

Listing 25-6. Excluding Files in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script asp-src-include="/lib/jquery/dist/**/*.min.js"
 asp-src-exclude="**.slim.**">
 </script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

Run the application and examine the HTML sent to the browser and you will see that only the full
minified version of the jQuery library has been included:

<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script src="/lib/jquery/dist/jquery.min.js"></script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>

The same technique can be used when you want the non-minified versions of the file, which can be
useful during development, as shown in Listing 25-7.

Chapter 25 ■ Using the Other BUilt-in tag helpers

790

Listing 25-7. Selecting a Non-Minified File in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script asp-src-include="/lib/jquery/dist/**/j*.js"
 asp-src-exclude="**.slim.**,**.min.**">
 </script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

Notice that I am able to specify multiple terms by separating them with a comma. If you run the
application and examine the HTML sent to the browser, you will see that only the un-minified version of the
JavaScript file has been included:

<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script src="/lib/jquery/dist/jquery.js"></script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>

Using the Hosting Environment to Select Files

A common approach is to work with the regular JavaScript files during development, which makes
debugging easy, and use the minified files in production, which reduces bandwidth. This can be achieved by
using the environment element to selectively include script elements based on the hosting environment, as
shown in Listing 25-8.

Listing 25-8. Selecting Files in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <environment names="development">
 <script asp-src-include="/lib/jquery/dist/**/j*.js"
 asp-src-exclude="**.slim.**,**.min.**">
 </script>
 </environment>
 <environment names="staging, production">
 <script asp-src-include="/lib/jquery/dist/**/*.min.js"
 asp-src-exclude="**.slim.**">
 </script>
 </environment>

Chapter 25 ■ Using the Other BUilt-in tag helpers

791

 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

This approach has the advantage of adapting the application to the hosting environment but does mean
that you have to write and maintain multiple sets of script elements.

UNDERSTANDING CACHE BUSTING

static content, such as images, Css stylesheets, and Javascript files, is often cached to stop requests
for content that rarely changes from reaching the application servers. Caching can be done in different
ways: the browser can be told to cache content by the server, the application can use cache servers to
supplement the application servers, or the content can be distributed using a content delivery network.
not all caching will be under your control. large corporations, for example, often install caches to
reduce their bandwidth demands since a substantial percentage of requests tend to go to the same
sites or applications.

One problem with caching is that clients don’t immediately receive new versions of static files when you
deploy them because their requests are still being serviced by previously cached content. eventually,
the cached content will expire and the new content will be used, but that leaves a period where the
dynamic content generated by the application’s controllers is out of step with the static content being
delivered by the caches. this can lead to layout problems or unexpected application behavior, depending
on the content that has been updated.

addressing this problem is called cache busting. the idea is to allow caches to handle static content
but immediately reflect any changes that are made at the server. the tag helper classes support cache
busting by adding a query string to the Urls for static content that includes a checksum that acts as a
version number. For Javascript files, for example, the ScriptTagHelper class supports cache busting
through the asp-append-version attribute, like this:

...
<script asp-src-include="/lib/jquery/dist/**/j*.js"
 asp-src-exclude="**.slim.**,**.min.**"
 asp-append-version="true">
</script>
...

enabling the cache busting feature produces an element like this in the htMl sent to the browser:

...
<script src="/lib/jquery/dist/jquery.min.js?v=3zRSQ1HF-ocUiVcdv9yKTXqM">
</script>
...

Chapter 25 ■ Using the Other BUilt-in tag helpers

792

the same version number will be used by the tag helper until you change the contents of the file, such
as by updating a Javascript library, at which point a different checksum will be calculated. the addition
of the version number means that each time you change the file, the client will request a different Url,
which caches treat as a request for new content that cannot be satisfied with the previously cached
content and pass on to the application server. the content is then cached as normal until the next
update, which produces another Url with a different version.

Working with Content Delivery Networks
Content delivery networks (CDNs) are used to offload requests for application content to servers that are
closer to the user. Rather than requesting a JavaScript file from your servers, the browser requests it from a
host name that resolves to a geographically local server, which reduces the amount of time required to load
files and reduces the amount of bandwidth you have to provision for your application. If you have a large,
geographically disbursed set of users, then it can make commercial sense to sign up to a CDN, but even
the smallest and simplest application can benefit from using the free CDNs operated by major technology
companies to deliver common JavaScript packages, such as jQuery.

For this chapter, I am going to use the Microsoft CDN, which provides free access to popular packages, a
list of which can be found at www.asp.net/ajax/cdn. I am using jQuery 3.2.1, and there are six URLs for this
release of Microsoft CDN:

•	 http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.js

•	 http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.min.js

•	 http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.min.map

•	 http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.slim.js

•	 http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.slim.min.js

•	 http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.slim.min.map

These URLs provide the regular JavaScript file, the minified JavaScript file, and the source map for the
minified file for both the full and slim versions of jQuery. In Listing 25-9, I have modified the layout in the
example application to replace the local files with files obtained from the CDN.

Listing 25-9. Using a CDN in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.min.js"></script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

Specifying the CDN means that no request for jQuery will reach the application’s servers. The problem
with CDNs is that they are not under your organization’s control, and that means they can fail, leaving your
application running but unable to work as expected because the CDN content isn’t available. To help work

http://www.asp.net/ajax/cdn
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.js
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.min.js
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.min.map
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.slim.js
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.slim.min.js
http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.slim.min.map

Chapter 25 ■ Using the Other BUilt-in tag helpers

793

around this, the ScriptTagHelper class provides the ability to fall back to local files when the CDN content
cannot be loaded by the client, as shown in Listing 25-10.

Listing 25-10. Using CDN Fallback in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.min.js"
 asp-fallback-src-include="/lib/jquery/dist/**/*.min.js"
 asp-fallback-src-exclude="**.slim.**"
 asp-fallback-test="window.jQuery">
 </script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

The asp-fallback-src-include and asp-fallback-src-exclude attributes are used to select and
exclude local files that will be used if the CDN is unable to deliver the file specified by the regular src
attribute. To figure out whether the CDN is working, the asp-fallback-test attribute is used to define a
fragment of JavaScript that will be evaluated at the browser. If the fragment evaluates as false, then the
fallback files will be requested.

To see how this works, run the application and examine the HTML that is sent to the client. You will see
that the ScriptTagHelper class has taken the fragment from the asp-fallback-test attribute and used it to
create another script element like this:

<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-3.2.1.min.js">
 </script>
 <script>
 (window.jQuery||document.write("\u003Cscript
 src=\u0022\/lib\/jquery\/dist\/jquery.min.js
 \u0022\u003E\u003C\/script\u003E"));
 </script>
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>

The fragment of JavaScript that you specify in the asp-fallback-test attribute must return true if
the file from the CDN has loaded and false otherwise. The simplest approach is usually to check for the
entry point into the functionality provided by the JavaScript code. The jQuery library creates a function
called jQuery on the global window object, and that is what I test for in Listing 25-10. You will need to find an
equivalent test for each file that you load from a CDN.

Chapter 25 ■ Using the Other BUilt-in tag helpers

794

It is important to test your fallback settings because you won’t find out if they fail until the CDN has
stopped working and your users cannot access your application. The simplest way to check the fallback is to
change the name of the file specified by the src attribute to something that you know doesn’t exist (I append
the word FAIL to the file name) and then look at the network requests that the browser makes using the F12
developer tools. You should see an error for the CDN file followed by a request for the fallback file.

 ■ Caution the CDn fallback feature relies on browsers loading and executing the contents of script
elements synchronously and in the order in which they are defined. there are a number of techniques in use
to speed up Javascript loading and execution by making the process asynchronous, but these can lead to the
fallback test being performed before the browser has retrieved a file from the CDn and executed its contents,
resulting in requests for the fallback files even when the CDn is working perfectly and defeating the use of a
CDn in the first place. Do not mix asynchronous script loading with the CDn fallback feature.

Managing CSS Stylesheets
The LinkTagHelper class is the built-in tag helper for link elements and is used to manage the inclusion
of CSS style sheets in a view. This tag helper supports the attributes described in Table 25-5, which I
demonstrate in the following sections.

Table 25-5. The Built-in Tag Helper Attributes for link Elements

Name Description

asp-href-include This attribute is used to select files for the href attribute of the
output element.

asp-href-exclude This attribute is used to exclude files from the href attribute of
the output element.

asp-append-version This attribute is used to enable cache busting, as described in the
“Understanding Cache Busting” sidebar.

asp-fallback-href This attribute is used to specify a fallback file if there is a problem
with a CDN.

asp-fallback-href-include This attribute is used to select files that will be used if there is a
CDN problem.

asp-fallback-href-exclude This attribute is used to exclude files from the set that will be used
when there is a CDN problem.

asp-fallback-href-test-class This attribute is used to specify the CSS class that will be used to
test the CDN.

asp-fallback-href-test-property This attribute is used to specify the CSS property that will be used
to test the CDN.

asp-fallback-href-test-value This attribute is used to specify the CSS value that will be used to
test the CDN.

Chapter 25 ■ Using the Other BUilt-in tag helpers

795

Selecting Stylesheets
The LinkTagHelper shares many features with the ScriptTagHelper, including support for globbing
patterns to select or exclude CSS files so they do not have to be specified individually. Being able to
accurately select CSS files is as important as it is for JavaScript files because stylesheets come in regular
and minified versions, too, and also support source maps. The popular Bootstrap package, which I have
been using to style HTML elements throughout this book, includes its CSS stylesheets in the wwwroot/lib/
bootstrap/dist/css folder, and if you expand all the items in the Solution Explorer, you will see that there
are several files available, as shown in Figure 25-5.

Figure 25-5. The Bootstrap distribution files

The bootstrap.css file is the regular stylesheet, the bootstrap.min.css file is the minified version, and
the bootstrap.css.map file is a source map. The other files provide specified features that are described that
are not of interest for this chapter. In Listing 25-11, I have used the asp-href-include attribute on a link
element to select the minified stylesheet. (I have also removed the script element that loads jQuery, which is
no longer required.)

Chapter 25 ■ Using the Other BUilt-in tag helpers

796

Listing 25-11. Selecting a Stylesheet in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link rel="stylesheet"
 asp-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-href-exclude="**/*-reboot*,**/*-grid*"/>
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

The same attention to detail is required as when selecting JavaScript files because it is easy to generate
link elements for multiple versions of the same file or files that you don’t want. You can follow the same
three approaches to control the files that are selected as I described for JavaScript files in the previous
section: narrowing the globbing pattern, excluding files using the asp-href-exclude attribute, and using the
environment element to select between duplicate sets of elements.

Working with Content Delivery Networks
The LinkTag helper class provides a set of attributes for falling back to local content when a CDN isn’t
available, although the process for testing to see whether a stylesheet has loaded is a little more complex
than testing for a JavaScript file. In Listing 25-12, I have used the MaxCDN URL for the Bootstrap
library just to show an alternative to the Microsoft platform (MaxCDN is the CDN recommended by the
Bootstrap project).

Listing 25-12. Using a CDN to Load CSS in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css"
 asp-fallback-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-fallback-href-exclude="**/*-reboot*,**/*-grid*"
 asp-fallback-test-class="btn"
 asp-fallback-test-property="display"
 asp-fallback-test-value="inline-block"
 rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <div>@RenderBody()</div>
</body>
</html>

Chapter 25 ■ Using the Other BUilt-in tag helpers

797

The href attribute is used to specify the CDN URL, and I have used the asp-fallback-href-include
and asp-fallback-href-exclude attributes to select the file that will be used if the CDN is unavailable.
Testing whether the CDN works, however, requires the use of three different attributes and an understanding
of the CSS classes defined by the CSS stylesheet that is being used.

The CSS fallback feature works by adding a meta element to the document that has been added to the
class defined by the asp-fallback-test-class attribute. I specified the btn class in the listing, which means
that an element like this will be added to the HTML sent to the browser:

<meta name="x-stylesheet-fallback-test" class="btn" />

The CSS class that you specify must be defined in the stylesheet that is to be loaded from the CDN. The
btn class that I specified provides the basic formatting for Bootstrap button elements.

The asp-fallback-test-property attribute is used to specify a CSS property that is set by the CSS class,
and the asp-fallback-test-value attribute is used to specify the value that it will be set to. The tag helper
adds JavaScript to the view that tests the value of the CSS property on the meta element to figure out whether
the stylesheet has been loaded and, if not, adds link elements for the fallback files. The Bootstrap btn class
sets the display property to inline-block, and this provides the test to see whether the browser has been
able to load the Bootstrap stylesheet from the CDN.

 ■ Tip the easiest way to figure out how to test for third-party packages like Bootstrap is to use the
browser’s F12 developer tools. to determine the test in listing 25-12, i assigned an element to the btn class
and then inspected it in the browser, looking at the individual Css properties that the class changes. i find this
easier than trying to read through long and complex stylesheets.

Working with Anchor Elements
The a element is the basic tool for navigating an application and sending GET requests to the application to
request different content. The AnchorTagHelper class is used to transform the href attribute of a elements so
they target URLs generated using the routing system, using the attributes described in Table 25-6.

Table 25-6. The Built-in Tag Helper Attributes for Anchor Elements

Name Description

asp-action This attribute specifies the action method that the URL will target.

asp-controller This attribute specifies the controller that the URL will target.

asp-area This attribute specifies the area that the UTR will target.

asp-fragment This attribute is used to specify the URL fragment (which appears after the # character).

asp-host This attribute specifies the name of the host that the URL will target.

asp-protocol This attribute specifies the protocol that the URL will use.

asp-route This attribute specifies the name of the route that will be used to generate the URL.

asp-route-* Attributes whose names begin with asp-route- are used to specify additional values
for the URL so that the asp-route-id attribute is used to provide a value for the id
segment to the routing system.

Chapter 25 ■ Using the Other BUilt-in tag helpers

798

The AnchorTagHelper is simple and predictable and makes it easy to generate URLs in a elements that
use the application’s routing configuration. In Listing 25-13, I have updated the a element in the Index.
cshtml view so that its href attribute is produced by the tag helper.

Listing 25-13. Transforming an Anchor Element in the Index.cshtml File in the Views/Home Folder

@model IEnumerable<City>

@{ Layout = "_Layout"; }

<table class="table table-sm table-bordered">
 <thead class="bg-primary text-white">
 <tr>
 <th>Name</th>
 <th>Country</th>
 <th class="text-right">Population</th>
 </tr>
 </thead>
 <tbody>
 @foreach (var city in Model) {
 <tr>
 <td>@city.Name</td>
 <td>@city.Country</td>
 <td class="text-right">@city.Population?.ToString("#,###")</td>
 </tr>
 }
 </tbody>
</table>
<a asp-action="Create" class="btn btn-primary">Create

If you run the application and request the /Home/Index URL, you will see that the tag helper has
transformed the a element like this:

Create

Working with Image Elements
The ImageTagHelper class is used to provide cache busting for images through the src attribute of img
elements, allowing an application to take advantage of caching while ensuring that modifications to images
are reflected immediately. The ImageTagHelper class operates in img elements that define the asp-append-
version attribute, which is described in Table 25-7 for quick reference.

Table 25-7. The Built-in Tag Helper Attribute for Image Elements

Name Description

asp-append-version This attribute is used to enable cache busting, as described in the
“Understanding Cache Busting” sidebar.

Chapter 25 ■ Using the Other BUilt-in tag helpers

799

In Listing 25-14, I have added an img element to the shared layout for the city skyline image that I added to
the project at the start of the chapter. (I have also reset the style element for brevity so that it uses local files.)

Listing 25-14. Adding an Image in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css"
 asp-fallback-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-fallback-href-exclude="**/*-reboot*,**/*-grid*"
 asp-fallback-test-class="btn"
 asp-fallback-test-property="display"
 asp-fallback-test-value="inline-block"
 rel="stylesheet" />
</head>
<body class="m-1 p-1">

 <div>@RenderBody()</div>
</body>
</html>

If you run the application, you will see that the image is displayed at the top of every page. If you
examine the HTML that has been sent to the browser, you will see that the URL used to request the image file
includes a version checksum, like this:

As with the cache busting features for JavaScript files and CSS stylesheets, the checksum included in the
URL will remain constant until the file is modified.

Using the Data Cache
MVC includes an in-memory cache that can be used to cache fragments of content in order to speed up
view rendering. The content that is to be cached is denoted using the cache element in the view file, which is
processed by the CacheTagHelper class using the attributes described in Table 25-8.

 ■ Note Caching is a useful tool for reusing sections of content so they don’t have to be generated for every
request. But using caching effectively requires careful thought and planning. While caching can improve the
performance of an application, it can also create odd effects, such as users receiving stale content, multiple
caches containing different versions of content, and update deployments that are broken because content
cached from the previous version of the application is mixed with content from the new version. Don’t enable
caching unless you have a clearly defined performance problem to resolve, and make sure you understand the
impact that caching will have.

Chapter 25 ■ Using the Other BUilt-in tag helpers

800

To demonstrate the way that the cache attribute operates, I created the Components folder, added a class
file called TimeViewComponent.cs, and used it to define the view component shown in Listing 25-15.

Listing 25-15. The Contents of the TimeViewComponent.cs File in the Components Folder

using System;
using Microsoft.AspNetCore.Mvc;

namespace Cities.Components {

 public class TimeViewComponent : ViewComponent {

 public IViewComponentResult Invoke() {
 return View(DateTime.Now);
 }
 }
}

The Invoke method selects the default view and provides a DateTime object as the view model. To
provide a view for the view component, I created the Views/Home/Components/Time folder and added a view
file called Default.cshtml with the markup shown in Listing 25-16.

Table 25-8. The Built-in Tag Helper Attributes for cache Elements

Name Description

enabled This bool attribute is used to control whether the contents of the cache element are
cached. Omitting this attribute enables caching.

expires-on This attribute is used to specify an absolute time at which the cached content will
expire, expressed as a DateTime value.

expires-after This attribute used to specify a relative time at which the cached content will expire,
expressed as a TimeSpan value.

expires-sliding This attribute is used to specify the period since it was last used when the cached
content will expire, expressed as a TimeSpan value.

vary-by-header This attribute is used to specify the name of a request header that will be used to
manage different versions of the cached content.

vary-by-query This attribute is used to specify the name of a query string key that will be used to
manage different versions of the cached content.

vary-by-route This attribute is used to specify the name of a routing variable that will be used to
manage different versions of the cached content.

vary-by-cookie This attribute is used to specify the name of a cookie that will be used to manage
different versions of the cached content.

vary-by-user This bool attribute is used to specify whether the name of the authenticated user
will be used to manage different versions of the cached content.

vary-by This attribute is evaluated to provide a key used to manage different versions of the
content.

priority This attribute is used to specify a relative priority that will be taken into account
when the memory cache runs out of space and purges unexpired cached content.

Chapter 25 ■ Using the Other BUilt-in tag helpers

801

Listing 25-16. The Default.cshtml File in the Views/Home/Components/Time Folder

@model DateTime

<div class="m-1 p-1 bg-info text-white">
 Rendered at @Model.ToString("HH:mm:ss")
</div>

The DateTime model object is used to display the current time, accurate to the second. In Listing 25-17,
I have replaced the img element from the previous section with an @await Component.InvokeAsync
expression that calls the view component.

Listing 25-17. Using a View Components in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css"
 asp-fallback-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-fallback-href-exclude="**/*-reboot*,**/*-grid*"
 asp-fallback-test-class="btn"
 asp-fallback-test-property="display"
 asp-fallback-test-value="inline-block"
 rel="stylesheet" />
</head>
<body class="m-1 p-1">
 @await Component.InvokeAsync("Time")
 <div>@RenderBody()</div>
</body>
</html>

If you run the application, you will see the banner displaying the time that the content was rendered. Wait a
few seconds and reload the page and you will see that the time displayed has changed, as shown in Figure 25-6.

Figure 25-6. Displaying the time in the example application

Chapter 25 ■ Using the Other BUilt-in tag helpers

802

The cache element is used to surround content that should be added to the cache. In Listing 25-18, I
have used the cache attribute to add the output from the view component to the cache.

Listing 25-18. Caching Content in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 < link href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css"
 asp-fallback-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-fallback-href-exclude="**/*-reboot*,**/*-grid*"
 asp-fallback-test-class="btn"
 asp-fallback-test-property="display"
 asp-fallback-test-value="inline-block"
 rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <cache>
 @await Component.InvokeAsync("Time")
 </cache>
 <div>@RenderBody()</div>
</body>
</html>

Applying the cache element without any attributes tells MVC to reuse the content to satisfy all future
requests. If you start the application, the content generated by the view component is cached so that the
same time is shown even when the page is reloaded.

 ■ Tip the cache used by the CacheTagHelper class is memory-based, which means that its capacity is
limited by the available raM. Content will be ejected from the cache when there is a shortage of capacity
available, and the entire contents are lost when the application is stopped or restarted.

Setting Cache Expiry
The expires-* attributes allow you to specify when cached content will expire, expressed as an absolute
time, relative to the current time, or a period of time that the cached content isn’t requested. In Listing 25-19,
I have used the expires-after attribute to specify that the content should be cached for 15 seconds.

Listing 25-19. Setting Cache Expiry in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css"
 asp-fallback-href-include="/lib/bootstrap/dist/**/*.min.css"

Chapter 25 ■ Using the Other BUilt-in tag helpers

803

 asp-fallback-href-exclude="**/*-reboot*,**/*-grid*"
 asp-fallback-test-class="btn"
 asp-fallback-test-property="display"
 asp-fallback-test-value="inline-block"
 rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <cache expires-after="@TimeSpan.FromSeconds(15)">
 @await Component.InvokeAsync("Time")
 </cache>
 <div>@RenderBody()</div>
</body>
</html>

If you run the application, you will see that the cached data expires after 15 seconds, after which
reloading the page will invoke the view component and create a new cached entry that will last another
15 seconds.

Setting a Fixed Expiry Point
You can specify a fixed time at which cached content will expire using the expires-on attribute, which
accepts a DateTime value, as shown in Listing 25-20.

Listing 25-20. Specifying a Fixed Cache Expiry Point in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css"
 asp-fallback-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-fallback-href-exclude="**/*-reboot*,**/*-grid*"
 asp-fallback-test-class="btn"
 asp-fallback-test-property="display"
 asp-fallback-test-value="inline-block"
 rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <cache expires-on="@DateTime.Parse("2100-01-01")">
 @await Component.InvokeAsync("Time")
 </cache>
 <div>@RenderBody()</div>
</body>
</html>

I have specified that the data should be cached until the year 2100. This isn’t a useful caching strategy
since the application is likely to be restarted before the next century starts, but it does illustrate how you can
specify a fixed point in the future rather than expressing the expiry point relative to the moment when the
content is cached.

Chapter 25 ■ Using the Other BUilt-in tag helpers

804

Setting a Last-Used Expiry Period
The expires-sliding attribute is used to specify a period after which content is expired if it hasn’t been
retrieved from the cache. In Listing 25-21, I have specified a sliding expiry of ten seconds.

Listing 25-21. Specifying a Last-Used Expiry Period in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css"
 asp-fallback-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-fallback-href-exclude="**/*-reboot*,**/*-grid*"
 asp-fallback-test-class="btn"
 asp-fallback-test-property="display"
 asp-fallback-test-value="inline-block"
 rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <cache expires-sliding="@TimeSpan.FromSeconds(10)">
 @await Component.InvokeAsync("Time")
 </cache>
 <div>@RenderBody()</div>
</body>
</html>

You can see the effect of the express-sliding attribute by running the application and periodically
reloading the page. As long as you reload the page within ten seconds, the cached content will be used. If
you wait longer than ten seconds to reload the page, then the cached content will be discarded, the view
component will be used to generate new content, and the process will begin anew.

Using Cache Variations
By default, all requests receive the same cached content. The CacheTagHelper class can maintain different
versions of cached content and use them to satisfy different types of HTTP requests, specified using one of
the attributes whose name begins with vary-by. Listing 25-22 shows the use of the vary-by-route attribute
to create cache variations based on the action value matched by the routing system.

Listing 25-22. Creating a Cache Variation in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css"
 asp-fallback-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-fallback-href-exclude="**/*-reboot*,**/*-grid*"
 asp-fallback-test-class="btn"

Chapter 25 ■ Using the Other BUilt-in tag helpers

805

 asp-fallback-test-property="display"
 asp-fallback-test-value="inline-block"
 rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <cache expires-sliding="@TimeSpan.FromSeconds(10)" vary-by-route="action">
 @await Component.InvokeAsync("Time")
 </cache>
 <div>@RenderBody()</div>
</body>
</html>

If you run the application and use two browser tabs or windows to request the /Home/Index and
/Home/Create URLs, you will see that each window receives its own cached content with its own expiration,
since each request produces a different action routing value. The CacheTagHelper class supports a range of
attributes that define different variations, including caching content for individual users.

There is also a vary-by header that allows you to define arbitrary cache variations using any data value.
In Listing 25-23, I have re-created the effect of the vary-by-route attribute by specifying a value obtained
directly from the route data.

Listing 25-23. Specifying a Custom Cache Variation in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0-alpha.6/css/bootstrap.min.css"
 asp-fallback-href-include="/lib/bootstrap/dist/**/*.min.css"
 asp-fallback-href-exclude="**/*-reboot*,**/*-grid*"
 asp-fallback-test-class="btn"
 asp-fallback-test-property="display"
 asp-fallback-test-value="inline-block"
 rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <cache expires-sliding="@TimeSpan.FromSeconds(10)"
 vary-by="@ViewContext.RouteData.Values["action"]">
 @await Component.InvokeAsync("Time")
 </cache>
 <div>@RenderBody()</div>
</body>
</html>

The vary-by attribute can be used to create more complex caching variations, although care should
be taken because it is easy to get carried away and end up creating variations that are so specific that the
content in the cache is never reused before it expires.

Chapter 25 ■ Using the Other BUilt-in tag helpers

806

Using Application-Relative URLs
The final built-in tag helper is the UrlResolutionTagHelper class, and it is used to provide support for
application-relative URLs, which are URLs that are prefixed with a tilde (the ~ character). In Listing 25-24,
I have changed the link element in the shared layout so that it uses an explicitly defined URL, rather than
using tag helpers to generate the URL from the routing system.

Listing 25-24. Using an Explicit URL in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="/lib/bootstrap/dist/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <cache expires-sliding="@TimeSpan.FromSeconds(10)"
 vary-by="@ViewContext.RouteData.Values["action"]">
 @await Component.InvokeAsync("Time")
 </cache>
 <div>@RenderBody()</div>
</body>
</html>

Explicit URLs are perfectly acceptable as long as you understand that you will have to update them if
you change the application’s URL schema. And for many applications, that’s the only consideration you have
to make.

However, some applications will be deployed into a shared environment, where a single server supports
multiple applications that are differentiated by adding a prefix to the URL. In Listing 25-25, I have changed
the configuration of the application so that the request pipeline is set up to handle requests with a prefix of
mvcapp, simulating a shared environment.

Listing 25-25. Adding a URL Prefix in the Startup.cs File in the Cities Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using Cities.Models;

namespace Cities {
 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<IRepository, MemoryRepository>();
 services.AddMvc();
 }

Chapter 25 ■ Using the Other BUilt-in tag helpers

807

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.Map("/mvcapp", appBuilder => {
 appBuilder.UseStatusCodePages();
 appBuilder.UseDeveloperExceptionPage();
 appBuilder.UseStaticFiles();
 appBuilder.UseMvcWithDefaultRoute();
 });
 }
 }
}

The Map method allows multiple request pipelines to be set up with different prefixes. This isn’t an
especially useful feature in day-to-day MVC development because you can create URLs prefixes within the
MVC application using the routing system. But for this chapter, it is a useful feature because it means that
every URL is requested by clients, including requests for static content.

You can see the problem that has arisen by starting the application and requesting the /mvcapp URL,
which is now the default URL for the application and targets the Index action on the Home controller. Now
that all URLs have to start with /mvcapp, the explicit URL for the stylesheet in the link element doesn’t work,
which means that the content in the application can’t be styled, as shown in Figure 25-7. (You may have to
clear your browser’s cache to see the problem.)

Figure 25-7. The effect of an explicitly defined URL

I could fix this problem by updating the explicit URL to include the prefix, but that isn’t always possible
because the prefix may change in deployment or may not be known at development time. A better solution
is to use an application-relative URL, in which the path to the static content is expressed relative to any prefix
that may have been configured, as shown in Listing 25-26.

Chapter 25 ■ Using the Other BUilt-in tag helpers

808

Listing 25-26. Using an Application-Relative URL in the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Cities</title>
 <link href="~/lib/bootstrap/dist/css/bootstrap.min.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 <cache expires-sliding="@TimeSpan.FromSeconds(10)"
 vary-by="@ViewContext.RouteData.Values["action"]">
 @await Component.InvokeAsync("Time")
 </cache>
 <div>@RenderBody()</div>
</body>
</html>

The tilde is detected by the UrlResolutionTagHelper class, which replaces the tilde with the path
required to reach the contents of the wwwroot folder. If you run the application, you will see that the content
is styled, and examining the HTML sent to the browser will show that the link element contains a URL that
includes the mvcapp prefix.

<link href="/mvcapp/lib/bootstrap/dist/css/bootstrap.min.css" rel="stylesheet" />

The UrlResolutionTag helper looks for URLs in a wide range of elements, as described in Table 25-9.

 ■ Tip if you use another of the built-in tag helpers to generate Urls from the routing system, the htMl they
generate will automatically include any required prefix, which is obtained from the HttpRequest.PathBase
context property and whose value is provided by the server that hosts the application.

Table 25-9. The Elements and Attributes Transformed by the UrlResolutionTagHelper

Element Attributes

a href

applet archive

area href

audio src

base href

blockquote cite

button formaction

del cite

(continued)

Chapter 25 ■ Using the Other BUilt-in tag helpers

809

Summary
In this chapter, I described the built-in tag helpers that are not related to HTML forms. These tag helpers
help manage access to JavaScript files and CSS stylesheets, creating URLs for anchor elements, performing
cache busting for images, caching data, and transforming application-relative URLs. In the next chapter, I
introduce the model binding system, which is used to process the data in HTTP requests so that it can be
easily consumed within an MVC application.

Element Attributes

embed src

form action

html manifest

iframe src

img src, srcset

input src, formaction

ins cite

link href

menuitem icon

object archive, data

q cite

script src

source src, srcset

track src

video src, poster

Table 25-9. (continued)

811© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_26

CHAPTER 26

Model Binding

Model binding is the process of creating .NET objects using the data from the HTTP request in order to
provide action methods with the arguments they need. In this chapter, I describe the way the model binding
system works; show how it binds simple types, complex types, and collections; and demonstrate how you
can take control of the process to specify which part of the request provides the data values your action
methods require. Table 26-1 puts model binding in context.

Table 26-1. Putting Model Binding in Context

Question Answer

What is it? Model binding is the process of creating the objects that action
methods require as arguments using data values obtained from
the HTTP request.

Why is it useful? Model binding lets action methods declare parameters using C#
types and automatically receive data from the request without
having to inspect, parse, and process the data directly.

How is it used? In its simplest form, action methods declare parameters whose
names are used to retrieve data values from the HTTP request. The
part of the request used to obtain the data can be configured by
applying attributes to the action method parameters.

Are there any pitfalls or limitations? The main pitfall is getting data from the wrong part of the request.
I explain the way that requests are searched for data in the
“Understanding Model Binding” section, and the search locations
can be specified explicitly using the attributes that I describe in
the “Specifying a Model Binding Source” section.

Are there any alternatives? Action methods don’t have to declare parameters at all and can
use the context objects that I described in Chapter 17 to get data
directly from the HTTP request. However, the result is more
complicated code that is hard to read and maintain.

https://doi.org/10.1007/978-1-4842-3150-0_26
http://dx.doi.org/10.1007/978-1-4842-3150-0_17

Chapter 26 ■ Model Binding

812

Table 26-2 summarizes the chapter.

Table 26-2. Chapter Summary

Problem Solution Listing

Bind to a simple type or
collection

Add a parameter to an action method 1–10, 23–29

Bind to a complex type Ensure that the HTML generated by a view is well-structured 11–19

Selectively bind
properties

Specify the names of data values using the Bind attribute or use
the BindNever attribute to exclude model properties from the
binding process

20–22

Specify the source of a
data binding value

Apply an attribute to the action method argument or model
property that identifies where the binding value should come from

30–38

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called MvcModels.

Creating the Model and Repository
I created the Models folder and added a class file called Person.cs, which I used to define the classes and
enum shown in Listing 26-1.

Listing 26-1. The Contents of the Person.cs File in the Models Folder

using System;

namespace MvcModels.Models {

 public class Person {
 public int PersonId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime BirthDate { get; set; }
 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
 }

 public class Address {
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string City { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
 }

Chapter 26 ■ Model Binding

813

 public enum Role {
 Admin,
 User,
 Guest
 }
}

Next, I added a class file called Repository.cs to the Models folder and defined the interface and
implementation class shown in Listing 26-2.

Listing 26-2. The Contents of the Repository.cs File in the Models Folder

using System.Collections.Generic;

namespace MvcModels.Models {

 public interface IRepository {
 IEnumerable<Person> People { get; }

 Person this[int id] { get; set; }
 }

 public class MemoryRepository : IRepository {
 private Dictionary<int, Person> people
 = new Dictionary<int, Person> {
 [1] = new Person {PersonId = 1, FirstName = "Bob",
 LastName = "Smith", Role = Role.Admin},
 [2] = new Person {PersonId = 2, FirstName = "Anne",
 LastName = "Douglas", Role = Role.User},
 [3] = new Person {PersonId = 3, FirstName = "Joe",
 LastName = "Able", Role = Role.User},
 [4] = new Person {PersonId = 4, FirstName = "Mary",
 LastName = "Peters", Role = Role.Guest}
 };

 public IEnumerable<Person> People => people.Values;

 public Person this[int id] {
 get {
 return people.ContainsKey(id) ? people[id] : null;
 }
 set {
 people[id] = value;
 }
 }
 }
}

The IRepository interface defines a People property to retrieve all the objects in the model and
an indexer that allows individual Person objects to be retrieved or stored. The MemoryRepository class
implements the interface using a dictionary with some default content. The repository implementation is
not persistent, so the state of the application will revert to the default content when it is stopped or restarted.

Chapter 26 ■ Model Binding

814

Creating the Controller and View
I created the Controllers folder, added a class file called HomeController.cs, and used it to define the
controller shown in Listing 26-3. The controller relies on dependency injection to receive a repository,
which it uses in the Index method to select a single Person object from the repository using the value of its
PersonId property.

Listing 26-3. The Contents of the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public ViewResult Index(int id) => View(repository[id]);
 }
}

To provide the action method with a view, I created the Views/Home folder and added a Razor file called
Index.cshtml with the markup shown in Listing 26-4, which presents some of the properties from the model
object in a table.

Listing 26-4. The Contents of the Index.cshtml File in the Views/Home Folder

@model Person
@{ Layout = "_Layout"; }

<div class="bg-primary m-1 p-1 text-white"><h2>Person</h2></div>

<table class="table table-sm table-bordered table-striped">
 <tr><th>PersonId:</th><td>@Model.PersonId</td></tr>
 <tr><th>First Name:</th><td>@Model.FirstName</td></tr>
 <tr><th>Last Name:</th><td>@Model.LastName</td></tr>
 <tr><th>Role:</th><td>@Model.Role</td></tr>
</table>

The Index.cshtml view relies on a shared layout. I created the Views/Shared folder and added a layout
called _Layout.cshtml to it, the contents of which can be seen in Listing 26-5.

Listing 26-5. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>@ViewBag.Title</title>

Chapter 26 ■ Model Binding

815

 <link asp-href-include="/lib/bootstrap/dist/**/*.min.css" rel="stylesheet" />
 @RenderSection("scripts", false)
</head>
<body class="m-1 p-1">
 @RenderBody()
</body>
</html>

The layout includes a link element for the Bootstrap stylesheet and renders the contents of the view.
There is also an optional scripts section, which I will use later in the chapter. To simplify the views used in
this chapter, I added the namespace that contains the model classes to the _ViewImports.cshtml file in the
Views folder, as shown in Listing 26-6.

Listing 26-6. Importing Namespaces in the _ViewImports.cshtml File in the Views Folder

@using MvcModels.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The views rely on the Bootstrap CSS framework, which I added to the project by using the Bower
Configuration File item template to create the bower.json file in the root folder of the project and by adding
the package shown in Listing 26-7.

Listing 26-7. Adding a Package in the bower.json File in the MvcModels Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

Configuring the Application
To complete the initial setup of the example application, I enabled the MVC framework and the other
middleware useful for development in the Startup class, as shown in Listing 26-8. I also created a service for
the repository so that the controller can gain access to the data model.

Listing 26-8. The Contents of the Startup.cs File in the MvcModels Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using MvcModels.Models;

Chapter 26 ■ Model Binding

816

namespace MvcModels {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<IRepository, MemoryRepository>();
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvc(routes => {
 routes.MapRoute(
 name: "default",
 template: "{controller=Home}/{action=Index}/{id?}");
 });
 }
 }
}

Start the application and request the /Home/Index/1 URL to produce the result shown in Figure 26-1.
(The default URL will produce an error at the moment.)

Figure 26-1. Running the example application

Chapter 26 ■ Model Binding

817

Understanding Model Binding
Model binding is an elegant bridge between the HTTP request and C# action methods. Most MVC
applications rely on model binding to some extent, including the example application for this chapter.
Model binding was used when I tested the example application in the previous section. The URL I requested
contained the value of the PersonId property of the Person object I wanted to view, like this:

/Home/Index/1

MVC translated that part of the URL and used it as the argument when it called the Index method in the
Home controller class to service the request.

...
public ViewResult Index(int id) => View(repository[id]);
...

To be able to invoke the Index method, MVC needs a value for the id argument, and providing that
value is the responsibility of the model binding system, which is responsible for providing data values that
can be used to invoke action methods.

The model binding system relies on model binders, which are components responsible for providing
data values from one part of the request or application. The default model binders look for data values in
these three places:

•	 Form data values

•	 Routing variables

•	 Query strings

Each source of data is inspected in order until a value for the argument is found. There is no form data
in the example application, so no value will be found there. But there is a routing segment called id in the
application configuration I used in Listing 26-8, and that allows the model binding system to provide MVC
with a value that can be used to invoke the Index method. The search stops after a suitable data value has
been found, which means that the query string isn’t searched for a data value.

 ■ Tip in the “Specifying a Model Binding Source” section, i explain how you can specify the source of model
binding data using attributes. this allows you to specify that a data value is obtained from, for example, the
query string, even if there is also suitable data in the form or routing data.

Knowing the order in which data values are sought is important because a request can contain multiple
values, like this URL:

/Home/Index/3?id=1

The routing system will process the request and match the id segment in the URL template to the value 3,
and the query string contains an id value of 1. Since the routing data is searched for data before the query string,
the Index action method will receive the value 3, and the query string value will be ignored.

Chapter 26 ■ Model Binding

818

On the other hand, if you request a URL that doesn’t have an id segment, then the query string will be
examined, which means that a URL like this one will also allow the model binding system to provide MVC
with a value for the id argument so that it can invoke the Index method:

/Home/Index?id=1

You can see the effect of both of these URLs in Figure 26-2.

Figure 26-3. An error processing a model property

Figure 26-2. The effect of model binding data source ordering

Understanding Default Binding Values
Model binding is a best-effort feature, which means that MVC will use model binding to try to get the values
it needs to invoke an action method but will still invoke the method even if data values cannot be provided.
This can cause some unexpected behavior. As an example, requesting the URL /Home/Index produces the
exception shown in Figure 26-3.

Chapter 26 ■ Model Binding

819

This exception isn’t reported by the model binding system. Instead, it occurred when the Index view
selected by the Index action method was processed. To invoke the Index method, MVC had to provide a
value for the id argument, so it asked each of the model binders to inspect their part of the request and
provide a value.

There is no form data in the example, no value for the id routing segment, and no query string in the
URL, which means that the model binding system is unable to provide a data value. MVC has to provide
some value for the id argument in order to invoke the Index method, so it uses a default value and hopes for
the best. For int arguments, the default value is 0, and this is what leads to the exception. The definition of
the Index method uses the value of the id argument to retrieve a model object from the repository.

...
public ViewResult Index(int id) => View(repository[id]);
...

When MVC uses the default value, the action method tries to retrieve a data model object with the id
of 0. There is no such object, and the repository returns null, which is then passed on to the controller’s View
method to provide view model data to the Index.cshtml view. When the Razor expressions in the Index.
cshtml file try to access the properties of the view model object, they cause the NullReferenceException
shown in Figure 26-3.

This means that action methods have to be written to cope with default values provided by the model
binding system, which can be done in several ways. You can add default values to the routing URL patterns
(as described in Chapter 15), assign default values to the action method parameters, or ensure that the
action method doesn’t pass on bad data values as part of its response. The best approach will depend on
what the action method is doing; in Listing 26-9, I have taken the last approach, which is to modify the
action method so that it ensures that a Person object is always passed to the View method, even when the
id argument doesn’t correspond to an object in the data model.

Listing 26-9. Guarding Against Default Values in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;
using System.Linq;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public ViewResult Index(int id) =>
 View(repository[id] ?? repository.People.First());
 }
}

The action method uses the LINQ and the null coalescing operator to return the first object in the
repository when the value of the id parameter doesn’t retrieve an object.

http://dx.doi.org/10.1007/978-1-4842-3150-0_15

Chapter 26 ■ Model Binding

820

Binding Simple Types
When there is a suitable value available, it has to be converted into a C# value so that it can be used to invoke
an action method. Simple types are values that originate from one item of data in the request that can be
parsed from a string. This includes numeric values, bool values, dates, and, of course, string values.

The id argument of the Index action method is an int, so the model binding process provides MVC
with a value by parsing the id segment variable into an int value.

If the request value cannot be converted (for example, if I supplied a value of apple for a parameter that
requires an int value), then model binding process won’t be able to provide a value for the application, and
the default value will be used.

This presents a problem because it means that there are two situations in which the action method will
receive the default value, zero. The first is when the request contains a value that cannot be parsed into the
argument type, such as for the URL /Home/Index/Apple. The second is when the request does contain a
value that can be parsed and it happens to be zero, such as for the URL /Home/Index/0.

Most applications need to be able to tell the difference between these situations, and the easiest way to
do this is to use a nullable type for the action method argument, as shown in Listing 26-10.

Listing 26-10. Using a Nullable Type in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public IActionResult Index(int? id) {
 Person person;
 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }
 }
}

The default value for nullable types is null, which allows me to differentiate between requests where
the request doesn’t contain a value that can be parsed into an int and requests that do, and the int value
happens to be zero. The implementation of the Index method in this example uses the NotFound method
to return a 404 error if the nullable argument doesn’t have a value or if the value doesn’t correspond to an
object in the model, which is a more robust approach than simply hoping that the first object in the model is
suitable, which is the approach I took in the previous section.

Chapter 26 ■ Model Binding

821

Binding Complex Types
When the action method parameter is a complex type (in other words, any type that cannot be parsed from
a single string value), then the model binding process uses reflection to get a set of the target type’s public
properties and performs the binding process on each of them in turn. To demonstrate how this works, I
added two action methods to the Home controller, as shown in Listing 26-11.

Listing 26-11. Adding Action Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public IActionResult Index(int? id) {
 Person person;
 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }

 public ViewResult Create() => View(new Person());

 [HttpPost]
 public ViewResult Create(Person model) => View("Index", model);
 }
}

The version of the Create method without parameters creates a new Person object and passes it to the
View method, which has the effect of selecting the default view associated with the action. I added a view file
called Create.cshtml to the Views/Home folder and added the markup shown in Listing 26-12.

Listing 26-12. The Contents of the Create.cshtml File in the Views/Home Folder

@model Person
@{
 ViewBag.Title = "Create Person";
 Layout = "_Layout";
}

<form asp-action="Create" method="post">
 <div class="form-group">
 <label asp-for="PersonId"></label>

Chapter 26 ■ Model Binding

822

 <input asp-for="PersonId" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="FirstName"></label>
 <input asp-for="FirstName" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="LastName"></label>
 <input asp-for="LastName" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Role"></label>
 <select asp-for="Role" class="form-control"
 asp-items="@new SelectList(Enum.GetNames(typeof(Role)))"></select>
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

This view contains a form that allows values for some of the properties of a Person object to be provided
and contains a form element that posts the data back to the version of the Create method in the Home
controller that has been decorated with the HttpPost attribute.

The action method that receives the form data uses the /Views/Home/Index.cshtml view to display it.
You can see how this works work by starting the application, navigating to /Home/Create, filling out the form,
and clicking the Submit button, as shown in Figure 26-4.

Figure 26-4. Using the CreatePerson action methods

Chapter 26 ■ Model Binding

823

When the form data is sent to the server, the model binding process discovers that the action method
requires a complex type: a Person object. The Person class is examined to discover its public properties. For
each public property that returns a simple property type, the model binder tries to locate a request value,
just as it did in the previous example.

So, for example, the model binder finds the PersonId property and looks for a PersonId value in the same
locations that were searched for an id value in the previous section. Since the form data contains a suitable
value, which is set up using the asp-for tag helper on an input element, this is the value that will be used.

If a property requires another complex type, then the process is repeated for the new type. The set of
public properties is obtained, and the binder tries to find values for all the properties. The difference is that
the property names are nested. For example, the HomeAddress property of the Person class is of the Address
type, as highlighted here:

using System;

namespace MvcModels.Models {

 public class Person {
 public int PersonId { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public DateTime BirthDate { get; set; }
 public Address HomeAddress { get; set; }
 public bool IsApproved { get; set; }
 public Role Role { get; set; }
 }

 public class Address {
 public string Line1 { get; set; }
 public string Line2 { get; set; }
 public string City { get; set; }
 public string PostalCode { get; set; }
 public string Country { get; set; }
 }

 public enum Role {
 Admin,
 User,
 Guest
 }
}

When looking for a value for the Line1 property, the model binder looks for a value for HomeAddress.
Line1, as in the name of the property in the model object combined with the name of the property in the
nested model type.

Creating Easily Bound HTML
The use of prefixes means that views have to include the information that the model binder looks for. This is
easily done using tag helpers, which automatically add the required prefixes to the elements they transform.
In Listing 26-13, I have extended the form so that it takes address data.

Chapter 26 ■ Model Binding

824

Listing 26-13. Updating the Form in the Create.cshtml File in the Views/Home Folder

@model Person
@{
 ViewBag.Title = "Create Person";
 Layout = "_Layout";
}

<form asp-action="Create" method="post">
 <div class="form-group">
 <label asp-for="PersonId"></label>
 <input asp-for="PersonId" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="FirstName"></label>
 <input asp-for="FirstName" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="LastName"></label>
 <input asp-for="LastName" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Role"></label>
 <select asp-for="Role" class="form-control"
 asp-items="@new SelectList(Enum.GetNames(typeof(Role)))"></select>
 </div>
 <div class="form-group">
 <label asp-for="HomeAddress.City"></label>
 <input asp-for="HomeAddress.City" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="HomeAddress.Country"></label>
 <input asp-for="HomeAddress.Country" class="form-control" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>

When using a tag helper, the nested property name is specified using C# conventions so that the outer
and nested property names are separated by a period: HomeAddress.Country. If you run the application,
request the /Home/Create URL, and examine the HTML sent to the browser, you will see that a different
convention is used for some attributes.

<div class="form-group">
 <label for="HomeAddress_City">City</label>
 <input class="form-control" type="text" id="HomeAddress_City"
 name="HomeAddress.City" value="" />
</div>

Chapter 26 ■ Model Binding

825

<div class="form-group">
 <label for="HomeAddress_Country">Country</label>
 <input class="form-control" type="text" id="HomeAddress_Country"
 name="HomeAddress.Country" value="" />
</div>

The name attributes on the input elements follow the C# style, but the for attributes on the label
elements and the id attributes on the input elements separate the property names with underscores. If
you prefer to define the HTML elements without tag helpers, then you should ensure that you use the same
naming scheme.

As a consequence of this feature, I don’t have to take any special action to ensure that the model binder
can create the Address object for the HomeAddress property. I can demonstrate this by editing the Index.
cshtml view to display the HomeAddress properties when they are submitted from the form, as shown in
Listing 26-14.

Listing 26-14. Displaying the HomeAddress Properties in the Index.cshtml File in the Views/Home Folder

@model Person
@{ Layout = "_Layout"; }

<div class="bg-primary m-1 p-1 text-white"><h2>Person</h2></div>

<table class="table table-sm table-bordered table-striped">
 <tr><th>PersonId:</th><td>@Model.PersonId</td></tr>
 <tr><th>First Name:</th><td>@Model.FirstName</td></tr>
 <tr><th>Last Name:</th><td>@Model.LastName</td></tr>
 <tr><th>Role:</th><td>@Model.Role</td></tr>
 <tr><th>City:</th><td>@Model.HomeAddress?.City</td></tr>
 <tr><th>Country:</th><td>@Model.HomeAddress?.Country</td></tr>
</table>

If you start the application and navigate to the /Home/Create URL, you can enter values for the City
and Country properties and check that they are being bound to the model object by submitting the form,
as shown in Figure 26-5.

Chapter 26 ■ Model Binding

826

Specifying Custom Prefixes
There are occasions when the HTML you generate relates to one type of object but you want to bind it to
another. This means that the prefixes containing the view won’t correspond to the structure that the model
binder is expecting, and your data won’t be properly processed. To demonstrate this problem, I added a file
called AddressSummary.cs to the Models folder and used it to define the class shown in Listing 26-15.

Listing 26-15. The Contents of the AddressSummary.cs File in the Models Folder

namespace MvcModels.Models {

 public class AddressSummary {
 public string City { get; set; }
 public string Country { get; set; }
 }
}

I added a new action method in the Home controller that uses the AddressSummary class, as shown in
Listing 26-16.

Figure 26-5. Binding to properties in complex objects

Chapter 26 ■ Model Binding

827

Listing 26-16. Adding an Action Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public IActionResult Index(int? id) {
 Person person;
 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }

 public ViewResult Create() => View(new Person());

 [HttpPost]
 public ViewResult Create(Person model) => View("Index", model);

 public ViewResult DisplaySummary(AddressSummary summary) => View(summary);
 }
}

The new action method is called DisplaySummary. It has an AddressSummary parameter, which it passes
to the View method so that it can be displayed by the default view. I created the DisplaySummary.cshtml file
in the /Views/Home folder and added the markup shown in Listing 26-17.

Listing 26-17. The Contents of the DisplaySummary.cshtml File in the Views/Home Folder

@model AddressSummary
@{
 ViewBag.Title = "DisplaySummary";
 Layout = "_Layout";
}

<div class="bg-primary m-1 p-1 text-white"><h2>Address</h2></div>

<table class="table table-sm table-bordered table-striped">
 <tr><th>City:</th><td>@Model.City</td></tr>
 <tr><th>Country:</th><td>@Model.Country</td></tr>
</table>

Chapter 26 ■ Model Binding

828

This view displays the values of the two properties defined by the AddressSummary class. To demonstrate
the problem with prefixes when binding to different model types, I changed the form element in the Create.
cshtml view so that it sends its data to the DisplaySummary action, as shown in Listing 26-18.

Listing 26-18. Changing the Form Target Action in the Create.cshtml File in the Views/Home Folder

@model Person
@{
 ViewBag.Title = "Create Person";
 Layout = "_Layout";
}

<form asp-action="DisplaySummary" method="post">

 <!-- HTML elements omitted for brevity -->

</form>

You can see what happens by starting the application and navigating to the /Home/Create URL. When
you submit the form, the values that you entered for the City and Country properties are not displayed in
the HTML generated by the DisplaySummary view.

The problem is that the name attributes in the form have the HomeAddress prefix, which is not what the
model binder is looking for when it tries to bind the AddressSummary type.

To fix the problem, the Bind attribute can be applied to the action method parameter, which specifies
the prefix that should be used during model binding, as shown in Listing 26-19.

Listing 26-19. Changing the Model Binding Prefix in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public IActionResult Index(int? id) {
 Person person;
 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }

 public ViewResult Create() => View(new Person());

Chapter 26 ■ Model Binding

829

 [HttpPost]
 public ViewResult Create(Person model) => View("Index", model);

 public ViewResult DisplaySummary(
 [Bind(Prefix = nameof(Person.HomeAddress))] AddressSummary summary)
 => View(summary);
 }
}

The syntax is awkward, but the effect is useful. When populating the properties of the AddressSummary
object, the model binder will look for HomeAddress.City and HomeAddress.Country data values in the
request. If you run the application and submit the form again, you will see that the values you enter into
the City and Country fields are now correctly displayed, as shown in Figure 26-6. This may seem like a long
setup for a simple problem, but the need to bind to a different kind of object is surprisingly common, and
this is a technique worth knowing.

Figure 26-6. Binding to the properties of a different object type

Chapter 26 ■ Model Binding

830

Selectively Binding Properties
Imagine that the Country property of the AddressSummary class is especially sensitive and that the user
should not be able to specify values for it. The first thing I can do is prevent the user from seeing or editing
the property by making sure that I don’t include any HTML elements in the application’s views that refer to
the property.

However, a nefarious user could simply edit the form data sent to the server when submitting the form
data and pick the value for the Country property that suits them. What I really want to do is tell the model
binder not to bind a value for the Country property from the request, which I can do by configuring the Bind
attribute on the action method parameter, specifying the names of only the properties that I want to bind, as
shown in Listing 26-20.

Listing 26-20. Specifying the Properties in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public IActionResult Index(int? id) {
 Person person;
 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }

 public ViewResult Create() => View(new Person());

 [HttpPost]
 public ViewResult Create(Person model) => View("Index", model);

 public ViewResult DisplaySummary(
 [Bind(nameof(AddressSummary.City), Prefix = nameof(Person.HomeAddress))]
 AddressSummary summary) => View(summary);
 }
}

The first argument to the Bind attribute is a comma-separated list of the names of the properties that
should be included in the model binding process. In the listing, I have specified that the City property
should be included in the process, and since it is not listed, this means that the Country property will be
excluded.

Chapter 26 ■ Model Binding

831

If you run the application, request the /Home/Create URL, and fill in and send the form, you will see
that there is no value displayed for the Country property, even though one was sent by the browser as part of
the HTTP POST request, as illustrated in Figure 26-7.

Figure 26-7. Excluding a property from the model binding process

When the Bind attribute is applied to an action method parameter, it only affects instances of that class
that are bound for that action method; all other action methods will continue to try to bind all the properties
defined by the parameter type. If you want to create a more widespread effect, then you can apply the Bind
attribute to the model class itself, as shown in Listing 26-21.

Listing 26-21. Applying the Bind Attribute in the AddressSummary.cs File in the Models Folder

using Microsoft.AspNetCore.Mvc;

namespace MvcModels.Models {

 [Bind(nameof(City))]
 public class AddressSummary {
 public string City { get; set; }

 public string Country { get; set; }
 }
}

You can also exclude properties explicitly by decorating them with the BindNever attribute, as shown in
Listing 26-22, although this does mean that new properties added to the model class will be included in the
model binding process unless you remember to apply the attribute to them.

Listing 26-22. Applying the NeverBind Attribute in the AddressSummary.cs File in the Models Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace MvcModels.Models {

 public class AddressSummary {

Chapter 26 ■ Model Binding

832

 public string City { get; set; }

 [BindNever]
 public string Country { get; set; }
 }
}

 ■ Tip there is also a BindRequired attribute that tells the model binding process that a request must
include a value for a property. if the request doesn’t have a required value, then a model validation error is
produced, as described in Chapter 27.

Binding to Arrays and Collections
The model binding process has some nice features for binding request data to arrays and collections, which
I demonstrate in the following sections.

Binding to Arrays
One elegant feature of the default model binder is how it supports action method parameters that are arrays.
To demonstrate this, I have added a new method to the Home controller called Names, which you can see in
Listing 26-23.

Listing 26-23. Adding an Action Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public IActionResult Index(int? id) {
 Person person;
 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }

 public ViewResult Create() => View(new Person());

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 26 ■ Model Binding

833

 [HttpPost]
 public ViewResult Create(Person model) => View("Index", model);

 public ViewResult DisplaySummary(
 [Bind(nameof(AddressSummary.City), Prefix = nameof(Person.HomeAddress))]
 AddressSummary summary) => View(summary);

 public ViewResult Names(string[] names) => View(names ?? new string[0]);
 }
}

The Names action method has a string array parameter called names. The model binder will look for any
data item that is called names and create an array that contains those values. To provide the action method
with a view, I created a Razor file called Names.cshtml in the Views/Home folder and added the markup
shown in Listing 26-24.

Listing 26-24. The Contents of the Names.cshtml File in the Views/Home Folder

@model string[]
@{
 ViewBag.Title = "Names";
 Layout = "_Layout";
}

@if (Model.Length == 0) {
 <form asp-action="Names" method="post">
 @for (int i = 0; i < 3; i++) {
 <div class="form-group">
 <label>Name @(i + 1):</label>
 <input id="names" name="names" class="form-control" />
 </div>
 }
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
} else {
 <table class="table table-sm table-bordered table-striped">
 @foreach (string name in Model) {
 <tr><th>Name:</th><td>@name</td></tr>
 }
 </table>
 <a asp-action="Names" class="btn btn-primary">Back
}

This view displays different content based on the number of items there are in the view model. If there
are no items, then the view displays a form that contains three identical input elements, like this:

...
<form method="post" action="/Home/Names">
 <div class="form-group">
 <label>Name 1:</label>
 <input id="names" name="names" class="form-control" />
 </div>

Chapter 26 ■ Model Binding

834

 <div class="form-group">
 <label>Name 2:</label>
 <input id="names" name="names" class="form-control" />
 </div>
 <div class="form-group">
 <label>Name 3:</label>
 <input id="names" name="names" class="form-control" />
 </div>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>
...

When the form is submitted, the model binding process sees that the target action method takes an
array and looks for data items that have the same name as the action method parameter. For this example,
this means that all the values from the input elements whose name attribute is names will be gathered
together to create an array and used as the argument to invoke the action method. To see the effect, start the
application, navigate to the /Home/Names URL, and fill out the form. When you submit the form, you will see
that all the values you entered are displayed, as shown in Figure 26-8.

Figure 26-8. Model binding for arrays

Binding to Collections
It isn’t just arrays that the model binding process can create. It also supports collection classes. In Listing 26-25
I changed the type of the Names action method parameter to be a strongly typed list.

Listing 26-25. Using a Strongly Typed Collection in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;
using System.Collections.Generic;

namespace MvcModels.Controllers {

Chapter 26 ■ Model Binding

835

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 // ...other action methods omitted for brevity...

 public ViewResult Names(IList<string> names) =>
 View(names ?? new List<string>());
 }
}

I used the IList<T> interface. I don’t need to specify a concrete implementation class, although I could
have if I preferred. In Listing 26-26, I modified the Names.cshtml view file to use the new model type.

Listing 26-26. Using a Collection As the Model Type in the Names.cshtml File in the Views/Home Folder

@model IList<string>
@{
 ViewBag.Title = "Names";
 Layout = "_Layout";
}

@if (Model.Count == 0) {
 <form asp-action="Names" method="post">
 @for (int i = 0; i < 3; i++) {
 <div class="form-group">
 <label>Name @(i + 1):</label>
 <input id="names" name="names" class="form-control" />
 </div>
 }
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
} else {
 <table class="table table-sm table-bordered table-striped">
 @foreach (string name in Model) {
 <tr><th>Name:</th><td>@name</td></tr>
 }
 </table>
 <a asp-action="Names" class="btn btn-primary">Back
}

The functionality of the Names action is unchanged, but I am now able to work with a collection class
rather than an array.

Chapter 26 ■ Model Binding

836

Binding to Collections of Complex Types
You can also bind individual data values to an array of complex types, which allows multiple objects (such
as the AddressSummary model class in the example) to be collected from a single request. In Listing 26-27, I
added an action method to the Home controller called Address, whose parameter is a list of AddressSummary
objects.

Listing 26-27. Defining an Action Method in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;
using System.Collections.Generic;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public IActionResult Index(int? id) {
 Person person;
 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }

 public ViewResult Create() => View(new Person());

 [HttpPost]
 public ViewResult Create(Person model) => View("Index", model);

 public ViewResult DisplaySummary(
 [Bind(nameof(AddressSummary.City), Prefix = nameof(Person.HomeAddress))]
 AddressSummary summary) => View(summary);

 public ViewResult Names(IList<string> names) =>
 View(names ?? new List<string>());

 public ViewResult Address(IList<AddressSummary> addresses) =>
 View(addresses ?? new List<AddressSummary>());
 }
}

To provide the new action method with a view, I added a file called Address.cshtml to the Views/Home
folder and added the markup shown in Listing 26-28.

Chapter 26 ■ Model Binding

837

Listing 26-28. The Contents of the Address.cshtml File in the Views/Home Folder

@model IList<AddressSummary>
@{
 ViewBag.Title = "Address";
 Layout = "_Layout";
}

@if (Model.Count() == 0) {
 <form asp-action="Address" method="post">
 @for (int i = 0; i < 3; i++) {
 <fieldset class="form-group">
 <legend>Address @(i + 1)</legend>
 <div class="form-group">
 <label>City:</label>
 <input name="[@i].City" class="form-control" />
 </div>
 <div class="form-group">
 <label>Country:</label>
 <input name="[@i].Country" class="form-control" />
 </div>
 </fieldset>
 }
 <button type="submit" class="btn btn-primary">Submit</button>
 </form>
} else {
 <table class="table table-sm table-bordered table-striped">
 <tr><th>City</th><th>Country</th></tr>
 @foreach (var address in Model) {
 <tr><td>@address.City</td><td>@address.Country</td></tr>
 }
 </table>
 <a asp-action="Address" class="btn btn-primary">Back
}

This view renders a form element if there are no items in the model collection. The form consists of
pairs of input elements whose name attributes are prefixed with an array index, like this:

...
<form method="post" action="/Home/Address">
 <fieldset class="form-group">
 <legend>Address 1</legend>
 <div class="form-group">
 <label>City:</label>
 <input name="[0].City" class="form-control" />
 </div>
 <div class="form-group">
 <label>Country:</label>
 <input name="[0].Country" class="form-control" />
 </div>
 </fieldset>
 <fieldset class="form-group">

Chapter 26 ■ Model Binding

838

 <legend>Address 2</legend>
 <div class="form-group">
 <label>City:</label>
 <input name="[1].City" class="form-control" />
 </div>
 <div class="form-group">
 <label>Country:</label>
 <input name="[1].Country" class="form-control" />
 </div>
 </fieldset>
 <fieldset class="form-group">
 <legend>Address 3</legend>
 <div class="form-group">
 <label>City:</label>
 <input name="[2].City" class="form-control" />
 </div>
 <div class="form-group">
 <label>Country:</label>
 <input name="[2].Country" class="form-control" />
 </div>
 </fieldset>
 <button type="submit" class="btn btn-primary">Submit</button>
</form>
...

When the form is submitted, the model binder realizes that it needs to create a collection of
AddressSummary objects and uses the array index prefixes in the name attributes to obtain values for the
object properties. The properties prefixed with [0] are used for the first AddressSummary object, those
prefixed with [1] are used for the second object, and so on.

The Address.cshtml view defines input elements for three such indexed objects and displays them
when the model collection contains items. Before I can demonstrate this, I need to remove the BindNever
attribute from the AddressSummary model class, as shown in Listing 26-29; otherwise, the model binder will
ignore the Country property.

Listing 26-29. Removing the BindNever Attribute from the AddressSummary.cs File in the Models Folder

using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace MvcModels.Models {

 public class AddressSummary {

 public string City { get; set; }

 //[BindNever]
 public string Country { get; set; }
 }
}

Chapter 26 ■ Model Binding

839

You can see how the binding process for custom object collections works by starting the application and
navigating to the /Home/Address URL. Enter some cities and countries and then click the Submit button to
post the form to the server.

The model binding process will find and process the indexed data values and use them to create the
collection of AddressSummary objects that are provided to the action method, which then uses the View
convenience method to pass them back to the view so they can be displayed, as illustrated in Figure 26-9.

Figure 26-9. Binding collections of custom objects

Specifying a Model Binding Source
As I explained at the start of the chapter, the default model binding process looks for data in three places: the
form’s data values, the routing data, and the request query string.

The default search sequence isn’t always helpful, either because you always want data to come from
a specific part of the request or because you want to use a data source that isn’t searched by default. The
model binding feature includes a set of attributes that are used to override the default search behavior, as
described in Table 26-3.

Chapter 26 ■ Model Binding

840

Selecting a Standard Binding Source
The FromForm, FromRoute, and FromQuery attributes allow you to specify that the model binding data will be
obtained from one of the standard locations but without the normal search sequence. Earlier in the chapter,
I used this URL:

/Home/Index/3?id=1

This URL contains two possible values that can be used for the id parameter of the Index action method
on the Home controller. The routing system will assign the final segment of the URL to a variable called id,
which is defined in the URL pattern in the Startup class, and the query string contains also contains an id
value. The default search pattern means that the model binding data will be taken from the route data and
the query string will be ignored.

To change this behavior, in Listing 26-30, I have applied the FromQuery attribute to the action method. To
keep the example simple, I have also removed all the other action method that I defined in previous examples.

Listing 26-30. Selecting the Query String in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

Table 26-3. The Model Binding Source Attributes

Name Description

FromForm This attribute is used to select form data as the source of binding data. The name of the
parameter is used to locate a form value by default, but this can be changed using the
Name property, which allows a different name to be specified.

FromRoute This attribute is used to select the routing system as the source of binding data. The name
of the parameter is used to locate a route data value by default, but this can be changed
using the Name property, which allows a different name to be specified.

FromQuery This attribute is used to select the query string as the source of binding data. The name
of the parameter is used to locate a query string value by default, but this can be changed
using the Name property, which allows a different query string key to be specified.

FromHeader This attribute is used to select a request header as the source of binding data. The name
of the parameter is used to as the header name by default, but this can be changed using
the Name property, which allows a different header name to be specified.

FromBody This attribute is used to specify that the request body should be used as the source of
binding data, which is required when you want to receive data from requests that are not
form-encoded, such as in API controllers.

Chapter 26 ■ Model Binding

841

 public IActionResult Index([FromQuery] int? id) {
 Person person;
 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }
 }
}

I have applied the FromQuery attribute to the id parameter, which means that only the query string will
be used when the model binding process is looking for an id data value.

 ■ Tip You can still bind complex types when specifying a model binding source such as the query string. For
each simple property in the parameter type, the model binding process will look for a query string key with the
same name.

Using Headers As Binding Sources
The FromHeader attribute allows HTTP request headers to be used as the source for binding data. In
Listing 26-31, I have added a simple action method to the Home controller that receives a parameter bound
using data from a standard HTTP request header.

Listing 26-31. Model Binding from a Header in the HomeController.cs Filein the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public IActionResult Index([FromQuery] int? id) {
 Person person;
 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }

 public string Header([FromHeader]string accept) => $"Header: {accept}";
 }
}

Chapter 26 ■ Model Binding

842

The Header action method defines an accept parameter, the value for which will be taken from the
Accept header in the current request and returned as the method result. If you run the application and
request the /Home/Header URL, you will see a result like this (although the exact result may differ based on
the browser you use):

Header: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

Not all HTTP header names can be easily selected by relying on the name of the action method
parameter because the model binding system doesn’t convert from C# naming conventions to those used by
HTTP headers. In these situations, you must configure the FromHeader attribute using the Name property to
specify the name of the header, as shown in Listing 26-32.

Listing 26-32. Specifying the Name of the Header in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public IActionResult Index([FromQuery] int? id) {
 Person person;
 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }

 public string Header([FromHeader(Name = "Accept-Language")] string accept)
 => $"Header: {accept}";
 }
}

I can’t use Accept-Language as the name of a C# parameter, and the model binder won’t automatically
convert a name like AcceptLanguage into Accept-Language so that it matches the header. Instead, I used the
Name property to configure the attribute so that it matches the right header. If you start the application and
request the /Home/Header URL, you will see a response like this one, which will vary based on your locale
settings:

Header: en-US,en;q=0.8

Chapter 26 ■ Model Binding

843

Binding Complex Types from Headers
Although it is a rare requirement, you can bind complex types using header values by applying the
FromHeader attribute to the properties of a model class. As an example, I added a file called HeaderModel.cs
to the Models folder and defined the class shown in Listing 26-33.

Listing 26-33. The Contents of the HeaderModel.cs File in the Models Folder

using Microsoft.AspNetCore.Mvc;

namespace MvcModels.Models {

 public class HeaderModel {

 [FromHeader]
 public string Accept { get; set; }

 [FromHeader(Name = "Accept-Language")]
 public string AcceptLanguage { get; set; }

 [FromHeader(Name = "Accept-Encoding")]
 public string AcceptEncoding { get; set; }
 }
}

This class defines three properties, each of which has been decorated with the FromHeader attribute. I
have used the Name property on two of the attributes to specify header names that cannot be expressed as
C# parameter names. In Listing 26-34, I have updated the Header action method in the Home controller to
receive a HeaderModel object.

Listing 26-34. Using the Header Model Class in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public IActionResult Index([FromQuery] int? id) {
 Person person;

Chapter 26 ■ Model Binding

844

 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }

 public ViewResult Header(HeaderModel model) => View(model);
 }
}

To complete the example, I added a view file called Header.cshtml to the Views/Home folder and added
the markup shown in Listing 26-35.

Listing 26-35. The Contents of the Header.cshtml File in the Views/Home Folder

@model HeaderModel
@{
 ViewBag.Title = "Headers";
 Layout = "_Layout";
}

<table class="table table-sm table-bordered table-striped">
 <tr><th>Accept:</th><td>@Model.Accept</td></tr>
 <tr><th>Accept-Encoding:</th><td>@Model.AcceptEncoding</td></tr>
 <tr><th>Accept-Language:</th><td>@Model.AcceptLanguage</td></tr>
</table>

The model binding process will examine the properties of complex types looking for the attributes
described in Table 26-3. This allows me to use the FromHeader attribute to define a complex type whose
properties are model bound from headers, which you can see if you run the application and request the
/Home/Header URL, which produces the result shown in Figure 26-10.

Figure 26-10. Model binding a complex type from request headers

Chapter 26 ■ Model Binding

845

Using Request Bodies as Binding Sources
Not all data sent by clients is sent as form data, such as when a JavaScript client sends JSON data to an API
controller. The FromBody attribute specifies that the request body should be decoded and used as a source
of model binding data. In Listing 26-36, I have added new Body action methods that demonstrate how this
works.

Listing 26-36. Adding Action Methods in the HomeController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Mvc;
using MvcModels.Models;

namespace MvcModels.Controllers {

 public class HomeController : Controller {
 private IRepository repository;

 public HomeController(IRepository repo) {
 repository = repo;
 }

 public IActionResult Index([FromQuery] int? id) {
 Person person;
 if (id.HasValue && (person = repository[id.Value]) != null) {
 return View(person);
 } else {
 return NotFound();
 }
 }

 public ViewResult Header(HeaderModel model) => View(model);

 public ViewResult Body() => View();

 [HttpPost]
 public Person Body([FromBody]Person model) => model;
 }
}

I have decorated the parameter for the Body method that accepts POST requests with the FromBody
attribute, which means that request body content will be decoded and used for model binding. As I
explained in Chapter 20, MVC has an extensible system for working with data formats but is set up to deal
only with JSON data by default.

Next, I edited the bower.json file to add jQuery to the application, as shown in Listing 26-37.

Listing 26-37. Adding jQuery to the bower.json File in the MvcModels Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",

http://dx.doi.org/10.1007/978-1-4842-3150-0_20

Chapter 26 ■ Model Binding

846

 "jquery": "3.2.1"
 }
}

To provide the action method with the data it requires, I added a file called Body.cshtml to the Views/
Home folder and added the content shown in Listing 26-38.

Listing 26-38. The Contents of the Body.cshtml File in the Views/Home Folder

@{
 ViewBag.Title = "Address";
 Layout = "_Layout";
}

@section scripts {
 <script src="/lib/jquery/dist/jquery.min.js"></script>
 <script type="text/javascript">
 $(document).ready(function () {
 $("button").click(function (e) {
 $.ajax("/Home/Body", {
 method: "post",
 contentType: "application/json",
 data: JSON.stringify({
 firstName: "Bob",
 lastName: "Smith"
 }),
 success: function (data) {
 $("#firstName").text(data.firstName);
 $("#lastName").text(data.lastName);
 }
 });
 });
 });
 </script>
}

<table class="table table-sm table-bordered table-striped">
 <tr><th>First Name:</th><td id="firstName"></td></tr>
 <tr><th>Last Name:</th><td id="lastName"></td></tr>
</table>
<button class="btn btn-primary">Submit</button>

For simplicity, this view contains some inline JavaScript code that uses jQuery to send an HTTP POST
request containing JSON data to the /Home/Body URL when a button element is clicked. The server encodes
the object created using model binding and sends it back to the client, encoded as JSON. You can see the
effect by running the application, requesting the /Home/Body URL, and clicking the Submit button, as
illustrated in Figure 26-11.

Chapter 26 ■ Model Binding

847

Figure 26-11. Using the request body for model binding

 ■ Tip not all JavaScript client code requires the use of the FromBody attribute. i had to avoid using the
jQuery convenience method for sending ajax POST requests in this example because it encodes data as form
data. instead, i had to use a different method that allows me to send JSon data.

The FromBody attribute can be used to model bind only one action method parameter, and an exception
will be thrown if the attribute is used more than once for a single method. If you need to create multiple
model objects from a request body, then you will have to create a simple data transfer class that has all the
properties you need and use the data it contains to create the objects you require inside the action method.

Summary
In this chapter, I described the model binding process, which is used to provide action methods with the
arguments they require using data values from the HTTP request that is being processed. I explained how
simple and complex types are model bound, how arrays and collections are dealt with, and the ways in
which the model binding process can be controlled by applying attributes to action method parameters or
model class properties. In the next chapter, I describe the model validation feature.

849© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_27

CHAPTER 27

Model Validation

In the previous chapter, I showed you how MVC creates model objects from HTTP requests through the
model binding process. Throughout that chapter, I worked on the basis that the data the user supplied was
valid. The reality is that users will often enter data that isn’t valid and cannot be used, which leads me to the
topic of this chapter: model validation.

Model validation is the process of ensuring the data received by the application is suitable for binding to
the model and, when this is not the case, providing useful information to the user that will help explain the
problem.

The first part of the process, checking the data received, is one of the key ways to preserve the integrity
of the domain model. Rejecting data that doesn’t make sense in the context of the domain can prevent odd
and unwanted states from arising in the application. The second part, helping the user correct the problem,
is equally important. Without the information and feedback they need to interact with the application, users
become frustrated and confused. In public-facing applications, this means users will simply stop using the
application. In corporate applications, this means the user’s workflow will be hindered. Neither outcome
is desirable, but fortunately MVC provides extensive support for model validation. Table 27-1 puts model
validation in context.

Table 27-1. Putting Model Validation in Context

Question Answer

What is it? Model validation is the process of ensuring that the data provided
in a request is valid for use in the application.

Why is it useful? Users do not always enter valid data, and using it in the
application can produce unexpected and undesirable errors.

How is it used? Controllers check the outcome of the validation process, and tag
helpers are used to include validation feedback in views displayed
to the user. Validation is performed automatically during the
model binding process and is usually supplemented with custom
validation in a controller class or by using validation attributes.

Are there any pitfalls or limitations? It is important to test the efficacy of your validation code to ensure
that it prevents against the full range of values that the application
can receive.

Are there any alternatives? No, model validation is tightly integrated into ASP.NET Core MVC.

https://doi.org/10.1007/978-1-4842-3150-0_27

Chapter 27 ■ Model Validation

850

Table 27-2 summarizes the chapter.

Table 27-2. Chapter Summary

Problem Solution Listing

Explicitly validate a model Use the ModelState to record validation errors 9–10

Generate a summary of
validation errors

Apply the asp-validation-summary attribute to a div
element

11

Change the default model
binding messages

Redefine the message functions in the model binding
message provider

12

Generate property-level
validation errors

Apply the asp-validation-for attribute to a span element 13

Generate model-level
validation errors

Use the ModelState to record validation errors that are not
associated with a specific property and use the ModelOnly
value for the asp-validation-summary attribute in the div
element

14, 15

Define a self-validating
model

Apply data validation attributes to the model properties 16, 17

Create a custom validation
attribute

Implement the IModelValidator interface 18–19

Perform client-side
validation

Use the jQuery validation and jQuery unobtrusive validation
packages

20, 21

Perform remove validation Define an action method to perform the validation and
apply the Remote attribute to the model property

22, 23

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called ModelValidation. Listing 27-1 shows the Startup class, in which I added the MVC Framework
and enabled the middleware components that are useful for development.

Listing 27-1. The Contents of the Startup.cs File in the ModelValidation Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace ModelValidation {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {

Chapter 27 ■ Model Validation

851

 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Creating the Model
I created the Models folder, added a class file called Appointment.cs, and used it to define the class shown in
Listing 27-2.

Listing 27-2. The Contents of the Appointment.cs File in the Models Folder

using System;
using System.ComponentModel.DataAnnotations;

namespace ModelValidation.Models {
 public class Appointment {

 public string ClientName { get; set; }

 [UIHint("Date")]
 public DateTime Date { get; set; }

 public bool TermsAccepted { get; set; }
 }
}

The Appointment model class defines three properties, and I have used the UIHint attribute to indicate
that the Date property should be expressed as a date without a time component.

Creating the Controller
I created the Controllers folder, added a class file called HomeController.cs, and used it to define the
controller shown in Listing 27-3, which operates on the Appointment model class.

Listing 27-3. The Contents of the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using ModelValidation.Models;

namespace ModelValidation.Controllers {

 public class HomeController : Controller {

Chapter 27 ■ Model Validation

852

 public IActionResult Index() =>
 View("MakeBooking", new Appointment { Date = DateTime.Now });

 [HttpPost]
 public ViewResult MakeBooking(Appointment appt) =>
 View("Completed", appt);

 }
}

The Index action renders the MakeBooking view with a new Appointment object as the view model.
The MakeBooking action method is more interesting in this chapter since this is the method in which model
validation will be performed.

 ■ Note the example application is so simple that i have not defined a repository and do not need to add any
code to store the Appointment objects that are produced by the model binding process. that said, it is important to
bear in mind that the main reason to validate a model is to prevent bad or meaningless data from being placed in
the repository and causing problems (either when trying to store the data or when trying to process the data later).

Creating the Layout and Views
I will need a simple layout for some of the examples in this chapter. I created the Views/Shared folder and
added the _Layout.cshtml file to it, the contents of which you can see in Listing 27-4.

Listing 27-4. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width" />
 <title>Model Validation</title>
 <link asp-href-include="/lib/bootstrap/dist/css/bootstrap.min.css" rel="stylesheet" />
 @RenderSection("scripts", false)
</head>
<body class="m-1 p-1">
 @RenderBody()
</body>
</html>

To provide the action methods with views, I created the Views/Home folder and added a file called
MakeBooking.cshtml with the markup shown in Listing 27-5.

Chapter 27 ■ Model Validation

853

Listing 27-5. The Contents of the MakeBooking.cshtml File in the Views/Home Folder

@model Appointment

@{ Layout = "_Layout"; }

<div class="bg-primary m-1 p-1 text-white"><h2>Book an Appointment</h2></div>

<form class="m-1 p-1" asp-action="MakeBooking" method="post">
 <div class="form-group">
 <label asp-for="ClientName">Your name:</label>
 <input asp-for="ClientName" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Date">Appointment Date:</label>
 <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" />
 </div>
 <div class="radio form-group">
 <input asp-for="TermsAccepted" />
 <label asp-for="TermsAccepted" class="form-check-label">
 I accept the terms & conditions
 </label>
 </div>
 <button type="submit" class="btn btn-primary">Make Booking</button>
</form>

When the form contained in the Index.cshtml file is posted back to the application, the MakeBooking
action method displays the details of the appointment that the user has created using the Completed.cshtml
view in the Views/Home folder, which is shown in Listing 27-6.

Listing 27-6. The Contents of the Completed.cshtml File in the Views/Home Folder

@model Appointment
@{ Layout = "_Layout"; }

<div class="bg-success m-1 p-1 text-white"><h2>Your Appointment</h2></div>

<table class="table table-bordered">
 <tr>
 <th>Your name is:</th>
 <td>@Model.ClientName</td>
 </tr>
 <tr>
 <th>Your appontment date is:</th>
 <td>@Model.Date.ToString("d")</td>
 </tr>
</table>
Make Another Appointment

Chapter 27 ■ Model Validation

854

The views depend on the Bootstrap CSS package for styling the HTML elements. To add Bootstrap to
the project, I used the Bower Configuration File item template to create the bower.json file and added the
Bootstrap package to the dependencies section, as shown in Listing 27-7. I have also added jQuery to the
project, which I use later in the chapter.

Listing 27-7. Adding the Bootstrap Package in the bower.json File

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",
 "jquery": "3.2.1"
 }
}

The final preparation is to create the _ViewImports.cshtml file in the Views folder, which sets up the
built-in tag helpers for use in Razor views and imports the model namespace, as shown in Listing 27-8.

Listing 27-8. The Contents of the _ViewImports.cshtml File in the Views Folder

@using ModelValidation.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

As you may have gathered, the example for this chapter is based around creating appointments. You can
see how it works by starting the application and requesting the default URL. Entering details into the form
and clicking the Make Booking button will send the data to the server, which performs the model-binding
process to create an Appointment object, the details of which are then rendered using the Completed.cshtml
view, as shown in Figure 27-1.

Figure 27-1. Using the example application

Chapter 27 ■ Model Validation

855

Understanding the Need for Model Validation
Model validation is the process of enforcing the requirements that an application has for the data it receives
from clients. Without validation, an application will try to operate on any data it receives, which can lead to
exceptions and unexpected behaviors that appear immediately or long-term problems that appear gradually
as the repository is populated with bad, incomplete, or malicious data.

At the moment, the example application will accept any data that the user submits. To preserve the
integrity of the application and domain model, I need the following three things to be true before I know that
the user has provided an acceptable Appointment object:

•	 The user must provide a name.

•	 The user must provide a date that is in the future.

•	 The user must have selected the check box to accept the terms and conditions.

In the sections that follow, I demonstrate how model validation can be used to enforce these
requirements by checking the data that the application receives and providing feedback to the user when the
application cannot use the data the user has submitted.

Explicitly Validating a Model
The most direct way of validating a model is to do so in the action method. In Listing 27-9, I have added
explicit checks for each property defined by the Appointment class in the MakeBooking action method.

Listing 27-9. Explicitly Validating a Model in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using ModelValidation.Models;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace ModelValidation.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() =>
 View("MakeBooking", new Appointment { Date = DateTime.Now });

 [HttpPost]
 public ViewResult MakeBooking(Appointment appt) {
 if (string.IsNullOrEmpty(appt.ClientName)) {
 ModelState.AddModelError(nameof(appt.ClientName),
 "Please enter your name");
 }

 if (ModelState.GetValidationState("Date")
 == ModelValidationState.Valid && DateTime.Now > appt.Date) {
 ModelState.AddModelError(nameof(appt.Date),
 "Please enter a date in the future");
 }

Chapter 27 ■ Model Validation

856

 if (!appt.TermsAccepted) {
 ModelState.AddModelError(nameof(appt.TermsAccepted),
 "You must accept the terms");
 }

 if (ModelState.IsValid) {
 return View("Completed", appt);
 } else {
 return View();
 }
 }
 }
}

I check the values that the model binder has assigned to the properties of the parameter object and
register any errors I find using the ModelStateDictionary object that is returned by the ModelState property
inherited from the Controller base class.

As its name suggests, the ModelStateDictionary class is a dictionary that is used to track details of the
state of the model object, with an emphasis on validation errors. Table 27-3 describes the most important
ModelStateDictionary members.

Table 27-3. Selected ModelStateDictionary Members

Name Description

AddModelError(property, message) This method is used to record a model validation error for the
specified property.

GetValidationState(property) This method is used to determine whether there are model
validation errors for a specific property, expressed as a value from
the ModelValidationState enumeration.

IsValid This property returns true if all the model properties are valid
and returns false otherwise.

As an example of using the ModelStateDictionary, consider how the ClientName property was
validated.

...
if (string.IsNullOrEmpty(appt.ClientName)) {
 ModelState.AddModelError(nameof(appt.ClientName), "Please enter your name");
}
...

One of the example validation goals is to ensure that the user provides a value for this property, so I
use the static string.IsNullOrEmpty method to test the property value that the model binding process
has extracted from the request. If the ClientName property is null or an empty string, then I know that my
validation goal has not been met, and I use the ModelState.AddModelError method to register a validation
error, specifying the name of the property (ClientName) and a message that will be displayed to the user to
explain the nature of the problem (Please enter your name).

The model binding system also uses the ModelStateDictionary to record any problems with finding
and assigning values to model properties. The GetValidationState method is used to see whether
there have been any errors recorded for a model property, either from the model binding process or

Chapter 27 ■ Model Validation

857

because the AddModelError method has been called during explicit validation in the action method. The
GetValidationState method returned a value from the ModelValidationState enumeration, which defines
the values described in Table 27-4.

Table 27-4. The ModelValidationState Values

Name Description

Unvalidated This value means that no validation has been performed on the model property, usually
because there was no value in the request that corresponded to the property name.

Valid This value means that the request value associated with the property is valid.

Invalid This value means that the request value associated with the property is invalid and
should not be used.

Skipped This value means that the model property has not been processed, which usually means
that there have been so many validation errors that there is no point continuing to
perform validation checks.

For the Date property, I check to see whether the model binding process has reported a problem
parsing the value sent by the browser into a DateTime object, like this:

...
if (ModelState.GetValidationState("Date") == ModelValidationState.Valid
 && DateTime.Now > appt.Date) {
 ModelState.AddModelError(nameof(appt.Date), "Please enter a date in the future");
}
...

My validation goal for the Date property is to ensure that the user provides a valid future date. I use the
GetValidationState method to see whether the model binding process was able to parse the request value
into a DateTime object by checking for the ModelValidationState.Valid value. If there is a valid date, then
I check to make sure it is in the future and use the AddModelError method to record a validation problem if it
is not.

After I have validated all the properties in the model object, I check the ModelState.IsValid property
to see whether there were errors. This method returns true if the Model.State.AddModelError method was
called during the checks or if the model binder had any problems creating the Appointment object.

...
if (ModelState.IsValid) {
 return View("Completed", appt);
} else {
 return View();
}
...

The Appointment object is valid if the IsValid property returns true, in which case the action method
renders the Completed.cshtml view. There is a validation problem if the IsValue property returns false,
which is dealt with by calling the View method to render the default view.

Chapter 27 ■ Model Validation

858

Displaying Validation Errors to the User
It may seem odd to deal with a validation error by calling the View method, but the context data that MVC
provides to the view contains details of the model validation errors, which is automatically detected and
used by the tag helper that is used to transform the input elements.

To see how this works, start the application and click the Make Booking button without filling in any
of the form details. There won’t be any visible change shown in the browser window, but if you inspect the
HTML that MVC returns from the POST request, you will see that the class attribute of the form element
changes. Here is what the ClientName element looks like before the form is submitted:

<input class="form-control" type="text" id="ClientName" name="ClientName" value="">

Here is the input element that is sent when the empty form has been submitted:

<input class="form-control input-validation-error" type="text" id="ClientName"
 name="ClientName" value="">

The tag helper adds elements whose values have failed validation to the input-validation-error class,
which can then be styled to highlight the problem to the user.

You can do this by defining custom CSS styles in a stylesheet, but a little extra work is required if you
want to use the built-in validation styles that CSS libraries like Bootstrap provides. The name of the class
added to the form elements cannot be changed, which means that some JavaScript code is required to map
between the name used by MVC and the CSS error classes provided by Bootstrap.

 ■ Tip Using JavaScript code like this can be awkward, and it can be tempting to use custom CSS styles,
even when working with a CSS library like Bootstrap. however, the colors used for validation classes in
Bootstrap can be overridden by using themes or by customizing the package and defining your own styles,
which means you have to ensure that any changes to the theme are matched by corresponding changes to any
custom styles you define. ideally, Microsoft will make the validation class names configurable in a future release
of aSp.net Core MVC, but until then, using JavaScript to apply Bootstrap styles is a more robust approach than
creating custom stylesheets.

In Listing 27-10, I have added jQuery code to the MakeBooking view to find the elements in the
input-validation-error class, locate the closest parent that has been assigned to the form-group
class, and add that element to the has-danger class (which Bootstrap uses to set the error color for
form elements).

Chapter 27 ■ Model Validation

859

Listing 27-10. Assigning Validation Classes in the MakeBooking.cshtml File in the Views/Home Folder

@model Appointment

@{ Layout = "_Layout"; }

@section scripts {
 <script src="/lib/jquery/dist/jquery.min.js"></script>
 <script type="text/javascript">
 $(document).ready(function () {
 $("input.input-validation-error")
 .closest(".form-group").addClass("has-danger");
 });
 </script>
}

<div class="bg-primary m-1 p-1 text-white"><h2>Book an Appointment</h2></div>

<form class="m-1 p-1" asp-action="MakeBooking" method="post">
 <div class="form-group">
 <label asp-for="ClientName">Your name:</label>
 <input asp-for="ClientName" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Date">Appointment Date:</label>
 <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" />
 </div>
 <div class="radio form-group">
 <input asp-for="TermsAccepted" />
 <label asp-for="TermsAccepted" class="form-check-label">
 I accept the terms & conditions
 </label>
 </div>
 <button type="submit" class="btn btn-primary">Make Booking</button>
</form>

The jQuery code runs when the browser has finished parsing all the elements in the HTML document,
and the effect is to highlight the input elements that have been assigned to the input-validaton-error
class. You can see the effect by running the application and submitting the form without filling in any of the
fields, producing the result shown in Figure 27-2.

Chapter 27 ■ Model Validation

860

When you submit the form without entering any data, errors are highlighted for all three properties. The
user will not be shown the Completed.cshtml view until the form is submitted with data that can be parsed
by the model browser and that passes the explicit validation checks in the MakeBooking action method. Until
that happens, submitting the form will cause the MakeBooking.cshtml view to be rendered with the current
validation errors.

Displaying Validation Messages
The CSS classes that the tag helpers apply to input elements indicate that there are problems with a form
field, but they do not tell the user what the problem is. Providing the user with more information requires the
use of a different tag helper, which adds a summary of the problems to the view, as shown in Listing 27-11.

Listing 27-11. Displaying a Summary in the MakeBooking.cshtml File in the Views/Home Folder

@model Appointment

@{ Layout = "_Layout"; }

@section scripts {
<script src="/lib/jquery/dist/jquery.min.js"></script>
<script type="text/javascript">
 $(document).ready(function () {
 $("input.input-validation-error")
 .closest(".form-group").addClass("has-danger");
 });
</script>
}

Figure 27-2. Highlighting validation errors

Chapter 27 ■ Model Validation

861

<div class="bg-primary m-1 p-1 text-white"><h2>Book an Appointment</h2></div>

<form class="m-1 p-1" asp-action="MakeBooking" method="post">
 <div asp-validation-summary="All" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="ClientName">Your name:</label>
 <input asp-for="ClientName" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Date">Appointment Date:</label>
 <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" />
 </div>
 <div class="radio form-group">
 <input asp-for="TermsAccepted" />
 <label asp-for="TermsAccepted" class="form-check-label">
 I accept the terms & conditions
 </label>
 </div>
 <button type="submit" class="btn btn-primary">Make Booking</button>
</form>

The ValidationSummaryTagHelper class detects the asp-validation-summary attribute on div elements
and responds by adding messages that describe any validation errors that have been detected by the action
method. The value of the asp-validation-summary attribute is a value from the ValidationSummary
enumeration, which defines the values shown in Table 27-5 and which I demonstrate shortly.

Table 27-5. The ValidationSummary Values

Name Description

All This value is used to display all the validation errors that have been recorded.

ModelOnly This value is used to display only the validation errors for the entire model, excluding
those that have been recorded for individual properties, as described in the “Displaying
Model-Level Messages” section.

None This value is used to disable the tag helper so that it does not transform the HTML element.

If you run the application and submit the form without making any changes, you can see the summary
that the tag helper generates. The text color for this example is defined by the text-danger Bootstrap class,
which ensures that the text matches the color used to highlight the text fields, as shown in Figure 27-3.

Chapter 27 ■ Model Validation

862

If you look HTML that has been received by the browser, you will see that the validation messages have
been sent as a list, like this:

<div class="text-danger validation-summary-errors" data-valmsg-summary="true">

 Please enter your name
 Please enter a date in the future
 You must accept the terms

</div>

Configuring the Default Validation Error Messages
The model binding process that I described in Chapter 26 performs its own validation when it tries to
provide the data values required to invoke an action method. To see how this works, start the application,
clear the contents of the Appointment Date field, and submit the form. You will see that one of the validation
error messages shown has changed and does not match any of the strings passed to the AddModelError
method in the action method.

The value '' is invalid

Figure 27-3. Showing a validation summary to the user

http://dx.doi.org/10.1007/978-1-4842-3150-0_26

Chapter 27 ■ Model Validation

863

This message is added to the ModelStateDictionary by the model binding process when it can’t
find a value for a property or does find a value but can’t parse it. In this case, the error has arisen because
the empty string sent in the form data can’t be parsed into a DateTime object for the Date property of the
Appointment class.

The model binder has a set of predefined messages that it uses for validation errors. These can be
replaced with custom messages using the methods defined by the DefaultModelBindingMessageProvider
class, as described in Table 27-6.

Table 27-6. The DefaultModelBindingMessageProvider Methods

Name Description

SetValueMustNotBeNullAccessor The function assigned to this property is used to generate a
validation error message when a value is null for a model
property that is non-nullable.

SetMissingBindRequiredValueAccessor The function assigned to this property is used to generate a
validation error message when the request does not contain a
value for a required property.

SetMissingKeyOrValueAccessor The function assigned to this property is used to generate
a validation error message when the data required for
dictionary model object contains null keys or values.

SetAttemptedValueIsInvalidAccessor The function assigned to this property is used to generate a
validation error message when the model binding system
cannot convert the data value into the required C# type.

SetUnknownValueIsInvalidAccessor The function assigned to this property is used to generate a
validation error message when the model binding system
cannot convert the data value into the required C# type.

SetValueMustBeANumberAccessor The function assigned to this property is used to generate
a validation error message when the data value cannot be
parsed into a C# numeric type.

SetValueIsInvalidAccessor The function assigned to this property is used to generate a
fallback validation error message that is used as a last resort.

Each of the methods described in the table accepts a function that is invoked in order to get the
validation message to display to the user. These methods are used in the Startup class to configure the
application, as shown in Listing 27-12 in which I have replaced the default message that is displayed when a
value is null.

Listing 27-12. Replacing a Binding Message in the Startup.cs File in the ModelValidation Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

Chapter 27 ■ Model Validation

864

namespace ModelValidation {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc().AddMvcOptions(opts =>
 opts.ModelBindingMessageProvider
 .SetValueMustNotBeNullAccessor(value => "Please enter a value")
);
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The function that you specify receives the value that the user has supplied, although that is not
especially useful when dealing with null values. To see the custom message, restart the application and
submit the form after clearing the Appointment Date field, as shown in Figure 27-4.

Figure 27-4. Changing the model binding error messages

Displaying Property-Level Validation Messages
Although the custom error message is more meaningful than the default one, it still isn’t that helpful because
it doesn’t clearly indicate the problem to the user. For this kind of error, it is more useful to display the
validation error messages alongside the HTML elements that contain the problem data. This can be done
using the ValidationMessageTag tag helper, which looks for span elements that have the asp-validation-
for attribute, which is used to specify the model property for which error messages should be displayed.

In Listing 27-13, I have added property-level validation message elements for each of the input
elements in the form. I also removed the scripts section because the individual validation messages will
provide enough highlighting to indicate which elements have validation errors.

Chapter 27 ■ Model Validation

865

Listing 27-13. Adding Property-Level Messages in the MakeBooking.cshtml File in the Views/Home Folder

@model Appointment

@{ Layout = "_Layout"; }

@section scripts {
<script src="/lib/jquery/dist/jquery.min.js"></script>
<script type="text/javascript">
 $(document).ready(function () {
 $("input.input-validation-error")
 .closest(".form-group").addClass("has-danger");
 });
</script>
}

<div class="bg-primary m-1 p-1 text-white"><h2>Book an Appointment</h2></div>

<form class="m-1 p-1" asp-action="MakeBooking" method="post">
 <div asp-validation-summary="All" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="ClientName">Your name:</label>
 <div></div>
 <input asp-for="ClientName" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Date">Appointment Date:</label>
 <div></div>
 <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" />
 </div>

 <div class="radio form-group">
 <input asp-for="TermsAccepted" />
 <label asp-for="TermsAccepted" class="form-check-label">
 I accept the terms & conditions
 </label>
 </div>
 <button type="submit" class="btn btn-primary">Make Booking</button>
</form>

Since span elements are displayed inline, some care has to be taken to present the validation messages
so it is obvious to which element the message relates. You can see the effect of the new validation messages
by running the application and submitting the form without entering any data, as shown in Figure 27-5.

Chapter 27 ■ Model Validation

866

Displaying Model-Level Messages
It may seem that the validation summary message is superfluous because it just duplicates the property-
level messages, which are generally more helpful to the user because they appear next to the form element
where the problem has to be resolved. But the summary has a useful trick, which is the ability to display
messages that apply to the entire model and not just individual properties. This means you can report
errors that arise from a combination of individual properties, such as when a given date is valid only when
combined with a specific name, for example.

In Listing 27-14, I have added a validation check that prevents clients called Joe from booking
appointments on Mondays.

Listing 27-14. Performing Model-Level Validation in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using ModelValidation.Models;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace ModelValidation.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() =>
 View("MakeBooking", new Appointment() { Date = DateTime.Now });

Figure 27-5. Using property-level validation messages

Chapter 27 ■ Model Validation

867

 [HttpPost]
 public ViewResult MakeBooking(Appointment appt) {
 if (string.IsNullOrEmpty(appt.ClientName)) {
 ModelState.AddModelError(nameof(appt.ClientName),
 "Please enter your name");
 }

 if (ModelState.GetValidationState("Date")
 == ModelValidationState.Valid && DateTime.Now > appt.Date) {
 ModelState.AddModelError(nameof(appt.Date),
 "Please enter a date in the future");
 }

 if (!appt.TermsAccepted) {
 ModelState.AddModelError(nameof(appt.TermsAccepted),
 "You must accept the terms");
 }

 if (ModelState.GetValidationState(nameof(appt.Date))
 == ModelValidationState.Valid
 && ModelState.GetValidationState(nameof(appt.ClientName))
 == ModelValidationState.Valid
 && appt.ClientName.Equals("Joe", StringComparison.OrdinalIgnoreCase)
 && appt.Date.DayOfWeek == DayOfWeek.Monday) {
 ModelState.AddModelError("",
 "Joe cannot book appointments on Mondays");
 }

 if (ModelState.IsValid) {
 return View("Completed", appt);
 } else {
 return View();
 }
 }
 }
}

This code looks more convoluted than it really is, which is the nature of data validation. I make sure
that I have received valid ClientName and Date values by inspecting the model state before checking to
see whether the specified date is a Monday and whether the ClientName property is Joe. If Joe is trying to
book a Monday appointment, then I call the AddModelError method using the empty string ("") as the first
argument, which indicates that the error applies to the entire model and not just to an individual property.

In Listing 27-15, I have changed the value of the asp-validation-summary attribute to ModelOnly,
which excludes property-level errors, meaning that the summary will display only those errors that apply to
the entire model.

Chapter 27 ■ Model Validation

868

Listing 27-15. Displaying Model-Level Errors in the MakeBooking.cshtml File in the Views/Home Folder

@model Appointment

@{ Layout = "_Layout"; }

@section scripts {
<script src="/lib/jquery/dist/jquery.min.js"></script>
<script type="text/javascript">
 $(document).ready(function () {
 $("input.input-validation-error")
 .closest(".form-group").addClass("has-danger");
 });
</script>
}

<div class="bg-primary m-1 p-1 text-white"><h2>Book an Appointment</h2></div>

<form class="m-1 p-1" asp-action="MakeBooking" method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">
 <label asp-for="ClientName">Your name:</label>
 <div></div>
 <input asp-for="ClientName" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Date">Appointment Date:</label>
 <div></div>
 <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" />
 </div>

 <div class="radio form-group">
 <input asp-for="TermsAccepted" />
 <label asp-for="TermsAccepted" class="form-check-label">
 I accept the terms & conditions
 </label>
 </div>
 <button type="submit" class="btn btn-primary">Make Booking</button>
</form>

You can see the effect by running the application, entering Joe into the ClientName field, and selecting
a date that you know to be a Monday, such as 01/18/2027. When you submit the form, you will see the
response shown in Figure 27-6.

Chapter 27 ■ Model Validation

869

Specifying Validation Rules Using Metadata
One problem with putting validation logic into an action method is that it ends up being duplicated in every
action method that receives data from the user. To help reduce duplication, the validation process supports
the use of attributes to express model validation rules directly in the model class, ensuring that the same set
of validation rules will be applied regardless of which action method is used to process a request.

In Listing 27-16, I have applied attributes to the Appointment class to enforce the same set of property-
level validation rules I used in the previous section.

Listing 27-16. Applying Validation Attributes in the Appointment.cs File in the Models Folder

using System;
using System.ComponentModel.DataAnnotations;

namespace ModelValidation.Models {

 public class Appointment {

 [Required]
 [Display(Name = "name")]
 public string ClientName { get; set; }

 [UIHint("Date")]
 [Required(ErrorMessage = "Please enter a date")]
 public DateTime Date { get; set; }

Figure 27-6. Using model- and property-level validation messages

Chapter 27 ■ Model Validation

870

 [Range(typeof(bool), "true", "true", ErrorMessage = "You must accept
the terms")]

 public bool TermsAccepted { get; set; }
 }
}

I used two validation attributes in the listing: Required and Range. The Required attribute specifies
that it is a validation error if the user doesn’t submit a value for a property. The Range attribute specifies a
subset of acceptable values. Table 27-7 shows the set of built-in validation attributes available in an MVC
application.

Table 27-7. The Built-in Validation Attributes

Attribute Example Description

Compare [Compare
("OtherProperty")]

This attribute ensures that properties must have the
same value, which is useful when you ask the user to
provide the same information twice, such as an e-mail
address or a password.

Range [Range(10, 20)] This attribute ensures that a numeric value (or any
property type that implements IComparable) does
not lie beyond the specified minimum and maximum
values. To specify a boundary on only one side, use
a MinValue or MaxValue constant—for example,
[Range(int.MinValue, 50)].

RegularExpression [RegularExpression
("pattern")]

This attribute ensures that a string value matches
the specified regular expression pattern. Note that
the pattern has to match the entire user-supplied
value, not just a substring within it. By default, it
matches case sensitively, but you can make it case
insensitive by applying the (?i) modifier—that is,
[RegularExpression("(?i)mypattern")].

Required [Required] This attribute ensures that the value is not empty or
a string consisting only of spaces. If you want to treat
whitespace as valid, use [Required(AllowEmptyStrings
= true)].

StringLength [StringLength(10)] This attribute ensures that a string value is no longer
than a specified maximum length. You can also
specify a minimum length: [StringLength(10,
MinimumLength=2)].

All the validation attributes support specifying a custom error message by setting a value for the
ErrorMessage property, like this:

...
[UIHint("Date")]
[Required(ErrorMessage = "Please enter a date")]
public DateTime Date { get; set; }
...

Chapter 27 ■ Model Validation

871

If there is no custom error message, then default messages will be used, but they tend to reveal details
of the model class that will make no sense to the user unless you also use the Display attribute, which is the
combination I applied to the ClientName property.

...
[Required]
[Display(Name = "name")]
public string ClientName { get; set; }
...

The default message generated by the Required attribute reflects the name specified with the Display
attribute and so doesn’t reveal the name of the property to the user.

Some care is required to get this kind of validation to work consistently. As an example, consider this
attribute applied to the TermsAccepted property:

...
[Range(typeof(bool), "true", "true", ErrorMessage="You must accept the terms")]
public bool TermsAccepted { get; set; }
...

I want to make sure that the user selects the box to accept the terms. I cannot use the Required attribute
because the browser will send a false value for this property if the user has not selected the radio button.
To work around this, I use a feature of the Range attribute that lets me provide a Type and specify the upper
and lower bounds as string values. By setting both bounds to true, I create the equivalent of the Required
attribute for bool properties that are edited using check boxes. Some experimentation can be required to
ensure that the validation attributes and the data sent by the browser work together.

The use of the validation attributes on the model class means that the action method in the controller
can be simplified, as shown in Listing 27-17.

Listing 27-17. Removing Property-Level Validation in the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using ModelValidation.Models;
using Microsoft.AspNetCore.Mvc.ModelBinding;

namespace ModelValidation.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() =>
 View("MakeBooking", new Appointment() { Date = DateTime.Now });

 [HttpPost]
 public ViewResult MakeBooking(Appointment appt) {

 if (ModelState.GetValidationState(nameof(appt.Date))
 == ModelValidationState.Valid
 && ModelState.GetValidationState(nameof(appt.ClientName))
 == ModelValidationState.Valid
 && appt.ClientName.Equals("Joe", StringComparison.OrdinalIgnoreCase)
 && appt.Date.DayOfWeek == DayOfWeek.Monday) {

Chapter 27 ■ Model Validation

872

 ModelState.AddModelError("",
 "Joe cannot book appointments on Mondays");
 }

 if (ModelState.IsValid) {
 return View("Completed", appt);
 } else {
 return View();
 }
 }
 }
}

The validation attributes are applied before the action method is called, which means that I can still
rely on the model state to determine whether individual properties are valid when performing model-level
validation. To see the validation attributes in action, start the application and submit the form without
entering any data, as shown in Figure 27-7.

Figure 27-7. Using validation attributes

Creating a Custom Property Validation Attribute
The validation process can be extended by creating an attribute that implements the IModelValidator
interface. To demonstrate, I created an Infrastructure folder and added a class file called
MustBeTrueAttribute.cs to it, in which I defined the class shown in Listing 27-18.

Chapter 27 ■ Model Validation

873

Listing 27-18. The Contents of the MustBeTrueAttribute.cs File in the Infrastructure Folder

using System;
using System.Collections.Generic;
using System.Linq;
using Microsoft.AspNetCore.Mvc.ModelBinding.Validation;

namespace ModelValidation.Infrastructure {
 public class MustBeTrueAttribute : Attribute, IModelValidator {

 public bool IsRequired => true;

 public string ErrorMessage { get; set; } = "This value must be true";

 public IEnumerable<ModelValidationResult> Validate(
 ModelValidationContext context) {
 bool? value = context.Model as bool?;
 if (!value.HasValue || value.Value == false) {
 return new List<ModelValidationResult> {
 new ModelValidationResult("", ErrorMessage)
 };
 } else {
 return Enumerable.Empty<ModelValidationResult>();
 }
 }
 }
}

The IModelValidator interface defines an IsRequired property, which is used to indicate whether
validation by this class is required (which is a little misleading because the value returned by this property is
simply used to order validation attributes so that the required ones are executed first). The Validate method
is used to perform validation and receives information through an instance of the ModelValidationContext
class, whose most useful properties are described in Table 27-8.

Table 27-8. Useful ModelValidationContext Class

Name Description

Model This property returns the property value that is to be validated, which would be the
value of the TermsAccepted property in the example.

Container This property returns the object that contains the property, which would be the
Appointment object in the example.

ActionContext This property returns an ActionContext object that provides context data and
describes the action method that will process the request.

ModelMetadata This property returns a ModelMetadata object that describes the model class that is
being validated in detail.

Chapter 27 ■ Model Validation

874

The Validate method returns a sequence of ModelValidationResult objects, each of which describes
a single validation error. In the example attribute, I create a ModelValidationResult if the model value isn’t
true. The first argument to the ModelValidationResult constructor is the name of the property to which the
error is associated and is specified as the empty string when validating individual properties. The second
argument is the error message that will be displayed to the user. In Listing 27-19, I have replaced the Range
attribute with the custom attribute.

Listing 27-19. Applying a Custom Validation Attribute in the Appointment.cs File in the Models Folder

using System;
using System.ComponentModel.DataAnnotations;
using ModelValidation.Infrastructure;

namespace ModelValidation.Models {

 public class Appointment {

 [Required]
 [Display(Name = "name")]
 public string ClientName { get; set; }

 [UIHint("Date")]
 [Required(ErrorMessage = "Please enter a date")]
 public DateTime Date { get; set; }

 [MustBeTrue(ErrorMessage = "You must accept the terms")]
 public bool TermsAccepted { get; set; }
 }
}

The result of using the custom validation attribute is just the same as using the Range attribute, but the
purpose of the custom attribute is more obvious when reading the code.

Performing Client-Side Validation
The validation techniques I have demonstrated so far have all been examples of server-side validation. This
means the user submits their data to the server, and the server validates the data and sends back the results
of the validation (either success in processing the data or a list of errors that need to be corrected).

In web applications, users typically expect immediate validation feedback—without having to submit
anything to the server. This is known as client-side validation and is implemented using JavaScript. The data
that the user has entered is validated before being sent to the server, providing the user with immediate
feedback and an opportunity to correct any problems.

MVC supports unobtrusive client-side validation. The term unobtrusive means that validation rules are
expressed using attributes added to the HTML elements that views generate. These attributes are interpreted
by a JavaScript library that is included as part of MVC that, in turn, configures the jQuery Validation library,
which does the actual validation work. In the following sections, I will show you how the built-in validation
support works and demonstrate how I can extend the functionality to provide custom client-side validation.

Chapter 27 ■ Model Validation

875

 ■ Tip Client-side validation is focused on validating individual properties. in fact, it is hard to set up model-
level client-side validation using the built-in support that comes with MVC. to that end, most MVC applications
use client-side validation for property-level issues and rely on server-side validation for the overall model.

The first step is to add new JavaScript packages to the application using Bower, as shown in Listing 27-20.

Listing 27-20. Adding Packages in the bower.json File in the ModelValidation Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6",
 "jquery": "3.2.1",
 "jquery-validation": "1.17.0",
 "jquery-validation-unobtrusive": "3.2.6"
 }
}

Using client-side validation means adding three JavaScript files to the view: the jQuery library, the jQuery
validation library, and the Microsoft unobtrusive validation library, all of which are shown in Listing 27-21.

 ■ Tip the Bower tool doesn’t always perform the installation of the validation packages correctly. if you
find that your wwwroot/lib folder doesn’t contain the files that are required, then remove wwwroot/lib and its
contents. open a new powerShell window, navigate to the project folder and run bower cache clean followed
by bower install to download fresh copies of the validation packages.

Listing 27-21. Adding the JavaScript Elements in the MakeBooking.cshtml File in the Views/Home Folder

@model Appointment

@{ Layout = "_Layout"; }

@section scripts {
 <script src="/lib/jquery/dist/jquery.min.js"></script>
 <script src="/lib/jquery-validation/dist/jquery.validate.min.js"></script>
 <script
 src="/lib/jquery-validation-unobtrusive/jquery.validate.unobtrusive.min.js">
 </script>
}

<div class="bg-primary m-1 p-1 text-white"><h2>Book an Appointment</h2></div>

<form class="m-1 p-1" asp-action="MakeBooking" method="post">
 <div asp-validation-summary="ModelOnly" class="text-danger"></div>
 <div class="form-group">

Chapter 27 ■ Model Validation

876

 <label asp-for="ClientName">Your name:</label>
 <div></div>
 <input asp-for="ClientName" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Date">Appointment Date:</label>
 <div></div>
 <input asp-for="Date" type="text" asp-format="{0:d}" class="form-control" />
 </div>

 <div class="radio form-group">
 <input asp-for="TermsAccepted" />
 <label asp-for="TermsAccepted" class="form-check-label">
 I accept the terms & conditions
 </label>
 </div>
 <button type="submit" class="btn btn-primary">Make Booking</button>
</form>

The files must be added in the order in which they are shown. When the tag helpers transform the
input elements, they inspect the validation attributes applied to the model class property and add attributes
to the output element. If you run the application and inspect the HTML sent to the browser, you will see an
element like this one:

<input class="form-control" type="text" data-val="true"
 data-val-required="The name field is required." id="ClientName"
 name="ClientName" value="" />

The JavaScript code looks for elements with the data-val attribute and performs local validation in the
browser when the user submits the form, without sending an HTTP request to the server. You can see the
effect by running the application and submitting the form while using the F12 tools to note that validation
error messages are displayed even though no HTTP request is sent to the server.

AVOIDING CONFLICTS WITH BROWSER VALIDATION

Some htMl5 browsers support simple client-side validation based on the attributes applied to input
elements. the general idea is that, say, an input element to which the required attribute has been
applied, for example, will cause the browser to display a validation error when the user tries to submit
the form without providing a value.

if you are generating form elements from models, as i have been doing in this chapter, then you won’t
have any problems with browser validation because MVC generates and uses data attributes to denote
validation rules (so that, for example, an input element that must have a value is denoted with the
data-val-required attribute, which browsers do not recognize).

however, you may run into problems if you are unable to completely control the markup in your
application, something that often happens when you are passing on content generated elsewhere. the
result is that the jQuery validation and the browser validation can both operate on the form, which is just
confusing to the user. to avoid this problem, you can add the novalidate attribute to the form element.

Chapter 27 ■ Model Validation

877

One of the nice features about MVC client-side validation is that the same attributes used to specify
validation rules are applied at the client and at the server. This means that data from browsers that do not
support JavaScript are subject to the same validation as those that do, without requiring any additional
effort. It does mean, however, that custom validation attributes are not supported for client-side validation
because the JavaScript code has no way to implement the custom logic at the client. Put another way, if you
want to use client-side validation, you need to stick to the built-in attributes described in Table 27-7.

MVC CLIENT VALIDATION VERSUS JQUERY VALIDATION

the MVC client-validation features are built on top of the jQuery Validation library. if you prefer, you
can use the Validation library directly and ignore the MVC features. the Validation library is flexible and
feature-rich. it is well worth exploring if only to understand how to customize the MVC features to take
the best advantage of the available validation options. i cover the jQuery Validation library in depth in my
Pro jQuery 2.0 book, also published by apress.

Performing Remote Validation
The last validation feature described in this chapter is remote validation. This is a client-side validation
technique that invokes an action method on the server to perform validation.

A common example of remote validation is to check whether a username is available in applications
where such names must be unique, when the user submits the data, and the client-side validation is
performed. As part of this process, an Ajax request is made to the server to validate the username that has
been requested. If the username has been taken, a validation error is displayed so that the user can enter
another value.

This may seem like regular server-side validation, but there are some benefits to this approach. First,
only some properties will be remotely validated; the client-side validation benefits still apply to all the
other data values that the user has entered. Second, the request is relatively lightweight and is focused on
validation, rather than processing an entire model object.

The third difference is that the remote validation is performed in the background. The user doesn’t have
to click the submit button and then wait for a new view to be rendered and returned. It makes for a more
responsive user experience, especially when there is a slow network between the browser and the server.

That said, remote validation is a compromise. It strikes a balance between client-side and server-side
validation, but it does require requests to the application server, and it is not as quick to validate as normal
client-side validation.

The first step toward using remote validation is to create an action method that can validate one of
the model properties. I am going to validate the Date property of the Appointment model to ensure that the
requested appointment is in the future. (This is one of the original validation rules I used at the start of the
chapter but that isn’t possible to validate using the standard client-side validation features.) Listing 27-22
shows the addition of a ValidateDate action method to the Home controller.

Listing 27-22. Adding an Action to the HomeController.cs File in the Controllers Folder

using System;
using Microsoft.AspNetCore.Mvc;
using ModelValidation.Models;
using Microsoft.AspNetCore.Mvc.ModelBinding;

Chapter 27 ■ Model Validation

878

namespace ModelValidation.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() =>
 View("MakeBooking", new Appointment() { Date = DateTime.Now });

 [HttpPost]
 public ViewResult MakeBooking(Appointment appt) {

 if (ModelState.GetValidationState(nameof(appt.Date))
 == ModelValidationState.Valid
 && ModelState.GetValidationState(nameof(appt.ClientName))
 == ModelValidationState.Valid
 && appt.ClientName.Equals("Joe", StringComparison.OrdinalIgnoreCase)
 && appt.Date.DayOfWeek == DayOfWeek.Monday) {
 ModelState.AddModelError("",
 "Joe cannot book appointments on Mondays");
 }

 if (ModelState.IsValid) {
 return View("Completed", appt);
 } else {
 return View();
 }
 }

 public JsonResult ValidateDate(string Date) {
 DateTime parsedDate;

 if (!DateTime.TryParse(Date, out parsedDate)) {
 return Json("Please enter a valid date (mm/dd/yyyy)");
 } else if (DateTime.Now > parsedDate) {
 return Json("Please enter a date in the future");
 } else {
 return Json(true);
 }
 }
 }
}

Actions methods that support remote validation must return the JsonResult type, which tells MVC
that I am working with JSON data, as explained in Chapter 20. In addition to the result, validation action
methods must define a parameter that has the same name as the data field being validated; this is Date for
the example. Within the action method, validation is performed by parsing the value into a DateTime object
and checking to see that it is in the future.

http://dx.doi.org/10.1007/978-1-4842-3150-0_20

Chapter 27 ■ Model Validation

879

 ■ Tip i could have taken advantage of model binding so that the parameter to my action method would be a
DateTime object, but doing so would mean that the validation method wouldn’t be called if the user entered a
nonsense value like apple, for example. this is because the model binder wouldn’t have been able to create a
DateTime object from apple and throws an exception when it tries. the remote validation feature doesn’t have
a way to express that exception and so it is quietly discarded. this has the unfortunate effect of not highlighting
the data field and so creating the impression that the value that the user has entered is valid. as a general rule,
the best approach to remote validation is to accept a string parameter in the action method and perform any
type conversion, parsing, or model binding explicitly.

I express validation results using the Json method, which creates a JSON-formatted result that the
client-side remote validation script can parse and process. If the value is valid, then I pass true as the
parameter to the Json method, like this:

...
return Json(true);
...

If there is a problem, I pass the validation error message that the user should see as the parameter, like
this:

...
return Json("Please enter a date in the future");
...

To use the remote validation method, I apply the Remote attribute to a property in the model class, as
shown in Listing 27-23.

Listing 27-23. Using the Remote Attribute in the Appointment.cs File in the Models Folder

using System;
using System.ComponentModel.DataAnnotations;
using ModelValidation.Infrastructure;
using Microsoft.AspNetCore.Mvc;

namespace ModelValidation.Models {

 public class Appointment {

 [Required]
 [Display(Name = "name")]
 public string ClientName { get; set; }

 [UIHint("Date")]
 [Required(ErrorMessage = "Please enter a date")]
 [Remote("ValidateDate", "Home")]
 public DateTime Date { get; set; }

Chapter 27 ■ Model Validation

880

 [MustBeTrue(ErrorMessage = "You must accept the terms")]
 public bool TermsAccepted { get; set; }
 }
}

The arguments for the attribute are the name of the action and the controller that should be used to
generate the URL that the JavaScript validation library will call to perform the validation—in this case, the
ValidateDate action on the Home controller.

You can see how the remote validation works by starting the application, navigating to the /Home URL,
and entering a date that is in the past. When you select a value and the focus moves to another element, the
validation message will appear, as shown in Figure 27-8.

 ■ Caution the validation action method will be called when the user first submits the form and then again
each time the data is edited. For text input elements, every keystroke will lead to a call to the server. For some
applications, this can be a significant number of requests and must be taken into account when specifying the
server capacity and bandwidth that an application requires in production. also, you might choose not to use
remote validation for properties that are expensive to validate (for example, if you have to query a slow server to
determine whether a username is unique).

Figure 27-8. Performing remote validation

Summary
In this chapter, I examined the wide range of techniques available to perform model validation, ensuring
that the data that the user has provided is consistent with the constraints imposed on the data model. Model
validation is an important topic, and getting the right validation in place for an application is essential to
ensure that the users have a good and frustration-free experience. In the next chapter, I explain how to
secure an MVC application using ASP.NET Core Identity.

881© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_28

CHAPTER 28

Getting Started with Identity

ASP.NET Core Identity is an API from Microsoft to manage users in ASP.NET applications. In this chapter, I
demonstrate the process of setting up ASP.NET Core Identity and creating a simple user administration tool
that manages individual user accounts that are stored in a database.

ASP.NET Core Identity supports other kinds of user accounts, such as those stored using Active
Directory, but I don’t describe them since they are not used that often outside corporations (where Active
Directive implementations tend to be so convoluted that it would be difficult for me to provide useful
general examples).

 ■ Note This chapter requires the SQL Server LocalDB feature to be installed for Visual Studio. You can add
LocalDB by running the Visual Studio installer and installing the SQL Server Express 2016 LocalDB option from
the Individual Components section.

In Chapter 29, I show you how to perform authentication and authorization using those user accounts,
and in Chapter 30, I show you how to move beyond the basics and apply some advanced techniques.
Table 28-1 puts ASP.NET Core Identity in context.

Table 28-1. Putting ASP.NET Core Identity in Context

Question Answer

What is it? ASP.NET Core Identity is an API for managing users and storing user data in
repositories such as relational databases through Entity Framework Core.

Why is it useful? User management is an important feature for most applications, and ASP.NET
Core Identity provides a ready-made and well-tested platform that doesn’t
require you to create custom versions of commonly demanded functions.

How is it used? Identity is used through services and middleware added to the Startup
class and through classes that act as bridges between the application and
the Identity functionality.

Are there any pitfalls or
limitations?

Microsoft has compensated for the inflexibility of earlier ASP.NET user
management APIs by making Identity so flexible and so configurable that it
can be a challenge figuring out what is possible and what you need. I only
scratch the surface of the deep and complex system in this book.

Are there any alternatives? You could implement your own APIs, but that can be a lot of work and tends
to create security vulnerabilities unless done carefully.

https://doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_29
http://dx.doi.org/10.1007/978-1-4842-3150-0_30

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

882

Table 28-2 summarizes the chapter.

Table 28-2. Chapter Summary

Problem Solution Listing

Add Identity to a project Add the middleware for ASP.NET Identity Core and Entity
Framework Core, create a user class and a database context
class, and create a database migration

1–13

Read user data Query the Identity database using the context class 14–15

Create a user account Call the UserManager.CreateAsync method 16–18

Change the default
password policy

Set the password options in the Startup class 19

Implement custom
password validation

Implement the IPasswordValidator interface or subclass
from the PasswordValidator class

20–22

Change the account
validation policy

Set the user options in the Startup class 23

Implement custom
account validation

Implement the IUserValidator interface or subclass
from the UserValidator class

24–26

Delete a user account Call the UserManager.DeleteAsync method 27, 28

Edit a user account Call the UserManager.UpdateAsync method 29–31

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called Users. The example application requires the Entity Framework Core command-line tools,
which must be added to the project by manually editing the csproj file. Right-click the Users project item in
the Solution Explorer, select Edit Users.csproj file and add the element shown in Listing 28-1.

Listing 28-1. Adding a Package in the Users.csproj File in the Users Folder

<Project Sdk="Microsoft.NET.Sdk.Web">

 <PropertyGroup>
 <TargetFramework>netcoreapp2.0</TargetFramework>
 </PropertyGroup>

 <ItemGroup>
 <Folder Include="wwwroot\" />
 </ItemGroup>

 <ItemGroup>
 <PackageReference Include="Microsoft.AspNetCore.All" Version="2.0.0" />
 <DotNetCliToolReference Include="Microsoft.EntityFrameworkCore.Tools.DotNet"
 Version="2.0.0" />
 </ItemGroup>

</Project>

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

883

Listing 28-2 shows the Startup class, which sets up the MVC Framework and enables middleware
components useful for development, as described in Chapter 14.

Listing 28-2. The Contents of the Startup.cs File in the Users Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;

namespace Users {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Creating the Controller and View
I created the Controllers folder, added a class file called HomeController.cs, and defined the controller
shown in Listing 28-3. I’ll be using this controller to describe details of user accounts and data, and the
Index action method passes a dictionary of values to the default view via the View method.

Listing 28-3. The Contents of the HomeController.cs File in the Controllers Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;

namespace Users.Controllers {

 public class HomeController : Controller {

 public ViewResult Index() =>
 View(new Dictionary<string, object>
 {["Placeholder"] = "Placeholder" });
 }
}

To provide the controller with a view, I created the Views/Home folder and added a view file called
Index.cshtml with the markup shown in Listing 28-4.

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

884

Listing 28-4. The Contents of the Index.cshtml File in the Views/Home Folder

@model Dictionary<string, object>

<div class="bg-primary m-1 p-1 text-white"><h4>User Details</h4></div>

<table class="table table-sm table-bordered m-1 p-1">
 @foreach (var kvp in Model) {
 <tr><th>@kvp.Key</th><td>@kvp.Value</td></tr>
 }
</table>

The view displays the contents of the model dictionary in a table. To support the view, I created the
Views/Shared folder, adding a view file called _Layout.cshtml with the markup shown in Listing 28-5.

Listing 28-5. The Contents of the _Layout.cshtml File in the Views/Shared Folder

<!DOCTYPE html>
<html>
<head>
 <title>Users</title>
 <meta name="viewport" content="width=device-width" />
 <link href="/lib/bootstrap/dist/css/bootstrap.css" rel="stylesheet" />
</head>
<body class="m-1 p-1">
 @RenderBody()
</body>
</html>

The view depends on the Bootstrap CSS package to style the HTML elements. To add Bootstrap to
the project, I used the Bower Configuration File item template to create the bower.json file and added the
Bootstrap package to the dependencies section, as shown in Listing 28-6.

Listing 28-6. Adding the Bootstrap Package in the bower.json File in the Users Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

The final preparation is to create the _ViewImports.cshtml file in the Views folder, which sets up the
built-in tag helpers for use in the views, as shown in Listing 28-7.

Listing 28-7. The Contents of the _ViewImports.cshtml File in the Views Folder

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The final addition I made was to create a view start file called _ViewStart.cshtml in the Views folder
with the content shown in Listing 28-8. This ensures that the layout I created in Listing 28-7 will be used by
all the views in the application.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

885

Listing 28-8. The Contents of the _ViewStart.cshtml File in the Views Folder

@{
 Layout = "_Layout";
}

Start the application and you will see the output shown in Figure 28-1.

Figure 28-1. Running the example application

Setting Up ASP.NET Core Identity
The process for setting up Identity touches on almost every part of an application, requiring new model
classes, configuration changes, and controllers and actions to support authentication and authorization
operations. In the sections that follow, I walk through the process of setting up Identity in a basic
configuration to show the different steps that are involved. There are lots of different ways of using Identity
in an application, and the configuration I use in this chapter follows the simplest and most commonly used
options.

Creating the User Class
The first step is to define a class to represent a user in the application, which is known as the user class.
The user class is derived from IdentityUser, which is defined in the Microsoft.AspNetCore.Identity
namespace. IdentityUser provides the basic user representation, which can be extended by adding
properties to the derived class, which I describe in Chapter 30. Table 28-3 shows the most useful built-in
properties that IdentityUser defines, including the ones I use in this chapter.

http://dx.doi.org/10.1007/978-1-4842-3150-0_30

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

886

The individual properties don’t matter at the moment. What’s important is that the IdentityUser
class provides access to basic information about a user: the user’s name, e-mail, phone number, password
hash, role memberships, and so on. If I want to store any additional information about the user, I have to
add properties to the class that I derive from IdentityUser and that will be used to represent users in my
application.

To create the user class for my application, I created the Models folder and added a class file called
AppUserModels.cs that I used to create the AppUser class, which is shown in Listing 28-9.

Listing 28-9. The Contents of the AppUser.cs File in the Models Folder

using Microsoft.AspNetCore.Identity;

namespace Users.Models {

 public class AppUser : IdentityUser {
 // no additional members are required
 // for basic Identity installation
 }
}

That’s all I have to do at the moment, although I’ll return to this class in Chapter 30, when I show you
how to add application-specific user data properties.

Configuring the View Imports
Although not directly related to setting up ASP.NET Core Identity, I will be working with AppUser objects in
views in the next section. To make writing the views simpler, I added the Users.Models namespace to the
view imports file, as shown in Listing 28-10.

Table 28-3. The Properties Defined by the IdentityUser Class

Name Description

Id This property contains the unique ID for the user.

UserName This property returns the user’s username.

Claims This property returns the collection of claims for the user, which I describe in Chapter 30.

Email This property contains the user’s e-mail address.

Logins This property returns a collection of logins for the user, which is used for third-party
authentication, as described in Chapter 30.

PasswordHash This property returns a hashed form of the user password, which I use in the
“Implementing the Edit Feature” section.

Roles This property returns the collection of roles that the user belongs to, which I describe
in Chapter 29.

PhoneNumber This property returns the user’s phone number.

SecurityStamp This property returns a value that is changed when the user identity is altered, such as
by a password change.

http://dx.doi.org/10.1007/978-1-4842-3150-0_30
http://dx.doi.org/10.1007/978-1-4842-3150-0_30
http://dx.doi.org/10.1007/978-1-4842-3150-0_30
http://dx.doi.org/10.1007/978-1-4842-3150-0_29

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

887

Listing 28-10. Adding a Namespace in the _ViewImports.cshtml File in the Views Folder

@using Users.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Creating the Database Context Class
The next step is to create an Entity Framework Core database context class that operates on the AppUser
class. The context class is derived from IdentityDbContext<T>, where T is the user class (AppUser in the
example project). I added a class file called AppIdentityDbContext.cs to the Models folder and defined the
class shown in Listing 28-11.

Listing 28-11. The Contents of the AppIdentityDbContext.cs File in the Models Folder

using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;

namespace Users.Models {

 public class AppIdentityDbContext : IdentityDbContext<AppUser> {

 public AppIdentityDbContext(DbContextOptions<AppIdentityDbContext> options)
 : base(options) { }
 }
}

The database context class can be extended to customize the way that the database is set up and used,
but for a basic ASP.NET Core Identity application, just defining the class is enough to get started and to
provide a placeholder for any future customization.

 ■ Note Don’t worry if the role of these classes doesn’t make sense. If you are unfamiliar with Entity
Framework Core, then I suggest you treat it as something of a black box. Once the basic building blocks are in
place—and you can copy the ones into your project to get things working—then you will rarely need to edit
them.

Configuring the Database Connection String Setting
The first configuration step for ASP.NET Core Identity is to define the connection string that will be used for
the database. The convention is to put the connection string in the appsettings.json file, which is then
loaded when the application starts and can be accessed in the Startup class, as explained in Chapter 14. I
used the ASP.NET Configuration File item template to create the appsettings.json file in the root folder of
the project and added the configuration settings shown in Listing 28-12.

Listing 28-12. The Contents of the appsettings.json File in the Users Folder

{
 "Data": {
 "SportStoreIdentity": {
 "ConnectionString":

http://dx.doi.org/10.1007/978-1-4842-3150-0_14

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

888

 "Server=(localdb)\\MSSQLLocalDB;Database=IdentityUsers;Trusted_Connection=True;
MultipleActiveResultSets=true"

 }
 }
}

In the connection string, I have specified the localdb option, which provides convenient database
support for developers. For the database itself, I have specified the name IdentityUsers.

 ■ Note The width of the printed page doesn’t allow for sensible formatting of the connection string, which
must appear in a single unbroken line. That works well in the Visual Studio editor but means that it has to wrap
multiple lines in the listing. when you add the connection string to your own project, make sure that it is on a
single line.

With the database connection string in place, I can update the Startup class to receive the configuration
data, as shown in Listing 28-13.

Listing 28-13. Reading the Application Settings in the Startup.cs File in the Users Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.AspNetCore.Identity;
using Microsoft.EntityFrameworkCore;
using Users.Models;

namespace Users {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {
 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<AppUser, IdentityRole>()
 .AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
 }

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

889

 public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UseMvcWithDefaultRoute();
 }
 }
}

There are three sets of changes required to create a basic ASP.NET Core Identity installation. The first
step is to set up Entity Framework (EF) Core, which provides data access services to MVC applications.

...
services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(Configuration["Data:SportStoreIdentity:ConnectionString"]));
...

The AddDbContext method adds the services required for Entity Framework Core, and the
UseSqlServer method sets up the support required for storing data using Microsoft SQL Server. The
AddDbContext method allows me to apply the database context class that I created earlier and specify that
it will be backed up with a SQL Server database whose connection string is obtained from the application’s
configuration (which, for the example application, means the appsettings.json file).

I also need to set up the services for ASP.NET Core Identity, which is done like this:

...
services.AddIdentity<AppUser, IdentityRole>()
 .AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();
...

The AddIdentity method has type parameters that specify the class used to represent users and the
class used to represent roles. I have specified the AppUser class for users and the built-in IdentityRole
class for roles. The AddEntityFrameworkStores method specifies that Identity should use Entity
Framework Core to store and retrieve its data, using the database context class I created earlier. The
AddDefaultTokenProviders method uses the default configuration to support operations that require a
token, such as changing a password.

The final change to the Startup class adds ASP.NET Core Identity to the request-handing pipeline,
which allows user credentials to be associated with requests based on cookies or URL rewriting, meaning
that details of user accounts are not directly included in the HTTP requests sent to the application or the
responses it generates.

...
app.UseAuthentication();
...

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

890

Creating the Identity Database
Almost everything is in place, and the only remaining step is to actually create the database that will be
used to store the Identity data. Open a new command prompt or PowerShell window, navigate to the Users
project folder (the one that contains the Startup.cs file), and run the following command:

dotnet ef migrations add Initial

As I explained when I set up the database for the SportsStore application, Entity Framework Core
manages changes to database schemas through a feature called migrations. When you modify the model
classes that are used to generate the schema, you can produce a migration file that contains the SQL
commands required to update the database. The command creates the migration files that will set up the
database for Identity.

When the dotnet ef command completes, you will see a Migrations folder in the Solution Explorer. If
you examine the contents of the files, you can see the SQL commands that will be used to create the initial
database. To use the migration files to create the database, run this command:

dotnet ef database update

It can take a moment for the process to complete, but once the command has finished, the database will
have been created and prepared for use.

Using ASP.NET Core Identity
Now that the basic setup is out of the way, I can start to use ASP.NET Core Identity to add support for
managing users to the example application. In the sections that follow, I demonstrate how the Identity API
can be used to create administration tools that allow for centralized management of users.

Centralized user administration tools are useful in just about all applications, even those that allow
users to create and manage their own accounts. There will always be some customers who require bulk
account creation, for example, and support issues that require inspection and adjustment of user data. From
the perspective of this chapter, administration tools are useful because they consolidate a lot of basic user
management functions into a small number of classes, making them useful examples to demonstrate the
fundamental features of ASP.NET Core Identity.

Enumerating User Accounts
The starting point for this section is to enumerate all the user accounts in the database, which will
allow me to see the effect of code that I add to the application later. I started by adding a class file called
AdminController.cs to the Controllers folder and using it to define the controller shown in Listing 28-14,
which I will use to define my user administration functionality.

Listing 28-14. The Contents of the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using Users.Models;

namespace Users.Controllers {

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

891

 public class AdminController : Controller {
 private UserManager<AppUser> userManager;

 public AdminController(UserManager<AppUser> usrMgr) {
 userManager = usrMgr;
 }

 public ViewResult Index() => View(userManager.Users);
 }
}

The Index action method enumerates the users managed by the Identity system; there aren’t
any users at the moment, of course, but there will be soon. Access to the user data is through the
UserManager<AppUser> object that is received by the controller constructor and provided through
dependency injection.

With a UserManager<AppUser> object, I can start to query the data store. The Users property returns an
enumeration of user objects—instances of the AppUser class in this application—which can be queried and
manipulated using LINQ. In the action method, I pass the value of the Users property, which will enumerate
all the users in the database, to the View method so I can display the account details. To provide the action
method with a view, I created the Views/Admin folder, added a file called Index.cshtml to it, and applied the
markup shown in Listing 28-15.

Listing 28-15. The Contents of the Index.cshtml File in the Views/Admin Folder

@model IEnumerable<AppUser>

<div class="bg-primary m-1 p-1 text-white"><h4>User Accounts</h4></div>

<table class="table table-sm table-bordered">
 <tr><th>ID</th><th>Name</th><th>Email</th></tr>
 @if (Model.Count() == 0) {
 <tr><td colspan="3" class="text-center">No User Accounts</td></tr>
 } else {
 foreach (AppUser user in Model) {
 <tr>
 <td>@user.Id</td>
 <td>@user.UserName</td>
 <td>@user.Email</td>
 </tr>
 }
 }
</table>

Create

This view contains a table that has rows for each user, with columns for the unique ID, username, and
e-mail address. If there are no users in the database, then a message is displayed, as shown in Figure 28-2,
which you can see if you start the application and request the /Admin URL.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

892

I included a Create anchor element link in the view (styled as a button) that targets the Create action
on the Admin controller. This will be the action that supports adding users.

RESETTING THE DATABASE

You can see the database that is created for Identity by opening the Visual Studio SQL Server Object
Explorer window. If this is the first time that you have used SQL Server Object Explorer window, then
you will need to select Connect to Database from the Tools menu to tell Visual Studio about the database
you are working with. For the data source, select Microsoft SQL Server, use (localdb)\mssqllocaldb
as the server name, leave Use windows authentication selected, and click the drop-down arrow for the
Select Or Enter a Database name field. after a few seconds, you will see a list of the LocalDB databases
that are available, and you should be able to select IdentityUsers, which is the database for the
example application. Click OK, and a new entry will appear in the SQL Server Object Explorer window.
Visual Studio will remember the database, so you should need to perform this process only once.

You can explore the database by expanding the (localdb)\mssqllocaldb ➤ Databases ➤
IdentityUsers item in the SQL Server Object Explorer window. You will be able to see the tables that
were created by the migrations file, with names like AspNetUsers and AspNetRoles. You can query
the database to see the contents of the table once you have added users to the database, which I
demonstrate in the next section.

To delete the database, right-click the IdentityUsers item in the SQL Server Object Explorer window
and select Delete from the pop-up menu. Check both of the options in the Delete Database dialog and
click the OK button to delete the database.

To re-create the database, open the package Manager Console window and run the following command:

dotnet ef database update

The database will be re-created and will be ready for use when you next start the application.

Figure 28-2. Displaying the (empty) list of users

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

893

Creating Users
I am going to use MVC model validation for the input the application receives, and the easiest way to do this
is to create simple view models for each of the operations that the controller supports. I added a class file
called UserViewModels.cs to the Models folder and used it to define the class shown in Listing 28-16.

Listing 28-16. The Contents of the UserViewModels.cs File in the Models Folder

using System.ComponentModel.DataAnnotations;

namespace Users.Models {

 public class CreateModel {
 [Required]
 public string Name { get; set; }
 [Required]
 public string Email { get; set; }
 [Required]
 public string Password { get; set; }
 }
}

The initial model I have defined is called CreateModel, and it defines the basic properties that I require
to create a user account: a username, an e-mail address, and a password. I used the Required attribute from
the System.ComponentModel.DataAnnotations namespace to denote that values are required for all three
properties defined in the model.

In Listing 28-17, I added a pair of Create action methods to the Admin controller; they are targeted by
the link in the Index view from the previous section and use the standard controller pattern to present a view
to the user for a GET request and process form data for a POST request.

Listing 28-17. Defining the Create Actions in the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using Users.Models;
using System.Threading.Tasks;

namespace Users.Controllers {

 public class AdminController : Controller {
 private UserManager<AppUser> userManager;

 public AdminController(UserManager<AppUser> usrMgr) {
 userManager = usrMgr;
 }

 public ViewResult Index() => View(userManager.Users);

 public ViewResult Create() => View();

 [HttpPost]

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

894

 public async Task<IActionResult> Create(CreateModel model) {
 if (ModelState.IsValid) {
 AppUser user = new AppUser {
 UserName = model.Name,
 Email = model.Email
 };
 IdentityResult result
 = await userManager.CreateAsync(user, model.Password);

 if (result.Succeeded) {
 return RedirectToAction("Index");
 } else {
 foreach (IdentityError error in result.Errors) {
 ModelState.AddModelError("", error.Description);
 }
 }
 }
 return View(model);
 }
 }
}

The important part of this listing is the Create action method that accepts a CreateModel argument and
that will be invoked when the administrator submits the form data. The ModelState.IsValid property is
used to check that the data contains the required values, and if it does, a new instance of the AppUser class is
created and passed to the asynchronous UserManager.CreateAsync method, like this:

...
AppUser user = new AppUser { UserName = model.Name, Email = model.Email };
IdentityResult result = await userManager.CreateAsync(user, model.Password);
...

The result from the CreateAsync method is an IdentityResult object, which describes the outcome of
the operation through the properties listed in Table 28-4.

Table 28-4. The Properties Defined by the IdentityResult Class

Name Description

Succeeded Returns true if the operation succeeded.

Errors Returns a sequence of IdentityError objects describing the errors encountered while
attempting the operation. The IdentityError class provides a Description property that
summarizes the problem.

I inspect the Succeeded property in the Create action method to determine whether a new user record
has been created in the database. If the Succeeded property is true, then the client is redirected to the Index
action so that list of users is displayed.

...
if (result.Succeeded) {
 return RedirectToAction("Index");
} else {

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

895

 foreach (IdentityError error in result.Errors) {
 ModelState.AddModelError("", error.Description);
 }
}
...

If the Succeeded property is false, then the sequence of IdentityError objects provided by the Errors
property is enumerated, with the Description property used to create a model-level validation error using
the ModelState.AddModelError method, as described in Chapter 27.

To provide the new action methods with a view, I created a view file called Create.cshtml in the Views/
Admin folder and added the markup shown in Listing 28-18.

Listing 28-18. The Contents of the Create.cshtml File in the Views/Admin Folder

@model CreateModel

<div class="bg-primary m-1 p-1 text-white"><h4>Create User</h4></div>
<div asp-validation-summary=" All" class="text-danger"></div>
<form asp-action="Create" method="post">
 <div class="form-group">
 <label asp-for="Name"></label>
 <input asp-for="Name" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Email"></label>
 <input asp-for="Email" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Password"></label>
 <input asp-for="Password" class="form-control" />
 </div>
 <button type="submit" class="btn btn-primary">Create</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
</form>

There is nothing special about this view—it is a simple form that gathers values that MVC will bind to
the properties of the model class that is passed to the Create action method and that contains a summary
for when there are validation errors.

Testing the Create Functionality
To test the ability to create a new user account, start the application, navigate to the /Admin URL, and click
the Create button. Fill in the form with the values shown in Table 28-5.

 ■ Tip There are domains reserved for testing, including example.com. You can see a complete list at
https://tools.ietf.org/html/rfc2606.

http://dx.doi.org/10.1007/978-1-4842-3150-0_27
https://tools.ietf.org/html/rfc2606

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

896

Once you have entered the values, click the Create button. ASP.NET Core Identity will create the user
account, which will be displayed when your browser is redirected to the Index action method, as shown in
Figure 28-3. (You will see a different ID value because IDs are randomly generated for each user account.)

Figure 28-4. An error trying to create a new user

Table 28-5. The Values for Creating an Example User

Name Value

Name Joe

Email joe@example.com

Password Secret123$

Figure 28-3. Adding a new user account

Click the Create button again and enter the same details into the form, using the values in Table 28-5.
This time when you submit the form, you will see an error reported through the model validation summary,
as shown in Figure 28-4.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

897

Validating Passwords
One of the most common requirements, especially for corporate applications, is to enforce a password
policy. You can see the default policy by running the application, requesting the /Admin/Create URL, and
populating the form with the data shown in Table 28-6, where the important difference from the data in the
previous section is the value entered into the password field.

Table 28-6. The Values for Creating an Example User

Name Value

Name Alice

Email alice@example.com

Password secret

Figure 28-5. Password validation errors

When you submit the form to the server, the Identity system checks the candidate password and
generates errors if it doesn’t match the requirements, generating the errors shown in Figure 28-5.

You can configure the password validation rules in the Startup class, as shown in Listing 28-19.

Listing 28-19. Configuring Password Validation in the Startup.cs File in the Users Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.AspNetCore.Identity;
using Microsoft.EntityFrameworkCore;
using Users.Models;

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

898

namespace Users {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<AppUser, IdentityRole>(opts => {
 opts.Password.RequiredLength = 6;
 opts.Password.RequireNonAlphanumeric = false;
 opts.Password.RequireLowercase = false;
 opts.Password.RequireUppercase = false;
 opts.Password.RequireDigit = false;
 }).AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The AddIdentity method can be used with a function that accepts an IdentityOptions object,
whose Password property returns an instance of the PasswordOptions class, which provides the properties
described in Table 28-7 for managing the password policy.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

899

In the listing, I specified that passwords must have a minimum length of six characters and disabled
the other constraints. This isn’t something that you should do lightly in a real project, but it allows for an
effective demonstration. If you start the application, navigate to the /Admin/Create URL, and repeat the
form submission, you will see that the password secret is now accepted and a new account, for Alice, has
been created, as shown in Figure 28-6.

Figure 28-6. Changing the password validation policy

Table 28-7. The PasswordOptions Properties

Name Description

RequiredLength This int property is used to specify the minimum length for passwords.

RequireNonAlphanumeric Setting this bool property to true requires passwords to contain at least
one character that is not a letter or a digit.

RequireLowercase Setting this bool property to true requires passwords to contain at least
one lowercase character.

RequireUppercase Setting this bool property to true requires passwords to contain at least
one uppercase character.

RequireDigit Setting this bool property to true requires passwords to contain at least
numeric character.

Implementing a Custom Password Validator
The built-in password validation is sufficient for most applications, but you may need to implement
a custom policy, especially if you are implementing a corporate line-of-business application where
complex password policies are common. The password validation functionality is defined by the
IPasswordValidator<T> interface in the Microsoft.AspNetCore.Identity namespace, where T is the
application-specific user class (AppUser in the example application).

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

900

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Identity {

 public interface IPasswordValidator<TUser> where TUser : class {

 Task<IdentityResult> ValidateAsync(UserManager<TUser> manager,
 TUser user, string password);
 }
}

The ValidateAsync method is called to validate a password and is provided with context data through
a UserManager object (which allows for the Identity database to be queried), the object that represents the
user, and the candidate password. The result is an IdentityResult object, which is created using the static
Success property if there are no validation issues, or the static Failed method, which is passed an array of
IdentityError objects, each of which describes a validation problem.

To demonstrate the use of a custom validation policy, I created the Infrastructure folder, added a class
file called CustomPasswordValidator.cs to it, and used the file to define the class shown in Listing 28-20.

Listing 28-20. The Contents of the CustomPasswordValidator.cs File in the Infrastructure Folder

using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Identity;
using Users.Models;

namespace Users.Infrastructure {

 public class CustomPasswordValidator : IPasswordValidator<AppUser> {

 public Task<IdentityResult> ValidateAsync(UserManager<AppUser> manager,
 AppUser user, string password) {

 List<IdentityError> errors = new List<IdentityError>();

 if (password.ToLower().Contains(user.UserName.ToLower())) {
 errors.Add(new IdentityError {
 Code = "PasswordContainsUserName",
 Description = "Password cannot contain username"
 });
 }
 if (password.Contains("12345")) {
 errors.Add(new IdentityError {
 Code = "PasswordContainsSequence",
 Description = "Password cannot contain numeric sequence"
 });
 }

 return Task.FromResult(errors.Count == 0 ?
 IdentityResult.Success : IdentityResult.Failed(errors.ToArray()));
 }
 }
}

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

901

The validator class checks to see that the password does not contain the username and
that the password does not contain the sequence 12345. In Listing 28-21, I have registered the
CustomPasswordValidator class as the password validator for AppUser objects.

Listing 28-21. Registering a Custom Password Validator in the Startup.cs File

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.AspNetCore.Identity;
using Microsoft.EntityFrameworkCore;
using Users.Models;
using Users.Infrastructure;

namespace Users {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {

 services.AddTransient<IPasswordValidator<AppUser>,
 CustomPasswordValidator>();

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<AppUser, IdentityRole>(opts => {
 opts.Password.RequiredLength = 6;
 opts.Password.RequireNonAlphanumeric = false;
 opts.Password.RequireLowercase = false;
 opts.Password.RequireUppercase = false;
 opts.Password.RequireDigit = false;
 }).AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UseMvcWithDefaultRoute();
 }
 }
}

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

902

To test the custom policy, start the application, request the /Admin/Create URL, and fill out the form
using the data values in Table 28-8.

Table 28-8. The Values for Creating an Example User

Name Value

Name Bob

Email bob@example.com

Password bob12345

Figure 28-7. Using a custom password validator

The password in the table breaks both of the validation rules enforced by the custom class and results in
the error messages shown in Figure 28-7.

You can also implement a custom validation policy that builds on the foundation provided by the
built-in class that is used by default. The default class is called PasswordValidator and is defined in the
Microsoft.AspNetCore.Identity namespace. In Listing 28-22, I have changed the custom validator class so
that it is derived from PasswordValidator and builds on the basic checks it provides.

Listing 28-22. Deriving from the Built-in Validator in the CustomPasswordValidator.cs File

using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Identity;
using Users.Models;
using System.Linq;

namespace Users.Infrastructure {

 public class CustomPasswordValidator : PasswordValidator<AppUser> {

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

903

 public override async Task<IdentityResult> ValidateAsync(
 UserManager<AppUser> manager, AppUser user, string password) {

 IdentityResult result = await base.ValidateAsync(manager,
 user, password);

 List<IdentityError> errors = result.Succeeded ?
 new List<IdentityError>() : result.Errors.ToList();

 if (password.ToLower().Contains(user.UserName.ToLower())) {
 errors.Add(new IdentityError {
 Code = "PasswordContainsUserName",
 Description = "Password cannot contain username"
 });
 }
 if (password.Contains("12345")) {
 errors.Add(new IdentityError {
 Code = "PasswordContainsSequence",
 Description = "Password cannot contain numeric sequence"
 });
 }

 return errors.Count == 0 ? IdentityResult.Success
 : IdentityResult.Failed(errors.ToArray());
 }
 }
}

To test the combined validation, run the application and populate the form returned for the /Admin/
Create URL with the data in Table 28-9.

Table 28-9. The Values for Creating an Example User

Name Value

Name Bob

Email bob@example.com

Password 12345

When you submit the form, you will see a combination of custom and built-in validation errors, as
shown in Figure 28-8.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

904

Validating User Details
Validation is also performed on usernames and e-mail addresses when accounts are created. To see the built-
in validation, start the application and fill out the /Admin/Create form with the data shown in Table 28-10.

Table 28-10. The Values for Creating an Example User

Name Value

Name Bob!

Email alice@example.com

Password secret

Figure 28-9. User account validation errors

Figure 28-8. Combining custom and built-in password validation

When you submit the form, you will see the validation error shown in Figure 28-9.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

905

Validation can be configured in the Startup class using the IdentityOptions.User property, which
returns an instance of the UserOptions class. Table 28-11 describes the UserOptions properties.

Table 28-11. The UserOptions Properties

Name Description

AllowedUserNameCharacters This string property contains all the legal characters that can be used
in a username. The default value specifies a–z, A–Z, and 0–9 and the
hyphen, period, underscore, and @ characters. This property is not
a regular expression, and every legal character must be specified
explicitly in the string.

RequireUniqueEmail Setting this bool property to true requires new accounts to specify
e-mail addresses that have not been used previously.

In Listing 28-23, I have changed the configuration of the application so that unique e-mail addresses are
required and only lowercase alphabetic characters are allowed in usernames.

Listing 28-23. Changing the User Account Validation Settings in the Startup.cs File

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.AspNetCore.Identity;
using Microsoft.EntityFrameworkCore;
using Users.Models;
using Users.Infrastructure;

namespace Users {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {

 services.AddTransient<IPasswordValidator<AppUser>,
 CustomPasswordValidator>();

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<AppUser, IdentityRole>(opts => {
 opts.User.RequireUniqueEmail = true;
 opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz";
 opts.Password.RequiredLength = 6;
 opts.Password.RequireNonAlphanumeric = false;

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

906

 opts.Password.RequireLowercase = false;
 opts.Password.RequireUppercase = false;
 opts.Password.RequireDigit = false;
 }).AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UseMvcWithDefaultRoute();
 }
 }
}

If you resubmit the data from the previous test, you will see that the e-mail address now causes an error
and that the characters used in the name are still rejected, as shown in Figure 28-10.

Figure 28-10. Changing the account validation settings

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

907

Implementing Custom User Validation
The validation functionality is specified by the IUserValidator<T> interface, which is defined in the
Microsoft.AspNetCore.Identity namespace.

using System.Threading.Tasks;

namespace Microsoft.AspNetCore.Identity {

 public interface IUserValidator<TUser> where TUser : class {
 Task<IdentityResult> ValidateAsync(UserManager<TUser> manager, TUser user);
 }
}

The ValidateAsync method is called to perform the validation, and the outcome is returned using
an IdentityResult object, which is the same class used to validate passwords. To demonstrate a custom
validator, I added a class called CustomUserValidator.cs to the Infrastructure folder and used it to define
the class shown in Listing 28-24.

Listing 28-24. The Contents of the CustomUserValidator.cs File in the Infrastructure Folder

using System.Threading.Tasks;
using Microsoft.AspNetCore.Identity;
using Users.Models;

namespace Users.Infrastructure {

 public class CustomUserValidator : IUserValidator<AppUser> {

 public Task<IdentityResult> ValidateAsync(UserManager<AppUser> manager,
 AppUser user) {

 if (user.Email.ToLower().EndsWith("@example.com")) {
 return Task.FromResult(IdentityResult.Success);
 } else {
 return Task.FromResult(IdentityResult.Failed(new IdentityError {
 Code = "EmailDomainError",
 Description = "Only example.com email addresses are allowed"
 }));
 }
 }
 }
}

This validator checks the domain of the e-mail address to make sure that it is part of the example.com
domain. In Listing 28-25, I have registered the custom class as the validator for AppUser objects.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

908

Listing 28-25. Registering a Customer User Validator in the Startup.cs File

...
public void ConfigureServices(IServiceCollection services) {

 services.AddTransient<IPasswordValidator<AppUser>,
 CustomPasswordValidator>();
 services.AddTransient<IUserValidator<AppUser>,
 CustomUserValidator>();

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<AppUser, IdentityRole>(opts => {
 opts.User.RequireUniqueEmail = true;
 opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz";
 opts.Password.RequiredLength = 6;
 opts.Password.RequireNonAlphanumeric = false;
 opts.Password.RequireLowercase = false;
 opts.Password.RequireUppercase = false;
 opts.Password.RequireDigit = false;
 }).AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
}
...

To test the custom validator, run the application and fill out the /Admin/Create form using the data
shown in Table 28-12.

Table 28-12. The Values for Creating an Example User

Name Value

Name bob

Email bob@invalid.com

Password secret

The user’s name and password pass validation, but the e-mail address is not in the correct domain.
When you submit the form, you will see the validation error shown in Figure 28-11.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

909

The process for combining the built-in validation, which is provided by the UserValidator<T> class,
with custom validation follows the same pattern as for validating passwords, as shown in Listing 28-26.

Listing 28-26. Extending the Built-in User Validation in the CustomUserValidator.cs File

using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Identity;
using Users.Models;

namespace Users.Infrastructure {

 public class CustomUserValidator : UserValidator<AppUser> {

 public override async Task<IdentityResult> ValidateAsync(
 UserManager<AppUser> manager,
 AppUser user) {

 IdentityResult result = await base.ValidateAsync(manager, user);

 List<IdentityError> errors = result.Succeeded ?
 new List<IdentityError>() : result.Errors.ToList();

 if (!user.Email.ToLower().EndsWith("@example.com")) {
 errors.Add(new IdentityError {
 Code = "EmailDomainError",
 Description = "Only example.com email addresses are allowed"
 });
 }

 return errors.Count == 0 ? IdentityResult.Success
 : IdentityResult.Failed(errors.ToArray());
 }
 }
}

Figure 28-11. Performing custom user validation

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

910

Completing the Administration Features
I only have to implement the features for editing and deleting users to complete my administration tool.
In Listing 28-27, you can see the changes I made to the Views/Admin/Index.cshtml file to target Edit and
Delete actions in the Admin controller.

Listing 28-27. Adding Edit and Delete Buttons to the Index.cshtml File in the Views/Admin Folder

@model IEnumerable<AppUser>

<div class="bg-primary m-1 p-1 text-white"><h4>User Accounts</h4></div>

<div class="text-danger" asp-validation-summary="ModelOnly"></div>

<table class="table table-sm table-bordered">
 <tr><th>ID</th><th>Name</th><th>Email</th></tr>
 @if (Model.Count() == 0) {
 <tr><td colspan="3" class="text-center">No User Accounts</td></tr>
 } else {
 foreach (AppUser user in Model) {
 <tr>
 <td>@user.Id</td><td>@user.UserName</td><td>@user.Email</td>
 <td>
 <form asp-action="Delete" asp-route-id="@user.Id" method="post">
 <a class="btn btn-sm btn-primary" asp-action="Edit"
 asp-route-id="@user.Id">Edit
 <button type="submit"
 class="btn btn-sm btn-danger">Delete</button>
 </form>
 </td>
 </tr>
 }
 }
</table>
Create

The Delete button posts a form to the Delete action on the Admin controller, which is important
because a POST request is required when changing the application state. The Edit button is an anchor
element that will send a GET request because the first step in the edit process is to display the current data.
The Edit button is contained in the form element so that the Bootstrap CSS styles don’t stack them vertically.
I also added a model validation summary to the view so that I can easily display any errors that arise from
the remaining administration features.

Implementing the Delete Feature
The UserManager<T> class defines a DeleteAsync method that takes an instance of the user class and
removes it from the database. In Listing 28-28, you can see how I have used the DeleteAsync method to
implement the delete feature of the Admin controller.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

911

Listing 28-28. Deleting Users in the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using Users.Models;
using System.Threading.Tasks;

namespace Users.Controllers {

 public class AdminController : Controller {
 private UserManager<AppUser> userManager;

 public AdminController(UserManager<AppUser> usrMgr) {
 userManager = usrMgr;
 }

 // ...other actions omitted for brevity...

 [HttpPost]
 public async Task<IActionResult> Delete(string id) {
 AppUser user = await userManager.FindByIdAsync(id);
 if (user != null) {
 IdentityResult result = await userManager.DeleteAsync(user);
 if (result.Succeeded) {
 return RedirectToAction("Index");
 } else {
 AddErrorsFromResult(result);
 }
 } else {
 ModelState.AddModelError("", "User Not Found");
 }
 return View("Index", userManager.Users);
 }

 private void AddErrorsFromResult(IdentityResult result) {
 foreach (IdentityError error in result.Errors) {
 ModelState.AddModelError("", error.Description);
 }
 }
 }
}

My action method receives the unique ID for the user as an argument, and I use the FindByIdAsync
method to locate the corresponding user object so that I can pass it to DeleteAsync method. The result of
the DeleteAsync method is an IdentityResult, which I process in the same way I did in earlier examples to
ensure that any errors are displayed to the user. You can test the delete functionality by creating a new user
and then clicking the Delete button that appears alongside it in the Index view, as shown in Figure 28-12.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

912

Implementing the Edit Feature
To complete the administration tool, I need to add support for editing the e-mail address and password for a
user account. These are the only properties defined by users at the moment, but I’ll show you how to extend
the schema with custom properties in Chapter 30. Listing 28-29 shows the Edit action methods that I added
to the Admin controller.

Listing 28-29. Adding the Edit Actions in the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using Users.Models;
using System.Threading.Tasks;

namespace Users.Controllers {

 public class AdminController : Controller {
 private UserManager<AppUser> userManager;
 private IUserValidator<AppUser> userValidator;
 private IPasswordValidator<AppUser> passwordValidator;
 private IPasswordHasher<AppUser> passwordHasher;

 public AdminController(UserManager<AppUser> usrMgr,
 IUserValidator<AppUser> userValid,
 IPasswordValidator<AppUser> passValid,
 IPasswordHasher<AppUser> passwordHash) {
 userManager = usrMgr;
 userValidator = userValid;
 passwordValidator = passValid;
 passwordHasher = passwordHash;
 }

Figure 28-12. Deleting user accounts

http://dx.doi.org/10.1007/978-1-4842-3150-0_30

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

913

 // ...other action methods omitted for brevity...

 public async Task<IActionResult> Edit(string id) {
 AppUser user = await userManager.FindByIdAsync(id);
 if (user != null) {
 return View(user);
 } else {
 return RedirectToAction("Index");
 }
 }

 [HttpPost]
 public async Task<IActionResult> Edit(string id, string email,
 string password) {
 AppUser user = await userManager.FindByIdAsync(id);
 if (user != null) {
 user.Email = email;
 IdentityResult validEmail
 = await userValidator.ValidateAsync(userManager, user);
 if (!validEmail.Succeeded) {
 AddErrorsFromResult(validEmail);
 }
 IdentityResult validPass = null;
 if (!string.IsNullOrEmpty(password)) {
 validPass = await passwordValidator.ValidateAsync(userManager,
 user, password);
 if (validPass.Succeeded) {
 user.PasswordHash = passwordHasher.HashPassword(user,
 password);
 } else {
 AddErrorsFromResult(validPass);
 }
 }
 if ((validEmail.Succeeded && validPass == null)
 || (validEmail.Succeeded
 && password != string.Empty && validPass.Succeeded)) {
 IdentityResult result = await userManager.UpdateAsync(user);
 if (result.Succeeded) {
 return RedirectToAction("Index");
 } else {
 AddErrorsFromResult(result);
 }
 }
 } else {
 ModelState.AddModelError("", "User Not Found");
 }
 return View(user);
 }

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

914

 private void AddErrorsFromResult(IdentityResult result) {
 foreach (IdentityError error in result.Errors) {
 ModelState.AddModelError("", error.Description);
 }
 }
 }
}

The Edit action targeted by GET requests uses the ID string embedded in the Index view to call the
FindByIdAsync method to get an AppUser object that represents the user.

The more complex implementation receives the POST request, with arguments for the user ID, the new
e-mail address, and the password. I have to perform several tasks to complete the editing operation.

The first task is to validate the values I have received. I am working with a simple user object at the
moment—although I’ll show you how to customize the data stored for users in Chapter 30—but even so, I
need to validate the user data to ensure that I don’t violate the custom policies defined in the “Validating
User Details” and “Validating Passwords” sections. I start by validating the e-mail address, which I do like
this:

...
user.Email = email;
IdentityResult validEmail = await userValidator.ValidateAsync(userManager, user);
if (!validEmail.Succeeded) {
 AddErrorsFromResult(validEmail);
}
...

I added a dependency to the controller constructor for an IUserValidator<AppUser> object so that I
could validate the new e-mail address. Notice that I have to change the value of the Email property before I
perform the validation because the ValidateAsync method only accepts instances of the user class.

The next step is to change the password, if one has been supplied. ASP.NET Core Identity stores hashes
of passwords, rather than the passwords themselves. This is intended to prevent passwords from being
stolen. My next step is to take the validated password and generate the hash code that will be stored in the
database so that the user can be authenticated, which I demonstrate in Chapter 29.

Passwords are converted to hashes through an implementation of the IPasswordHasher<AppUser>
interface, which is obtained by declaring a constructor argument that will be resolved through dependency
injection. The IPasswordHasher interface defines the HashPassword method, which takes a string argument
and returns its hashed value, like this:

...
if (!string.IsNullOrEmpty(password)) {
 validPass = await passwordValidator.ValidateAsync(userManager, user, password);
 if (validPass.Succeeded) {
 user.PasswordHash = passwordHasher.HashPassword(user, password);
 } else {
 AddErrorsFromResult(validPass);
 }
}
...

http://dx.doi.org/10.1007/978-1-4842-3150-0_30
http://dx.doi.org/10.1007/978-1-4842-3150-0_29

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

915

Changes to the user class are not stored in the database until the UpdateAsync method is called, like this:

...
if ((validEmail.Succeeded && validPass == null) || (validEmail.Succeeded
 && password != string.Empty && validPass.Succeeded)) {
 IdentityResult result = await userManager.UpdateAsync(user);
 if (result.Succeeded) {
 return RedirectToAction("Index");
 } else {
 AddErrorsFromResult(result);
 }
}
...

Creating the View
The final component is the view that will display the current values for a user and allow new values to be
submitted to the controller. Listing 28-30 shows the contents of the Edit.cshtml file, which I created in the
Views/Admin folder.

Listing 28-30. The Contents of the Edit.cshtml File in the Views/Admin Folder

@model AppUser

<div class="bg-primary m-1 p-1"><h4>Edit User</h4></div>

<div asp-validation-summary="All" class="text-danger"></div>

<form asp-action="Edit" method="post">
 <div class="form-group">
 <label asp-for="Id"></label>
 <input asp-for="Id" class="form-control" disabled />
 </div>
 <div class="form-group">
 <label asp-for="Email"></label>
 <input asp-for="Email" class="form-control" />
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <input name="password" class="form-control" />
 </div>
 <button type="submit" class="btn btn-primary">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
</form>

This view displays the user ID, which cannot be changed, as static text and provides a form for editing
the e-mail address and password, as shown in Figure 28-13. Notice that I don’t use a tag helper for the
password elements because the user class doesn’t contain password information, since only hashed values
are stored in the database.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

916

The final change is to comment out the user validation settings from the Startup class so that the
default characters for usernames are used, as shown in Listing 28-31. Since some of the accounts in the
database were created before I changed the validation setting, you won’t be able to edit them because the
usernames won’t pass validation. And since validation is applied to the entire user object when the e-mail
address is validated, the result is a user account that cannot be changed.

Listing 28-31. Disabling the Custom Validation Settings in the Startup.cs File in the Users Folder

...
public void ConfigureServices(IServiceCollection services) {

 services.AddTransient<IPasswordValidator<AppUser>,
 CustomPasswordValidator>();
 services.AddTransient<IUserValidator<AppUser>,
 CustomUserValidator>();

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<AppUser, IdentityRole>(opts => {
 opts.User.RequireUniqueEmail = true;
 //opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz";
 opts.Password.RequiredLength = 6;
 opts.Password.RequireNonAlphanumeric = false;
 opts.Password.RequireLowercase = false;
 opts.Password.RequireUppercase = false;
 opts.Password.RequireDigit = false;
 }).AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
}
...

To test the edit feature, run the application, request the /Admin URL, and click one of the Edit buttons.
Change the e-mail address or enter a new password (or both) and click the Save button to update the
database and return to the /Admin URL.

ChapTEr 28 ■ GETTInG STarTED wITh IDEnTITY

917

Figure 28-13. Editing a user account

Summary
In this chapter, I showed you how to create the configuration and classes required to use ASP.NET Core
Identity and demonstrated how they can be applied to create a user administration tool. In the next chapter,
I show you how to perform authentication and authorization with ASP.NET Core Identity.

919© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_29

CHAPTER 29

Applying ASP.NET Core Identity

In this chapter, I show you how to apply ASP.NET Core Identity to authenticate and authorize the user
accounts created in the previous chapter. Table 29-1 summarizes this chapter.

Table 29-1. Chapter Summary

Problem Solution Listing

Restrict access to an action method Apply the Authorize attribute 1

Authenticate users Create an Account controller that receives user
credentials and check them using the UserManager class

2–5

Create and manage roles Use the RoleManager class 6–10

Authorize access to an action
method using roles

Add user accounts to roles and use the Authorize
attribute to specify which roles can access action
methods

11–18

Ensure that there is an
administration account

Seed the database to create an account automatically 19–24

Preparing the Example Project
In this chapter, I am going to continue working on the Users project I created in Chapter 28. To prepare for
this chapter, run the application, navigate to the /Admin URL, and use the Create button to ensure that the
user accounts in Table 29-2 are in the database.

Table 29-2. The User Accounts Required For This Chapter

Username Email Password

Joe joe@example.com secret123

Alice alice@example.com secret123

Bob bob@example.com secret123

https://doi.org/10.1007/978-1-4842-3150-0_29
http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 29 ■ applying aSp.net Core identity

920

When you have finished, requesting the /Admin URL should show you a list of users, including the ones
described in Table 29-2 (it doesn’t matter if you have created additional users, just as long as the ones in the
table are present), as shown in Figure 29-1.

Figure 29-1. Running the example application

Authenticating Users
The most fundamental activity for ASP.NET Core Identity is to authenticate users. The key tool for restricting
access to action methods is the Authorize attribute, which tells MVC that only requests from authenticated
users should be processed. In Listing 29-1, I applied the Authorize attribute to the Index action of the Home
controller.

Listing 29-1. Restricting Access in the HomeController.cs File in the Controllers Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Authorization;

namespace Users.Controllers {

 public class HomeController : Controller {

 [Authorize]
 public ViewResult Index() =>
 View(new Dictionary<string, object> { ["Placeholder"] = "Placeholder" });
 }
}

If you start the application, the browser will send a request to the default URL, which will target
the action method that has been decorated with the Authorize attribute. There is no way for users to
authenticate themselves at the moment, and the result is the error shown in Figure 29-2.

Chapter 29 ■ applying aSp.net Core identity

921

The Authorize attribute doesn’t specify how the user should be authenticated and has no direct link to
ASP.NET Core Identity. The Identity services and middleware work across the ASP.NET Core platform, which
makes integration into MVC applications simple and seamless and works by modifying the context objects
that describe HTTP requests, providing MVC with details of the outcome of the authentication process
without needing to provide it with any details.

The ASP.NET Core platform provides information about the user through the HttpContext object,
which is used by the Authorize attribute to check the status of the current request and see whether the user
has been authenticated. The HttpContext.User property returns an implementation of the IPrincipal
interface, which is defined in the System.Security.Principal namespace. The IPrincipal interface
defines the property and method shown in Table 29-3.

Figure 29-2. Targeting a protected action method

Table 29-3. Selected Members Defined by the IPrincipal Interface

Name Description

Identity Returns an implementation of the IIdentity interface that describes the user
associated with the request.

IsInRole(role) Returns true if the user is a member of the specified role. See the “Authorizing Users
with Roles” section for details of managing authorizations with roles.

The implementation of the IIdentity interface returned by the IPrincipal.Identity property
provides some basic, but useful, information about the current user through the properties I have described
in Table 29-4.

 ■ Tip in Chapter 30, i describe the implementation class that aSp.net Core identity uses for the IIdentity
interface.

Table 29-4. Selected Properties Defined by the IIdentity Interface

Name Description

AuthenticationType Returns a string that describes the mechanism used to authenticate the user

IsAuthenticated Returns true if the user has been authenticated

Name Returns the name of the current user

http://dx.doi.org/10.1007/978-1-4842-3150-0_30

Chapter 29 ■ applying aSp.net Core identity

922

The ASP.NET Core Identity middleware uses cookies sent by the browser to determine whether the
user has been authenticated. If the user has been authenticated, then the IIdentity.IsAuthenticated
property is set to true. Since the example application doesn’t yet have an authentication mechanism, the
IsAuthenticated property always returns false, which causes an authentication error that leads to the
client being redirected to the /Account/Login URL, which is the default URL for providing authentication
credentials.

The browser requests the /Account/Login URL, but since it doesn’t correspond to any controller or
action in the example project, the server returns a 404 – Not Found response, leading to the error message
shown in Figure 29-2.

CHANGING THE LOGIN URL

although /Account/Login is the default Url that clients are redirected to when authorization is
required, you can specify your own Url in the ConfigureServices method of the Startup class by
changing a configuration option when setting up the aSp.net Core identity services, like this:

...
services.ConfigureApplicationCookie(opts => opts.LoginPath = "/Users/Login");
...

the identity system cannot rely on the routing system being present to generate its Urls and so
the redirection target has to be specified literally. if you change the routing scheme used by your
application, you must also ensure that you change the identity setting so that the Url will still reach
your target controller.

Preparing to Implement Authentication
Even though the request ends in an error message, the request in the previous section illustrates how the
ASP.NET Core Identity system fits into the standard ASP.NET request life cycle. The next step is to implement
a controller that will receive requests for the /Account/Login URL and authenticate the user. I started by
adding a new model class to the UserViewModels.cs file, as shown in Listing 29-2.

Listing 29-2. Adding a New Model Class to the UserViewModels.cs File in the Models Folder

using System.ComponentModel.DataAnnotations;

namespace Users.Models {

 public class CreateModel {
 [Required]
 public string Name { get; set; }
 [Required]
 public string Email { get; set; }
 [Required]
 public string Password { get; set; }
 }

Chapter 29 ■ applying aSp.net Core identity

923

 public class LoginModel {
 [Required]
 [UIHint("email")]
 public string Email { get; set; }

 [Required]
 [UIHint("password")]
 public string Password { get; set; }
 }
}

The new model has Email and Password properties, both of which are decorated with the Required
attribute so that I can use model validation to check that the user has provided values. I have decorated the
properties with the UIHint attribute, which ensures that the input elements rendered by the tag helper in
the view will have their type attributes set appropriately.

 ■ Tip in a real project, client-side validation could be used to check that the user has provided name and
password values before submitting the form to the server. See Chapter 27 for details of client-side validation.

I added a class file called AccountController.cs to the Controllers folder and used it to define the
controller shown in Listing 29-3.

Listing 29-3. The Contents of the AccountController.cs File in the Controllers Folder

using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Users.Models;

namespace Users.Controllers {

 [Authorize]
 public class AccountController : Controller {

 [AllowAnonymous]
 public IActionResult Login(string returnUrl) {
 ViewBag.returnUrl = returnUrl;
 return View();
 }

 [HttpPost]
 [AllowAnonymous]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> Login(LoginModel details, string returnUrl) {
 return View(details);
 }
 }
}

http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 29 ■ applying aSp.net Core identity

924

I have not implemented the authentication logic in the listing because I am going to define the view and
then walk through the process of validating user credentials and signing users into the application.

Even though it doesn’t authenticate users yet, the Account controller contains some useful
infrastructure that I want to explain separately from the ASP.NET Core Identity code that I’ll add to the Login
action method shortly.

First, notice that both versions of the Login action method take an argument called returnUrl. When
a user requests a restricted URL, they are redirected to the /Account/Login URL with a query string that
specifies the URL that the user should be sent back to once they have been authenticated. You can see this if
you start the application and request the /Home/Index URL. Your browser will be redirected, like this:

/Account/Login?ReturnUrl=%2FHome%2FIndex

The value of the ReturnUrl query string parameter allows me to redirect the user so that navigating
between open and secured parts of the application is a smooth and seamless process.

Next, notice the attributes that I have applied to the Account controller. Controllers that manage user
accounts contain functionality that should be available only to authenticated users, such as password
reset, for example. To that end, I have applied the Authorize attribute to the controller class and then
used the AllowAnonymous attribute on the individual action methods. This restricts action methods to
authenticated users by default but allows unauthenticated users to log into the application. I applied the
ValidateAntiForgeryToken attribute, which I described in Chapter 24 and which works in conjunction with
the form element tag helper to protect against cross-site request forgery.

The last preparatory step is to create the view that will be rendered to gather credentials from the user. I
created the Views/Account folder and added a view called Login.cshtml with the markup shown in Listing 29-4.

Listing 29-4. The Contents of the Login.cshtml File in the Views/Account Folder

@model LoginModel

<div class="bg-primary m-1 p-1 text-white"><h4>Log In</h4></div>

<div class="text-danger" asp-validation-summary="All"></div>

<form asp-action="Login" method="post">
 <input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" />
 <div class="form-group">
 <label asp-for="Email"></label>
 <input asp-for="Email" class="form-control" />
 </div>
 <div class="form-group">
 <label asp-for="Password"></label>
 <input asp-for="Password" class="form-control" />
 </div>
 <button class="btn btn-primary" type="submit">Log In</button>
</form>

The only notable aspect of this view is the hidden input element, which preserves the returnUrl
argument. In all other respects, this is a standard Razor view, but it completes the preparations for
authentication and demonstrates the way that unauthenticated requests are intercepted and redirected. To
test the new controller, start the application. When the browser requests the default URL for the application,
it will be redirected to the /Account/Login URL, which produces the content shown in Figure 29-3.

http://dx.doi.org/10.1007/978-1-4842-3150-0_24

Chapter 29 ■ applying aSp.net Core identity

925

Adding User Authentication
Requests for protected action methods are being correctly redirected to the Account controller, but the
credentials provided by the user are not yet used for authentication. In Listing 29-5, I have completed the
implementation of the Login action, using ASP.NET Core Identity services to authenticate the user against
the details held in the database.

Listing 29-5. Adding Authentication in the AccountController.cs File in the Controllers Folder

using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Users.Models;
using Microsoft.AspNetCore.Identity;

namespace Users.Controllers {

 [Authorize]
 public class AccountController : Controller {
 private UserManager<AppUser> userManager;
 private SignInManager<AppUser> signInManager;

 public AccountController(UserManager<AppUser> userMgr,
 SignInManager<AppUser> signinMgr) {
 userManager = userMgr;
 signInManager = signinMgr;
 }

 [AllowAnonymous]
 public IActionResult Login(string returnUrl) {
 ViewBag.returnUrl = returnUrl;

Figure 29-3. Prompting the user for credentials

Chapter 29 ■ applying aSp.net Core identity

926

 return View();
 }

 [HttpPost]
 [AllowAnonymous]
 [ValidateAntiForgeryToken]
 public async Task<IActionResult> Login(LoginModel details,
 string returnUrl) {
 if (ModelState.IsValid) {
 AppUser user = await userManager.FindByEmailAsync(details.Email);
 if (user != null) {
 await signInManager.SignOutAsync();
 Microsoft.AspNetCore.Identity.SignInResult result =
 await signInManager.PasswordSignInAsync(
 user, details.Password, false, false);
 if (result.Succeeded) {
 return Redirect(returnUrl ?? "/");
 }
 }
 ModelState.AddModelError(nameof(LoginModel.Email),
 "Invalid user or password");
 }
 return View(details);
 }
 }
}

The simplest part is getting the AppUser object that represents the user, which I do through the
FindByEmailAsync method of the UserManager<AppUser> class.

...
AppUser user = await userManager.FindByEmailAsync(details.Email);
...

This method locates a user account using the e-mail address that was used to create it. There are
alternative methods for locating users by ID, by name, and by login. I have used the e-mail address for login
because it is the approach taken by most Internet-facing web applications and has also become popular in
corporate applications.

If there is an account with the e-mail address that the user has specified, then the next step is to
perform the authentication step, which is done using the SignInManager<AppUser> class, for which I added
a constructor argument that will be resolved using dependency injection. I use the SignInManager class to
perform two authentication steps.

...
await signInManager.SignOutAsync();
Microsoft.AspNetCore.Identity.SignInResult result =
 await signInManager.PasswordSignInAsync(user, details.Password, false, false);
...

The SignOutAsync method cancels any existing session that the user has, and the PasswordSignIn
method performs the authentication. The arguments for the PasswordSignInAsync method are the user

Chapter 29 ■ applying aSp.net Core identity

927

object, the password that the user has provided, a bool argument that controls whether the authentication
cookie is persistent (which I disabled) and whether the account should be locked out if the password is
correct (which I also disabled).

The result of the PasswordSignInAsync method is a SignInResult object, which defines a bool
Succeeded property that indicates if the authentication process has been successful.

In the example, I check the Succeeded property and redirect the user to the returnUrl location if it is
true and add a validation error and redisplay the Login view to the user so they can try again.

As part of the authentication process, Identity adds a cookie to the response, which the browser then
includes in any subsequent request and which is used to identify the user’s session and the account that is
associated with it. You don’t have to create or manage the cookie directly, as it is handled automatically by
the Identity middleware.

CONSIDERING TWO-FACTOR AUTHENTICATION

i have performed single-factor authentication in this chapter, which is where the user is able to
authenticate using a single piece of information known to them in advance: the password.

aSp.net Core identity also supports two-factor authentication, where the user needs something extra,
usually something that is given to the user at the moment they want to authenticate. the most common
examples are a value from a Secureid token or an authentication code that is sent as an e-mail or text
message (strictly speaking, the two factors can be anything, including fingerprints, iris scans, and voice
recognition, although these are options that are rarely required for most web applications).

Security is increased because an attacker needs to know the user’s password and have access to
whatever provides the second factor, such an e-mail account or cell phone.

i don’t show two-factor authentication in the book for two reasons. the first is that it requires a lot of
preparatory work, such as setting up the infrastructure that distributes the second-factor e-mails and
texts and implementing the validation logic, all of which is beyond the scope of this book.

the second reason is that two-factor authentication forces the user to remember to jump through an
additional hoop to authenticate, such as remembering their phone or keeping a security token nearby,
something that isn’t always appropriate for web applications. i carried a Secureid token of one sort or
another for more than a decade in various jobs, and i lost count of the number of times that i couldn’t
log in to an employer’s system because i left the token at home.

if you are interested in two-factor security, then i recommend relying on a third-party provider such as
google for authentication, which allows the user to choose whether they want the additional security
(and inconvenience) that two-factor authentication provides. i demonstrate third-party authentication in
Chapter 30.

Testing Authentication
To test user authentication, start the application and request the /Home/Index URL. When redirected to the /
Account/Login URL, enter the details of one of the users I listed at the start of the chapter (for instance, the
e-mail address joe@example.com and the password secret123). Click the Log In button, and your browser
will be redirected back to the /Home/Index URL, but this time it will submit the authentication cookie that
grants it access to the action method, as shown in Figure 29-4.

http://dx.doi.org/10.1007/978-1-4842-3150-0_30

Chapter 29 ■ applying aSp.net Core identity

928

Figure 29-4. Authenticating a user

 ■ Tip you can use the browser’s developer tools to see the cookies that are used to identify authenticated
requests.

Authorizing Users with Roles
In the previous section, the Authorize attribute was used in its most basic form, which allows any
authenticated user to execute the action method. It can also be used to refine authorization to give fine-
grained control over which users can perform which actions, based on a user’s membership of a role.

A role is just an arbitrary label that you define to represent permission to perform a set of activities
within an application. Almost every application differentiates between users who can perform
administration functions and those who cannot. In the world of roles, this is done by creating an
Administrators role and assigning users to it. Users can belong to many roles, and the permissions
associated with roles can be as coarse or as granular as you like, so you can use separate roles to differentiate
between administrators who can perform basic tasks, such as creating new accounts, and those who can
perform more sensitive operations, such as accessing payment data.

ASP.NET Core Identity takes responsibility for managing the set of roles defined in the application and
keeping track of which users are members of each one. But it has no knowledge of what each role means;
that information is contained within the MVC part of the application, where access to action methods is
restricted based on role membership.

ASP.NET Core Identity provides a strongly typed base class for accessing and managing roles called
RoleManager<T>, where T is the class that represents roles in the storage mechanism. Entity Framework Core
uses a class called IdentityRole to represent roles, which defines the properties described in Table 29-5.

Chapter 29 ■ applying aSp.net Core identity

929

You can create an application-specific role class if you want to extend the built-in functionality, which I
describe for user objects in Chapter 30, but I am going to use the IdentityRole class since it does everything
that most applications need. I already told ASP.NET Core Identity to use IdentityRole to represent roles
when I configured the application in Chapter 28, as this statement from the ConfigureServices method of
Startup class shows:

...
services.AddIdentity<AppUser, IdentityRole>(opts => {
 opts.User.RequireUniqueEmail = true;
 //opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz";
 opts.Password.RequiredLength = 6;
 opts.Password.RequireNonAlphanumeric = false;
 opts.Password.RequireLowercase = false;
 opts.Password.RequireUppercase = false;
 opts.Password.RequireDigit = false;
}).AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();
...

The type parameters for the AddIdentity method specify the classes that will be used to represent
users and roles. In the example application, the AppUser class is used to represent users, and the built-in
IdentityRole class is used for roles.

Creating and Deleting Roles
To demonstrate how roles are used, I am going to create an administration tool for managing them, starting by
creating action methods that can create and delete roles. I added a class file called RoleAdminController.cs to
the Controllers folder and used it to define the controller shown in Listing 29-6.

Listing 29-6. The Contents of the RoleAdminController.cs File in the Controllers Folder

using System.ComponentModel.DataAnnotations;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.AspNetCore.Mvc;

namespace Users.Controllers {

 public class RoleAdminController : Controller {
 private RoleManager<IdentityRole> roleManager;

Table 29-5. Selected IdentityRole Properties

Name Description

Id Defines the unique identifier for the role

Name Defines the name of the role

Users Returns a collection of IdentityUserRole objects that represent the members of the role

http://dx.doi.org/10.1007/978-1-4842-3150-0_30
http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 29 ■ applying aSp.net Core identity

930

 public RoleAdminController(RoleManager<IdentityRole> roleMgr) {
 roleManager = roleMgr;
 }

 public ViewResult Index() => View(roleManager.Roles);

 public IActionResult Create() => View();

 [HttpPost]
 public async Task<IActionResult> Create([Required]string name) {
 if (ModelState.IsValid) {
 IdentityResult result
 = await roleManager.CreateAsync(new IdentityRole(name));
 if (result.Succeeded) {
 return RedirectToAction("Index");
 } else {
 AddErrorsFromResult(result);
 }
 }
 return View(name);
 }

 [HttpPost]
 public async Task<IActionResult> Delete(string id) {
 IdentityRole role = await roleManager.FindByIdAsync(id);
 if (role != null) {
 IdentityResult result = await roleManager.DeleteAsync(role);
 if (result.Succeeded) {
 return RedirectToAction("Index");
 } else {
 AddErrorsFromResult(result);
 }
 } else {
 ModelState.AddModelError("", "No role found");
 }
 return View("Index", roleManager.Roles);
 }

 private void AddErrorsFromResult(IdentityResult result) {
 foreach (IdentityError error in result.Errors) {
 ModelState.AddModelError("", error.Description);
 }
 }
 }
}

Roles are managed using the RoleManager<T> class, where T is the type being used to represent roles
(the built-in IdentityRole class for this application). The RoleAdminController constructor declares a
constructor dependency on RoleManager<IdentityRole>, which is resolved using dependency injection
when the controller is created.

Chapter 29 ■ applying aSp.net Core identity

931

The RoleManager<T> class defines the methods and properties shown in Table 29-6, which allow roles
to be created and managed.

Table 29-6. The Members Defined by the RoleManager<T> Class

Name Description

CreateAsync(role) Creates a new role

DeleteAsync(role) Deletes the specified role

FindByIdAsync(id) Finds a role by its ID

FindByNameAsync(name) Finds a role by its name

RoleExistsAsync(name) Returns true if a role with the specified name exists

UpdateAsync(role) Stores changes to the specified role

Roles Returns an enumeration of the roles that have been defined

The new controller’s Index action method displays all the roles in the application. The Create action
methods are used to display and receive a form, the data from which is used to create a new role using the
CreateAsync method. The Delete action method receives a POST request and receives the unique ID of a
role, which is used to remove it from the application using the DeleteAsync method, having located the
object that represents it using the FindByIdAsync method.

Creating the Views
To display details of the roles in the application, I created the Views/RoleAdmin folder and added the
Index.cshtml file with the markup shown in Listing 29-7.

Listing 29-7. The Contents of the Index.cshtml File in the Views/RoleAdmin Folder

@model IEnumerable<IdentityRole>

<div class="bg-primary m-1 p-1"><h4>Roles</h4></div>

<div class="text-danger" asp-validation-summary="ModelOnly"></div>

<table class="table table-sm table-bordered table-bordered">
 <tr><th>ID</th><th>Name</th><th>Users</th><th></th></tr>
 @if (Model.Count() == 0) {
 <tr><td colspan="4" class="text-center">No Roles</td></tr>
 } else {
 foreach (var role in Model) {
 <tr>
 <td>@role.Id</td>
 <td>@role.Name</td>
 <td identity-role="@role.Id"></td>
 <td>
 <form asp-action="Delete" asp-route-id="@role.Id" method="post">
 <a class="btn btn-sm btn-primary" asp-action="Edit"
 asp-route-id="@role.Id">Edit

Chapter 29 ■ applying aSp.net Core identity

932

 <button type="submit"
 class="btn btn-sm btn-danger">
 Delete
 </button>
 </form>
 </td>
 </tr>
 }
 }
</table>
Create

This view uses a table to display details of the roles in the application. The third column uses a custom
element attribute, like this:

...
<td identity-role="@role.Id"></td>
...

I want to display a list of the users who are members of each role, which requires too much code to
be included in a view. To keep the view simple, I added a class file called RoleUsersTagHelper.cs to the
Infrastructure folder and used it to define the tag helper shown in Listing 29-8.

Listing 29-8. The Contents of the RoleUsersTagHelper.cs File in the Infrastructure Folder

using System.Collections.Generic;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.AspNetCore.Razor.TagHelpers;
using Users.Models;

namespace Users.Infrastructure {

 [HtmlTargetElement("td", Attributes = "identity-role")]
 public class RoleUsersTagHelper : TagHelper {
 private UserManager<AppUser> userManager;
 private RoleManager<IdentityRole> roleManager;

 public RoleUsersTagHelper(UserManager<AppUser> usermgr,
 RoleManager<IdentityRole> rolemgr) {
 userManager = usermgr;
 roleManager = rolemgr;
 }

 [HtmlAttributeName("identity-role")]
 public string Role { get; set; }

 public override async Task ProcessAsync(TagHelperContext context,
 TagHelperOutput output) {

 List<string> names = new List<string>();

Chapter 29 ■ applying aSp.net Core identity

933

 IdentityRole role = await roleManager.FindByIdAsync(Role);
 if (role != null) {
 foreach (var user in userManager.Users) {
 if (user != null
 && await userManager.IsInRoleAsync(user, role.Name)) {
 names.Add(user.UserName);
 }
 }
 }

 output.Content.SetContent(names.Count == 0 ?
 "No Users" : string.Join(", ", names));
 }
 }
}

This tag helper operates on td elements with an identity-role attribute, which is used to receive the
name of the role that is being processed. The RoleManager<IdentityRole> and UserManager<AppUser>
objects allow queries of the Identity database to build up a list of usernames in the role. In Listing 29-9, I
have added the tag helper to the view imports file and added an @using expression so that I can refer to the
EF Core types in the views without using a namespace.

Listing 29-9. Adding a Tag Helper in the _ViewImports.cshtml File in the Views Folder

@using Users.Models
@using Microsoft.AspNetCore.Identity
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers
@addTagHelper Users.Infrastructure.*, Users

Next, I added a view called Create.cshtml to the Views/RoleAdmin folder and added the markup shown
in Listing 29-10 to support adding new roles.

Listing 29-10. The Contents of the Create.cshtml File in the Views/RoleAdmin Folder

@model string

<div class="bg-primary m-1 p-1"><h4>Create Role</h4></div>

<div asp-validation-summary="All" class="text-danger"></div>

<form asp-action="Create" method="post">
 <div class="form-group">
 <label for="name"></label>
 <input name="name" class="form-control" />
 </div>
 <button type="submit" class="btn btn-primary">Create</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
</form>

Chapter 29 ■ applying aSp.net Core identity

934

The only form data I need to create a role is the name, which is why I am able to use a string as the
view model class in the Create.cshtml view. I want to take advantage of model validation to ensure that the
user supplies a value when the form is submitted, but it isn’t worth creating a dedicated model class for such
a simple task. Instead, if you look at the Create method that accepts POST requests in Listing 29-6, you will
see that I have applied the Required validation attribute directly to the parameter. This has the same effect
as applying the attribute in a model class and allows me to take advantage of the built-in model validation
process.

Testing, Creating, and Deleting Roles
To test the new controller, start the application and navigate to the /RoleAdmin URL. Click the Create button,
enter a name in the input element, and click the second Create button. The new role will be saved to the
database and displayed when the browser is redirected to the Index action, as shown in Figure 29-5. You can
remove the role from the application by clicking the Delete button.

Figure 29-5. Creating a new role

Managing Role Memberships
The next step is to be able to add and remove users from roles. This isn’t a complicated process, but it
invokes taking the role data from the RoleManager class and associating it with the details of individual users.

I started by defining some view model classes that will represent the membership of a role and receive
a new set of membership instructions from the user. Listing 29-11 shows the additions I made to the
UserViewModels.cs file in the Models folder.

Listing 29-11. Adding View Models to the UserViewModels.cs File

using System.ComponentModel.DataAnnotations;
using System.Collections.Generic;
using Microsoft.AspNetCore.Identity;

namespace Users.Models {

Chapter 29 ■ applying aSp.net Core identity

935

 public class CreateModel {
 [Required]
 public string Name { get; set; }
 [Required]
 public string Email { get; set; }
 [Required]
 public string Password { get; set; }
 }

 public class LoginModel {
 [Required]
 [UIHint("email")]
 public string Email { get; set; }
 [Required]
 [UIHint("password")]
 public string Password { get; set; }
 }

 public class RoleEditModel {
 public IdentityRole Role { get; set; }
 public IEnumerable<AppUser> Members { get; set; }
 public IEnumerable<AppUser> NonMembers { get; set; }
 }

 public class RoleModificationModel {
 [Required]
 public string RoleName { get; set; }
 public string RoleId { get; set; }
 public string[] IdsToAdd { get; set; }
 public string[] IdsToDelete { get; set; }
 }
}

The RoleEditModel class represents a role and details of the users in the system, categorized by whether
they are members of the role. The RoleModificationModel class represents a set of changes to a role.

Listing 29-12 shows the addition of new action methods in the RoleAdmin controller that use the view
models from Listing 29-11 to manage role memberships.

Listing 29-12. Adding Action Methods in the RoleAdminController.cs File in the Controllers Folder

using System.ComponentModel.DataAnnotations;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using Users.Models;
using System.Collections.Generic;

namespace Users.Controllers {

 public class RoleAdminController : Controller {
 private RoleManager<IdentityRole> roleManager;
 private UserManager<AppUser> userManager;

Chapter 29 ■ applying aSp.net Core identity

936

 public RoleAdminController(RoleManager<IdentityRole> roleMgr,
 UserManager<AppUser> userMrg) {
 roleManager = roleMgr;
 userManager = userMrg;
 }

 // ...other action methods omitted for brevity...

 public async Task<IActionResult> Edit(string id) {

 IdentityRole role = await roleManager.FindByIdAsync(id);
 List<AppUser> members = new List<AppUser>();
 List<AppUser> nonMembers = new List<AppUser>();
 foreach (AppUser user in userManager.Users) {
 var list = await userManager.IsInRoleAsync(user, role.Name)
 ? members : nonMembers;
 list.Add(user);
 }
 return View(new RoleEditModel {
 Role = role,
 Members = members,
 NonMembers = nonMembers
 });
 }

 [HttpPost]
 public async Task<IActionResult> Edit(RoleModificationModel model) {
 IdentityResult result;
 if (ModelState.IsValid) {
 foreach (string userId in model.IdsToAdd ?? new string[] { }) {
 AppUser user = await userManager.FindByIdAsync(userId);
 if (user != null) {
 result = await userManager.AddToRoleAsync(user,
 model.RoleName);
 if (!result.Succeeded) {
 AddErrorsFromResult(result);
 }
 }
 }
 foreach (string userId in model.IdsToDelete ?? new string[] { }) {
 AppUser user = await userManager.FindByIdAsync(userId);
 if (user != null) {
 result = await userManager.RemoveFromRoleAsync(user,
 model.RoleName);
 if (!result.Succeeded) {
 AddErrorsFromResult(result);
 }
 }
 }
 }

Chapter 29 ■ applying aSp.net Core identity

937

 if (ModelState.IsValid) {
 return RedirectToAction(nameof(Index));
 } else {
 return await Edit(model.RoleId);
 }
 }

 private void AddErrorsFromResult(IdentityResult result) {
 foreach (IdentityError error in result.Errors) {
 ModelState.AddModelError("", error.Description);
 }
 }
 }
}

Most of the code in the GET version of the Edit action method is responsible for generating the sets of
members and nonmembers of the selected role. Once all the users have been categorized, a new instance
of the RoleEditModel class is passed to the View method so that the data can be displayed using the default
view.

The POST version of the Edit method is responsible for adding and removing users to and from roles.
The UserManager<T> class provides methods for working with roles, which I have described in Table 29-7.

Table 29-7. The Role-Related Methods Defined by the UserManager<T> Class

Name Description

AddToRoleAsync(user, name) Adds the user ID to the role with the specified name

GetRolesAsync(user) Returns a list of the names of the roles of which the user is a member

IsInRoleAsync(user, name) Returns true if the user is a member of the role with the specified name

RemoveFromRoleAsync(user, name) Removes the user as a member from the role with the specified name

An oddity of these methods is that the role-related methods operate on role names, even though roles
also have unique identifiers. It is for this reason that my RoleModificationModel view model class has a
RoleName property.

Listing 29-13 shows the contents of the Edit.cshtml file, which I added to the Views/RoleAdmin folder
and used to define the markup that allows the user to edit role memberships.

Listing 29-13. The Contents of the Edit.cshtml File in the Views/RoleAdmin Folder

@model RoleEditModel

<div class="bg-primary m-1 p-1 text-white"><h4>Edit Role</h4></div>

<div asp-validation-summary="All" class="text-danger"></div>

<form asp-action="Edit" method="post">

Chapter 29 ■ applying aSp.net Core identity

938

 <input type="hidden" name="roleName" value="@Model.Role.Name" />
 <input type="hidden" name="roleId" value="@Model.Role.Id" />

 <h6 class="bg-info p-1 text-white">Add To @Model.Role.Name</h6>
 <table class="table table-bordered table-sm">
 @if (Model.NonMembers.Count() == 0) {
 <tr><td colspan="2">All Users Are Members</td></tr>
 } else {
 @foreach (AppUser user in Model.NonMembers) {
 <tr>
 <td>@user.UserName</td>
 <td>
 <input type="checkbox" name="IdsToAdd" value="@user.Id">
 </td>
 </tr>
 }
 }
 </table>

 <h6 class="bg-info p-1 text-white">Remove From @Model.Role.Name</h6>
 <table class="table table-bordered table-sm">
 @if (Model.Members.Count() == 0) {
 <tr><td colspan="2">No Users Are Members</td></tr>
 } else {
 @foreach (AppUser user in Model.Members) {
 <tr>
 <td>@user.UserName</td>
 <td>
 <input type="checkbox" name="IdsToDelete" value="@user.Id">
 </td>
 </tr>
 }
 }
 </table>
 <button type="submit" class="btn btn-primary">Save</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
</form>

The view contains two tables: one for users who are not members of the selected role and one for
those who are. Each user’s name is displayed along with a check box that allows the membership to be
changed. The tables are contained in a form that is sent to the Edit action method and model bound to the
RoleModificationModel class, providing easy access to the list of role membership changes to be made.

Testing and Editing Role Membership
To test the role membership feature, start the application, navigate to the /RoleAdmin URL, and create a new
role called Users if you need to. Click the Edit button and you will see the users in the application are shown
in the list of nonmembers, as shown in Figure 29-6.

Chapter 29 ■ applying aSp.net Core identity

939

Check the box to add Alice and Joe (two of the accounts added to the Identity system at the start of the
chapter) and click the Save button. In the list of roles, you will now see Alice and Joe in the list of members,
as shown in Figure 29-7.

Figure 29-6. Displaying and editing role membership

Figure 29-7. Managing role membership

Chapter 29 ■ applying aSp.net Core identity

940

Using Roles for Authorization
Now that the application has roles, they can be used as the basis for authorization through the Authorize
attribute. To make it easier to test role-based authorization, I have added a Logout method to the Account
controller, as shown in Listing 29-14, which will make it possible to log out and log in again as a different user
to see the effect of role membership.

Listing 29-14. Adding a Logout Method to the AccountController.cs File om the Controllers Folder

using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Users.Models;
using Microsoft.AspNetCore.Identity;

namespace Users.Controllers {

 [Authorize]
 public class AccountController : Controller {
 private UserManager<AppUser> userManager;
 private SignInManager<AppUser> signInManager;

 // ...other action methods omitted for brevity...

 [Authorize]
 public async Task<IActionResult> Logout() {
 await signInManager.SignOutAsync();
 return RedirectToAction("Index", "Home");
 }
 }
}

The next step is to update the Home controller to add a new action method and pass some information
about the authenticated user to the view, as shown in Listing 29-15.

Listing 29-15. Enhancements to the HomeController.cs File in the Controllers Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Authorization;

namespace Users.Controllers {

 public class HomeController : Controller {

 [Authorize]
 public IActionResult Index() => View(GetData(nameof(Index)));

 [Authorize(Roles = "Users")]
 public IActionResult OtherAction() => View("Index",
 GetData(nameof(OtherAction)));

Chapter 29 ■ applying aSp.net Core identity

941

 private Dictionary<string, object> GetData(string actionName) =>
 new Dictionary<string, object> {
 ["Action"] = actionName,
 ["User"] = HttpContext.User.Identity.Name,
 ["Authenticated"] = HttpContext.User.Identity.IsAuthenticated,
 ["Auth Type"] = HttpContext.User.Identity.AuthenticationType,
 ["In Users Role"] = HttpContext.User.IsInRole("Users")
 };
 }
}

The Authorize attribute unchanged for the Index action method, but I have set the Roles property
when applying the attribute to the OtherAction method, specifying that only members of the Users role
should be able to access it. I also defined a GetData method, which adds some basic information about the
user identity, using the properties available through the HttpContext object.

 ■ Tip the Authorize attribute can also be used to authorize access based on a list of individual usernames.
this is an appealing feature for small projects, but it means you have to change the code in your controllers
each time the set of users you are authorizing changes, and that usually means having to go through the test-
and-deploy cycle again. Using roles for authorization isolates the application from changes in individual user
accounts and allows you to control access to the application through the memberships stored by aSp.net Core
identity.

The final change is to the Index.cshtml file in the Views/Home folder, which is used by both actions
in the Home controller, to add a link that targets the Logout method in the Account controller, as shown in
Listing 29-16.

Listing 29-16. Adding a Sign-Out Link to the Index.cshtml File in the Views/Home Folder

@model Dictionary<string, object>

<div class="bg-primary m-1 p-1 text-white"><h4>User Details</h4></div>

<table class="table table-sm table-bordered m-1 p-1">
 @foreach (var kvp in Model) {
 <tr><th>@kvp.Key</th><td>@kvp.Value</td></tr>
 }
</table>

@if (User?.Identity?.IsAuthenticated ?? false) {
 <a asp-controller="Account" asp-action="Logout"
 class="btn btn-danger">Logout
}

To test the authentication, start the application and navigate to the /Home/Index URL. Your browser will
be redirected so that you can enter user credentials. It doesn’t matter which of the user details from Table 29-2
you choose to authenticate with because the Authorize attribute applied to the Index action allows access to
any authenticated user.

Chapter 29 ■ applying aSp.net Core identity

942

However, if you now request the /Home/OtherAction URL, the user details you chose from Table 29-2 will
make a difference because only Alice and Joe are members of the Users role, which is required to access the
OtherAction method. If you log in as Bob, then your browser will be redirected to the /Account/AccessDenied
URL, which is used when a user is unable to access an action method. To handle this situation, I have added
an AccessDenied method to the Account controller so that there is an action to handle the request, as shown in
Listing 29-17.

 ■ Tip you can change the /Account/AccessDenied Url by setting the AccessDeniedPath configuration
property. See the “Changing the login Url” sidebar earlier in the chapter for a similar example.

Listing 29-17. Adding an Action Method in the AccountController.cs File

using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Users.Models;
using Microsoft.AspNetCore.Identity;

namespace Users.Controllers {

 [Authorize]
 public class AccountController : Controller {
 private UserManager<AppUser> userManager;
 private SignInManager<AppUser> signInManager;

 public AccountController(UserManager<AppUser> userMgr,
 SignInManager<AppUser> signinMgr) {
 userManager = userMgr;
 signInManager = signinMgr;
 }

 // ...other action methods omitted for brevity...

 [AllowAnonymous]
 public IActionResult AccessDenied() {
 return View();
 }
 }
}

To provide the AccessDenied action with a view to display, I created a file called AccessDenied.cshtml
in the Views/Account folder and added the content shown in Listing 29-18.

Listing 29-18. The Contents of the AccessDenied.cshtml File in the Views/Account Folder

<div class="bg-danger mb-1 p-2 text-white"><h4>Access Denied</h4></div>
<a asp-action="Index" asp-controller="Home" class="btn btn-primary">OK

Start the application, request the /Account/Login URL, and authenticate as bob@example.com. When
the authentication process is complete, the browser will be redirected to the /Home/Index URL, which

Chapter 29 ■ applying aSp.net Core identity

943

displays details of the account, as shown in the left screenshot in Figure 29-8, and which makes it clear that
Bob is not a member of the Users role. Now request the /Home/OtherAction URL, which targets the action
that has been protected with role-based access. Bob doesn’t have the required role membership, and the
browser is redirected to the /Account/AccessDenied URL, as shown in the right screenshot in Figure 29-8.

 ■ Tip roles are loaded when the user logs in, which means if you change the roles for the user you are
currently authenticated as, the changes won’t take effect until you log out and authenticate.

Figure 29-8. Using role-based authorization

Seeding the Database
One lingering problem in my example project is that access to my Admin and RoleAdmin controllers is not
restricted. This is a classic chicken-and-egg problem because, in order to restrict access, I need to create
users and roles, but the Admin and RoleAdmin controllers are the user management tools, and if I protect
them with the Authorize attribute, there won’t be any credentials that will grant me access to them,
especially when I first deploy the application.

The solution to this problem is to seed the database with some initial data when the application starts.
In Listing 29-19, I have added some new configuration data to the appsettings.json file to specify the
details for the account that will be created.

Listing 29-19. Adding Configuration Data to the appsettings.json File

{
 "Data": {
 "AdminUser": {
 "Name": "Admin",
 "Email": "admin@example.com",
 "Password": "secret",
 "Role": "Admins"
 },

Chapter 29 ■ applying aSp.net Core identity

944

 "SportStoreIdentity": {
 "ConnectionString": "Server=(localdb)\\MSSQLLocalDB;Database=IdentityUsers;Trusted_Con
nection=True;MultipleActiveResultSets=true"
 }
 }
}

The Data:AdminUser category provides the four values that I need to create an account and assign it to a
role that will be able to use the administration tools.

 ■ Caution putting passwords in plain-text configuration files means that you must make it part of your
deployment process to change the default account’s password when you deploy the application and initialize a
new database for the first time.

Next, I added a static method to the AppIdentityDbContext class, as shown in Listing 29-20. The
code to create the default account doesn’t have to go in this class, but this is the location that feels natural
to me and the one I use in my own projects. You can also use a separate class, which is what I did for the
SportsStore application.

Listing 29-20. Adding a Method in the AppIdentityDbContext.cs File in the Models Folder

using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Identity.EntityFrameworkCore;
using Microsoft.EntityFrameworkCore;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.DependencyInjection;
using System;
using System.Threading.Tasks;

namespace Users.Models {

 public class AppIdentityDbContext : IdentityDbContext<AppUser> {

 public AppIdentityDbContext(DbContextOptions<AppIdentityDbContext> options)
 : base(options) { }

 public static async Task CreateAdminAccount(IServiceProvider serviceProvider,
 IConfiguration configuration) {

 UserManager<AppUser> userManager =
 serviceProvider.GetRequiredService<UserManager<AppUser>>();
 RoleManager<IdentityRole> roleManager =
 serviceProvider.GetRequiredService<RoleManager<IdentityRole>>();

 string username = configuration["Data:AdminUser:Name"];
 string email = configuration["Data:AdminUser:Email"];
 string password = configuration["Data:AdminUser:Password"];
 string role = configuration["Data:AdminUser:Role"];

Chapter 29 ■ applying aSp.net Core identity

945

 if (await userManager.FindByNameAsync(username) == null) {
 if (await roleManager.FindByNameAsync(role) == null) {
 await roleManager.CreateAsync(new IdentityRole(role));
 }

 AppUser user = new AppUser {
 UserName = username,
 Email = email
 };

 IdentityResult result = await userManager
 .CreateAsync(user, password);
 if (result.Succeeded) {
 await userManager.AddToRoleAsync(user, role);
 }
 }
 }
 }
}

The CreateAdminAccount method receives an IServiceProvider object, which it uses to obtain the
UserManager and RoleManager objects, and an IConfiguration object, which it uses to get the data from the
appsetting.json file. The code in the CreateAdminAccount method checks to see whether the user already
exists and, if not, creates it and assigns it to the specified role, which is also created if needed. In Listing 29-21,
I have added a statement to the Startup class that calls the CreateAdminAccount method after the rest of the
application has been set up and configured.

Listing 29-21. Calling the Database Method in the Startup.cs File in the Users Folder

...
public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UseMvcWithDefaultRoute();
 AppIdentityDbContext.CreateAdminAccount(app.ApplicationServices,
 Configuration).Wait();
}
...

Because I am accessing a scoped service via the IApplicationBuilder.ApplicationServices provider,
I must also disable the dependency injection scope validation feature in the Program class, as shown in
Listing 29-22.

Listing 29-22. Disabling Scope Validation in the Program.cs File in the Users Folder

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Threading.Tasks;

Chapter 29 ■ applying aSp.net Core identity

946

using Microsoft.AspNetCore;
using Microsoft.AspNetCore.Hosting;
using Microsoft.Extensions.Configuration;
using Microsoft.Extensions.Logging;

namespace Users {
 public class Program {
 public static void Main(string[] args) {
 BuildWebHost(args).Run();
 }

 public static IWebHost BuildWebHost(string[] args) =>
 WebHost.CreateDefaultBuilder(args)
 .UseStartup<Startup>()
 .UseDefaultServiceProvider(options =>
 options.ValidateScopes = false)
 .Build();
 }
}

Now that there is a reliable default account in the Identity database, I can use the Authorize attribute to
protect the Admin and RoleAdmin controllers. Listing 29-23 shows the changes to the Admin controller.

Listing 29-23. Restricting Access in the AdminController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using Users.Models;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;

namespace Users.Controllers {

 [Authorize(Roles = "Admins")]
 public class AdminController : Controller {

 // ...statements omitted for brevity...
 }
}

Listing 29-24 shows the corresponding change I made to the RoleAdmin controller.

Listing 29-24. Restricting Access in the RoleAdminController.cs File in the Controllers Folder

using System.ComponentModel.DataAnnotations;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Identity;
using Microsoft.AspNetCore.Mvc;
using Users.Models;
using System.Collections.Generic;
using Microsoft.AspNetCore.Authorization;

namespace Users.Controllers {

Chapter 29 ■ applying aSp.net Core identity

947

 [Authorize(Roles = "Admins")]
 public class RoleAdminController : Controller {
 // ...statements omitted for brevity...
 }
}

Start the application and request the /Admin or /RoleAdmin URL. If you have already logged in as one
of the other users, you will have to log out. Otherwise, you will be prompted for credentials, and you can
authenticate as admin@example.com with the password secret to access the administration features.

Summary
In this chapter, I showed you how to use ASP.NET Core Identity to authenticate and authorize users. I
explained how to collect and validate credentials users and how to restrict access to action methods based
on the roles that a user is a member of. In the next chapter, I demonstrate some of the advanced features that
ASP.NET Core Identity provides.

949© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_30

CHAPTER 30

Advanced ASP.NET Core Identity

In this chapter, I finish my description of ASP.NET Core Identity by showing you some of the advanced
features it offers. I demonstrate how you can extend the database schema by defining custom properties on
the user class and how to use database migrations to apply those properties without deleting the data in the
ASP.NET Core Identity database. I also explain how ASP.NET Core Identity supports the concept of claims
and demonstrate how they can be used to flexibly authorize access to action methods through policies.
I finish the chapter by showing you how ASP.NET Core Identity makes it easy to authenticate users through
third parties. I demonstrate authentication with Google accounts, but ASP.NET Core Identity has built-in
support for Microsoft, Facebook, and Twitter accounts as well. Table 30-1 summarizes this chapter.

Table 30-1. Chapter Summary

Problem Solution Listing

Store custom data for users Add properties to the user class and update the
Identity database

1–3

Perform granular authorization Use claims 4–7

Create custom claims Use claims transformation 8, 9

Use claims data to assess user access Create policies 10–14

Use policies to access resources Assess policies within action methods 15–20

Allow third parties to perform
authentication

Accept claims from authentication providers such
as Microsoft, Google, and Facebook

21–24

Preparing the Example Project
In this chapter, I am going to continue working on the Users project I created in Chapter 28 and enhanced
in Chapter 29. Start the application and make sure that there are users in the database. Figure 30-1 shows
the state of my database, which contains the users Admin, Alice, Bob, and Joe from the previous chapter. To
check the users, start the application, request the /Admin URL, and authenticate as the Admin user, using the
e-mail address admin@example.com and the password secret.

https://doi.org/10.1007/978-1-4842-3150-0_30
http://dx.doi.org/10.1007/978-1-4842-3150-0_28
http://dx.doi.org/10.1007/978-1-4842-3150-0_29

Chapter 30 ■ advanCed aSp.net Core IdentIty

950

I also need some roles for this chapter. Navigate to the /RoleAdmin URL, create roles called Users and
Employees, and assign users to those roles, as described in Table 30-2.

Figure 30-1. The initial users in the Identity database

Table 30-2. The Roles and Members Required for the Example Application

Role Members

Users Alice, Joe

Employees Alice, Bob

Figure 30-2. Configuring the roles required for this chapter

Figure 30-2 shows the required role configuration displayed by the RoleAdmin controller.

Chapter 30 ■ advanCed aSp.net Core IdentIty

951

Adding Custom User Properties
When I created the AppUser class to represent users in Chapter 28, I explained that the base class defined a
basic set of properties to describe the user, such as e-mail address and telephone number.

Most applications need to store more information about users, including persistent application
preferences and details such as addresses—in short, any data that is useful for running the application and
that should last between sessions. Because the ASP.NET Core Identity system uses Entity Framework Core to
store its data by default, defining additional user information means adding properties to the user class and
letting EF Core create the database schema required to store them.

Listing 30-1 shows how I added two simple properties to the AppUser class to represent the city in which
the user lives and their qualification level.

Listing 30-1. Adding a Property in the AppUser.cs File in the Models Folder

using Microsoft.AspNetCore.Identity;

namespace Users.Models {

 public enum Cities {
 None, London, Paris, Chicago
 }

 public enum QualificationLevels {
 None, Basic, Advanced
 }

 public class AppUser : IdentityUser {
 public Cities City { get; set; }
 public QualificationLevels Qualifications { get; set; }
 }
}

The enumerations called Cities and QualificationLevels define values for some cities and different
levels of qualification. These enumerations are used by the City and Qualification properties added to the
AppUser class.

The actions added to the Home controller in Listing 30-2 allow the user to view and edit their City and
Qualification properties.

Listing 30-2. Adding Support for Custom Properties in the HomeController.cs File in the Controllers Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Authorization;
using Users.Models;
using Microsoft.AspNetCore.Identity;
using System.Threading.Tasks;
using System.ComponentModel.DataAnnotations;

namespace Users.Controllers {

http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 30 ■ advanCed aSp.net Core IdentIty

952

 public class HomeController : Controller {
 private UserManager<AppUser> userManager;

 public HomeController(UserManager<AppUser> userMgr) {
 userManager = userMgr;
 }

 [Authorize]
 public IActionResult Index() => View(GetData(nameof(Index)));

 [Authorize(Roles = "Users")]
 public IActionResult OtherAction() => View("Index",
 GetData(nameof(OtherAction)));

 private Dictionary<string, object> GetData(string actionName) =>
 new Dictionary<string, object> {
 ["Action"] = actionName,
 ["User"] = HttpContext.User.Identity.Name,
 ["Authenticated"] = HttpContext.User.Identity.IsAuthenticated,
 ["Auth Type"] = HttpContext.User.Identity.AuthenticationType,
 ["In Users Role"] = HttpContext.User.IsInRole("Users"),
 ["City"] = CurrentUser.Result.City,
 ["Qualification"] = CurrentUser.Result.Qualifications
 };

 [Authorize]
 public async Task<IActionResult> UserProps() {
 return View(await CurrentUser);
 }

 [Authorize]
 [HttpPost]
 public async Task<IActionResult> UserProps(
 [Required]Cities city,
 [Required]QualificationLevels qualifications) {
 if (ModelState.IsValid) {
 AppUser user = await CurrentUser;
 user.City = city;
 user.Qualifications = qualifications;
 await userManager.UpdateAsync(user);
 return RedirectToAction("Index");
 }
 return View(await CurrentUser);
 }

 private Task<AppUser> CurrentUser =>
 userManager.FindByNameAsync(HttpContext.User.Identity.Name);
 }
}

Chapter 30 ■ advanCed aSp.net Core IdentIty

953

The new CurrentUser property uses the UserManager<AppUser> class to retrieve an AppUser instance
to represent the current user. The AppUser object is used as the view model object in the GET version
of the UserProps action method, and the POST method uses it to update the value of the new City and
QualificationLevel properties.

The GetData method has been updated so that the dictionary it returns contains the values of the
custom properties for the current user, which mean that the values of these properties will be seen in the
views displayed by the Index and OtherAction action methods.

To provide the UserProps action methods with a view, I added a view called UserProps.cshtml to the
Views/Home folder and added the markup shown in Listing 30-3.

Listing 30-3. The Contents of the UserProps.cshtml File in the Views/Home Folder

@model AppUser

<div class="bg-primary m-1 p-1 text-white"><h4>@Model.UserName</h4></div>

<div asp-validation-summary="All" class="text-danger"></div>

<form asp-action="UserProps" method="post">
 <div class="form-group">
 <label asp-for="City"></label>
 <select asp-for="City" class="form-control"
 asp-items="@new SelectList(Enum.GetNames(typeof(Cities)))">
 <option disabled selected value="">Select a City</option>
 </select>
 </div>
 <div class="form-group">
 <label asp-for="Qualifications"></label>
 <select asp-for="Qualifications" class="form-control"
 asp-items="@new SelectList(Enum.GetNames(typeof(QualificationLevels)))">
 <option disabled selected value="">Select a City</option>
 </select>
 </div>

 <button type="submit" class="btn btn-primary">Submit</button>
 <a asp-action="Index" class="btn btn-secondary">Cancel
</form>

The view contains a form with select elements that are populated with the values from the
enumerations defined in Listing 30-1. When the form is submitted, the AppUser object that represents the
current user is retrieved from Identity, and the values of the custom properties are updated using the values
selected by the user, like this:

...
AppUser user = await CurrentUser;
user.City = city;
user.Qualifications = qualifications;
await userManager.UpdateAsync(user);
return RedirectToAction("Index");
...

Chapter 30 ■ advanCed aSp.net Core IdentIty

954

Notice that I have to explicitly tell the user manager to update the database record for the user to
reflect the changes by calling the UpdateAsync method. I have not had to do this previously because the
UpdateAsync method has been called for me within the methods that I have used to make Identity changes,
but when you change properties directly, you are responsible for telling the user manager to perform an
update.

Preparing for Database Migration
All of the application plumbing to support the new properties is in place, and all that remains is to update
the database so that its tables will store the custom property values.

Entity Framework Core doesn’t have integrated support for working with seed data, and care must be
taken when creating migrations to disable seeding, as shown in Listing 30-4; otherwise, the new properties
added to the model class in Listing 30-1 will cause an error. The seeding statement can be enabled again
once the database migration has been created and applied.

Listing 30-4. Disabling Database Seeding in the Startup.cs File in the Users Folder

...
public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UseMvcWithDefaultRoute();
 // AppIdentityDbContext.CreateAdminAccount(app.ApplicationServices,
 // Configuration).Wait();
}
...

With the seeding disabled, the next step is to create a new database migration, which will contain the
SQL commands required to update the database schema. Use a command prompt or PowerShell window to
run the following command in the Users project folder:

dotnet ef migrations add CustomProperties

When this command has finished, you will see a new file in the Migrations folder whose name
contains CustomProperties. The exact name contains a numeric ID, but if you open this file, you can see a
C# class that contains a method called Up, which performs the SQL commands required to add support for
the custom properties to the database. There is also a method, called Down, that executes commands that
downgrade the database to its previous schema.

The next step is to migrate the database to the new schema, which is done by running the following
command:

dotnet ef database update

When the command has completed, the table in the database that stores user data will contain new
columns that represent the custom properties.

Chapter 30 ■ advanCed aSp.net Core IdentIty

955

 ■ Caution Be careful when performing database migrations on production databases that contain real user
data. It is easy to create a migration that drops columns or entire tables, which can have a devastating effect.
Make sure that you test the effect of database migrations thoroughly and make sure you have a backup of
critical data in case things go wrong.

Testing the Custom Properties
To test the effect of the migration, start the application and authenticate as one of the Identity users (by
using, for example, the e-mail alice@example.com and the password secret123). Once authenticated, you
will see the default values for the City and QualificationLevel properties. The properties can be changed
by requesting the /Home/UserProps URL, selecting new values, and clicking the Submit button, which will
update the database and redirect the browser back to the /Home URL, which will display the new values, as
shown in Figure 30-3.

Figure 30-3. Using custom user properties

Working with Claims and Policies
In older user-management systems, such as ASP.NET Membership, which was the predecessor to ASP.NET
Core Identity, the application was assumed to be the authoritative source of all information about the user,
essentially treating the application as a closed world and trusting the data contained within it.

This is such an ingrained approach to software development that it can be hard to recognize that’s what
is happening, but you saw an example of the closed-world technique in Chapter 29 when I authenticated
users against the credentials stored in the database and granted access based on the roles associated with
those credentials. I did the same thing again in this chapter when I added properties to the user class. Every
piece of information that I needed to manage user authentication and authorization came from within
my application—and that is a perfectly satisfactory approach for many web applications, which is why I
demonstrated these techniques in such depth.

ASP.NET Core Identity also supports an alternative approach for dealing with users, which works
well when the MVC application isn’t the sole source of information about users and which can be used to
authorize users in more flexible and fluid ways than traditional roles allow. This alternative approach uses
claims, and in this section, I’ll describe how ASP.NET Core Identity supports claims-based authorization.

http://dx.doi.org/10.1007/978-1-4842-3150-0_29

Chapter 30 ■ advanCed aSp.net Core IdentIty

956

 ■ Tip you don’t have to use claims in your applications, and as Chapter 29 showed, aSp.net Core Identity
is perfectly happy providing an application with authentication and authorization services without any need to
understand claims at all.

Understanding Claims
A claim is a piece of information about the user, along with some information about where the information
came from. The easiest way to unpack claims is through some practical demonstrations, without
which any discussion becomes too abstract to be truly useful. To get started, I added a class file called
ClaimsController.cs to the Controllers folder and used it to define the controller shown in Listing 30-5.

 ■ Tip you may feel a little lost as I define the code and describe the classes for this example. don’t worry
about the details for the moment—just stick with it until you see the output from the action method and view
that I define. More than anything else, that will help put claims into perspective.

Listing 30-5. The Contents of the ClaimsController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;

namespace Users.Controllers {

 public class ClaimsController : Controller {

 [Authorize]
 public ViewResult Index() => View(User?.Claims);
 }
}

You can get the claims associated with a user in different ways. The User property (also available as the
HttpContext.User property) returns a ClaimsPrincipal object, which is the approach that I have used in
this example. The set of claims associated with a user is accessed through the ClaimsPrincipal methods
and properties described in Table 30-3.

http://dx.doi.org/10.1007/978-1-4842-3150-0_29

Chapter 30 ■ advanCed aSp.net Core IdentIty

957

As I explained in Chapter 28, the HttpContext.User.Identity property returns an implementation of
the IIdentity interface, which is a ClaimsIdentity object when working using ASP.NET Core Identity, and
Table 30-4 shows the members it defines that are relevant to this chapter.

Table 30-3. Selected Members of the ClaimsPrincipal Class

Name Description

Identity Gets the IIdentity value that is associated with the current
user, as described in the following sections.

FindAll(type) FindAll(<predicate>) These methods return all the claims of a specific type or that
are matched by the predicate.

FindFirst(type)
FindFirst(<predicate>)

These methods return the first claim of a specific type or that is
matched by the predicate.

HasClaim(type, value)
HasClaim(<predicate>)

These methods return true if the user has a claim of the
specified type with the specified value or if there is a claim that
is matched by the predicate.

IsInRole(name) Returns true if the user is a member of the role with the
specified name.

Table 30-4. Selected Members Defined by the ClaimsIdentity Class

Name Description

Claims Returns an enumeration of Claim objects representing the claims for the user.

AddClaim(claim) Adds a claim to the user identity.

AddClaims(claims) Adds an enumeration of Claim objects to the user identity.

HasClaim(predicate) Returns true if the user identity contains a claim that matches the specified
predicate.

RemoveClaim(claim) Removes a claim from the user identity.

Table 30-5. Properties Defined by the Claim Class

Name Description

Issuer Returns the name of the system that provided the claim

Subject Returns the ClaimsIdentity object for the user who the claim refers to

Type Returns the type of information that the claim represents

Value Returns the piece of information that the claim represents

Other methods and properties are available, but the ones in the table are those that are used most often
in web applications, for reasons that will become obvious as I demonstrate how claims fit into the wider ASP.
NET Core platform.

In Listing 30-5, I use the Controller.User property to get a ClaimsPrincipal object and pass the value
of the Claims property as the view model for the default view. A Claim object represents a single piece of data
about the user, and the Claim class defines the properties shown in Table 30-5.

http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 30 ■ advanCed aSp.net Core IdentIty

958

To display details of the claims associated with a user, I created the Views/Claims folder, created a file
within it called Index.cshtml, and added the markup shown in Listing 30-6.

Listing 30-6. The Contents of the Index.cshtml File in the Views/Claims Folder

@model IEnumerable<System.Security.Claims.Claim>

<div class="bg-primary m-1 p-1 text-white"><h4>Claims</h4></div>

<table class="table table-sm table-bordered">
 <tr>
 <th>Subject</th><th>Issuer</th><th>Type</th><th>Value</th>
 </tr>
 @if (Model == null || Model.Count() == 0) {
 <tr><td colspan="4" class="text-center">No Claims</td></tr>
 } else {
 @foreach (var claim in Model.OrderBy(x => x.Type)) {
 <tr>
 <td>@claim.Subject.Name</td>
 <td>@claim.Issuer</td>
 <td identity-claim-type="@claim.Type"></td>
 <td>@claim.Value</td>
 </tr>
 }
 }
</table>

The view uses a table to display each of the claims provided in the view model. The value of the Claim.
Type property is a URI for a Microsoft schema, which isn’t especially useful. The popular schemas are used
as the values for fields in the System.Security.Claims.ClaimTypes class, so to make the output from
the Index.cshtml view easier to read, I added a custom attribute to the td element that displays the Type
property like this:

...
<td identity-claim-type="@claim.Type"></td>
...

I added a class file called ClaimTypeTagHelper.cs to the Infrastructure folder and used it to create a
tag helper that translates the attribute value into a more readable string, as shown in Listing 30-7.

Listing 30-7. The Contents of the ClaimTypeTagHelper.cs File in the Infrastructure Folder

using System.Linq;
using System.Reflection;
using System.Security.Claims;
using Microsoft.AspNetCore.Razor.TagHelpers;

namespace Users.Infrastructure {

 [HtmlTargetElement("td", Attributes = "identity-claim-type")]
 public class ClaimTypeTagHelper : TagHelper {

Chapter 30 ■ advanCed aSp.net Core IdentIty

959

 [HtmlAttributeName("identity-claim-type")]
 public string ClaimType { get; set; }

 public override void Process(TagHelperContext context,
 TagHelperOutput output) {
 bool foundType = false;
 FieldInfo[] fields = typeof(ClaimTypes).GetFields();
 foreach (FieldInfo field in fields) {
 if (field.GetValue(null).ToString() == ClaimType) {
 output.Content.SetContent(field.Name);
 foundType = true;
 }
 }
 if (!foundType) {
 output.Content.SetContent(ClaimType.Split('/', '.').Last());
 }
 }
 }
}

To see why I have created a controller that uses claims without really explaining what they are, start
the application and authenticate as the user Alice (using the e-mail address alice@example.com and the
password secret123). Once you are authenticated, request the /Claims URL to see the claims associated
with the user, as illustrated in Figure 30-4.

Figure 30-4. The output from the Index action of the Claims controller

Chapter 30 ■ advanCed aSp.net Core IdentIty

960

It can be hard to make out the detail in the figure, so I have reproduced the content in Table 30-6.

The table shows the most important aspect of claims, which is that I have already been using them
when I implemented the traditional authentication and authorization features in Chapter 29. You can
see that some of the claims relate to user identity (the Name claim is Alice, and the NameIdentifier claim
is Alice’s unique user ID in the ASP.NET Core Identity database). Other claims show membership of
roles—there are two Role claims in the table, reflecting the fact that Alice is assigned to both the Users and
Employees roles.

The difference when this information is expressed as a set of claims is that you can determine where the
data came from. The Issuer property for all the claims shown in the table is set to LOCAL AUTHORITY, which
indicates that the user’s identity has been established by the application.

So, now that you have seen some example claims, I can more easily describe what a claim is: a claim
is any piece of information about a user that is available to the application, including the user’s identity
and role memberships. And, as you have seen, the information I have been defining about my users in
earlier chapters is automatically made available as claims by ASP.NET Core Identity. While claims can seem
bewildering at first, there is no magic about them, and like every other aspect of MVC applications, they turn
out to be far less formidable once you peek behind the curtain and see how they really work.

Creating Claims
Claims are interesting because an application can obtain claims from multiple sources, rather than just
relying on a local database for information about the user. You will see a real example of this when I show
you how to authenticate users through a third-party system in the “Using Third-Party Authentication”
section, but for the moment I am going to add a class to the example project that simulates a system that
provides claims information. Listing 30-8 shows the contents of the LocationClaimsProvider.cs file that I
added to the Infrastructure folder.

Listing 30-8. The Contents of the LocationClaimsProvider.cs File in the Infrastructure Folder

using System.Security.Claims;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authentication;

namespace Users.Infrastructure {

 public class LocationClaimsProvider : IClaimsTransformation {

 public Task<ClaimsPrincipal> TransformAsync(ClaimsPrincipal principal) {
 if (principal != null && !principal.HasClaim(c =>
 c.Type == ClaimTypes.PostalCode)) {

Table 30-6. The Data Shown in Figure 30-4

Subject Issuer Type Value

Alice LOCAL AUTHORITY SecurityStamp Unique ID

Alice LOCAL AUTHORITY Role Users

Alice LOCAL AUTHORITY Role Employees

Alice LOCAL AUTHORITY Name Alice

Alice LOCAL AUTHORITY NameIdentifier Alice’s user ID

http://dx.doi.org/10.1007/978-1-4842-3150-0_29

Chapter 30 ■ advanCed aSp.net Core IdentIty

961

 ClaimsIdentity identity = principal.Identity as ClaimsIdentity;
 if (identity != null && identity.IsAuthenticated
 && identity.Name != null) {
 if (identity.Name.ToLower() == "alice") {
 identity.AddClaims(new Claim[] {
 CreateClaim(ClaimTypes.PostalCode, "DC 20500"),
 CreateClaim(ClaimTypes.StateOrProvince, "DC")
 });
 } else {
 identity.AddClaims(new Claim[] {
 CreateClaim(ClaimTypes.PostalCode, "NY 10036"),
 CreateClaim(ClaimTypes.StateOrProvince, "NY")
 });
 }
 }
 }
 return Task.FromResult(principal);
 }

 private static Claim CreateClaim(string type, string value) =>
 new Claim(type, value, ClaimValueTypes.String, "RemoteClaims");
 }
}

The TransformAsync method, which is defined by the IClaimsTransformation interface, receives a
ClaimsPrincipal and inspects it, casting the value of its Identity property to a ClaimsIdentity object.
Then the value of the Name property is used to create claims about the user’s ZIP code and state.

This class simulates a system such as a central HR database, which would be the authoritative source of
location information about staff, for example. To register the source of the claims, I defined a service in the
ConfigureServices method of the Startup class, as shown in Listing 30-9.

Listing 30-9. Enabling Claims Transformation in the Startup.cs File in the Users Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.AspNetCore.Identity;
using Microsoft.EntityFrameworkCore;
using Users.Models;
using Users.Infrastructure;
using Microsoft.AspNetCore.Authentication;

namespace Users {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {

 services.AddTransient<IPasswordValidator<AppUser>,

Chapter 30 ■ advanCed aSp.net Core IdentIty

962

 CustomPasswordValidator>();
 services.AddTransient<IUserValidator<AppUser>,
 CustomUserValidator>();
 services.AddSingleton<IClaimsTransformation,
 LocationClaimsProvider>();

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<AppUser, IdentityRole>(opts => {
 opts.User.RequireUniqueEmail = true;
 //opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz";
 opts.Password.RequiredLength = 6;
 opts.Password.RequireNonAlphanumeric = false;
 opts.Password.RequireLowercase = false;
 opts.Password.RequireUppercase = false;
 opts.Password.RequireDigit = false;
 }).AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Each time a request is received, the claims transformation middleware calls the
LocationClaimsProvider.TransformAsync method, which simulates my HR data source and creates
custom claims. You can see the effect of the custom claims by starting the application, authenticating as a
user, and requesting the /Claims URL. Figure 30-5 shows the claims for Alice. You may have to sign out and
sign back in again to see the change.

Chapter 30 ■ advanCed aSp.net Core IdentIty

963

Obtaining claims from multiple locations means that the application doesn’t have to duplicate data that
is held elsewhere and allows integration of data from external parties. The Claim.Issuer property tells you
where a claim originated from, which helps you judge how accurate the data is likely to be and how much
weight you should give the data in your application. Location data obtained from a central HR database is
likely to be more accurate and trustworthy than data obtained from an external mailing list provider, for
example.

CREATING CUSTOM IDENTITY CLAIMS

If you want to add custom local claims to the application, then you can do so when you create new
users. the UserManager<T> class provides AddClaimAsync and AddClaimsAsync methods that can be
used to define local claims, which are then stored in the database and retrieved automatically when
the user is authenticated (which means you don’t need to rely on the claims transformation feature).
however, before using these methods, consider how the data you store will be kept current and whether
your application would be better served by retrieving the data dynamically from its source. as I explain
in the next section, claims are used for authorization checks, and stale claim data can allow users to
access parts of the application that they should have been barred from and prevent access to areas to
which they have been granted.

Figure 30-5. Defining additional claims for users

Chapter 30 ■ advanCed aSp.net Core IdentIty

964

Using Policies
Once you have some claims to work with, you can use them to manage user access to your application more
flexibly than with standard roles. The problem with roles is that they are static, and once a user has been
assigned to a role, the user remains a member until explicitly removed. This is, for example, how long-term
employees of big corporations end up with incredible access to internal systems: they are assigned the roles
they require for each new job they get, but the old roles are rarely removed.

Claims are used to build authorization policies, which are part of the application configuration and
applied to action methods or controllers using the Authorize attribute. Listing 30-10 shows a simple policy
that only allows access to users with a specific claim type and value.

Listing 30-10. Creating a Claim Policy in the Startup.cs File in the Users Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.AspNetCore.Identity;
using Microsoft.EntityFrameworkCore;
using Users.Models;
using Users.Infrastructure;
using Microsoft.AspNetCore.Authentication;
using System.Security.Claims;

namespace Users {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {

 services.AddTransient<IPasswordValidator<AppUser>,
 CustomPasswordValidator>();
 services.AddTransient<IUserValidator<AppUser>,
 CustomUserValidator>();
 services.AddSingleton<IClaimsTransformation, LocationClaimsProvider>();

 services.AddAuthorization(opts => {
 opts.AddPolicy("DCUsers", policy => {
 policy.RequireRole("Users");
 policy.RequireClaim(ClaimTypes.StateOrProvince, "DC");
 });
 });

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

Chapter 30 ■ advanCed aSp.net Core IdentIty

965

 services.AddIdentity<AppUser, IdentityRole>(opts => {
 opts.User.RequireUniqueEmail = true;
 //opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz";
 opts.Password.RequiredLength = 6;
 opts.Password.RequireNonAlphanumeric = false;
 opts.Password.RequireLowercase = false;
 opts.Password.RequireUppercase = false;
 opts.Password.RequireDigit = false;
 }).AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseAuthentication();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The AddAuthorization method sets up authorization policy and provides an AuthorizationOptions
object that defines the members described in Table 30-7.

Table 30-7. The Members Defined by the AuthorizationOptions Class

Name Description

DefaultPolicy This property returns the default authorization policy, which is used when the
Authorize attribute is applied without any arguments. By default, this policy checks
that users are authenticated.

AddPolicy(name,
expression)

This method is used to define a new policy, as described in the following text.

Policies are defined using the AddPolicy method, which works with a lambda expression that operates
on an AuthorizationPolicyBuilder object to build up a policy in steps using the methods described in
Table 30-8.

Chapter 30 ■ advanCed aSp.net Core IdentIty

966

The policy in Listing 30-10 requires that a user has membership of the Users role and has a
StateOrProvince claim with a value of DC. When there are multiple requirements, all of them have to be met
for authorization to be granted.

The first argument to the AddPolicy method is the name by which the policy can be referred to when
it is applied. The name of the policy in Listing 30-10 is DCUsers, and this is the name used in the Authorize
attribute to apply the policy to the Home controller in Listing 30-11.

Listing 30-11. Applying an Authorization Policy in the HomeController.cs File in the Controllers Folder

using System.Collections.Generic;
using Microsoft.AspNetCore.Mvc;
using Microsoft.AspNetCore.Authorization;
using Users.Models;
using Microsoft.AspNetCore.Identity;
using System.Threading.Tasks;
using System.ComponentModel.DataAnnotations;

namespace Users.Controllers {

 public class HomeController : Controller {
 private UserManager<AppUser> userManager;

 public HomeController(UserManager<AppUser> userMgr) {
 userManager = userMgr;
 }

 [Authorize]
 public IActionResult Index() => View(GetData(nameof(Index)));

Table 30-8. Selected Methods Defined by the AuthorizationPolicyBuilder Class

Name Description

RequireAuthenticatedUser() This method requires that the request is associated with an
authenticated user.

RequireUserName(name) This method requires that the request is associated with the specified
user.

RequireClaim(type) This method requires that the user has a claim of the specified type.
It is only the presence of the claim that is checked, and any value will
be accepted.

RequireClaim(type, values) This method requires that the user has a claim of the specified
type and with one of a range of values. Values can be expressed as
comma-separated arguments or as an IEnumerable<string>.

RequireRole(roles) This method requires that the user has membership in a role.
Multiple roles can be specified as comma-separated arguments or as
an IEnumerable<string>, and membership of any one of the roles
will meet the requirement.

AddRequirements(requirement) This method adds a custom requirement to the policy, as described
in the “Creating Custom Policy Requirements” section.

Chapter 30 ■ advanCed aSp.net Core IdentIty

967

 //[Authorize(Roles = "Users")]
 [Authorize(Policy = "DCUsers")]
 public IActionResult OtherAction() => View("Index",
 GetData(nameof(OtherAction)));

 // ...other methods omitted for brevity...

 private Task<AppUser> CurrentUser =>
 userManager.FindByNameAsync(HttpContext.User.Identity.Name);
 }
}

The Policy property is used to specify the name of the policy that will be used to protect the action
method. The result is that a combined check on the roles and claims that a user has is performed when
a request targets the OtherAction method. Only the Alice account has the right combination of role
membership and claims, which you can check by running the application, authenticating as different users,
and requesting the /Home/OtherAction URL.

Creating Custom Policy Requirements
The built-in requirements check specific values, which is a good starting point but doesn’t allow for every
authorization scenario to be handled. If access should be prohibited for a certain claim value, for example,
then things start to get tricky with the built-in requirements, which just aren’t set up for that kind of check.

Fortunately, the policy system can be extended with custom requirements, which are classes that
implement the IAuthorizationRequirement interface, and custom authorization handlers, which are
subclasses of the AuthorizationHandler class that evaluate the requirement for a given request. To
demonstrate, I added a file called BlockUsersRequirement.cs to the Infrastructure folder and used it to
define the custom requirement and handler shown in Listing 30-12.

Listing 30-12. The Contents of the BlockUsersRequirement.cs File in the Infrastructure Folder

using System;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;

namespace Users.Infrastructure {

 public class BlockUsersRequirement : IAuthorizationRequirement {

 public BlockUsersRequirement(params string[] users) {
 BlockedUsers = users;
 }

 public string[] BlockedUsers { get; set; }
 }

 public class BlockUsersHandler : AuthorizationHandler<BlockUsersRequirement> {

 protected override Task HandleRequirementAsync(
 AuthorizationHandlerContext context,
 BlockUsersRequirement requirement) {

Chapter 30 ■ advanCed aSp.net Core IdentIty

968

 if (context.User.Identity != null && context.User.Identity.Name != null
 && !requirement.BlockedUsers
 .Any(user => user.Equals(context.User.Identity.Name,
 StringComparison.OrdinalIgnoreCase))) {
 context.Succeed(requirement);
 } else {
 context.Fail();
 }
 return Task.CompletedTask;
 }
 }
}

The BlockUserRequirement class is the requirement and is used to specify the data that will be used to
create a policy, which in this case is a list of users who will not be authorized. The BlockUsersHandler class
is responsible for evaluating an authorization request using the requirement data and is derived from the
AuthorizationHandler<T> class, where T is the type of the requirement class.

The Handle method is called on the handler class when the authorization system needs to check access
to a resource. The arguments to the method are an AuthorizationHandlerContext object, which defines
the members described in Table 30-9, and the requirement object that provides access to the data needed to
perform the check.

Table 30-9. Selected AuthorizationHandlerContext Members

Name Description

User This property returns the ClaimsPrincipal associated with the request.

Succeed(requirement) This method is called if the request meets the requirement. The argument is
the IAuthorizationRequirement object received by the Handle method.

Fail() This method is called if the request fails to meet the requirement.

Resource This property returns an object that is used to authorize access to a single
application resource, as described in the “Using Policies to Authorize Access
to Resources” section.

The requirement handler in Listing 30-12 checks the name of the user to see whether it is in the
forbidden list provided by the BlockUsersRequirement object and calls the Succeed or Fail method
accordingly. Applying a custom requirement requires two configuration changes, as shown in Listing 30-13.

Listing 30-13. Applying a Custom Authorization Requirement in the Startup.cs File in the Users Folder

using Microsoft.AspNetCore.Builder;
using Microsoft.Extensions.DependencyInjection;
using Microsoft.Extensions.Configuration;
using Microsoft.AspNetCore.Identity;
using Microsoft.EntityFrameworkCore;
using Users.Models;
using Users.Infrastructure;
using Microsoft.AspNetCore.Authentication;
using System.Security.Claims;
using Microsoft.AspNetCore.Authorization;

Chapter 30 ■ advanCed aSp.net Core IdentIty

969

namespace Users {

 public class Startup {

 public Startup(IConfiguration configuration) =>
 Configuration = configuration;

 public IConfiguration Configuration { get; }

 public void ConfigureServices(IServiceCollection services) {

 services.AddTransient<IPasswordValidator<AppUser>,
 CustomPasswordValidator>();
 services.AddTransient<IUserValidator<AppUser>,
 CustomUserValidator>();
 services.AddSingleton<IClaimsTransformation, LocationClaimsProvider>();
 services.AddTransient<IAuthorizationHandler, BlockUsersHandler>();

 services.AddAuthorization(opts => {
 opts.AddPolicy("DCUsers", policy => {
 policy.RequireRole("Users");
 policy.RequireClaim(ClaimTypes.StateOrProvince, "DC");
 });
 opts.AddPolicy("NotBob", policy => {
 policy.RequireAuthenticatedUser();
 policy.AddRequirements(new BlockUsersRequirement("Bob"));
 });
 });

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<AppUser, IdentityRole>(opts => {
 opts.User.RequireUniqueEmail = true;
 //opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz";
 opts.Password.RequiredLength = 6;
 opts.Password.RequireNonAlphanumeric = false;
 opts.Password.RequireLowercase = false;
 opts.Password.RequireUppercase = false;
 opts.Password.RequireDigit = false;
 }).AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();

Chapter 30 ■ advanCed aSp.net Core IdentIty

970

 app.UseAuthentication();
 app.UseMvcWithDefaultRoute();
 }
 }
}

The first step is to register the handler class with the service provider as an implementation of the
IAuthorizationHandler interface. The second step is to add the custom requirement to a policy, which is
done using the AddRequirements method, like this:

...
opts.AddPolicy("NotBob", policy => {
 policy.RequireAuthenticatedUser();
 policy.AddRequirements(new BlockUsersRequirement("Bob"));
});
...

The result is a policy that requires authenticated users who are not Bob and that can be applied through
the Authorize attribute by specifying the policy name, as shown in Listing 30-14.

Listing 30-14. Applying a Custom Policy in the HomeController.cs File

...
//[Authorize(Roles = "Users")]
[Authorize(Policy = "DCUsers")]
public IActionResult OtherAction() => View("Index", GetData(nameof(OtherAction)));

[Authorize(Policy = "NotBob")]
public IActionResult NotBob() => View("Index", GetData(nameof(NotBob)));
...

You will not be able to access the /Home/NotBob URL if you have authenticated as Bob, but all other user
accounts will be granted access.

Using Policies to Authorize Access to Resources
Policies can also be used to control access to individual resources, which is a general term for any item of
data that your application uses and which require more granular management than is possible at the action
method level. As a demonstration, I added a file called ProtectedDocument.cs to the Models folder and used
it to define a class that represents a document with some ownership attributes, as shown in Listing 30-15.

Listing 30-15. The Contents of the ProtectedDocument.cs File in the Models Folder

namespace Users.Models {

 public class ProtectedDocument {
 public string Title { get; set; }
 public string Author { get; set; }
 public string Editor { get; set; }
 }
}

Chapter 30 ■ advanCed aSp.net Core IdentIty

971

This is just a placeholder for a real document, with the key point being that each document should
be editable by just two people: the author and the editor. A real document would require content and
change tracking and many other features, but this is enough for the example. I added a class file called
DocumentController.cs to the Controllers folder and used it to create the controller shown in Listing 30-16.

Listing 30-16. The Contents of the DocumentController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using System.Linq;
using Users.Models;

namespace Users.Controllers {

 [Authorize]
 public class DocumentController : Controller {
 private ProtectedDocument[] docs = new ProtectedDocument[] {
 new ProtectedDocument { Title = "Q3 Budget", Author = "Alice",
 Editor = "Joe"},
 new ProtectedDocument { Title = "Project Plan", Author = "Bob",
 Editor = "Alice"}
 };

 public ViewResult Index() => View(docs);

 public ViewResult Edit(string title) {
 return View("Index", docs.FirstOrDefault(d => d.Title == title));
 }
 }
}

The controller maintains a fixed set of ProtectedDocument objects. The ProtectedDocument objects are
used in the Index action, which passes all the documents to the View method, and the Edit action, which
selects one document based on a title argument. Both of the action methods use a view called Index.
chstml, which I added to a new folder called Views/Document, as shown in Listing 30-17.

Listing 30-17. The Contents of the Index.cshtml File in the Views/Document Folder

@if (Model is IEnumerable<ProtectedDocument>) {
 <div class="bg-primary m-1 p-1 text-white">
 <h4>Documents (@User?.Identity?.Name)</h4>
 </div>
 <table class="table table-sm table-bordered">
 <tr><th>Title</th><th>Author</th><th>Editor</th><th></th></tr>
 @foreach (var doc in Model) {
 <tr>
 <td>@doc.Title</td>
 <td>@doc.Author</td>
 <td>@doc.Editor</td>
 <td>
 <a class="btn btn-sm btn-primary" asp-action="Edit"
 asp-route-title="@doc.Title">

Chapter 30 ■ advanCed aSp.net Core IdentIty

972

 Edit

 </td>
 </tr>
 }
 </table>
} else {
 <div class="bg-primary m-1 p-1">
 <h4>Editing @Model.Title (@User?.Identity?.Name)</h4>
 </div>
 <div class="m-1 p-1">
 Document editing feature would go here...
 </div>
 <a asp-action="Index" class="btn btn-primary">Done
}
<a asp-action="Logout" asp-controller="Account" class="btn btn-danger">Logout

If the view model is a sequence of ProtectedDocument objects, then the view displays a table with one
row for each document, displaying the names of the author and editor and a link to the Edit action. If the
view model is a single ProtectedDocument, then the view displays some placeholder content for where a real
application would provide editing features.

At the moment, the only authorization restriction is the Authorize attribute applied to the
DocumentController class, which means that any user can edit any document, not just the author and
editor. You can see this by running the application, requesting the /Document URL, authenticating as any of
the application users, and clicking the Edit button for the documents. Figure 30-6 shows the user Joe editing
the Project Plan document, for example.

Figure 30-6. Editing documents

Creating the Resource Authorization Policy and Handler
Restricting access to individual documents at the action method level is difficult because the Authorize
attribute is evaluated before the action method is invoked. This means the decision about authorization is
made before the ProtectedDocument object is retrieved and can be inspected, and the details of which users
should be allowed to access the document are revealed.

Chapter 30 ■ advanCed aSp.net Core IdentIty

973

The solution to this problem is to create an authorization policy and handler that know how to deal
with ProtectedDocument objects and to use them within the action method, once the user details have been
revealed. To demonstrate, I added a file called DocumentAuthorization.cs to the Infrastructure folder
and defined the classes shown in Listing 30-18.

Listing 30-18. The Contents of the DocumentAuthorization.cs File in the Infrastructure Folder

using System;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Users.Models;

namespace Users.Infrastructure {

 public class DocumentAuthorizationRequirement : IAuthorizationRequirement {
 public bool AllowAuthors { get; set; }
 public bool AllowEditors { get; set; }
 }

 public class DocumentAuthorizationHandler
 : AuthorizationHandler<DocumentAuthorizationRequirement> {

 protected override Task HandleRequirementAsync(
 AuthorizationHandlerContext context,
 DocumentAuthorizationRequirement requirement) {
 ProtectedDocument doc = context.Resource as ProtectedDocument;
 string user = context.User.Identity.Name;
 StringComparison compare = StringComparison.OrdinalIgnoreCase;
 if (doc != null && user != null &&
 (requirement.AllowAuthors && doc.Author.Equals(user, compare))
 || (requirement.AllowEditors && doc.Editor.Equals(user, compare))) {
 context.Succeed(requirement);
 } else {
 context.Fail();
 }
 return Task.CompletedTask;
 }
 }
}

The AuthorizationHandlerContext object provides a Resource property that provides access to an
object that can be inspected for authorization. The DocumentAuthorizationHandler class checks to see
whether the Resource property is a ProtectedDocument object and, if it is, checks to see whether the current
user is the author and editor and whether the DocumentAuthorizationRequirement object allows editors or
authors to access the document.

In Listing 30-19, I have registered the DocumentAuthorizationHandler class as a handler for
DocumentAuthorizationRequirement requirements and defined a policy that has this requirement.

Chapter 30 ■ advanCed aSp.net Core IdentIty

974

Listing 30-19. Registering a Handler and Defining a Policy in the Startup.cs File in the Users Folder

...
public void ConfigureServices(IServiceCollection services) {

 services.AddTransient<IPasswordValidator<AppUser>,
 CustomPasswordValidator>();
 services.AddTransient<IUserValidator<AppUser>,
 CustomUserValidator>();
 services.AddSingleton<IClaimsTransformation, LocationClaimsProvider>();
 services.AddTransient<IAuthorizationHandler, BlockUsersHandler>();
 services.AddTransient<IAuthorizationHandler, DocumentAuthorizationHandler>();

 services.AddAuthorization(opts => {
 opts.AddPolicy("DCUsers", policy => {
 policy.RequireRole("Users");
 policy.RequireClaim(ClaimTypes.StateOrProvince, "DC");
 });
 opts.AddPolicy("NotBob", policy => {
 policy.RequireAuthenticatedUser();
 policy.AddRequirements(new BlockUsersRequirement("Bob"));
 });
 opts.AddPolicy("AuthorsAndEditors", policy => {
 policy.AddRequirements(new DocumentAuthorizationRequirement {
 AllowAuthors = true,
 AllowEditors = true
 });
 });
 });

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<AppUser, IdentityRole>(opts => {
 opts.User.RequireUniqueEmail = true;
 //opts.User.AllowedUserNameCharacters = "abcdefghijklmnopqrstuvwxyz";
 opts.Password.RequiredLength = 6;
 opts.Password.RequireNonAlphanumeric = false;
 opts.Password.RequireLowercase = false;
 opts.Password.RequireUppercase = false;
 opts.Password.RequireDigit = false;
 }).AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
}
...

The final step is to apply the authorization policy in the action method, as shown in Listing 30-20.

Chapter 30 ■ advanCed aSp.net Core IdentIty

975

Listing 30-20. Applying the Policy in the DocumentController.cs File in the Controllers Folder

using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using System.Linq;
using Users.Models;
using System.Threading.Tasks;

namespace Users.Controllers {

 [Authorize]
 public class DocumentController : Controller {
 private ProtectedDocument[] docs = new ProtectedDocument[] {
 new ProtectedDocument { Title = "Q3 Budget", Author = "Alice",
 Editor = "Joe"},
 new ProtectedDocument { Title = "Project Plan", Author = "Bob",
 Editor = "Alice"}
 };
 private IAuthorizationService authService;

 public DocumentController(IAuthorizationService auth) {
 authService = auth;
 }

 public ViewResult Index() => View(docs);

 public async Task<IActionResult> Edit(string title) {
 ProtectedDocument doc = docs.FirstOrDefault(d => d.Title == title);
 AuthorizationResult authorized = await authService.AuthorizeAsync(User,
 doc, "AuthorsAndEditors");
 if (authorized.Succeeded) {
 return View("Index", doc);
 } else {
 return new ChallengeResult();
 }
 }
 }
}

The controller constructor defines an IAuthorizationService argument, which provides methods
that can be used to evaluate authorization policies and which is resolved using dependency injection. In the
Edit method, I call the AuthorizeAsync method, passing in the current user, the ProtectedDocument object,
and the name of the policy that I want to apply. If the result from the AuthorizeAsync method is true, then
authorization is approved, and the View method is called. If the result is false, then there is an authorization
problem, and I return a ChallengeResult object, as described in Chapter 17, which tells MVC that there has
been an authorization failure.

You can see the effect by running the application and requesting the /Document URL, authenticated as
different users. If, for example, you authenticate as Joe, then you will be able to edit the budget document
but not the project plan.

http://dx.doi.org/10.1007/978-1-4842-3150-0_17

Chapter 30 ■ advanCed aSp.net Core IdentIty

976

Using Third-Party Authentication
One of the benefits of a claims-based system such as ASP.NET Core Identity is that any of the claims can
come from an external system, even those that identify the user to the application. This means that other
systems can authenticate users on behalf of the application, and ASP.NET Core Identity builds on this idea
to make it simple and easy to add support for authenticating users through third parties such as Microsoft,
Google, Facebook, and Twitter.

There are some substantial benefits of using third-party authentication: many users will already have an
account, users can elect to use two-factor authentication, and you don’t have to manage user credentials in
the application. In the sections that follow, I’ll show you how to set up and use third-party authentication for
Google users.

Registering the Application with Google
Third-party authentication services typically require applications to be registered before they can
authenticate users. The result of the registration process is credentials that are included in the authentication
request to the third-party service. The Google registration process is performed at http://console.
developers.google.com, following the instructions at http://developers.google.com/identity/sign-
in/web/devconsole-project. You must specify a callback URL, which for the default configuration is /
signin-google. If you are in development, set the callback URL to be http://localhost:port/signin-
google. For production applications, create a URL that includes the public hostname and port.

Following the registration process, you will receive a client ID, which identifies your application to
Google, and a client secret, which is used as a security precaution to prevent other applications from
pretending to be your application.

 ■ Note you must register your own application and use the client Id and client secret that the registration
process produces. the code in this section will not work unless you change the credentials with the values that
are unique to your application.

Enabling Google Authentication
ASP.NET Core Identity comes with built-in support for authenticating users through their Microsoft,
Google, Facebook, and Twitter accounts as well more general support for any authentication service that
supports OAuth. Each service has its own extension method that is used to register with the application in the
Startup class, and Listing 30-21 shows how the Google service is set up. (I have removed the configuration
statements from earlier examples for brevity.)

Listing 30-21. Enabling Google Authentication in the Startup.cs File in the Users Folder

...
public void ConfigureServices(IServiceCollection services) {

 services.AddTransient<IPasswordValidator<AppUser>,
 CustomPasswordValidator>();
 services.AddTransient<IUserValidator<AppUser>,
 CustomUserValidator>();
 services.AddSingleton<IClaimsTransformation, LocationClaimsProvider>();
 services.AddTransient<IAuthorizationHandler, BlockUsersHandler>();
 services.AddTransient<IAuthorizationHandler, DocumentAuthorizationHandler>();

http://console.developers.google.com/
http://console.developers.google.com/
http://developers.google.com/identity/sign-in/web/devconsole-project
http://developers.google.com/identity/sign-in/web/devconsole-project

Chapter 30 ■ advanCed aSp.net Core IdentIty

977

 services.AddAuthorization(opts => {
 opts.AddPolicy("DCUsers", policy => {
 policy.RequireRole("Users");
 policy.RequireClaim(ClaimTypes.StateOrProvince, "DC");
 });
 opts.AddPolicy("NotBob", policy => {
 policy.RequireAuthenticatedUser();
 policy.AddRequirements(new BlockUsersRequirement("Bob"));
 });
 opts.AddPolicy("AuthorsAndEditors", policy => {
 policy.AddRequirements(new DocumentAuthorizationRequirement {
 AllowAuthors = true,
 AllowEditors = true
 });
 });
 });

 services.AddAuthentication().AddGoogle(opts => {
 opts.ClientId = "<enter client id here>";
 opts.ClientSecret = "<enter client secret here>";
 });

 services.AddDbContext<AppIdentityDbContext>(options =>
 options.UseSqlServer(
 Configuration["Data:SportStoreIdentity:ConnectionString"]));

 services.AddIdentity<AppUser, IdentityRole>(opts => {
 opts.User.RequireUniqueEmail = true;
 opts.Password.RequiredLength = 6;
 opts.Password.RequireNonAlphanumeric = false;
 opts.Password.RequireLowercase = false;
 opts.Password.RequireUppercase = false;
 opts.Password.RequireDigit = false;
 }).AddEntityFrameworkStores<AppIdentityDbContext>()
 .AddDefaultTokenProviders();

 services.AddMvc();
}
...

The AddAuthentication.AddGoogle method sets up the required services for authenticating users with
Google and specifies the client ID and client secret that were created during the registration process.

When you authenticate a user with a third party, you can elect to create a user in the Identity database,
which can then be used to manage roles and claims just as for regular users. In Chapter 28, I added a user
validation class that prevents users from being created if their e-mail address isn’t in the example.com
domain. Since I will be dealing with users from any and all domains, I have to disable the e-mail check in the
validator for this example, as shown in Listing 30-22.

http://dx.doi.org/10.1007/978-1-4842-3150-0_28

Chapter 30 ■ advanCed aSp.net Core IdentIty

978

Listing 30-22. Disabling Validation in the CustomUserValidator.cs File in the Infrastructure Folder

using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Identity;
using Users.Models;

namespace Users.Infrastructure {

 public class CustomUserValidator : UserValidator<AppUser> {

 public override async Task<IdentityResult> ValidateAsync(
 UserManager<AppUser> manager,
 AppUser user) {

 IdentityResult result = await base.ValidateAsync(manager, user);

 List<IdentityError> errors = result.Succeeded ?
 new List<IdentityError>() : result.Errors.ToList();

 //if (!user.Email.ToLower().EndsWith("@example.com")) {
 // errors.Add(new IdentityError {
 // Code = "EmailDomainError",
 // Description = "Only example.com email addresses are allowed"
 // });
 //}

 return errors.Count == 0 ? IdentityResult.Success
 : IdentityResult.Failed(errors.ToArray());
 }
 }
}

Next, I added a button to the Views/Account/Login.cshtml file, which allows users to log in via
Google, as shown in Listing 30-23. Google provides images for buttons to make them consistent with other
applications that support Google accounts, but for simplicity, I have just created a standard button.

Listing 30-23. Adding a Button to the Login.cshtml File in the Views/Account Folder

@model LoginModel

<div class="bg-primary m-1 p-1 text-white"><h4>Log In</h4></div>

<div class="text-danger" asp-validation-summary="All"></div>

<form asp-action="Login" method="post">
 <input type="hidden" name="returnUrl" value="@ViewBag.returnUrl" />
 <div class="form-group">
 <label asp-for="Email"></label>
 <input asp-for="Email" class="form-control" />
 </div>

Chapter 30 ■ advanCed aSp.net Core IdentIty

979

 <div class="form-group">
 <label asp-for="Password"></label>
 <input asp-for="Password" class="form-control" />
 </div>
 <button class="btn btn-primary" type="submit">Log In</button>
 <a class="btn btn-info" asp-action="GoogleLogin"
 asp-route-returnUrl="@ViewBag.returnUrl">
 Log In With Google

</form>

The new button targets the GoogleLogin action on the Account controller. You can see this method—
and the other changes I made to the controller—in Listing 30-24.

Listing 30-24. Adding Support for Google to the AccountController.cs File in the Controllers Folder

using System.Threading.Tasks;
using Microsoft.AspNetCore.Authorization;
using Microsoft.AspNetCore.Mvc;
using Users.Models;
using Microsoft.AspNetCore.Identity;
using System.Security.Claims;
using Microsoft.AspNetCore.Http.Authentication;

namespace Users.Controllers {

 [Authorize]
 public class AccountController : Controller {
 private UserManager<AppUser> userManager;
 private SignInManager<AppUser> signInManager;

 // ...methods omitted for brevity...

 [AllowAnonymous]
 public IActionResult GoogleLogin(string returnUrl) {
 string redirectUrl = Url.Action("GoogleResponse", "Account",
 new { ReturnUrl = returnUrl });
 var properties = signInManager
 .ConfigureExternalAuthenticationProperties("Google", redirectUrl);
 return new ChallengeResult("Google", properties);
 }

 [AllowAnonymous]
 public async Task<IActionResult> GoogleResponse(string returnUrl = "/") {
 ExternalLoginInfo info = await signInManager.GetExternalLoginInfoAsync();
 if (info == null) {
 return RedirectToAction(nameof(Login));
 }
 var result = await signInManager.ExternalLoginSignInAsync(
 info.LoginProvider, info.ProviderKey, false);
 if (result.Succeeded) {
 return Redirect(returnUrl);

Chapter 30 ■ advanCed aSp.net Core IdentIty

980

 } else {
 AppUser user = new AppUser {
 Email = info.Principal.FindFirst(ClaimTypes.Email).Value,
 UserName =
 info.Principal.FindFirst(ClaimTypes.Email).Value
 };
 IdentityResult identResult = await userManager.CreateAsync(user);
 if (identResult.Succeeded) {
 identResult = await userManager.AddLoginAsync(user, info);
 if (identResult.Succeeded) {
 await signInManager.SignInAsync(user, false);
 return Redirect(returnUrl);
 }
 }
 return AccessDenied();
 }
 }
 }
}

The GoogleLogin method creates an instance of the AuthenticationProperties class and sets the
RedirectUri property to a URL that targets the GoogleResponse action in the same controller. The next part
is a magic phrase that causes ASP.NET Core Identity to respond to an unauthorized error by redirecting the
user to the Google authentication page, rather than the one defined by the application.

...
return new ChallengeResult("Google", properties);
...

This means that when the user clicks the Log In via Google button, their browser is redirected to the
Google authentication service and then redirected back to the GoogleResponse action method once they
are authenticated. Within the GoogleResponse method, I get details of the external login by calling the
GetExternalLoginInfoAsync of the SigninManager, like this:

...
ExternalLoginInfo info = await signInManager.GetExternalLoginInfoAsync();
...

The ExternalLoginInfo class defines an ExternalPrincipal property that returns a ClaimsPrincipal
object, which contains the claims provided for the user by Google. I sign in the user with the application
using the ExternalLoginSignInAsync method, like this:

...
var result = await signInManager.ExternalLoginSignInAsync(
 info.LoginProvider, info.ProviderKey, false);
...

If the sign-in fails, then it is because there is no user in the database that represents the Google user,
which I solve by creating the new user and associating the Google credentials with it, using these two
statements:

Chapter 30 ■ advanCed aSp.net Core IdentIty

981

...
IdentityResult identResult = await userManager.CreateAsync(user);
...
identResult = await userManager.AddLoginAsync(user, info);
...

 ■ Note When I create the Identity user, I use the e-mail claim provided by Google for both the Email and
UserName properties of the AppUser object so that I don’t get any name conflicts with any of the existing users
in the database.

To test authentication, start the application, click the Log In via Google button, and provide the
credentials for a valid Google account. When you have completed the authentication process, your browser
will be redirected back to the application.

Summary
In this chapter, I showed you some of the advanced features that ASP.NET Core Identity supports. I
demonstrated the use of custom user properties and how to use database migrations to update the database
schema to support them. I explained how claims work and how they can be used to create more flexible
ways of authorizing users through policies. I also explained how policies can be used to control access to
individual resources managed by an application. I finished the chapter by showing you how to authenticate
users via Google, which builds on the ideas behind the use of claims. In the next chapter, I show you how
some of the most important conventions used in MVC applications are actually implemented and how you
can customize them in your own applications.

983© Adam Freeman 2017
A. Freeman, Pro ASP.NET Core MVC 2, https://doi.org/10.1007/978-1-4842-3150-0_31

CHAPTER 31

Model Conventions and
Action Constraints

Throughout this book, I have emphasized that there is no magic involved in MVC development and that
a small peek behind the scenes reveals how everything fits together to deliver the features that I have
described in previous chapters.

In this final chapter of the book, I describe two useful features that let you customize the way your MVC
application works. Model conventions allow you to replace the conventions used to create controllers and
actions, overriding those that are applied by default. Action constraints allow you to specify what kind of
requests an action can be used for, which provides guidance to MVC when it comes to selecting an action to
handle a request.

You can skip this chapter if you want (and you might want to, since it is heavy going in places), but keep
it in mind the next time your application is misbehaving. You won’t need to use the features that I describe in
this chapter often—or at all, even—but the more you know about how MVC works, the better equipped you
are to deal with problems when they arise. Table 31-1 summarizes the chapter.

Table 31-1. Chapter Summary

Problem Solution Listing

Customize the application model Use one of the built-in attributes or create a
custom model convention

1–14

Apply a customization throughout the
application

Define a global model convention 15, 16

Differentiate between two action methods
that could handle a request

Use action constraints 17–25

Preparing the Example Project
For this chapter, I used the ASP.NET Core Web Application (.NET Core) template to create a new Empty
project called ConventionsAndConstraints. Listing 31-1 shows the Startup class, which sets up the MVC
Framework and the middleware components useful for development.

https://doi.org/10.1007/978-1-4842-3150-0_31

Chapter 31 ■ Model Conventions and aCtion Constraints

984

Listing 31-1. The Contents of the Startup.cs File in the ConventionsAndConstraints Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;

namespace ConventionsAndConstraints {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc();
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Creating the View Model, Controller, and View
For many of the examples in this chapter, it is helpful to know which method was used to respond to a
request. To that end, I created a Models folder and added to it a class file called Result.cs, which I used to
define the class shown in Listing 31-2. This class will allow the controllers in this chapter to pass information
to the view about how the request was processed.

Listing 31-2. The Contents of the Result.cs File in the Models Folder

using System.Collections.Generic;

namespace ConventionsAndConstraints.Models {

 public class Result {
 public string Controller { get; set; }
 public string Action { get; set; }
 }
}

I require only a single controller and view for this chapter. I created the Controllers folder, added a
class file called HomeController.cs, and used it to define the class shown in Listing 31-3.

Chapter 31 ■ Model Conventions and aCtion Constraints

985

Listing 31-3. The Contents of the HomeController.cs File in the Controllers Folder

using ConventionsAndConstraints.Models;
using Microsoft.AspNetCore.Mvc;

namespace ConventionsAndConstraints.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 public IActionResult List() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(List)
 });
 }
}

Both of the action methods in this controller render a view called Result, which I defined by creating
the Views/Home folder and adding a view file with the markup shown in Listing 31-4.

Listing 31-4. The Contents of the Result.cshtml File in the Views/Home Folder

@model Result
@{ Layout = null; }

<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <link href="/lib/bootstrap/dist/css/bootstrap.min.css" rel="stylesheet" />
 <title>Result</title>
</head>
<body class="m-1 p-1">
 <table class="table table-sm table-bordered">
 <tr><th>Controller:</th><td>@Model.Controller</td></tr>
 <tr><th>Action:</th><td>@Model.Action</td></tr>
 </table>
</body>
</html>

The view depends on the Bootstrap CSS package for styling the HTML elements. To add Bootstrap to
the project, I used the Bower Configuration File item template to create the bower.json file and added the
Bootstrap package to the dependencies section, as shown in Listing 31-5.

Chapter 31 ■ Model Conventions and aCtion Constraints

986

Listing 31-5. Adding a Package in the bower.json File in the ConventionsAndConstraints Folder

{
 "name": "asp.net",
 "private": true,
 "dependencies": {
 "bootstrap": "4.0.0-alpha.6"
 }
}

The final preparation is to create the _ViewImports.cshtml file in the Views folder, which sets up the
built-in tag helpers for use in Razor views and imports the model namespace, as shown in Listing 31-6.

Listing 31-6. The Contents of the _ViewImports.cshtml File in the Views Folder

@using ConventionsAndConstraints.Models
@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

If you start the application, you will see the result shown in Figure 31-1.

Figure 31-1. Running the example application

Using the Application Model and Model Conventions
MVC favors convention over configuration, which is why you can simply create a class whose name ends with
Controller and start defining action methods. At runtime, MVC uses a discovery process to locate all of the
controllers and actions in the application and inspects them to see whether they use features such as filters.

The end result of the discovery process is the application model, which is made up of objects that
describe every controller class, action method, and parameter that has been found. The conventions that
MVC relies on are applied to the application model as it is constructed. For example, when a controller class
is discovered, the name of the class is used as the basis for the controller that represents it in the model; in
other words, the HomeController class is used to create a Home controller. When the routing system identifies
a request that has to be handled by the Home controller, it is the application model that provides the mapping
to the HomeController class.

The application model can be customized using model conventions, which are classes that inspect the
contents of the application model and make adjustments, such as synthesizing new actions or changing
the way that classes are used to create controllers. In the following sections, I explain how the application
model is structured, introduce the different types of model conventions, and demonstrate ways in which
conventions can be used. Table 31-2 puts the application model and model conventions in context.

Chapter 31 ■ Model Conventions and aCtion Constraints

987

Understanding the Application Model
During the discovery process, MVC creates an instance of the ApplicationModel class and populates it
with details of the controllers and actions that it finds. When the discovery process is complete, model
conventions are applied to make any custom changes you specify. The starting point for understanding
the application model is to examine the properties defined by the Microsoft.AspNetCore.Mvc.
ApplicationModels.ApplicationModel class, which are described in Table 31-3.

 ■ Note this may seem like a dry place to start, especially if you want to begin digging into the detail, but it
is worth taking a moment to appreciate how completely the classes described in this section describe the core
parts of an MvC application. Understanding how the application model works will help you understand how
more advanced features work behind the scenes, which will better equip you to diagnose problems when you
get unexpected results in your own projects.

Table 31-2. Putting the Application Model and Model Conventions in Context

Question Answer

What are they? The application model is a complete description of the controllers
and actions that have been discovered in the application.
Model conventions allow custom changes to be applied to the
application model.

Why are they useful? Model conventions are useful because they allow changes to
the way that classes and methods are mapped to controllers
and actions. Other customizations can be performed, such as
restricting the HTTP methods that an action accepts or applying
action constraints (which are described later in this chapter).

How are they used? Model conventions are defined using a range of interfaces,
described in the following sections, and applied as attributes or
configured in the Startup class.

Are there any pitfalls or limitations? There are some oddities in the way that model conventions are
applied, as described in the following sections.

Are there any alternatives? No, although you can introduce your own components to create
a custom application model if the default one doesn’t suit your
needs.

Table 31-3. Selected ApplicationModel Properties

Name Description

Controllers This property returns an IList<ControllerModel> that contains all of the controllers in
the application.

Filters This property returns an IList<IFilterMetadata> that contains the global filters in the
application.

Chapter 31 ■ Model Conventions and aCtion Constraints

988

The important property for this chapter is Controllers, which returns a list containing a
ControllerModel object for each controller that has been discovered in the application. Table 31-4 describes
the most important ControllerModel properties.

Table 31-4. Selected ControllerModel Properties

Name Description

ControllerName This string property defines the name of the controller. This is the name
that will be used to match the controller routing segment.

ControllerType This TypeInfo defines the type of the controller class.

ControllerProperties This property returns an IList<PropertyModel> that describes all of the
properties defined by the controller, as described in Table 31-5.

Actions This property returns an IList<ActionModel> that describes all of the
actions defined by the controller, as described in Table 31-6.

Filters This property returns an IList<IFilterMetadata> that contains the filters
that apply to all of the actions in the controller.

RouteConstraints This property returns an IList<IRouteConstraintProvider> that is used to
restrict how routes target actions defined by the controller.

Selectors This property returns an IList<SelectorModel> that contains details of
the action constraints (described in the “Using Action Constraints” section)
and the routing information applied to the controller through attributes, as
described in Chapter 15.

Table 31-5. Selected PropertyModel Properties

Name Description

PropertyName This string property returns the name of the property.

Attributes This property returns a list of the attributes that have been applied to the property.

You can see how some of the core functionality of MVC is captured by the application model classes.
The ControllerName property, for example, is used to set the name that will be used by the routing system to
match URLs, while the ControllerType property is used to set the controller class that the name relates to.

The ControllerProperties property returns a list of PropertyModel objects, each of which describes a
property defined by the controller. Table 31-5 describes the most important PropertyModel properties.

The Actions property returns a list of ActionModel objects, each of which describes an action method
defined by a single controller class. Table 31-6 describes the most important properties of the ActionModel class.

http://dx.doi.org/10.1007/978-1-4842-3150-0_15

Chapter 31 ■ Model Conventions and aCtion Constraints

989

The final level of detail is accessed through the Parameters properties, which returns a list of
ParameterModel objects that describe each of the parameters defined by the action method. Table 31-7
describes the most important properties of the ParameterModel class.

Table 31-6. Selected ActionModel Properties

Name Description

ActionName This string property defines the name of the action, which is the one that will be
used to match the action routing segment.

ActionMethod This MethodInfo property is used to specify the method that implements the action.

Controller This property returns the ControllerModel that describes the controller to which
this action belongs.

Filters This property returns an IList<IFilterMetadata> that contains the filters that
apply to the action.

Parameters This property returns an IList<PropertyModel> that contains descriptions of the
parameters required by the action method.

RouteConstraints This property returns an IList<IRouteConstraintProvider> that is used to restrict
how routes target the action.

Selectors This property returns an IList<SelectorModel> that contains details of the action
constraints (described in the “Using Action Constraints” section) and the routing
information applied to the controller through attributes, as described in Chapter 15.

Table 31-7. Selected ParameterModel Properties

Name Description

ParameterName This string property is used for the name of the parameter.

ParameterInfo This PropertyInfo property is used to specify the parameter.

BindingInfo This BindingInfo property is used to configure the model binding process, as
described in Chapter 27.

These types—ApplicationModel, ControllerModel, PropertyModel, ActionModel, and
ParameterModel—are used to describe every aspect of the controller classes in the application, as well as
their methods, properties, and the parameters each method defines.

Customizing the Application Model
MVC has some built-in conventions that it applies as it populates the ApplicationModel with
ControllerModel, PropertyModel, ActionModel, and ParameterModel objects to describe the controllers it
discovers.

Some of the conventions are explicit, such as removing Controller from the name of controller classes
and using it to set the ControllerName property of ControllerModel objects. It is this convention that means
you define a class such as HomeController but target it with URL segments that contain Home.

Other conventions are implicit, such as each class being used to create one controller and each method
being used to create one action. Most MVC developers take these conventions for granted and don’t give
them any conscious thought, but every aspect of the application model can be changed.

http://dx.doi.org/10.1007/978-1-4842-3150-0_15
http://dx.doi.org/10.1007/978-1-4842-3150-0_27

Chapter 31 ■ Model Conventions and aCtion Constraints

990

In previous chapters, I described attributes that change the way that MVC works, and these are actually
model conventions. Table 31-8 describes the attributes.

Table 31-8. The Basic Attributes That Change the Default Application Conventions

Name Description

ActionName This attribute allows the value for the ActionName property of an ActionModel to be
specified explicitly rather than derived from a method name.

NonController This attribute prevents a class from being used to create a ControllerModel object.

NonAction This attribute prevents a method from being used to create an ActionModel object.

In Listing 31-7, I have used the ActionName attribute to change the name of the action that is created to
represent the List method in the HomeController class.

Listing 31-7. Customizing the Application Model in the HomeController.cs File in the Controllers Folder

using ConventionsAndConstraints.Models;
using Microsoft.AspNetCore.Mvc;

namespace ConventionsAndConstraints.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 [ActionName("Details")]
 public IActionResult List() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(List)
 });
 }
}

I have specified that the name Details should be used to create the action, replacing the default
name of List. You can see the effect by starting the application and requesting the /Home/Details URL. As
Figure 31-2 shows, the request is handled by the List method.

Chapter 31 ■ Model Conventions and aCtion Constraints

991

Understanding the Role of Model Conventions
The attributes described in Table 31-8 allow basic changes to be made to the application model but
are limited in their scope. For more substantial customizations, model conventions (also known just as
conventions) are required.

The attributes from Table 31-8 allow you to specify changes to the application model objects before they
are created, such as by overriding the name used for an action. By contrast, creating a model convention
allows you to change the application model by altering the model objects after they have been created,
which allows for much broader changes to be applied. Four kinds of model conventions are available, each
of which is defined by a different interface, as described in Table 31-9.

Figure 31-2. Customizing the application model

Table 31-9. The Application Model Convention Interfaces

Name Description

IApplicationModelConvention This interface is used to apply a convention to the ApplicationModel
object.

IControllerModelConvention This interface is used to apply a convention to the ControllerModel
objects in the application model.

IActionModelConvention This interface is used to apply a convention to the ActionModel
objects in the application model.

IParameterModelConvention This interface is used to apply a convention to the ParameterModel
objects in the application model.

All four interfaces work in the same way, and only the level at which they operate within the application
model changes. For example, here is the definition of the IControllerModelConvention interface:

namespace Microsoft.AspNetCore.Mvc.ApplicationModels {

 public interface IControllerModelConvention {

 void Apply(ControllerModel controller);
 }
}

Chapter 31 ■ Model Conventions and aCtion Constraints

992

The Apply method is called to provide the model convention with the opportunity to make changes to
the ControllerModel to which it has been applied, which is received as the method argument. The other
interfaces also defined Apply methods, and each receives a model object of the type it modifies, such that the
IActionModelConvention interface receives an ActionModel object and the IParameterModelConvention
interface receives a ParameterModel object.

Creating a Model Convention
Controller, action, and parameter model conventions can be applied as attributes, which makes it easy to set
the scope of the changes they apply. As a demonstration, I created an Infrastructure folder and added a
class file to it called ActionNamePrefixAttribute.cs, which I used to define the class shown in Listing 31-8.

Listing 31-8. The Contents of the ActionNamePrefixAttribute.cs File in the Infrastructure Folder

using System;
using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace ConventionsAndConstraints.Infrastructure {

 [AttributeUsage(AttributeTargets.Method, AllowMultiple = false)]
 public class ActionNamePrefixAttribute : Attribute, IActionModelConvention {
 private string namePrefix;

 public ActionNamePrefixAttribute(string prefix) {
 namePrefix = prefix;
 }

 public void Apply(ActionModel action) {
 action.ActionName = namePrefix + action.ActionName;
 }
 }
}

The ActionNamePrefixAttribute class is derived from Attribute and implements the
IActionModelConvention interface. Its constructor accepts a string that is used as a prefix, which is applied
by modifying the ActionName property of the ActionModel object received by the Apply method.

 ■ Tip notice that i have restricted the use of the ActionNamePrefix attribute so that it can be applied only
to methods. When applying model conventions as attributes, controller conventions take effect only when they
are applied to classes, action conventions take effect only when they are applied to methods, and parameter
conventions take effect only when they are applied to parameters. a convention applied at the wrong level will
simply be ignored without any error. to avoid confusion, use AttributeUsage to limit the scope of the attributes
you create.

In Listing 31-9, I have applied the model convention attribute to one of the action methods of the Home
controller.

Chapter 31 ■ Model Conventions and aCtion Constraints

993

Listing 31-9. Applying a Model Convention in the HomeController.cs File in the Controllers Folder

using ConventionsAndConstraints.Models;
using Microsoft.AspNetCore.Mvc;
using ConventionsAndConstraints.Infrastructure;

namespace ConventionsAndConstraints.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 [ActionNamePrefix("Do")]
 public IActionResult List() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(List)
 });
 }
}

When MVC goes through its discovery process, it will create an ActionModel object that describes the
List method, detect the ActionNamePrefix, and call its Apply method. You can see the effect by running the
application and requesting the /Home/DoList URL, which has replaced the URL that would target the List
method under the default conventions, as shown in Figure 31-3.

Figure 31-3. Applying a model convention

Using Conventions That Add or Remove Models
There is a quirk in the way that model conventions are applied that prevents them from adding or removing
objects in the application model. For example, imagine if you wanted to create a convention that some
methods could be reached through two different actions. To demonstrate the problem, I added a class
file called AddActionAttribute.cs to the Infrastructure folder and used it to define the class shown in
Listing 31-10.

Chapter 31 ■ Model Conventions and aCtion Constraints

994

Listing 31-10. The Contents of the AddActionAttribute.cs File in the Infrastructure Folder

using System;
using Microsoft.AspNetCore.Mvc.ApplicationModels;

namespace ConventionsAndConstraints.Infrastructure {

 [AttributeUsage(AttributeTargets.Method, AllowMultiple = true)]
 public class AddActionAttribute : Attribute, IActionModelConvention {
 private string additionalName;

 public AddActionAttribute(string name) {
 additionalName = name;
 }

 public void Apply(ActionModel action) {
 action.Controller.Actions.Add(new ActionModel(action) {
 ActionName = additionalName
 });
 }
 }
}

This action model convention uses an ActionModel constructor that duplicates the settings of an
existing object and then changes the ActionName property of the new instance. The new ActionModel is
added to the controller’s collection of actions by navigating through the ActionModel.Controller property.
In Listing 31-11, you can see how I have applied the model convention to the Home controller.

Listing 31-11. Applying a Model Convention in the HomeController.cs File in the Controllers Folder

using ConventionsAndConstraints.Models;
using Microsoft.AspNetCore.Mvc;
using ConventionsAndConstraints.Infrastructure;

namespace ConventionsAndConstraints.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 [AddAction("Details")]
 public IActionResult List() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(List)
 });
 }
}

Chapter 31 ■ Model Conventions and aCtion Constraints

995

When you start the application, MVC will begin its discovery process and report the following error:

InvalidOperationException: Collection was modified; enumeration operation may not execute.

The model convention is trying to change the set of action model objects as they are being enumerated
by the discovery process, which causes an exception. Avoiding an error requires a different approach, as
shown in Listing 31-12.

Listing 31-12. Creating a Safe Convention in the AddActionAttribute.cs File in the Infrastructure Folder

using System;
using Microsoft.AspNetCore.Mvc.ApplicationModels;
using System.Linq;

namespace ConventionsAndConstraints.Infrastructure {

 [AttributeUsage(AttributeTargets.Method, AllowMultiple = true)]
 public class AddActionAttribute : Attribute {

 public string AdditionalName { get; }

 public AddActionAttribute(string name) {
 AdditionalName = name;
 }
 }

 [AttributeUsage(AttributeTargets.Class, AllowMultiple = false)]
 public class AdditionalActionsAttribute : Attribute,
 IControllerModelConvention {

 public void Apply(ControllerModel controller) {
 var actions = controller.Actions
 .Select(a => new {
 Action = a,
 Names = a.Attributes.Select(attr =>
 (attr as AddActionAttribute)?.AdditionalName)
 });

 foreach (var item in actions.ToList()) {
 foreach (string name in item.Names) {
 controller.Actions.Add(new ActionModel(item.Action) {
 ActionName = name
 });
 }
 }
 }
 }
}

Chapter 31 ■ Model Conventions and aCtion Constraints

996

It isn’t possible to modify the set of actions associated with a controller within an action model
convention, but I still need some way to denote the changes that I require. For this reason, I have made the
AddActionAttribute class just an attribute and not a model convention.

It is possible to change the set of actions within a controller model convention, which is why I created
the AdditionalActionsAttribute class. The Apply method uses LINQ to locate the methods to which the
AddActionAttribute class has been applied and creates new ActionModel objects with the names that are
specified.

The most important part of this class is the call to the ToList method applied to the LINQ results.

...
foreach (var item in actions.ToList()) {
...

This method forces the evaluation of the LINQ query and puts the result into a new collection, which
means that the foreach loop enumerates a different set of objects from the one that MVC is enumerating
as it applies the model conventions. Without the ToList call, I would have received the same error message
as the model convention from Listing 31-12 produced; with the ToList call, I am able to create new action
model objects. Listing 31-13 shows how I have applied the revised attributes to the Home controller.

Listing 31-13. Applying the Revised Convention in the HomeController.cs File in the Controllers Folder

using ConventionsAndConstraints.Models;
using Microsoft.AspNetCore.Mvc;
using ConventionsAndConstraints.Infrastructure;

namespace ConventionsAndConstraints.Controllers {

 [AdditionalActions]
 public class HomeController : Controller {

 public IActionResult Index() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 [AddAction("Details")]
 public IActionResult List() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(List)
 });
 }
}

You can see the effect of the revised model convention by starting the application and requesting the /
Home/Details and /Home/List URLs. As Figure 31-4 shows, the model convention has added a new action
that is handled by the List method, supplementing the action model that is created by default.

Chapter 31 ■ Model Conventions and aCtion Constraints

997

Understanding Model Convention Execution Order
Model conventions are applied in a specific order, starting with the broadest scope: controller model
conventions are applied first, followed by action model conventions, and, finally, parameter model
conventions. To demonstrate the order, I have applied both of the custom conventions I created in previous
examples to the List method of the HomeController class, as shown in Listing 31-14.

Listing 31-14. Applying Multiple Conventions in the HomeController.cs File in the Controllers Folder

using ConventionsAndConstraints.Models;
using Microsoft.AspNetCore.Mvc;
using ConventionsAndConstraints.Infrastructure;

namespace ConventionsAndConstraints.Controllers {

 [AdditionalActions]
 public class HomeController : Controller {

 public IActionResult Index() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 [ActionNamePrefix("Do")]
 [AddAction("Details")]
 public IActionResult List() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(List)
 });
 }
}

The AdditionalActions attribute, which is a controller model convention, is applied first and creates
a new action called Details. Next, the ActionNamePrefix attribute, which is an action model convention,
is applied; it applies the Do prefix to all of the actions associated with the method. The result is that the List
method implements two actions, DoList and DoDetails, which can be reached with the /Home/DoList and /
Home/DoDetails URLs, as shown in Figure 31-5.

Figure 31-4. The effect of creating an action model

Chapter 31 ■ Model Conventions and aCtion Constraints

998

Creating Global Model Conventions
If you need to change the default model conventions, then you may have to do so for every controller, action,
or parameter in the application. If this is the case, then you can create a global model convention, rather than
have to remember to apply attributes consistently to every controller class. Global model conventions are
configured in the Startup class, as shown in Listing 31-15.

Listing 31-15. Creating a Global Filter in the Startup.cs File in the ConventionsAndConstraints Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConventionsAndConstraints.Infrastructure;

namespace ConventionsAndConstraints {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc().AddMvcOptions(options => {
 options.Conventions.Add(new ActionNamePrefixAttribute("Do"));
 options.Conventions.Add(new AdditionalActionsAttribute());
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

Figure 31-5. The effect of model convention execution order

Chapter 31 ■ Model Conventions and aCtion Constraints

999

The MvcOptions object received by the AddMvcOptions extension method defines a Conventions
property. This property returns a list collection to which model convention objects can be added. The listing
applies both of the custom model conventions globally, which means that all action names will be prefixed
with Do and all methods will be inspected for the AddAction attribute. Since these model conventions are
applied globally, I have removed the attributes from the HomeController class, as shown in Listing 31-16.

Listing 31-16. Removing Model Conventions in the HomeController.cs File in the Controllers Folder

using ConventionsAndConstraints.Models;
using Microsoft.AspNetCore.Mvc;
using ConventionsAndConstraints.Infrastructure;

namespace ConventionsAndConstraints.Controllers {

 //[AdditionalActions]
 public class HomeController : Controller {

 public IActionResult Index() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 //[ActionNamePrefix("Do")]
 [AddAction("Details")]
 public IActionResult List() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(List)
 });
 }
}

Global model conventions are applied before conventions applied directly to classes. If there
are multiple global conventions, then they are applied in the order they are registered and with no
regard to their type. I registered the action model convention before the controller model convention,
which means that the Details action specified through the AddAction attribute is created after the
ActionNamePrefixAttribute convention is applied to all of the action names. The result is that the List
method implements two actions, DoList and Details, which can be reached with the /Home/DoList and /
Home/Details URLs, as shown in Figure 31-6.

Chapter 31 ■ Model Conventions and aCtion Constraints

1000

Using Action Constraints
Action constraints decide whether an action method is suitable for handling a specific request, which might
lead you to think that action constraints are like the authorization filters that I described in Chapter 19.

In fact, the use of action constraints is much more limited. When MVC receives an HTTP request, it goes
through a selection process to identify the action method that will be used to handle it. If there are multiple
actions that could handle the request, then MVC needs some way to decide which one to use, and that’s
where action constraints are used. Table 31-10 puts action constraints into context.

Figure 31-6. The effect of global model convention ordering

Table 31-10. Putting Action Constraints in Context

Question Answer

What are they? Action constraints are classes that MVC uses to determine whether a
request can be processed by a specific action.

Why are they useful? If there are two or more actions that could handle a request, then MVC
needs some means to decide which of them is the most suitable. Action
constraints are used to provide that information.

How are they used? Action constraints are applied as attributes, which allows them to be
reused throughout an application and means that the logic that determines
whether an action should process a request doesn’t have to be defined
within the action method itself.

Are there any pitfalls or
limitations?

Action constraints can be applied too widely and prevent a request from
being processed by any suitable action method, resulting in an unhelpful
404 – Not Found response being sent to the client.

Are there any alternatives? Filters are more useful if you want to restrict access to actions under
specific circumstances because you can redirect the client to display a
helpful error page.

Preparing the Example Project
The purpose of action constraints is to help MVC choose between two or more similar action methods when
any of them could be used to handle a request. This is the situation that I have created in Listing 31-17 by
adding a new action method to the Home controller.

http://dx.doi.org/10.1007/978-1-4842-3150-0_19

Chapter 31 ■ Model Conventions and aCtion Constraints

1001

Listing 31-17. Creating Two Suitable Actions in the HomeController.cs File in the Controllers Folder

using ConventionsAndConstraints.Models;
using Microsoft.AspNetCore.Mvc;
using ConventionsAndConstraints.Infrastructure;

namespace ConventionsAndConstraints.Controllers {

 //[AdditionalActions]
 public class HomeController : Controller {

 public IActionResult Index() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 [ActionName("Index")]
 public IActionResult Other() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Other)
 });

 //[ActionNamePrefix("Do")]
 [AddAction("Details")]
 public IActionResult List() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(List)
 });
 }
}

I added a new method called Other and applied the ActionName attribute so that it produces an action
called Index. I also updated the Startup class to remove the global model conventions from the previous
part of the chapter, as shown in Listing 31-18.

Listing 31-18. Removing Conventions in the Startup.cs File in the ConventionsAndConstraints Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConventionsAndConstraints.Infrastructure;

namespace ConventionsAndConstraints {

 public class Startup {

Chapter 31 ■ Model Conventions and aCtion Constraints

1002

 public void ConfigureServices(IServiceCollection services) {
 services.AddMvc().AddMvcOptions(options => {
 //options.Conventions.Add(new ActionNamePrefixAttribute("Do"));
 //options.Conventions.Add(new AdditionalActionsAttribute());
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();
 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

This means that that there are two actions called Index on the Home controller, and if you start the
application, you will see the error shown in Figure 31-7, which indicates that MVC doesn’t know which
action should be used.

Figure 31-7. The effect of creating two equally suitable action methods

The error can be hard to read in a screenshot, so here is the relevant part of the message:

AmbiguousActionException: Multiple actions matched. The following actions matched route
data and had all constraints satisfied:
ConventionsAndConstraints.Controllers.HomeController.Index
ConventionsAndConstraints.Controllers.HomeController.Other

Chapter 31 ■ Model Conventions and aCtion Constraints

1003

Understanding Action Constraints
Action constraints are used to tell MVC whether an action method can be used to handle a request and to
implement the IActionConstraint interface, which is defined as follows:

namespace Microsoft.AspNetCore.Mvc.ActionConstraints {

 public interface IActionConstraint : IActionConstraintMetadata {

 int Order { get; }

 bool Accept(ActionConstraintContext context);
 }
}

When MVC goes through the process of selecting an action method to handle a request, it checks to
see whether there are constraints associated with it. If there are, then they are arranged in sequence based
on the value of the Order property, and the Accept method of each is called in turn. If any of the constraints
return false from the Accept method, then MVC knows that the action method cannot be used to handle
the current request.

 ■ Tip the IActionConstraint interface is derived from IActionConstraintMetadata, which is an
interface that defines no members. it is not used directly, and you should always use the IActionConstaint
interface when you define custom constraints or use the IActionConstraintFactory interface if you want to
create a constraint that has dependencies to resolve, as described in the “resolving dependencies in action
Constraints” section.

To help action constraints to make their determination, MVC provides them with an instance of the
ActionConstraintContext class for context data, which defines the properties described in Table 31-11.

Table 31-11. The ActionConstraintContext Properties

Name Description

Candidates This property returns a list of ActionSelectorCandidate objects that describe the
set of action methods that MVC has shortlisted to handle the current request.

CurrentCandidate This property returns the ActionSelectorCandidate object that describes the
action method that the constraint is being asked to assess.

RouteContext This property returns a RouteContext object, which provides information
about the routing data (through the RouteData property) and the HTTP request
(through the HttpContext property).

Chapter 31 ■ Model Conventions and aCtion Constraints

1004

Creating an Action Constraint
The most common type of constraint examines the request to ensure that some policy has been met, such as
a particular HTTP header value being present. To demonstrate how to create this kind of action constraint,
I added a class file called UserAgentAttribute.cs to the Infrastructure folder of the example project and
used it to define the class shown in Listing 31-19.

Listing 31-19. The Contents of the UserAgentAttribute.cs File in the Infrastructure Folder

using System;
using System.Linq;
using Microsoft.AspNetCore.Mvc.ActionConstraints;

namespace ConventionsAndConstraints.Infrastructure {

 public class UserAgentAttribute : Attribute, IActionConstraint {
 private string substring;

 public UserAgentAttribute(string sub) {
 substring = sub.ToLower();
 }

 public int Order { get; set; } = 0;

 public bool Accept(ActionConstraintContext context) {
 return context.RouteContext.HttpContext
 .Request.Headers["User-Agent"]
 .Any(h => h.ToLower().Contains(substring));
 }
 }
}

This is an action constraint attribute that prevents a request from matching actions when the User-
Agent header doesn’t contain a specified string. Within the Accept method, I get the HTTP headers from the
HttpContext object and use LINQ to see whether any of them contain the substring that is received through
the constructor.

 ■ Note don’t rely on the User-Agent header to identify browsers in real applications because the header
values are often misleading. For example, the version of the Microsoft edge browser that is current as i write
this sends a User-Agent header that contains Android, Apple, Chrome, and Safari, which makes it easy
to mistake it for another browser. a more robust approach is to use a Javascript library such as Modernizr
(http://modernizr.com) to detect the features on which your application relies.

http://modernizr.com/

Chapter 31 ■ Model Conventions and aCtion Constraints

1005

In Listing 31-20, I have applied the constraint to one of the methods in the HomeController class.

Listing 31-20. Applying an Action Constraint in the HomeController.cs File in the Controllers Folder

using ConventionsAndConstraints.Models;
using Microsoft.AspNetCore.Mvc;
using ConventionsAndConstraints.Infrastructure;

namespace ConventionsAndConstraints.Controllers {

 //[AdditionalActions]
 public class HomeController : Controller {

 public IActionResult Index() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 [ActionName("Index")]
 [UserAgent("Edge")]
 public IActionResult Other() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Other)
 });

 //[ActionNamePrefix("Do")]
 [AddAction("Details")]
 public IActionResult List() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(List)
 });
 }
}

I applied the attribute to the Other method and specified that the action should not be allowed to
receive requests whose User-Agent header does not contain the term Edge.

If you start the application and request the /Home/Index URL with Google Chrome and Microsoft Edge,
you will see that the requests are handled by different methods, as illustrated in Figure 31-8.

Figure 31-8. The effect of an action constraint

Chapter 31 ■ Model Conventions and aCtion Constraints

1006

UNDERSTANDING THE EFFECT OF A CONSTRAINT ON ACTION
SELECTION

the previous example reveals an aspect of using constraints that may not be immediately obvious: an
action with a constraint whose Accept method returns true for a request is given preference over an
action to which no constraints have been applied.

there are two Index actions defined by the Home controller—created from the Index and Other methods—
and both of them can be used to process requests whose User-Agent header contains the string Edge. the
reason that the Other method is used to process the request from the edge browser is because it has a
constraint applied to it and that constraint’s Accept method returns true. the idea is that an action that has
a constraint that has accepted a request is a better candidate than an action with no constraints at all.

Creating a Comparative Action Constraint
Through the Candidates and CurrentCandidate properties of the ActionConstraintContext object,
constraints are provided with details of the other actions that are candidates to handle a request. Each
potential match is described using an instance of the ActionSelectorCandidate class, which defines the
properties shown in Table 31-12.

Table 31-12. The ActionSelectorCandidate Properties

Name Description

Action This property returns an ActionDescriptor object that describes the candidate action.

Constraints This property returns a list of IActionConstraint objects that comprise the set of
constraints that have been applied to the candidate action.

Table 31-13. Selected ActionDescriptor Properties

Name Description

Name This property returns the name of the action.

RouteConstraints This property returns an IList<IRouteConstraintProvider> that is used to
restrict how routes target the action.

Parameters This property returns an IList<PropertyModel> that contains descriptions of
the parameters required by the action method.

ActionConstraints This property returns an IList<IActionConstraintMetadata> containing the
constraints for this action.

The ActionDescriptor class is used to describe an action via the properties described in Table 31-13,
many of which are similar to those provided by other context objects.

Chapter 31 ■ Model Conventions and aCtion Constraints

1007

Constraints can inspect the candidate actions and have insight into how and where they have been
applied, which can be used to fine-tune how they work. As an example, consider the way that I have applied
constraints to the Home controller in Listing 31-21.

Listing 31-21. Applying a Constraint in the HomeController.cs File in the Controllers Folder

using ConventionsAndConstraints.Models;
using Microsoft.AspNetCore.Mvc;
using ConventionsAndConstraints.Infrastructure;

namespace ConventionsAndConstraints.Controllers {

 public class HomeController : Controller {

 public IActionResult Index() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Index)
 });

 [ActionName("Index")]
 [UserAgent("Edge")]
 public IActionResult Other() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(Other)
 });

 [UserAgent("Edge")]
 public IActionResult List() => View("Result", new Result {
 Controller = nameof(HomeController),
 Action = nameof(List)
 });
 }
}

There is only one List action in the application, and applying the constraint to it means that only
requests whose User-Agent header contains Edge can use it. If you make a request with Chrome, for
example, then you will receive a 404 – Not Found response.

This is not helpful because users won’t understand why they have received the error, and there is no
explanatory text that suggests using a different browser instead. Action constraints are helpful when you
want to steer the selection of an action method to handle a request and not when you want to prevent a
specific action from being used at all; if that is your goal, then using a filter will allow you to redirect the
client to a descriptive error page, which is a substantially more helpful response.

To address this problem, I have updated the UserAgentAttribute class so that the constraint does not reject
requests when there is only one candidate action available to handle the request, as shown in Listing 31-22.

Listing 31-22. Checking for Other Candidates in the UserAgentAttribute.cs File in the Infrastructure Folder

using System;
using System.Linq;
using Microsoft.AspNetCore.Mvc.ActionConstraints;

Chapter 31 ■ Model Conventions and aCtion Constraints

1008

namespace ConventionsAndConstraints.Infrastructure {

 public class UserAgentAttribute : Attribute, IActionConstraint {
 private string substring;

 public UserAgentAttribute(string sub) {
 substring = sub.ToLower();
 }

 public int Order { get; set; } = 0;

 public bool Accept(ActionConstraintContext context) {
 return context.RouteContext.HttpContext
 .Request.Headers["User-Agent"]
 .Any(h => h.ToLower().Contains(substring))
 || context.Candidates.Count() == 1;
 }
 }
}

The additional LINQ query checks to see whether the candidate action returned by the
CurrentCandidate property is the only one in the collection returned by the Candidates property. If it is,
then the constraint knows that MVC doesn’t have an alternative action available and allows the request.
You can see the effect by starting the application and requesting the /Home/List URL using Google Chrome.
Even though the User-Agent header sent by Chrome doesn’t contain Edge, which is the term specified by the
attribute on the List method, the constraint class determines that there are no other candidates and allows
the request to proceed.

Resolving Dependencies in Action Constraints
The IActionConstraintFactory interface is used when you need to resolve dependencies for an action
constraint through the service provider, which I described in Chapter 18. Here is the definition of the
interface:

using System;

namespace Microsoft.AspNetCore.Mvc.ActionConstraints {

 public interface IActionConstraintFactory : IActionConstraintMetadata {

 IActionConstraint CreateInstance(IServiceProvider services);

 bool IsReusable { get; }
 }
}

The CreateInstance method is called to create new instances of the action constraint class, and the
IsReusable property is used to indicate whether the objects returned by the CreateInstance method can be
used for multiple requests.

http://dx.doi.org/10.1007/978-1-4842-3150-0_18

Chapter 31 ■ Model Conventions and aCtion Constraints

1009

To demonstrate the use of this interface, I need a dependency that will require resolution. To that end, I
added a class file called UserAgentComparer.cs to the Infrastructure folder and used it to define the class
shown in Listing 31-23.

Listing 31-23. The Contents of the UserAgentComparer.cs File in the Infrastructure Folder

using System.Linq;
using Microsoft.AspNetCore.Http;

namespace ConventionsAndConstraints.Infrastructure {

 public class UserAgentComparer {

 public bool ContainsString(HttpRequest request, string agent) {
 string searchTerm = agent.ToLower();
 return request.Headers["User-Agent"]
 .Any(h => h.ToLower().Contains(searchTerm));
 }
 }
}

The UserAgentComparer class defines a single method that looks for a string in the User-Agent header
of an HTTP request. This is the same functionality I used earlier but packaged into a separate class so that I
can use the service provider to manage its life cycle, which I have configured in Listing 31-24.

Listing 31-24. Registering a Type in the Startup.cs File in the ConventionsAndConstraints Folder

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Microsoft.AspNetCore.Builder;
using Microsoft.AspNetCore.Hosting;
using Microsoft.AspNetCore.Http;
using Microsoft.Extensions.DependencyInjection;
using ConventionsAndConstraints.Infrastructure;

namespace ConventionsAndConstraints {

 public class Startup {

 public void ConfigureServices(IServiceCollection services) {
 services.AddSingleton<UserAgentComparer>();
 services.AddMvc().AddMvcOptions(options => {
 //options.Conventions.Add(new ActionNamePrefixAttribute("Do"));
 //options.Conventions.Add(new AdditionalActionsAttribute());
 });
 }

 public void Configure(IApplicationBuilder app, IHostingEnvironment env) {
 app.UseStatusCodePages();
 app.UseDeveloperExceptionPage();

Chapter 31 ■ Model Conventions and aCtion Constraints

1010

 app.UseStaticFiles();
 app.UseMvcWithDefaultRoute();
 }
 }
}

I selected the singleton life cycle, which means that a single instance of the UserAgentComparer will
be used. In Listing 31-25, I have updated the UserAgent constraint so that it delegates the inspection of the
header to a UserAgentComparer object, which is obtained through the service provider.

Listing 31-25. Resolving Dependencies in the UserAgentAttribute.cs File in the Infrastructure Folder

using System;
using System.Linq;
using Microsoft.AspNetCore.Mvc.ActionConstraints;
using Microsoft.Extensions.DependencyInjection;

namespace ConventionsAndConstraints.Infrastructure {

 public class UserAgentAttribute : Attribute, IActionConstraintFactory {
 private string substring;

 public UserAgentAttribute(string sub) {
 substring = sub;
 }

 public IActionConstraint CreateInstance(IServiceProvider services) {
 return new UserAgentConstraint(services.GetService<UserAgentComparer>(),
 substring);
 }

 public bool IsReusable => false;

 private class UserAgentConstraint : IActionConstraint {
 private UserAgentComparer comparer;
 private string substring;

 public UserAgentConstraint(UserAgentComparer comp, string sub) {
 comparer = comp;
 substring = sub.ToLower();
 }

 public int Order { get; set; } = 0;

 public bool Accept(ActionConstraintContext context) {
 return comparer.ContainsString(context.RouteContext
 .HttpContext.Request, substring)
 || context.Candidates.Count() == 1;
 }
 }
 }
}

Chapter 31 ■ Model Conventions and aCtion Constraints

1011

In this model, the attribute that is applied to action methods is responsible for creating instances of the
constraint class when its CreateInstance method is called. The argument to the CreateInstance method
is an IServiceProvider object, which I use in the example to get a UserAgentComparer so I can create an
instance of the private constraint class, which is then used in the selection process.

AVOIDING THE SCOPE TRAP

like other attribute-based features, applying a constraint attribute to a controller class is equivalent to
applying the attribute to each individual method. however, this usually produces undesirable results
because the purpose of constraints is to help MvC select an action method, and that is not the effect
that applying the same constraint to all of the actions in controller generally achieves.

For example, if i applied the UserAgent attribute to the HomeController class, the Index actions
would no longer be reachable by any browser. Both Index actions would be equally suitable for those
browsers that include Edge in the User-Agent string, which will result in an exception. For all other
browsers, neither Index action would be suitable, which will result in a 404 – Not Found response.

it is possible to use the context object in a constraint to look for other constraints and see whether they
are likely to reject the request, but this leads to the Accept method of each constraint being called
many times for each request, which can be an expensive process and one that is best avoided.

Constraints work best when there are multiple action methods that can handle the same request and
then the constraint is applied to those methods.

Summary
In this chapter, I described two features that are used to customize the way that MVC operates. I explained
how model conventions can be used to change the way that classes and methods are mapped to controllers
and actions. I also described how action constraints are used to restrict the range of requests that an action
may process and how they are used to select an action from a list of candidates identified when a request
arrives.

And that is all I have to teach you about ASP.NET Core MVC 2. I started by creating a simple application
and then took you on a comprehensive tour of the different components in the framework, showing you how
they can be configured, customized, or replaced entirely.

I wish you every success in your MVC projects, and I can only hope that you have enjoyed reading this
book as much as I enjoyed writing it.

��������� A
Action results. See Controllers
Actions. See Controllers
Application model, 986

action constraints, 1000
Areas. See Routing
Arrow functions. See Lambda expressions
ASP.NET

Core MVC (see Model View Controller (MVC))
Identity (see Identity)
middleware, 391

Asynchronous methods, 99
async keyword, 101
Attribute routing. See Routing
Authentication. See Identity
Authorization. See Identity
Authorize attribute. See Identity
await keyword, 101

��������� B
Bower, 133, 352

bower.json file, 376
Bundling files, 157

��������� C
C# features

anonymous types, 96
asynchronous methods, 99
extension methods, 85
getting member names, 102
initializers, 80
lambda expressions, 90
null conditional operator, 73
pattern matching, 83
properties, automatically implemented, 76
string interpolation, 79
type inference, 96

Client-side validation. See Model validation

Configuration. See Projects
Connection strings, 211
Controllers, 507

action method parameters, 520
action results, 524
base class, 514
context data, 516
folder, 62
naming conventions, 64
POCO controllers, 512
purpose in MVC pattern, 54
responses, 522

errors, 547
files, 545
HTML, 526
HTTP codes, 547
JSON, 543
redirections, 535
View method, 527

RESTful controllers, 632
content formatting, 645
content negotiation, 647
defining routes, 636
dependencies, 636
HTTP method attributes, 637
JSON, 639
Route attribute, 636
XML, 648

temp data, 541
unit testing, 526
View method, 527

Conventions, 63
controller conventions, 64
layouts, 65
over configuration, 63
view conventions, 64

��������� D
Data model. See Model
Data validation. See Model validation

Index

■ INDEX

1014

Dependency injection, 551
action injection, 581
closely coupled components, 557
concrete types, 570
dependency chains, 568
lifecycles, 573

scoped, 578
singleton, 580
transient, 574

loosely coupled components, 556
manually accessing services, 582
property injection, 582
service provider, 564
SportsStore, 202, 271

Deployment, 334
connection strings, 335
preparing Azure, 335

Domain data. See Model

��������� E
Entity Framework Core

connection string, 887
creating an Identity database, 323
deleting data from the database, 319
migrations, 214, 296, 340
schema changes, 284
scope validation, 213
SportsStore, 209
updating the database, 308

Extension methods, 85, 90

��������� F
Filters, 585

action filters, 597
authorization filters, 594
context data, 593
dependency injection, 610
exception filters, 607
filter types and interfaces, 592
global filters, 618
hybrid action/result filters, 605
order of execution, 620
RequireHttps attribute, 591
result filters, 601

Font Awesome, 276
Form data, 32

��������� G
Git, 351

��������� H
Hosting environment, 402
HTML Helpers. See Tag helpers

��������� I, J, K
Identity, 881

authentication, 920
third-parties, using, 976

authorization, 928
Authorize attribute, 920
claims, 955
connection strings, 324
creating users, 893
custom properties, 951
database, 887
password validation, 897
policies, 955, 964
resources, 970
roles, 928
seed data, 326
SportsStore, 323
third-party authentication, 976
user account validation, 904
user class, creating, 885
UserManager class, 890

Initializers for objects and collections, 80

��������� L
Lambda expressions, 90
Language features. See C# features
Layouts. See Razor, layouts
Linux. See Visual Studio Code
Logging, 415
Loosely coupled components.

See Dependency injection

��������� M
macOS. See Visual Studio Code
Middleware, 391
Minifying files, 157
Model, 26

conventions, 991
role in MVC pattern, 53

Model binding, 33, 811
arrays and collections, 832
complex types, 821
data sources, 839

request bodies, 845

■ INDEX

1015

request headers, 841
default values, 818
simple types, 820

Model validation, 849
asp-validation-summary attribute, 860
checking the model state, 40
client-side validation, 874

SportsStore, 315
custom validation messages, 862
explicit validation, 855
highlighting validation errors, 43
input-validation-error attribute, 858
metadata, 869

Compare attribute, 870
custom attributes, defining, 872
Range attribute, 870
RegularExpression attribute, 870
Required attribute, 870
StringLength attribute, 870

ModelState property, 856, 866
remote validation, 877
SportsStore, 290, 310, 312
validation errors, showing, 858
using nullable types, 40

Model View Controller (MVC)
action method, 17
architectural overview, 6
compared to ASP.NET Web Forms, 4
controller, 17

compared to Web Forms, 35
editing default controller class, 18

conventions, 63
creating new project, 13
extensibility, 7
history of, 3

original MVC Framework, 5
model. See Model
open-source, 9
pattern

ASP.NET implementation, 55
controllers, 54
models, 53
other patterns, 56
separation of concerns, 53
views, 55

projects. See Projects
routing system, 8
view, 20

creating a view, 21
view engine, 23

Moq. See Unit testing
MVC. See Model View Controller (MVC)

��������� N
.NET Core, 5
Node.js, 349
Node Package Manager (NPM), 352
NuGet packages. See Visual Studio
Null conditional operator, 73
Null values, 73

��������� O
OS X. See Visual Studio Code

��������� P, Q
Partial views

SportsStore, 235
Pattern matching, 83
Post/Redirect/Get Pattern, 540
Projects

appsettings.json file, 211
Areas folder, 62
bower.json file, 376
Components folder, 62
Controllers folder, 62
creating new project, 60
Data folder, 62
Dependencies folder, 62
Empty template, 61
hosting environment, 402
Kestrel web server, 385
logging, 415
Migrations folder, 62
Models folder, 62
MVC services, 420
Program class, 382
Program.cs file, 63
Startup class, 386
Startup.cs file, 63
_ViewImports.cshtml file, 111
Views folder, 62
Web Application (MVC) template, 61

Properties, automatically implemented, 76

��������� R
Razor, 23

conditional statements, 122
configuration, 684
in context, 105
expressions, 109
layouts, 23, 112

■ INDEX

1016

Layout property, 112
@model expression, 36, 109, 119
model keyword, 36
@model vs. @Model, 109
@RenderBody expression, 113
strongly typed views, 110
@using expression, 112
view imports, 111
_ViewImports.cshtml file, 111
view location expanders, 685
Views/Shared folder, 118
_ViewStart.cshtml file, 116
view start file, 116
Visual Studio IntelliSense, 110

Razor View Engine. See Razor
Receiving form data, 32
RESTful Controllers. See Controllers
Routing, 8, 429

areas, 497
Area attribute, 499

attribute routing, 463
Route attribute, 464

best practices, 503
catchall segments, 451
constraints, 453

combining, 459
custom, 461
regular expressions, 457
types, 458
values, 458

creating links, 471
customization, 484
default values, 437
MapRoute method, 435
optional segments, 449
ordering routes, 442
outgoing URLs, 471
segment variable reuse, 478
segment variables, 445
SportsStore, 207
static segments, 440
URL patterns, 434
URL segments, 434

��������� S
Scope validation, 213
Separation of concerns. See Model View Controller

(MVC), pattern
Services. See Dependency injection
Session data, 263

temp data, 311
SportsStore

administration features, 295
Bootstrap CSS framework, 231

checkout process, 280
configuration, 212
connection string, 211
controllers, 204
database context class, 210
database, creating, 208
dependency injection, 271
deployment, 334
migrations, 284
model, creating, 200
navigation, 237
pagination, 218
partial view, 235
project, creating, 194
routing, 207
session data, 263
shopping cart, 257
tag helper, 221
unit test project, creating, 198
validation, 290
views, 205

SQLite, 364
Static content, 63
String interpolation, 79

��������� T
Tag helpers, 29, 721

anchor elements, 797
application relative URLs, 806
asp-action attribute, 29, 31, 758, 797
asp-antiforgery attribute, 758
asp-append-version attribute, 784
asp-area attribute, 758, 797
asp-controller attribute, 758, 797
asp-fallback-* attributes, 784, 794
asp-for attribute, 31, 762, 768, 770, 777
asp-format attribute, 762
asp-fragment attribute, 797
asp-host attribute, 797
asp-href-exclude attribute, 794
asp-href-include attribute, 794
asp-items attribute, 770
asp-route attribute, 758, 797
asp-src-exclude attribute, 784
asp-src-include attribute, 784
asp-validation-for attribute, 864
asp-validation-summary attribute, 42, 860, 867
cache busting, 791
caching, 799
content delivery networks, 792
context data, 729
cross-site request forgery, 760
CSS files, 794
form elements, 755
hosting environment, 783

Razor (cont.)

■ INDEX

1017

image elements, 798
input elements, 762
Javascript files, 784
label elements, 768
output, producing, 730
registration, 731
scope, 734
select and option elements, 770
shorthand elements, creating, 739
SportsStore, 221
TagHelper base class, 728
textarea elements, 777

Temp data, 311

��������� U
Unit testing, 167

controllers, 526
Fact attribute, 170
filters, 596
isolating components, 174
mocking framework, 187
project configuration, 168
running tests, 172
SportsStore, 198
tag helpers, 733
test-driven development, 180
view components, 712
Visual Studio Code, 370

URL Routing. See Routing

��������� V
Validation. See Model validation
View bag, 534
View bag data, 24
View components, 691

asynchronous view components, 713
context data, 707
controllers, combined with, 715
HTML results, 705
partial views, 703
POCO view components, 699
results, 702
SportsStore, 246
ViewComponent base class, 700

ViewResult class, 23
Views, 657

appsettings.json file, 63
creating HTML form, 30
csproj file, 63
JSON data, 682
layout sections, 673
@model expression, 28
naming conventions, 64

optional sections, 677
partial views, 679
purpose in MVC pattern, 55
Razor, 666
search locations, 528
selecting specific views, 687
specifying a model type, 28
strongly typed, 27
view engines, 659
view imports file, 62
Views folder, 62
view start file, 63

Visual Studio
Bower, 133

bower.json file, 133
package version numbers, 135

Browser Link, 147
bundling and minification, 157
client-side packages, 133
configuring authentication, 14
debugging, 142

breakpoints, 143
data values, 146

developer exception pages, 141
IIS Express, 19
installing, 11
iterative development, 137
NuGet packages, 131
project templates

file and folder structure, 16
Web Application (Model-View-Controller), 14

scaffolding, 204
selecting browser, 17
starting an application, 16
Test Explorer window, 172

Visual Studio 2015. See Visual Studio
Visual Studio Code, 349

Bower, 352
C# extension, 355
creating new project, 356
Git, 351
installing, 353
.NET Core, 352
Node.js, 349
Node Package Manager (NPM), 352
SQLite, 364
unit testing, 370

��������� W
Web API. See Controllers

��������� X, Y, Z
xUnit. See Unit testing

	Brief Contents
	Contents
	--- Introducing Core MVC 2
	ASP .NET Core MVC in Context
	Understanding the History of ASP.NET Core MVC
	Understanding ASP.NET Core
	What Do I Need to Know?
	What Is the Structure of This Book?
	Where Can You Get the Example Code?
	Where Can You Get Corrections for This Book?
	Contacting the Author
	Summary

	Your First MVC Application
	Installing Visual Studio
	Installing the .NET Core 2.0 SDK
	Creating a New ASP.NET Core MVC Project
	Rendering Web Pages
	Creating a Simple Data-Entry Application
	Summary

	The MVC Pattern, Projects, and Conventions
	The History of MVC
	Understanding the MVC Pattern
	Comparing MVC to Other Patterns
	Understanding ASP.NET Core MVC Projects
	Summary

	Essential C# Features
	Preparing the Example Project
	Using the Null Conditional Operator
	Using Automatically Implemented Properties
	Using String Interpolation
	Using Object and Collection Initializers
	Pattern Matching
	Using Extension Methods
	Using Lambda Expressions
	Using Type Inference and Anonymous Types
	Using Asynchronous Methods
	Getting Names
	Summary

	Working with Razor
	Preparing the Example Project
	Working with the Model Object
	Working with Layouts
	Using Razor Expressions
	Summary

	Working with Visual Studio
	Preparing the Example Project
	Managing Software Packages
	Understanding Iterative Development
	Preparing JavaScript and CSS for Deployment
	Summary

	Unit Testing MVC Applications
	Preparing the Example Project
	Unit Testing MVC Applications
	Improving Unit Tests
	Summary

	SportsStore: A Real Application
	Getting Started
	Starting the Domain Model
	Displaying a List of Products
	Preparing a Database
	Adding Pagination
	Styling the Content
	Summary

	SportsStore: Navigation
	Adding Navigation Controls
	Building the Shopping Cart
	Summary

	SportsStore: Completing the Cart
	Refining the Cart Model with a Service
	Completing the Cart Functionality
	Submitting Orders
	Summary

	SportsStore: Administration
	Managing Orders
	Adding Catalog Management
	Summary

	SportsStore: Security and Deployment
	Securing the Administration Features
	Deploying the Application
	Summary

	Working with Visual Studio Code
	Setting Up the Development Environment
	Creating an ASP.NET Core Project
	Preparing the Project with Visual Studio Code
	Re-creating the PartyInvites Application
	Unit Testing in Visual Studio Code
	Summary

	--- Core MVC 2 in Detail
	Configuring Applications
	Preparing the Example Project
	Configuring the Project
	Understanding the Program Class
	Understanding the Startup Class
	Configuring the Application
	Configuring MVC Services
	Dealing with Complex Configurations
	Summary

	URL Routing
	Preparing the Example Project
	Introducing URL Patterns
	Creating and Registering a Simple Route
	Defining Default Values
	Using Static URL Segments
	Defining Custom Segment Variables
	Constraining Routes
	Using Attribute Routing
	Summary

	Advanced Routing Features
	Preparing the Example Project
	Generating Outgoing URLs in Views
	Customizing the Routing System
	Working with Areas
	URL Schema Best Practices
	Summary

	Controllers and Actions
	Preparing the Example Project
	Understanding Controllers
	Creating Controllers
	Receiving Context Data
	Producing a Response
	Summary

	Dependency Injection
	Preparing the Example Project
	Creating Loosely Coupled Components
	Introducing ASP.NET Dependency Injection
	Understanding Service Life Cycles
	Using Action Injection
	Using the Property Injection Attributes
	Manually Requesting an Implementation Object
	Summary

	Filters
	Preparing the Example Project
	Using Filters
	Understanding Filters
	Using Authorization Filters
	Using Action Filters
	Using Result Filters
	Using Exception Filters
	Using Dependency Injection for Filters
	Creating Global Filters
	Understanding and Changing Filter Order
	Summary

	API Controllers
	Preparing the Example Project
	Understanding the Role of RESTful Controllers
	Introducing REST and API Controllers
	Understanding Content Formatting
	Summary

	Views
	Preparing the Example Project
	Creating a Custom View Engine
	Working with the Razor Engine
	Adding Dynamic Content to a Razor View
	Configuring Razor
	Summary

	View Components
	Preparing the Example Project
	Understanding View Components
	Creating a View Component
	Creating Hybrid Controller/View Component Classes
	Summary

	Understanding Tag Helpers
	Preparing the Example Project
	Creating a Tag Helper
	Advanced Tag Helper Features
	Summary

	Using the Form Tag Helpers
	Preparing the Example Project
	Working with Form Elements
	Working with Input Elements
	Working with Label Elements
	Working with Select and Option Elements
	Working with Text Areas
	Understanding the Validation Form Tag Helpers
	Summary

	Using the Other Built-in Tag Helpers
	Preparing the Example Project
	Using the Hosting Environment Tag Helper
	Using the JavaScript and CSS Tag Helpers
	Working with Anchor Elements
	Working with Image Elements
	Using the Data Cache
	Using Application-Relative URLs
	Summary

	Model Binding
	Preparing the Example Project
	Understanding Model Binding
	Specifying a Model Binding Source
	Summary

	Model Validation
	Preparing the Example Project
	Understanding the Need for Model Validation
	Explicitly Validating a Model
	Specifying Validation Rules Using Metadata
	Performing Client-Side Validation
	Performing Remote Validation
	Summary

	Getting Started with Identity
	Preparing the Example Project
	Setting Up ASP.NET Core Identity
	Using ASP.NET Core Identity
	Completing the Administration Features
	Summary

	Applying ASP.NET Core Identity
	Preparing the Example Project
	Authenticating Users
	Authorizing Users with Roles
	Seeding the Database
	Summary

	Advanced ASP.NET Core Identity
	Preparing the Example Project
	Adding Custom User Properties
	Working with Claims and Policies
	Using Third-Party Authentication
	Summary

	Model Conventions and Action Constraints
	Preparing the Example Project
	Using the Application Model and Model Conventions
	Using Action Constraints
	Summary

	Index

