

Introduction to

 Python Programming

http://taylorandfrancis.com

Introduction to

 Python Programming

Gowrishankar S.
Veena A.

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2019 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-0-8153-9437-2 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts have been made
to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all
materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all
material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future
reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized
in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying,
microfilming, and recording, or in any information storage or retrieval system, without written permission from the
publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.
copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400.
CCC is a not-for-profit organization that provides licenses and registration for a variety of users. For organizations that have been
granted a photocopy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for
identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data

Names: S, Gowrishankar, author. | A, Veena author.
Title: Introduction to Python programming / Gowrishankar S, Veena A.
Description: Boca Raton : Taylor & Francis, a CRC title, part of the Taylor &
Francis imprint, a member of the Taylor & Francis Group, the academic
division of T&F Informa, plc, 2018. | Includes bibliographical references
and index.
Identifiers: LCCN 2018046894 | ISBN 9780815394372 (hardback : alk. paper) |
ISBN 9781351013239 (ebook)
Subjects: LCSH: Python (Computer program language)
Classification: LCC QA76.73.P98 S2325 2018 | DDC 005.13/3--dc23
LC record available at https://lccn.loc.gov/2018046894

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
http://www.copyright.com/
https://lccn.loc.gov/2018046894
http://www.taylorandfrancis.com
http://www.crcpress.com

Dedicated to my wife Roopa K. M. and to my sister Ashwini S. Nath.

—Dr. Gowrishankar S.

I would love to dedicate this book to my parents, and my family

for their love, support and encouragement.

—Veena A.

http://taylorandfrancis.com

vii

Contents

Preface ... xiii
Acknowledgment ... xvii
Authors ... xix

 1. Introduction ...1
1.1 What Is a Program? ..1
1.2 Programming Languages ..2

1.2.1 Machine Language ..2
1.2.2 Assembly Language ..3
1.2.3 High-Level Language ...3

1.3 Software Development ...5
1.4 History of Python Programming Language ...7
1.5 Thrust Areas of Python..8

1.5.1 Academia ..9
1.5.2 Scientific Tools ... 10
1.5.3 Machine Learning ... 10
1.5.4 Natural Language Processing ... 10
1.5.5 Data Analysis ... 10
1.5.6 Statistics .. 11
1.5.7 Hypertext Transfer Protocol (HTTP) Library .. 11
1.5.8 Database Connectors/ORM/NoSQL Connectors 11
1.5.9 Web Frameworks ... 11
1.5.10 Cloud Computing.. 11
1.5.11 Python Distributions .. 12
1.5.12 IDE Available ... 12
1.5.13 Community .. 12
1.5.14 Python Stack in Industry ... 12

1.6 Installing Anaconda Python Distribution .. 13
1.7 Installing PyCharm IDE to Set Up a Python Development Environment 16
1.8 Creating and Running Your First Python Project .. 19
1.9 Installing and Using Jupyter Notebook...23

1.9.1 Starting Jupyter Notebook ... 24
1.10 Open Source Software ... 27

1.10.1 Why Do People Prefer Using Open Source Software?28
1.10.2 Doesn’t “Open Source” Just Mean Something Is Free of Charge? 29
1.10.3 Open Source Licenses ... 29

1.11 Summary .. 32
Multiple Choice Questions ... 32
Review Questions ..34

 2. Parts of Python Programming Language ..35
2.1 Identifiers ...35
2.2 Keywords ...36

viii Contents

2.3 Statements and Expressions ..36
2.4 Variables ... 37

2.4.1 Legal Variable Names ... 37
2.4.2 Assigning Values to Variables ... 37

2.5 Operators ..38
2.5.1 Arithmetic Operators .. 39
2.5.2 Assignment Operators ..40
2.5.3 Comparison Operators ...42
2.5.4 Logical Operators ..43
2.5.5 Bitwise Operators ..44

2.6 Precedence and Associativity ... 47
2.7 Data Types ..48

2.7.1 Numbers ...48
2.7.2 Boolean ...48
2.7.3 Strings ...48
2.7.4 None .. 49

2.8 Indentation ... 49
2.9 Comments ..50

2.9.1 Single Line Comment ...50
2.9.2 Multiline Comments ...50

2.10 Reading Input ..50
2.11 Print Output ... 51

2.11.1 str.format() Method .. 51
2.11.2 f-strings ...53

2.12 Type Conversions ..54
2.12.1 The int() Function ..54
2.12.2 The float() Function..55
2.12.3 The str() Function ..55
2.12.4 The chr() Function ...56
2.12.5 The complex() Function ...56
2.12.6 The ord() Function ... 57
2.12.7 The hex() Function ... 57
2.12.8 The oct() Function .. 57

2.13 The type() Function and Is Operator ..58
2.14 Dynamic and Strongly Typed Language ..58
2.15 Summary .. 59
Multiple Choice Questions ...60
Review Questions ..65

 3. Control Flow Statements ... 67
3.1 The if Decision Control Flow Statement ..68
3.2 The if…else Decision Control Flow Statement ... 69
3.3 The if…elif…else Decision Control Statement .. 71
3.4 Nested if Statement ... 73
3.5 The while Loop ... 74
3.6 The for Loop ... 79
3.7 The continue and break Statements .. 81

ixContents

3.8 Catching Exceptions Using try and except Statement ..84
3.8.1 Syntax Errors ..84
3.8.2 Exceptions ..84
3.8.3 Exception Handling Using try…except…finally85

3.9 Summary .. 89
Multiple Choice Questions ...90
Review Questions .. 93

 4. Functions .. 95
4.1 Built-In Functions ... 95
4.2 Commonly Used Modules ... 97
4.3 Function Definition and Calling the Function ...99
4.4 The return Statement and void Function .. 103
4.5 Scope and Lifetime of Variables ... 106
4.6 Default Parameters ... 108
4.7 Keyword Arguments .. 109
4.8 *args and **kwargs .. 110
4.9 Command Line Arguments .. 112
4.10 Summary .. 113
Multiple Choice Questions ... 113
Review Questions .. 117

 5. Strings ... 119
5.1 Creating and Storing Strings ... 119

5.1.1 The str() Function .. 120
5.2 Basic String Operations .. 120

5.2.1 String Comparison .. 122
5.2.2 Built-In Functions Used on Strings .. 122

5.3 Accessing Characters in String by Index Number ... 123
5.4 String Slicing and Joining .. 124

5.4.1 Specifying Steps in Slice Operation .. 126
5.4.2 Joining Strings Using join() Method ... 127
5.4.3 Split Strings Using split() Method ... 127
5.4.4 Strings Are Immutable ... 128
5.4.5 String Traversing ... 128

5.5 String Methods .. 131
5.6 Formatting Strings .. 138

5.6.1 Format Specifiers ... 140
5.6.2 Escape Sequences .. 141
5.6.3 Raw Strings .. 142
5.6.4 Unicodes ... 142

5.7 Summary .. 143
Multiple Choice Questions ... 143
Review Questions .. 146

 6. Lists.. 149
6.1 Creating Lists ... 149
6.2 Basic List Operations .. 151

6.2.1 The list() Function .. 151

x Contents

6.3 Indexing and Slicing in Lists ... 152
6.3.1 Modifying Items in Lists .. 153

6.4 Built-In Functions Used on Lists .. 155
6.5 List Methods .. 156

6.5.1 Populating Lists with Items ... 158
6.5.2 Traversing of Lists ... 159
6.5.3 Nested Lists .. 167

6.6 The del Statement .. 169
6.7 Summary .. 170
Multiple-Choice Questions ... 170
Review Questions .. 173

 7. Dictionaries .. 175
7.1 Creating Dictionary .. 175
7.2 Accessing and Modifying key:value Pairs in Dictionaries 178

7.2.1 The dict() Function ... 179
7.3 Built-In Functions Used on Dictionaries ... 179
7.4 Dictionary Methods .. 181

7.4.1 Populating Dictionaries with key:value Pairs 183
7.4.2 Traversing of Dictionary .. 185

7.5 The del Statement .. 193
7.6 Summary .. 193
Multiple Choice Questions ... 193
Review Questions .. 198

 8. Tuples and Sets.. 201
8.1 Creating Tuples ... 201
8.2 Basic Tuple Operations ... 203

8.2.1 The tuple() Function .. 204
8.3 Indexing and Slicing in Tuples ... 205
8.4 Built-In Functions Used on Tuples ... 207
8.5 Relation between Tuples and Lists ... 208
8.6 Relation between Tuples and Dictionaries .. 209
8.7 Tuple Methods ... 210

8.7.1 Tuple Packing and Unpacking .. 211
8.7.2 Traversing of Tuples .. 211
8.7.3 Populating Tuples with Items .. 212

8.8 Using zip() Function .. 216
8.9 Sets .. 216
8.10 Set Methods ... 218

8.10.1 Traversing of Sets .. 219
8.11 Frozenset .. 221
8.12 Summary ..222
Multiple Choice Questions ...222
Review Questions ..227

xiContents

 9. Files ..229
9.1 Types of Files ...230

9.1.1 File Paths ... 231
9.1.2 Fully Qualified Path and Relative Path .. 232

9.2 Creating and Reading Text Data ...233
9.2.1 Creating and Opening Text Files ..233
9.2.2 File close() Method ...235
9.2.3 Use of with Statements to Open and Close Files 237
9.2.4 File Object Attributes .. 239

9.3 File Methods to Read and Write Data .. 239
9.4 Reading and Writing Binary Files .. 247
9.5 The Pickle Module .. 249
9.6 Reading and Writing CSV Files .. 251
9.7 Python os and os.path Modules ... 257
9.8 Summary .. 261
Multiple Choice Questions ... 262
Review Questions .. 265

 10. Regular Expression Operations ... 267
10.1 Using Special Characters ... 267

10.1.1 Using r Prefix for Regular Expressions .. 272
10.1.2 Using Parentheses in Regular Expressions ... 272

10.2 Regular Expression Methods .. 273
10.2.1 Compiling Regular Expressions Using compile() Method of

re Module .. 273
10.2.2 Match Objects .. 274

10.3 Named Groups in Python Regular Expressions .. 282
10.4 Regular Expression with glob Module ... 282
10.5 Summary ..284
Multiple Choice Questions ...284
Review Questions .. 287

 11. Object-Oriented Programming ... 289
11.1 Classes and Objects .. 289
11.2 Creating Classes in Python ... 291
11.3 Creating Objects in Python ... 293
11.4 The Constructor Method ... 294
11.5 Classes with Multiple Objects ... 297

11.5.1 Using Objects as Arguments ... 301
11.5.2 Objects as Return Values ..303

11.6 Class Attributes versus Data Attributes ..306
11.7 Encapsulation .. 307

11.7.1 Using Private Instance Variables and Methods309
11.8 Inheritance ... 311

11.8.1 Accessing the Inherited Variables and Methods 312
11.8.2 Using super() Function and Overriding Base Class Methods 314

xii Contents

11.8.3 Multiple Inheritances .. 317
11.8.4 Method Resolution Order (MRO) ... 320

11.9 The Polymorphism ... 328
11.9.1 Operator Overloading and Magic Methods .. 331

11.10 Summary ..335
Multiple Choice Questions ...336
Review Questions ..338

 12. Introduction to Data Science .. 341
12.1 Functional Programming .. 341

12.1.1 Lambda ... 341
12.1.2 Iterators ...342
12.1.3 Generators ..343
12.1.4 List Comprehensions ..344

12.2 JSON and XML in Python ...346
12.2.1 Using JSON with Python ...347
12.2.2 Using Requests Module ..353
12.2.3 Using XML with Python .. 355
12.2.4 JSON versus XML ... 359

12.3 NumPy with Python .. 359
12.3.1 NumPy Arrays Creation Using array() Function360
12.3.2 Array Attributes .. 361
12.3.3 NumPy Arrays Creation with Initial Placeholder Content 362
12.3.4 Integer Indexing, Array Indexing, Boolean Array

Indexing, Slicing and Iterating in Arrays ..364
12.3.5 Basic Arithmetic Operations on NumPy Arrays 367
12.3.6 Mathematical Functions in NumPy ...368
12.3.7 Changing the Shape of an Array .. 369
12.3.8 Stacking and Splitting of Arrays ... 370
12.3.9 Broadcasting in Arrays ... 371

12.4 Pandas ... 374
12.4.1 Pandas Series ... 375
12.4.2 Pandas DataFrame ..380

12.5 Altair ... 398
12.6 Summary ..409
Multiple Choice Questions ... 410
Review Questions .. 413

Appendix-A: Debugging Python Code ... 415

Bibliography ..425

Solutions ..427

Index ... 437

xiii

Preface

This book presents an intuitive approach to the concepts of Python Programming for
students. It is appropriate for courses generally known as “Introduction to Python
Programming.” We have tried to write a book that assists students in discovering the
power of Python programming. We have taken into account the reality that students taking
“Introduction to Python Programming” course are likely to come from a variety of dis-
ciplines. In addition to Computer Science majors, there tend to be students from other
majors like other engineering streams, physics, chemistry, biology, environmental science,
geography, economics, psychology and business.

This book differs from traditional texts not only in its philosophy but also in its overall
focus, level of activities, development of topics, and attention to programming details. The
emphasis is on understanding Python programming concepts. Reading a programming
book is different from reading a newspaper or a novel. Don’t be discouraged if you have
to read a passage more than once in order to understand it. We recommend that you keep
this book for reference purposes after you finish working through the course. Because
you will likely forget some of the specific details of Python programming language, the
book will serve as a useful reminder. Students will appreciate the many programming
examples within the text. Programs are carefully selected to bring the theoretical concepts
to fruition. Our aim is to get the reader to productivity as quickly as possible without sac-
rificing the overall flow quality.

In fact, if you are a novice programmer, with some dedication and hard work you should
be able to learn Python Programming as your first programming language. As we intro-
duce each new feature of the language, we usually provide a complete program as an
example to illustrate the feature. Just as a picture is worth a thousand words, so is a prop-
erly chosen programming example. We present the material in a way to encourage student
thinking and we show students how to generalize key concepts once they are introduced,
which can be used to solve real-world problems. Programming questions that accompany
the end of each chapter are based on worked examples which help students to gain solid
knowledge of the basics and assess their own level of understanding before moving on.
Students are highly encouraged to solve these programs to gain a solid hold on Python
programming language.

This book takes you through step by step process of learning the Python programming
language. Each line of the code is marked with numbers and is explained in detail. In this
book all the names of variables, strings, lists, dictionaries, tuples, functions, methods and
classes consist of several natural words and in the explanation part they are written in
italics to indicate the readers that they are part of programming code and to distinguish
them from normal words. This programming style of using readable natural names makes
the reading of code lot easier and prevents programming errors. Learning outcome com-
ponent is mentioned at the beginning of each chapter that calls the attention of the readers
to important items in the chapter. A summary of important concepts appears at the end
of each chapter.

We hope that students using the book will come away with an appreciation of the beauty,
power, and tremendous utility of Python programming language and that they will have
fun along the way.

xiv Preface

Organization of Chapters

Here’s a brief rundown of what you will find in each chapter:

In Chapter 1, the advantages of using Python programming language is discussed
and the scope of Python’s reach, and all the different areas of application develop-
ment in which Python plays a part is identified. This chapter also covers the down-
loading and installation of Anaconda distribution and PyCharm IDE. You will be
guided towards setting up your own Python development environment. You will
understand the meaning of Open Source Software and its various licenses.

In Chapter 2, you will learn the basic building blocks of Python programming lan-
guage like arithmetic operators, data types, operator precedence and associativ-
ity and construct complex expressions using operators. This chapter teaches you
the syntax of Python language which you need to know before writing Python
programs.

In Chapter 3, Python statements such as if, if…else, if…elif…else are taught which are
used to transfer the control from one part of the program to another. Loops to run
one or more statements repeatedly are examined. Controlling the flow of execu-
tion is carried out through the break and continue statements. To take advantage
of the iterative capabilities in a computer, you need to know how to include loops
and conditional logic within your program. How to deal with errors in the input
is also part of this chapter.

In Chapter 4, you will determine how to create functions, pass values to and return
values from the function. In this chapter, commonly used modules and built-in
functions are identified. This chapter also includes discussion on different func-
tion features like keyword arguments and variable number of arguments. You’ll
learn how to use functions to make your code more efficient and flexible.

In Chapter 5, some of the more commonly occurring string tasks, such as concat-
enating strings, trimming of white spaces, splitting string as well as finding sub-
strings within strings is covered. Various string methods to manipulate strings are
described in detail. Indexing, slicing and joining of strings are illustrated through
figures. Formatting of the string using f-strings is also outlined.

In Chapter 6, one of the main pillars of Python programming language and the built-
in data type, Lists, is discussed which acts as a container to hold items of differ-
ent types. Creating, slicing and indexing of lists is elaborated with high-grade
examples. Use of list methods in manipulating Python programs is demonstrated.

In Chapter 7, another built-in data type in Python programming language, Dictionary,
is covered in depth. Accessing and modifying the key:value pairs of Dictionaries
is demonstrated.

In Chapter 8, role of tuples in returning multiple values from functions and storing
heterogeneous elements of fixed sized is discussed. Mathematical operations like
union and intersection are demonstrated using sets. Different methods supported
by tuples and sets are identified.

In Chapter 9, you will deal with file-based input and output functions, including
how to load files, perform basic operations, and save the results back to disk.

xvPreface

The difference between a text file and a binary file is covered. Functions needed
for manipulation of CSV files programmatically are also addressed. This chapter
shows the modules required for navigating and accessing file systems using the
Python programming language.

In Chapter 10, regular expression concepts are introduced. You explore the use of
regular expressions in Python programs through re module.

In Chapter 11, you will look at how Object-oriented paradigm is implemented in
Python programming language. You will look at creating classes and objects.
Various Object-oriented concepts like encapsulation, inheritance and polymor-
phism are explained. This chapter also introduces the concept of operator over-
loading which plays a pivotal role in program development. These concepts
transcend a particular programming language and are important to the success of
an Object-oriented programming solution.

In Chapter 12, you begin with Functional programming features of Python program-
ming language. You will see how to handle common data formats like JSON and
XML. Modules like NumPy and pandas, required to develop Data Science solu-
tions, are also touched upon in this chapter. Altair data visualization library for
Python is introduced in this chapter.

In the Appendix-A, steps involved in debugging a Python program are listed.

Who Should Read This Book?

This book is for beginners to Python programming who are interested in learning the
basics of Python programming language.

Availability of Source Code

As you work through the programming examples given in the book, you can either type
the programs manually or download the programs from https://github.com/gowrishan
karnath/Introduction_To_Python_Programming. You are strongly encouraged to run
each of these programs and compare the results obtained in your system to those shown
in the text. By doing so, you will learn the language and its syntax.

Software Requirements

All the code in the book works with Python 3.6 version or above. Since f-strings are used
throughout the book which was introduced in Python 3.6 version, you need to have
Python interpreter 3.6 or above for the code to work as it is. Install the latest version of
64-bit Anaconda Distribution with support for Python 3.6 or above. If you want to make
the code work with Python 3.1 to 3.5 versions, use str.format() statements within the print()
function instead of f-strings. The rest of the statements within the code remains the same
and the code should work fine. It is highly recommended that you use the latest version of
PyCharm Community Edition to execute the programs. You will gain valuable insights in
to Python programming language by using this IDE, no matter whether you are a beginner
or an experienced professional.

https://github.com/gowrishankarnath/Introduction_To_Python_Programming
https://github.com/gowrishankarnath/Introduction_To_Python_Programming

xvi Preface

Icons Used

It is a technical trivia which you might find interesting. Please take note of it.

There are a few concepts which we may have to glance at beforehand itself
without dwelling deep into it. But if you want to find more about the same
then we indicate it in here.

Support for the Book

We will try to address your questions within an appropriate timeframe. Understand that
we have a day job just like you and we may not be able to respond immediately. Rest
assured we will respond to genuine questions and we do not like to keep our readers in
the dark whatsoever.

This Book Is Not for You

If you are an advanced Python Programmer or if you are a Professional who is well versed
in another programming language, then this book is not for you. The programming exam-
ples and the explanations are kept simple. Please understand that with your advanced
knowledge you might feel that we are apparently dealing with basic stuff but what might
be a basic material to you is not the same to someone who is learning to write code for the
first time.

Errata

We hope to improve this book continually. If you have any suggestions for improving this
text or if an error should be found, the authors would be grateful if notification were sent
by e-mail to gowrishankarnath@acm.org. To ensure your messages do not end up in our junk
mail folder, please include subject as “Introduction to Python Programming.”

mailto:gowrishankarnath@acm.org

xvii

Acknowledgment

Writing a book requires the contribution of many individuals. I have been blessed with the
support of many people who have encouraged me all along the way to ensure this project
reached the stage of completion. I have tried to acknowledge every one of those of whom
I’m conscious of and hope others will forgive me for lapses in my memory.

I would like to express deep appreciation to my co-author Mrs. Veena A., Assistant
Professor, Dr.AIT, who was absolutely wonderful to work with in crafting this book.

I would like to thank the Management and Principal of Dr. Ambedkar Institute of Tech-
no logy (Dr.AIT), Bengaluru; Sri S. Mariswamy (The Honourable Chairman, PVPWT),
Sri A. R. Krishnamurthy (The Honourable Secretary, PVPWT), Sri P. L. Nanjundaswamy
(Trustee, PVPWT), Sri S. Shivamallu (Trustee, PVPWT), Dr. M. Mahadeva (Trustee,
PVPWT) and Dr. C. Nanjundaswamy (Principal, Dr.AIT) for their positive influence, kind
support and encouragement during this project.

I wish to thank the following members for providing direction on the develop-
ment of this book; Dr. H. N. Jagannatha Reddy (Registrar, Visvesvaraya Technological
University), Dr. Subir Kumar Sarkar (Professor, Jadavpur University), Dr. T. G. Basavaraju
(Professor, Government SKSJTI), Dr. C. N. Ravi Kumar (Principal, Mysore College
of Engineering and Management), Dr. Basavaraj Anami (Principal, KLE Institute of
Technology), Dr. G. N. Krishna Murthy (Principal, B.N.M. Institute of Technology),
Dr. H. S. Arvinda (Professor, JSS Academy of Technical Education), Dr. D. H. Manjaiah
(Professor, Mangalore University), Dr. H. S. Guruprasad (Professor, BMS College of
Engineering), Dr. S. N. Chandrashekara (Professor, C Byregowda Institute of Technology),
and Mr. Sharath Malve (Network Architect, Honeywell India).

I am lucky to work with wonderful colleagues at Dr.Ambedkar Institute of Technology,
Bengaluru, India. In one way or another, they all have influenced me and my teaching
which helped in shaping this book. I thank them all and would like to add particular men-
tion of these; Dr. Siddaraju (Professor, Dr.AIT), Dr. Meenakshi M. Bhat (Professor, Dr.AIT),
Mrs. Asha (Associate Professor, Dr.AIT), Mrs. Leena Giri G (Associate Professor, Dr.AIT),
Mr. Shamshekhar S. Patil (Associate Professor, Dr.AIT), Mr. A. H. Srinivasa (Associate
Professor, Dr.AIT), Mr. D. Suresha (Associate Professor, Dr.AIT), Mr. G. Harish (Associate
Professor, Dr.AIT), Dr. S. Prakash (Associate Professor, Dr.AIT), Mr. M. V. Praveena
(Assistant Professor, Dr.AIT) and Mrs. Lavanya Santhosh (Assistant Professor, Dr.AIT).

Here is the list of developers who have enthused me a lot towards programming: Wes
McKinney (Creator, pandas library), Scott Hanselman (Principal Program Manager,
Microsoft), Armin Ronacher (Creator, Flask Web Framework), Kenneth Reitz (Creator,
Requests library), Jake Vanderplas (Co-creator, Altair library), Brian Granger (Co-founder,
Project Jupyter), Adrian Holovaty (Co-creator, Django Web Framework), Hadley
Wickham(Chief Scientist, RStudio), David Robinson (Chief Data Scientist, DataCamp), Jon
Skeet (Developer, Google) and Mara Averick (Tidyverse Dev Advocate, RStudio).

We owe a deep debt of gratitude to Mrs. Aastha Sharma, Senior Commission Editor,
CRC Press/Taylor & Francis, and Ms. Shikha Garg, Editorial Assistant, CRC Press/Taylor &
Francis, for keeping faith in us even when deadlines slipped and for keeping our book on
the track by responding to our questionnaires promptly. We are grateful to various

xviii Acknowledgment

reviewers who reviewed this book and provided feedback and corrections. Your sugges-
tions have significantly improved this book. I like to thank Mrs. Shannon Stanton, the pro-
duction manager from Lumina Datamatics for her untiring effort in reproducing various
drafts of the manuscript before sending the book to print. We also express our thanks to
all the people at CRC Press/Taylor & Francis who contributed their efforts to the produc-
tion of this book.

I cannot forget the unending love and support given by my parents, Pushpalatha S. Nath
and Dr. S. Surendranath. It is from them I learned the virtue of patience and that never-
say-die attitude. Without their proper guidance I would have become lost in due course
of my life. What I am today is only because of them. My sisters, Ashwini S. Nath and Dr.
Shalini S. Nath, are the ones with whom I shared all the finer moments of my growing
years. You all are my inspiration and motivation for continuing to improve my knowledge
and move my career forward.

I now know that writing a book is a colossal task that keeps a person away from family
activities. No words can describe the amount of sacrifice my wife Roopa K. M. and son
Yashmith G. Nath have done during the preparation of this book and those silent tears
that have been shed for sacrificing the family time together. Their cheerful smile, devoted
accompaniment and constant love kept me moving forward.

I would also like to thank all my friends and relatives who in some way have helped me
to achieve this task.

Finally, I would like to thank the Almighty God for giving me that inner strength to
complete this project.

Dr. Gowrishankar S.

“Introduction to Python Programming” was a delight and a brainstorming kind of a proj-
ect. Making this book a reality takes many dedicated people and it is my great pleasure to
acknowledge their contributions.

I am grateful to Dr. Gowrishankar S., who first conceived the idea of writing this book
and kept faith in me and gave me an opportunity to be the co-author of this book.

I wish to acknowledge the direct and indirect contributions and assistance of various
colleagues and friends with whom I have collaborated. I would like to thank our publisher
Taylor & Francis/CRC Press, for accepting our book proposal. I would like to thank our
team at Taylor & Francis/CRC Press especially Aastha Sharma, Senior Commissioning
Editor and Shikha Garg, Editorial Assistant for the excellent collaboration, follow-up and
timely replies to emails. I also thank the production team as without them this project
would not have achieved what it is now.

I anticipate the readers will enjoy the book and welcome any suggestions and feedback
for the improvement of this book.

Veena A.

xix

Authors

Dr. Gowrishankar S. is currently working as Associate Profes-
sor in the Department of Computer Science and Engineering
at Dr.Ambedkar Institute of Technology, Bengaluru, India.

He earned his PhD in Engineering from Jadavpur University,
Kolkata, India in 2010 and MTech in Software Engineering and
BE in Computer Science and Engineering from Visvesvaraya
Technological University (VTU), Belagavi, India, in the years
2005 and 2003 respectively.

From 2011 to 2014 he worked as senior research scientist and
tech lead at Honeywell Technology Solutions, Bengaluru, India.
He has been awarded with the Technical and Innovation Award
and Individual Excellence Award for his contribution towards

successful delivery of projects at Honeywell Technology Solutions.
He has published several papers in various reputed International Journals and Conferences.

He is serving as editor and reviewer for various prestigious International Journals. He is
also member of IEEE, ACM, CSI and ISTE.

He has delivered many keynote addresses and invited talks throughout India on a variety
of subjects related to Computer Science and Engineering. He was instrumental in organizing
several conferences, workshops and seminars. He has also served on the panel of number
of Academic Bodies of Universities and Autonomous Colleges as a BOS and BOE member.

His current research interests are mainly focused on Data Science, including its technical
aspects as well as its applications and implications. Specifically, he is interested in the applica-
tions of Machine Learning, Data Mining and Big Data analytics in Healthcare. He writes articles
on his personal blog at http://www.gowrishankarnath.com. His Twitter handle is @g_s_nath.

Mrs. Veena A. is currently working as Assistant Professor in the
Department of Computer Science and Engineering at
Dr.Ambedkar Institute of Technology, Bengaluru, India, since
January 2016.

She completed her MTech in Computer Science and
Engineering from PESIT, Bengaluru, India and BE in Information
Science and Engineering from Visvesvaraya Technological
University (VTU), Belagavi, India, in the years 2011 and 2004
respectively.

From 2004 to 2006 she worked as Software Developer at Envision
Network Technologies, Bengaluru, India, and worked as member
technical staff from 2006 to 2007 at CDAC, Pune, India.

She has published several papers in various reputed
International Journals and Conferences.

Her current research interests are Machine Learning, Data Mining and Big Data
Analytics in Healthcare.

She is currently pursuing her PhD in Computer Science and Engineering from VTU,
Belagavi, India.

http://www.gowrishankarnath.com

http://taylorandfrancis.com

1

1
Introduction

Python is a free general-purpose programming language with beautiful syntax. It is
 available across many platforms including Windows, Linux and Mac OS. Due to its inher-
ently easy to learn nature along with Object Oriented features, Python is used to develop
and demonstrate applications quickly. Python has the “batteries included” philosophy
wherein the standard programming language comes with a rich set of built-in libraries.
It’s a known fact that developers spend most of the time reading the code than writing
it and Python can speed up software development. Hosting solutions for Python appli-
cations are also very cheap. Python Software Foundation (PSF) nurtures the growth of
Python programming language. A versatile language like Python can be used not only to
write simple scripts for handling file operations but also to develop massively trafficked
websites for corporate IT organizations.

1.1 What Is a Program?

The ability to code computer programs is an important part of literacy in today’s soci-
ety. A program is a set of instructions instructing a computer to do specific tasks.
“Software” is a generic term used to describe computer programs. Scripts, applications,

AIM

Setup a Python development environment and understand the importance of Open
source software and its different licenses.

LEARNING OUTCOMES

At the end of the chapter, you are expected to

• Identify various domains where Python plays a significant role.
• Install and run the Python interpreter.
• Create and execute Python programs using PyCharm IDE and Jupyter

Notebook.
• Understand the meaning of Open Source Software and its different licenses.

2 Introduction to Python Programming

programs and a set of instructions are all terms often used to describe software.
The software can be categorized into three categories,

System software includes device drivers, operating systems (OSs), compilers, disk for-
matters, text editors and utilities helping the computer to operate more efficiently.
System software serves as a base for application software. It is also responsible for
managing hardware components.

Programming software is a set of tools to aid developers in writing programs. The vari-
ous tools available are compilers, linkers, debuggers, interpreters and text editors.

Application software is intended to perform certain tasks. Examples of application soft-
ware include office suites, gaming applications, database systems and educational
software. Application software can be a single program or a collection of small pro-
grams. This type of software is what consumers most typically think of as “Software.”

There are myriad of areas where programs are used like supermarkets, banks, insurance
industries, process control, hospitals, offices, government institutions, education, research,
telecommunication, transport industry, police, defense, multimedia applications, enter-
tainment systems, library services and many more.

1.2 Programming Languages

Computers cannot write programs on their own as they don’t understand human needs
unless we communicate with the computer through programming languages. A program-
ming language is a computer language engineered to communicate instructions to a machine.
Programs are created through programming languages to control the behavior and output
of a machine through accurate algorithms, similar to the human communication process.

1.2.1 Machine Language

Machine language, also called machine code, is a low-level computer language that is
designed to be directly understandable by a computer and it is the language into which all
programs must be converted before they can be run. It is entirely comprised of binary, 0’s
and 1’s. In machine language, all instructions, memory locations, numbers and characters
are represented in 0’s and 1’s. For example, a typical piece of machine language might look
like, 00000100 10000000.

The main advantage of machine language is that it can run and execute very fast as the
code will be directly executed by a computer and the programs efficiently utilize memory.

Some of the disadvantages of machine language are,

• Machine language is almost impossible for humans to use because it consists
entirely of numbers.

• Machine language programs are hard to maintain and debug.
• Machine language has no mathematical functions available.
• Memory locations are manipulated directly, requiring the programmer to keep

track of every memory location.

3Introduction

1.2.2 Assembly Language

Machine language is extremely difficult for humans to read because it consists merely
of patterns of bits (i.e., 0’s and 1’s). Thus, programmers who want to work at the machine
language level instead usually use assembly language, which is a human-readable nota-
tion for the machine language. Assembly language replaces the instructions represented
by patterns of 0’s and 1’s with alphanumeric symbols also called as mnemonics in order to
make it easier to remember and work with them including reducing the chances of making
errors. For example, the code to perform addition and subtraction is,

ADD 3, 5, result
SUB 1, 2, result

Because of alphanumeric symbols, assembly language is also known as Symbolic
Programming Language. The use of mnemonics is an advantage over machine language.
Since the computer cannot understand assembly language, it uses another program called
assembler. Assembler is a program that is used to convert the alphanumeric symbols
 written in assembly language to machine language and this machine language can be
directly executed on the computer.

Some of the disadvantages of Assembly language are,

• There are no symbolic names for memory locations.
• It is difficult to read.
• Assembly language is machine-dependent making it difficult for portability.

1.2.3 High-Level Language

High-level language is more like human language and less like machine language. High-
level languages are written in a form that is close to our human language, enabling pro-
grammers to just focus on the problem being solved. High-level languages are platform
independent which means that the programs written in a high-level language can be exe-
cuted on different types of machines. A program written in the high-level language is
called source program or source code and is any collection of human-readable computer
instructions. However, for a computer to understand and execute a source program writ-
ten in high-level language, it must be translated into machine language. This translation is
done using either compiler or interpreter.

Advantages

• Easier to modify, faster to write code and debug as it uses English like statements.
• Portable code, as it is designed to run on multiple machines.

A compiler is a system software program that transforms high-level source code written
by a software developer in a high-level programming language into a low-level machine
language. The process of converting high-level programming language into machine
language is known as compilation. Compilers translate source code all at once and the
computer then executes the machine language that the compiler produced. The gener-
ated machine language can be later executed many times against different data each
time. Programming languages like C, C++, C# and Java use compilers. Compilers can be

4 Introduction to Python Programming

classified into native-code compilers and cross compilers based on their input language,
output language and the platform they run on. A compiler that is intended to produce
machine language to run on the same platform that the compiler itself runs on is called a
native-code compiler. A cross compiler produces machine language that is intended to run
on a different platform than it runs on.

Not all source code is compiled. With some programming languages like Python, Ruby
and Perl the source code is frequently executed directly using an interpreter rather than
first compiling it and then executing the resulting machine language. An interpreter is
a program that reads source code one statement at a time, translates the statement into
machine language, executes the machine language statement, then continues with the
next statement. It is generally faster to run compiled code than to run a program under
an interpreter. This is largely because the interpreter must analyze each statement in the
source code each time the program is executed and then perform the desired conver-
sion, whereas this is not necessary with compiled code because the source code was fully
 analyzed during compilation. However, it can take less time to interpret source code than
the total time needed to both compile and run it, and thus interpreting is frequently used
when developing and testing source code for new programs.

A programming paradigm is a style, or “way” of programming. Major programming
paradigms are,

• Imperative
• Logical
• Functional
• Object-Oriented

It can be shown that anything solvable using one of these paradigms can be solved using
the others; however, certain types of problems lend themselves more naturally to specific
paradigms and there will be some overlap between different paradigms.

Imperative

Imperative programming is a paradigm of computer programming in which the program
describes a sequence of steps that change the state of the computer as each one is executed
in turn. Imperative programming explicitly tells the computer “how” to accomplish a
certain goal. Structured programming, on the other hand, is a subset of Imperative
 programming, which emerged to remove the reliance on the GOTO statement by intro-
ducing looping structures. Then you also have Procedural programming, which is another
subset of Imperative programming, where you use procedures to describe the commands
the computer should perform. Procedural programming refers to the ability to combine
a sequence of instructions into a procedure so that these instructions can be invoked
from many places without resorting to duplicating the same instructions. The difference
between procedure and function is that functions return a value, and procedures do not.
An assembly language is an imperative language which is NOT structured or procedural.
Popular programming language like C is imperative and structured in nature.

Logical

The logical paradigm fits exceptionally well when applied to problem domains that deal
with the extraction of knowledge from basic facts and rules. Rules are written as logical

5Introduction

clauses with a head and a body; for instance, "Y is true if X1, X2, and X3 are true." Facts are
expressed similar to rules, but without a body; for instance, "Y is true." The idea in logical
programming is that instead of telling the computer how to calculate things, you tell it
what things are. Example: PROLOG.

Functional

In functional programming languages, functions are treated as first-class objects. In other
words, you can pass a function as an argument to another function, or a function may
return another function. Examples of functional programming languages are F#, LISP,
Scheme, and Haskel.

Object-Oriented

The Object-oriented paradigm has gained enormous popularity in the recent decade.
Object-oriented is the term used to describe a programming approach based on objects
and classes. The object-oriented paradigm allows us to organize software as a collec-
tion of objects that consist of both data and behavior. This lets you have nice things like
 encapsulation, inheritance, and polymorphism. These properties are very important
when programs become larger and larger. The object-oriented paradigm provides key
benefits of reusable code and code extensibility. Examples of object-oriented languages
are Python, C++, Java and C#.

It is important to note that many languages, such as Python and C++, support multiple
paradigms. It is also true that even when a language is said to support a particular para-
digm, it may not support all the paradigm’s features. Not to mention that there is a lot of
disagreement as to which features are required for a particular paradigm.

1.3 Software Development

Software development is a process by which stand-alone or individual software is cre-
ated using a specific programming language. It involves writing a series of interrelated
programming code, which provides the functionality of the developed software. Software
development may also be called application development.

The process of software development goes through a series of stages in stepwise fashion
known as the Software Development Life Cycle (SDLC). It is a systematic approach to
develop software (FIGURE 1.1). It creates a structure for the developer to design, create
and deliver high-quality software according to the requirements of the customer. It also
 provides a methodology for improving the quality of the desired product.

FIGURE 1.1
Different stages of Software Development Life Cycle.

6 Introduction to Python Programming

The purpose of the SDLC process is to provide help in producing a product that is
cost effective and of high quality. Different stages of the Software Development Life
Cycle are,

Planning of Project. At this stage, the total number of resources required to imple-
ment this project is determined by estimating the cost and size of the software
product.

Analysis and Requirement Gathering. At this stage, the maximum amount of informa-
tion is collected from the client about the kind of software product he desires.
Different questions are posed to the client like: Who is going to use the product?
How will they use the product? What kind of data is given as input to the product?
What kind of data is expected as output from the product? Questionnaires enable
the development team to gather overall specification of the product in good detail.
The software development team then analyzes all these requirements of the client,
keeping in mind the design constraints, coding standards and its validity. The aim
of analysis and requirements gathering stage is to understand the requirements of
the client by all the members of the software development team and see how these
requirements can be implemented.

Design. At this stage, the software development team analyzes whether the software
can be implemented with all the features as specified by the client. Also, the devel-
opment team has to convince the client about the financial feasibility and techno-
logical viability. The software development team has to select the programming
language and the platform to implement the software that is best suited to satisfy
the requirements of the client. Software design helps the development team to
define and understand the overall architecture required for the software product
and the approach is captured in detail in a design document.

Development. At this stage, the development team starts building the software accord-
ing to the design document. The development team translates the design into a set
of programs that adhere to coding standards of their organization. Coding is done
by dividing the specification mentioned in the design document into different mod-
ules to provide a working and reliable product. This is the longest phase of SDLC.

Testing. At this stage, the software product is tested against the requirements speci-
fied by the client to ensure the product is working as expected. The testing team is
mainly responsible for checking the system to weed out bugs and to verify that the
software product is working as expected. Any bugs that are found in the process
or any shortcomings in the features of the software product is conveyed to the
software development to rectify. This is the last stage of overall software develop-
ment before handing over the product to the client.

Deployment. At this stage, the product is released to the client to use after testing the
product thoroughly to match the requirements of the client. The client needs to
be trained in using the software and documents should be provided containing
instructions on how to operate the software in a user-friendly language.

Maintenance. The process of taking care of the developed and deployed software
product is known as Maintenance. When the customer starts using the deployed
software product, unforeseen problems may come up and these need to be solved.
Also, new requirements may come up at the client’s workplace and the software
needs to be updated and upgraded to accommodate these changes.

7Introduction

1.4 History of Python Programming Language

The history of the Python programming language dates back to the late 1980s. Python was
conceived in the late 1980s and its implementation was started in December 1989 by Guido
van Rossum (FIGURE 1.2) at CWI in the Netherlands as a successor to the ABC programming
language capable of exception handling and interfacing with the Amoeba operating system.
Van Rossum is Python’s principal author, and his continuing central role in deciding the
direction of Python is reflected in the title given to him by the Python community. He is the
“Benevolent Dictator For Life” (BDFL), which means he continues to oversee Python devel-
opment and retains the final say in disputes or arguments arising within the community.

Often people assume that the name Python was written after a snake. Even the logo of
Python programming language (FIGURE 1.3) depicts the picture of two snakes, blue and
yellow. But, the story behind the naming is somewhat different.

Back in the 1970s, there was a popular BBC comedy TV show called “Monty Python’s
Flying Circus” and Van Rossum happened to be a big fan of that show. At the time when
he began implementing Python, Guido van Rossum was also reading the published scripts
from “Monty Python’s Flying Circus.” It occurred to him that he needed a name that was
short, unique, and slightly mysterious, so he decided to call the language “Python.”

FIGURE 1.2
Guido van Rossum—Creator and BDFL of Python Programming Language. (Image courtesy of Wikipedia.org)

FIGURE 1.3
Python logo. (Image courtesy of Python.org)

8 Introduction to Python Programming

Its design philosophy emphasizes code readability, and its syntax allows programmers
to express concepts in fewer lines of code that would not be possible in languages such as
C++ or Java. The language provides constructs intended to enable clear programs on both
a small and large scale. Python is a multi-paradigm programming language having full
support for Object-oriented programming and Structured programming and there are a
number of language features which support Functional programming.

The first ever version of Python (i.e., Python 1.0) was introduced in 1991. Since its inception
and introduction of Version 1, the evolution of Python has reached up to Version 3.x (till 2018).
Python 2.0 was released on 16 October 2000 and had many major new features, including a
cycle-detecting garbage collector and support for Unicode. With this release, the development
process became more transparent and community-backed. Python 3.0 (initially called Python
3000 or py3k) was released on 3 December 2008 after a long testing period. It is a major revi-
sion of the language that is not completely backward-compatible with previous versions.

The language’s core philosophy is summarized in the document The Zen of Python,
which includes principles such as,

• Beautiful is better than ugly.
• Explicit is better than implicit.
• Simple is better than complex.
• Complex is better than complicated.
• Flat is better than nested.
• Sparse is better than dense.
• Readability counts.
• Special cases aren’t special enough to break the rules.
• Although practicality beats purity.
• Errors should never pass silently.
• Unless explicitly silenced.
• In the face of ambiguity, refuse the temptation to guess.
• There should be one—and preferably only one—obvious way to do it.
• Although that way may not be obvious at first unless you’re Dutch.
• Now is better than never.
• Although never is often better than *right* now.
• If the implementation is hard to explain, it’s a bad idea.
• If the implementation is easy to explain, it may be a good idea.
• Namespaces are one honking great idea—let’s do more of those!

1.5 Thrust Areas of Python

Python is a top marketable professional skill known for its simplicity and developer friend-
liness. Python has a solid claim to being the fastest-growing major programming language.
Since 2003, Python has been consistently ranked in the top ten most popular programming

9Introduction

languages as measured by the TIOBE Programming Community Index. As of April 2018,
it is in the fourth position. Python is ranked at first position by IEEE Spectrum ranking of
top programming languages for the year 2017 (FIGURE 1.4) and RedMonk Programming
language rankings for the year 2018 has listed Python at the third position.

1.5.1 Academia

Python is being offered as the introductory programming language in the majority of the
computer science departments at various American universities. Python is being adapted by
academia for research purposes at an accelerated rate and is competing with Matlab for the
coveted title of most preferred language for research. There are a few advantages of Python
over Matlab, like Matlab is not a real programming language but Python is. Python has lots
of scientific tools which are almost as good as Matlab modules. Developers nowadays need
to work in multiple languages and the majority of the languages, including Python, have
their index starting from zero while Matlab index starts from 1, which may lead to more syn-
tactical errors. Also, Matlab uses parentheses both for indexing and functions, while Python
uses the square brackets for indexing and parentheses for functions which brings more clar-
ity in the code. Matlab is closed and proprietary with a very expensive licensing agree-
ment, while Python is free and open source. Raspberry Pi project was started by Raspberry
Pi foundation which aims to bring computer knowledge to children, elderly people and

FIGURE 1.4
Ranking of programming languages by IEEE. (Image courtesy of IEEE Spectrum, New York.)

10 Introduction to Python Programming

the lower strata of the society who are deprived of computer education. This foundation
brings out Raspberry Pi devices, which are tiny, low-cost microcomputers that are powerful
enough to do most of the work that can be done using a desktop. Python, due to its ease of
learning, is recommended as the preferred programming language for Raspberry Pi.

1.5.2 Scientific Tools

Scientific tools are essential for simulating and analyzing complex systems. The Python
 ecosystem consists of these core scientific packages, namely SciPy library, NumPy,
Jupyter, Sympy and Matplotlib. Most of these tools are available under Berkeley Software
Distribution (BSD) license and can be used without any restrictions. SciPy library is mainly
used for numerical integration and optimization. NumPy provides N-dimensional array
objects which can be used to perform linear algebra, Fourier transform and other mathemati-
cal operations. Jupyter has revolutionized the way programming is done in Python. Jupyter
provides an interactive web-based interface which can be invoked from a browser. Jupyter is
used to write Python programs and create embeddable plots to visualize data. SymPy library
is used to generate symbolic mathematics. Matplotlib is the oldest and most popular plotting
library available for Python. With these tools, we have better chances of solving scientific
problems and create working prototypes more quickly than any other competing tools.

1.5.3 Machine Learning

Machine Learning is an effective and adaptive tool to learn from experience and by a
 dataset. Many machine-learning algorithms and techniques have been developed that allow
 computers to learn. Machine Learning has its origin in Computer Science and Statistics. Scikit-
Learn is a well-known Machine Learning tool built on top of other Python scientific tools like
NumPy, SciPy and Matplotlib. This allows Scikit-Learn to be easily extended to implement
new models. Scikit-Learn supports various models for Classification, Regression, Clustering,
Model Selection, Dimensionality Reduction and Preprocessing. Some of the advantages of
Scikit-Learn are integration of parallelization, consistent APIs, good documentation and it is
available under BSD license as well as commercial license with full support.

1.5.4 Natural Language Processing

Natural language processing is used to read and understand the text. Natural Language
Toolkit (NLTK) is the popular library used for natural language processing in Python.
NLTK has numerous trained algorithms to understand the text. NLTK has huge corpora
of datasets and lexical resources like journals, chat logs, movie reviews and many more.
NLTK is available under Apache License V2.0.

1.5.5 Data Analysis

Pandas library changed the landscape of data analysis in Python altogether and is available
under BSD license. Pandas is built on top of NumPy and has two important data structures,
namely Series and DataFrame. It can hold any type of data like integers, floats, strings,
objects and others. Each of the data stored in series is labeled after the index. DataFrame is
a tabular data structure with labeled rows and columns similar to Excel spreadsheet. In the
real world, data is never in order and pandas can be used to fill in missing data, reshaping
of datasets, slicing, indexing, merging, and joining of datasets. Pandas can be used to read
Comma-Separated Values (CSV) files, Microsoft Excel, Structured Query Language (SQL)
database and Hierarchical Data Format (HDF5) format files.

11Introduction

1.5.6 Statistics

Statsmodels is a Python library used for statistical analysis. It supports various models and
features like linear aggression models, generalized linear models, discrete choice models
and functions for time series analysis. To ensure the accuracy of results Statsmodels is tested
thoroughly by comparing it with other statistical packages. Statsmodels can also be used
along with Pandas to fit statistical models. This package is available under modified BSD
license. Statsmodels is used across various fields like economics, finance and engineering.

1.5.7 Hypertext Transfer Protocol (HTTP) Library

The Requests HTTP library is popularly referred to as the library written for humans.
Python has a standard HTTP library called urllib.request to carry out most of the HTTP
operations. But the Application Programming Interfaces (APIs) of urllib.request are not
easy to use and are verbose. To overcome these problems Requests was created as a stand-
alone library. Common HTTP verbs like POST, GET, PUT and DELETE which correspond
to create, read, update and delete operations are fully supported. Also, Requests provides
features like thread-safety, support for International Domains, Cookie Persistence and
Connection Timeouts. Requests library is available under Apache license 2.0.

1.5.8 Database Connectors/ORM/NoSQL Connectors

Database connectors are drivers that allows us to query the database from the program-
ming language itself. MySQL and PostgreSQL are the popular open source databases.
MySQL-Python-Connector for Python from Oracle is the most popular Python connector
available for MySQL and Psycopg2 is the Python connector widely used for PostgreSQL.

Object Role Modeling (ORM) is a powerful way of querying the database to achieve per-
sistence so that data can live beyond the application process. There is a mismatch between
the Object-oriented language models and the Relational databases leading to several prob-
lems like granularity, inheritance, identity, associations and navigations. ORM helps in
mapping the data from Object-oriented languages to the Relational databases and follows
the business layer logic. SQLAlchemy is a highly recommended ORM toolkit for Python
applications to be deployed at the enterprise level. Python connectors are also available for
popular NoSQL databases like MongoDB and Cassandra.

1.5.9 Web Frameworks

Django and Flask are the two most popular web frameworks. Both have different purposes.
While Django is a full-fledged framework, Flask is a microframework that is used to build
small applications with minimal requirements. Django has built-in support for various web-
related services like caching, internationalization, serialization, ORM support and automatic
admin interface, while Flask allows users to configure web services according to your needs by
installing external libraries. Both of these frameworks are available under BSD derived licenses.

1.5.10 Cloud Computing

OpenStack is entirely written in Python and is used to create a scalable private and public
cloud. OpenStack Foundation oversees the development of OpenStack software. OpenStack
has decent load balancing, is highly reliable, vendor independent and has built-in security.
OpenStack uses the dashboard as a central unit to manage network resources, processing
power and storage in a data center. Linux distributions like Fedora and Ubuntu include

12 Introduction to Python Programming

OpenStack as part of their package. Hosting of Python applications on a cloud platform is
well supported by various cloud service providers like Google App Engine, Amazon Web
Services (AWS), Heroku and Microsoft Azure.

1.5.11 Python Distributions

Python Software Foundation releases Python interpreter with standard libraries. But in
order to use Python in a scientific or enterprise environment other packages needs to be
installed. Having these packages tested for compatibility with the latest release of Python
is cumbersome and time-consuming. Anaconda and Enthought Canopy Express are two
popular distributions that come with core Python interpreter and popular scientific tools
to help us start working out of the box.

1.5.12 IDE Available

Integrated Development Environments (IDEs) help in the rapid development of the soft-
ware and increase in productivity. PyCharm is the most popular IDE for Python program-
ming. PyCharm comes in three flavors namely, Professional Edition, Community Edition
and Educational Edition. PyCharm has advanced features like auto code completion, code
highlighting, refactoring, remote development capabilities and support for various web
frameworks. PyCharm is available for various platforms like Windows, Linux and OS X.
Microsoft has released an extension for Visual Studio called Python Tools for Visual Studio
(PTVS) which transforms Visual Studio IDE into a full-fledged Python IDE. Spyder is
another IDE that comes as part of Anaconda distribution itself.

1.5.13 Community

Community is what really defines the success of Open Source projects. Development
of projects is taken forward by adding new features and Community members play an
important role in testing the software, recommending it to others and in documenting the
software. Python community members are expected to follow the Python Code of Conduct
and the Python community is generally considered very helpful. The Python commu-
nity is very active and cordial in accommodating newbies. Python conferences are held
regularly across the world wherein the core Python developers are invited to share their
experience with other developers thus paving the way for more Python adaption across
the horizon. Python language documentation is renowned for its depth and completeness.

1.5.14 Python Stack in Industry

Various companies use Python stack to power up their infrastructure. The popular online
photo sharing service Instagram uses the Django framework for application development.
At Mozilla, which develops the popular Firefox web browser, the majority of the web
 development is done using the Django framework. PayPal and eBay, where transactions
worth billions of dollars take place every year, swear by the security features provided
by Python libraries. Companies like Pinterest and Twilio have adapted Flask as their web
 development framework. Requests library is used in major projects of companies like
Amazon, Google, Washington Post, Twitter and others. Python Scientific and data analy-
sis tools are being used at LinkedIn, Boeing and NASA. Dropbox has hired Guido van
Rossum, Father of Python programming language, to add new features to their existing

13Introduction

Python stack. Even though this is not a complete list of companies using Python, it surely
indicates industry interest in using Python to solve challenging problems.
[Source: CSI Communications, Vol. 40, April 2016.]

1.6 Installing Anaconda Python Distribution

Anaconda is a free and open source distribution of the Python programming language for
data science and machine-learning related applications such as large-scale data process-
ing, predictive analytics, and scientific computing, that aims to simplify package man-
agement and deployment. Package versions are managed by the package management
system conda, which makes it quite simple to install, run, and update complex data science
and machine learning software libraries like Scikit-learn, PyTorch, TensorFlow, and SciPy.
Anaconda Distribution is used by over 6 million users, and it includes more than 250 pop-
ular data science packages suitable for Windows, Linux, and MacOS.

The steps described here work on the Windows 10 OS.

Step 1: Go to the link https://www.continnum.io/downloads. You have the option
to download the 32-bit or the 64-bit version of either Python 2.7 or Python 3.6 sup-
ported Anaconda distribution. At the time of writing this book, Anaconda sup-
ported Python 3.6 version. As and when a new version of Python is released,
Anaconda distribution will be updated to newer releases. In this book 64-bit
Anaconda distribution supporting Python 3.6 is used to execute programs, so
download the same version.

Step 2: Click on the executable file of Anaconda Python distribution which you have
downloaded and the setup screen will start loading.

Step 3: You will get a welcome screen as shown in FIGURE 1.5. Click on Next button.

FIGURE 1.5
Welcome screen of Anaconda installation.

https://www.continnum.io/downloads

14 Introduction to Python Programming

Step 4: You will get a License Agreement Screen, read the licensing terms and click
on I Agree button.

Step 5: Assuming that you are the only user on your system, select Just Me radio
 button (FIGURE 1.6). Click on Next button.

Step 6: You need to choose a location to install Anaconda Python distribution.
The default installation will be under Users folder. Change the destination folder
to C:\Anaconda3 to install Anaconda and click on Next button (FIGURE 1.7).

FIGURE 1.6
Selection of installation type.

FIGURE 1.7
Choosing the destination folder.

15Introduction

Step 7: In the Advanced Installation Options screen, select all the check boxes. Ignore
the warnings and click on Install button (FIGURE 1.8).

Step 8: This starts the installation of Anaconda Python Distribution and once the
installation is complete, click on Next button.

Step 9: Finish the setup by clicking on Finish button.
Step 10: To check whether the installation is working properly or not, go to the com-

mand prompt and type python. You should see a series of lines and a prompt as
shown in FIGURE 1.9. This is Python Interactive mode. Here, the three greater-than
signs “>>>” is the primary prompt of the interactive mode.

FIGURE 1.8
Selecting Advanced Installation Options.

FIGURE 1.9
Python interactive shell.

16 Introduction to Python Programming

1.7 Installing PyCharm IDE to Set Up a Python Development Environment

PyCharm is an Integrated Development Environment (IDE) used for Python programming
language. It is developed by the Czech company JetBrains. It provides code analysis, a
graphical debugger, an integrated unit tester, integration with version control systems and
supports web development with Django web framework.

PyCharm is cross-platform, with the availability of Windows, MacOS and Linux ver-
sions. The Community Edition is released under the Apache License and there is also
Professional Edition released under a proprietary license with added features like sci-
entific tools, web development, Python Web Frameworks, Database and SQL support.
PyCharm is designed by programmers, for programmers, to provide all the tools you need
for productive Python development.

The steps described here works on the Windows 10 OS.

Step 1: Go to the link https://www.jetbrains.com/PyCharm/download/. You have the
option to download either the PyCharm Professional Edition or the PyCharm
Community Edition. If you have purchased a license for Professional Edition then
go for it. Otherwise, you can download the Community edition which will suffice
most of our requirements. All the programs in this book have been executed using
PyCharm Community Edition IDE, so download the same edition.

Step 2: Click on the executable file which you have downloaded. You will be pre-
sented with the PyCharm Community Edition Setup screen. Click on Next button.

Step 3: Now you will be presented with Choose Install Location screen. Go with the
default destination folder to install PyCharm Community Edition. Click on Next
button.

Step 4: Select all the check boxes in the Installation Options screen except for the
32-bit launcher check box (since Windows 10 is a 64-bit OS, you don’t need 32-bit
launcher) and click on Next (FIGURE 1.10).

FIGURE 1.10
Installation options for PyCharm.

https://www.jetbrains.com/PyCharm/download/

17Introduction

Step 5: Go with the default Start Menu Folder as shown on the screen and click on
Install button. It will take some time for the installation to finish. Once the instal-
lation is done click on the Finish button.

Step 6: You will be asked whether you want to import previous PyCharm settings.
Since we are starting on a clean slate, let’s select the second radio button as shown
in FIGURE 1.11 and click on OK button.

Step 7: You will be prompted with a Windows Security Alert. Do not worry about it.
Click on Allow Access Button. Next screen will be Python community edition initial
configuration. Let the default settings remain as it is and click on OK button. After
you have completed initial PyCharm configuration, a customization screen will be
displayed as shown in FIGURE 1.12; click on Skip Remaining and Set Defaults button.

FIGURE 1.11
Importing PyCharm settings.

FIGURE 1.12
Customization of PyCharm.

18 Introduction to Python Programming

Step 8: In the next screen, click on Configure pull down list and select Settings option
as shown in FIGURE 1.13.

Step 9: In the Default Settings screen, on the left pane, click on Project Interpreter as
shown in FIGURE 1.14.

FIGURE 1.13
Welcome screen for PyCharm.

FIGURE 1.14
Default settings of PyCharm.

19Introduction

On the right pane, in the Project Interpreter option, click on the button having
toothed wheel icon and select Add. In the Add Python Interpreter screen, on the
left pane, click on System Interpreter and select the Python interpreter path from
the Interpreter pull down list as shown in FIGURE 1.15. Click on OK button.

Step 10: It will take some time to list all the packages. Once done click on OK button.
Step 11: You will be again presented with the Welcome screen as shown in

FIGURE 1.13. Now, to work with PyCharm IDE, click on Create New Project option.
In the next section, steps to create and execute Python program are discussed in
detail.

1.8 Creating and Running Your First Python Project

Before you start make sure that the following prerequisites are met:

• You are working with PyCharm Community Edition or Professional.
• You have installed Python 3.6 supported Anaconda distribution.

FIGURE 1.15
Adding Python Interpreter.

20 Introduction to Python Programming

Below steps describe the process of creating and running a Python project.

Step 1: Click on the JetBrains Community Edition shortcut icon and you will be pre-
sented with a welcome screen (FIGURE 1.13) and click on Create New Project. This
screen is presented initially when you are creating a project for the first time. For
the subsequent project creation, Go to File → New Project and go to Step 2. Create a
folder called PyWork in C:\ drive.

Step 2: For the Location option, browse to the PyWork folder which you had created
in C:\ drive in Step 1. Now give a name to your Python Project. For the purpose
of the demo, the project name is given as FirstProgram (FIGURE 1.16). Expand the
project Interpreter and click on Existing interpreter radio button. Select Python
Interpreter path from Interpreter pull down list if it is not already selected. Then,
click on the Create button.

Step 3: On the left pane of the presented screen you can see the Project Name, which
in our case is FirstProgram. Right-click on FirstProgram → Select New → Select
Python File as shown in FIGURE 1.17.

FIGURE 1.16
Adding a new Python project.

21Introduction

Step 4: Give a name to the Python File. For the purpose of this demo, let’s name it
as HelloWorld as shown in FIGURE 1.18. No need to specify any extension. The
PyCharm IDE itself will attach the .py extension to the file name which you have
specified. Click on OK button.

FIGURE 1.17
Creating a new Python file.

FIGURE 1.18
Naming of Python file.

22 Introduction to Python Programming

Step 5: On the left pane double click on the File name which you have created (in our
case it is HelloWorld.py). This should open an empty file on the right side of the
 editor in which you type the following statement (FIGURE 1.19).

 print("Hello World")

Step 6: To execute the above code, go to Run menu → and click on Run as shown in
FIGURE 1.20.

Another way of executing the above program is to right-click on the Python File
Name (in our case it is HelloWorld.py) and select Run “HelloWorld”.

Step 7: In the below screen (FIGURE 1.21), you can see the output in the output win-
dow of the PyCharm IDE.

FIGURE 1.19
Code for HelloWorld.py program.

FIGURE 1.20
Execute HelloWorld.py program.

23Introduction

Step 8: You can add multiple Python files to the project and execute them individu-
ally. Create another Python File by following the steps 3, 4 and 5. Name the Python
file as SecondPythonFile and in the editor type,

 print("This is second file")

Right-click on the SecondPythonFile.py file and select Run “SecondPythonFile” to
execute.

1.9 Installing and Using Jupyter Notebook

Jupyter Notebook is one of the many possible ways to interact with Python and the sci-
entific libraries. Jupyter Notebook is an open source web application that uses a browser-
based interface to Python with

• The choice to create and share documents.
• The ability to write and execute Python code.
• Formatted output in the browser, including tables, figures, equation, visualiza-

tions, etc.
• The option to mix in formatted text and mathematical expressions.

Because of these possibilities, Jupyter is fast turning into a major player in the scientific
computing ecosystem.

FIGURE 1.21
Output of HelloWorld.py program.

24 Introduction to Python Programming

1.9.1 Starting Jupyter Notebook

Step 1: Once you have installed Anaconda, you can start the Jupyter Notebook.
Anaconda conveniently installs Python, the Jupyter Notebook, and other com-
monly used packages for scientific computing and data science. For demo pur-
pose let’s create a folder called JupyterExample in C:\ drive. Invoke command
prompt and navigate to the folder by issuing the command cd C:\JupyterExample.
Your Jupyter Notebook will be saved in this folder. You can start Jupyter
Notebook by issuing the following command in the command prompt as shown
in FIGURE 1.22.

jupyter notebook

You should see a series of lines in the command prompt as seen in FIGURE 1.23. The
output tells us the notebook is running at http://localhost:8888/ where localhost
is the name of the local machine and 8888 refers to port number 8888 on your com-
puter. Thus, the Jupyter kernel is listening for Python commands on port 8888 of
our local machine.

Hopefully, your default browser has also opened up with a web page that looks
something like FIGURE 1.24. What you see here is called the Jupyter dashboard.
If you look at the URL at the top, it should be localhost:8888 or similar, matching
the message above.

FIGURE 1.23
Output of jupyter notebook command.

FIGURE 1.22
Command to start Jupyter Notebook.

http://localhost:8888/

25Introduction

Step 2: Assuming all this has worked OK, you can now click on New pull-down list
at top right and select Python 3 option (FIGURE 1.25).

Step 3: Here’s what shows up on our machine. From the previous step, a new
Jupyter Notebook for Python is created but is still Untitled (FIGURE 1.26). The
blue border around the cell indicates that the particular cell is selected and you
are in command mode. In command mode, you can cut, copy, paste and insert a
new cell.

FIGURE 1.24
Jupyter dashboard.

FIGURE 1.25
Creating new Jupyter Notebook.

26 Introduction to Python Programming

To rename the notebook click on Untitled at the top. A Rename Notebook window pops
up. Enter a name for the notebook. Let’s name the notebook as My_First_Notebook
(FIGURE 1.27). Click on Rename button. Notebook gets saved as My_First_Notebook.
ipynb with .ipynb extension in C:\JupyterExample folder.

Step 4: The notebook itself consists of cells. Notice that in the FIGURE 1.28 the cell
is surrounded by a green border. It means that the cell is in edit mode and you
are permitted to type text into the selected cell. The edit mode is invoked when
you click in the code area of that cell. You can switch to command mode from edit
mode by pressing Esc key.

FIGURE 1.27
Rename Jupyter Notebook.

FIGURE 1.26
Untitled Jupyter Notebook.

27Introduction

You can type in Python code and it will appear in the cell. Executing the code in
this cell can be done by either clicking on the Run button or hitting Alt + Enter
(FIGURE 1.29).

1.10 Open Source Software

The term “Open Source” refers to something people can modify and share because its
design is publicly accessible. Open source software is software with source code that any-
one can inspect, modify, and enhance. “Source code” is the part of the software that most
computer users don’t ever see; it’s the code computer programmers can manipulate to
change how a piece of software, a “program” or “application” works. Programmers who
have access to a computer program’s source code can improve that program by adding

FIGURE 1.28
Jupyter Notebook in edit mode.

FIGURE 1.29
Executing Python code in Jupyter Notebook.

28 Introduction to Python Programming

 features to it or fixing parts that don’t always work correctly. Some software has source
code that only the person, team, or organization who created it and maintains exclusive
control over it can modify. People call this kind of software “proprietary” or “closed
source” software.

Only the original authors of proprietary software can legally copy, inspect, and alter
that software. And in order to use proprietary software, computer users must agree
(usually by signing a license displayed the first time they run the software) that they
will not do anything with the software that the software’s authors have not expressly
permitted. Microsoft Office and Adobe Photoshop are examples of proprietary software.
Open source software is different. Its authors make its source code available to others who
would like to view that code, copy it, learn from it, alter it, or share it. LibreOffice and the
GNU Image Manipulation Program are examples of open source software. As they do
with proprietary software, users must accept the terms of a license when they use open
source software but the legal terms of open source licenses differ dramatically from those
of proprietary licenses.

By design, open source software licenses promote collaboration and sharing because
they permit other people to make modifications to source code and incorporate those
changes into their own projects. They encourage computer programmers to access, view,
and modify open source software whenever they like, as long as they let others do the
same when they share their work.

1.10.1 Why Do People Prefer Using Open Source Software?

People prefer open source software to proprietary software for a number of reasons,
including:

Control. Many people prefer open source software because they have more control
over that kind of software. They can examine the code to make sure it’s not doing
anything they don’t want it to do, and they can change parts of it they don’t like.
Users who aren’t programmers also benefit from open source software because
they can use this software for any purpose they wish not merely the way someone
else thinks they should.

Training. People like open source software because it helps them become better pro-
grammers. Because open source code is publicly accessible, students can easily
study it as they learn to make better software. Students can also share their work
with others, inviting comment and critique, as they develop their skills. When
people discover mistakes in programs’ source code, they can share these mistakes
with others to help them avoid making the same mistakes themselves.

Security. Some people prefer open source software because they consider it more
secure and stable than proprietary software. Because anyone can view and mod-
ify open source software, someone might spot and correct errors or omissions that
a program’s original authors might have missed. Because so many programmers
can work on a piece of open source software without asking for permission from
original authors, they can fix, update, and upgrade open source software more
quickly than they can do for a proprietary software.

Stability. Many users prefer open source software to proprietary software for impor-
tant, long-term projects. Because programmers publicly distribute the source code

29Introduction

for open source software, users relying on that software for critical tasks can be
sure their tools won’t disappear or fall into disrepair if their original creators stop
working on them. Additionally, open source software tends to both incorporate
and operate according to open standards.

1.10.2 Doesn’t “Open Source” Just Mean Something Is Free of Charge?

No. This is a common misconception about what “open source” implies, and the concept’s
implications are not only economic.

Open source software programmers can charge money for the open source software
they create or to which they contribute. But in some cases, because an open source license
might require them to release their source code when they sell software to others, some
programmers find that charging users money for software services and support (rather
than for the software itself) is more lucrative. This way, their software remains free of
charge, and they make money helping others install, use, and troubleshoot it.

While some open source software may be free of charge, skill in programming and
troubleshooting open source software can be quite valuable. Many employers specifically
seek to hire programmers with experience working on open source software.
[Source: Adapted with kind permission from https://opensource.com/resources/what-
open -source.]

1.10.3 Open Source Licenses

Open source software plays a very important role in our daily life. Some of the most popu-
lar open source software are Android, Firefox, Linux, WordPress, 7-Zip, BitTorrent, Python
and others. But did you know that not all open source licenses are the same? What are
the differences and what do they mean for you? If you write open source software, which
should you use?

Open source licenses make it easy for others to contribute to a project without having
to seek special permission. It also protects you as the original creator, making sure you at
least get some credit for your contributions. It also helps to prevent others from claiming
your work as their own.

Apache License

Apache Software Foundation has authored the Apache License. Apache Software
Foundation is well known for various software like Apache HTTP Web Server that powers
a large percentage of the Internet’s websites, Hadoop that supports the processing of large
datasets and many more. There are more than 350 open source initiatives housed at the
Apache Software Foundation. Version 2.0 was released in 2004 to make it easier for non-
Apache projects to use the license and remains one of the most popular licenses to date.
Some of the features of this license are,

• It allows you to freely download and use Apache software, in whole or in part, for
personal or commercial purposes.

• It requires you to include a copy of the license in any redistribution you may make
that includes Apache software.

• Software can be modified to create derivative works and can also be distributed
with the same or different license.

https://opensource.com/resources/what-open-source
https://opensource.com/resources/what-open-source

30 Introduction to Python Programming

• Owner of software cannot be held liable for damages and owner’s software trade-
marks cannot be used in derivative works.

• Significant changes to original software must be noted.

The Apache License allows you to patent the derivative works.

BSD License

The BSD license is a class of extremely simple and very liberal licenses for computer soft-
ware that was originally developed at the University of California at Berkeley (UCB) in
1990 and revised twice, being simplified further with each revision. Some of the features
of this license are,

• Software can be used commercially.
• Software can be modified to create derivative works which can also be distributed

and commercialized.
• Owner of software cannot be held liable for damages and the original copyright

and license text must be included with the distributions.

BSD license allows you to commercialize even the derivative works of a software. While
Apache license allows a patent grant for derivative works, the BSD license does not allow
the same. You are not required to return any modified or improved code to the BSD-
licensed software. Due to the extremely minimal restrictions of BSD license, software
released under BSD can also be used in proprietary software.

GNU General Public License

Richard Stallman, an American free software movement activist and programmer launched
the GNU Project in September 1983 to create a Unix-like computer operating system com-
posed entirely of free software. With this, he also launched the Free Software Foundation
movement and wrote the GNU General Public License (GNU GPL). The GNU GPL is the free
software license par excellence. It sets forth distribution conditions that guarantee freedom
for its users. A program protected by the GNU GPL is free, but the GNU GPL also stipulates
that all programs derived from such a program preserve the same freedom. The license has
been revised twice with each revision addressing significant issues that arose in previous
versions. Version 3 was published in 2007. Some of the features of this license are,

• Software can be modified to create derivative works and the derivative works can
be distributed provided that it is also licensed under GNU GPL 3 as well.

• Distributions must include original software, all source code, original copyright
and license text. Owner of the software cannot be held liable for damages.

The GNU GPL guarantees “software freedom” to all users with the freedom to run, copy,
distribute, study, modify, and improve the software. GNU GPL license ensures that the open
source software remains open source always even when extended into derivative works.
However, you should be cautious before incorporating GPL code into your own code as the

31Introduction

GNU GPL license requires that you license your entire project under GNU GPL as well. This
ensures that the GNU GPL licensed software and its derivatives remain free always.

MIT License

The MIT license is probably the shortest and broadest of all the popular open source
licenses. MIT licensing terms are very loose and more open than most other licenses. Some
of the features of this license are,

• Software licensed under MIT license can be used, copied and modified however
you want. MIT licensed software can be used with any other project, can be copied
any number of times and can be changed however you want.

• MIT licenses software can be given away for free or you can even sell it. There is
no restriction on how you intend to distribute the software.

• The only requirement is that the software should be accompanied by the MIT
license agreement.

The MIT license is the least protective license out there. It basically says that anyone can
do whatever they want with the MIT licensed software, as long as it is accompanied by
MIT license.

Creative Commons Licenses

Creative Commons is a global nonprofit organization that enables sharing and reuse of
creativity and knowledge. Creative Commons licenses provide an easy way to manage
the copyright terms that attach automatically to all creative material. Creative Commons
licenses allow the creative material to be shared and reused. Creative Commons licenses
may be applied to any type of work, including educational resources, music, photographs,
databases, government and public-sector information, and many other types of material.
The only categories of works for which Creative Commons does not recommend its licenses
are computer software and hardware. The latest version of the Creative Commons licenses
is version 4.0. A Creative Commons license has four basic parts, which can be endorsed
individually or in combination. You will find a brief description of each part below.

Attribution. All Creative Commons licenses require that others who use your work in
any way must give you credit the way you request, but not in a way that suggests
you endorse them or their use. If they want to use your work without giving you
credit or for endorsement purposes, they must get your permission first. Beyond
that, the work can be modified, distributed, copied and otherwise used.

Share Alike. You let others copy, distribute, display, perform, and modify your work,
as long as they distribute any modified work on the same terms.

Non-Commercial. You let others copy, distribute, display, perform and modify and
use your work for any purpose other than commercially unless they get your
 permission first.

No Derivative. You let others copy, distribute, display and perform only original copies
of your work. If they want to modify your work, they must get your permission first.

32 Introduction to Python Programming

As mentioned before, these parts of the Creative Commons licenses can be mixed
together. The least protective Creative Commons license would be the “Attribution”
license, which means that as long as people credit you, they can do whatever they
like with the work. The most protective Creative Commons license would be the
“Attribution, Non-Commercial, No Derivatives” license, which means that others can
freely share your work, but should not change it or charge for it, and they must attribute
it to you as the creator of the work. Creative Commons licenses give everyone from
individual creators to large companies and institutions a simple, standardized way to
grant copyright permissions to their creative work.
[Source: Adapted with kind permission from Joel Lee, makeuseof.com.]

1.11 Summary

• Overview of various Python libraries available under different categories is given.
• Python due to its flexibility and simplicity reduces the amount of time taken from

conceptualization of an idea to building the application and marketing it, result-
ing in more demand for Python programmers in Enterprise setup.

• The younger generation needs to be motivated to consider Python as their first
programming language to express their thoughts.

• Anaconda is the most popular Python distribution.
• PyCharm is one of the full-fledged IDEs to work with.
• Open source software has played a very important role in shaping today’s world.

Multiple Choice Questions

 1. A program must be converted to _________ language to be executed by a computer.
 a. Assembly
 b. Machine
 c. High level
 d. Very high level
 2. _________ is a Logical programming language.
 a. PROLOG
 b. Python
 c. C#
 d. Java

33Introduction

 3. The program written only using 0’s and 1’s is
 a. PHP
 b. High level
 c. Python
 d. Machine
 4. The founder of Python is
 a. Charles Babbage
 b. Guido van Rossum
 c. Dennis Ritchie
 d. Larry Wall
 5. Python is a compiled language.
 a. True
 b. False
 c. Can’t say
 d. None of these
 6. This programming paradigm emerged to remove the reliance on the GOTO

statements.
 a. Structured
 b. Object-oriented
 c. Logical
 d. Functional
 7. Which Python library is popularly referred to as the HTTP library written for

humans.
 a. Receive
 b. Requests
 c. Sockets
 d. Send
 8. In which phase of SDLC does the software developer analyses whether software

can be prepared to fulfill all the requirements of the end user?
 a. Design
 b. Development
 c. Testing
 d. Planning
 9. This license allows a patent grant for derivative works.
 a. BSD License
 b. Apache License
 c. MIT License
 d. CC License

34 Introduction to Python Programming

 10. A group of people maintain exclusive control over the source code of a software.
Such software is called

 a. Freeware
 b. Shareware
 c. Proprietary
 d. Adware

Review Questions

 1. What is a programming language?
 2. Briefly explain the steps to install Anaconda.
 3. Describe the steps to install PyCharm.
 4. Outline the advantages and disadvantages of machine language.
 5. Why do we need programs? Comment on this.
 6. Outline the advantages and disadvantages of high-level language.
 7. Give a brief explanation of the history of Python.
 8. Differentiate between Interpreter and Compiler.
 9. Mention disadvantages of Assembly language.
 10. Discuss various steps involved in the software development life cycle.
 11. Give a brief description of open source software.
 12. Explain the different types of licenses under which open source software can be

released.

35

2
Parts of Python Programming Language

In this chapter, we discuss the fundamentals of Python Programming language which
you need to know before writing simple Python programs. This chapter describes how
Python programs should work at the most basic level and gives details about operators,
types and keywords upon which complex solutions can be built. Once you gain familiarity
with these foundational elements of Python programming language, then you will appre-
ciate how a lot of functionality can be accomplished with less verbose code.

2.1 Identifiers

An identifier is a name given to a variable, function, class or module. Identifiers may be
one or more characters in the following format:

• Identifiers can be a combination of letters in lowercase (a to z) or uppercase (A to Z)
or digits (0 to 9) or an underscore (_). Names like myCountry, other_1 and good_
morning, all are valid examples. A Python identifier can begin with an alphabet
(A – Z and a – z and _).

• An identifier cannot start with a digit but is allowed everywhere else. 1plus is
invalid, but plus1 is perfectly fine.

AIM

Understand various Operators, Expression, Data Types, User input and print state-
ments upon which multifaceted operations can be built in Python Programming
Language.

LEARNING OUTCOMES

After completing this chapter, you should be able to

• Define identifiers, keywords, operators and expressions.
• Use different operators, expressions and variables available in Python.
• Build complex expressions using operators.
• Determine the data types of values.
• Use indentation and comments in writing Python programs.

36 Introduction to Python Programming

• Keywords cannot be used as identifiers.
• One cannot use spaces and special symbols like !, @, #, $, % etc. as identifiers.
• Identifier can be of any length.

2.2 Keywords

Keywords are a list of reserved words that have predefined meaning. Keywords are spe-
cial vocabulary and cannot be used by programmers as identifiers for variables, functions,
constants or with any identifier name. Attempting to use a keyword as an identifier name
will cause an error. The following TABLE 2.1 shows the Python keywords.

2.3 Statements and Expressions

A statement is an instruction that the Python interpreter can execute. Python program
consists of a sequence of statements. Statements are everything that can make up a line (or
several lines) of Python code. For example, z = 1 is an assignment statement.

Expression is an arrangement of values and operators which are evaluated to make a
new value. Expressions are statements as well. A value is the representation of some entity
like a letter or a number that can be manipulated by a program. A single value >>> 20 or
a single variable >>> z or a combination of variable, operator and value >>> z + 20 are all
examples of expressions. An expression, when used in interactive mode is evaluated by
the interpreter and result is displayed instantly. For example,

>>> 8 + 2
10

But the same expression when used in Python program does not show any output alto-
gether. You need to explicitly print the result.

TABLE 2.1

List of Keywords in Python

and as not
assert finally or
break for pass
class from nonlocal
continue global raise
def if return
del import try
elif in while
else is with
except lambda yield

False True None

37Parts of Python Programming Language

2.4 Variables

Variable is a named placeholder to hold any type of data which the program can use to
assign and modify during the course of execution. In Python, there is no need to declare
a variable explicitly by specifying whether the variable is an integer or a float or any other
type. To define a new variable in Python, we simply assign a value to a name. If a need for vari-
able arises you need to think of a variable name based on the rules mentioned in the fol-
lowing subsection and use it in the program.

2.4.1 Legal Variable Names

Follow the below-mentioned rules for creating legal variable names in Python.

• Variable names can consist of any number of letters, underscores and digits.
• Variable should not start with a number.
• Python Keywords are not allowed as variable names.
• Variable names are case-sensitive. For example, computer and Computer are dif-

ferent variables.

Also, follow these guidelines while naming a variable, as having a consistent naming con-
vention helps in avoiding confusion and can reduce programming errors.

• Python variables use lowercase letters with words separated by underscores as
necessary to improve readability, like this whats_up, how_are_you. Although this
is not strictly enforced, it is considered a best practice to adhere to this convention.

• Avoid naming a variable where the first character is an underscore. While this
is legal in Python, it can limit the interoperability of your code with applications
built by using other programming languages.

• Ensure variable names are descriptive and clear enough. This allows other pro-
grammers to have an idea about what the variable is representing.

2.4.2 Assigning Values to Variables

The general format for assigning values to variables is as follows:

variable_name = expression

The equal sign (=) also known as simple assignment operator is used to assign values to
variables. In the general format, the operand to the left of the = operator is the name of
the variable and the operand to the right of the = operator is the expression which can be
a value or any code snippet that results in a value. That value is stored in the variable on
the execution of the assignment statement. Assignment operator should not be confused
with the = used in algebra to denote equality. For example, enter the code shown below in
interactive mode and observe the results.

 1. >>> number =100
 2. >>> miles =1000.0

38 Introduction to Python Programming

 3. >>> name ="Python"
 4. >>> number
 100
 5. >>> miles
 1000.0
 6. >>> name
 'Python'

In ➀ integer type value is assigned to a variable number, in ➁ float type value has been
assigned to variable miles and in ➂ string type value is assigned to variable name. ➃, ➄ and
➅ prints the value assigned to these variables.

In Python, not only the value of a variable may change during program execution but
also the type of data that is assigned. You can assign an integer value to a variable, use it as
an integer for a while and then assign a string to the variable. A new assignment overrides
any previous assignments. For example,

 1. >>> century = 100
 2. >>> century
 100
 3. >>> century = "hundred"
 4. >>> century
 'hundred'

In ➀ an integer value is assigned to century variable and then in ➂ you are assigning a string
value to century variable. Different values are printed in each case as seen in ➁ and ➃.

Python allows you to assign a single value to several variables simultaneously. For
example,

 1. >>> a = b = c =1
 2. >>> a
 1
 3. >>> b
 1
 4. >>> c
 1

An integer value is assigned to variables a, b and c simultaneously ➀. Values for each of
these variables are displayed as shown in ➁, ➂ and ➃.

2.5 Operators

Operators are symbols, such as +, –, =, >, and <, that perform certain mathematical or
logical operation to manipulate data values and produce a result based on some rules. An
operator manipulates the data values called operands.

39Parts of Python Programming Language

Consider the expression,

>>> 4 + 6

where 4 and 6 are operands and + is the operator.
Python language supports a wide range of operators. They are

 1. Arithmetic Operators
 2. Assignment Operators
 3. Comparison Operators
 4. Logical Operators
 5. Bitwise Operators

2.5.1 Arithmetic Operators

Arithmetic operators are used to execute arithmetic operations such as addition, sub-
traction, division, multiplication etc. The following TABLE 2.2 shows all the arithmetic
operators.

For example,

 1. >>> 10+35
 45
 2. >>> −10+35
 25
 3. >>> 4*2
 8
 4. >>> 4**2
 16

TABLE 2.2

List of Arithmetic Operators

Operator Operator Name Description Example

+ Addition operator Adds two operands, producing their sum. p + q = 5
− Subtraction operator Subtracts the two operands, producing their

difference.
p – q = −1

* Multiplication operator Produces the product of the operands. p * q = 6
/ Division operator Produces the quotient of its operands where the

left operand is the dividend and the right operand
is the divisor.

q / p = 1.5

% Modulus operator Divides left hand operand by right hand operand
and returns a remainder.

q % p = 1

** Exponent operator Performs exponential (power) calculation on
operators.

p**q = 8

// Floor division operator Returns the integral part of the quotient. 9//2 = 4 and
9.0//2.0 = 4.0

Note: The value of p is 2 and q is 3.

40 Introduction to Python Programming

 5. >>> 45/10
 4.5
 6. >>> 45//10.0
 4.0
 7. >>> 2025%10
 5
 8. >>> 2025//10
 202

Above code illustrates various arithmetic operations ➀–➇.

2.5.2 Assignment Operators

Assignment operators are used for assigning the values generated after evaluating the
right operand to the left operand. Assignment operation always works from right to left.
Assignment operators are either simple assignment operator or compound assignment
operators. Simple assignment is done with the equal sign (=) and simply assigns the value
of its right operand to the variable on the left. For example,

 1. >>> x = 5
 2. >>> x = x + 1
 3. >>> x
 6

In ➀ you assign an integer value of 5 to variable x. In ➁ an integer value of 1 is added to the
variable x on the right side and the value 6 after the evaluation is assigned to the variable x.
The latest value stored in variable x is displayed in ➂.

Compound assignment operators support shorthand notation for avoiding the repetition
of the left-side variable on the right side. Compound assignment operators combine assign-
ment operator with another operator with = being placed at the end of the original operator.

For example, the statement

>>> x = x + 1

can be written in a compactly form as shown below.

>>> x += 1

If you try to update a variable which doesn’t contain any value, you get an error.

 1. >>> z = z + 1
 NameError: name 'z' is not defined

Trying to update variable z which doesn’t contain any value results in an error because
Python evaluates the right side before it assigns a value to z ➀.

 1. >>> z = 0
 2. >>> x = z + 1

41Parts of Python Programming Language

Before you can update a variable ➁, you have to assign a value to it ➀.
The following TABLE 2.3 shows all the assignment operators.

For example,

 1. >>> p = 10
 2. >>> q = 12
 3. >>> q += p
 4. >>> q
 22
 5. >>> q *= p
 6. >>> q
 220
 7. >>> q /= p
 8. >>> q
 22.0
 9. >>> q %= p
 10. >>> q
 2.0
 11. >>> q **= p
 12. >>> q
 1024.0
 13. >>> q //= p
 14. >>> q
 102.0

TABLE 2.3

List of Assignment Operators

Operator Operator Name Description Example

= Assignment Assigns values from right side operands to left
side operand.

z = p + q assigns value
of p + q to z

+= Addition
Assignment

Adds the value of right operand to the left
operand and assigns the result to left operand.

z += p is equivalent to
z = z + p

−= Subtraction
Assignment

Subtracts the value of right operand from the left
operand and assigns the result to left operand.

z −= p is equivalent to
z = z – p

*= Multiplication
Assignment

Multiplies the value of right operand with the left
operand and assigns the result to left operand.

z *= p is equivalent to
z = z * p

/= Division
Assignment

Divides the value of right operand with the left
operand and assigns the result to left operand.

z /= p is equivalent to
z = z / p

**= Exponentiation
Assignment

Evaluates to the result of raising the first operand
to the power of the second operand.

z**= p is equivalent to
z = z ** p

//= Floor Division
Assignment

Produces the integral part of the quotient of its
operands where the left operand is the dividend
and the right operand is the divisor.

z //= p is equivalent to
z = z // p

%= Remainder
Assignment

Computes the remainder after division and
assigns the value to the left operand.

z %= p is equivalent to
z = z % p

42 Introduction to Python Programming

Above code illustrates various assignment operations ➀– 14 .

2.5.3 Comparison Operators

When the values of two operands are to be compared then comparison operators are used.
The output of these comparison operators is always a Boolean value, either True or False.
The operands can be Numbers or Strings or Boolean values. Strings are compared letter
by letter using their ASCII values, thus, “P” is less than “Q”, and “Aston” is greater than
“Asher”. TABLE 2.4 shows all the comparison operators.

For example,

 1. >>>10 == 12
 False
 2. >>>10 != 12
 True
 3. >>>10 < 12
 True
 4. >>>10 > 12
 False
 5. >>>10 <= 12
 True

 Learned readers coming from other languages should note that
Python programming language doesn’t support Autoincrement (++)
and Autodecrement (--) operators.

TABLE 2.4

List of Comparison Operators

Operator Operator Name Description Example

== Equal to If the values of two operands are equal, then the
condition becomes True.

(p == q) is not
True.

!= Not Equal to If values of two operands are not equal, then the
condition becomes True.

(p != q) is True

> Greater than If the value of left operand is greater than the value of
right operand, then condition becomes True.

(p > q) is not True.

< Lesser than If the value of left operand is less than the value of right
operand, then condition becomes True.

(p < q) is True.

>= Greater than or
equal to

If the value of left operand is greater than or equal to the
value of right operand, then condition becomes True.

(p >= q) is not
True.

<= Lesser than or
equal to

If the value of left operand is less than or equal to the
value of right operand, then condition becomes True.

(p <= q) is True.

Note: The value of p is 10 and q is 20.

43Parts of Python Programming Language

 6. >>>10 >= 12
 False
 7. >>> "P" < "Q"
 True
 8. >>> "Aston" > "Asher"
 True
 9. >>> True == True
 True

Above code illustrates various comparison operations ➀–➈.

2.5.4 Logical Operators

The logical operators are used for comparing or negating the logical values of their oper-
ands and to return the resulting logical value. The values of the operands on which the
logical operators operate evaluate to either True or False. The result of the logical operator
is always a Boolean value, True or False. TABLE 2.5 shows all the logical operators.

The Boolean logic Truth table is shown in TABLE 2.6.

 Don’t confuse the equality operator == with the assignment opera-
tor =. The expression x==y compares x with y and has the value True
if the values are the same. The expression x=y assigns the value of y
to x.

TABLE 2.5

List of Logical Operators

Operator Operator Name Description Example

and Logical AND Performs AND operation and the result is
True when both operands are True

p and q results in False

or Logical OR Performs OR operation and the result is True
when any one of both operand is True

p or q results in True

not Logical NOT Reverses the operand state not p results in False

Note: The Boolean value of p is True and q is False.

TABLE 2.6

Boolean Logic Truth Table

P Q P and Q P or Q Not P

True True True True False
True False False True
False True False True True
False False False False

44 Introduction to Python Programming

For example,

 1. >>> True and False
 False
 2. >>> True or False
 True
 3. >>> not(True) and False
 False
 4. >>> not(True and False)
 True
 5. >>> (10 < 0) and (10 > 2)
 False
 6. >>> (10 < 0) or (10 > 2)
 True
 7. >>> not(10 < 0) or (10 > 2)
 True
 8. >>> not(10 < 0 or 10 > 2)
 False

Above code illustrates various comparison operations ➀–➇.
As logical expressions are evaluated left to right, they are tested for possible “short-

circuit” valuation using the following rules:

 1. False and (some_expression) is short-circuit evaluated to False.
 2. True or (some_expression) is short-circuit evaluated to True.

The rules of logic guarantee that these evaluations are always correct. The some_expression
part of the above expressions is not evaluated, so any side effects of doing so do not take
effect. For example,

 1. >>> 1 > 2 and 9 > 6
 False
 2. >>> 3 > 2 or 8 < 4
 True

In ➀ the expression 1 > 2 is evaluated to False. Since and operator is used in the statement
the expression is evaluated to False and the remaining expression 9 > 6 is not evaluated.
In ➁ the expression 3 > 2 is evaluated to True. As or operator is used in the statement the
expression is evaluated to True while the remaining expression 8 < 4 is ignored.

2.5.5 Bitwise Operators

Bitwise operators treat their operands as a sequence of bits (zeroes and ones) and perform
bit by bit operation. For example, the decimal number ten has a binary representation

45Parts of Python Programming Language

of 1010. Bitwise operators perform their operations on such binary representations, but
they return standard Python numerical values. TABLE 2.7 shows all the bitwise operators.

The Bitwise Truth table is shown in TABLE 2.8.

FIGURE 2.1 shows examples for bitwise logical operations. The value of operand a is
60 and value of operand b is 13.

 A sequence consisting of ones and zeroes is known as binary. The
smallest amount of information that you can store in a computer is
known as a bit. A bit is represented as either 0 or 1.

TABLE 2.7

List of Bitwise Operators

Operator Operator Name Description Example

& Binary AND Result is one in each bit position for which
the corresponding bits of both operands
are 1s.

p & q = 12
(means 0000 1100)

| Binary OR Result is one in each bit position for which
the corresponding bits of either or both
operands are 1s.

p | q = 61
(means 0011 1101)

^ Binary XOR Result is one in each bit position for which
the corresponding bits of either but not
both operands are 1s.

(p ^ q) = 49 (means 0011 0001)

~ Binary Ones
Complement

Inverts the bits of its operand. (~p) = −61 (means 1100 0011 in
2’s complement form due to
a signed binary number.

<< Binary Left Shift The left operands value is moved left by
the number of bits specified by the right
operand.

p << 2 = 240
(means 1111 0000)

>> Binary Right Shift The left operands value is moved right by
the number of bits specified by the right
operand.

p >> 2 = 15
(means 0000 1111)

Note: The value of p is 60 and q is 13.

TABLE 2.8

Bitwise Truth Table

P Q P & Q P | Q P ^ Q ~ P

0 0 0 0 0 1
0 1 0 1 1
1 0 0 1 1 0
1 1 1 1 0

46 Introduction to Python Programming

FIGURE 2.2 shows how the expression 60 << 2 would be evaluated in a byte.

Due to this operation,

• Each of the bits in the operand (60) is shifted two places to the left.
• The two bit positions emptied on the right end are filled with 0s.
• The resulting value is 240.

For example,

 1. >>> p =60
 2. >>> p << 2
 240
 3. >>> p = 60
 4. >>> p >> 2
 15
 5. >>> q = 13
 6. >>> p & q
 12
 7. >>> p | q
 61

a
b

a
b

FIGURE 2.1
Examples of bitwise logical operators.

0 0 1 1 1 1 0 0

1 1 1 1 0 0 0 0

Insert 0s

FIGURE 2.2
Example of bitwise left shift of two bits.

47Parts of Python Programming Language

 8. >>> ~p
 –61
 9. >>> p << 2
 240
 10. >>> p >> 2
 15

Above code illustrates various Bitwise operations ➀– 10 .

2.6 Precedence and Associativity

Operator precedence determines the way in which operators are parsed with respect to
each other. Operators with higher precedence become the operands of operators with
lower precedence. Associativity determines the way in which operators of the same pre-
cedence are parsed. Almost all the operators have left-to-right associativity. Operator pre-
cedence is listed in TABLE 2.9 starting with the highest precedence to lowest precedence.

Consider the following code,

 1. >>> 2 + 3 * 6
 20
 2. >>> (2 + 3) * 6
 30
 3. >>> 6 * 4 / 2
 12.0

TABLE 2.9

Operator Precedence in Python

Operators Meaning

() Parentheses
** Exponent
+x, −x, ~x Unary plus, Unary minus, Bitwise NOT
*, /, //, % Multiplication, Division, Floor division, Modulus
+, − Addition, Subtraction
<<, >> Bitwise shift operators
& Bitwise AND
^ Bitwise XOR
| Bitwise OR
==, !=, >, >=, <, <=,
is, is not, in, not in

Comparisons,
Identity, Membership operators

not Logical NOT
and Logical AND
or Logical OR

48 Introduction to Python Programming

Expressions with higher-precedence operators are evaluated first. In ➀ multiplication * is
having precedence over addition. So, 3 * 6 gets evaluated first and the result is added to 2.
This behavior can be overridden using parentheses as shown in ➁. Parentheses have the
highest precedence and the expression inside the parentheses gets evaluated first, which
in our case is 2 + 3 and the result is multiplied with 6. In ➂ both multiplication and division
have the same precedence hence starting from left to right, the multiplication operator is
evaluated first and the result is divided by 2.

2.7 Data Types

Data types specify the type of data like numbers and characters to be stored and manipu-
lated within a program. Basic data types of Python are

• Numbers
• Boolean
• Strings
• None

2.7.1 Numbers

Integers, floating point numbers and complex numbers fall under Python numbers cat-
egory. They are defined as int, float and complex class in Python. Integers can be of any
length; it is only limited by the memory available. A floating point number is accurate up
to 15 decimal places. Integer and floating points are separated by decimal points. 1 is an
integer, 1.0 is floating point number. Complex numbers are written in the form, x + yj,
where x is the real part and y is the imaginary part.

2.7.2 Boolean

Booleans may not seem very useful at first, but they are essential when you start using
conditional statements. In fact, since a condition is really just a yes-or-no question, the
answer to that question is a Boolean value, either True or False. The Boolean values, True
and False are treated as reserved words.

2.7.3 Strings

A string consists of a sequence of one or more characters, which can include letters, num-
bers, and other types of characters. A string can also contain spaces. You can use single
quotes or double quotes to represent strings and it is also called a string literal. Multiline
strings can be denoted using triple quotes, ''' or """. These are fixed values, not variables
that you literally provide in your script. For example,

 1. >>> s = 'This is single quote string'
 2. >>> s = "This is double quote string"

49Parts of Python Programming Language

 3. >>> s = '''This is
 Multiline
 string'''
 4. >>> s = "a"

In ➀ a string is defined using single quotes, in ➁ a string is defined using double quotes
and a multiline string is defined in ➂, a single character is also treated as string ➃.

2.7.4 None

None is another special data type in Python. None is frequently used to represent the
absence of a value. For example,

 1. >>> money = None

None value is assigned to variable money ➀.

2.8 Indentation

In Python, Programs get structured through indentation (FIGURE 2.3). Usually, we expect
indentation from any program code, but in Python it is a requirement and not a matter of
style. This principle makes the code look cleaner and easier to understand and read. Any
statements written under another statement with the same indentation is interpreted to

You use literals to represent values in Python. These are fixed values,
not variables that you literally provide in your program. A string lit-
eral is zero or more characters enclosed in double (") or single (') quota-
tion marks, an integer literal is 12 and float literal is 3.14.

FIGURE 2.3
Code blocks and indentation in Python.

50 Introduction to Python Programming

belong to the same code block. If there is a next statement with less indentation to the left,
then it just means the end of the previous code block.

In other words, if a code block has to be deeply nested, then the nested statements need
to be indented further to the right. In the above diagram, Block 2 and Block 3 are nested
under Block 1. Usually, four whitespaces are used for indentation and are preferred over
tabs. Incorrect indentation will result in IndentationError.

2.9 Comments

Comments are an important part of any program. A comment is a text that describes what
the program or a particular part of the program is trying to do and is ignored by the
Python interpreter. Comments are used to help you and other programmers understand,
maintain, and debug the program. Python uses two types of comments: single-line com-
ment and multiline comments.

2.9.1 Single Line Comment

In Python, use the hash (#) symbol to start writing a comment. Hash (#) symbol makes all
text following it on the same line into a comment. For example,

#This is single line Python comment

2.9.2 Multiline Comments

If the comment extends multiple lines, then one way of commenting those lines is to use
hash (#) symbol at the beginning of each line. For example,

#This is
#multiline comments
#in Python

Another way of doing this is to use triple quotes, either ''' or """. These triple quotes are gener-
ally used for multiline strings. However, they can be used as a multiline comment as well.
For example,

'''This is
 multiline comment
 in Python using triple quotes'''

2.10 Reading Input

In Python, input() function is used to gather data from the user. The syntax for input func-
tion is,

variable_name = input([prompt])

51Parts of Python Programming Language

prompt is a string written inside the parenthesis that is printed on the screen. The prompt
statement gives an indication to the user of the value that needs to be entered through the
keyboard. When the user presses Enter key, the program resumes and input returns what the user
typed as a string. Even when the user inputs a number, it is treated as a string which should
be casted or converted to number explicitly using appropriate type casting function.

 1. >>> person = input("What is your name?")
 2. What is your name? Carrey
 3. >>> person
 'Carrey'

➀ the input() function prints the prompt statement on the screen (in this case "What is your
name?") indicating the user that keyboard input is expected at that point and then it waits
for a line to be typed in. User types in his response in ➁. The input() function reads the line
from the user and converts the line into a string. As can be seen in ➂, the line typed by the
user is assigned to the person variable.

2.11 Print Output

The print() function allows a program to display text onto the console. The print function
will print everything as strings and anything that is not already a string is automatically
converted to its string representation. For example,

 1. >>> print("Hello World!!")
 Hello World!!

➀ prints the string Hello World!! onto the console. Notice that the string Hello World is
enclosed within double quotes inside the print() function.

Even though there are different ways to print values in Python, we discuss two major
string formats which are used inside the print() function to display the contents onto the
console as they are less error prone and results in cleaner code. They are

 1. str.format()
 2. f-strings

2.11.1 str.format() Method

Use str.format() method if you need to insert the value of a variable, expression or an object
into another string and display it to the user as a single string. The format() method returns

 A function is a piece of code that is called by name. It can be passed
data to operate on (i.e., the arguments) and can optionally return
data (the return value). You shall learn more about functions in
Chapter 4.

52 Introduction to Python Programming

a new string with inserted values. The format() method works for all releases of Python 3.x.
The format() method uses its arguments to substitute an appropriate value for each format
code in the template.

The syntax for format() method is,

str.format(p0, p1, ..., k0=v0, k1=v1, ...)

where p0, p1,... are called as positional arguments and, k0, k1,... are keyword arguments
with their assigned values of v0, v1,... respectively.

Positional arguments are a list of arguments that can be accessed with an index of argu-
ment inside curly braces like {index}. Index value starts from zero.

Keyword arguments are a list of arguments of type keyword = value, that can be accessed
with the name of the argument inside curly braces like {keyword}.

Here, str is a mixture of text and curly braces of indexed or keyword types. The indexed
or keyword curly braces are replaced by their corresponding argument values and is dis-
played as a single string to the user.

Program 2.1: Program to Demonstrate input() and print() Functions

 1. country = input("Which country do you live in?")
 2. print("I live in {0}".format(country))

Output

Which country do you live in? India
I live in India

The 0 inside the curly braces {0} is the index of the first (0th) argument (here in our case, it
is variable country ➀) whose value will be inserted at that position ➁.

Program 2.2: Program to Demonstrate the Positional Change of Indexes of Arguments

 1. a = 10
 2. b = 20
 3. print("The values of a is {0} and b is {1}".format(a, b))
 4. print("The values of b is {1} and a is {0}".format(a, b))

Output

The values of a is 10 and b is 20
The values of b is 20 and a is 10

 The term “Method” is used almost exclusively in Object-oriented
programming.

'Method' is the object-oriented word for 'function'. A Method is a
piece of code that is called by a name that is associated with an object.
You shall learn more about Classes and Objects in Chapter 11.

53Parts of Python Programming Language

You can have as many arguments as you want, as long as the indexes in curly braces have
a matching argument in the argument list ➂. {0} index gets replaced with the data value
of variable a ➀ and {1} with the data value of variable b ➁. This allows for re-arranging the
order of display without changing the arguments ➃.

 1. >>> print("Give me {ball} ball".format(ball = "tennis"))
 Give me tennis ball

The keyword argument {ball} gets replaced with its assigned value ➀.

2.11.2 f-strings

Formatted strings or f-strings were introduced in Python 3.6. A f-string is a string literal that
is prefixed with “f”. These strings may contain replacement fields, which are expressions
enclosed within curly braces {}. The expressions are replaced with their values. In the real
world, it means that you need to specify the name of the variable inside the curly braces
to display its value. An f at the beginning of the string tells Python to allow any currently
valid variable names within the string.

Program 2.3: Code to Demonstrate the Use of f-strings with print() Function

 1. country = input("Which country do you live in?")
 2. print(f"I live in {country}")

Output

Which country do you live in? India
I live in India

Input string is assigned to variable country ➀. Observe the character f prefixed before the
quotes and the variable name is specified within the curly braces ➁.

Program 2.4: Given the Radius, Write Python Program to Find the Area and
Circumference of a Circle

 1. radius = int(input("Enter the radius of a circle"))
 2. area_of_a_circle = 3.1415 * radius * radius
 3. circumference_of_a_circle = 2 * 3.1415 * radius
 4. print(f"Area = {area_of_a_circle} and Circumference = {circumference_of_a_circle}")

 We use f-strings along within print() function to print the contents
throughout this book, as f-strings are the most practical and
 straightforward way of formatting strings unless some special case
arises.

54 Introduction to Python Programming

Output

Enter the radius of a circle 5
Area = 78.53750000000001 and Circumference = 31.415000000000003

Get input for radius from the user ➀ and ➁ to calculate the area of a circle using the formula
πr2 and ➂ circumference of a circle is calculated using the formula 2πr. Finally, ➃ print the
results.

Program 2.5: Write Python Program to Convert the Given Number of Days
to a Measure of Time Given in Years, Weeks and Days. For Example,
375 Days Is Equal to 1 Year, 1 Week and 3 Days (Ignore Leap Year).

 1. number_of_days = int(input("Enter number of days"))
 2. number_of_years = int(number_of_days/365)
 3. number_of_weeks = int(number_of_days % 365 / 7)
 4. remaining_number_of_days = int(number_of_days % 365 % 7)
 5. print(f"Years = {number_of_years}, Weeks = {number_of_weeks}, Days =

{remaining_number_of_days}")

Output

Enter number of days375
Years = 1, Weeks = 1, Days = 3

Total number of days is specified by the user ➀. Number of years ➁ is calculated by dividing
the total number of days by 365. To calculate the number of weeks ➂, deduct the number of
days using % 365 and divide by 7. Now deduct the number of days using % 365 and number
of weeks by % 7 to calculate the remaining number of days ➃. Finally, display the results ➄.

2.12 Type Conversions

You can explicitly cast, or convert, a variable from one type to another.

2.12.1 The int() Function

To explicitly convert a float number or a string to an integer, cast the number using int()
function.

Program 2.6: Program to Demonstrate int() Casting Function

 1. float_to_int = int(3.5)
 2. string_to_int = int("1") #number treated as string
 3. print(f"After Float to Integer Casting the result is {float_to_int}")
 4. print(f"After String to Integer Casting the result is {string_to_int}")

55Parts of Python Programming Language

Output

After Float to Integer Casting the result is 3
After String to Integer Casting the result is 1

Convert float and string values to integer ➀–➁ and display the result ➂–➃.

 1. >>>numerical_value = input("Enter a number")
 Enter a number 9
 2. >>> numerical_value
 '9'
 3. >>> numerical_value = int(input("Enter a number"))
 Enter a number 9
 4. >>> numerical_value
 9

➀–➁ User enters a value of 9 which gets assigned to variable numerical_value and the value
is treated as string type. In order to assign an integer value to the variable, you have to
enclose the input() function within the int() function which converts the input string type
to integer type ➂–➃. A string to integer conversion is possible only when the string value
is inherently a number (like “1”) and not a character.

2.12.2 The float() Function

The float() function returns a floating point number constructed from a number or string.

Program 2.7: Program to Demonstrate float() Casting Function

 1. int_to_float = float(4)
 2. string_to_float = float("1") #number treated as string
 3. print(f"After Integer to Float Casting the result is {int_to_float}")
 4. print(f"After String to Float Casting the result is {string_to_float}")

Output

After Integer to Float Casting the result is 4.0
After String to Float Casting the result is 1.0

Convert integer and string values to float ➀–➁ and display the result ➂–➃.

2.12.3 The str() Function

The str() function returns a string which is fairly human readable.

Program 2.8: Program to Demonstrate str() Casting Function

 1. int_to_string = str(8)
 2. float_to_string = str(3.5)
 3. print(f"After Integer to String Casting the result is {int_to_string}")
 4. print(f"After Float to String Casting the result is {float_to_string}")

56 Introduction to Python Programming

Output

After Integer to String Casting the result is 8
After Float to String Casting the result is 3.5

Here, integer and float values are converted ➀–➁ to string using str() function and results
are displayed ➂–➃.

2.12.4 The chr() Function

Convert an integer to a string of one character whose ASCII code is same as the integer
using chr() function. The integer value should be in the range of 0–255.

Program 2.9: Program to Demonstrate chr() Casting Function

 1. ascii_to_char = chr(100)
 2. print(f'Equivalent Character for ASCII value of 100 is {ascii_to_char}')

Output

Equivalent Character for ASCII value of 100 is d

An integer value corresponding to an ASCII code is converted ➀ to the character and printed ➁.

2.12.5 The complex() Function

Use complex() function to print a complex number with the value real + imag*j or convert
a string or number to a complex number. If the first argument for the function is a string,
it will be interpreted as a complex number and the function must be called without a sec-
ond parameter. The second parameter can never be a string. Each argument may be any
numeric type (including complex). If imag is omitted, it defaults to zero and the function
serves as a numeric conversion function like int(), long() and float(). If both arguments are
omitted, the complex() function returns 0j.

Program 2.10: Program to Demonstrate complex() Casting Function

 1. complex_with_string = complex("1")
 2. complex_with_number = complex(5, 8)
 3. print(f"Result after using string in real part {complex_with_string}")
 4. print(f"Result after using numbers in real and imaginary part {complex_with_

number}")

Output

Result after using string in real part (1+0j)
Result after using numbers in real and imaginary part (5+8j)

The first argument is a string ➀. Hence you are not allowed to specify the second argument.
In ➁ the first argument is an integer type, so you can specify the second argument which
is also an integer. Results are printed out in ➂ and ➃.

57Parts of Python Programming Language

2.12.6 The ord() Function

The ord() function returns an integer representing Unicode code point for the given
Unicode character.

Program 2.11: Program to Demonstrate ord() Casting Function

 1. unicode_for_integer = ord('4')
 2. unicode_for_alphabet = ord("Z")
 3. unicode_for_character = ord("#")
 4. print(f"Unicode code point for integer value of 4 is {unicode_for_integer}")
 5. print(f"Unicode code point for alphabet 'A' is {unicode_for_alphabet}")
 6. print(f"Unicode code point for character '$' is {unicode_for_character}")

Output

Unicode code point for integer value of 4 is 52
Unicode code point for alphabet 'A' is 90
Unicode code point for character '$' is 35

The ord() function converts an integer ➀, alphabet ➁ and a character ➂ to its equivalent
Unicode code point integer value and prints the result ➃–➅.

2.12.7 The hex() Function

Convert an integer number (of any size) to a lowercase hexadecimal string prefixed with
“0x” using hex() function.

Program 2.12: Program to Demonstrate hex() Casting Function

 1. int_to_hex = hex(255)
 2. print(f"After Integer to Hex Casting the result is {int_to_hex}")

Output

After Integer to Hex Casting the result is 0xff

Integer value of 255 is converted to equivalent hex string of 0xff ➀ and result is printed as
shown in ➁.

2.12.8 The oct() Function

Convert an integer number (of any size) to an octal string prefixed with “0o” using oct()
function.

Program 2.13: Program to Demonstrate oct() Casting Function

 1. int_to_oct = oct(255)
 2. print(f"After Integer to Hex Casting the result is {int_to_oct}")

58 Introduction to Python Programming

Output

After Integer to Hex Casting the result is 0o377

Integer value of 255 is converted to equivalent oct string of 0o37 ➀ and result is printed as
shown in ➁.

2.13 The type() Function and Is Operator

The syntax for type() function is,
type(object)

The type() function returns the data type of the given object.

 1. >>> type(1)
 <class 'int'>
 2. >>> type(6.4)
 <class 'float'>
 3. >>> type("A")
 <class 'str'>
 4. >>> type(True)
 <class 'bool'>

The type() function comes in handy if you forget the type of variable or an object during
the course of writing programs.

The operators is and is not are identity operators. Operator is evaluates to True if the values
of operands on either side of the operator point to the same object and False otherwise. The
operator is not evaluates to False if the values of operands on either side of the operator
point to the same object and True otherwise.

 1. >>> x = "Seattle"
 2. >>> y = "Seattle"
 3. >>> x is y
 True

Both x and y point to same object “Seattle” ➀–➁ and results in True when evaluated using
is operator ➂.

2.14 Dynamic and Strongly Typed Language

Python is a dynamic language as the type of the variable is determined during run-time
by the interpreter. Python is also a strongly typed language as the interpreter keeps track
of all the variables types. In a strongly typed language, you are simply not allowed to do
anything that’s incompatible with the type of data you are working with. For example,

59Parts of Python Programming Language

 1. >>> 5 + 10
 15
 2. >>> 1 + "a"
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 TypeError: unsupported operand type(s) for +: 'int' and 'str'

In ➀ values which are of integer types are added and they are compatible. However, in ➁
when you try to add 1, which is an integer type with "a" which is string type, then it results
in Traceback as they are not compatible.

In Python, Traceback is printed when an error occurs. The last line tells us the kind of
error that occurred which in our case is the unsupported operand type(s).

2.15 Summary

• Identifier is a name given to the variable and must begin with a letter or under-
score and can include any number of letter, digits or underscore.

• Keywords have predefined meaning.
• A Variable holds a value that may change.
• Python supports the following operators:

• Arithmetic Operators
• Comparison
• Assignment
• Logical
• Bitwise
• Identity

• Statement is a unit of code that the Python interpreter can execute.
• An expression is a combination of variables, operators, values and reserved

keywords.
• The Hash (#) and Triple Quotes (''' ''') are used for commenting.
• Python provides no braces to indicate blocks of code for class and function defi-

nitions or flow control. Blocks of code are denoted by line indentation, which is
rigidly enforced.

• The print() and input() functions handle simple text output (to the screen) and
input (from the keyboard).

• The str(), int(), and float() functions will evaluate to the string, integer, or floating-
point number form of the value they are passed.

• A docstring is a string enclosed by triple quotation marks and provides program
documentation.

60 Introduction to Python Programming

• Comments are pieces of code that are not evaluated by the interpreter but can be
read by programmers to obtain information about a program.

• The type conversion functions can be used to convert a value of one type to a value
of another type after input.

Multiple Choice Questions

 1. Which of the following are invalid identifiers in Python?
 a. Total-sum
 b. Error
 c. Error_count
 d. None of these
 2. A _____________ is a sequence of one or more characters used to provide a name for

a given program element.
 a. Identifier
 b. Variable
 c. String
 d. Character
 3. Identify the invalid identifier below.
 a. _2017discount
 b. Profit
 c. Total-discount
 d. Totaldiscount
 4. _____________ are not allowed as part of an identifier.
 a. Spaces
 b. Numbers
 c. Underscore
 d. All of these
 5. Identifiers may contain letters and digits, but cannot begin with a _____________.
 a. Character
 b. Digit
 c. Underscore
 d. Special Symbols
 6. Which is not a reserved keyword in Python?
 a. insert
 b. except
 c. import
 d. yield

61Parts of Python Programming Language

 7. Identify the invalid keyword below.
 a. and
 b. as
 c. while
 d. until
 8. _____________ is an identifier that has predefined meaning.
 a. variable
 b. identifier
 c. keyword
 d. None of these
 9. Bitwise _____________ operator gives 1 if one of the bit is zero and the other is 1.
 a. or
 b. and
 c. xor
 d. not
 10. Guess the output of the following code.
 1 > 2 and 9 > 6
 a. True
 b. False
 c. Machine Dependent
 d. Error
 11. How many operands are there in the following arithmetic expression?
 6 * 35 + 8 − 25
 a. 4
 b. 3
 c. 5
 d. 8
 12. How many binary operators are there in the following arithmetic expression?
 − 6 + 10 / (23 + 56)
 a. 2
 b. 3
 c. 4
 d. 5
 13. Which operator returns the remainder of the operands?
 a. /
 b. //
 c. %
 d. **

62 Introduction to Python Programming

 14. A _____________ is a name that is associated with a value.
 a. identifier
 b. keyword
 c. variable
 d. None of these
 15. Guess the output of the following expression.
 float(22//3+3/3)
 a. 8
 b. 8.0
 c. −8.3
 d. 8.333
 16. What value does the following expression evaluate to?
 2 + 9 * ((3 * 12) – 8) / 10
 a. 27
 b. 27.2
 c. 30.8
 d. None of these
 17. _____________ and _____________ are two ways to comment in Python.
 a. Single and Multilevel comments
 b. Single line and Double line comments
 c. One and Many line comments
 d. Single line and Multiline comments
 18. Single-line comments start with the _____________ symbol.
 a. *#
 b. #
 c. *
 d. &
 19. Multiline comments can be done by adding _____________ on each end of the

comment.
 a. "' "'(triple quote)
 b. # (Hash)
 c. $ (dollar)
 d. % (modulus)
 20. Python programs get structured through _____________.
 a. Alignment
 b. Indentation
 c. Justification
 d. None

63Parts of Python Programming Language

 21. In Python, Indentation is a _____________ and not a matter of style.
 a. Requirement
 b. Refinement
 c. Not required
 d. Not Refined
 22. Which of the following is correct about Python?
 a. Python is a high-level, interpreted, interactive and object-oriented

language.
 b. Python is designed to be highly readable.
 c. It uses English keywords frequently and has fewer syntactical

constructions.
 d. All of the above.
 23. Which of the following function is used to read data from the keyboard?
 a. function()
 b. str()
 c. input()
 d. print()
 24. The one’s complement of 60 is given by _____________.
 a. −61
 b. −60
 c. −59
 d. +59
 25. The operators is and is not are _____________.
 a. Identity Operators
 b. Comparison Operators
 c. Membership Operators
 d. Unary Operators
 26. In Python an identifier is _____________.
 a. Machine Dependent
 b. Keyword
 c. Case Sensitive
 d. Constant
 27. Which of the following operator is truncation division operator?
 a. /
 b. %
 c. |
 d. //

64 Introduction to Python Programming

 28. The expression that requires type conversion when evaluated is _____________.
 a. 4.7 * 6.3
 b. 1.7 % 2
 c. 3.4 + 4.6
 d. 7.9 * 6.3
 29. The operator that has the highest precedence is _____________.
 a. << and >>
 b. **
 c. +
 d. %
 30. The expression that results in an error is _____________.
 a. int('10.8')
 b. float(10)
 c. int(10)
 d. float(10.8)
 31. Which of the following expression is an example of type conversion?
 a. 4.0 + float(3)
 b. 5.3 + 6.3
 c. 5.0 + 3
 d. 3 + 7
 32. What is the output when the following statement is executed?
 >>>print('new' 'line')
 a. Error
 b. Output equivalent to print ‘new\nline’
 c. new line
 d. newline
 33. What is the output when the following statement is executed?
 print(0xD + 0xE + 0xF)
 a. Error
 b. 0XD0XE0XF
 c. 0X22
 d. 42
 34. What is the output of print (0.1 + 0.2 == 0.3)?
 a. True
 b. False
 c. Error
 d. Machine dependent

65Parts of Python Programming Language

 35. Which of the following is not a complex number?
 a. l = 4 + 5j
 b. l = complex(4,5)
 c. l = 4 + 5i
 d. l = 4 + 5j
 36. Guess the output of the expression.
 x = 15
 y = 12
 x & y
 a. 1101
 b. b1101
 c. 0b1101
 d. 12
 37. Incorrect Indentation results in _____________.
 a. IndentationError
 b. NameError
 c. TypeError
 d. SyntaxError
 38. The function that converts an integer to a string of one character whose ASCII

code is same as the integer is _____________.
 a. chr(x)
 b. ord(x)
 c. eval(x)
 d. input(x)

Review Questions

 1. Explain different Operators in Python with examples.
 2. Define a variable. How to assign values to them?
 3. Briefly explain binary left shift and binary right shift operators with examples.
 4. Explain precedence and associativity of operators with examples.
 5. Outline different assignment operators with examples.
 6. Briefly explain how to read data from the keyboard.
 7. Explain Type conversion in Python with examples.
 8. Write a short note on data types in Python.

66 Introduction to Python Programming

 9. Write a program to read two integers and perform arithmetic operations on them
(addition, subtraction, multiplication and division).

 10. Write a program to read the marks of three subjects and find the average of them.
 11. Write a program to convert kilogram into pound.
 12. Surface area of a prism can be calculated if the lengths of the three sides are

known. Write a program that takes the sides as input (read it as integer) and prints
the surface area of the prism (Surface Area = 2ab + 2bc + 2ca).

 13. A plane travels 395,000 meters in 9000 seconds. Write a program to find the speed
of the plane (Speed = Distance / Time).

 14. You need to empty out the rectangular swimming pool which is 12 meters long,
7 meters wide and 2 meter depth. You have a pump which can move 17 cubic
meters of water in an hour. Write a program to find how long it will take to empty
your pool? (Volume = l * w * h, and flow = volume/time).

 15. Write a program to convert temperature from centigrade (read it as float value) to
Fahrenheit.

 16. Write a program that calculates the number of seconds in a day.
 17. A car starts from a stoplight and is traveling with a velocity of 10 m/sec east in

20 seconds. Write a program to find the acceleration of the car. (acc = (vfinal−vinitial)/
time).

67

3
Control Flow Statements

Python supports a set of control flow statements that you can integrate into your program.
The statements inside your Python program are generally executed sequentially from top to
bottom, in the order that they appear. Apart from sequential control flow statements you
can employ decision making and looping control flow statements to break up the flow of
execution thus enabling your program to conditionally execute particular blocks of code.
The term control flow details the direction the program takes.

The control flow statements (FIGURE 3.1) in Python Programming Language are

 1. Sequential Control Flow Statements: This refers to the line by line execution, in
which the statements are executed sequentially, in the same order in which they
appear in the program.

 2. Decision Control Flow Statements: Depending on whether a condition is True
or False, the decision structure may skip the execution of an entire block of
 statements or even execute one block of statements instead of other (if, if…else and
if…elif…else).

 3. Loop Control Flow Statements: This is a control structure that allows the execu-
tion of a block of statements multiple times until a loop termination condition
is met (for loop and while loop). Loop Control Flow Statements are also called
Repetition statements or Iteration statements.

AIM

Understand if, if…else and if…elif…else statements and use of control flow state-
ments that provide a means for looping over a section of code multiple times within
the program.

LEARNING OUTCOMES

At the end of this chapter, you are expected to

• Use if, if…else and if…elif…else statements to transfer the control from one
part of the program to another.

• Write while and for loops to run one or more statements repeatedly.
• Control the flow of execution using break and continue statements.
• Improve the reliability of code by incorporating exception handling mecha-

nisms through try-except blocks.

68 Introduction to Python Programming

3.1 The if Decision Control Flow Statement

The syntax for if statement is,

if Boolean_ Expression:
statement (s)

Colon should be
present at the end

Indentation

Keyword

The if decision control flow statement starts with if keyword and ends with a colon. The
expression in an if statement should be a Boolean expression. The if statement decides
whether to run some particular statement or not depending upon the value of the Boolean
expression. If the Boolean expression evaluates to True then statements in the if block will
be executed; otherwise the result is False then none of the statements are executed. In
Python, the if block statements are determined through indentation and the first unin-
dented statement marks the end. You don’t need to use the == operator explicitly to check
if a variable’s value evaluates to True as the variable name can itself be used as a condition.

For example,

 1. >>> if 20 > 10:
 2. … print(f"20 is greater than 10")

Sequential Control Flow

Decision Control Flow

Block of Instructions 1

Block of Instructions 1 Block of Instructions 2

For Each Item

Block of Instructions

FalseTrue

Condition

Block of Instructions 2

Block of Instructions 3

Loop Control Flow

True

False

FIGURE 3.1
Forms of control flow statements.

69Control Flow Statements

Output
20 is greater than 10

In ➀, the Boolean expression 20 > 10 is evaluated to Boolean True and the print statement
➁ is executed.

Program 3.1: Program Reads a Number and Prints a Message If It Is Positive

 1. number = int(input("Enter a number"))
 2. if number >= 0:
 3. print(f"The number entered by the user is a positive number")

Output

Enter a number 67
The number entered by the user is a positive number

The value entered by the user is read and stored in the number variable ➀, the value in the
number variable ➁ is checked to determine if it is greater than or equal to 0, if True then print
the message ➂.

Program 3.2: Program to Read Luggage Weight and Charge the Tax Accordingly

 1. weight = int(input("How many pounds does your suitcase weigh?"))
 2. if weight > 50:
 3. print(f"There is a $25 surcharge for heavy luggage")
 4. print(f"Thank you")

Output

How many pounds does your suitcase weigh? 75
There is a $25 surcharge for heavy luggage
Thank you

The weight of the luggage is read ➀ and if it is greater than 50 ➁ then extra charges are col-
lected. Lines ➂ and ➃ are present in the indentation block of if statement. If the weight of
the luggage is less than 50 then nothing is printed.

3.2 The if…else Decision Control Flow Statement

An if statement can also be followed by an else statement which is optional. An else statement
does not have any condition. Statements in the if block are executed if the Boolean_Expression
is True. Use the optional else block to execute statements if the Boolean_Expression is False.
The if…else statement allows for a two-way decision.

70 Introduction to Python Programming

The syntax for if…else statement is,

if Boolean_Expression:
statement_1

else:
statement_2

Colon should be

present at the end

Indentation

Keyword

Indentation

Keyword

Colon should be

present at the end

If the Boolean_Expression evaluates to True, then statement_1 is executed, otherwise it is evalu-
ated to False then statement_2 is executed. Indentation is used to separate the blocks. After the
execution of either statement_1 or statement_2, the control is transferred to the next statement
after the if statement. Also, if and else keywords should be aligned at the same column position.

Program 3.3: Program to Find If a Given Number Is Odd or Even

 1. number = int(input("Enter a number"))
 2. if number % 2 == 0:
 3. print(f"{number} is Even number")
 4. else:
 5. print(f"{number} is Odd number")

Output

Enter a number: 45
45 is Odd number

A number is read and stored in the variable named number ➀. The number is checked using
modulus operator ➁ to determine whether the number is perfectly divisible by 2 or not. If
the number is perfectly divisible by 2, then the expression is evaluated to True and number
is even ➂. However, ➃ if the expression evaluates to False, the number is odd ➄.

Program 3.4: Program to Find the Greater of Two Numbers

 1. number_1 = int(input("Enter the first number"))
 2. number_2 = int(input("Enter the second number"))

 Here, statement, statement_1, statement_2 and so on can be either a
single statement or multiple statements. Boolean_Expression, Boolean_
Expression_1, Boolean_Expression_2 and so on are expressions of the
Boolean type which gets evaluated to either True or False.

71Control Flow Statements

 3. if number_1 > number_2:
 4. print(f"{number_1} is greater than {number_2}")
 5. else:
 6. print(f"{number_2} is greater than {number_1}")

Output

Enter the first number 8
Enter the second number 10
10 is greater than 8

Two numbers are read using the input function and the values are stored in the variables
number_1 ➀ and number_2 ➁. The Boolean expression is evaluated ➂ and if it is True, then line
➃ is executed else ➄ if the Boolean expression is evaluated to False, then line ➅ is executed.

3.3 The if…elif…else Decision Control Statement

The if…elif…else is also called as multi-way decision control statement. When you need
to choose from several possible alternatives, then an elif statement is used along with an if
statement. The keyword ‘elif’ is short for ‘else if’ and is useful to avoid excessive indenta-
tion. The else statement must always come last, and will again act as the default action.

The syntax for if…elif…else statement is,

if Boolean_Expression_1:
statement_1

elif Boolean_Expression_2:
statement_2

elif Boolean_Expression_3:
statement_3
:
:
:

else:
statement_last

Colon should be

present at the end
Keyword

Indentation

Keyword

This if…elif…else decision control statement is executed as follows:

• In the case of multiple Boolean expressions, only the first logical Boolean expres-
sion which evaluates to True will be executed.

• If Boolean_Expression_1 is True, then statement_1 is executed.
• If Boolean_Expression_1 is False and Boolean_Expression_2 is True, then state-

ment_2 is executed.

72 Introduction to Python Programming

• If Boolean_Expression_1 and Boolean_Expression_2 are False and Boolean_
Expression_3 is True, then statement_3 is executed and so on.

• If none of the Boolean_Expression is True, then statement_last is executed.

Program 3.5: Write a Program to Prompt for a Score between 0.0 and 1.0. If the
Score Is Out of Range, Print an Error. If the Score Is between 0.0
and 1.0, Print a Grade Using the Following Table

Score Grade

>= 0.9 A

>= 0.8 B

>= 0.7 C

>= 0.6 D

< 0.6 F

 1. score = float(input("Enter your score"))
 2. if score < 0 or score > 1:
 3. print('Wrong Input')
 4. elif score >= 0.9:
 5. print('Your Grade is "A" ')
 6. elif score >= 0.8:
 7. print('Your Grade is "B" ')
 8. elif score >= 0.7:
 9. print('Your Grade is "C" ')
 10. elif score >= 0.6:
 11. print('Your Grade is "D" ')
 12. else:
 13. print('Your Grade is "F" ')

Output

Enter your score0.92
Your Grade is "A"

A number is read and is assigned to the variable score ➀. If the score value is greater than
1 or less than 0 ➁ then we display an error message indicating to the user that it is a wrong
input ➂. If not, the score value is checked for different conditions based on the score table
and the grade statements are printed accordingly ➃– .

 There can be zero or more elif parts each followed by an indented
block, and the else part is optional. There can be only one else block. An
if…elif…else statement is a substitute for the switch or case statements
found in other programming languages.

73Control Flow Statements

Program 3.6: Program to Display the Cost of Each Type of Fruit

 1. fruit_type = input("Enter the Fruit Type:")
 2. if fruit_type == "Oranges":
 3. print('Oranges are $0.59 a pound')
 4. elif fruit_type == "Apples":
 5. print('Apples are $0.32 a pound')
 6. elif fruit_type == "Bananas":
 7. print('Bananas are $0.48 a pound')
 8. elif fruit_type == "Cherries":
 9. print('Cherries are $3.00 a pound')
 10. else:
 11. print(f'Sorry, we are out of {fruit_type}')

Output

Enter the Fruit Type: Cherries
Cherries are $3.00 a pound

A string value is read and assigned to the variable fruit_type ➀. The value of the fruit_type
variable is checked against different strings ➁–➈. If the fruit_type value matches with the
existing string, then a message is printed else inform the user of the unavailability of the
fruit ➉– .

3.4 Nested if Statement

In some situations, you have to place an if statement inside another statement. An if state-
ment that contains another if statement either in its if block or else block is called a Nested
if statement.

The syntax of the nested if statement is,

if Boolean_Expression_1:

if Boolean_Expression_2:

statement_1

else:

statement_2

else:

statement_3

Nested if

If the Boolean_Expression_1 is evaluated to True, then the control shifts to Boolean_
Expression_2 and if the expression is evaluated to True, then statement_1 is executed, if
the Boolean_Expression_2 is evaluated to False then the statement_2 is executed. If the
Boolean_Expression_1 is evaluated to False, then statement_3 is executed.

74 Introduction to Python Programming

Program 3.7: Program to Check If a Given Year Is a Leap Year

 1. year = int(input('Enter a year'))
 2. if year % 4 == 0:
 3. if year % 100 == 0:
 4. if year % 400 == 0:
 5. print(f'{year} is a Leap Year')
 6. else:
 7. print(f'{year} is not a Leap Year')
 8. else:
 9. print(f'{year} is a Leap Year')
 10. else:
 11. print(f'{year} is not a Leap Year')

Output

Enter a year 2014
2014 is not a Leap Year

All years which are perfectly divisible by 4 are leap years except for century years (years
ending with 00) which is a leap year only it is perfectly divisible by 400. For example, years
like 2012, 2004, 1968 are leap years but 1971, 2006 are not leap years. Similarly, 1200, 1600,
2000, 2400 are leap years but 1700, 1800, 1900 are not.

Read the value for year as input ➀. Check whether the given year is divisible by 4 ➁ and
also by 400 ➃. If the condition is True, then the year is a leap year ➄. If the year is divisible by
4 and not divisible by 100 ➇ then the year is a leap year ➈. If the condition at ➁ or ➃ becomes
False, then the year is not a leap year ➆ and .

3.5 The while Loop

The syntax for while loop is,

while Boolean_Expression:

statement(s)

Colon should be
present at the end

Indentation

Keyword

The while loop starts with the while keyword and ends with a colon. With a while state-
ment, the first thing that happens is that the Boolean expression is evaluated before the
statements in the while loop block is executed. If the Boolean expression evaluates to False,
then the statements in the while loop block are never executed. If the Boolean expression
evaluates to True, then the while loop block is executed. After each iteration of the loop
block, the Boolean expression is again checked, and if it is True, the loop is iterated again.

75Control Flow Statements

Each repetition of the loop block is called an iteration of the loop. This process continues
until the Boolean expression evaluates to False and at this point the while statement exits.
Execution then continues with the first statement after the while loop.

Program 3.8: Write Python Program to Display First 10 Numbers Using
while Loop Starting from 0

 1. i = 0
 2. while i < 10:
 3. print(f"Current value of i is {i}")
 4. i = i + 1

Output

Current value of i is 0
Current value of i is 1
Current value of i is 2
Current value of i is 3
Current value of i is 4
Current value of i is 5
Current value of i is 6
Current value of i is 7
Current value of i is 8
Current value of i is 9

Variable i is assigned with 0 outside the loop ➀. The expression i < 10 is evaluated ➁. If the
value of i is less than 10 (i.e., True) then the body of the loop is executed. Value of i is printed ➂
and i is incremented by 1 ➃. This continues until the expression in while loop becomes False.

Program 3.9: Write a Program to Find the Average of n Natural Numbers
Where n Is the Input from the User

 1. number = int(input("Enter a number up to which you want to find the average"))
 2. i = 0
 3. sum = 0
 4. count = 0
 5. while i < number:
 6. i = i + 1
 7. sum = sum + i
 8. count = count + 1
 9. average = sum/count
 10. print(f"The average of {number} natural numbers is {average}")

Output

Enter a number up to which you want to find the average 5
The average of 5 natural numbers is 3.0

76 Introduction to Python Programming

The variables i, sum and count are assigned with zero ➁, ➂, ➃. The expression i < number is
evaluated ➄. Since it is True for the first iteration, the body of the while loop gets executed.
Variable i gets incremented ➅ by value of 1 and it generates the required natural numbers.
The sum variable adds the value of sum variable with the value of i variable ➆, while the
count variable keeps track of number of times the body of the loop gets executed ➇. The
loop gets repeated until the test expression becomes False. The average is calculated as sum/
count ➈ and displayed .

Program 3.10: Program to Find the GCD of Two Positive Numbers

 1. m = int(input("Enter first positive number"))
 2. n = int(input("Enter second positive number"))
 3. if m == 0 and n == 0:
 4. print("Invalid Input")
 5. if m == 0:
 6. print(f"GCD is {n}")
 7. if n == 0:
 8. print(f"GCD is {m}")
 9. while m != n:
 10. if m > n:
 11. m = m – n
 12. if n > m:
 13. n = n – m
 14. print(f"GCD of two numbers is {m}")

Output

Enter first positive number8
Enter second positive number12
GCD of two numbers is 4

Read the value for m and n ➀–➁. If both m and n are zero then it is invalid input because
zero cannot be divided by zero which is indeterminate ➂–➃. If either m or n is zero then
the other one is gcd ➄–➇. If the value of m > n then m = m – n or if n > m then n = n – m.
The logic in line ➉– is repeated until the value of m is equal to the value of n ➈. Then gcd
will be either m or n .

Program 3.11: Write Python Program to Find the Sum of Digits in a Number

 1. number = int(input('Enter a number'))
 2. result = 0
 3. remainder = 0
 4. while number != 0:
 5. remainder = number % 10

77Control Flow Statements

 6. result = result + remainder
 7. number = int(number / 10)
 8. print(f"The sum of all digits is {result}")

Output

Enter a number1234
The sum of all digits is 10

Read a number from user ➀ and store it in a variable called number. Assign zero to the vari-
ables result and remainder ➁–➂. Find the last digit of the number. To get the last digit of the
number use modulus division by 10 and assign it the variable remainder ➄. Add the last digit
that you obtained with the result variable ➅. Then remove the last digit from the number by
dividing the number by 10 and cast it as int ➆. Repeat the logic in line ➄–➆ till the variable
number becomes 0 ➃. Finally, you will be left with the sum of digits in the result variable ➇.

Program 3.12: Write a Program to Display the Fibonacci Sequences up to nth
Term Where n is Provided by the User

 1. nterms = int(input('How many terms?'))
 2. current = 0
 3. previous = 1
 4. count = 0
 5. next_term = 0
 6. if nterms <= 0:
 7. print('Please enter a positive number')
 8. elif nterms == 1:
 9. print('Fibonacci sequence')
 10. print('0')
 11. else:
 12. print("Fibonacci sequence")
 13. while count < nterms:
 14. print(next_term)
 15. current = next_term
 16. next_term = previous + current
 17. previous = current
 18. count += 1

Output

How many terms? 5
Fibonacci sequence
0
1
1
2
3

78 Introduction to Python Programming

In a Fibonacci sequence, the next number is obtained by adding the previous two
numbers. The first two numbers of the Fibonacci sequence are 0 and 1. The next
 number is obtained by adding 0 and 1 which is 1. Again, the next number is obtained
by adding 1 and 1 which is 2 and so on. Get a number from user ➀ up to which you
want to generate the Fibonacci sequence. Assign values to variables current, previ-
ous, next_term and count ➁–➄. The variable count keeps track of number of times the
while block is executed. User is required to enter a positive number to generate the
Fibonacci sequence ➅–➆. If the user asks to generate a single number in the sequence,
then print zero ➇– ➉. The next_term is obtained 14 by adding the previous and current
variables and the logic from – is repeated until while block conditional expression
becomes False .

Program 3.13: Program to Repeatedly Check for the Largest Number Until the
User Enters “done”

 1. largest_number = int(input("Enter the largest number initially"))
 2. check_number = input("Enter a number to check whether it is largest or not")
 3. while check_number != "done":
 4. if largest_number > int(check_number):
 5. print(f"Largest Number is {largest_number}")
 6. else:
 7. largest_number = int(check_number)
 8. print(f"Largest Number is {largest_number}")
 9. check_number = input("Enter a number to check whether it is largest or not")

Output

Enter the largest number initially 5
Enter a number to check whether it is largest or not 1
Largest Number is 5
Enter a number to check whether it is largest or not 10
Largest Number is 10
Enter a number to check whether it is largest or not 8
Largest Number is 10
Enter a number to check whether it is largest or not done

A number is read initially which is assumed to be the largest_number ➀. Then, the user
is prompted to enter another number which is assigned to variable check_number ➁.
Within the while loop ➂ the value of check_variable is compared with that of largest_ variable
➃–➄. If the check_variable has a larger value then that value is assigned to largest_
variable ➅–➇. The user is again prompted to enter another value which is compared
against the largest_number value ➈. This continues until the user enters the string "done"
instead of a numerical value.

79Control Flow Statements

3.6 The for Loop

The syntax for the for loop is,

for iteration_variable in sequence:

statement(s)

Colon should be
present at the end

Indentation Keyword

Keyword

The for loop starts with for keyword and ends with a colon. The first item in the sequence
gets assigned to the iteration variable iteration_variable. Here, iteration_variable can be any
valid variable name. Then the statement block is executed. This process of assigning items
from the sequence to the iteration_variable and then executing the statement continues until
all the items in the sequence are completed.

We take the liberty of introducing you to range() function which is a built-in function at
this stage as it is useful in demonstrating for loop. The range() function generates a sequence
of numbers which can be iterated through using for loop. The syntax for range() function is,

range([start ,] stop [, step])

Both start and step arguments are optional and the range argument value should always
be an integer.

start → value indicates the beginning of the sequence. If the start argument is not
specified, then the sequence of numbers start from zero by default.

stop → Generates numbers up to this value but not including the number itself.
step → indicates the difference between every two consecutive numbers in the

sequence. The step value can be both negative and positive but not zero.

NOT E: The square brackets in the syntax indicate that these arguments are optional. You
can leave them out.

Program 3.14: Demonstrate for Loop Using range() Function

 1. print("Only ''stop'' argument value specified in range function")
 2. for i in range(3):
 3. print(f"{i}")
 4. print("Both ''start'' and ''stop'' argument values specified in range function")
 5. for i in range(2, 5):
 6. print(f"{i}")
 7. print("All three arguments ''start'', ''stop'' and ''step'' specified in range function")
 8. for i in range(1, 6, 3):
 9. print(f"{i}")

80 Introduction to Python Programming

Output

Only ''stop'' argument value specified in range function
0
1
2
Both ''start'' and ''stop'' argument values specified in range function
2
3
4
All three arguments ''start'', ''stop'' and ''step'' specified in range function
1
4

The function range(3) generates numbers starting from 0 to 2 ➁. During the first iteration,
the 0th value gets assigned to the iteration variable i and the same gets printed out ➂. This
continues to execute until all the numbers generated using range() function are assigned
to the variable i. The function range(2, 5) ➄ generates a sequence of numbers starting from
2 to 4 and the function range(1, 6, 3) generates ➇ all the numbers starting from 1 up to 5 but
the difference between each number is 2.

Program 3.15: Program to Iterate through Each Character in the String
Using for Loop

 1. for each_character in "Blue":
 2. print(f"Iterate through character {each_character} in the string 'Blue'")

Output

Iterate through character B in the string 'Blue'
Iterate through character l in the string 'Blue'
Iterate through character u in the string 'Blue'
Iterate through character e in the string 'Blue'

The iteration variable each_character is used to iterate through each character of the string
“Blue” ➀ and each character is printed out in separate line ➁.

Program 3.16: Write a Program to Find the Sum of All Odd and Even Numbers
up to a Number Specified by the User.

 1. number = int(input("Enter a number"))
 2. even = 0
 3. odd = 0
 4. for i in range(number):
 5. if i % 2 == 0:
 6. even = even + i
 7. else:
 8. odd = odd + i
 9. print(f"Sum of Even numbers are {even} and Odd numbers are {odd}")

81Control Flow Statements

Output

Enter a number 10
Sum of Even numbers are 20 and Odd numbers are 25

A range of numbers are generated using range() function ➃. The numbers are segregated
as odd or even by using the modulus operator ➄. All the even numbers are added up and
assigned to even variable and odd numbers are added up and assigned to odd variable ➅–➇
and print the result ➈.

Program 3.17: Write a Program to Find the Factorial of a Number

 1. number = int(input('Enter a number'))
 2. factorial = 1
 3. if number < 0:
 4. print("Factorial doesn't exist for negative numbers")
 5. elif number == 0:
 6. print('The factorial of 0 is 1')
 7. else:
 8. for i in range(1, number + 1):
 9. factorial = factorial * i
 10. print(f"The factorial of number {number} is {factorial}")

Output

Enter a number 5
The factorial of number 5 is 120

The factorial of a non-negative integer n is denoted by n! which is the product of all positive
integers less than or equal to n i.e., n! = n * (n − 1) * (n − 2) * (n − 3)… 3 * 2 * 1. For example,

5! = 5 × 4 × 3 × 2 × 1 = 120.
The value of 0! is 1

Read a number from user ➀. A value of 1 is assigned to variable factorial ➁. To find the fac-
torial of a number it has to be checked for a non-negative integer ➂–➃. If the user entered
number is zero then the factorial is 1 ➄–➅. To generate numbers from 1 to the user entered
number range() function is used. Every number is multiplied with the factorial variable and is
assigned to the factorial variable itself inside the for loop ➆–➈. The for loop block is repeated
for all the numbers starting from 1 up to the user entered number. Finally, the factorial value
is printed ➉.

3.7 The continue and break Statements

The break and continue statements provide greater control over the execution of code
in a loop. Whenever the break statement is encountered, the execution control imme-
diately jumps to the first instruction following the loop. To pass control to the next

82 Introduction to Python Programming

iteration without exiting the loop, use the continue statement. Both continue and break
statements can be used in while and for loops.

Program 3.18: Program to Demonstrate Infinite while Loop and break

 1. n = 0
 2. while True:
 3. print(f"The latest value of n is {n}")
 4. n = n + 1

Here the while loop evaluates to True logical value always ➁ and it prints the latest value
➂–➃. This is an infinite loop with no end in sight. You need to press Ctrl + C to terminate
this program. One way of ending this infinite loop is to use break statement along with if
condition as shown in the following code.

 1. n = 0
 2. while True:
 3. print(f"The latest value of n is {n}")
 4. n = n + 1
 5. if n > 5:
 6. print(f"The value of n is greater than 5")
 7. break

Output

The latest value of n is 0
The latest value of n is 1
The latest value of n is 2
The latest value of n is 3
The latest value of n is 4
The latest value of n is 5
The value of n is greater than 5

While this is an infinite loop ➀–➃, you can use this pattern to build useful loops as long as
you explicitly add code to the body of the loop to ensure to exit from the loop using break
statement upon satisfying a condition ➄–➆.

Program 3.19: Write a Program to Check Whether a Number Is Prime or Not

 1. number = int(input('Enter a number > 1: '))
 2. prime = True
 3. for i in range(2, number):
 4. if number % i == 0:
 5. prime = False
 6. break

83Control Flow Statements

 7. if prime:
 8. print(f"{number} is a prime number")
 9. else:
 10. print(f"{number} is not a prime number")

Output

Enter a number > 1: 7
7 is a prime number

A prime number is a number which is divided by one and itself. For example, the number
7 is prime as it can be divided by 1 and itself, while number 10 can be divided by 2 and
5 other than 1 and itself, thus 10 can’t be a prime number.

The user shall enter a value greater than one ➀. Initially, the variable prime is assigned
with True Boolean value ➁. Use range() function to generate numbers starting from 2 up
to number – 1, excluding the user entered number ➂. The user entered number is checked
using modulus operator ➃ to determine whether the number is perfectly divisible by any
number other than 1 and by itself. If it is divisible, then the variable prime is assigned False
Boolean value ➄ and we break out of the loop ➅. But after completing the loop if prime
remains True ➆ then the user entered number is prime number ➇ else ➈ it is not a prime
number ➉.

Program 3.20: Program to Demonstrate continue Statement

 1. n = 10
 2. while n > 0:
 3. print(f"The current value of number is {n}")
 4. if n == 5:
 5. print(f"Breaking at {n}")
 6. n = 10
 7. continue
 8. n = n – 1

Output

The current value of number is 10
The current value of number is 9
The current value of number is 8
The current value of number is 7
The current value of number is 6
The current value of number is 5
Breaking at 5
The current value of number is 10
The current value of number is 9
The current value of number is 8
The current value of number is 7
The current value of number is 6
The current value of number is 5

84 Introduction to Python Programming

In the above program, the while block is executed when the value of n is greater than
zero ➀–➁. The value in the variable n is decremented ➇ and printed in descending
order ➂ and when n becomes five ➃–➆ the control goes back to the beginning of
the loop.

3.8 Catching Exceptions Using try and except Statement

There are at least two distinguishable kinds of errors:

 1. Syntax Errors
 2. Exceptions

3.8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind of com-
plaint you get while you are still learning Python. For example,

 1. while True
 2. print("Hello World)

Output

File "<ipython-input-3-c231969faf4f>", line 1
 while True
 ^
SyntaxError: invalid syntax

In the output, the offending line is repeated and displays a little ‘arrow’ pointing at the
earliest point in the line where the error was detected ➀. The error is caused by a missing
colon (':'). File name and line number are also printed so you know where to look in case
the input came from a Python program file.

3.8.2 Exceptions

Exception handling is one of the most important feature of Python programming language
that allows us to handle the errors caused by exceptions. Even if a statement or expression
is syntactically correct, it may cause an error when an attempt is made to execute it. Errors
detected during execution are called exceptions.

An exception is an unwanted event that interrupts the normal flow of the program.
When an exception occurs in the program, execution gets terminated. In such cases,
we get a system-generated error message. However, these exceptions can be handled
in Python. By handling the exceptions, we can provide a meaningful message to the
user about the issue rather than a system-generated message, which may not be under-
standable to the user.

85Control Flow Statements

Exceptions can be either built-in exceptions or user-defined exceptions. The interpreter
or built-in functions can generate the built-in exceptions while user-defined exceptions are
custom exceptions created by the user.

When the exceptions are not handled by programs it results in error messages as shown
below.

 1. >>> 10 * (1/0)
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ZeroDivisionError: division by zero

 2. >>> 4 + spam*3
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 NameError: name 'spam' is not defined

 3. >>> '2' + 2
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 TypeError: Can't convert 'int' object to str implicitly

The last line of the error message indicates what happened. Exceptions come in dif-
ferent types, and the type is printed as part of the message: the types in the example
are ZeroDivisionError ➀, NameError ➁ and TypeError ➂. The string printed as the
exception type is the name of the built-in exception that occurred. The preceding part
of the error message shows the context where the exception happened, in the form
of a stack traceback.

3.8.3 Exception Handling Using try…except…finally

Handling of exception ensures that the flow of the program does not get interrupted when
an exception occurs which is done by trapping run-time errors. Handling of exceptions
results in the execution of all the statements in the program.

It is possible to write programs to handle exceptions by using try…except…finally
statements.

 Run-time errors are those errors that occur during the execution of the
program. These errors are not detected by the Python interpreter,
because the code is syntactically correct.

86 Introduction to Python Programming

The syntax for try…except…finally is,

try:
statement_1

except Exception_Name_1:
statement_2

except Exception_Name_2:
statement_3

.

.

.
else:

statement_4
finally:

statement_5

Keyword

Keyword

Keyword

Colon should be

present at the end

Colon should be

present at the end

Colon should be

present at the end

Optional

Optional

Keyword
Colon should be

present at the end

A try block consisting of one or more statements is used by Python programmers to parti-
tion code that might be affected by an exception. The associated except blocks are used to
handle any resulting exceptions thrown in the try block. That is, you want the try block to
succeed, and if it does not succeed, you want the control to pass to the catch block. If any
statement within the try block throws an exception, control immediately shifts to the catch
block. If no exception is thrown in the try block, the catch block is skipped.

There can be one or more except blocks. Multiple except blocks with different exception
names can be chained together. The except blocks are evaluated from top to bottom in
your code, but only one except block is executed for each exception that is thrown. The first
except block that specifies the exact exception name of the thrown exception is executed.
If no except block specifies a matching exception name then an except block that does not
have an exception name is selected, if one is present in the code. Instead of having
multiple except blocks with multiple exception names for different exceptions, you can
combine multiple exception names together separated by a comma (also called paren-
thesized tuples) in a single except block. The syntax for combining multiple exception
names in an except block is,

except (Exception_Name_1, Exception_Name_2, Exception_Name_3):
 statement(s)

where Exception_Name_1, Exception_Name_2 and Exception_Name_3 are different
exception names.

 You shall learn more about tuples in Chapter 8.

87Control Flow Statements

The try…except statement has an optional else block, which, when present, must follow all
except blocks. It is useful for code that must be executed if the try block does not raise an
exception. The use of the else block is better than adding additional code to the try block
because it avoids accidentally catching an exception that wasn’t raised by the code being
protected by the try…except statement.

The try statement has another optional block which is intended to define clean-up actions
that must be executed under all circumstances. A finally block is always executed before
leaving the try statement, whether an exception has occurred or not. When an exception has
occurred in the try block and has not been handled by an except block, it is re-raised after
the finally block has been executed. The finally clause is also executed “on the way out” when
any other clause of the try statement is left via a break, continue or return statement.

You can also leave out the name of the exception after the except keyword. This is generally
not recommended as the code will now be catching different types of exceptions and handling
them in the same way. This is not optimal as you will be handling a TypeError exception the
same way as you would have handled a ZeroDivisionError exception. When handling excep-
tions, it is better to be as specific as possible and only catch what you can handle.

Program 3.21: Program to Check for ValueError Exception

 1. while True:
 2. try:
 3. number = int(input("Please enter a number: "))
 4. print(f"The number you have entered is {number}")
 5. break
 6. except ValueError:
 7. print("Oops! That was no valid number. Try again…")

Output

Please enter a number: g
Oops! That was no valid number. Try again…
Please enter a number: 4
The number you have entered is 4

First, the try block (the statement(s) between the try and except keywords) is executed ➁–➄
inside the while loop ➀. If no exception occurs, the except block is skipped and execution
of the try statement is finished. If an exception occurs during execution of the try block
statements, the rest of the statements in the try block is skipped. Then if its type matches
the exception named after the except keyword, the except block is executed ➅–➆, and then
execution continues after the try statement. When a variable receives an inappropriate
value then it leads to ValueError exception.

Program 3.22: Program to Check for ZeroDivisionError Exception

 1. x = int(input("Enter value for x: "))
 2. y = int(input("Enter value for y: "))

88 Introduction to Python Programming

 3. try:
 4. result = x / y
 5. except ZeroDivisionError:
 6. print("Division by zero!")
 7. else:
 8. print(f"Result is {result}")
 9. finally:
 10. print("Executing finally clause")

Output

Case 1
Enter value for x: 8
Enter value for y: 0
Division by zero!
Executing finally clause
Case 2
Enter value for x: p
Enter value for y: q
Executing finally clause
ValueError Traceback (most recent call last)
<ipython-input-16-271d1f4e02e8> in <module>()
ValueError: invalid literal for int() with base 10: 'p'

In the above example divide by zero exception is handled. In line ➀ and ➁, the user entered val-
ues are assigned to x and y variables. Line ➃ is enclosed within line ➂ which is a try clause. If
the statements enclosed within the try clause raise an exception then the control is transferred
to line ➄ and divide by zero error is printed ➅. As can be seen in Case 1, ZeroDivisionError
occurs when the second argument of a division or modulo operation is zero. If no exception
occurs, the except block is skipped and result is printed out ➆–➇. In Case 2, as you can see, the
finally clause is executed in any event ➈– ➉. The ValueError raised by dividing two strings is not
handled by the except clause and therefore re-raised after the finally clause has been executed.

Program 3.23: Write a Program Which Repeatedly Reads Numbers Until the User
Enters 'done'. Once 'done' Is Entered, Print Out the Total, Count, and Average of the
Numbers. If the User Enters Anything Other Than a Number, Detect Their Mistake
Using try and except and Print an Error Message and Skip to the Next Number

 1. total = 0
 2. count = 0
 3. while True:
 4. num = input("Enter a number: ")
 5. if num == 'done':
 6. print(f"Sum of all the entered numbers is {total}")
 7. print(f"Count of total numbers entered {count}")
 8. print(f"Average is {total / count}")

89Control Flow Statements

 9. break
 10. else:
 11. try:
 12. total += float(num)
 13. except:
 14. print("Invalid input")
 15. continue
 16. count += 1

Output

Enter a number: 1
Enter a number: 2
Enter a number: 3
Enter a number: 4
Enter a number: 5
Enter a number: done
Sum of all the entered numbers is 15.0
Count of total numbers entered 5
Average is 3.0

The program prompts the user ➃ to enter a series of numbers until the user enters the
word “done” ➂. Assign zero to the variables total and count ➀–➁. Check whether the user
has entered the word "done" or a numerical value ➄. If it is other than the word "done"
then the value entered by the user is added to the total variable ➉– . If the value entered
is a value other than numerical value and other than "done" string value then an excep-
tion is raised – and the program continues with the next iteration prompting the
user to enter the next value. The count variable keeps track of number of times the user
has entered a value. If the user enters "done" string value ➄ then calculate and display the
average ➅–➇. At this stage break from the loop and stop the execution of the program ➈.

3.9 Summary

• An if statement always starts with if clause. It can also have one or more elif clauses
and a concluding else clause, but those clauses are optional.

• When an error occurs at run time, an exception is thrown and exceptions must be
handled to end the programs gracefully.

• Python allows try-except and can have multiple except blocks for a single try
block. Developers can create and raise their own exceptions.

• The while statement loops through a block of statements until the condition
becomes false.

• The for statement can loop through a block of statements once for each item sequence.
• A break statement breaks out of a loop by jumping to the end of it.
• A continue statement continues a loop by jumping to the start of it.

90 Introduction to Python Programming

Multiple Choice Questions

 1. _________ control statement repeatedly executes a set of statements.
 a. Iterative
 b. Conditional
 c. Multi-way
 d. All of these
 2. Deduce the output of the following code.
 if False and False:
 print(“And Operation”)
 elif True or False:
 print(“Or operation”)
 else:
 print(“Default case”)
 a. And Operation
 b. Or Operation
 c. Default Case
 d. B and C option
 3. Predict the output of the following code.
 i = 1
 while True:
 if i%2 == 0:
 break
 print(i)
 i += 1
 a. 1
 b. 12
 c. 123
 d. None of these
 4. Which keyword is used to take the control to the beginning of the loop?
 a. exit
 b. break
 c. continue
 d. None of these

 5. The step argument in range() function _________.
 a. indicates the beginning of the sequence
 b. indicates the end of the sequence
 c. indicates the difference between every two consecutive numbers in the

sequence
 d. generates numbers up to a specified value

91Control Flow Statements

 6. The symbol that is placed at the end of if condition is
 a. ;
 b. :
 c. &
 d. ~
 7. What is the keyword that is used to come out of a loop only for that iteration?
 a. break
 b. return
 c. continue
 d. if
 8. Judge the output of the following code snippet.
 for i in range(10):
 if i == 5:
 break
 else:
 print(i)
 a. 0 1 2 3 4
 b. 0 1 2 3 4 5
 c. 0 1 2 3
 d. 1 2 3 4 5
 9. Predict the output of the following code snippet.
 while True:
 print(True)
 break
 a. True
 b. False
 c. None
 d. Syntax error
 10. The output of the below expression is
 >>>10 * (1/0).
 a. OverflowError
 b. ZeroDivisionError
 c. NameError
 d. TypeError
 11. How many except statements can a try-except block have?
 a. Zero
 b. One
 c. More than one
 d. More than zero

92 Introduction to Python Programming

 12. When will the else part of the try-except-else be executed?
 a. Always
 b. When an exception occurs
 c. When no exception occurs
 d. When an exception occurs in a try block
 13. When is the finally block executed?
 a. When an exception occurs
 b. When there is no exception
 c. Only if some condition that has been specified is satisfied
 d. always
 14. The keyword that is not used as an exception handling in Python?
 a. try
 b. except
 c. accept
 d. finally
 15. An exception is
 a. A object
 b. A special function
 c. A special module
 d. A module
 16. The set of statements that will be executed whether an exception is thrown or not?
 a. except
 b. else
 c. finally
 d. assert
 17. Predict the output of the following code snippet.

 while True
 print(“Hello World”)

 a. Syntax Error
 b. Logical Error
 c. Run-time error
 d. None of these
 18. Gauge the output of the following statement?

 int("65.43")
 a. Import error
 b. Value error
 c. Type error
 d. Name error

93Control Flow Statements

 19. The error that is not a standard exception in Python.
 a. Name Error
 b. Assignment Error
 c. IO Error
 d. Value Error
 20. The function that generates a sequence of numbers which can be iterated through

using for loop.
 a. input()
 b. range()
 c. list()
 d. raw_input()
 21. What is the output of the following code snippet?

 x = 'abcd'
 for i in x:

 print(i)
 a. abcd
 b. 0 1 2 3
 c. iiiii
 d. Traceback
 22. The function of while loop is
 a. Repeat a chunk of code a given number of times.
 b. Repeat a chunk of code until a condition is true.
 c. Repeat a chunk of code until a condition is false.
 d. Repeat a chunk of code indefinitely.

Review Questions

 1. Briefly explain the conditional statements available in Python.
 2. Explain the syntax of for loop with an example.
 3. What is the purpose of using break and continue?
 4. Differentiate the syntax of if...else and if...elif...else with an example.
 5. Explain the use of range() function with an example.
 6. Why would you use a try-except statement in a program?
 7. Explain the syntax of while loop with an example.
 8. Differentiate between syntax error and an exception.
 9. Explain the syntax of the try-except-finally block.

94 Introduction to Python Programming

 10. Write a program to read the Richter magnitude value from the user and display
the result for the following conditions using if...elif...else statement.

Richter Magnitude Information

> 1.0 and < 2.0 Microearthquakes not felt or rarely felt
> 2.0 and < 4.0 Very rarely causes damage
> 4.0 and < 5.0 Damage done to weak buildings
> 5.0 and < 6.0 Cause damage to the poorly constructed building
> 6.0 and < 7.0 Causes damage to well-built structures
> 7.0 and < 8.0 Causes damage to most buildings
> 8.0 and < 9.0 Causes major destruction
> 9.0 Causes unbelievable damage

 11. Write a program to display Pascal’s triangle.
 12. Write a program to display the following pattern using nested loops.

1 1
22 21
333 321
4444 4321
55555 54321

 13. Write a program that uses a while loop to add up all the even numbers between
100 and 200.

 14. Write a program to print the sum of the following series
 a. 1 + ½ + 1/3 +. …. + 1/n
 b. 1/1 + 22/2 + 33/3 + ……. + nn/n
 15. Write a program to find the depreciation value of an asset(property) by reading

the purchase value of the asset (amt), year of the service (year) and the value of
depreciation.

95

4
Functions

Functions are one of the fundamental building blocks in Python programming language.
Functions are used when you have a block of statements that needs to be executed mul-
tiple times within the program. Rather than writing the block of statements repeatedly to
perform the action, you can use a function to perform that action. This block of statements
are grouped together and is given a name which can be used to invoke it from other parts
of the program. You write a function once but can execute it any number of times you like.
Functions also reduce the size of the program by eliminating rudimentary code. Functions
can be either Built-in Functions or User-defined functions.

4.1 Built-In Functions

The Python interpreter has a number of functions that are built into it and are always
available. You have already looked at some of the built-in functions like input(), print(), range()
and others in previous chapters. Let’s discuss few more built-in functions (TABLE 4.1).

AIM

Learn to define and invoke functions and comprehend the use of arguments and
parameters to pass information to a function as well as return information from a
function.

LEARNING OUTCOMES

At the end of this chapter, you are expected to

• Understand the purpose of functions in Python.
• Define and invoke functions.
• Receive the returned data from functions.
• Understand the use of modules and built-in functions in Python.
• Determine the scope of variables.
• Recognize different forms of function arguments.

96 Introduction to Python Programming

For example,

 1. >>> abs(-3)
 3

 2. >>> min(1, 2, 3, 4, 5)
 1

 3. >>> max(4, 5, 6, 7, 8)
 8

 4. >>> divmod(5, 2)
 (2, 1)

 5. >>> divmod(8.5, 3)
 (2.0, 2.5)

 6. >>> pow(3, 2)
 9

 7. >>> len("Japan")
 5

Demonstration of various built-in functions ➀–➆.

TABLE 4.1

A Few Built-in Functions in Python

Function Name Syntax Explanation

abs() abs(x)
where x is an integer or
floating-point number.

The abs() function returns the absolute value of a
number.

min() min(arg_1, arg_2, arg_3,…,
arg_n)

where arg_1, arg_2, arg_3 are
the arguments.

The min() function returns the smallest of two or
more arguments.

max() max(arg_1, arg_2, arg_3,…,arg_n)
where arg_1, arg_2, arg_3 are
the arguments.

The max() function returns the largest of two or
more arguments.

divmod() divmod(a, b)
where a and b are numbers
representing numerator and
denominator.

The divmod() function takes two numbers as
arguments and return a pair of numbers
consisting of their quotient and remainder. For
example, if a and b are integer values, then the
result is the same as (a // b, a % b). If either a or b
is a floating-point number, then the result is (q, a
% b), where q is the whole number of the quotient.

pow() pow(x, y)
where x and y are numbers.

The pow(x, y) function returns x to the power y
which is equivalent to using the power operator:
x**y.

len() len(s)
where s may be a string, byte,
list, tuple, range, dictionary or
a set.

The len() function returns the length or the number
of items in an object.

97Functions

4.2 Commonly Used Modules

Modules in Python are reusable libraries of code having .py extension, which implements
a group of methods and statements. Python comes with many built-in modules as part of
the standard library.

To use a module in your program, import the module using import statement. All the
import statements are placed at the beginning of the program.

The syntax for import statement is,

import module_nameKeyword

For example, you can import the math module as

 1. >>>import math

The math module is part of the Python standard library which provides access to various
mathematical functions and is always available to the programmer ➀.

The syntax for using a function defined in a module is,

module_name.function_name()

The module name and function name are separated by a dot.

Here we list some of the functions supported by math module.

 1. >>> import math
 2. >>> print(math.ceil(5.4))

 6
 3. >>> print(math.sqrt(4))

 2.0
 4. >>> print(math.pi)

 3.141592653589793
 5. >>> print(math.cos(1))

 0.5403023058681398
 6. >>> math.factorial(6)

 720
 7. >>> math.pow(2, 3)
 8.0

Import the math module at the beginning ➀. The math.ceil(x) function returns the ceiling
of x, the smallest integer greater than or equal to the number ➁, math.sqrt(x), returns the
square root of x ➂, math.pi is the mathematical constant π = 3.141592…, to available preci-
sion ➃, math.cos(x) returns the cosine of x radians ➄, math.factorial(x) returns x factorial ➅,
math.pow(x, y) returns x raised to the power y ➆.

98 Introduction to Python Programming

The built-in function dir() returns a sorted list of comma separated strings containing
the names of functions, classes and variables as defined in the module. For example, you
can find all the functions supported by the math module by passing the module name as
an argument to the dir() function.

 1. >>> dir(math)
 ['__doc__', '__loader__', '__name__', '__package__', '__spec__', 'acos', 'acosh', 'asin',

'asinh', 'atan', 'atan2', 'atanh', 'ceil', 'copysign', 'cos', 'cosh', 'degrees', 'e', 'erf', 'erfc', 'exp',
'expm1', 'fabs', 'factorial', 'floor', 'fmod', 'frexp', 'fsum', 'gamma', 'gcd', 'hypot', 'inf',
'isclose', 'isfinite', 'isinf', 'isnan', 'ldexp', 'lgamma', 'log', 'log10', 'log1p', 'log2', 'modf',
'nan', 'pi', 'pow', 'radians', 'sin', 'sinh', 'sqrt', 'tan', 'tanh', 'tau', 'trunc']

Various functions associated with math module is displayed ➀
Another built-in function you will find useful is the help() function which invokes the

built-in help system. The argument to the help() function is a string, which is looked up as the
name of a module, function, class, method, keyword, or documentation topic, and then a related
help page is printed in the console. For example, if you want to find information about gcd()
function in math module then pass the function name as an argument without parenthesis.

 1. >>> help(math.gcd)
 Help on built-in function gcd in module math:
 gcd(…)
 gcd(x, y) -> int

 greatest common divisor of x and y

Help page related to math.gcd is printed in the console ➀.

Another useful module in the Python standard library is the random module which gen-
erates random numbers.

 1. >>> import random
 2. >>> print(random.random())

 0.2551941897892144
 3. >>> print(random.randint(5,10))
 9

First, you need to import the random module to use any of its functions ➀. The random()
function generates a random floating-point number between 0 and 1 and it produces a
different value each time it is called ➁. The syntax for random.randint() function is ran-
dom.randint(start, stop) which generates a integer number between start and stop argument
numbers (including both) ➂.

Third-party modules or libraries can be installed and managed using Python’s package
manager pip.

The syntax for pip is,

pip install module_name

99Functions

Arrow is a popular Python library that offers a sensible, human-friendly approach to cre-
ating, manipulating, formatting and converting dates, times, and timestamps.

To install the arrow module, open a command prompt window and type the below com-
mand from any location.

 1. C:\> pip install arrow

Install arrow module using pip command ➀.
Below code shows a simple usage of arrow module.

 1. >>> import arrow
 2. >>> a = arrow.utcnow()
 3. >>> a.now()
 <Arrow [2017-12-23T20:45:14.490380+05:30]>

UTC is the time standard commonly used across the world. The world’s timing centers
have agreed to keep their time scales closely synchronized—or coordinated—therefore
the name Coordinated Universal Time ➁. Current date including time is displayed using
now() function ➂.

4.3 Function Definition and Calling the Function

You can create your own functions and use them as and where it is needed. User-defined
functions are reusable code blocks created by users to perform some specific task in the
program.

The syntax for function definition is,

In Python, a function definition consists of the def keyword, followed by

 1. The name of the function. The function’s name has to adhere to the same naming
rules as variables: use letters, numbers, or an underscore, but the name cannot
start with a number. Also, you cannot use a keyword as a function name.

 2. A list of parameters to the function are enclosed in parentheses and separated by
commas. Some functions do not have any parameters at all while others may have
one or more parameters.

def function_name(parameter_1, parameter_2, …, parameter_n):

statement(s)
Colon should be present at

the end

Indentation

Keyword
ParametersUser defined

100 Introduction to Python Programming

 3. A colon is required at the end of the function header. The first line of the function
definition which includes the name of the function is called the function header.

 4. Block of statements that define the body of the function start at the next line of the
function header and they must have the same indentation level.

The def keyword introduces a function definition. The term parameter or formal param-
eter is often used to refer to the variables as found in the function definition.

Defining a function does not execute it. Defining a function simply names the function
and specifies what to do when the function is called. Calling the function actually per-
forms the specified actions with the indicated parameters.

The syntax for function call or calling function is,

function_name(argument_1, argument_2,…,argument_n)

Arguments are the actual value that is passed into the calling function. There must be
a one to one correspondence between the formal parameters in the function definition
and the actual arguments of the calling function. When a function is called, the formal
parameters are temporarily “bound” to the arguments and their initial values are assigned
through the calling function.

A function should be defined before it is called and the block of statements in the func-
tion definition are executed only after calling the function. Normally, statements in the
Python program are executed one after the other, in the order in which they are written.
Function definitions do not alter the flow of execution of the program. When you call a
function, the control flows from the calling function to the function definition. Once the
block of statements in the function definition is executed, then the control flows back to the
calling function and proceeds with the next statement. Python interpreter keeps track of
the flow of control between different statements in the program.

 The first statement among the block of statements within the func-
tion definition can optionally be a documentation string or docstring.
There are tools which use docstrings to produce online documents or
printed documentation automatically. Triple quotes are used to repre-
sent docstrings. For example,

""" This is single line docstring """
OR
""" This is
 multiline
 docstring """

 When the control returns to the calling function from the function def-
inition then the formal parameters and other variables in the function
definition no longer contain any values.

101Functions

Before executing the code in the source program, the Python interpreter automatically defines
few special variables. If the Python interpreter is running the source program as a stand-alone
main program, it sets the special built-in __name__ variable to have a string value "__main__".
After setting up these special variables, the Python interpreter reads the program to execute
the code found in it. All of the code that is at indentation level 0 gets executed. Block of state-
ments in the function definition is not executed unless the function is called.

if __name__ == "__main__":

 statement(s)

The special variable, __name__ with "__main__", is the entry point to your program. When
Python interpreter reads the if statement and sees that __name__ does equal to "__main__",
it will execute the block of statements present there.

Program 4.1: Program to Demonstrate a Function with and without Arguments

 1. def function_definition_with_no_argument():
 2. print("This is a function definition with NO Argument")

 3. def function_definition_with_one_argument(message):
 4. print(f"This is a function definition with {message}")

 5. def main():
 6. function_definition_with_no_argument()
 7. function_definition_with_one_argument("One Argument")

 8. if __name__ == "__main__":
 9. main()

Output

This is a function definition with NO Argument
This is a function definition with One Argument

When you code Python programs, it is a best practice to put all the relevant neces-
sary calling functions inside the main() function definition. Since the above program
is a stand-alone main source program, Python interpreter assigns the string value "__
main__" to the built-in special variable __name__ which is checked for equality using
if condition ➇–➈ and is also the entry point of your program. If the condition is True
then the Python interpreter calls the main() function. In the main() ➄ function definition
there are two calling functions. You can have any number of function definitions and
their calling functions in your program. When function at ➅ is called without any argu-
ments the control flows to function definition at ➀ and displays the statement ➁. After
executing the function definition at ➀ the control comes back to the place in the main
function from where it had left and starts executing the next statement. At this stage,
calling the function at ➆ with one argument which is a string value is executed. The
control moves over to the function definition at ➂ which has one parameter and assigns
the string value to the message parameter. The passed string value is displayed at ➃.

102 Introduction to Python Programming

Program 4.2: Program to Find the Area of Trapezium Using the Formula
Area = (1/2) * (a + b) * h Where a and b Are the 2 Bases
of Trapezium and h Is the Height

 1. def area_trapezium(a, b, h):
 2. area = 0.5 * (a + b) * h
 3. print(f"Area of a Trapezium is {area}")

 4. def main():
 5. area_trapezium(10, 15, 20)

 6. if __name__ == "__main__":
 7. main()

Output

Area of a Trapezium is 250.0

Here the function definition area_trapezium(a, b, h) uses three formal parameters a, b, h ➀
to stand for the actual values passed by the user in the calling function area_trapezium(10,
15, 20) ➄. The arguments in the calling function are numbers. The variables a, b and h are
assigned with values of 10, 15 and 20 respectively. The area of a trapezium is calculated
using the formula 0.5 * (a + b) * h and the result is assigned to the variable area ➁ and the
same is displayed ➂.

Program 4.3: Program to Demonstrate Using the Same Variable Name
in Calling Function and Function Definition

 1. god_name = input("Who is the God of Seas according to Greek Mythology?")

 2. def greek_mythology(god_name):
 3. print(f"The God of seas according to Greek Mythology is {god_name}")

 4. def main():
 5. greek_mythology(god_name)

 6. if __name__ == "__main__":
 7. main()

Output

Who is the God of Seas according to Greek Mythology? Poseidon
The God of seas according to Greek Mythology is Poseidon

The arguments passed by the calling program and the parameters used to receive the val-
ues in the function definition may have the same variable names. However, it is imperative
to recognize that they are entirely independent variables as they exist in different scope. In
the above code, the variable god_name appearing in the calling function ➄ and in the func-
tion definition ➁ are different variables. The function greek_mythology() is a void function.

103Functions

4.4 The return Statement and void Function

Most of the times you may want the function to perform its specified task to calculate a value
and return the value to the calling function so that it can be stored in a variable and used
later. This can be achieved using the optional return statement in the function definition.

The syntax for return statement is,

return [expression_list]
Keyword

If an expression list is present, it is evaluated, else None is substituted. The return statement
leaves the current function definition with the expression_list (or None) as a return value.
The return statement terminates the execution of the function definition in which it appears
and returns control to the calling function. It can also return an optional value to its calling
function.

In Python, it is possible to define functions without a return statement. Functions like
this are called void functions, and they return None.

If you want to return a value using return statement from the function definition, then you
have to assign the result of the function to a variable. A function can return only a single
value, but that value can be a list or tuple.

 Functions without a return statement do return a value, albeit a rather
boring one. This value is called None (it is a built-in name) which stands
for “nothing”. Writing the value None is normally suppressed by the
interpreter if it would be the only value written.

 You shall learn more about lists and tuples in Chapters 6 and 8
respectively.

 Scope refers to the visibility of variables. In other words, which parts
of your program can see or use it.

104 Introduction to Python Programming

In some cases, it makes sense to return multiple values if they are related to each other. If
so, return the multiple values separated by a comma which by default is constructed as
a tuple by Python. When calling function receives a tuple from the function definition,
it is common to assign the result to multiple variables by specifying the same number of
variables on the left-hand side of the assignment as there were returned from the function
definition. This is called tuple unpacking.

Program 4.4: Program to Demonstrate the Return of Multiple Values from a
Function Definition

 1. def world_war():
 2. alliance_world_war = input("Which alliance won World War 2?")
 3. world_war_end_year = input("When did World War 2 end?")
 4. return alliance_world_war, world_war_end_year

 5. def main():
 6. alliance, war_end_year = world_war()
 7. print(f"The war was won by {alliance} and the war ended in {war_end_year}")

 8. if __name__ == "__main__":
 9. main()

Output

Which alliance won World War 2? Allies
When did World War 2 end? 1945
The war was won by Allies and the war ended in 1945

Line ➇ is the entry point of the program and you call the function main() ➈. In the func-
tion definition main() you call another function world_war() ➅. The block of statements in
function definition world_war() ➀ includes statements to get input from the user and a
return statement ➁–➃. The return statement returns multiple values separated by a comma.
Once the execution of function definition is completed, the values from function definition
world_war() are returned to the calling function. At the calling function on the left-hand
side of the assignment ➅ there should be matching number of variables to store the values
returned from the return statement. At ➆ returned values are displayed.

Program 4.5: Calculate the Value of sin(x) up to n Terms Using the Series
sin ()x

x x x x= + +
1! 3! 5! 7!
− −

3 5 7

� Where x Is in Degrees

 1. import math
 2. degrees = int(input("Enter the degrees"))
 3. nterms = int(input("Enter the number of terms"))
 4. radians = degrees * math.pi / 180

 5. def calculate_sin():

105Functions

 6. result = 0
 7. numerator = radians
 8. denominator = 1
 9. for i in range(1, nterms+1):
 10. single_term = numerator / denominator
 11. result = result + single_term
 12. numerator = -numerator * radians * radians
 13. denominator = denominator * (2 * i) * (2 * i + 1)
 14. return result

 15. def main():
 16. result = calculate_sin()
 17. print(f"value is sin(x) calculated using the series is {result} ")

 18. if __name__ == "__main__":
 19. main()

Output

Enter the degrees45
Enter the number of terms5
value is sin(x) calculated using the series is 0.7071067829368671

All the trigonometric functions require their operands to be in radians. So, convert the
degrees to radians by multiplying it by π / 180 ➃. Next, a for loop ➈ is required since we
have to add and subtract each of these single_term ➉. Let us take an index i for running the
loop from 1 to nterms + 1. Let us get the first single_term x / 1! where the variable numera-
tor represents x and the variable denominator represents 1!. Add the first single_term to the
result which is initialized to 0 initially 11 . Now we have to get the second single_term. The
numerator for the second single_term can be obtained by multiplying −x2 to previous value of
numerator variable which was x and denominator which is 3! can be got by multiplying the
previous denominator variable by (2 * i) * (2 * i + 1) where the value of i is 1 . So, the result will
be 1 × (2 × 1) × (2 × 1 + 1) = 1 × 2 × 3 = 6. Now, you have got the second single_term which is
added to the result. Run the loop up to nterms + 1 to get the value of sin(x) which is stored in
result variable and is returned to the calculate_sin() calling function to print the result.

Program 4.6: Program to Check If a 3 Digit Number Is Armstrong Number or Not

 1. user_number = int(input("Enter a 3 digit positive number to check for Armstrong
number"))

 2. def check_armstrong_number(number):
 3. result = 0
 4. temp = number
 5. while temp != 0:
 6. last_digit = temp % 10

106 Introduction to Python Programming

 7. result += pow(last_digit, 3)
 8. temp = int(temp / 10)
 9. if number == result:
 10. print(f"Entered number {number} is a Armstrong number")
 11. else:
 12. print(f"Entered number {number} is not a Armstrong number")

 13. def main():
 14. check_armstrong_number(user_number)

 15. if __name__ == "__main__":
 16. main()

Output

Enter a 3 digit positive number to check for Armstrong number407
Entered number 407 is a Armstrong number

A 3 digit number is called a Armstrong number if the sum of cube of its digits is equal to the
number itself. For example, 407 is an Armstrong number since 4**3 + 0**3 + 7**3 = 407. For a
number with ‘n’ digits, the power value should be n, i.e., for a 5 digit number 12345, we should
check for 1**5 + 2**5 + 3**5 + 4**5 + 5**5. Read a 3 digit positive number from the user and
store it in a variable called number ➀. Initialize the variables result and temp to zero and num-
ber respectively ➂–➃. The original number value is kept intact and the temp variable which
stores the original number is used to perform manipulations. Find the last digit of the num-
ber. To get the last digit of the number in temp variable use modulus division by 10 and assign
it to last_digit variable ➅. Find the cube of the last digit and add it to the result variable ➆. Then
remove the last digit from the number in temp variable by dividing temp by 10 and cast it as
int ➇. Repeat the logic in line ➄–➇ till the variable temp becomes 0 ➃. Finally, you will be left
with a number that is equal to the sum of the cubes of its own digits. Check the result number
against the original number to determine whether the number is Armstrong number or not.

4.5 Scope and Lifetime of Variables

Python programs have two scopes: global and local. A variable is a global variable if its
value is accessible and modifiable throughout your program. Global variables have a
global scope. A variable that is defined inside a function definition is a local variable. The
lifetime of a variable refers to the duration of its existence. The local variable is created and
destroyed every time the function is executed, and it cannot be accessed by any code out-
side the function definition. Local variables inside a function definition have local scope
and exist as long as the function is executing.

It is possible to access global variables from inside a function, as long as you have not
defined a local variable with the same name. A local variable can have the same name
as a global variable, but they are totally different so changing the value of the local

107Functions

variable has no effect on the global variable. Only the local variable has meaning inside
the function in which it is defined.

Program 4.7: Program to Demonstrate the Scope of Variables

 1. test_variable = 5

 2. def outer_function():
 3. test_variable = 60

 4. def inner_function():
 5. test_variable = 100
 6. print(f"Local variable value of {test_variable} having local scope to inner func-

tion is displayed")
 7. inner_function()
 8. print(f"Local variable value of {test_variable} having local scope to outer func-

tion is displayed ")

 9. outer_function()
 10. print(f"Global variable value of {test_variable} is displayed ")

Output

Local variable value of 100 having local scope to inner function is displayed
Local variable value of 60 having local scope to outer function is displayed
Global variable value of 5 is displayed

The variable name test_variable appears at different stages of the program. None of these vari-
ables are related to each other and are totally independent. In line ➀ the test_variable has global
scope and is global variable as it is available throughout the program. A test_variable is created
at line ➂ is a local variable and having scope within the outer_function() ➁. In line ➄ another
test_variable is created and is a local variable of inner_function() ➃ having local scope and it’s
life time is as far as inner_function() is executing. The change of values to test_variable in func-
tion definitions does not have any impact on the global test_variable. The value stored in the
test_number variable is printed out as per its scope during the execution of the program ➅, ➇, ➉.

You can nest a function definition within another function definition. A nested func-
tion (inner function definition) can “inherit” the arguments and variables of its outer
function definition. In other words, the inner function contains the scope of the outer

 It is not recommended to access global variables from inside the
definition of the function. If there is a need by function to access
an external value then it should be passed as a parameter to that
function.

108 Introduction to Python Programming

function. The inner function can use the arguments and variables of the outer function,
while the outer function cannot use the arguments and variables of the inner function.
The inner function definition can be invoked by calling it from within the outer function
definition.

Program 4.8: Calculate and Add the Surface Area of Two Cubes.
Use Nested Functions

 1. def add_cubes(a, b):
 2. def cube_surface_area(x):
 3. return 6 * pow(x, 2)
 4. return cube_surface_area(a) + cube_surface_area(b)

 5. def main():
 6. result = add_cubes(2, 3)
 7. print(f"The surface area after adding two Cubes is {result}")

 8. if __name__ == "__main__":
 9. main()

Output

The surface area after adding two Cubes is 78

The statement blocks in function definition add_cubes(a, b) ➀ has a nested function defini-
tion cube_surface_area(x) ➁. The outer add_cubes(a, b) function definition has two param-
eters and inner function definition cube_surface_area(x) has one parameter which calculates
the surface area of a cube ➂. The parameters of add_cubes(a, b) function are passed as argu-
ments to the calling function cube_surface_area(x). The inner function is called within the
outer function. The sum ➃ of the surface area of two cubes is returned ➅ and the result is
printed out ➆.

4.6 Default Parameters

In some situations, it might be useful to set a default value to the parameters of the func-
tion definition. This is where default parameters can help. Each default parameter has a
default value as part of its function definition. Any calling function must provide argu-
ments for all required parameters in the function definition but can omit arguments for
default parameters. If no argument is sent for that parameter, the default value is used.
Usually, the default parameters are defined at the end of the parameter list, after any
required parameters and non-default parameters cannot follow default parameters. The
default value is evaluated only once.

109Functions

Program 4.9: Program to Demonstrate the Use of Default Parameters

 1. def work_area(prompt, domain="Data Analytics"):
 2. print(f"{prompt} {domain}")

 3. def main():
 4. work_area("Sam works in")
 5. work_area("Alice has interest in", "Internet of Things")

 6. if __name__ == "__main__":
 7. main()

Output

Sam works in Data Analytics
Alice has interest in Internet of Things

There are two parameters in the function header for work_area() function definition. For the
first parameter prompt, you have to specify the corresponding argument in the calling func-
tion. For the second parameter domain, a default value has been set ➀. In the calling function,
you may skip the second argument ➃ as it is optional. In that case, the default value set for the
parameter domain will be used in statements blocks of the function definition ➁. If you specify
the second argument in the calling function ➄ then the default value assigned to the domain
parameter will be overwritten with the latest value as specified in the second argument.

4.7 Keyword Arguments

Until now you have seen that whenever you call a function with some values as its argu-
ments, these values get assigned to the parameters in the function definition according to
their position. In the calling function, you can explicitly specify the argument name along
with their value in the form kwarg = value. In the calling function, keyword arguments
must follow positional arguments. All the keyword arguments passed must match one of
the parameters in the function definition and their order is not important. No parameter
in the function definition may receive a value more than once.

Program 4.10: Program to Demonstrate the Use of Keyword Arguments

 1. def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):
 2. print(f"This parrot wouldn't {action}, if you put {voltage}, volts through it.")
 3. print(f"Lovely plumage, the {type}")
 4. print(f"It's {state} !!!")

110 Introduction to Python Programming

 5. parrot(1000)
 6. parrot(voltage=1000)
 7. parrot(voltage=1000000, action='VOOOOOM')
 8. parrot('a thousand', state='pushing up the daisies')

Output

This parrot wouldn't voom, if you put 1000, volts through it.
Lovely plumage, the Norwegian Blue
It's a stiff !!!
This parrot wouldn't voom, if you put 1000, volts through it.
Lovely plumage, the Norwegian Blue
It's a stiff !!!
This parrot wouldn't VOOOOOM, if you put 1000000, volts through it.
Lovely plumage, the Norwegian Blue
It's a stiff !!!
This parrot wouldn't voom, if you put a thousand, volts through it.
Lovely plumage, the Norwegian Blue
It's pushing up the daisies !!!

The parrot() function definition ➀ accepts one required parameter (voltage) and three
optional parameters (state, action, and type). In line ➄ one positional argument is speci-
fied. In line ➅, keyword argument is used to pass a value to non-optional parameter. Two
keyword arguments are specified in ➆ and one positional and one keyword arguments
are stated in ➇.
Also, the following functional calls are invalid.

parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument
parrot(110, voltage=220) # duplicate value for the same argument
parrot(actor='John Cleese') # unknown keyword argument

4.8 *args and **kwargs

*args and **kwargs are mostly used as parameters in function definitions. *args and
**kwargs allows you to pass a variable number of arguments to the calling function. Here
variable number of arguments means that the user does not know in advance about how
many arguments will be passed to the calling function. *args as parameter in function defi-
nition allows you to pass a non-keyworded, variable length tuple argument list to the call-
ing function. **kwargs as parameter in function definition allows you to pass keyworded,
variable length dictionary argument list to the calling function. *args must come after all
the positional parameters and **kwargs must come right at the end.

111Functions

Program 4.11: Program to Demonstrate the Use of *args and **kwargs

 1. def cheese_shop(kind, *args, **kwargs):
 2. print(f"Do you have any {kind} ?")
 3. print(f"I'm sorry, we're all out of {kind}")
 4. for arg in args:
 5. print(arg)
 6. print("-" * 40)
 7. for kw in kwargs:
 8. print(kw, ":", kwargs[kw])

 9. def main():
 10. cheese_shop("Limburger", "It's very runny, sir.",

 "It's really very, VERY runny, sir.",
 shop_keeper="Michael Palin",
 client="John Cleese",
 sketch="Cheese Shop Sketch")

 11. if __name__ == "__main__":
 12. main()

Output

Do you have any Limburger ?
I'm sorry, we're all out of Limburger
It's very runny, sir.
It's really very, VERY runny, sir.
--
shop_keeper : Michael Palin
client : John Cleese
sketch : Cheese Shop Sketch

The function definition cheese_shop() has three parameters where the first parameter
is a positional parameter and the last two parameters are *args and **kwargs ➀. In the

 It should be noted that the single asterisk (*) and double asterisk (**)
are the important elements here and the words args and kwargs are
used only by convention. The Python programming language does
not enforce those words and the user is free to choose any words of
his choice. Learned readers coming from C programming language
should not mistake this asterisk for a pointer.

112 Introduction to Python Programming

statement blocks of the function definition * and ** are not used with args and kwargs. In
the function call 10 the first argument is assigned to the first parameter in the function defi-
nition. After the first argument, the remaining series of arguments separated by commas
are assigned to *args until the keyword arguments are encountered. All the keyword argu-
ments in the calling function are assigned to **kwargs. You can work with **kwargs just
like you work with dictionaries. The order in which the keyword arguments are printed is
guaranteed to match the order in which they were provided in the calling function. Loops
are used to display the items in args and kwargs ➃–➇.

4.9 Command Line Arguments

A Python program can accept any number of arguments from the command line.
Command line arguments is a methodology in which user will give inputs to the program
through the console using commands. You need to import sys module to access command
line arguments. All the command line arguments in Python can be printed as a list of
string by executing sys.argv.

Program 4.12: Program to Demonstrate Command Line Arguments in Python

 1. import sys
 2. def main():
 3. print(f"sys.argv prints all the arguments at the command line including file

name {sys.argv}")
 4. print(f"len(sys.argv) prints the total number of command line arguments includ-

ing file name {len(sys.argv)}")
 5. print("You can use for loop to traverse through sys.argv")
 6. for arg in sys.argv:
 7. print(arg)

 8. if __name__ == "__main__":
 9. main()

Output

C:\Introduction_To_Python_Programming\Chapter_4>python Program_4.12.py arg_1
arg_2 arg_3
sys.argv prints all the arguments at the command line including file name ['Program_4.12.
py', 'arg_1', 'arg_2', 'arg_3']
len(sys.argv) prints the total number of command line arguments including file name 4
You can use for loop to traverse through sys.argv
Program_4.12.py
arg_1
arg_2
arg_3

113Functions

To execute a command line argument program, you need to navigate to the directory where
your program is saved. Then issue a command in the format python file_name argument_1 argu-
ment_2 argument_3 …… argument_n. Here argument_1 argument_2 and so on can be any
argument and should be separated by a space. Import sys module ➀ to access command line
arguments. Print all the arguments including file name using sys.argv ➂ but excluding the
python command. The number of arguments passed at the command line can be obtained by
len(sys.argv) ➃. A for loop can be used to traverse through each of the arguments in sys.argv ➄–➆.

4.10 Summary

• Making programs modular and reusable is one of the fundamental goals of any
programming language and functions help to achieve this goal.

• A function is a code snippet that performs some task and can be called from
another part of the code.

• There are many built-in functions provided by Python such as min(), pow() and
others and users can also create their own functions which are called as user-
defined functions.

• A function header begins with the def keyword followed by function’s name and
parameters and ends with a colon.

• A function is called a void function if it does not return any value.
• A global variable is a variable that is defined outside of any function definition and a

local variable is a variable that is only accessible from within the function it resides.
• Docstrings serve the same purpose as that of comments.
• The syntax *args allows to pass a variable number of arguments to the calling function.
• The syntax **kwargs allows you to pass keyworded, variable length dictionary

arguments to the calling function.
• Command-line arguments in Python show up in sys.argv as a list of strings.

Multiple Choice Questions

 1. A local variable in Python is a variable that is,
 a. Defined inside every function
 b. Local to the given program
 c. Accessible from within the function
 d. All of these
 2. Which of the following statements are the advantages of using functions?
 a. Reduce duplication of code
 b. Clarity of code
 c. Reuse of code
 d. All of these

114 Introduction to Python Programming

 3. The keyword that is used to define the block of statements in function?
 a. function
 b. func
 c. def
 d. pi
 4. The characteristics of docstrings are
 a. suitable way of using documentation
 b. Function should have a docstring
 c. Can be accessed by __doc()__
 d. All of these
 5. The two types of functions used in Python are
 a. Built-in and user-defined
 b. Custom function and user function
 c. User function and system call
 d. System function
 6. ______ refers to built-in mathematical function.
 a. sqrt
 b. rhombus
 c. add
 d. sub
 7. The variable defined outside the function is referred as
 a. static
 b. global
 c. automatic
 d. register
 8. Functions without a return statement do return a value and it is
 a. int
 b. null
 c. None
 d. error
 9. The data type of the elements in sys.argv?
 a. set
 b. list
 c. tuple
 d. string
 10. The length of sys.argv is?
 a. Total number of arguments excluding the filename
 b. Total number of arguments including the filename
 c. Only filename
 d. Total number of arguments including Python Command

115Functions

 11. The syntax of keyword arguments specified in the function header?

 a. * followed by an identifier

 b. _ followed by an identifier

 c. ** followed by an identifier

 d. _ _ followed by an identifier

 12. The number of arguments that can be passed to a function is

 a. 0

 b. 1

 c. 0 or more

 d. 1 or more

 13. The library that is used to create, manipulate, format and convert dates, times and
timestamps in Python is

 a. Arrow

 b. Pandas

 c. Scipy

 d. NumPy

 14. The command line arguments is stored in

 a. os.argv

 b. sys.argv

 c. argv

 d. None

 15. The command that is used to install a third-party module in Python is

 a. pip

 b. pipe

 c. install_module

 d. pypy

 16. Judge the output of the following code.

 import math

 math.sqrt(36)

 a. Error

 b. −6

 c. 6

 d. 6.0

 17. The function divmod(10,20) is evaluated as

 a. (10%20,10//20)

 b. (10//20,10%20)

 c. (10//20,10*20)

 d. (10/20,10%20)

116 Introduction to Python Programming

 18. Predict the output of the following code?
 def tweet():
 print("Python Programming!")
 tweet()
 a. Python Programming!
 b. Indentation Error
 c. Syntax Error
 d. Name Error

 19. The output of the following code is
 def displaymessage(message, times = 1):
 print(message * times)
 displaymessage("Data")
 displaymessage("Science", 5)
 a. Data Science Science Science Science Science
 b. Data Science 5
 c. DataDataDataDataDataScience
 d. DataDataDataDataDataData

 20. Guess the output of the following code
 def quad(x):
 return x * x * x * x
 x = quad(3)
 print(x)
 a. 27
 b. 9
 c. 3
 d. 81

 21. The output of the following code is
 def add(*args):
 x = 0
 for i in args:
 x += i
 return x
 print(add(1, 2, 3))
 print(add(1, 2, 3, 4, 5))
 a. 16 15
 b. 6 15
 c. 1 2 3
 d. 1 2 3 45

117Functions

 22. Gauge the output of the following code.
 def foo():
 return total + 1
 total = 0
 print(foo())
 a. 1
 b. 0
 c. 11
 d. 00
 23. The default arguments specified in the function header is an
 a. Identifier followed by an = and the default value
 b. Identifier followed by the default value within back-ticks
 c. Identifier followed by the default value within []
 d. Identifier followed by an #.

Review Questions

 1. Define function. What are the advantages of using a function?
 2. Differentiate between user-defined function and built-in functions.
 3. Explain with syntax how to create a user-defined functions and how to call the

user-defined function from the main function.
 4. Explain the built-in functions with examples in Python.
 5. Differentiate between local and global variables with suitable examples.
 6. Explain the advantages of *args and **kwargs with examples.
 7. Demonstrate how functions return multiple values with an example.
 8. Explain the utility of docstrings?
 9. Write a program using functions to perform the arithmetic operations.
 10. Write a program to find the largest of three numbers using functions.
 11. Write a Python program using functions to find the value of nPr and nCr.
 12. Write a Python function named area that finds the area of a pentagon.
 13. Write a program using functions to display Pascal’s triangle.
 14. Write a program using functions to print harmonic progression series and its sum

till N terms.
 15. Write a program using functions to do the following tasks:
 a. Convert milliseconds to hours, minutes and seconds.
 b. Compute a sales commission, given the sales amount and the commission rate.
 c. Convert Celsius to Fahrenheit.
 d. Compute the monthly payment, given the loan amount, number of years and

the annual interest rate.

http://taylorandfrancis.com

119

5
Strings

String usage abounds in just about all types of applications. A string consists of a sequence
of characters, which includes letters, numbers, punctuation marks and spaces. To repre-
sent strings, you can use a single quote, double quotes or triple quotes.

5.1 Creating and Storing Strings

Strings are another basic data type available in Python. They consist of one or more char-
acters surrounded by matching quotation marks. For example,

 1. >>> single_quote = 'This is a single message'
 2. >>> double_quote = "Hey it is my book"
 3. >>> single_char_string = "A"
 4. >>> empty_string = ""
 5. >>> empty_string = ''
 6. >>> single_within_double_quote = "Opportunities don't happen. You create

them."
 7. >>> double_within_single_quote = "Why did she call the man 'smart'?"
 8. >>> same_quotes = 'I\'ve an idea'
 9. >>> triple_quote_string = '''This
 … is
 … triple
 … quote'''

AIM
Use indexing and built-in string methods to manipulate and process the string values.

LEARNING OUTCOMES

At the end of the chapter, you are expected to

• Access individual characters in a string and apply basic string operations.
• Search and retrieve a substring from a string.
• Use string methods to manipulate strings.

120 Introduction to Python Programming

 10. >>> triple_quote_string
 'This\nis\ntriple\nquote'
 11. >>> type(single_quote)
 <class 'str'>

Strings are surrounded by either single ➀ or double quotation marks ➁. To store a string
inside a variable, you just need to assign a string to a variable. In the above code, all the vari-
ables on the left side of the assignment operator are string variables. A single character is also
treated as string ➂. A string does not need to have any characters in it. Both ''➃ and "" ➄ are
valid strings, called empty strings. A string enclosed in double quotation marks can contain
single quotation marks ➅. Likewise, a string enclosed in single quotation marks can contain
double quotation marks ➆. So basically, if one type of quotation mark surrounds the string,
you have to use the other type within it. If you want to include the same quotation marks
within a string as you have used to enclose the string, then you need to preface the inner
quote with a backslash ➇. If you have a string spanning multiple lines, then it can be included
within triple quotes ➈. All white spaces and newlines used inside the triple quotes are liter-
ally reflected in the string ➉. You can find the type of a variable by passing it as an argument
to type() function. Python strings are of str data type .

5.1.1 The str() Function

The str() function returns a string which is considered an informal or nicely printable
 representation of the given object. The syntax for str() function is,

str(object)

It returns a string version of the object. If the object is not provided, then it returns an
empty string.

 1. >>> str(10)
 '10'

 2. >>> create_string = str()
 3. >>> type(create_string)
 <class 'str'>

Here integer type is converted to string type. Notice the single quotes to represent the
string ➀. The create_string is an empty string ➁ of type str ➂.

5.2 Basic String Operations

In Python, strings can also be concatenated using + sign and * operator is used to create a
repeated sequence of strings.

 1. >>> string_1 = "face"
 2. >>> string_2 = "book"
 3. >>> concatenated_string = string_1 + string_2
 4. >>> concatenated_string

 'facebook'

121Strings

 5. >>> concatenated_string_with_space = "Hi " + "There"
 6. >>> concatenated_string_with_space

 'Hi There'
 7. >>> singer = 50 + "cent"

 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

 TypeError: unsupported operand type(s) for +: 'int' and 'str'
 8. >>> singer = str(50) + "cent"
 9. >>> singer

 '50cent'
 10. >>> repetition_of_string = "wow" * 5
 11. >>> repetition_of_string
 'wowwowwowwowwow'

Two string variables are assigned with "face"➀ and "book" ➁ string values. The string_1
and string_2 are concatenated using + operator to form a new string. The new string
 concatenated_string ➃ has the values of both the strings ➂. As you can see in the output,
there is no space between the two concatenated string values. If you need whitespace
between concatenated strings ➅, all you need to do is include whitespace within a string
like in ➄. You cannot use the + operator to concatenate values of two different types. For
example, you cannot concatenate string data type with integer data type ➆. You need to
convert integer type to string type and then concatenate the values ➇–➈. You can use the
multiplication operator * on a string ➉. It repeats the string the number of times you
specify and the string value “wow” is repeated five times .

You can check for the presence of a string in another string using in and not in member-
ship operators. It returns either a Boolean True or False. The in operator evaluates to True if
the string value in the left operand appears in the sequence of characters of string value in
right operand. The not in operator evaluates to True if the string value in the left operand
does not appear in the sequence of characters of string value in right operand.

 1. >>> fruit_string = "apple is a fruit"
 2. >>> fruit_sub_string = "apple"
 3. >>> fruit_sub_string in fruit_string

 True
 4. >>> another_fruit_string = "orange"
 5. >>> another_fruit_string not in fruit_string
 True

 Python cannot concatenate string value with integer value since they
are of different data types. You need to convert integer type to string
type before concatenating integer and string values.

122 Introduction to Python Programming

Statement ➂ returns True because the string "apple" is present in the string "apple is a fruit".
The not in operator evaluates to True as the string "orange" is not present in "apple is a fruit"
string ➄.

5.2.1 String Comparison

You can use (>, <, <=, >=, ==, !=) to compare two strings resulting in either Boolean True
or False value. Python compares strings using ASCII value of the characters. For example,

 1. >>> "january" == "jane"
 False

 2. >>> "january" != "jane"
 True

 3. >>> "january" < "jane"
 False

 4. >>> "january" > "jane"
 True

 5. >>> "january" <= "jane"
 False

 6. >>> "january" >= "jane"
 True

 7. >>> "filled" > ""
 True

Strings can be compared using various comparison operators ➀–➆. String equality is
 compared using == (double equal sign). String inequality is compared using != sign.
Suppose you have string_1 as "january" and string_2 as "jane". The first two characters
from string_1 and string_2 (j and j) are compared. As they are equal, the second two char-
acters are compared (a and a). Because they are also equal, the third two characters (n and n)
are compared. Since the third characters are also equal, the fourth character from both the
strings are compared and because 'u' has greater ASCII value than 'e', string_1 is greater
than string_2. You can even compare a string against an empty string.

5.2.2 Built-In Functions Used on Strings

There are many built-in functions for which a string can be passed as an argument
(TABLE 5.1).

TABLE 5.1

Built-In Functions Used on Strings

Built-In Functions Description

len() The len() function calculates the number of characters in a string. The white space
characters are also counted.

max() The max() function returns a character having highest ASCII value.
min() The min() function returns character having lowest ASCII value.

123Strings

For example,

 1. >>> count_characters = len("eskimos")
 2. >>> count_characters

 7
 3. >>> max("axel")

 'x'
 4. >>> min("brad")
 'a'

The number of characters in the string "eskimos" ➀ is calculated using len() function ➁.
Characters with highest and lowest ASCII value are calculated using max() ➂ and min() ➃
functions.

5.3 Accessing Characters in String by Index Number

Each character in the string occupies a position in the string. Each of the string’s character
corresponds to an index number. The first character is at index 0; the next character is at
index 1, and so on. The length of a string is the number of characters in it. You can access
each character in a string using a subscript operator i.e., a square bracket. Square brackets
are used to perform indexing in a string to get the value at a specific index or position. This
is also called subscript operator.

The index breakdown for the string "be yourself" assigned to word_phrase string variable
is shown below.

b e y o u r s e l f

0 1 2 3 4 5 6 7 8 9 10 Index

word_phrase

The syntax for accessing an individual character in a string is as shown below.

string_name[index]

where index is usually in the range of 0 to one less than the length of the string. The value
of index should always be an integer and indicates the character to be accessed.

For example,

 1. >>> word_phrase = "be yourself"
 2. >>> word_phrase[0]

 'b'
 3. >>> word_phrase[1]

 'e'
 4. >>> word_phrase[2]

 ' '
 5. >>> word_phrase[3]

 'y'

124 Introduction to Python Programming

 6. >>> word_phrase[10]
 'f'

 7. >>> word_phrase[11]
 Traceback (most recent call last):

 File "<stdin>", line 1, in <module>
 IndexError: string index out of range

By referring to the index numbers in square bracket, you can access individual characters
in a string. The index number starts with zero corresponding to the first character in the
string ➁. The index number increases by one as we move to access the next letter to the
right of the current letter ➂–➅. The whitespace character between be and yourself has its
own index number, i.e., 2. The last character in the string is referenced by an index value
which is the (size of the string – 1) or (len(string) – 1). If you try to specify an index number
more than the number of characters in the string, then it results in IndexError: string index
out of range error ➆.

You can also access individual characters in a string using negative indexing. If you have
a long string and want to access end characters in the string, then you can count backward
from the end of the string starting from an index number of −1. The negative index break-
down for the string “be yourself” assigned to word_phrase string variable is shown below.

b e y o u r s e l f

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1

word_phrase

Index

 1. >>> word_phrase[-1]
 'f'

 2. >>> word_phrase[-2]
 'l'

By using negative index number of −1, you can print the character ‘f’ ➀, the negative index
number of −2 prints the character ‘l’ ➁. You can benefit from using negative indexing when
you want to access characters at the end of a long string.

5.4 String Slicing and Joining

The "slice" syntax is a handy way to refer to sub-parts of sequence of characters within an
original string. The syntax for string slicing is,

string_name[start:end[:step]]

Colon is used to specify range
values

125Strings

With string slicing, you can access a sequence of characters by specifying a range of index
numbers separated by a colon. String slicing returns a sequence of characters beginning at
start and extending up to but not including end. The start and end indexing values have to
be integers. String slicing can be done using either positive or negative indexing.

g r e e n t e a

0 1 2 3 4 5 6 7 8

healthy_drink

Index

 1. >>> healthy_drink = "green tea"
 2. >>> healthy_drink[0:3]

 'gre'
 3. >>> healthy_drink[:5]

 'green'
 4. >>> healthy_drink[6:]

 'tea'
 5. >>> healthy_drink[:]

 'green tea'
 6. >>> healthy_drink[4:4]

 ''
 7. >>> healthy_drink[6:20]
 'tea'

A substring is created when slicing the strings, which is basically a string that already
exists within another string. A substring is any sequence of characters that is contained
in a string. The string "green tea" is assigned to healthy_drink variable ➀ and a sequence of
characters or a substring is extracted from the beginning (0th Index) up to the third char-
acter (2nd Index) ➁. In string slicing, start index value (including) is where slicing starts
and end index value (excluding) is where the slicing ends. If the start index is omitted, the
slicing starts from the first index number (0th Index) up to the end index (excluding) in
the string. In ➂ substring starting from 0th index to 4th index is printed. If the end index
is omitted, slicing starts from the start index and goes up to the end of the string index.
Substring starting from 6th index to the end of the string is displayed in ➃. If both the start
and end index values are omitted then the entire string is displayed ➄. If the start index is
equal to or higher than the end index, then it results in an empty string ➅. If the end index
number is beyond the end of the string, it stops at the end of the string ➆.

Slicing can also be done using the negative integer numbers.

g r e e n t e a

-9 -8 -7 -6 -5 -4 -3 -2 -1

healthy_drink

Index

The negative index can be used to access individual characters in a string. Negative index-
ing starts with −1 index corresponding to the last character in the string and then the index
decreases by one as we move to the left.

126 Introduction to Python Programming

 1. >>> healthy_drink[-3:-1]
 'te'
 2. >>> healthy_drink[6:-1]

 'te'

You need to specify the lowest negative integer number in the start index position when
using negative index numbers as it occurs earlier in the string ➀. You can also combine
positive and negative indexing numbers ➁.

5.4.1 Specifying Steps in Slice Operation

In the slice operation, a third argument called step which is an optional can be specified
along with the start and end index numbers. This step refers to the number of characters
that can be skipped after the start indexing character in the string. The default value of step
is one. In the previous slicing examples, step is not specified and in its absence, a default
value of one is used. For example,

 1. >>> newspaper = "new york times"
 2. >>> newspaper[0:12:4]

 'ny'
 3. >>> newspaper[::4]
 'ny e'

In ➁ the slice [0:12:4] takes the character at 0th index which is n and will print every 4th char-
acter in the string extending till the 12th character (excluding). You can omit both start and end
index values to consider the entire range of characters in the string by specifying two colons
while considering the step argument which will specify the number of characters to skip ➂.

Program 5.1: Write Python Code to Determine Whether the Given String
Is a Palindrome or Not Using Slicing

 1. def main():
 2. user_string = input("Enter string: ")
 3. if user_string == user_string[::-1]:
 4. print(f"User entered string is palindrome")
 5. else:
 6. print(f"User entered string is not a palindrome")
 7. if __name__ == "__main__":
 8. main()

Output

Case 1:
Enter string: madam
User entered string is palindrome

127Strings

Case 2:
Enter string: cat
User entered string is not a palindrome

User entered string value is stored in user_string variable ➁. The user_string is reversed
using string slicing with −1 ➂ and is compared with non-reversed user_string. If both are
equal, then the string is palindrome ➃ else it is not a palindrome ➅.

5.4.2 Joining Strings Using join() Method

Strings can be joined with the join() string. The join() method provides a flexible way to
concatenate strings. The syntax of join() method is,

string_name.join(sequence)

Here sequence can be string or list. If the sequence is a string, then join() function inserts
string_name between each character of the string sequence and returns the concatenated
string. If the sequence is a list, then join() function inserts string_name between each item
of list sequence and returns the concatenated string. It should be noted that all the items in
the list should be of string type.

 1. >>> date_of_birth = ["17", "09", "1950"]
 2. >>> ":".join(date_of_birth)

 '17:09:1950'
 3. >>> social_app = ["instagram", "is", "an", "photo", "sharing", "application"]
 4. >>> " ".join(social_app)

 'instagram is an photo sharing application'
 5. >>> numbers = "123"
 6. >>> characters = "amy"
 7. >>> password = numbers.join(characters)
 8. >>> password
 'a123m123y'

All the items in the list date_of_birth list variable is of string type ➀. In ➁ the string ":" is
inserted between each list item and the concatenated string is displayed. In social_app list
variable, all the list items are of string type ➂. In ➃, the join() method ensures a blank space is
inserted between each of the list items in social_app and the concatenated string is displayed.
The variables numbers ➄ and characters ➅ are of string type. The string value of "123" is placed
between each character of "amy" string resulting in 'a123m123y'. The string value of "123"
is inserted between a and m and again between m and y and is assigned to password string
variable.

5.4.3 Split Strings Using split() Method

The split() method returns a list of string items by breaking up the string using the delim-
iter string. The syntax of split() method is,

128 Introduction to Python Programming

string_name.split([separator [, maxsplit]])

Here separator is the delimiter string and is optional. A given string is split into list of
strings based on the specified separator. If the separator is not specified then whitespace is
considered as the delimiter string to separate the strings. If maxsplit is given, at most max-
split splits are done (thus, the list will have at most maxsplit + 1 items). If maxsplit is not
specified or −1, then there is no limit on the number of splits.

 1. >>> inventors = "edison, tesla, marconi, newton"
 2. >>> inventors.split(",")

 ['edison', ' tesla', ' marconi', ' newton']
 3. >>> watches = "rolex hublot cartier omega"
 4. >>> watches.split()
 ['rolex', 'hublot', 'cartier', 'omega']

The value in inventors string variable ➀ is separated based on "," (comma) ➁ separator. In ➃
no separator is specified in split() method. Hence, the string variable watches ➂ is separated
based on whitespace.

5.4.4 Strings Are Immutable

As strings are immutable, it cannot be modified. The characters in a string cannot be
changed once a string value is assigned to string variable. However, you can assign differ-
ent string values to the same string variable.

 1. >>> immutable = "dollar"
 2. >>> immutable[0] = "c"

 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 TypeError: 'str' object does not support item assignment

 3. >>> string_immutable = "c" + immutable[1:]
 4. >>> string_immutable

 'collar'
 5. >>> immutable = "rollar"
 6. >>> immutable
 'rollar'

The string value "dollar" is assigned to string variable immutable ➀. If you try to change the string
by assigning a character in place of existing character through indexing, then it results in an
error as the string is immutable ➁. You cannot change the string value once it has been assigned
to a string variable. What you can do is create a new string that is a variation of the original
string ➂–➃. Also, assigning a whole new string value to existing string variable is allowed ➄–➅.

5.4.5 String Traversing

Since the string is a sequence of characters, each of these characters can be traversed using
the for loop.

129Strings

Program 5.2: Program to Demonstrate String Traversing Using the for Loop

 1. def main():
 2. alphabet = "google"
 3. index = 0
 4. print(f"In the string '{alphabet}'")
 5. for each_character in alphabet:
 6. print(f"Character '{each_character}' has an index value of {index}")
 7. index += 1
 8. if __name__ == "__main__":
 9. main()

Output

In the string 'google'
Character 'g' has an index value of 0
Character 'o' has an index value of 1
Character 'o' has an index value of 2
Character 'g' has an index value of 3
Character 'l' has an index value of 4
Character 'e' has an index value of 5

String value "google" is assigned to alphabet ➁ string variable and index variable is initial-
ized to zero ➂. The for statement makes it easy to loop over each character in a string. For
each character traversed in the string ➄ the index value is incremented by a value of one ➆.
Each character in the string and its corresponding index value is printed in ➅.

Program 5.3: Program to Print the Characters Which Are Common in Two Strings

 1. def common_characters(string_1, string_2):
 2. for letter in string_1:
 3. if letter in string_2:
 4. print(f"Character '{letter}' is found in both the strings")
 5. def main():
 6. common_characters('rose', 'goose')
 7. if __name__ == "__main__":
 8. main()

Output

Character 'o' is found in both the strings
Character 's' is found in both the strings
Character 'e' is found in both the strings

Two string values, 'rose' and 'goose', are passed as arguments to common_characters()
 function ➅. The string values 'rose' and 'goose' are assigned to string_1 and string_2 parameter

130 Introduction to Python Programming

variables ➀. A for loop is used to traverse through each letter in the string value assigned
to string_1 parameter variable ➁. If any of the letter is found in string_2 parameter variable
➂ then that character is printed out ➃.

Program 5.4: Write Python Program to Count the Total Number of Vowels,
Consonants and Blanks in a String

 1. def main():
 2. user_string = input("Enter a string: ")
 3. vowels = 0
 4. consonants = 0
 5. blanks = 0
 6. for each_character in user_string:
 7. if(each_character == 'a' or each_character == 'e' or each_character == 'i' or

each_character == 'o' or each_character == 'u'):
 8. vowels += 1
 9. elif "a" < each_character < "z":
 10. consonants += 1
 11. elif each_character == " ":
 12. blanks += 1
 13. print(f"Total number of Vowels in user entered string is {vowels}")
 14. print(f"Total number of Consonants in user entered string is {consonants}")
 15. print(f"Total number of Blanks in user entered string is {blanks}")
 16. if __name__ == "__main__":
 17. main()

Output

Enter a string: may god bless you
Total number of Vowels in user entered string is 5
Total number of Consonants in user entered string is 9
Total number of Blanks in user entered string is 3

User entered string is assigned to a user_string ➁ variable. Initially, zero is assigned to vow-
els, consonants and blanks variables ➂–➄. Each of the characters in user_string is traversed
using for loop ➅. If the character traversed in user entered string matches with any of the
vowels then the vowels variable is incremented by one ➆–➇. If the character traversed is
not a vowel then it is treated as consonant and the consonants variable is incremented by
one ➈–➉. Also, characters are checked for " " (blank space) . If yes, then the blanks vari-
able is incremented by one . The syntax "a" < each_character < "z" is a shorthand syn-
tax equivalent to each_character > "a" and each_character < "z". This shorthand syntax is
called “chain comparison operation.” This “chain comparison operation” is possible as
all comparison operations in Python have the same priority, which is lower than that of

131Strings

any arithmetic, shifting or bitwise operation and the comparison operation yields either
Boolean True or False.

Program 5.5: Write Python Program to Calculate the Length of a String
Without Using Built-In len() Function

 1. def main():
 2. user_string = input("Enter a string: ")
 3. count_character = 0
 4. for each_character in user_string:
 5. count_character += 1
 6. print(f"The length of user entered string is {count_character} ")
 7. if __name__ == "__main__":
 8. main()

Output

Enter a string: To answer before listening that is folly and shame
The length of user entered string is 50

User entered string is assigned to user_string variable ➁. The count_character variable is
assigned to zero value ➂. The count_character acts like a counter which keeps track of num-
ber of characters and gets incremented by a value of one ➄ when the user_string is tra-
versed using for loop ➃.

5.5 String Methods

You can get a list of all the methods associated with string (TABLE 5.2) by passing the str
function to dir().

 1. >>> dir(str)
 ['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__',

'__format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__',
'__hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__
mod__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__rmod__', '__rmul__', '__setattr__', '__sizeof__', '__str__', '__subclasshook__', 'capi-
talize', 'casefold', 'center', 'count', 'encode', 'endswith', 'expandtabs', 'find', 'format',
'format_map', 'index', 'isalnum', 'isalpha', 'isdecimal', 'isdigit', 'isidentifier', 'islower',
'isnumeric', 'isprintable', 'isspace', 'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip',
'maketrans', 'partition', 'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit', 'rstrip',
'split', 'splitlines', 'startswith', 'strip', 'swapcase', 'title', 'translate', 'upper', 'zfill']

Various methods associated with str are displayed ➀.

132 Introduction to Python Programming

TABLE 5.2

Various String Methods

String Methods Syntax Description

capitalize() string_name.capitalize() The capitalize() method returns a copy of the string with
its first character capitalized and the rest lowercased.

casefold() string_name.casefold() The casefold() method returns a casefolded copy of the
string. Casefolded strings may be used for caseless
matching.

center() string_name.center(width[,
fillchar])

The method center() makes string_name centered by
taking width parameter into account. Padding is
specified by parameter fillchar. Default filler is a space.

count() string_name.count(substring [,
start [, end]])

The method count(), returns the number of non-
overlapping occurrences of substring in the range [start,
end]. Optional arguments start and end are interpreted
as in slice notation.

endswith() string_name.endswith(suffix[,
start[, end]])

This method endswith(), returns True if the string_name
ends with the specified suffix substring, otherwise
returns False. With optional start, test beginning at that
position. With optional end, stop comparing at that
position.

find() string_name. find(substring[,
start[, end]])

Checks if substring appears in string_name or if
substring appears in string_name specified by starting
index start and ending index end. Return position of the
first character of the first instance of string substring in
string_name, otherwise return –1 if substring not found
in string_name.

isalnum() string_name.isalnum() The method isalnum() returns Boolean True if all
characters in the string are alphanumeric and there is at
least one character, else it returns Boolean False.

isalpha() string_name.isalpha() The method isalpha(), returns Boolean True if all
characters in the string are alphabetic and there is at
least one character, else it returns Boolean False.

isdecimal() string_name.isdecimal() The method isdecimal(), returns Boolean True if all
characters in the string are decimal characters and there
is at least one character, else it returns Boolean False.

isdigit() string_name.isdigit() The method isdigit() returns Boolean True if all characters
in the string are digits and there is at least one character,
else it returns Boolean False.

isidentifier() string_name.isidentifier() The method isidentifier() returns Boolean True if the string
is a valid identifier, else it returns Boolean False.

islower() string_name.islower() The method islower() returns Boolean True if all
characters in the string are lowercase, else it returns
Boolean False.

isspace() string_name.isspace() The method isspace() returns Boolean True if there are
only whitespace characters in the string and there is at
least one character, else it returns Boolean False.

isnumeric() string_name.isnumeric() The method isnumeric(), returns Boolean True if all
characters in the string_name are numeric characters,
and there is at least one character, else it returns Boolean
False. Numeric characters include digit characters and
all characters that have the Unicode numeric value
property.

(Continued)

133Strings

String Methods Syntax Description

istitle() string_name.istitle() The method istitle() returns Boolean True if the string is a
title cased string and there is at least one character, else
it returns Boolean False.

isupper() string_name.isupper() The method isupper() returns Boolean True if all cased
characters in the string are uppercase and there is at
least one cased character, else it returns Boolean False.

upper() string_name.upper() The method upper() converts lowercase letters in string to
uppercase.

lower() string_name.lower() The method lower() converts uppercase letters in string to
lowercase.

ljust() string_name.ljust(width[,
fillchar])

In the method ljust(), when you provide the string to the
method ljust(), it returns the string left justified. Total
length of string is defined in first parameter of method
width. Padding is done as defined in second parameter
fillchar. (default is space).

rjust() string_name.rjust(width[,
fillchar])

In the method rjust(), when you provide the string to the
method rjust(), it returns the string right justified. The
total length of string is defined in the first parameter of
the method, width. Padding is done as defined in
second parameter fillchar. (default is space).

title() string_name.title() The method title() returns “titlecased” versions of string,
that is, all words begin with uppercase characters and
the rest are lowercase.

swapcase() string_name.swapcase() The method swapcase() returns a copy of the string with
uppercase characters converted to lowercase and vice
versa.

splitlines() string_name.
splitlines([keepends])

The method splitlines() returns a list of the lines in the
string, breaking at line boundaries. Line breaks are not
included in the resulting list unless keepends is given
and true.

startswith() string_name.startswith(prefix[,
start[, end]])

The method startswith() returns Boolean True if the string
starts with the prefix, otherwise return False. With
optional start, test string_name beginning at that
position. With optional end, stop comparing string_
name at that position.

strip() string_name.strip([chars]) The method lstrip() returns a copy of the string_name in
which specified chars have been stripped from both side
of the string. If char is not specified then space is taken
as default.

rstrip() string_name.rstrip([chars]) The method rstrip() removes all trailing whitespace of
string_name.

lstrip() string_name.lstrip([chars]) The method lstrip() removes all leading whitespace in
string_name.

replace() string_name. replace(old,
new[, max])

The method replace() replaces all occurrences of old in
string_name with new. If the optional argument max is
given, then only the first max occurrences are replaced.

zfill() string_name.zfill(width) The method zfill() pads the string_name on the left with
zeros to fill width.

Note: Replace the word string_name mentioned in the syntax with the actual string name in your code.

TABLE 5.2 (Continued)

Various String Methods

134 Introduction to Python Programming

For example,

 1. >>> fact = "Abraham Lincoln was also a champion wrestler"
 2. >>> fact.isalnum()

 False
 3. >>> "sailors".isalpha()

 True
 4. >>> "2018".isdigit()

 True
 5. >>> fact.islower()

 False
 6. >>> "TSAR BOMBA".isupper()

 True
 7. >>> "columbus".islower()

 True
 8. >>> warriors = "ancient gladiators were vegetarians"
 9. >>> warriors.endswith("vegetarians")

 True
 10. >>> warriors.startswith("ancient")

 True
 11. >>> warriors.startswith("A")

 False
 12. >>> warriors.startswith("a")

 True
 13. >>> "cucumber".find("cu")

 0
 14. >>> "cucumber".find("um")

 3
 15. >>> "cucumber".find("xyz")

 -1
 16. >>> warriors.count("a")

 5
 17. >>> species = "charles darwin discovered galapagos tortoises"
 18. >>> species.capitalize()

 'Charles darwin discovered galapagos tortoises'
 19. >>> species.title()

 'Charles Darwin Discovered Galapagos Tortoises'
 20. >>> "Tortoises".lower()

 'tortoises'

135Strings

 21. >>> "galapagos".upper()
 'GALAPAGOS'

 22. >>> "Centennial Light".swapcase()
 'cENTENNIAL lIGHT'

 23. >>> "history does repeat".replace("does", "will")
 'history will repeat'

 24. >>> quote = " Never Stop Dreaming "
 25. >>> quote.rstrip()

 ' Never Stop Dreaming'
 26. >>> quote.lstrip()

 'Never Stop Dreaming '
 27. >>> quote.strip()

 'Never Stop Dreaming'
 28. >>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

 ['ab c', '', 'de fg', 'kl']
 29. >>> "scandinavian countries are rich".center(40)
 'scandinavian countries are rich'

Various operations on strings are carried out using string ➀– methods.

String methods like capitalize(), lower(), upper(), swapcase(), title() and count() are used for
conversion purpose. String methods like islower(), isupper(), isdecimal(), isdigit(), isnumeric(),
isalpha() and isalnum() are used for comparing strings. Some of the string methods used
for padding are rjust(), ljust(), zfill() and center(). The string method find() is used to find
substring in an existing string. You can use string methods like replace(), join(), split() and
splitlines() to replace a string in Python.

Program 5.6: Write Python Program That Accepts a Sentence and Calculate
the Number of Words, Digits, Uppercase Letters and Lowercase Letters

 1. def string_processing(user_string):
 2. word_count = 0
 3. digit_count = 0
 4. upper_case_count = 0
 5. lower_case_count = 0
 6. for each_char in user_string:
 7. if each_char.isdigit():
 8. digit_count += 1
 9. elif each_char.isspace():
 10. word_count += 1
 11. elif each_char.isupper():
 12. upper_case_count += 1

136 Introduction to Python Programming

 13. elif each_char.islower():
 14. lower_case_count += 1
 15. else:
 16. pass
 17. print(f"Number of digits in sentence is {digit_count}")
 18. print(f"Number of words in sentence is {word_count + 1}")
 19. print(f"Number of upper case letters in sentence is {upper_case_count}")
 20. print(f"Number of lower case letters in sentence is {lower_case_count}")
 21. def main():
 22. user_input = input("Enter a sentence ")
 23. string_processing(user_input)
 24. if __name__ == "__main__":
 25. main()

Output

Enter a sentence The Eiffel Tower in Paris is 324m tall
Number of digits in sentence is 3
Number of words in sentence is 8
Number of upper case letters in sentence is 4
Number of lower case letters in sentence is 24

Initially the variables word_count, digit_count, upper_case_count and lower_case_count are
assigned to zero ➁–➄. For each character traversed through the string using for loop ➅, the
character is checked to see whether it is a digit or uppercase or lowercase. If any of these is
True, then the corresponding variable digit_count or upper_case or lower_case is incremented
by one. If a space is encountered, then it indicates the end of a word and the variable word_
count is incremented by one. The number of whitespaces + 1 indicates the total number of
words in a sentence ➆– . The pass statement allows you to handle the condition without
the loop being impacted in any way. The pass is a null statement and nothing happens
when pass is executed. It is useful as a placeholder when a statement is required syntacti-
cally, but no code needs to be executed.

Program 5.7: Write Python Program to Convert Uppercase Letters to
Lowercase and Vice Versa

 1. def case_conversion(user_string):
 2. convert_case = str()
 3. for each_char in user_string:
 4. if each_char.isupper():
 5. convert_case += each_char.lower()
 6. else:
 7. convert_case += each_char.upper()

137Strings

 8. print(f"The modified string is {convert_case}")
 9. def main():
 10. input_string = input("Enter a string ")
 11. case_conversion(input_string)
 12. if __name__ == "__main__":
 13. main()

Output

Enter a string ExquiSITE
The modified string is eXQUIsite

Each character in the string user_string is traversed using for loop ➂ and check whether it
is in uppercase ➃. If Boolean True then convert the character to lowercase and concatenate
it to convert_case string ➄ else convert the character to uppercase and concatenate with
convert_case string ➆. Finally, print the convert_case flipped string ➇.

Program 5.8: Write Python Program to Replace Comma-Separated Words
with Hyphens and Print Hyphen-Separated Words in Ascending Order

 1. def replace_comma_with_hyphen(comma_separated_words):
 2. split_words = comma_separated_words.split(",")
 3. split_words.sort()
 4. hyphen_separated_words = "-".join(split_words)
 5. print(f"Hyphen separated words in ascending order are

'{hyphen_separated_words}'")
 6. def main():
 7. comma_separated_words = input("Enter comma separated words ")
 8. replace_comma_with_hyphen(comma_separated_words)
 9. if __name__ == "__main__":
 10. main()

Output

Enter comma separated words global,education
Hyphen separated words in ascending order are 'education-global'

The user enters a sequence of words separated by comma ➆ which is passed as an argument
to replace_comma_with_hyphen() function ➇. The comma-separated words are split based on
"," (comma) and assigned to split_words as a list of string items ➁. Sort the words in the list ➂.
Join the words in the list with a hyphen between them using join() function ➃. Print the
sorted and hyphen-separated sequence of words ➄.

138 Introduction to Python Programming

Program 5.9: Write Python Program to Count the Occurrence of User-Entered
Words in a Sentence

 1. def count_word(word_occurrence, user_string):
 2. word_count = 0
 3. for each_word in user_string.split():
 4. if each_word == word_occurrence:
 5. word_count += 1
 6. print(f"The word '{word_occurrence}' has occurred {word_count} times")
 7. def main():
 8. input_string = input("Enter a string ")
 9. user_word = input("Enter a word to count its occurrence ")
 10. count_word(user_word, input_string)
 11. if __name__ == "__main__":
 12. main()

Output

Enter a string You cannot end a sentence with because because because is a conjunction
Enter a word to count its occurrence because
The word 'because' has occurred 3 times

The user enters a string to count its occurrence in a sentence and is stored in user_word ➈
variable and the user entered sentence is stored in input_string ➇ variable. These are passed
as parameters to count_word() function definition ➀. The sentence is split using space as the
reference to a list of words ➂ and use for loop to iterate through each word. Check whether
each word is equal to the user entered string value stored in word_occurence string variable
➃. If True, the word_count variable is incremented by one ➄. Finally, the total number of
occurrences of the user entered word in a sentence is printed out ➅.

5.6 Formatting Strings

Python supports multiple ways to format text strings. These include %-formatting and
str.format(). Each of these methods have their advantages, but in addition, have dis-
advantages that make them cumbersome to use in practice. A new string formatting
mechanism referred to as "f-strings" is becoming popular among Python commu-
nity, taken from the leading character used to denote such strings, and stands for
"formatted strings". The f-strings provide a way to embed expressions inside strings
literals, using a minimal syntax. A string literal is what we see in the source code of a
Python program, including the quotation marks. It should be noted that an f-string is
really an expression evaluated at run time and not a constant value. In Python source
code, an f-string is a literal string, prefixed with 'f', which contains expressions within
curly braces '{' and '}'.

139Strings

The f-strings formatting is driven by the desire to have a simpler way to format strings in
Python. The existing ways of formatting are either error-prone, inflexible, or cumbersome.
The %-formatting is limited as to the types it supports. Only int, str and doubles can be for-
matted. All other types are either not supported or converted to one of these types before
formatting. In addition, there’s a well-known trap when a single value is passed. For example,

 1. >>> almanac = 'nostradamus'
 2. >>> 'seer: %s' % almanac
 'seer: nostradamus'

➀–➁ works well when single value is passed. But if the variable almanac were ever to be a
tuple, the same code would fail. For example,

 1. >>> almanac = ('nostradamus', 1567)
 2. >>> 'seer: %s' % almanac
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 TypeError: not all arguments converted during string formatting

➀–➁ Passing Multiple values not supported in %-formatting.

The str.format() formatting was added to address some of these problems with
%-formatting. In particular, it uses standard function call syntax and therefore supports
multiple parameters. However, str.format() is not without its issues. Chief among them is its
verbosity. For example, in the following code the text value is repeated.

 1. >>> value = 4 * 20
 2. >>> 'The value is {value}.'.format(value=value)
 'The value is 80.'

➀–➁ Too much verbosity

Even in its simplest form, there is a bit of boilerplate, and the value that’s inserted into
the placeholder is sometimes far removed from where the placeholder is situated.

 1. >>> 'The value is {}.'.format(value)
 'The value is 80.'

➀ Statement is not informative.

With an f-string, this becomes,

 1. >>> f'The value is {value}.'
 'The value is 80.'

➀ The f-strings provide a concise, readable way to include the value of Python expressions
inside strings.

140 Introduction to Python Programming

Backslashes may not appear inside the expression portions of f-strings, so you cannot use
them. Backslash escapes may appear inside the string portions of an f-string. For example,
to escape quotes inside f-strings:

 1. >>> f'{\'quoted string\'}'
 File "<stdin>", line 1

 SyntaxError: f-string expression part cannot include a backslash

➀ Backslashes are not supported within the curly braces when f-strings are used.
You can use a different type of quote inside the expression:

 1. >>> f'{"quoted string"}'
 'quoted string'

➀ Use different types of quotes within and outside the curly braces.

5.6.1 Format Specifiers

Format specifiers may also contain evaluated expressions. The syntax for f-string format-
ting operation is,

f'string_statements {variable_name [: {width}.{precision}]}’

The f character should be prefixed during f-string formatting. The string_statement is a
string consisting of a sequence of characters. Within curly braces, you specify the variable_
name whose value will be displayed. Specifying width and precision values are optional.
If they are specified, then both width and precision should be included within curly braces.
Also, using variable_name along with either width or precision values should be separated
by a colon. You can pad or create space around variable_name value element through width
value. By default, strings are left-justified and numbers are right-justified. Precision refers
to the total number of digits that will be displayed in a number. This includes the decimal
point and all the digits, i.e., before and after the decimal point. For example,

 1. >>> width = 10
 2. >>> precision = 5
 3. >>> value = 12.34567
 4. >>> f'result: {value:{width}.{precision}}'

 'result: 12.346'
 5. >>> f'result: {value:{width}}'

 'result: 12.34567'
 6. >>> f'result: {value:.{precision}}'
 'result: 12.346'

➀–➅ Different ways of string formatting in f-strings.

141Strings

5.6.2 Escape Sequences

Escape Sequences are a combination of a backslash (\) followed by either a letter or a
combination of letters and digits. Escape sequences are also called as control sequences.
The backslash (\) character is used to escape the meaning of characters that follow it
by substituting their special meaning with an alternate interpretation. So, all escape
sequences consist of two or more characters.

Here is a list of several common escape sequences (TABLE 5.3)

 1. >>> print("You can break \
 … single line to \
 … multiple lines")
 You can break single line to multiple lines

 2. >>> print('print backslash \\ inside a string ')
 print backslash \ inside a string

 3. >>> print('print single quote \' within a string')
 print single quote ' within a string

 4. >>> print("print double quote \" within a string")
 print double quote " within a string

 5. >>> print("First line \nSecond line")
 First line
 Second line

 6. >>> print("tab\tspacing")
 tab spacing

TABLE 5.3

List of Escape Sequences

Escape Sequence Meaning

\ Break a Line into Multiple lines while ensuring the
continuation of the line

\\ Inserts a Backslash character in the string
\' Inserts a Single Quote character in the string
\" Inserts a Double Quote character in the string
\n Inserts a New Line in the string
\t Inserts a Tab in the string

\r Inserts a Carriage Return in the string

\b Inserts a Backspace in the string

\u Inserts a Unicode character in the string

\0oo Inserts a character in the string based on its Octal value

\xhh Inserts a character in the string based on its Hex value

142 Introduction to Python Programming

 7. >>> print("same\rlike")
 like
 8. >>> print("He\bi")
 Hi
 9. >>> print("\u20B9")

 10. >>> print("\046")
 &
 11. >>> print("\x24")
 $

By placing a backslash (\) character at the end of the line, you can break a single line to
multiple lines while ensuring continuation. It indicates that the next line is also part of
the same statement ➀. Print backslash by escaping the backslash itself ➁. You can use
the backslash (\) escape character to add single or double quotation marks in the strings
➂–➃. The \n escape sequence is used to insert a new line without hitting the enter or
return key ➄. The part of the string after \n escape sequence appears in the next line.
A horizontal indentation is provided with the \t escape sequence ➅. Inserts a carriage
return in the string by moving all characters after \r to the beginning of the string by
overriding the exact number of characters that were moved ➆. The \b escape sequence
removes the previous character ➇. A 16-bit hex value Unicode character is inserted in
the string as shown in ➈. A character is inserted in the string based on its Octal 10 and
Hex values .

5.6.3 Raw Strings

A raw string is created by prefixing the character r to the string. In Python, a raw string
ignores all types of formatting within a string including the escape characters.

 1. >>> print(r"Bible Says, \"Taste and see that the LORD is good; blessed is the man
who takes refuge in him.\"")

 Bible Says, \"Taste and see that the LORD is good; blessed is the man who takes
refuge in him.\"

As you can see in the output, by constructing a raw string you can retain quotes, backs-
lashes that are used to escape and other characters, as in ➀.

5.6.4 Unicodes

Fundamentally, computers just deal with numbers. They store letters and other characters
by assigning a number for each one. Before Unicode was invented, there were hundreds
of different systems, called character encodings for assigning these numbers. These early
character encodings were limited and could not contain enough characters to cover all the
world’s languages. Even for a simple language like English, no single encoding was ade-
quate for all the letters, punctuation, and technical symbols in common use. The Unicode
Standard provides a unique number for every character, no matter what platform, device,

143Strings

application or language. It has been adopted by all modern software providers and now
allows data to be transported through many different platforms, devices and applications
without corruption.

Unicode can be implemented by different character encodings. The Unicode Standard
defines Unicode Transformation Formats like UTF-8, UTF-16, and UTF-32, and several
other encodings are in use. The most commonly used encodings are UTF-8, UTF-16 and
UCS-2 (Universal Coded Character Set), a precursor of UTF-16. UTF-8 is dominantly used
by websites (over 90%), uses one byte for the first 128 code points and up to 4 bytes for other
characters.

Regular Python strings are not Unicode: they are just plain bytes. To create a Unicode
string, use the 'u' prefix on the string literal. For example,

 1. >>> unicode_string = u'A unicode \u018e string \xf1'
 2. >>> unicode_string
 'A unicode string ñ'

➀–➁ A Unicode string is a different type of object from regular "str" string type.

5.7 Summary

• A string is a sequence of characters.
• To access values through slicing, square brackets are used along with the index.
• Various string operations include conversion, comparing strings, padding, finding

a substring in an existing string and replace a string in Python.
• Python strings are immutable which means that once created they cannot be

changed.

Multiple Choice Questions

 1. The arithmetic operator that cannot be used with strings is
 a. +
 b. *
 c. −
 d. All of these
 2. Judge the output of the following code,
 print(r"\nWelcome")
 a. New line and welcome
 b. \nWelcome
 c. The letter r and then welcome
 d. Error

144 Introduction to Python Programming

 3. What is the output of the following code snippet?
 print("Sunday".find("day"))
 a. 6
 b. 5
 c. 3
 d. 1
 4. The output of the following code is,
 print("apple is a fruit".split("is")
 a. ['is a fruit']
 b. [fruit]
 c. ['apple', 'a fruit']
 d. ['apple']
 5. For the given string s = "nostradamus", which of the following statement is used to

retrieve the character t?
 a. s[3]
 b. s.getitem(3)
 c. s.__getitem__(3)
 d. s.getItem(3)
 6. The output of the following:
 print("\tapple".lstrip())
 a. \tapple
 b. apple'"
 c. apple
 d. '"\tapple
 7. Deduce the output of the following code:
 print('hello' 'newline')
 a. Hello
 b. hellonewline
 c. Error
 d. Newline
 8. What is the output of the following code?
 "tweet"[2:]
 a. We
 b. wee
 c. eet
 d. Twee

145Strings

 9. What is the output of the following code?
 "apple is a fruit"[7:10]
 a. Apple
 b. s a
 c. Fruit
 d. None of the above
 10. Identify the output of the following code:
 print("My name is %s" % ('Charles Darwin'))
 a. My name is Charles Darwin
 b. Charles
 c. %Charles
 d. %
 11. The prefix that is used to create a Unicode string is
 a. u
 b. h
 c. o
 d. c
 12. The function that is used to find the length of the string is
 a. len(string)
 b. length(string)
 c. len[string]
 d. length[string]
 13. What is the output of the following code?
 string = "Lion is the king of jungle"
 print("%s" %string[4:7])
 a. of
 b. king
 c. The
 d. is
 14. For the statement given below
 example = "\t\ntweet\n"
 The output for the expression example.strip() is
 a. \t\ntweet\n
 b. \t\ntweet
 c. tweet\n
 d. 'tweet'

146 Introduction to Python Programming

 15. Deduce the output of the following code:
 print('Data Science'.istitle())
 a. True
 b. False
 c. Error
 d. None
 16. Predict the output of the following code:
 print('200.123'.isnumeric())
 a. True
 b. False
 c. Error
 d. None

Review Questions

 1. What is the use of the len() function? Give one example.
 2. With the help of an example, explain how we can create string variables in Python.
 3. What is slice operation? Explain with an example.
 4. List all the escape characters in Python with examples.
 5. Explain in operator with an example.
 6. Write a short note on the format operator.
 7. Differentiate between the following.
 a. isidintifier() and isnumeric()
 b. find() and casefold()
 c. split() and splitlines()
 8. What would happen if a mischievous user typed in a word when you ask for a number?
 9. Write a function called rotate_word that takes a string and an integer as param-

eters, and that fucntion should return a new string containing the letters from the
original string “rotated” by the given amount. For example, “cheer” rotated by 7 is
“jolly” and “melon” rotated by −10 is “cubed”.

 10. Given that message is a string, what does message[:] indicate?
 11. Write a function that takes a string as an argument and displays the letters back-

ward, one per line.
 12. Write a Python program to access the last character of the string with the help of

len() function.
 13. Ask the user for a string, and then for a number. Print out that string, that many

times. (For example, if the string is Python and the number is 3 you should print
out PythonPythonPython.)

147Strings

 14. Write a program that reads the date in the format (dd/mm/yyyy) and replaces the
‘/’ with a ‘-’ and displays the date in (dd-mm-yyyy) format.

 15. Write a function that finds the number of occurrences of a specified character in a
string.

 16. Write a program that parses a binary number to a decimal integer. For example,
 11001 (1 * 24 + 1 * 23 + 0 * 22 + 0 * 21 + 1 * 20).
 17. Consider the following four string variables, as shown:
 city1 = "London"
 city2 = "Paris"
 city3 = "London"
 city4 = "Sydney"
 What are the results of the following expressions?
 a. city1 == city2
 b. city3.count('n')
 c. city1 <= city4
 d. city2.upper()
 e. len(city4)
 f. city1.lower()
 18. Write a program that accepts a string from the user and display the same string

after removing vowels from it.
 19. Write a function to insert a string in the middle of the string.
 20. Write a program to sort a string lexicographically.
 21. Write a program to replace a string with another string without using built-in

methods.
 22. Write a program to concatenate two strings into another string without using the

+ operator.
 23. Write a program to strip a set of characters from a string.
 24. Write a program to extract the first n characters of a string.

http://taylorandfrancis.com

149

6
Lists

Most of the times a variable can hold a single value. However, in many cases, you need to
assign more than that. Consider a Forest scenario where animals belonging to different
types of families live. Some of them like Lion, Tiger, Cheetah are Carnivorous and others
like Monkeys, Elephants and Buffalos are Herbivorous. If you want to define this habi-
tat computationally, then you have to create multiple variables to represent each animal
belonging to a particular animal family which may not make much sense. Instead, you can
combine all the animals belonging to the particular animal family under one variable and
then use this variable name for further manipulation.

You can think of the list as a container that holds a number of items. Each element or
value that is inside a list is called an item. All the items in a list are assigned to a single
variable. Lists avoid having a separate variable to store each item which is less efficient and
more error prone when you have to perform some operations on these items. Lists can be
simple or nested lists with varying types of values. Lists are one of the most flexible data
storage formats in Python because they can have values added, removed, and changed.

6.1 Creating Lists

Lists are constructed using square brackets [] wherein you can include a list of items
 separated by commas.

AIM

Understand the role of lists in Python in storing multiple items of different types and
perform manipulations using various methods.

LEARNING OUTCOMES

At the end of the chapter, you are expected to

• Create and manipulate items in lists.
• Comprehend Indexing and slicing in lists.
• Use methods associated with lists.
• Using lists as arguments in functions.
• Use for loop to access individual items in lists.

150 Introduction to Python Programming

The syntax for creating list is,

User defined

Opening
Bracket Closing

Bracket

Separated
by Comma

 1. >>> superstore = ["metro", "tesco", "walmart", "kmart", "carrefour"]
 2. >>> superstore
 ['metro', 'tesco', 'walmart', 'kmart', 'carrefour']

In ➀ each item in the list is a string. The contents of the list variable are displayed by
executing the list variable name ➁. When you print out the list, the output looks exactly
like the list you had created.

You can create an empty list without any items. The syntax is,

list_name = []

For example,

 1. >>> number_list = [4, 4, 6, 7, 2, 9, 10, 15]
 2. >>> mixed_list = ['dog', 87.23, 65, [9, 1, 8, 1]]
 3. >>> type(mixed_list)
 <class 'list'>
 4. >>> empty_list = []
 5. >>> empty_list
 []
 6. >>> type(empty_list)
 <class 'list'>

Here, number_list ➀ contains items of the same type while in mixed_list ➁ the items are a
mix of type string, float, integer and another list itself. You can determine the type of a
mixed_list ➂ variable by passing the variable name as an argument to type() function. In
Python, the list type is called as list. An empty list can be created as shown in ➃–➄ and the
variable empty_list is of list type ➅.

 You can store any item in a list like string, number, object, another vari-
able and even another list. You can have a mix of different item types and
these item types need not have to be homogeneous. For example, you can
have a list which is a mix of type numbers, strings and another list itself.

151Lists

6.2 Basic List Operations

In Python, lists can also be concatenated using the + sign, and the * operator is used to
create a repeated sequence of list items. For example,

 1. >>> list_1 = [1, 3, 5, 7]
 2. >>> list_2 = [2, 4, 6, 8]
 3. >>> list_1 + list_2
 [1, 3, 5, 7, 2, 4, 6, 8]
 4. >>> list_1 * 3
 [1, 3, 5, 7, 1, 3, 5, 7, 1, 3, 5, 7]
 5. >>> list_1 == list_2
 False

Two lists containing numbers as items are created ➀–➁. The list_1 and list_2 lists are added to
form a new list. The new list has all items of both the lists ➂. You can use the multiplication
operator on the list. It repeats the items the number of times you specify and in ➃ the list_1 con-
tents are repeated three times. Contents of the lists list_1 and list_2 are compared using the ==
operator ➄ and the result is Boolean False since the items in both the lists are different.

You can check for the presence of an item in the list using in and not in membership
operators. It returns a Boolean True or False. For example,

 1. >>> list_items = [1,3,5,7]
 2. >>> 5 in list_items
 True
 3. >>> 10 in list_items
 False

If an item is present in the list then using in operator results in True ➁ else returns False
Boolean value ➂.

6.2.1 The list() Function

The built-in list() function is used to create a list. The syntax for list() function is,

list([sequence])

where the sequence can be a string, tuple or list itself. If the optional sequence is not speci-
fied then an empty list is created. For example,

 1. >>> quote = "How you doing?"
 2. >>> string_to_list = list(quote)
 3. >>> string_to_list
 ['H', 'o', 'w', ' ', 'y', 'o', 'u', ' ', 'd', 'o', 'i', 'n', 'g', '?']
 4. >>> friends = ["j", "o", "e", "y"]

152 Introduction to Python Programming

 5. >>> friends + quote
 Traceback (most recent call last):

 File "<stdin>", line 1, in <module>
 TypeError: can only concatenate list (not "str") to list
 6. >>> friends + list(quote)
 ['j', 'o', 'e', 'y', 'H', 'o', 'w', ' ', 'y', 'o', 'u', ' ', 'd', 'o', 'i', 'n', 'g', '?']

The string variable quote ➀ is converted to a list using the list() function ➁. Now, let’s see
whether a string can be concatenated with a list ➄. The result is an Exception which says
TypeError: can only concatenate list (not "str") to list. That means you cannot concatenate a
list with a string value. In order to concatenate a string with the list, you must convert the
string value to list type, using Python built-in list() function ➅.

6.3 Indexing and Slicing in Lists

As an ordered sequence of elements, each item in a list can be called individually, through
indexing. The expression inside the bracket is called the index. Lists use square brackets
[] to access individual items, with the first item at index 0, the second item at index 1 and
so on. The index provided within the square brackets indicates the value being accessed.

The syntax for accessing an item in a list is,

list_name[index]

where index should always be an integer value and indicates the item to be selected. For
the list superstore, the index breakdown is shown below.

 1. >>> superstore = ["metro", "tesco", "walmart", "kmart", "carrefour"]
 2. >>> superstore[0]
 'metro'
 3. >>> superstore[1]
 'tesco'
 4. >>> superstore[2]
 'walmart'
 5. >>> superstore[3]
 'kmart'
 6. >>> superstore[4]
 'carrefour'
 7. >>> superstore[9]
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

 IndexError: list index out of range

153Lists

The superstore list has five items. To print the first item in the list use square brackets immedi-
ately after list name with an index value of zero ➁. The index numbers for this superstore list
range from 0 to 4 ➁–➅. If the index value is more than the number of items in the list ➆ then
it results in “IndexError: list index out of range” error.

In addition to positive index numbers, you can also access items from the list with a negative
index number, by counting backwards from the end of the list, starting at −1. Negative index-
ing is useful if you have a long list and you want to locate an item towards the end of a list.

For the same list superstore, the negative index breakdown is shown below.

 1. >>> superstore[-3]
 'walmart'

If you would like to print out the item 'walmart' by using its negative index number, you
can do so as in ➀.

6.3.1 Modifying Items in Lists

Lists are mutable in nature as the list items can be modified after you have created a list.
You can modify a list by replacing the older item with a newer item in its place and without
assigning the list to a completely new variable. For example,

 1. >>> fauna = ["pronghorn", "alligator", "bison"]
 2. >>> fauna[0] = "groundhog"
 3. >>> fauna
 ['groundhog', 'alligator', 'bison']
 4. >>> fauna[2] = "skunk"
 5. >>> fauna
 ['groundhog', 'alligator', 'skunk']
 6. >>> fauna[-1] = "beaver"
 7. >>> fauna
 ['Groundhog', 'alligator', 'beaver']

You can change the string item at index 0 from 'pronghorn' to 'groundhog' as shown in
➁. Now when you display fauna, the list items will be different ➂. The item at index 2 is
changed from “bison” to “skunk” ➃. You can also change the value of an item by using a
negative index number −1 ➅ which corresponds to the positive index number of 2. Now
“skunk” is replaced with “beaver” ➆.

When you assign an existing list variable to a new variable, an assignment (=) on lists
does not make a new copy. Instead, assignment makes both the variable names point to the
same list in memory. For example,

 1. >>> zoo = ["Lion", "Tiger", "Zebra"]
 2. >>> forest = zoo
 3. >>> type(zoo)

154 Introduction to Python Programming

 <class 'list'>
 4. >>> type(forest)
 <class 'list'>
 5. >>> forest
 ['Lion', 'Tiger', 'Zebra']
 6. >>> zoo[0] = "Fox"
 7. >>> zoo
 ['Fox', 'Tiger', 'Zebra']
 8. >>> forest
 ['Fox', 'Tiger', 'Zebra']
 9. >>> forest[1] = "Deer"
 10. >>> forest
 ['Fox', 'Deer', 'Zebra']
 11. >>> zoo
 ['Fox', 'Deer', 'Zebra']

The above code proves that assigning an existing list variable to a new variable does not
create a new copy of the existing list items ➀– .

Slicing of lists is allowed in Python wherein a part of the list can be extracted by
 specifying index range along with the colon (:) operator which itself is a list.

The syntax for list slicing is,

where both start and stop are integer values (positive or negative values). List slicing returns
a part of the list from the start index value to stop index value which includes the start index
value but excludes the stop index value. Step specifies the increment value to slice by and it is
optional. For the list fruits, the positive and negative index breakdown is shown below.

 1. >>> fruits = ["grapefruit", "pineapple", "blueberries", "mango", "banana"]
 2. >>> fruits[1:3]
 ['pineapple', 'blueberries']
 3. >>> fruits[:3]
 ['grapefruit', 'pineapple', 'blueberries']
 4. >>> fruits[2:]
 ['blueberries', 'mango', 'banana']
 5. >>> fruits[1:4:2]
 ['pineapple', 'mango']

155Lists

 6. >>> fruits[:]
 ['grapefruit', 'pineapple', 'blueberries', 'mango', 'banana']
 7. >>> fruits[::2]
 ['grapefruit', 'blueberries', 'banana']
 8. >>> fruits[::-1]
 ['banana', 'mango', 'blueberries', 'pineapple', 'grapefruit']
 9. >>> fruits[-3:-1]
 ['blueberries', 'mango']

All the items in the fruits list starting from an index value of 1 up to index value of 3 but exclud-
ing the index value of 3 is sliced ➁. If you want to access the start items, then there is no need
to specify the index value of zero. You can skip the start index value and specify only the stop
index value ➂. Similarly, if you want to access the last stop items, then there is no need to spec-
ify the stop value and you have to mention only the start index value ➃. When stop index value
is skipped the range of items accessed extends up to the last item. If you skip both the start and
stop index values ➅ and specify only the colon operator within the brackets, then the entire
items in the list are displayed. The number after the second colon tells Python that you would
like to choose your slicing increment. By default, Python sets this increment to 1, but that
number after second colon allows you to specify what you want it to be. Using double colon as
shown in ➆ means no value for start index and no value for stop index and jump the items by
two steps. Every second item of the list is extracted starting from an index value of zero. All
the items in a list can be displayed in reverse order by specifying a double colon followed by
an index value of −1 ➇. Negative index values can also be used for start and stop index values ➈.

6.4 Built-In Functions Used on Lists

There are many built-in functions for which a list can be passed as an argument (TABLE 6.1).

 For example,

 1. >>> lakes = ['superior', 'erie', 'huron', 'ontario', 'powell']
 2. >>> len(lakes)
 5

TABLE 6.1

Built-In Functions Used on Lists

Built-In Functions Description

len() The len() function returns the numbers of items in a list.
sum() The sum() function returns the sum of numbers in the list.
any() The any() function returns True if any of the Boolean values in the list is True.
all() The all() function returns True if all the Boolean values in the list are True, else

returns False.
sorted() The sorted() function returns a modified copy of the list while leaving the original list

untouched.

156 Introduction to Python Programming

 3. >>> numbers = [1, 2, 3, 4, 5]
 4. >>> sum(numbers)
 15
 5. >>> max(numbers)
 5
 6. >>> min(numbers)
 1
 7. >>> any([1, 1, 0, 0, 1, 0])
 True
 8. >>> all([1, 1, 1, 1])
 True
 9. >>> lakes_sorted_new = sorted(lakes)
 10. >>> lakes_sorted_new
 ['erie', 'huron', 'ontario', 'powell', 'superior']

You can find the number of items in the list lakes using the len() function ➁. Using the sum()
function results in adding up all the numbers in the list ➃. Maximum and minimum num-
bers in a list are returned using max() ➄ and min() functions ➅. If any of the items is 1 in the
list then any() function returns Boolean True value ➆. If all the items in the list are 1 then
all() function returns True else returns False Boolean value ➇. The sorted() function returns
the sorted list of items without modifying the original list which is assigned to a new list
variable ➈. In the case of string items in the list, they are sorted based on their ASCII values.

6.5 List Methods

The list size changes dynamically whenever you add or remove the items and there is no
need for you to manage it yourself. You can get a list of all the methods (TABLE 6.2) associ-
ated with the list by passing the list function to dir().

 1. >>> dir(list)

 ['__add__', '__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__',
'__eq__', '__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__',
'__iadd__', '__imul__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__',
'__lt__', '__mul__', '__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__reversed__', '__rmul__', '__setattr__', '__setitem__', '__sizeof__', '__str__', '__sub-
classhook__', 'append', 'clear', 'copy', 'count', 'extend', 'index', 'insert', 'pop', 'remove',
'reverse', 'sort']

Various methods associated with list is displayed ➀.

157Lists

 For example,

 1. >>> cities = ["oslo", "delhi", "washington", "london", "seattle", "paris", "washington"]
 2. >>> cities.count('seattle')
 1
 3. >>> cities.index('washington')
 2
 4. >>> cities.reverse()
 5. >>> cities
 ['washington', 'paris', 'seattle', 'london', 'washington', 'delhi', 'oslo']
 6. >>> cities.append('brussels')
 7. >>> cities
 ['washington', 'paris', 'seattle', 'london', 'washington', 'delhi', 'oslo', 'brussels']
 8. >>> cities.sort()
 9. >>> cities
 ['brussels', 'delhi', 'london', 'oslo', 'paris', 'seattle', 'washington', 'washington']
 10. >>> cities.pop()
 'washington'

TABLE 6.2

Various List Methods

List Methods Syntax Description

append() list.append(item) The append() method adds a single item to the end of the list. This
method does not return new list and it just modifies the original.

count() list.count(item) The count() method counts the number of times the item has
occurred in the list and returns it.

insert() list.insert(index, item) The insert() method inserts the item at the given index, shifting
items to the right.

extend() list.extend(list2) The extend() method adds the items in list2 to the end of the list.
index() list.index(item) The index() method searches for the given item from the start of

the list and returns its index. If the value appears more than once,
you will get the index of the first one. If the item is not present in
the list then ValueError is thrown by this method.

remove() list.remove(item) The remove() method searches for the first instance of the given
item in the list and removes it. If the item is not present in the list
then ValueError is thrown by this method.

sort() list.sort() The sort() method sorts the items in place in the list. This method
modifies the original list and it does not return a new list.

reverse() list.reverse() The reverse() method reverses the items in place in the list. This
method modifies the original list and it does not return a new list.

pop() list.pop([index]) The pop() method removes and returns the item at the given index.
This method returns the rightmost item if the index is omitted.

Note: Replace the word “list” mentioned in the syntax with your actual list name in your code.

158 Introduction to Python Programming

 11. >>> cities
 ['brussels', 'delhi', 'london', 'oslo', 'paris', 'seattle', 'washington']
 12. >>> more_cities = ["brussels", "copenhagen"]
 13. >>> cities.extend(more_cities)
 14. >>> cities
 ['brussels', 'delhi', 'london', 'oslo', 'paris', 'seattle', 'washington', 'brussels', 'copenhagen']
 15. >>> cities.remove("brussels")
 16. >>> cities
 ['delhi', 'london', 'oslo', 'paris', 'seattle', 'washington', 'brussels', 'copenhagen']

Various operations on lists are carried out using list methods ➀– .

6.5.1 Populating Lists with Items

One of the popular way of populating lists is to start with an empty list [], then use the
functions append() or extend() to add items to the list. For example,

 1. >>> continents = []
 2. >>> continents.append("Asia")
 3. >>> continents.append("Europe")
 4. >>> continents.append("Africa")
 5. >>> continents
 ['Asia', 'Europe', 'Africa']

Create an empty list continents ➀ and start populating items to the continents list using
append() function ➁–➃ and finally display the items of the continents list ➄.

Program 6.1: Program to Dynamically Build User Input as a List

 1. list_items = input("Enter list items separated by a space ").split()
 2. print(f"List items are {list_items}")

 3. items_of_list = []
 4. total_items = int(input("Enter the number of items "))
 5. for i in range(total_items):
 6. item = input("Enter list item: ")
 7. items_of_list.append(item)
 8. print(f"List items are {items_of_list}")

Output

Enter list items separated by a space Asia Europe Africa
List items are ['Asia', 'Europe', 'Africa']

159Lists

Enter the number of items 2
Enter list item: Australia
Enter list item: Americas
List items are ['Australia', 'Americas']

You can build a list from user-entered values in two ways. In the first method ➀–➁
you chain input() and split() together using dot notation. The user has to enter the items
separated by spaces. Even though the user entered input has multiple items separated
by spaces, by default the user-entered input is considered a single string. You benefit
from the fact that the split() method can be used with the string. This user-entered input
string value is split based on spaces and the split() method returns a list of string items.
The advantage of this method is, there is no need for you to specify the total number of
items that you are planning to insert into the list. In the second method ➂–➇ you have
to specify the total number of items that you are planning to insert into the list before-
hand itself ➃. Based on this number we iterate through the for loop as many times using
range() function ➄. During each iteration, you need to append ➆ the user entered value
to the list ➅.

6.5.2 Traversing of Lists

Using a for loop you can iterate through each item in a list.

Program 6.2: Program to Illustrate Traversing of Lists Using the for loop

 1. fast_food = ["waffles", "sandwich", "burger", "fries"]
 2. for each_food_item in fast_food:

 3. print(f"I like to eat {each_food_item}")

 4. for each_food_item in ["waffles", "sandwich", "burger", "fries"]:
 5. print(f"I like to eat {each_food_item}")

Output

I like to eat waffles
I like to eat sandwich
I like to eat burger
I like to eat fries
I like to eat waffles
I like to eat sandwich
I like to eat burger
I like to eat fries

The for statement makes it easy to loop over the items in a list. A list variable is created ➀
and the list variable is specified in the for loop ➁. Instead of specifying a list variable, you
can specify a list directly in the for loop ➃.

You can obtain the index value of each item in the list by using range() along with len()
function.

160 Introduction to Python Programming

Program 6.3: Program to Display the Index Values of Items in List

1. silicon_valley = ["google", "amd", "yahoo", "cisco", "oracle"]
2. for index_value in range(len(silicon_valley)):
3. print(f"The index value of '{silicon_valley[index_value]}' is {index_value}")

Output

The index value of 'google' is 0
The index value of 'amd' is 1
The index value of 'yahoo' is 2
The index value of 'cisco' is 3
The index value of 'oracle' is 4

You need to pass the list name as an argument to len() function and the resulting value
will be passed as an argument to range() function to obtain the index value ➁ of each item
in the list ➀.

Program 6.4: Write Python Program to Sort Numbers in a List in Ascending Order
Using Bubble Sort by Passing the List as an Argument to the Function Call

 1. def bubble_sort(list_items):
 2. for i in range(len(list_items)):
 3. for j in range(len(list_items)-i-1):
 4. if list_items[j] > list_items[j+1]:
 5. temp = list_items[j]
 6. list_items[j] = list_items[j+1]
 7. list_items[j+1] = temp
 8. print(f"The sorted list using Bubble Sort is {list_items}")

 9. def main():
 10. items_to_sort = [5, 4, 3, 2, 1]
 11. bubble_sort(items_to_sort)

 12. if __name__ == "__main__":
 13. main()

Output

The sorted list using Bubble Sort is [1, 2, 3, 4, 5]

Bubble sort is an elementary sorting algorithm that repeatedly steps through the items
in the list to be sorted by comparing each item with its successor item and swaps them
if they are in the wrong order (FIGURE 6.1). The pass through the list is repeated until
no swaps are needed, which indicates that the list is sorted. Bubble sort requires a
maximum of n – 1 passes if there are n items in the list. To sort the items in the list we
require two loops. One for running through the passes ➁ and another for comparing

161Lists

consecutive items in each pass ➂. The indexing value for each item in the list is obtained
by range(len(list_items)-i-1). While traversing the list using for loop, swap ➄–➆ if
the current item is found to be greater than the next item ➃. You can also pass a list ➉
as an argument to the function call which is assigned to the list_items parameter in
the function definition ➀.

Program 6.5: Write Python Program to Conduct a Linear Search for a Given Key
Number in the List and Report Success or Failure

 1. def read_key_item():
 2. key_item = int(input("Enter the key item to search: "))
 3. return key_item

 4. def linear_search(search_key):
 5. list_of_items = [10, 20, 30, 40, 50]
 6. found = False
 7. for item_index in range(len(list_of_items)):
 8. if list_of_items[item_index] == search_key:
 9. found = True
 10. break
 11. if found:
 12. print(f"{search_key} found at position {item_index + 1}")
 13. else:
 14. print("Item not found in the list")

 15. def main():
 16. key_in_list = read_key_item()
 17. linear_search(key_in_list)

 18. if __name__ == "__main__":
 19. main()

Output

Enter the key item to search: 50
50 found at position 5

Index Value 0 Index Value 1 Index Value 2 Index Value 3

FIGURE 6.1
Sorting steps in Bubble Sort algorithm.

162 Introduction to Python Programming

Linear search is a method for finding a key item in a list. It sequentially checks each item of
the list for the key value until a match is found or until all the items have been searched. The
function read_key_item() is used to read search key from user ➀–➂. The function linear_search()
➃ searches for a key item in the list and reports success or failure. A for loop is required to run
through all the items in the list ➆. An if condition is used to check for the presence of the key
item in the list ➇. Here the variable found keeps track of the presence of the item in the list.
Initially found is set to False ➅. If the key item is present, then the variable found is assigned
with Boolean True ➈. Then the key item along with its position is displayed .

Program 6.6: Input Five Integers (+ve and −ve). Find the Sum of Negative Numbers,
Positive Numbers and Print Them. Also, Find the Average of All the Numbers
and Numbers Above Average

 1. def find_sum(list_items):
 2. positive_sum = 0
 3. negative_sum = 0
 4. for item in list_items:
 5. if item > 0:
 6. positive_sum = positive_sum + item
 7. else:
 8. negative_sum = negative_sum + item
 9. average = (positive_sum + negative_sum) / 5
 10. print(f"Sum of Positive numbers in list is {positive_sum}")
 11. print(f"Sum of Negative numbers in list is {negative_sum}")
 12. print(f"Average of item numbers in list is {average}")
 13. print("Items above average are")
 14. for item in list_items:
 15. if item > average:
 16. print(item)
 17. def main():
 18. find_sum([-1, -2, -3, 4, 5])
 19. if __name__ == "__main__":
 20. main()

Output

Sum of Positive numbers in list is 9
Sum of Negative numbers in list is -6
Average of item numbers in list is 0.6
Items above average are
4
5

Traverse through the list of five items of integer type ➃. If a number is greater than zero
then it is positive or if a number is less than zero then it is negative ➄. Sum of positive

163Lists

and negative numbers are stored in the variables positive_sum ➅ and negative_sum ➇
respectively. Traverse through each item in the list and based on positive and negative
numbers, add to the variables positive_sum and negative_sum and print it ➉– . Average is
calculated by (positive_sum + negative_sum) / 5 ➈ and print it . After getting the average
value, traverse through each item in the list and check whether the numbers are above
average . If so, print those numbers .

Program 6.7: Check If the Items in the List Are Sorted in Ascending or Descending
Order and Print Suitable Messages Accordingly. Otherwise, Print “Items in list are
not sorted”

 1. def check_for_sort_order(list_items):
 2. ascending = descending = True
 3. for i in range(len(list_items) - 1):
 4. if list_items[i] < list_items[i+1]:
 5. descending = False
 6. if list_items[i] > list_items[i+1]:
 7. ascending = False
 8. if ascending:
 9. print("Items in list are in Ascending order")
 10. elif descending:
 11. print("Items in list are in Descending order")
 12. else:
 13. print("Items in list are not sorted")

 14. def main():
 15. check_for_sort_order([1, 4, 2, 5, 3])

 16. if __name__ == "__main__":
 17. main()

Output

Items in list are not sorted

In the beginning, it is assumed that the list is sorted either in ascending order or in descend-
ing order by setting the variables ascending and descending to Boolean True value ➁. Now
traverse through each item of the list ➂. If the first item is less than the second item, then
the list is not in descending order, so set the variable descending to False Boolean value.
If the second item is greater than the third item, then the list is not in ascending order, so
set the variable ascending to False Boolean value ➃–➆. By applying the above logic to each
item in the list results in ascending variable is set to True and descending variable is set to a
False Boolean value for items stored in ascending order. If the list items are in descending
order, then the descending variable is set to True while ascending variable is set to a False
Boolean value. If items are not in any order in the list, then both ascending and descending
variables are set to False.

164 Introduction to Python Programming

Program 6.8: Find Mean, Variance and Standard Deviation of List Numbers

 1. import math

 2. def statistics(list_items):
 3. mean = sum(list_items)/len(list_items)
 4. print(f"Mean is {mean}")
 5. variance = 0
 6. for item in list_items:
 7. variance += (item-mean)**2
 8. variance /= len(list_items)
 9. print(f"Variance is {variance}")
 10. standard_deviation = math.sqrt(variance)
 11. print(f"Standard Deviation is {standard_deviation}")

 12. def main():
 13. statistics([1, 2, 3, 4])

 14. if __name__ == "__main__":
 15. main()

Output

Mean is 2.5
Variance is 1.25
Standard Deviation is 1.118033988749895

Mean is calculated as the sum of all items in the list / total number of items in the list ➂.
Variance is defined as the average of the squared differences from the mean. Steps to find
the variance is to first calculate the mean ➂–➃, then traverse through each element in the
list and subtract it with mean and square the result which is also called as the squared
difference. Finally, find the mean of those squared differences ➅–➇ to get the variance ➈.
Standard deviation is the square root of variance ➉– .

Program 6.9: Write Python Program to Implement Stack Operations

 1. stack = []
 2. stack_size = 3

 3. def display_stack_items():
 4. print("Current stack items are: ")
 5. for item in stack:
 6. print(item)

 7. def push_item_to_stack(item):
 8. print(f"Push an item to stack {item}")

165Lists

 9. if len(stack) < stack_size:
 10. stack.append(item)
 11. else:
 12. print("Stack is full!")

 13. def pop_item_from_stack():
 14. if len(stack) > 0:
 15. print(f"Pop an item from stack {stack.pop()}")
 16. else:
 17. print("Stack is empty.")

 18. def main():
 19. push_item_to_stack(1)
 20. push_item_to_stack(2)
 21. push_item_to_stack(3)
 22. display_stack_items()
 23. push_item_to_stack(4)
 24. pop_item_from_stack()
 25. display_stack_items()
 26. pop_item_from_stack()
 27. pop_item_from_stack()
 28. pop_item_from_stack()

 29. if __name__ == "__main__":
 30. main()

Output

Push an item to stack 1
Push an item to stack 2
Push an item to stack 3
Current stack items are:
1
2
3
Push an item to stack 4
Stack is full!
Pop an item from stack 3
Current stack items are:
1
2
Pop an item from stack 2
Pop an item from stack 1
Stack is empty.

166 Introduction to Python Programming

The list methods make it very easy to use a list as a stack (FIGURE 6.2), where the last item
added is the first item retrieved (“last-in, first-out”). To add an item to the top of the stack,
use the append() method. To retrieve an item from the top of the stack, use pop() without an
explicit index. Set the stack size to three. The function display_stack_items() ➂–➅ displays
current items in the stack. The function push_item_to_stack() ➆ is used to push an item to
stack ➉ if the total length of the stack is less than the stack size ➈ else display “Stack is full”

 message. The function pop_item_from_stack() pops an item from the stack if the stack
is not empty else display “Stack is empty” message .

Program 6.10: Write Python Program to Perform Queue Operations

 1. from collections import deque

 2. def queue_operations():
 3. queue = deque(["Eric", "John", "Michael"])
 4. print(f"Queue items are {queue}")
 5. print("Adding few items to Queue")
 6. queue.append("Terry")
 7. queue.append("Graham")
 8. print(f"Queue items are {queue}")
 9. print(f"Removed item from Queue is {queue.popleft()}")
 10. print(f"Removed item from Queue is {queue.popleft()}")
 11. print(f"Queue items are {queue}")

 12. def main():
 13. queue_operations()

 14. if __name__ == "__main__":
 15. main()

Output

Queue items are deque(['Eric', 'John', 'Michael'])
Adding few items to Queue
Queue items are deque(['Eric', 'John', 'Michael', 'Terry', 'Graham'])

3

2 2

1 1 1

3

2 2

1 1 1

Push 1

Push 2

Push 3 Pop 3

Pop 2
Pop 1Empty Stack

FIGURE 6.2
Stack push and pop operations.

167Lists

Removed item from Queue is Eric
Removed item from Queue is John
Queue items are deque(['Michael', 'Terry', 'Graham'])

It is also possible to use a list as a queue, where the first item added is the first item
retrieved (“first-in, first-out”). However, lists are not effective for this purpose. While
appends and pops are fast from the end of the list, doing inserts or pops from the begin-
ning of a list is slow because all of the other items have to be shifted by one. To implement
a queue ➂, use collections.deque ➀ which was designed to have fast appends ➈–➉ and pops
➅–➆ from both ends.

6.5.3 Nested Lists

A list inside another list is called a nested list and you can get the behavior of nested lists
in Python by storing lists within the elements of another list. You can traverse through the
items of nested lists using the for loop.

The syntax for nested lists is,

User defined

Each list inside another list is separated by a comma. For example,

 1. >>> asia = [["India", "Japan", "Korea"],
 ["Srilanka", "Myanmar", "Thailand"],
 ["Cambodia", "Vietnam", "Israel"]]
 2. >>> asia[0]
 ['India', 'Japan', 'Korea']
 3. >>> asia[0][1]
 'Japan'
 4. >>> asia[1][2] = "Philippines"
 5. >>> asia
 [['India', 'Japan', 'Korea'], ['Srilanka', 'Myanmar', 'Philippines'], ['Cambodia', 'Vietnam',

'Israel']]

You can access an item inside a list that is itself inside another list by chaining two sets of
square brackets together. For example, in the above list variable asia you have three lists ➀
which represent a 3 × 3 matrix. If you want to display the items of the first list then specify
the list variable followed by the index of the list which you need to access within the
brackets, like asia[0] ➁. If you want to access "Japan" item inside the list then you need to
specify the index of the list within the list and followed by the index of the item in the list,

168 Introduction to Python Programming

like asia[0][1] ➂. You can even modify the contents of the list within the list. For example,
to replace "Thailand" with "Philippines" use the code in ➃.

Program 6.11: Write a Program to Find the Transpose of a Matrix

 1. matrix = [[10, 20],
 [30, 40],
 [50, 60]]
 2. matrix_transpose = [[0, 0, 0],
 [0, 0, 0]]
 3. def main():
 4. for rows in range(len(matrix)):
 5. for columns in range(len(matrix[0])):
 6. matrix_transpose[columns][rows] = matrix[rows][columns]
 7. print("Transposed Matrix is")
 8. for items in matrix_transpose:
 9. print(items)

 10. if __name__ == "__main__":
 11. main()

Output

Transposed Matrix is
[10, 30, 50]
[20, 40, 60]

The transpose of a matrix is a new matrix whose rows are the columns and columns are
the rows of the original matrix. To find the transpose of a matrix ➀ in Python, you need
an empty matrix initially to store the transposed matrix ➁. This empty matrix should have
one column greater and one row less than the original matrix. You need two for loops corre-
sponding to rows ➃ and columns of the matrix ➄. Using for loops you need to iterate through
each row and each column. At each point we place the matrix[rows][columns] item into matrix_
transpose[columns][rows] ➅. Finally, print the transposed result using for loop ➇–➈.

Program 6.12: Write Python Program to Add Two Matrices

 1. matrix_1 = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]
 2. matrix_2 = [[1, 2, 3],
 [4, 5, 6],
 [7, 8, 9]]

169Lists

 3. matrix_result = [[0, 0, 0],
 [0, 0, 0],
 [0, 0, 0]]
 4. for rows in range(len(matrix_1)):
 5. for columns in range(len(matrix_2[0])):
 6. matrix_result[rows][columns] = matrix_1[rows][columns] + matrix_2[rows]

[columns]
 7. print("Addition of two matrices is")
 8. for items in matrix_result:
 9. print(items)

Output

Addition of two matrices is
[2, 4, 6]
[8, 10, 12]
[14, 16, 18]

To add two matrices in Python, you need to have two matrices which need to be added
➀–➁ and another empty matrix ➂. The empty matrix is used to store the addition result of
the two matrices. To perform addition of matrices you need two for loops corresponding to
rows ➃ and columns ➄ of matrix_1 and matrix_2 respectively. Using for loops you need to
iterate through each row and each column. At each point we add matrix_1[rows][columns]
item with matrix_2[rows][columns] item ➅. Finally, print the matrix result of adding two
matrices using for loop ➇–➈.

6.6 The del Statement

You can remove an item from a list based on its index rather than its value. The difference
between del statement and pop() function is that the del statement does not return any value
while the pop() function returns a value. The del statement can also be used to remove
slices from a list or clear the entire list.

 1. >>> a = [5, -8, 99.99, 432, 108, 213]
 2. >>> del a[0]
 3. >>> a
 [-8, 99.99, 432, 108, 213]
 4. >>> del a[2:4]
 5. >>> a
 [-8, 99.99, 213]
 6. >>> del a[:]
 7. >>> a
 []

170 Introduction to Python Programming

An item at an index value of zero is removed ➁. Now the number of items in the original
list is reduced ➂. Items starting from an index value of 2 up to 4 but excluding the index
value of 4 is removed from the list ➃. All the items in the list can be removed by specifying
only the colon operator without start or stop index values ➅–➆.

6.7 Summary

• Lists are a basic and useful data structure built into the Python language.
• Built-in functions include len(), which returns the length of the list; max(),

which returns the maximum element in the list; min(), which returns the mini-
mum element in the list and sum(), which returns the sum of all the elements
in the list.

• An individual elements in the list can be accessed using the index operator [].
• Lists are mutable sequences which can be used to add, delete, sort and even reverse

list elements.
• The sort() method is used to sort items in the list.
• The split() method can be used to split a string into a list.
• Nested list means a list within another list.

Multiple-Choice Questions

 1. The statement that creates the list is
 a. superstore = list()
 b. superstore = []
 c. superstore = list([1,2,3])
 d. All of the above
 2. Suppose continents = [1,2,3,4,5], what is the output of len(continents)?
 a. 5
 b. 4
 c. None
 d. error
 3. What is the output of the following code snippet?
 islands = [111,222,300,411,546]
 max(islands)
 a. 300
 b. 222
 c. 546
 d. 111

171Lists

 4. Assume the list superstore is [1,2,3,4,5], which of the following is correct syntax for
slicing operation?

 a. print(superstore[0:])
 b. print(superstore[:2])
 c. print(superstore[:-2])
 d. All of these
 5. If zoo = ["lion", "tiger"], what will be zoo * 2?
 a. ['lion']
 b. ['lion', 'lion', 'tiger', 'tiger']
 c. ['lion', 'tiger', 'lion', 'tiger']
 d. ['tiger']
 6. To add a new element to a list the statement used is?
 a. zoo. add(5)
 b. zoo.append("snake")
 c. zoo.addLast(5)
 d. zoo.addend(4)
 7. To insert the string "snake" to the third position in zoo, which of the following

statement is used?
 a. zoo.insert(3, "snake")
 b. zoo. insert(2, "snake")
 c. zoo.add(3, "snake")
 d. zoo.append(3, "snake")
 8. Consider laptops = [3, 4, 5, 20, 5, 25, 1, 3], what will be the output of laptops.reverse()?
 a. [3, 4, 5, 20, 5, 25, 1, 3]
 b. [1, 3, 3, 4, 5, 5, 20, 25]
 c. [25, 20, 5, 5, 4, 3, 3, 1]
 d. [3, 1, 25, 5, 20, 5, 4, 3]
 9. Assume quantity = [3, 4, 5, 20, 5, 25, 1, 3], then what will be the items of quantity list

after quantity.pop(1)?
 a. [3, 4, 5, 20, 5, 25, 1, 3]
 b. [1, 3, 3, 4, 5, 5, 20, 25]
 c. [3, 5, 20, 5, 25, 1, 3]
 d. [1, 3, 4, 5, 20, 5, 25]
 10. What is the output of the following code snippet?
 letters = ['a', 'b', 'c', 'd', 'e']
 letters[::-2]
 a. ['d', 'c', 'b']
 b. ['a', 'c', 'e']
 c. ['a', 'b', 'd']
 d. ['e', 'c', 'a']

172 Introduction to Python Programming

 11. Suppose list_items is [3, 4, 5, 20, 5, 25, 1, 3], then what is the result of list_items.
remove(4)?

 a. 3, 5, 29, 5
 b. 3, 5, 20, 5, 25, 1, 3
 c. 5, 20, 1, 3
 d. 1, 3, 25
 12. Find the output of the following code.
 matrix= [[1,2,3],[4,5,6]]
 v = matrix[0][0]
 for row in range(0, len(matrix)):
 for column in range(0, len(matrix[row])):
 if v < matrix[row][column]:
 v = matrix[row][column]
 print(v)
 a. 3
 b. 5
 c. 6
 d. 33
 13. Gauge the output of the following.
 matrix = [[1, 2, 3, 4],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]]

 for i in range(0, 4):
 print(matrix[i][1])
 a. 1 2 3 4
 b. 4 5 6 7
 c. 1 3 8 12
 d. 2 5 9 13
 14. What will be the output of the following?
 data = [[[1, 2], [3, 4]], [[5, 6], [7, 8]]]
 print(data[1][0][0])
 a. 1
 b. 2
 c. 4
 d. 5

173Lists

 15. The list function that inserts the item at the given index after shifting the items to
the right is

 a. sort()
 b. index()
 c. insert()
 d. append()
 16. The method that is used to count the number of times an item has occurred in the

list is
 a. count()
 b. len()
 c. length()
 d. extend()

Review Questions

 1. Explain the advantages of the list.
 2. Explain the different ways in which the lists can be created.
 3. Explain the different list methods with an example.
 4. With the help of an example explain the concept of nested lists.
 5. Explain the ways of indexing and slicing the list with examples.
 6. Differentiate between the following:
 a. pop() and remove() methods of list.
 b. Del statement and pop() method of list.
 c. append() and insert() methods of list.
 7. Write a program that creates a list of 10 random integers. Then create two lists by

name odd_list and even_list that have all odd and even values of the list respectively.
 8. Write a program to sort the elements in ascending order using insertion sort.
 9. Write a Python program to use binary search to find the key element in the list.
 10. Make a list of the first eight letters of the alphabet, then using the slice operation

do the following operations:
 a. Print the first three letters of the alphabet.
 b. Print any three letters from the middle.
 c. Print the letters from any particular index to the end of the list.
 11. Write a program to sort the elements in ascending order using selection sort.
 12. Write a program that prints the maximum value of the second half of the list.
 13. Write a program that creates a list of numbers 1–100 that are either divisible by

5 or 6.
 14. Write a function that prompts the user to enter five numbers, then invoke a func-

tion to find the GCD of these numbers.

http://taylorandfrancis.com

175

7
Dictionaries

Another useful data type built into Python is the Dictionary. In the real world, you have
seen your Contacts list in your phone. It is practically impossible to memorize the mobile
number of everyone you come across. In the Contacts list, you store the name of the person
as well as his number. This allows you to identify the mobile number based on a person’s
name. You can think of a person’s name as the key that retrieves his mobile number, which
is the value associated with the key. Dictionaries are sometimes found in other languages
as “associative memories” or “associative arrays.”

7.1 Creating Dictionary

A dictionary is a collection of an unordered set of key:value pairs, with the requirement
that the keys are unique within a dictionary. Dictionaries are constructed using curly
braces { }, wherein you include a list of key:value pairs separated by commas. Also, there
is a colon (:) separating each of these key and value pairs, where the words to the left of
the colon operator are the keys and the words to the right of the colon operator are the
values. Unlike lists, which are indexed by a range of numbers, dictionaries are indexed
by keys. Here a key along with its associated value is called a key:value pair. Dictionary
keys are case sensitive.

AIM

Understand the role of dictionaries in Python in storing key:value pairs of different
data types allowing you to organize your data in controlled ways.

LEARNING OUTCOMES

At the end of the chapter, you are expected to

• Create and manipulate key:value pairs in dictionaries.
• Use methods associated with dictionaries.
• Use for loop to access key:value pairs in dictionaries.

176 Introduction to Python Programming

The syntax for creating a dictionary is,

dictionary_name = {key_1:value_1, key_2:value_2, key_3:value_3, ………,key_n:value_n}

Opening Curly
Braces Closing Curly

BracesSeparated
by Comma

User defined

For example,

 1. >>> fish = {"g": "goldfish", "s":"shark", "n": "needlefish", "b":"barramundi",
"m":"mackerel"}

 2. >>> fish
 {'g': 'goldfish', 's': 'shark', 'n': 'needlefish', 'b': 'barramundi', 'm': 'mackerel'}

➀ Placing a comma-separated list of key:value pairs within the curly braces adds initial key:
value pairs to the dictionary. This is also the way dictionaries are written on output ➁. The
keys in the dictionary fish are "g", "s", "n", "b", and "m" and the values associated with these
keys are "goldfish", "shark", "needlefish", "barramundi", and "mackerel" (FIGURE 7.1). Each
of the keys and values here is of string type. A value in the dictionary can be of any data
type including string, number, list, or dictionary itself.

Dictionary keys are immutable type and can be either a string or a
number. Since lists can be modified in place using index assignments,
slice assignments, or methods like append() and extend(), you cannot
use lists as keys. Duplicate keys are not allowed in the dictionary.

fish

keys values

"g"

"s"

"n"

"b"

"m"

"goldfish"

"shark"

"needlefish"

"barramundi"

"mackerel"

FIGURE 7.1
Demonstration of key:value Pairs.

177Dictionaries

In dictionaries, the keys and their associated values can be of different types.
For example,

 1. >>> mixed_dict = {"portable":"laptop", 9:11, 7:"julius"}
 2. >>> mixed_dict

 {'portable': 'laptop', 9: 11, 7: 'julius'}
 3. >>> type(mixed_dict)
 <class 'dict'>

In the dictionary, mixed_dict, keys and their associated values are all of different types. For
numbers as keys in dictionaries, it need not start from zero and it can be of any number.
You can determine the type of mixed_dict by passing the variable name as an argument to
type() function. In Python, the dictionary type is called as dict.

You can create an empty dictionary by specifying a pair of curly braces and without any
key:value pairs. The syntax is,

dictionary_name = { }

For example,

 1. >>> empty_dictionary = {}
 2. >>> empty_dictionary

 {}
 3. >>> type(empty_dictionary)
 <class 'dict'>

An empty dictionary can be created as shown in ➀ and empty_dictionary is of dict type ➂.
In dictionaries, the order of key:value pairs does not matter. For example,

 1. >>> pizza = {"pepperoni":3, "calzone":5, "margherita":4}
 2. >>> fav_pizza = {"margherita":4, "pepperoni":3, "calzone":5}
 3. >>> pizza == fav_pizza
 True

The dictionaries pizza and fav_pizza have the same key:value pairs but in a different order
➀–➁. If you compare these two dictionaries, it results in Boolean True value ➂. This indi-
cates that the ordering of key:value pairs does not matter in dictionaries. Slicing in diction-
aries is not allowed since they are not ordered like lists.

 Prior to Python 3.6 version, the execution of dictionary statements
resulted in an unordered output of key:value pairs. However, starting
from Python 3.6 version, the output of dictionary statements is ordered
key:value pairs. Here, ordered means “insertion ordered”, i.e., diction-
aries remember the order in which the key:value pairs were inserted.

178 Introduction to Python Programming

7.2 Accessing and Modifying key:value Pairs in Dictionaries

Each individual key:value pair in a dictionary can be accessed through keys by specifying it
inside square brackets. The key provided within the square brackets indicates the key:value
pair being accessed.

The syntax for accessing the value for a key in the dictionary is,

dictionary_name[key]

The syntax for modifying the value of an existing key or for adding a new key:value pair
to a dictionary is,

dictionary_name[key] = value

If the key is already present in the dictionary, then the key gets updated with the new
value. If the key is not present then the new key:value pair gets added to the dictionary.

For example,

 1. >>> renaissance = {"giotto":1305, "donatello":1440, "michelangelo":1511,
"botticelli":1480, "clouet":1520}

 2. >>> renaissance["giotto"] = 1310
 3. >>> renaissance

 {'giotto': 1310, 'donatello': 1440, 'michelangelo': 1511, 'botticelli': 1480, 'clouet': 1520}
 4. >>> renaissance["michelangelo"]

 1511
 5. >>> renaissance["leonardo"] = 1503
 6. >>> renaissance

 {'giotto': 1310, 'donatello': 1440, 'michelangelo': 1511, 'botticelli': 1480, 'clouet': 1520,
'leonardo': 1503}

 7. >>> renaissance["piero"]
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

 KeyError: 'piero'

Since dictionaries are mutable, you can add a new key:value pair or change the values
for existing keys using the assignment operator. For the dictionary renaissance ➀, you
can modify the existing values for the keys. The value for the key giotto is updated from
1305 to 1310 as shown in ➁ using the assignment operator. The value associated with
the key michelangelo is displayed in ➃. You can add a new key:value pair by specifying the
name of the dictionary followed by a bracket within where you specify the name of the
key and assign a value to it ➄. If you try to access a non-existing key ➆ then it results in
KeyError.

179Dictionaries

You can check for the presence of a key in the dictionary using in and not in membership
operators. It returns either a Boolean True or False value. For example,

 1. >>> clothes = {"rainy":"raincoats", "summer":"tees", "winter":"sweaters"}
 2. >>> "spring" in clothes

 False
 3. >>> "spring" not in clothes
 True

In ➁ and ➂, the presence of the key spring is checked in the dictionary clothes.

7.2.1 The dict() Function

The built-in dict() function is used to create dictionary. The syntax for dict() function when
the optional keyword arguments used is,

dict([**kwarg])

The function dict() returns a new dictionary initialized from an optional keyword argu-
ments and a possibly empty set of keyword arguments. If no keyword argument is given,
an empty dictionary is created. If keyword arguments are given, the keyword arguments
and their values of the form kwarg = value are added to the dictionary as key:value pairs.
For example,

 1. >>> numbers = dict(one=1, two=2, three=3)
 2. >>> numbers

 {'one': 1, 'two': 2, 'three': 3}

Keyword arguments of the form kwarg = value are converted to key:value pairs for num-
bers dictionary ➀–➁.

The syntax for dict() function when iterables used is,

dict(iterable[, **kwarg])

You can specify an iterable containing exactly two objects as tuple, the key and value in
the dict() function. For example

 1. >>> dict([('sape', 4139), ('guido', 4127), ('jack', 4098)])
 {'sape': 4139, 'jack': 4098, 'guido': 4127}

The dict() function builds dictionaries directly from sequences of key, value tuple pairs ➀.

7.3 Built-In Functions Used on Dictionaries

There are many built-in functions for which a dictionary can be passed as an argument
(TABLE 7.1). The main operations on a dictionary are storing a value with some key and
extracting the value for a given key.

180 Introduction to Python Programming

For example,

 1. >>> presidents = {"washington":1732, "jefferson":1751, "lincoln":1809,
 "roosevelt":1858, "eisenhower":1890}

 2. >>> len(presidents)
 5

 3. >>> all_dict_func = {0:True, 2:False}
 4. >>> all(all_dict_func)

 False
 5. >>> all_dict_func = {1:True, 2:False}
 6. >>> all(all_dict_func)

 True
 7. >>> any_dict_func = {1:True, 2:False}
 8. >>> any(any_dict_func)

 True
 9. >>> sorted(presidents)

 ['eisenhower', 'jefferson', 'lincoln', 'roosevelt', 'washington']
 10. >>> sorted(presidents, reverse = True)

 ['washington', 'roosevelt', 'lincoln', 'jefferson', 'eisenhower']
 11. >>> sorted(presidents.values())

 [1732, 1751, 1809, 1858, 1890]
 12. >>> sorted(presidents.items())
 [('eisenhower', 1890), ('jefferson', 1751), ('lincoln', 1809), ('roosevelt', 1858),

 ('washington', 1732)]

You can find the number of key:value pairs in the dictionary presidents ➀ using the len() function
➁. In Python, any non-zero integer value is True, and zero is interpreted as False ➁–➅. If all the
keys are Boolean True values, then the output is True else it is False Boolean value for all() func-
tion in dictionaries. If any one of the keys is True then it results in a True Boolean value else False
Boolean value for any() function in dictionaries ➆–➇. The sorted() function returns the sorted
list of keys by default in ascending order without modifying the original key:value pairs ➈.
You can also get a list of keys sorted in descending order by passing the second argument as
reverse=True ➉. In the case of dictionary keys being type strings, they are sorted based on their

TABLE 7.1

Built-In Functions Used on Dictionaries

Built-in Functions Description

len() The len() function returns the number of items (key:value
pairs) in a dictionary.

all() The all() function returns Boolean True value if all the keys
in the dictionary are True else returns False.

any() The any() function returns Boolean True value if any of the
key in the dictionary is True else returns False.

sorted() The sorted() function by default returns a list of items,
which are sorted based on dictionary keys.

181Dictionaries

ASCII values. You can obtain a sorted list of values instead of keys by using the values() method
along with the dictionary name . A sorted list of key, value tuple pairs, which are sorted
based on keys, are obtained by using the items() method along with the dictionary name .

7.4 Dictionary Methods

Dictionary allows you to store data in key:value format without depending on indexing. You can
get a list of all the methods associated with dict (TABLE 7.2) by passing the dict function to dir().

 1. >>> dir(dict)
 ['__class__', '__contains__', '__delattr__', '__delitem__', '__dir__', '__doc__', '__eq__',

'__format__', '__ge__', '__getattribute__', '__getitem__', '__gt__', '__hash__', '__
init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__',
'__reduce__', '__reduce_ex__', '__repr__', '__setattr__', '__setitem__', '__sizeof__',
'__str__', '__subclasshook__', 'clear', 'copy', 'fromkeys', 'get', 'items', 'keys', 'pop',
'popitem', 'setdefault', 'update', 'values']

Various methods associated with dict are displayed ➀.

TABLE 7.2

Various Dictionary Methods

Dictionary
Methods Syntax Description

clear() dictionary_name.
clear()

The clear() method removes all the key:value pairs from the dictionary.

fromkeys() dictionary_name.
fromkeys(seq
[, value])

The fromkeys() method creates a new dictionary from the given sequence of
elements with a value provided by the user.

get() dictionary_name.
get(key
[, default])

The get() method returns the value associated with the specified key in the
dictionary. If the key is not present then it returns the default value. If default
is not given, it defaults to None, so that this method never raises a KeyError.

items() dictionary_name.
items()

The items() method returns a new view of dictionary’s key and value pairs
as tuples.

keys() dictionary_name.
keys()

The keys() method returns a new view consisting of all the keys in the
dictionary.

pop() dictionary_name.
pop(key[, default])

The pop() method removes the key from the dictionary and returns its value. If
the key is not present, then it returns the default value. If default is not given
and the key is not in the dictionary, then it results in KeyError.

popitem() dictionary_name.
popitem()

The popitem() method removes and returns an arbitrary (key, value) tuple
pair from the dictionary. If the dictionary is empty, then calling popitem()
results in KeyError.

setdefault() dictionary_name.
setdefault
(key[, default])

The setdefault() method returns a value for the key present in the dictionary.
If the key is not present, then insert the key into the dictionary with a
default value and return the default value. If key is present, default
defaults to None, so that this method never raises a KeyError.

update() dictionary_name.
update([other])

The update() method updates the dictionary with the key:value pairs from
other dictionary object and it returns None.

values() dictionary_name.
values()

The values() method returns a new view consisting of all the values in the
dictionary.

Note: Replace the word “dictionary_name” mentioned in the syntax with your actual dictionary name in your code.

182 Introduction to Python Programming

For example,

 1. >>> box_office_billion = {"avatar":2009, "titanic":1997, "starwars":2015, "harry-
potter":2011, "avengers":2012}

 2. >>> box_office_billion_fromkeys = box_office_billion.fromkeys(box_office_billion)
 3. >>> box_office_billion_fromkeys

 {'avatar': None, 'titanic': None, 'starwars': None, 'harrypotter': None, 'avengers': None}
 4. >>> box_office_billion_fromkeys = box_office_billion.fromkeys(box_office_

billion, "billion_dollar")
 5. >>> box_office_billion_fromkeys

 {'avatar': 'billion_dollar', 'titanic': 'billion_dollar', 'starwars': 'billion_dollar', 'harry-
potter': 'billion_dollar', 'avengers': 'billion_dollar'}

 6. >>> print(box_office_billion.get("frozen"))
 None

 7. >>> box_office_billion.get("frozen",2013)
 2013

 8. >>> box_office_billion.keys()
 dict_keys(['avatar', 'titanic', 'starwars', 'harrypotter', 'avengers'])

 9. >>> box_office_billion.values()
 dict_values([2009, 1997, 2015, 2011, 2012])

 10. >>> box_office_billion.items()
 dict_items([('avatar', 2009), ('titanic', 1997), ('starwars', 2015), ('harrypotter', 2011),

('avengers', 2012)])
 11. >>> box_office_billion.update({"frozen":2013})
 12. >>> box_office_billion

 {'avatar': 2009, 'titanic': 1997, 'starwars': 2015, 'harrypotter': 2011, 'avengers': 2012, ' frozen': 2013}
 13. >>> box_office_billion.setdefault("minions")
 14. >>> box_office_billion

 {'avatar': 2009, 'titanic': 1997, 'starwars': 2015, 'harrypotter': 2011, 'avengers': 2012,
' frozen': 2013, 'minions': None}

 15. >>> box_office_billion.setdefault("ironman", 2013)
 16. >>> box_office_billion

 {'avatar': 2009, 'titanic': 1997, 'starwars': 2015, 'harrypotter': 2011, 'avengers': 2012,
'minions': None, 'ironman': 2013}

The objects returned by dict.keys(), dict.values(), and dict.items() are view
objects. They provide a dynamic view of the dictionary’s entries, thus
when the dictionary changes, the view reflects these changes.

183Dictionaries

 17. >>> box_office_billion.pop("avatar")
 2009

 18. >>> box_office_billion.popitem()
 ('ironman', 2013)

 19. >>> box_office_billion.clear()
 {}
Various operations on dictionaries are carried out using dictionary methods ➀– .

The dict_keys, dict_values, and dict_items data types returned by various methods of dic-
tionary are read-only views and cannot be edited directly. If you want to convert dict_keys,
dict_values, and dict_items data types returned from keys(), values(), and items() methods to
a true list then pass their list, such as returned values, to list() function. Whenever there is a
modification to the dictionary, it gets reflected in the views of these data types. For example,

 1. >>> list(box_office_billion.keys())
 ['avatar', 'titanic', 'starwars', 'harrypotter', 'avengers']

 2. >>> list(box_office_billion.values())
 [2009, 1997, 2015, 2011, 2012]

 3. >>> list(box_office_billion.items())
 [('avatar', 2009), ('titanic', 1997), ('starwars', 2015), ('harrypotter', 2011), ('avengers',

2012)]

The dict_keys, dict_values, and dict_items returned from keys(), values(), and items() are con-
verted to true list using the list() function ➀–➂.

7.4.1 Populating Dictionaries with key:value Pairs

One of the common ways of populating dictionaries is to start with an empty dictionary
{ }, then use the update() method to assign a value to the key using assignment operator. If
the key does not exist, then the key:value pairs will be created automatically and added to
the dictionary.

For example,

 1. >>> countries = {}
 2. >>> countries.update({"Asia":"India"})
 3. >>> countries.update({"Europe":"Germany"})
 4. >>> countries.update({"Africa":"Sudan"})
 5. >>> countries
 {'Asia': 'India', 'Europe': 'Germany', 'Africa': 'Sudan'}

Create an empty dictionary countries ➀ and start populating key:value pairs to the countries
dictionary using the update() function ➁–➃ and finally display the key:value pairs of the
countries dictionary ➄. Within the update() function the key:value pair should be enclosed
within the curly braces.

184 Introduction to Python Programming

As discussed in Section 7.2, the dictionary can also be built using dictionary_name[key] =
value syntax by adding key:value pairs to the dictionary.

Program 7.1: Program to Dynamically Build User Input as a List

 1. def main():
 2. print("Method 1: Building Dictionaries")
 3. build_dictionary = {}
 4. for i in range(0, 2):
 5. dic_key = input("Enter key ")
 6. dic_val = input("Enter val ")
 7. build_dictionary.update({dic_key: dic_val})
 8. print(f"Dictionary is {build_dictionary}")

 9. print("Method 2: Building Dictionaries")
 10. build_dictionary = {}
 11. for i in range(0, 2):
 12. dic_key = input("Enter key ")
 13. dic_val = input("Enter val ")
 14. build_dictionary[dic_key] = dic_val
 15. print(f"Dictionary is {build_dictionary}")

 16. print("Method 3: Building Dictionaries")
 17. build_dictionary = {}
 18. i = 0
 19. while i < 2:
 20. dict_key = input("Enter key ")
 21. dict_val = input("Enter val ")
 22. build_dictionary.update({dict_key: dict_val})
 23. i = i + 1
 24. print(f"Dictionary is {build_dictionary}")

 25. if __name__ == "__main__":
 26. main()

Output

Method 1: Building Dictionaries
Enter key microsoft
Enter val windows
Enter key canonical
Enter val ubuntu
Dictionary is {'microsoft': 'windows', 'canonical': 'ubuntu'}
Method 2: Building Dictionaries

185Dictionaries

Enter key apple
Enter val macos
Enter key canonical
Enter val ubuntu
Dictionary is {'apple': 'macos', 'canonical': 'ubuntu'}
Method 3: Building Dictionaries
Enter key microsoft
Enter val windows
Enter key apple
Enter val macos
Dictionary is {'microsoft': 'windows', 'apple': 'macos'}

You can use the for loop to read and build a dictionary in different ways. In the first
method ➁–➇, use the for loop to iterate the number of times you want to get the key:value
pairs as input. You have to specify the total number of key:value pairs that you are plan-
ning to insert into the dictionary beforehand in the for loop using the range() function.
The values that you enter for key:value pairs are stored in separate variables. An empty
dictionary is created outside the for loop. You need to pass the key and value variables
as arguments to the update() function in the {key:value} format to add the key:value pair
to the dictionary. If the key is already present, then the latest value will be associ-
ated with the key or else the key:value pair gets added to the dictionary. In the second
method, instead of specifying the update() function with the dictionary, one can use the
dictionary_name[key] = value format to add key:value pairs to the dictionary ➈– . In the
third method, while loop is used instead of for loop to add key:value pairs to the diction-
ary as shown in – .

7.4.2 Traversing of Dictionary

A for loop can be used to iterate over keys or values or key:value pairs in dictionaries. If
you iterate over a dictionary using a for loop, then, by default, you will iterate over the
keys. If you want to iterate over the values, use values() method and for iterating over the
key:value pairs, specify the dictionary’s items() method explicitly. The dict_keys, dict_values,
and dict_items data types returned by dictionary methods can be used in for loops to iterate
over the keys or values or key:value pairs.

Program 7.2: Program to Illustrate Traversing of key:value Pairs in Dictionaries
Using for Loop

 1. currency = {"India": "Rupee", "USA": "Dollar", "Russia": "Ruble", "Japan": "Yen",
 "Germany": "Euro"}

 2. def main():
 3. print("List of Countries")
 4. for key in currency.keys():
 5. print(key)
 6. print("List of Currencies in different Countries")

186 Introduction to Python Programming

 7. for value in currency.values():
 8. print(value)
 9. for key, value in currency.items():
 10. print(f"'{key}' has a currency of type '{value}'")
 11. if __name__ == "__main__":
 12. main()

Output

List of Countries
India
USA
Russia
Japan
Germany
List of Currencies in different Countries
Rupee
Dollar
Ruble
Yen
Euro
'India' has a currency of type 'Rupee'
'USA' has a currency of type 'Dollar'
'Russia' has a currency of type 'Ruble'
'Japan' has a currency of type 'Yen'
'Germany' has a currency of type 'Euro'

Using the keys() ➃–➄, values() ➆–➇, and items() ➈–➉ methods, a for loop can iterate over the
keys, values, or key:value pairs in a dictionary, respectively. By default, a for loop iterates over
the keys. So the statement for key in currency.keys(): results in the same output as for key in
currency:. When looping through dictionaries, the key and its corresponding value can be
retrieved simultaneously using the items() method. The values in the dict_items type returned
by the items() method are tuples where the first element in the tuple is the key and the second
element is the value. You can use multiple iterating variables in a for loop to unpack the two
parts of each tuple in the items() method by assigning the key and value to separate variables ➈.

Program 7.3: Write Python Program to Check for the Presence of a Key in the
Dictionary and to Sum All Its Values

 1. historical_events = {"apollo11": 1969, "great_depression": 1929, "american_revolution":
1775, "berlin_wall": 1989}

 2. def check_key_presence():
 3. key = input("Enter the key to check for its presence ")
 4. if key in historical_events.keys():
 5. print(f"Key '{key}' is present in the dictionary")

187Dictionaries

 6. else:
 7. print(f"Key '{key}' is not present in the dictionary")

 8. def sum_dictionary_values():
 9. print("Sum of all the values in the dictionary is")

 10. print(f"{sum(historical_events.values())}")
 11. def main():
 12. check_key_presence()

 13. sum_dictionary_values()

 14. if __name__ == "__main__":
 15. main()

Output

Enter the key to check for its presence apollo11
Key 'apollo11' is present in the dictionary
Sum of all the values in the dictionary is
7662

When the function check_key_presence() ➁ is called, the user has to enter a key ➂, which will
be checked for its presence in the historical_events dictionary. The presence for a key in the
dictionary is checked using an if statement ➃, and, if the key is present, then a message saying
that the user entered key is present in the dictionary is displayed in the output ➄. If the key is
not present, then a message saying that the user entered key is not present in the dictionary
is displayed ➆. In the sum_dictionary_values() function ➇, all the values associated with the
key is obtained using values() method, which, in turn, is summed up using sum() function ➉.

Program 7.4: Write Python Program to Count the Number of Times an Item
Appears in the List

 1. novels = ["gone_girl", "davinci_code", "games_of_thrones", "gone_girl",
"davinci_code"]

 2. def main():
 3. count_items = dict()
 4. for book_name in novels:
 5. count_items[book_name] = count_items.get(book_name, 0) + 1
 6. print("Number of times a novel appears in the list is")
 7. print(count_items)
 8. if __name__ == "__main__":
 9. main()

Output

Number of times a novel appears in the list is
{'gone_girl': 2, 'davinci_code': 2, 'games_of_thrones': 1}

188 Introduction to Python Programming

You can count the number of items in a list. Start with initializing count_items to an empty
dictionary ➂. Loop through each item of the novels list ➀ using for loop ➃. Each unique item
in the list is considered as a key, and the number of times these items appear will be its associ-
ated value. The get() dictionary method takes a default value of zero if the key is not present in
the dictionary to which a value of one is added. This value is then assigned to count_items dic-
tionary key as its associated value ➄. If the key is already present in the count_items diction-
ary, then get() method returns its corresponding value, which is subsequently incremented
by one and this latest value is associated with the key by overwriting its existing value ➄.

Program 7.5: Write Python Program to Count the Number of Times Each Word
Appears in a Sentence

 1. def main():
 2. count_words = dict()
 3. sentence = input("Enter a sentence ")
 4. words = sentence.split()
 5. for each_word in words:
 6. count_words[each_word] = count_words.get(each_word, 0) + 1
 7. print("The number of times each word appears in a sentence is")
 8. print(count_words)
 9. if __name__ == "__main__":
 10. main()

Output

Enter a sentence: Everyone needs a little inspiration from time to time
The number of times each word appears in a sentence is
{'Everyone': 1, 'needs': 1, 'a': 1, 'little': 1, 'inspiration': 1, 'from': 1, 'time': 2, 'to': 1}

In the main() function, you start by initializing count_words to empty dictionary ➁. The user
enters a sentence ➂, which is split into a list of words using the split() function ➃. Loop through
each word in the words list ➄. If the word is not present as a key in the dictionary, then the get()
method takes a default value of zero to which a value of one is added and assigned to count_
words dictionary with the key being the value of the iterating variable. If the word is already
present as a key in the dictionary, then the value associated with the key is incremented by one
and this latest value is associated with the key by overwriting the existing value ➅.

Program 7.6: Write Python Program to Count the Number of Characters in a String
Using Dictionaries. Display the Keys and Their Values in Alphabetical Order

 1. def construct_character_dict(word):
 2. character_count_dict = dict()
 3. for each_character in word:
 4. character_count_dict[each_character] = character_count_dict.get(each_

character, 0) + 1

189Dictionaries

 5. sorted_list_keys = sorted(character_count_dict.keys())
 6. for each_key in sorted_list_keys:
 7. print(each_key, character_count_dict.get(each_key))
 8. def main():
 9. word = input("Enter a string ")
 10. construct_character_dict(word)
 11. if __name__ == "__main__":
 12. main()

Output

Enter a string: massachussetts
a 2
c 1
e 1
h 1
m 1
s 5
t 2
u 1

In the main() function ➇, the user enters a string ➈ that is passed as argument to the
construct_character_dict() ➉ function. In the construct_character_dict() function, start by initial-
izing character_count_dict to empty the dictionary ➁. Loop through each character in the word
string ➂. If the character is not present as a key in the dictionary, then the get() method takes a
default value of zero to which a value of one is added and is assigned to character_count_dict
dictionary with the key being the iterating variable ➃. If the character is already present as
a key in the dictionary, then the value associated with the key is incremented by one and
this latest value is associated with the key by overwriting the existing value ➃. The keys are
sorted in ascending order using the sorted() function, and the sorted list of key:value pairs are
assigned to sorted_list_keys ➄. The number of times a character appearing within the user-
entered word is displayed by looping through each key in the sorted_list_keys dictionary ➅.
The value for each key in the sorted_list_keys dictionary is displayed using get() method ➆.

Program 7.7: Write Python Program to Generate a Dictionary That Contains (i: i*i)
Such that i Is a Number Ranging from 1 to n.

 1. def main():
 2. number = int(input("Enter a number "))
 3. create_number_dict = dict()
 4. for i in range(1, number+1):
 5. create_number_dict[i] = i * i
 6. print("The generated dictionary of the form (i: i*i) is")
 7. print(create_number_dict)
 8. if __name__ == "__main__":
 9. main()

190 Introduction to Python Programming

Output

Enter a number 3
The generated dictionary of the form (i: i*i) is
{1: 1, 2: 4, 3: 9}

The user enters a number that is stored in number variable ➁. Then initializes
create_number_dict to empty the dictionary ➂. The numbers ranging from 1 to number + 1
are kept as keys ➃, while the squares of these numbers are their values ➄. Finally, the
 dictionary is printed ➆.

Program 7.8: Write a Program That Accepts a Sentence and Calculate
the Number of Digits, Uppercase and Lowercase Letters

 1. def main():
 2. sentence = input("Enter a sentence ")
 3. construct_dictionary = {"digits": 0, "lowercase": 0, "uppercase": 0}
 4. for each_character in sentence:
 5. if each_character.isdigit():
 6. construct_dictionary["digits"] += 1
 7. elif each_character.isupper():
 8. construct_dictionary["uppercase"] += 1
 9. elif each_character.islower():
 10. construct_dictionary["lowercase"] += 1
 11. print("The number of digits, lowercase and uppercase letters are")
 12. print(construct_dictionary)
 13. if __name__ == "__main__":
 14. main()

Output

Enter a sentence I am Time, the great destroyer of the world - Bhagavad Gita 11.32
The number of digits, lowercase and uppercase letters are
{'digits': 4, 'lowercase': 42, 'uppercase': 4}

In the main() function ➀, the user enters a sentence that is stored in sentence variable ➁. The
construct_dictionary has three keys digits, lowercase and uppercase with each of them having
zero as their initial value ➂. Loop through each character in the sentence ➃. If the character
is a digit, then the value for digits key in construct_dictionary is incremented by one ➄–➅.
If the character is in lowercase, then the value for lowercase key in construct_dictionary is
incremented by one ➆–➇. If the character is in uppercase, then the value for uppercase key
in construct_dictionary is incremented by one ➈–➉. Finally, key:value pair in the construct_
dictionary dictionary is displayed – .

191Dictionaries

Program 7.9: Write a Python Program to Input Information for n number of Students
as Given Below:

 a. Name

 b. Registration Number

 c. Total Marks

The user has to specify a value for n number of students. The Program Should Output
the Registration Number and Marks of a Specified Student Given His Name

 1. def student_details(number_of_students):
 2. student_name = {}
 3. for i in range(0, number_of_students):
 4. name = input("Enter the Name of the Student ")
 5. registration_number = input("Enter student's Registration Number ")
 6. total_marks = input("Enter student's Total Marks ")
 7. student_name[name] = [registration_number, total_marks]
 8. student_search = input('Enter name of the student you want to search ')
 9. if student_search not in student_name.keys():
 10. print('Student you are searching is not present in the class')
 11. else:
 12. print("Student you are searching is present in the class")
 13. print(f"Student's Registration Number is {student_name[student_search][0]}")
 14. print(f"Student's Total Marks is {student_name[student_search][1]}")
 15. def main():
 16. number_of_students = int(input("Enter the number of students "))
 17. student_details(number_of_students)
 18. if __name__ == "__main__":
 19. main()

Output

Enter the number of students 2
Enter the Name of the Student jack
Enter student's Registration Number 1AIT18CS05
Enter student's Total Marks 89
Enter the Name of the Student jill
Enter student's Registration Number 1AIT18CS08
Enter student's Total Marks 91
Enter name of the student you want to search jill
Student you are searching is present in the class
Student's Registration Number is 1AIT18CS08
Student's Total Marks is 91

192 Introduction to Python Programming

In the main() function , the user enters the number of students , which is then passed
as an argument to student_details() function . In the student_details() function defini-
tion, initialize student_name to empty the dictionary ➁. Use for loop to read and assign
student details to name, registration_number, and total_marks variables ➂–➅. The student_
name dictionary is built by having name variable value as the key, while registration_
number and total_marks variables are associated as list values to the key ➆. The name of
the student to be searched is assigned to student_search variable ➇. If ➈ the student_search
variable value is not present as a key in the student_name dictionary, then “Student you are
searching is not present in the class” message is displayed ➉. If the student_search variable
value is present as a key in the dictionary , then registration number is retrieved by
specifying the student_search variable value as a key in student_name dictionary followed
by the list index value of zero . An index value of one retrieves the total marks of the
student .

Program 7.10: Program to Demonstrate Nested Dictionaries

 1. student_details = {"name": "jasmine", "registration_number": "1AIT18CS05", "sub_
marks": {"python": 95, "java": 90, ".net": 85}}

 2. def nested_dictionary():
 3. print(f"Student Name {student_details['name']}")
 4. print(f"Registration Number {student_details['registration_number']}")
 5. average = sum(student_details["sub_marks"].values()) /

len(student_details["sub_marks"])
 6. print(f"Average of all the subjects is {average}")
 7. def main():
 8. nested_dictionary()
 9. if __name__ == "__main__":
 10. main()

Output

Student Name jasmine
Registration Number 1AIT18CS05
Average of all the subjects 90.0

The use of dictionaries within dictionaries is called nesting of dictionaries. You can assign
a dictionary as a value to a key inside another dictionary ➀. A dictionary is associated as
a value to the sub_marks dictionary ➀. Inside the nested_dictionary() ➁ function, student
name, registration number, and average marks are displayed ➂–➅. The value returned
from student_details[“sub_marks”] is of dictionary type i.e.,

>>> student_details["sub_marks"]
{'python': 95, 'java': 90, '.net': 85}.

To access all the values of the dictionary associated with a sub_marks key in the student_
details dictionary, you need to specify the name of student_details dictionary followed by

193Dictionaries

sub_marks as the key and combine it with values() method using dot notation ➄. Even though
a single level of nesting dictionaries may prove useful, having multiple levels of nesting
may make the code unreadable.

7.5 The del Statement

To delete the key:value pair, use the del statement followed by the name of the dictionary
along with the key you want to delete.

del dict_name[key]

 1. >>> animals = {"r":"raccoon", "c":"cougar", "m":"moose"}
 2. >>> animals
 {'r': 'raccoon', 'c': 'cougar', 'm': 'moose'}
 3. >>> del animals["c"]
 4. >>> animals
 {'r': 'raccoon', 'm': 'moose'}

In the animals ➀–➁ dictionary, you can remove the key:value pair of"c": "cougar" as shown in ➂.

7.6 Summary

• A dictionary associates a set of keys with values.
• The built-in function dict() returns a new dictionary initialized from an optional

keyword argument and a possibly empty set of keyword arguments.
• The for loop is used to traverse all the keys in the dictionary.
• The del dictionaryName[key] statement is used to delete an item for the given key.
• Dictionary methods like keys(), values(), and items() are used to retrieve the values.
• Methods like pop() and update() are used to manipulate the dictionary key:value pairs.

Multiple Choice Questions

 1. Which of the following statements create a dictionary?
 a. dic = {}
 b. dic = {"charles":40, "peterson":45}
 c. dic = {40: "charles", 45: "peterson"}
 d. All of the above

194 Introduction to Python Programming

 2. Read the code shown below carefully and pick out the keys.
 dic = {"game":40, "thrones":45}
 a. "game", 40, 45, and "thrones"
 b. "game" and "thrones"
 c. 40 and 45
 d. dic = (40: "game", 45: "thrones")
 3. Gauge the output of the following code snippet.
 fruit = {"apple":"red", "guava":"green"}
 "apple" in fruit
 a. True
 b. False
 c. None
 d. Error
 4. Consider phone_book = {"Kalpana":7766554433, "Steffi":4499551100}. To delete the

key "Kalpana" the code used is
 a. phone_book.delete("Kalpana":7766554433)
 b. phone_book.delete("Kalpana")
 c. del phone_book["Kalpana"]
 d. del phone_book("Kalpana":7766554433)
 5. Assume d = {"Guido":"Python", "Dennis":"C"}. To obtain the number of entries in

dictionary the statement used is
 a. d.size()
 b. len(d)
 c. size(d)
 d. d.len()
 6. Consider stock_prices = {"IBM":220, "FB":800}. What happens when you try to

retrieve a value using the statement stock_prices["IBM"]?
 a. Since "IBM" is not a value in the set, Python raises a KeyError exception.
 b. It executes fine and no exception is raised
 c. Since "IBM" is not a key in the set, Python raises a KeyError exception.
 d. Since "IBM" is not a key in the set, Python raises a syntax error.
 7. Which of the following statement is false about the dictionary?
 a. The values of a dictionary can be accessed using keys.
 b. The keys of a dictionary can be accessed using values.
 c. Dictionaries are not ordered.
 d. Dictionaries are mutable.

195Dictionaries

 8. What is the output of the following code?
 stuff = {"book":"Java", "price":45}
 stuff.get("book")
 a. 45
 b. True
 c. Java
 d. price
 9. Predict the output of the following code.
 fish = {"g": "Goldfish", "s": "Shark"}
 fish.pop(s)
 print(fish)
 a. {'g': 'Goldfish', 's': 'Shark'}
 b. {'s': 'Shark'}
 c. {'g': 'Goldfish'}
 d. Error
 10. The method that returns the value for the key present in the dictionary and

if the key is not present then it inserts the key with default value into the
dictionary.

 a. update()
 b. fromkeys()
 c. setdefault()
 d. get()
 11. Guess the output of the following code.
 grades = {90: "S", 80: "A"}
 del grades
 a. Method del doesn’t exist for the dictionary.
 b. del deletes the values in the dictionary.
 c. del deletes the entire dictionary.
 d. del deletes the keys in the dictionary.
 12. Assume dic is a dictionary with some key:value pairs. What does dic.popitem()

do?
 a. Removes an arbitrary key:value pair
 b. Removes all the key:value pairs
 c. Removes the key:value pair for the key given as an argument
 d. Invalid method

196 Introduction to Python Programming

 13. What will be the output of the following code snippet?
 numbers = {}
 letters = {}
 comb = {}
 numbers[1] = 56
 numbers[3] = 7
 letters[4] = "B"
 comb["Numbers"] = numbers
 comb["Letters"] = letters
 print(comb)
 a. Nested dictionary cannot occur
 b. 'Numbers': {1: 56, 3: 7}
 c. {'Numbers': {1: 56}, 'Letters': {4: 'B'}}
 d. {'Numbers': {1: 56, 3: 7}, 'Letters': {4: 'B'}}
 14. Gauge the output of the following code.
 demo = {1: 'A', 2: 'B', 3: 'C'}
 del demo[1]
 demo[1] = 'D'
 del demo[2]
 print(len(demo))
 a. 0
 b. 2
 c. Error
 d. 1
 15. Assuming b to be a dictionary, what does any(b) do?
 a. Returns True if any key of the dictionary is True.
 b. Returns False if dictionary is empty.
 c. Returns True if all keys of the dictionary are True.
 d. Method any() doesn’t exist for dictionary.
 16. Infer the output of the following code.
 count = {}
 count[(1, 2, 4)] = 5
 count[(4, 2, 1)] = 7
 count[(1, 2)] = 6
 count[(4, 2, 1)] = 2
 tot = 0

197Dictionaries

 for i in count:
 tot = tot + count[i]
 print(len(count)+tot)
 a. 25
 b. 17
 c. 16
 d. Error
 17. The ________ function returns Boolean True value if all the keys in the dictionary

are True else returns False.
 a. all()
 b. sorted()
 c. len()
 d. any()
 18. Predict the output of the following code.
 >>> dic = {}
 >>> dic.fromkeys([1,2,3], "check")
 a. Syntax error
 b. {1: 'check', 2: 'check', 3: 'check'}
 c. 'check'
 d. {1:None, 2:None, 3:None}
 19. For dictionary d = { "plum ":0.66, "pears ":1.25,"oranges ":0.49}, which of the follow-

ing statement correctly updates the price of oranges to 0.52?
 a. d[2] = 0.52
 b. d[0.49] = 0.52
 c. d["oranges "] = 0.52
 d. d["plum "] = 0.52
 20. The syntax that is used to modify or add a new key: value pair to a dictionary is:
 a. dictionary_name[key] = value
 b. dictionary_name[value] = key
 c. dictionary_name(key) = value
 d. dictionary_name{key} = value
 21. Which of the following cannot be used as a key in Python dictionaries?
 a. Strings
 b. Lists
 c. Tuples
 d. Numerical values

198 Introduction to Python Programming

 22. Guess the output of the following code.
 week = {1:"sunday", 2:"monday", 3:"tuesday"}
 for i,j in week.items():
 print(i, j)

 a. 1 sunday 2 monday 3 Tuesday
 b. 1 2 3
 c. sunday monday tuesday
 d. 1:"sunday" 2:"monday" 3:"tuesday"
 23. Predict the output of the following code.
 a = {1: "A", 2: "B", 3: "C"}
 b = {4: "D", 5: "E"}
 a.update(b)
 print(a)
 a. {1: 'A', 2: 'B', 3: 'C'}
 b. Error
 c. {4: 'D', 5: 'E'}
 d. {1: 'A', 2: 'B', 3: 'C', 4: 'D', 5: 'E'}

Review Questions

 1. Define a dictionary. What are the advantages of using dictionary over lists.
 2. Briefly explain how a dictionary is created with an example.
 3. Write short notes on the following methods.
 a. keys()
 b. values()
 c. get(key)
 d. clear()
 4. Explain nested dictionaries with an example.
 5. Write a function that prompts the user for the average temperature for each day of

the week and returns a dictionary containing the entered information.
 6. Write a Python program to input information about a few employees as given

below:
 a. Name
 b. Employee Id
 c. Salary
 The program should output the employee ID and salary of a specified employee,

given his name.

199Dictionaries

 7. Write a function named addfruit, which is passed with a set of fruit names and
their prices and returns a dictionary containing the entered information and
raises a ValueError exception if the fruit is already present.

 8. Write a function to add the air quality index as the value and the date as the key;
create the dictionary for the entered information.

 9. Create a dictionary that contains usernames as the key and passwords as the asso-
ciated values. Make up the data for five dictionary entries and demonstrate the use
of clear and fromkeys() methods.

 10. Write Pythonic code to create a dictionary that accepts a country name as a key
and its capital city as the value. Display the details in sorted order.

 11. Write a program that has the dictionary of your friends’ names as keys and phone
numbers as its values. Print the dictionary in a sorted order. Prompt the user to
enter the name and check if it is present in the dictionary. If the name is not pres-
ent, then enter the details in the dictionary.

 12. Write a program to create a dictionary containing the author name as the keys
and ISBN number as the value. Make up the data for five dictionary entries and
demonstrate the use of clear() and fromkeys() methods.

http://taylorandfrancis.com

201

8
Tuples and Sets

In mathematics, a tuple is a finite ordered list (sequence) of elements. A tuple is defined as
a data structure that comprises an ordered, finite sequence of immutable, heterogeneous
elements that are of fixed sizes. Often, you may want to return more than one value from a
function. Tuples solve this problem. They can also be used to pass multiple values through
one function parameter.

8.1 Creating Tuples

A tuple is a finite ordered list of values of possibly different types which is used to bundle
related values together without having to create a specific type to hold them. Tuples are
immutable. Once a tuple is created, you cannot change its values. A tuple is defined by
putting a comma-separated list of values inside parentheses (). Each value inside a tuple
is called an item. The syntax for creating tuples is,

tuple_name = (item_1, item_2, item_3, ………….., item_n)

Opening Round Bracket
Closing Round Bracket

Separated
by Comma

User defined

AIM

Understand the role of tuples in Python when storing a finite sequence of homo-
geneous or heterogeneous data of fixed sizes and performing manipulations using
various methods.

LEARNING OUTCOMES

At the end of the chapter, you are expected to

• Create and manipulate items in tuples.
• Use for loop to access individual items in tuples.
• Understand the relation between dictionaries and tuples.
• Understand the relation between lists and tuples.
• Apply mathematical operations like union and intersection using sets.

202 Introduction to Python Programming

For example,

 1. >>> internet = ("cern", "timbernerslee", "www", 1980)
 2. >>> internet

 ('cern', 'timbernerslee,' 'www', 1980)
 3. >>> type(internet)

 <class 'tuple'>
 4. >>> f1 = "ferrari", "redbull", "mercedes", "williams", "renault"
 5. >>> f1

 ('ferrari', 'redbull', 'mercedes', 'williams', 'renault')
 6. >>> type(f1)
 <class 'tuple'>

In ➀, the tuple internet is assigned with a sequence of numbers and string types. The con-
tents of the tuple are displayed by executing the tuple name internet ➁. The contents and
order of items in the tuple are the same as they were when the tuple was created. In Python,
the tuple type is called tuple ➂. On output, tuples are always enclosed in parentheses, so
that they are interpreted correctly. Tuples can be constructed with or without surrounding
parentheses, although often parentheses are used anyway. It is actually the comma that
forms a tuple making the commas significant and not the parentheses ➃–➅.

You can create an empty tuple without any values. The syntax is,

tuple_name = ()

For example,

1. >>> empty_tuple = ()
2. >>> empty_tuple
 ()
3. >>> type(empty_tuple)
 <class ‘tuple’>

An empty tuple can be created as shown in ➀ and empty_tuple is of tuple type ➂.

For example,

 1. >>> air_force = ("f15", "f22a", "f35a")
 2. >>> fighter_jets = (1988, 2005, 2016, air_force)
 3. >>> fighter_jets

 (1988, 2005, 2016, ('f15', 'f22a', 'f35a'))
 4. >>> type(fighter_jets)
 <class 'tuple'>

You can store any item of type string, number, object, another vari-
able, and even another tuple itself. You can have a mix of different
types of items in tuples, and they need not be homogeneous.

203Tuples and Sets

Here air_force is of tuple type ➀. The tuple fighter_jets ➃ consists of a sequence of integer
types along with a tuple ➁. A special problem is the construction of tuples containing
0 or 1 items: the syntax has some extra quirks to accommodate these. For example,

 1. >>> empty = ()
 2. >>> singleton = 'hello',
 3. >>> singleton
 ('hello',)

Empty tuples are constructed by an empty pair of parentheses ➀. A tuple with one item is
constructed by having a value followed by a comma ➁. It is not sufficient to enclose a single
value in parentheses.

8.2 Basic Tuple Operations

Like in lists, you can use the + operator to concatenate tuples together and the * operator
to repeat a sequence of tuple items.

For example,

 1. >>> tuple_1 = (2, 0, 1, 4)
 2. >>> tuple_2 = (2, 0, 1, 9)
 3. >>> tuple_1 + tuple_2

 (2, 0, 1, 4, 2, 0, 1, 9)
 4. >>> tuple_1 * 3

 (2, 0, 1, 4, 2, 0, 1, 4, 2, 0, 1, 4)
 5. >>> tuple_1 == tuple_2
 False

Two tuples, tuple_1 and tuple_2, consisting of integer type are created ➀–➁. The tuple_1 and
tuple_2 tuples are added to form a new tuple. The new tuple has all items of both the added
tuples ➂. You can use the multiplication operator * on tuples. The items in the tuples are
repeated the number of times you specify, and in ➃ the tuple_1 items are repeated three
times. In ➄, the items in tuples are compared using == equal to operator, and the result is
Boolean False since the items in the tuples are different.

You can check for the presence of an item in a tuple using in and not in membership
operators. It returns a Boolean True or False. For example,

 1. >>> tuple_items = (1, 9, 8, 8)
 2. >>> 1 in tuple_items

 True
 3. >>> 25 in tuple_items
 False

The in operator returns Boolean True if an item is present in the tuple ➁, or else returns
False Boolean value ➂.

204 Introduction to Python Programming

Comparison operators like <, <=, >, >=, == and != are used to compare tuples. For example,

 1. >>> tuple_1 = (9, 8, 7)
 2. >>> tuple_2 = (9, 1, 1)
 3. >>> tuple_1 > tuple_2

 True
 4. >>> tuple_1 != tuple_2
 True

Tuples are compared position by position. The first item of the first tuple is compared to
the first item of the second tuple; if they are not equal then this will be the result of the
comparison, or else the second item of the first tuple is compared to the second item of
the second tuple; if they are not equal then this will be the result of the comparison, else the
third item is considered, and so on ➀–➃.

8.2.1 The tuple() Function

The built-in tuple() function is used to create a tuple. The syntax for the tuple() function is,

tuple([sequence])

where the sequence can be a number, string or tuple itself. If the optional sequence is not
specified, then an empty tuple is created.

 1. >>> norse = "vikings"
 2. >>> string_to_tuple = tuple(norse)
 3. >>> string_to_tuple

 ('v', 'i', 'k', 'i', 'n', 'g', 's')
 4. >>> zeus = ["g", "o", "d", "o", "f", "s", "k", "y"]
 5. >>> list_to_tuple = tuple(zeus)
 6. >>> list_to_tuple

 ('g', 'o', 'd', 'o', 'f', 's', 'k', 'y')
 7. >>> string_to_tuple + "scandinavia"

 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 TypeError: can only concatenate tuple (not "str") to tuple

 8. >>> string_to_tuple + tuple("scandinavia")
 ('v', 'i', 'k', 'i', 'n', 'g', 's', 's', 'c', 'a', 'n', 'd', 'i', 'n', 'a', 'v', 'i', 'a')

 9. >>> list_to_tuple + ["g", "r", "e", "e", "k"]
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 TypeError: can only concatenate tuple (not "list") to tuple

 10. >>> list_to_tuple + tuple(["g", "r", "e", "e", "k"])
 ('g', 'o', 'd', 'o', 'f', 's', 'k', 'y', 'g', 'r', 'e', 'e', 'k')

 11. >>> letters = ("a", "b", "c")
 12. >>> numbers = (1, 2, 3)
 13. >>> nested_tuples = (letters, numbers)

205Tuples and Sets

 14. >>> nested_tuples
 (('a', 'b', 'c'), (1, 2, 3))

 15. >>> tuple("wolverine")
 ('w', 'o', 'l', 'v', 'e', 'r', 'i', 'n', 'e')

The string variable ➀ is converted to a tuple using the tuple() function ➁. Not only strings,
but even list variables ➃ can be converted to tuples ➄. If you try to concatenate either a
string ➆ or a list ➈ with tuples, then it results in an error. You have to convert strings
and lists to tuples using tuple() function before concatenating with tuple types ➇ and ➉.
Nesting of tuples is allowed in Python. An output of a tuple operation is always enclosed
in parentheses so that nested tuples are interpreted correctly – . Each individual charac-
ter in a string is separated by a comma when a string is converted to a tuple .

8.3 Indexing and Slicing in Tuples

Each item in a tuple can be called individually through indexing. The expression inside
the bracket is called the index. Square brackets [] are used by tuples to access individual
items, with the first item at index 0, the second item at index 1 and so on. The index pro-
vided within the square brackets indicates the value being accessed.

The syntax for accessing an item in a tuple is,

tuple_name[index]

where index should always be an integer value and indicates the item to be selected.

For the tuple holy_places, the index breakdown is shown below.

"jerusalem" "kashivishwanath" "harmandirsahib" "bethlehem" "mahabodhi"
0 1 2 3 4

holy_places

For example,

 1. >>> holy_places = ("jerusalem", "kashivishwanath", "harmandirsahib", "bethle-
hem", "mahabodhi")

 2. >>> holy_places
 ('jerusalem', 'kashivishwanath', 'harmandirsahib', 'bethlehem', 'mahabodhi')

 3. >>> holy_places[0]
 'jerusalem'

 4. >>> holy_places[1]
 'kashivishwanath'

 5. >>> holy_places[2]
 'harmandirsahib'

 6. >>> holy_places[3]
 'bethlehem'

 7. >>> holy_places[4]
 'mahabodhi'

206 Introduction to Python Programming

 8. >>> holy_places[5]
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 IndexError: tuple index out of range

The first item in the tuple is displayed by using square brackets immediately after the
tuple name with an index value of zero ➀. The range of index numbers in this tuple is
0 to 4. If the index value is more than the number of items in the tuple ➇, then it results in
“IndexError: tuple index out of range” error.

In addition to positive index numbers, you can also access tuple items using a negative
index number, by counting backwards from the end of the tuple, starting at −1. Negative
indexing is useful if you have a large number of items in the tuple and you want to locate
an item towards the end of a tuple.

For the same tuple holy_places, the negative index breakdown is shown below.

"jerusalem" "kashivishwanath" "harmandirsahib" "bethlehem" "mahabodhi"
-5 -4 -3 -2 -1

holy_places

For example,

 1. >>> holy_places[-2]
 'bethlehem'

If you would like to print out the item 'bethlehem' by using its negative index number, you
can do so as in ➀.

Slicing of tuples is allowed in Python wherein a part of the tuple can be extracted by
specifying an index range along with the colon (:) operator, which itself results as tuple type.

The syntax for tuple slicing is,

tuple_name[start:stop[:step]]

Colon is used to specify range

values

where both start and stop are integer values (positive or negative values). Tuple slicing
returns a part of the tuple from the start index value to stop index value, which includes the
start index value but excludes the stop index value. The step specifies the increment value
to slice by and it is optional.

For the tuple colors, the positive and negative index breakdown is shown below.

"v" "i" "b" "g" "y" "o" "r"
0 1 2 3 4 5 6
-7 -6 -5 -4 -3 -2 -1

colors

For example,

 1. >>> colors = ("v", "i", "b", "g", "y", "o", "r")
 2. >>> colors

 ('v', 'i', 'b', 'g', 'y', 'o', 'r')

207Tuples and Sets

 3. >>> colors[1:4]
 ('i', 'b', 'g')

 4. >>> colors[:5]
 ('v', 'i', 'b', 'g', 'y')

 5. >>> colors[3:]
 ('g', 'y', 'o', 'r')

 6. >>> colors[:]
 ('v', 'i', 'b', 'g', 'y', 'o', 'r')

 7. >>> colors[::]
 ('v', 'i', 'b', 'g', 'y', 'o', 'r')

 8. >>> colors[1:5:2]
 ('i', 'g')

 9. >>> colors[::2]
 ('v', 'b', 'y', 'r')

 10. >>> colors[::-1]
 ('r', 'o', 'y', 'g', 'b', 'i', 'v')

 11. >>> colors[-5:-2]
 ('b', 'g', 'y')

The colors tuple has seven items of string type. All the items in the colors tuple starting from an
index value of 1 up to an index value of 4, but excluding the index value of 4 is sliced ➂. If you
want to access the tuple item from start index, then there is no need to specify an index value
of zero. You can skip the start index value and specify only the stop index value ➃. Similarly,
if you want to access the items in a tuple up to the end of the tuple, then there is no need to
specify the stop value and you must mention only the start index value ➄. If you skip both the
start and stop index values ➅ and specify only the colon operator within the brackets, then all
the items in the tuple are displayed. The use of double colons instead of a single colon also
displays the entire contents of the tuple ➆. The number after the second colon tells Python that
you would like to choose your slicing increment. By default, Python sets this increment to 1,
but that number after the second colon allows you to specify what you want it to be ➇. Using
a double colon as shown in ➈, means no value for start index and no value for stop index and
jumps the items by two steps. Every second item of the tuple is extracted starting from an
index value of zero. All the items in a tuple can be displayed in reverse order by specifying a
double colon followed by an index value of -1 ➉. Negative index values can also be used for
start and stop index values .

8.4 Built-In Functions Used on Tuples

There are many built-in functions (TABLE 8.1) for which a tuple can be passed as an
argument.

208 Introduction to Python Programming

For example,

 1. >>> years = (1987, 1985, 1981, 1996)
 2. >>> len(years)

 4
 3. >>> sum(years)

 7949
 4. >>> sorted_years = sorted(years)
 5. >>> sorted_years
 [1981, 1985, 1987, 1996]

You can find the number of items in the tuple years by using the len() function ➁. Using the
sum() function results in the adding up of all the number items in the tuple ➂. The sorted()
function returns the sorted list of items without modifying the original tuple which is
assigned to new list variable ➃. In the case of string items in a tuple, they are sorted based
on their ASCII values.

8.5 Relation between Tuples and Lists

Though tuples may seem similar to lists, they are often used in different situations and for
different purposes. Tuples are immutable, and usually, contain a heterogeneous sequence
of elements that are accessed via unpacking or indexing. Lists are mutable, and their items
are accessed via indexing. Items cannot be added, removed or replaced in a tuple.

For example,

 1. >>> coral_reef = ("great_barrier", "ningaloo_coast", "amazon_reef", "pickles_reef")
 2. >>> coral_reef[0] = "pickles_reef"

 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 TypeError: 'tuple' object does not support item assignment

 3. >>> coral_reef_list = list(coral_reef)
 4. >>> coral_reef_list
 ['great_barrier', 'ningaloo_coast', 'amazon_reef', 'pickles_reef']

In the tuple coral_reef, if you try to replace “great_barrier” with a different item, like
“pickles_reef”, then it results in TypeError as tuples cannot be modified ➀–➁. You can
convert a tuple to a list by passing the tuple name to the list() function ➂–➃.

TABLE 8.1

Built-In Functions Used on Tuples

Built-In Functions Description

len() The len() function returns the numbers of items in a tuple.
sum() The sum() function returns the sum of numbers in the tuple.
sorted() The sorted() function returns a sorted copy of the tuple as a

list while leaving the original tuple untouched.

209Tuples and Sets

If an item within a tuple is mutable, then you can change it. Consider the presence of a
list as an item in a tuple, then any changes to the list get reflected on the overall items in
the tuple. For example,

 1. >>> german_cars = ["porsche", "audi", "bmw"]
 2. >>> european_cars = ("ferrari", "volvo", "renault", german_cars)
 3. >>> european_cars

 ('ferrari', 'volvo', 'renault', ['porsche', 'audi', 'bmw'])
 4. >>> european_cars[3].append("mercedes")
 5. >>> german_cars

 ['porsche', 'audi', 'bmw', 'mercedes']
 6. >>> european_cars
 ('ferrari', 'volvo', 'renault', ['porsche', 'audi', 'bmw', 'mercedes'])

The tuple "containing" a list seems to change when the underlying list changes. The key insight
is that tuples have no way of knowing whether the items inside them are mutable. The only
thing that makes an item mutable is to have a method that alters its data. In general, there is no
way to detect this. In fact, the tuple did not change. It could not change because it does not have
mutating methods. When the list changes, the tuple does not get notified of the change.
The list does not know whether it is referred to by a variable, a tuple, or another list ➀–➅.
The tuple itself is not mutable as it does not have any methods that can be used for changing its
contents. Likewise, the string is immutable because strings do not have any mutating methods.

8.6 Relation between Tuples and Dictionaries

Tuples can be used as key:value pairs to build dictionaries.
For example,

 1. >>> fish_weight_kg = (("white_shark", 520), ("beluga", 1571), ("greenland_shark",
1400))

 2. >>> fish_weight_kg_dict = dict(fish_weight_kg)
 3. >>> fish_weight_kg_dict
 {'white_shark': 520, 'beluga': 1571, 'greenland_shark': 1400}

The tuples can be converted to dictionaries by passing the tuple name to the dict() function.
This is achieved by nesting tuples within tuples, wherein each nested tuple item should
have two items in it ➀–➁. The first item becomes the key and second item as its value when
the tuple gets converted to a dictionary ➂.

The method items() in a dictionary returns a list of tuples where each tuple corresponds
to a key:value pair of the dictionary. For example,

 1. >>> founding_year = {"Google":1996, "Apple":1976, "Sony":1946, "ebay":1995, "IBM":1911}
 2. >>> founding_year.items()
 dict_items([('Google', 1996), ('Apple', 1976), ('Sony', 1946), ('ebay', 1995), ('IBM', 1911)])

210 Introduction to Python Programming

 3. >>> for company, year in founding_year.items():
 ... print(f"{company} was found in the year {year}")

Output

Google was found in the year 1996
Apple was found in the year 1976
Sony was found in the year 1946
ebay was found in the year 1995
IBM was found in the year 1911

The for loop in ➂ has two iteration variables—company and year, because the items() method
returns a new view of the dictionary’s key and value pairs as tuples, which successively
iterates through each of the key:value pairs in the dictionary.

8.7 Tuple Methods

You can get a list of all the methods associated with the tuple (TABLE 8.2) by passing the
tuple function to dir().

 1. >>> dir(tuple)
 ['__add__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__

format__', '__ge__', '__getattribute__', '__getitem__', '__getnewargs__', '__gt__', '__
hash__', '__init__', '__init_subclass__', '__iter__', '__le__', '__len__', '__lt__', '__mul__',
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__', '__rmul__', '__setattr__',
'__sizeof__', '__str__', '__subclasshook__', 'count', 'index']

Various methods associated with tuple are displayed ➀.

For example,

 1. >>> channels = ("ngc", "discovery", "animal_planet", "history", "ngc")
 2. >>> channels.count("ngc")

 2
 3. >>> channels.index("history")
 3

Various operations on tuples are carried out using tuple methods ➀–➂.

TABLE 8.2

Various Tuple Methods

Tuple Methods Syntax Description

count() tuple_name.count(item) The count() method counts the number of times the item has
occurred in the tuple and returns it.

index() tuple_name.index(item) The index() method searches for the given item from the start of
the tuple and returns its index. If the value appears more than
once, you will get the index of the first one. If the item is not
present in the tuple, then ValueError is thrown by this method.

Note: Replace the word “tuple_name” mentioned in the syntax with your actual tuple name in your code.

211Tuples and Sets

8.7.1 Tuple Packing and Unpacking

The statement t = 12345, 54321, 'hello!' is an example of tuple packing.

 1. >>> t = 12345, 54321, 'hello!'
 2. >>> t
 (12345, 54321, 'hello!')

The values 12345, 54321 and 'hello!' are packed together into a tuple ➀–➁.

The reverse operation of tuple packing is also possible. For example,

 1. >>> x, y, z = t
 2. >>> x

 12345
 3. >>> y

 54321
 4. >>> z
 'hello!'

This operation is called tuple unpacking and works for any sequence on the right-hand
side. Tuple unpacking requires that there are as many variables on the left side of the
equals sign as there are items in the tuple ➀–➃. Note that multiple assignments are really
just a combination of tuple packing and unpacking.

8.7.2 Traversing of Tuples

You can iterate through each item in tuples using for loop.

Program 8.1: Program to Iterate Over Items in Tuples Using for Loop

 1. ocean_animals = ("electric_eel", "jelly_fish", "shrimp", "turtles", "blue_whale")
 2. def main():
 3. for each_animal in ocean_animals:
 4. print(f"{each_animal} is an ocean animal")
 5. if __name__ == "__main__":
 6. main()

Output

electric_eel is an ocean animal
jelly_fish is an ocean animal
shrimp is an ocean animal
turtle is an ocean animal
blue_whale is an ocean animal

Here ocean_animals is of tuple type ➀. A for ➂ loop is used to iterate through each item in
the tuple.

212 Introduction to Python Programming

8.7.3 Populating Tuples with Items

You can populate tuples with items using += operator and also by converting list items to
tuple items.

Program 8.2: Program to Populate Tuple with User-Entered Items

 1. tuple_items = ()
 2. total_items = int(input("Enter the total number of items: "))
 3. for i in range(total_items):
 4. user_input = int(input("Enter a number: "))
 5. tuple_items += (user_input,)
 6. print(f"Items added to tuple are {tuple_items}")

 7. list_items = []
 8. total_items = int(input("Enter the total number of items: "))
 9. for i in range(total_items):
 10. item = input("Enter an item to add: ")
 11. list_items.append(item)
 12. items_of_tuple = tuple(list_items)
 13. print(f"Tuple items are {items_of_tuple}")

Output

Enter the total number of items: 4
Enter a number: 4
Enter a number: 3
Enter a number: 2
Enter a number: 1
Items added to tuple are (4, 3, 2, 1)
Enter the total number of items: 4
Enter an item to add: 1
Enter an item to add: 2
Enter an item to add: 3
Enter an item to add: 4
Tuple items are ('1', '2', '3', '4')

Items are inserted into the tuple using two methods: using continuous concatenation +=
operator ➀–➅ and by converting list items to tuple items ➆– . In the code, tuple_items
is of tuple type. In both the methods, you must specify the total number of items that
you are planning to insert to the tuple beforehand ➁, ➇. Based on this number, we
iterate through the for loop as many times using the range() function ➂–➃, ➈–➉. In the
first method, we continuously concatenate the user entered items to the tuple using +=
operator. Tuples are immutable and are not supposed to be changed. During each itera-
tion, each original_tuple is replaced by original_tuple + (new_element), thus creating a new
tuple ➄. Notice a comma after new_element. In the second method, a list is created ➆.

213Tuples and Sets

For each iteration ➈, the user entered value ➉ is appended to the list variable. This list
is then converted to tuple type using tuple() function .

Program 8.3: Write Python Program to Swap Two Numbers Without Using
Intermediate/Temporary Variables. Prompt the User for Input

 1. def main():
 2. a = int(input("Enter a value for first number "))
 3. b = int(input("Enter a value for second number "))
 4. b, a = a, b
 5. print("After Swapping")
 6. print(f"Value for first number {a}")
 7. print(f"Value for second number {b}")
 8. if __name__ == "__main__":
 9. main()

Output

Enter a value for the first number 5
Enter a value for the second number 10
After Swapping
Value for first number 10
Value for second number 5

The contents of variables a and b are reversed ➃. The tuple variables are on the left side
of the assignment operator and, on the right side, are the tuple values. The number of
 variables on the left and the number of values on the right has to be the same. Each value
is assigned to its respective variable.

Program 8.4: Program to Demonstrate the Return of Multiple Values from a Function

 1. def return_multiple_items():
 2. monument = input("Which is your favorite monument? ")
 3. year = input("When was it constructed? ")
 4. return monument, year

 5. def main():
 6. mnt, yr = return_multiple_items()
 7. print(f"My favorite monument is {mnt} and it was constructed in {yr}")
 8. result = return_multiple_items()
 9. print(f"My favorite monument is {result[0]} and it was constructed in {result[1]}")

 10. if __name__ == "__main__":
 11. main()

214 Introduction to Python Programming

Output

Which is your favorite monument? Hawa Mahal
When was it constructed? 1799
My favorite monument is Hawa Mahal and it was constructed in 1799
Which is your favorite monument? Big Ben
When was it constructed? 1858
My favorite monument is Big Ben and it was constructed in 1858

The function return_multiple_items() returns multiple values that are actually a tuple ➃. For
calling functions that return a tuple, it is common to assign the result to multiple variables ➅.
This is simply tuple unpacking. The return value could also have been assigned to a single
variable ➇.

Program 8.5: Write Python Program to Sort Words in a Sentence in Decreasing
Order of Their Length. Display the Sorted Words along with Their Length

 1. def sort_words(user_input):
 2. list_of_words = user_input.split()
 3. words = list()
 4. for each_word in list_of_words:
 5. words.append((len(each_word), each_word))
 6. words.sort(reverse=True)
 7. print("After sorting")
 8. for length, word in words:
 9. print(f'The word "{word}" is of {length} characters')

 10. def main():
 11. sentence = input("Enter a sentence ")
 12. sort_words(sentence)

 13. if __name__ == "__main__":
 14. main()

Output

Enter a sentence Everything you can imagine is real
After sorting
The word "Everything" is of 10 characters
The word "imagine" is of 7 characters
The word "real" is of 4 characters
The word "you" is of 3 characters
The word "can" is of 3 characters
The word "is" is of 2 characters

The user input sentence is split into a list of words ➁. A for loop ➃ is used to append
a list of tuples to words list ➂. Each of these tuples in the list consists of two items:

215Tuples and Sets

the length of the word and the word items ➄. The sort() method compares the tuples
in the list based on the length of the word that is the first item in the tuple. The second
item in the tuple is considered only when the first items are the same and to break the
tie. The keyword argument reverse=True tells the sort() method to sort in decreasing
order ➅. By inserting a list of tuples into the list with a number as the first item in the
tuple, you can easily sort the list of tuples. Word length and the word itself are printed
using a for loop ➇–➈.

Program 8.6: Write Pythonic Code to Sort a Sequence of Names according
to Their Alphabetical Order Without Using sort() Function

 1. def read_list_items():
 2. print("Enter names separated by a space")
 3. list_items = input().split()
 4. return list_items

 5. def sort_item_list(items_in_list):
 6. n = len(items_in_list)
 7. for i in range(n):
 8. for j in range(1, n-i):
 9. if items_in_list[j-1] > items_in_list[j]:
 10. (items_in_list[j-1], items_in_list[j]) = (items_in_list[j], items_in_list[j-1])
 11. print(“After Sorting”)

 12. print(items_in_list)

 13. def main():
 14. all_items = read_list_items()

 15. sort_item_list(all_items)

 16. if __name__ == "__main__":
 17. main()

Output

Enter names separated by a space
yashmith ava noah isabella emma
After Sorting
['ava', 'emma', 'isabella', 'noah', 'yashmith']

Lists of strings is sorted by comparing each string with its successor string and swaps
them if they are not in ascending order. To sort the items in the list, we require two loops:
one for running through the passes and another for locating and interchanging the strings
in each pass ➆–➉. The pass through the list is repeated until no swaps are needed, which
indicates that the list of strings is sorted.

216 Introduction to Python Programming

8.8 Using zip() Function

The zip() function makes a sequence that aggregates elements from each of the iterables (can
be zero or more). The syntax for zip() function is,

zip(*iterables)

An iterable can be a list, string, or dictionary. It returns a sequence of tuples, where the i-th
tuple contains the i-th element from each of the iterables. The aggregation of elements stops
when the shortest input iterable is exhausted. For example, if you pass two iterables with
one containing two items and other containing five items, then the zip() function returns a
sequence of two tuples. With a single iterable argument, it returns an iterator of one tuple.
With no arguments, it returns an empty iterator. For example,

 1. >>> x = [1, 2, 3]
 2. >>> y = [4, 5, 6]
 3. >>> zipped = zip(x, y)
 4. >>> list(zipped)
 [(1, 4), (2, 5), (3, 6)]

Here zip() function is used to zip two iterables of list type ➀–➃.

To loop over two or more sequences at the same time, the entries can be paired with the
zip() function. For example,

 1. >>> questions = ('name', 'quest', 'favorite color')
 2. >>> answers = ('lancelot', 'the holy grail', 'blue')
 3. >>> for q, a in zip(questions, answers):
 ... print(f'What is your {q}? It is {a}.')

Output

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

Since zip() function returns a tuple, you can use a for loop with multiple iterating variables
to print tuple items ➀–➂.

8.9 Sets

Python also includes a data type for sets. A set is an unordered collection with no dupli-
cate items. Primary uses of sets include membership testing and eliminating duplicate
entries. Sets also support mathematical operations, such as union, intersection, difference,
and symmetric difference.

Curly braces { } or the set() function can be used to create sets with a comma-separated
list of items inside curly brackets { }. Note: to create an empty set you have to use set() and
not { } as the latter creates an empty dictionary.

217Tuples and Sets

 1. >>> basket = {'apple', 'orange', 'apple', 'pear', 'orange', 'banana'}
 2. >>> print(basket)
 {'pear', 'orange', 'banana', 'apple'}
 3. >>> 'orange' in basket

 True
 4. >>> 'crabgrass' in basket

 False
 5. >>> a = set('abracadabra')
 6. >>> b = set('alacazam')
 7. >>> a

 {'d', 'a', 'b', 'r', 'c'}
 8. >>> b

 {'m', 'l', 'c', 'z', 'a'}
 9. >>> a – b

 {'b', 'r', 'd'}
 10. >>> a | b

 {'l', 'm', 'z', 'd', 'a', 'b', 'r', 'c'}
 11. >>> a & b

 {'a', 'c'}
 12. >>> a ^ b

 {'l', 'd', 'm', 'b', 'r', 'z'}
 13. >>> len(basket)

 4
 14. >>> sorted(basket)
 ['apple', 'banana', 'orange', 'pear']

A set is a collection of unique items. Duplicate items are removed from the set basket ➀.
Even though we have provided "orange" and "apple" items two times, the set will
 contain only one item of "orange" and "apple." You can test for the presence of an item
in a set using in and not in membership operators ➂–➃. Unique letters in sets a and b
are displayed ➄–➇. Letters present in set a, but not in set b, are printed ➈. Letters pres-
ent in set a, set b, or both are printed ➉. Letters present in both set a and set b are printed .
Letters present in set a or set b, but not both, are printed . Total number of items in
the set basket is found using the len() function . The sorted() function returns a new
sorted list from items in the set .

 Sets are mutable. Indexing is not possible in sets, since set items are
 unordered. You cannot access or change an item of the set using index-
ing or slicing.

218 Introduction to Python Programming

8.10 Set Methods

You can get a list of all the methods associated with the set (TABLE 8.3) by passing the set
function to dir().

 1. >>> dir(set)
 ['__and__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__', '__

format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__iand__', '__init__', '__
init_subclass__', '__ior__', '__isub__', '__iter__', '__ixor__', '__le__', '__len__', '__lt__',
'__ne__', '__new__', '__or__', '__rand__', '__reduce__', '__reduce_ex__', '__repr__',
'__ror__', '__rsub__', '__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__', '__sub-
classhook__', '__xor__', 'add', 'clear', 'copy', 'difference', 'difference_update', 'discard',
'intersection', 'intersection_update', 'isdisjoint', 'issubset', 'issuperset', 'pop', 'remove',
'symmetric_difference', 'symmetric_difference_update', 'union', 'update']

Various methods associated with set are displayed ➀.

TABLE 8.3

Various Set Methods

Set Methods Syntax Description

add() set_name.add(item) The add() method adds an item to the set set_name.
clear() set_name.clear() The clear() method removes all the items from the set

set_name.
difference() set_name.difference(*others) The difference() method returns a new set with items in

the set set_name that are not in the others sets.
discard() set_name.discard(item) The discard() method removes an item from the set

set_name if it is present.
intersection() set_name.intersection(*others) The intersection() method returns a new set with items

common to the set set_name and all others sets.
isdisjoint() set_name.isdisjoint(other) The isdisjoint() method returns True if the set set_name

has no items in common with other set. Sets are disjoint
if and only if their intersection is the empty set.

issubset() set_name.issubset(other) The issubset() method returns True if every item in the set
set_name is in other set.

issuperset() set_name.issuperset(other) The issuperset() method returns True if every element in
other set is in the set set_name.

pop() set_name.pop() The method pop() removes and returns an arbitrary item
from the set set_name. It raises KeyError if the set is
empty.

remove() set_name.remove(item) The method remove() removes an item from the set
set_name. It raises KeyError if the item is not contained
in the set.

symmetric_
difference()

set_name.
symmetric_difference(other)

The method symmetric_difference() returns a new set with
items in either the set or other but not both.

union() set_name.union(*others) The method union() returns a new set with items from
the set set_name and all others sets.

update() set_name.update(*others) Update the set set_name by adding items from all others
sets.

Note: Replace the words "set_name", "other" and "others" mentioned in the syntax with your actual set names in your
code.

219Tuples and Sets

For example,

 1. >>> european_flowers = {"sunflowers", "roses", "lavender", "tulips", "goldcrest"}
 2. >>> american_flowers = {"roses", "tulips", "lilies", "daisies"}
 3. >>> american_flowers.add("orchids")
 4. >>> american_flowers.difference(european_flowers)

 {'lilies', 'orchids', 'daisies'}
 5. >>> american_flowers.intersection(european_flowers)

 {'roses', 'tulips'}
 6. >>> american_flowers.isdisjoint(european_flowers)

 False
 7. >>> american_flowers.issuperset(european_flowers)

 False
 8. >>> american_flowers.issubset(european_flowers)

 False
 9. >>> american_flowers.symmetric_difference(european_flowers)

 {'lilies', 'orchids', 'daisies', 'goldcrest', 'sunflowers', 'lavender'}
 10. >>> american_flowers.union(european_flowers)

 {'lilies', 'tulips', 'orchids', 'sunflowers', 'lavender', 'roses', 'goldcrest', 'daisies'}
 11. >>> american_flowers.update(european_flowers)
 12. >>> american_flowers

 {'lilies', 'tulips', 'orchids', 'sunflowers', 'lavender', 'roses', 'goldcrest', 'daisies'}
 13. >>> american_flowers.discard("roses")
 14. >>> american_flowers

 {'lilies', 'tulips', 'orchids', 'daisies'}
 15. >>> european_flowers.pop()

 'tulips'
 16. >>> american_flowers.clear()
 17. >>> american_flowers
 set()

Various operations on sets are carried out using set methods ➀– 17 .

8.10.1 Traversing of Sets

You can iterate through each item in a set using a for loop.

Program 8.7: Program to Iterate Over Items in Sets Using for Loop

 1. warships = {"u.s.s._arizona", "hms_beagle", "ins_airavat", "ins_hetz"}
 2. def main():

220 Introduction to Python Programming

 3. for each_ship in warships:
 4. print(f"{each_ship} is a Warship")
 5. if __name__ == "__main__":
 6. main()

Output

hms_beagle is a Warship
u.s.s._arizona is a Warship
ins_airavat is a Warship
ins_hetz is a Warship

Here warships is of a set type ➀. A for ➂ loop is used to iterate through each item in the set.

Program 8.8: Write a Function Which Receives a Variable Number of
Strings as Arguments. Find Unique Characters in Each String

 1. def find_unique(*all_words):
 2. for each_word in all_words:
 3. unique_character_list = list(set(each_word))
 4. print(f"Unique characters in the word {each_word} are {unique_character_list}")

 5. def main():
 6. find_unique("egg", "immune", "feed", "vacuum", "goddessship")

 7. if __name__ == "__main__":
 8. main()

Output

Unique characters in the word egg are ['e', 'g']
Unique characters in the word immune are ['m', 'n', 'i', 'u', 'e']
Unique characters in the word feed are ['d', 'e', 'f']
Unique characters in the word vacuum are ['m', 'c', 'u', 'a', 'v']
Unique characters in the word goddessship are ['p', 's', 'o', 'h', 'g', 'i', 'd', 'e']

The method find_unique() ➀ accepts a variable number of words as arguments. Iterate
through each word using a for loop ➁. For each word, find unique characters using the
set() method and convert it to a list ➂ and print it ➃.

Program 8.9: Write a Python Program That Accepts a Sentence as Input
and Removes All Duplicate Words. Print the Sorted Words

 1. def unique_words(user_input):
 2. words = user_input.split()

221Tuples and Sets

 3. print(f"The unique and sorted words are {sorted(list(set(words)))}")

 4. def main():
 5. sentence = input("Enter a sentence ")
 6. unique_words(sentence)

 7. if __name__ == "__main__":
 8. main()

Output

Enter a sentence The man we saw saw a saw
The unique and sorted words are ['The', 'a', 'man', 'saw', 'we']

In the above program, the user-entered sentence ➄ is split into a list of words based on
space ➁. The words list is passed as an argument to the set() method. The unique set of
words returned by the set() method is converted to a list and sorted ➂.

8.11 Frozenset

A frozenset is basically the same as a set, except that it is immutable. Once a frozenset is
created, then its items cannot be changed. Since they are immutable, they can be used as
members in other sets and as dictionary keys. The frozensets have the same functions as
normal sets, except none of the functions that change the contents (update, remove, pop,
etc.) are available.

 1. >>> dir(frozenset)
 ['__and__', '__class__', '__contains__', '__delattr__', '__dir__', '__doc__', '__eq__',

'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__', '__init__', '__init_
subclass__', '__iter__', '__le__', '__len__', '__lt__', '__ne__', '__new__', '__or__', '__
rand__', '__reduce__', '__reduce_ex__', '__repr__', '__ror__', '__rsub__', '__rxor__',
'__setattr__', '__sizeof__', '__str__', '__sub__', '__subclasshook__', '__xor__', 'copy',
'difference', 'intersection', 'isdisjoint', 'issubset', 'issuperset', 'symmetric_difference',
'union']

List of methods available for frozenset ➀.

For example,

 1. >>> fs = frozenset(["g", "o", "o", "d"])
 2. >>> fs

 frozenset({'d', 'o', 'g'})
 3. >>> animals = set([fs, "cattle", "horse"])

222 Introduction to Python Programming

 4. >>> animals
 {'cattle', frozenset({'d', 'o', 'g'}), 'horse'}

 5. >>> official_languages_world = {"english":59, "french":29, "spanish":21}
 6. >>> frozenset(official_languages_world)

 frozenset({'spanish', 'french', 'english'})
 7. >>> frs = frozenset(["german"])
 8. >>> official_languages_world = {"english":59, "french":29, "spanish":21, frs:6}
 9. >>> official_languages_world
 {'english': 59, 'french': 29, 'spanish': 21, frozenset({'german'}): 6}

The Frozenset type ➀ is used within a set ➂. Keys in a dictionary are returned when a
dictionary is passed as an argument to frozenset() function ➅. Frozenset is used as a key in
dictionary ➇.

8.12 Summary

• Tuple is an immutable data structure comprising of items that are ordered and
heterogeneous.

• Tuples are formed using commas and not the parenthesis.
• Indexing and slicing of items are supported in tuples.
• Tuples support built-in functions such as len(), min(), and max().
• The set stores a collection of unique values and are not placed in any particular

order.
• Add an item to the set using add() method and remove an item from the set using

the remove() method.
• The for loop is used to traverse the items in a set.
• The issubset() or issuperset() method is used to test whether a set is a superset or a

subset of another set.
• Sets also provide functions such as union(), intersection(), difference(), and

symmetric_difference().

Multiple Choice Questions

 1. Which of the following is a mutable type?
 a. Strings
 b. Lists
 c. Tuples
 d. Frozenset

223Tuples and Sets

 2. What will be the output of the following code?
 t1 = (1, 2, 3, 4)
 t1.append((5, 6, 7))
 print(len(t1))
 a. Error
 b. 2
 c. 1
 d. 5
 3. What is the correct syntax for creating a tuple?
 a. ["a","b","c"]
 b. ("a","b","c")
 c. {"a","b","c"}
 d. {}
 4. Assume air_force = ("f15", "f22a", "f35a"). Which of the following is incorrect?
 a. print(air_force[2])
 b. air_force[2] = 42
 c. print(max(air_force))
 d. print(len(air_force))
 5. Gauge the output of the following code snippet.
 bike = ('d','u','c','a','t','i')
 bike [1:3]
 a. ('u', 'c')
 b. ('u', 'c', 'c')
 c. ('d', 'u', 'c')
 d. ('a', 't', 'i')
 6. What is the output of the following code?
 colors = ("v", "i", "b", "g", "y", "o", "r")
 for i in range(0, len(colors),2):
 print(colors[i])
 a. ('i', 'b')
 b. ('v', 'i', 'b')
 c. ['v', 'b', 'y', 'r']
 d. ('i', 'g', 'o')
 7. What is the output of the following code snippet?
 colors = ("v", "i", "b", "g", "y", "o", "r")
 2 * colors
 a. ['v', 'i', 'b', 'g', 'y', 'o', 'r']
 b. ('v', 'i', 'b', 'g', 'y', 'o', 'r')
 c. ('v', 'v', 'i', 'i', 'b', 'b', 'g', 'g', 'y', 'y', 'o', 'o', 'r', 'r')
 d. ('v', 'i', 'b', 'g', 'y', 'o', 'r', 'v', 'i', 'b', 'g', 'y', 'o', 'r')

224 Introduction to Python Programming

 8. Predict the output of the following code.
 os = ('w', 'i', 'n', 'd', 'o', 'w', 's')
 os1 = ('w', 'i', 'n', 'd', 'w', 's', 'o')
 os < os1
 a. True
 b. False
 c. 1
 d. 0
 9. What is the data type of (3)?
 a. Tuple
 b. List
 c. None
 d. Integer
 10. Assume tuple_1 = (7,8,9,10,11,12,13) then the output of tuple_1[1:-1] is.
 a. Error
 b. (8,9,10,11,12)
 c. [8,9,10,11,12]
 d. None
 11. What might be the output of the following code:
 A = ("hello") * 3
 print(A)
 a. Operator Error
 b. ('hello','hello','hello')
 c. 'hellohellohello'
 d. None of these
 12. What is the output of the following code:
 number_1 = {1,2,3,4,5}
 number_2 = {1,2,3}
 number_1.difference(number_2)
 a. {4, 5}
 b. {1, 2, 3}
 c. (4, 5)
 d. [4, 5]
 13. Judge the output of the following code:
 tuples = (7,8,9)
 sum(tuples, 2)
 a. 26
 b. 20
 c. 12
 d. 3

225Tuples and Sets

 14. tennis = ('steffi', 'monica', 'serena', 'monica', 'navratilova')
 tennis.count('monica')
 a. 3
 b. 0
 c. 2
 d. 1

 15. A set is an _________ collection with no ______________ items.
 a. unordered, duplicate
 b. ordered, unique
 c. unordered, unique
 d. ordered, duplicate

 16. Judge the output of the following:
 sets_1 = set(['a','b','b','c','c','c','d'])
 len(sets_1)
 a. 1
 b. 4
 c. 5
 d. 7

 17. What is the output of the code shown below?
 s = {1,2,3}
 s.update(4)
 print(s)
 a. {1,2,3,4}
 b. {1,2}
 c. {1,2,3}
 d. Error

 18. Tuple unpacking requires
 a. an equal number of variables on the left side to the number of items in the

tuple.
 b. greater number of variables on the left side to the number of items in the

tuple.
 c. less number of variables on the left side to the number of items in the tuple.
 d. Does not require any variables.

 19. The statement that is used to create an empty set is
 a. {}
 b. set()
 c. []
 d. ()

226 Introduction to Python Programming

 20. The ________ functions removes the first element of the set
 a. remove()
 b. delete()
 c. pop()
 d. truncate()
 21. The method that returns a new set with items common to two sets is
 a. isdisjoint()
 b. intersection()
 c. symmetric_difference()
 d. union()
 22. What is the output of the following code snippet?
 s1 = {'a','b','c'}
 s2 = {'d'}
 print(s1.union(s2))
 a. {'c', 'd', 'b', 'a'}
 b. {'a', 'b', 'c', 'd'}
 c. {'b', 'c', 'd', 'a'}
 d. {'d', 'a', 'b', 'c'}
 23. The function that makes a sequence by aggregating the elements from each of the

iterables is
 a. remove()
 b. update()
 c. frozenset()
 d. zip()
 24. Predict the output of the following code:
 even = {'2', '4', '6'}
 odd = {'1', '5', '7 '}
 even.isdisjoint(odd)
 odd.isdisjoint(even)
 a. True False
 b. False True
 c. True True
 d. False False
 25. Which of the following code snippet returns symmetric difference between two

sets
 a. x ^ y
 b. x & y
 c. x | y
 d. x – y

227Tuples and Sets

Review Questions

 1. Explain the usage of tuples.
 2. Identify the primary differences between a list and a tuple?
 3. Explain how to create an empty set.
 4. Briefly explain the slice operation of tuples with an example.
 5. Illustrate how tuples are used to build dictionaries with an example.
 6. Explain zip() function with an example.
 7. With an example, explain the methods associated with sets.
 8. Explain frozenset with an example.
 9. Explain how to delete or remove elements from tuples and sets.
 10. Create a list containing three elements, and then create a tuple from that list.
 11. Write a program to unpack a tuple to several variables.
 12. Write a program to check whether an item exists within a tuple.
 13. Write a program to unzip a list of tuples into individual lists.
 14. Write a program to create an intersection, union, set difference, and symmetric

difference of sets.
 15. Write a program to demonstrate the use of issubset() and issuperset() methods.
 16. Write a program that takes a range and creates a list of tuples within that range

with the first element as the number and the second element as the square of the
number.

 17. Write a program to clear a set.
 18. Write a program to find the length of the set.
 19. Write a program to store the latitude and longitude of your house as a tuple and

display it.

http://taylorandfrancis.com

229

9
Files

In everyday life, the term “file” is something of a catchall. It is used for things that are
not only written, but also used to describe things that don’t have any words in them
at all, like pictures. A file is the common storage unit in a computer, and all programs
and data are “written” into a file and “read” from a file. A file extension, sometimes
called a file suffix or a filename extension, is the character or group of characters after
the period that makes up an entire file name. The file extension helps your computer’s
operating system, like Windows, determine which program will be associated with the
file. For example, the file assignments.docx ends in docx, a file extension that is associated
with Microsoft Word on your computer. When you attempt to open this file, Windows
sees that the file ending in a docx extension and knows it should be opened with the
Microsoft Word program.

File extensions also often indicate the file type, or file format, of the file but not always.
Any file’s extensions can be renamed, but that will not convert the file to another format
or change anything about the file other than this portion of its name. File extensions and
file formats are often spoken about interchangeably. However, the file extension is just
whatever characters are after the period, while the file format illustrates the way in which
the data in the file is organized and what sort of file it is. For example, in the file name
pop.csv, the file extension csv indicates that this is a CSV file. You could easily rename that
file to pop.mp3, but that would not mean that you could play the file on a smartphone. The
file itself is still rows of text (a CSV file), not a compressed musical recording (an MP3 file).
Some file extensions are classified as executable, meaning that when clicked, they do
not just open for viewing or playing, they actually do something all by themselves, like
install a program, start a process, or run a script.

AIM

Understand how to interact with files with the help of built-in Python functions and
perform operations such as read, write, and manipulate files.

LEARNING OUTCOMES

After completing this chapter, you should be able to

• Select text files and binary files to read and write data.
• Demonstrate the use of built-in functions to navigate the file system.
• Make use of os module to operate on underlying Operating System tasks.

230 Introduction to Python Programming

All the data on your hard drive consists of files and directories. The fundamental dif-
ference between the two is that files store data, while directories store files and other
directories. The folders, often referred to as directories, are used to organize files on your
computer. The directories themselves take up virtually no space on the hard drive. Files,
on the other hand, can range from a few bytes to several gigabytes. Directories are used to
organize files on your computer.

[Adapted with kind permission from https://www.lifewire.com/what-is-a-file- extension
-2625879]

9.1 Types of Files

Python supports two types of files – text files and binary files. These two file types may
look the same on the surface but they encode data differently. While both binary and text
files contain data stored as a series of bits (binary values of 1s and 0s), the bits in text files
represent characters, while the bits in binary files represent custom data.

Binary files typically contain a sequence of bytes or ordered groupings of eight bits. When
creating a custom file format for a program, a developer arranges these bytes into a format
that stores the necessary information for the application. Binary file formats may include
multiple types of data in the same file, such as image, video, and audio data. This data can be
interpreted by supporting programs but will show up as garbled text in a text editor. Below
is an example of a .JPG image file opened in an image viewer and a text editor (FIGURE 9.1).

As you can see, the image viewer recognizes the binary data and displays the picture.
When the image is opened in a text editor, the binary data is converted to unrecogniz-
able text. However, you may notice that some of the text is readable. This is because the
JPG format includes small sections for storing textual data. The text editor, while not
designed to read this file format, still displays this text when the file is opened. Many
other binary file types include sections of readable text as well. Therefore, it may be pos-
sible to find out some information about an unknown binary file type by opening it in a
text editor. Binary files often contain headers, which are bytes of data at the beginning
of a file that identifies the file’s contents. Headers often include the file type and other

FIGURE 9.1
Image and its binary contents.

https://www.lifewire.com/what-is-a-file-extension-2625879
https://www.lifewire.com/what-is-a-file-extension-2625879

231Files

descriptive information. If a file has an invalid header information, a software program
may not open the file or may report that the file is corrupted.

Text files are more restrictive than binary files since they can only contain textual data.
However, unlike binary files, they are less likely to become corrupted. While a small error
in a binary file may make it unreadable, a small error in a text file may simply show up
once the file has been opened. A typical plain text file contains several lines of text that are
each followed by an End-of-Line (EOL) character. An End-of-File (EOF) marker is placed
after the final character, which signals the end of the file. Text files include a character
encoding scheme that determines how the characters are interpreted and what charac-
ters can be displayed. Since text files use a simple, standard format, many programs are
capable of reading and editing text files. Common text editors include Microsoft Notepad
and WordPad, which are bundled with Windows, and Apple TextEdit, which is included
with Mac OS X.

We can usually tell if a file is binary or text based on its file extension. This is because
by convention the extension reflects the file format, and it is ultimately the file format that
dictates whether the file data is binary or text.

Common extensions for binary file formats:

Images: jpg, png, gif, bmp, tiff, psd,...
Videos: mp4, mkv, avi, mov, mpg, vob,...
Audio: mp3, aac, wav, flac, ogg, mka, wma,...
Documents: pdf, doc, xls, ppt, docx, odt,...
Archive: zip, rar, 7z, tar, iso,...
Database: mdb, accde, frm, sqlite,...
Executable: exe, dll, so, class,...

Common extensions for text file formats:

Web standards: html, xml, css, svg, json,...
Source code: c, cpp, h, cs, js, py, java, rb, pl, php, sh,...
Documents: txt, tex, markdown, asciidoc, rtf, ps,...
Configuration: ini, cfg, rc, reg,...
Tabular data: csv, tsv,...

[Adapted with kind permission from https://fileinfo.com/help/binary_vs_text_files]

9.1.1 File Paths

All operating systems follow the same general naming conventions for an individual file:
a base file name and an optional extension, separated by a period. Note that a directory is
simply a file with a special attribute designating it as a directory, but otherwise must fol-
low all the same naming rules as a regular file. To make use of files, you have to provide
a file path, which is basically a route so that the user or the program knows where the
file is located. The path to a specified file consists of one or more components, separated
by a special character (a backslash for Windows and forward slash for Linux), with each
component usually being a directory name or file name, and possibly a volume name or
drive name in Windows or root in Linux. If a component of a path is a file name, it must
be the last component. It is often critical to the system’s interpretation of a path what the

https://fileinfo.com/help/binary_vs_text_files

232 Introduction to Python Programming

beginning, or prefix, of the path looks like. In the Windows Operating System, the maxi-
mum length for a path is 260 characters and in the Linux Operating System the maximum
path length is of 4096 characters.

The following fundamental rules enable applications to create and process valid names
for files and directories in both Windows and Linux operating systems unless explicitly
specified:

• Use a period to separate the base file name from the extension in the file name.
• In Windows use backslash (\) and in Linux use forward slash (/) to separate the

components of a path. The backslash (or forward slash) separates one directory
name from another directory name in a path and it also divides the file name
from the path leading to it. Backslash (\) and forward slash (/) are reserved
characters and you cannot use them in the name for the actual file or directory.

• Do not assume case sensitivity. File and Directory names in Windows are not
case sensitive while in Linux it is case sensitive. For example, the directory names
ORANGE, Orange, and orange are the same in Windows but are different in Linux
Operating System.

• In Windows, volume designators (drive letters) are case-insensitive. For example,
"D:\" and "d:\" refer to the same drive.

• The reserved characters that should not be used in naming files and directories
are < (less than), > (greater than),: (colon), " (double quote), / (forward slash), \
(backslash), | (vertical bar or pipe), ? (question mark) and * (asterisk).

• In Windows Operating system reserved words like CON, PRN, AUX, NUL, COM1,
COM2, COM3, COM4, COM5, COM6, COM7, COM8, COM9, LPT1, LPT2, LPT3,
LPT4, LPT5, LPT6, LPT7, LPT8, and LPT9 should not be used to name files and
directories.

9.1.2 Fully Qualified Path and Relative Path

A file path can be a fully qualified path name or relative path. The fully qualified path
name is also called an Absolute path. A path is said to be a fully qualified path if it points
to the file location, which always contains the root and the complete directory list. The
current directory is the directory in which a user is working at a given time. Every user is
always working within a directory.

Note that the current directory may or may not be the root directory depending on
what it was set to during the most recent “change directory” operation on that disk.
The root directory, sometimes just called as root is the "highest" directory in the hier-
archy. You can also think of it in general as the start or beginning of a particular direc-
tory structure. The root directory contains all other directories in the drive and can of
course also contain files. For example, the root directory of the main partition on your
Windows system will be C:\ and the root directory on your Linux system will be /
(forward slash).

Examples of a fully qualified path are given below.

• "C:\langur.txt" refers to a file named "langur.txt" under root directory C:\.

• "C:\fauna\bison.txt" refers to a file named "bison.txt" in a subdirectory fauna under
root directory C:\.

233Files

A path is also said to be a relative path if it contains “double-dots”; that is, two consecutive
periods together as one of the directory components in a path or “single-dot”; that is, one
period as one of the directory components in a path. These two consecutive periods are
used to denote the directory above the current directory, otherwise known as the “parent
directory.” Use a single period as a directory component in a path to represent the current
directory.

Examples of the relative path are given below:

• "..\langur.txt" specifies a file named "langur.txt" located in the parent of the current
directory fauna.

• ".\bison.txt" specifies a file named "bison.txt" located in a current directory named fauna.
• "..\..\langur.txt" specifies a file that is two directories above the current directory india

The following figure shows the structure of sample directories and files (FIGURE 9.2).

9.2 Creating and Reading Text Data

In all the programs you have executed until now, any output produced during the
 execution of the program is lost when the program ends. Data has not persisted past
the end of execution. Just as programs live on in files, you can write and read data
files in Python that persist after your program has finished running. Python provides
 built-in functions for opening a file, reading from a file, writing to a file, and closing
a file.

9.2.1 Creating and Opening Text Files

Files are not very useful unless you can access the information they contain. All files must
be opened first before they can be read from or written to using the Python’s built-in open()
function. When a file is opened using open() function, it returns a file object called a file
handler that provides methods for accessing the file.

The syntax of open() function is given below.

file_handler = open(filename, mode)

Mode
parameter

File handler object
returned for filename

User defined

User defined

FIGURE 9.2
Structure of files and directories.

234 Introduction to Python Programming

The open() function returns a file handler object for the file name. The open() function is
commonly used with two arguments, where the first argument is a string containing the
file name to be opened which can be absolute or relative to the current working directory.
The second argument is another string containing a few characters describing the way in
which the file will be used as shown in TABLE 9.1. The mode argument is optional; r will be
used if it is omitted. The file handler itself will not contain any data pertaining to the file.

For example,

 1. >>> file_handler = open("example.txt","x")
 2. >>> file_handler = open("moon.txt","r")
 3. >>> file_handler = open("C:\langur.txt","r")
 4. >>> file_handler = open("C:\prog\example.txt","r")
 5. >>> file_handler = open("C:\\fauna\\bison.txt","r")
 6. >>> file_handler = open("C:\\network\computer.txt","r")
 7. >>> file_handler = open(r"C:\network\computer.txt","r")
 8. >>> file_handler = open("titanic.txt","r")

 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 FileNotFoundError: [Errno 2] No such file or directory: 'titanic.txt'

 9. >>> file_handler = open("titanic.txt","w+")
 10. >>> file_handler = open("titanic.txt","a+")

The open() method returns a file handler object that can be used to read or modify the file.
The open() method takes two arguments, the name of the file and the mode of operation
that you want to perform on that file. In ➀, the mode is "x". The file named example.txt is
created if it is not present. If the file already exists, then the operation fails. The text file
moon.txt present in the current directory is opened in read mode ➁. In ➂, the absolute
path is given and the text langur.txt under root directory C:\ is opened in read-only mode.

TABLE 9.1

Access Modes of the Files

Mode Description

“r” Opens the file in read only mode and this is the default mode.
“w” Opens the file for writing. If a file already exists, then it’ll get overwritten. If the file does not exist, then

it creates a new file.
“a” Opens the file for appending data at the end of the file automatically. If the file does not exist it creates

a new file.
“r+” Opens the file for both reading and writing.
“w+” Opens the file for reading and writing. If the file does not exist it creates a new file. If a file already

exists then it will get overwritten.
“a+” Opens the file for reading and appending. If a file already exists, the data is appended. If the file does

not exist it creates a new file.
“x” Creates a new file. If the file already exists, the operation fails.
“rb” Opens the binary file in read-only mode.
“wb” Opens the file for writing the data in binary format.
“rb+” Opens the file for both reading and writing in binary format.

235Files

The text file example.txt is found in the prog subdirectory under C:\ root directory and is
opened in read-only mode ➃. In ➄, there are two backslashes in the absolute path. Now if
the same expression was executed with a single slash, it results in an error.

>>> file_handler = open("C:\fauna\bison.txt","r")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
OSError: [Errno 22] Invalid argument: 'C:\x0cauna\x08ison.txt'

When the Python interpreter reads the path, the characters \f and \b in the path will be
treated as escape sequences and not as part of directory or text name. Python represents
backslashes in strings as \\ because the backslash is an escape character—for instance,
\n represents a new line, \t represents a tab, \f represents ASCII Formfeed, and \b repre-
sents ASCII Backspace. Because of this, there needs to be a way to tell Python you really
want two characters of \f and \b rather than Formfeed and Backspace, and you do that
by escaping the backslash itself with another one. In ➅, to overcome the problem of the
characters \n being treated as an escape sequence in the path, you have to include another
backslash. You can also prefix the absolute path with the r character ➆. If so, there is no
need to specify double backslashes in the path to overcome the escape sequence problem.
The r means that the absolute path string is to be treated as a raw string, which means all
escape sequences will be ignored. For example, '\n' is a new line character, while r'\n' will
be treated as the characters \ followed by n. When opening a file for reading, if the file
is not present, then the program will terminate with a “no such file or directory” error ➇.
The file is opened in w+ mode for reading and writing ➈. If the file does not exist, then
the file name titanic.txt is created. The file is opened in a+ mode for reading, writing, and
appending. If the file exists, then the content or data is appended. If the file does not exist,
then the file is created ➉.

9.2.2 File close() Method

Opening files consume system resources, and, depending on the file mode, other pro-
grams may not be able to access them. It is important to close the file once the processing
is completed. After the file handler object is closed, you cannot further read or write from
the file. Any attempt to use the file handler object after being closed will result in an error.

The syntax for close() function is,

file_handler.close()

For example,

 1. >>> file_handler = open("moon.txt","r")
 2. >>> file_handler.close()

You should call file_handler.close() to close the file. This immediately frees up any system
resources used by it ➁. If you do not explicitly close a file, Python’s garbage collector will
eventually destroy the object and close the opened file for you, but the file may have stayed
open for a while. Another risk is that different Python implementations will do this clean-
up at different times.

236 Introduction to Python Programming

If an exception occurs while performing some operation on the file, then the code exits
without closing the file. In order to overcome this problem, you should use a try-except-
finally block to handle exceptions. For example,

 1. try:
 2. f = open("file", "w")
 3. try:
 4. f.write('Hello World!')
 5. finally:
 6. f.close()
 7. except IOError:
 8. print('oops!')

You should not be writing to the file in the finally block, as any exceptions raised
there will not be caught by the except block. The except block executes if there is an
exception raised by the try block ➂–➃. The finally block always executes regardless of
whatever happens. The use of the return statement in the except block will not skip the
finally block. By its very nature, the finally block cannot be skipped no matter what;
that is why you want to put your “clean-up” code in there (i.e., closing files) ➄–➅. So,
even if there is an exception ➆–➇, the above code will make sure your file gets appro-
priately closed.

Program 9.1: Write Python Program to Read and Print Each Line in "egypt. txt" file.
Sample Content of "egypt.txt" File is Given Below.

 1. def read_file():
 2. file_handler = open("egypt.txt")
 3. print("Printing each line in the text file")
 4. for each_line in file_handler:
 5. print(each_line)
 6. file_handler.close()
 7. def main():
 8. read_file()
 9. if __name__ == "__main__":
 10. main()

Output

Printing each line in the text file
Ancient Egypt was an ancient civilization of eastern North Africa, concentrated along
the lower reaches of the Nile River.

237Files

The civilization coalesced around 3150 BC with the political unification of Upper and
Lower Egypt under the first pharaoh.

Ancient Egypt reached its pinnacle during the New Kingdom, after which it entered a
period of slow decline.

In the read_file() function ➀ definition, you open the file egypt.txt and assign the file object
to the file_handler ➁. By default, the file is opened in read only mode as no mode is speci-
fied explicitly. Use a for loop to iterate over file_handler and print the lines ➃–➄. Once the
file processing operation is over, close the file_handler ➅. In the output, notice a blank space
between each line of the file. Understand that at the end of each line, a newline character
(\n) is present which is invisible and it indicates the end of the line. The print() function by
default always appends a newline character. This means that if you want to print data that
already ends in a newline, we get two newlines, resulting in a blank space between the
lines. In order to overcome this problem, pass an end argument to the print() function and
initialize it with an empty string (with no spaces). The end argument should always be a
string. The value of end argument is printed after the thing you want to print. By default,
the end argument contains a newline (“\n”) but it can be changed to something else, like
an empty string. This means that instead of the usual behavior of placing a newline char-
acter after the end of the line by the print() function, you can now change it to print an
empty string after each line. So, changing line ➄ as print(each_line, end="") removes the
blank spaces between the lines in the output.

9.2.3 Use of with Statements to Open and Close Files

Instead of using try-except-finally blocks to handle file opening and closing opera-
tions, a much cleaner way of doing this in Python is using the with statement. You
can use a with statement in Python such that you do not have to close the file handler
object.

The syntax of the with statement for the file I/O is,

with open (file, mode) as file_handler:
Statement_1
Statement_2

.

.

.
Statement_N

Keyword

Keyword

In the syntax, the words with and as are keywords and the with keyword is followed by
the open() function and ends with a colon. The as keyword acts like an alias and is used to
assign the returning object from the open() function to a new variable file_handler. The with
statement creates a context manager and it will automatically close the file handler object
for you when you are done with it, even if an exception is raised on the way, and thus
properly managing the resources.

238 Introduction to Python Programming

Program 9.2: Program to Read and Print Each Line in "japan.txt" File Using
with Statement. Sample Content of "japan.txt" File is Given Below.

 1. def read_file():
 2. print("Printing each line in text file")
 3. with open("japan.txt") as file_handler:
 4. for each_line in file_handler:
 5. print(each_line, end="")
 6. def main():
 7. read_file()
 8. if __name__ == "__main__":
 9. main()

Output

Printing each line in text file
National Treasures of Japan are the most precious of Japan's Tangible Cultural Properties.
A Tangible Cultural Property is considered to be of historic or artistic value, classified either as
"buildings and structures", or as "fine arts and crafts".

Using a with statement is also much shorter than writing an equivalent try-except-
finally block. The with statement automatically closes the file after executing its block of
statements ➂. You can read the contents of the file japan.txt line-by-line using a for loop
without running out of memory ➃. This is both efficient and fast.

You can also use a with statement to open more than one file. For example,

 1. with open(in_filename) as in_file, open(out_filename, 'w') as out_file:
 2. for line in in_file:

 .
 .
 .

 3. out_file.write(parsed_line)

 The protocol, such as a class consisting of the __enter__() and __exit__()
methods, is known as the "context management protocol," and the object
that implements that protocol is known as the "context manager." The
evaluation of the with statement results in an object called a "context man-
ager" that supports the "context management protocol". The __enter__()
method is executed when the control enters the code block inside the
with statement block context. It returns an object that can be used within
the context. When the control leaves the with block context, then the __
exit__() method is called to clean up any resources being used. Thus, the
resources are allocated and deallocated when the program requires it.

239Files

In the above code snippet, in_file and out_file are the file handlers ➀. The with statement in
Python is used to open one file for reading ➁ and another file for writing ➂.

9.2.4 File Object Attributes

When the Python open() function is called, it returns a file object called a file handler. Using
this file handler, you can retrieve information about various file attributes (TABLE 9.2).

For example,

 1. >>> file_handler = open("computer.txt", "w")
 2. >>> print(f"File Name is {file_handler.name}")

 File Name is computer.txt
 3. >>> print(f"File State is {file_handler.closed}")

 File State is False
 4. >>> print(f"File Opening Mode is {file_handler.mode}")

 File Opening Mode is w
 Various file attribute operations are shown in ➀–➃

9.3 File Methods to Read and Write Data

When you use the open() function a file object is created. Here is the list of methods that can
be called on this object (TABLE 9.3).

TABLE 9.2

List of File Attributes

Attribute Description

file_handler.closed It returns a Boolean True if the file is closed or False otherwise.
file_handler.mode It returns the access mode with which the file was opened.
file_handler.name It returns the name of the file.

TABLE 9.3

List of Methods Associated with the File Object

Method Syntax Description

read() file_handler.
read([size])

This method is used to read the contents of a file up to a size and return
it as a string. The argument size is optional, and, if it is not specified,
then the entire contents of the file will be read and returned.

readline() file_handler.readline() This method is used to read a single line in file.
readlines() file_handler.readlines() This method is used to read all the lines of a file as list items.
write() file_handler.

write(string)
This method will write the contents of the string to the file, returning
the number of characters written. If you want to start a new line,
you must include the new line character.

(Continued)

240 Introduction to Python Programming

For example,

 1. >>> f = open("example.txt", "w")
 2. >>> f.write("abcdefgh")

 8
 3. >>> f.close()
 4. >>> f = open("example.txt")
 5. >>> print(f.read(2))

 ab
 6. >>> print(f.read(2))

 cd
 7. >>> print(f.read(2))

 ef
 8. >>> print(f.read(2))

 gh

In the above code, the size argument is specified in the read() method. In statement ➄, the
first two characters are read. In statement ➅, next two characters are read. This goes on
until the end of the file is reached depending on the size of the argument ➆–➇.

Program 9.3: Write Python Program to Read "rome.txt" File Using
read() Method. Sample Content of "rome.txt" File is Given Below

 1. def main():
 2. with open("rome.txt") as file_handler:
 3. print("Print entire file contents")

Method Syntax Description

writelines() file_handler.
writelines(sequence)

This method will write a sequence of strings to the file.

tell() file_handler.tell() This method returns an integer giving the file handler’s current position
within the file, measured in bytes from the beginning of the file.

seek() file_handler.
seek(offset,
from_what)

This method is used to change the file handler’s position. The
position is computed from adding offset to a reference point. The
reference point is selected by the from_what argument. A from_what
value of 0 measures from the beginning of the file, 1 uses the current
file position, and 2 uses the end of the file as the reference point. If
the from_what argument is omitted, then a default value of 0 is used,
indicating that the beginning of the file itself is the reference point.

TABLE 9.3 (Continued)

List of Methods Associated with File Object

241Files

 4. print(file_handler.read(), end=" ")
 5. if __name__ == "__main__":
 6. main()

Output

Print entire file contents
Ancient Rome was a civilization which began on the Italian Peninsula in the 8th century BC.
The Roman Emperors were monarchial rulers of the Roman State.
The Emperor was supreme ruler of Rome.
Rome remained a republic.

The file named rome.txt is opened using with statement. Even if there are any errors the file
handler is closed and the resources are deallocated ➁. Above program prints the contents
of the entire file ➃. If you replace the line in ➃ as print(file_handler.read(13), end=““) then it
prints the first 13 characters. Output will be

Ancient Rome
The file name either should be given in as an absolute path if the file is in a different loca-
tion, or in the relative path if the file is in the same directory as the python source file.

Program 9.4: Consider the "rome.txt" File Specified in Program 9.3. Write
Python Program to Read "rome.txt" file Using readline() Method

 1. def main():
 2. with open("rome.txt") as file_handler:
 3. print("Print a single line from the file")
 4. print(file_handler.readline(), end="")
 5. print("Print another single line from the file")
 6. print(file_handler.readline(), end="")
 7. if __name__ == "__main__":
 8. main()

Output

Print a single line from the file
Ancient Rome was a civilization which began on the Italian Peninsula in the 8th century
BC.
Print another single line from the file
The Roman Emperors were monarchial rulers of the Roman State.

The file_handler.readline() method reads a single line from the file ➂–➅. If the file_handler.
readline() returns an empty string, the end of the file has been reached.

242 Introduction to Python Programming

Program 9.5: Consider the "rome.txt" File Specified in Program 9.3. Write
Python Program to Read "rome.txt" File Using readlines() Method

 1. def main():
 2. with open("rome.txt") as file_handler:
 3. print("Print file contents as a list")
 4. print(file_handler.readlines())
 5. if __name__ == "__main__":
 6. main()

Output

['Ancient Rome was a civilization which began on the Italian Peninsula in the 8th century
BC.\n', 'The Roman Emperors were monarchial rulers of the Roman State.\n', 'The Emperor
was supreme ruler of Rome.\n', 'Rome remained a republic.']

The readline() method returns a list of strings with each line being a list item ➃. A newline
character (\n) is left at the end of each string item of the list indicating that the end of the
line has been reached. It is only omitted on the last line of the file if the file does not end
in a newline character.

The following code demonstrates the write() method.

 1. >>> file_handler = open("moon.txt","w")
 2. >>> file_handler.write("Moon is a natural satellite")

 27
 3. >>> file_handler.close()
 4. >>> file_handler = open("moon.txt", "a+")
 5. >>> file_handler.write("of the earth")

 12
 6. >>> file_handler.close()
 7. >>> file_handler = open("moon.txt")
 8. >>> file_handler.read()

 'Moon is a natural satelliteof the earth'
 9. >>> file_handler.close()
 10. >>> file_handler = open("moon.txt","w")
 11. >>> file_handler.writelines(["Moon is a natural satellite", " ", "of the earth"])
 12. >>> file_handler.close()
 13. >>> file_handler = open("moon.txt")
 14. >>> file_handler.read()

 'Moon is a natural satellite of the earth'
 15. >>> file_handler.close()

The file moon.txt is opened in write mode ➀. If the file is not present, then the file is created.
The write() method is used to write the string to the moon.txt file using the file_handler
object ➁. This statement returns the number of characters written. Once the file_handler

243Files

is closed, you cannot write anymore contents to the file ➂. To append data to the existing
file, open it with a+ mode ➃. If you try to open the file in w+ mode, then the contents of
the file are overwritten. Read the contents of the file using the read() ➇ method, and close
the handler after completing file operations ➈. Observe that in the output of line ➇ there is
no space between the words satellite and of. If you have a sequence of strings, then you can
write them all using the writelines() method. The writelines(sequence) expects a list, or tuple,
or string as an argument. Each item contained in the list or tuple should be a string .

The seek() method is used to set the file handler’s current position. Never forget that when
managing files, there’ll always be a position inside that file where you are currently work-
ing on. When you open a file, that position is the beginning of the file, but as you work with
it, you may advance. The seek() method will be useful to you when you need to work with
that open file.

For example,

 1. >>> f = open('workfile', 'w')
 2. >>> f.write('0123456789abcdef')

 16
 3. >>> f.close()
 4. >>> f = open('workfile', 'r')
 5. >>> f.seek(5)

 5
 6. >>> f.read()

 '56789abcdef'

The workfile file is opened in 'w' mode ➀ and some contents are written ➁ and the file han-
dler is closed ➂. The same file is again opened in 'r' mode ➃. The file handler starts reading
from the 6th character ➄, but counting starts from 0th character. It returns the character of
the latest position from where the file handler will start to read.

 1. >>> f = open('workfile', 'w')
 2. >>> f.write('0123456789abcdef')

 16
 3. >>> f.close()
 4. >>> f = open('workfile', 'rb+')
 5. >>> f.seek(2)

 2
 6. >>> f.seek(2, 1)

 4
 7. >>> f.read()

 b'456789abcdef'
 8. >>> f.seek(-3, 2)

 13
 9. >>> f.read()

 b'def'

244 Introduction to Python Programming

In the above code, the file is opened in 'rb+' mode. In text files, those opened without a
b in the mode string, only allow seeks relative to the beginning of the file (the exception
being seeking to the end of the file with seek(0, 2)). Thus, statements in ➅ and ➇ only
work if they are opened in binary mode. Statement ➄ moves the file handler to read
from the 3rd character. Statement ➅ moves the file handler further by two characters
starting from the current position. Statement ➇ moves the file handler to the 3rd char-
acter before the end.

The tell() method returns the file handler’s current position. For example,

 1. >>> f = open('workfile', 'w')
 2. >>> f.write('0123456789abcdef')

 16
 3. >>> f.close()
 4. >>> f = open('workfile')
 5. >>> s1 = f.read(2)
 6. >>> print(s1)

 01
 7. >>> f.tell()

 2
 8. >>> s2 = f.read(3)
 9. >>> print(s2)

 234
 10. >>> f.tell()

 5

Carriage return means to return to the beginning of the current line without advancing
downward. The name comes from a printer’s carriage, as monitors were rare when the
name was coined. This is commonly escaped as "\r" and abbreviated as CR.

Linefeed means to advance downward to the next line; however, it has been repurposed
and renamed and used as “newline”. This is commonly escaped as "\n" and abbreviated
LF or NL. CRLF (but not CRNL) is used for the pair "\r\n".

The most common difference (and probably the only one worth worrying about) is lines
ending with CRLF in Windows and NL in Linux. In Windows, tell() can return illegal val-
ues when reading files with Linux-style line-endings. The tell() method returns an integer
giving the file handler’s current position in the file. Use binary mode ("rb") to circumvent
this problem. From statement ➄, the read() method returns the first two characters of the
text ➅. The tell() method says that the file handler is currently at the 2nd position ➆. From
statement ➇, the read() method returns the next three characters of the text ➈. The tell()
method says that the file handler is currently at 5th position ➉.

Program 9.6: Consider "Sample_Program.py" Python file. Write Python program
to remove the comment character from all the lines in a given Python source
file. Sample content of "Sample_Program.py" Python file is given below

245Files

 1. def main():
 2. with open("Sample_Program.py") as file_handler:
 3. for each_row in file_handler:
 4. each_row = each_row.replace("#", "")
 5. print(each_row, end="")
 6. if __name__ == "__main__":
 7. main()

Output

print("This is a sample program")
print("Python is a very versatile language")

Use a for loop to traverse ➂ through each row over the file handler ➁. Since each row is a
string, use the replace() function to replace the character "#" with nothing, i.e., ""(without
blanks) ➃. Then print each row ➄.

Program 9.7: Write Python Program to Reverse Each Word in "secret_societies.txt" file.
Sample Content of "secret_societies.txt" is Given Below

 1. def main():
 2. reversed_word_list = []
 3. with open("secret_societies.txt") as file_handler:
 4. for each_row in file_handler:
 5. word_list = each_row.rstrip().split(" ")
 6. for each_word in word_list:
 7. reversed_word_list.append(each_word[::-1])
 8. print(" ".join(reversed_word_list))
 9. reversed_word_list.clear()
 10. if __name__ == "__main__":
 11. main()

Output

terceS seiteicoS
snosameerF itanimullI
snaicurcisoR grebredliB sthginK ralpmeT

Define reversed_word_list as an empty list ➁. Use a for loop to traverse through each row
➃ over the file handler ➂. For each row, use the rstrip() function to remove trailing white
spaces and split the text to a list of words ➄. Again, traverse through this list of words ➅.
Reverse each word using each_word[::-1] and append the reversed word to reversed_word_
list ➆. Join all the reversed words in the list with a space in between them and print it ➇.
Then clear the reversed_word_list to make way for a new list of reversed words ➈.

246 Introduction to Python Programming

Program 9.8: Write Python Program to Count the Occurrences of Each Word
and Also Count the Number of Words in a "quotes.txt" File. Sample
Content of "quotes.txt" File is Given Below

 1. def main():
 2. occurrence_of_words = dict()
 3. total_words = 0
 4. with open("quotes.txt") as file_handler:
 5. for each_row in file_handler:
 6. words = each_row.rstrip().split()
 7. total_words += len(words)
 8. for each_word in words:
 9. occurrence_of_words[each_word] = occurrence_of_words.get(each_word, 0) + 1
 10. print("The number of times each word appears in a sentence is")
 11. print(occurrence_of_words)
 12. print(f"Total number of words in the file are {total_words}")
 13. if __name__ == "__main__":
 14. main()

Output

The number of times each word appears in a sentence is
{'Happiness': 1, 'is': 2, 'the': 1, 'longing': 1, 'for': 2, 'repetition. ': 1, 'Artificial': 1, 'intelligence': 1,
'no': 1, 'match': 1, 'natural': 1, 'stupidity. ': 1}
Total number of words in the file are 14

Define occurrence_of_words as dictionary ➁ and initialize total_words variable to zero ➂.
Use a for loop to traverse through each row over the file handler ➄. For each row, use
rstrip() function to remove trailing white spaces and split the text to a list of words ➅.
Calculate the length of the word list for each row and add it to total_words ➆. Get the
occurrence of each word in terms of key:value, where “key” is the word and “value” is the
number of times the word has occurred and assign it to occurrence_of_words ➇–➈. Finally,
print the results ➉– .

Program 9.9: Write Python Program to Find the Longest Word in a File. Get the File
Name from User. (Assume User Enters the File Name as "animals.txt" and its
Sample Contents are as Below)

247Files

 1. def read_file(file_name):
 2. with open(file_name) as file_handler:
 3. longest_word = ""
 4. for each_row in file_handler:
 5. word_list = each_row.rstrip().split()
 6. for each_word in word_list:
 7. if len(each_word) > len(longest_word):
 8. longest_word = each_word
 9. print(f"The longest word in the file is {longest_word}")
 10. def main():
 11. file_name = input("Enter file name: ")
 12. read_file(file_name)
 13. if __name__ == "__main__":
 14. main()

Output

Enter file name: animals.txt
The longest word in the file is Rhinocerose

A user enters a file name , which should include an absolute path if the file is not pres-
ent in the same directory where the Python source file is saved. Initially, the variable
 longest_word is initialized to an empty the string ➂. Use a for loop to traverse through each
row over the file handler ➃. For each row, use rstrip() function to remove the trailing white
spaces and split the text to a list of words ➄. Loop through the word_list using an iterating
variable each_word ➅. Check whether the length of each_word is greater than the length of
longest_word ➆. If True, then assign that word to the longest_word variable ➇. Repeat this for
each word. Finally, print the longest word ➈.

9.4 Reading and Writing Binary Files

We can usually tell whether a file is binary or text based on its file extension. This is because
by convention the extension reflects the file format, and it is ultimately the file format that
dictates whether the file data is binary or text. The string 'b' appended to the mode opens
the file in binary mode and now the data is read and written in the form of bytes objects.
This mode should be used for all files that don’t contain text. Files opened in binary mode
(including 'b' in the mode argument) return contents as bytes objects without any decoding.

Program 9.10: Write Python Program to Create a New Image from an Existing Image

 1. def main():
 2. with open("rose.jpg", "rb") as existing_image, open("new_rose.jpg", "wb") as

new_image:

248 Introduction to Python Programming

 3. for each_line_bytes in existing_image:
 4. new_image.write(each_line_bytes)
 5. if __name__ == "__main__":
 6. main()

In the above program, two open() functions are used. One to read binary data ("rb" mode)
and the other to write binary data ("wb" mode) ➁. Use a for loop to iterate through each
line of bytes in the existing_image handler ➂ and write those line of bytes using new_image
handler ➃. This behind-the-scenes modification to file data is fine for text files but will cor-
rupt binary data like that in JPEG or EXE files. Be very careful and use binary mode when
reading and writing such files.

Program 9.11: Consider a File Called "workfile". Write Python Program to Read and
Print Each Byte in the Binary File

 1. def main():
 2. with open("workfile", "wb") as f:
 3. f.write(b'abcdef')
 4. with open("workfile", "rb") as f:
 5. byte = f.read(1)
 6. print("Print each byte in the file")
 7. while byte:
 8. print(byte)
 9. byte = f.read(1)
 10. if __name__ == "__main__":
 11. main()

Output

Print each byte in the file
b'a'
b'b'
b'c'
b'd'
b'e'
b'f'

Write byte strings to workfile file using "wb" mode ➁–➂. Again, open the file in "rb"
mode ➃. Read the first byte and assign it to a byte variable ➄. Use a while loop to traverse
through each byte in the file ➆. Read one byte at a time one after another ➈ and print it ➇.

Let’s understand bytes in detail. Consider the code below.

 1. >>> print(b'Hello')
 b'Hello'

 2. >>> type(b'Hello')
 <class 'bytes'>

249Files

 3. >>> for i in b'Hello':
 ... print(i)
 72
 101
 108
 108
 111

 4. >>> bytes(3)
 b'\x00\x00\x00'

 5. >>> bytes([70])
 b'F'

 6. >>> bytes([72, 101, 108, 108, 111])
 b'Hello'

 7. >>> print(b'\x61')
 b'a'

 8. >>> bytes('Hi', 'utf-8')
 b'Hi'

b'Hello' is a byte string literal ➀. Bytes literals are always prefixed with 'b' or 'B' and they
produce an instance of the bytes type instead of the str type ➁. Python makes a clear dis-
tinction between str and bytes types.

The syntax for bytes() class method is,

bytes(source[, encoding])

where the source is used to create a bytes object. It can be an integer or a string.
The bytes() class method returns a new bytes object. While bytes literals and representations

are based on ASCII text, bytes objects actually behave like immutable sequences of integers,
with each value in the sequence ranging from 0 to 255 ➂. A zero-filled bytes object with a
specified length is created as shown in ➃. You can construct a bytes object from a sequence
of list items whose values are integers in the range of 0 to 255 ➄–➅. Having a value outside
the range of 0 to 255 causes a ValueError exception. The bytes object with a numeric value of
128 or greater is expressed as an escape sequences ➆. If the source is a string, then the
 encoding of the source has to be specified. In ➇, the encoding type specified is 'utf-8' and it is
used to encode a str to bytes object.

9.5 The Pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more effort since
the read() method only returns strings that will have to be passed to a function like int(),
which takes a string like '123' and returns its numeric value 123. However, when you want
to save more complex data types like lists, dictionaries, or class instances, things get a lot
more complicated.

250 Introduction to Python Programming

Rather than having the users to constantly write and debug the code to save complicated
data types, Python provides a standard module called pickle. This is an amazing module
that can take almost any Python object and convert it to a string representation; this pro-
cess is called pickling. Reconstructing the object from the string representation is called
unpickling. Between pickling and unpickling, the string representing the object may have
been stored in a file or data or sent over a network connection to some distant machine.

If you have an object x and a file object f, which has been opened for writing, the simplest
way to pickle the object is,

pickle.dump(x, f)

The dump() method writes a pickled representation of object x to the open file object f.

If f is a file object, which has been opened for reading, then the simplest way to unpickle
the object is,

x = pickle.load(f)

The load() method reads a pickled object representation from the open file object f and
return the reconstituted object hierarchy specified therein.

Pickling is the standard way to make Python objects that can be stored and reused by
other programs or by a future invocation of the same program; the technical term for this
is “a persistent object.” Because pickle is so widely used, many authors who write Python
extensions must ensure that all data types are properly pickled and unpickled.

Program 9.12: Write Python Program to Save Dictionary in Python Pickle

 1. import pickle
 2. def main():
 3. bbt = {'cooper': 'sheldon'}
 4. with open('filename.pickle', 'wb') as handle:
 5. pickle.dump(bbt, handle)
 6. with open('filename.pickle', 'rb') as handle:
 7. bbt = pickle.load(handle)
 8. print(f"Unpickling {bbt}")
 9. if __name__ == "__main__":
 10. main()

Output

Unpickling {'cooper': 'sheldon'}

Pickling is the process whereby a Python object hierarchy is converted into a byte stream
➃, and unpickling is the inverse operation, whereby a byte stream (from a binary file or
bytes-like object) ➅ is converted back into an object hierarchy. You have to import a pickle
module ➀. In this program, the dictionary key:value pair ➂ is saved in a Python pickle.
Pickling is done using the dump() method ➄ to which you are passing the dictionary name
and file object as arguments, and unpickling is done using the load() method ➆ to which
you have to pass the file object.

251Files

9.6 Reading and Writing CSV Files

CSV (Comma Separated Values) format is the most common import and export format for
spreadsheets and databases. Since a comma is used to separate the values, this file format
is aptly named Comma Separated Values. Consider the "contacts.csv" file, which when
opened in a text editor, the CSV file looks like this (FIGURE 9.3):

Columns are separated with commas, and rows are separated by line breaks or the invisible
“\n” character. However, the last value is not followed by a comma. Opened in Excel, our
example CSV file "contacts.csv" looks like this (FIGURE 9.4):

CSV files have .csv extensions. Because a CSV is essentially a text file, it is easy to write data
to one with Python. Some advantages of CSV files are:

• It is in a human-readable format and is easier to edit manually.
• It is simple to generate, parse and handle.
• It is having a small footprint and is compact.
• It is a standard format and is supported by many applications.

Some of the characteristics of the CSV format are:

• Each record (also called as row) is located on a separate line, delimited by a line
break (CRLF). For example:

 ppp,qqq,rrr CRLF
 xxx,yyy,zzz CRLF

FIGURE 9.4
CSV file "contacts.csv" opened in Microsoft Excel.

FIGURE 9.3
CSV file "contacts.csv" opened in notepad.

252 Introduction to Python Programming

• A line break may or may not be present at the end of the last record in a file.
For example,

 ppp,qqq,rrr CRLF
 xxx,yyy,zzz

• An optional header line may appear as the first line of the file with the same format
as normal record lines. This header will contain names that give a meaningful repre-
sentation of the fields in the file and should contain the same number of fields as the
records in the rest of the file. A record can be divided into fields. Each record consists
of several fields and the fields of all the records form the columns. For example,

 field_name, field_name, field_name CRLF
 ppp,qqq,rrr CRLF
 xxx,yyy,zzz CRLF

• Commas are used to separate the fields in each record. Each line should contain the
same number of fields throughout the file. Spaces are considered to be part of a field and
should not be ignored. A comma must not follow the last field in the record. For example,

 ppp,qqq,rrr

• Double quotes may or may not be used to enclose each field; however, some programs,
such as Microsoft Excel, do not use double quotes at all. If fields are not enclosed with
double quotes, then the double quotes may not appear inside the fields. For example,

 "ppp","qqq","rrr" CRLF

 xxx,yyy,zzz

• If the fields are enclosed within double quotes, then a double quote appearing inside
a field must be escaped by preceding it with another double quote. For example,

 "ppp","q""qq","rrr"

When working with CSV files in Python, there is a built-in module called csv. The csv
module implements classes to read and write data in CSV format. It allows programmers
to say, “write this data in the format preferred by Excel,” or “read data from this file, which
was generated by Excel,” without knowing the precise details of the CSV format used
by Excel. Programmers can also describe the CSV formats understood by other applica-
tions or define their own special-purpose CSV formats. The csv module’s reader and writer
objects read and write sequences.

To read from a CSV file use csv.reader() method. The syntax is,

csv.reader(csvfile)

where csv is the module name and csvfile is the file object. This method returns a csv reader
object, which will iterate over lines in the given csvfile. If csvfile is a file object, it should be
opened with newline = ' '.

To write to a CSV file, use the csv.writer() method. The syntax is,

csv.writer(csvfile)

where csv is the module name and csvfile is the file object. This method returns a csv writer
object responsible for converting the user’s data into comma separated strings on the given
file-like object.

253Files

The syntax for writerow() method is,

csvwriter.writerow(row)

where the csvwriter is the object returned by the writer() method and writerow() method
will write the row argument to the writer() method’s file object. A row must be an iterable
of strings or numbers for writer objects, and a dictionary mapping fieldnames to strings or
numbers (by passing them through str() first) for DictWriter objects.

The syntax for writerows() method is,

csvwriter.writerows(rows)

Here, the writerows() method will write all the rows argument (a list of row objects) to the
writer() method’s file object.

Programmers can also read and write data in dictionary format using the DictReader and
DictWriter classes, which makes the data much easier to work with. Interacting with your
data in this way is much more natural for most Python applications and will be easier to
integrate it into your code thanks to the familiarity of dictionaries.

The syntax for DictReader is,

class csv. DictReader(f, fieldnames=None, restkey = None)

This creates an object that operates like a regular reader but maps the information in each
row to an OrderedDict (prior to Python 3.6 version) or regular dictionary (in Python 3.6 and
above versions), whose keys are given by the optional fieldnames argument. An OrderedDict
is a dictionary that remembers the order that keys were first inserted. The optional field-
names keyword argument is a sequence. If fieldnames is omitted, the values in the first row
of file f will be used as the fieldnames. If a row has more fields than the fieldnames, then the
remaining data is put in a list and stored with the fieldname specified by restkey keyword
argument (which by default is None). If a non-blank row has fewer fields than fieldnames,
the missing values are filled-in with None.

The syntax for DictWriter is,

class csv. DictWriter(f, fieldnames, extrasaction=‘raise’)

This creates an object that operates like a regular writer but maps dictionaries onto output
rows. The fieldnames parameter is a sequence of keys that identify the order in which values
in the dictionary passed to the writerow() method and are written to file f. If the dictionary
passed to the writerow() method contains a key not found in fieldnames, then the optional
extrasaction argument indicates what action to take. If it is set to ‘raise’, the default value, a
ValueError is raised. If it is set to ‘ignore’, extra values in the dictionary are ignored. Note that
unlike the DictReader class, the fieldnames argument of the DictWriter class is not optional.

Program 9.13: Write Python program to read and display each row in
"biostats.csv" CSV file. Sample content of "biostats.csv" is given below.

254 Introduction to Python Programming

 1. import csv
 2. def main():
 3. with open('biostats.csv', newline='') as csvfile:
 4. csv_reader = csv.reader(csvfile)
 5. print("Print each row in CSV file")
 6. for each_row in csv_reader:
 7. print(",".join(each_row))
 8. if __name__ == "__main__":
 9. main()

Output

Print each row in CSV file
Name, "Sex", "Age", "Height (in)", "Weight (lbs)"
Alex, "M", 41, 74, 170
Bert, "M", 42, 68, 166
Elly, "F", 30, 66, 124
Fran, "F", 33, 66, 115

You must import a csv module ➀. In this code, open biostats.csv file as csvfile file handler
object ➂, and then use the csv.reader() method to extract the data into the csv_reader reader
object ➃, which you can then iterate over to retrieve each line in csv file ➅. You have to
pass csvfile file handler object as an argument to csv.reader() method. Here, each_row is a
list with string items, which are joined with a comma (‘,’) between them. Print each line ➆.

Program 9.14: Write Python program to read and display rows in "employees.csv" CSV file
that start with employee name "Jerry". Sample content of "employees.csv" is given below

 1. import csv
 2. def main():
 3. with open('employees.csv', newline='') as csvfile:
 4. csv_reader = csv.reader(csvfile)
 5. print("Print rows in CSV file that start with employee name 'Jerry'")
 6. for each_row in csv_reader:
 7. if each_row[0] == "Jerry":
 8. print(",".join(each_row))
 9. if __name__ == "__main__":
 10. main()

255Files

Output

Print rows in CSV file that start with employee name 'Jerry'
Jerry,Male,1/10/2004,12:56 PM,95734,19.096,false,Client Services
Jerry,Male,3/4/2005,1:00 PM,138705,9.34,true,Finance

All the employee names are in the first column of the employees.csv file. In the code, each_row
is a list of strings ➅. Use an if condition to check whether the first item in the list of strings
is equal to “Jerry” ➆. If True, then print that line by joining all the items in the list with a
comma between them ➇.

Program 9.15: Write Python program to write the data given below to a CSV file.
Category,Winner,Film,Year
Best Picture,Doug Mitchell and George Miller,Mad Max: Fury Road,2015
Visual Effects,Richard Stammers,X-Men:Days of Future Past,2014
Best Picture,Martin Scorsese and Leonardo DiCaprio,The Wolf of Wall Street,2013
Music(Original Song),Adele Adkins and Paul Epworth,Skyfall from Skyfall,2012

 1. import csv
 2. def main():
 3. csv_header_name = ['Category', 'Winner', 'Film', 'Year']
 4. each_row = [['Best Picture', 'Doug Mitchell and George Miller', 'Mad Max: Fury

Road', '2015'],
 ['Visual Effects', 'Richard Stammers', 'X - Men: Days of Future Past', '2014'],
 ['Best Picture', 'Martin Scorsese and Leonardo DiCaprio', 'The Wolf of Wall

Street', 2013'],
 ['Music(Original Song)', 'Adele Adkins and Paul Epworth', 'Skyfall from

Skyfall', '2012']]
 5. with open('oscars.csv', 'w', newline='') as csvfile:
 6. csv_writer = csv.writer(csvfile)
 7. csv_writer.writerow(csv_header_name)
 8. csv_writer.writerows(each_row)
 9. if __name__ == "__main__":
 10. main()

Output

Import csv module ➀. The csv_header_name is a list containing all the fieldnames ➂, and
each_row is a nested list consisting of values for each field names in a row ➃. The oscars.
csv file is opened in write mode ➄. When you have a set of data that you want to store in a

256 Introduction to Python Programming

CSV file, use the writer() method. The writer() method returns an object suitable for writing.
The file object csvfile is passed as an argument to the csv.writer() and this method returns
a csv_writer object ➅. Then the writerow() method of csv_writer object is invoked to write
csv_header_name fieldnames to the CSV file ➆. This will be the first row. Use the writerows()
method of csv_writer object to write multiple rows at once to CSV file ➇.

Program 9.16: Write Python Program to Read Data from ''pokemon.csv'' csv
File Using DictReader. Sample Content of ''pokemon.csv'' is Given Below

 1. import csv
 2. def main():
 3. with open('pokemon.csv', newline='') as csvfile:
 4. reader = csv.DictReader(csvfile)
 5. for row in reader:
 6. print(f"{row['Pokemon']}, {row['Type']}")
 7. if __name__ == "__main__":
 8. main()

Output

Bulbasaur, Grass
Charizard, Fire
Squirtle, Water
Pikachu, Electric
Rapidash, Fire

The first row in this CSV file pokemon.csv contains the fieldnames (Pokemon and Type),
which provide a label for each column of data. The rows in this file contain pairs of values
separated by a comma. These labels are optional but tend to be very helpful, especially
when you have to actually look at this data yourself. You can loop through each row of
the reader object ➄ but notice how you can now access each row’s columns by their label ➅,
which in this case is Pokemon and Type.

Program 9.17: Write Python program to demonstrate the writing of data
to a CSV file using DictWriter class

 1. import csv
 2. def main():
 3. with open('names.csv', 'w', newline='') as csvfile:
 4. field_names = ['first_name', 'last_name']

257Files

 5. writer = csv.DictWriter(csvfile, fieldnames=field_names)
 6. writer.writeheader()
 7. writer.writerow({'first_name': 'Baked', 'last_name': 'Beans'})
 8. writer.writerow({'first_name': 'Lovely', 'last_name': 'Spam'})
 9. writer.writerow({'first_name': 'Wonderful', 'last_name': 'Spam'})
 10. if __name__ == "__main__":
 11. main()

Output

You can also create a CSV file using dictionaries. Here in the code, the CSV file names.csv
is opened in ‘w’ mode and csvfile is the CSV file object ➂. A field_names list is created with
first_name and last_name as items ➃. For the DictWriter, the csvfile file object is passed as the
first argument and the field_names list is assigned to fieldnames keyword argument ⑤. Here
in the code, a dictionary with first_name and last_name fields as keys are created. The writer
object uses writeheader() and writerow() methods to write the data to names.csv file. The
writeheader() method writes a row with the fieldnames ➅, then values for each fieldnames
in the row are written using the writerow() method ➆–➈.

9.7 Python os and os.path Modules

Python os module provides a portable way of using operating system dependent func-
tionality. For accessing the filesystems, use the os module. If you want to manipulate
paths, use the os.path module. Python os.path works in a strange way. It looks like os
should be a package with a submodule path, but, in reality, os is a normal module that
does magic with sys.modules to inject os.path. Here’s what happens. When Python starts
up, it loads a bunch of modules into sys.modules. They are not bound to any names in
your script, but you can access the already-created modules when you import them.
The sys.modules is a dict in which modules are cached. When you import a module, if it
already has been imported somewhere, it gets the instance stored in sys.modules. The os
is among the modules that are loaded when Python starts up. It assigns its path attribute
to an os-specific path module. It injects sys.modules[‘os.path’] = path so that you are able to
do “import os.path” as though it was a submodule. Think of os.path as a module that you
want to use rather than a thing in the os module. Therefore, even though it is not really
a submodule of a package called os, you import it sort of like it is one, and always do
import os.path.

Various methods of the os module are shown in TABLE 9.4.

258 Introduction to Python Programming

Various methods of the os.path module are shown in TABLE 9.5.

(Continued)

TABLE 9.4

Various Methods of os Module

Methods Syntax Description

chdir() os.chdir(path) This method changes the current working directory to path.
getcwd() os.getcwd() This method returns a string representing the current working

directory.
mkdir() os.mkdir(path) This method creates the directory named path. If the directory

already exists, FileExistsError is raised.
remove() os.remove(path) This method removes (deletes) the file path. If the path is a directory,

OSError is raised. Use rmdir() to remove directories. In Windows,
attempting to remove a file that is in use causes an exception to be
raised; in Linux, the directory entry is removed but the storage
allocated to the file is not made available until the original file is
no longer in use.

rmdir() os.rmdir(path) This method removes (deletes) the directory path. It only works
when the directory is empty, otherwise, OSError is raised.

walk() os.walk(top,
topdown=True)

This method generates the file names in a directory tree by walking
the tree either top-down or bottom-up. For each directory in the
tree rooted at directory top (including top itself), it yields a 3-tuple
(dirpath, dirnames, filenames). The dirpath is a string, the path to
the directory. The dirnames is a list of the names of the
subdirectories in dirpath (excluding ‘.’ and ‘..’). The filenames is a
list of the names of the non-directory files in dirpath. Note that the
names in the lists contain no path components. To get a full path
(which begins with top) to a file or directory in dirpath, do os.path.
join(dirpath, name).

rename() os.rename(old_name,
new_name)

This method is used to rename the file from old_name to new_name.

listdir() os.listdir(path=‘.’) This method returns a list containing the names of the entries in the
directory given by path. The list is in arbitrary order and does not
include the special entries ‘.’ and ‘..’ even if they are present in the
directory.

Note: The path argument can be passed as either strings or bytes.

TABLE 9.5

Various Methods of os.path Module

Methods Syntax Description

join() os.path.join(path, *paths) This method is used to join one or more path components
intelligently. The return value is the concatenation of path and any
members of *paths with exactly one directory.

exists() os.path.exists(path) This method returns True if path refers to an existing path else returns
False for broken links.

isfile() os.path.isfile(path) This method returns True if path is an existing regular file.
isdir() os.path.isdir(path) This method returns True if path is an existing directory.
getmtime() os.path.getmtime(path) This method returns the time of last modification of path.
abspath() os.path.abspath(path) This method returns a normalized absolutized version of the

pathname path.

259Files

For example, consider the file structure is shown below (FIGURE 9.5).

 1. >>> import os
 2. >>> os.getcwd()

 'C:\\Python_OS_Demo'
 3. >>> os.rename("NLP.csv", "Data_Mining.csv")
 4. >>> os.remove("Data_Mining")
 5. >>> os.mkdir("Data_Science")
 6. >>> os.chdir("Data_Science")
 7. >>> os.getcwd()

 'C:\\Python_OS_Demo\\Data_Science'
 8. >>> os.mkdir("Machine_Learning")
 9. >>> os.rmdir("Machine_Learning")

TABLE 9.5 (Continued)

Various Methods of os.path Module

Methods Syntax Description

path.isabs() os.path.isabs(path) This method returns True if path is an absolute pathname.
relpath() os.path.relpath(path,

start=os.curdir)
This method returns a relative filepath to path either from the current
directory or from an optional start directory.

dirname() os.path.dirname(path) This method returns the directory name of the pathname path.
basename() os.path.basename(path) This method returns the base name of pathname path.
split() os.path.split(path) This method splits the pathname path into a pair, (head, tail) where

the tail is the last pathname component and the head is everything
leading up to that. The tail part will never contain a slash; if path
ends in a slash, the tail will be empty. If there is no slash in the path,
the head will be empty. If the path is empty, both head and tail are
empty.

splitext() os.path.splitext(path) This method splits the pathname path into a pair (root, ext) such that
root + ext == path where ext begins with a period and contains at
most one period and root is everything leading up to that.

getsize() os.path.getsize(path) This method returns the size, in bytes, of path.

Note: The path argument can be passed as either strings or bytes.

FIGURE 9.5
File Structure to demonstrate os and os.path modules.

260 Introduction to Python Programming

Demonstration of various methods of the os module ➀–➈.

 1. >>> os.path.join("C:\\Python_OS_Demo", "Data_Science")
 'C:\\Python_OS_Demo\\Data_Science'

 2. >>> os.path.abspath("Big_Data.docx")
 'C:\\Python_OS_Demo\\Big_Data.docx'

 3. >>> os.path.getsize("Big_Data.docx")
 12820

 4. >>> os.listdir("C:\Python_OS_Demo")
 ['Data_Mining.csv', 'Data_Science', 'Big_Data.docx']

 5. >>> os.path.split("C:\Python_OS_Demo\Data_Science\Deep_Learning.txt")
 ('C:\\Python_OS_Demo\\Data_Science', 'Deep_Learning.txt')

 6. >>> os.path.splitext("C:\Python_OS_Demo\Data_Science\Deep_Learning.txt")
 ('C:\\Python_OS_Demo\\Data_Science\\Deep_Learning ', '.txt')

 7. >>> os.path.basename("C:\Python_OS_Demo\Data_Science")
 'Data_Science'

 8. >>> os.path.dirname("C:\Python_OS_Demo\Data_Science\Deep_Learning.txt")
 'C:\\Python_OS_Demo\\Data_Science'

 9. >>> os.path.relpath("C:\Python_OS_Demo\Data_Science")
 'Data_Science'

 10. >>> os.chdir(c:\\Thisdirectorydoesnotexist")
 File "<stdin>", line 1
 os.chdir(c:\\Thisdirectorydoesnotexist")
 ^
 SyntaxError: invalid syntax

Demonstration of various methods of the os.path module ➀–➉.

Program 9.18: Consider the File Structure Given Below. Write Python Program
to Delete All the Files and Subdirectories from the Extinct_Animals Directory

 1. import os
 2. def delete_files_recursively(directory_path):
 3. for root, dirs, files in os.walk(directory_path):
 4. for file in files:
 5. file_path = os.path.join(root, file)
 6. try:
 7. print(f"{file_path} is deleted")
 8. os.remove(file_path)

261Files

 9. except Exception as e:
 10. print(e)
 11. def main():
 12. directory_path = input('Enter the directory path from which you want to delete

files recursively ')
 13. delete_files_recursively(directory_path)
 14. if __name__ == "__main__":
 15. main()

Output

Enter the directory path from which you want to delete files recursively C:\Extinct_Animals
C:\Extinct_Animals\Africa\Koala_Lemur.txt is deleted
C:\Extinct_Animals\Africa\Asia\Bonin_Thrush.rtf is deleted

The function delete_files_recursively() deletes all the files from a directory and also from
its subdirectories ➁. The user enters the path for the directory from which files need to be
deleted recursively, and the file name is passed as an argument to the delete_files_ recursively()
function – . Use a for loop with the walk() method to walk through all the subdirectories
and files of the user-entered directory. Here, root is a string variable, while dirs and files are
list variables. In the initial run, the value of root is C:\\Extinct_Animals, and list dirs has
['Africa'] as the item and is the only subdirectory found under Extinct_Animals directory.
Since there are no files in the Extinct_Animals directory, list files is an empty list. In the
second run, the value of root is 'C:\\Extinct_Animals\\Africa', list dirs has ['Asia'] item as
Asia, which is the only subdirectory under Africa and list files has ['Bonin_Thrush.rtf'] item.
Loop through the files list and get the absolute path for the file Bonin_Thrush.rtf using join()
method which in this case is 'C:\\Extinct_Animals\\Africa\\Bonin_Thrush.rtf'. Delete that
file. In the next run, the value of root is 'C:\\Extinct_Animals\\Africa\\Asia' and dirs is an
empty list as there are no subdirectories under Asia. The files list has ['Koala_Lemur.txt']
item. Get the complete path for the file using join() method and delete that file ➂–➇.

9.8 Summary

• Python supports two basic file types, namely text files and binary files.
• File objects can be used to read/write data to/from files. You can open a file with

mode 'r' for reading, 'w' for writing, and 'a' for appending.
• The read(), readline(), and readlines() methods are used to read data from a file.
• The write() and writes() methods are used to write data to a file.
• The file object should be closed after the file is processed to ensure that the content

is saved properly.
• The dictionary data can be read and written to a CSV file using DictReader() and

DictWriter() classes.
• The os Module methods are used to perform some important processing on files.

262 Introduction to Python Programming

Multiple Choice Questions

 1. Consider a file named rome.txt, then the statement used to open a file for reading,
we use

 a. infile = open("c:\rome.txt", "r")
 b. infile = open("c:\\rome.txt", "r")
 c. infile = open(file = "c:\rome.txt", "r")
 d. infile = open(file = "c:\\rome.txt", "r")
 2. Suppose there is a file named rome.txt, then the statement used to open a file for

writing, we use
 a. outfile = open("c:\rome.txt", "w")
 b. outfile = open("c:\\rome.txt", "w")
 c. outfile = open(file = "c:\rome.txt", "w")
 d. outfile = open(file = "c:\\rome.txt", "w")
 3. Presume a file named rome.txt, then the statement used for appending data is
 a. outfile = open("c:\rome.txt", "a")
 b. outfile = open("c:\\rome.txt", "rw")
 c. outfile = open(file = "c:\rome.txt", "w")
 d. outfile = open(file = "c:\\rome.txt", "w")
 4. Which of the following statements are true?
 a. When you open a file for reading in ‘r’ mode, if the file does not exist, an error

occurs
 b. When you open a file for writing in ‘w’ mode, if the file does not exist, a new

file is created
 c. When you open a file for writing in ‘w’ mode, if the file exists, the existing file

is overwritten with the new file
 d. All of the mentioned
 5. The code snippet to read two characters from a file object infile is
 a. infile.read(2)
 b. infile.read()
 c. infile.readline()
 d. infile.readlines()
 6. If you want to read the entire contents of the file using file object infile then
 a. infile.read(2)
 b. infile.read()
 c. infile.readline()
 d. infile.readlines()

263Files

 7. Predict the output of the following code:
 for i in range(5):
 with open("data.txt", "w") as f:
 if i > 0:
 break
 print(f.closed)
 a. True
 b. False
 c. None
 d. Error
 8. The syntax to write to a CSV file is
 a. CSV.DictWriter(filehandler)
 b. CSV.reader(filehandler)
 c. CSV.writer(filehandler)
 d. CSV.write(filehandler)
 9. Which of the following is not a valid mode to open a file
 a. ab
 b. r+
 c. w+
 d. rw
 10. The readline() method returns
 a. str
 b. a list of lines
 c. a list of single characters
 d. a list of integers
 11. Which of the following is not a valid attribute of the file object file_handler
 a. file_handler.size
 b. file_handler.name
 c. file_handler.closed
 d. file_handler.mode
 12. Chose a keyword that is not an attribute of a file.
 a. closed
 b. softspace
 c. rename
 d. mode

264 Introduction to Python Programming

 13. The functionality of tell() method in Python is
 a. tells you the current position within the file
 b. tells you the end position within the file
 c. tells you the file is opened or not
 d. None of the above
 14. The syntax for renaming of a file is
 a. rename(current_file_name, new_file_name)
 b. rename(new_file_name, current_file_name,)
 c. rename(()(current_file_name, new_file_name))
 d. None of the above
 15. To remove a file, the syntax used is,
 a. remove(file_name)
 b. (new_file_name, current_file_name,)
 c. remove((), file_name))
 d. None of the above
 16. An absolute path name begins at the
 a. leaf
 b. stem
 c. root
 d. current directory
 17. The functionality of seek() function is
 a. sets the file’s current position at the offset
 b. sets the file’s previous position at the offset
 c. sets the file’s current position within the file
 d. None of the above
 18. What is unpickling?
 a. It is used for object de- serialization
 b. It is used for object serialization
 c. It is used for synchronization
 d. It is used for converting an object to its string representation
 19. Which of the following are basic I/O connections in the file?
 a. Standard Input
 b. Standard Output
 c. Standard errors
 d. All of the above

265Files

 20. The mode that is used to refer to binary data is
 a. r
 b. w
 c. +
 d. b
 21. File type is represented by its
 a. file name
 b. file extension
 c. file identifier
 d. file variable
 22. The method that returns the time of last modification of the file is
 a. getmtime()
 b. gettime()
 c. time()
 d. localtime()
 23. Pickling is used for?
 a. object deserialization
 b. object serialization
 c. synchronization
 d. converting string representation to object

Review Questions

 1. Define file and explain the different types of files.
 2. Explain the different file mode operations with examples.
 3. Describe with an example how to read and write to a text file.
 4. Explain with an example how to read and write a binary file.
 5. Illustrate with an example how to read and write a csv file.
 6. Describe all the methods available in the os module.
 7. Write a program that prompts the user to enter a text file, reads words from the

file, and displays all the non-duplicate words in ascending order.
 8. Write a program to get the file size of a plain text file.
 9. Write a program that prompts the user to enter a text filename and displays the

number of vowels and consonants in the file.

266 Introduction to Python Programming

 10. Write a program to read the first n lines of a file. Prompt the user to enter the value
for n.

 11. Write a program that reads the contents of the file and counts the occurrences of
each letter. Prompt the user to enter the filename.

 12. Write a program to read the last n lines of a file. Prompt the user to enter the
value for n.

 13. Write a program to combine each line from the first file with the corresponding
line in the second file.

 14. Write a program to remove newline characters from a file.
 15. Write a program to read the random line from a file.
 16. Write a program to read and write the contents from one csv file to another.

267

10
Regular Expression Operations

Regular expressions, also called REs, or regexes, or regex patterns, provide a power-
ful way to search and manipulate strings. Regular expressions are essentially a tiny,
highly specialized programming language embedded inside Python and made avail-
able through the re module. Regular expressions use a sequence of characters and sym-
bols to define a pattern of text. Such a pattern is used to locate a chunk of text in a string
by matching up the pattern against the characters in the string. Regular expressions are
useful for finding phone numbers, email addresses, dates, and any other data that has
a consistent format.

10.1 Using Special Characters

A regular expression pattern is composed of simple characters, such as abc, or a combi-
nation of simple and special characters, such as ab*c. Simple patterns are constructed of
characters for which you want to find a text match. For example, the pattern abc matches
character combinations in strings only when the characters "abc" occur together and
exactly in that order. Such a match would succeed in the strings: "Hi, do you know your
abc's?" and "The latest airplane designs evolved from slabcraft." In both the cases, the
match is with the substring "abc". There is no match in the string "Grab crab" because,
while it contains the substring "ab c", it does not contain the exact substring "abc".

AIM

Comprehend the rules to construct regular expressions, and apply them to text to
search for patterns and make changes.

LEARNING OUTCOMES

After completing this chapter, you should be able to

• Create regular expressions that match text patterns.
• Apply regular expressions to text using methods from re module.
• Illustrate the use of metacharacters in building regular expressions.
• Discover commonly used operations involving regular expressions.
• Understand how to use regular expressions for text searching or string

replacement.

268 Introduction to Python Programming

Some characters are metacharacters, also called as special characters, and don’t match
themselves. Instead, they signal that some out-of-the-ordinary thing should be matched,
or they affect other portions of the regular expressions by repeating them or changing their
meaning. When the search for a match requires something more than a direct match, such
as finding one or more b's or finding white space, the pattern includes special characters.
For example, the pattern ab*c matches any character combination in which a single "a" is
followed by zero or more 'b's (* means 0 or more occurrences of the preceding item) and
then immediately followed by "c". In the string "cbbabbbbcdebc," the pattern matches the
substring "abbbbc".

Below you will find a complete list and description of the special characters that can be
used in regular expressions.

Special Character → [xyz]
Description → Square brackets are used to indicate a set of characters. The square

brackets [] are used for specifying a character class, also called a “character set,”
which is a set of characters that you wish to match. Place the characters you
want to match between square brackets. This pattern type matches any one of
the characters in the brackets, including escape sequences. Special characters
like the dot(.) and asterisk (*) are not special inside a character set, so they do not
need to be escaped. Characters can be listed individually, or a range of characters
can be indicated by giving two characters and separating them by a hyphen (-).

Example → The pattern [abc] will match any one of the characters a, b, or c; this is the
same as [a-c], which uses a range to express the same set of characters. The pattern
[akm$] will match any of the characters 'a', 'k', 'm', or '$'. The character '$' is usually
a special character, but inside a character class it is stripped of its special nature.
The pattern [a-d], which performs the same match as [abcd], matches the 'b' in
"brisket" and the 'c' in "city".

Special Character → . (a period)
Description → Matches any single character except newline '\n'.
Example → The pattern .n matches the substrings 'an' and 'on' in the string "nay, an

apple is on the tree", but not 'nay'.

Special Character → ^
Description → Matches the start of the string and, in multiline mode, also matches

immediately after each newline.
Example → The pattern ̂ A does not match the character 'A' in the string "an A" but does

match the character 'A' in the string "An E". You can match the characters not listed
within the class by complementing the character set. That is, if the first character
of the character set is '̂ ', all the characters that are not in the character set will be
matched. The character '̂ ' has no special meaning if it’s not the first character in the
character set. You can specify a range of characters by using a hyphen. Everything
that works in the normal character set also works here. For example, the pattern
[̂ abc] is the same as [̂ a-c] pattern. They initially match the character 'r' in the string
"brisket" and the character 'h' in the string "chop."

269Regular Expression Operations

Special Character → $
Description → Matches the end of the string or just before the newline at the end of

the string.
Example → The pattern t$ does not match the character 't' in the string "eater" but

does match it in the string "eat".

Special Character → *
Description → Matches the preceding expression 0 or more times.
Example → The pattern bo* matches the substring 'boooo' in the string "A ghost

booooed" and matches the character 'b' in the string "A bird warbled" but nothing
in the string "A goat grunted".

Special Character → +
Description → Matches the preceding expression 1 or more times.
Example → The pattern a+ matches the character 'a' in the string "candy" and all the

a's in "caaaaaaandy", but nothing in "cndy".

Special Character → ?
Description → Matches the preceding expression 0 or 1 time.
Example → The pattern e?le? matches the substring 'el' in the string "angel" and

matches the substring 'le' in the string "angle" and also the character 'l' in the string
"oslo". If used immediately after any of the special characters *, +, or {}, makes
the special character non-greedy (matching the fewest possible characters), as
opposed to the default, which is greedy (matching as many characters as pos-
sible). For example, applying the pattern \d+ to the string "123abc" matches the
substring "123". But applying the pattern \d+? to that same string matches only
the character "1".

Special Character → \d
Description → Matches any decimal digit [0-9]
Example → The pattern \d or [0-9] matches the character '2' in the string "B2 is the

suite number."

Special Character → \D
Description → Matches any non-digit character. Equivalent to [̂ 0-9].
Example → The pattern \D or [̂ 0-9] matches the character 'B' in the string "B2 is the

suite number."

Special Character → \w
Description → Matches a "word" character and it can be a letter or digit or underscore.

It is equivalent to [a-zA-Z0-9_]. Note that although "word" is the mnemonic for
this, it only matches a single word character, not a whole word.

270 Introduction to Python Programming

Example → The pattern \w matches the character 'a' in the string "apple", the character '5'
in the string "$5.28" and the character '3' in the string "3D."

Special Character → \W
Description → Matches any non-word character. Equivalent to [̂ A-Za-z0-9_].
Example → The pattern \W or [̂ A-Za-z0-9_] matches the character '%' in the string "50%."

Special Character → \s
Description → Matches a single whitespace character including space, newline, tab,

form feed. Equivalent to [\n\t\f].
Example → The pattern \s\w* matches the substring 'bar' in the string "foo bar."

Special Character → \S
Description → Matches any non-whitespace character. Equivalent to [̂ \n\t\f].
Example → The pattern \S* matches the substring 'foo' in the string "foo bar."

Special Character → \b
Description → Matches a word boundary.
There are three different positions that qualify as word boundaries when the special

character \b is placed:

• Before the first character in the string and if the first character in the string is a
word character.

• After the last character in the string and if the last character in the string is a word
character.

• Between two characters in the string, where one is a word character in the string
and the other is not a word character.

The special character \b allows you to perform a search of a complete word using a
regular expression in the form of \bword\b; it won’t match when it is contained inside
another word. Note that a word is defined as a sequence of word characters. The
\b special character matches the empty string, but only at the beginning or end of a word.

Example → The pattern \bm matches the character 'm' in the string "moon".
The pattern oo\b does not match the substring 'oo' in the string "moon", because the

substring 'oo' is followed by 'n' which is a word character.
The pattern oon\b matches the substring 'oon' in the string "moon", because 'oon' is

the end of the string, thus not followed by a word character.
The pattern \bfoo\b matches the string 'foo', 'foo.', '(foo)', 'bar foo baz' but not 'foobar'

or 'foo3'.
The pattern \w\b\w will never match anything because \b character can never be

preceded and followed by a word character.

Special Character → \B
Description → Matches a non-word boundary. This matches the following cases when

the special character \B is placed:

271Regular Expression Operations

• Before the first character of the word and if the first character is not a word character.
• After the last character of the word and if the last character is not a word character.
• Between two-word characters
• Between two non-word characters

The beginning and end of a string are considered non-word characters. The '\B'
special character matches an empty string, only when it is not at the beginning or
end of the word.

Example → The pattern \B.. matches the substring 'oo' in "noonday", and the pattern
y\B. matches the substring 'ye' in the string "possibly yesterday."

Special Character → \
Description → Matches according to the following rules: A backslash that precedes a

non-special character indicates that the next character is special and is not to be
interpreted literally. A backslash that precedes a special character indicates that
the next character is not special and should be interpreted literally.

Example → The pattern 'b' without a preceding '\' generally matches lowercase 'b's
wherever they occur. But a '\b' by itself does not match any character; it forms the
special word boundary character.

The pattern a* relies on the special character '*' to match 0 or more a's. By contrast,
the pattern a* removes the specialness of the '*' to enable matches with strings
like 'a*'.

Special Character → {m, n}
Description → Where m and n are positive integers and m <= n. Matches at least m

and at most n occurrences of the preceding expression. If n is omitted, i.e. {m,},
then it matches at least m occurrences of the preceding expression. Here m must
be a positive integer.

Example → The pattern a{1,3} matches nothing in the string "cndy", but matches the
character 'a' in the string "candy". The pattern a{1,3} matches the first two a's in
the string "caandy," and the first three a's in the string "caaaaaaandy". Notice that
when matching "caaaaaaandy", the match is "aaa", even though the original string
had more a's in it. The pattern a{2,} will match substrings "aa", "aaa", "aaaa", "aaaaa",
"aaaaaa", "aaaaaaa" but not "a".

Special Character → {m}
Description → Matches exactly m occurrences of the preceding expression. Here m

must be a positive integer.
Example → The pattern a{2} doesn't match the character 'a' in the string "candy," but

it does match all of the a's in the string "caandy," and the first two a's in the string
"caaandy."

Special Character → |
Description → A | B Matches 'A', or 'B' (if there is no match for 'A'), where A and B are

regular expressions.

272 Introduction to Python Programming

Example → The pattern green|red matches the substring 'green' in the string "green
apple" and matches the substring 'red' in the string "red apple." The order of 'A' and
'B' matters. For example, the pattern a*|b matches the empty string in the string
"b", the pattern but b|a* matches character "b" in the same string.

[Adapted with kind permission from MDN https://developer.mozilla.org/.]

10.1.1 Using r Prefix for Regular Expressions

Consider the regular expression, r'̂ $'. This regular expression matches an empty line.
The '̂ ' indicates the start of a line, and the '$' indicates the end of a line. Having nothing
between the special characters '̂ ' and '$', therefore, matches an empty line.

The 'r' prefix tells Python that the expression is a raw string and are handy in regular
expressions. In a raw string, escape sequences are not parsed. For example, '\n' is a single
newline character. But, r'\n' would be two characters: a backslash and an 'n'. Using an
expression like r'[\w]' instead of '[\\w]' results in easier to read expressions.

10.1.2 Using Parentheses in Regular Expressions

Special Character → (….)
Description → Matches whatever regular expression pattern is inside the parentheses

and causes that part of the matched substring to be remembered. Once remem-
bered, the substring can be recalled for other use. Parts of a regular expression
pattern bounded by parentheses are called groups, and they contain the matched
substring. The parentheses are also called as capturing parentheses or capturing
group. Parentheses indicate the start '(' and end ')' of a group. Based on the number
of parentheses used in a regular expression, the number of groups are created. If
your regular expression contains a single pair of parentheses (one capturing group),
you only get one group in your match. If there are two pairs of parentheses, then
there will be two groups in your match, and so on. If you use a repetition operator
on a capturing group (+ or *), the group gets “overwritten” each time the group
is repeated, meaning that only the last match is captured. The contents of a group
can be retrieved after a match has been performed. Groups are numbered starting
from 0, for example, group(0) … up to group(99). To match the literals '(' or ')', use
\(or \), or enclose them inside a character class: [(], [)].

Parenthesis not only group substrings but they create backreferences as well.
A backreference in a regular expression identifies a previously matched and
remembered group and allows you to specify its contents i.e., backreference
matches a substring already found in a group. You simply add a backslash
character and the number of the group to match again. For example, to find the
 content matched by the first group in a regular expression, you would include,
"\1" in your regular expression pattern. Always represent backreferences as raw
strings in regular expressions.

Example → The pattern Chapter (\d+)\.\d* illustrates additional escaped and spe-
cial characters and indicates that part of the pattern should be remembered. It
matches precisely the characters 'Chapter ' followed by a space, followed by one or

https://developer.mozilla.org/

273Regular Expression Operations

more numeric characters (\d means any numeric character and + means 1 or more
times), followed by a decimal point (which in itself is a special character; preceding
the decimal point with \ means the pattern must look for the literal character '.'),
followed by any numeric character 0 or more times (\d means numeric character,
* means 0 or more times). In addition, parentheses are used to remember the first
matched numeric characters.

This pattern is found in the string "Open Chapter 4.3, paragraph 6" where '4' is
remembered. The pattern is not found in the string "Chapters 3 and 4", because
that string does not have a period after the '3'.

To match a substring without causing the matched part to be remembered, within
the parentheses preface the pattern with ?:. For example, (?:\d+) matches one or
more numeric characters but does not remember the matched characters.

10.2 Regular Expression Methods

Now that we have looked at some simple regular expressions, how do we actually use
them in Python? In Python, methods to use and apply regular expressions can be accessed
by importing the re module. The re module provides an interface to the Python regular
expression engine.

10.2.1 Compiling Regular Expressions Using compile() Method of re Module

Regular expressions can be compiled into a pattern object, which has methods for various
operations such as searching for pattern matches, finding all pattern matches or perform-
ing string substitutions. When you have to use the same regular expression again and
again on different strings, then it is an excellent idea to construct a regular expression as a
Python object. This can be accomplished through the use of the re.compile() method.

re.compile(pattern[,flags])

where pattern is the regular expression and the optional flags argument is used to enable
various special features and syntax variations. For example, specifying the flags re.A
enables ASCII-only matching, re.I enables case-insensitive matching; expressions like
[A-Z] will also match lowercase letters and re.M enables “multi-line matching.” When
re.M flag is enabled, the meaning of '^' and '$' changes. The special character '^' matches
at the beginning of the string and also at the beginning of each line (immediately fol-
lowing each newline); and the special character '$' matches at the end of the string and
also at the end of each line (immediately preceding each newline). By default, the special
character '^' matches only at the beginning of the string, and the special character '$'
matches only at the end of the string and immediately before the newline (if any) at the
end of the string.

The compile() method returns a regular expression as a Python object, which can be used
for matching patterns by using its match(), search(), sub(), findall() and other methods
(TABLE 10.1).

274 Introduction to Python Programming

The main difference between search() and match() methods is search() method searches
anywhere in the entire string and returns a match object while the match() method matches
zero or more characters at the beginning of the string and returns a match object.

10.2.2 Match Objects

The match() and search() methods supported by a compiled regular expression object,
returns None if no match is found. If they are successful, a match object instance is returned,
containing information about the match like the substring it has matched, where the match
starts and ends and much more. Since match() and search() return None when there is no
match, you can test whether there was a match with a simple if statement as shown below.

match_object = regex_object.search(string)
if match_object:

statement_1
statement_2

.

.

.
statement_n

User defined User defined

TABLE 10.1

Methods Supported by Compiled Regular Expression Objects

Methods Syntax Description

search() regex_object.
search(string[,
pos[, endpos]])

This method scans through string looking for the first location where this
regular expression produces a match and returns a corresponding match
object. Return None if no position in the string matches the pattern.

match() regex_object.
match(string[,
pos[, endpos]])

This method returns None if the string does not match the pattern and
returns a match object if the method finds a match. This method matches
characters at the beginning of the string in accordance with the regular
expression pattern. Note that even in MULTILINE mode, the match()
method will only match at the beginning of the string and not at the
beginning of each line.

findall() regex_object.
findall(string[,
pos[, endpos]])

This method returns all non-overlapping matches of pattern in string, as a
list of strings. The string is scanned left-to-right, and matches are
returned in the order found.

If the pattern includes two or more parenthesis groups, then instead of
returning a list of strings, findall() returns a list of tuples. Each tuple
represents one match of the pattern, and inside the tuple is the group(1),
group(2)... substrings. Empty matches are included in the result.

sub() regex_object.
sub(pattern, repl,
string, count=0,
flags=0)

This method returns the string obtained by replacing the leftmost
non-overlapping occurrences of the pattern in string by the replacement
repl. If the pattern is not found, the string is returned unchanged. Any
backslash escapes in repl are processed. That is, \n is converted to a
single newline character, \r is converted to a carriage return, and so
forth. Unknown escapes such as \& are left alone. Backreferences, such
as \2, are replaced with the substring matched by group 2 in the pattern.

Note: The optional parameter pos gives an index in the string where the search is to start; it defaults to 0. The
optional parameter endpos limits how far the string will be searched.

275Regular Expression Operations

If Match object is True, then execute the statements.
Match object supports several methods and only the most significant ones are covered

in TABLE 10.2.

In order to build and use regular expressions, perform the following steps:

Step 1: Import re regular expression module.
Step 2: Compile regular expression pattern using re.compile() method. This method

returns the regular expression pattern as an object.
Step 3: Invoke an appropriate method supported by the compiled regular expres-

sion object which returns a matched object instance containing information about
matched strings.

Step 4: Call methods (group() method is appropriate for most cases) associated with
the matched object to display the results.

For example,

 1. >>> import re
 2. >>> pattern = re.compile(r'(e)g')
 3. >>> pattern

 re.compile('(e)g')
 4. >>> match_object = pattern.match('egg is nutritional food')
 5. >>> match_object

TABLE 10.2

Methods Supported by Match Object

Methods Syntax Description

group() match_object.
group([group1,...])

This method returns one or more subgroups of the match. If there is a single
argument, the result is a single string; if there are multiple arguments, the
result is a tuple with one item per argument. Without arguments,
group1 defaults to zero and whole match is returned. If a groupN
argument is zero, the corresponding return value is the entire matching
string. If it is in the inclusive range of [1…99], then it is the string matching
the corresponding parenthesized group. If a group number is negative or
the larger than the number of groups defined in the pattern, an IndexError
exception is raised. If a group is contained in a part of the pattern that did
not match, the corresponding result is None. If a group is contained in a
part of the pattern that matched multiple times, the last match is returned.

groups() match_object.
groups(default=None)

This method returns a tuple containing all the subgroups of the match, from
1 up to however many groups are in the pattern. The default argument is
used for groups that did not participate in the match; it defaults to None.

start() match_object.
start([group])

The start() method returns the index of the start and end() method returns
the index of the end of the substring matched by group. The default value of
the group is zero which means the whole matched substring is returned else
a value of -1 is returned if a group exists but did not contribute to the match.

end() match_object.
end([group])

span() match_object.
span([group])

This method returns a tuple containing the (m.start(group), m.end(group))
positions of the match.

276 Introduction to Python Programming

 <_sre. SRE_Match object; span=(0, 2), match='eg'>
 6. >>> match_object.group()

 'eg'
 7. >>> match_object.group(0)

 'eg'
 8. >>> match_object = pattern.match('brownegg is nutritional food')
 9. >>> match_object.group()
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 AttributeError: 'NoneType' object has no attribute 'group'

Import re module ➀. Compile the regular expression pattern '(e)g' which matches the
characters eg found at the beginning of a string ➁–➂. Pass the string from which you
want to extract the regular expression pattern as an argument to match() method ➃. As
you can see in the result of match_object ➄, the matched string is assigned to match. To
obtain the strings that were matched, use the group() method associated with match_
object ➅. Groups are always numbered starting with 0. Group 0 is always present and it
represents the entire result of the regular expression itself, so group() method of match
object all have 0 as their default argument ➆. In ➇, even though the string has the pat-
tern eg in it, the characters eg are not found at the beginning of the string. Thus, if you
try to use the group() method with match object then it results in an error ➈. The 'r',
at the start of the pattern string designates a Python “raw” string. It is highly recom-
mended that you make it a habit of writing pattern strings with an 'r' prefix.

 1. >>> import re
 2. >>> pattern = re.compile(r'(ab)*')
 3. >>> match_object = pattern.match('ababababab')
 4. >>> match_object.span()

 (0, 10)
 5. >>> match_object.start()

 0
 6. >>> match_object.end()
 10

In the above example, regular expression pattern (ab)* will match zero or more repetitions
of ab ➁. Pass the string from which you want to extract the regular expression pattern as
an argument to the match() method ➂. Groups indicated with '(', ')' also capture the starting
and ending index of the matched substring, and this can be retrieved using span() method ➃.
Also, the starting position of the match can be obtained by the start() method ➄ and end-
ing position of the match is obtained by the end() method ➅. Since the match() method only
checks if the regular expression matches at the start of a string, start() method will always
return zero.

277Regular Expression Operations

 1. >>> import re
 2. >>> pattern = re.compile(r'(a(b)c)d')
 3. >>> method_object = pattern.match('abcd')
 4. >>> method_object.group(0)

 'abcd'
 5. >>> method_object.group(1)

 'abc'
 6. >>> method_object.group(2)

 'b'
 7. >>> method_object.group(2,1,2)

 ('b', 'abc', 'b')
 8. >>> method_object.groups()
 ('abc', 'b')

In the above example, the regular expression pattern '(a(b)c)d' will match the string 'abcd' ➁.
Pass the string from which you want to extract the regular expression pattern as an argu-
ment to the match() method ➂. By passing an integer number argument greater than zero
to the group() method, you can also extract part of the matched expression instead of entire
expression. The group() method with integer 0 as argument returns the entire matched
text while the group() method with greater than zero as argument returns only a part of
the matched text. Each of these number arguments corresponds to specific groups. Groups
are numbered from left to right, starting from number 1. For example, group(0) returns the
entire matched string 'abcd' ➃, while group(1) returns 'abc' ➄ and group(2) returns 'b' ➅. To
determine the integer number, count the number of parentheses pairs from left to right.
Also, group() method can be passed to multiple group numbers at a time, in which case it
will return a tuple containing the corresponding values for those groups ➆. The groups()
method returns a tuple ('abc', 'b') containing all the subgroups of the match ➇.

 1. >>> import re
 2. >>> pattern = re.compile(r'\d+')
 3. >>> match_list = pattern.findall("Everybody think they're famous when they get

100000 followers on Instagram and 5000 on Twitter")
 4. >>> match_list
 ['100000', '5000']

In the above example, the regular expression pattern '\d+' will match one or more digits of
a number ➁. Pass the string from which you want to extract the regular expression pattern
as an argument to findall() method ➂. The findall() returns a list numbers ['100000', '5000'] as
strings with each string representing one match ➃.

 1. >>> import re
 2. >>> pattern = re.compile(r'([\w\.]+)@([\w\.]+)')

278 Introduction to Python Programming

 3. >>>matched_email_tuples = pattern.findall('bill_gates@microsoft.com and steve.
jobs@apple.com are visionaries')

 4. >>> print(matched_email_tuples)
 [('bill_gates', 'microsoft.com'), ('steve.jobs', 'apple.com')]

 5. >>> for each_mail in matched_email_tuples:
 6. ... print(f"User name is {each_mail[0]}")
 7. ... print(f"Domain name is {each_mail[1]}")
 User name is bill_gates
 Domain name is microsoft.com
 User name is steve.jobs
 Domain name is apple.com

In the above example, the regular expression pattern ([\w\.]+)@([\w\.]+) matches user
name and the domain name of an email ID which is to the left and right of the @ symbol.
This regular expression pattern has two pairs of parenthesis representing two groups
belonging to user name and domain name substrings. The dot (.) character is also matched
in the user name and domain name substrings ➀–➂. The findall() method returns all the
occurrences of the matching pattern as a list of tuples with each tuple having user name
and domain name as its string items matching their corresponding parenthesis groups ➃.
Iterate through each of these tuple items in the list using for loop and display user name
and domain name ➄–➆.

Including parentheses in a regular expression pattern causes the corresponding matched
group to be remembered. For example, /a(b)c/ matches the characters ‘abc’ and remembers
‘b’. To recall this matched substring group, use backreference like \1.

 1. >>> import re
 2. >>> pattern = re.compile(r'(\w+)\s(\w+)')
 3. >>> replaced_string = pattern.sub(r'\2 \1', 'Ken Thompson')
 4. >>> replaced_string
 'Thompson Ken'

In the above example, regular expression '(\w+)\s(\w+)' will match a substring followed
by a space and another substring ➁. There are two pairs of parenthesis in the above code
with each parenthesis matching a substring. The sub() method is used to switch the words
in the string. For the replacement text, use r'\2 \1' where \1 in the replacement is replaced
by a matched substring of the first group and \2 is replaced by second matched substring
of the second group ➂–➃.

 1. >>> import re
 2. >>> pattern = re.compile(r',')
 3. >>> replaced_string = pattern.sub('$', 'this, is, a, test')
 4. >>> replaced_string
 'thisisa$test'

mailto:gates@microsoft.com
mailto:jobs@apple.com

279Regular Expression Operations

In the above code, comma ',' is replaced with dollar '$' sign ➀–➃.

 1. >>> import re
 2. >>> pattern = re.compile(r'tree:\w\w\w')
 3. >>> match_object = pattern.search("Example for tree:oak")
 4. >>> if match_object:
 5. print(f"Matched string is {match_object.group()}")
 6. else:
 7. ... print("Match not found")
 Matched string is tree:oak

In the above code, the search() method searches for the pattern 'tree:' followed by a
3-letter word. The code pattern.search("Example for tree:oak") returns the search result
as an object and is assigned to match_object variable ➂. Then use if statement to test
the match_object➃. If it evaluates to Boolean True, then the search has succeeded and
the matched string is displayed using match_object.group(). Otherwise, if the match is
Boolean False (None to be more specific), then the search did not succeed, and there is no
matching string ➄–➆.

Program 10.1: Given an Input File Which Contains a List of Names and
Phone Numbers Separated by Spaces in the Following Format:
Alex 80-23425525
Emily 322-56775342
Grace 20-24564555
Anna 194-49611659
Phone Number Contains a 3- or 2-Digit Area Code and a Hyphen Followed By an
8-Digit Number.
Find All Names Having Phone Numbers with a 3-Digit Area Code Using Regular
Expressions.

 1. import re
 2. def main():
 3. pattern = re.compile(r"(\w+)\s+\d{3}-\d{8}")
 4. with open("person_details.txt", "r") as file_handler:
 5. print("Names having phone numbers with 3 digit area code")
 6. for each_line in file_handler:
 7. match_object = pattern.search(each_line)
 8. if match_object:
 9. print(match_object.group(1))
 10. if __name__ == "__main__":
 11. main()

280 Introduction to Python Programming

Output

Names having phone numbers with 3 digit area code
Emily
Anna

Here the regular expression pattern matches a string, followed by one or more spaces,
followed by 3 digits, followed by a hyphen and followed by 8 digits ➂. The matched sub-
string within the parentheses can be referenced by passing an integer number of one to
group() method. The pattern matches three digits to the left and eight digits to the right of
the hyphen. The file person_details.txt is opened in "r" mode using a with statement and the
returning object is assigned to file_handler ➃. Traverse through each_line in the file_handler
using a for loop ➅. In each line search for the pattern ➆. If the match succeeds, then recall
the first group that has the individual names ➇–➈.

Program 10.2: Write a Python Program to Check the Validity of a Password
Given by User.
The Password Should Satisfy the Following Criteria:

 1. Contain at least 1 letter between a and z

 2. Contain at least 1 number between 0 and 9

 3. Contain at least 1 letter between A and Z

 4. Contain at least 1 character from $, #, @
 5. Minimum length of password: 6

 6. Maximum length of password: 12

 1. import re
 2. def main():
 3. lower_case_pattern = re.compile(r'[a-z]')
 4. upper_case_pattern = re.compile(r'[A-Z]')
 5. number_pattern = re.compile(r'\d')
 6. special_character_pattern = re.compile(r'[$#@]')
 7. password = input("Enter a Password ")
 8. if len(password) < 6 or len(password) > 12:
 9. print("Invalid Password. Length Not Matching")
 10. elif not lower_case_pattern.search(password):
 11. print("Invalid Password. No Lower-Case Letters")
 12. elif not upper_case_pattern.search(password):
 13. print("Invalid Password. No Upper-Case Letters")
 14. elif not number_pattern.search(password):
 15. print("Invalid Password. No Numbers")
 16. elif not special_character_pattern.search(password):

281Regular Expression Operations

 17. print("Invalid Password. No Special Characters")
 18. else:
 19. print("Valid Password")
 20. if __name__ == "__main__":
 21. main()

Output

Enter a Password DrAit1980@1
Valid Password

Enter a Password NoSmoking
Invalid Password. No Numbers

Pattern r'[a-z]' checks for at least one lowercase letter between a and z ➂. Pattern r'[A-Z]'
checks for at least one uppercase letter between A and Z ➃. Pattern r'\d' checks for at least
one number between 0 and 9 ➄. Pattern r'[$#@]'checks for at least one character from $, #,
@ ➅. Password length for minimum and maximum characters is checked in ➇–➈. If all the
conditions are satisfied, then a "Valid Password" message is printed .

Program 10.3 Write Python Program to Validate U.S.-based Social Security Number

 1. import re
 2. def main():
 3. pattern = re.compile(r"\b\d{3}-?\d{2}-?\d{4}\b")
 4. match_object = pattern.search("Social Security Number for James is 916-30-2017")
 5. if match_object:
 6. print(f"Extracted Social Security Number is {match_object.group()}")
 7. else:
 8. print("No Match")
 9. if __name__ == "__main__":
 10. main()

Output

Extracted Social Security Number is 916-30-2017

A US-based Social Security number is a combination of nine numbers, in a sequence
of three numbers, two numbers, and four numbers, with or without a hyphen in
between. The question mark special character (?) matches zero or exactly one preced-
ing character and in this case it is the hyphen (-). The numbers in a Social Security
number can be matched with the digit special character (\d). To look for a set number
of digits, you can use the curly brackets surrounding the number of expected digits
➂. Pass the text to search() method from which the substring matching the pattern is
extracted ➃. If successful display the social security number else display the message
"No Match" ➄–➇.

282 Introduction to Python Programming

10.3 Named Groups in Python Regular Expressions

Regular expressions use groups to capture strings of interest. As the regular expression
becomes complex, it gets difficult to keep track of the number of groups in the regular
expression. In order to overcome this problem Python provides named groups. Instead of
referring to the groups by numbers, you can reference them by a name.

The syntax for a named group is,

(?P<name>RE)

where the first name character is ?, followed by letter P (uppercase letter) that stands for
Python Specific extension, name is the name of the group written within angle brackets,
and RE is the regular expression. Named groups behave exactly like capturing groups,
and additionally associate a name with a group. The match object methods that deal with
capturing groups all accept either integers that refer to the group by number or strings that
contain the desired group’s name.

 1. >>> import re
 2. >>> pattern = re.compile(r'(?P<word>\b\w+\b)')
 3. >>> match_object = pattern.search('laugh out loud')
 4. >>> match_object.group('word')

 'laugh'
 5. >>> match_object.group(1)
 'laugh'

In the above code, the regular expression has a group that matches the pattern of a word
boundary followed by one of more alphanumeric characters, that is, a-z, A-Z, 0-9 and _,
followed by a word boundary. The name given to this group is <word> specified within
angle brackets ➀. Pass the string from which you want to extract the pattern as an argu-
ment to the search() method ➁. By passing the group name ‘word’ as an argument to the
group() method, you can extract the matched substring ➂. This named group can still be
used to retrieve information by the passed integer numbers instead of group name ➃.

10.4 Regular Expression with glob Module

The glob module finds all the file names matching a specified pattern. Starting with Python
version 3.5, the glob module supports the "**" directive (which is parsed only if you pass
recursive flag). In earlier Python versions, glob.glob() did not list files in subdirectories
recursively.

The syntax for glob method is,

glob.glob(pathname, **, recursive=True)

The glob() method of the glob module returns a possible list of file names that match a
pathname, which must be a string containing a path specification. Here pathname can be

283Regular Expression Operations

either absolute (like C:\Anaconda\Python\Python3.6.exe) or relative (like..\..\Tools**.gif).
If recursive is True, the pattern "**" will match any files and zero or more directories and
subdirectories.

Program 10.4 Write Python Program to Change the File Extension from .txt
to .csv of All the Files (Including from Sub Directories) for a Given Path

 1. import os
 2. import glob
 3. def rename_files_recursively(directory_path):
 4. print("File extension changed from .txt to .csv")
 5. for file_path in glob.glob(directory_path + '***.txt', recursive=True):
 6. print(f"File with .txt extension {file_path} changed to", end="")
 7. try:
 8. pre, ext = os.path.splitext(file_path)
 9. print(f" File with .csv extension {pre + '.csv'}")
 10. os.rename(file_path, pre + '.csv')
 11. except Exception as e:
 12. print(e)
 13. def main():
 14. directory_path = input('Enter the directory path from which you want to convert

the files recursively ')
 15. rename_files_recursively(directory_path)
 16. if __name__ == "__main__":
 17. main()

Output

Enter the directory path from which you want to convert the files recursively C:\Animals
File extension changed from .txt to .csv
File with .txt extension C:\Animals\Mammal\whale .txt changed to File with .csv exten-
sion C:\Animals\Mammal\whale.csv
File with .txt extension C:\Animals\Mammal\Primates\apes .txt changed to File with .csv
extension C:\Animals\Mammal\Primates\apes.csv
File with .txt extension C:\Animals\Reptile\snake.txt changed to File with .csv extension
C:\Animals\Reptile\snake.csv

Consider the files whale.txt in C:\Animals\Mammal directory, apes.txt in C:\Animals\
Mammal\Primates directory and snake.txt in C:\Animals\Reptile directory. User entered
root directory ➂ is passed as an argument to glob.glob() method along with "**" and
recursive = True arguments to navigate through all the subdirectories ➄. While navigating
through the subdirectories, recognize the files having a .txt extension and change it to a .csv
extension ➅–➉.

284 Introduction to Python Programming

10.5 Summary

• The term “regular expressions” is also called regexes or regex patterns.
• The module re has to be imported to be able to work with regular expressions.
• Use the compile() method in re module to compile regular expression to match

objects.
• Use various methods like search(), match(), findall(), and sub() methods to extract

substrings matching a pattern.

Multiple Choice Questions

 1. The module that supports regular expressions is
 a. re
 b. regex
 c. pyregex
 d. strings
 2. The function that creates the pattern object is
 a. re.create(str)
 b. re.regex(str)
 c. re.compile(str)
 d. re.assemble(str)
 3. The metacharacter period(.) matches any character other than __.
 a. &
 b. ^
 c. \b
 d. \n
 4. The functionality of the regex_pattern.match()
 a. matches a pattern at the end of the string
 b. matches a pattern at the start of the string
 c. matches a pattern at any position of the string
 d. None of these
 5. The functionality of the regex_pattern.search()
 a. matches a pattern at the end of the string
 b. matches a pattern at the start of the string
 c. matches a pattern at any position of the string
 d. None of these

285Regular Expression Operations

 6. The expression wood{5,8} will match how many characters with the regular
expression?

 a. Matches the pattern from five to eight times
 b. Matches the pattern from four to seven times
 c. Matches the pattern from zero to five times
 d. None of these
 7. Which special character matches one or more specific characters?
 a. *
 b. +
 c. ?
 d. None of these
 8. Which regular expression will match the string April-4-18?
 a. [a-z]+W[0-9]+W[0-9]+
 b. ([a-zA-Z]+)\W([0-9]+)\W([0-9]+)
 c. JUL-w-w
 d. (d+|[a-zA-Z]+)[/-](d+)[/-](d+)
 9. Consider the following code.
 pattern = re.compile(r'crying')
 replaced_string = pattern.sub('smiling', 'you are crying')
 The output for above code is
 a. Crying
 b. Smiling
 c. You are crying
 d. You are smiling
 10. In the match_object.start(group) and match_object.end(group) methods, if the

argument group is not specified then it defaults to
 a. 1
 b. 0
 c. 2
 d. 3
 11. The metacharacter \s matches __ characters
 a. Word boundary
 b. Decimal digit
 c. White space
 d. Alphabets
 12. The __meta character matches zero or more repetitions of the string
 a. +
 b. ?
 c. .
 d. *

286 Introduction to Python Programming

 13. The characters __ and __ matches the start and end of the string, respectively.
 a. ^and.
 b. * and &
 c. ^ and $
 d. $ and $
 14. Consider the statement pattern = re.compile('inspiring years'). Guess the output of

the following code pattern.findall('inspiring').
 a. [years]
 b. []
 c. years
 d. [inspiring years]
 15. For the statement pattern = re.compile(r'12*'), which of the below lines of code does

not show a match?
 a. pattern.match('1')
 b. pattern.match('12')
 c. pattern.match('122')
 d. pattern.match('21')
 16. The code below validates IP address:
 pattern = re.compile(r'\b(\d{1,3})\b.\b(\d{1,3})\b.\b(\d{1,3})\b.\b(\d{1,3})\b')
 Which of the following code matches the pattern?
 a. pattern.search("123.111.123.145")
 b. pattern.search("193.123.2013.45")
 c. pattern.search("231.56.123")
 d. pattern.search("123.46.13.3454")
 17. Below code pattern validates a user name:
 pattern = re.compile(r'̂ [a-z0-9_-]{6,14}$')
 Which of the following code matches the pattern?
 a. pattern.search("Python.3.superb")
 b. pattern.search("Python.3_superb")
 c. pattern.search("python3superb")
 d. pattern.search("Python_3-superb")
 18. To remove extra spaces from the string "Lion is King of Jungle", the code used is
 a. pattern = re.compile(r'\s')

pattern.sub(" ", "Lion is King of Jungle")
 b. pattern = re.compile(r'\s+')

pattern.sub(" ", "Lion is King of Jungle")
 c. pattern = re.compile(r'\S+')

pattern.sub(" ", "Lion is King of Jungle")
 d. pattern = re.compile(r'\S)

pattern.sub(" ", "Lion is King of Jungle")

287Regular Expression Operations

 19. Consider a file 21-12-2016.zip. The regular expression pattern to extract date from
filename is

 a. ([0-9]{1}\-[0-9]{2}\-[0-9]{4})
 b. ([0-9]{2}\-[0-9]{2}\-[0-9]{4})
 c. ([0-9]{2}\-[0-9]{2}\-[0-9]{2})
 d. ([0-9]{2}\-[0-9]{1}\-[0-9]{4})
 20. Consider the string "October 31". The pattern to extract only the month in the

string is
 a. ([a-zA-Z])
 b. [a-zA-Z]+ \d+
 c. ([a-z]+) \d+
 d. ([a-zA-Z]+) \d+
 21. The Indian Aadhar number is a 12-digit unique identification number that is

assigned to an individual. The first digit should not be either 0 or 1 while the
remaining digits can be between 0 to 9 with no space or hyphen between any of
the digits. Pattern matching this criterion is

 a. [1-9]{1}[0-9]{11}
 b. [0-9]{1}[0-9]{11}
 c. [2-9]{2}[0-9]{11}
 d. [2-9]{1}[0-9]{11}
 22. When findall() method is used to apply the pattern r'\d{2, 4}' for the string '01, Jan

2015', it results in
 a. ['01', '2015']
 b. ['2015']
 c. ['01']
 d. ['012015']

Review Questions

 1. Briefly explain the importance of the raw string notation.
 2. Define regular expression and list out all the advantages of the regular expression.
 3. Describe any ten metacharacters with examples.
 4. Compare and contrast the use of match() and search() methods with an example.
 5. Briefly explain the greedy and non-greedy matching.
 6. Describe all the functions available in match objects.
 7. Write a regular expression which matches strings which starts with a sequence of

digits—at least one digit—followed by a blank and after these arbitrary characters.
 8. Write a Python program to find sequences of lower case letters joined with an

underscore.

288 Introduction to Python Programming

 9. Write a Python program that matches a word containing 'z'.
 10. Write a Python program to remove all leading zeros' from an IP address
 11. Write a Python program to search the numbers (0–9) of length between 1 to 3 in a

given string.
 12. Write a Python program to find the substrings within a string
 13. Write a Python program to extract year, month and date from an url.
 14. Write a Python program to read a file and to convert a date of yyyy-mm-dd format

to dd-mm-yyyy format.
 15. Write a Python program to abbreviate 'Street' as 'St.' in a given string.
 16. Write a Python program to find all five characters long word in a string.

289

11
Object-Oriented Programming

The basic idea of Object-oriented programming (OOP) is that we use objects to model
real-world things that we want to represent inside our programs and provide a simple
way to access their functionality that would otherwise be hard or impossible to utilize.
Large programs are challenging to write. Once a program reaches a certain size, Object-
oriented programs are actually easier to program than non-Object-oriented ones. As the
programs are not disposable, an Object-oriented program is much easier to modify and
maintain than a non-Object-oriented program. So, Object-oriented programs require less
work to maintain over time. Object-oriented programming results in code reuse, cleaner
code, better architecture, abstraction layers, and fewer programming bugs. Python pro-
vides full support for Object-oriented programming, including encapsulation, inheritance,
and polymorphism.

11.1 Classes and Objects

In a 1994 Rolling Stone interview, Steve Jobs (CEO of Apple) explains Object-oriented
 programming. His explanation still helps us understand what OOP is in simple terms.

AIM

Understand Object-oriented programming paradigm in controlling the access of
data and reducing the duplication of code by employing code reusability techniques.

LEARNING OUTCOMES

At the end of the chapter, you are expected to

• Understand and Create Objects.
• Recognize data attributes and methods for given objects.
• Use the dot notation to access data attributes and methods of an object.
• Demonstrate the implementation of instance variables, methods, and

constructors.
• Understand Encapsulation, Polymorphism and Inheritance.

290 Introduction to Python Programming

Jeff Goodell: Would you explain, in simple terms, exactly what object-oriented
software is?

Steve Jobs: Objects are like people. They are living, breathing things that have
knowledge inside them about how to do things and have memory inside them so
they can remember things. And rather than interacting with them at a very low level,
you interact with them at a very high level of abstraction, like we’re doing right here.
Here’s an example: If I’m your laundry object, you can give me your dirty clothes
and send me a message that says, “Can you get my clothes laundered, please.” I hap-
pen to know where the best laundry place in San Francisco is. And I speak English,
and I have dollars in my pockets. So, I go out and hail a taxicab and tell the driver to
take me to this place in San Francisco. I go get your clothes laundered, I jump back
in the cab, I get back here. I give you your clean clothes and say, “Here are your clean
clothes.” You have no idea how I did that. You have no knowledge of the laundry
place. Maybe you speak French, and you cannot even hail a taxi. You cannot pay for
one, you do not have dollars in your pocket. Yet I knew how to do all of that. And
you didn’t have to know any of it. All that complexity was hidden inside of me, and
we were able to interact at a very high level of abstraction. That’s what objects are.
They encapsulate complexity, and the interfaces to that complexity are high level.

[Source: https://www.rollingstone.com/culture/news/
steve-jobs-in-1994-the-rolling-stone-interview-20110117]

Let’s look at another example. In the real world, you’ll often find many individual objects
of all the same kind. There may be thousands of cars in existence, all of the same make
and model. Each of these cars were built from the same set of blueprints and, therefore,
contains the same components. In object-oriented terms, we say that each of these cars are
objects of the class known as Car.

A class is a blueprint from which individual objects are created. An object is a bundle
of related state (variables) and behavior (methods). Objects contain variables, which rep-
resents the state of information about the thing you are trying to model, and the methods
represent the behavior or functionality that you want it to have (FIGURE 11.1).

FIGURE 11.1
Generic Object Diagram.

https://www.rollingstone.com/culture/news/steve-jobs-in-1994-the-rolling-stone-interview-20110117
https://www.rollingstone.com/culture/news/steve-jobs-in-1994-the-rolling-stone-interview-20110117

291Object-Oriented Programming

NOT E: Variables refers to both Instance variables and Class variables, unless explicitly
specified.

Class objects are often used to model the real-world objects that you find in everyday
life. Objects are key to understanding object-oriented technology. Look around right now
and you’ll find many examples of real-world objects: your dog, your desk, your televi-
sion set, your bicycle. Real-world objects share two characteristics: They all have state and
behavior. Dogs have state (name, color, breed, hungry) and behavior (barking, fetching,
wagging tail). Bicycles also have state (current gear, current pedal cadence, current speed)
and behavior (changing gear, changing pedal cadence, applying brakes). Identifying the
state and behavior for real-world objects is a great way to begin thinking in terms of object-
oriented programming.

11.2 Creating Classes in Python

Related variables and methods are grouped together in classes. The simplest form of class
definition looks like this:

class ClassName:
<statement-1>

.

.

.
<statement-N>

Keyword

User Defined

Usually function
definitions

Classes are defined by using the class keyword, followed by the ClassName and a colon.
Class definitions must be executed before they have any effect. In practice, the statements
inside a class definition will usually be function definitions, but few other statements are
allowed. (We’ll discuss this later). Because these functions are indented under a class, they
are called methods. Methods are a special kind of function that is defined within a class.

Program 11.1: Program to Illustrate Class and Object Creation

 1. class Mobile:
 2. def __init__(self):
 3. print("This message is from Constructor Method")

 4. def receive_message(self):
 5. print("Receive message using Mobile")

 6. def send_message(self):

292 Introduction to Python Programming

 7. print("Send message using Mobile")

 8. def main():
 9. nokia = Mobile()
 10. nokia.receive_message()
 11. nokia.send_message()

 12. if __name__ == "__main__":
 13. main()

Output

This message is from Constructor Method
Receive message using Mobile
Send message using Mobile

Let’s define a class called Mobile ➀ that has two methods associated with it (FIGURE 11.2),
one is receive_message() ➃ and another is send_message() ➅. The first parameter in each of
these methods is the word self. When self is used, it is just a variable name to which the
object that was created based on a class is assigned. In the method definition, self doesn’t
need to be the only parameter and it can have multiple parameters. Creating the Mobile
class provided us with a blueprint for an object. Just because you have defined a class
doesn’t mean you have created any Mobile objects.

 Often, the first argument of a method is called self. This is nothing
more than a convention: the name self has absolutely no special mean-
ing to Python. However, by not following this convention, your code
may be less readable to other Python programmers.

FIGURE 11.2
Object diagram for Mobile Class with Methods only.

293Object-Oriented Programming

11.3 Creating Objects in Python

Object refers to a particular instance of a class where the object contains variables and meth-
ods defined in the class. Class objects support two kinds of operations: attribute references
and instantiation. The term attribute refers to any name (variables or methods) following a
dot. This is a syntactic construct. The act of creating an object from a class is called instantiation.

The names in a class are referenced by objects and are called attribute references. There are
two kinds of attribute references, data attributes and method attributes. Variables defined
within the methods are called instance variables and are used to store data values. New
instance variables are associated with each of the objects that are created for a class. These
instance variables are also called data attributes. Method attributes are methods inside a
class and are referenced by objects of a class. Attribute references use the standard dot
notation syntax as supported in Python.

The syntax to access data attribute is,

object_name.data_attribute_name

The syntax to assign value to data attribute is,

object_name.date_attribute_name = value

where value can be of integer, float, string types, or another object itself.

The syntax to call method attribute is,

object_name.method_attribute_name()

Valid attribute names are all the names that were inside the class when the objects for the
class was created. The connection between the attributes with the object is indicated by a
“dot” (“.”) written between them with object_name on left and attribute_name on right.
For example, in the expression z.real = 10, real is an data attribute of the object z and is
assigned a value of 10. In the expression cow.domesticated(), the domesticated() is a method
attribute of the cow object.

The syntax for Class instantiation is,

object_name = ClassName(argument_1, argument_2, ….., argument_n)

Optional

Class instantiation uses function notation, wherein the class name is followed by
parentheses () as if it were a function, nokia = Mobile(). The above expression creates a
new object for the class ClassName and assigns this object to the variable object_name.
You can specify any number of arguments during instantiation of the class object. An
object nokia ➈ for the class Mobile is created. The nokia object calls the methods receive_
message() ➉ and send_ message() using the dot operator. Calling nokia.receive_message()
and nokia.send_message() means that these methods are to be used with a nokia instance
of the class Mobile.

294 Introduction to Python Programming

You may have noticed that both of these method definitions have self as the first
parameter. This self variable can also be used inside the method bodies, but you do
not appear to pass this as an argument in the method called using the object. This is
because whenever you call a method using an object, the object itself is automatically passed
in as the first parameter to the self parameter variable. The remaining parameter variables
must be supplied as arguments in the calling method. The object nokia calls two meth-
ods in the main() function of the program, causing those methods to run. Python raises
an exception when a method that requires an argument is called without any, even if
the argument is not actually used.

11.4 The Constructor Method

Python uses a special method called a constructor method. Python allows you to define
only one constructor per class. Also known as the __init__() method, it will be the first
method definition of a class and its syntax is,

def __init__(self, parameter_1, parameter_2, …., parameter_n):
statement(s)

Keyword

Double Underscore

Double Underscore

Optional

The __init__() method defines and initializes the instance variables. It is invoked as soon
as an object of a class is instantiated ➈. The __init__() method for a newly created object is
automatically executed with all of its parameters ➁–➂. The __init__() method is indeed a
special method as other methods do not receive this treatment. The parameters for __init__()
method are initialized with the arguments that you had passed during instantiation of
the class object. Class methods that begin with a double underscore (__) are called special
methods as they have special meaning. The number of arguments during the instantiation
of the class object should be equivalent to the number of parameters in __init__() method
(excluding the self parameter).

 When you create an object for a class, it is called instance of a class.
The terms object and instance of a class are the same thing and are often
used interchangeably.

295Object-Oriented Programming

Program 11.2: Program to Illustrate Multiple Parameters in __init__() Method

 1. class Mobile:
 2. def __init__(self, name):
 3. self.mobile_name = name

 4. def receive_message(self):
 5. print(f"Receive message using {self.mobile_name} Mobile")

 6. def send_message(self):
 7. print(f"Send message using {self.mobile_name} Mobile")

 8. def main():
 9. nokia = Mobile("Nokia")
 10. nokia.receive_message()
 11. nokia.send_message()

 12. if __name__ == "__main__":
 13. main()

Output

Receive message using Nokia Mobile
Send message using Nokia Mobile

When we call the class object, a new instance of the class is created, and the __init__() method
for this new object is immediately executed with all the parameters that we passed to the
class object ➁. As the __init__() method is automatically initialized, no need to explicitly
call it, instead pass the arguments in the parentheses following the class name when you
create a new instance of the class ➈. Since self is the instance of a class, self.mobile_name =
name is equivalent to saying nokia.mobile_name = name ➂. Methods have access to all the
data attributes contained during the instance of an object. Inside the methods, you can
access and modify the values of instance variables that you had previously set on self ➃–➆.
Because they use self, they require an instance of the class in order to be used. For this rea-
son, they are also referred to as “instance methods” ➉– (FIGURE 11.3).

 After an object has been created, you should not use the object name
itself to call the __init__() constructor method directly. For example,
the expression object_name.__init__() is not recommended. The __
init__() method never returns a value.

296 Introduction to Python Programming

Program 11.3: Write Python Program to Calculate the Arc Length of an Angle by
Assigning Values to the Radius and Angle Data Attributes of the class ArcLength

 1. import math
 2. class ArcLength:
 3. def __init__(self):
 4. self.radius = 0
 5. self.angle = 0
 6. def calculate_arc_length(self):
 7. result = 2 * math.pi * self.radius * self.angle / 360
 8. print(f"Length of an Arc is {result}")
 9. al = ArcLength()
 10. al.radius = 9
 11. al.angle = 75
 12. print(f"Angle is {al.angle}")
 13. print(f"Radius is {al.radius}")
 14. al.calculate_arc_length()

 It’s a good programming practice not to introduce new data attributes
outside of the __init__() method.

FIGURE 11.3
Object diagram for Mobile class with data attributes and methods.

297Object-Oriented Programming

Output

Angle is 75
Radius is 9
Length of an Arc is 11.780972450961725

In Python, you can directly access the data attributes using objects. The data attributes ➃–➄
radius and angle are added to the __init__() method of the ArcLength class (FIGURE 11.4).
The arc length of an angle is calculated in calculate_arc_length() method ➅–➇. These data
attributes can be referenced outside the class through the al object. When the object al is
created ➈, each of the data attributes radius and angle in the __init__() method are initial-
ized to zero and the object al is passed to the self parameter, which essentially becomes al.
radius = 0 and al.angle = 0. On execution of the expressions al.radius = 9 and al.angle = 75
➉– , the values of data attributes are changed to the latest value. When the method
calculate_arc_length() is referenced through al object, the latest values are reflected for the
data attributes accessed through self ➆. It is good practice to include import statements
before defining class itself.

11.5 Classes with Multiple Objects

Multiple objects for a class can be created while attaching a unique copy of data attributes
and methods of the class to each of these objects.

Program 11.4: Program to Illustrate the Creation of Multiple Objects for a Class

 1. class Birds:
 2. def __init__(self, bird_name):
 3. self.bird_name = bird_name

 4. def flying_birds(self):
 5. print(f"{self.bird_name} flies above clouds")

 6. def non_flying_birds(self):
 7. print(f"{self.bird_name} is the national bird of Australia")

 8. def main():

Data Attributes
radius = 9
angle = 75

Method
calculate_arc_length()

Data Attributes
ArcLength ArcLength

radius = 0
angle = 0

Method
calculate_arc_length()self

al

self

al

FIGURE 11.4
Object diagram for ArcLength class.

298 Introduction to Python Programming

 9. vulture = Birds("Griffon Vulture")
 10. crane = Birds("Common Crane")
 11. emu = Birds("Emu")
 12. vulture.flying_birds()
 13. crane.flying_birds()
 14. emu.non_flying_birds()

 15. if __name__ == "__main__":
 16. main()

Output

Griffon Vulture flies above clouds
Common Crane flies above clouds
Emu is the national bird of Australia

Here, three objects, vulture, crane, and emu, are created for the Birds class ➈– . All of these
objects belong to the same class, so they have the same data attribute but different val-
ues for each of those data attributes. Objects can also have their own methods to operate
on their data attributes. A method is always invoked relative to some object of its class
➃–➆. During object instantiation, each object receives a unique copy of data attribute and
method is bundled together. This ensures that correct data attributes and methods are
used that are specific to a particular object. The self variable is initialized with the par-
ticular object of the class that is created during instantiation ➁–➂ and the parameters of
__init__() constructor is initialized with the arguments passed on to that class object ➈– .
Now we have three objects whose data attributes have different values. In this case,
vulture.flying_birds() will output “Griffon Vulture flies above clouds,” crane.flyingbirds()
will output “Common Crane flies above cloud,” and emu.non_flying_birds() will output
“Emu is the national bird of Australia” – . Notice the use of bird_name in ➁ and ➂. Even
though they have the same name, they are unique. The bird_name in __init__() method
definition header is used as a parameter while the bird_name referenced by self within the
method is an instance variable.

Program 11.5: Write Python Program to Simulate a Bank Account with Support
for depositMoney, withdrawMoney and showBalance Operations

 1. class BankAccount:
 2. def __init__(self, name):
 3. self.user_name = name
 4. self.balance = 0.0

 5. def show_balance(self):
 6. print(f"{self.user_name} has a balance of {self.balance} dollars")

299Object-Oriented Programming

 7. def withdraw_money(self, amount):
 8. if amount > self.balance:
 9. print("You don't have sufficient funds in your account")
 10. else:
 11. self.balance -= amount
 12. print(f"{self.user_name} has withdrawn an amount of {self.balance} dollars")

 13. def deposit_money(self, amount):
 14. self.balance += amount
 15. print(f"{self.user_name} has deposited an amount of {self.balance} dollars")

 16. def main():
 17. savings_account = BankAccount("Olivia")
 18. savings_account.deposit_money(1000)
 19. savings_account.show_balance()
 20. savings_account.withdraw_money(500)
 21. savings_account.show_balance()

 22. if __name__ == "__main__":
 23. main()

Output

Olivia has deposited an amount of 1000.0 dollars
Olivia has a balance of 1000.0 dollars
Olivia has withdrawn an amount of 500.0 dollars
Olivia has a balance of 500.0 dollars

In the __init__() method, two data attributes, user_name and balance, are added ➁–➃.
Also, show_balance(), withdraw_money(), and deposit_money() methods are added to the
class. The data attribute user_name is initialized with the value of name parameter while
balance data attribute is initialized to zero. This value of data attribute balance is changed
in methods. The method show_balance() displays user name and the balance user has in
his account ➄–➅. In the withdraw_money() method, the user specified amount is compared
with the existing balance. If the withdrawal amount is more than the existing balance, then
a message is displayed saying, “You don’t have sufficient funds in your account,” or else
the amount is subtracted from the balance ⑦– . In the deposit_money() method, the user
specified amount is added to the existing balance – . Using the object savings_account,
various methods are referenced . Methods withdraw_money() and deposit_money() have
amount as the parameter. This amount is either added or subtracted to the balance data
attribute. Inside the methods, the data attribute balance is referenced through self. This
shows that not only the data attributes can be accessed within the methods of the same
class, but also the values of data attributes can be manipulated.

300 Introduction to Python Programming

Program 11.6: Define a Class Called Cart that Contains Data Attributes Apples
and Oranges. Write Methods that Return Appropriate Messages If the Number of
Apples is Greater than 5 or When the Number of Oranges are Greater than 10.

 1. class Cart:
 2. def __init__(self, apples, oranges):
 3. self.apples = apples
 4. self.oranges = oranges

 5. def apple_quantity_check(self):
 6. if self.apples > 5:
 7. return 'Sufficient Quantity'
 8. else:
 9. return 'Insufficient Quantity'

 10. def orange_quantity_check(self):
 11. if self.oranges > 10:
 12. return 'Sufficient Quantity'
 13. else:
 14. return 'Insufficient Quantity'

 15. def main():
 16. fruits = Cart(3, 11)
 17. returned_apple_message = fruits.apple_quantity_check()
 18. returned_orange_message = fruits.orange_quantity_check()
 19. print(f"Apple is in {returned_apple_message}")
 20. print(f"Orange is in {returned_orange_message}")

 21. if __name__ == "__main__":
 22. main()

Output

Apple is in Insufficient Quantity
Orange is in Sufficient Quantity

The instance variables, apples and oranges, are added ➁–➃ to the Cart Class. The apple_
quantity_check() ➄–➈ and orange_quantity_check() ➉– methods check for the quantity of
apples and oranges and return a string message. Each of these methods – are refer-
enced by fruits object. In the expressions returned_apple_message = fruits.apple_ quantity_
check() and returned_orange_message = fruits.orange_quantity_check(), the left-hand side of
the assignment should have a matching number of variables to store the values returned
by the return statement from the class method. It is imperative to recognize that apples and
oranges parameter variables of __init__() method are independent of apples and oranges of
instance variables, as they exist in a different scope.

301Object-Oriented Programming

Program 11.7: Program to Demonstrate the Use of Default Parameters in Methods

 1. class Dog:
 2. def __init__(self, breed="German Shepherd", color="Tan Black"):
 3. self.breed = breed
 4. self.color = color

 5. def dog_breed(self):
 6. print(f"Dog Breed is {self.breed}")

 7. def dog_color(self):
 8. print(f"Dog Color is {self.color}")

 9. def main():
 10. babloo = Dog()
 11. babloo.dog_breed()
 12. babloo.dog_color()

 13. if __name__ == "__main__":
 14. main()

Output

Dog Breed is German Shepherd
Dog Color is Tan Black

In the Dog class ➀, the parameters of the __init__() method have default values ➁. If no
arguments are specified in Dog() ➉ while creating an instance of the class, then the default
values set for the __init__() method parameters gets assigned to instance variables ➂–➃.
If you specify arguments in Dog(), then the default values assigned to __init__() method
parameters will be overwritten with the latest values.

11.5.1 Using Objects as Arguments

An object can be passed to a calling function as an argument.

Program 11.8: Program to Demonstrate Passing of an Object as an
Argument to a Function Call

 1. class Track:
 2. def __init__(self, song, artist):
 3. self.song = song
 4. self.artist = artist

 5. def print_track_info(vocalist):

302 Introduction to Python Programming

 6. print(f"Song is '{vocalist.song}'")
 7. print(f"Artist is '{vocalist.artist}'")

 8. singer = Track("The First Time Ever I Saw Your Face", "Roberta Flack")
 9. print_track_info(singer)

Output

Song is "The First Time Ever I Saw Your Face"
Artist is "Roberta Flack"

In the class Track ➀, the __init__() method is added with the song and artist data attri-
butes ➁–➃. The print_track_info() function receives an object as parameter ➄–➆. The
object singer ➇ of Track class is passed as an argument to print_track_info() function ➈.
(Note: It is a function defined outside the class and not a method.) Since you are passing
an object of a class as an argument, you have access to all the data attributes attached
to that object.

Program 11.9: Given Three Points (x1, y1), (x2, y2) and (x3, y3), Write a Python
Program to Check If they are Collinear

 1. class Collinear:
 2. def __init__(self, x, y):
 3. self.x_coord = x
 4. self.y_coord = y

 5. def check_for_collinear(self, point_2_obj, point_3_obj):
 6. if (point_3_obj.y_coord - point_2_obj.y_coord)*(point_2_obj.x_coord -
 self.x_coord) == (point_2_obj.y_coord - self.y_coord)*(point_3_obj.x_coord -
 point_2_obj.x_coord):
 7. print("Points are Collinear")
 8. else:
 9. print("Points are not Collinear")

 10. def main():
 11. point_1 = Collinear(1, 5)
 12. point_2 = Collinear(2, 5)
 13. point_3 = Collinear(4, 6)
 14. point_1.check_for_collinear(point_2, point_3)

 15. if __name__ == "__main__":
 16. main()

Output

Points are Collinear

303Object-Oriented Programming

Three objects, point_1, point_2 and point_3, are created for Collinear class – . Each of these
objects have their own unique data attributes with their associated values. The __init__()
method has two data attributes x_coord and y_coord ➁–➃. The method check_for_ collinear()
checks whether the coordinates are collinear or not ➄–➈. The method check_for_ collinear()
takes three objects as its parameters. The method check_for_ collinear() is invoked using
point_1 object while point_2 and point_3 objects are passed as arguments. On invoking the
check_for_collinear() method, the point_1 object is assigned to self parameter, point_2 object
in argument is assigned to point_2_obj of the parameter, and point_3 object in argument is
assigned to point_3_obj of the parameter in the check_for_ collinear() method header.

When each of these objects are created, each object gets its own unique copy of data
attributes defined by that class (FIGURE 11.5). The x_coord and y_coord data attributes
for point_1 object have values of 1 and 5, the x_coord and y_coord data attributes for
point_2 object have values of 2 and 5, and the x_coord and y_coord data attributes for
point_3 object have values of 4 and 6. Three or more points A, B, C,..., are said to be collinear
if they lie on a single straight line. If the line segments AB and BC have the same slope, then
A, B, C are necessarily collinear. Collinearity for three points A(a, b), B(m, n), and C(x, y)
are checked using the formula (n – b) (x – m) = (y – n) (m – a).

11.5.2 Objects as Return Values

It is important to note that everything in Python is an object, including classes. In Python,
“everything is an object” (that is, all values are objects) because Python does not include
any primitive, unboxed values. Anything that can be used as a value (int, str, float, func-
tions, modules, etc.) is implemented as an object.

The id() function is used to find the identity of the location of the object in memory. The
syntax for id() function is,

id(object)

This function returns the “identity” of an object. This is an integer (or long integer), which
is guaranteed to be unique and constant for this object during its lifetime. Two objects
with non-overlapping lifetimes may have the same id() value.

You can check whether an object is an instance of a given class or not by using the
isinstance() function. The syntax for isinstance() function is,

Data Attributes
x_coord = 2
y_coord = 5

Method
check_for_collinear()

Data Attributes
Collinear Collinear

x_coord = 1
y_coord = 5

Method
check_for_collinear()

Data Attributes
x_coord = 4
y_coord = 6

Method
check_for_collinear()

point_1 point_2

point_3

Collinear

FIGURE 11.5
Object diagram for Collinear class with different objects.

304 Introduction to Python Programming

isinstance (object, classinfo)

where the object is an object instance and classinfo can be a class, or a tuple containing
classes, or other tuples. The isinstance() function returns a Boolean stating whether the
object is an instance or subclass of another object.

Program 11.10: Given the Coordinates (x, y) of a Center of a Circle and Its Radius,
Write Python Program to Determine Whether the Point Lies Inside the Circle,
On the Circle or Outside the Circle

 1. class Circle:
 2. def __init__(self, radius=0, circle_x=0, circle_y=0, point_x=0, point_y=0):
 3. self.radius = radius
 4. self.circle_x_coord = circle_x
 5. self.circle_y_coord = circle_y
 6. self.point_x_coord = point_x
 7. self.point_y_coord = point_y
 8. self.status = ""

 9. def check_point_status(self):
 10. if (self.point_x_coord - self.circle_x_coord) ** 2 + (self.point_y_coord - self.

circle_y_coord) ** 2 < self.radius ** 2:
 11. self.status = f"Point with coordinates {(self.point_x_coord, self.point_y_

coord)} is inside the Circle"
 12. elif (self.point_x_coord - self.circle_x_coord) ** 2 + (self.point_y_coord - self.

circle_y_coord) ** 2 > self.radius ** 2:
 13. self.status = f"Point with coordinates {(self.point_x_coord, self.point_y_

coord)} is outside the Circle"
 14. else:
 15. self.status = f"Point with coordinates {(self.point_x_coord, self.point_y_

coord)} is on the Circle"

 16. return self

 17. def main():
 18. point = Circle(10, 2, 3, 9, 9)
 19. returned_object = point.check_point_status()
 20. print(returned_object.status)
 21. print(f"Is point an instance of Circle Class? {isinstance(point, Circle)}")
 22. print(f"Is returned_object an instance of Circle Class? {isinstance(returned_

object, Circle)}")

305Object-Oriented Programming

 23. print(f"Identity of the location of a point object is {id(point)}")
 24. print(f"Identity of the location of the returned_object object is {id(returned_object)}")

 25. if __name__ == "__main__":
 26. main()

Output

Point with coordinates (9, 9) is inside the Circle
Is point an instance of Circle Class? True
Is returned_object an instance of Circle Class? True
Identity of the location of a point object is 2351304741216
Identity of the location of the returned_object object is 2351304741216

If you have a circle with the center as (center_x, center_y) and radius as radius, then you
can test if a given point with coordinates (x, y) is inside or outside, or on the circle
using the formula (x – center_x) ^ 2 + (y – center_y) ^ 2 < radius ^ 2. Please note,
the points that satisfy this equation with < operator replaced by == operator are considered
to be on the circle, and the points that satisfy this equation with < operator replaced by
> operator are considered to be outside the circle.

The point object is used to invoke check_point_status() method. This check_point_status()
method returns the self object itself ➈– . The returned_object variable is used to store the
returned object . Both point and returned_object are used to store an instance of the same
class – and they point to the same location in memory, which is why their values are
same – .

Program 11.11: Write Pythonic Program to Compute the End Time of an Opera,
While Start Time and Duration are Given

 1. class Time:
 2. def __init__(self, hours, minutes, seconds):
 3. self.hours = hours
 4. self.minutes = minutes
 5. self.seconds = seconds

 6. def add_time(self, duration):
 7. opera_hours = self.hours + duration.hours
 8. opera_minutes = self.minutes + duration.minutes
 9. opera_seconds = self.seconds + duration.seconds
 10. while opera_seconds >= 60:
 11. opera_seconds = opera_seconds – 60

306 Introduction to Python Programming

 12. opera_minutes = opera_minutes + 1
 13. while opera_minutes >= 60:
 14. opera_minutes = opera_minutes – 60
 15. opera_hours = opera_hours + 1
 16. print(f"Opera ends at {opera_hours}:{opera_minutes}:{opera_seconds}")

 17. def main():
 18. opera_start = Time(10, 30, 30)
 19. opera_duration = Time(2, 45, 50)
 20. opera_start.add_time(opera_duration)

 21. if __name__ == "__main__":
 22. main()

Output

Opera ends at 13:16:20

In the Time class ➀, three data attributes, hours, minutes and seconds, are added ➁–➄. The
add_time() method is invoked using opera_start object, while the opera_duration object is
passed as an argument – . In the add_time() method, self parameter is assigned with
the opera_start object, and duration parameter is assigned with opera_duration object. The
hours, minutes, and seconds data attributes attached to both of these objects are added and
assigned to opera_hours, opera_minutes, and opera_seconds variables. While the total dura-
tion of opera_seconds variable is greater than sixty, the decrement of opera_ seconds is done
by a value of sixty and increment opera_minutes by one. While the total duration of the
opera_ minutes variable is greater than sixty, then decrement opera_ minutes by a value of
sixty and increment the opera_hours by one. Finally, print the opera end time ➅– .

11.6 Class Attributes versus Data Attributes

Generally speaking, Data attributes are instance variables that are unique to each object of
a class, and Class attributes are class variables that is shared by all objects of a class.

Program 11.12: Program to Illustrate Class Variables and Instance Variables

 1. class Dog:
 2. kind = 'canine'
 3. def __init__(self, name):
 4. self.dog_name = name
 5. d = Dog('Fido')
 6. e = Dog('Buddy')
 7. print(f"Value for Shared Variable or Class Variable 'kind' is '{d.kind}'")

307Object-Oriented Programming

 8. print(f"Value for Shared Variable or Class Variable 'kind' is '{e.kind}'")
 9. print(f"Value for Unique Variable or Instance Variable 'dog_name' is '{d.

dog_name}'")
 10. print(f"Value for Unique Variable or Instance Variable 'dog_name' is '{e.dog_name}'")

Output

Value for Shared Variable or Class Variable 'kind' is 'canine'
Value for Shared Variable or Class Variable 'kind' is 'canine'
Value for Unique Variable or Instance Variable 'dog_name' is 'Fido'
Value for Unique Variable or Instance Variable 'dog_name' is 'Buddy'

Here, the variable kind is a class variable and is shared by all the objects ➁. The instance
variable dog_name is unique to each of the objects created. You can access both class vari-
ables and instance variables using dot notation. The objects d and e of the class Dog share
the same class variable kind. However, for instance variable dog_name, the self parameter is
replaced with the object created. The instance variable dog_name is unique to each of the
d and e objects, which were created resulting in the printing of different values associated
with each of these objects.

11.7 Encapsulation

All the programs in this chapter employ the concept of Encapsulation. Encapsulation is one
of the fundamental concepts in object-oriented programming (OOP). Encapsulation is the
process of combining variables that store data and methods that work on those variables
into a single unit called class. In Encapsulation, the variables are not accessed directly; it is
accessed through the methods present in the class. Encapsulation ensures that the object’s
internal representation (its state and behavior) are hidden from the rest of the application.
Thus, encapsulation makes the concept of data hiding possible. In order to understand the
concept of data hiding, imagine if some programmer is able to access the data stored in a
variable from outside the class then there would be a very high danger of them writing
their own (not encapsulated) code to deal with your data stored in a variable. This would,
at the very least, lead to code duplication (i.e., useless efforts) and to inconsistencies if the
implementations are not perfectly compatible. Instead, data hiding means that in order to
access data stored in a variable everybody MUST use the methods that are provided, so
that they are the same for everybody.

An application using a class does not need to know its internal workings or how it is
implemented. The program simply creates an object and uses it to invoke the methods
of that class. Abstraction is a process where you show only “relevant” variables that
are used to access data and “hide” implementation details of an object from the user.
Consider your mobile phone (FIGURE 11.6); you just need to know what buttons are to
be pressed to send a message or make a call. What happens when you press a button,
how your messages are sent, and how your calls are connected are all abstracted away
from the user.

308 Introduction to Python Programming

Program 11.13: Program to Demonstrate the Difference between Abstraction
and Encapsulation

 1. class foo:
 2. def __init__(self, a, b):
 3. self.a = a
 4. self.b = b

 5. def add(self):
 6. return self.a + self.b

 7. foo_object = foo(3,4)
 8. foo_object.add()

In the above program, the internal representation of an object of foo class ➀–➅ is hid-
den outside the class → Encapsulation. Any accessible member (data/method) of an object
of foo is restricted and can only be accessed by that object ➆–➇. Implementation of add()
method is hidden → Abstraction.

 Encapsulation → Information Hiding
Abstraction → Implementation Hiding

Encapsulation

Abstraction

FIGURE 11.6
Demonstration of Abstraction and Encapsulation concept.

309Object-Oriented Programming

Program 11.14: Given a point(x, y), Write Python Program to Find Whether it
Lies in the First, Second, Third or Fourth Quadrant of x - y Plane

 1. class Quadrant:
 2. def __init__(self, x, y):
 3. self.x_coord = x
 4. self.y_coord = y

 5. def determine_quadrant(self):
 6. if self.x_coord > 0 and self.y_coord > 0:
 7. print(f"Point with coordinates {(self.x_coord, self.y_coord)} lies in the FIRST

Quadrant")
 8. elif self.x_coord < 0 and self.y_coord < 0:
 9. print(f"Point with coordinates {(self.x_coord, self.y_coord)} lies in the

THIRD Quadrant")
 10. elif self.x_coord > 0 and self.y_coord < 0:
 11. print(f"Point with coordinates {(self.x_coord, self.y_coord)} lies in the

FOURTH Quadrant")
 12. elif self.x_coord < 0 and self.y_coord > 0:
 13. print(f"Point with coordinates {(self.x_coord, self.y_coord)} lies in the

SECOND Quadrant")

 14. def main():
 15. point = Quadrant(-180, 180)
 16. point.determine_quadrant()

 17. if __name__ == "__main__":
 18. main()

Output

Point with coordinates (-180, 180) lies in the SECOND Quadrant

Depending on the value of x_coord and y_coord coordinates ➁–➃, the quadrant in which the
point lies is determined. The following conditions characterize the four quadrants: in First
Quadrant, both the x_coord and y_coord coordinates are positive; in Second Quadrant, the
x_coord coordinate is negative, but the y_coord coordinate is positive; in Third Quadrant
both x_coord and y_coord coordinates are negative; and in Fourth Quadrant, x_coord coor-
dinate is positive but y_coord coordinate is negative ➄– . Use an if statement to determine
which quadrant the point under consideration is in.

11.7.1 Using Private Instance Variables and Methods

Instance variables or methods, which can be accessed within the same class and can’t be
seen outside, are called private instance variables or private methods. Since there is a valid

310 Introduction to Python Programming

use-case for class-only private members (namely to avoid name clashes of names with names
defined by subclasses), there is support for such a mechanism, which is called name man-
gling. In Python, an identifier prefixed with a double underscore (e.g., __spam) and with no
trailing underscores should be treated as private (whether it is a method or an instance vari-
able). Any identifier of the form __spam is textually replaced with _ classname__spam, where
classname is the current class name with a leading underscore(s) stripped. This mangling is
done without regard to the syntactic position of the identifier, as long as it occurs within the
definition of a class. Name mangling is helpful for letting subclasses override methods with-
out breaking intraclass method calls. Name mangling is intended to give classes an easy way
to define “private” instance variables and methods, without having to worry about instance
variables defined by derived classes. Note that the mangling rules are designed mostly to
avoid accidents; it still is possible to access or modify a variable that is considered private.

Program 11.15: Program to Demonstrate Private Instance Variables in Python

 1. class PrivateDemo:
 2. def __init__(self):
 3. self.nonprivateinstance = "I'm not a private instance"
 4. self.__privateinstance = "I'm private instance"
 5. def display_privateinstance(self):
 6. print(f"{self.__privateinstance} used within the method of a class")

 7. def main():
 8. demo = PrivateDemo()
 9. print("Invoke Method having private instance")
 10. print(demo.display_privateinstance())
 11. print("Invoke non-private instance variable")
 12. print(demo.nonprivateinstance)
 13. print("Get attributes of the object")
 14. print(demo.__dict__)
 15. print("Trying to access private instance variable outside the class results in an

error")
 16. print(demo.__privateinstance)
 17. if __name__ == "__main__":
 18. main()

Output

Invoke Method having private instance
I'm private instance used within the method of a class
Invoke non-private instance variable
I'm not a private instance
Get attributes of the object

311Object-Oriented Programming

{'nonprivateinstance': "I'm not private instance", '_PrivateDemo__privateinstance': "I'm pri-
vate instance"}
Trying to access private instance variable outside the class results in an error
AttributeError: 'PrivateDemo' object has no attribute '__privateinstance'

In class PrivateDemo ➀, the __privateinstance ➃ variable cannot be invoked by an object out-
side the class but it can be used in a method defined within the class ➄–➅. If you try to access
private instance variables outside the class, then it results in error – . You can use __dict__
to get all the attributes of an object – . As you can see in the output, the __ privateinstance
variable is prefixed with _PrivateDemo.

11.8 Inheritance

Inheritance enables new classes to receive or inherit variables and methods of existing
classes. Inheritance is a way to express a relationship between classes. If you want to build
a new class, which is already similar to one that already exists, then instead of creating a
new class from scratch you can reference the existing class and indicate what is different
by overriding some of its behavior or by adding some new functionality. A class that is
used as the basis for inheritance is called a superclass or base class. A class that inherits from
a base class is called a subclass or derived class. The terms parent class and child class are also
acceptable terms to use respectively. A derived class inherits variables and methods from
its base class while adding additional variables and methods of its own. Inheritance easily
enables reusing of existing code.

Class BaseClass, on the left, has one variable and one method. Class DerivedClass, on
the right, is derived from BaseClass and contains an additional variable and an additional
method (FIGURE 11.7).

If you can describe the relationship between derived classes and base class using the
phrase is-a, then that relationship is inheritance. For example, a lemon is-a citrus fruit,
which is-a fruit. A shepherd is-a dog, which is-a animal. A guitar is-a steel-stringed instru-
ment, which is-a musical instrument. If the is-a relationship does not exist between a
derived class and base class, you should not use inheritance.

FIGURE 11.7
Relationship between Base Class and Derived Class.

312 Introduction to Python Programming

The syntax for a derived class definition looks like this:

class DerivedClassName(BaseClassName):
<statement-1>

.

.

.
<statement-N>

User defined User defined

To create a derived class, you add a BaseClassName after the DerivedClassName within the
parenthesis followed by a colon. The derived class is said to directly inherit from the listed
base class.

In place of a base class name, other arbitrary expressions are also allowed. This can be
useful, for example, when the base class is defined in another module:

class DerivedClassName(modname.BaseClassName):
<statement-1>

.

.

.
<statement-N>

User definedAnother Module
User defined

All classes, except the special class object, are derived classes, even if they do not have a
base class name. The object class is the only class that is not derived, since it is the base of
the inheritance hierarchy. Classes without a base class name are implicitly derived directly
from the class object. Leaving off the class object from the base class name is just shorthand
for specifying that object is the base class.

The class definition on the left implicitly derives from the class object, while the one on
the right explicitly derives from the object. The two forms are semantically equivalent, as
shown in FIGURE 11.8. When we say derived class, we meant that it is derived from some
base class other than the object class itself.

11.8.1 Accessing the Inherited Variables and Methods

Execution of a derived class definition proceeds the same as for a base class. When the
derived class object is constructed, the base class is also remembered. This is used for
resolving variable and method attributes. If a requested attribute is not found in the

class SomeClass: class SomeClass(object):

statement(s) statement(s)

FIGURE 11.8
Semantically equivalent class definition.

313Object-Oriented Programming

derived class, the search proceeds to look in the base class. This rule is applied recursively
if the base class itself is derived from some other class. Inherited variables and methods
are accessed just as if they had been created in the derived class itself. (We will discuss
inherited constructors later in the chapter which is bit different.)

Program 11.16: Program to Demonstrate Base and Derived Class Relationship
Without Using __init__() Method in a Derived Class

 1. class FootBall:
 2. def __init__(self, country, division, no_of_times):
 3. self.country = country
 4. self.division = division
 5. self.no_of_times = no_of_times
 6. def fifa(self):
 7. print(f"{self.country} national football team is placed in '{self.division}' FIFA

division")

 8. class WorldChampions(FootBall):
 9. def world_championship(self):
 10. print(f"{self.country} national football team is {self.no_of_times} times world

champions")

 11. def main():
 12. germany = WorldChampions("Germany", "UEFA", 4)
 13. germany.fifa()
 14. germany.world_championship()
 15. if __name__ == "__main__":
 16. main()

Output

Germany national football team is placed in 'UEFA' FIFA division
Germany national football team is 4 times world champions

Single inheritance enables a derived class to inherit variables and methods from a sin-
gle base class. This includes __init__() method. So, if you do not define it in a derived
class, you will get the one from the base class. Class FootBall is the Base Class ➀. It has
a country, division and no_of_times as the data attributes ➂–➄. The fifa() method makes
use of two data attributes to print a message ➅–➆. The derived class WorldChampions ➇
is derived from FootBall as the base class. The derived class has access to all the data
attributes and the methods of the base class. In the derived class WorldChampions(),
there is no mention of the __init__() method explicitly, but it has access to the __init__()
method of base class. The method, world_championship() ➈–➉, is added to derived class
WorldChampions. This method can access the data attributes of FootBall base class.
The instance variable germany is created for WorldChampions class. Notice that we are
passing arguments to WorldChampions() , which in turn assigns the values to the

314 Introduction to Python Programming

parameters of __init__() method in FootBall base class. The germany object invokes the
methods found in FootBall base class and in WorldChampions derived class – .

11.8.2 Using super() Function and Overriding Base Class Methods

In a single inheritance, the built-in super() function can be used to refer to base classes
without naming them explicitly, thus making the code more maintainable. If you need to
access the data attributes from the base class in addition to the data attributes being speci-
fied in the derived class’s __init__() method, then you must explicitly call the base
class __init__() method using super() yourself, since that will not happen automatically.
However, if you do not need any data attributes from the base class, then no need to use
super() function to invoke base class __init__() method.

The syntax for using super() in derived class __init__() method definition looks like this:

super().__init__(base_class_parameter(s))

Its usage is shown below.

class DerivedClassName(BaseClassName):

def __init__(self, derived_class_parameter(s), base_class_parameter(s))

super().__init__(base_class_parameter(s))

self.derived_class_instance_variable = derived_class_parameter

The derived class __init__() method contains its own parameters along with the param-
eters specified in the __init__() method of base class. No need to specify self while invoking
base class __init__() method using super(). No need to assign base_class_parameters specified
in __init__() method of the derived class to any data attributes as the same is taken care of
in the __init__() method of base class.

Sometimes you may want to make use of some of the parent class behaviors but not
all of them. Method overriding, in object-oriented programming, is a language feature
that allows a derived class to provide its own implementation of a method that is already
provided in base class. Derived classes may override methods of their base class. When
you change the definition of parent class methods, you override them. These methods
have the same name as those in the base class. The method in the derived class and the
method in the base class each should have the same method signature. An overriding
method in a derived class may, in fact, want to extend rather than simply replace the base
class method of the same name. When constructing the base and derived classes, it is
important to keep program design in mind so that overriding does not produce unneces-
sary or redundant code.

 Method signature refers to the method name, order and the total num-
ber of its parameters. Return types and thrown exceptions are not
considered to be a part of the method signature.

315Object-Oriented Programming

Program 11.17: Program to Demonstrate the Use of super() Function

 1. class Country:
 2. def __init__(self, country_name):
 3. self.country_name = country_name
 4. def country_details(self):
 5. print(f"Happiest Country in the world is {self.country_name}")

 6. class HappiestCountry(Country):
 7. def __init__(self, country_name, continent):
 8. super().__init__(country_name)
 9. self.continent = continent
 10. def happy_country_details(self):
 11. print(f"Happiest Country in the world is {self.country_name} and is in {self.

continent} ")

 12. def main():
 13. finland = HappiestCountry("Finland", "Europe")
 14. finland.happy_country_details()
 15. if __name__ == "__main__":
 16. main()

Output

Happiest Country in the world is Finland and is in Europe

The __init__() method ➆ for HappiestCountry class ➅ take two parameters country_name
and continent. Within the __init__() method of HappiestCountry derived class, the __init__()
method of the Country base class is invoked using super() function ➇. When you use super()
function to invoke base class __init__() method, you need to pass the country_name param-
eter as an argument to __init__() function to match the method signature. On invoking
the base class __init__() method, the country_name value gets assigned to country_name
data attribute ➁–➂ in the Country base class ➀. Object finland is used to invoke the happy_
country_details() method found in derived class. In the method happy_country_details(), the
derived class attributes and base class attributes are accessed.

The super() function is useful for accessing the base class methods that have been over-
ridden in a derived class without explicitly specifying the base class name. The syntax for
using the super() function to invoke the base class method is,

super().invoke_base_class_method(argument(s))

User defined

The above expression should be used within a method of the derived class. The main
advantage of using super() function comes with multiple inheritance.

316 Introduction to Python Programming

Program 11.18: Program to Demonstrate the Overriding of the Base Class Method
in the Derived Class

 1. class Book:
 2. def __init__(self, author, title):
 3. self.author = author
 4. self.title = title
 5. def book_info(self):
 6. print(f"{self.title} is authored by {self.author}")

 7. class Fiction(Book):
 8. def __init__(self, author, title, publisher):
 9. super().__init__(author, title)
 10. self.publisher = publisher
 11. def book_info(self):
 12. print(f"{self.title} is authored by {self.author} and published by {self.publisher}")
 13. def invoke_base_class_method(self):
 14. super().book_info()

 15. def main():
 16. print("Derived Class")
 17. silva_book = Fiction("Daniel Silva", "Prince of Fire", "Berkley")
 18. silva_book.book_info()
 19. silva_book.invoke_base_class_method()
 20. print("---------------------------------")
 21. print("Base Class")
 22. reacher_book = Book("Lee Child", "One Shot")
 23. reacher_book.book_info()

 24. if __name__ == "__main__":
 25. main()

Output

Derived Class
Prince of Fire is authored by Daniel Silva and published by Berkley
Prince of Fire is authored by Daniel Silva

Base Class
One Shot is authored by Lee Child

The object silva_book of Fiction derived class is used to invoke book_info() method.
When the same method exists in both the base class and the derived class, the method
in the derived class will be executed – . Derived class method overrides the base class
method. You can also directly invoke the base class book_info() method from within the

317Object-Oriented Programming

derived class by using super() function. You need to put super().book_info() under another
method within the derived class. Use the silva_book object to invoke invoke_base_class_
method() – , which in turn invokes the base class book_info() method ➄–➅. You can also
access the base class methods directly by creating an instance variable for Book base class
and calling the methods of that class – .

11.8.3 Multiple Inheritances

Python also supports a form of multiple inheritances. A derived class definition with mul-
tiple base classes looks like this:

class DerivedClassName(Base_1, Base_2, Base_3):

 <statement-1>
 .

 .

 .

 <statement-N>

Derived class DerivedClassName is inherited from multiple base classes, Base_1, Base_2,
Base_3. For most purposes, in the simplest cases, you can think of the search for attri-
butes inherited from a parent class as depth-first, left-to-right, not searching twice in the
same class where there is an overlap in the hierarchy. Thus, if an attribute is not found
in DerivedClassName, it is searched for in Base_1, then (recursively) in the base classes of
Base_1, and if it was not found there, it would be searched for in Base_2, and so on. Even
though multiple inheritances are available in Python programming language, it is not
highly encouraged to use it as it is hard and error prone.

You can call the base class method directly using Base Class name itself without using
the super() function. The syntax is,

BaseClassName.methodname(self, arguments)

Notice the difference between super() function and the base class name in calling the method
name.

Use issubclass() function to check class inheritance. The syntax is,

issubclass(DerivedClassName, BaseClassName)

This function returns Boolean True if DerivedClassName is a derived class of base class
BaseClassName. The DerivedClassName class is considered a subclass of itself. BaseClassName
may be a tuple of classes, in which case every entry in BaseClassName will be checked. In
any other case, a TypeError exception is raised.

Program 11.19: Program to Demonstrate Multiple Inheritance

 1. class Poissonier:
 2. def __init__(self, poissonier_role):

318 Introduction to Python Programming

 3. self.poissonier_role = poissonier_role
 4. def display_poissonier_chef_info(self):
 5. print(f"Chef is mainly involved in preparing {self.poissonier_role}")

 6. class Entremetier:
 7. def __init__(self, entremetier_role):
 8. self.entremetier_role = entremetier_role
 9. def display_entremetier_chef_info(self):
 10. print(f"Chef is mainly involved in preparing {self.entremetier_role}")

 11. class Cook(Poissonier, Entremetier):
 12. def __init__(self, poissonier_role, entremetier_role):
 13. Poissonier.__init__(self, poissonier_role)
 14. Entremetier.__init__(self, entremetier_role)
 15. def invoke_base_class_methods(self):
 16. Poissonier.display_poissonier_chef_info(self)
 17. Entremetier.display_entremetier_chef_info(self)

 18. def main():
 19. print(f"Is Cook a derived class of Poissonier Base Class? {issubclass(Cook,

(Entremetier, Poissonier))}")
 20. chef = Cook("SeaFood", "Vegetables")
 21. chef.invoke_base_class_methods()

 22. if __name__ == "__main__":
 23. main()

Output

Is Cook a derived class of Poissonier Base Class? True
Chef is mainly involved in preparing SeaFood
Chef is mainly involved in preparing Vegetables

Class Poissonier ➀–➄ and Entremetier ➅–➉ are base classes. For Poissonier and Entremetier
base classes, poissonier_role and entremetier_role are the data attributes and display_
poissonier_chef_info() and display_entremetier_chef_info() are the methods defined in their
respective classes. The class Cook is the derived class, which inherits from Poissonier
and Entremetier base classes. You can use the base class names Poissonier and Entremetier
to directly invoke their corresponding __init__() methods – . You can also invoke the
methods defined in the base classes by using their corresponding base class names, pro-
vided that those expressions be used within some method in the derived class – . You
can check whether Cook is a derived class of Poissonier base class by using issubclass()
function .

319Object-Oriented Programming

Program 11.20: Program to Demonstrate Multiple Inheritance with
Method Overriding

 1. class Pet:
 2. def __init__(self, breed):
 3. self.breed = breed
 4. def about(self):
 5. print(f"This is {self.breed} breed")

 6. class Insurable:
 7. def __init__(self, amount):
 8. self.amount = amount
 9. def about(self):
 10. print(f"Its insured for an amount of {self.amount}")

 11. class Cat(Pet, Insurable):
 12. def __init__(self, weight, breed, amount):
 13. self.weight = weight
 14. Pet.__init__(self, breed)
 15. Insurable.__init__(self, amount)
 16. def get_weight(self):
 17. print(f"{self.breed} Cat weighs around {self.weight} pounds")

 18. def main():
 19. cat_obj = Cat(15, "Ragdoll", "$100")
 20. cat_obj.about()
 21. cat_obj.get_weight()
 22. if __name__ == "__main__":
 23. main()

Output

This is Ragdoll breed
Ragdoll Cat weighs around 15 pounds

Base classes Pet ➀–➄ and Insurable ➅–➉ are inherited by the Cat derived class – . Both Pet
and Insurable classes have the about() method definition added to them. The __init__() method
of Pet and Insurable classes are invoked using their respective base classes in the Cat derived
class – . The cat_obj object of Cat class is used to invoke about() method . Now the ques-
tion is which about() method gets invoked? Is it the about() method found in Pet base class or
Insurable base class? The answer to this question lies in Method Resolution Order (MRO).

320 Introduction to Python Programming

11.8.4 Method Resolution Order (MRO)

Method Resolution Order, or “MRO” in short, denotes the way Python programming lan-
guage resolves a method found in multiple base classes. For a single inheritance, the MRO
does not come into play but for multiple inheritances MRO matters a lot. When a derived
class inherits from multiple classes, Python programming language needs a way to resolve
the methods that are found in multiple base classes as well as in the derived class, which
is invoked by an object. MRO uses the C3 linearization algorithm to determine the order
of the methods to be invoked in multiple inheritances while guaranteeing monotonicity.
MRO applies a set of rules to resolve the method order by constructing linearization.

Python provides mro() method to get information about Method Resolution Order. The
syntax to find MRO is,

class_name.mro()

where class_name is the name of a class.
Here, we provide you the “behind the scene” details of building an MRO in the case of mul-

tiple inheritances. The C3 linearization of a derived class is the sum of the derived class, plus
a unique merge of linearization of its base classes and a list of base classes itself. The derived
class and all the base classes from which the class is derived are represented as list items.

The C3 linearization of a derived class can be represented as below.

The letter L stands for Linearization of a class. The above representation consists of two
parts, where the first part is the Derived class represented as a list item. The second part
consists of merge, whose results are added as items to the list of the first part. Again, inside
merge, it consists of two subparts. Subpart One is the representation of linearization of all the
base classes from which the Derived_Class was derived, and Subpart Two is a list of all
the base classes from which the Derived_Class was derived. The ordering of base classes of
a derived class from the nearest base class to the furthest base class with the derived class
preceding the base classes is called local precedence of classes. The list of base classes as
the last argument in the merge part preserves the local precedence order of the base classes.
An MRO is monotonic when the following is True: if Base_Class_1 precedes Base_Class_2
in the linearization of Derived_Class, then Base_Class_1 precedes Base_Class_2 in the lin-
earization of any derived classes of Derived_Class itself. The construction of linearization
for MRO should respect local precedence ordering and monotonicity.

The linearization result for a class is replaced by a list sequence. The presence of a class
in the first position in multiple list sequences at the same time is called Head or good Head,
but it should not appear in any other position. If a class is in the first position in one of the
list sequence and it is present in a different position, other than the first position itself in
the other list sequences, or if a class is not present in the first position at all in any of the
list sequences, then it is called a Tail.

First Part Second Part

Subpart One Subpart Two

321Object-Oriented Programming

Steps to follow in the construction of C3 linearization MRO for a class is,
Step 1: The linearization result for a base class which derives from object class will

be represented as a list with the base class itself as the first item and object class as
the second item.

Step 2: Inside merge part, replace L(Base_Class_1), L(Base_Class_2), ..., L(Base_Class_n)
with their respective linearization list results.

Step 3: Inside merge part, check if the class in the first position in the first list is found
as a Head or a Tail in all the other list sequences.

Step 4: If the class in the first position in the first list is a Head, then remove it from
all the list sequences it is present and add it to the end of the list in the first part
of linearization.

Step 5: If the class in the first position in the first list is a Tail, then skip the first list and
move to the next list sequence.

Step 6: If the class in the first position in the next list sequence is a Head, then remove
it from all the list sequences it is present and add it to the end of the list in the first
part of linearization. If the class in the first position in the next list is a Tail, then
move on to the next list sequence and again check whether the class present in the
first position is Head or Tail. If it is Head, then grab it or else move on to the next
list sequence and so on.

Repeat steps 3 to 6 until all the classes are removed from all the list sequences in the merge
part, or it is impossible to find good Heads. In the latter case, it is impossible to construct
the linearization for the class.

NOT E: In Step 3, until some class is present (other than the default object class) in the first
list, it will be considered as the first list among all the list sequences present in the merge
part of linearization. After all the classes from the first list are removed, the second list will
be considered as the first list. Once all the classes in the second list are removed, then the
third list will be considered as the first list and so on. In Step 2, these base classes them-
selves might have been derived from multiple classes.

Program 11.21: Program to Demonstrate the Construction of Method
Resolution Order in Python

 1. class First:
 2. def my_method(self):
 3. print("You found me in Class First")
 4. class Second:
 5. def my_method(self):
 6. print("You found me in Class Second")
 7. class Third:
 8. def my_method(self):
 9. print("You found me in Class Third")
 10. class Fourth(Third, First):
 11. pass

322 Introduction to Python Programming

 12. class Fifth(Third, Second):
 13. pass
 14. class Sixth(Fifth, Fourth):
 15. pass
 16. def main():
 17. obj = Sixth()
 18. obj.my_method()
 19. print(Sixth.mro())
 20. if __name__ == "__main__":
 21. main()

Output

You found me in Class Third
[<class '__main__.Sixth'>, <class '__main__.Fifth'>, <class '__main__.Fourth'>, <class '__
main__.Third'>, <class '__main__.Second'>, <class '__main__.First'>, <class 'object'>]

The method my_method() is defined in classes First ➀–➂, Second ➃–➅, and Third ➆–➈. Class
Fourth ➉ inherits from classes Third and First. Class Fifth inherits from classes Third and
Second, and class Sixth inherits from classes Fifth and Fourth. Object obj for class Sixth is
created and is used to invoke my_method() method. The derived classes appear before the
base classes. Now the question arises, if you were to call the method my_method() through
the obj object, then from which class would it be called from? Would it be from class Fifth or
from class Fourth or any other class? Use mro() method to display the MRO for class Sixth .
According to the MRO of class Sixth, Python finds the first occurrence of the method my_
method() in class Third and ends up calling the method in that class.

Let’s construct an MRO manually for the above multiple inheritance code using C3
Linearization algorithm.

 1. L(First) = [First, object]

 2. L(Second) = [Second, object]

 3. L(Third) = [Third, object]

 4. L(Fourth) = [Fourth] + merge(L(Third), L(First), [Third, First])
 5. = [Fourth] + merge([Third, object], [First, object], [Third, First])
 6. = [Fourth, Third] + merge([object], [First, object], [First])
 7. = [Fourth, Third, First] + merge([object], [object])
 8. L(Fourth) = [Fourth, Third, First, object]

 9. L(Fifth) = [Fifth] + merge(L(Third), L(Second), [Third, Second])
 10. = [Fifth] + merge([Third, object], [Second, object], [Third, Second])
 11. = [Fifth, Third] + merge([object], [Second, object], [Second])
 12. = [Fifth, Third, Second] + merge([object], [object])
 13. L(Fifth) = [Fifth, Third, Second, object]

323Object-Oriented Programming

 14. L(Sixth) = [Sixth] + merge(L(Fifth), L(Fourth), [Fifth, Fourth])
 15. = [Sixth] + merge([Fifth, Third, Second, object], [Fourth, Third, First,

object], [Fifth, Fourth])
 16. = [Sixth, Fifth] + merge([Third, Second, object], [Fourth, Third, First,

object], [Fourth])
 17. = [Sixth, Fifth, Fourth] + merge([Third, Second, object], [Third, First, object])
 18. = [Sixth, Fifth, Fourth, Third] + merge([[Second, object], [First, object])
 19. = [Sixth, Fifth, Fourth, Third, Second] + merge([object], [First, object])
 20. = [Sixth, Fifth, Fourth, Third, Second, First] + merge([object], [object])
 21. L(Sixth) = [Sixth, Fifth, Fourth, Third, Second, First, object]

Since class First ➀, Second ➁, and Third ➂ are base classes and are derived from the object
class, their linearization result is represented as a list with the first item being the base
class itself and the second item is the object class.

Class Fourth is a derived class and is derived from classes Third and First. Let’s find the
linearization of class Fourth, which is represented as in the line ➃ and for the last argu-
ment of the merge. The base classes are represented as lists. For class Third and First, replace
L(Fifth) and L(Fourth) with their linearization results ➄. According to Step 4 of “construc-
tion of linearization MRO for a class,” the class Third is in the first position of the first list,
which is a good Head. Class Third is also found in the first position of the third list sequence.
Remove it from all the list sequences and add it to the end of the list in the first part ➅.
As there are no more classes in the first list, the second list sequence becomes the first list.
Again, according to Step 3 and Step 4, class First is in the first position, which is the good
Head. Remove it from all the list sequences and add it to the list in the first part of lineariza-
tion ➆. At ➆, the result of merge([object], [object]) gives an object, which is added as the last
item to the list in the first part of linearization. So, the linearization result for class Fourth
is [Fourth, Third, First, object] ➇. Likewise, the linearization result for class Fifth is [Fifth,
Third, Second, object] ➈– .

Class Sixth is derived from classes Fifth and Fourth and is represented as in the line .
For class Fifth and Fourth, replace L(Fifth) and L(Fourth) with their linearization results .
According to Step 3 check whether the class in the first position of the first list is Head or
Tail. According to Step 4, class Fifth is a good Head. Remove class Fifth from all the list
sequences and add it to the end of the list in the first part of linearization . Next, class Third
is in the first position of the first list. However, class Third is a Tail as it is found in a position
other than the first position in other list sequences. According to Step 5, move to the next
list sequence which in our case is the second list. Check whether the class in the first posi-
tion of the second list, for instance, class Fourth is Head or Tail. Since class Fourth is Head,
remove it from the all the list sequences where it appears and add it to the end of the list in
the first part of linearization . Again, start from the first list and check for the class in the
first position. Since, class Third is a good Head, grab it and add it to the list in the first part
of linearization . Continue this process until all the classes are exhausted from all the list
sequences – .

With the construction of C3 linearization MRO for class Sixth, the lookup would be in
the order:

Class Sixth → Class Fifth → Class Fourth → Class Third → Class Second → Class First
→ Class object

324 Introduction to Python Programming

Program 11.22: Program to Demonstrate the Solving of Diamond Problem in Python

 1. class First:
 2. def my_method(self):
 3. print("You found me in Class First")

 4. class Second(First):
 5. pass

 6. class Third(First):
 7. def my_method(self):
 8. print("You found me in Class Third")

 9. class Fourth(Second, Third):
 10. pass

 11. def main():
 12. obj = Fourth()
 13. obj.my_method()
 14. print(f"Method Resolution Order is {Fourth.mro()}")
 15. if __name__ == "__main__":
 16. main()

Output

You found me in Class Third
Method Resolution Order is [<class '__main__.Fourth'>, <class '__main__.Second'>, <class
'__main__.Third'>, <class '__main__.First'>, <class 'object'>]

Classes First, Second, Third, and Fourth are defined. Class Fourth inherits from both Second
and Third classes. Class Second and Third inherit from class First. Class First does not inherit
from any base classes. This sort of inheritance is called the “Diamond Problem” or the
“Deadly Diamond of Death” (FIGURE 11.9).

Class First

Class Second

Class Fourth

Class Third

FIGURE 11.9
Illustration of diamond problem.

325Object-Oriented Programming

With the construction of C3 linearization MRO for class Fourth, the lookup would be in
the order:

Class Fourth → Class Second → Class Third → Class First → Class object

Python follows C3 linearization algorithm to build MRO and hence ends up calling the
method from class Third as it finds the first occurrence of my_method() method to be in
class Third as per the MRO.

Apart from using super() function in single inheritance to refer to base classes with-
out naming them explicitly, the super() function is also used to support cooperative
multiple inheritances in a dynamic execution environment. Cooperative classes are
written with multiple inheritances in mind, using a pattern called "cooperative super
call". Cooperative multiple inheritances make it possible to handle the “diamond prob-
lem,” where multiple base classes implement the same method and each method should
only be called exactly once. This Good design dictates that this method has the same
calling signature in every class because the order of calls is determined at runtime,
because that order adapts to changes in the class hierarchy, and because that order can
include sibling classes that are unknown prior to runtime. This is unique to Python
and is not found in statically compiled languages or languages that only support single
inheritance.

A typical next base class method call in MRO using super() function looks like this:

class Derived_Class(Base_Class):

def my_method(self, arg):

super().my_method(arg)

Derived Class
Method

Base Class
Method

The super() function ensures that the derived class that may be using cooperative multiple
inheritances will call the correct next class method in the MRO. In multiple inheritances,
the super() function is not calling the base classes of a derived class, but, instead, it is call-
ing the next class in the MRO. The super() function finds the method in the next class of
the MRO.

In program 11.22, if you change the class definition for class Third starting from line 6 to
8 as below,

class Third(First):
def my_method(self):

print("You found me in Class Third")
super().my_method()

then the Output will be

You found me in Class Third
You found me in Class First
Method Resolution Order is [<class '__main__.Fourth'>, <class '__main__.Second'>, <class
'__main__.Third'>, <class '__main__.First'>, <class 'object'>]

326 Introduction to Python Programming

From MRO, the method in class Third is executed as the first occurrence of the method
my_method() is in class Third. The super() function calls the method found in the next class
of the MRO. Hence, the method my_method() in class First gets executed.

Let’s construct an MRO manually for the above multiple inheritance code using C3
Linearization algorithm.

 1. L(First) = [First, object]

 2. L(Second) = [Second] + merge(L(First), [First])
 3. = [Second] + merge([First, object], [First])
 4. = [Second, First] + merge([object])
 5. L(Second) = [Second, First, object]

 6. L(Third) = [Third] + merge(L(First), [First])
 7. = [Third] + merge([First, object], [First])
 8. = [Third, First] + merge([object])
 9. L(Third) = [Third, First, object]

 10. L(Fourth) = [Fourth] + merge(L(Second), L(Third), [Second, Third])
 11. = [Fourth] + merge([Second, First, object], [Third, First, object],

[Second, Third])
 12. = [Fourth, Second] + merge([First, object], [Third, First, object], [Third])
 13. = [Fourth, Second, Third] + merge([First, object], [First, object])
 14. = [Fourth, Second, Third, First] + merge([object], [object])
 15. L(Fourth) = [Fourth, Second, Third, First, object]

With the construction of C3 linearization MRO for class Fourth, the lookup would be in
the order:

 Class Fourth → Class Second → Class Third → Class First → Class object

Program 11.23: Program to Demonstrate the Use of super() Function in
Multiple Inheritances

 1. class First:
 2. def __init__(self):
 3. print("In First")
 4. super().__init__()

 5. class Second:
 6. def __init__(self):
 7. print("In Second")
 8. super().__init__()

 9. class Third(First, Second):

327Object-Oriented Programming

 10. def __init__(self):
 11. print("In Third")
 12. super().__init__()

 13. def main():
 14. obj = Third()
 15. print(f"Method Resolution Order is {Third.mro()}")
 16. if __name__ == "__main__":
 17. main()

Output

In Third
In First
In Second
Method Resolution Order is [<class '__main__.Third'>, <class '__main__.First'>, <class '__
main__.Second'>, <class 'object'>]

The order to resolve __init__() method is,

Class Third → Class First → Class Second → Class object

The __init__() method of class Third is called first. After that "In Third" is printed. Next,
according to the MRO, inside the __init__() method of class Third, the super().__init__()
calls the __init__() method of the next class found in MRO i.e., the __init__() method
in class First gets called. After that "In First" is printed. Here, class First derives from
the object class but in multiple inheritances, if super() function is present in the current
class then it will call the overridden method found in the next class in the MRO. Inside
__init__() of class First, the super().__init__() calls the __init__() method of the next
class found in MRO i.e., the __init__() method of class Second gets called because that
is what the MRO dictates. After that "In Second" is printed. Inside __init__() method of
class Second, the super().__init__() calls the __init__() method of the object class, which
amounts to nothing. Whether an overridden method in the next class is called or not
depends on whether the super() function was called from a class preceding it in the
MRO.

Let’s construct an MRO manually for the above multiple inheritance code using C3
Linearization algorithm.

 1. L(First) = [First, object]

 2. L(Second) = [Second, object]

 3. L(Third) = [Third] + merge(L(First), L(Second), [First, Second])
 4. = [Third] + merge([First, object], [Second, object], [First, Second])
 5. = [Third, First] + merge([object], [Second, object], [Second])
 6. = [Third, First, Second] + merge([object], [object])
 7. L(Third) = [Third, First, Second, object]

328 Introduction to Python Programming

With the construction of C3 linearization MRO for class Fourth, the lookup would be in
the order:

Class Third → Class First → Class Second → Class object

11.9 The Polymorphism

Poly means many and morphism means forms. Polymorphism is one of the tenets of
Object Oriented Programming (OOP). Polymorphism means that you can have multiple
classes where each class implements the same variables or methods in different ways.
Polymorphism takes advantage of inheritance in order to make this happen. A real-world
example of polymorphism is suppose when if you are in classroom that time you behave
like a student, when you are in market at that time you behave like a customer, when you
are at your home at that time you behave like a son or daughter, such that same person is
presented as having different behaviors.

Python is a dynamically-typed language and specifically uses duck-typing. The term
duck-typing comes from the idiomatic saying, “If it looks like a duck and quacks like a
duck, it is probably a duck.” Duck-typing in Python allows us to use any object that pro-
vides the required methods and variables without forcing it to belong to any particular
class. In duck-typing, an object’s suitability is determined by the presence of methods
and variables rather than the actual type of the object. To elaborate, this means that the
expression some_obj.foo() will succeed if object some_obj has a foo method, regardless of to
which class some_obj object actually belongs to. Difference between inheritance and poly-
morphism is, while inheritance is implemented on classes, polymorphism is implemented
on methods.

Program 11.24: Program to Demonstrate Polymorphism in Python

 1. class Vehicle:
 2. def __init__(self, model):
 3. self.model = model
 4. def vehicle_model(self):
 5. print(f"Vehicle Model name is {self.model}")

 6. class Bike(Vehicle):
 7. def vehicle_model(self):
 8. print(f"Vehicle Model name is {self.model}")

 9. class Car(Vehicle):
 10. def vehicle_model(self):
 11. print(f"Vehicle Model name is {self.model}")

329Object-Oriented Programming

 12. class Aeroplane:
 13. pass

 14. def vehicle_info(vehicle_obj):
 15. vehicle_obj.vehicle_model()

 16. def main():
 17. ducati = Bike("Ducati-Scrambler")
 18. beetle = Car("Volkswagon-Beetle")
 19. boeing = Aeroplane()
 20. for each_obj in [ducati, beetle, boeing]:
 21. try:
 22. vehicle_info(each_obj)
 23. except AttributeError:
 24. print("Expected method not present in the object")
 25. if __name__ == "__main__":
 26. main()

Output

Vehicle Model name is Ducati-Scrambler
Vehicle Model name is Volkswagon-Beetle
Expected method not present in the object

Even though each of these methods in the classes have the same name, their implementation
details are different. Polymorphic behavior allows you to specify common methods in a base
class and implement them differently in other derived classes. In this program, we defined
two derived classes, Bike ➅–➇ and Car ➈– , inherited from vehicle class, and provided their
own implementation of vehicle_model() method on top of vehicle_model() method found in
Vehicle class ➀–➄. Notice that all the classes have vehicle_model() method but they are imple-
mented differently. The method vehicle_model() is polymorphic, as these methods have the
same name but belong to different classes and are executed depending on the object. The
behavior of the same method belonging to different classes is different based on the type of
object.

To allow polymorphism, a common interface called vehicle_info() – function is cre-
ated that can take an object of any type and call that object’s vehicle_model() method.
When you pass the objects ducati and beetle to the vehicle_info() function, it executes
vehicle_model() method effectively. Because of polymorphism, the run-time type of each
object is invoked. In the for loop, you iterate through each object in the list using each_obj
as the iterating variable. Depending on what type of object it has, the program decides
which methods it should use. If that object does not have the methods that are called,
then the function signals a run-time error. If the object does have the methods, then they
are executed no matter the type of the object, evoking the quotation and, hence, the name
of this form of typing. Since object boeing has no vehicle_model() method associated with
it, an exception is raised .

330 Introduction to Python Programming

Program 11.25: Write Python Program to Calculate Area and Perimeter of
Different Shapes Using Polymorphism

 1. import math
 2. class Shape:
 3. def area(self):
 4. pass
 5. def perimeter(self):
 6. pass

 7. class Rectangle(Shape):
 8. def __init__(self, width, height):
 9. self.width = width
 10. self.height = height
 11. def area(self):
 12. print(f"Area of Rectangle is {self.width * self.height}")
 13. def perimeter(self):
 14. print(f"Perimeter of Rectangle is {2 * (self.width + self.height)}")

 15. class Circle(Shape):
 16. def __init__(self, radius):
 17. self.radius = radius
 18. def area(self):
 19. print(f"Area of Circle is {math.pi * self.radius ** 2}")
 20. def perimeter(self):
 21. print(f"Perimeter of Circle is {2 * math.pi * self.radius}")

 22. def shape_type(shape_obj):
 23. shape_obj.area()
 24. shape_obj.perimeter()
 25. def main():
 26. rectangle_obj = Rectangle(10, 20)
 27. circle_obj = Circle(10)
 28. for each_obj in [rectangle_obj, circle_obj]:
 29. shape_type(each_obj)
 30. if __name__ == "__main__":
 31. main()

Output

Area of Rectangle is 200
Perimeter of Rectangle is 60
Area of Circle is 314.1592653589793
Perimeter of Circle is 62.83185307179586

331Object-Oriented Programming

In this program, Shape ➁–➅ is the base class while Rectangle ➆– and Circle – are the
derived classes. All of these classes have common methods area() and perimeter() added to
them but their implementation is different as found in each class. Derived classes Rectangle
and Circle have their own data attributes. Instance variables rectangle_obj and circle_obj
are created for Rectangle and Circle classes respectively. The clearest way to express poly-
morphism is through the function shape_type() – , which takes any object and invokes
the methods area() and perimeter() respectively.

11.9.1 Operator Overloading and Magic Methods

Operator Overloading is a specific case of polymorphism, where different operators
have different implementations depending on their arguments. A class can implement
certain operations that are invoked by special syntax (such as arithmetic operations
or subscripting and slicing) by defining methods with special names called “Magic
Methods” (TABLE 11.1). This is Python’s approach to operator overloading, allowing

(Continued)

TABLE 11.1

Magic Methods for Different Operators and Functions

Binary Operators

Operator Method Description

+ __add__(self, other) Invoked for Addition Operations
- __sub__(self, other) Invoked for Subtraction Operations
* __mul__(self, other) Invoked for Multiplication Operations
/ __truediv__(self, other) Invoked for Division Operations
// __floordiv__(self, other) Invoked for Floor Division Operations
% __mod__(self, other) Invoked for Modulus Operations
** __pow__(self, other[, modulo]) Invoked for Power Operations
<< __lshift__(self, other) Invoked for Left-Shift Operations
>> __rshift__(self, other) Invoked for Right-Shift Operations
& __and__(self, other) Invoked for Binary AND Operations
^ __xor__(self, other) Invoked for Binary Exclusive-OR Operations
| __or__(self, other) Invoked for Binary OR Operations

Extended Operators

Operator Method Description

+= _iadd__(self, other) Invoked for Addition Assignment Operations
-= __isub(self, other) Invoked for Subtraction Assignment Operations
*= __imul__(self, other) Invoked for Multiplication Assignment Operations
/= __idiv__(self, other) Invoked for Division Assignment Operations
//= __ifloordiv__(self, other) Invoked for Floor Division Assignment Operations
%= __imod__(self, other) Invoked for Modulus Assignment Operations
**= __ipow__(self, other[, modulo]) Invoked for Power Assignment Operations
<<= __ilshift__(self, other) Invoked for Left-Shift Assignment Operations
>>= __irshift__(self, other) Invoked for Right-Shift Assignment Operations
&= __iand__(self, other) Invoked for Binary AND Assignment Operations

332 Introduction to Python Programming

classes to define their own behavior with respect to language operators. Python uses
the word “Magic Methods” because these are special methods that you can define
to add magic to your program. These magic methods start with double underscores
and end with double underscores. One of the biggest advantages of using Python’s
magic methods is that they provide a simple way to make objects behave like built-in
types. That means you can avoid ugly, counter-intuitive, and nonstandard ways of
using basic operators. The basic rule of operator overloading in Python is, Whenever
the meaning of an operator is not obviously clear and undisputed, it should not be overloaded
and always stick to the operator’s well-known semantics. You cannot create new operators
and you can’t change the meaning of operators for built-in types in Python program-
ming language. Consider the standard + (plus) operator. When this operator is used
with operands of different standard types, it will have a different meaning. The +
operator performs arithmetic addition of two numbers, merges two lists, and concat-
enates two strings.

^= __ixor__(self, other) Invoked for Binary Exclusive-OR Assignment Operations
|= __ior__(self, other) Invoked for Binary OR Assignment Operations

Unary Operators

Operator Method Description

- __neg__(self) Invoked for Unary Negation Operator
+ __pos__(self) Invoked for Unary Plus Operator
abs() __abs__() Invoked for built-in function abs(). Returns absolute

value
~ __invert__(self) Invoked for Unary Invert Operator

Conversion Operations

Functions Method Description

complex() __complex__(self) Invoked for built-in complex() function
int() __int__(self) Invoked for built-in int() function
long() __long__(self) Invoked for built-in long() function
float() __float__(self) Invoked for built-in float() function
oct() __oct__() Invoked for built-in oct() function
hex() __hex__() Invoked for built-in hex() function

Comparison Operators

Operator Method Description

< __lt__(self, other) Invoked for Less-Than Operations
<= __le__(self, other) Invoked for Less-Than or Equal-To Operations
== __eq__(self, other) Invoked for Equality Operations
!= __ne__(self, other) Invoked for Inequality Operations
>= __ge__(self, other) Invoked for Greater Than or Equal-To Operations
> __gt__(self, other) Invoked for Greater Than Operations

TABLE 11.1 (Continued)

Magic Methods for Different Operators and Functions

333Object-Oriented Programming

Program 11.26: Write Python Program to Create a Class Called as Complex
and Implement __add__() Method to Add Two Complex Numbers. Display
the Result by Overloading the + Operator

 1. class Complex:
 2. def __init__(self, real, imaginary):
 3. self.real = real
 4. self.imaginary = imaginary
 5. def __add__(self, other):
 6. return Complex(self.real + other.real, self.imaginary + other.imaginary)
 7. def __str__(self):
 8. return f"{self.real} + i{self.imaginary}"

 9. def main():
 10. complex_number_1 = Complex(4, 5)
 11. complex_number_2 = Complex(2, 3)
 12. complex_number_sum = complex_number_1 + complex_number_2
 13. print(f"Addition of two complex numbers {complex_number_1} and {complex_

number_2} is {complex_number_sum}")
 14. if __name__ == "__main__":
 15. main()

Output

Addition of two complex numbers 4 + i5 and 2 + i3 is 6 + i8

Consider the below code having Complex class with real and imaginary as data attributes
➀–➃.

class Complex:
def __init__(self, real, imaginary):

self.real = real
self.imaginary = imaginary

Instance variables complex_number_1 and complex_number_2 are created for Complex class
➉– .

complex_number_1 = Complex(4, 5)
complex_number_2 = Complex(2, 3)
complex_number_sum = complex_number_1 + complex_number_2

If you try to add the objects complex_number_1 and complex_number_2 then it results in
error as shown below.

TypeError: unsupported operand type(s) for +: ‘Complex’ and ‘Complex’

334 Introduction to Python Programming

Adding the magic method __add__() ➄–➅ within the Complex class resolves this issue.
The __add__() method takes two objects as arguments with complex_number_1 object
assigned to self and complex_number_2 object assigned to other and it is expected to return
the result of the computation. When the expression complex_number_1 + complex_
number_2 is executed, Python will call complex_number_1.__add__(complex_number_2).

def __add__(self, other):
return Complex(self.real + other.real, self.imaginary + other.imaginary)

Thus, by adding this method, suddenly magic has happened and the error, which you
received earlier, has gone away. This method returns the Complex object itself by calling
the Complex class __init__() constructor, with self.real + other.real value assigned to real data
attribute and self.imaginary + other.imaginary value assigned to the imaginary data attribute.
The __add__() method definition has your own implementation. This returning object is
assigned to complex_number_sum with data attributes real and imaginary. To print the data
attributes associated with complex_number_sum object, you have to issue the statements
print(complex_number_sum.real) and print(complex_number_sum.imaginary).

Instead of issuing the above statements, you can use the object name only within the
print statement, for example, print(complex_number_sum) to print its associated data attri-
butes. This is done by overriding __str__() magic method ➆–➇. The syntax is __str__(self).
The __str__() method is called by str(object) and the built-in functions format() and print() to
compute the “informal,” or nicely printable string representation of an object. The return
value must be a string object. The implementation details of __str__() magic method is
shown below

def __str__(self):
return f"{self.real} + i{self.imaginary}"

The return value of __str__() method has to be a string, but it can be any string, including
one that contains the string representation of integers. In the implementation of the __
str__() magic method, you have customized it for your own purpose. The __str__() method
returns a string with values of real and imaginary data attributes concatenated together,
and the character i is prefixed before imaginary data attribute value.

Program 11.27: Consider a Rectangle Class and Create Two Rectangle Objects.
This Program Should Check Whether the Area of the First Rectangle is Greater
than Second by Overloading > Operator

 1. class Rectangle:
 2. def __init__(self, width, height):
 3. self.width = width
 4. self.height = height
 5. def __gt__(self, other):
 6. rectangle_1_area = self.width * self.height

335Object-Oriented Programming

 7. rectangle_2_area = other.width * other.height
 8. return rectangle_1_area > rectangle_2_area

 9. def main():
 10. rectangle_1_obj = Rectangle(5, 10)
 11. rectangle_2_obj = Rectangle(3, 4)
 12. if rectangle_1_obj > rectangle_2_obj:
 13. print("Rectangle 1 is greater than Rectangle 2")
 14. else:
 15. print("Rectangle 2 is greater than Rectangle 1")
 16. if __name__ == "__main__":
 17. main()

Output

Rectangle 1 is greater than Rectangle 2

In the above code, rectangle_1_obj ➉ and rectangle_2_obj are the objects of Rectangle class
➀–➇. When the expression if rectangle_1_obj > rectangle_2_obj is executed, the magic
method rectangle_1_obj.__gt__(rectangle_2_obj) gets invoked. This magic method calculates
the area of two rectangles and returns a Boolean True value if the area of the first rectangle
is greater than the area of second rectangle ➄–➇.

11.10 Summary

• Objects are used to model real-world entities that we want to represent inside our
programs and an object is an instance of a class.

• A class is a blueprint from which individual objects are created. An object is a
bundle of related variables and methods.

• The act of creating an object from a class is called instantiation.
• The __init__() method is automatically called and executed when an object of the

class is created.
• Class attributes are shared by all the objects of a class.
• An identifier prefixed with a double underscore and with no trailing underscores

should be treated as private with in the same class.
• Encapsulation is the process of combining variables that store data and methods

that work on those variables into a single unit called class.
• Inheritance enables new classes to receive or inherit variables and methods of

existing classes and helps to reuse code.
• Inheritances can be Single inheritance or Multiple inheritance.

336 Introduction to Python Programming

• Poly means many and morphism means forms. Polymorphism means that you can
have multiple classes where each class implements the same variables or methods
in different ways.

• Operator overloading is a specific case of polymorphism, where an operator can
have different meaning when used with operands of different types.

Multiple Choice Questions

 1. The distinctly identifiable entity in the real world is called as __________
 a. An object
 b. A class
 c. Data attribute
 d. Method attribute
 2. A blueprint that defines the objects of the same type is called as __________
 a. An object
 b. A class
 c. function
 d. constructor
 3. The beginning of the class definition is marked by the keyword __________
 a. def
 b. return
 c. class
 d. None of the above
 4. What is Polymorphism?
 a. You can have multiple classes where each class implements the same variables

or methods in different ways
 b. Ability of a class to derive members of another as a part of its own definition
 c. Focuses on variables and passing of variables to functions
 d. Encapsulating variables and methods to certain classes
 5. The correct way of inheriting a derived class from the base class is
 a. class (Base) Derived:
 b. class Derived (Base):
 c. class (Base) Derived:
 d. class Base (Derived):
 6. Identify the function that checks for class inheritance.
 a. issubclass()
 b. isobject()

337Object-Oriented Programming

 c. issuperclass()
 d. isinstance()
 7. Duck-typing in Python is
 a. Makes the program code smaller
 b. More restriction on the type values that can be passed to a given method.
 c. No restriction on the type values that can be passed to a given method.
 d. An object's suitability is determined by the presence of methods and variables

rather than the actual type of the object.
 8. In Python single inheritance can be defined as
 a. A single class inherits from multiple classes.
 b. A multiple base class inherits from a single derived class.
 c. A subclass derives from a class which in turn derives from another class.
 d. A single subclass derives from a single super class.
 9. Which of the following are the fundamental features of OOP?
 a. Inheritance
 b. Encapsulation
 c. Polymorphism
 d. All of the above
 10. The + operator is overloaded using the method
 a. __add__()
 b. __plus__()
 c. __sum__()
 d. __total__()
 11. The operator overloaded by __invert__() method is
 a. !
 b. ~
 c. ^
 d. -
 12. The syntax for using super() in derived class __init__() method definition looks

like
 a. super().__init__(baseclassparameters)
 b. init__.super()
 c. super().__init__(derivedclassparameters)
 d. super()
 13. MRO stands for
 a. Member Resolution Order
 b. Member Reverse Order
 c. Member Resolution Office
 d. Method Resolute Order

338 Introduction to Python Programming

 14. Diamond problem in Python is
 a. It is term used for overloading
 b. It is term used for an ambiguity that arises when multiple classes of same level

are inherited
 c. It is a term used for polymorphism
 d. There is no such problem
 15. The syntax that is used to get information about Method Resolution Order is
 a. mro().class
 b. mro().tuple
 c. <class>.mro()
 d. <class>.diamond()
 16. The function of instantiation is
 a. Modifying an instance of a class
 b. Copying an instance of a class
 c. Deleting an instance of a class
 d. Creating an instance of a class
 17. Identify the type of inheritance that is illustrated in this piece of code?

class A()
pass

class B()
pass

class C(A,B)
pass

 a. Single inheritance
 b. Multilevel inheritance
 c. Multiple inheritance
 d. Hierarchical inheritance

Review Questions

 1. Explain classes and objects with examples.
 2. Describe the need for __init__() constructor method.
 3. Differentiate between class attributes and data attributes.
 4. Briefly explain encapsulation with an example.
 5. Examine the different types of inheritances with an example.
 6. Demonstrate the use of super() function with an example.
 7. Discuss polymorphism with an example.

339Object-Oriented Programming

 8. Illustrate operator overloading with an example.
 9. Create a class named quadratic, where a, b, c are data attributes and the methods are
 a. __init__() to initialize the data attributes
 b. roots() to compute the quadratic equation
 10. Define a class called student. Display the marks details of top five students using

inheritance.
 11. Create a class called library with data attributes like acc_number, publisher, title

and author. The methods of the class should include
 a. read() – acc_number, title, author.
 b. compute() - to accept the number of days late, calculate and display the fine

charged at the rate of $1.50 per day.
 c. display the data.
 12. Create two base classes named clock and calendar. Based on these two class define

a class calendarclock, which inherits from both the classes which displays month
details, date and time.

 13. Write a program to add two polynomials using classes.

http://taylorandfrancis.com

341

12
Introduction to Data Science

Data Science is currently generating tremendous fascination worldwide. A topic that will
strongly influence our everyday life in the next years is data science. The growth of data
in the present world has drastically increased, where tons of data comes from a variety of
sources, in very large amounts, and often in real-time settings. Due to this enormous growth
of data, the value of data has become an important factor in every aspect. The term data
 science covers the study of raw data to gain insights into data through computation, statis-
tics, and visualization. Data science is a rewarding career that allows you to solve some of the
world’s most interesting problems. A data scientist can be thought of someone who knows
more about statistics than a computer scientist and more computer science than a statisti-
cian. Many companies are seeking data scientists who have the skills necessary to analyze
and generate business intelligence from their various data sources. This chapter introduces
you to various necessary tools that are required to build a successful career in data science.

12.1 Functional Programming

Python supports a form of programming called Functional Programming (FP) that involves
programming with functions where functions can be passed, stored, and returned. FP
decomposes a problem into a set of functions. The gist of FP is that every function is
understood solely in terms of its inputs and its outputs.

12.1.1 Lambda

Small anonymous functions can be created with the lambda keyword. Lambda functions
are created without using def keyword and without a function name. They are syntactically

AIM

Realize the power of modules like NumPy, pandas, and Altair in developing solu-
tions to problems related to data science.

LEARNING OUTCOMES

At the end of the chapter, you are expected to

• Understand functional programming.
• Understand serialization and deserialization of JSON objects.
• Demonstrate the application of Numpy and pandas Modules.
• Generate charts using Altair visualization library.

342 Introduction to Python Programming

restricted to a single expression. Semantically, they are just syntactic sugar for a normal
function definition. The syntax for lambda function is,

lambda argument_list: expressionKeyword

Here, lambda is a keyword, argument_list is a comma separated list of arguments, and
expression is an arithmetic expression using these arguments lists. A colon separates both
argument_list and expression. No need to enclose argument_list within brackets. For example,

 1. >>> addition_operation = lambda a, b: a + b
 2. >>> addition_operation(100, 8)

 108

In the above code, the lambda function takes two arguments a and b and performs an addi-
tion operation using these arguments ➀. You can assign a lambda function to a variable
and use this variable as a function name to pass arguments ➁. Note, you are not assigning
the value of lambda function to the variable; instead you are giving a function name to a
lambda expression. A lambda function returns the result of the expression implicitly, and
there is no need to specify a return keyword.

12.1.2 Iterators

A Python language feature, iterators, is an important foundation for writing functional-
style programs. Iteration is a general term for taking each item of something, one after
another. Any time you use a loop to go over a group of items, that is an iteration. In Python,
iterable and iterator have specific meanings.

An iterable is an object that has an __iter__() method that returns an iterator. So, an iter-
able is an object that you can get an iterator from. Lists, dictionaries, tuples, and strings are
iterable in Python.

An iterator is an object with a __next__() method. Whenever you use a for loop in Python,
the __next__() method is called automatically to get each item from the iterator, thus going
through the process of iteration. Iterators are stateful, meaning once you have consumed
an item from them, it’s gone.

You can call the __next__() method using the next() and __iter__() method using iter()
built-in functions. For example,

 1. >>> phone = "jio"
 2. >>> it_object = iter(phone)
 3. >>> type(it_object)

 <class 'str_iterator'>
 4. >>> next(it_object)

 'j'
 5. >>> next(it_object)

 'i'
 6. >>> next(it_object)

 'o'

343Introduction to Data Science

 7. >>> next(it_object)
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 StopIteration

An iterator is an object representing a stream of data ➂; this object returns the data one ele-
ment at a time. A Python iterator must support a method called __next__() that takes no
arguments and always returns the next element of the stream ➃–➅. If there are no more
elements in the stream, __next__() must raise the StopIteration exception ➆. The built-in iter()
function takes an arbitrary object and tries to return an iterator that will return the object’s
contents or elements ➁, else raises TypeError exception if the object does not support iteration.

12.1.3 Generators

Generators are a special class of functions that simplify the task of writing iterators.
Regular functions compute a value and return it, but generators return an iterator that
returns a stream of values.

When you call a function, its local variables have their own scope. After the return state-
ment is executed in a function, the local variables are destroyed and the value is returned
to the caller. Later, a call to the same function creates a fresh set of local variables that have
their own scope. However, what if the local variables were not thrown away on exiting a
function? What if you could later resume the function from where it left off? This is what
generators provide; they can be thought of as resumable functions. A generator function
does not include a return statement. Here’s the simplest example of a generator function,

 1. >>> def generate_ints(N):
 2. ... for i in range(N):
 3. ... yield i
 4. >>> gen = generate_ints(3)
 5. >>> gen

 <generator object generate_ints at 0x00000160E4D26410>
 6. >>> next(gen)

 0
 7. >>> next(gen)

 1
 8. >>> next(gen)

 2

 Containers are the objects that hold data elements. Containers are
iterables. Lists, sets, dictionary, tuple, and strings are all containers.

344 Introduction to Python Programming

 9. >>> next(gen)
 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 StopIteration

Any function containing a yield keyword is a generator function ➀. When you call a gen-
erator function, it does not return a single value. Instead it returns a generator object that
supports the iterator __next__() method ➃–➄. Inside the for loop ➁ on executing the yield
expression ➂, the generator outputs the value of i, similar to a return statement. The big
difference between yield and a return statement is that on reaching a yield the generator’s
state of execution is temporarily suspended and local variables are preserved. On the next
call to the generator’s __next__() method, the function will resume execution from where
it left off ➅–➈.

In the real world, generator functions are used for calculating large sets of results where
you do not know if you are going to need all results.

12.1.4 List Comprehensions

List comprehensions provide a concise way to create lists. Common applications of list
comprehensions are to make new lists where each element is the result of some operation
applied to each member of another sequence or iterable or to create a subsequence of those
elements that satisfy a certain condition.

list_variable = [variable[expression] for variable in input [predicate]]

Optional
Optional

First Part Middle Part Last Part

Opening

Bracket

Closing

Bracket

A list comprehension consists of brackets containing a variable or expression (First Part)
followed by a for clause (Middle Part), then predicate True or False using an if clause
(Last Part). The components expression and predicate are optional. The new list resulting
from evaluating the expression in the context of the for and if clauses that follow it will be
assigned to the list_variable. The variable represents members of input. The order of execu-
tion in a list comprehension is (a) If the if condition is not specified, then Middle Part and
First Part gets executed; (b) If the if condition is specified, then the Middle Part, Last Part,
and First Part gets executed. For example,

 1. >>> hardy_ramanujan = []
 2. >>> for number in '1729':
 3. ... hardy_ramanujan.append(number)
 4. >>> hardy_ramanujan

 ['1', '7', '2', '9']

In the above code, an empty list hardy_ramanujan is created ➀. Then, you loop through each
character in the ‘1729’ string using the number iteration variable ➁. Each of those characters

345Introduction to Data Science

is appended into hardy_ramanujan list ➂. Finally, print the list ➃. For the above code, you
can have more readable and concise code through list comprehensions.

1. >>> hardy_ramanujan = [number for number in '1729']

2. >>> hardy_ramanujan

['1', '7', '2', '9']

variable

input

Simple for loops can be written as comprehensions offering cleaner and more readable
syntax. Comprehensions can be thought of as a compact form of a for loop. In the list
comprehension, the variable number indicates the item that will be inserted into the list
hardy_ramanujan at each step of the for loop. In the for loop, the iterating variable number
iterates through each character of the string ‘1729’ ➀. The resulting list is assigned to the
hardy_ramanujan list variable ➀ and displayed ➁.

1. >>> display_upper_case = [each_char.upper() for each_char in "farrago"]
2. >>> display_upper_case

['F', 'A', 'R', 'R', 'A', 'G', 'O']

inputexpression

In the above code, the iterating variable each_char iterates through each character of the
string “farrago.” While iterating through each character using an each_char iterating vari-
able, each of those characters is converted to upper case using the upper() method and
inserted into the display_upper_case list ➀. Print the items of the display_upper_case list ➁.

1. >>> squares = [x**2 for x in range(1, 10)]

2. >>> squares

[1, 4, 9, 16, 25, 36, 49, 64, 81]

expression
input

In the above code, numbers from 1 to 9 are generated using the range() function. The iter-
ating variable x iterates through 1 to 9 and at each iteration, the square of the number is
found and assigned to squares list ➀. Print the items of the square list ➁.

1. >>> even_square = [x**2 for x in range(1, 10) if x %2 == 0]
2. >>> even_square

[4, 16, 36, 64]

expression input predicate

First Part Middle Part Last Part

In the above code, numbers from 1 to 9 are generated using the range() function. Use a for
loop to iterate through each number using the iterating variable x. While iterating through
each number, the if condition checks whether the number is even or not using a modulus
operator. If the number is even, then that number is squared and inserted into the even_
square list ➀. Print the items of even_square list ➁.

346 Introduction to Python Programming

1. >>> words = [each_word for each_word in input().split()]

petrichor degust jirble flabbergast foppish

2. >>> words.sort()

3. >>> print(" ".join(words))

degust flabbergast foppish jirble petrichor

inputvariable

In the above code, the input() function requires the user to enter words as input sepa-
rated by a space. Use the split() function on these entered words to get a list of string
items. Use a for loop to iterate through each of these list items using an each_word iterating
variable. Insert each of the string items to words list ➀. Then, sort the words list using the
sort() method in ascending order according to their ASCII values ➁. Join the string items in
words list using join() method and print it ➂.

12.2 JSON and XML in Python

JSON (JavaScript Object Notation) and XML (EXtensible Markup Language) standards are
commonly used for transmitting data in web applications. The Web is based on a very
basic client/server architecture that can be summarized as follows: a client (usually a
web browser) sends a request to a server, using the Hypertext Transfer Protocol (HTTP).
The server answers the request using the same protocol (FIGURE 12.1).

At the most basic level, whenever a browser needs a file, which is hosted on a web server,
the browser requests the file via HTTP. When the request reaches the correct web server

 List Comprehensions are an alternate to filter(), reduce(), and map()
methods. Guido, the Python BDFL wanted filter(), reduce(), and map()
methods removed from the language but, due to severe backlash from
the community, these methods were retained. Among these methods
reduce() was removed from the Python 3.x built-in standard library and
was moved to functools. List Comprehensions are preferred over the filter(),
reduce(), and map() methods as list comprehensions are more Pythonic.

FIGURE 12.1
Client/Server Architecture.

347Introduction to Data Science

(hardware), the HTTP server (software) accepts the request, finds the requested docu-
ment (if it does not then a 404 response is returned), and sends it back to the browser,
also through HTTP.

12.2.1 Using JSON with Python

JSON (JavaScript Object Notation) is a lightweight text-based data-interchange for-
mat, which was popularized by Douglas Crockford. It is simple for humans to read and
write and easy enough for machines to parse and generate. It is based on a subset of the
JavaScript Programming Language, Standard ECMA-262 3rd Edition – December 1999.
JSON is a text format that is completely language independent but uses conventions that
are familiar to programmers of various languages, including C, C++, C#, Java, JavaScript,
Perl, Python, and many others and all of these programming languages feature the ability
to read (parse) and generate JSON.

The built-in data types in JSON are strings, numbers, booleans (i.e., true and false), null,
objects, and arrays. JSON is built on two structures:

• A collection of string: value properties. In various languages, this is realized as an
object, record, struct, dictionary, hash table, keyed list, or associative array.

• An ordered list of values. In most languages, this is realized as an array, vector,
list, or sequence.

The two above mentioned structures are universal data structures. Virtually all modern
programming languages support them in one form or another. It makes sense that a data
format that is interchangeable with programming languages also is based on these struc-
tures (FIGURE 12.2).

A JSON object can have one or more properties, each of which is a string: value pair. An
object begins with a left brace ({) and ends with a right brace (}). Each string is followed by
a colon (:), and the string: value pairs are separated by a comma (,). Conventionally, a space
is used after the colon. The purpose of this space is to make your code easy for people to
read.

object

{}

pair

string:value

array

[]

value

string

number

object

array

true

false

null

FIGURE 12.2
JSON Structures.

348 Introduction to Python Programming

In JSON, an array is an ordered collection of values. An array begins with a left bracket
([) and ends with a right bracket (]). Values are separated by a comma (,).

In JSON, a value can be a string in double quotes, a number, true or false or null, an
object, or an array. These structures can be nested.

In JSON, it is required to use double quotes around string property and single quotes are
not valid.

In JSON, a number is very much like a Python number, except that the octal and hexa-
decimal formats are not used.

You can include the same basic data types inside JSON like strings, numbers,
arrays, booleans, and other object literals. This allows you to construct a data hierarchy,
like

1. {

2. "first_name": "Andrew",

3. "middle_name": "Wood",

4. "last_name": "Ellis",

5. "contact": {

6. "phone": "1 - 690 - 793 - 4521",

7. "email": "andrewellis@gmail.com"

8. },

9. "address": [{

10. "address_type": "Office",

11. "street": "3096 Euclid Avenue",

12. "city": "Los Angeles",

13. "zip_code": 90017,

14. "state": "California"

15. },

16. {

17. "address_type": "Home",

18. "street": "940 Lewis Street",

Object Starts

Object Starts

Object Ends
Array Starts

Value String

19. "city": "Los Angeles",

20. "zip_code": 90185,

21. "state": "California"

22. }

23.]

24. } Object Ends
Array Ends

Value Number

 Even a single misplaced comma or colon can cause a JSON file to go
wrong and not work. You should be careful to validate any data you are
attempting to use. Although computer-generated JSON is less likely to
include errors, if the generator program is working correctly. You can
validate JSON using an application like JSONLint.

mailto:andrewellis@gmail.com

349Introduction to Data Science

In JSON, an object is a list of string: value properties separated by commas, with the whole
list enclosed in curly brackets. An object begins and ends with curly brackets: {}. The order
of string: value properties in an object does not matter. A JSON object can have an indi-
vidual string: value properties, each of which is a pairing that includes a string and a value.
The string: value properties of an object must be separated by commas as in ➁–➃. The value
of a property can be an object ➄–➆. The string property is case sensitive.

In the above example, the string is named contact. The value of the contact property
is an object that consists of an opening curly bracket, two of its own properties (string
named phone and email), and a closing curly bracket. Notice how objects allow you to
create a hierarchy of information, in the form of a nested string: value properties (object
within the object in this case). There must be no comma after the last string: value prop-
erty of an object (as in line ➆ above). Misuse of commas will break your JSON and
make it impossible to parse it. Conventionally, properties of an object are set off using
line breaks after the opening curly bracket, after each property, and after the closing
curly bracket. Additionally, properties inside an object are indented using either tabs or
spaces. The line breaks and indentation make it easy to see which properties are associ-
ated to which object.

In the above example, for the string named as address, the value is an array of objects
separated by commas, with the whole array enclosed in square brackets []. The value of the
address string property is an array that consists of an opening square bracket, two values
(each of which is an object with five properties of its own), and a closing square bracket.
Values in an array must be separated by commas (as in line above). A comma cannot
be used after the last value in an array (as in line above). Conventionally, objects in an
array are set off using line breaks after each opening bracket, property, or closing bracket;
if a property or closing bracket is followed by a comma, the line break should be after the
comma. Additionally, each object is indented within the array, and each object’s properties
are further indented within that object. The line breaks and indentation make the informa-
tion hierarchy clear in your JSON.

Within a JSON string: value properties, certain characters, known as reserved characters,
can be used only if they are preceded by a backslash (\). For example,

"text": "The value was \"The Wizard of Oz\"."

JSON reserved characters are straight quotation marks (") and backslashes (\). To include
a straight quotation mark (") or backslash (\) in the string value, escape the reserved char-
acter with a preceding backslash (\), as in the example above.

A JSON object can be stored in its own file, which is basically just a text file with a .json
extension. Alternatively, the JSON object can exist as a string in Python. For example, the
above JSON object is stored in a file called personal_data.json. Both of these are useful when
you want to transmit data across a network. It needs to be converted to a native JavaScript
object when you want to access the data. The Python standard module called json can take
Python data hierarchies and convert them to string representations; this process is called
serializing (TABLE 12.1a). The Python json module provides methods dump() for writing
data to JSON file and dumps() for writing to a Python string. Reconstructing the data from
the string representation is called deserializing (TABLE 12.1b). The Python json module
provides methods load() for turning JSON encoded data into Python objects from a file and
loads() methods for turning JSON encoded data into Python objects from a string. Between
serializing and deserializing, the string representing the object may have been stored in a
file or sent over a network connection to some remote machine.

350 Introduction to Python Programming

Program 12.1: Program to Demonstrate Python Deserializing Using JSON load()
Method

 1. import json
 2. def main():
 3. with open('personal_data.json', 'r') as f:
 4. json_object_data = json.load(f)
 5. print(f'Type of data returned by json load is {type(json_object_data)}')
 6. print(f"First Name is {json_object_data['first_name']}")
 7. print(f"Middle Name is {json_object_data['middle_name']}")
 8. print(f"Last Name is {json_object_data['last_name']}")
 9. print(f"Phone Number is {json_object_data['contact']['phone']}")
 10. print(f"Email ID is {json_object_data['contact']['email']}")
 11. print("-----------------**************---------------")
 12. for each_json_object in json_object_data['address']:
 13. print(f"Address Type is {each_json_object['address_type']}")
 14. print(f"Street Name is {each_json_object['street']}")
 15. print(f"City Name is {each_json_object['city']}")
 16. print(f"Zip Number is {each_json_object['zip_code']}")
 17. print(f"State Name is {each_json_object['state']}")
 18. print("-----------------**************---------------")
 19. if __name__ == "__main__":
 20. main()

Output

Type of data returned by json load is <class 'dict'>
First Name is Andrew
Middle Name is Wood

TABLE 12.1

Python Serializing (a) and Deserializing (b) Conversion Table

Python JSON JSON Python

dict object object dict
list, tuple array array list
str string string str
int number number (int) int
float number number (float) float
True true true True
False false false False
None null null None

(a) (b)

351Introduction to Data Science

Last Name is Ellis
Phone Number is 1 - 690 - 793 - 4521
Email ID is andrewellis@gmail.com
-----------------**************---------------
Address Type is Office
Street Name is 3096 Euclid Avenue
City Name is Los Angeles
Zip Number is 90017
State Name is California
-----------------**************---------------
Address Type is Home
Street Name is 940 Lewis Street
City Name is Los Angeles
Zip Number is 90185
State Name is California
-----------------**************---------------

The syntax for load() method is,

json.load(fp)

Deserialize fp (a read() supporting file like object containing a JSON document) to a Python
object using the conversion TABLE 12.1b.

Here you import the json module in line ➀. Open the existing JSON file personal_data.json
using the open() method in read mode where f is the file handler, and load that file handler
using load() method ➂–➃. The loads() method converts a JSON object into Python diction-
ary and assigns it to the json_object_data dictionary. You can display the value associated
with a key (JSON string property) by specifying the name of the dictionary json_object_
data followed by brackets, within which you specify the name of the key (JSON string
property) ➅–➉. Use a for loop to iterate through the array address values – .

Program 12.2: Program to Demonstrate Python Deserializing Using JSON loads()
Method

 1. import json
 2. def main():
 3. json_string = '''
 4. {
 5. "title": "Product",
 6. "description": "A product from Patanjali's catalog",
 7. "category": "Ayurvedic",
 8. "item": {
 9. "name": "Aloevera Sun Screen Cream",
 10. "type": "Face Cream"
 11. }
 12. }

mailto:andrewellis@gmail.com

352 Introduction to Python Programming

 13. '''
 14. json_object_data = json.loads(json_string)
 15. print(f"Title is {json_object_data['title']}")
 16. print(f"Description is {json_object_data['description']}")
 17. print(f"Category is {json_object_data['category']}")
 18. print(f"Item name is {json_object_data['item']['name']}")
 19. print(f"Item type is {json_object_data['item']['type']}")
 20. if __name__ == "__main__":
 21. main()

Output

Title is Product
Description is A product from Patanjali's catalog
Category is Ayurvedic
Item name is Aloevera Sun Screen Cream
Item type is Face Cream

The syntax for loads() method is,

json.loads(s)

Deserialize s (a str, bytes, or bytearray instance containing a JSON document) to a Python
object using the conversion TABLE 12.1b.

You can load a JSON formatted string ➂– to loads() method that returns a dictionary
type . Display the values by using the dictionary name with an appropriate key (JSON
string property) – .

Program 12.3: Program to Demonstrate Python Serializing Using JSON dump()
and dumps() Methods

 1. import json
 2. def main():
 3. string_data =[{
 4. "Name": "Debian",
 5. "Owner": "SPI"
 6. },
 7. {
 8. "Name": "Ubuntu",
 9. "Owner": "Canonical"
 10. },
 11. {
 12. "Name": "Fedora",
 13. "Owner": "Red Hat"

353Introduction to Data Science

 14. }]
 15. json_data = json.dumps(string_data)
 16. print("Data in JSON format")
 17. print(json_data)
 18. with open('linux_data.json', 'w') as f:
 19. json.dump(json_data, f)
 20. if __name__ == "__main__":
 21. main()

Output

Data in JSON format
[{"Name": "Debian", "Owner": "SPI"}, {"Name": "Ubuntu", "Owner": "Canonical"}, {"Name":
"Fedora", "Owner": "Red Hat"}]

The syntax for dumps() method is,

json.dumps(obj)

Serialize obj to a JSON formatted Python str using the conversion TABLE 12.1a.

The syntax for dump() method is,

json.dump(obj, fp)

Serialize obj as a JSON formatted stream to fp (a write() supporting file like object) using
the conversion TABLE 12.1a.

You can specify the JSON formatted data object in your program ➂– and use the
dumps() method to write a data object to a Python string . A file called linux_data.json is
created and is opened in write mode. You have to specify two arguments in the dump()
method, one is the data object to be serialized and the other argument is the file handler
object to which data will be written. The dump() method writes data to files – .

12.2.2 Using Requests Module

Requests is an elegant and simple HTTP library for Python, built for human beings. The
goal of the project is to make HTTP requests simpler and more human-friendly. Requests
make integrating your code with web services seamless.

Installing requests is simple with pip:

 1. C:\> pip install requests

Installs requests library ➀.

Program 12.4: Program to Get Text Response Content Using requests Module

 1. import requests
 2. def main():
 3. response_object = requests.get('https://www.gutenberg.org/cache/epub/419/

pg419.txt')

https://www.gutenberg.org/cache/epub/419/pg419.txt
https://www.gutenberg.org/cache/epub/419/pg419.txt

354 Introduction to Python Programming

 4. print("Text Contents")
 5. print(response_object.text)
 6. if __name__ == "__main__":
 7. main()

Output

Text Contents
The Project Gutenberg EBook of The Magic of Oz, by L. Frank Baum

Truncated Output

Making a request with requests is very simple. Begin by importing the requests module ➀.
Now, let’s try to get a webpage using get() method ➂. For this example, let’s get an
ebook from the Project Gutenberg digital library website. The get() method requests
data from the server. Now, we have a response object called response_object. We can
get all the information we need from this object. We can read the content of the serv-
er’s response. Here, requests will automatically decode content from the server. Most
Unicode character sets are seamlessly decoded. When you make a request, the requests
makes educated guesses about the encoding of the response based on the HTTP head-
ers. The text encoding guessed by requests is used when you access response_object.
text ➄. Encoding is the process of translating data between two formats according to
a set of rules or a formula required for a number of information processing needs like
data transmission. For example, you can encode "abc" to "ABC" using lowercase-to-
uppercase rules. Decoding is the inverse process. You can decode "ABC" to "abc" using
the same set of rules.

Program 12.5: Program to Get JSON Response Content Using Requests Module

 1. import requests
 2. def main():
 3. r = requests.get('http://date.jsontest.com/')
 4. date_dict = r.json()
 5. print(f"Current Time is {date_dict['time']}")
 6. print(f"MilliSeconds Since Epoch is {date_dict['milliseconds_since_epoch']}")
 7. print(f"Today's Date is {date_dict['date']}")
 8. if __name__ == "__main__":
 9. main()

Output

Current Time is 05:47:22 PM
MilliSeconds Since Epoch is 1525628842530
Today’s Date is 05-06-2018

There’s also a built-in JSON decoder to deal with JSON data. In case the JSON decoding
fails, r.json() raises an exception. The URL passed to the get() method of requests module
returns three JSON string:value properties which is decoded ➂ and assigned to date_dict
dictionary ➃. The values associated with each key (JSON string property) are printed ➄–➆.

http://date.jsontest.com/

355Introduction to Data Science

12.2.3 Using XML with Python

EXtensible Markup Language (XML) document is a simple and flexible text format that
is used to exchange wide variety of data on the Web and elsewhere. An XML document
is a universal format for data on the Web. XML allows developers to easily describe and
deliver rich, structured data from any application in a standard, consistent way. XML doc-
uments have an .xml extension.

Why Use XML?
Developers use XML format for following reasons:

Reuse – Contents are separated from Presentation, which enables rapid creation of
documents and content reuse.

Portability – XML is an international, platform-independent standard based on ASCII
text, so developers can safely store their documents in XML without being tied to
any one vendor.

Interchange – XML is a core data standard that enables XML-aware applications to
interoperate and share data seamlessly.

Self-describing – XML is in a human-readable format that users can easily view and
understand.

Elements form the backbone of XML documents, creating structures which you can manip-
ulate with programs. Elements identify sections of content and are built using tags that
identify the name, start, and end of the element. All elements must have names. Element
names are case-sensitive and must start with a letter or underscore. An element name can
contain letters, digits, hyphens, underscores, and periods. An element generally includes
the start and end tags, and everything in between.

Elements provide a way of indicating to which element each sections of content belongs to in
XML and this is done by means of tags. Tags establish boundaries around the content. A tag
consists of the element name between the left-angle bracket (<) and the right-angle bracket (>).
A tag is used to identify where a particular element starts, and where the element ends. For
an element called element_name, the start tag will normally look like <element_name>. The
corresponding closing tag for this element is </element_name>. There are no predefined tags
in XML language. The tags in an XML document are not part of any XML standard. These
tags are thought about by the developer who authors the XML document.

Elements can also contain attributes, which have a name and a value and are used to pro-
vide additional information about your content. An element’s attributes are written inside
the start tag for that element and take the form attribute_name="attribute_value". Attribute
values in XML must be enclosed in either single or double quotes. Double quotes are tradi-
tional. Single quotes are useful when the attribute value contains double quotes.

You must follow these syntax rules when you create an XML document:

1. All XML elements must have a closing tag.
 It is illegal to omit the closing tag when you are creating XML syntax. XML elements

must have a closing tag.
Incorrect:
<movie>Maze Runner.
Correct:
<movie>Maze Runner. </movie>

356 Introduction to Python Programming

2. XML tags are case sensitive
When you create XML documents, the tag <Google> is different from the tag <google>.
Incorrect:
<Google>An Alphabet Company. </google>
Correct:
<google>An Alphabet Company. </google>

3. All XML elements must be properly nested.
 Improper nesting of tags makes no sense to XML. Here <country> and <state> are sibling
elements.
Incorrect:
<country><state>Alaska is the biggest state in USA </country></state>
Correct:
<country><state>Alaska is the biggest state in USA </state></country>

4. All XML documents must have a root element.
 All XML documents must contain a single tag pair to define a root element. All other ele-
ments must be within this root element. Family metaphors, such as a parent, child and
sibling, are used to describe relationships between elements relative to each other. All
elements can have sub-elements (child elements). Sub-elements must be correctly nested
within their parent element. For example,
<root>
 <child>
 <subchild>.....</subchild>
 </child>
</root>

5. Attribute values must always be quoted.
 Omitting quotation marks around attribute values is illegal. The attribute value must
always be quoted.
Incorrect:
<thor realm=Asgard> God of Thunder </thor>
Correct:
<thor realm="Asgard"> God of Thunder </thor>

6. Writing Comments in XML
Use the following syntax for writing comments in XML:
<!-- This is a comment -->

Program 12.6: Construct an XML Formatted Data and Write Python Program to Parse
that XML Data

 1. import xml.etree.ElementTree as ET
 2. def main():
 3. university_data = '''
 4. <top_universities>
 5. <year_2018>
 6. <university_name location="USA">MIT</university_name>

357Introduction to Data Science

 7. <ranking>First</ranking>
 8. </year_2018>
 9. <year_2018>
 10. <university_name location="UK">Oxford</university_name>
 11. <ranking>Sixth</ranking>
 12. </year_2018>
 13. <year_2018>
 14. <university_name location="Singapore">NTU</university_name>
 15. <ranking>Eleventh</ranking>
 16. </year_2018>
 17. </top_universities>
 18. '''
 19. root = ET.fromstring(university_data)
 20. for ranking_year in root.findall('year_2018'):
 21. university_name = ranking_year.find('university_name').text
 22. ranking = ranking_year.find('ranking').text
 23. location = ranking_year.find('university_name').get('location')
 24. print(f"{university_name} University has secured {ranking} Worldwide

 ranking and is located in {location}")
 25. if __name__ == "__main__":
 26. main()

Output

MIT University has secured First Worldwide ranking and is located in USA
Oxford University has secured Sixth Worldwide ranking and is located in UK
NTU University has secured Eleventh Worldwide ranking and is located in Singapore

The xml.etree.ElementTree (ET in short) ➀ module implements a simple and efficient way for
parsing and creating XML data ➂– . XML is an inherently hierarchical data format, and
the most natural way to represent it is with a tree. You need to obtain the root element to
easily traverse around a tree.

You can directly read XML data from a string as ,

root = ET.fromstring(university_data)

The fromstring() method parses XML data from a string directly into an element, which is
the root element of the parsed tree.

You can also import XML data by reading it from a file. For example, if the XML data is
stored in a file named university_data.xml, then to read the XML file replace the code in line

 with the below two lines.

tree = ET.parse('university_data.xml')
 root = tree.getroot()

358 Introduction to Python Programming

ET has ElementTree class to represent the whole XML document as a tree. Element.findall()
finds only elements with a tag, which are direct children of the current element and
returns all the child elements as a list . Element.find() finds the first child element with a
particular tag – . The Element.text accesses the element’s text content – . Element.get()
accesses the element’s attributes .

Program 12.7: Write Python Program to Generate XML Formatted Data and Save it as
an XML Document

 1. import xml.etree.ElementTree as ET
 2. def main():
 3. root = ET.Element("catalog")
 4. child = ET.SubElement(root, "book", {"id":"bk101"})
 5. subchild_1 = ET.SubElement(child, "author")
 6. subchild_2 = ET.SubElement(child, "title")
 7. subchild_1.text = "Michael Connelly"
 8. subchild_2.text = "City of Bones"
 9. child = ET.SubElement(root, "book", {"id":"bk102"})
 10. subchild_1 = ET.SubElement(child, "author")
 11. subchild_2 = ET.SubElement(child, "title")
 12. subchild_1.text = "Jeffrey Friedl"
 13. subchild_2.text = "Mastering Regular Expressions"
 14. tree = ET.ElementTree(root)
 15. tree.write("books.xml")
 16. if __name__ == "__main__":
 17. main()

Output

books.xml

To construct an XML document, first, you need to create an element that acts as the root
element. After the root element is created, then you can create its sub-elements using the
SubElement() method. Element class represents a single element in a tree. Interactions with a
single XML element and its sub-elements are done on the Element level. In ➀, you get the root
element ➂. The SubElement() method provides a convenient way to create child and subchild
elements for a given element. The child element is book, and subchild elements are author and
title ➃–➅ and ➈– . Text can be added to an Element object using Element.text ➆–➇ and – .
In the code, subchild_1 and subchild_2 are the Element objects and text is added to each of these
elements using text attribute. The ElementTree provides a simple way to build XML documents
and write them to files . The ElementTree.write() method serves this purpose .

359Introduction to Data Science

12.2.4 JSON versus XML

Since both JSON and XML are widely used as data interchange formats, we will try to
draw a comparison between them.

• XML is more expressive than JSON. However, XML suffers from the frequent use
of tags, whereas JSON is much more compact.

• XML is more complex than JSON.
• Both JSON and XML can be used with most of the programming languages. But

the way the programming languages handle these two format is different. When
you are working with XML, its data format does not directly translate to a pro-
gramming language data structure, thus forcing to work with two systems whose
data structures are different. The objects and arrays used in JSON are inherently
compatible with most of the programming languages’ data structures, which
eases the use of JSON format in a programming language.

• XML has XSLT (Extensible Stylesheet Language Transformations) specification,
which may be used to apply a style to an XML document. JSON does not have any
such thing.

12.3 NumPy with Python

NumPy is the fundamental package for scientific computing with Python. It stands for
“Numerical Python.” It supports:

• N-dimensional array object
• Broadcasting functions
• Tools for integrating C/C++ and Fortran code
• Useful linear algebra, Fourier transform, and random number capabilities

Besides its obvious scientific uses, NumPy can also be used as a multi-dimensional con-
tainer to store generic data. Arbitrary data types can also be defined. This allows NumPy
to seamlessly and speedily integrate with a wide variety of databases.

NumPy’s main object is the homogeneous multidimensional array. An array is a table
of elements (usually numbers), all of the same type, indexed by a tuple of positive inte-
gers and represented by a single variable. NumPy’s array class is called ndarray. It is also
known by the alias array.

In NumPy arrays, the individual data items are called elements. All elements of an array
should be of the same type. Arrays can be made up of any number of dimensions. In
NumPy, dimensions are called axes. Each dimension of an array has a length which is the
total number of elements in that direction. The size of an array is the total number of ele-
ments contained in an array in all the dimension. The size of NumPy arrays are fixed; once
created it cannot be changed again.

For example, FIGURE 12.3 shows the axes (or dimensions) and lengths of two example
arrays; 12.3(a) is a one-dimensional array and 12.3(b) is a two-dimensional array. A one-
dimensional array has one axis indicated by Axis-0. That axis has five elements in it, so
we say it has a length of five. A two-dimensional array is made up of rows and columns.

360 Introduction to Python Programming

All the rows are indicated by Axis-0 and all the columns are indicated by Axis-1. In a two-
dimensional array, Axis-0 has three elements in it, so its length is three and Axis-1 has
six elements in it, so its length is six. Notice that for each axis, the indexes range from 0 to
length – 1. Array indexes are 0-based. That is, if the length of a dimension is n, the index
values range from 0 to n – 1.

In order to use NumPy in your program, you need to import NumPy. For example,

import numpy as np

numpy is usually renamed as np.

12.3.1 NumPy Arrays Creation Using array() Function

You can create a NumPy array from a regular Python list or tuple using the np.array() func-
tion. The type of the resulting array is deduced from the type of the elements. For example,

 1. >>> import numpy as np
 2. >>> int_number_array = np.array([1,2,3,4])
 3. >>> int_number_array

 array([1, 2, 3, 4])
 4. >>> type(int_number_array)

 <class 'numpy.ndarray'>
 5. >>> int_number_array.dtype

 dtype('int32')
 6. >>> float_number_array = np.array([9.1, 8.1, 8.8, 3.0])
 7. >>> float_number_array.dtype

 dtype('float64')
 8. >>> two_dimensional_array_list = np.array([[1,2,3], [4,5,6]])
 9. >>> two_dimensional_array_list

 array([[1, 2, 3],
 [4, 5, 6]])

 10. >>> two_dimensional_array_tuple = np.array(((1,2,3), (4,5,6)))

FIGURE 12.3
Dimensions of NumPy Array.

361Introduction to Data Science

 11. >>> two_dimensional_array_tuple
 array([[1, 2, 3],
 [4, 5, 6]])

 12. >>> array_dtype = np.array([1,2,3,4], dtype = np.float64)
 13. >>> array_dtype

 array([1., 2., 3., 4.])
 14. >>> array_dtype.dtype

 dtype('float64')

Import the numpy library into your program ➀. Pass a list of items to the np.array() func-
tion and assign the result to int_number_array object ➁. In the output, you can see all the
elements are placed within an iterable object of array class and is a one-dimensional array.
The int_number_array object belongs to numpy.ndarray class ➃. NumPy provides a large
set of numeric datatypes that you can use to construct arrays. NumPy tries to guess a
datatype when you create an array, but functions that construct arrays also usually include
an optional argument to explicitly specify the datatype. The type of int_number_array is
dtype(‘int32’) ➄. The type of float_number_array ➅ is dtype('float64') ➆. The np.array() func-
tion takes either single list or tuple as an argument. If you want to specify multiple lists
or tuples, then pass it as nested lists ➇–➈ or nested tuples ➉– . Here, two_dimensional_
array_list and two_dimensional_array_tuple are examples for two-dimensional arrays. You
can also explicitly specify the data type of array by assigning type values like np.float64,
np.int32, and others to a dtype attribute and pass it as a second argument to np.array() func-
tion – .

12.3.2 Array Attributes

The contents of ndarray can be accessed and modified by indexing or slicing the array and
via the methods and attributes of the ndarray. The more important attributes of ndarray
object are (TABLE 12.2).

TABLE 12.2

Array Attributes

ndarray Attributes Description

ndarray.ndim Gives the number of axes or dimensions in the array
ndarray.shape Gives the dimensions of the array. For an array with n rows and m

columns, shape will be a tuple of integers (n, m).
ndarray.size Gives the total number of elements of the array.
ndarray.dtype Gives an object describing the type of the elements in the array. One

can create or specify dtype’s using standard Python types.
Additionally, NumPy provides its own types like np.int32, np.int16,
np.float64, and others.

ndarray.itemsize Gives the size of each element of the array in bytes.
ndarray.data Gives the buffer containing the actual elements of the array.

Normally, we will not use this attribute because we will access the
elements in an array using indexing facilities.

Note: In your code, replace ndarray with you Python NumPy ndarray object name.

362 Introduction to Python Programming

For example,

 1. >>> import numpy as np
 2. >>> array_attributes = np.array([[10, 20, 30], [14, 12, 16]])
 3. >>> array_attributes.ndim

 2
 4. >>> array_attributes.shape

 (2, 3)
 5. >> array_attributes.size

 6
 6. >>> array_attributes.dtype

 dtype('int32')
 7. >>> array_attributes.itemsize

 4
 8. >>> array_attributes.data

 <memory at 0x000001E61DB963A8>

Various ndarray attributes ➀–➇.

12.3.3 NumPy Arrays Creation with Initial Placeholder Content

Often, the elements of an array are initially unknown, but its size is known. Hence, NumPy
offers several functions to create arrays with initial placeholder content (TABLE 12.3).
These minimize the necessity of growing arrays, an expensive operation.

(Continued)

TABLE 12.3

NumPy Arrays Creation Functions

Function Name Description

np.zeros() Creates an array of zeros

np.ones() Creates an array of ones

np.empty() Creates an empty array
np.full() Creates a full array
np.eye() Creates an identity matrix
np.random.random() Creates an array with random values
np.arange() The syntax for arange() is,

np.arange([start,]stop, [step,][dtype=None])

Returns evenly spaced values within a given interval where start (a number and
optional) is the start of interval and its default value is zero, stop (a number) is
the end of interval, and step (a number and is optional) is the spacing between
the values and dtype is the type of output array.

363Introduction to Data Science

For example,

 1. >>> import numpy as np
 2. >>> np.zeros((2,3))

 array([[0., 0., 0.],
 [0., 0., 0.]])

 3. >>> np.ones((3,4))
 array([[1., 1., 1., 1.],
 [1., 1., 1., 1.],
 [1., 1., 1., 1.]])

 4. >>> np.empty((2,3))
 array([[0., 0., 0.],
 [0., 0., 0.]])

 5. >>> np.full((3,3),2)
 array([[2, 2, 2],
 [2, 2, 2],
 [2, 2, 2]])

 6. >>> np.eye(2,2)
 array([[1., 0.],
 [0., 1.]])

 7. >>> np.random.random((2,2))
 array([[0.95022839, 0.23253555],
 [0.843828 , 0.57976282]])

 8. >>> np.arange(10, 30, 5)
 array([10, 15, 20, 25])

 9. >>> np.arange(0, 2, 0.3)
 array([0. , 0.3, 0.6, 0.9, 1.2, 1.5, 1.8])

 10. >>> np.linspace(0, 2, 9)
 array([0. , 0.25, 0.5 , 0.75, 1. , 1.25, 1.5 , 1.75, 2.])

TABLE 12.3 (Continued)

NumPy Arrays Creation Functions

Function Name Description

np.linspace() The syntax for linspace is,

numpy.linspace(start, stop, num=50, dtype=None)

Returns evenly spaced numbers over a specified interval where start is the
starting value of the sequence, stop is the end value of the sequence, and num
(an integer and optional) is the number of samples to generate. Default is 50.
Must be non-negative. The optional dtype is the type of the output array.

364 Introduction to Python Programming

Various NumPy functions to create arrays ➀–➉. When the arange() function is used with
floating point arguments, it is generally not possible to predict the number of elements
obtained, due to the finite floating point precision ➈. For this reason, it is usually better to
use the linspace() function to which you can pass an argument specifying the number of
elements you want to generate instead of the step. In , the linspace() function produces
nine data elements between zero and two.

12.3.4 Integer Indexing, Array Indexing, Boolean Array Indexing, Slicing
and Iterating in Arrays

One-dimensional arrays can be indexed, sliced, and iterated over, much like lists and other
Python sequences.

 1. >>> import numpy as np
 2. >>> a = np.arange(5)
 3. >>> a

 array([0, 1, 2, 3, 4])
 4. >>> a[2]

 2
 5. >>> a[2:4]

 array([2, 3])
 6. >>> a[:4:2] = -999
 7. >>> a

 array([-999, 1, -999, 3, 4])
 8. >>> a[::-1]

 array([4, 3, -999, 1, -999])
 9. >>> for each_element in a:
 10. ... print(each_element)

 -999
 1
 -999
 3
 4

Indexing, slicing, and iterating operations on one-dimensional NumPy arrays ➀–➉.

For multi-dimensional arrays you can specify an index or slice per axis. For example,

 1. >>> import numpy as np
 2. >>> a = np.array([[1,2,3,4], [5,6,7,8], [9,10,11,12]])

365Introduction to Data Science

0 1 2 3

0 2 3 4

1 5 6 7

2 9 11 12

R
O

W
S

COLUMNS

1

8

10

a[0, 0]

a[1, 3]

a[2, 1]

 3. >>> a[1, 3]
 8

 4. >>> a[:2, 1:3]
 array([[2, 3],

 [6, 7]])
 5. >>> lower_axes = a[1, :]
 6. >>> lower_axes

 array([5, 6, 7, 8])
 7. >>> lower_axes.ndim

 1
 8. >>> same_axes = a[1:2, :]
 9. >>> same_axes

 array([[5, 6, 7, 8]])
 10. >>> same_axes.ndim

 2
 11. >>> a[:, 1]

 array([2, 6, 10])
 12. >>> a[:, 1:2]

 array([[2],
 [6],
 [10]])

 13. >>> for row in a:
 14. ... print(row)

 [1 2 3 4]
 [5 6 7 8]
 [9 10 11 12]

 15. >>> for each_element in a.flat:

366 Introduction to Python Programming

 16. ... print(each_element)
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12

Use integer indexing to pull out the data elements present in row 1 and column 3 ➂. You
can also mix integer indexing with slice indexing. In ➃, pull out the subarray consist-
ing of row 0 and row 1 and column 1 and column 2 having a shape of (2, 2). Display the
elements present in all the columns of row 1 ➄–➅, ➇–➈. Mixing integer indexing with
slices yields an array of lower axes ➆. Using slices in all the axes of an array yields an
array of the same axes as the original array ➉. Display all the elements present in all
the rows of column 1 – . Iterating over multi-dimensional arrays is done with respect
to the first axis – . However, if one wants to perform an operation on each element in
the array, one can use the flat attribute, which is an iterator over all the elements of the
array – .

 1. >>> import numpy as np
 2. >>> a = np.array([[1, 2], [3, 4], [5, 6]])
 3. >>> a

 array([[1, 2],
 [3, 4],
 [5, 6]])

 4. >>> a[[0, 1, 2], [0, 1, 0]]
 array([1, 4, 5])

Integer array indexing allows you to construct arbitrary arrays using the data from another
array ➁. Here in code line ➃, it is used to construct an array from another array ➂.

a[[0, 1, 2], [0, 1, 0]]

Elements found in (0, 0), (1, 1), and (2, 0) index are pulled out and displayed ➃.

 1. >>> import numpy as np
 2. >>> a = np.array([[11, 12], [13, 14], [15, 16]])

367Introduction to Data Science

 3. >>> a
 array([[11, 12],
 [13, 14],
 [15, 16]])

 4. >>> a[a > 13]
 array([14, 15, 16])

Boolean array indexing lets you select the elements of an array that satisfy some condition.
With Boolean array indexing, you explicitly choose which items in the array you want and
which ones you do not want. With Boolean array indexing of a[a > 13] ➃, elements greater
than 13 in the array a are displayed as a one-dimensional array.

12.3.5 Basic Arithmetic Operations on NumPy Arrays

Basic mathematical functions perform element-wise operation on arrays and are available
both as operator overloads and as functions in the NumPy module. For example,

 1. >>> import numpy as np
 2. >>> a = np.array([20, 30, 40, 50])
 3. >>> b = np.arange(4)
 4. >>> b

 array([0, 1, 2, 3])
 5. >>> a + b

 array([20, 31, 42, 53])
 6. >>> np.add(a, b)

 array([20, 31, 42, 53])
 7. >>> a – b

 array([20, 29, 38, 47])
 8. >>> np.subtract(a, b)

 array([20, 29, 38, 47])
 9. >>> A = np.array([[1, 1], [6, 1]])
 10. >>> B = np.array([[2, 8], [3, 4]])
 11. >>> A * B

 array([[2, 8],
 [18, 4]])

 12. >>> np.multiply(A, B)
 array([[2, 8],
 [18, 4]])

 13. >>> A / B
 array([[0.5 , 0.125],
 [2. , 0.25]])

368 Introduction to Python Programming

 14. >>> np.divide(A, B)
 array([[0.5 , 0.125],
 [2. , 0.25]])

 15. >>> np.dot(A, B)
 array([[5, 12],
 [15, 52]])

 16. >>> B**2
 array([[4, 64],
 [9, 16]], dtype=int32)

Element-wise sum, subtract, multiply, and divide operations are performed resulting in
an array ➄– . Matrix product is carried out in . Every element is squared in array B as
shown in .

12.3.6 Mathematical Functions in NumPy

Various mathematical functions are supported in NumPy. A few frequently used math-
ematical functions are shown below.

 1. >>> import numpy as np
 2. >>> a = np.array([20, 30, 40, 50])
 3. >>> np.sin(a)

 array([0.91294525, -0.98803162, 0.74511316, -0.26237485])
 4. >>> np.cos(a)

 array([0.40808206, 0.15425145, -0.66693806, 0.96496603])
 5. >>> np.tan(a)

 array([2.23716094, -6.4053312 , -1.11721493, -0.27190061])
 6. >>> a = np.array([-1.7, -1.5, -0.2, 0.2, 1.5, 1.7, 2.0])
 7. >>> np.floor(a)

 array([-2., -2., -1., 0., 1., 1., 2.])
 8. >>> np.ceil(a)

 array([-1., -1., -0., 1., 2., 2., 2.])
 9. >>> np.sqrt([1,4,9])

 array([1., 2., 3.])
 10. >>> np.maximum([2, 3, 4], [1, 5, 2])

 array([2, 5, 4])
 11. >>> np.minimum([2, 3, 4], [1, 5, 2])

 array([1, 3, 2])
 12. >>> np.sum([0.5, 1.5])

 2.0

369Introduction to Data Science

 13. >>> np.sum([[0, 1], [0, 5]], axis=0)
 array([0, 6])

 14. >>> np.sum([[0, 1], [0, 5]], axis=1)
 array([1, 5])

Trigonometric operations like sin(), cos(), and tan() are supported ➂–➄. The floor() func-
tion having syntax as floor(x), returns the largest integer value less than or equal to x,
element-wise ➆. The ceil() function having a syntax as ceil(x), returns the smallest integer
value greater than or equal to x, element-wise ➇. The sqrt() function returns the positive
square-root of an array, element-wise ➈. The maximum() function compares two arrays and
returns a new array containing element-wise maximum of array elements ➉. The mini-
mum() function compares two arrays and returns a new array containing element-wise
minimum of array elements . The sum() function returns the sum of array elements over
a given axis – . All of the above functions return a new array.

12.3.7 Changing the Shape of an Array

You can change the shape of an array. For example,

 1. import numpy as np
 2. >>> a = np.floor(10*np.random.random((3,4)))
 3. >>> a

 array([[2., 3., 2., 5.],
 [3., 3., 8., 7.],
 [8., 6., 5., 0.]])

 4. >>> a.shape
 (3, 4)

 5. >>> a.ravel()
 array([2., 3., 2., 5., 3., 3., 8., 7., 8., 6., 5., 0.])

 6. >>> a.reshape(6,2)
 array([[2., 3.],
 [2., 5.],
 [3., 3.],
 [8., 7.],
 [8., 6.],
 [5., 0.]])

An array has a shape given by the number of elements along each axis ➃. The shape of
an array can be changed with ravel() ➄ and reshape() ➅ functions. Both ravel() and reshape()
return a modified array but do not change the original array. The function ravel() returns a

370 Introduction to Python Programming

flattened array, such as a one-dimensional array, containing the elements of the input. The
function reshape() gives a new shape to an array without changing its data.

12.3.8 Stacking and Splitting of Arrays

You can stack several arrays together or split an array to several arrays. For example,

 1. >>> import numpy as np
 2. >>> a = np.array([[3, 1], [8, 7]])
 3. >>> b = np.array([[2, 4], [4, 8]])
 4. >>> np.vstack((a, b))

 array([[3, 1],
 [8, 7],
 [2, 4],
 [4, 8]])

 5. >>> np.hstack((a, b))
 array([[3, 1, 2, 4],
 [8, 7, 4, 8]])

 6. >>> a = np.floor(10*np.random.random((2, 12)))
 7. >>> a

 array([[8., 3., 6., 3., 5., 5., 5., 8., 9., 7., 6., 8.],
 [8., 3., 1., 2., 9., 0., 5., 5., 0., 3., 3., 8.]])

 8. >>> np.hsplit(a, 3)
 [array([[8., 3., 6., 3.],
 [8., 3., 1., 2.]]), array([[5., 5., 5., 8.],
 [9., 0., 5., 5.]]), array([[9., 7., 6., 8.],
 [0., 3., 3., 8.]])]

 9. >>> np.hsplit(a, (3, 4))
 [array([[8., 3., 6.],
 [8., 3., 1.]]), array([[3.],
 [2.]]), array([[5., 5., 5., 8., 9., 7., 6., 8.],
 [9., 0., 5., 5., 0., 3., 3., 8.]])]

 10. >>> np.vsplit(a, 2)
 [array([[2., 9., 4., 4., 3., 0., 2., 9., 1., 2., 0., 1.]]), array([[3., 4., 8., 2., 5., 8., 5., 5., 7., 7.,

7., 8.]])]

Several arrays can be stacked together along different dimensions using vstack() and
hstack() functions. With vstack() ➃ and hstack() ➄ functions you are stacking the arrays
a and b together in row-wise and column-wise fashion. The number of columns when
stacking with vstack() and the number of rows when stacking with hstack() should be

371Introduction to Data Science

the same. Use hsplit() function to split an array along its horizontal axis. You can either
specify the number of equally shaped arrays to return or specify the columns after which
the division should occur. In ➇, you split array a into three subarrays. In ➈, you split
array a after the third and the fourth column. Use vsplit() function to split an array along
the vertical axis ➉.

12.3.9 Broadcasting in Arrays

The term broadcasting describes how NumPy treats arrays with different shapes during
arithmetic operations. Broadcasting allows NumPy functions to deal in a meaningful way
with input arrays that do not have exactly the same shape. Subject to certain constraints,
the smaller array is “broadcast” across the larger array so that they have compatible shapes
and occurs automatically whenever possible. The rules of broadcasting are:

• Rule 1 → If two input arrays do not have the same number of dimensions, a “1”
will repeatedly be padded to the shape of the smaller array on its left side by
NumPy so both the arrays have the same number of dimensions.

• Rule 2 → If the shape of two input arrays does not match, then the array with a
shape of “1” along a particular dimension is stretched by NumPy to match the
shape of the array having the largest shape along that dimension. The value
of the array element is assumed to be the same along that dimension for the
“broadcast” array. After application of the broadcasting rules, the sizes of all
arrays must match.

• Rule 3 → If the above two rules are not met, a ValueError: frames are not aligned
exception is thrown, indicating that the arrays have incompatible shapes.

NOT E: The Above Rules can be applied to arrays with any number of dimensions.

Example-1.

 1. >>> import numpy as np
 2. >>> array_1 = np.ones([4, 5])
 3. >>> array_2 = np.arange(5)
 4. >>> array_1

 array([[1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.]])

 5. >>> array_2
 array([0, 1, 2, 3, 4])

 6. >>> array_1.shape
 (4, 5)

 7. >>> array_2.shape
 (5,)

372 Introduction to Python Programming

 8. >>> array_1 + array_2
 array([[1., 2., 3., 4., 5.],
 [1., 2., 3., 4., 5.],
 [1., 2., 3., 4., 5.],
 [1., 2., 3., 4., 5.]])

NumPy operations are usually done on pairs of arrays on an element-by-element basis.
In the simplest case, two arrays must have exactly the same shape. NumPy’s broadcast-
ing rule relaxes this constraint when the arrays’ shapes meet certain rules. In the above
code, two arrays, array_1 ➁ and array_2 ➂, with different dimensions are added. Elements
of array_1 is displayed in line ➃ and array_2 is displayed in line ➄. The shape of array_1 is
(4, 5) ➅ and array_2 is (5,) ➆.

array_1.shape → (4, 5)
array_2.shape → (5,)

Since array_2 has less dimension compared to array_1, according to Rule 1, array_2 is pad-
ded with 1’s on its left. Now the shape of array_2 becomes (1, 5). NumPy automatically
handles this step.

array_1.shape (4, 5)
array_2.shape (1, 5)

Next, according to Rule 2, the shape of array_2 having “1” in the first dimension is stretched
to match the highest shape along that dimension of array_1. The shape of array_2 becomes
(4, 5). NumPy automatically handles this step.

array_1.shape → (4, 5)
array_2.shape → (4, 5)

After stretching, the elements of array_2 seems to be stacked upon themselves for four times
along the first dimension. The elements of array_2 appear to be the copies of the original array.

array_2 → array([[0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4],
 [0, 1, 2, 3, 4]])

This stretching of the array elements is purely conceptual and does not actually happen as
NumPy is smart enough not to make duplicate copies of the original array elements. Also,
the original array is not affected.

The final shape of array_2 becomes (4, 5) matching the shape of array_1, thus paving the
way for NumPy to perform an addition operation on these two arrays ➇.

 Example-2.

 1. >>> import numpy as np
 2. >>> array_1 = np.random.random(4).reshape([4,1])
 3. >>> array_2 = np.arange(4)

373Introduction to Data Science

 4. >>> array_1.shape
 (4, 1)

 5. >>> array_2.shape
 (4,)

 6. >>> array_1 + array_2
 array([[0.20188425, 1.20188425, 2.20188425, 3.20188425],
 [0.51342227, 1.51342227, 2.51342227, 3.51342227],
 [0.03364189, 1.03364189, 2.03364189, 3.03364189],
 [0.6176858 , 1.6176858 , 2.6176858 , 3.6176858]])

In the above code, the shape of array_1 ➁ is (4, 1) ➃ and array_2 ➂ is (4,) ➄.

array_1.shape → (4, 1)
array_2.shape → (4,)

Since array_2 has less dimension compared to array_1, according to Rule 1, array_2 is pad-
ded with 1’s on its left. Now the shape of array_2 becomes (1, 4). NumPy automatically
handles this step.

array_1.shape (4, 1)
array_2.shape (1, 4)

Next, according to Rule 2, the shape of array_1 having “1” in the second dimension is
stretched to match the highest shape along that dimension of array_2. Thus, the shape
of array_1 becomes (4, 4). The shape of array_2 having “1” in the first dimension is
stretched to match the highest shape along that dimension of array_1. Thus, the shape of
array_2 becomes (4, 4). NumPy automatically handles this step.

array_1.shape → (4, 4)
array_2.shape → (4, 4)

With equal shapes, NumPy performs an addition operation on these two arrays ➅.

 Example-3.

 1. >>> import numpy as np
 2. >>> array_1 = np.random.random([2, 3])
 3. >>> array_2 = np.ones(5)
 4. >>> array_1.shape

 (2, 3)
 5. >>> array_2.shape

 (5,)
 6. >>> array_1 + array_2

 Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 ValueError: operands could not be broadcast together with shapes (2,3) (5,)

374 Introduction to Python Programming

In the above code, the shape of array_1 ➁ is (2, 3) ➃ and array_2 ➂ is (5,) ➄.

array_1.shape → (2, 3)
array_2.shape → (5,)

Since array_2 has less dimension compared to array_1, according to Rule 1, array_2 is pad-
ded with 1’s on its left. Now the shape of array_2 becomes (1, 5).

array_1.shape → (2, 3)
array_2.shape → (1, 5)

Next, according to Rule 2, the shape of array_2 having “1” in the first dimension is
stretched to match the highest shape along that dimension of array_1. Thus, the shape of
array_2 becomes (2, 5).

array_1.shape → (2, 3)
array_2.shape → (2, 5)

But the shapes of both the arrays differ and according to Rule 3 the addition operation fails
in this case ➅.

12.4 Pandas

pandas is a Python library that provides fast, flexible, and expressive data structures
designed to make working with “relational” or “labeled” data both easy and intuitive. It
aims to be the fundamental high-level building block for doing practical, real world data
analysis in Python.

The two primary data structures of pandas, Series (one-dimensional) and DataFrame
(two-dimensional), handle the vast majority of typical-use cases in finance, statistics, social
science, and many areas of engineering. pandas is built on top of NumPy and is intended
to integrate well within a scientific computing environment with many other third-party
libraries.

pandas is well suited for inserting and deleting columns from DataFrame, for easy han-
dling of missing data (represented as NaN), explicitly aligning data to a set of labels,
converting data in other Python and NumPy data structures into DataFrame objects,
intelligent label-based slicing, indexing, and subsetting of large data sets, merging and
joining of data sets, and flexible reshaping. Additionally, it has robust input/output tools
for loading data from CSV files, Excel files, databases, and other formats. You have to
import a pandas library to make use of various functions and data structures defined in
pandas.

import pandas as pd

pandas is usually renamed as pd.

375Introduction to Data Science

12.4.1 Pandas Series

Series is a one-dimensional labeled array capable of holding any data type (integers, strings,
floating point numbers, Python objects, etc.). The axis labels are collectively referred to as
the index. Pandas Series is created using series() method and its syntax is,

s = pd.Series(data, index=None)

Here, s is the Pandas Series, data can be a Python dict, a ndarray, or a scalar value (like 5).
The passed index is a list of axis labels. Both integer and label-based indexing are sup-
ported. If the index is not provided, then the index will default to range(n) where n is the
length of data. For example,

Create Series from ndarrays

 1. >>> import numpy as np
 2. >>> import pandas as pd
 3. >>> s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
 4. >>> type(s)

 <class 'pandas.core.series.Series'>
 5. >>> s

a -0.367740
b 0.855453
c -0.518004
d -0.060861
e -0.277982

in
d

ex

dtype: float64
 6. >>> s.index

 Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
 7. >>> s.values

 array([-0.367740, 0.855453, -0.518004, -0.060861, -0.277982])
 8. >>> pd.Series(np.random.randn(5))

 0 0.334947
 1 -2.184006
 2 -0.209440
 3 -0.492398
 4 -1.507088
 dtype: float64

Import NumPy and pandas libraries ➀–➁. Create a series using ndarray which is NumPy’s
array class using Series() method ➂ which returns a Pandas Series type s ➃. You can also
specify axis labels for index, i.e., index=['a', 'b', 'c', 'd', 'e'] ➂. When data is a ndarray, the
index must be the same length as data. In series s ➄, by default the type of values of all the
elements is dtype: float64. You can find out the index for a series using index attribute ➅.

376 Introduction to Python Programming

The values attribute returns a ndarray ➆ containing only values, while the axis labels are
removed. If no labels for the index is passed, one will be created having a range of index
values [0,..., len(data) - 1] ➇.

Create Series from Dictionaries

 1. >>> import numpy as np
 2. >>> import pandas as pd
 3. >>> d = {'a' : 0., 'b' : 1., 'c' : 2.}
 4. >>> pd.Series(d)
 a 0.0
 b 1.0
 c 2.0

dtype: float64
 5. >>> pd.Series(d, index=['b', 'c', 'd', 'a'])

 b 1.0
 c 2.0
 d NaN
 a 0.0
 dtype: float64

Series can be created from the dictionary. Create a dictionary ➂ and pass it to Series()
method ➃. When a series is created using dictionaries, by default the keys will be index
labels. While creating series using a dictionary, if labels are passed for the index, the values
corresponding to the labels in the index will be pulled out ➄. The order of index labels
will be preserved. If a value is not associated for a label, then NaN is printed. NaN (not a
number) is the standard missing data marker used in pandas.

Create Series from Scalar data

 1. >>> import numpy as np
 2. >>> import pandas as pd
 3. >>> pd.Series(5., index=['a', 'b', 'c', 'd', 'e'])
 a 5.0
 b 5.0
 c 5.0
 d 5.0
 e 5.0

dtype: float64

You can create a Pandas Series from scalar value. Here scalar value is five ➂. If data is a scalar
value, an index must be provided. The value will be repeated to match the length of the index.

Series Indexing and Slicing

 1. >>> import numpy as np
 2. >>> import pandas as pd

377Introduction to Data Science

 3. >>> s = pd.Series(np.random.randn(5), index=['a', 'b', 'c', 'd', 'e'])
 4. >>> s
 a 0.481557
 b 2.053330
 c -1.799993
 d -0.396880
 e -1.270751

dtype: float64
 5. >>> s[0]

 0.48155677569897515
 6. >>> s[1:3]

 b 2.053330
 c -1.799993
 dtype: float64

 7. >>> s[:3]
 a 0.481557
 b 2.053330
 c -1.799993

dtype: float64
 8. >>> s[s > .5]

 b 2.05333
 dtype: float64

 9. >>> s[[4, 3, 1]]
 e -1.270751
 d -0.396880
 b 2.053330
 dtype: float64

 10. >>> s['a']
 0.48155677569897515

 11. >>> s['e']
 -1.270750548062543

 12. >>> 'e' in s
 True

 13. >>> 'f' in s
 False

You can provide index ➄ or slice data by index numbers ➅–➆ in a Pandas Series ➂–➃. You
can also specify a Boolean array indexing for Pandas Series ➇. Multiple indices are speci-
fied as a list in ➈. The index can be an integer value or a label ➉. Values associated with
labeled index are extracted and displayed ➉– . Check for the presence of a label in Series
using in operator – .

378 Introduction to Python Programming

Working with Text Data

The Pandas Series supports a set of string processing methods that make it easy to operate
on each element of the array. These methods are accessible via the str attribute and they
generally have the same name as that of the built-in Python string methods.

 1. >>> import numpy as np
 2. >>> import pandas as pd
 3. >>> empires_ds = pd.Series(["Vijayanagara", "Roman", "Chola", "Mongol",

"Akkadian"])
 4. >>> empires_ds.str.lower()

 0 vijayanagara
 1 roman
 2 chola
 3 mongol
 4 akkadian
 dtype: object

 5. >>> empires_ds.str.upper()
 0 VIJAYANAGARA
 1 ROMAN
 2 CHOLA
 3 MONGOL
 4 AKKADIAN
 dtype: object

 6. >>> empires_ds.str.len()
 0 11
 1 5
 2 5
 3 6
 4 8
 dtype: int64

 7. >>> tennis_ds = pd.Series([' Seles ', ' Graph ', ' Williams '])
 8. >>> tennis_ds.str.strip()

 0 Seles
 1 Graph
 2 Williams
 dtype: object

 9. >>> tennis_ds.str.contains(' ')
 0 True
 1 True

379Introduction to Data Science

 2 True
 dtype: bool

 10. >>> marvel_ds = pd.Series(['Thor_loki', 'Thor_Hulk', 'Gamora_Storm'])
 11. >>> marvel_ds.str.split('_')

 0 [Thor, loki]
 1 [Thor, Hulk]
 2 [Gamora, Storm]
 dtype: object

 12. >>> planets = pd.Series(["Venus", "Earth", "Saturn"])
 13. >>> planets.str.replace("Earth", "Mars")

 0 Venus
 1 Mars
 2 Saturn
 dtype: object

 14. >>> letters_ds = pd.Series(['a', 'b', 'c', 'd'])
 15. >> letters_ds.str.cat(sep=',')

'a,b,c,d'
 16. >>> names_ds = pd.Series(['Jahnavi', 'Adelmo', 'Pietro', 'Alejandro'])
 17. >>> names_ds.str.count('e')

 0 0
 1 1
 2 1
 3 1
 dtype: int64

 18. >>> names_ds.str.startswith('A')
 0 False
 1 True
 2 False
 3 True
 dtype: bool

 19. >>> names_ds.str.endswith('O')
 0 False
 1 False
 2 False
 3 False

dtype: bool

 20. >>> names_ds.str.find('J')
 0 0
 1 -1

380 Introduction to Python Programming

 2 -1
 3 -1

dtype: int64
Various string methods to operate with Pandas Series is discussed ➀– .

12.4.2 Pandas DataFrame

DataFrame is a two-dimensional, labeled data structure with columns of potentially differ-
ent types. You can think of it like a spreadsheet or database table, or a dict of Series objects.
It is generally the most commonly used pandas object. DataFrame accepts many different
kinds of input like Dict of one-dimensional ndarrays, lists, dicts, or Series, two-dimensional
ndarrays, structured or record ndarray, a dictionary of Series, or another DataFrame.

df = pd.DataFrame(data=None, index=None, columns=None)

Here, df is the DataFrame and data can be NumPy ndarray, dict, or DataFrame. Along with
the data, you can optionally pass an index (row labels) and columns (column labels) attri-
butes as arguments. If you pass an index and/or columns, you are guaranteeing the index
and/or columns of the resulting DataFrame. Both index and columns will default to range(n)
where n is the length of data, if they are not provided. When the data is a dictionary and
columns are not specified, then the DataFrame column labels will be dictionary’s keys.

Create DataFrame from Dictionary of Series/Dictionaries

 1. >>> import pandas as pd
 2. >>> dict_series = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),

 ... 'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
 3. >>> df = pd.DataFrame(dict_series)
 4. >>> df

one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0

in
d

ex

columns

 5. >>> df.shape
 (4, 2)

 6. >>> df.index
 Index(['a', 'b', 'c', 'd'], dtype='object')

 7. >>> df.columns
 Index(['one', 'two'], dtype='object')

 8. >>> list(df.columns)
 ['one', 'two']

 9. >>> dicts_only = {'a':[1,2,3], 'b':[4,5,6]}

381Introduction to Data Science

 10. >>> dict_df = pd.DataFrame(dicts_only)
 11. >>> dict_df

 a b
 0 1 4
 1 2 5
 2 3 6

 12. >>> dict_df.index
 RangeIndex(start=0, stop=3, step=1)

You need to import pandas library ➀. Create a dictionary whose values are a series of
a one-dimensional arrays ➁. You can create a DataFrame from a dictionary of series.
Pass dict_series dictionary as argument to DataFrame() class which returns a DataFrame
object ➂. Index labels are passed as a list to index attribute. If the number of labels
specified in the various series are not the same, then the resulting index will be the
union of all the index labels of various series. In DataFrame df under column "one",
there is no data element associated with index label "d", so NaN will be inserted at that
position ➃. A number of rows and columns in a DataFrame is obtained using shape attri-
bute ➄. Get the index labels for the DataFrame using index attribute ➅. With columns
attribute, you get all the columns of the DataFrame ➆. Get the columns of DataFrame
as a list by passing the columns attribute as an argument to the list() function ➇. You
can create a DataFrame from a dictionary ➈ without using index and columns attributes
➉. For dict_df DataFrame , a and b are columns and index labels are integers ranging
from zero to two .

Create DataFrame from ndarrays/lists/list of dictionaries

 1. >>> import numpy as np
 2. >>> import pandas as pd
 3. >>> dict_ndarrays = {'one': np.random.random(5), 'two':np.random.random(5)}
 4. >>> pd.DataFrame(dict_ndarrays)

 one two
 0 0.346580 0.827881
 1 0.738850 0.577504
 2 0.969715 0.781170
 3 0.668432 0.746535
 4 0.709333 0.440675

 5. >>> pd.DataFrame([[1,2,3,4,5], [6,7,8,9,10]])

0 1 2 3 4
0 1 2 3 4 5
1 6 7 8 9 10

columns
rows

 6. >>> dict_lists = {'one': [1, 2, 3, 4, 5], 'two': [5, 4, 3, 2, 1]}
 7. >>> pd.DataFrame(dict_lists)

382 Introduction to Python Programming

 one two
 0 1 5
 1 2 4
 2 3 3
 3 4 2
 4 5 1

 8. >>> pd.DataFrame(dict_lists, index=['a', 'b', 'c', 'd', 'e'])
 one two
 a 1 5
 b 2 4
 c 3 3
 d 4 2
 e 5 1

 9. >>> lists_dicts = [{'a':1, 'b':2}, {'a':5, 'b':10, 'c':20}]
 10. >>> pd.DataFrame(lists_dicts)

 a b c
 0 1 2 NaN
 1 5 10 20.0

The pandas ➁ library is built on top of NumPy ➀. Here, dict_ndarrays ➂ is a dictionary of
ndarrays from which you can create a DataFrame ➃. Also, nested lists can be used to cre-
ate a DataFrame ➄. If no index and columns are specified, then both index and columns
will have integer labels. Keys are considered as column labels ➆ when a DataFrame is cre-
ated using dictionaries ➅. The DataFrame columns will be preserved in the same order
as specified by dictionary keys. In ➇, index labels are specified for a DataFrame created
from the dictionary. The DataFrame can also be created from a list of dictionaries ➈. Since
DataFrame columns will be a union of all the keys in the list of dictionaries, elements for
missing columns will be NaN ➉.

DataFrame Column Selection, Addition and Deletion

 1. >>> import pandas as pd
 2. >>> la_liga = {"Ranking":[1,2,3], "Team": ["Barcelona", "Atletico Madrid", "Real

Madrid"]}
 3. >>> df = pd.DataFrame(la_liga)
 4. >>> df

 Ranking Team
 0 1 Barcelona
 1 2 Atletico Madrid
 2 3 Real Madrid

 5. >>> df['Team']

383Introduction to Data Science

 0 Barcelona
 1 Atletico Madrid
 2 Real Madrid
 Name: Team, dtype: object

 6. >>> df['Played'] = [34, 36, 38]
 7. >>> df['Won'] = [27, 23, 22]
 8. >>> df[['Played', 'Won']]

 Played Won
 0 34 27
 1 36 23
 2 38 22

 9. >>> df['Points'] = df['Won'] * 2
 10. >>> df

 Ranking Team Played Won Points
 0 1 Barcelona 34 27 54
 1 2 Atletico Madrid 36 23 46
 2 3 Real Madrid 38 22 44

 11. >>> df['Lost'] = [1, 5, 6]
 12. >>> df

 Ranking Team Played Won Points Lost
 0 1 Barcelona 34 27 54 1
 1 2 Atletico Madrid 36 23 46 5
 2 3 Real Madrid 38 22 44 6

 13. >>> df['Drawn'] = df['Played'] - df['Won'] - df['Lost']
 14. >>> df

 Ranking Team Played Won Points Lost Drawn
 0 1 Barcelona 34 27 54 1 6
 1 2 Atletico Madrid 36 23 46 5 8
 2 3 Real Madrid 38 22 44 6 10

 15. >>> df['Year'] = 2018
 16. >>> df

 Ranking Team Played Won Points Lost Drawn year
 0 1 Barcelona 34 27 54 1 6 2018
 1 2 Atletico Madrid 36 23 46 5 8 2018
 2 3 Real Madrid 38 22 44 6 10 2018

 17. >>> del df['Year']

384 Introduction to Python Programming

 18. >>> df.pop('Drawn')
 0 6
 1 8
 2 10
 Name: Drawn, dtype: int64

 19. >>> df.insert(5, 'Goal Difference', [63, 38, 42])
 20. >>> df

 Ranking Team Played Won Points Goal Difference Lost
 0 1 Barcelona 34 27 54 63 1
 1 2 Atletico Madrid 36 23 46 38 5
 2 3 Real Madrid 38 22 44 42 6

 21. >>> df.rename(columns = {'Team':'Club Team'})
 Ranking Club Team Played Won Points Goal Difference Lost
 0 1 Barcelona 34 27 54 63 1
 1 2 Atletico Madrid 36 23 46 38 5
 2 3 Real Madrid 38 22 44 42 6

Create DataFrame df ➂ from la_liga dictionary ➁. You can select a particular column
in a DataFrame by specifying the column name within quotes inside a bracket of a
DataFrame ➄.

You can add a new column to the DataFrame by specifying the column label within the
bracket of DataFrame and assign data elements to it ➅–➆. Grab multiple columns from a
DataFrame by passing a list of columns ➇. You can also create a new column by making
use of the data elements found in existing columns. Column “Points” is inserted to the
DataFrame df after multiplying all the data elements in column “Won” by 2 ➈. You can
perform basic arithmetic operations on DataFrame columns . When inserting a scalar
value, it will naturally be propagated to fill the column – . Columns can be deleted or
popped . By default, columns get inserted at the end. The insert function is available to
insert at a particular location in the columns . You can rename the column label using the
rename() method. The columns attribute has to be passed to the rename() method and assign
it with a dictionary where the old column label will be key and new column label will be a
value of . All the above operations have a direct impact on the DataFrame.

Displaying Data in DataFrame

 1. >>> import pandas as pd
 2. >>> df = pd.DataFrame({'WorldCup_Winner':["Brazil", "Germany", "Argentina",

"Brazil", "Spain"], 'Year':[1962, 1974, 1986, 2002, 2010]})
 3. >>> df.columns

 Index(['WorldCup_Winner', 'Year'], dtype='object')
 4. >>> df.head(2)

 WorldCup_Winner Year
 0 Brazil 1962
 1 Germany 1974

385Introduction to Data Science

 5. >>> df.tail(2)
 WorldCup_Winner Year

 3 Brazil 2002
 4 Spain 2010

 6. >>> df['WorldCup_Winner'].unique()
 array(['Brazil', 'Germany', 'Argentina', 'Spain'], dtype=object)

 7. >>> df['WorldCup_Winner'].unique().tolist()
 ['Brazil', 'Germany', 'Argentina', 'Spain']

 8. >>> df.transpose()
 0 1 2 3 4
 WorldCup_Winner Brazil Germany Argentina Brazil Spain
 Year 1962 1974 1986 2002 2010

 9. >>> df.sort_values(by=['Year'], ascending = False)
 WorldCup_Winner Year

 4 Spain 2010
 3 Brazil 2002
 2 Argentina 1986
 1 Germany 1974
 0 Brazil 1962

 10. >>> df.sort_index(ascending = False)
 WorldCup_Winner Year

 4 Spain 2010
 3 Brazil 2002
 2 Argentina 1986
 1 Germany 1974
 0 Brazil 1962

 11. >>> df['WorldCup_Winner'].value_counts()
 Brazil 2
 Argentina 1
 Germany 1
 Spain 1
 Name: WorldCup_Winner, dtype: int64

 12. >>> df['WorldCup_Winner'].value_counts().index.tolist()
 ['Brazil', 'Argentina', 'Germany', 'Spain']

 13. >>> df['WorldCup_Winner'].value_counts().values.tolist()
 [2, 1, 1, 1]

386 Introduction to Python Programming

DataFrame head(n) ➃ method returns first n rows and tail(n) ➄ method returns last n
rows. You can find unique data elements in a column by chaining unique() method with a
DataFrame column using dot notation. The unique() ➅ method returns a one-dimensional
array-like object, which can be converted to a list using tolist() method ➆. The transpose()
method flips the DataFrame over its main diagonal by writing rows as columns and vice
versa ➇. The syntax for sort_values() method is,

df.sort_values(by, axis=0, ascending=True)

where the by parameter can be a string, list of strings, index label, column label, list of
index labels, or list of column labels to sort by. If the value of the axis is 0 then by may con-
tain column labels. If the value of the axis is 1, then by may contain index labels. By default,
the value of the axis parameter is 0. The default value of ascending parameter is True, if so
then the data elements will be sorted in ascending order. A False value leads to sorting the
data elements in descending order ➈. By default, the sort_index() method, performs sort-
ing on row labels in ascending order and returns a copy of the DataFrame. If the ascending
parameter is set to Boolean False, then the sort_index() method performs sorting in descend-
ing order ➉. The value_counts() method when chained with a DataFrame, returns a Series
object containing counts of unique values . The resulting object will be in descending
order so that the first element is the most frequently-occurring element. The NA values are
excluded by default. The index attribute returns the index or row labels of the Series . The
values attribute returns a NumPy representation of the Series .

Using DataFrame assign() method

 1. >>> import pandas as pd
 2. >>> df_mountain = pd.DataFrame({"Mountain":['Mount Everest', 'K2',

'Kangchenjunga'], "Length":[8848, 8611, 8586]})
 3. >>> df_mountain.assign(Ranking = [1, 2, 3])

 Length Mountain Ranking
 0 8848 Mount Everest 1
 1 8611 K2 2
 2 8586 Kangchenjunga 3

 4. >>> df = pd.DataFrame({'A':[2, 4, 6], 'B':[3, 6, 9]})
 5. >>> df.assign(C = lambda x:x['A'] ** 2)

 A B C
 0 2 3 4
 1 4 6 16****
 2 6 9 36

DataFrame has an assign() method that allows you to easily create new columns that are
potentially derived from existing columns ➄. The assign() method always returns a copy
of the data, leaving the original DataFrame untouched.

DataFrame Indexing and Selecting Data

The Python and NumPy indexing operators [] and dot operator . provide quick and
easy access to select a subset of data elements in a pandas DataFrame across a wide

387Introduction to Data Science

range of use cases. However, since the type of the data to be accessed isn’t known in
advance, directly using standard operators has some optimization limits. For produc-
tion code, it’s highly recommended that you take advantage of the optimized pandas
data access methods, like .loc[] and .iloc[], which are used to retrieve rows. Note that
.loc[] and .iloc[] methods are followed by square brackets [], not parentheses () and are
called as indexers.

The .loc[] method is primarily label based, but may also be used with a Boolean array.
The .loc[] method will raise KeyError when the items are not found. Inputs accepted by
.loc[] method are a single label, e.g. 5 or 'a' (note that 5 is interpreted as a label of the index/
row; this use is not an integer position along the index), a list or array of labels ['a', 'b', 'c'], a
slice object with labels 'a':'f' (note that contrary to usual Python slices, both the start and the
stop are included, when present in the index!) and Boolean array.

The .iloc[] method is primarily an integer position based (from 0 to length-1 of the axis),
but may also be used with a Boolean array. The .iloc[] method will raise an IndexError if a
requested indexer is out-of-bounds, except in the case of slice indexers, which allow out-of-
bounds indexing (this conforms with Python/NumPy slice semantics). Allowed inputs for
.iloc[] method are an integer, such as 5, a list or array of integers [4, 3, 0], a slice object with
ints 1:7, and a Boolean array. For example,

 1. >>> import numpy as np
 2. >>> import pandas as pd
 3. >>> df = pd.DataFrame(np.random.rand(5,5), index = ['row_1', 'row_2', 'row_3',

'row_4', 'row_5'], columns = ['col_1', 'col_2', 'col_3', 'col_4', 'col_5'])
 4. >>> df

 col_1 col_2 col_3 col_4 col_5
 row_1 0.302179 0.067154 0.848890 0.291533 0.710989
 row_2 0.668777 0.246157 0.339020 0.232109 0.390328
 row_3 0.787487 0.703837 0.542948 0.839311 0.050887
 row_4 0.905814 0.026933 0.381502 0.754635 0.399242
 row_5 0.244861 0.343171 0.992433 0.058433 0.266207

 5. >>> df.loc['row_1']
 col_1 0.302179
 col_2 0.067154
 col_3 0.848890
 col_4 0.291533
 col_5 0.710989
 Name: row_1, dtype: float64

 6. >>> df.loc['row_2', 'col_3']
 0.339020

 7. >>> df.loc[['row_1', 'row_2'],['col_2', 'col_3']]
 col_2 col_3
 row_1 0.067154 0.84889
 row_2 0.246157 0.33902

388 Introduction to Python Programming

 8. >>> df.loc[:, ['col_2', 'col_3']]
 col_2 col_3
 row_1 0.067154 0.848890
 row_2 0.246157 0.339020
 row_3 0.703837 0.542948
 row_4 0.026933 0.381502
 row_5 0.343171 0.992433

 9. >>> df.iloc[1]
 col_1 0.668777
 col_2 0.246157
 col_3 0.339020
 col_4 0.232109
 col_5 0.390328
 Name: row_2, dtype: float64

 10. >>> df.iloc[3:5, 0:2]
 col_1 col_2
 row_4 0.905814 0.026933
 row_5 0.244861 0.343171

 11. >>> df.iloc[:3, :]
 col_1 col_2 col_3 col_4 col_5
 row_1 0.302179 0.067154 0.848890 0.291533 0.710989
 row_2 0.668777 0.246157 0.339020 0.232109 0.390328
 row_3 0.787487 0.703837 0.542948 0.839311 0.050887

 12. >>> df.iloc[:,:]
 col_1 col_2 col_3 col_4 col_5
 row_1 0.302179 0.067154 0.848890 0.291533 0.710989
 row_2 0.668777 0.246157 0.339020 0.232109 0.390328
 row_3 0.787487 0.703837 0.542948 0.839311 0.050887
 row_4 0.905814 0.026933 0.381502 0.754635 0.399242
 row_5 0.244861 0.343171 0.992433 0.058433 0.266207

 13. >>> df.iloc[2:, 2:]
 col_3 col_4 col_5
 row_3 0.542948 0.839311 0.050887
 row_4 0.381502 0.754635 0.399242
 row_5 0.992433 0.058433 0.266207

 14. >>> df.iloc[:,1]
 row_1 0.067154
 row_2 0.246157
 row_3 0.703837

389Introduction to Data Science

 row_4 0.026933
 row_5 0.343171
 Name: col_2, dtype: float64

 15. >>> df[df > 0.2]
 col_1 col_2 col_3 col_4 col_5
 row_1 0.302179 NaN 0.848890 0.291533 0.710989
 row_2 0.668777 0.246157 0.339020 0.232109 0.390328
 row_3 0.787487 0.703837 0.542948 0.839311 NaN
 row_4 0.905814 NaN 0.381502 0.754635 0.399242
 row_5 0.244861 0.343171 0.992433 NaN 0.266207

For .loc[row_label_indexing, col_label_indexing] and .iloc[row_integer_indexing, col_integer_indexing]
methods, a single argument always refers to selecting data elements from row indices in the
DataFrame and not the column indices. When col_label_indexing or col_integer_indexing is
absent, it means all the columns for that particular row will be selected.

For example, .loc['a'] is equivalent to .loc['a',:]. This example applies to iloc as well.
With df.loc[indexer] you know automatically that df.loc[] is selecting rows. In contrast, it is
not clear if df[indexer] will select rows or columns (or raise ValueError) without knowing
details about indexer and df. In ➄, select the first row labeled as row_1 and all the columns
of that row. Line ➅ selects data elements present in the second row labeled as row_2 and
third column labeled as col_3. ➆ Selects values present in the first row, row_1 and second
row, row_2 along with their corresponding columns. In ➇, you slice via labels and select all
the rows under column 2 and 3.

You can grab data based on position instead of labels using .iloc method. The .iloc[]
method provides integer-based indexing. The semantics follow Python and NumPy slic-
ing closely. These are zero-based indexing. When slicing, the start bound is included,
while the upper bound is excluded. In ➈, select all the data elements from the second
row along the entire columns. Even though we have labeled these rows and columns, still
their integer indices range from 0 to n – 1, where n is the length of the data. Slicing returns
a subset of data elements present in DataFrame along with their corresponding labels.
In ➉, even though the row index is out of range, still the existing rows will be selected
and out-of-range indexes are handled gracefully. All data elements starting from first to
the third row along their entire column are selected . The entire DataFrame is selected
in . Rows from position three onwards and columns from position three onwards are
selected . All the rows in the second column are selected . An important feature of pan-
das is conditional selection using bracket notation, very similar to numpy. Data elements
greater than 0.2 in DataFrame are displayed while the lower values are treated as NaN .
Note, none of the above operations change the original data elements of DataFrame.

Group By: split-apply-combine
Here, “group by” refers to a process involving one or more of the following steps:

• Splitting the data into groups based on some criteria.
• Applying a function to each group independently.
• Combining the results into a data structure.

390 Introduction to Python Programming

 1. Out of these, the split step is the most straightforward. In fact, in many situations,
we may wish to split the data set into groups and do something with those groups.

 2. In the apply step, we might wish to do one of the following:
Aggregation: compute a summary statistic (or statistics) for each group. For example,
 Compute group sums or means.
 Compute group sizes/counts.
Transformation: perform some group-specific computations and return a like-

indexed object. For example,
 Standardize data (zscore) within a group.
 Filling NAs within groups with a value derived from each group.
Filtration: discard some groups, according to a group-wise computation that evalu-

ates True or False. For example,
 Discard data that belong to groups with only a few members.
 Filter out data based on the group sum or mean.

 3. Some combination of the above: GroupBy will examine the results of the apply step
and try to return a sensibly combined result if it does not fit into either of the above
two categories.

 For example,
 1. >>> import pandas as pd
 2. >>> cars_data = {'Company':['General Motors','Ford', 'Toyota', 'General Motors',

'Ford', 'Toyota'], 'Model': ['Camaro', 'Mustang', 'Prius', 'Malibu', 'Fiesta', 'Camry'],
'Sold':[12285, 35273, 34287, 29325, 27459, 17621]}

 3. >>> cars_df = pd.DataFrame(cars_data)
 4. >>> cars_df

 Company Model Sold
 0 General Motors Camaro 12285
 1 Ford Mustang 35273
 2 Toyota Prius 34287
 3 General Motors Malibu 29325
 4 Ford Fiesta 27459
 5 Toyota Camry 17621

 5. >>> cars_df.groupby('Company').mean()
 Company Sold
 Ford 31366
 General Motors 20805
 Toyota 25954

 6. >>> cars_df.groupby('Company').std()
 Company Sold
 Ford 5525.332388

391Introduction to Data Science

 General Motors 12049.099551
 Toyota 11784.641615
 7. >>>cars_df.groupby('Company').min()
 Company Model Sold
 Ford Fiesta 27459
 General Motors Camaro 12285
 Toyota Camry 17621
 8. >>> cars_df.groupby('Company').max()
 Company Model Sold
 Ford Mustang 35273
 General Motors Malibu 29325
 Toyota Prius 34287
 9. >>> cars_df.groupby('Company').sum()
 Company Sold
 Ford 62732
 General Motors 41610
 Toyota 51908
 10. >>> cars_df.groupby('Company').describe()

 Sold
 Company count mean std min 25% 50% 75% max

 Ford 2.0 31366.0 5525.332388 27459.0 29412.5 31366.0 33319.5 35273.0

 General Motors 2.0 20805.0 12049.099551 12285.0 16545.0 20805.0 25065.0 29325.0

 Toyota 2.0 25954.0 11784.641615 17621.0 21787.5 25954.0 30120.5 34287.0

 11. >>> cars_df.groupby('Company').count()
 Company Model Sold
 Ford 2 2
 General Motors 2 2
 Toyota 2 2
 12. >>> cars_df.groupby('Company')['Company'].count()
 Company
 Ford 2
 General Mot ors 2
 Toyota 2

 Name: Company, dtype: int64
 13. >>> cars_df.groupby('Company')['Company'].count().tolist()

 [2, 2, 2]
 14. >>> cars_df.groupby('Company')['Company'].count().index.tolist()

 ['Ford', 'General Motors', 'Toyota']

392 Introduction to Python Programming

 15. >>> cars_df.groupby(['Company','Model']).groups
 {('Ford', 'Fiesta'): Int64Index([4], dtype='int64'), ('Ford', 'Mustang'):

Int64Index([1], dtype='int64'), ('General Motors', 'Camaro'): Int64Index([0],
dtype='int64'), ('General Motors', 'Malibu'): Int64Index([3], dtype='int64'),
('Toyota', 'Camry'): Int64Index([5], dtype='int64'), ('Toyota', 'Prius'):
Int64Index([2], dtype='int64')}

 16. >>> grp_by_company = cars_df.groupby('Company')
 17. >>> for label, group in grp_by_company:

 ... print(label)
 ... print(group)
 ...
 Ford
 Company Model Sold
 1 Ford Mustang 35273
 4 Ford Fiesta 27459
 General Motors
 Company Model Sold
 0 General Motors Camaro 12285
 3 General Motors Malibu 29325
 Toyota
 Company Model Sold
 2 Toyota Prius 34287
 5 Toyota Camry 17621

In the above code, cars_df ➂, is the DataFrame on which the groupby() method will be
applied. The groupby() method allows you to group rows of data together based on a
column name and call aggregate functions on them. For instance, let’s group based on
“Company” column using the groupby() method. This will return a DataFrameGroupBy
object upon which you can call aggregate methods ➄– . If you need to count only one
column then specify the name of the column within brackets as shown in for which you
can get values and index labels as a list by chaining tolist() method. Various aggregate
functions are listed below (TABLE 12.4).

TABLE 12.4

Aggregate Functions and Their Description

Function Description

mean() Compute mean of groups
sum() Compute sum of group values
size() Compute group sizes
count() Compute count of group
std() Standard Deviation of groups
describe() Generate Descriptive Statistics
min() Compute minimum of group values
max() Compute maximum of group values

393Introduction to Data Science

The groups attribute is a dictionary whose keys are the computed unique groups
and corresponding values are the index labels belonging to each group. Assign the
DataFrameGroupBy object returned by groupby() method to a grp_by_company variable .
With a grp_by_company object, you can iterate through the grouped data by specifying two
iterating variables . Here label variable returns the data elements of the grouped column
company and group variable returns the grouped data.

Concatenate, Append and Merge
The pandas library provides various facilities for easily combining/concatenating together
Series as well as DataFrame objects. The pandas library also has support for full-featured,
high performance in-memory merge operations, also called join operations. The pandas
library provides a single function, merge(), as the entry point for all standard merge opera-
tions between different DataFrame objects.

 1. >>> import pandas as pd

 2. >>> left_df = pd.DataFrame({'Ranking':[1, 2 ,3 ,4, 5],

 ... 'University':['MIT', 'Stanford', 'Harvard', 'UCB', 'Princeton'],

 ... 'Student':['Liam', 'William', 'Sofia', 'Logan', 'Olivia']})

 3. >>> right_df = pd.DataFrame({'Ranking':[1, 2, 3, 4, 5],

 ... 'University':['Oxford', 'ETH', 'Cambridge', 'Utrecht', 'Humboldt'],

 ... 'Student':['Charles', 'Liam', 'Sofia', 'Rafael', 'Hannah']})

 4. >>> left_df

 Ranking University Student

 0 1 MIT Liam

 1 2 Stanford William

 2 3 Harvard Sofia

 3 4 UCB Logan

 4 5 Princeton Olivia

 5. >>> right_df

 Ranking University Student

 0 1 Oxford Charles

 1 2 ETH Liam

 2 3 Cambridge Sofia

 3 4 Utrecht Rafael

 4 5 Humboldt Hannah

 6. >>> concatenate_df = pd.concat([left_df, right_df])

 7. >>> concatenate_df

 Ranking University Student

 0 1 MIT Liam

394 Introduction to Python Programming

 1 2 Stanford William
 2 3 Harvard Sofia
 3 4 UCB Logan
 4 5 Princeton Olivia
 0 1 Oxford Charles
 1 2 ETH Liam
 2 3 Cambridge Sofia
 3 4 Utrecht Rafael
 4 5 Humboldt Hannah

 8. >>> concatenate_df = pd.concat([left_df, right_df], keys = ['Universities_Americas',
'Universities_Europe'])

 9. >>> concatenate_df.loc['Universities_Americas']
 Ranking University Student
 0 1 MIT Liam
 1 2 Stanford William
 2 3 Harvard Sofia
 3 4 UCB Logan
 4 5 Princeton Olivia

 10. >>> append_df = left_df.append(right_df)
 11. >>> append_df

 Ranking University Student
 0 1 MIT Liam
 1 2 Stanford William
 2 3 Harvard Sofia
 3 4 UCB Logan
 4 5 Princeton Olivia
 0 1 Oxford Charles
 1 2 ETH Liam
 2 3 Cambridge Sofia
 3 4 Utrecht Rafael
 4 5 Humboldt Hannah

 12. >>> pd.merge(left_df, right_df, on = 'Student')
 Ranking_x University_x Student Ranking_y University_y
 0 1 MIT Liam 2 ETH
 1 3 Harvard Sofia 3 Cambridge

 13. >>> pd.merge(left_df, right_df, on = ['Ranking', 'Student'])
 Ranking University_x Student University_y
 0 3 Harvard Sofia Cambridge

395Introduction to Data Science

 14. >>> pd.merge(left_df, right_df, on = 'Student', how = 'left')
 Ranking_x University_x Student Ranking_y University_y
 0 1 MIT Liam 2.0 ETH
 1 2 Stanford William NaN NaN
 2 3 Harvard Sofia 3.0 Cambridge
 3 4 UCB Logan NaN NaN
 4 5 Princeton Olivia NaN NaN

 15. >>> pd.merge(left_df, right_df, on = 'Student', how = 'right')
 Ranking_x University_x Student Ranking_y University_y
 0 1.0 MIT Liam 2 ETH
 1 3.0 Harvard Sofia 3 Cambridge
 2 NaN NaN Charles 1 Oxford
 3 NaN NaN Rafael 4 Utrecht
 4 NaN NaN Hannah 5 Humboldt

 16. >>> pd.merge(left_df, right_df, on = 'Student', how = 'outer')
 Ranking_x University_x Student Ranking_y University_y
 0 1.0 MIT Liam 2.0 ETH
 1 2.0 Stanford William NaN NaN
 2 3.0 Harvard Sofia 3.0 Cambridge
 3 4.0 UCB Logan NaN NaN
 4 5.0 Princeton Olivia NaN NaN
 5 NaN NaN Charles 1.0 Oxford
 6 NaN NaN Rafael 4.0 Utrecht
 7 NaN NaN Hannah 5.0 Humboldt

 17. >>> pd.merge(left_df, right_df, on = 'Student', how = 'inner')
 Ranking_x University_x Student Ranking_y University_y
 0 1 MIT Liam 2 ETH
 1 3 Harvard Sofia 3 Cambridge

The concat() function does all of the heavy lifting of performing concatenation operations.
The syntax for concat() function is,

pd.concat(objs, keys=None)

Here objs can be a Series, DataFrame, List, or Dictionary. The keys are a list of labels and its
default value is None. This function returns a DataFrame object, if DataFrames are concat-
enated, and returns a Series object if Series are concatenated.

Two DataFrames left_df ➁ and right_df ➂ are created. Both DataFrames have Ranking,
University, and Student as column labels ➃–➄. You can concatenate multiple DataFrames
using the concat() function by passing multiple DataFrames as list items to the concat()
function ➅. Observe that the integer index labels of different DataFrames that were

396 Introduction to Python Programming

concatenated are retained as it is in the concatenated DataFrame ➆. If you want to associate
specific keys with each of the pieces of the chopped up DataFrame, then you can do this by
using the keys argument ➇. You can extract each chunk of DataFrame by passing the key
associated with it as an index to .loc[] method ➈. A useful shortcut to the concat() function
is the append() instance methods on Series and DataFrame ➉.

A merge() function combines columns from multiple DataFrames and returns a new
DataFrame object. These columns must be found in all the DataFrames that are to be
merged. The syntax for merge() function is,

df_obj = pd.merge(left_df, right_df, how='inner', on=None)

where left_df is a DataFrame object, right_df is another DataFrame object, on is the names of
column labels that you want to merge. The column labels that you assign to an on argument
are called as keys. For a how argument, you can assign any one of the values 'left', 'right',
'outer', or 'inner'. The default value is 'inner'. The merge() function returns a DataFrame object.

A merge() function is a means for combining columns from a left_df DataFrame and
right_df DataFrame by using data elements that are common to each other. The how argu-
ment in the merge() function specifies how to determine which keys are to be included in
the resulting DataFrame. The data elements of keys may or may not be found in both the
left_df and right_df DataFrame objects while carrying out the merge operation; if not then
NaN will be assigned in the resulting merged DataFrame.

The pandas merge() method specifies four types of merge operations: 'left', 'right', 'outer'
and 'inner'. Let’s understand each of these merge operations in detail.

Left Merge → In the left merge operation, preference is given to the key columns of left_df
DataFrame. All the rows in the key columns of the left_df DataFrame are retained in the
resulting DataFrame. If any of the data elements in the left_df DataFrame key columns are
present in the right_df DataFrame key columns, then those rows are also retained. But for
the rows of the data elements of the right_df DataFrame key columns, which are not same as
that of the data elements of left_df DataFrame key columns, NaN is assigned (FIGURE 12.4a).

FIGURE 12.4
Pictorial representation of various types of merge operation. (a) Left merge; (b) Right merge; (c) Inner merge
and (d) Outer merge.

397Introduction to Data Science

Right Merge → In the right merge operation, preference is given to the key columns of right_
df DataFrame. All the rows in key columns of the right_df DataFrame are retained in the result-
ing DataFrame. If any of the data elements in the right_df DataFrame key columns are present
in the left_df DataFrame key columns, then those rows are also retained. However, for the rows
of the data elements of the left_df DataFrame key columns, which are not same as that of the
data elements of right_df DataFrame key columns, NaN is assigned (FIGURE 12.4b).

Inner Merge → In the inner merge operation, if the data elements are found in the key
columns of both left_df and right_df DataFrames, then only those rows are retained in the
resulting DataFrame. This is the default behavior of merge() function (FIGURE 12.4c).

Outer Merge → In the outer merge operation, all the rows from left_df and all the rows
from right_df DataFrames are retained in the resulting DataFrame. Rows for all the data
elements found in the key columns of both left_df and right_df DataFrames are matched
and retained in the resulting DataFrame, and for missing rows of left_df and right_df
DataFrames NaN is assigned (FIGURE 12.4d).

In , an inner merge operation is carried out by merging left_df and right_df DataFrames
on 'Student' key column. Notice _x and _y appended to Ranking and University column
labels. These suffixes are added for any clashes in column names that are not involved in
the merge operation. You can also perform a merge operation on multiple key columns
by assigning them as list items to on argument . Left merge , right merge , outer
merge , and inner merge operations are carried out as shown in the above code. If
you want to merge more than two DataFrames, then the syntax is df_1.merge(df_2, on =
'column_name').merge(df_3, on = 'column_name')

Handling Missing Data
In the real world, the dataset you encounter will contain lots of missing data. Hence, pan-
das offer different methods to handle missing data elements.

 1. >>> import pandas as pd
 2. >>> df = pd.DataFrame({'a':pd.Series([1, 2]), 'b':pd.Series([10, 20, 30, 40, 50]), 'c':pd.

Series([100, 200, 300])})
 3. >>> df

 a b c
 0 1.0 10 100.0
 1 2.0 20 200.0
 2 NaN 30 300.0
 3 NaN 40 NaN
 4 NaN 50 NaN

 4. >>> df.dropna()
 a b c
 0 1.0 10 100.0
 1 2.0 20 200.0

 5. >>> df.fillna(value = '0')
 a b c
 0 1 10 100
 1 2 20 200

398 Introduction to Python Programming

 2 0 30 300
 3 0 40 0
 4 0 50 0

 6. >>> df['c'].fillna(value = df['c'].mean())
 0 100.0
 1 200.0
 2 300.0
 3 200.0
 4 200.0
 Name: c, dtype: float64

The DataFrame df ➁ consists of a few missing data elements ➂. You have the option of
dropping labels with missing data via the dropna() function ➃. The fillna() method fills the
missing values with specified scalar value ➄–➅. Note: None of these methods change the
original data elements of DataFrame.

DataFrame Data Input and Output
You can read from CSV and Excel files using read_csv() and read_excel() methods. Also, you
can write to CSV and Excel files using to_csv() and to_excel() methods. For example,

 1. >>> df_csv = pd.read_csv(''foo.csv'')
 2. >>> df _excel = pd.read_excel(''foo.xlsx'')
 3. >>> df.to_csv('foo.csv')
 4. >>> df.to_excel('foo.xlsx', sheet_name='Sheet1')

Both read_csv() ➀ and read_excel() ➁ methods return DataFrame. DataFrame is written to
CSV ➂ and Excel files ➃.

12.5 Altair

Altair is a declarative statistical visualization library for Python and it is based on Vega-Lite.
What is Vega-Lite? Vega-Lite is a high-level grammar of interactive graphics. It provides a con-
cise JSON syntax for rapidly generating visualizations to support data analysis. The Vega-Lite
compiler automatically produces visualization components including axes, legends, and scales.

Altair’s API is simple, friendly and consistent and built on top of the powerful Vega-Lite
visualization grammar. With Altair, you can spend more time understanding your data
and its meaning.

The key idea of Altair is that you are declaring links between DataFrame columns and
visual encoding channels, such as the x-axis, y-axis, color, etc. The rest of the plot details
are handled automatically. This elegant simplicity produces beautiful and compelling

399Introduction to Data Science

visualizations with a minimal amount of code. Building on this declarative plotting idea, a
surprising range of simple to sophisticated plots and visualizations can be created using a
relatively simple grammar.

Install Altair using pip command as shown below:

 1. C:\>pip install altair.

Installs altair library ➀.

Follow the steps mentioned below to generate an Altair chart.

• Create an Altair Chart object with a pandas DataFrame.
• Choose a suitable mark relevant to your Dataset.
• Encode the X and Y values with appropriate columns in the DataFrame.
• Save the data emitted by Altair Chart object as a file with a .json extension.
• Navigate to https://vega.github.io/editor/ an online Vega-Lite editor and paste the

contents of the JSON file in the left pane of the editor. You can see a Chart gener-
ated in the right pane of the editor.

Specifying Data in Altair

Data in Altair is built around the pandas DataFrame. In Altair, every dataset should be
provided as a DataFrame. This makes the encoding quite simple, as Altair uses the data
type information provided by pandas to determine the data types required in the encoding
automatically.

Chart
The fundamental object in Altair is the Chart. It takes the DataFrame as a single argument.
A Chart is an object that knows how to emit a JSON dictionary representing the data and
visualization encodings, which is visually rendered by the online Vega-Lite editor using
the Vega-Lite JavaScript library.

Chart Marks
Now you have data that is not yet defined on how it should be visualized. You need to
decide what sort of mark you would like to use to represent the data. Basic graphical ele-
ments in Vega-Lite are marks. Marks provide basic shapes whose properties (such as size,
opacity, and color) can be used to visually encode data from pandas DataFrame columns.
For example, you can choose a bar mark to plot your data as bar chart. Some of the more
commonly used mark_*() methods supported in Altair are mark_line() → a Line plot,
mark_bar() → a Bar plot, mark_area() → a filled Area plot, mark_rect() a filled rectangle
used for Heat maps, mark_point() a Scatterplot and others.

The encode() method
The next step is to add visual encodings (or encodings for short) to the chart. Encodings
can be created with the encode() method of the Chart object. The encoding object is a
key-value mapping between encoding channels (such as X, Y) and DataFrame columns.

https://vega.github.io/editor/

400 Introduction to Python Programming

The keys in the encoding object are encoding channels. Altair supports the following
group of encoding channels:

• X → x-axis value
• Y → y-axis value
• Color → color of the mark
• Row and Column → Row and Column are special encoding channels that facets

single plots into small multiples plots within a grid of facet plots.

The details of any mapping depend on the type of the data. Altair is able to automatically
determine the type of data using built-in heuristics. Altair supports four primitive data
types (TABLE 12.5).

You can set the data type of a DataFrame column explicitly using a one-letter code
attached to the DataFrame column name with a colon (:). If types are not specified for
DataFrame data input, Altair defaults to quantitative for any numeric data, temporal for
date/time data and nominal for string data, but be aware that these defaults are by no
means always the correct choice!

Data Aggregation
The process of gathering and expressing information in a summary form is called Data
aggregation. The X and Y encodings in Altair accepts different aggregate functions. Some
of the commonly used aggregate functions in Altair are shown in TABLE 12.6.

Saving Altair Charts
The fundamental chart representation output by Altair is a JSON string format. You can
save the JSON data produced by Chart object to a JSON file using the Chart.save() method
and by passing a filename with a .json extension as an argument. For example,

TABLE 12.6

Aggregate Functions Built into Altair

Aggregate Function Description

count() The total count of data values in a group
max() The maximum data value
min() The minimum data value
median() The median data value
mean() The mean (or average) data value
sum() The sum of all the data values

TABLE 12.5

Primitive Data Types Supported by Altair

Data Type Code Description

Quantitative Q Numerical Quantity (Real-Valued)
Nominal N Name/Unordered Categorical
Ordinal O Ordered Categorical
Temporal T Date/Time

401Introduction to Data Science

 1. >>> chart.save('chart_name.json')

Altair chart objects have a Chart.save() method, which allows charts to be saved in json
format ➀.

Program 12.8: Write Python Program to Read ‘WorldCups.csv’ File. Sample Contents
of ‘WorldCups.csv’ File Is Given Below. Plot Bar Chart to Display the Number of
Times a Country Has Won Football WorldCup

 1. import pandas as pd
 2. import altair as alt
 3. def main():
 4. worldcup_df = pd.read_csv('WorldCups.csv')
 5. winning_countries = worldcup_df['Winner'].value_counts()
 6. winners_total_df = pd.DataFrame({'Country': winning_countries.index.tolist(),

 'Number_of_Wins': winning_countries.values.tolist()})
 7. chart = alt.Chart(winners_total_df).mark_bar().encode(
 8. alt.X('Country:N'),
 9. alt.Y('Number_of_Wins:Q'),
 10. alt.Color('Country:N')).properties(
 11. title="Football WorldCup Winners")
 12. chart.save('WorldCup_Winners.json')
 13. if __name__ == "__main__":
 14. main()

402 Introduction to Python Programming

Output

The above chart is an example of plotting Bar chart. A Bar chart displays the categorical
data as rectangular bars with lengths proportional to the values that they represent. The
rectangular bars in a bar chart can be plotted either vertically or horizontally. Categorical
data represents the type of data that can be divided into groups or collected in groups.
For example, gender, race and genre of books; 5 boys and 12 girls in a class represent cat-
egorical data. Ensure that your data is converted to a DataFrame format with the desired
structuring for easy access and analysis ➃–➅. The winners_total_df ➅ DataFrame has
two columns; the Country column, which is a list of countries that have won Football
WorldCup, and Number_of_Wins column, which is a list of number of times each country
in the Country column have won the WorldCup. The key to creating meaningful visualiza-
tions is to map DataFrame columns to encoding channels through the encode() method ➆.
Here X ➇ and Y ➈ class represent the x-axis and y-axis of the chart, which takes the
column names as arguments. Each of these column names are attached with single char-
acters and separated by a colon. Even though Altair has the ability to decide the type
of data for each of the DataFrame columns, it is better you explicitly specify the type
of data so that you get the chart you were expecting. The Color class generates a legend
that describes each unique data element in the column that makes up the chart ➉. The
above chart shows a legend explaining the colors of each country that won the WorldCup.
Again, note the column name Country attached with N character, separated by a colon.
The X, Y, Column and Color classes are specified within encode() method. To specify a title
for the Chart use title attribute within properties() method. Use the save() method to
save the JSON data emitted by the Chart object as a file . Copy and paste the JSON data

403Introduction to Data Science

from the file into a Vega-Lite online editor and see the generated chart. Here is a snapshot
of the Vega-Lite online editor in action (FIGURE 12.5).

Program 12.9: Write Python Program to Read ‘Endangered_Species.csv’ File. Sample
Contents of ‘Endangered_Species.csv’ File Is Given Below. Plot Grouped Bar Chart to
Display the Population Growth of These Endangered Species

 1. import altair as alt
 2. import pandas as pd
 3. def main():
 4. df = pd.read_csv('Endangered_Species.csv')
 5. chart = alt.Chart(df).mark_bar().encode(
 6. alt.X('Species:N'),
 7. alt.Y('Population:Q'),
 8. alt.Column('Year'),

JSON Data

Left Pane Right Pane

Generated
Chart

FIGURE 12.5
Online Vega-Lite Editor in action.

404 Introduction to Python Programming

 9. alt.Color('Species:N')).properties(
 10. title="Endangered Species Population")
 11. chart.save('Endangered_Species_Population.json')
 12. if __name__ == "__main__":
 13. main()

Output

The above chart is an example of plotting Grouped Bar chart. A Grouped Bar chart has two
or more rectangular bars for each categorical group. The rectangular bars are color coded
to represent a particular grouping. The above chart conveys information about the popula-
tion of endangered species broken out by species type and year. Altair is smart enough to
decide that a Grouped Bar chart has to be generated for the dataset ➃– .

Program 12.10: Write Python Program to Read ‘Company_Annual_Net_Income.csv’
File. Sample Contents of ‘Company_Annual_Net_Income.csv’ File is Given Below.
Plot Line Chart to Display the Annual Net Income of These Companies

 1. import pandas as pd
 2. import altair as alt
 3. def main():

405Introduction to Data Science

 4. company_net_income_df = pd.read_csv('Company_Annual_Net_Income.csv')
 5. chart = alt.Chart(company_net_income_df).mark_line().encode(
 6. alt.X('Year:N', axis=alt.Axis(title='Year')),
 7. alt.Y('Profit:Q', axis=alt.Axis(title='Profit (in Billions)')),
 8. alt.Color('Company:N')).properties(
 9. title="Annual Net Income",
 10. width=250, height=250)
 11. chart.save('Company_Net_Income.json')
 12. if __name__ == "__main__":
 13. main()

Output

The above chart is an example of plotting Line chart. The line chart displays information
by connecting a series of data points (also called markers) through a straight line. Line
charts are ideal for viewing data that changes over time. Use Axis class to add labels to X
➅ and Y ➆ axis overriding the labels inherited from DataFrame columns. You can set the
chart properties, such as title, width, and height, using the properties() method ➇–➈. This is a
simple way to add some more information to a Line chart. This Chart conveys information
about the profit earned by each company.

Program 12.11: Write Python Program to read 'Height_Weight_Ratio.csv' file. Sample
contents of 'Height_Weight_Ratio.csv' file is given below. Using the Scatterplot,
display the relation between height and weight in adult male and female

406 Introduction to Python Programming

 1. import altair as alt
 2. import pandas as pd
 3. def main():
 4. df = pd.read_csv('Height_Weight_Ratio.csv')
 5. chart = alt.Chart(df).mark_point().encode(
 6. alt.X('Height:N', axis=alt.Axis(title='Height (ft.in.)')),
 7. alt.Y('Weight:Q', axis=alt.Axis(title='Weight (kg)')),
 8. alt.Color('Sex:N')).properties(
 9. title="Height to Weight Ratio in Adult Male and Female",
 10. width=350, height=400)
 11. chart.save('Height_Weight_Ratio.json')
 12. if __name__ == "__main__":

 13. main()

Output

The above chart is an example of plotting data using Scatterplot. A scatterplot con-
sists of a set of individual dots that represent the values dependent on two different
variables with values of one variable plotted against the x-axis and values of another
variable plotted against y-axis. Scatter plot shows how the change in one variable
affects the other variable. The relation between these two variables is called correla-
tion. A variable is any characteristics, number, or quantity that can be measured or
counted. The mark_point() method is used to plot Scatterplot for the given data. This
Chart conveys information about the relation between height and weight in adult male
and female ➃– .

407Introduction to Data Science

Program 12.12: Write Python Program to read 'Tennis_Summary.csv' file. Sample
contents of 'Tennis_Summary.csv' file is given below. Using the Heatmap, display the
number of Grand Slam Tournaments won by different players

 1. import altair as alt
 2. import pandas as pd
 3. def main():
 4. df = pd.read_csv('Tennis_Summary.csv')
 5. chart = alt.Chart(df).mark_rect().encode(
 6. alt.X('Tennis_Player:N'),
 7. alt.Y('Grand_Slam_Tournaments:N'),
 8. alt.Color('Wins:Q')).properties(
 9. title="Grand Slam Tournaments Won by Tennis Players",
 10. width=350, height=400)
 11. chart.save('Tennis.json')
 12. if __name__ == "__main__":

 13. main()

Output

408 Introduction to Python Programming

The above chart is an example of plotting data using Heatmap. In Heatmaps, the data
values are represented as colors of varying degrees allowing the users to visualize data
information. You can think of Heatmap as a spreadsheet like data table wherein each
individual data value is represented as different gradient colors. The color bar repre-
sents the relation between the color and the data values and is placed to the right of
the Heatmap by default. The mark_rect() method is used to plot Heatmap for the given
data. The number of times different players who have won each of the Grand Slam
tournaments is conveyed through the above Heatmap ➃– .

Program 12.13: Write Python Program to read 'Dinosaurs.csv' file. Sample contents
of 'Dinosaurs.csv' file is given below. Create a Histogram displaying the length of
different Dinosaurs

 1. import altair as alt
 2. import pandas as pd
 3. def main():
 4. df = pd.read_csv('Dinosaurs.csv')
 5. chart = alt.Chart(df).mark_bar().encode(
 6. alt.X('Length:Q', bin=True, axis=alt.Axis(title='Dinosaurs Length in Meters

(binned)')),
 7. alt.Y('count():Q', axis=alt.Axis(title='Total Number of Dinosaurs in each

bin'))).properties(
 8. title="Length of Dinosaurs",
 9. width=350, height=400)
 10. chart.save("Dinosaurs.json")
 11. if __name__ == "__main__":

 12. main()

409Introduction to Data Science

Output

The above chart is an example of creating a Histogram. A histogram is a chart that groups
numeric data into bins and displays the bins as bars. To construct a histogram from the
numeric data you need to split the data into a series of intervals called the bins. A histo-
gram is used to depict the frequency distribution of numeric data values in a dataset by
counting how many of these values fall into each bin. In Altair, the mark_bar() method is
used to plot Histogram for the given data. When the bin flag is set to True, then the number
of bins is automatically chosen for you ⑥. All bins are of equal width and have a height pro-
portional to the number of records or numeric data values present in the bin. Data values
are split based on the bin it falls in and the results are aggregated within each bin using the
count() function ⑦. The above histogram tells us that most of the Dinosaurs have a length
within 5 meters range ➃–➉.

12.6 Summary

• Lambdas, Iterators, Generators, and List Comprehensions are used for functional
programming in Python.

• In Python, Deserializing is done using JSON load() and loads() methods, and
Serializing is done using JSON dump() and dumps() methods.

• HTTP requests can be made using a Requests library, which eases the integration
of Python programs with web services.

410 Introduction to Python Programming

• The xml.etree. ElementTree built-in Python library provides various methods to
perform different operations on XML files.

• The fundamental package for carrying out scientific computing in Python scien-
tific community is NumPy, which stands for “Numerical Python.”

• pandas library is seen as the reason for the tremendous adaption of Python in the
field of data science.

• Altair is a declarative statistical visualization library for Python, based on Vega-
Lite, which can be used to generate different charts with minimal code.

Multiple Choice Questions

 1. The full form of abbreviation XML is
 a. Extensible Markup Language
 b. Excisable Markup Language
 c. Executive Markup Language
 d. Extensible Managing Language
 2. Guess the correct syntax of the declaration which defines the XML version.
 a. <xml version="1.0"/>
 b. <?xml version="1.0"/>
 c. <?xml version="1.0"?>
 d. </xml version="1.0"/>
 3. Comments in XML is identified by
 a. <?------- >
 b. </------- />
 c. <!------- >
 d. </------- >
 4. Consider the following XML code and identify the root node.
 <?xml version= "1.0" encoding ="UTF-8"?>
 <fullname>
 <firstname>Alex</firstname>
 <lastname>Stanley</lastname>
 <employeecode>EC123</employeecode>
 </fullname>
 a. <fullname>
 b. <firstname>
 c. <lastname>
 d. <employeecode>

411Introduction to Data Science

 5. JSON stands for _____________.
 a. JavaScript Object Notation
 b. Java Object Notation
 c. JSON Object Notation
 d. All of these
 6. The extension for JSON files is
 a. .json
 b. .js
 c. .jn
 d. .jsn
 7. JSON string value pair is written as
 a. string = 'value'
 b. "string": "value"
 c. name = "value"
 d. name: 'value'
 8. Which of the following syntax is correct for a JSON array?
 a. {"digits": ["1", "2", "3";]}
 b. {"digits': {"1", "2", "3"}}
 c. {"digits": [1, 2, 3]}
 d. {"digits": ["1", "2", "3"]}
 9. JSON elements are separated by
 a. semi-colon
 b. line break
 c. comma
 d. white space
 10. Which of the following can be data in panda?
 a. dictionary
 b. An ndarray
 c. A scalar value
 d. All of these
 11. Identify the correct syntax to import the pandas library.
 a. import pandas as pd
 b. import panda as py
 c. import pandaspy as py
 d. None of the above
 12. Which of the following is the standard data missing marker used in pandas?
 a. NaN
 b. Null
 c. None
 d. All of the above

412 Introduction to Python Programming

 13. The object that is returned after reading CSV file in pandas is ____________
 a. Character Vector
 b. DataFrame
 c. Panel
 d. None of the above
 14. Point out the correct statement.
 a. NumPy’s main object is the homogeneous multidimensional array
 b. In NumPy, dimensions are called axes
 c. NumPy’s array class is called ndarray
 d. All of these
 15. The function that returns its arguments with a modified shape and the method

that modifies the array itself respectively in NumPy are
 a. resize, reshape
 b. reshape, resize
 c. reshape2, resize
 d. reshape2, resize2
 16. The declarative statistical visualization library available in Python is
 a. Altair
 b. Matplotlib
 c. Seaborn
 d. Bokeh
 17. Input Data in Altair is primarily based on
 a. Pandas DataFrame
 b. Strings
 c. Lists
 d. Dictionaries
 18. If the type of Data is not specified in Altair, then nominal data defaults to
 a. Tuple
 b. Dictionary
 c. String
 d. List

413Introduction to Data Science

Review Questions

 1. Explain the use of Lambdas in Python with an example.
 2. Describe iterators and generators in Python.
 3. Illustrate the use of List Comprehensions with an example.
 4. State the need for requests library in Python.
 5. Write Pythonic code to parse the XML code shown below and calculate the total

number of students in College.
 <College>
 <Department>
 <DepartmentName>CSE</DepartmentName>
 <TotalStudents>200</TotalStudents>
 </Department>
 <Department>
 <DepartmentName>ISE</DepartmentName>
 <TotalStudents>60</TotalStudents>
 </Department>
 <Department>
 <DepartmentName>ECE</DepartmentName>
 <TotalStudents>200</TotalStudents>
 </Department>
 </College>

 6. Define JSON. Construct a simple JSON document and write Pythonic code to
parse JSON document.

 7. Elaborate on the differences between XML and JSON.
 8. Define XML. Construct a simple XML document and write Python code to loop

through XML nodes in the document.
 9. Explain NumPy array creation functions with examples.
 10. Explain NumPy integer indexing, array indexing, Boolean array indexing and

slicing with examples.
 11. Write Python program to create and display a one-dimensional array-like object

containing an array of data using pandas library.
 12. Write Python program to add, subtract, multiply and divide two Pandas Series.

414 Introduction to Python Programming

 13. Write Python program to create and display a DataFrame from a dictionary data
which has the index labels.

 14. Explain the steps involved in generating an Altair chart in detail.
 15. Plot Altair Line chart for below data to display company performance.

Year Sales Expenses

2010 1000 400
2011 1170 460
2012 660 1120
2013 1030 540
2014 2193 1052
2015 1168 843

 16. Plot Altair Bar chart for below data to display the density of precious metals in
g/cm^3.

Element Density

Copper 8.94
Silver 10.49
Gold 19.30
Platinum 21.45

415

Appendix-A: Debugging Python Code

Debugging in computer programming is a multistep process that involves identifying a
problem, isolating the source of the problem, and then correcting the problem. Software
which assists in this process is known as a debugger. Using a debugger, a software devel-
oper can step through a program’s code and analyze its variable values, searching for
errors. Debugging helps in preventing incorrect operation of a software and operate
according to a set of specifications.

Debugging Python programs is easy: a bug or bad input will never cause a segmenta-
tion fault. Instead, when the interpreter discovers an error, it raises an exception. When the
program does not catch the exception, the interpreter prints a stack trace. The debugger in
PyCharm allows inspection of local and global variables, evaluation of arbitrary expres-
sions, setting breakpoints, stepping through the code a line at a time, and so on. PyCharm
debugger assists a software developer in becoming more productive.

A1 A Python Program to Debug

Consider the Python program to solve quadratic equation ax2 + bx + c = 0 (FIGURE A1).
As you see, there is the main clause here. It means that execution will begin with it, let

you enter the desired values of the variables a, b and c, and then enter the method demo.

AIM

To understand the process of debugging Python program using the inbuilt debugger
of PyCharm IDE.

416 Appendix-A

A2 Placing Breakpoints

In software development, a breakpoint is an intentional stopping or pausing place in a
program, put in place for debugging purposes, perhaps to see the state of code variables. It
is also sometimes simply referred to as a pause.

Breakpoints are triggered when the program reaches the specified line of source code
before it is executed. The line of code that contains a set breakpoint, is marked with a red
stripe; once such line of code is reached, the marking stripe changes to blue.

To place breakpoints, just click the left gutter next to the line you want your application
to suspend at (FIGURE A2):

FIGURE A1
Program to solve Quadratic equation.

417Appendix-A

A3 Starting the Debugger Session

OK, now, as we have added breakpoints, everything is ready for debugging. PyCharm
allows starting the debugger session in several ways. Let’s choose one: click in the left gut-
ter, and then select the command Debug 'Solver' in the pop-up menu that opens (FIGURE A3):

FIGURE A2
Placing breakpoints.

FIGURE A3
Starting the debugger session.

418 Appendix-A

The debugger starts, shows the Console tab of the Debug tool window, and lets you enter
the desired values (FIGURE A4):

By the way, in the Console, you can show a Python prompt and enter the Python com-
mands. To do that, click (FIGURE A5):

Then the debugger suspends the program at the first breakpoint. It means that the line
with the breakpoint is not yet executed. The line becomes blue (FIGURE A6):

FIGURE A5
Invoke Command prompt during debugging.

FIGURE A4
Enter values in the Console tab.

419Appendix-A

A4 Inline Debugging

In the editor, you see the grey text next to the lines of code (FIGURE A7):

What does it mean?
This is the result of the so-called inline debugging. The first lines show the address of

the Solver object and the values of the variables a, b and c you’ve entered.
The inline values functionality simplifies the debugging procedure, as it lets you view

the values of variables used in your source code right next to their usage, without having
to switch to the Variables pane of the Debug tool window.

If this option is enabled, when you launch a debug session and step through the pro-
gram, the values of variables are displayed at the end of the lines where these variables
are used.

Inline debugging can be turned off. To switch them off, do one of the following:
In the Debug tool window toolbar, click the Settings icon and deselect the Show Values

Inline option from the pop-up menu.

A5 Let’s Step!

So, you’ve clicked the button , and now see that the blue marker moves to the next line
with the breakpoint.

If you use the stepping toolbar buttons, you’ll move to the next line. For example, click
the button . Since the inline debugging is enabled, the values of the variables show in
italic in the editor (FIGURE A8).

FIGURE A7
Inline debugging.

FIGURE A6
Blue marker during debugging.

420 Appendix-A

If you click the button , you will see that after the line a = int(input("a: ")) the debugger
goes into the file parse.py (FIGURE A9):

However, if you continue using the button , you’ll see that your application just passes
to the next loop and you will see the end result (FIGURE A10):

If you want to concentrate on your own code, use the button Step Into My Code () – thus
You will avoid stepping into library classes.

FIGURE A10
Program result.

FIGURE A9
Step Into other files.

FIGURE A8
Step Into the code.

421Appendix-A

A6 Watching

PyCharm allows you to watch a variable. Just click on the toolbar of the Variables tab,
and type the name of the variable you want to watch. Note that code completion is avail-
able (FIGURE A11):

At first, you see an error – it means that the variable is not yet defined (FIGURE A12):

However, when the program execution continues to the scope that defines the variable,
the watch gets the following view (FIGURE A13):

FIGURE A11
Watch program variables.

FIGURE A12
Program variable under watch not yet defined.

422 Appendix-A

A7 Evaluating Expressions

Finally, you can evaluate any expression at any time. For example, if you want to see the
value of the variable, click the button , and then in the dialog box that opens, click Evaluate
(FIGURE A14):

PyCharm gives you the possibility to evaluate any expression. For example (FIGURE A15):

FIGURE A13
View when watch variable gets its value.

FIGURE A14
Evaluate window to see the value of a variable.

FIGURE A15
Use Evaluate window to evaluate any expression.

423Appendix-A

You can also click the button in the Debug console and enter some commands that
show the variables values. For example, with Jupyter installed, you can easily get an
expression value (FIGURE A16):

A8 Summary

• You have learned how to place breakpoints.
• You have learned how to begin the debugger session, and how to show the Python

prompt in the debugger console.
• You have understood the advantage of in-line debugging.
• You have tried hands-on stepping, watches and evaluating expressions.

FIGURE A16
Invoke Python prompt to inspect variable values.
(Adapted with kind permission from Jetbrains.com.)

http://taylorandfrancis.com

425

Bibliography

https://www.python.org/
http://www.numpy.org/
https://www.scipy.org/
https://pandas.pydata.org/
https://altair-viz.github.io/
https://matplotlib.org/
https://www.statsmodels.org/
https://www.jetbrains.com/pycharm/documentation/
https://jupyter.org/
https://pytorch.org/
http://docs.python-requests.org/en/master/
http://scikit-learn.org/
https://www.numfocus.org/
https://spacy.io/
https://www.nltk.org/
https://micropython.org/
http://flask.pocoo.org/
https://www.djangoproject.com/
https://www.pythonweekly.com/
https://www.reddit.com/r/Python/
https://developer.mozilla.org/
https://msdn.microsoft.com/
https://docs.oracle.com/
https://developer.ibm.com/
https://developers.google.com/
https://www.kaggle.com/
https://www.techopedia.com
http://www.linfo.org

https://www.python.org/
http://www.numpy.org/
https://www.scipy.org/
https://pandas.pydata.org/
https://altair-viz.github.io/
https://matplotlib.org/
https://www.statsmodels.org/
https://www.jetbrains.com/pycharm/documentation/
https://jupyter.org/
https://pytorch.org/
http://docs.python-requests.org/en/master/
http://scikit-learn.org/
https://www.numfocus.org/
https://spacy.io/
https://www.nltk.org/
https://micropython.org/
http://flask.pocoo.org/
https://www.djangoproject.com/
https://www.pythonweekly.com/
https://www.reddit.com/r/Python/
https://developer.mozilla.org/
https://msdn.microsoft.com/
https://docs.oracle.com/
https://developer.ibm.com/
https://developers.google.com/
https://www.kaggle.com/
https://www.techopedia.com
http://www.linfo.org

http://taylorandfrancis.com

427

Solutions

Chapter 1

Self-Assessment Questions

Question No. Answer

1 b
2 a
3 d
4 b
5 b
6 a
7 b
8 a
9 b
10 c

Chapter 2

Self-Assessment Questions

Question No. Answer

1 a
2 a
3 a
4 a
5 b
6 a
7 d
8 c
9 c
10 b
11 a
12 b
13 c
14 c

(Continued)

428 Solutions

Self-Assessment Questions

Question No. Answer

15 b
16 b
17 d
18 b
19 a
20 b
21 a
22 d
23 c
24 a
25 a
26 c
27 d
28 b
29 b
30 a
31 a
32 d
33 d
34 b
35 c
36 d
37 a
38 a

Activity

 Activity Type: Offline Duration: 10 Minutes

 1. Evaluate the expression below by assuming the values given.
 a. x + y / z > 5 * z || x – y < z && z >> 5; Assume x = 5, y = 4, z = 6
 b. x * a * a + y * a – z / b > = &&c! = 15.0; Assume x = 2, y = 3, z = 5 and a = 3, b = 1,

c = 5.
 2. Write a program to find the ASCII code for 1,A, B,a and b using the ord function.

Use the chr function to find the character for the decimal codes 40,59,79,85 and 90.

429Solutions

Chapter 3

Self-Assessment Questions

Question No. Answer

1 a
2 b
3 b
4 c
5 c
6 b
7 c
8 a
9 a
10 b
11 d
12 c
13 d
14 c
15 a
16 c
17 a
18 b
19 b
20 b
21 a
22 b

Chapter 4

Self-Assessment Questions

Question No. Answer

1 c
2 d
3 c
4 d
5 a
6 a
7 b

(Continued)

430 Solutions

Self-Assessment Questions

Question No. Answer

8 c
9 d
10 b
11 c
12 c
13 a
14 b
15 a
16 d
17 b
18 a
19 a
20 d
21 b
22 a
23 a

Chapter 5

Self-Assessment Questions

Question No. Answer

1 c
2 b
3 c
4 c
5 a
6 c
7 b
8 c
9 b
10 a
11 a
12 a
13 d
14 d
15 a
16 b

431Solutions

Chapter 6

Self-Assessment Questions

Question No. Answer

1 d
2 a
3 c
4 d
5 c
6 b
7 b
8 d
9 c
10 d
11 b
12 c
13 d
14 d
15 c
16 a

Chapter 7

Self-Assessment Questions

Question No. Answer

1 d
2 b
3 a
4 c
5 b
6 b
7 b
8 c
9 c
10 c
11 c
12 a
13 c

(Continued)

432 Solutions

Self-Assessment Questions

Question No. Answer

14 b
15 a
16 c
17 a
18 b
19 c
20 a
21 b
22 a
23 d

Chapter 8

Self-Assessment Questions

Question No. Answer

1 b
2 a
3 b
4 b
5 a
6 c
7 d
8 a
9 d
10 b
11 c
12 a
13 a
14 c
15 a
16 b
17 d
18 a
19 b
20 c
21 b
22 a
23 d
24 c
25 a

433Solutions

Chapter 9

Self-Assessment Questions

Question No. Answer

1 b
2 b
3 a
4 d
5 a
6 b
7 a
8 c
9 d
10 b
11 a
12 c
13 a
14 a
15 a
16 c
17 a
18 a
19 d
20 d
21 b
22 a
23 b

Chapter 10

Self-Assessment Questions

Question No. Answer

1 a
2 c
3 d
4 b
5 c
6 a

(Continued)

434 Solutions

Self-Assessment Questions

Question No. Answer

7 b
8 b
9 d
10 b
11 c
12 d
13 c
14 b
15 d
16 a
17 c
18 b
19 b
20 d
21 d
22 a

Chapter 11

Self-Assessment Questions

Question No. Answer

1 a
2 b
3 c
4 a
5 d
6 a
7 d
8 d
9 d
10 a
11 b
12 a
13 d
14 b
15 c
16 d
17 c

435Solutions

Chapter 12

Self-Assessment Questions

Question No. Answer

1 a
2 c
3 d
4 a
5 a
6 a
7 b
8 d
9 c
10 d
11 a
12 a
13 b
14 d
15 b
16 a
17 a
18 c

http://taylorandfrancis.com

437

Index

Note: Page numbers in italic and bold refer to figures and tables respectively.

abs() function 96
absolute path, file 232
abstraction 307, 308
addition assignment operator (+=) 41
addition operator (+) 39
add() method 218
aggregate functions 393, 400
all() function 155, 180
Altair 398–409
“a+” mode, file 234
“a” mode, file 234
Anaconda (Python distribution) 13–15
AND operator: binary (&) 45; logical (and) 43
any() function 155, 180
Apache License 29–30
Apache Software Foundation 29
append() method 157
application development 5
application software 2
*args 110–12
arithmetic operators 39, 39–40
array 348
array, NumPy 359–60, 360; arithmetic

operations on 367–8; attributes 361,
361–2; broadcasting in 371–4; creation
functions 362–3; indexing/slicing/
iterating operations 364–7; with
initial placeholder content 362–4;
shape changing 369–70; stacking and
splitting 370–1; using array() function
360–1

arrow module 99
as keyword 237
assembler 3
assembly language 3–4
assignment operators 37, 40–2, 41
associative memories/arrays 175
associativity, operator 47–8
attribute references 293
attributes 355
axes (NumPy arrays) 359

backslash (\) character 141
bar chart 402
base class 311, 311–12

Benevolent Dictator For Life (BDFL) 7
binary 45; left shift operator (<<) 45, 46; ones

complement operator () 45; AND
operator (&) 45; OR operator (|) 45;
right shift operator (>>) 45; XOR
operator (̂) 45

binary files 230; reading and writing 247–9
bit 45
bitwise logical operators 46
bitwise operators 44–7, 45
bitwise truth table 45
Boolean 48; array indexing 364–7; logic truth

table 43
breakpoints 416, 417
break statements 81–4
broadcasting, NumPy array 371–4
BSD license 30
bubble sort 160–1, 161
built-in functions 95–6, 96; dict() 179; for

dictionaries 179–81, 180; iter() 342–3;
list() 151–2; for list 155, 155–6; for string
122, 122–3; super() 314; tuple() 204–5; for
tuple 207–8, 208

bytes() class method 249

C3 linearization algorithm 320–1
calling function 100; objects as arguments in

301–3
capitalize() method 132
capturing parentheses/group 272
carriage return (CR or \r) 244
casefold() method 132
center() method 132
chain comparison operation 130–1
character: encoding 142; reserved 349
chart 399
child class 311
chr() function 56
class(es) 291, 307; attributes versus data

attributes 306–7; creation in Python
291–2; instance of 294; local precedence
of 320; with multiple objects 297–306;
OOP 289–91

clear() method 181, 218
client/server architecture 346, 346–7

438 Index

close() method 235–6
cloud computing 11–12
command line arguments 112–13
Comma Separated Values (CSV) files 251, 251–7;

characteristics 251–2
comments 50
community, Python 12
comparison operators 42, 42–3, 204, 332
compilation 3
compiled regular expression objects 274
compiler 3–4
complex() function 56
complex numbers 48
compound assignment operator 40
concat() function 395
constructor method 294–7
containers 343
context management protocol 238
context manager 238
continue statements 81–4
control flow statements 67; break statements

81–4; continue statements 81–4;
decision 67; forms of 68; loop 67;
sequential 67

control sequences 141
conversion operations 332
cooperative multiple inheritances 325
count() method 132, 157, 210
Creative Commons licenses 31–2
Crockford, Douglas 347
cross compiler 4
CSV files see Comma Separated Values (CSV)

files
csv module 252
csv.reader() method 252
csv.writer() method 252
current directory 232

data attributes 293; class attributes versus
306–7

database connectors 11
DataFrame, pandas 380; assign() method 386;

column selection/addition/deletion
382–4; concatenate, append and merge
392–7; creation 380–2; data, displaying
384–6; data input and output 398;
“group by” process 389–92; indexing
and data selection 386–9; missing data
397–8

data science 341
data types 48–9
debugger 415

debugging 415; blue marker during 419;
breakpoints, placing 416, 417; debugger
session 417–19; expressions, evaluating
422–3; inline 419, 419

decision control flow statements 67; if 68; if…
elif…else 71–3; if…else 69–71; nested if
73–4

default parameters 108–9
def keyword 99–100
del statement 169–70, 193
derived class 311, 311–12; C3 linearization 320
deserializing, Python 349, 350
dict() function 179, 209
dictionaries 175; built-in functions for 179–81,

180; creation 175–7; defined 175;
keys 176; key:value pairs, accessing/
modifying 178–9; methods 181, 181–93;
nested 192; populating with key:value
pairs 183–5; structure 233; traversing
185–6; versus tuple 209–10

DictReader 253
dict type 177
DictWriter 253
difference() method 218
directories 230
dir() function 98, 131, 156, 181, 210, 218
discard() method 218
division assignment operator (/=) 41
division operator (/) 39
divmod() function 96
Django 11
.iloc[] method 387, 389
.loc[] method 387
duck-typing 328
dump() method 250, 353
dynamic language 58–9

elements: NumPy arrays 359; XML 355
empty dictionary 177
empty list 150
empty set 216
empty strings 120
empty tuple 202
encapsulation 307–11, 308
End-of-Line (EOL) character 231
endswith() method 132
equal sign (=) 37
“equal to” operator (==) 42
Escape Sequences 141–2
exception handling 84–5; try…except…finally

statements 85–9
exponentiation assignment operator (**=) 41

439Index

exponent operator (**) 39
expressions, Python 36
extend() method 157
EXtensible Markup Language (XML) 346,

355–8; versus JSON 359
Extensible Stylesheet Language

Transformations (XSLT) 359

file(s): access modes 234; close() method 235–6;
defined 229; extension/suffix 229;
fully qualified path 232–3; handler 233,
239; methods 239–40, 239–47; object
attributes 239; paths 231–2; relative
path 232–3; structure 233; types of
230–3; with statements 237

filename extension 229
find() method 132
Flask (web framework) 11
float() function 55
floating point number 48
floor division assignment operator (//=) 41
floor division operator (//) 39
for loop 79–81
format() method 51–2
format specifiers 140
formatted strings see f-strings (formatted

strings)
FP see Functional Programming (FP)
fromkeys() method 181
frozenset 221–2
f-strings (formatted strings) 53–4, 138–40;

escape sequences 141–2; format
specifiers 140; raw string 142; unicodes
142–3

fully qualified path, file 232–3
function(s) 51, 95; see also method(s); abs() 96;

aggregate 393, 400; all() 155, 180;
any() 155, 180; *args and **kwargs in
110–12; built-in see built-in functions;
call/calling 100; chr() 56; complex() 56;
concat() 395; definition 99–103; dir()
98, 131, 156, 181, 210, 218; divmod() 96;
float() 55; generator 343–4; header
100; help() 98; hex() 57; id() 303; input()
50–2; int() 54–5; isinstance() 303–4;
issubclass() 317; lambda 341–2; len()
96, 122, 155, 180, 208; Magic Methods
for 331–2; main() 101; max() 96; merge()
396; min() 96; np.array() 360–1; oct()
57–8; open() 233–4, 239; ord() 57;
pow() 96; print() 51–4; random() 98;
random.randint() 98; range() 79, 345;

sorted() 155, 180, 208; str() 55–6, 120;
sum() 155, 208; type() 58, 120;
user-defined 99; void 103–6; zip() 216

Functional Programming (FP) 341; generators
343–4; iterators 342–3; lambda
function 341–2; languages 5; list
comprehensions 344–6

generators 343–4
get() method 181, 188
global variables 106–8
glob module 282–3
GNU General Public License (GNU GPL) 30–1
“greater than” operator (>) 42
“greater than or equal to” operator (>=) 42
“group by” process 389–92
grouped bar chart 404

hash (#) symbol 50
heatmaps 408
help() function 98
hex() function 57
high-level language 3; advantages 3–4;

functional 5; imperative 4; logical 4–5;
object-oriented 5

histogram 409
Hypertext Transfer Protocol (HTTP) 11, 346

identifiers 35–6
id() function 303
if…elif…else statement 71–3
if…else statement 69–71
if statement 68–9; see also nested if statement
immutable string 128
imperative programming 4
import statement 97
indentation 49, 49–50; in tuple 205–7
IndentationError 50
index 152, 205, 375
indexing: array 364–7; in lists 152–3; pandas

DataFrame 386–9; in string 123–4
index() method 157, 210
index number, string 123–4
inheritance 311–12; inherited variables/methods,

accessing 312–14; MRO 320–8; multiple
317–19; super() function in 314–17

__init__() method 294
inline debugging 419, 419
inner merge operation, DataFrame 396, 397
input() function 50–2
insert() method 157
instance of class 294

440 Index

instance variables 293, 309–11
instantiation 293
integer indexing 364–7
integers 48
Integrated Development Environments (IDEs)

12; PyCharm 12, 16–19
interpreter 4
intersection() method 218
int() function 54–5
isalnum() method 132
isalpha() method 132
isdecimal() method 132
isdigit() method 132
isdisjoint() method 218
isidentifier() method 132
isinstance() function 303–4
islower() method 132
isnumeric() method 132
isspace() method 132
issubclass() function 317
issubset() method 218
issuperset() method 218
istitle() method 133
isupper() method 133
item 149, 153–5, 201
items() method 181, 209
iterable 342
iteration: in arrays 364–7; statements see loop

control flow statements
iterators 342–3
iter() function 342–3

JavaScript Object Notation (JSON) 346–53, 347;
versus XML 359

join() method 127
json module 349
Jupyter 10; dashboard 25
Jupyter Notebook 23–7; in edit mode 27; Python

code in 27; renaming 26; starting
command to 24

KeyError 181
keys() method 181
key:value pairs 175, 176, 209; accessing/

modifying 178–9
keyword arguments 52, 109–10
keywords 36, 36
**kwargs 110–12

lambda function 341–2
left merge operation, DataFrame 396, 396
left shift operator (<<) 45, 46
len() function 96, 122, 155, 180, 208

“lesser than” operator (<) 42
“lesser than or equal to” operator (<=) 42
linear search 162
line chart 405
linefeed (LF or NL or \n) 244
list 149; built-in functions for 155, 155–6;

comprehensions 344–6; creation
149–50; indexing and slicing in 152–5;
items modifying in 153–5; methods
156–69, 157; mutable 153; nested 167–9;
operations 151–2; populating with
items 158–9; slicing of 154; traversing
of 159; versus tuple 208–9

list() function 151–2
literals 49
ljust() method 133
load() method 250, 352
local precedence of classes 320
local variables 106–8
logical AND operator (and) 43
logical NOT operator (not) 43
logical operators 43, 43–4
logical OR operator (or) 43
logical paradigm 4–5
loop control flow statements 67; iteration of 75;

for loop 79–81; while loop 74–8
lower() method 133
lstrip() method 133

machine code 2
machine language 2
Machine Learning 10
Magic Methods 331–2, 331–2
main() function 101
match objects 274–84, 275
math module 97
Matplotlib 10
max() function 96, 122
merge() function 396
metacharacters see special characters
method(s) 291; see also function(s); attributes

293; bytes() class 249; close() 235–6;
constructor 294–7; csv.reader() 252;
csv.writer() 252; dictionaries 181, 181–93;
.iloc[] 387, 389; .loc[] 387; dump() 250,
353; files 239–40, 239–47; format() 51–2;
__init__() 294; join() 127; list 156–69, 157;
load() 250, 352; Magic Methods 331–2;
mro() 320; overriding 314; re.compile()
273–4; sets 218, 218–21; signature 314;
split() 127–8, 159; str.format() 51–3, 139;
string 131–8, 132–3; tuple 210, 210–15;
writerow() 253; writerows() 253

441Index

Method Resolution Order (MRO) 320–8
min() function 96, 122
MIT license 31
mnemonics 3
modules 97–9
modulus operator (%) 39
MRO (Method Resolution Order) 320–8
mro() method 320
multiline comment 50
multiple inheritance 317–19
multiplication assignment operator (*=) 41
multiplication operator (*) 39
multi-way decision control statement 71

name mangling 309–10
native-code compiler 4
Natural Language Toolkit (NLTK) 10
ndarray 359
negative indexing 124–5, 206
nested dictionaries 192
nested function 107–8
nested if statement 73–4; see also if statement
nested list 167–9
NLTK (Natural Language Toolkit) 10
none (data type) 49, 103
“not equal to” operator (!=) 42
NOT operator (not), logical 43
np.array() function 360–1
numbers (data types) 48
NumPy (Numerical Python) 10, 359–60; array

see array, NumPy; mathematical
functions in 368–9

object(s) 293; as arguments 301–3; class 312;
creation in Python 293–4; in JSON 349;
OOP 289–91; as return values 303–6

object-oriented programming (OOP) 5, 289;
classes 289–91; encapsulation 307–11;
inheritance see inheritance; method
overriding in 314; objects 289–91;
polymorphism 328–35

Object Role Modeling (ORM) 11
oct() function 57–8
ones complement operator () 45
OOP see object-oriented programming (OOP)
open() function 233–4, 239
open source software 27–8; Apache License

29–30; BSD license 30; Creative
Commons licenses 31–2; GNU GPL
30–1; licenses 29–32; MIT license 31;
purpose of 28–9

OpenStack 11–12
operands 38

operations: chain comparison 130–1; list 151–2;
string 120–3

operator(s) 38–9; arithmetic 39, 39–40;
assignment 40–2, 41; associativity
47–8; bitwise 44–7, 45; comparison
42, 42–3, 204; logical 43, 43–4; Magic
Methods for 331–2; precedence 47,
47–8; subscript 123

Operator Overloading 331–5
OrderedDict 253
ord() function 57
ORM (Object Role Modeling) 11
OR operator: binary (|) 45; logical (or) 43
os module 257–61, 258, 259
os.path module 257–61, 258–9, 259
outer merge operation, DataFrame 396, 397

packing, tuple 211
pandas 10, 374; DataFrame 380–98; Series

375–80
parent class 311
parent directory 233
parentheses in REs 272–3
parsing errors 84
pass statement 136
%-formatting 139
pickle module 249–50
pickling 250
pip command 98, 399
polymorphism 328–31; Operator Overloading

331–5
popitem() method 181
pop() method 157, 169, 181, 218
populating: dictionaries with key:value pairs

183–5; list with items 158–9; tuple with
items 212–13

positional arguments 52
pow() function 96
precedence, operator 47, 47–8
print() function 51; f-strings 53–4; str.format()

method 51–3
private instance variables/methods 309–11
procedural programming 4
program 1–2
programming languages 2; assembly language

3; high-level language 3–5; machine
language 2; ranking of 9

programming paradigm 4
programming software 2
prompt statement 51
proprietary software 28
PSF (Python Software Foundation) 1, 12
PTVS (Python Tools for Visual Studio) 12

442 Index

PyCharm 12, 16–19, 415
Python: for academia 9–10; Anaconda

13–15; classes creation in 291–2;
cloud computing 11–12; code in
Jupyter Notebook 27; comments 50;
community 12; creating and running
19–23; data analysis 10; database
connectors/ORM/NoSQL connectors
11; data types 48–9; debugging in 415;
defined 1, 8; distributions 12; duck-typing
in 328; as dynamic language 58;
expressions 36; history of 7–8; HTTP
library 11; IDE available 12; identifier
35–6; indentation 49, 49–50; input()
function 50–1; JSON and XML 346–59;
keywords 36, 36; logo 7; Machine
Learning 10; versus Matlab 9; NLTK
10; objects creation in 293–4; operators
see operator(s); print() function 51–4;
PyCharm 12, 16–19; scientific tools 10;
stack in industry 12–13; statements 36;
see also statements, Python; statistics
11; as strongly typed language 58–9;
thrust areas of 8–13; type conversions
54–8; variables 37–8; versions 8; web
frameworks 11

Python 3.6 version 13, 53, 177
Python Software Foundation (PSF) 1, 12
Python Tools for Visual Studio (PTVS) 12

random() function 98
random.randint() function 98
range() function 79, 345
Raspberry Pi 9–10
“rb+” mode, file 234
“rb” mode, file 234
readline() method 239
readlines() method 239
read() method 239, 240–1
re.compile() method 273–4
regexes/regex patterns 267
regular expressions (REs): backreference in

272; compiling using compile() method
273–4; defined 267; with glob module
282–3; match objects 274–84, 275;
methods 273–81; named groups in
282; parentheses in 272–3; pattern 267;
r prefix for 272; special characters in
267–73

relative path, file 232–3
remainder assignment operator (%=) 41
remove() method 157, 218

repetition statements see loop control flow
statements

replace() method 133
Requests HTTP library 11
requests module 353–4
REs see regular expressions (REs)
reserved characters 349
return statement 103–6
reverse() method 157
right merge operation, DataFrame 396, 397
right shift operator (>>) 45
rjust() method 133
“r+” mode, file 234
“r” mode, file 234
root directory 232
r prefix for REs 272
rstrip() method 133
run-time errors 85

scatterplot 406
scientific tools 10
Scikit-Learn 10
SciPy library 10
scope of variables 106–8
SDLC (Software Development Life Cycle)

5, 5–6
seek() method 240, 243–4
separator 128
sequential control flow statements 67
serializing, Python 349, 350
Series, pandas 375–80
setdefault() method 181
sets 216–17; methods 218, 218–21; traversing of

219–20
simple assignment operator 40
single line comment 50
\b escape sequence 142
\n escape sequence 142
\t escape sequence 142
slicing: array 364–7; DataFrame 389; list 154;

string 124–7; in tuple 205–7
software 1–2; development 5–6; open source

27–32
Software Development Life Cycle (SDLC)

5, 5–6
sorted() function 155, 180, 208
sort() method 157
source program/code 3, 27
special characters 267–73
splitlines() method 133
split() method 127–8, 159
startswith() method 133

443Index

statements, Python 36; break 81–4; continue 81–4;
control flow 67; decision control flow
67; del 169–70, 193; if 68–9; if…elif…else
71–3; if…else 69–71; loop control flow
67; nested if 73–4; pass 136; prompt 51;
return 103–6; sequential control flow
67; with 237

Statsmodels 11
str.format() method 51–3, 139
str() function 55–6, 120
string 48–9, 119; built-in functions for 122, 122–3;

comparison 122; concatenation 120–1;
creating and storing 119–20; empty
120; formatting 138–43; immutable 128;
index number, characters accessing by
123–4; literal 48; methods 131–8, 132–3;
operations 120–3; slicing and joining
124–7; spliting 127–8; traversing 128–9

strongly typed language 58–9
structured programming 4
subclass 311
subscript operator 123
substring 125
subtraction assignment operator (−=) 41
subtraction operator (–) 39
sum() function 155, 208
superclass 311
super() function 314–17, 325
swapcase() method 133
Symbolic Programming Language 3
symmetric_difference() method 218
SymPy library 10
syntax: base class 312; bytes() class method

249; class instantiation 293; close()
function 235; compiled regular
expression objects 274; concat()
function 395; data attribute 293;
derived class 312; dict() function 179;
dictionary creation 176; dictionary
methods 181; dump() method 353;
dumps() method 353; empty dictionary
177; empty list 150; empty tuple 202;
errors 84; file methods 239–40; format()
method 52; f-string formatting 140;
function call/calling function 100;
function definition 99; glob method
282; id() function 303; if…elif…else
statement 71; if…else statement 70;
if statement 68; import statement
97; input() function 50; isinstance()
function 303–4; issubclass() function
317; join() method 127; key:value pairs,

accessing/modifying 178–9; lambda
function 342; list creation 150; list
item, accessing 152; list methods 157;
list slicing 154; loads() method 352; for
loop 79; merge() function 396; method
attribute 293; mro() method 320; named
groups in REs 282; nested if statement
73; nested lists 167; open() function 233;
os module 258; os.path module 258–9;
random.randint() function 98; range()
function 79; return statement 103; set
methods 218; split() method 127–8;
str() function 120; string characters
accessing 123; string methods 132–3;
string slicing 124; super() function 314;
try…except…finally statement 86; tuple()
function 204; tuple item, accessing 205;
tuple methods 210; tuples creation 201;
tuple slicing 206; type() function 58;
while loop 74; with statements 237; XML
document 355–6

sys.argv 112
sys.modules 257
system software 2

tags, XML 355
tell() method 240, 244
text data 233–9
text files 230–1; creating and opening 233–5
TIOBE Programming Community Index 9
title() method 133
transpose of matrix 168
traversing: dictionaries 185–6; list 159; sets

219–20; string 128–9; tuple 211
try…except…finally statements 85–9
tuple: built-in functions for 207–8, 208;

comparison operators, use of 204;
creation 201–3; defined 201; versus
dictionaries 209–10; indexing and slicing
205–7; versus lists 208–9; methods 210,
210–15; operations 203–5; packing
211; populating with items 212–13;
traversing 211; unpacking 104, 211

tuple() function 204–5
type conversion functions 54; chr() 56; complex()

56; float() 55; hex() 57; int() 54–5; oct()
57–8; ord() 57; str() 55–6

type() function 58, 120

unary operators 332
unicodes 142–3
Unicode Standard 142–3

444 Index

Unicode Transformation Formats 143
union() method 218
unpacking, tuple 211
unpickling 250
update() method 181, 183, 218
upper() method 133
urllib.request 11
user-defined functions 99

value 36
ValueError exception 87
values() method 181
van Rossum, Guido 7, 7
variables, OOP 290–1
variables, Python 37; legal variable names 37;

scope and lifetime 106–8; values to,
assigning 37–8

Vega-Lite 398; online editor 403
void function 103–6

“wb” mode, file 234
web frameworks 11

while loop 74–8
Windows 10 OS: Anaconda installation in

13–15; PyCharm installation in
16–19

with statements 237–9
“w+” mode, file 234
“w” mode, file 234
writelines() method 240
write() method 239, 242–3
writerow() method 253
writerows() method 253

XML see EXtensible Markup Language (XML)
“x” mode, file 234
XOR operator (̂) 45
XSLT (Extensible Stylesheet Language

Transformations) 359

The Zen of Python 8
ZeroDivisionError exception 87–8
zfill() method 133
zip() function 216

	Cover
	Half Title�����������������
	Title Page�����������������
	Copyright Page���������������������
	Dedication�����������������
	Table of Contents������������������������
	Preface��������������
	Acknowledgment���������������������
	Authors��������������
	1: Introduction����������������������
	1.1 What Is a Program?�����������������������������
	1.2 Programming Languages��������������������������������
	1.2.1 Machine Language�����������������������������
	1.2.2 Assembly Language������������������������������
	1.2.3 High-Level Language��������������������������������

	1.3 Software Development�������������������������������
	1.4 History of Python Programming Language���
	1.5 Thrust Areas of Python���������������������������������
	1.5.1 Academia���������������������
	1.5.2 Scientific Tools�����������������������������
	1.5.3 Machine Learning�����������������������������
	1.5.4 Natural Language Processing��
	1.5.5 Data Analysis��������������������������
	1.5.6 Statistics�����������������������
	1.5.7 Hypertext Transfer Protocol (HTTP) Library���
	1.5.8 Database Connectors/ORM/NoSQL Connectors���
	1.5.9 Web Frameworks���������������������������
	1.5.10 Cloud Computing�����������������������������
	1.5.11 Python Distributions����������������������������������
	1.5.12 IDE Available���������������������������
	1.5.13 Community�����������������������
	1.5.14 Python Stack in Industry��������������������������������������

	1.6 Installing Anaconda Python Distribution��
	1.7 Installing PyCharm IDE to Set Up a Python Development Environment��
	1.8 Creating and Running Your First Python Project���
	1.9 Installing and Using Jupyter Notebook��
	1.9.1 Starting Jupyter Notebook��������������������������������������

	1.10 Open Source Software��������������������������������
	1.10.1 Why Do People Prefer Using Open Source Software?��
	1.10.2 Doesn’t “Open Source” Just Mean Something Is Free of Charge?��
	1.10.3 Open Source Licenses����������������������������������

	1.11 Summary�������������������
	Multiple Choice Questions��������������������������������
	Review Questions�����������������������

	2: Parts of Python Programming Language��
	2.1 Identifiers����������������������
	2.2 Keywords�������������������
	2.3 Statements and Expressions�������������������������������������
	2.4 Variables��������������������
	2.4.1 Legal Variable Names���������������������������������
	2.4.2 Assigning Values to Variables��

	2.5 Operators��������������������
	2.5.1 Arithmetic Operators���������������������������������
	2.5.2 Assignment Operators���������������������������������
	2.5.3 Comparison Operators���������������������������������
	2.5.4 Logical Operators������������������������������
	2.5.5 Bitwise Operators������������������������������

	2.6 Precedence and Associativity���������������������������������������
	2.7 Data Types���������������������
	2.7.1 Numbers��������������������
	2.7.2 Boolean��������������������
	2.7.3 Strings��������������������
	2.7.4 None�����������������

	2.8 Indentation����������������������
	2.9 Comments�������������������
	2.9.1 Single Line Comment��������������������������������
	2.9.2 Multiline Comments�������������������������������

	2.10 Reading Input�������������������������
	2.11 Print Output������������������������
	2.11.1 str.format() Method���������������������������������
	2.11.2 f-strings�����������������������

	2.12 Type Conversions����������������������������
	2.12.1 The int() Function��������������������������������
	2.12.2 The float() Function����������������������������������
	2.12.3 The str() Function��������������������������������
	2.12.4 The chr() Function��������������������������������
	2.12.5 The complex() Function������������������������������������
	2.12.6 The ord() Function��������������������������������
	2.12.7 The hex() Function��������������������������������
	2.12.8 The oct() Function��������������������������������

	2.13 The type() Function and Is Operator���
	2.14 Dynamic and Strongly Typed Language���
	2.15 Summary�������������������
	Multiple Choice Questions��������������������������������
	Review Questions�����������������������

	3: Control Flow Statements���������������������������������
	3.1 The if Decision Control Flow Statement���
	3.2 The if…else Decision Control Flow Statement��
	3.3 The if…elif…else Decision Control Statement��
	3.4 Nested if Statement������������������������������
	3.5 The while Loop�������������������������
	3.6 The for Loop�����������������������
	3.7 The continue and break Statements��
	3.8 Catching Exceptions Using try and except Statement���
	3.8.1 Syntax Errors��������������������������
	3.8.2 Exceptions�����������������������
	3.8.3 Exception Handling Using try…except…finally��

	3.9 Summary������������������
	Multiple Choice Questions��������������������������������
	Review Questions�����������������������

	4: Functions�������������������
	4.1 Built-In Functions�����������������������������
	4.2 Commonly Used Modules��������������������������������
	4.3 Function Definition and Calling the Function���
	4.4 The return Statement and void Function���
	4.5 Scope and Lifetime of Variables��
	4.6 Default Parameters�����������������������������
	4.7 Keyword Arguments����������������������������
	4.8 *args and **kwargs�����������������������������
	4.9 Command Line Arguments���������������������������������
	4.10 Summary�������������������
	Multiple Choice Questions��������������������������������
	Review Questions�����������������������

	5: Strings�����������������
	5.1 Creating and Storing Strings���������������������������������������
	5.1.1 The str() Function�������������������������������

	5.2 Basic String Operations����������������������������������
	5.2.1 String Comparison������������������������������
	5.2.2 Built-In Functions Used on Strings���

	5.3 Accessing Characters in String by Index Number���
	5.4 String Slicing and Joining�������������������������������������
	5.4.1 Specifying Steps in Slice Operation��
	5.4.2 Joining Strings Using join() Method��
	5.4.3 Split Strings Using split() Method���
	5.4.4 Strings Are Immutable����������������������������������
	5.4.5 String Traversing������������������������������

	5.5 String Methods�������������������������
	5.6 Formatting Strings�����������������������������
	5.6.1 Format Specifiers������������������������������
	5.6.2 Escape Sequences�����������������������������
	5.6.3 Raw Strings������������������������
	5.6.4 Unicodes���������������������

	5.7 Summary������������������
	Multiple Choice Questions��������������������������������
	Review Questions�����������������������

	6: Lists���������������
	6.1 Creating Lists�������������������������
	6.2 Basic List Operations��������������������������������
	6.2.1 The list() Function��������������������������������

	6.3 Indexing and Slicing in Lists��
	6.3.1 Modifying Items in Lists�������������������������������������

	6.4 Built-In Functions Used on Lists���
	6.5 List Methods�����������������������
	6.5.1 Populating Lists with Items��
	6.5.2 Traversing of Lists��������������������������������
	6.5.3 Nested Lists�������������������������

	6.6 The del Statement����������������������������
	6.7 Summary������������������
	Multiple-Choice Questions��������������������������������
	Review Questions�����������������������

	7: Dictionaries����������������������
	7.1 Creating Dictionary������������������������������
	7.2 Accessing and Modifying key:value Pairs in Dictionaries��
	7.2.1 The dict() Function��������������������������������

	7.3 Built-In Functions Used on Dictionaries��
	7.4 Dictionary Methods�����������������������������
	7.4.1 Populating Dictionaries with key:value Pairs���
	7.4.2 Traversing of Dictionary�������������������������������������

	7.5 The del Statement����������������������������
	7.6 Summary������������������
	Multiple Choice Questions��������������������������������
	Review Questions�����������������������

	8: Tuples and Sets�������������������������
	8.1 Creating Tuples��������������������������
	8.2 Basic Tuple Operations���������������������������������
	8.2.1 The tuple() Function���������������������������������

	8.3 Indexing and Slicing in Tuples���
	8.4 Built-In Functions Used on Tuples��
	8.5 Relation between Tuples and Lists��
	8.6 Relation between Tuples and Dictionaries���
	8.7 Tuple Methods������������������������
	8.7.1 Tuple Packing and Unpacking��
	8.7.2 Traversing of Tuples���������������������������������
	8.7.3 Populating Tuples with Items���

	8.8 Using zip() Function�������������������������������
	8.9 Sets���������������
	8.10 Set Methods�����������������������
	8.10.1 Traversing of Sets��������������������������������

	8.11 Frozenset���������������������
	8.12 Summary�������������������
	Multiple Choice Questions��������������������������������
	Review Questions�����������������������

	9: Files���������������
	9.1 Types of Files�������������������������
	9.1.1 File Paths�����������������������
	9.1.2 Fully Qualified Path and Relative Path���

	9.2 Creating and Reading Text Data���
	9.2.1 Creating and Opening Text Files��
	9.2.2 File close() Method��������������������������������
	9.2.3 Use of with Statements to Open and Close Files���
	9.2.4 File Object Attributes�����������������������������������

	9.3 File Methods to Read and Write Data��
	9.4 Reading and Writing Binary Files���
	9.5 The Pickle Module����������������������������
	9.6 Reading and Writing CSV Files��
	9.7 Python os and os.path Modules��
	9.8 Summary������������������
	Multiple Choice Questions��������������������������������
	Review Questions�����������������������

	10: Regular Expression Operations��
	10.1 Using Special Characters������������������������������������
	10.1.1 Using r Prefix for Regular Expressions��
	10.1.2 Using Parentheses in Regular Expressions��

	10.2 Regular Expression Methods��������������������������������������
	10.2.1 Compiling Regular Expressions Using compile() Method of re Module���
	10.2.2 Match Objects���������������������������

	10.3 Named Groups in Python Regular Expressions��
	10.4 Regular Expression with glob Module���
	10.5 Summary�������������������
	Multiple Choice Questions��������������������������������
	Review Questions�����������������������

	11: Object-Oriented Programming��������������������������������������
	11.1 Classes and Objects�������������������������������
	11.2 Creating Classes in Python��������������������������������������
	11.3 Creating Objects in Python��������������������������������������
	11.4 The Constructor Method����������������������������������
	11.5 Classes with Multiple Objects���
	11.5.1 Using Objects as Arguments��
	11.5.2 Objects as Return Values��������������������������������������

	11.6 Class Attributes versus Data Attributes���
	11.7 Encapsulation�������������������������
	11.7.1 Using Private Instance Variables and Methods��

	11.8 Inheritance�����������������������
	11.8.1 Accessing the Inherited Variables and Methods���
	11.8.2 Using super() Function and Overriding Base Class Methods��
	11.8.3 Multiple Inheritances�����������������������������������
	11.8.4 Method Resolution Order (MRO)���

	11.9 The Polymorphism����������������������������
	11.9.1 Operator Overloading and Magic Methods��

	11.10 Summary��������������������
	Multiple Choice Questions��������������������������������
	Review Questions�����������������������

	12: Introduction to Data Science���������������������������������������
	12.1 Functional Programming����������������������������������
	12.1.1 Lambda��������������������
	12.1.2 Iterators�����������������������
	12.1.3 Generators������������������������
	12.1.4 List Comprehensions���������������������������������

	12.2 JSON and XML in Python����������������������������������
	12.2.1 Using JSON with Python������������������������������������
	12.2.2 Using Requests Module�����������������������������������
	12.2.3 Using XML with Python�����������������������������������
	12.2.4 JSON versus XML�����������������������������

	12.3 NumPy with Python�����������������������������
	12.3.1 NumPy Arrays Creation Using array() Function��
	12.3.2 Array Attributes������������������������������
	12.3.3 NumPy Arrays Creation with Initial Placeholder Content��
	12.3.4 Integer Indexing, Array Indexing, Boolean Array Indexing, Slicing and Iterating in Arrays���
	12.3.5 Basic Arithmetic Operations on NumPy Arrays���
	12.3.6 Mathematical Functions in NumPy���
	12.3.7 Changing the Shape of an Array��
	12.3.8 Stacking and Splitting of Arrays��
	12.3.9 Broadcasting in Arrays������������������������������������

	12.4 Pandas������������������
	12.4.1 Pandas Series���������������������������
	12.4.2 Pandas DataFrame������������������������������

	12.5 Altair������������������
	12.6 Summary�������������������
	Multiple Choice Questions��������������������������������
	Review Questions�����������������������

	Appendix-A: Debugging Python Code
	Bibliography�������������������
	Solutions����������������
	Index������������

