
www.apress.com

Ganesh · Kiran · Sharm
a

Oracle Certi� ed Professional Java SE 8 Program
m

er Exam
 1Z0-809

Oracle Certi� ed
Professional Java SE 8
Programmer
Exam 1Z0-809

A Comprehensive OCPJP 8
Certi� cation Guide
—
S G Ganesh
Hari Kiran
Tushar Sharma

Oracle Certi� ed Professional Java SE 8
Programmer Exam 1Z0-809

B O O K S F O R P R O F E S S I O N A L S B Y P R O F E S S I O N A L S® THE E XPER T ’S VOICE® IN JAVA

This book off ers a comprehensive guide for the Oracle Certi� ed Professional Java SE 8
Programmer Exam. It starts by answering frequently asked exam questions followed by full
coverage of exam topics with numerous programming and real-world examples.

Each chapter ends with practice exam questions and a quick summary that reviews key
concepts covered in the chapter from the OCPJP exam perspective. The book ends with a
full-length, mock exam to ensure you have enough practice before actually taking the exam.

If you are an OCPJP 8 exam aspirant, this book is certainly for you. The book assumes you’re
already familiar with Java fundamentals, which is in keeping with the prerequisite for having
a OCAJP 8 certi� cation.

You’ll enjoy reading Oracle Certi� ed Professional Java SE 8 Programmer Exam 1Z0-809 because
of its clear, simple language; example driven approach; easy-to-read style; and complete focus
on the exam requirements.

A few of the key features of the book include:

• In-depth and 100% coverage of all 12 exam topics for the certi� cation
• Numerous illustrative programming and real-world examples
• Hundreds of practice exam questions (including a full-length mock exam)

US $42.55

Shelve in:
Programming Languages/Java

User level:
Beginning–Advanced

SOURCE CODE ONLINE9 781484 215692

54255
ISBN 978-1-4842-1569-2

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Certified
Professional Java SE 8

Programmer
Exam 1Z0-809

A Comprehensive OCPJP 8
Certification Guide

S G Ganesh

Hari Kiran

Tushar Sharma

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle Certified Professional Java SE 8 Programmer Exam 1Z0-809: A Comprehensive
OCPJP 8 Certification Guide

Copyright © 2016 by S G Ganesh, Hari Kiran, and Tushar Sharma

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its
current version, and permission for use must always be obtained from Springer. Permissions for use may be
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under
the respective Copyright Law.

ISBN-13 (pbk): 978-1-4842-1835-8

ISBN-13 (electronic): 978-1-4842-1836-5

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Developmental Editor: Douglas Pundick
Technical Reviewer: Vishal Biyani
Editorial Board: Steve Anglin, Pramila Balan, Louise Corrigan, James DeWolf, Jonathan Gennick,

Robert Hutchinson, Celestin Suresh John, Michelle Lowman, James Markham, Susan McDermott,
Matthew Moodie, Jeffrey Pepper, Douglas Pundick, Ben Renow-Clarke, Gwenan Spearing

Coordinating Editor: Rita Fernando
Copy Editor: Lori Cavanaugh, Tiffany Taylor
Compositor: SPi Global
Indexer: SPi Global

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springer.com. Apress Media, LLC is a California LLC
and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com.

Apress and friends of ED books may be purchased in bulk for academic, corporate, or promotional use.
eBook versions and licenses are also available for most titles. For more information, reference our Special
Bulk Sales–eBook Licensing web page at www.apress.com/bulk-sales.

Any source code or other supplementary materials referenced by the author in this text is available to
readers at www.apress.com. For detailed information about how to locate your book’s source code, go to
www.apress.com/source-code/.

www.it-ebooks.info

mailto:orders-ny@springer-sbm.com
www.springer.com
mailto:rights@apress.com
www.apress.com
www.apress.com/bulk-sales
www.apress.com
www.apress.com/source-code/
http://www.it-ebooks.info/

To my little princess Tanmaye

—Ganesh

To my wonderful parents and amazing friends

—Hari Kiran

To my caring parents, loving wife, and cute son

—Tushar

www.it-ebooks.info

http://www.it-ebooks.info/

v

Contents at a Glance

About the Authors���xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

■■Chapter 1: The OCPJP 8 Exam: FAQ�� 1

■■Chapter 2: Java Class Design��� 9

■■Chapter 3: Advanced Class Design��� 55

■■Chapter 4: Generics and Collections��� 97

■■Chapter 5: Lambda Built-in Functional Interfaces��� 145

■■Chapter 6: Java Stream API�� 167

■■Chapter 7: Exceptions and Assertions�� 195

■■Chapter 8: Using the Java SE 8 Date/Time API��� 235

■■Chapter 9: Java I/O Fundamentals��� 257

■■Chapter 10: Java File I/O (NIO.2)�� 287

■■Chapter 11: Java Concurrency��� 313

■■Chapter 12: Building Database Applications with JDBC������������������������������������� 359

■■Chapter 13: Localization��� 389

■■Chapter 14: Mock Exam��� 413

Index�� 477

www.it-ebooks.info

http://www.it-ebooks.info/

vii

Contents

About the Authors���xv

About the Technical Reviewer��xvii

Acknowledgments���xix

Introduction���xxi

■■Chapter 1: The OCPJP 8 Exam: FAQ�� 1

Overview��� 1

FAQ 1. Can you provide details of the Java associate and professional exams for Java 8?������������������� 1

FAQ 2. Can you compare the specifications of the exams targeting OCAJP 8 and OCPJP 8
certifications?�� 2

Details About the Exam��� 3

FAQ 3. OCAJP 8 certification is a prerequisite for OCPJP 8 certification.
Does that mean that I have to take the OCAJP8 exam before I can take the OCPJP8 exam?����������������� 3

FAQ 4. How does the OCPJP 8 exam differ from the older OCPJP 7 exam?�� 3

FAQ 5.Should I take the OCPJP8 exam or earlier versions such as the OCPJP 7 exam?������������������������� 3

FAQ 6. What kinds of questions are asked in the OCPJP 8exam?��� 3

FAQ 7. What does the OCPJP 8 exam test for?�� 4

FAQ 8. I’ve been a Java programmer for the last five years. Do I have to
prepare for the OCPJP 8 exam?��� 5

FAQ 9. How do I prepare for the OCPJP 8 exam?�� 5

FAQ 10. How do I know when I’m ready to take the OCPJP 8 exam?�� 6

www.it-ebooks.info

http://www.it-ebooks.info/

viii

■ Contents

Taking the Exam�� 6

FAQ 11. What are my options to register for the exam?�� 6

FAQ 12. How do I register for the exam, schedule a day and time for taking the exam,
and appear for the exam?��� 6

FAQ 13. What are the key things I need to remember before taking the
exam and on the day of exam?��� 7

■■Chapter 2: Java Class Design��� 9

Encapsulation ��� 9

Inheritance�� 12

Polymorphism �� 14

Runtime Polymorphism��� 15

Method Overloading�� 16

Constructor Overloading�� 18

Overload Resolution��� 19

Points to Remember�� 21

Overriding Methods in Object Class ��� 22

Overriding toString() Method��� 23

Overriding equals() Method��� 26

Object Composition��� 33

Composition vs. Inheritance�� 34

Singleton and Immutable Classes �� 37

Creating Singleton Class��� 37

Immutable Classes�� 40

Using the “static” Keyword��� 43

Static Block��� 44

Points to Remember�� 45

Summary��� 46

www.it-ebooks.info

http://www.it-ebooks.info/

ix

■ Contents

■■Chapter 3: Advanced Class Design��� 55

Abstract Classes ��� 55

Points to Remember�� 56

Using the “final” Keyword��� 57

Final Classes�� 57

Final Methods and Variables�� 58

Points to Remember�� 58

Flavors of Nested Classes �� 58

Static Nested Classes (or Interfaces)�� 60

Inner Classes��� 62

Local Inner Classes�� 64

Anonymous Inner Classes��� 66

Enum Data Type��� 68

Points to Remember�� 70

Interfaces ��� 71

Declaring and Implementing Interfaces�� 71

Abstract Classes vs. Interfaces��� 74

Lambda Functions �� 82

Lambda Functions: Syntax�� 83

Summary��� 88

■■Chapter 4: Generics and Collections��� 97

Creating and Using Generic Classes �� 97

Diamond Syntax��� 102

Interoperability of Raw Types and Generic Types�� 103

Generic Methods�� 105

Generics and Subtyping��� 107

Wildcard Parameters��� 107

Points to Remember�� 110

www.it-ebooks.info

http://www.it-ebooks.info/

x

■ Contents

Create and Use Collection Classes ��� 111

Abstract Classes and Interfaces�� 111

Concrete Classes��� 112

The Map Interface��� 117

The Deque Interface and ArrayDeque class��� 119

Comparable and Comparator Interfaces��� 120

Collection Streams and Filters�� 123

Iterate Using forEach �� 124

Method References with Streams��� 125

Understanding the Stream Interface �� 126

The Stream Pipeline�� 127

Stream Sources��� 129

Filtering a Collection��� 132

Terminal Operations�� 134

Summary��� 135

■■Chapter 5: Lambda Built-in Functional Interfaces��� 145

Using Built-in Functional Interfaces ��� 145

The Predicate Interface��� 146

The Consumer Interface�� 149

The Function Interface��� 150

The Supplier Interface��� 152

Primitive Versions of Functional Interfaces��� 154

Binary Versions of Functional Interfaces��� 158

The UnaryOperator Interface��� 160

Summary��� 161

www.it-ebooks.info

http://www.it-ebooks.info/

xi

■ Contents

■■Chapter 6: Java Stream API�� 167

Extract Data from a Stream �� 167

Search Data from a Stream��� 169

The Optional class��� 172

Creating Optional Objects�� 173

Optional Stream��� 174

Primitive Versions of Optional<T>��� 175

Stream Data Methods and Calculation Methods��� 175

Sort a Collection Using Stream API��� 178

Save Results to a Collection�� 181

Using flatMap Method in Stream �� 185

Summary��� 188

■■Chapter 7: Exceptions and Assertions�� 195

Throwable and its Subclasses��� 195

Throwing Exceptions��� 197

Unhandled Exceptions��� 198

The Throws Clause�� 207

Points to Remember�� 212

Try-with-Resources �� 213

Closing Multiple Resources��� 215

Points to Remember�� 217

Custom Exceptions ��� 217

Assertions��� 221

Assert Statement��� 221

Summary��� 223

www.it-ebooks.info

http://www.it-ebooks.info/

xii

■ Contents

■■Chapter 8: Using the Java SE 8 Date/Time API��� 235

Understanding Important Classes in java.time�� 236

Using the LocalDate class��� 236

Using the LocalTime Class��� 238

Using the LocalDateTime Class��� 239

Using the Instant Class�� 240

Using the Period Class��� 241

Using the Duration Class��� 243

Using the TemporalUnit Interface�� 244

Dealing with Time Zones and Daylight Savings ��� 245

Using Time Zone–Related Classes��� 246

Dealing with Daylight Savings��� 248

Formatting Dates and Times��� 249

Flight Travel Example�� 252

Summary��� 253

■■Chapter 9: Java I/O Fundamentals��� 257

Reading from and Writing to Console ��� 257

Understanding Standard Streams��� 257

Understanding the Console Class�� 259

Formatted Output with the Console Class��� 261

Points to Remember�� 264

Getting Input with the Console Class��� 265

Using Streams to Read and Write Files �� 266

Character Streams and Byte Streams��� 267

Character Streams��� 268

Byte Streams��� 274

Points to Remember�� 282

Summary��� 282

www.it-ebooks.info

http://www.it-ebooks.info/

xiii

■ Contents

■■Chapter 10: Java File I/O (NIO.2)�� 287

Using the Path Interface ��� 287

Getting Path Information�� 289

Comparing Two Paths�� 292

Using the Files Class �� 293

Checking File Properties and Metadata��� 295

Copying a File�� 300

Moving a File��� 302

Deleting a File�� 303

Using the Stream API with NIO.2 �� 304

Summary��� 308

■■Chapter 11: Java Concurrency��� 313

Creating Threads to Execute Tasks Concurrently ��� 313

Creating Threads��� 314

Thread Synchronization With synchronized Keyword ��� 316

Threading Problems ��� 321

Deadlocks�� 321

Livelocks�� 323

Lock Starvation�� 324

Using java.util.concurrent.atomic Package �� 324

Use java.util.concurrent Collections�� 327

CyclicBarrier�� 328

Concurrent Collections�� 330

Using Callable and ExecutorService Interfaces �� 333

Executor��� 334

Callable and ExecutorService�� 335

Use Parallel Fork/Join Framework�� 337

Useful Classes in the Fork/Join Framework�� 338

Using the Fork/Join Framework�� 339

www.it-ebooks.info

http://www.it-ebooks.info/

xiv

■ Contents

Points to Remember�� 343

Use Parallel Streams��� 344

Performing Correct Reductions��� 346

Parallel Streams and Performance�� 347

Summary��� 348

■■Chapter 12: Building Database Applications with JDBC������������������������������������� 359

Introduction to JDBC��� 360

Setting Up the Database�� 361

Connecting to a Database��� 362

The Connection Interface��� 362

Connecting to the Database Using DriverManager ��� 363

Querying and Updating the Database�� 367

Statement Interface��� 367

ResultSet Interface�� 369

Querying the Database�� 370

Updating the Database�� 374

Points to Remember�� 380

Summary��� 381

■■Chapter 13: Localization��� 389

Locales ��� 389

The Locale Class�� 390

Resource Bundles �� 394

Using PropertyResourceBundle �� 396

Using ListResourceBundle �� 399

Loading a Resource Bundle �� 402

Naming Convention for Resource Bundles ��� 402

Summary��� 407

■■Chapter 14: Mock Exam��� 413

Index�� 477

www.it-ebooks.info

http://www.it-ebooks.info/

xv

About the Authors

S G Ganesh has Oracle Certified Professional, Java SE 8 Programmer (OCPJP 8) certification. He has
12+ years of working experience in the IT industry. He is currently a corporate trainer and independent
consultant based in Bangalore, India. He quit his well-paying job to pursue his passion for sharing
knowledge through corporate training and writing books. He worked for Siemens (Corporate Research
and Technologies, Bangalore) in “Software Architecture and Development” team for 6+ years. Before
Siemens, he worked in Hewlett-Packard’s C++ compiler team, Bangalore for 4.5 years. He also has IEEE
Software Engineering Certified Instructor (SECI) and IEEE Professional Software Engineering Master
(PSEM) certifications. He has authored/co-authored many articles, research papers, and books. For more
information, visit his LinkedIn page: http://bit.ly/sgganesh.

Hari Kiran is an independent consultant based in Bangalore, India. He has 12+ years of experience in the
IT industry. He has worked for large IT companies including HCL Technologies, CSC, and Cisco Systems.
He is an experienced Java developer. Throughout his career, he has worked on various technologies related
to Java.

Tushar Sharma is currently a researcher at Athens University of Economics and Business. Earlier, he worked
with Siemens Research and Technology Center, Bangalore, India for more than 7 years. His career interests
include software design, refactoring, design smells, code and design quality, technical debt, design patterns,
and change impact analysis. He has an MS (by research) degree in Computer Science from the Indian Institute
of Technology-Madras (IIT-M), Chennai, India, where he specialized in design patterns and refactoring.
He co-authored the book Refactoring for Software Design Smells: Managing Technical Debt published by
Morgan Kaufmann in November 2014. He has Oracle Certified Professional, Java SE 7 Programmer (OCPJP 7)
certification. He is an IEEE Senior Member. He can be reached at tusharsharma@ieee.org.

www.it-ebooks.info

http://bit.ly/sgganesh
http://tusharsharma@ieee.org
http://www.it-ebooks.info/

xvii

About the Technical Reviewer

Vishal Biyani started his career working on Java 1.3 and he is excited that
Java8 finally has streams and closures. Over the years he has performed
various roles in technology projects for large as well as smaller companies.
Biyani’s current focus is helping organizations implement DevOps and
continuous delivery principles. Biyani writes some of his thoughts at
www.vishalbiyani.com and can be reached at vrbiyani@gmail.com.

www.it-ebooks.info

www.vishalbiyani.com
http://vrbiyani@gmail.com
http://www.it-ebooks.info/

xix

Acknowledgements

We would like to convey our sincere thanks to the entire Apress team for making this book possible.
Our first and foremost thanks go to our acquisitions editor Celestin Suresh John who played a key role

from the conceptualization to the production stage of the book.
Our special thanks to Jeffrey Pepper for his support for our initial proposal to revise the earlier

OCPJP 7 book, to coordinating editor Rita Fernando for her excellent coordination of this book project,
and to developmental editor Douglas Pundick for improving the quality of the chapters. Thank you Jeff, Rita,
and Douglas for your help!

A special thanks to our technical reviewer Vishal Biyani for his help in improving the quality of the book.
We convey our thanks to Anindya Bandopadhyay for sharing his feedback on improving the date and

time API chapter in this book.
We would like to convey our sincere thanks to the following readers who reported errors in the earlier

OCPJP 7 book: Sheila Weiss, Sebastiaan Heunis, John Doe, Steve Tarlton, Beto Montejo, Michael Klenk, Luca
Aliberti, Mikael Strand, Jonathan S. Weissman, Bob, Gaël Jaffré, EpicWestern, John Stark, FlyTrap, Bruno
Soares Bravo, Jaymoid, Denis Talochkin, Souvik Goswami, and Pawel K. We have corrected the reported
mistakes in this book for a better reading/learning experience.

We take this opportunity to express our gratitude to friends and family for their continued support and
encouragement.

—S G Ganesh, Hari Kiran, and Tushar Sharma

www.it-ebooks.info

http://www.it-ebooks.info/

xxi

Introduction

This book is a comprehensive guide to prepare for the OCPJP 8 exam. This book covers all the exam
objectives for Oracle Certified Professional, Java SE 8 Programmer certification (1Z0-809 exam).

The book covers all of the exam topics for Java SE 8 Programmer II (1Z0-809) exam. The chapters and
sections in this book map one-to-one to the exam objectives and subtopics. This one-to-one mapping
between chapters and the exam objectives ensures that we cover only the topics to the required breadth and
depth—no more, no less.

This book follows an example-driven approach to improve your reading and study experience.
Additionally, in each chapter we use visual cues (such as notes, caution signs, and exam tips) to help you
prepare for the OCPJP 8 exam.

Prerequisites
Since the OCAJP 8 (a.k.a. Java SE 8 Programmer I/1Z0-808) exam is a prerequisite for the more
comprehensive OCPJP 8 exam (1Z0-809), we assume that you are already familiar with the fundamentals
of the language. We focus only on the OCPJP 8 exam objectives, assuming that you have working knowledge
in Java.

Target Audience
This book is for you:

•	 If you are a student or a programmer aspiring to crack the OCPJP 8 exam.

•	 If you want to learn new features added in Java 8 (especially on functional
programming).

•	 If you’re a trainer for OCPJP 8 exam. You can use this book as training material for
OCPJP 8 exam preparation.

•	 If you just want to refresh your knowledge of Java programming or gain a better
understanding of various Java APIs.

Please note, however, that this book is neither a tutorial for learning Java nor a comprehensive reference
book for Java.

www.it-ebooks.info

http://www.it-ebooks.info/

xxii

■ Introduction

Roadmap for Reading This Book
To get the most out of reading this book, we recommend you follow these steps:

Step 0: Make sure you have JDK 8 installed on your machine and you’re able to compile and run Java
programs.

Step 1: First read the FAQs in Chapter 1 and become familiar with the exam (you may want to skip
irrelevant questions or questions for which you already know the answers).

Step 2: Check the exam topics given in the beginning of each chapter and mark the topics you’re not
familiar or comfortable with. Read the chapters or sections corresponding to the topics you’ve marked for
preparation.

Step 3: Try out as many sample programs as possible when you read the chapters.
Step 4: Once you feel you are ready to take the exam, take the mock exam (Chapter 14). If you don’t pass

it, go back to the chapters in which you are weak, read them, and try out more programs relating to those
topics. If you’ve prepared well, you should be able to pass the actual OCPJP 8 exam.

Step 5: Register for the exam and take the exam based on your performance in the mock tests. The day
before taking the exam, read the summary sections given at the end of each chapter.

On Coding Examples in This Book
All the programs in this book are self-contained programs (with necessary import statements). We’ve tested
the coding examples in this book using Oracle’s Java compiler in JDK 8. It is important that you use a Java
compiler and a JVM that supports Java 8 for trying out the programs in this book.

Java is a platform-independent language, but there are certain features that are better explained with
a specific platform. Since Windows is the most widely used OS today, some of the programming examples
(especially the ones in the NIO.2 chapter) are written with the Windows OS in mind. You may require minor
modifications to those programs to get them working under other OSs (Linux, MAC OS, etc.).

Contact Us
In case of any queries, suggestions, or corrections, please feel free to contact us at sgganesh@gmail.com,
gharikir@gmail.com, and tusharsharma@ieee.org.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_1
http://dx.doi.org/10.1007/978-1-4842-1836-5_14
http://sgganesh@gmail.com
http://gharikir@gmail.com
http://tusharsharma@ieee.org
http://www.it-ebooks.info/

1

Chapter 1

The OCPJP 8 Exam: FAQ

The acronym OCPJP 8 exam stands for Java SE 8 Programmer II exam (exam number 1Z0-809). In this first
chapter, we address the frequently asked questions (FAQs) that may come up when you are preparing for the
OCPJP 8 exam.

Overview
FAQ 1. Can you provide details of the Java associate and professional
exams for Java 8?
The OCAJP 8 exam (Oracle Certified Associate Java Programmer certification, exam number 1Z0-808) is
mainly meant for entry-level Java developers. When you pass this exam, it demonstrates that you have a
strong foundation in Java.

The OCPJP 8 exam (Oracle Certified Professional Java Programmer certification, exam number IZ0-809)
is meant for professional Java developers. When you pass this exam, it demonstrates that you can use a wide
range of core Java features (especially the ones added in Java 8) in your regular work.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ The OCPJP 8 Exam: FAQ

2

Table 1-1.  Comparison of the Oracle Exams Leading to OCAJP8 and OCPJP8Certifications

Exam Number 1Z0-808 1Z0-809 1Z0-810 1Z0-813

Expertise
Level

Beginner Intermediate Intermediate Intermediate

Exam Name Java SE 8
Programmer I

Java SE 8 Programmer
II

Upgrade Java SE 7
to Java SE 8 OCP
Programmer

Upgrade to Java SE 8
OCP (Java SE 6 and
all prior versions)

Associated
Certification
(abbreviation)

Oracle Certified
Associate, Java SE 8
Programmer
(OCAJP 8)

Oracle Certified
Professional, Java SE 8
Programmer (OCPJP 8)

Oracle Certified
Professional, Java
SE 8 Programmer
(upgrade)(OCPJP 8)

Oracle Certified
Professional, Java
SE 8 Programmer
(OCPJP 8)

Prerequisite
Certification

None Java SE 8 Programmer I
(OCAJP8)

Java SE 7
Programmer II
(OCPJP 7)

Oracle Certified
Professional Java SE
6 Programmer and
all prior versions
(OCPJP 6 and
earlier versions)

Exam
Duration

2 hrs 30 minutes
(150 mins)

2 hrs 30 minutes
(150 mins)

2 hrs 30 minutes
(150 mins)

2 hrs 10 minutes
(130 mins)

Number of
Questions

77Questions 85 Questions 81 Questions 60 Questions

Pass
Percentage

65% 65% 65% 63%

Cost ~ USD 245 ~USD 245 ~USD 245 ~USD 245

Exam Topics Java Basics
Working With Java
Data Types
Using Operators and
Decision Constructs
Creating and Using
Arrays
Using Loop
Constructs
Working with
Methods and
Encapsulation
Working with
Inheritance
Handling Exceptions
Working with
Selected classes
from the Java API

Java Class Design
Advanced Java Class
Design
Generics and
Collections
Lambda Built-in
Functional Interfaces
Java Stream API
Exceptions and
Assertions
Use Java SE 8 Date/
Time API
Java I/O Fundamentals
Java File I/O (NIO.2)
Java Concurrency
Building Database
Applications with JDBC
Localization

Lambda
Expressions
Using Built-in
Lambda Types
Filtering Collections
with Lambdas
Collection
Operations with
Lambda
Parallel Streams
Lambda Cookbook
Method
Enhancements
Use Java SE 8 Date/
Time API

Language
Enhancements
Concurrency
Localization
Java File I/O
(NIO.2)
Lambda
Java Collections
Java Streams

FAQ 2. Can you compare the specifications of the exams targeting
OCAJP 8 and OCPJP 8 certifications?
Yes, see Table 1-1.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ The OCPJP 8 Exam: FAQ

3

Notes

•	 In the Cost row, the given USD cost of the exams is approximate as actual cost varies
with currency of the country in which you take the exam: $245 in US, £155 in UK,
Rs. 9604 in India, etc.

•	 The Exam Topics row lists only the top-level topics. For sub-topics, please check the
Oracle’s web pages for these exams.

•	 The details provided here are as on November 1, 2015. Please check the Oracle
website for any updates on the exam details.

Details About the Exam
FAQ 3. OCAJP 8 certification is a prerequisite for OCPJP 8
certification. Does that mean that I have to take the OCAJP8 exam
before I can take the OCPJP8 exam?
No, requirements for certification may be met in any order. You may take the OCPJP 8 exam before you take
the OCAJP 8 exam, but you will not be granted OCPJP 8 certification until you have passed both 1Z0-808and
1Z0-809 exams.

FAQ 4. How does the OCPJP 8 exam differ from the older OCPJP 7
exam?
When compared to the exam topics in OCPJP 7 exam, the OCPJP 8 exam is updated with topics added in
the Java SE 8 release: lambda functions, Java built-in functional interfaces, stream API (including parallel
streams), and date and time API, and other changes to the Java library.

FAQ 5.Should I take the OCPJP8 exam or earlier versions such as the
OCPJP 7 exam?
Although you can still take exams for older certifications such as OCPJP 7, OCPJP 8 is the best professional
credential to have because it is validated against the latest Java SE 8 release.

FAQ 6. What kinds of questions are asked in the OCPJP 8exam?
Some questions on the OCPJP 8 exam test your conceptual knowledge without reference to a specific
program or code segment. But most of the questions are programming questions of the following types:

•	 Given a program or code segment, what is the output or expected behavior?

•	 Which option(s) would compile without errors or give the desired output?

•	 Which option(s) constitute the correct usage of a given API (in particular, newly
introduced ones such as stream and date/time APIs)?

All questions are multiple choice. Most of them present four or five options, but some have six or seven
options. Many questions are designed to have a set of multiple correct answers. Such questions clearly
mention the number of options you need to select.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ The OCPJP 8 Exam: FAQ

4

Exam questions are not constrained to be exclusively from the topics on the exam syllabus. You might,
for example, get questions on Java fundamentals (from OCAJP syllabus) concerning the basics of exception
handling and using wrapper types. You might also get questions on topics related to those on the exam
syllabus but not specified in it. For example, in the exam, you may get a question on java.util.function.
BinaryOperator interface though the “Java Built-in Functional Interfaces” exam topic does not explicitly
mention this interface.

A given question is not constrained to test only one topic. Some questions are designed to test multiple
topics with a single question. For instance, you may find a question on parallel streams that makes use of
built-in functional interfaces and lambda expressions.

FAQ 7. What does the OCPJP 8 exam test for?
The OCPJP 8 exam tests your understanding of the Java language features and APIs that are essential for
developing real-world programs. The exam focuses on the following areas:

•	 Language concepts that are useful for problem solving: The exam tests not only your
knowledge of how language features work, but also covers your grasp of the nitty-
gritty and corner cases of language features. For example, you need to understand
not only the generics feature in Java but also problems associated with type-erasure,
mixing legacy containers with generic containers, and so on.

•	 Java APIs: The exam tests your familiarity with using the Java class library, as well as
unusual aspects or corner cases, such as the following:

•	 What is the binary equivalent for java.util.function.Supplier? (Answer:
Since a Supplier does not take any arguments, there is no binary equivalent for
the Supplier interface).

•	 What will happen if you try to use a stream more than once? (Answer:
Once a terminal operation is called on a stream, it is considered used
or closed; any attempt at reusing the stream will result in throwing an
IllegalStateException.)

•	 Underlying concepts: For example, the exam might test your understanding of how
serialization works, the differences between overloading and overriding, how autoboxing
and unboxing work in relation to generics, different kinds of liveness problems with
threads, how parallel streams internally use the fork/join framework, etc.

Although the exam does not test memory skills, some questions presume rote knowledge of key
elements, such as the following:

•	 The name of the abstract methods provided in the key functional interfaces in
java.util.function package ("test" method for Predicate, "accept" method for
Consumer, "apply" method for Function, and "get" method for Supplier interface).

•	 In the java.util.stream.Stream interface and its primitive type versions, you need
to remember the name of the commonly used intermediate operations and terminal
operations.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ The OCPJP 8 Exam: FAQ

5

FAQ 8. I’ve been a Java programmer for the last five years. Do I have to
prepare for the OCPJP 8 exam?
Short answer: It’s good that you have work experience, but you still need to prepare for the OCPJP 8 exam.

Long answer: No matter how much real-world programming experience you might have, there are two
reasons you should prepare for this exam to improve your chances of passing it:

•	 You may not have been exposed to certain topics on the exam. Java is vast, and
you might not have had occasion to work on every topic covered in the exam. For
example, you may not be familiar with localization if you have never dealt with
the locale aspects of the applications you were engaged with. Or your work might
not have required you to use JDBC. Or you’ve always worked on single-threaded
programs, so multithreaded programming might be new to you. Moreover, OCPJP8
emphasizes Java 8, and you might not have been exposed yet to such Java 8 topics as
lambda expressions, sequential and parallel streams, date and time API, and built-in
functional interfaces.

•	 You may not remember the unusual aspects or corner cases. No matter how
experienced you are, there is always an element of surprise involved when you
program. The OCPJP8 exam tests not just your knowledge and skills in respect of
regular features, but also your understanding of unusual aspects or corner cases,
such as the behavior of multithreaded code and the use of generics when both
overloading and overriding are involved. So you have to bone up on pathological
cases that you rarely encounter in your work.

FAQ 9. How do I prepare for the OCPJP 8 exam?
Study this book. In addition,

•	 Code, code, code! Write lots and lots of small programs, experiment with them, and
learn from your mistakes.

•	 Read, read, read! Read this book and the tutorial and reference resources on Oracle’s
site, especially

•	 Oracle’s free online Java tutorials: Access the Java tutorial at
http://docs.oracle.com/javase/tutorial/.

•	 Oracle’s Java 8 central: You can download the latest Java SDK, gets links to access
the Java SE community, read free technical articles on Java 8 from
this page:

http://www.oracle.com/technetwork/java/javase/overview/
java8-2100321.html

•	 Java documentation: The Java API documentation is a mine of information. This
documentation is available online (see http://docs.oracle.com/javase/8/
docs/api/) and is shipped as part of the Java SDK. If you don’t have immediate
Internet access, you may find javac's-Xprint option handy. For example, to print
the textual representation of String class, type the fully qualified name, as in

javac -Xprint java.lang.String

www.it-ebooks.info

http://docs.oracle.com/javase/tutorial/
http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
http://www.oracle.com/technetwork/java/javase/overview/java8-2100321.html
http://docs.oracle.com/javase/8/docs/api/
http://docs.oracle.com/javase/8/docs/api/
http://www.it-ebooks.info/

Chapter 1 ■ The OCPJP 8 Exam: FAQ

6

This will print the list of members in String class on the console.

•	 Read, code, read, code! Cycle back and forth between your reading and coding so that
your book knowledge and its practical application are mutually reinforcing.
This way, you’ll not just know a concept, but you’ll also understand it.

•	 Focus most on the topics you’re least comfortable with. Grade yourself on each of the
topics in OCPJP 8 exam on an ascending scale from 1 to 10. Do remedial preparation
in all the topics for which you rate yourself 8 or less.

FAQ 10. How do I know when I’m ready to take the OCPJP 8 exam?
Take the mock exam given in Chapter 14 under actual exam conditions: stick to the 2.5-hour time limit;
don’t take any breaks and don’t refer any books or websites. If you score 65% or above (which is the passing
score for 1Z0-809 exam), you are likely to pass the actual exam.

Taking the Exam
FAQ 11. What are my options to register for the exam?
You have three registration options for the OCPJP 8 exam:

•	 Register and pay at the Pearson VUE website.

•	 Buy an exam voucher from Oracle and then register yourself in Pearson VUE website.

•	 Register and pay at the Oracle Testing Center (OTC), if you have one in your region.

FAQ 12. How do I register for the exam, schedule a day and time for
taking the exam, and appear for the exam?
Option 1: Register and pay on the Pearson VUE website using the following steps:

Step 1. �Go to www.pearsonvue.com/oracle/ (you will be directed here if you click the
first option from Oracle Certification page). Click on “Schedule online”
in “Schedule an exam” section.

Step 2. �Select “Sign In.” Click on “proctored” in the “what type of exam you are
planning to take” section. Select this exam as "Information Technology (IT)"
➤ "Oracle" ➤ "Proctored". Then you'll be asked to sign in.

Step 3. �Log in to your web account on the Pearson site. If you don’t have one, create
one; you will get the user name and password by the e-mail you provide.
When you log in first time, you need to change your password and set
security questions and their answers. When you are done with this, you’re
ready to schedule your exam.

Step 4. �Once logged in, you'll get the list of Oracle exams to select from. Select the
following exam:

•	 1Z0-809, Java SE 8Programmer II(aka OCPJP 8 exam)

These exams are in English (You can choose another language if you wish
and if it is available in the list). This page will also show you the cost of the
exam. Click Next.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_14
http://www.pearsonvue.com/oracle/
http://www.it-ebooks.info/

Chapter 1 ■ The OCPJP 8 Exam: FAQ

7

Step 5. �Now you need to select your test location. Choose Country ➤ City ➤
State/Province, and you'll be shown test locations close to you. Each center
will have an icon for information: click it for the address and directions. Select
up to four centers near your location and click Next.

Step 6. �Select a test center and select a date and time for appointments. The page will
indicate the available dates and time slots; choose the one most convenient
for you. If you have an exam voucher or Oracle University coupon or Oracle
promotion code, enter it here.

Step 7. �Select from the available payment options (the usual way is to pay using your
credit card) and pay your exam fees. Make sure that you have selected the
right exam, appropriate test center, and date/time before paying the fees.

Step 8. Done! You will get an appointment confirmation payment receipt by e-mail.

Option 2: Buy an exam voucher from Oracle and register on the Pearson VUE website.

You can buy a generic exam voucher from Oracle and use it at the Pearson site. It costs US$245 if you are
living in the United States and is denominated in an appropriate currency if you live elsewhere. To buy the
voucher from Oracle, select “OU Java, Solaris, and other Sun Technology Exam eVoucher.” You will be asked to
create an Oracle account if you do not have one. Once the account is created, confirm customer type, customer
contact information, and pay. Once you pay the fees, you can use the eVoucher at the Pearson VUE site.

Option 3: Register and pay online to take the exam in person at an Oracle Testing Center (OTC).

You can choose this option if a physical exam session is scheduled in your vicinity. It costs US$245 or
the local equivalent.

FAQ 13. What are the key things I need to remember before taking the
exam and on the day of exam?
Before the exam day:

•	 You'll get e-mail from Pearson confirming your appointment and payment. Check
the details on what you should bring when you go to the exam center. Note that you’ll
need at least two photo IDs.

•	 Before the exam, you’ll get a call from the Pearson exam center where you've booked
your appointment.

On the exam day:

•	 Go to the exam center at least 30 minutes before the exam starts. Your exam center
will have lockers for storing your belongings.

•	 Show your exam schedule information and IDs and then complete the exam
formalities, such as signing the documents.

•	 You'll be taken to a computer in the exam room and will log into the exam-taking
software.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1 ■ The OCPJP 8 Exam: FAQ

8

Taking the exam:

•	 You will see the following on the exam-taking software screen:

•	 A timer ticking in one corner showing the time left

•	 The current question number you are attempting

•	 A check box to select if you want to review the question later

•	 The button (labeled “Review”) for going to a review screen where you can revisit
the questions before completing the exam.

•	 Once you start, you'll get questions displayed one by one. You can choose the
answers by selecting them in the check box. If you are unsure of an answer, select
the Mark button so that you can revisit it at any point during the exam. You can
also right-click on an option to strike-through that option (useful for eliminating
incorrect options).

•	 You may not consult any person or print or electronic materials or programs during
the exam.

After the exam:

•	 Once you're done with the exam, you will not be immediately shown the results.
You have to log in to Oracle’s CertView website (https://education.oracle.com/
certview.html) to see the exam results.

•	 Irrespective of passing or failing the exam, topics from questions you've answered
incorrectly will be supplied with your score.

•	 If you’ve passed the OCPJP 8 exam and you've also satisfied the applicable
prerequisites for certification (e.g., OCAJP 8 certification as the prerequisite of OCPJP
8 certification via the 1Z0-809 exam), a printable certificate will be e-mailed to you.

•	 If you failed the exam, you may register and pay again to retake it after a 14-day
waiting period.

www.it-ebooks.info

https://education.oracle.com/certview.html
https://education.oracle.com/certview.html
http://www.it-ebooks.info/

9

Chapter 2

Java Class Design

Certification Objectives

Implement encapsulation

Implement inheritance including visibility modifiers and composition

Implement polymorphism

Override hashCode, equals, and toString methods from Object class

Create and use singleton classes and immutable classes

Develop code that uses static keyword on initialize blocks, variables, methods, and classes

Object-Orientation (OO) is the core of the most mainstream programming languages today. To create
high-quality designs and software, it is important to get a good grasp of object oriented concepts. This
chapter on class design and the next chapter on advanced class design provides you a firm foundation for
creating quality designs in Java.

Since OCAJP 8 is a pre-requisite for the OCPJP 8 exam, we assume that you are familiar with basic
concepts such as methods, fields, and how to define a constructor. Hence, in this chapter, we start directly
discussing OCPJP 8 exam topics. In the first section, we discuss how to enforce encapsulation using access
specifiers, and how to implement inheritance and polymorphism. In the next section, we delve into details
on overriding methods in the Object class, define singleton and immutable classes, and analyze different
ways of using the static keyword.

Encapsulation
Certification Objective

Implement encapsulation

Structured programming decomposes the program’s functionality into various procedures (functions),
without much concern about the data each procedure can work with. Functions are free to operate and
modify the (usually global and unprotected) data.

In Object Oriented Programming (OOP), data and associated behavior forms a single unit, which is
referred to as a class. The term encapsulation refers to combining data and associated functions as a single
unit. For example, in a Circle class, radius and center are defined as private fields. Now you can add
methods such as draw() and fillColor() along with fields radius and center, since the fields and methods
are closely related to each other. All the data (fields) required for the methods in the class are available inside
the class itself. In other words, the class encapsulates its fields and methods together.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

10

Access Modifiers

Certification Objective

Implement inheritance including visibility modifiers and composition

Access modifiers determine the level of visibility for a Java entity (a class, method, or field). Access
modifiers enable you to enforce effective encapsulation. If all member variables of a class can be accessed
from anywhere, then there is no point putting these variables in a class and no purpose in encapsulating
data and behavior together in a class.

The OCPJP 8 exam includes both direct questions on access modifiers and indirect questions that
require an underlying knowledge of access modifiers. Hence it is important to understand the various access
modifiers supported in Java.

Java supports four types of access modifiers:

•	 Public

•	 Private

•	 Protected

•	 Default (no access modifier specified)

To illustrate the four types of access modifiers, let’s assume that you have the following classes in
a drawing application: Shape, Circle, Circles, and Canvas classes. The Canvas class is in appcanvas
package and the other three classes are in graphicshape package (see Listing 2-1).

Listing 2-1.  Shape.java, Circle.java, Circles.java, and Canvas.java

// Shape.java
package graphicshape;
 
class Shape {
 protected int color;
}
 
// Circle.java
package graphicshape;
 
import graphicshape.Shape;
 
public class Circle extends Shape {
 private int radius; // private field
 public void area() { // public method
 // access to private field radius inside the class:
 System.out.println("area: " + 3.14 * radius * radius);
 }
 // The fillColor method has default access
 void fillColor() {
 //access to protected field, in subclass:
 System.out.println("color: " + color);
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

11

// Circles.java
package graphicshape;
 
class Circles {
 void getArea() {
 Circle circle = new Circle();
 // call to public method area() within package:
 circle.area();
 // calling fillColor() with default access within package:
 circle.fillColor();
 }
}
 
// Canvas.java
package appcanvas;
import graphicshape.Circle;
 
class Canvas {
 void getArea() {
 Circle circle = new Circle();
 circle.area(); // call to public method area(), outside package
 }
}

Public Access Modifier

The public access modifier is the most liberal one. If a class or its members are declared as public, they can
be accessed from any other class regardless of the package boundary. It is comparable to a public place in
the real world, such as a company cafeteria that all employees can use irrespective of their department. As
shown in Listing 2-1, the public method area() in Circle class is accessible within the same package, as
well as outside of the package (in the Canvas class).

 A public method in a class is accessible to the outside world only if the class is declared as public. If the
class does not specify any access modifier (i.e., it has default access), then the public method is accessible only
within the containing package.

Private Access Modifier

The private access modifier is the most stringent access modifier. A private class member cannot be
accessed from outside the class; only members of the same class can access these private members.
It’s comparable to a safe deposit box room in a bank, which can only be accessed by a set of authorized
personnel and safe deposit box owners. In Listing 2-1, the private field radius of the Circle class is accessible
only inside the Circle class and not in any other class regardless of the enclosing package.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

12

Protected and Default Access Modifiers

Protected and default access modifiers are quite similar to each other. If a member method or field is
declared as protected or default, then the method or field can be accessed within the package. Note that
there is no explicit keyword to provide default access; in fact, when no access modifier is specified, the
member has default access. Also, note that default access is also known as package-protected access.
Protected and default accesses are comparable to the situation in an office where a conference room is
accessible only to one department.

What is the difference between protected and default access? One significant difference between these
two access modifiers arises when we talk about a subclass belonging to another package than its superclass.
In this case, protected members are accessible in the subclass, whereas default members are not.

 A class (or interface) cannot be declared as private or protected. Furthermore, member methods or fields
of an interface cannot be declared as private or protected.

In Listing 2-1, the protected field color is accessed in the class Circle and the default method
fillColor() is called from the class Circles.

The visibility offered by various access modifiers is summarized in Table 2-1.

Table 2-1.  Access Modifiers and Their Visibility

Access modifiers/
accessibility

Within the
same class

Subclass inside
the package

Subclass outside
the package

Other class inside
the package

Other class outside
the package

Public Yes Yes Yes Yes Yes

Private Yes No No No No

Protected Yes Yes Yes Yes No

Default Yes Yes No Yes No

Inheritance
Inheritance is a reusability mechanism in object-oriented programming. With inheritance, the common
properties of various objects are exploited to form relationships with each other. The abstract and common
properties are provided in the superclass, which is available to the more specialized subclasses. For example,
a color printer and a black-and-white printer are kinds of a printer (single inheritance); an all-in-one printer
is a printer, scanner, and photocopier (multiple inheritance).

Why is inheritance a powerful feature? Because it supports modeling classes in a hierarchy, and such
hierarchical models are easy to understand. For example, you can logically categorize vehicles as two-
wheelers, three-wheelers, four-wheelers, and so on. In the four-wheelers category, there are cars, vans,
buses, and trucks. In the cars category, there are hatchbacks, sedans, and SUVs. When you categorize
hierarchically, it becomes easy to understand, model, and write programs.

Consider a simple example used in earlier sections: class Shape is a base class and Circle is a
derived class. In other words, a Circle is a Shape; similarly, a Square is a Shape. Therefore, an inheritance
relationship can be referred to as an IS-A relationship.

In the Java library, you can see extensive use of inheritance. Figure 2-1 shows a partial inheritance
hierarchy from java.lang library. The Number class abstracts various numerical (reference) types such as
Byte, Integer, Float, Double, Short, and BigDecimal.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

13

The class Number has many common methods that are inherited by the derived classes. The derived
classes do not have to implement the common methods implemented by the Number class. Also, you can
supply a derived type where the base type is expected. For instance, a Byte is a Number, which means you can
provide an object of Byte where an object of Number is expected. You can write general-purpose methods
(or algorithms) when you write methods for the base type. Listing 2-2 shows a simple example.

Listing 2-2.  TestNumber.java

// Illustrates how abstracting different kinds of numbers in a Number hierarchy
// becomes useful in practice
public class TestNumber {
 // take an array of numbers and sum them up
 public static double sum(Number []nums) {
 double sum = 0.0;
 for(Number num : nums) {
 sum += num.doubleValue();
 }
 return sum;
 }
 
 public static void main(String []s) {
 // create a Number array
 Number []nums = new Number[4];
 // assign derived class objects
 nums[0] = new Byte((byte)10);
 nums[1] = new Integer(10);
 nums[2] = new Float(10.0f);
 nums[3] = new Double(10.0f);
 // pass the Number array to sum and print the result
 System.out.println("The sum of numbers is: " + sum(nums));
 }
}

Figure 2-1.  A partial inheritance hierarchy in java.lang package

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

14

This program prints

The sum of numbers is: 40.0

In the main() method, you declare nums as a Number[]. A Number reference can hold any of its derived
type objects. You are creating objects of type Byte, Integer, Float, and Double with initial value 10; the nums
array holds these elements. (Note that you needed an explicit cast in new Byte((byte) 10) instead of plain
Byte(10) because Byte takes a byte argument and 10 is an int.)

The sum method takes a Number[] and returns the sum of the Number elements. The double type can
hold the largest range of values, so you use double as the return type of the sum method. Number has a
doubleValue method and this method returns the value held by the Number as a double value. The for loop
traverses the array, adds the double values, and then returns the sum once you’re done.

As you can see, the sum() method is a general method that can handle any Number[]. A similar
example can be given from the Java standard library where java.util.Arrays class has a static method
binarySearch():

static int binarySearch(Object[] a, Object key, Comparator c)

This method searches a given key (an Object type) in the given array of Objects. Comparator is an
interface declaring the equals and compare methods. You can use binarySearch for objects of any class type
that implements this Comparator interface. As you can see, inheritance is a powerful and useful feature for
writing general-purpose methods.

Polymorphism
Certification Objective

Implement polymorphism

The Greek roots of the term polymorphism refer to the “several forms” of an entity. In the real world,
every message you communicate has a context. Depending on the context, the meaning of the message may
change and so may the response to the message. Similarly in OOP, a message can be interpreted in multiple
ways (polymorphism), depending on the object.

Polymorphism can be of two forms: dynamic and static.

•	 When different forms of a single entity are resolved during runtime (late binding),
such polymorphism is called dynamic polymorphism. In the previous section
on inheritance, we discussed overriding. Overriding is an example of runtime
polymorphism.

•	 When different forms of a single entity are resolved at compile time (early binding),
such polymorphism is called static polymorphism. Function overloading is an
example of static polymorphism, and let us explore it now.

Please note that abstract methods use runtime polymorphism. We discuss abstract methods in
interfaces and abstract classes in the next chapter (Chapter 3 – Advanced Class Design).

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_3
http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

15

Runtime Polymorphism
You just learned that a base class reference can refer to a derived class object. You can invoke methods from
the base class reference; however, the actual method invocation depends on the dynamic type of the object
pointed to by the base class reference. The type of the base class reference is known as the static type of the
object and the actual object pointed by the reference at runtime is known as the dynamic type of the object.

When the compiler sees the invocation of a method from a base class reference and if the method
is an overridable method (a nonstatic and nonfinal method), the compiler defers determining the exact
method to be called to runtime (late binding). At runtime, based on the actual dynamic type of the object, an
appropriate method is invoked. This mechanism is known as dynamic method resolution or dynamic method
invocation.

Runtime Polymorphism: An Example
Consider that you have the area() method in Shape class. Depending on the derived class—Circle or
Square, for example—the area() method will be implemented differently, as shown in Listing 2-3.

Listing 2-3.  TestShape.java

class Shape {
 public double area() { return 0; } // default implementation
 // other members
}
class Circle extends Shape {
 private int radius;
 public Circle(int r) { radius = r; }
 // other constructors
 public double area() {return Math.PI * radius * radius; }
 // other declarations
}
 
class Square extends Shape {
 private int side;
 public Square(int a) { side = a; }
 public double area() { return side * side; }
 // other declarations
}
 
public class TestShape {
 public static void main(String []args) {
 Shape shape1 = new Circle(10);
 System.out.println(shape1.area());
 Shape shape2 = new Square(10);
 System.out.println(shape2.area());
 }
}

This program prints

314.1592653589793
100.0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

16

This program illustrates how the area() method is called based on the dynamic type of the Shape.
In this code, the statement shape1.area(); calls the Circle's area() method while the statement
shape2.area(); calls Square's area() method and hence the result.

Now, let’s ask a more fundamental question: Why do you need to override methods? In OOP, the
fundamental idea in inheritance is to provide a default or common functionality in the base class; the
derived classes are expected to provide more specific functionality. In this Shape base class and the Circle
and Square derived classes, the Shape provided the default implementation of the area() method. The
derived classes of Circle and Square defined their version of the area() method that overrides the base
class area() method. So, depending on the type of the derived object you create, from base class reference,
calls to area() method will be resolved to the correct method. Overriding (i.e., runtime polymorphism) is a
simple yet powerful idea for extending functionality.

Let us now discuss compile-time polymorphism (overloading). After that, we will immediately return
back to this topic of runtime polymorphism to discuss more topics such as how to deal with visibility
modifiers when overriding and choosing between composition and inheritance.

Method Overloading
In a class, how many methods can you define with the same name? Many! In Java, you can define multiple
methods with the same name, provided the argument lists differ from each other. In other words, if you
provide different types of arguments, different numbers of arguments, or both, then you can define multiple
methods with the same name. This feature is called method overloading. The compiler will resolve the call to
a correct method depending on the actual number and/or types of the passed parameters.

Let’s implement a method in the Circle class called fillColor() that fills a circle object with different
colors. When you specify a color, you need use a coloring scheme, and let us consider two schemes - RGB
scheme and HSB scheme.

	 1.	 When you represent a color by combining Red, Green, and Blue color
components, it is known as RGB scheme. By convention, each of the color values
is typically given in the range 0 to 255.

	 2.	 When you represent a color by combining Hue, Saturation, and Brightness
values, it is known as HSB scheme. By convention, each of the values is typically
given in the range 0.0 to 1.0.

Since RGB values are integer values and HSB values are floating point values, how about supporting
both these schemes for calling fillColor() method?

class Circle {
 // other members
 public void fillColor (int red, int green, int blue) {
 /* color the circle using RGB color values – actual code elided */
 }
 
 public void fillColor (float hue, float saturation, float brightness) {
 /* color the circle using HSB values – actual code elided */
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

17

As you can see, both fillColor() methods have exactly the same name and both take three arguments;
however, the argument types are different. Based on the type of arguments used while calling fillColor()
method on Circle, the compiler will decide exactly which method to call. For instance, consider following
method calls:

Circle c1 = new Circle(10, 20, 10);
c1.fillColor(0, 255, 255);
 
Circle c2 = new Circle(50, 100, 5);
c2.fillColor(0.5f, 0.5f, 1.0f);

In this code, for the c1 object, the call to fillColor() has integer arguments 0, 255, and 255. Hence, the
compiler resolves this call to the method fillColor(int red, int green, int blue). For the c2 object,
the call to fillColor() has arguments 0.5f, 0.5f, and 1.0f; hence it resolves the call to fillColor(float hue,
float saturation, float brightness).

In the above example, method fillColor() is an overloaded method. The method has same name and
the same number of arguments, but the types of the arguments differ. It is also possible to overload methods
with different numbers of arguments.

Such overloaded methods are useful for avoiding repeating the same code in different functions. Let’s
look at a simple example in Listing 2-4.

Listing 2-4.  HappyBirthday.java

class HappyBirthday {
 // overloaded wish method with String as an argument
 public static void wish(String name) {
 System.out.println("Happy birthday " + name + "!");
 }
  
 // overloaded wish method with no arguments;
 // this method in turn invokes wish(String) method
 public static void wish() {
 wish("to you");
 }
 
 public static void main(String []args) {
 wish();
 wish("dear James Gosling");
 }
}

It prints:

Happy birthday to you!
Happy birthday dear James Gosling!

Here, the method wish(String name) is meant for wishing “Happy Birthday” when the name of the
person is known. The default method wish() is for wishing “Happy Birthday” to anyone. As you can see, you
don’t have to write System.out.println again in the wish() method; you can just reuse the wish(String)
method definition by passing the default value “to you” as argument to wish(). Such reuse is effective for
large and related method definitions since it saves time writing and testing the same code.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

18

Constructor Overloading
A default constructor is useful for creating objects with a default initialization value. When you want to
initialize the objects with different values in different instantiations, you can pass them as the arguments to
constructors. And yes, you can have multiple constructors in a class, which is constructor overloading. In a
class, the default constructor can initialize the object with default initial values, while another constructor
can accept arguments that need to be used for object instantiation.

Here is an example of Circle class that has overloaded constructors (see Listing 2-5).

Listing 2-5.  Circle.java

public class Circle {
 private int xPos;
 private int yPos;
 private int radius;
  
 // three overloaded constructors for Circle
 public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
 }
  
 public Circle(int x, int y) {
 xPos = x;
 yPos = y;
 radius = 10; // default radius
 }
 
 public Circle() {
 xPos = 20; // assume some default values for xPos and yPos
 yPos = 20;
 radius = 10; // default radius
 }
 
 public String toString() {
 return "center = (" + xPos + "," + yPos + ") and radius = " + radius;
 }
 
 public static void main(String[]s) {
 System.out.println(new Circle());
 System.out.println(new Circle(50, 100));
 System.out.println(new Circle(25, 50, 5));
 }
}

This program prints

center = (20,20) and radius = 10
center = (50,100) and radius = 10
center = (25,50) and radius = 5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

19

As you can see, the compiler has resolved the constructor calls depending on the number of arguments.
The default constructor takes no argument and in this case we have assumed some default values for xPos,
yPos, and radius (with values 20, 20, and 10 respectively). The Circle constructor with two arguments
(int x and int y) sets the position of xPos and yPos based on the values of the passed arguments and assumes
default value of 10 for the radius member. The Circle constructor that takes all the three arguments sets the
corresponding fields in the Circle class.

Did you notice that you are duplicating the code inside these three constructors? To avoid that code
duplication—and reduce your typing effort—you can invoke one constructor from another constructor. Of the
three constructors, the constructor taking x-position, y-position, and radius is the most general constructor.
The other two constructors can be rewritten in terms of calling the three argument constructors, like so:

public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
}
 
public Circle(int x, int y) {
 this(x, y, 10); // passing default radius 10
}
 
public Circle() {
 this(20, 20, 10);
 // assume some default values for xPos, yPos and radius
}

The output is exactly the same as for the previous program, but this program is shorter. In this case, you
used the this keyword (which refers to the current object) to call one constructor from another constructor
of the same class.

Overload Resolution
When you define overloaded methods, how does the compiler know which method to call? Can you guess
the output of the code in Listing 2-6?

Listing 2-6.  Overloaded.java

class Overloaded {
 public static void aMethod (int val) { System.out.println ("int"); }
 public static void aMethod (short val) { System.out.println ("short"); }
 public static void aMethod (Object val) { System.out.println ("object"); }
 public static void aMethod (String val) { System.out.println ("String"); }
 
 public static void main(String[] args) {
 byte b = 9;
 aMethod(b); // first call
 aMethod(9); // second call
 Integer i = 9;
 aMethod(i); // third call
 aMethod("9"); // fourth call
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

20

It prints

short
int
object
String

Here is how the compiler resolved these calls:

	 1.	 In the first method call, the statement is aMethod(b) where the variable b is of
type byte. There is no aMethod definition that takes byte as an argument. The
closest type (in size) is short type and not int, so the compiler resolves the call
aMethod(b) to aMethod(short val) definition.

	 2.	 In the second method call, the statement is aMethod(9). The constant value 9 is
of type int. The closest match is aMethod(int), so the compiler resolves the call
aMethod(9) to aMethod(int val) definition.

	 3.	 The third method call is aMethod(i), where the variable i is of type Integer.
There is no aMethod definition that takes Integer as an argument. The closest
match is aMethod(Object val), so it is called. Why not aMethod(int val)? For
finding the closest match, the compiler allows implicit upcasts, not downcasts, so
aMethod(int val) is not considered.

	 4.	 The last method call is aMethod("9"). The argument is a String type. Since there
is an exact match, aMethod(String val) is called.

This process of the compiler trying to resolve the method call from given overloaded method definitions
is called overload resolution. For resolving a method call, it first looks for the exact match—the method
definition with exactly same number of parameters and types of parameters. If it can’t find an exact match, it
looks for the closest match by using upcasts. If the compiler can’t find any match, then you’ll get a compiler
error, as in Listing 2-7.

Listing 2-7.  OverloadingError.java

class OverloadingError {
 public static void aMethod (byte val) { System.out.println ("byte"); }
 public static void aMethod (short val) { System.out.println ("short"); }
 
 public static void main(String[] args) {
 aMethod(9);
 }
}

Here is the compiler error:

OverloadingError.java:6: error: no suitable method found for aMethod(int)
 aMethod(9);
 ^
method OverloadingError.aMethod(byte) is not applicable
 (argument mismatch; possible lossy conversion from int to byte)
method OverloadingError.aMethod(short) is not applicable
 (argument mismatch; possible lossy conversion from int to short)
1 error

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

21

The type of constant 9 is int, so there is no matching definition for aMethod for the call aMethod(9). As
you saw earlier with respect to the overload resolution, the compiler can do upcasts (e.g., byte to int) for the
closest match, but it does not consider downcasts (e.g., int to byte or int to short, as in this case). Hence,
the compiler does not find any matches and throws you an error.

What if the compiler finds two matches? It will also become an error! Listing 2-8 shows an example.

Listing 2-8.  AmbiguousOverload.java

class AmbiguousOverload {
 public static void aMethod (long val1, int val2) {
 System.out.println ("long, int");
 }
  
 public static void aMethod (int val1, long val2) {
 System.out.println ("int, long");
 }
  
 public static void main(String[] args) {
 aMethod(9, 10);
 }
}

Here is the compiler error:

AmbiguousOverload.java:11: error: reference to aMethod is ambiguous
 aMethod(9, 10);
 ^
 both method aMethod(long,int) in AmbiguousOverload and method aMethod(int,long) in
AmbiguousOverload match
1 error

Why did this call become an “ambiguous” call? The constants 9 and 10 are ints. There are two aMethod
definitions: one is aMethod(long, int) and another is aMethod(int, long). So there is no exact match for
the call aMethod(int, int). An integer can be implicitly upcasted to both long as well as Integer. Which
one will the compiler choose? Since there are two matches, the compiler complains with an error that the
call is ambiguous.

 Overload resolution fails (with a compiler error) if there are no matches or ambiguous matches.

Points to Remember
Here are some interesting rules regarding method overloading that will help you in the OCPJP 8 exam:

•	 Overload resolution takes place entirely at compile time (not at runtime).

•	 You cannot overload methods with the methods differing in return types alone.

•	 You cannot overload methods with the methods differing in exception specifications
alone.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

22

•	 For overload resolution to succeed, you need to define methods such that the
compiler finds one exact match. If the compiler finds no matches for your call or
if the matching is ambiguous, the overload resolution fails and the compiler issues
an error.

 The signature of a method is made up of the method name, number of arguments, and types of
arguments. You can overload methods with same name but with different signatures. Since return type and
exception specification are not part of the signature, you cannot overload methods based on return type or
exception specification alone.

Overriding Methods in Object Class
Certification Objective

Override hashCode, equals, and toString methods from Object class

Let us now discuss overriding some of the methods in Object class. You can override clone(),
equals(), hashCode(), toString(), and finalize() methods in your classes. Since getClass(), notify(),
notifyAll(), and the overloaded versions of wait() method are declared final, you cannot override these
methods.

Why should we override methods in the Object class? To answer this question, let’s discuss what
happens when we don’t override the toString() method (Listing 2-9).

Listing 2-9.  Point.java

class Point {
 private int xPos, yPos;
 
 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }
 
 public static void main(String []args) {
 // Passing a Point object to println
 // automatically invokes the toString method
 System.out.println(new Point(10, 20));
 }
}

It prints

Point@19821f (Actual address might differ on your machine, but a similar string will show up)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

23

The toString() method is defined in the Object class, which is inherited by all the classes in Java. Here
is the overview of the toString() method as defined in the Object class:

public String toString()

The toString() method takes no arguments and returns the String representation of the object.
The default implementation of this method returns ClassName@hex version of the object’s hashcode. That
is why you get this unreadable output. Note that this hexadecimal value will be different for each instance,
so if you try this program, you’ll get a different hexadecimal value as output. For example, when we ran this
program again, we got this output: Point@affc70. Hence, we need to override the toString method in this
Point class.

Overriding toString() Method
When you create new classes, you are expected to override this method to return the desired textual
representation of your class. Listing 2-10 shows an improved version of the Point class with the overridden
version of the toString() method.

Listing 2-10.  Point.java

// improved version of the Point class with overridden toString method
class Point {
 private int xPos, yPos;
 
 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }
 
 // this toString method overrides the default toString method implementation
 // provided in the Object base class
 public String toString() {
 return "x = " + xPos + ", y = " + yPos;
 }
 
 public static void main(String []args) {
 System.out.println(new Point(10, 20));
 }
}

This program now prints

x = 10, y = 20

This is much cleaner, as you would expect. To make it clear, here is a slightly different version of the
main() method in this Point class implementation:

public static void main(String []args) {
 Object obj = new Point(10, 20);
 System.out.println(obj);
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

24

It prints

x = 10, y = 20

Here, the static type of the obj variable is Object class, and the dynamic type of the object is Point.
The println statement invokes the toString() method of the obj variable. Here, the method toString() of
the derived class—the Point’s toString() method—is invoked due to runtime polymorphism.

Overriding Issues
While overriding, you need to be careful about the access levels, the name of the method, and its signature.
Here is the toString() method in the Point class just discussed:

public String toString() {
 return "x = " + xPos + ", y = " + yPos;
}

How about using the protected access specifier instead of public in this method definition? Will it work?

protected String toString() {
 return "x = " + xPos + ", y = " + yPos;
}

No, it doesn’t. For this change, the compiler complains

Point.java:12: error: toString() in Point cannot override toString() in Object
 protected String toString() {
 ^
attempting to assign weaker access privileges; was public
1 error

While overriding, you can provide stronger access privilege, not weaker access; otherwise it will become
a compiler error.

Here is another slightly modified version of toString() method. Will it work?

public Object toString() {
 return "x = " + xPos + ", y = " + yPos;
}

You get the following compiler error:

Point.java:12: error: toString() in Point cannot override toString() in Object
public Object toString() {
 ^
return type Object is not compatible with String
1 error

In this case, you got a compiler error for mismatch because the return type in the overriding method
should be exactly the same as the base class method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

25

Here is another example:

public String ToString() {
 return "x = " + xPos + ", y = " + yPos;
}

Now the compiler doesn’t complain. But this is a new method named ToString and it has nothing to do
with the toString method in Object. Hence, this ToString method does not override the toString method.

Keep the following points in mind for correct overriding. The overriding method

•	 Should have the same argument list types (or compatible types) as the base version.

•	 Should have the same return type.

•	 But from Java 5 onwards, the return type can be a subclass–covariant return
types (which you’ll learn shortly).

•	 Should not have a more restrictive access modifier than the base version.

•	 But it may have a less restrictive access modifier.

•	 Should not throw new or broader checked exceptions.

•	 But it may throw fewer or narrower checked exceptions, or any unchecked
exception.

•	 And, oh yes, the names should exactly match!

Remember that you cannot override a method if you do not inherit it. Private methods cannot be
overridden because they are not inherited.

 The signatures of the base method and overriding method should be compatible for overriding to take
place. Incorrect overriding is a common source of bugs in Java programs. In questions related to overriding,
look out for mistakes or problems in overriding when answering the questions.

COVARIANT RETURN TYPES

You know that the return types of the methods should exactly match when overriding methods.
However, with the covariant return types feature introduced in Java 5, you can provide the derived class
of the return type in the overriding method. Well, that’s great, but why do you need this feature? Check
out these overridden methods with the same return type:

abstract class Shape {
 // other methods elided
 public abstract Shape copy();
}
 
class Circle extends Shape {
 // other methods elided
 public Circle(int x, int y, int radius) { /* initialize fields here */ }
 public Shape copy() { /* return a copy of this object */ }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

26

class Test {
 public static void main(String []args) {
 Circle c1 = new Circle(10, 20, 30);
 Circle c2 = c1.copy();
 }
}

This code will give a compiler error of "incompatible types: Shape cannot be converted to
Circle". This is because of the lack of an explicit downcast from Shape to Circle in the assignment
"Circle c2 = c1.copy();".

Since you know clearly that you are going to assign a Circle object returned from Circle’s copy
method, you can give an explicit cast to fix the compiler error:

Circle c2 = (Circle) c1.copy();

Since it is tedious to provide such downcasts (which are more or less meaningless), Java provides
covariant return types where you can give the derived class of the return type in the overriding method.
In other words, you can change the definition of copy method in Circle class as follows:

public Circle copy() { /* return a copy of this object */ }

Now the assignment in the main method Circle c2 = c1.copy(); is valid and no explicit downcast is
needed (which is good).

Overriding equals() Method
Let’s now override equals method in the Point class. Before that, here is the signature of the equals()
method in the Object class:

public boolean equals(Object obj)

The equals() method in the Object class is an overridable method that takes the Object type as an
argument. It checks if the contents of the current object and the passed obj argument are equal. If so, the
equals() returns true; otherwise it returns false.

Now, let us enhance to code in Listing 2-10 and override override the equals() method in a class
named Point (see Listing 2-11). Is this a correct implementation?

Listing 2-11.  Point.java

public class Point {
 private int xPos, yPos;
 
 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

27

 // override the equals method to perform
 // "deep" comparison of two Point objects
 public boolean equals(Point other){
 if(other == null)
 return false;
 // two points are equal only if their x and y positions are equal
 if((xPos == other.xPos) && (yPos == other.yPos))
 return true;
 else
 return false;
 }
 
 public static void main(String []args) {
 Point p1 = new Point(10, 20);
 Point p2 = new Point(50, 100);
 Point p3 = new Point(10, 20);
 System.out.println("p1 equals p2 is " + p1.equals(p2));
 System.out.println("p1 equals p3 is " + p1.equals(p3));
 }
}

This prints

p1 equals p2 is false
p1 equals p3 is true

The output is as expected, so is this equals() implementation correct? No! Let’s make the following slight
modification in the main() method (modifications in this code is highlighted using underline like this):

public static void main(String []args) {
 Object p1 = new Point(10, 20);
 Object p2 = new Point(50, 100);
 Object p3 = new Point(10, 20);
 System.out.println("p1 equals p2 is " + p1.equals(p2));
 System.out.println("p1 equals p3 is " + p1.equals(p3));
}

Now it prints

p1 equals p2 is false
p1 equals p3 is false

Why? Both main() methods are equivalent. However, this newer main() method uses the Object
type for declaring p1, p2, and p3. The dynamic type of these three variables is Point, so it should call the
overridden equals() method. However, the overriding is wrong: The equals() method should have Object
as the argument instead of the Point argument! The current implementation of the equals() method in the
Point class hides (not overrides) the equals() method of the Object class. Hence, the main() method calls
the base version, which is the default implementation of Point in Object class!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

28

 If the name or signature of the base class method and the overriding method don’t match, you will cause
subtle bugs. So ensure that they are exactly the same.

In order to overcome the subtle problems of overloading, you can use @Override annotation, which
was introduced in Java 5. This annotation explicitly expresses to the Java compiler the intention of the
programmer to use method overriding. In case the compiler is not satisfied with your overridden method,
it will issue a complaint, which is a useful alarm for you. Also, the annotation makes the program more
understandable, since the @Override annotation just before a method definition helps you understand that
you are overriding a method.

Here is the code with @Override annotation for the equals method:

@Override
public boolean equals(Point other) {
 if(other == null)
 return false;
 // two points are equal only if their x and y positions are equal
 if((xPos == other.xPos) && (yPos == other.yPos))
 return true;
 else
 return false;
}

You’ll get a compiler error now for this code:

Point.java:11: error: method does not override or implement a method from a supertype
@Override
^
1 error

How can you fix it? You need to pass the Object type to the argument of the equals method. Listing 2-12
shows the program with the fixed equals method.

Listing 2-12.  Point.java

public class Point {
 private int xPos, yPos;
  
 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }
  
 // override the equals method to perform "deep" comparison of two Point objects
 @Override
 public boolean equals(Object other) {
 if(other == null)
 return false;
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

29

 // check if the dynamic type of 'other' is Point
 // if 'other' is of any other type than 'Point', the two objects cannot be
 // equal if 'other' is of type Point (or one of its derived classes), then
 // downcast the object to Point type and then compare members for equality
 if(other instanceof Point) {
 Point anotherPoint = (Point) other;
 // two points are equal only if their x and y positions are equal
 if((xPos == anotherPoint.xPos) && (yPos == anotherPoint.yPos))
 return true;
 }
 return false;
 }
 
 public static void main(String []args) {
 Object p1 = new Point(10, 20);
 Object p2 = new Point(50, 100);
 Object p3 = new Point(10, 20);
 System.out.println("p1 equals p2 is " + p1.equals(p2));
 System.out.println("p1 equals p3 is " + p1.equals(p3));
 }
}

Now this program prints

p1 equals p2 is false
p1 equals p3 is true

This is the expected output and with the correct implementation of the equals method implementation.

Invoking Superclass Methods
It is often useful to call the base class method inside the overridden method. To do that, you can use the
super keyword. In derived class constructors, you can call the base class constructor using the super
keyword. Such a call should be the first statement in a constructor if it is used. You can use the super
keyword for referring to the base class members also. In those cases, it need not be the first statement in the
method body. Let’s look at an example.

You implemented a Point class that is a 2D-point: it had x and y positions. You can also implement
a 3D-point class with x, y, and z positions. For that you do not need to start implementing it from scratch:
you can extend the 2D-point and add the z position in the 3D-point class. First, you’ll rename the simple
implementation of Point class to Point2D. Then you’ll create the Point3D class by extending this Point2D
(see Listings 2-13 and 2-14).

Listing 2-13.  Point2D.java

class Point2D {
 private int xPos, yPos;
 public Point2D(int x, int y) {
 xPos = x;
 yPos = y;
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

30

 public String toString() {
 return "x = " + xPos + ", y = " + yPos;
 }
 
 public static void main(String []args) {
 System.out.println(new Point2D(10, 20));
 }
}

Listing 2-14.  Point3D.java

// Here is how we can create Point3D class by extending Point2D class
public class Point3D extends Point2D {
 private int zPos;
  
 // provide a public constructors that takes three arguments (x, y, and z values)
 public Point3D(int x, int y, int z) {
 // call the superclass constructor with two arguments
 // i.e., call Point2D(int, int) from Point2D(int, int, int) constructor)
 super(x, y); // note that super is the first statement in the method
 zPos = z;
 }
 
 // override toString method as well
 public String toString() {
 return super.toString() + ", z = " + zPos;
 }
  
 // to test if we extended correctly, call the toString method of a Point3D object
 public static void main(String []args) {
 System.out.println(new Point3D(10, 20, 30));
 }
}

This program prints

x = 10, y = 20, z = 30

In the class Point2D, the class members xPos and yPos are private, so you cannot access them directly
to initialize them in the Point3D constructor. However, you can call the superclass constructor using super
keyword and pass the arguments. Here, super(x, y); calls the base class constructor Point2D(int, int).
This call to the superclass constructor should be the first statement; if you call it after zPos = z;, you’ll get a
compiler error:

public Point3D(int x, int y, int z) {
 zPos = z;
 super(x, y);
}
 
Point3D.java:19: call to super must be first statement in constructor
 super(x, y);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

31

Similarly, you can invoke the toString() method of the base class Point2D in the toString()
implementation of the derived class Point3D using the super keyword.

Overriding the hashCode( ) Method
Overriding the equals and hashCode methods correctly is important for using with classes such as HashMap
and HashSet, which we will discuss further in Chapter 4. Listing 2-15 is a simple Circle class example so you
can understand what can go wrong when using collections such as HashSets.

Listing 2-15.  TestCircle.java

// This program shows the importance of overriding equals() and hashCode() methods
import java.util.*;
 
class Circle {
 private int xPos, yPos, radius;
 public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
 }
  
 public boolean equals(Object arg) {
 if(arg == null) return false;
 if(this == arg) return true;
 if(arg instanceof Circle) {
 Circle that = (Circle) arg;
 if((this.xPos == that.xPos) && (this.yPos == that.yPos)
 && (this.radius == that.radius)) {
 return true;
 }
 }
 return false;
 }
}
 
class TestCircle {
 public static void main(String []args) {
 Set<Circle> circleList = new HashSet<Circle>();
 circleList.add(new Circle(10, 20, 5));
 System.out.println(circleList.contains(new Circle(10, 20, 5)));
 }
}

It prints false (not true)! Why? The Circle class overrides the equals() method, but it doesn’t
override the hashCode() method. When you use objects of Circle in standard containers, it becomes a
problem. For fast lookup, the containers compare hashcode of the objects. If the hashCode() method is not
overridden, then—even if an object with same contents is passed—the container will not find that object! So
you need to override the hashCode() method.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_4
http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

32

 If you’re using an object in containers like HashSet or HashMap, make sure you override the hashCode()
and equals() methods correctly. If you don’t, you’ll get nasty surprises (bugs) while using these containers!

Okay, how do you override the hashCode() method? In the ideal case, the hashCode() method should
return unique hash codes for different objects.

The hashCode() method should return the same hash value if the equals() method returns true. What
if the objects are different (so that the equals() method returns false)? It is better (although not required) for
the hashCode() to return different values if the objects are different. The reason is that it is difficult to write a
hashCode() method that gives unique value for every different object.

 The methods hashCode() and equals() need to be consistent for a class. For practical purposes, ensure
that you follow this one rule: the hashCode() method should return the same hash value for two objects if the
equals() method returns true for them.

When implementing the hashCode() method, you can use the values of the instance members of the
class to create a hash value. Here is a simple implementation of the hashCode() method of the Circle class:

public int hashCode() {
 // use bit-manipulation operators such as ^ to generate close to unique
 // hash codes here we are using the magic numbers 7, 11 and 53,
 // but you can use any numbers, preferably primes
 return (7 * xPos) ^ (11 * yPos) ^ (53 * yPos);
}

Now if you run the main() method, it prints “true”. In this implementation of the hashCode() method,
you multiply the values by a prime number as well as bit-wise operation. You can write complex code
for hashCode() if you want a better hashing function, but this implementation is sufficient for practical
purposes.

You can use bitwise operators for int values. What about other types, like floating-point values or
reference types? To give you an example, here is hashCode() implementation of java.awt.Point2D, which
has floating point values x and y. The methods getX() and getY() return the x and y values respectively:

public int hashCode() {
 long bits = java.lang.Double.doubleToLongBits(getX());
 bits ^= java.lang.Double.doubleToLongBits(getY()) * 31;
 return (((int) bits) ^ ((int) (bits >> 32)));
}

This method uses the doubleToLongBits() method, which takes a double value and returns a long
value. For floating-point values x and y (returned by the getX and getY methods), you get long values in bits
and you use bit-manipulation to get hashCode().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

33

Now, how do you implement the hashCode method if the class has reference type members? For
example, consider using an instance of Point class as a member instead of xPos and yPos, which are
primitive type fields:

class Circle {
 private int radius;
 private Point center;
 // other members elided
}

In this case, you can use the hashCode() method of Point to implement Circle’s hashCode method:

public int hashCode() {
 return center.hashCode() ^ radius;
}

Object Composition

Certification Objective

Implement inheritance including visibility modifiers and composition

Individual abstractions offer certain functionalities that need to be combined with other objects to
represent a bigger abstraction: a composite object that is made up of other smaller objects. You need to
make such composite objects to solve real-life programming problems. In such cases, the composite object
shares HAS-A relationships with the containing objects, and the underlying concept is referred to as object
composition.

By way of analogy, a computer is a composite object containing other objects such as CPU, memory,
and a hard disk. In other words, the computer object shares a HAS-A relationship with other objects.
Listing 2-16 defines a Circle class that uses a Point object to define Circle’s center.

Listing 2-16.  Circle.java

// Point is an independent class and here we are using it with Circle class
class Point {
 private int xPos;
 private int yPos;
 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }
 public String toString() {
 return "(" + xPos + "," + yPos + ")";
 }
}
 
// Circle.java
public class Circle {
 private Point center; // Circle "contains" a Point object
 private int radius;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

34

 public Circle(int x, int y, int r) {
 center = new Point(x, y);
 radius = r;
 }
 public String toString() {
 return "center = " + center + " and radius = " + radius;
 }
 
 public static void main(String []s) {
 System.out.println(new Circle(10, 10, 20));
 }
 // other members (constructors, area method, etc) are elided ...
}

In this example, Circle has a Point object. In other words, Circle and Point share a has-a relationship;
in other words, Circle is a composite object containing a Point object. This is a better solution than having
independent integer members xPos and yPos. Why? You can reuse the functionality provided by the Point
class. Notice the toString() method in the Circle class:

public String toString() {
 return "center = " + center + " and radius = " + radius;
}

Here, the use of the variable center expands to center.toString() and hence the toString method of
Point can be reused in the Circle’s toString method.

Composition vs. Inheritance
You are now equipped with a knowledge of composition as well as inheritance (which we covered earlier
in this chapter). In some situations, it’s difficult to choose between the two. It’s important to remember
that nothing is a silver bullet—you cannot solve all problems with one construct. You need to analyze each
situation carefully and decide which construct is best suited for it.

A rule of thumb is to use HAS-A and IS-A phrases for composition and inheritance, respectively. For
instance,

•	 A computer HAS-A CPU.

•	 A circle IS-A shape.

•	 A circle HAS-A point.

•	 A laptop IS-A computer.

•	 A vector IS-A list.

This rule can be useful for identifying wrong relationships. For instance, the relationship of car IS-A tire
is completely wrong, which means you cannot have an inheritance relationship between the classes Car
and Tire. However, the car HAS-A tire (meaning car has one or more tires) relationship is correct—you can
compose a Car object containing Tire objects.

In real scenarios, the relationship distinctions can be nontrivial. You learned that you can make a base
class and put the common functionality of many classes in it. However, many people ignore a big caution
sign suspended over this practice—always check whether the IS-A relationship exists between the derived
classes and the base class. If the IS-A relationship does not hold, it’s better to use composition instead of
inheritance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

35

For example, take a set of classes DynamicDataSet and SnapShotDataSet that require a common
functionality—say, sorting. Now, one could derive these data set classes from a sorting implementation, as
given in Listing 2-17.

Listing 2-17.  Sorting.java

import java.awt.List;
 
public class Sorting {
 public List sort(List list) {
 // sort implementation
 return list;
 }
}
 
class DynamicDataSet extends Sorting {
 // DynamicDataSet implementation
}
 
class SnapshotDataSet extends Sorting {
 // SnapshotDataSet implementation
}

Do you think this is a good solution? No, it’s not a good solution for the following reasons:

•	 The rule of thumb does not hold here. DynamicDataSet is not a Sorting type. If you
make such mistakes in class design, it can be very costly—and you might not be
able to fix them later if a lot of code has accumulated that makes the wrong use of
inheritance relationships. For example, Stack extends Vector in the Java library. Yet
a stack clearly is not a vector, so it could not only create comprehension problems
but also lead to bugs. When you create an object of Stack class provided by the Java
library, you can add or delete items from anywhere in the container because the base
class is Vector, which allows you to delete from anywhere in the vector.

•	 What if these two types of data set classes have a genuine base class, DataSet? In
that case, either Sorting will be the base class of DataSet or one could put the class
Sorting in between DataSet and two types of data sets. Both solutions would be
wrong.

•	 There is another challenging issue: what if one DataSet class wants to use one
sorting algorithm (say, MergeSort) and another data set class wants to use a different
sorting algorithm (say, QuickSort)? Will you inherit from two classes implementing
two different sorting algorithms? First, you cannot directly inherit from multiple
classes, since Java does not support multiple class inheritance. Second, even if you
were able to somehow inherit from two different sorting classes (MergeSort extends
QuickSort, QuickSort extends DataSet), that would be an even worse design.

In this case it is best to use composition—in other words, use a HAS-A relationship instead of an IS-A
relationship. The resultant code is given in Listing 2-18.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

36

Listing 2-18.  Sorting.java

import java.awt.List;
 
interface Sorting {
 List sort(List list);
}
 
class MergeSort implements Sorting {
 public List sort(List list) {
 // sort implementation
 return list;
 }
}
 
class QuickSort implements Sorting {
 public List sort(List list) {
 // sort implementation
 return list;
 }
}
 
class DynamicDataSet {
 Sorting sorting;
 public DynamicDataSet() {
 sorting = new MergeSort();
 }
 // DynamicDataSet implementation
}
 
class SnapshotDataSet {
 Sorting sorting;
 public SnapshotDataSet() {
 sorting = new QuickSort();
 }
 // SnapshotDataSet implementation
}

 Use inheritance when a subclass specifies a base class, so that you can exploit dynamic polymorphism.
In other cases, use composition to get code that is easy to change and loosely coupled. In summary, favor
composition over inheritance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

37

Singleton and Immutable Classes
Certification Objective

Create and use singleton classes and immutable classes

There are many situations where you need to create special kinds of classes. In this section let us discuss
two such special kinds of classes: singletons and immutable classes.

Creating Singleton Class
There are scenarios in which you want to make sure that only one instance is present for a particular class.
For example, assume that you defined a class that modifies a registry, or you implemented a class that
manages printer spooling, or you implemented a thread-pool manager class. In all these situations, you
might want to avoid hard-to-find bugs by instantiating no more than one object of such classes. In these
situations, you could create a singleton class.

A singleton class ensures that only one instance of that class is created. To ensure point of access, the
class controls instantiation of its object. Singleton classes are found in many places in Java Development Kit
(JDK), such as java.lang.Runtime.

Figure 2-2 shows the class diagram of a singleton class. It comprises a single class, the class that you
want to make as a singleton. It has a private constructor and a static method to get the singleton object.

Figure 2-2.  UML class diagram of a singleton class

 The singleton class offers two things: one and only one instance of the class, and a global single point of
access to that object.

Assume that you want to implement a class for logging application details for tracing the application
execution for debugging. For this objective, you may want to ensure that only one instance of Logger class
exists in your application, and hence you can make Logger class a singleton class (see Listing 2-19).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

38

Listing 2-19.  Logger.java

// Logger class must be instantiated only once in the application; it is to ensure that the
// whole of the application makes use of that same logger instance
public class Logger {
 // declare the constructor private to prevent clients
 // from instantiating an object of this class directly
 private Logger() { }
  
 // by default, this field is initialized to null
 // the static method to be used by clients to get the instance of the Logger class
 private static Logger myInstance;
 
 public static Logger getInstance() {
 if(myInstance == null) {
 // this is the first time this method is called,
 // and that's why myInstance is null
 myInstance = new Logger();
 }
 // return the same object reference any time and
 // every time getInstance is called
 return myInstance;
 }
 public void log(String s) {
 // a trivial implementation of log where
 // we pass the string to be logged to console
 System.err.println(s);
 }
}

Look at the singleton implementation of the Logger class. The constructor of the class is declared as
private, so you cannot simply create a new instance of the Logger class using the new operator. The only
way to get an instance of this class is to call the static member method of the class via the getInstance()
method. This method checks whether a Logger object already exists or not. If not, it creates a Logger
instance and assigns it to the static member variable. In this way, whenever you call the getInstance()
method, it will always return the same object of the Logger class.

Ensuring That Your Singleton Is Indeed a Singleton
It is really important (as well as difficult) to ensure that your singleton implementation allows only instance
of the class. For instance, the implementation provided in Listing 2-19 works only if your application is single
threaded. In the case of multiple threads, trying to get a singleton object may result in creation of multiple
objects, which of course defeats the purpose of implementing a singleton. Listing 2-20 shows a version of the
Logger class that implements the singleton design pattern in a multi-threaded environment.

Listing 2-20.  Logger.java

public class Logger {
 private Logger() {
 // private constructor to prevent direct instantiation
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

39

 private static Logger myInstance;
 public static synchronized Logger getInstance() {
 if(myInstance == null)
 myInstance = new Logger();
 return myInstance;
 }
 public void log(String s){
 // log implementation
 System.err.println(s);
 }
}

Note the use of the keyword synchronized in this implementation. This keyword is a Java concurrency
mechanism to allow only one thread at a time into the synchronized scope. You will learn more about this
keyword in Chapter 11 on concurrency.

So, you made the whole method synchronized in order to make it accessible by only a thread at a
time. This makes it a correct solution, but there is a problem: poor performance. You wanted to make this
method synchronized only at the first time the method is called, but since you declared the whole method as
synchronized, all subsequent calls to this method make it a performance bottleneck.

Listing 2-21 shows another implementation of the Logger class that is based on the “initialization
on demand holder” idiom. This idiom uses inner classes and does not use any synchronization construct
(we discuss inner classes in Chapter 3). It exploits the fact that inner classes are not loaded until they are
referenced.

Listing 2-21.  Logger.java

public class Logger {
 private Logger() {
 // private constructor
 }
 public static class LoggerHolder {
 public static Logger logger = new Logger();
 }
 public static Logger getInstance() {
 return LoggerHolder.logger;
 }
 public void log(String s) {
 // log implementation
 System.err.println(s);
 }
}

This is an efficient working solution for singletons that works well for multi-threaded applications
as well. However, before we close this discussion on singletons, two parting words of caution. First,
use singletons wherever it is appropriate, but do not overuse it. Second, make sure that your singleton
implementation ensures the creation of only one instance even if your code is multi-threaded.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_11
http://dx.doi.org/10.1007/978-1-4842-1836-5_3
http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

40

Immutable Classes
What is an immutable object? Once an object is created and initialized, it cannot be modified. We can
call accessor methods (i.e., getter methods), copy the objects, or pass the objects around—but no method
should allow modifying the state of the object. Wrapper classes (such as Integer and Float) and String
class are well-known examples of classes that are immutable.

Let us now discuss String class. String is immutable: once you create a String object, you cannot
modify it. How about methods such as trim that removes leading and trailing whitespace characters–do
such methods modify the state of the String object? No. If there are any leading or trailing whitespace
characters, the trim method removes them and returns a new String object instead of modifying that
String object.

There are many advantages with creating immutable objects. Let us discuss some of these advantages
in the context of String class:

•	 Immutable objects are safer to use than mutable objects. Once you check its value,
you can be sure that it remains the same and is not modified behind your back (by
some other code). So, it is less error-prone when we use immutable objects. For
instance, if you have a reference to a string and found that it has the characters
“contents”, if you retain that reference and use it later, you can be sure that it still has
the characters “contents” in it (because no code can modify it).

•	 Immutable objects are thread-safe. For instance, a thread can access a String object
without worrying if any other thread would change it when it is accessing the object–
it cannot happen because a String object is immutable.

•	 Immutable objects that have same state can save space by sharing the state
internally. For example, when the contents are same, String objects share the
same contents (known as “string interning”). You can use the intern() method to
ascertain that:

String str1 = new String("contents");
String str2 = new String("contents");
System.out.println("str1 == str2 is " + (str1 == str2));
System.out.println("str1.intern() == str2.intern() is "
 + (str1.intern() == str2.intern()));
 
// this code prints:
str1 == str2 is false
str1.intern() == str2.intern() is true

Because of the benefits of using immutable objects, Joshua Bloch in his book Effective Java strongly
encourages the use of immutable classes: “Classes should be immutable unless there's a very good reason to
make them mutable… If a class cannot be made immutable, you should still limit its mutability as much as
possible.”

Defining Immutable Classes

Keep the following aspects in mind for creating your own immutable objects:

•	 Make the fields final and initialize them in the constructor. For primitive types,
the field values are final, there is no possibility of changing the state after it got
initialized. For reference types, you cannot change the reference.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

41

•	 For reference types that are mutable, you need to take of some more aspects to
ensure immutability. Why? Even if you make the mutable reference type final it is
possible that the members may refer to objects created outside the class or may be
referred by others. In this case,

•	 Make sure that the methods don’t change the contents inside those mutable
objects.

•	 Don’t share the references outside the classes–for example, as a return value
from methods in that class. If the references to fields that are mutable are
accessible from code outside the class, they can end up modifying the contents
of the object.

•	 If you must return a reference, return the deep copy of the object (so that the
original contents remain intact even if the contents inside the returned object is
changed).

•	 Provide only accessor methods (i.e., getter methods) but don’t provide mutator
methods (i.e., setter methods)

•	 In case changes must be made to the contents of the object, create a new
immutable object with the necessary changes and return that reference.

•	 Declare the class final. Why? If the class is inheritable, methods in its derived class
can override them and modify the fields.

Because the final keyword is mentioned as an exam topic under the title “Advanced Class Design”, we
cover it in the next chapter (Chapter 3); please review that section if you are not familiar with using final
keyword.

Let us now review the String class to understand how these aspects of taken care in its implementation:

•	 All its fields are made private. The String constructors initialize the fields.

•	 There are methods such as trim, concat, and substring that need to change the
contents of the String object. To ensure immutability, such methods return new
String objects with modified contents.

•	 The String class is final, so you cannot extend it and override its methods.

Here is a circle class that is immutable. For brevity, this example shows only the relevant methods for
illustrating how to define an immutable class (Listing 2-22).

Listing 2-22.  ImmutableCircle.java

// Point is a mutable class
class Point {
 private int xPos, yPos;
 
 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }
 
 public String toString() {
 return "x = " + xPos + ", y = " + yPos;
 }
  

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_3
http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

42

 int getX() { return xPos; }
 int getY() { return yPos; }
}
 
// ImmutableCircle is an immutable class – the state of its objects
// cannot be modified once the object is created
 
public final class ImmutableCircle {
 private final Point center;
 private final int radius;
 public ImmutableCircle(int x, int y, int r) {
 center = new Point(x, y);
 radius = r;
 }
 public String toString() {
 return "center: " + center + " and radius = " + radius;
 }
 public int getRadius() {
 return radius;
 }
 public Point getCenter() {
 // return a copy of the object to avoid
 // the value of center changed from code outside the class
 return new Point(center.getX(), center.getY());
 }
 public static void main(String []s) {
 System.out.println(new ImmutableCircle(10, 10, 20));
 }
 // other members are elided ...
}

This program prints

center: x = 10, y = 10 and radius = 20

Note the following aspects in the definition of the ImmutableCircle class:

•	 The class is declared final to prevent inheritance and overriding of its methods

•	 The class has only final data members and they are private

•	 Because center is a mutable field, the getter method getCenter() returns a copy of
the Point object

Immutable objects also have certain drawbacks. To ensure immutability, methods in immutable classes
may end-up creating numerous copies of the objects. For instance, every time getCenter() is called on the
ImmutableCircle class, this method creates a copy of the Point object and returns it. For this reason, we
may need to define a mutable version of the class as well, for example, a mutable Circle class.

The String class is useful in most scenarios, if we call methods such as trim, concat, or substring in
a loop, these methods are likely to create numerous (temporary) String objects. Fortunately, Java provides
StringBuffer and StringBuilder classes that are not mutable. They provide functionality similar to String,
but you can mutate the contents within the objects. Hence, depending on the context, we can choose to use
String class or one of StringBuffer or StringBuilder classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

43

Using the “static” Keyword
Certification Objective

Develop code that uses static keyword on initialize blocks, variables, methods, and classes

Now let us discuss how you can use static keyword in different ways in Java. Suppose you wanted a
write a simple class that counts the number of objects of its class type created so far. Will the program in
Listing 2-23 work?

Listing 2-23.  Counter.java

// Counter class should count the number of instances created from that class
public class Counter {
 private int count; // variable to store the number of objects created
 // for every Counter object created, the default constructor will be called;
 // so, update the counter value inside the default constructor
 public Counter() {
 count++;
 }
 public void printCount() { // method to print the counter value so far
 System.out.println("Number of instances created so far is: " + count);
 }
 public static void main(String []args) {
 Counter anInstance = new Counter();
 anInstance.printCount();
 Counter anotherInstance = new Counter();
 anotherInstance.printCount();
 }
}

The output of the program is

Number of instances created so far is: 1
Number of instances created so far is: 1

Oops! From the output, it is clear that the class does not keep track of the number of objects created.
What happened?

You’ve used an instance variable count to keep track of the number of objects created from that class.
Since every instance of the class has the value count, it always prints 1! What you need is a variable that can
be shared across all its instances. This can be achieved by declaring a variable static. A static variable is
associated with its class rather than its object or instance; hence they are known as class variables. A static
variable is initialized only once when execution of the program starts. A static variable shares its state with
all instances of the class. You access a static variable using its class name (instead of an instance). Listing 2-24
shows the correct implementation of the Counter class with both the count variable and the printCount
method declared static.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

44

Listing 2-24.  Counter.java

// Counter class should count the number of instances created from that class
public class Counter {
 private static int count; // variable to store the number of objects created
 // for every Counter object created, the default constructor will be called;
 // so, update the counter value inside the default constructor
 public Counter() {
 count++;
 }
 public static void printCount() { // method to print the counter value so far
 System.out.println("Number of instances created so far is: " + count);
 }
 public static void main(String []args) {
 Counter anInstance = new Counter();
 // note we call printCount using the class name
 // instead of instance variable name
 Counter.printCount();
 Counter anotherInstance = new Counter();
 Counter.printCount();
 }
}

This program prints

Number of instances created so far is: 1
Number of instances created so far is: 2

Here, the static variable count is initialized when the execution started. At the time of first object
creation, the count is incremented to one. Similarly, when the second object got created, the value of the
count became 2. As the output of the program shows, both objects updated the same copy of the count
variable.

Note how we changed the call to printCount() to use class name Counter, as in Counter.
printCount(). The compiler will accept the previous two calls of anInstance.printCount() and
anotherInstance.printCount() as there is no semantic difference between calling a static method using
a class name or instance variable name. However, to use instance variables to call static methods is not
recommended. It is conventional practice to call instance methods using instance variables and to call static
methods using class names.

A static method can only access static variables and can call only static methods. In contrast, an
instance method (nonstatic) may call a static method or access a static variable.

Static Block
Apart from static variables and methods, you can also define a static block in your class definition. This static
block will be executed by JVM when it loads the class into memory. For instance, in the previous example,
you can define a static block to initialize the count variable to default 1 instead of the default value 0, as
shown in Listing 2-25.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

45

Listing 2-25.  Counter.java

public class Counter {
 private static int count;
 static {
 // code in this static block will be executed when
 // the JVM loads the class into memory
 count = 1;
 }
 public Counter() {
 count++;
 }
 public static void printCount() {
 System.out.println("Number of instances created so far is: " + count);
 }
 public static void main(String []args) {
 Counter anInstance = new Counter();
 Counter.printCount();
 Counter anotherInstance = new Counter();
 Counter.printCount();
 }
}

This program prints

Number of instances created so far is: 2
Number of instances created so far is: 3

Do not confuse a static block with a constructor. A constructor will be invoked when an instance of the
class is created, while the static block will be invoked when the JVM loads the corresponding class.

Points to Remember
•	 The main() method, where the main execution of the program starts, is always

declared static. Why? If it were an instance method, it would be impossible to invoke
it. You’d have to start the program to be able to create an instance and then call the
method, right?

•	 You cannot override a static method provided in a base class. Why? Based on the
instance type, the method call is resolved with runtime polymorphism. Since static
methods are associated with a class (and not with an instance), you cannot override
static methods, and runtime polymorphism is not possible with static methods.

•	 A static method cannot use the this keyword in its body. Why? Remember that static
methods are associated with a class and not an instance. Only instance methods
have an implicit reference associated with them; hence class methods do not have a
this reference associated with them.

•	 A static method cannot use the super keyword in its body. Why? You use the super
keyword for invoking the base class method from the overriding method in the
derived class. Since you cannot override static methods, you cannot use the super
keyword in its body.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

46

•	 Since static methods cannot access instance variables (nonstatic variables), they are
most suited for utility functions. That’s why there are many utility methods in Java.
For example, all methods in the java.lang.Math library are static.

•	 Calling a static method is considered to be slightly more efficient compared to calling
an instance method. This is because the complier need not pass the implicit this
object reference while calling a static method, unlike an instance method.

Summary
Let us briefly review the key points from each certification objective in this chapter. Please read it before
appearing for the exam.

Implement encapsulation

•	 Encapsulation: Combining data and the functions operating on it as a single unit.

•	 You cannot access the private methods of the base class in the derived class.

•	 You can access the protected method either from a class in the same package (just
like package private or default) as well as from a derived class.

•	 You can also access a method with a default access modifier if it is in the same
package.

•	 You can access public methods of a class from any other class.

Implement inheritance including visibility modifiers and composition

•	 Inheritance: Creating hierarchical relationships between related classes. Inheritance
is also called an "IS-A" relationship.

•	 You use the super keyword to call base class methods.

•	 Inheritance implies IS-A and composition implies HAS-A relationship.

•	 Favor composition over inheritance.

Implement polymorphism

•	 Polymorphism: Interpreting the same message (i.e., method call) with different
meanings depending on the context.

•	 Resolving a method call based on the dynamic type of the object is referred to as
runtime polymorphism.

•	 Overloading is an example of static polymorphism (early binding) while overriding is
an example of dynamic polymorphism (late binding).

•	 Method overloading: Creating methods with same name but different types and/or
numbers of parameters.

•	 You can have overloaded constructors. You can call a constructor of the same class in
another constructor using the this keyword.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

47

•	 Overload resolution is the process by which the compiler looks to resolve a call when
overloaded definitions of a method are available.

•	 In overriding, the name of the method, number of arguments, types of arguments,
and return type should match exactly.

•	 In covariant return types, you can provide the derived class of the return type in the
overriding method.

Override hashCode, equals, and toString methods from Object class

•	 You can override clone(), equals(), hashCode(), toString() and finalize()
methods in your classes. Since getClass(), notify(), notifyAll(), and the
overloaded versions of wait() method are declared final, you cannot override these
methods.

•	 If you’re using an object in containers like HashSet or HashMap, make sure you
override the hashCode() and equals() methods correctly. For instance, ensure that
the hashCode() method returns the same hash value for two objects if the equals()
method returns true for them.

Create and use singleton classes and immutable classes

•	 A singleton ensures that only one object of its class is created.

•	 Making sure that an intended singleton implementation is indeed singleton is a
nontrivial task, especially in a multi-threaded environment.

•	 Once an immutable object is created and initialized, it cannot be modified.

•	 Immutable objects are safer to use than mutable objects; further, immutable objects
are thread safe; further, immutable objects that have same state can save space by
sharing the state internally.

•	 To define an immutable class, make it final. Make all its fields private and final.
Provide only accessor methods (i.e., getter methods) but don’t provide mutator
methods. For fields that are mutable reference types, or methods that need to mutate
the state, create a deep copy of the object if needed.

Develop code that uses static keyword on initialize blocks, variables, methods, and classes

•	 There are two types of member variables: class variables and instance variables.
All variables that require an instance (object) of the class to access them are
known as instance variables. All variables that are shared among all instances and
are associated with a class rather than an object are referred to as class variables
(declared using the static keyword).

•	 All static members do not require an instance to call/access them. You can directly
call/access them using the class name.

•	 A static member can call/access only a static member of the same class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

48

QUESTION TIME

1.	 What will be the output of this program?

class Color {
 int red, green, blue;
  
 void Color() {
 red = 10;
 green = 10;
 blue = 10;
 }
  
 void printColor() {
 �System.out.println("red: " + red + " green: " + green + " blue: " +

blue);
 }
  
 public static void main(String [] args) {
 Color color = new Color();
 color.printColor();
 }
}

A.	 Compiler error: no constructor provided for the class

B.	 Compiles fine, and when run, it prints the following: red: 0 green: 0 blue: 0

C.	 Compiles fine, and when run, it prints the following: red: 10 green: 10 blue: 10

D.	 Compiles fine, and when run, crashes by throwing NullPointerException

2.	 Consider the following program and predict the behavior of this program:

class Base {
 public void print() {
 System.out.println("Base:print");
 }
}
 
abstract class Test extends Base { //#1
 public static void main(String[] args) {
 Base obj = new Base();
 obj.print(); //#2
 }
}

A.	 Compiler error “an abstract class cannot extend from a concrete class” at
statement marked with comment #1

B.	 Compiler error “cannot resolve call to print method” at statement marked with
comment #2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

49

C.	T he program prints the following: Base:print

D.	T he program will throw a runtime exception of
AbstractClassInstantiationException

3.	 Consider the following program:

class Base {}
class DeriOne extends Base {}
class DeriTwo extends Base {}
 
class ArrayStore {
 public static void main(String []args) {
 Base [] baseArr = new DeriOne[3];
 baseArr[0] = new DeriOne();
 baseArr[2] = new DeriTwo();
 System.out.println(baseArr.length);
 }
}

Which one of the following options correctly describes the behavior of this program?

A.	T his program prints the following: 3

B.	T his program prints the following: 2

C.	T his program throws an ArrayStoreException

D.	T his program throws an ArrayIndexOutOfBoundsException

4.	 Determine the output of this program:

class Color {
 int red, green, blue;
 
 Color() {
 Color(10, 10, 10);
 }
 
 Color(int r, int g, int b) {
 red = r;
 green = g;
 blue = b;
 }
 
 void printColor() {
 �System.out.println("red: " + red + " green: " + green + " blue: " +

blue);
 }
 
 public static void main(String [] args) {
 Color color = new Color();
 color.printColor();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

50

A.	 Compiler error: cannot find symbol

B.	 Compiles without errors, and when run, it prints: red: 0 green: 0 blue: 0

C.	 Compiles without errors, and when run, it prints: red: 10 green: 10 blue: 10

D.	 Compiles without errors, and when run, crashes by throwing
NullPointerException

5.	 Choose the correct option based on this code segment:

class Rectangle { }
class ColoredRectangle extends Rectangle { }
class RoundedRectangle extends Rectangle { }
class ColoredRoundedRectangle extends ColoredRectangle, RoundedRectangle { }

Choose an appropriate option:

A.	 Compiler error: '{' expected cannot extend two classes

B.	 Compiles fine, and when run, crashes with the exception
MultipleClassInheritanceException

C.	 Compiler error: class definition cannot be empty

D.	 Compiles fine, and when run, crashes with the exception
EmptyClassDefinitionError

6.	 Consider the following program and determine the output:

class Test {
 public void print(Integer i) {
 System.out.println("Integer");
 }
 public void print(int i) {
 System.out.println("int");
 }
 public void print(long i) {
 System.out.println("long");
 }
 public static void main(String args[]) {
 Test test = new Test();
 test.print(10);
 }
}

A.	T he program results in a compiler error (“ambiguous overload”)

B.	 long

C.	 Integer

D.	 int

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

51

7.	 Consider the following code and choose the right option for the word
<access-modifier>:

// Shape.java
public class Shape {
 protected void display() {
 System.out.println("Display-base");
 }
}
 
// Circle.java
public class Circle extends Shape {
 <access-modifier> void display(){
 System.out.println("Display-derived");
 }
}

A.	 Only protected can be used

B.	 Public and protected both can be used

C.	 Public, protected, and private can be used

D.	 Only public can be used

8.	 Which of the following method(s) from Object class can be overridden? (Select all
that apply.)

A.	 finalize() method

B.	 clone() method

C.	 getClass() method

D.	 notify() method

E.	 E.wait() method

9.	 Choose the correct option based on the following program:

class Color {
 int red, green, blue;
 
 Color() {
 this(10, 10, 10);
 }
 
 Color(int r, int g, int b) {
 red = r;
 green = g;
 blue = b;
 }
 
 public String toString() {
 return "The color is: " + red + green + blue;
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

52

 public static void main(String [] args) {
 System.out.println(new Color());
 }
}

A.	 Compiler error: incompatible types

B.	 Compiles fine, and when run, it prints the following: The color is: 30

C.	 Compiles fine, and when run, it prints the following: The color is: 101010

D.	 Compiles fine, and when run, it prints the following: The color is:
red green blue

10.	 Choose the best option based on the following program:

class Color {
 int red, green, blue;
 
 Color() {
 this(10, 10, 10);
 }
 
 Color(int r, int g, int b) {
 red = r;
 green = g;
 blue = b;
 }
 
 String toString() {
 �return "The color is: " + " red = " + red + " green = " + green + "

blue = " + blue;
 }
 
 public static void main(String [] args) {
 // implicitly invoke toString method
 System.out.println(new Color());
 }
 }

A.	 Compiler error: attempting to assign weaker access privileges; toString was
public in Object

B.	 Compiles fine, and when run, it prints the following: The color is: red = 10
green = 10 blue = 10

C.	 Compiles fine, and when run, it prints the following: The color is: red = 0
green = 0 blue = 0

D.	 Compiles fine, and when run, it throws ClassCastException

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

53

Answers:

1.	 B. Compiles fine, and when run, it prints the following: red: 0 green: 0 blue: 0

Remember that a constructor does not have a return type; if a return type is provided,
it is treated as a method in that class. In this case, since Color had void return type,
it became a method named Color() in the Color class, with the default Color
constructor provided by the compiler. By default, data values are initialized to zero,
hence the output.

2.	 C. The program prints the following: Base:print

It is possible for an abstract class to extend a concrete class, though such inheritance
often doesn’t make much sense. Also, an abstract class can have static methods. Since
you don’t need to create an object of a class to invoke a static method in that class, you
can invoke the main() method defined in an abstract class.

3.	 C. This program throws an ArrayStoreException

The variable baseArr is of type Base[], and it points to an array of type DeriOne.
However, in the statement baseArr[2] = new DeriTwo(), an object of type DeriTwo
is assigned to the type DeriOne, which does not share a parent-child inheritance
relationship-they only have a common parent, which is Base. Hence, this assignment
results in an ArrayStoreException.

4.	 A. Compiler error: cannot find symbol

The compiler looks for the method Color() when it reaches this statement:
Color(10, 10, 10);. The right way to call another constructor is to use the this
keyword as follows: this(10, 10, 10);.

5.	 A. Compiler error: ‘{’ expected – cannot extend two classes

Java does not support multiple class inheritance. Since ColoredRectangle
and RoundedRectangle are classes, it results in a compiler error when
ColoredRoundedRectangle class attempts to extend these two classes. Note that it is
acceptable for a class to be empty.

6.	 D. int

If Integer and long types are specified, a literal will match to int. So, the program
prints int.

7.	 B. Public and protected both can be used

You can provide only a less restrictive or same-access modifier when overriding a
method.

8.	 A. finalize() method and B. clone() method

The methods finalize() and clone() can be overridden. The methods getClass(),
notify(), and wait() are final methods and so cannot be overridden.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2 ■ Java Class Design

54

9.	 C. Compiles fine, and when run, it prints the following: The color is: 101010

The toString() implementation has the expression “The color is:” + red + blue +
green. Since the first entry is String, the + operation becomes the string concatenation
operator with resulting string “The color is: 10”. Following that, again there is a
concatenation operator + and so on until finally it prints “The color is: 101010”.

10.	 A. Compiler error: attempting to assign weaker access privileges; toString was
public in Object

No access modifier is specified for the toString() method. Object's toString()
method has a public access modifier; you cannot reduce the visibility of the method.
Hence, it will result in a compiler error.

www.it-ebooks.info

http://www.it-ebooks.info/

55

Chapter 3

Advanced Class Design

Certification Objectives

Develop code that uses abstract classes and methods

Develop code that uses final keyword

Create inner classes including static inner class, local class, nested class, and anonymous inner class

Use enumerated types including methods and constructors in an enum type

Develop code that declares, implements, and/or extends interfaces and use the atOverride annotation

Create and use Lambda expressions

You learned the basic concepts of OOP and used them to build Java programs in the preceding chapter.
In this chapter, you will learn advanced class design concepts. You will also learn about the key functional
programming feature introduced in Java 8: lambda expressions.

A significant chunk of questions in the OCPJP exam is related to changes introduced in the Java
language and the library in Java 8. This chapter covers lambda expressions, which form the foundation for
understanding Stream API and the facilities available in the java.util.function package. Hence, ensure
that you read the interfaces section and the last section on lambda expressions in this chapter.

Abstract Classes
Certification Objective

Develop code that uses abstract classes and methods

In many programming situations, you want to specify an abstraction without specifying
implementation-level details. In such cases, you can use either abstract classes or interfaces. Abstract classes
are used when you want to define an abstraction with some common functionality.

Consider Shape class that provides an abstraction of the different shapes you can draw in a drawing
application.

abstract class Shape {
 public double area() { return 0; } // default implementation
 // other members
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

56

You prefix the abstract keyword before the class definition to declare the class as an abstract class. You
can create objects of Shapes such as Square and Circle, but does it make sense to create an object of Shape
class itself directly? No, there is no real-world object named Shape.

If you try to create an instance of a Shape class, the compiler will give an error because abstract classes
cannot be instantiated.

In the Shape class definition, there is a method named area() that returns the area of a particular
shape. This method is applicable for all shapes, and that’s why it’s in this base class Shape. However, what
should the implementation of the area() method in the Shape class be? You cannot provide a default
implementation; implementing this method as return 0; is a bad solution, although the compiler would
happily accept it. A better solution is to declare it as an abstract method, like so:

public abstract double area(); // note: no implementation (i.e., no method body definition)

Similar to declaring a class abstract, you declare the method area() as abstract by prefixing the method
with the abstract keyword. The main difference between a normal method and an abstract method is that
you don’t provide a body for an abstract method. If you provide a body, it will become an error, like so:

public abstract double area() { return 0; } // compiler error!

You get a compiler error for this definition: "abstract methods cannot have a body". An abstract
method declaration forces all the subclasses to provide a definition of that abstract method and that is why it
cannot be defined in the abstract class itself. If a derived class does not implement all the abstract methods
defined in the base class, then that derived class should be declared as an abstract class, as in the following
example:

abstract class Shape {
 public abstract double area(); // no implementation
 // other members
}
 
class Rectangle extends Shape { }

This snippet results in a compiler error of "Rectangle is not abstract and does not override
abstract method area() in Shape". To fix this, you need to declare the derived class abstract or provide
a definition of the area() method in the derived class. It does not make sense to declare Rectangle as
abstract; so you can define the area() method like so:

class Rectangle extends Shape {
 private int length, height;
 public double area() { return length * height; }
 // other members ...
}

Points to Remember
Review the following points about abstract classes and abstract methods for the OCPJP 8 exam:

•	 The abstract keyword can be applied to a class or a non-static method.

•	 An abstract class may have methods or fields declared static. However, the abstract
keyword cannot be applied to fields or static methods.

•	 An abstract class can extend another abstract class or can implement an interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

57

•	 An abstract class can be derived from a concrete class! Although the language allows
it, it is not a good idea to do so.

•	 An abstract class need not declare an abstract method, which means it is not
necessary for an abstract class to have any methods declared as abstract. However, if
a class has an abstract method, it should be declared as an abstract class.

•	 A subclass of an abstract class needs to provide implementation of all the abstract
methods; otherwise you need to declare that subclass as an abstract class.

Using the “final” Keyword
Certification Objective

Develop code that uses final keyword

The final keyword can be applied for classes, methods, and variables. You cannot extend a final class,
you cannot override a final method, and you cannot change the value of a final variable once it is initialized.

Final Classes
A final class is a non-inheritable class—that is to say, if you declare a class as final, you cannot subclass it.
Two important reasons you may not want to allow a class to be subclassed are:

	 1.	 To prevent a behavior change by subclassing. In some cases, you may think that
the implementation of the class is complete and should not change. If overriding
is allowed, then the behavior of methods might be changed. You know that a
derived object can be used where a base class object is required, and you may
not prefer it in some cases. By making a class final, the users of the class are
assured the unchanged behavior.

	 2.	 Improved performance. All method calls of a final class can be resolved at
compile time itself. As there is no possibility of overriding the methods, it is not
necessary to resolve the actual call at runtime for final classes, which translates to
improved performance. For the same reason, final classes encourage the inlining
of methods. With inlining, a method body can be expanded as part of the calling
code itself, thereby avoiding the overhead of making a function call. If the calls
are to be resolved at runtime, they cannot be inlined.

In the Java library, many classes are declared as final; for example, the String (java.lang.String)
and System (java.lang.System) classes. These classes are used extensively in Java programs. If these
two classes are not declared final, it is possible for someone to change the behavior of these classes by
subclassing and then the whole program can start behaving differently. To avoid such a problem, widely
used classes like these and wrapper classes such as Number and Integer are made final in the Java library.

 The performance gain from making a class final is modest; the focus should be on using final where it is
appropriate. The OCPJP 8 exam will mainly check whether you know how to correctly use the final keyword.
You don’t have to worry about efficiency details.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

58

Final Methods and Variables
In a class, you may declare a method final. The final method cannot be overridden. Therefore, if you have
declared a method as final in a non-final class, then you can extend the class but you cannot override the
final method. However, other non-final methods in the base class can be overridden in the derived class
implementation.

Consider the methods setParentShape() and getParentShape() in Shape class (Listing 3-1).

Listing 3-1.  Shape.java

public abstract class Shape {
 // other class members elided
 final public void setParentShape(Shape shape) {
 // method body
 }
 public Shape getParentShape() {
 // method body
 }
}

In this case, the Circle class (subclass of Shape) can override only getParentShape(); if you try to
override the final method, you will get following error: "Cannot override the final method from Shape".

Final variables are like CD-ROMs: once you write something on them, you cannot write again. In
programming, constants such as PI can be declared as final since you don’t want anyone to modify their
values. If you try to change a final variable after initialization, you will get a compiler error.

Points to Remember
Review the following points, as they may come up in the OCPJP 8 exam:

•	 The final modifier can be applied to a class, method, or variable. All methods of a
final class are implicitly final (hence non-overridable).

•	 A final variable can be assigned only once. If a variable declaration defines a
variable as final but did not initialize it, then it is referred to as blank final. You need
to initialize a blank final in all the constructors you have defined in the class or in an
initialization block.

•	 The keyword final can be applied to parameters. The value of a final parameter
cannot be changed once assigned.

Flavors of Nested Classes
Certification Objective

Create inner classes including static inner class, local class, nested class, and anonymous inner class

Classes defined within the body of another class (or interface) are known as nested classes. Typically
you define a class, which is a top-level class directly belonging to a package. In contrast, nested classes are
classes contained within another class or interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

59

What is the benefit of creating classes inside another class or interface? There are several benefits. First,
you can put related classes together as a single logical group. Second, nested classes can access all class
members of the enclosing class, which might be useful in certain cases. Third, nested classes simplify code.
For example, anonymous inner classes are useful for writing simpler event-handling code with AWT/Swing.

There are four types or flavors of nested classes in Java:

•	 Static nested class

•	 Inner class

•	 Local inner class

•	 Anonymous inner class

The distinctions among these four flavors are not evident at first sight. Figure 3-1 helps clarify the
differences between them. A local class is defined within a code block (whether a method, constructor, or
initialization block), whereas a non-local class is defined inside a class. A static class is qualified using the
static keyword, whereas a non-static class does not use the static keyword with the class definition. In an
anonymous class, you don’t provide the name of the class; you just define its body.

As you can observe in Figure 3-1, static nested classes are static and non-local, whereas inner classes
are non-static and non-local. A non-static and local nested class is a local inner class, and a local and
anonymous nested class is an anonymous inner class.

Now, let’s discuss each of these four flavors in more detail.

Figure 3-1.  Types of nested classes with examples

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

60

Static Nested Classes (or Interfaces)
You can define a class (or an interface) as a static member inside another class (or interface). Since the
outer type can be a class or an interface and the inner ones can also be a class or interface, there are four
combinations. The following are examples of these four types so that you can see their syntax:

class Outer { // an outer class has a static nested class
 static class Inner {}
}
 
interface Outer { // an outer interface has a static nested class
 static class Inner {}
}
 
class Outer { // an outer class has a static nested interface
 static interface Inner {}
}
 
interface Outer { // an outer interface has a static nested interface
 static interface Inner {}
}

You don’t have to explicitly use the static keyword with a nested interface, since it is implicitly static.
Now, let’s look at an example that creates and uses static nested classes.

Consider the Color class (Listing 3-2) with fields of m_red, m_green, and m_blue. Since all shapes can be
colored, you can define the Color class within a Shape class.

Listing 3-2.  TestColor.java

abstract class Shape {
 public static class Color {
 int m_red, m_green, m_blue;
 public Color() {
 // call the other overloaded Color constructor by passing default values
 this(0, 0, 0);
 }
 public Color(int red, int green, int blue) {
 m_red = red; m_green = green; m_blue = blue;
 }
 public String toString() {
 return " red = " + m_red + " green = " + m_green + " blue = " + m_blue;
 }
 // other color members elided
 }
 // other Shape members elided
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

61

public class TestColor {
 public static void main(String []args) {
 // since Color is a static nested class,
 // we access it using the name of the outer class, as in Shape.Color
 // note that we do not (and cannot) instantiate Shape class for using Color class
 Shape.Color white = new Shape.Color(255, 255, 255);
 System.out.println("White color has values:" + white);
 }
}

It prints

White color has: red = 255 green = 255 blue = 255

In this code, the Shape class is declared abstract. You can see the Color class defined as a public
static class defined within the Shape class. The TestColor class uses the syntax Shape.Color to refer to
this class. Other than this minor difference, the Color class looks no different from defining the Color class
outside the Shape class. Hence, a static nested class is as good as a class defined as an outer class with one
difference—it is physically defined inside another class!

Points to Remember
Here are some notable aspects of static nested classes (and interfaces) that will help you on the OCPJP 8 exam:

•	 The accessibility (public, protected, etc.) of the static nested class is defined by
the outer class.

•	 The name of the static nested class is expressed with
OuterClassName.NestedClassName syntax.

•	 When you define an inner nested class (or interface) inside an interface, the nested
class is declared implicitly public and static. This point is easy to remember: any
field in an interface is implicitly declared public and static, and static nested
classes have this same behavior.

•	 Static nested classes can be declared abstract or final.

•	 Static nested classes can extend another class or they can be used as base classes.

•	 Static nested classes can have static members. (As you’ll see shortly, this statement
does not apply to other kinds of nested classes.)

•	 Static nested classes can access the members of the outer class (only static members,
obviously).

•	 The outer class can also access the members (even private members) of the nested
class through an object of a nested class. If you don’t declare an instance of the
nested class, the outer class cannot access nested class elements directly.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

62

Inner Classes
You can define a class (or an interface) as a non-static member inside another class. How about declaring a
class or an interface inside an interface? As you just saw in the third bullet above about static inner classes,
when you define a class or an interface inside an interface, it is implicitly static. So, it is not possible to
declare a non-static inner interface! That leaves two possibilities:

class Outer { // an outer class has an inner class
 class Inner {}
}
 
class Outer { // an outer class has an inner interface
 interface Inner {}
}

Let’s create a Point class to implement the center of a Circle. Since you want to associate each Circle
with a center Point, it is a good idea to make Point an inner class of Circle (Listing 3-3).

Listing 3-3.  Circle.java

public class Circle {
 // define Point as an inner class within Circle class
 class Point {
 private int xPos;
 private int yPos;
 // you can provide constructor for an inner class like this
 public Point(int x, int y) {
 xPos = x;
 yPos = y;
 }
 // the inner class is like any other class - you can override methods here
 public String toString() {
 return "(" + xPos + "," + yPos + ")";
 }
 }
  
 // make use of the inner class for declaring a field
 private Point center;
 private int radius;
 public Circle(int x, int y, int r) {
 // note how to make use of the inner class to instantiate it
 center = this.new Point(x, y);
 radius = r;
 }
  
 public String toString() {
 return "mid point = " + center + " and radius = " + radius;
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

63

 public static void main(String []s) {
 System.out.println(new Circle(10, 10, 20));
 }
 // other methods such as area are elided
}

In this implementation, you have defined Point as a private member of Circle. Notice how you are
instantiating the inner class:

center = this.new Point(x, y);

You might be wondering why you cannot use the usual new statement:

center = new Point(x, y);

You need to prefix the object reference of the outer class to create an instance of the inner class. In this
case, it is a this reference, so you are prefixing it with this before the new operator.

 Every inner class is associated with an instance of the outer class. In other words, an inner class is always
associated with an enclosing object.

The outer and inner classes share a special relationship, like friends or members of same family.
Member accesses are valid irrespective of the access specifiers such as private. However, there is subtle
difference. You can access members of an outer class within an inner class without creating an instance; but
this is not the case with an outer class. You need to create an instance of inner class in order to access the
members (any members, including private members) of the inner class.

One limitation of inner classes is that you cannot declare static members in an inner class, like this:

class Outer {
 class Inner {
 static int i = 10;
 }
}

If you try to do so, you’ll get the following compiler error:

Outer.java:3: inner classes cannot have static declarations
 static int i = 10;

Points to Remember
Here are some important rules about inner classes and interfaces that might prove useful in the OCPJP 8 exam:

•	 The accessibility (public, protected, etc.) of the inner class is defined by the
outer class.

•	 Just like top-level classes, an inner class can extend a class or can implement
interfaces. Similarly, other classes can extend an inner class, and other classes or
interfaces can extend or implement an inner interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

64

•	 An inner class can be declared final or abstract.

•	 Inner classes can have inner classes, but you’ll have a hard time reading or
understanding such complex nesting of classes. (Meaning: Avoid them!)

Local Inner Classes
A local inner class is defined in a code block (say, in a method, constructor, or initialization block). Unlike
static nested classes and inner classes, local inner classes are not members of an outer class; they are just
local to the method or code in which they are defined.

Here is an example of the general syntax of a local class:

class SomeClass {
 void someFunction() {
 class Local { }
 }
}

As you can see in this code, Local is a class defined within someFunction. It is not available outside of
someFunction, not even to the members of the SomeClass. Since you cannot declare a local variable static,
you also cannot declare a local class static.

Since you cannot define methods in interfaces, you cannot have local classes or interfaces inside an
interface. Nor can you create local interfaces. In other words, you cannot define interfaces inside methods,
constructors, and initialization blocks.

Now that you understand the syntax, let’s jump into a practical example. Earlier, you implemented the
Color class as a static nested class (Listing 3-2). Here is the code you saw in that discussion:

abstract class Shape {
 public static class Color {
 int m_red, m_green, m_blue;
 public Color() {
 this(0, 0, 0);
 }
 public Color(int red, int green, int blue) {
 m_red = red; m_green = green; m_blue = blue;
 }
 public String toString() {
 �return " red = " + m_red + " green = " + m_green + " blue = " +

m_blue;
 }
 // other color members elided
 }
 // other Shape members elided
}

Now, this toString() method displays a string representation of Color. Assume that you want to
display the Color string in the following format: "You selected a color with RGB values red = 0
green = 0 blue = 0". For that, you must define a method named getDescriptiveColor() in the class
StatusReporter. In getDescriptiveColor(), you must create a derived class of Shape.Color in which the
toString method returns this descriptive message. Listing 3-4 is an implementation using local classes.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

65

Listing 3-4.  StatusReporter.java

class StatusReporter {
 // important to note that the argument "color" is declared final
 static Shape.Color getDescriptiveColor(final Shape.Color color) {
 // local class DescriptiveColor that extends Shape.Color class
 class DescriptiveColor extends Shape.Color {
 public String toString() {
 return "You selected a color with RGB values" + color;
 }
 }
 return new DescriptiveColor();
 }
 
 public static void main(String []args) {
 Shape.Color descriptiveColor =
 StatusReporter.getDescriptiveColor(new Shape.Color(0, 0, 0));
 System.out.println(descriptiveColor);
 }
}

The main method checks if the StatusReporter works fine. This program prints

You selected a color with RGB values red = 0 green = 0 blue = 0

Let’s see how the local class was defined. The getDescriptiveColor() method takes the plain
Shape.Color class object and returns a Shape.Color object. Inside the getDescriptiveColor() method,
you have defined the class DescriptiveColor, which is local to this method. This DescriptiveColor is a
derived class of Shape.Color. Inside the DescriptiveColor class, the only method defined is the toString()
method, which overrides the base class Shape.Color toString() method. After the definition of the
DescriptiveColor class, the getDescriptiveColor class creates an object of the DescriptiveColor class
and returns it.

In the Test class, you can see a main() method that just calls the StatusReporter.getDescriptiveColor()
method and stores the result in a Shape.Color reference. You will notice that the getDescriptiveColor()
method returns a DescriptiveColor object, which derives from Shape.Color, so the descriptiveColor
variable initialization works fine. In the println, the dynamic type of descriptiveColor is a
DescriptiveColor object, and hence the detailed description of the color object is printed.

Did you notice another feature in the getDescriptiveColor() method? Its argument is declared final.
Even if you don’t provide the final keyword, the compiler will treat is as effectively final–what it means is you
cannot assign to the variable that you are accessing in the local class. If you do so, you will get a compiler
error, as in:

static Shape.Color getDescriptiveColor(Shape.Color color) {
 // local class DescriptiveColor that extends Shape.Color class
 class DescriptiveColor extends Shape.Color {
 public String toString() {
 return "You selected a color with RGB values" + color;
 }
 }
 color = null; // note this assignment – will NOT compile
 return new DescriptiveColor();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

66

You’ll get the following compiler error:

StatusReporter.java:8: error: local variables referenced from an inner class must be final
or effectively final
return "You selected a color with RGB values" + color;
^
1 error

Because of the assignment to the color variable, it is not final anymore and hence the compiler gives an
error when the local inner class tries to access that variable.

 You can pass only final variables to a local inner class. If you don't declare a variable that a local inner
class accesses, the compiler will treat it as effectively final.

Points to Remember
The following points about local classes may come up in the OCPJP 8 exam:

•	 You can create a non-static local class inside a body of code. Interfaces cannot have
local classes, and you cannot create local interfaces.

•	 Local classes are accessible only from the body of the code in which the class is
defined. The local classes are completely inaccessible outside the body of the code in
which the class is defined.

•	 You can extend a class or implement interfaces while defining a local class.

•	 A local class can access all the variables available in the body of the code in which it
is defined. Variables accessed by local inner classes are considered effectively final.

Anonymous Inner Classes
As the name implies, an anonymous inner class does not have a name. The declaration of the class automatically
derives from the instance-creation expression. They are also referred to simply as anonymous classes.

An anonymous class is useful in almost all situations where you can use a local inner class. A local
inner class has a name, whereas an anonymous inner class does not—and that’s the main difference. An
additional difference is that an anonymous inner class cannot have any explicit constructors. A constructor
is named after the name of the class, and since an anonymous class has no name, it follows that you cannot
define a constructor!

(A note here before we proceed: there are no such things as “anonymous interfaces.”)
Here is an example to understand the syntax of a local class:

class SomeClass {
 void someFunction() {
 new Object() { };
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

67

This code looks cryptic, doesn’t it? What is going on here? In the statement new Object() { };, you are
declaring a derived class of Object directly using the new keyword. It doesn’t define any code and returns an
instance of that derived object. The created object is not used anywhere, so it is ignored. The new expression
invokes the default constructor here; you could choose to invoke a multiple argument constructor of the
base class by passing arguments in the new expression.

Let us now look at a more practical example. In the earlier example (Listing 3-4), you saw the
DescriptiveColor class defined inside the getDescriptiveColor method in the StatusReporter class. You
can simplify the code by converting the local class into an anonymous class, as shown in Listing 3-5.

Listing 3-5.  StatusReporter.java

class StatusReporter {
 static Shape.Color getDescriptiveColor(final Shape.Color color) {
  
 // note the use of anonymous inner classes here
 // -- specifically, there is no name for the class and we construct
 // and use the class "on the fly" in the return statement!
  
 return new Shape.Color() {
 public String toString() {
 return "You selected a color with RGB values" + color;
 }
 };
 }
 public static void main(String []args) {
 Shape.Color descriptiveColor =
 StatusReporter.getDescriptiveColor(new Shape.Color(0, 0, 0));
 System.out.println(descriptiveColor);
 }
}

It prints

You selected a color with RGB values red = 0 green = 0 blue = 0

That’s nice. The rest of the program, including the main() method, remains the same and the
getDescriptiveColor() method became simpler! You did not explicitly create a class with a name
(which was DescriptiveColor); instead you just created a derived class of Shape.Color “on the fly” in the
return statement. Note that the keyword class is also not needed.

Points to Remember
Note these points about anonymous classes that may be useful for the OPCJP 8 exam:

•	 Anonymous classes are defined in the new expression itself.

•	 You cannot explicitly extend a class or explicitly implement interfaces when defining
an anonymous class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

68

Enum Data Type
Certification Objective

Use enumerated types including methods, and constructors in an enum type

Consider that you want the user to choose from a set of constants defining several printer types:

public static final int DOTMATRIX = 1;
public static final int INKJET = 2;
public static final int LASER= 3;

The solution works. In this case, however, you could pass any other integer (say 10), and the compiler
would happily take it. Therefore, this solution is not a typesafe solution. Java 5 introduced the data type enum
to help you in such situations.

Listing 3-6 defines an enum class (yes, enums are special classes) for the above example.

Listing 3-6.  EnumTest.java

// define an enum for classifying printer types
enum PrinterType {
 DOTMATRIX, INKJET, LASER
}
 
// test the enum now
public class EnumTest {
 PrinterType printerType;
 
 public EnumTest(PrinterType pType) {
 printerType = pType;
 }
  
 public void feature() {
 // switch based on the printer type passed in the constructor
 switch(printerType){
 case DOTMATRIX:
 �System.out.println("Dot-matrix printers are economical and almost

obsolete");
 break;
 case INKJET:
 System.out.println("Inkjet printers provide decent quality prints");
 break;
 case LASER:
 System.out.println("Laser printers provide best quality prints");
 break;
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

69

 public static void main(String[] args) {
 EnumTest enumTest = new EnumTest(PrinterType.LASER);
 enumTest.feature();
 }
}

It prints

Laser printers provide best quality prints

Let’s review the Listing 3-6 in more detail.

•	 In a switch-case statement, you do not need to provide the fully qualified name for
enum elements. This is because switch takes an instance of the enum type, and hence
switch-case understands the context (type) in which you are specifying enum elements.

•	 We have provided the value PrinterType.LASER when creating the enum object
EnumTest. If we provide any other values other than enumeration values, you will get
a compiler error. In other words, enumerations are typesafe.

Note that you can declare an enum (PrinterType in this case) in a separate file, just like you can declare
any other normal Java class.

Let us now look at a more detailed example in which you define member attributes and methods in an
enum data type (Listing 3-7).

Listing 3-7.  EnumTest.java

enum PrinterType {
 DOTMATRIX(5), INKJET(10), LASER(50);
  
 private int pagePrintCapacity;
 
 private PrinterType(int pagePrintCapacity) {
 this.pagePrintCapacity = pagePrintCapacity;
 }
 
 public int getPrintPageCapacity() {
 return pagePrintCapacity;
 }
}
 
public class EnumTest {
 PrinterType printerType;
 
 public EnumTest(PrinterType pType) {
 printerType = pType;
 }
 
 public void feature() {
 switch (printerType) {
 case DOTMATRIX:
 System.out.println("Dot-matrix printers are economical");
 break;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

70

 case INKJET:
 System.out.println("Inkjet printers provide decent quality prints");
 break;
 case LASER:
 System.out.println("Laser printers provide the best quality prints");
 break;
 }
 System.out.println("Print page capacity per minute: " +
 printerType.getPrintPageCapacity());
 }
 
 public static void main(String[] args) {
 EnumTest enumTest1 = new EnumTest(PrinterType.LASER);
 enumTest1.feature();
 EnumTest enumTest2 = new EnumTest(PrinterType.INKJET);
 enumTest2.feature();
 }
}

The output of the above program is given below:

Laser printers provide the best quality prints
Print page capacity per minute: 50
Inkjet printers provide decent quality prints
Print page capacity per minute: 10

In this program, you defined a new attribute, a new constructor, and a new method for the enum
class. The attribute pagePrintCapacity is set by the initial values specified with enum elements (such as
LASER(50)), which calls the constructor of the enum class. However, the enum class cannot have a public
constructor, or the compiler will complain with following message: "Illegal modifier for the enum
constructor; only private is permitted".

 A constructor in an enum class can only be specified as private.

Points to Remember
•	 Enums are implicitly declared public, static, and final, which means you cannot

extend them.

•	 When you define an enumeration, it implicitly inherits from java.lang.Enum.
Internally, enumerations are converted to classes. Further, enumeration constants
are instances of the enumeration class for which the constant is declared as a
member.

•	 You can apply the valueOf() and name() methods to the enum element to return the
name of the enum element.

•	 If you declare an enum within a class, then it is by default static.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

71

•	 You cannot use the new operator on enum data types, even inside the enum class.

•	 You can compare two enumerations for equality using == operator.

•	 If enumeration constants are from two different enumerations, the equals() method
does not return true.

•	 When an enumeration constant’s toString() method is invoked, it prints the name
of the enumeration constant.

•	 The static values() method in the Enum class returns an array of the enumeration
constants when called on an enumeration type.

•	 Enumeration constants cannot be cloned. An attempt to do so will result in a
CloneNotSupportedException.

 Enum avoids magic numbers, which improves readability and understandability of the source code. Also,
enums are typesafe constructs. Therefore, use enums wherever you need a set of related constants.

Interfaces
Certification Objective

Develop code that declares, implements, and/or extends interfaces and use the atOverride annotation

An interface is a set of abstract methods that defines a protocol (i.e., a contract for conduct). Classes
that implement an interface must implement the methods specified in the interface. An interface defines a
protocol, and a class implementing the interface honors the protocol. In other words, an interface promises
certain functionality to its clients by defining an abstraction. All the classes implementing the interface
provide their own implementations for the promised functionality.

Declaring and Implementing Interfaces
Now it’s time to implement your own interface for shape objects. Some circular shaped objects (such as
Circle and Ellipse) can be rolled to a given degree. You can create a Rollable interface and declare a
method named roll():

interface Rollable {
 void roll(float degree);
}

As you can see, you define an interface using the interface keyword that declares a method named
roll(). The method takes one argument: the degree for rolling. Now let us implement this interface in a
Circle class (see Listing 3-8).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

72

Listing 3-8.  Circle.java

// Shape is the base class for all shape objects; shape objects that are associated with
// a parent shape object is remembered in the parentShape field
abstract class Shape {
 abstract double area();
 private Shape parentShape;
 public void setParentShape(Shape shape) {
 parentShape = shape;
 }
 public Shape getParentShape() {
 return parentShape;
 }
}
 
// Rollable interface can be implemented by circular shapes such as Circle
interface Rollable {
 void roll(float degree);
}
 
abstract class CircularShape extends Shape implements Rollable { }
 
// Circle is a concrete class that is-a subtype of CircularShape;
// you can roll it and hence implements Rollable through CircularShape base class
public class Circle extends CircularShape {
 private int xPos, yPos, radius;
 public Circle(int x, int y, int r) {
 xPos = x;
 yPos = y;
 radius = r;
 }
 public double area() { return Math.PI * radius * radius; }
 @Override
 public void roll(float degree) {
 // implement rolling functionality here...
 // for now, just print the rolling degree to console
 System.out.printf("rolling circle by %f degrees", degree);
 }
 public static void main(String[] s) {
 Circle circle = new Circle(10,10,20);
 circle.roll(45);
 }
}

In this case, CircularShape implements the Rollable interface and extends the Shape abstract class.
Now a concrete class such as Circle can extend this abstract class and define the roll() method. Few
important points to observe in this example are:

•	 The abstract class CircularShape implements the Rollable interface but does
not need to define the roll() method. The concrete class Circle that extends
CircularShape defines this method later.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

73

•	 You use the implements keyword for implementing an interface. Note that the
method name, its argument, and the return type in the class definition should exactly
match the one given in the interface; if they don’t match, the class is not considered
to implement that interface.

•	 Optionally, you can use the @Override annotation to indicate that a method is
overriding a method from its base type(s). In this case, the roll method is overridden
in the Circle class and makes use of the @Override annotation.

A class can also implement multiple interfaces at the same time—both directly and indirectly through
its base classes. For example, the Circle class can also implement the standard Cloneable interface
(for creating copies of the Circle object) and the Serializable interface (for storing the object in files to
recreate the object later, etc.), like so:

class Circle extends CircularShape implements Cloneable, Serializable {
 /* definition of methods such as clone here */
}

Points to Remember
Here are some key points about interfaces that will help you in the OCPJP 8 exam:

•	 An interface cannot be instantiated. A reference to an interface can refer to an object
of any of its derived types implementing it.

•	 An interface can extend another interface. Use the extends (and not the implements)
keyword for extending another interface.

•	 Interfaces cannot contain instance variables. If you declare a data member in an
interface, it should be initialized, and all such data members are implicitly treated as
“public static final” members.

•	 An interface can have three kinds of methods: abstract methods, default methods,
and static methods.

•	 An interface can be declared with empty body (i.e., an interface without any
members). For example, java.util defines the interface EventListener
without a body.

•	 An interface can be declared within another interface or class; such interfaces are
known as nested interfaces.

•	 Unlike top-level interfaces that can have only public or default access, a nested
interface can be declared public, protected, or private.

•	 If you are implementing an interface in an abstract class, the abstract class does not
need to define the method. But, ultimately a concrete class has to define the abstract
method declared in the interface.

•	 You can use the @Override annotation for a method to indicate that it is overriding a
method from its base type(s).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

74

Abstract Classes vs. Interfaces
Abstract classes and interfaces have a lot in common. For example, both can declare methods that all the
deriving classes should define. They are also similar in the respect that you can create instances neither of
an abstract class nor of an interface. So, what are the differences between abstract classes and interfaces?
Table 3-1 lists some of the important differences.

Abstract, default and static methods
The Rollable example you saw has only one method—roll(). However, it is common for interfaces to have
multiple methods. For example, java.util defines the Iterator interface as follows:

public interface Iterator<E> {
 boolean hasNext();
  
 E next();
 

Table 3-1.  Abstract Classes v.s Interfaces

Abstract Classes Interfaces

Keyword(s) used Use the abstract and class
keywords to define a class.

Use the interface keyword to define an
interface.

Keyword used by the
implementing class

Use the extends keyword to inherit
from an abstract class.

Use the implements keyword to implement an
interface.

Fields An abstract class can have static
and non-static fields.

You cannot have non-static fields (instance
variables) in an interface; all fields are public
static final by default (i.e., constants as
discussed in next item)

Constants An abstract class can have both
static and non-static constants.

Interfaces can have only static constants. If
you declare a field, it must be initialized. All
fields are implicitly considered to be public
static and final.

Constructors You can define a constructor in an
abstract class (which is useful for
initializing fields, for example).

You cannot declare/define a constructor in an
interface.

Access specifiers You can have private and protected
members in an abstract class.

You cannot have any private or protected
members in an interface; all members are
public by default.

Single vs. multiple
inheritance

A class can inherit only one class
(which can be either an abstract or
a concrete class).

A class can implement any number of
interfaces.

Purpose An abstract base class provides a
protocol; in addition, it serves as a
base class in an is-a relationship.

An interface provides only a protocol. It
specifies functionality that must be provided
by the classes implementing it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

75

 default void remove() {
 throw new UnsupportedOperationException("remove");
 }
 
 default void forEachRemaining(Consumer<? super E> action) {
 Objects.requireNonNull(action);
 while (hasNext())
 action.accept(next());
 }
}

This interface is meant for traversing a collection. (Don’t worry about the “<E>” in Iterator<E>. It refers
to the element type and falls under generics, which we cover in detail in the next chapter). It declares two
methods hasNext() and next()—the classes that implement this interface must define these two methods.
There is no need to use the abstract keyword (but if you want, you can provide the abstract keyword)
because methods without a body are implicitly considered to be abstract.

The interface also has method definitions for remove() and forEachRemaining(). These methods are
known as default methods and they are qualified using the default keyword. The classes that implement the
Iterator interface inherit these two methods and can choose to override them.

An interface can also contain static methods. For example, the java.util.stream.Stream has static
methods builder, empty, of, iterate, generate, and concat.

 Prior to Java 8, interfaces can only declare methods (i.e., they can provide only abstract methods).
To support lambda functions, Java 8 has introduced a big change to interfaces: you can now define default
methods and static methods inside interfaces.

Default methods

In interfaces, default methods are methods defined with a method body using the default keyword. Default
methods are instance methods. Inside the default methods, this keyword refers to the declaring interface.
Default methods can call methods from the interfaces they are enclosed in.

Why did Java 8 add default methods to interfaces? Short answer: for supporting lambda expressions
(we will discuss lambdas in the next section). Default methods make it easy to evolve interfaces. How? Prior
to Java 8, you cannot define methods—you can only declare them. Hence, if you add a new method in an
existing interface, such an addition would break the classes implementing the interface since they will not
have defined that method. But in Java 8, with default methods, it is possible to evolve interfaces more easily.

Consider the java.lang.Iterable interface for example. Prior to Java 8, it had only one method:

Iterator<T> iterator();

With Java 8, the Iterable interface has been extended with two more methods: forEach and
spliterator methods. To avoid breaking classes that implement this interface, these methods are defined
as default methods. So all the classes that implement the Iterable interface (such as ArrayList class)
now have these two methods as well. Here is the definition of Iterable interface without documentation
comments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

76

public interface Iterable<T> {
 Iterator<T> iterator();
 
 default void forEach(Consumer<? super T> action) {
 Objects.requireNonNull(action);
 for (T t : this) {
 action.accept(t);
 }
 }
 
 default Spliterator<T> spliterator() {
 return Spliterators.spliteratorUnknownSize(iterator(), 0);
 }
}

The addition of forEach and spliterator methods in this interface does not break the existing classes
that implement the Iterator interface because they are default methods. In this way, default methods aid
in evolution of interfaces. Default methods also simplify your life because concrete definitions can now be
provided within interfaces—so you don’t need to override them.

Many of the classes in the existing library (especially Collections) have been added with default
methods in Java 8. For example, the List interface in Java has these three methods that were added in Java 8:

default void sort(Comparator<? super E> c)
default Spliterator<E> spliterator()
default void replaceAll(UnaryOperator<E> operator)

Points to Remember
Here are some key points about abstract, default, and static methods that will help you in the OCPJP 8 exam:

•	 You cannot declare members as protected or private. Only public access is
allowed for members of an interface. Since all methods are public by default, you can
omit the public keyword.

•	 All methods declared in an interface (i.e., without a method body) are implicitly
considered to be abstract. If you want, you can explicitly use the abstract qualifier
for the method.

•	 Default methods must have a method body. Default methods must be qualified
using the default keyword. The classes implementing the interface inherit the
default method definitions and they can be overridden.

•	 A default method can be overridden in a derived class as an abstract method; for
such overriding, the @Override annotation can also be used.

•	 You cannot qualify default methods as synchronized or final.

•	 Static methods must have a method body and they are qualified using the static
keyword.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

77

•	 You cannot provide abstract keyword for static methods: Remember that you
cannot override static methods in derived classes, so it’s conceptually not possible to
leave static methods abstract by not providing a method body.

•	 You cannot use default keyword for static methods because all default methods are
instance methods.

The Diamond Problem
In Java, an interface or class can extend multiple interfaces. For example, here is a class hierarchy from
java.nio.channels package (Figure 3-2). The base interface is Channel. Two interfaces,
ReadableByteChannel and WriteableByteChannel, extend this base interface. Finally, ByteChannel
interface extends ReadableByteChannel and WriteableByteChannel. Notice that the resulting shape of the
inheritance hierarchy looks like a “diamond.”

In this case, the base interface Channel does not have any methods. The ReadableByteChannel interface
declares read method and the WriteableByteChannel interface declares write method; the ByteChannel
interface inherits both read and write methods from these base types. Since these two methods are
different, we don’t have a conflict and hence this hierarchy is fine.

But what if we have two method definitions in the base types that have the same signature; which method
would the ByteChannel interface inherit? When this problem occurs it is known as “diamond problem.”

Before we discuss a working example of dealing with the diamond problem, let us first get a clear
understanding of when and how the diamond problem occurs in Java.

•	 In Java, you cannot extend multiple classes; hence the diamond problem cannot
occur because of extending two base classes. However, the diamond problem can
occur in the derived class when an abstract class and an interface define a method
with same signature.

•	 When two base interfaces have abstract methods with the same signature, it does not
really cause the “diamond problem” because they are method declarations and not
definitions (as in the case prior to Java 8).

•	 Interfaces can only define methods and not fields (they can only contain constants).
Hence, the diamond problem does not occur for fields in interfaces; it occurs only for
method definitions.

Figure 3-2.  Diamond hierarchy in java.nio.channels package

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

78

Fortunately, rules are available to resolve methods when a derived type inherits method definitions
with the same name from different base types. Let us discuss two important scenarios here.

Scenario 1: If two super interfaces define methods with the same signature, the compiler will issue an
error. We have to resolve the conflict manually (Listing 3-9).

Listing 3-9.  Diamond.java

interface Interface1 {
 default public void foo() { System.out.println("Interface1's foo"); }
}
 
interface Interface2 {
 default public void foo() { System.out.println("Interface2's foo"); }
}
 
public class Diamond implements Interface1, Interface2 {
 public static void main(String []args) {
 new Diamond().foo();
 }
}
 
Error:(9, 8) java: class Diamond inherits unrelated defaults for foo() from types Interface1
and Interface2

In this case, resolve the conflict manually by using the super keyword within the Diamond class to
explicitly mention which method definition to use:

public void foo() { Interface1.super.foo(); }

After this method definition is added in the Diamond class and executed, this program prints:

Interface1's foo

Scenario 2: If a base class and a base interface define methods with the same signature, the method
definition in the class is used and the interface definition is ignored (Listing 3-10).

Listing 3-10.  Diamond.java

class BaseClass {
 public void foo() { System.out.println("BaseClass's foo"); }
}
 
interface BaseInterface {
 default public void foo() { System.out.println("BaseInterface's foo"); }
}
 
public class Diamond extends BaseClass implements BaseInterface {
 public static void main(String []args) {
 new Diamond().foo();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

79

No compiler error in this case: the compiler resolves to the definition in the class and the interface
definition is ignored. This program prints “Base foo”. This can be considered as “class wins” rule. This rule
helps maintain compatibility with versions prior to Java 8. How? When a new default method is added in
an interface, it may happen to have the same signature as a method defined in a base class. By resolving the
conflict by “class wins” rule, the method from the base class will always be selected.

Functional Interfaces

There are numerous interfaces in Java library that declare a single abstract method; few such interfaces are:

// in java.lang package
interface Runnable { void run(); }
 
// in java.util package
interface Comparator<T> { boolean compare(T x, T y); }
 
// java.awt.event package:
interface ActionListener { void actionPerformed(ActionEvent e); }
 
// java.io package
interface FileFilter { boolean accept(File pathName); }

Java 8 has introduced the concept of “functional interfaces” that formalizes this idea. A functional
interface specifies only one abstract method. Since functional interfaces specify only one abstract method,
they are sometimes known as Single Abstract Method (SAM) type or interface.

Note: Functional interfaces can take generic parameters, as in the Comparator<T> and Callable<T>
interfaces in the above examples. We cover generics in the next chapter (Chapter 4).

 A declaration of a functional interface results in a “functional interface type” that can be used with
lambda expressions. Further, functional interfaces are extensively used in java.util.function and
java.util.stream packages that were introduced in Java 8. Given the importance of this topic, you can
expect many questions related to functional interfaces in your OCPJP 8 exam.

For an interface to be treated as a functional interface, it should have only one abstract method.
However, it may have any number of default or static methods defined in it. Let us see a couple of examples
from the Java library to understand this.

Here is the definition of java.util.function.IntConsumer interface (without annotations and javadoc
comments):

public interface IntConsumer {
 void accept(int value);
 default IntConsumer andThen(IntConsumer after) {
 Objects.requireNonNull(after);
 return (int t) -> { accept(t); after.accept(t); };
 }
}

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_4
http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

80

Though this interface has two members, andThen method is a default method and only accept method
is an abstract method. Hence, IntConsumer interface is a functional interface.

To give another example, java.util.function.Predicate is a functional interface because it has only
one abstract method:

boolean test(T t)

But it is important to note that Predicate also has the following default method definitions:

default Predicate<T> and(Predicate<? super T> other)
default Predicate<T> negate()
default Predicate<T> or(Predicate<? super T> other)

Further, it also has the definition of a static method isEqual:

static <T> Predicate<T> isEqual(Object targetRef)

Given all these method definitions, Predicate is still a functional interface because it has only one
abstract method test.

@FunctionalInterface annotation

The Java compiler infers any interface with a single abstract method to be a functional interface. However,
you can tag functional interface with @FunctionalInterface annotation to affirm that. It is a recommended
practice to provide @FunctionalInterface to functional interfaces because the compiler can give better
errors/warnings when you have this annotation.

Here is an example of using @FunctionalInterface that has one abstract method, so it will compile
cleanly:

@FunctionalInterface
public abstract class AnnotationTest {
 abstract int foo();
}

How about this one?

@FunctionalInterface
public interface AnnotationTest {
 default int foo() {};
}

It results in a compiler error “no abstract method found in interface” because it only has a default
method provided but does not have any abstract methods. How about this one?

@FunctionalInterface
public interface AnnotationTest { /* no methods provided */ }

This interface does not have any methods. Since it lacks an abstract method, but is annotated with
@FunctionalInterface, it results in a compiler error.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

81

Here is another variation:

@FunctionalInterface
public interface AnnotationTest {
 int foo();
 int bar();
}

This code also results in a compiler error “multiple non-overriding abstract methods found” because
it has more than one abstract method when a functional interface requires providing exactly one abstract
method.

Methods from Object Class in Functional Interfaces

According to Java Language Specification (version 8.0), “interfaces do not inherit from Object, but rather
implicitly declare many of the same methods as Object.” If you provide an abstract method from Object
class in the interface, it still remains a functional interface.

For example, consider the Comparator interface that declares two abstract methods:

@FunctionalInterface
public interface Comparator<T> {
 int compare(T o1, T o2);
 boolean equals(Object obj);
 // other methods are default methods or static methods and are elided
}

This interface is a functional interface though it declares two abstract methods: compare() and
equals() methods. How is it a functional interface when it has two abstract methods? Because
equals() method signature matches from Object, and the compare() method is the only remaining
abstract method, and hence the Comparator interface is a functional interface.

How about this interface definition?

@FunctionalInterface
interface EqualsInterface {
 boolean equals(Object obj);
}

The compiler gives the error: “EqualsInterface is not a functional interface: no abstract
method found in interface EqualsInterface”. Why? Since the method equals is from Object, it is
not considered as a functional interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

82

Points to Remember
Here are some key points about functional interfaces that will help you in the OCPJP 8 exam:

•	 Annotate functional interfaces with @FunctionalInterface. Without that, if the
functional interface is improper (e.g., it has two abstract methods), the compiler will
not issue any errors.

•	 You can use the @FunctionalInterface annotation only for interfaces and not for
classes, enums, and so on.

•	 A derived interface can be a functional interface if it has only one abstract method or
inherits only one abstract method.

•	 For a functional interface, declaring methods from Object class in an interface does
not count as an abstract method.

Lambda Functions
Certification Objectives

Create and use Lambda expressions

One of the major new language features in Java 8 is lambda function. In fact, it is one of the biggest
changes since Java 1 release. Lambdas are widely used in the programming language world including the
languages that compile to the Java platform. For instance, Groovy language compiles to the Java platform
and has a very good support for lambda functions (also known as closures). Oracle decided to bring lambdas
to the mainstream language on the JVM—the Java language itself—with Java 8.

Lambda Function Related Changes in Java 8

Introduction of lambdas required coordinated changes in the language, library, and the VM
implementation:

•	 The arrow operator (“->”) for defining lambda functions, the double colon operator
(“::”) used for method references, and the default keyword

•	 The streams library and the integration of the collections library with streams

•	 Lambda functions are implemented using the invokedynamic instruction introduced
in Java 7

To support introduction of lambdas into the language, the type inference has also been strengthened in
Java 8. Lambdas enabled library writers to create parallel algorithms in the library to exploit inherent
parallelism in the modern hardware (i.e., multi cores).

In Java 8, java.util has been considerably enhanced using lambda functions, which we discuss in the
next chapter (Chapter 4). Java 8 has added two new packages java.util.function and java.util.
streams. We will discuss types in java.util.function in Chapter 5 and java.util.streams (known
as Stream API) in Chapter 6.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_4
http://dx.doi.org/10.1007/978-1-4842-1836-5_5
http://dx.doi.org/10.1007/978-1-4842-1836-5_6
http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

83

Lambdas can significantly change the way you design and write code. Why? Lambdas support
functional programming paradigm—that means learning and using lambdas would mean a paradigm
shift to you. But you don’t need to worry about making a major shift—Java seamlessly integrates functional
capabilities with the existing object oriented features and you can gradually shift to using more and more
functional features in your programs.

In functional programming paradigm, lambda functions can be stored in variables, passed as
arguments to other functions, or returned from other functions just like primitive types and reference
variables. Since “lambda functions” are pieces of code that can be passed around, you can consider that
the functional paradigm supports “code-as-data.” The ability to pass around “executable code segments”
enhances the expressive power of Java.

Lambda Functions: Syntax
A lambda function consistss of optional parameters, the arrow token, and the body:

LambdaParameters -> LambdaBody

•	 LambdaParameters are parameters to the lambda function are passed within opening
parenthesis “(“ and closing parenthesis ”)”. When more than one parameter is
passed, they are separated by commas.

•	 The arrow operator. To support lambdas, Java has introduced a new operator “->”,
also known as lambda operator or arrow operator. This arrow operator is required
because we need to syntactically separate the parameter from the body.

•	 LambdaBody can be an expression or a block. The body could consist of single
statement (in that case no explicit curly braces defining a block are required); such
a lambda body is known as "expression lambda." If there are many statements in a
lambda body, they need to be in a block of code; such a lambda body is known as
“block lambda.”

Compiler performs type inference for lambda expressions:

•	 The compiler infers the type of the parameters if you do not specify the type
parameters in a lambda function definition. When you specify the type of
parameters, you need to specify all or none; or else you will get a compiler error.

•	 You can omit the parenthesis if there is only one parameter. But in this case, you
cannot provide the type explicitly. You should leave it to the compiler to infer the
type of that single parameter.

•	 The return type of the lambda function is inferred from the body. If any of the code in
the lambda returns a value, then all the paths should return a value; or else you will
get a compiler error.

Some examples of valid lambda expressions (assuming that relevant functional interfaces are available):

•	 (int x) -> x + x

•	 x -> x % x

•	 () -> 7

•	 (int arg1, int arg2) -> (arg1 + arg2) / (arg1 – arg2)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

84

Examples of invalid lambda expressions:

•	 -> 7

// if no parameters, then empty parenthesis () must be provided

•	 (arg1, int arg2) -> arg1 / arg2

// if argument types are provided, then it should be should be provided
// for all the arguments, or none of them

Lambda Function—An Example
Let us get started with a simple “hello world” example for lambda functions (Listing 3-11).

Listing 3-11.  FirstLambda.java

interface LambdaFunction {
 void call();
}
 
class FirstLambda {
 public static void main(String []args) {
 LambdaFunction lambdaFunction = () -> System.out.println("Hello world");
 lambdaFunction.call();
 }
}

When executed, this program prints

Hello world

In this program, the interface LambdaFunction declares an abstract method named call(); hence it
is a functional interface. Inside the main method in FirstLambda class, a lambda function is assigned to a
variable of the functional interface type LambdaFunction.

LambdaFunction lambdaFunction = () -> System.out.println("Hello world");

Here, the expression () -> System.out.println("Hello world") is a lambda expression:

•	 The syntax () indicates no parameters.

•	 The arrow operator "->" separates method parameters from the lambda body.

•	 The statement System.out.println("Hello world") is the body of the lambda
expression.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

85

How does the lambda expression relate to the functional interface LambdaFunction? It is through the
single abstract method inside the LambdaFunction interface: void call(). The signature of this abstract
method and the lambda expression must match:

•	 The lambda expression has () indicating it has no parameters—it matches with the
call method that takes no parameters.

•	 The statement System.out.println("Hello world") is the body of the lambda
expression. This body serves as an implementation of the lambda function.

•	 There is no return statement in this lambda expression body and hence the compiler
infers the return type of this expression as void type—that matches with the return
type of the call method.

The next statement lambdaFunction.call(); invokes the lambda function. As a result of this function
call, “Hello world” is printed on the console.

Why should the function type of the lambda function match that of the abstract method in the given
functional interface? It is for type checking. If the types don’t match, you will get a compiler error, as in:

LambdaFunction lambdaFunction = (int i) -> System.out.println("Hello world");

Because this lambda expression has an integer argument but the call() method in LambdaFunction
does not take any arguments, the compiler gives an error: “incompatible types: incompatible parameter
types in lambda expression".

Block Lambdas

A block lambda is enclosed within a code block within “{“ and ”}”, as in:

LambdaFunction lambdaFunction = (int i) -> { System.out.println("Hello world"); }

Block lambdas are useful when you want to provide more than one statement in the lambda body
(in a lambda expression, you can have only one statement). Further, in a block lambda, you can provide an
explicit return statement (see Listing 3-12).

Listing 3-12.  BlockLambda.java

class BlockLambda {
 interface LambdaFunction {
 String intKind(int a);
 }
 public static void main(String []args) {
 LambdaFunction lambdaFunction =
 (int i) -> {
 if((i % 2) == 0) return "even";
 else return "odd";
 };
 System.out.println(lambdaFunction.intKind(10));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

86

It prints:

even

In this code, we have defined a block lambda. We are returning a String from this lambda block and we
are using explicit return statements. When defining block lambdas, we should ensure that return statements
are provided for all the paths, as in this case (otherwise, you will get a compiler error). The return statements
should match with the return type for the abstract method defined in the corresponding functional interface
(in this case, it is String return type for intKind function in the LambdaFunction interface).

Anonymous Inner Classes vs. Lambda Expressions

Prior to Java 8, as Java programmers we are used to writing anonymous inner classes. Listing 3-13 is
equivalent to the earlier program (Listing 3-11) except that it uses anonymous inner classes instead of
lambda functions.

Listing 3-13.  AnonymousInnerClass.java

interface Function {
 void call();
}
 
class AnonymousInnerClass {
 public static void main(String []args) {
 Function function = new Function() {
 public void call() {
 System.out.println("Hello world");
 }
 };
 function.call();
 }
}

The functionality is the same in Listing 3-11 and Listing 3-12, but using anonymous inner classes results
in verbose code whereas lambda expressions are concise.

 One way to think about lambdas is “anonymous function” or “unnamed function”: they are functions
without a name and are not associated with any class. Specifically, they are NOT static or instance members of
the class in which they are defined. If you use this keyword inside a lambda function, it refers to the object in
the scope in which the lambda is defined.

Effectively Final Variables

Lambda functions can refer to local variables from the enclosing scope. The variable needs to be explicitly
declared final or that variable will be treated as effectively final. Effectively final means that the compiler treats
the variable as a final variable and will issue an error if we try to modify it within the lambda function or in the
rest of the function. This behavior of lambdas is similar to accessing variables in outer scope from local and
anonymous classes. The variables they access are also considered effectively final (as we discussed earlier).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

87

Here is an example. Have you heard of “Pig Latin”? It is a game that children play by changing the words
or adding suffixes to create words to create strange sounding words. In this example, let us simply add the
suffix “ay” to a word (Listing 3-14).

Listing 3-14.  PigLatin.java

interface SuffixFunction {
 void call();
}
 
class PigLatin {
 public static void main(String []args) {
 String word = "hello";
 SuffixFunction suffixFunc = () -> System.out.println(word + "ay");
 suffixFunc.call();
 }
}

This program prints:

helloay

Inside the lambda expression, we are using the local variable word. Because it is used in a lambda
expression, this variable is considered to be final (though it is not explicitly declared final). Try this code
that has an additional statement that assigns to suffix (even before calling the lambda function):

String word = "hello";
SuffixFunction suffixFunc = () -> System.out.println(word + "ay");
word = "e";
suffixFunc.call();

The compiler issues an error for this code segment:

PigLatin.java:11: error: local variables referenced from a lambda expression must be final
or effectively final
 SuffixFunction suffixFunc = () -> System.out.println(word + "ay");
 ^
1 error

This is because suffix is assigned to “e” after it is initialized and hence the compiler cannot treat it as a
final variable.

Why is that local variables are considered effectively final when they are accessed in lambda
expressions? The reason is that such mutation is not thread safe.

Note that this restriction does not apply to data members and class members. Hence you may be at risk
when multiple threads concurrently modify variables within a lambda expression. Further, effectively final
applies only to the references and not to the values pointed by the references. Hence, you can mutate the
values inside a local array from a lambda function—it is unsafe but possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

88

Points to Remember
Here are some key points about lambda functions that will help you in the OCPJP 8 exam:

•	 Lambda expressions can occur only in the contexts where assignment, function calls,
or casts can occur.

•	 A lambda function is treated as a nested block. Hence, just like a nested block, we
cannot declare a variable with the same name as a local variable in the enclosing
block.

•	 Lambda functions must return values from all the branches—otherwise it will result
in a compiler error.

•	 When argument types are declared, the lambda is known as “explicitly typed”; if they
are inferred, it is “implicitly typed.”

•	 What happens if a lambda expression throws an exception? If it is a checked
exception, then the method in the functional interface should declare that;
otherwise it will result in a compiler error.

Summary
Let us briefly review the key points for each certification objective in this chapter. Please read it before
appearing for the exam.

Develop code that uses abstract classes and methods

•	 An abstraction specifying functionality supported without disclosing finer level
details.

•	 You cannot create instances of an abstract class.

•	 Abstract classes enable runtime polymorphism, and runtime polymorphism in turn
enables loose coupling.

Develop code that uses a final keyword

•	 A final class is a non-inheritable class (i.e., you cannot inherit from a final class).

•	 A final method is a non-overridable method (i.e., subclasses cannot override a final
method).

•	 All methods of a final class are implicitly final (i.e., non-overridable).

•	 A final variable can be assigned only once.

Create inner classes including static inner class, local class, nested class, and anonymous inner
class

•	 Java supports four types of nested classes: static nested classes, inner classes, local
inner classes, and anonymous inner classes.

•	 Static nested classes may have static members, whereas the other flavors of nested
classes can’t.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

89

•	 Static nested classes and inner classes can access members of an outer class (even
private members). However, static nested classes can access only static members of
outer classes.

•	 Local classes (both local inner classes and anonymous inner classes) can access all
variables declared in the outer scope (whether a method, constructor, or a statement
block).

Use enumerated types including methods, and constructors in an enum type

•	 Enums are a typesafe way to achieve restricted input from users.

•	 You cannot use new with enums, even inside the enum definition.

•	 Enum classes are by default final classes.

•	 All enum classes are implicitly derived from java.lang.Enum.

Develop code that declares, implements, and/or extends interfaces and use the atOverride
annotation

•	 An interface can have three kinds of methods: abstract methods, default methods,
and static methods.

•	 The “diamond problem” occurs when a derived type inherits two method definitions
in the base types that have the same signature.

•	 If two super interfaces have the same method name and one of them has a
definition, the compiler will issue an error; this conflict has to be resolved
manually.

•	 If a base class and a base interface define methods with the same signature, the
method definition in the class is used and the interface definition is ignored.

•	 A functional interface consists of exactly one abstract method but can contain any
number of default or static methods.

•	 A declaration of a functional interface results in a “functional interface type” that can
be used with lambda expressions.

•	 For a functional interface, declaring methods from Object class in an interface does
not count as an abstract method.

Create and use Lambda expressions

•	 In a lambda expression, the left side of the -> provides the parameters; the right
side, the body. The arrow operator (“->”) helps in concise expressions of lambda
functions.

•	 You can create a reference to a functional interface and assign a lambda expression
to it. If you invoke the abstract method from that interface, it will call the assigned
lambda expression.

•	 Compiler can perform type inferences of lambda parameters if omitted. When
declared, parameters can have modifiers such as final.

•	 Variables accessed by a lambda function are considered to be effectively final.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

90

Question Time

1.	 Which ONE of the following statements is TRUE?

A.	 You cannot extend a concrete class and declare that derived class abstract

B.	 You cannot extend an abstract class from another abstract class

C.	A n abstract class must declare at least one abstract method in it

D.	 You can create an instance of a concrete subclass of an abstract class but
cannot create an instance of an abstract class itself

2.	 Choose the correct answer based on the following class definition:

public abstract final class Shape { }

A.	 Compiler error: a class must not be empty

B.	 Compiler error: illegal combination of modifiers abstract and final

C.	 Compiler error: an abstract class must declare at least one abstract method

D.	N o compiler error: this class definition is fine and will compile successfully

3.	 Choose the best option based on this program:

class Shape {
 public Shape() {
 System.out.println("Shape constructor");
 }
 public class Color {
 public Color() {
 System.out.println("Color constructor");
 }
 }
}
 
class TestColor {
 public static void main(String []args) {
 Shape.Color black = new Shape().Color(); // #1
 }
}

A.	 Compiler error: the method Color() is undefined for the type Shape

B.	 Compiler error: invalid inner class

C.	 Works fine: Shape constructor, Color constructor

D.	 Works fine: Color constructor, Shape constructor

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

91

4.	 Choose the best option based on this program:

class Shape {
 private boolean isDisplayed;
 protected int canvasID;
 public Shape() {
 isDisplayed = false;
 canvasID = 0;
 }
 public class Color {
 public void display() {
 System.out.println("isDisplayed: "+isDisplayed);
 System.out.println("canvasID: "+canvasID);
 }
 }
}
 
class TestColor {
 public static void main(String []args) {
 Shape.Color black = new Shape().new Color();
 black.display();
 }
}

A.	 Compiler error: an inner class can only access public members of the
outer class

B.	 Compiler error: an inner class cannot access private members of the outer
class

C.	R uns and prints this output:

D.	 isDisplayed: false

E.	 canvasID: 0

F.	 Compiles fine but crashes with a runtime exception

5.	 Determine the behavior of this program:

public class EnumTest {
 PrinterType printerType;
 
 enum PrinterType {INKJET, DOTMATRIX, LASER};
 public EnumTest(PrinterType pType) {
 printerType = pType;
 }
 
 public static void main(String[] args) {
 PrinterType pType = new PrinterType();
 EnumTest enumTest = new EnumTest(PrinterType.LASER);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

92

A.	P rints the output printerType:LASER

B.	 Compiler error: enums must be declared static

C.	 Compiler error: cannot instantiate the type EnumTest.PrinterType

D.	T his program will compile fine, and when run, will crash and throw a runtime
exception

6.	 Is the enum definition given below correct?

public enum PrinterType {
 private int pagePrintCapacity; // #1
 DOTMATRIX(5), INKJET(10), LASER(50); // #2
 
 private PrinterType(int pagePrintCapacity) {
 this.pagePrintCapacity = pagePrintCapacity;
 }
 
 public int getPrintPageCapacity() {
 return pagePrintCapacity;
 }
}

A.	 Yes, this enum definition is correct and will compile cleanly without any
warnings or errors

B.	N o, this enum definition is incorrect and will result in compile error(s)

C.	N o, this enum definition will result in runtime exception(s)

Yes, this enum definition is correct but will compile with warnings.

7.	 Determine the behavior of this program:

interface DoNothing {
 default void doNothing() { System.out.println("doNothing"); }
}
 
@FunctionalInterface
interface DontDoAnything extends DoNothing {
 @Override
 abstract void doNothing();
}
 
class LambdaTest {
 public static void main(String []args) {
 DontDoAnything beIdle = () -> System.out.println("be idle");
 beIdle.doNothing();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

93

A.	T his program results in a compiler error for DontDoAnything interface: cannot
override default method to be an abstract method

B.	T his program results in a compiler error: DontDoAnything is not a functional
interface

C.	T his program prints: doNothing

D.	T his program prints: be idle

8.	 Determine the behavior of this program:

public class EnumTest {
 public EnumTest() {
 System.out.println("In EnumTest constructor ");
 }
 public void printType() {
 enum PrinterType { DOTMATRIX, INKJET, LASER }
 }
}

A.	T his code will compile cleanly without any compiler warnings or errors, and
when used, will run without any problems

B.	T his code will compile cleanly without any compiler warnings or errors, and
when used, will generate a runtime exception

C.	T his code will produce a compiler error: enum types must not be local

D.	T his code will give compile-time warnings but not any compiler errors

9.	 Determine the behavior of this program:

interface BaseInterface {
 default void foo() { System.out.println("BaseInterface's foo"); }
}
 
interface DerivedInterface extends BaseInterface {
 default void foo() { System.out.println("DerivedInterface's foo"); }
}
 
interface AnotherInterface {
 public static void foo() { System.out.println("AnotherInterface's foo"); }
}
 
public class MultipleInheritance implements DerivedInterface, AnotherInterface {
 public static void main(String []args) {
 new MultipleInheritance().foo();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

94

A.	T his program will result in a compiler error: Redundant method definition for
function foo

B.	T his program will result in a compiler error in MultipleInheritance class:
Ambiguous call to function foo

C.	T he program prints: DerivedInterface’s foo

D.	T he program prints: AnotherInterface's foo

10.	 Determine the behavior of this program:

class LambdaFunctionTest {
 @FunctionalInterface
 interface LambdaFunction {
 int apply(int j);
 boolean equals(java.lang.Object arg0);
 }
 
 public static void main(String []args) {
 LambdaFunction lambdaFunction = i -> i * i; // #1
 System.out.println(lambdaFunction.apply(10));
 }
}

A.	T his program results in a compiler error: interfaces cannot be defined inside
classes

B.	T his program results in a compiler error: @FunctionalInterface used for
LambdaFunction that defines two abstract methods

C.	T his program results in a compiler error in code marked with #1: syntax error

D.	T his program compiles without errors, and when run, it prints 100 in console

Answers:

1.	 D. You can create an instance of a concrete subclass of an abstract class but
cannot create an instance of an abstract class itself

2.	 B. Compiler error: illegal combination of modifiers abstract and final

You cannot declare an abstract class final since an abstract class must to be extended.
Class can be empty in Java, including abstract classes. An abstract class can declare
zero or more abstract methods.

3.	 A. Compiler error: The method Color() is undefined for the type Shape

You need to create an instance of outer class Shape in order to create an inner class
instance, as in new Shape().new Color();.

4.	 C. Runs and prints this output:

isDisplayed: false

canvasID: 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3 ■ Advanced Class Design

95

An inner class can access all members of an outer class, including the private members
of the outer class.

5.	 C. Compiler error: cannot instantiate the type EnumTest.PrinterType

You cannot instantiate an enum type using new.

6.	 B. No, this enum definition is incorrect and will result in compile error(s)

You need to define enum elements first before any other attribute in an enum class. In
other words, this enum definition will compile cleanly if you interchange the statements
marked with “#1” and “#2” within comments in this code.

7.	 D. This program prints: be idle

A default method can be overridden in a derived interface and can be made abstract.
DoNothing is a functional interface because it has an abstract method. The call beIdle.
doNothing() calls the System.out.println given inside the lambda expression and hence
it prints “be idle” on the console.

8.	 C. It will produce a compiler error: enum types must not be local

An enum can only be defined inside of a top-level class or interface and not within a
method.

9.	 C. The program prints: DerivedInterface’s foo

A default method can be overridden. Since DerivedInterface extends BaseInterface, the
default method definition for foo is overridden in the DerivedInterface. Static methods
do not cause conflicting definition of foo since they are not overridden, and they are
accessed using the interface name, as in AnotherInterface.foo. Hence, the program
compiles without errors. In the main method within MultipleInheritance class, the
overridden foo method is invoked and hence the call resolves to foo method defined in
DerivedInterface.

10.	 D. This program compiles without errors, and when run, it prints 100 in console

An interface can be defined inside a class. The signature of the equals method matches
that of the equal method in Object class; hence it is not counted as an abstract
method in the functional interface. It is acceptable to omit the parameter type when
there is only one parameter and the parameter and return type are inferred from the
LambdaFunction abstract method declaration int apply(int j). Since the lambda function
is passed with the value 10, the returned value is 10 * 10, and hence 100 is printed in
console.

www.it-ebooks.info

http://www.it-ebooks.info/

97

Chapter 4

Generics and Collections

Certification Objectives

Create and use a generic class

Create and use ArrayList, TreeSet, TreeMap, and ArrayDeque objects

Use java.util.Comparator and java.lang.Comparable interfaces

Collections Streams and Filters

Iterate using forEach methods of Streams and List

Describe Stream interface and Stream pipeline

Filter a collection by using lambda expressions

Use method references with Streams

Every non-trivial Java application makes use of data structures and algorithms. The Java collection’s
framework provides a large set of readily usable general-purpose data structures and algorithms. These data
structures and algorithms can be used with any suitable data type in a type-safe manner; this is achieved
through the use of a language feature known as generics.

Collections in Java implement data structures and algorithms are implemented using generics and
lambda functions. Hence, these topics are combined together as a single topic in the 1Z0-809 exam syllabus.
In this chapter, we start with discussing generics. Since our experience shows that it is often tricky to
correctly answer questions on generics, we cover generics in detail. Following that we discuss important
collections and also discuss java.lang.Comparator and java.lang.Comparable interfaces. Finally we cover
in detail how lambda functions and streams can be used within the Java collections framework. You can
expect numerous questions in your OCPJP 8 exam on generics, collections, and streams, so this chapter
provides detailed coverage of the exam topics.

Creating and Using Generic Classes
Certification Objective

Create and use a generic class

Generics are a language feature introduced to Java in version 1.5. Before generics were introduced in
Java, the Object base class was used as an alternative to generics. With generics, you write code for one type
(say T) that is applicable for all types, instead of writing separate classes for each type. Let us start with a
simple example.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

98

Assume that you want to print the object’s value within square brackets. For example, to print an
Integer object with value 10, instead of printing “10” to the console, you want to print the value inside a
“box” like this: “[10]”. Listing 4-1 contains a generic version of the BoxPrinter class.

Listing 4-1.  BoxPrinterTest.java

// This program shows container implementation using generics
class BoxPrinter<T> {
 private T val;
 public BoxPrinter(T arg) {
 val = arg;
 }
 public String toString() {
 return "[" + val + "]";
 }
}
  
class BoxPrinterTest {
 public static void main(String []args) {
 BoxPrinter<Integer> value1 = new BoxPrinter<Integer>(new Integer(10));
 System.out.println(value1);
  
 BoxPrinter<String> value2 = new BoxPrinter<String>("Hello world");
 System.out.println(value2);
 }
}

It prints the following:

[10]
[Hello world]

There are many things you need to note here.

	 1.	 See the declaration of BoxPrinter:

class BoxPrinter<T>

You gave the BoxPrinter class a type placeholder <T>—the type name T within angle brackets “<” and
“>” following the class name. You can use this type name inside the class to indicate that it is a placeholder
for the actual type to be provided later.

	 2.	 Inside the class you first use T in field declaration:

private T val;

You are declaring val of the generic type—the actual type will be specified later when you use
BoxPrinter. In main(), you declare a variable of type BoxPrinter for an Integer like this:

BoxPrinter<Integer> value1

Here, you are specifying that T is of type Integer—identifier T (a placeholder) is replaced with the type
Integer. So, the val inside BoxPrinter becomes Integer because T gets replaced with Integer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

99

	 3.	 Now, here is another place where you use T:

public BoxPrinter(T arg) {
 val = arg;
}

Similar to the declaration of val with type T, you are saying that the argument for BoxPrinter
constructor is of type T. Later in the main() method, when the constructor is called in new, you specify that T
is of type Integer:

new BoxPrinter<Integer>(new Integer(10));

Now, inside the BoxPrinter constructor, arg and val should be of the same type since both are of type T.
For example, if you change the constructor as follows:

new BoxPrinter<String>(new Integer(10));

The BoxPrinter is of type String, and the argument passed is of type Integer, so you’ll get a compiler
error for type mismatch in using the generics (which is good because you’ll find the problem earlier).

Let us consider another example. Here is a Pair generic class that can hold objects of two different
types, T1 and T2 (Listing 4-2).

Listing 4-2.  PairTest.java

// It demonstrates the usage of generics in defining classes
class Pair<T1, T2> {
 T1 object1;
 T2 object2;
 Pair(T1 one, T2 two) {
 object1 = one;
 object2 = two;
 }
 public T1 getFirst() {
 return object1;
 }
 public T2 getSecond() {
 return object2;
 }
}
  
class PairTest {
 public static void main(String []args) {
 Pair<Integer, String> worldCup = new Pair<Integer, String>(2018, "Russia");
 System.out.println("World cup " + worldCup.getFirst() +
 " in " + worldCup.getSecond());
 }
}

This program prints the following:

World cup 2018 in Russia

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

100

Here T1 and T2 are type holders. You give these type placeholders inside angle brackets: <T1, T2>.
When using the Pair class, you must specify which specific types you are going to use in place of T1 and T2.
For example, you use Integer and String for Pair, as in Pair<Integer, String> in the main() method.
Now, think of the Pair class as if it has this body:

// how Pair<Integer, String> can be treated internally
class Pair {
 Integer object1;
 String object2;
 Pair(Integer one, String two) {
 object1 = one;
 object2 = two;
 }
 
 public Integer getFirst() {
 return object1;
 }
  
 public String getSecond() {
 return object2;
 }
}

In other words, try manually doing a find-and-replace for the type placeholders and replace them
with actual types in the code. This will help you understand how generics actually work. With this, you can
understand how the getFirst() and getSecond() methods return Integer and String values in the main()
method.

In the statement

Pair<Integer, String> worldCup = new Pair<Integer, String>(2018, "Russia");

note that the types match exactly. If you try

Pair<Integer, String> worldCup = new Pair<String, String>(2018, "Russia");

you’ll get the following compiler error:

TestPair.java:20: cannot find symbol
symbol : constructor Pair(int,java.lang.String)
location: class Pair<java.lang.String,java.lang.String>

Now, how about trying this statement?

Pair<Integer, String> worldCup = new Pair<Number, String>(2018, "Russia");

You’ll get another compiler error because of the type mismatch in the declared type of worldCup and the
type given in the initialization expression:

TestPair.java:20: incompatible types
found : Pair<java.lang.Number,java.lang.String>
required: Pair<java.lang.Integer,java.lang.String>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

101

Now modify the generic Pair class. Pair<T1, T2> stores objects of type T1 and T2. How about a
generic pair class that takes a type T and stores two objects of that type T? Obviously, one way to do that is
to instantiate Pair<T1, T2> with same type, say Pair<String, String>, but it is not a good solution. Why?
There is no way to ensure that you are instantiating the Pair with the same types! Listing 4-3 is a modified
version of Pair—let’s call it PairOfT—that takes one’s type placeholder T.

Listing 4-3.  PairOfT.java

// This program shows how to use generics in your programs
class PairOfT<T> {
 T object1;
 T object2;
 
 PairOfT(T one, T two) {
 object1 = one;
 object2 = two;
 }
  
 public T getFirst() {
 return object1;
 }
  
 public T getSecond() {
 return object2;
 }
}

Now, will this statement work?

PairOfT<Integer, String> worldCup = new PairOfT<Integer, String>(2018, "Russia");

No, because PairOfT takes one type parameter and you have given two type parameters here. So, you’ll
get a compiler error. So, how about this statement?

PairOfT<String> worldCup = new PairOfT<String>(2018, "Russia");

No, you still get a compiler error:

TestPair.java:20: cannot find symbol
symbol : constructor PairOfT(int,java.lang.String)
location: class PairOfT<java.lang.String>
 PairOfT<String> worldCup = new PairOfT<String>(2018, "Russia");

The reason is that 2018—when boxed—is an Integer and you should give a String as argument. How
about this statement?

PairOfT<String> worldCup = new PairOfT<String>("2018", "Russia");

Yes, it compiles and will work fine.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

102

Diamond Syntax
In the previous section, we discussed how to create generic type instances, as in the following statement:

Pair<Integer, String> worldCup = new Pair<Integer, String>(2018, "Russia");

We also discussed how a compiler error would result if these types don’t match, as in the following
statement, which would not compile:

Pair<Integer, String> worldCup = new Pair<String, String>(2018, "Russia");

See how tedious it is to ensure that you provide same-type parameters in both the declaration
type (Pair<Integer, String> in this case) and the new object creation expression (new Pair<String,
String>() in this case)?

To simplify your life, Java 1.7 introduced the diamond syntax, in which the type parameters may be
omitted: you can just leave it to the compiler to infer the types from the type declaration. So, the declaration
can be simplified as

Pair<Integer, String> worldCup = new Pair<>(2018, "Russia");

To make it clear, Listing 4-4 contains the full program making use of this diamond syntax.

Listing 4-4.  TestPair.java

// This program shows the usage of the diamond syntax when using generics
class Pair<T1, T2> {
 T1 object1;
 T2 object2;
 
 Pair(T1 one, T2 two) {
 object1 = one;
 object2 = two;
 }
 
 public T1 getFirst() {
 return object1;
 }
  
 public T2 getSecond() {
 return object2;
 }
}
  
class TestPair {
 public static void main(String []args) {
 Pair<Integer, String> worldCup = new Pair<>(2018, "Russia");
 System.out.println("World cup " + worldCup.getFirst() +
 " in " + worldCup.getSecond());
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

103

This program will compile cleanly and print the following statement:

World cup 2018 in Russia

Note that it is a common mistake to forget the diamond operator < > in the initialization expression, as in

Pair<Integer, String> worldCup = new Pair(2018, "Russia");

Here are the warnings you will get from the compiler (when you pass the command line option
-Xlint:unchecked to javac):

Pair.java:19: warning: [unchecked] unchecked call to Pair(T1,T2) as a member of the
raw type Pair
Pair<Integer, String> worldCup = new Pair(2018, "Russia");
 ^
 where T1,T2 are type-variables:
 T1 extends Object declared in class Pair
 T2 extends Object declared in class Pair
 
Pair.java:19: warning: [unchecked] unchecked conversion
Pair<Integer, String> worldCup = new Pair(2018, "Russia");
 ^
 required: Pair<Integer,String>
 found: Pair
2 warnings

Since Pair is a generic type and you forgot to use the <> or provide the type parameters explicitly, the
compiler treats it as a raw type with Pair taking two Object type parameters. Though this behavior did not
cause any problem in this particular code segment, it is dangerous and can cause bugs, as the next section
shows.

Interoperability of Raw Types and Generic Types
A generic type can be used without specifying its associated type. In that case, the type is referred to as
raw type. For instance, List<T> should be used along with an associated type, i.e., List<String>; however,
it can be used without specifying the accompanied type, i.e., just List. In the latter case, the List is referred
to as raw type.

When you use a raw type, you lose the advantage of type safety afforded by generics. For instance, the
type Vector is a raw type. Raw types bypass the type checking at compile time; however, they might throw
runtime exceptions (for instance, ClassCastException). Therefore, it is not recommended to use raw types
in new code.

Okay, now you understand that you should not use raw types. But, you may ask, why doesn’t the
compiler itself throw errors for such type declarations? The answer is backward compatibility. Java generics
were introduced in Java 1.5. Java supports raw types in order to make the generics-based code compatible
with legacy code. However, it is strongly recommended that you should not use raw types in your code.

Why? What will happen if you use raw types along with generics? Let’s use both types in Listing 4-5 and
examine the effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

104

Listing 4-5.  RawTest1.java

import java.util.List;
import java.util.LinkedList;
import java.util.Iterator;
 
class RawTest1 {
 public static void main(String []args) {
 List list = new LinkedList();
 list.add("First");
 list.add("Second");
 List<String> strList = list; //#1
 for(Iterator<String> itemItr = strList.iterator(); itemItr.hasNext();)
 System.out.println("Item: " + itemItr.next());
  
 List<String> strList2 = new LinkedList<>();
 strList2.add("First");
 strList2.add("Second");
 List list2 = strList2; //#2
 for(Iterator<String> itemItr = list2.iterator(); itemItr.hasNext();)
 System.out.println("Item: " + itemItr.next());
 }
}

What you expect from the above program? Do you think it will compile/execute properly? Well, yes—it
will compile (with warnings) and execute without any problem. It prints the following:

Item: First
Item: Second
Item: First
Item: Second

Listing 4-6 introduces a couple of changes; observe the output.

Listing 4-6.  RawTest2.java

import java.util.List;
import java.util.LinkedList;
import java.util.Iterator;
 
class RawTest2 {
 public static void main(String []args) {
 List list = new LinkedList();
 list.add("First");
 list.add("Second");
 List<String> strList = list;
 strList.add(10); // #1: generates compiler error
 for(Iterator<String> itemItr = strList.iterator(); itemItr.hasNext();)
 System.out.println("Item : " + itemItr.next());
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

105

 List<String> strList2 = new LinkedList<>();
 strList2.add("First");
 strList2.add("Second");
 List list2 = strList2;
 list2.add(10); // #2: compiles fine, results in runtime exception
 for(Iterator<String> itemItr = list2.iterator(); itemItr.hasNext();)
 System.out.println("Item : " + itemItr.next());
 }
}

In the above example, you added two statements. The first statement is as follows:

strList.add(10); // #1: generates compiler error

You are trying to add an integer item in a List<String> type list, so you get a compile-time error
"no suitable method found for add(int)". As discussed earlier, this type of checking at the compiler
level is good, as without it, a runtime exception might have resulted later on. Here is the second statement
you added:

list2.add(10); // #2: compiles fine, results in runtime exception

Here, the list2 linked-list (raw type) is initialized with a generic type List<String>. After the
initialization, you added an integer in the list raw type. This is allowed since list2 is a raw type. However, it
will result in a ClassCastException.

The lesson we learned from this example is to avoid mixing raw types and generic types in our
programs, since it might result in erroneous behavior at runtime. If you need to use both in a program, make
sure you add a single type of item in the containers and retrieve using the same type.

 Avoid mixing raw types with generic types.

Generic Methods
Similar to generic classes, you can create generic methods—that is, methods that take generic parameter
types. Generic methods are useful for writing methods that are applicable to a wide range of types
while the functionality remains the same. For example, there are numerous generic methods in the
java.util.Collections class.

Let’s implement a simple method named fill(). Given a container, the fill() method fills all the
container elements with value val. Listing 4-7 contains the implementation of the fill() method in the
Utilities class.

Listing 4-7.  UtilitiesTest.java

// This program demonstrates generic methods
import java.util.List;
import java.util.ArrayList;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

106

class Utilities {
 public static <T> void fill(List<T> list, T val) {
 for(int i = 0; i < list.size(); i++)
 list.set(i, val);
 }
}
 
class UtilitiesTest {
 public static void main(String []args) {
 List<Integer> intList = new ArrayList<Integer>();
 intList.add(10);
 intList.add(20);
 System.out.println("The original list is: " + intList);
 Utilities.fill(intList, 100);
 System.out.println("The list after calling Utilities.fill() is: " + intList);
 }
}

It prints the following

The original list is: [10, 20]
The list after calling Utilities.fill() is: [100, 100]

Let’s look step-by-step at this code:

	 1.	 You create a method named fill() in the Utilities class with this declaration:

public static <T> void fill(List<T> list, T val)

You declare the generic type parameter T in this method. After the qualifiers public and static, you put
<T> and then followed it by return type, method name, and its parameters. This declaration is different from
generic classes—you give the generic type parameters after the class name in generic classes.

	 2.	 In the body, you write the code as if it’s a normal method.

for(int i = 0; i < list.size(); i++)
 list.set(i, val);

You loop over the list from 0 until its size and set each of the elements to value val in each iteration.
You use the set() method in List, which takes the index position in the container as the first argument and
the actual value to be set as the second argument.

	 3.	 In the main() method in the UtilitiesTest class, this is how you call the fill()
method:

Utilities.fill(intList, 100);

Note that you didn’t give the generic type parameter value explicitly. Since intList is of type Integer
and 100 is boxed to type Integer, the compiler inferred that the type T in the fill() method is of type
Integer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

107

Generics and Subtyping
You can assign a derived type object to its base type reference; this is what you mean by subtyping. However,
for generics, the type parameters should match exactly; otherwise you’ll get a compiler error. In other words,
subtyping does not work for generic parameters. Yes, this is a difficult rule to remember, so let’s discuss in
more detail why subtyping doesn’t work for generic type parameters.

 Subtyping works for class types: you can assign a derived type object to its base type reference. However,
subtyping does not work for generic type parameters: you cannot assign a derived generic type parameter to a
base type parameter.

Let’s look at what can go wrong if you assume that you can use subtyping for generic type parameters.

// illegal code – assume that the following intialization is allowed
List<Number> intList = new ArrayList<Integer>();
intList.add(new Integer(10)); // okay
intList.add(new Float(10.0f)); // oops!

The intList of List<Number> type is supposed to hold an ArrayList<Number> object. However, you
are storing an ArrayList<Integer>. This looks reasonable since List extends ArrayList and Integer
extends Number. However, you can end up inserting a Float value in the intList! Recall that the dynamic
type of intList is the ArrayList<Integer> type—so you are violating type safety here (and thus will get the
compiler error of incompatible types). Since generics are designed to avoid type-safety mistakes like this,
you cannot assign a derived generic type parameter to a base type parameter.

As you can see, subtyping for generic parameter types is not allowed because it is unsafe—but still it
is an inconvenient limitation. Fortunately, Java supports wildcard parameter types in which you can use
subtyping. We’ll explore that capability now.

 Type parameters for generics have a limitation: generic type parameters should match exactly for
assignments. To overcome this subtyping problem, you can use wildcard types.

Wildcard Parameters
You saw in the preceding section that subtyping doesn’t work for generic type parameters. So,

List<Number> intList = new ArrayList<Integer>();

gives the compiler error

WildCardUse.java:6: incompatible types
found : java.util.ArrayList<java.lang.Integer>
required: java.util.List<java.lang.Number>
 List<Number> numList = new ArrayList<Integer>();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

108

If you slightly change the statement to use wildcard parameter, it will compile

List<?> wildCardList = new ArrayList<Integer>();

What does a wildcard mean? Just like the wildcard you use for substituting for any card in a card game
(ah, it’s so fun to play card games!), you can use a wildcard to indicate that it can match for any type. With
List<?>, you mean that it is a List of any type—in other words, you can say it is a “list of unknowns!”

But wait a minute…when you want a type indicating “any type,” you use the Object class, don’t you?
How about the same statement, but using the Object type parameter?

List<Object> numList = new ArrayList<Integer>();

No luck—you get the same error you got above using List<Number>!

WildCardUse.java:6: incompatible types
found : java.util.ArrayList<java.lang.Integer>
required: java.util.List<java.lang.Object>
 List<Object> numList = new ArrayList<Integer>();

In other words, you are still trying to use subtyping for generic parameters—and it still doesn’t work. As
you can see, List<Object> is not the same as List<?>. In fact, List<?> is a supertype of any List type, which
means you can pass List<Integer>, or List<String>, or even List<Object> where List<?> is expected.

Let’s use the wildcard in an example and see whether it’ll work (see Listing 4-8).

Listing 4-8.  WildCardUse.java

// This program demonstrates the usage of wild card parameters
 
import java.util.List;
import java.util.ArrayList;
 
class WildCardUse {
 static void printList(List<?> list){
 for(Object element: list)
 System.out.println("[" + element + "]");
 }
 
 public static void main(String []args) {
 List<Integer> list = new ArrayList<>();
 list.add(10);
 list.add(100);
 printList(list);
 List<String> strList = new ArrayList<>();
 strList.add("10");
 strList.add("100");
 printList(strList);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

109

This program prints the following:

[10]
[100]
[10]
[100]

Well, it works, and the list using wildcard can be passed list of integers as well as list of strings. This
happens because of the parameter type of printList() method—List<?>. That’s great!

Limitations of Wildcards
Let’s consider the following snippet, which tries to add an element and print the list:

List<?> wildCardList = new ArrayList<Integer>();
wildCardList.add(new Integer(10));
System.out.println(wildCardList);

You get the following compiler error:

WildCardUse.java:7: cannot find symbol
symbol : method add(java.lang.Integer)
location: interface java.util.List<capture#145 of ? extends java.lang.Number>
 wildCardList.add(new Integer(10));

Why? You are absolutely sure that the add() method exists in the List interface. Then why doesn’t the
compiler find the method?

The problem requires some detailed explanation. When you use wildcard type <?>, you say to the
compiler that you are ignoring the type information, so <?> stands for unknown type. Every time you try to
pass arguments to a generic type, the java compiler tries to infer the type of the passed argument as well
as the type of the generics and to justify the type safety. Now, you are trying to use the add() method to
insert an element in the list. Since wildCardList doesn’t know which type of objects it holds, it is risky to
add elements to it. You might end up adding a string—“hello”, for example—instead of an integer value. To
avoid this problem (remember, generics was introduced in the language to ensure type safety!), the compiler
doesn’t allow you to call methods that modify the object. Since the add method modifies the object, you get
an error! The error message also looks confusing, as in <capture#145 of ? extends java.lang.Number>.

 In general, when you use wildcard parameters, you cannot call methods that modify the object. If you
try to modify, the compiler will give you confusing error messages. However, you can call methods that access
the object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

110

Points to Remember
Here are some pointers that might prove valuable in your OCPJP 8 exam:

•	 It’s possible to define or declare generic methods in an interface or a class even if the
class or the interface itself is not generic.

•	 A generic class used without type arguments is known as a raw type. Of course, raw
types are not type safe. Java supports raw types so that it is possible to use the generic
type in code that is older than Java 5 (note that generics were introduced in Java 5).
The compiler generates a warning when you use raw types in your code. You may
use @SuppressWarnings({ "unchecked" }) to suppress the warning associated with
raw types.

•	 List<?> is a supertype of any List type, which means you can pass List<Integer>,
or List<String>, or even List<Object> where List<?> is expected.

•	 Implementation of generics is static in nature, which means that the Java compiler
interprets the generics specified in the source code and replaces the generic code
with concrete types. This is referred to as type erasure. After compilation, the code
looks similar to what a developer would have written with concrete types. Essentially,
the use of generics offers two advantages: first, it introduces an abstraction, which
enables you to write generic implementation; second, it allows you to write generic
implementation with type safety.

•	 There are many limitations of generic types due to type erasure. A few important
ones are as follows:

•	 You cannot instantiate a generic type using a new operator. For example,
assuming mem is a field, the following statement will result in a compiler error:

T mem = new T(); // wrong usage - compiler error

•	 You cannot instantiate an array of a generic type. For example, assuming mem
is a field, the following statement will result in a compiler error:

T[] amem = new T[100]; // wrong usage - compiler error

•	 You can declare instance fields of type T, but not of static fields of type T. For
example,

class X<T> {
 T instanceMem; // okay
 static T statMem; // wrong usage - compiler error
}

•	 It is not possible to have generic exception classes; as a result, the following will not
compile:

class GenericException<T> extends Throwable { } // wrong usage - compiler error

•	 You cannot instantiate a generic type with primitive types—in other words,
List<int> cannot be instantiated. However, you can use boxed primitive types.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

111

Create and Use Collection Classes
Certification Objective

Create and use ArrayList, TreeSet, TreeMap, and ArrayDeque objects

The Java library has a collections framework that makes extensive use of generics and provides a set of
containers and algorithms. In this section, we will focus on how to use the collections framework. Specifically,
we will discuss important collection classes including ArrayList, TreeSet, TreeMap, and ArrayDeque objects.

 The term collection(s) is a generic term, while Collection and Collections are the specific APIs of the
java.util package. Collections—as in java.util.Collections—is a utility class that contains only static
methods. The general term collection(s) refers to a container such as map, set, stack, and queue. We’ll use the
term container(s) when referring to these collection(s) in this chapter to avoid confusion.

Abstract Classes and Interfaces
The type hierarchy in the java.util library consists of numerous abstract classes and interfaces that provide
generic functionality. Table 4-1 lists a few important types in this hierarchy. We’ll cover some of these types
in more detail a bit later in this section.

Table 4-1.  Important Abstract Classes and Interfaces in the Collections Framework

Abstract Class/
Interface

Short Description

Iterable A class implementing this interface can be used for iterating with a foreach statement.

Collection Common base interface for classes in the collection hierarchy. When you want to write
methods that are very general, you can pass the Collection interface. For example,
max() method in java.util.Collections takes a Collection and returns an object.

List Base interface for containers that store a sequence of elements. You can access the
elements using an index, and retrieve the same element later (so that it maintains the
insertion order). You can store duplicate elements in a List.

Set, SortedSet,
NavigableSet

Interfaces for containers that don’t allow duplicate elements. SortedSet maintains the set
elements in a sorted order. NavigableSet allows searching the set for the closest matches.

Queue, Deque Queue is a base interface for containers that holds a sequence of elements for processing.
For example, the classes implementing Queue can be LIFO (last in, first out—as in stack
data structure) or FIFO (first in, first out—as in queue data structure). In a Deque you can
insert or remove elements from both the ends.

Map, SortedMap,
NavigableMap

Interfaces for containers that map keys to values. In SortedMap, the keys are in a sorted
order. A NavigableMap allows you to search and return the closest match for given search
criteria. Note that Map hierarchy does not extend the Collection interface.

Iterator,
ListIterator

You can traverse over the container in the forward direction if a class implements the
Iterator interface. You can traverse in both forward and reverse directions if a class
implements the ListIterator interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

112

Those are quite a few base types, but don’t get overwhelmed by them. You’ll see specific concrete
classes and use some of these base types. We’ll only cover the Collection interface and then move on to
cover specific concrete classes that are part of this collection hierarchy and mentioned in exam topics.

The Collection Interface
The Collection interface provides methods such as add() and remove() that are common to all containers.
Table 4-2 lists the most important methods in this interface. Take a look at them before you use them.

Methods such as add() and remove() can fail depending on the underlying container. For example, if
the container is read-only, you will not be able to add or remove elements. Apart from these methods, there
are many methods in the Collection interface that apply to multiple elements in the container (Table 4-3).

Concrete Classes
Numerous interfaces and abstract classes in the Collection hierarchy provide the common methods that
specific concrete classes implement/extend. The concrete classes provide the actual functionality, and you’ll
have to learn only a handful of them to be properly prepared for the OCPJP 8 exam. Table 4-4 summarizes
the features of the classes you should know.

Table 4-2.  Important Methods in the Collection Interface

Method Short description

boolean add(Element elem) Adds elem into the underlying container.

void clear() Removes all elements from the container.

boolean isEmpty() Checks whether the container has any elements or not.

Iterator<Element> iterator() Returns an Iterator<Element> object for iterating over the container.

boolean remove(Object obj) Removes the element if obj is present in the container.

int size() Returns the number of elements in the container.

Object[] toArray() Returns an array that has all elements in the container.

Table 4-3.  Methods in the Collection Interface That Apply to Multiple Elements

Method Short Description

boolean addAll(Collection<? extends
Element> coll)

Adds all the elements in coll into the underlying
container.

boolean containsAll(Collection<?> coll) Checks if all elements given in coll are present in the
underlying container.

boolean removeAll(Collection<?> coll) Removes all elements from the underlying container that
are also present in coll.

boolean retainAll(Collection<?> coll) Retains elements in the underlying container only if they
are also present in coll; it removes all other elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

113

 There are many old java.util classes (now known as legacy collection types) that were superceded by
new collection classes. Some of them are (with newer types in parentheses): Enumeration (Iterator), Vector
(ArrayList), Dictionary (Map), and Hashtable (HashMap). In addition, Stack and Properties are legacy
classes that do not have direct replacements.

ArrayList Class
Lists are used for storing a sequence of elements. You can insert an element of the container in a specific
position using an index, and retrieve the same element later (i.e., it maintains the insertion order). You can
store duplicate elements in a list. There are two concrete classes that you need to know: ArrayList and
LinkedList.

ArrayList implements a resizable array. When you create a native array (say, new String[10];), the
size of the array is known (fixed) at the time of creation. However, ArrayList is a dynamic array: it can
grow in size as required. Internally, an ArrayList allocates a block of memory and grows it as required.
So, accessing array elements is very fast in an ArrayList. However, when you add or remove elements,
internally the rest of the elements are copied; so addition/deletion of elements is a costly operation.

Table 4-4.  Important Concrete Classes in Collection Framework

Concrete Class Short Description

ArrayList Internally implemented as a resizable array. This is one of the most widely used
concrete classes. Fast to search, but slow to insert or delete. Allows duplicates.

LinkedList Internally implements a doubly linked list data structure. Fast to insert or delete
elements, but slow for searching elements. Additionally, LinkedList can be used when
you need a stack (LIFO) or queue (FIFO) data structure. Allows duplicates.

HashSet Internally implemented as a hash-table data structure. Used for storing a set of
elements—it does not allow storing duplicate elements. Fast for searching and
retrieving elements. It does not maintain any order for stored elements.

TreeSet Internally implements a red-black tree data structure. Like HashSet, TreeSet does not
allow storing duplicates. However, unlike HashSet, it stores the elements in a sorted
order. It uses a tree data structure to decide where to store or search the elements, and
the position is decided by the sorting order.

HashMap Internally implemented as a hash-table data structure. Stores key and value pairs. Uses
hashing for finding a place to search or store a pair. Searching or inserting is very fast. It
does not store the elements in any order.

TreeMap Internally implemented using a red-black tree data structure. Unlike HashMap, TreeMap
stores the elements in a sorted order. It uses a tree data structure to decide where to
store or search for keys, and the position is decided by the sorting order.

PriorityQueue Internally implemented using heap data structure. A PriorityQueue is for retrieving
elements based on priority. Irrespective of the order in which you insert, when you
remove the elements, the highest priority element will be retrieved first.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

114

Here’s a simple example to visit elements in an ArrayList. You take an ArrayList and use the for-each
construct for traversing a collection:

ArrayList<String> languageList = new ArrayList<>();
languageList.add("C");
languageList.add("C++");
languageList.add("Java");
for(String language : languageList) {
 System.out.println(language);
}

It prints the following:

C
C++
Java

This for-each is equivalent to the following code, which explicitly uses an Iterator:

for(Iterator<String> languageIter = languageList.iterator(); languageIter.hasNext();) {
 String language = languageIter.next();
 System.out.println(language);
}

This code segment will also print the same output as the previous for-each loop code. Here is a
step-by-step description of how this for loop works:

	 1.	 You use the iterator() method to get the iterator for that container. Since
languageList is an ArrayList of type <String>, you should create Iterator
with String. Name it languageIter.

	 2.	 Before entering the loop, you check if there are any elements to visit. You call the
hasNext() method for checking that. If it returns true, there are more elements to
visit; if it returns false, the iteration is over and you exit the loop.

	 3.	 Once you enter the body of the loop, the first thing you have to do is call next()
and move the iterator. The next() method returns the iterated value. You capture
that return value in the language variable.

	 4.	 You print the language value, and then the loop continues.

This iteration idiom—the way you call iterator(), hasNext(), and next() methods—is important to
learn; we’ll be using either the for-each loop or this idiom extensively in our examples.

Note that you create ArrayList<String> and Iterator<String> instead of just using ArrayList or
Iterator (i.e., you provide type information along with these classes). The Collection classes are generic
classes; therefore you need to specify the type parameters to use them. Here you are storing/iterating a list of
strings, so you use <String>.

You can remove elements while traversing a container using iterators. Let’s create an object of
ArrayList<Integer> type with ten elements. You’ll iterate over the elements and remove all of them
(instead of using the removeAll() method in ArrayList). Listing 4-9 shows the code. Will it work?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

115

Listing 4-9.  TestIterator.java

// This program shows the usage of Iterator
 
import java.util.ArrayList;
import java.util.Iterator;
 
class TestIterator {
 public static void main(String []args) {
 ArrayList<Integer> nums = new ArrayList<Integer>();
 for(int i = 1; i < 10; i++)
 nums.add(i);
 System.out.println("Original list " + nums);
 Iterator<Integer> numsIter = nums.iterator();
 while(numsIter.hasNext()) {
 numsIter.remove();
 }
  
 System.out.println("List after removing all elements" + nums);
 }
}

It prints the following:

Original list [1, 2, 3, 4, 5, 6, 7, 8, 9]
Exception in thread "main" java.lang.IllegalStateException
 at java.util.AbstractList$Itr.remove(AbstractList.java:356)
 at TestIterator.main(Main.java:12)

Oops! What happened? The problem is that you haven’t called next() before calling remove().
Checking hasNext() in the while loop condition, moving to the element using next(), and calling remove()
is the correct idiom for removing an element. If you don’t follow it correctly, you can get into trouble (i.e.,
you’ll get IllegalStateException). Similarly, if you call remove() twice without sandwiching a next()
between the statements, you’ll get this exception.

Let’s fix this program by calling next() before calling remove(). Here is the relevant part of the code:

Iterator<Integer> numsIter = nums.iterator();
while(numsIter.hasNext()) {
 numsIter.next();
 numsIter.remove();
}
System.out.println("List after removing all elements " + nums);

It prints the list with no elements, as expected:

List after removing all elements []

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

116

 Remember that next() needs to be called before calling remove() in an Iterator; otherwise, you’ll
get an IllegalStateException. Similarly, calling remove() in subsequent statements without calling next()
between these statements will also result in this exception. In short, any modifications to the underlying
container while an iterator is traversing through the container will result in this exception.

Using Arrays.asList( )
The java.util.Arrays class has a useful method named asList() method that returns a fixed-size list. Here
is an interesting aspect about the returned List object: you cannot add or remove elements but you can
modify the object returned by the asList() method! Also, the modifications you make through the List are
reflected in the original array (see Listing 4-10).

Listing 4-10.  ArrayAsList.java

import java.util.List;
import java.util.Arrays;
 
class ArrayAsList {
 public static void main(String []args) {
 Double [] temperatureArray = {31.1, 30.0, 32.5, 34.9, 33.7, 27.8};
 System.out.println("The original array is: " +
 Arrays.toString(temperatureArray));
 List<Double> temperatureList = Arrays.asList(temperatureArray);
 temperatureList.set(0, 35.2);
 System.out.println("The modified array is: " +
 Arrays.toString(temperatureArray));
 }
}

It prints the following:

The original array is: [31.1, 30.0, 32.5, 34.9, 33.7, 27.8]
The modified array is: [35.2, 30.0, 32.5, 34.9, 33.7, 27.8]

The Arrays class provides only limited functionality and you will often want to use methods in the
Collections class. To achieve that, calling the Arrays.asList() method is a useful technique.

The TreeSet Class
Set, as we studied in our math classes in high school, contains no duplicates. Unlike List, a Set doesn’t
remember where you inserted the element (i.e., it doesn’t remember the insertion order).

There are two important concrete classes for Set: HashSet and TreeSet. A HashSet is for quickly
inserting and retrieving elements; it does not maintain any sorting order for the elements it holds. A TreeSet
stores the elements in a sorted order (and it implements the SortedSet interface).

Given a sentence, how can you sort the letters used in that sentence into alphabetical order? A TreeSet
puts the values in a sorted order, so you can use a TreeSet container for solving this problem (see Listing 4-11).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

117

Listing 4-11.  TreeSetTest.java

// This program demonstrates the usage of TreeSet class
 
import java.util.Set;
import java.util.TreeSet;
 
class TreeSetTest {
 public static void main(String []args) {
 String pangram = "the quick brown fox jumps over the lazy dog";
 Set<Character> aToZee = new TreeSet<Character>();
 for(char gram : pangram.toCharArray())
 aToZee.add(gram);
 System.out.println("The pangram is: " + pangram);
 System.out.print("Sorted pangram characters are: " + aToZee);
 }
}

It prints the following:

The pangram is: the quick brown fox jumps over the lazy dog
Sorted pangram characters are: [, a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s,
t, u, v, w, x, y, z]

A pangram is a sentence that uses all letters in the alphabet at least once. You want to store characters
of a pangram in the set. Since you need to use reference types for containers, you’ve created a TreeSet of
Characters.

Now, how to get the characters from a String? Remember that array indexing doesn’t work for Strings.
For example, to get the first character "t", if you use pangram[0] in the program, you’ll get a compiler error.
Fortunately, String has a method called toCharArray() that returns a char[]. So, you use this method
for traversing over the string and get all the characters. As you add the characters into the TreeSet, the
characters are stored in a sorted order. So, you get all the lowercase letters when you print the set.

Note in the output that there is one leading comma. Why? The pangram string has many whitespace
characters. One whitespace also gets stored in the set, so it also gets printed!

The Map Interface
A Map stores key and value pairs. The Map interface does not extend the Collection interface. However, there
are methods in the Map interface that you can use to get the objects classes that implement the Collection
interface to work around this problem. Also, the method names in Map are very similar to the methods
in Collection, so it is easy to understand and use Map. There are two important concrete classes of Map:
HashMap and TreeMap.

•	 A HashMap uses a hash table data structure internally. In HashMap, searching
(or looking up elements) is a fast operation. However, HashMap neither remembers
the order in which you inserted elements nor keeps elements in any sorted order.

•	 A TreeMap uses a red-black tree data structure internally. Unlike HashMap, TreeMap
keeps the elements in sorted order (i.e., sorted by its keys). So, searching or inserting
is somewhat slower than the HashMap.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

118

The NavigableMap Interface and TreeMap Class
The NavigableMap interface extends the SortedMap interface. The TreeMap class is the widely used class that
implements NavigableMap. As the name indicates, with NavigableMap, you can navigate the Map easily. It has
many methods that make Map navigation easy. You can get the nearest value matching the given key, all values
less than the given key, all values greater than the given key, and so on. Let’s look at an example: Lennon,
McCartney, Harrison, and Starr have taken an online exam. In that exam, the maximum they can score is 100,
with a passing score of 40. If you want to find details such as who passed the exam, and sort the exam scores
in ascending or descending order, NavigableMap (and TreeMap) is very convenient (see Listing 4-12).

Listing 4-12.  NavigableMapTest.java

// This program demonstrates the usage of navigable tree interface and TreeMap class
 
import java.util.NavigableMap;
import java.util.TreeMap;
 
public class NavigableMapTest {
 public static void main(String []args) {
 NavigableMap<Integer, String> examScores = new TreeMap<Integer, String>();
 
 examScores.put(90, "Sophia");
 examScores.put(20, "Isabella");
 examScores.put(10, "Emma");
 examScores.put(50, "Olivea");
 
 System.out.println("The data in the map is: " + examScores);
 System.out.println("The data descending order is: " + examScores.descendingMap());
 System.out.println("Details of those who passed the exam: " + examScores.tailMap(40));
 System.out.println("The lowest mark is: " + examScores.firstEntry());
 }
}

It prints the following:

The data in the map is: {10=Emma, 20=Isabella, 50=Olivea, 90=Sophia}
The data descending order is: {90=Sophia, 50=Olivea, 20=Isabella, 10=Emma}
Details of those who passed the exam: {50=Olivea, 90=Sophia}
The lowest mark is: 10=Emma

In this program, you have a NavigableMap<Integer, String> that maps the exam score and the name
of the person. You create a TreeMap<Integer, String> to actually store the exam scores. By default, a
TreeMap stores data in ascending order. If you want the data in descending order, it’s easy: you just have to
use the descendingMap() method (or descendingKeySet() if you are only interested in the keys).

Given that the passing score is 40, you might want to get the map with data of those who failed in the
exam. For that, you can use the headMap() method with the key value 40 (since the data is in ascending
order, you want to get the “head” part of the map from the given position). Similarly, to get the data of those
who passed the exam, you can use the tailMap() method.

If you want the immediate ones above and below the passing score, you can use the higherEntry() and
lowerEntry() methods, respectively. The firstEntry() and lastEntry() methods give the entries with
lowest and highest key values. So, when you use the firstEntry() method on examScores, you get Emma
with 10 marks. If you use lastEntry(), you get Sophia, who has score 90.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

119

The Deque Interface and ArrayDeque class
Deque (Doubly ended queue) is a data structure that allows you to insert and remove elements from both the
ends. The Deque interface was introduced in Java 6 in java.util.collection package. The Deque interface
extends the Queue interface. Hence, all methods provided by Queue are also available in the Deque interface.

There are three concrete implementations of the Deque interface: LinkedList, ArrayDeque, and
LinkedBlockingDeque. Let’s use ArrayDeque to understand the features of the Deque interface.

Consider implementing a special queue (say, to pay a utility bill) where a customer can be added only
at the end of the queue and can be removed either at the front of the queue (when the customer paid the
bill) or from the end of the queue (when the customer gets frustrated from the long line and leaves the queue
himself). Listing 4-13 shows how to do this.

Listing 4-13.  SplQueueTest.java

// This program shows the usage of Deque interface
 
import java.util.ArrayDeque;
import java.util.Deque;
 
class SplQueue {
 private Deque<String> splQ = new ArrayDeque<>();
 void addInQueue(String customer){
 splQ.addLast(customer);
 }
  
 void removeFront(){
 splQ.removeFirst();
 }
 
 void removeBack(){
 splQ.removeLast();
 }
 
 void printQueue(){
 System.out.println("Special queue contains: " + splQ);
 }
}
 
class SplQueueTest {
 public static void main(String []args) {
 SplQueue splQ = new SplQueue();
 splQ.addInQueue("Harrison");
 splQ.addInQueue("McCartney");
 splQ.addInQueue("Starr");
 splQ.addInQueue("Lennon");
  
 splQ.printQueue();
 splQ.removeFront();
 splQ.removeBack();
 splQ.printQueue();
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

120

It prints the following:

Special queue contains: [Harrison, McCartney, Starr, Lennon]
Special queue contains: [McCartney, Starr]

You first define a class—SplQueue—that defines a container splQ of type ArrayDeque with basic four
operations. The method addInQueue() adds a customer at the end of the queue, the method removeBack()
removes a customer from the end of the queue, the method removeFront() removes a customer from the
front of the queue, and the method printQueue() simply prints all elements of the queue. You simply use
the addLast(), removeFirst(), and removeLast() methods from the Deque interface to realize the methods
of the SplQueue class. In your main() method, you instantiate the SplQueue and called the addInQueue()
method of the SplQueue class. After it, you remove one customer from the front and one from the end, and
print the contents of the queue before and after this removal. Well, it is working as you expected.

 The difference between an ArrayList and ArrayDeque is that you can add an element anywhere in an
array list using an index; however, you can add an element only either at the front or end of the array deque.
That makes insertion in array deque more efficient than array list; however, navigation in an array deque
becomes more expensive than in an array list.

Comparable and Comparator Interfaces
Certification Objectives

Use java.util.Comparator and java.lang.Comparable interfaces

As their names suggest, Comparable and Comparator interfaces are used to compare similar objects
(for example, while performing searching or sorting). Assume that you have a container containing a list of
Person object. Now, how do you compare two Person objects? There are many comparable attributes, such
as SSN, name, driver’s license number, and so on. Two objects can be compared on SSN as well as person’s
name; this depends on the context. Hence, the criterion to compare the Person objects cannot be predefined; a
developer has to define this criterion. Java defines Comparable and Comparator interfaces to achieve the same.

The Comparable interface has only one method compareTo(), which is declared as follows:

int compareTo(Element that)

Since you are implementing the compareTo() method in a class, you have this reference available. You
can compare the current element with the passed Element and return an int value. What should the int
value be? Well, here are the rules for returning the integer value:

return 1 if current object > passed object
return 0 if current object == passed object
return -1 if current object < passed object

Now, an important question: what does >, < or == mean for an Element? Hmm, it is left to you to decide
how to compare two objects! But the meaning of comparison should be a natural one; in other words,
the comparison should mean natural ordering. For example, you saw how Integers are compared with

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

121

each other, based on a numeric order, which is the natural order for Integer types. Similarly, you compare
Strings using lexicographic comparison, which is the natural order for Strings. For user-defined classes,
you need to find the natural order in which you can compare the objects. For example, for a Student class,
StudentId might be the natural order for comparing Student objects. Listing 4-14 implements a simple
Student class now.

Listing 4-14.  ComparatorTest1.java

// This program shows the usage of Comparable interface
 
import java.util.Arrays;
 
class Student implements Comparable<Student> {
 String id;
 String name;
 Double cgpa;
  
 public Student(String studentId, String studentName, double studentCGPA) {
 id = studentId;
 name = studentName;
 cgpa = studentCGPA;
 }
  
 public String toString() {
 return " \n " + id + " \t " + name + " \t " + cgpa;
 }
 
 public int compareTo(Student that) {
 return this.id.compareTo(that.id);
 }
}
  
class ComparatorTest1 {
 public static void main(String []args) {
 Student []students = { new Student("cs011", "Lennon ", 3.1),
 new Student("cs021", "McCartney", 3.4),
 new Student("cs012", "Harrison ", 2.7),
 new Student("cs022", "Starr ", 3.7) };
 
 System.out.println("Before sorting by student ID");
 System.out.println("Student-ID \t Name \t CGPA (for 4.0) ");
 System.out.println(Arrays.toString(students));
  
 Arrays.sort(students);
  
 System.out.println("After sorting by student ID");
 System.out.println("Student-ID \t Name \t CGPA (for 4.0) ");
 System.out.println(Arrays.toString(students));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

122

It prints the following:

Before sorting by student ID
Student-ID Name CGPA (for 4.0)
[
 cs011 Lennon 3.1,
 cs021 McCartney 3.4,
 cs012 Harrison 2.7,
 cs022 Starr 3.7]
After sorting by student ID
Student-ID Name CGPA (for 4.0)
[
 cs011 Lennon 3.1,
 cs012 Harrison 2.7,
 cs021 McCartney 3.4,
 cs022 Starr 3.7]

You have implemented the Comparable<Student> interface. When you call the sort() method, it calls
the compareTo() method to compare Student objects by their IDs. Since Student IDs are unique, it is a
natural comparison order that works well.

Now, you may need to arrange students based on the cumulative grade point average (CGPA) they got. You
may even need to compare Students based on their names. If you need to implement two or more alternative
ways to compare two similar objects, then you may implement the Comparator interface. Listing 4-15 is an
implementation (there is no change in the Student class, so we are not producing it here again).

Listing 4-15.  ComparatorTest2.java

// This program shows the implementation of Comparator interface
 
import java.util.Arrays;
import java.util.Comparator;
 
class CGPAComparator implements Comparator<Student> {
 public int compare(Student s1, Student s2) {
 return (s1.cgpa.compareTo(s2.cgpa));
 }
}
  
class ComparatorTest2 {
 public static void main(String []args) {
 Student []students = { new Student("cs011", "Lennon ", 3.1),
 new Student("cs021", "McCartney", 3.4),
 new Student("cs012", "Harrison ", 2.7),
 new Student("cs022", "Starr ", 3.7) };
 
 System.out.println("Before sorting by CGPA ");
 System.out.println("Student-ID \t Name \t CGPA (for 4.0) ");
 System.out.println(Arrays.toString(students));
  
 Arrays.sort(students, new CGPAComparator());
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

123

 System.out.println("After sorting by CGPA");
 System.out.println("Student-ID \t Name \t CGPA (for 4.0) ");
 System.out.println(Arrays.toString(students));
 }
}

It prints the following:

Before sorting by CGPA
Student-ID Name CGPA (for 4.0)
[
 cs011 Lennon 3.1,
 cs021 McCartney 3.4,
 cs012 Harrison 2.7,
 cs022 Starr 3.7]
After sorting by CGPA
Student-ID Name CGPA (for 4.0)
[
 cs012 Harrison 2.7,
 cs011 Lennon 3.1,
 cs021 McCartney 3.4,
 cs022 Starr 3.7]

Yes, the program prints the Student data sorted by their CGPA. You didn’t change the Student class;
the class still implements the Comparable<String> interface and defines the compareTo() method, but you
don’t use the compareTo() method in your program. You create a separate class named CGPAComparator and
implement the Comparator<Student> interface. You define the compare() method, which takes two Student
objects as arguments. You compare the CGPA of the arguments s1 and s2 by (re)using the compareTo()
method from the Double class. You didn’t change anything in the main() method except for the way you
call the sort() method. You create a new CGPAComparator() object and pass as the second argument to the
sort() method. By default sort() uses the compareTo() method; since you are passing a Comparator object
explicitly, it now uses the compare() method defined in the CGPAComparator. So, the Student objects are
now compared and sorted based on their CGPA.

 Most classes have a natural order for comparing objects, so use Comparable interface in those cases.
If you want to compare the objects other than the natural order or if there is no natural ordering present for
your class type, then use the Comparator interface.

Collection Streams and Filters
Certification Objective

Collections Streams and Filters

The new stream API is provided in the java.util.stream package introduced in Java 8. The main type
in this package is Stream<T> interface, which is the stream of object references. IntStream, LongStream, and
DoubleStream are streams for primitive types int, long and double types respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

124

The Collection interface has been added with the methods stream() and parallelStream() in Java 8.
A stream is a sequence of elements. You can perform sequential operations when you obtain a stream using
the stream() method, and parallel operations with parallelStream() method. (We discuss parallel streams
in Chapter 11.) Since interfaces such as List, Set, Deque, and Queue extend the Collection interface,
you can get a stream or a parallel stream from the collection classes that implement these interfaces. For
instance, you can get a stream from an ArrayList object.

Streams provide pipelining capability—you can filter, map, and search data. In other words, stream
operations can be “chained” together to form a pipeline known as “stream pipeline”. We introduce stream
pipelines later in this section and cover them in detail in the chapter dedicated to streams (Chapter 6 on Java
Stream API).

The most common source of streams is collection objects such as sets, maps, and lists. However, note
that we can use the streams API independent of the collections. In the rest of this chapter, we will discuss
how collections are used with streams.

Iterate Using forEach
Certification Objectives

Iterate using forEach methods of Streams and List

As Java programmers, we are used to performing external iteration on collections. Consider this list of
strings for example:

List<String> strings = Arrays.asList("eeny", "meeny", "miny", "mo");

When we traverse such a collection using a for loop, we are using external iteration, as in:

for(String string : strings) {
System.out.println(string);
}

Internal iteration leaves the iteration to the library code. The same code can be converted to the
following equivalent code that makes use of lambda expressions (Listing 4-16):

Listing 4-16.  InternalIteration.java

import java.util.Arrays;
import java.util.List;
 
public class InternalIteration {
 public static void main(String []args) {
 List<String> strings = Arrays.asList("eeny", "meeny", "miny", "mo");
 strings.forEach(string -> System.out.println(string));
 }
}

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_11
http://dx.doi.org/10.1007/978-1-4842-1836-5_6
http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

125

This program prints:

eeny
meeny
miny
mo

Note that he List interface extends Iterable interface that has a default forEach method (this method
was added in Java 8). Hence, we were able to perform internal iteration by calling the forEach method on
strings object and pass a lambda expression to it as the parameter.

Though this example is simple, it illustrates a major change with the Java 8 approach: we are moving
from external iteration to internal iteration. In fact, the whole of Stream API (Chapter 6) is based on the
concept of internal iteration.

Before we discuss the Stream interface and the stream pipeline, let us discuss an important topic related
to lambda functions that we use in the discussion on streams: method references.

Method References with Streams
Certification Objective

Use method references with Streams

In Listing 4-16, we used this lambda expression:

strings.forEach(string -> System.out.println(string));

This code is somewhat verbose because we are taking the string parameter and just passing it to
System.out.println. Fortunately, Java 8 has introduced a feature known as “method references”. Method
references use the “::” operator. Here is a simplified expression using method references:

strings.forEach(System.out::println);

Method references route the given parameters. In this case, System.out::println is equivalent to using
the lambda expression string -> System.out.println(string).

How about simplifying the following statement to use method references?

strings.forEach(string -> System.out.println(string.toUpperCase()));

The lambda expression in this code calls toUpperCase() method on the given String object. Since
method references just route the parameters, so you cannot use them directly for simplifying this lambda
expression. An alternative is to put this code inside a method and use the reference of that method
(Listing 4-17).

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_6
http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

126

Listing 4-17.  MethodReference.java

import java.util.Arrays;
import java.util.List;
 
class MethodReference {
 public static void printUpperCaseString(String string) {
 System.out.println(string.toUpperCase());
 }
 
 public static void main(String []args) {
 List<String> strings = Arrays.asList("eeny", "meeny", "miny", "mo");
 strings.forEach(MethodReference::printUpperCaseString);
 }
}

This program prints:

EENY
MEENY
MINY
MO

In this case, we have introduced a static method inside MethodReference class. The printUpperCaseString
calls the toUpperCase() method on the passed String argument and prints the resulting string.

To summarize, there are two key benefits of method references:

•	 Method references serve as a way to route the parameters, and hence it is often
convenient (results in more concise code) to use them than the equivalent lambda
expressions. For instance, we saw how System.out::println can be used as an
equivalent to arg -> System.out.println(arg) given in Listing 4-16.

The method reference syntax makes it easier to use a method as a lambda expression (as in Listing 4-17).

Understanding the Stream Interface
Certification Objective

Describe Stream interface and Stream pipeline

The Stream interface is the most important interface provided in the java.util.stream package. The
classes IntStream, LongStream, and DoubleStream are Stream specializations for int, long, and double
respectively. Figure 4-1 shows the inheritance hierarchy of these streams.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

127

The Stream Pipeline
Stream operations can be “chained” together to form a “stream pipeline”. There are three parts in the stream
pipeline (see Figure 4-2):

•	 Source: Create a stream (from a collection or an array or using Stream methods such
as of() and generate()).

•	 Intermediate operations: Optional operations that can be chained together (such as
map(), filter(), distinct(), and sorted() methods in the Stream interface).

•	 Terminal operations: Produce a result (such as sum(), collect(), forEach(), and
reduce() methods in the Stream interface).

Here is an example for a stream pipeline (Listing 4-18).

Listing 4-18.  StreamPipelineExample.java

import java.util.Arrays;
 
class StreamPipelineExample {
 public static void main(String []args) {

Figure 4-1.  Some important interfaces in java.util.stream package

Figure 4-2.  The stream pipeline with examples

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

128

 Arrays.stream(Object.class.getMethods()) // source
 .map(method -> method.getName()) // intermediate op
 .distinct() // intermediate op
 .forEach(System.out::println); // terminal operation
 }
}

This code prints

wait
equals
toString
hashCode
getClass
notify
notifyAll

The Object.class.getMethods() results in an array of Method objects in the Object class. The
operation map(method -> method.getName()) returns the names of the methods as an array (as part of
a Stream). Note that the wait() method in Object class is an overloaded method. To get unique method
names, we can use the distinct() operation to remove the duplicate entries in the array. Finally, the
forEach() terminal operation prints the names of the methods.

One way to understand the stream pipeline is to break the components of the pipeline into separate
statements. Listing 4-18 breaks the parts into separate components and is the equivalent code for
Listing 4-19.

Listing 4-19.  StreamPipelineComponents.java

import java.util.Arrays;
import java.util.stream.Stream;
import java.lang.reflect.Method;
 
class StreamPipelineComponents {
 public static void main(String []args) {
 Method[] objectMethods = Object.class.getMethods();
 Stream<Method> objectMethodStream = Arrays.stream(objectMethods);
 Stream<String> objectMethodNames = objectMethodStream.map(method -> method.getName());
 Stream<String> uniqueObjectMethodNames = objectMethodNames.distinct();
 uniqueObjectMethodNames.forEach(System.out::println);
 }
}

In this case, we get a stream by calling Arrays.stream() method on the result of Object.class.
getMethod()—this is the source of the stream. Both map() and distinct() methods take a stream as input
and return a (modified) stream as the output. Finally, the forEach() method on the stream is the terminal
operation in the pipeline.

 Don’t confuse map in streams with java.util.Map interface. The map() method is an intermediate
operation that takes in elements from an incoming stream, applies the operation, and generates a stream of
elements as output; the Map interface holds key value pairs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

129

Stream Sources
There are many sources for a stream, including generator methods in stream interfaces, collections, and
arrays. Let us consider the simple task of getting a stream of integers values 1 to 5.

	 1.	 You can use range or iterate factory methods in the IntStream interface.

IntStream.range(1, 6)

The range() method takes two arguments: it starts from the start value (given as the first argument)
and goes on adding 1 to result in stream elements till it reaches the end value (given as the second argument
and is excluding that value itself). In this case, we have passed the values 1 and 6, so the reduce() method
generates the stream of integer values starting from 1, adds the value 1 and results in values 2, 3, 4, and 5,
and stops there because it hit the end value 6.

IntStream.iterate(1, i -> i + 1).limit(5)

The iterate() method takes two arguments: the initial value (as the first argument) and iteratively calls
the given function (as second argument) by using the initial value as the seed. In this case, the first argument
is 1, and it iteratively calls i + 1, generating the integer values 2, 3, 4, 5, … This is an infinite stream. We limit
the stream to the first five values by calling limit(5) over this infinite stream of integer values.

	 2.	 You can use the stream() method in java.util.Arrays class to create a stream
from a given array, as in:

Arrays.stream(new int[] {1, 2, 3, 4, 5})
Arrays.stream(new Integer[] {1, 2, 3, 4, 5})

The stream() method was added in the Arrays class in Java 8:

// in Arrays class
public static IntStream stream(int[] array) { /* returns a stream of integers */ }
public static <T> Stream<T> stream(T[] array) { /* returns a stream of T objects */ }

Overloaded versions of stream() method takes long[], double[], and T[]. Since we are passing
an int[] and the Integer[], the calls stream() method resolve to stream(int []) and stream(T[])
respectively and a integer stream is returned.

	 3.	 We can also create streams using factories and builders. The of() method is a
factory method in the Stream interface:

Stream.of(1, 2, 3, 4, 5)
Stream.of(new Integer[]{1, 2, 3, 4, 5})

The overloaded of() method in Stream interface takes variable argument list or an element of type T.
Also, you can use the builder() method and build the Stream object by adding each element, as in:

Stream.builder().add(1).add(2).add(3).add(4).add(5).build()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

130

This is not an exhaustive list of ways that you can use to generate an integer stream—this is just to give
you an idea that there are many ways to get a stream. As mentioned earlier, the Collection interface has
been added with the methods stream() and parallelStream(). Hence, any Collection object is a source of
a stream—you just need to call the stream() or parallelStream() method on it. For example:

List<String> strings = Arrays.asList("eeny", "meeny", "miny", "mo");
strings.stream().forEach(string -> System.out.println(string));

In this case, we are getting a stream from a List<String> object by calling the stream() method.
There are numerous other types in the Java library that return a stream, such as:

•	 The lines() method in java.nio.file.Files class

•	 The splitAsStream() method in java.util.regex.Pattern class

•	 The ints() method in java.util.Random class

•	 The chars() method in java.lang.String class

Here are some quick one-liners on how to use them.

	 1.	 The java.nio.file.Files class has lines() method that returns a
Stream<String>. This code prints the contents of the file “FileRead.java” in the
current directory.

Files.lines(Paths.get("./FileRead.java")).forEach(System.out::println);

	 2.	 The java.util.Pattern class has splitAsStream() method that returns a
Stream<String>. This code splits the input string “java 8 streams” based on
whitespace and hence prints the strings “java”, “8”, and “streams” on the console.

Pattern.compile(" ").splitAsStream("java 8 streams").forEach
(System.out::println);

	 3.	 The java.util.Random class has ints() method that returns an IntStream.
It generates an infinite stream of random integers; so to restrict the number of
integers to 5 integers, we call limit(5) on that stream.

new Random().ints().limit(5).forEach(System.out::println);

	 4.	 The String class has chars() method (newly introduced in Java 8 in
CharSequence—an interface that String class implements). This method returns
an IntStream (why IntStream? Remember that there is no equivalent char
specialization for Streams). This code calls sorted() method on this stream,
so the stream elements get sorted in ascending order. Because it is a stream of
integers, this code uses "%c" to explicitly force the conversion from int to char.

"hello".chars().sorted().forEach(ch -> System.out.printf("%c ", ch));
// prints e h l l o

In these examples we have already used intermediate operations such as limit() and sorted(). Let us
discuss such intermediate operations in more detail now.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

131

Intermediate Operations
Intermediate operations transform elements in a stream. Table 4-5 lists some of the important intermediate
operations in Stream<T>. We discuss other intermediate operations such as flatMap() and its variants in
Chapter 6 on Streams API.

Observe that all the intermediate operations in this table return a Stream<T> as the result.
Intermediate operations are optional; there need not be any intermediate operations in a stream

pipeline. Here is a simple example:

Stream.of(1, 2, 3, 4, 5).count();

This code returns the value 5. In this case, Stream.of() method is the stream source, and the count()
method is a terminal operation. The count() method returns the number of elements in the stream.

Let us introduce an intermediate operation in this stream pipeline:

Stream.of(1, 2, 3, 4, 5).map(i -> i * i).count();

The map() operation applies the given function passed as its argument on the elements of the stream.
In this case, it squares the elements in the stream. This code also returns the value 5. You can you the check
result of applying the map() method in this code? You can use peek() method for that:

Stream.of(1, 2, 3, 4, 5).map(i -> i * i).peek(i -> System.out.printf("%d ", i)).count();

This code prints

1 4 9 16 25

This example also illustrates how the intermediate operations can be chained together. This is made
possible because intermediate operations return streams.

Table 4-5.  Important Intermediate Operations in the Stream Interface

Method Short description

Stream<T> filter(Predicate<?
super T> check)

Removes the elements for which the check predicate returns false.

<R> Stream<R> map(Function<?
super T,? extends R> transform)

Applies the transform() function for each of the elements in the
stream.

Stream<T> distinct() Removes duplicate elements in the stream; it uses the equals()
method to determine if an element is repeated in the stream.

Stream<T> sorted()
Stream<T> sorted(Comparator<?
super T> compare)

Sorts the elements in its natural order. The overloaded version
takes a Comparator—you can pass a lambda function for that.

Stream<T> peek(Consumer<? super
T> consume)

Returns the same elements in the stream, but also executes the
passed consume lambda expression on the elements.

Stream<T> limit(long size) Removes the elements if there are more elements than the given
size in the stream.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_6
http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

132

Now, let us add a peek() method before calling the map() method to understand how it works:

Stream.of(1, 2, 3, 4, 5)
 .peek(i -> System.out.printf("%d ", i))
 .map(i -> i * i)
 .peek(i -> System.out.printf("%d ", i))
 .count();

This code prints

1 1 2 4 3 9 4 16 5 25

As you can observe from this output, the stream pipeline is processing the elements one by one.
Each element is mapped to its square value. The peek() method helps us understand how the stream is
processing the elements.

 The peek() method is meant primarily for debugging purposes. It helps us understand how the elements
are transformed in the pipeline. Do not use it in production code.

Filtering a Collection
Certification Objective

Filter a collection by using lambda expressions

The filter() method in the Stream interface is used for removing the elements that do not match the
given condition. Here is a simple example that uses Stream’s filter() method for removing odd integers
(Listing 4-20).

Listing 4-20.  EvenNumbers.java

import java.util.stream.IntStream;
 
class EvenNumbers {
 public static void main(String []args) {
 IntStream.rangeClosed(0, 10)
 .filter(i -> (i % 2) == 0)
 .forEach(System.out::println);
 }
}

This program prints

0
2
4
6
8
10

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

133

In this example, we are using IntStream class—one of the specializations of Stream for ints. The
rangeClosed(startValue, endValueInclusiveOfEnd) method generates a sequence of integers starting
with startValue till (and inclusive of) endValueInclusiveOfEnd. Here, the rangeClosed(0, 10) results
in integer values 0, 1, 2, … , 9, 10 (note the value 10). There is also a similar method range(startValue,
endValueExclusiveOfEnd) that generates a sequence of integers starting with startValue till (without
including) endValueExclusiveOfEnd.

From the result of this rangeClosed() method, we apply filter() method on it. Here is the signature of
the filter() method:

IntStream filter(IntPredicate predicate)

The filter() method applies the given predicate to determine if the element should be included as
part of the returned stream or eliminated (i.e., filter). The java.util.function.IntPredicate functional
interface has the function with the following signature:

boolean test(int value);

Here we pass a lambda function i -> (i % 2) == 0 to match the IntPredicate functional interface
that returns a boolean value. If the element currently being processed returns true (i.e., in this case, it is even),
then it is part of the stream or it is eliminated.

Alternatively, you can define a function with the function type of IntPredicate functional interface and
pass it to filter.

// you can define this static function within EvenNumbers class
public static boolean isEven(int i) {
 return (i % 2) == 0;
}

Now, instead of passing the lambda function to filter() method, you can pass a method reference
instead, as in filter(EvenNumbers::isEven).

Often map() and filter() methods are used together. For example, the following program prints the
squares of the even numbers (Listing 4-21).

Listing 4-21.  EvenSquares.java

import java.util.stream.IntStream;
 
class EvenSquares {
 public static void main(String []args) {
 IntStream.rangeClosed(0, 10)
 .map(i -> i * i)
 .filter(i -> (i % 2) == 0)
 .forEach(System.out::println);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

134

This program prints

0
4
16
36
64
100

However, this code unnecessarily computes the squares of odd numbers (squares of odd numbers
are always odd). So, we can change the order of map and filter operations to eliminate those unnecessary
computations:

IntStream.rangeClosed(0, 10)
 .filter(i -> (i % 2) == 0)
 .map(i -> i * i) // call map AFTER calling filter
 .forEach(System.out::println);

This output is the same. This simple example shows how you can sometimes change the order of
intermediate operations without changing the behavior.

Terminal Operations
You need to provide a terminal operation at the end of a pipeline. This terminal operation typically produces
a result, such as calling the methods sum(), min(), max(), or average() on an IntStream. A terminal
operation can also perform other actions such as accumulating the elements with reduce(), collect()
methods or just perform an action as in calling the forEach() method. Table 4-6 lists some of the important
terminal operations in Stream<T>.

Table 4-6.  Important Terminal Operations in the Stream Interface

Method Short description

void forEach(Consumer<? super T> action) Calls the action for every element in the stream.

Object[] toArray() Returns an Object array that has the elements in the
stream.

Optional<T> min(Comparator<? super T>
compare)

Returns the minimum value in the stream (compares
the objects using the given compare function).

Optional<T> max(Comparator<? super T>
compare)

Returns the maximum value in the stream (compares
the objects using the given compare function).

long count() Returns the number of elements in the stream.

There are many important terminal operations such as reduce(), collect(), findFirst(), findAny(),
anyMatch(), allMatch(), and noneMatch() methods. We discuss these methods (and also the Optional<T>
mentioned in this table) later in Chapter 6 on Stream API. Further, the IntStream, LongStream, and
DoubleStream have methods such as sum(), min(), max(), and average() that operate on the stream of ints,
longs, and doubles respectively.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_6
http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

135

Here is an example that uses toArray() method in the Stream interface:

Object [] words = Pattern.compile(" ").splitAsStream("1 2 3 4 5").toArray();
System.out.println(Arrays.stream(words).mapToInt(str -> Integer.valueOf((String)str)).sum());

This program prints:

15

In this program, we have a string “1 2 3 4 5” and splitAsStream() returns a stream of Strings. We
have converted that stream of Strings into an Object array named words; we then convert the array back
to streams using Arrays.stream(words) (just for illustrating how you can convert a stream to an array
and back!). Now, we map each Object entry into a String and then to an integer value. Finally, we call the
terminal operation sum() to get the sum of the integers as 15.

Once a terminal operation is complete, the stream on which it operated on is considered “consumed”.
If you attempt to “use” the stream again, you will get an IllegalStateException (Listing 4-22).

Listing 4-22.  StreamReuse.java

import java.util.stream.IntStream;
 
public class StreamReuse {
 public static void main(String []args) {
 IntStream chars = "bookkeep".chars();
 System.out.println(chars.count());
 chars.distinct().sorted().forEach(ch -> System.out.printf("%c ", ch));
 }
}

The variable chars points to the stream created from the string “bookkeep”. When we get chars.count(),
the stream is “consumed”. Why? Because count() method is a terminal operation. Because we try to use the
stream again in the next statement, this program crashes by throwing IllegalStateException.

Summary
Let us briefly review the key points for each certification objective in this chapter. Please read it before
appearing for the exam.

Create and use a generic class

•	 Generics will ensure that any attempts to add elements of types other than the
specified type(s) will be caught at compile time itself. Hence, generics offer generic
implementation with type safety.

•	 Java 7 introduced diamond syntax where the type parameters (after new operator
and class name) can be omitted. The compiler will infer the types from the type
declaration.

•	 Generics are not covariant. That is, subtyping doesn’t work with generics; you cannot
assign a derived generic type parameter to a base type parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

136

•	 Avoid mixing raw types with generic types. In other cases, make sure of the type
safety manually.

•	 The <?> specifies an unknown type in generics and is known as a wildcard. For
example, List<?> refers to a list of unknowns.

Create and use ArrayList, TreeSet, TreeMap, and ArrayDeque objects

•	 The terms Collection, Collections, and collection are different. Collection—
java.util.Collection<E>—is the root interface in the collection hierarchy.
Collections—java.util.Collections—is a utility class that contains only static
methods. The general term collection(s) refers to containers like map, stack, and
queue.

•	 Remember that you cannot add or remove elements to the List returned by the
Arrays.asList() method. But, you can make changes to the elements in the
returned List, and the changes made to that List are reflected back in the array.

•	 A HashSet is for quickly inserting and retrieving elements; it does not maintain any
sorting order for the elements it holds. A TreeSet stores the elements in a sorted
order (and it implements the SortedSet interface).

•	 A HashMap uses a hash table data structure internally. In HashMap, searching
(or looking up elements) is a fast operation. However, HashMap neither remembers
the order in which you inserted elements nor keeps elements in any sorted order.
Unlike HashMap, TreeMap keeps the elements in sorted order (i.e., sorted by its keys).
So, searching or inserting is somewhat slower than the HashMap.

•	 Deque (Doubly ended queue) is a data structure that allows you to insert and remove
elements from both ends. There are three concrete implementations of the Deque
interface: LinkedList, ArrayDeque, and LinkedBlockingDeque.

•	 The difference between an ArrayList and ArrayDeque is that you can add an
element anywhere in an array list using an index; however, you can add an element
only either at the front or end of the array deque.

Use java.util.Comparator and java.lang.Comparable interfaces

•	 Implement the Comparable interface for your classes where a natural order is
possible. If you want to compare the objects other than the natural order or if there
is no natural ordering present for your class type, then create separate classes
implementing the Comparator interface. Also, if you have multiple alternative ways
to decide the order, then go for the Comparator interface.

Collections Streams and Filters

•	 The new stream API is provided in the java.util.stream package introduced in
Java 8. The main type in this package is Stream<T> interface, which is the stream
of object references. IntStream, LongStream, and DoubleStream are streams for
primitive types int, long, and double types respectively.

•	 A stream is a sequence of elements. In Java 8, the Collection interface has been
added with the methods stream() and parallelStream() from which you can
respectively get sequential and parallel streams.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

137

Iterate using forEach methods of Streams and List

•	 In Java 8, we are moving from external iteration to internal iteration. It is a major
change with Java 8 approach of functional programming.

•	 The interfaces Stream and Iterable define forEach() method. The forEach()
method supports internal iteration.

Describe Stream interface and Stream pipeline

•	 Stream operations can be “chained” together to form a pipeline known as “stream
pipeline”.

•	 A stream pipeline has a beginning, middle, and an end: source (that creates a
stream), intermediate operations (that consist of optional operations that can be
chained together), and terminal operations (that produce a result).

•	 The terminal operation can produce a result, accumulate the stream elements, or
just perform an action.

•	 You can use a stream only once. Any attempt at reusing the stream (for example,
by calling intermediate or terminal operations) will result in throwing an
IllegalStateException.

Filter a collection by using lambda expressions

•	 The filter() method in the Stream interface is used for removing the elements that
do not match the given condition.

Use method references with Streams

•	 When lambda expressions just route the given parameters, you can use method
references instead.

•	 Since method references serve as a way to route the parameters, it is often
convenient (as it results in more concise code) to use them than their equivalent
lambda expressions.

Question Time

1.	 Choose the correct option based on this program:

import java.util.*;
 
class UtilitiesTest {
 public static void main(String []args) {
 List<int> intList = new ArrayList<>();
 intList.add(10);
 intList.add(20);
 System.out.println("The list is: " + intList);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

138

A.	I t prints the following: The list is: [10, 20]

B.	I t prints the following: The list is: [20, 10]

C.	I t results in a compiler error

D.	I t results in a runtime exception

2.	 Choose the correct option based on this program:

import java.util.*;
 
class UtilitiesTest {
 public static void main(String []args) {
 List<Integer> intList = new LinkedList<>();
 List<Double> dblList = new LinkedList<>();
 System.out.println("First type: " + intList.getClass());
 System.out.println("Second type:" + dblList.getClass());
 }
}

A.	I t prints the following:

First type: class java.util.LinkedList

Second type:class java.util.LinkedList

B.	I t prints the following:

First type: class java.util.LinkedList<Integer>

Second type:class java.util.LinkedList<Double>

C.	I t results in a compiler error

D.	I t results in a runtime exception

3.	 Choose the correct option based on this program:

import java.util.Arrays;
 
class DefaultSorter {
 public static void main(String[] args) {
 String[] brics = {"Brazil", "Russia", "India", "China"};
 Arrays.sort(brics, null); // LINE A
 for(String country : brics) {
 System.out.print(country + " ");
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

139

A.	T his program will result in a compiler error in line marked with comment LINE A

B.	 When executed, the program prints the following: Brazil Russia India China

C.	 When executed, the program prints the following: Brazil China India Russia

D.	 When executed, the program prints the following: Russia India China Brazil

E.	 When executed, the program throws a runtime exception of
NullPointerException when executing the line marked with comment LINE A

F.	 When executed, the program throws a runtime exception of
InvalidComparatorException when executing the line marked with
comment LINE A

4.	 Choose the correct option based on this code segment:

"abracadabra".chars().distinct().peek(ch -> System.out.printf("%c ", ch)).
sorted();

A.	I t prints: “a b c d r”

B.	I t prints: “a b r c d”

C.	I t crashes by throwing a java.util.IllegalFormatConversionException

D.	T his program terminates normally without printing any output in the console

5.	 Choose the correct option based on this code segment:

IntStream.rangeClosed(1, 1).forEach(System.out::println);

A.	I t prints: 1

B.	I t crashes by throwing a java.lang.UnsupportedOperationException

C.	I t crashes by throwing a java.lang.StackOverflowError

D.	I t crashes by throwing a java.lang.IllegalArgumentException

E.	T his program terminates normally without printing any output in the console

6.	 Choose the correct option based on this program:

import java.util.stream.DoubleStream;
 
public class DoubleUse {
 public static void main(String []args) {
 DoubleStream nums = DoubleStream.of(1.0, 2.0, 3.0).map(i -> -i); // #1
 System.out.printf("count = %d, sum = %f", nums.count(), nums.sum());
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

140

A.	T his program results in a compiler error in the line marked with comment #1

B.	T his program prints: "count = 3, sum = -6.000000"

C.	T his program crashes by throwing a java.util.IllegalFormatConversionException

D.	T his program crashes by throwing a java.lang.IllegalStateException

7.	 Choose the correct option based on this program:

class Consonants {
 private static boolean removeVowels(int c) {
 switch(c) {
 case 'a': case 'e': case 'i': case 'o': case 'u': return true;
 }
 return false;
 }
 public static void main(String []args) {
 "avada kedavra".chars()
 .filter(Consonants::removeVovels)
 .forEach(ch -> System.out.printf("%c", ch));
 }
}

A.	T his program results in a compiler error

B.	T his program prints: "aaaeaa"

C.	T his program prints: "vd kdvr"

D.	T his program prints: "avada kedavra"

E.	T his program crashes by throwing a java.util.IllegalFormatConversionException

F.	T his program crashes by throwing a java.lang.IllegalStateException

8.	 Choose the correct option based on this program:

import java.util.*;
 
class DequeTest {
 public static void main(String []args) {
 Deque<Integer> deque = new ArrayDeque<>();
 deque.addAll(Arrays.asList(1, 2, 3, 4, 5));
 �System.out.println("The removed element is: " + deque.remove());

// ERROR?
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

141

A.	 When executed, this program prints the following: “The removed element is: 5”

B.	 When executed, this program prints the following: “The removed element is: 1”

C.	 When compiled, the program results in a compiler error of “remove() returns
void” for the line marked with the comment ERROR.

D.	 When executed, this program throws InvalidOperationException.

9.	 Determine the behavior of this program:

import java.io.*;
 
class LastError<T> {
 private T lastError;
 void setError(T t){
 lastError = t;
 System.out.println("LastError: setError");
 }
}
 
class StrLastError<S extends CharSequence> extends LastError<String>{
 public StrLastError(S s) {
 }
 void setError(S s){
 System.out.println("StrLastError: setError");
 }
}
 
class Test {
 public static void main(String []args) {
 StrLastError<String> err = new StrLastError<String>("Error");
 err.setError("Last error");
 }
}

A.	I t prints the following: StrLastError: setError

B.	I t prints the following: LastError: setError

C.	I t results in a compilation error

D.	I t results in a runtime exception

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

142

Answers:

1.	 C. It results in a compiler error

You cannot specify primitive types along with generics, so List<int> needs to be
changed to List<Integer>.

2.	 A. It prints the following:

First type: class java.util.LinkedList

Second type:class java.util.LinkedList

Due to type erasure, after compilation both types are treated as same LinkedList type.

3.	 C. When executed, the program prints the following: Brazil China India Russia

When null is passed as a second argument to the Arrays.sort() method, it means
that the default Comparable (i.e., natural ordering for the elements) should be used.
The default Comparator results in sorting the elements in ascending order. The
program does not result in a NullPointerException or any other exceptions or a
compiler error.

4.	 D. This program terminates normally without printing any output in the console

A stream pipeline is lazily evaluated. Since there is no terminal operation provided
(such as count, forEach, reduce, or collect), this pipeline is not evaluated and
hence the peek does not print any output to the console.

5.	 A. It prints: 1

The rangeClosed(startValue, endValueInclusiveOfEnd) method
generates a sequence of integers starting with startValue till (and inclusive of)
endValueInclusiveOfEnd. Hence the call IntStream.rangeClosed(1, 1) results in a
stream with only one element and the forEach() method prints that value.

6.	 D. This program crashes by throwing a java.lang.IllegalStateException

A stream is considered “consumed” when a terminal operation is called on that
stream. The methods count() and sum() are terminal operations in DoubleStream.
When this code calls nums.count(), the underlying stream is already “consumed”.
When the printf calls nums.sum(), this program results in throwing java.lang.
IllegalStateException due to the attempt to use a consumed stream.

7.	 B. This program prints: "aaaeaa"

Because the Consonants::removeVowels returns true when there is a vowel passed,
only those characters are retained in the stream by the filter method. Hence, this
program prints “aaaeaa”.

8.	 B. When executed, this program prints the following: “The removed element is: 1”.

The remove() method is equivalent to the removeFirst() method, which removes
the first element (head of the queue) of the Deque object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4 ■ Generics and Collections

143

9.	 C. It results in a compilation error

It looks like the setError() method in StrLastError is overriding setError()
in the LastError class. However, it is not the case. At the time of compilation, the
knowledge of type S is not available. Therefore, the compiler records the signatures of
these two methods as setError(String) in superclass and setError(S_extends_
CharSequence) in subclass—treating them as overloaded methods (not overridden). In
this case, when the call to setError() is found, the compiler finds both the overloaded
methods matching, resulting in the ambiguous method call error. Here is the error
message

Test.java:22: error: reference to setError is ambiguous, both method setError(T)
in LastError and method setError(S) in StrLastError match
 err.setError("Last error");
 ^
where T and S are type-variables:

T extends Object declared in class LastError. S extends CharSequence declared in
class StrLastError.

www.it-ebooks.info

http://www.it-ebooks.info/

145

Chapter 5

Lambda Built-in Functional
Interfaces

Certification Objectives

Use the built-in interfaces included in the java.util.function package such as Predicate, Consumer,
Function, and Supplier

Develop code that uses primitive versions of functional interfaces

Develop code that uses binary versions of functional interfaces

Develop code that uses the UnaryOperator interface

The java.util.function has numerous built-in interfaces. Other packages in the Java library
(notably java.util.stream package) make use of the interfaces defined in this package. For OCPJP 8 exam,
you should be familiar with using key interfaces provided in this package.

As we discussed earlier (in Chapter 3), a functional interface declares a single abstract method
(but in addition it can have any number of default or static methods). Functional interfaces are useful for
creating lambda expressions. The entire java.util.function package consists of functional interfaces.

 Before defining your own functional interfaces, consider using readily available functional interfaces
defined in the java.util.function package based on your need. If the signature of the lambda function you
are looking for is not available in any of the functional interfaces provided in this library, you can define your
own functional interfaces.

Using Built-in Functional Interfaces
Certification Objective

Use the built-in interfaces included in the java.util.function package such as Predicate, Consumer,
Function, and Supplier

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_3
http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

146

In this section, let us discuss four important built-in interfaces included in the java.util.function
package: Predicate, Consumer, Function, and Supplier. See Table 5-1 and Figure 5-1 to get an overview of
these functional interfaces.

The Predicate Interface
In code, we often need to use functions that check a condition and return a boolean value. Consider the
following code segment:

Stream.of("hello", "world")
 .filter(str -> str.startsWith("h"))
 .forEach(System.out::println);

Table 5-1.  Key Functional Interfaces in java.util.function Package

Functional Interface Brief Description Common Use

Predicate<T> Checks a condition and
returns a boolean value as
result

In filter() method in java.util.stream.Stream
which is used to remove elements in the stream that
don’t match the given condition (i.e., predicate) as
argument.

Consumer<T> Operation that takes an
argument but returns
nothing

In forEach() method in collections and in
java.util.stream.Stream; this method is used for
traversing all the elements in the collection or stream.

Function<T, R> Functions that take an
argument and return a
result

In map() method in java.util.stream.Stream to
transform or operate on the passed value and return
a result.

Supplier<T> Operation that returns a
value to the caller
(the returned value could
be same or different values)

In generate() method in java.util.stream.Stream
to create an infinite stream of elements.

Figure 5-1.  Abstract method declarations in key functional interfaces in java.util.function package

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

147

This code segment just prints “hello” on the console. The filter() method returns true only if the
passed string starts with “h”, and hence it “filters out” the string “world” from the stream because the string
does not start with “h”. In this code, the filter() method takes a Predicate as an argument. Here is the
Predicate functional interface:

@FunctionalInterface
public interface Predicate<T> {
 boolean test(T t);
 // other methods elided
}

The abstract method named test() that takes an argument and returns true or false (Figure 5-2).

Figure 5-2.  A Predicate<T> takes an argument of type T and returns a boolean value as the result

 A Predicate<T> “affirms” something as true or false: it takes an argument of type T, and returns a
boolean value. You can call test() method on a Predicate object.

This functional interface also defines default methods named and() and or() that take a Predicate
and return a Predicate. These methods have behavior similar to && and || operators. The method negate()
returns a Predicate, and its behavior is similar to the ! operator. How are they useful? Here is a program that
illustrates the use of and() method in Predicate interface (Listing 5-1).

Listing 5-1.  PredicateTest.java

import java.util.function.Predicate;
 
public class PredicateTest {
 public static void main(String []args) {
 Predicate<String> nullCheck = arg -> arg != null;
 Predicate<String> emptyCheck = arg -> arg.length() > 0;
 Predicate<String> nullAndEmptyCheck = nullCheck.and(emptyCheck);
 String helloStr = "hello";
 System.out.println(nullAndEmptyCheck.test(helloStr));
 
 String nullStr = null;
 System.out.println(nullAndEmptyCheck.test(nullStr));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

148

This program prints:

true
false

In this program, the object nullCheck is a Predicate that returns true if the given String argument is
not null. The emptyCheck predicate returns true if the given string is not empty. The nullAndEmptyCheck
predicate combines nullCheck and emptyCheck predicates by making use of the default method named
and() provided in Predicate. Since helloStr points to the string “hello” in the first call nullAndEmptyCheck.
test(helloStr), and the string is not empty, it returns true. However, in the next call, nullStr is null, and
hence the call nullAndEmptyCheck.test(nullStr) returns false.

To give another example for using Predicates, here is a code segment that makes use of the removeIf()
method added in the Collection interface in Java 8 (Listing 5-2).

Listing 5-2.  RemoveIfMethod.java

import java.util.List;
import java.util.ArrayList;
 
public class RemoveIfMethod {
 public static void main(String []args) {
 List<String> greeting = new ArrayList<>();
 greeting.add("hello");
 greeting.add("world");
 
 greeting.removeIf(str -> !str.startsWith("h"));
 greeting.forEach(System.out::println);
 }
}

It prints “hello” in the console. The default method removeIf() defined in the Collection interface (a
super interface of ArrayList) takes a Predicate as an argument:
 
default boolean removeIf(Predicate<? super E> filter)

In the call to removeIf() method, we are passing a lambda expression that matches the abstract
method boolean test(T t) declared in the Predicate interface:

greeting.removeIf(str -> !str.startsWith("h"));

As a result, the string “world” from the ArrayList object greeting is removed and hence only “hello”
is printed in the console. In this code we have used the ! operator. Instead of that, how about using the
equivalent negate() method defined in Predicate? Yes, it is possible, and here is the changed code:

greeting.removeIf(((Predicate<String>) str -> str.startsWith("h")).negate());

When you execute the program in Listing 5.2 with this change, the program prints “hello”. Note how
we have performed explicit typecast (to Predicate<String>) in this expression. Without this explicit type
cast–as in ((str -> str.startsWith("h")).negate())–the compiler cannot perform type inference to
determine the matching functional interface and hence will report an error.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

149

The Consumer Interface
There are many methods that take one argument, perform some operations based on the argument but do
not return anything to their callers–they are consumer methods. Consider the following code segment:

Stream.of("hello", "world")
 .forEach(System.out::println);

This code segment prints the words “hello” and “world” that are part of the stream by using the
forEach() method defined in the Stream interface. This method is declared in java.util.stream.Stream
interface as follows:

void forEach(Consumer<? super T> action);

The forEach() takes an instance of Consumer as the argument. The Consumer functional interface
declares an abstract method named accept() (Figure 5-3):

@FunctionalInterface
public interface Consumer<T> {
 void accept(T t);
 // the default andThen method elided
}

The accept() method “consumes” an object and returns nothing (void).

 A Consumer<T> “consumes” something: it takes an argument (of generic type T) and returns nothing
(void). You can call accept() method on a Consumer object.

Here is an example that uses the Consumer interface:

Consumer<String> printUpperCase = str -> System.out.println(str.toUpperCase());
printUpperCase.accept("hello");
// prints: HELLO

In this code, the lambda expression takes the given string, converts to upper case, and prints it to the
console. We are passing the actual argument “hello” to the accept() method.

Figure 5-3.  A Consumer<T> takes an argument of type T and returns nothing

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

150

Now, let us come back to the discussion on forEach(): how does the call forEach(System.out::println)
work?

The System class has a static variable named out that is of type PrintStream. The PrintStream
class defines overloaded println methods; one of the overloaded methods has the signature void
println(String). In the call forEach(System.out::println), we are passing the method reference for
println, i.e., System.out::println. This method reference matches the signature of the abstract method in
the Consumer interface, i.e., void accept(T). Hence, the method reference System.out::println serves to
implement the functional interface Consumer and the code prints the strings “hello” and “world” to console.
Listing 5-3 breaks the code Stream.of("hello", "world").forEach(System.out::println); into three
different statements just to show how it works.

Listing 5-3.  ConsumerUse.java

import java.util.stream.Stream;
import java.util.function.Consumer;
 
class ConsumerUse {
 public static void main(String []args) {
 Stream<String> strings = Stream.of("hello", "world");
 Consumer<String> printString = System.out::println;
 strings.forEach(printString);
 }
}

This program prints:

hello
world

Consumer also has a default method named andThen(); it allows chaining calls to Consumer objects.

The Function Interface
Consider this example that makes use of map() method in java.util.stream.Stream interface (Listing 5-4):

Listing 5-4.  FunctionUse.java

import java.util.Arrays;
 
public class FunctionUse {
 public static void main(String []args) {
 Arrays.stream("4, -9, 16".split(", "))
 .map(Integer::parseInt)
 .map(i -> (i < 0) ? -i : i)
 .forEach(System.out::println);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

151

This program prints:

4
9
16

This program creates a stream of Strings by splitting the string “4, -9, 16”. The method reference
Integer::parseInt is passed to map() method–this call returns an Integer object for each element in the
stream. In the second call to map() method in the stream, we have used the lambda function (i -> (i < 0)
? -i : i) to produce a list of non-negative integers (alternatively, we could have used Math::abs method).
The map() method we have used here takes a Function as an argument (this example is to illustrate where a
Function interface is useful). Finally, the resulting integers are printed using the forEach() method.

The Function interface defines a single abstract method named apply() that takes an argument of
generic type T and returns an object of generic type R (Figure 5-4):

@FunctionalInterface
public interface Function<T, R> {
 R apply(T t);
 // other methods elided
}

The Function interface also has default methods such as compose(), andThen(), and identity().

 A Function<T, R> “operates” on something and returns something: it takes one argument (of generic
type T) and returns an object (of generic type R). You can call apply() method on a Function object.

Here is a simple example that uses a Function:

Function<String, Integer> strLength = str -> str.length();
System.out.println(strLength.apply("supercalifragilisticexpialidocious"));
// prints: 34

Figure 5-4.  A Function<T, R> takes an argument of type T and returns a value of type R

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

152

This code takes a string and returns its length. For the call, strLength.apply, we pass the string
“supercalifragilisticexpialidocious". As a result of making the call apply(), we get the length of this
string 34 as the result.

Let us change our earlier program in Listing 5-4 to use andThen() method (Listing 5-5).

Listing 5-5.  CombineFunctions.java

import java.util.Arrays;
import java.util.function.Function;
 
public class CombineFunctions {
 public static void main(String []args) {
 Function<String, Integer> parseInt = Integer::parseInt;
 Function<Integer, Integer> absInt = Math::abs;
 Function<String, Integer> parseAndAbsInt = parseInt.andThen(absInt);
 
 Arrays.stream("4, -9, 16".split(", "))
 .map(parseAndAbsInt)
 .forEach(System.out::println);
 }
 
}

This program prints 4, 9, and 16 in separate lines: the same output as Listing 5-4, but makes a single
call to map() method in Stream. Because the Integer::parseInt() takes a String as an argument, parses it
to return an Integer, we declare parseInt() method of type Function<String, Integer>. The Math::abs
method takes an integer and returns an integer, and hence we declare it to be of type Function<Integer,
Integer>. Since the parseAndAbsInt takes a String as argument and returns an integer as result, we declare
it to be of type Function<String, Integer>.

What is the difference between andThen() and compose() methods in Function interface? The andThen()
method applies the passed argument after calling the current Function (as in this example). The compose()
method calls the argument before calling the current Function, as in:

Function<String, Integer> parseAndAbsInt = absInt.compose(parseInt);

The identity() function in Function just returns the passed argument without doing anything! Then
what is its use? It is sometimes used for testing – when you write a piece of code that takes a Function and
want to check if it works, you can call identity() because it doesn’t do anything. Here is an example:

Arrays.stream("4, -9, 16".split(", "))
 .map(Function.identity())
 .forEach(System.out::println);

In this code, the map(Function.identity()) does nothing; it just passes along the elements in the
stream to the call forEach(System.out::println). Hence the code prints the elements as they are, i.e., the
values 4, -9, and 16 in separate lines.

The Supplier Interface
In programs, often we need to use a method that does not take any input but returns some output. Consider
the following program that generates Boolean values (Listing 5-6):

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

153

Listing 5-6.  GenerateBooleans.java

import java.util.stream.Stream;
import java.util.Random;
 
class GenerateBooleans {
 public static void main(String []args) {
 Random random = new Random();
 Stream.generate(random::nextBoolean)
 .limit(2)
 .forEach(System.out::println);
 }
}

This program randomly prints two boolean values, for example, “true” and “false”. The generate()
method in Stream interface is a static member that takes a Supplier as the argument:

static <T> Stream<T> generate(Supplier<T> s)

Here, you are passing the method reference for nextBoolean defined in java.util.Random class. It returns
a boolean value chosen randomly:

boolean nextBoolean()

You can pass the method reference for nextBoolean to Stream’s generate() method because it matches
the abstract method in the Supplier interface, i.e., T get() Figure 5-5).

@FunctionalInterface
public interface Supplier<T> {
 T get();
 // no other methods in this interface
}

 A Supplier<T> “supplies” takes nothing but returns something: it has no arguments and returns an
object (of generic type T). You can call get() method on a Supplier object.

Figure 5-5.  A Supplier<T > takes no arguments and returns a value of type T

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

154

Here is a simple example that returns a value without taking anything as input:

Supplier<String> currentDateTime = () -> LocalDateTime.now().toString();
System.out.println(currentDateTime.get());

We have invoked the now() method on java.time.LocalDateTime (we discuss the java date and time
API in Chapter 8). When we executed it, it printed: 2015-10-16T12:40:55.164. Of course, if you try this code,
you will get a different output. Here we are using a Supplier<String>. The lambda expression does not take
any output but returns the current date/time as a String format. We are invoking the lambda when we call
the get() method on currentDateTime variable.

Constructor References
Consider the following code:

Supplier<String> newString = String::new;
System.out.println(newString.get());
// prints an empty string (nothing) to the console and then a newline character

This code makes use of constructor references. This code is equivalent to:

Supplier<String> newString = () -> new String();
System.out.println(newString.get());

With a method reference using ::new, this lambda expression gets simplified, as in String::new. How
to use constructors that take arguments? For example, consider the constructor Integer(String): this
Integer constructor takes a String as an argument and creates an Integer object with the value given in
that string. Here is how you can use that constructor:

Function<String, Integer> anotherInteger = Integer::new;
System.out.println(anotherInteger.apply("100"));
// this code prints: 100

We cannot use a Supplier here because Suppliers do not take any arguments. Functions do take
arguments and the return type here is Integer, and hence we can use Function<String, Integer>.

Primitive Versions of Functional Interfaces
Certification Objective

Develop code that uses primitive versions of functional interfaces

The built-in interfaces Predicate, Consumer, Function, and Supplier operate on reference type objects.
For primitive types there are specializations available for int, long and double types for these functional
interfaces. Consider Predicate that operates on objects of type T, i.e., it is Predicate<T>. The specializations
for int, long, and double for Predicate are IntPredicate, LongPredicate, and DoublePredicate respectively.

Due to limitations in generics, you cannot use primitive type values with functional interfaces
Predicate, Consumer, Function, and Supplier. But you can use wrapper types such as Integer and Double
with these functional interfaces. When you try to use primitive types with these functional interfaces,

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_8
http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

155

it results in implicit autoboxing and unboxing, for example, an int value gets converted to an Integer
object and vice versa. In fact, you often won’t even realize that you are using the wrapper types with these
functional interfaces. However, performance can suffer when we use wrapper types: think of boxing and
unboxing a few million integers in a stream. To avoid this performance problem, you can instead use
relevant primitive versions of these functional interfaces.

Primitive Versions of Predicate Interface
Consider this example:

IntStream.range(1, 10).filter(i -> (i % 2) == 0).forEach(System.out::println);

Here the filter() method takes an IntPredicate as the argument since the underlying stream is an
IntStream. Here is the equivalent code that explicitly uses an IntPredicate:

IntPredicate evenNums = i -> (i % 2) == 0;
IntStream.range(1, 10).filter(evenNums).forEach(System.out::println);

Table 5-2 lists primitive versions of Predicate interface provided in java.util.function package.

Primitive Versions of Function Interface
Here is an example that uses a Stream with the primitive type integers:

AtomicInteger ints = new AtomicInteger(0);
Stream.generate(ints::incrementAndGet).limit(10).forEach(System.out::println);
// prints integers from 1 to 10 on the console

This code calls the int incrementAndGet() method defined in the class java.util.concurrent.
atomic.AtomicInteger. Note that this method returns an int and not an Integer. Still, we can use it with
Stream because of implicit autoboxing and unboxing to and from int’s wrapper type Integer. This boxing
and unboxing is simply unnecessary. Instead you can use the IntStream interface; its generator() method
takes an IntSupplier as an argument. With this change, here is the equivalent code:

AtomicInteger ints = new AtomicInteger(0);
IntStream.generate(ints::incrementAndGet).limit(10).forEach(System.out::println);
// prints integers from 1 to 10 on the console

Table 5-2.  Primitive Versions of Predicate Interface

Functional Interface Abstract Method Brief Description

IntPredicate boolean test(int value) Evaluates the condition passed as int and
returns a boolean value as result

LongPredicate boolean test(long value) Evaluates the condition passed as long and
returns a boolean value as result

DoublePredicate boolean test(double value) Evaluates the condition passed as double and
returns a boolean value as result

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

156

Because his code uses IntStream and the generate() method takes an IntSupplier, there is no
implicit boxing and unboxing; hence this code performs faster as it does not generate unnecessary
temporary Integer objects.

To give another example, here is a segment of code we saw earlier on using the Math.abs() method:

Function<Integer, Integer> absInt = Math::abs;

You can replace it with its equivalent using int specialization for Function, known as IntFunction:

IntFunction absInt = Math::abs;

Depending on the kind of arguments and return types, there are numerous versions of primitive types
for Function interface (see Table 5-3).

Table 5-3.  Primitive Versions of Function Interface

Functional Interface Abstract Method Brief Description

IntFunction<R> R apply(int value) Operates on the passed int argument and
returns value of generic type R

LongFunction<R> R apply(long value) Operates on the passed long argument
and returns value of generic type R

DoubleFunction<R> R apply(double value) Operates on the passed double argument
and returns value of generic type R

ToIntFunction<T> int applyAsInt(T value) Operates on the passed generic type
argument T and returns an int value

ToLongFunction<T> long applyAsLong(T value) Operates on the passed generic type
argument T and returns a long value

ToDoubleFunction<T> double applyAsDouble(T value) Operates on the passed generic type
argument T and returns an double value

IntToLongFunction long applyAsLong(int value) Operates on the passed int type
argument and returns a long value

IntToDoubleFunction double applyAsDouble(int value) Operates on the passed int type
argument and returns a double value

LongToIntFunction int applyAsInt(long value) Operates on the passed long type
argument and returns an int value

LongToDoubleFunction double applyAsLong(long value) Operates on the passed long type
argument and returns a double value

DoubleToIntFunction int applyAsInt(double value) Operates on the passed double type
argument and returns an int value

DoubleToLongFunction long applyAsLong(double value) Operates on the passed double type
argument and returns a long value

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

157

Primitive Versions of Consumer Interface
Depending on the kind of arguments, there are numerous versions of primitive types for Consumer interface
available (see Table 5-4).

Primitive Versions of Supplier Interface
The primitive versions of Supplier are BooleanSupplier, IntSupplier, LongSupplier, and DoubleSupplier
that return boolean, int, long, and double respectively (see Table 5-5).

Table 5-4.  Primitive Versions of Consumer Interface

Functional Interface Abstract Method Brief Description

IntConsumer void accept(int value) Operates on the given int argument and
returns nothing

LongConsumer void accept(long value) Operates on the given long argument and
returns nothing

DoubleConsumer void accept(double value) Operates on the given double argument
and returns nothing

ObjIntConsumer<T> void accept(T t, int value) Operates on the given generic type
argument T and int arguments and
returns nothing

ObjLongConsumer<T> void accept(T t, long value) Operates on the given generic type
argument T and long arguments and
returns nothing

ObjDoubleConsumer<T> void accept(T t, double value) Operates on the given generic type
argument T and double arguments and
returns nothing

Table 5-5.  Primitive Versions of Supplier Interface

Functional Interface Abstract Method Brief Description

BooleanSupplier boolean getAsBoolean() Takes no arguments and returns a boolean value

IntSupplier int getAsInt() Takes no arguments and returns an int value

LongSupplier long getAsLong() Takes no arguments and returns a long value

DoubleSupplier double getAsDouble() Takes no arguments and returns a double value

 The primitive versions of the functional interfaces are available only for int, long, and double
(and boolean type in addition to these three types for Supplier). What if you need a functional interface that
takes or returns other primitive types char, byte, or short? You have to use implicit conversions to relevant int
specializations. Similarly, when you can use specialization for double type when you are using float.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

158

Binary Versions of Functional Interfaces
Certification Objective

Develop code that uses binary versions of functional interfaces

The functional interfaces Predicate, Consumer, and Function have abstract methods that take one
argument. For instance, consider the Function interface:

@FunctionalInterface
public interface Function<T, R> {
 R apply(T t);
 // other methods elided
}

The abstract method apply() takes one argument (generic type T). Here is the binary version of the
Function interface:

@FunctionalInterface
public interface BiFunction<T, U, R> {
 R apply(T t, U u);
 // other methods elided
}

 A BiFunction is similar to Function, but the difference is that it takes two arguments: it takes
arguments of generic types T and U and returns an object of generic type R. You can call apply() method on
a BiFunction object.

The prefix “Bi” indicates the version that takes “two” arguments. Along the same line as BiFunction
for Function, there is BiPredicate for Predicate and BiConsumer for Consumer that takes two arguments
(see Table 5-6). How about Supplier? Since the abstract method in Supplier does not take any argument,
there is no equivalent BiSupplier available.

Table 5-6.  Binary Versions of Functional Interfaces

Functional Interface Abstract Method Brief Description

BiPredicate<T, U> boolean test(T t, U u) Checks if the arguments match the condition and
returns a boolean value as result

BiConsumer<T, U> void accept(T t, U u) Operation that consumes two arguments but
returns nothing

BiFunction<T, U, R> R apply(T t, U u) Function that takes two argument and returns a
result

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

159

The BiFunction Interface
Here is an example of using BiFunction interface:

BiFunction<String, String, String> concatStr = (x, y) -> x + y;
System.out.println(concatStr.apply("hello ", "world"));
// prints: hello world

In this example, the arguments and return type are same type, but they can be different, as in:

BiFunction<Double, Double, Integer> compareDoubles = Double::compare;
System.out.println(compareDoubles.apply(10.0, 10.0));
// prints: 0

In this case, the argument types are of type double, and the return type is integer. When the passed
double values are equal, the compare method in Double class returns 0, and hence we get the output 0 for
this code segment.

Finding a suitable function interface for a given context can be tricky given that there are a large number
of functional interfaces available in the java.util.function package. For instance, in our earlier example,
we used BiFunction<Double, Double, Integer>. Instead of that, we could use the functional interface
ToIntBiFunction because it returns an int.

The BiPredicate Interface
Consider the following code segment:

BiPredicate<List<Integer>, Integer> listContains = List::contains;
List aList = Arrays.asList(10, 20, 30);
System.out.println(listContains.test(aList, 20));
// prints: true

This code shows how to use BiPredicate. The contains() method in List takes an element as an
argument and checks if the underlying list contains the element. Because it takes an argument and returns
an Integer, we can use a BiPredicate. Why not use BiFunction<T, U, Boolean>? Yes, the code will work,
but a better choice is the equivalent BiPredicate<T, U> because the BiPredicate returns a boolean value.

The BiConsumer Interface
Consider this code segment:

BiConsumer<List<Integer>, Integer> listAddElement = List::add;
List aList = new ArrayList();
listAddElement.accept(aList, 10);
System.out.println(aList);
// prints: [10]

This code segment shows how to use BiConsumer. Similar to using List::contains method reference in
the previous example for BiPredicate, this example shows how to use BiConsumer to call add() method in
List using this interface.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

160

The UnaryOperator Interface
Certification Objective

Develop code that uses the UnaryOperator interface

Consider the following example.

List<Integer> ell = Arrays.asList(-11, 22, 33, -44, 55);
System.out.println("Before: " + ell);
ell.replaceAll(Math::abs);
 System.out.println("After: " + ell);

This code prints:

Before: [-11, 22, 33, -44, 55]
After: [11, 22, 33, 44, 55]

This code uses replaceAll() method introduced in Java 8 that replaces the elements in the given List.
The replaceAll() method takes a UnaryOperator as the sole argument:

void replaceAll(UnaryOperator<T> operator)
 

The replaceAll() method is passed with Math::abs method to it.
Math has four overloaded methods for abs() method:

abs(int)
abs(long)
abs(double)
abs(float)

Because the type is Integer, the overloaded method abs(int) is selected through type inference.
UnaryOperator is a functional interface and it extends Function interface, and you can use the

apply() method declared in the Function interface; further, it inherits the default functions compose() and
andThen() from the Function interface. Similar to UnaryOperator that extends Function interface, there is a
BinaryOperator that extends BiFunction interface.

Primitive types versions of UnaryOperator interface IntUnaryOperator, LongUnaryOperator, and
DoubleUnaryOperator are also provided as part of the java.util.function package.

 The java.util.function package consists of only functional interfaces. There are only four core interfaces in
this package: Predicate, Consumer, Function, and Supplier. The rest of the interfaces are primitive versions,
binary versions, and derived interfaces such as UnaryOperator interface. These interfaces differ mainly on the
signature of the abstract methods they declare. You need to choose the suitable functional interface based on
the context and your need.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

161

Summary
Let us briefly review the key points from each certification objective in this chapter. Please read it before
appearing for the exam.

Use the built-in interfaces included in the java.util.function package such as Predicate, Consumer,
Function, and Supplier

•	 Built-in functional interfaces Predicate, Consumer, Function, and Supplier differ
mainly based on the signature of the abstract method they declare.

•	 A Predicate tests the given condition and returns true or false; hence it has an
abstract method named “test” that takes a parameter of generic type T and returns
boolean type.

•	 A Consumer “consumes” an object and returns nothing; hence it has an abstract
method named “accept” that takes an argument of generic type T and has return
type void.

•	 A Function “operates” on the argument and returns a result; hence it has an abstract
method named “apply” that takes an argument of generic type T and has generic
return type R.

•	 A Supplier “supplies” takes nothing but returns something; hence it has an abstract
method named “get” that takes no arguments and returns a generic type T.

•	 The forEach() method defined in Iterable (implemented by collection classes)
method accepts a Consumer<T>.

Develop code that uses primitive versions of functional interfaces

•	 The built-in interfaces Predicate, Consumer, Function, and Supplier operate on
reference type objects. For primitive types, there are specializations available for int,
long, and double types for these functional interfaces.

•	 When the Stream interface is used with primitive types, it results in unnecessary
boxing and unboxing of the primitive types to their wrapper types. This results in
slower code as well as wastes memory because the unnecessary wrapper objects get
created. Hence, whenever possible, prefer using the primitive type specializations of
the functional interfaces Predicate, Consumer, Function, and Supplier.

•	 The primitive versions of the functional interfaces Predicate, Consumer, Function,
and Supplier are available only for int, long and double types (and boolean type in
addition to these three types for Supplier). You have to use implicit conversions to
relevant int version when you need to use char, byte, or short types; similarly, you
can use the version for double type when you need to use float.

Develop code that uses binary versions of functional interfaces

•	 The functional interfaces BiPredicate, BiConsumer, and BiFunction are binary
versions of Predicate, Consumer, and Function respectively. There is no binary
equivalent for Supplier since it does not take any arguments. The prefix “Bi”
indicates the version that takes “two” arguments.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

162

Develop code that uses the UnaryOperator interface

•	 UnaryOperator is a functional interface and it extends Function interface.

•	 The primitive type specializations of UnaryOperator are IntUnaryOperator,
LongUnaryOperator, and DoubleUnaryOperator for int, long, and double types
respectively.

QUESTION TIME

1.	 Which of the following are functional interfaces? (Select ALL that apply)

A.	 java.util.stream.Stream<T>

B.	 java.util.function.Consumer<T>

C.	 java.util.function.Supplier<T>

D.	 java.util.function.Predicate<T>

E.	 java.util.function.Function<T, R>

2.	 Choose the correct option based on this program:

import java.util.function.Predicate;
 
public class PredicateTest {
 public static void main(String []args) {
 Predicate<String> notNull =
 ((Predicate<String>)(arg -> arg == null)).negate(); // #1
 System.out.println(notNull.test(null));
 }
}

A.	T his program results in a compiler error in line marked with the comment #1

B.	T his program prints: true

C.	T his program prints: false

D.	T his program crashes by throwing NullPointerException

3.	 Choose the correct option based on this program:

import java.util.function.Function;
 
public class AndThen {
 public static void main(String []args) {
 Function<Integer, Integer> negate = (i -> -i), square = (i -> i * i),
 negateSquare = negate.compose(square);
 
 System.out.println(negateSquare.apply(10));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

163

A.	T his program results in a compiler error

B.	T his program prints: -100

C.	T his program prints: 100

D.	T his program prints: -10

E.	T his program prints: 10

4.	 Which one of the following functional interfaces can you assign the method
reference Integer::parseInt? Note that the static method parseInt() in
Integer class takes a String and returns an int, as in: int parseInt(String s)

A.	 BiPredicate<String, Integer>

B.	 Function<Integer, String>

C.	 Function<String, Integer>

D.	P redicate<String>

E.	 Consumer<Integer, String>

F.	 Consumer<String, Integer>

5.	 Choose the correct option based on this program:

import java.util.function.BiFunction;
 
public class StringCompare {
 public static void main(String args[]){
 �BiFunction<String, String, Boolean> compareString = (x, y) ->

x.equals(y);
 System.out.println(compareString.apply("Java8","Java8")); // #1
 }
}

A.	T his program results in a compiler error in line marked with #1

B.	T his program prints: true

C.	T his program prints: false

D.	T his program prints: (x, y) -> x.equals(y)

E.	T his program prints: ("Java8", "Java8") -> "Java8".equals("Java8")

6.	 Which one of the following abstract methods does not take any argument but
returns a value?

A.	T he accept() method in java.util.function.Consumer<T> interface

B.	T he get() method in java.util.function.Supplier<T> interface

C.	T he test() method in java.util.function.Predicate<T> interface

D.	T he apply() method in java.util.function.Function<T, R> interface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

164

7.	 Choose the correct option based on this program:

import java.util.function.Predicate;
 
public class PredUse {
 public static void main(String args[]){
 �Predicate<String> predContains = "I am going to write OCP8

exam"::contains;
 checkString(predContains, "OCPJP");
 }
 static void checkString(Predicate<String> predicate, String str) {
 System.out.println(predicate.test(str) ? "contains" : "doesn't contain");
 }
}

A.	T his program results in a compiler error for code within main() method

B.	T his program results in a compiler error for code within checkString()
method

C.	T his program prints: contains

D.	T his program prints: doesn’t contain

8.	 Choose the correct option based on this program:

import java.util.function.ObjIntConsumer;
 
class ConsumerUse {
 public static void main(String []args) {
 ObjIntConsumer<String> charAt = (str, i) -> str.charAt(i); // #1
 System.out.println(charAt.accept("java", 2)); // #2
 }
}

A.	T his program results in a compiler error for the line marked with comment #1

B.	T his program results in a compiler error for the line marked with comment #2

C.	T his program prints: a

D.	T his program prints: v

E.	T his program prints: 2

Answers:

1.	 B, C, D, and E

The interface java.util.stream.Stream<T> is not a functional interface–it has
numerous abstract methods. The other four options are functional interfaces.

The functional interface java.util.function.Consumer<T> has an abstract method
with the signature void accept(T t);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

165

The functional interface java.util.function.Supplier<T> has an abstract method
with the signature T get();

The functional interface java.util.function.Predicate<T> has an abstract method
with the signature boolean test(T t);

The functional interface java.util.function.Function<T, R> has an abstract
method with the signature R apply(T t);

2.	 C. This program prints: false

The expression ((Predicate<String>)(arg -> arg == null)) is a valid cast to the
type (Predicate<String>) for the lambda expression (arg -> arg == null). Hence,
it does not result in a compiler error. The negate function in Predicate interface turns
true to false and false to true. Hence, given null, the notNull.test(null) results
in returning the value false.

3.	 B. This program prints: -100

The negate.compose(square) calls square before calling negate. Hence, for the given
value 10, square results in 100, and when negated, it becomes -100.

4.	 C. Function<String, Integer>

The parseInt() method takes a String and returns a value, hence we need to use
the Function interface because it matches the signature of the abstract method
R apply(T t). In Function<T, R>, the first type argument is the argument type
and the second one is the return type. Given that parseInt takes a String as the
argument and returns an int (that can be wrapped in an Integer), we can assign it to
Function<String, Integer>.

5.	 B. This program prints: true

The BiFunction interface takes two type arguments–they are of types String in this
program. The return type is Boolean. BiFunction functional interface has abstract
method named apply(). Since the signature of String’s equals() method matches
that of the signature of the abstract method apply(), this program compiles fine. When
executed, the strings “Java8” and “Java8” are equal; hence, the evaluation returns true
that is printed on the console.

6.	 B. The get() method in java.util.function.Supplier<T> interface

The signature of get() method in java.util.function.Supplier<T>
interface is: T get().

7.	 D. This program prints: doesn’t contain

You can create method references for object as well, so the code within main()
compiles without errors. The code within checkString() method is also correct and
hence it also compiles without errors. The string “OCPJP” is not present in the string “I
am going to write OCP8 exam” and hence this program prints “doesn’t contain” on the
console.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5 ■ Lambda Built-in Functional Interfaces

166

8.	 D. This program results in a compiler error for the line marked with comment #2

ObjIntConsumer operates on the given String argument str and int argument i
and returns nothing. Though the charAt method is declared to return the char at given
index i, the accept method in ObjIntConsumer has return type void. Since System.
out.println expects an argument to be passed, the call charAt.accept("java", 2)
results in a compiler error because accept() method returns void.

www.it-ebooks.info

http://www.it-ebooks.info/

167

Chapter 6

Java Stream API

Certification Objectives

Develop code to extract data from an object using peek() and map() methods including primitive
versions of the map() method

Search for data by using search methods of the Stream classes including findFirst, findAny, anyMatch,
allMatch, noneMatch

Develop code that uses the Optional class

Develop code that uses Stream data methods and calculation methods

Sort a collection using Stream API

Save results to a collection using the collect method and group/partition data using the Collectors class

Use flatMap() methods in the Stream API

In this chapter, we discuss the most important addition to the Java library in Java 8: the stream API. The
stream API is part of the java.util.stream package. The focus of this chapter is on the key interface in this
package: the Stream<T> interface (and its primitive type versions). We also discuss classes such as Optional
and Collectors in this chapter.

We have already introduced the stream API in Chapter 4 (Generics and Collections). The stream API
makes extensive use of built-in functional interfaces that are part of the java.util.function package
that we discussed in the previous chapter (Chapter 5). So, we assume that you have already read these two
chapters before reading this chapter.

Extract Data from a Stream
Certification Objective

Develop code to extract data from an object using peek() and map() methods including primitive
versions of the map() method

Let us start with a simple example:

long count = Stream.of(1, 2, 3, 4, 5).map(i -> i * i).count();
System.out.printf("The stream has %d elements", count);

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_4
http://dx.doi.org/10.1007/978-1-4842-1836-5_5
http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

168

This code segment prints:

The stream has 5 elements

The map() operation in this stream applies the given lambda function passed as its argument on the
elements of the stream. In this case, it squares the elements in the stream. The count() method returns the
value 5 – you capture it in a variable and print it on the console. But how can you check the result of applying
the intermediate operation map() in this code? For that you can use the peek() method:

long count = Stream.of(1, 2, 3, 4, 5)
 .map(i -> i * i)
 .peek(i -> System.out.printf("%d ", i))
 .count();
System.out.printf("%nThe stream has %d elements", count);

This code prints

1 4 9 16 25
The stream has 5 elements

This example also illustrates how the intermediate operations can be chained together. This is possible
because intermediate operations return streams.

Now, let us add another peek() method before calling the map() method to understand how it works:

Stream.of(1, 2, 3, 4, 5)
 .peek(i -> System.out.printf("%d ", i))
 .map(i -> i * i)
 .peek(i -> System.out.printf("%d ", i))
 .count();

This code prints

1 1 2 4 3 9 4 16 5 25

As you can observe from this output, the stream pipeline is processing the elements one by one. Each
element is mapped to its square. The peek() method helps us understand what is being processed in the
stream without distributing it.

 The peek() method is meant primarily for debugging purposes. It helps us understand how the elements
are transformed in the pipeline. Do not use it in production code.

You can use map() and peek() methods in primitive versions of Stream<T>; then following code snippet
uses a DoubleStream:

DoubleStream.of(1.0, 4.0, 9.0)
 .map(Math::sqrt)
 .peek(System.out::println)
 .sum();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

169

This code prints 1.0, 2.0, and 3.0 in separate lines on the console. Figure 6-1 visually shows the source,
intermediate operations and the terminal operations in this stream pipeline.

Search Data from a Stream
Certification Objective

Search for data by using search methods of the Stream classes including findFirst, findAny, anyMatch,
allMatch, noneMatch

Methods ending with the word “Match” and methods starting with the word “find” in the Stream
interface are useful for searching data from the stream (Table 6-1). You can use matching operations such
as anyMatch(), allMatch(), and noneMatch() if you are looking for elements in the stream that matches
the given condition. These methods return a boolean value. For searching operations findFirst() and
findAny(), matching elements may not be present in the Stream, so they return Optional<T> (we discuss
Optional<T> in the next section).

Figure 6-1.  A stream pipeline with source, intermediate operations and terminal operation

Table 6-1.  Important Match and Find Methods in the Stream Interface

Method Name Short Description

boolean anyMatch(Predicate<?
super T> check)

Returns true if there is any elements in the stream that matches the
given predicate. Returns false if the stream is empty or if there are no
matching elements.

boolean allMatch(Predicate<?
super T> check)

Returns true only if all elements in the stream matches the given
predicate. Returns true if the stream is empty without evaluating the
predicate!

boolean noneMatch(Predicate<?
super T> check)

Returns true only if none of the elements in the stream matches the
given predicate. Returns true if the stream is empty without evaluating
the predicate!

Optional<T> findFirst() Returns the first element from the stream; if there is no element
present in the stream, it returns an empty Optional<T> object.

Optional<T> findAny() Returns one of the elements from the stream; if there is no element
present in the stream, it returns an empty Optional<T> object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

170

 Unlike the anyMatch( ) method that returns false when the stream is empty, the allMatch( ) and
noneMatch( ) methods return true if the stream is empty!

Here is a simple program that illustrates how to use anyMatch(), allMatch(), and noneMatch()
methods (Listing 6-1).

Listing 6-1.  MatchUse.java

import java.util.stream.IntStream;
 
public class MatchUse {
 public static void main(String []args) {
 // Average temperatures in Concordia, Antarctica in a week in October 2015
 boolean anyMatch
 = IntStream.of(-56, -57, -55, -52, -48, -51, -49).anyMatch(temp -> temp > 0);
 System.out.println("anyMatch(temp -> temp > 0): " + anyMatch);
 
 boolean allMatch
 = IntStream.of(-56, -57, -55, -52, -48, -51, -49).allMatch(temp -> temp > 0);
 System.out.println("allMatch(temp -> temp > 0): " + allMatch);
 
 boolean noneMatch
 = IntStream.of(-56, -57, -55, -52, -48, -51, -49).noneMatch(temp -> temp > 0);
 System.out.println("noneMatch(temp -> temp > 0): " + noneMatch);
 
 }
}

This program prints:

anyMatch(temp -> temp > 0): false
allMatch(temp -> temp > 0): false
noneMatch(temp -> temp > 0): true

Because all the given temperatures are negative, the anyMatch() and allMatch() methods return false
whereas noneMatch() returns true.

The findFirst() and findAny() methods are useful for searching elements in streams. Here is a
program that uses findFirst() method (Listing 6-2).

Listing 6-2.  FindFirstUse1.java

import java.lang.reflect.Method;
import java.util.Arrays;
import java.util.Optional;
import java.util.stream.Stream;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

171

public class FindFirstUse1 {
 public static void main(String []args) {
 Method[] methods = Stream.class.getMethods();
 Optional<String> methodName = Arrays.stream(methods)
 .map(method -> method.getName())
 .filter(name -> name.endsWith("Match"))
 .sorted()
 .findFirst();
 System.out.println("Result: " + methodName.orElse("No suitable method found"));
 }
}

This program prints:

Result: allMatch

In this program, we get the list of methods in the Stream itself using reflection. Then, using map()
method, we get the list of method names and check if the names end with the string “Match”, sort those
methods, and return the first found method. If we are looking for any method name that ends with “Match”,
then we could use findAny() method instead.

 Why does the java.util.function package have both findFirst() and findAny() methods? In
parallel streams, findAny() is faster to use than findFirst() (we discuss parallel streams in Chapter 11).

Listing 6-3 has a stream with many temperature values given as double values. Using findFirst(), we
are looking for any temperature that is greater than 0. What will the program print?

Listing 6-3.  FindFirstUse2.java

import java.util.OptionalDouble;
import java.util.stream.DoubleStream;
 
public class FindFirstUse2 {
 public static void main(String []args) {
 OptionalDouble temperature = DoubleStream.of(-10.1, -5.4, 6.0, -3.4, 8.9, 2.2)
 .filter(temp -> temp > 0)
 .findFirst();
 System.out.println("First matching temperature > 0 is " + temperature.getAsDouble());
 }
}

This program prints:

First matching temperature > 0 is 6.0

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_11
http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

172

In this stream of double values, the filter() method filters the elements, 10.1 and -5.4 because
the condition temp > 0 is false. For the element 6.0, the filter() method evaluates the condition to true
and findFirst() returns that element. Notice that the remaining elements get ignored in this stream
pipeline: the elements 8.9 and 2.2 also satisfy the condition temp > 0, but the stream pipeline is closed
as the findFirst() method already returned the value 6.0. In other words, searching methods such as
findFirst() are short-circuiting. Once the result is determined, the rest of the elements in the stream are
not processed.

 The “match” and “find” methods for searching elements are “short-circuiting” in nature. What is
short-circuiting? The evaluation stops once the result is found (and the rest is not evaluated). You are already
familiar with the “short-circuiting” name of the operators && and ||. For example, in the expression ((s != null)
&& (s.length() > 0)), if the String s is null, the condition (s != null) evaluates to false; hence false is the result of
the expression. The remaining expression (s.length() > 0) is not evaluated in this case.

In Listings 6-2 and 6-3, we have used Optional and OptionalDouble classes; let us discuss these two
classes now.

The Optional class
Certification Objective

Develop code that uses the Optional class

The class java.util.Optional is a holder for value that can be null. There are numerous methods in
classes in java.util.stream package that return Optional values. Let us see an example now.

Consider this method:

public static void selectHighestTemperature(Stream<Double> temperatures) {
 System.out.println(temperatures.max(Double::compareTo));
}

Here is a call to this method:

selectHighestTemperature(Stream.of(24.5, 23.6, 27.9, 21.1, 23.5, 25.5, 28.3));

This code prints:

Optional[28.3]

The max() method in Stream takes a Comparator as an argument and returns an Optional<T>:

Optional<T> max(Comparator<? super T> comparator);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

173

Why Optional<T> instead of return type T? It is because max() method may fail to find the maximum
value – think about an empty stream, for example:

selectHighestTemperature(Stream.of());

Now, this code prints:

Optional.empty

To get the value from Optional, you can use isPresent() and get() methods, as in:

public static void selectHighestTemperature(Stream<Double> temperatures) {
 Optional<Double> max = temperatures.max(Double::compareTo);
 if(max.isPresent()) {
 System.out.println(max.get());
 }
}

Writing an if condition is tedious (and is not functional style), so you can use ifPresent method to
write simplified code:

max.ifPresent(System.out::println);

This ifPresent() method in Optional takes a Consumer<T> as the argument. You can also use methods
such as orElse() and orElseThrow() that we will discuss a bit later after discussing how to create Optional
objects.

Creating Optional Objects
There are many ways to create Optional objects. One way to create Optional objects is to use factory
methods in Optional class, as in:

Optional<String> empty = Optional.empty();

You can also use of() in Optional class:

Optional<String> nonEmptyOptional = Optional.of("abracadabra");

However, you cannot pass null to Optional.of() method, as in:

Optional<String> nullStr = Optional.of(null);
System.out.println(nullStr);
// crashes with a NullPointerException

This will result in throwing a NullPointerException. If you want to create an Optional object that has
null value, then you can instead use ofNullable() method:

Optional<String> nullableStr = Optional.ofNullable(null);
System.out.println(nullableStr);
// prints: Optional.empty

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

174

Figure 6-2 visualizes the representation of the Optional<String> objects pointed by nonEmptyOptional,
nullStr, and nullableStr.

Optional Stream
You can also consider Optional as a stream that can have zero elements or one element. So you can apply
methods such as map(), filter(), and flatMap() operations on this stream! How is it useful? Here is an
example (Listing 6-4):

Listing 6-4.  OptionalStream.java

import java.util.Optional;
 
public class OptionalStream {
 public static void main(String []args) {
 Optional<String> string = Optional.of(" abracadabra ");
 string.map(String::trim).ifPresent(System.out::println);
 }
}

This program prints:

abracadabra

You can use orElse() or orElseThrow() methods, when these operations fail (i.e., the underlying
Optional has a null value), as in:

Optional<String> string = Optional.ofNullable(null);
System.out.println(string.map(String::length).orElse(-1));

This code prints -1 because the variable string is an Optional variable that holds null and hence
the orElse() method executes and returns -1. Alternatively, you can throw an exception using the
orElseThrow() method:

Optional<String> string = Optional.ofNullable(null);
 System.out.println(string.map(String::length).orElseThrow(IllegalArgumentException::new));

Figure 6-2.  Representation of three Optional<String> objects

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

175

This code segments throws an IllegalArgumentException. Calling methods such as map(), flatMap(),
or filter() on an Optional object is useful when you are dealing with Optional object returned from a
function where you don't know what the Optional object contains.

Primitive Versions of Optional<T>
In the code we discussed earlier, we used both Stream<Double> and Optional<Double> types:

public static void selectHighestTemperature(Stream<Double> temperatures) {
 Optional<Double> max = temperatures.max(Double::compareTo);
 if(max.isPresent()) {
 System.out.println(max.get());
 }
}

It is better to use DoubleStream and OptionalDouble, which are primitive type versions for double for
Stream<T> and Optional<T> respectively. (The other two primitive type versions available are for int and
long, named as OptionalInt and OptionalLong respectively.) So, this code can be rewritten as:

public static void selectHighestTemperature(DoubleStream temperatures) {
 OptionalDouble max = temperatures.max();
 max.ifPresent(System.out::println);
}

When invoked with the following call,

selectHighestTemperature(DoubleStream.of(24.5, 23.6, 27.9, 21.1, 23.5, 25.5, 28.3));

We get the maximum value correctly printed on the console:

28.3

Similar to the max() method Stream<T> that returns Optional<T>, the max() method in DoubleStream
returns an OptionalDouble.

Stream Data Methods and Calculation Methods
Certification Objective

Develop code that uses Stream data methods and calculation methods

The Stream<T> interface has data and calculation methods count(), min() and max(). The min() and
max() methods take a Comparator object as the argument and return an Optional<T>. Here is an example of
using these methods (Listing 6-5).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

176

Listing 6-5.  WordsCalculation.java

import java.util.Arrays;
 
public class WordsCalculation {
 public static void main(String []args) {
 String[] string = "you never know what you have until you clean your room".split(" ");
 System.out.println(Arrays.stream(string).min(String::compareTo).get());
 }
}

This program prints:

clean

Since min() method requires a way to compare the elements in the stream, we are passing the
String::compareTo method reference in this program. Since min() returns an Optional<T>, we have
used the get() method to get the resulting string. Since the String::compareTo compares two strings
lexicographically, we get the word “clean” as the result.

Here is the modified code snippet that compares the strings not lexicographically but based on the
length of the string:

Comparator<String> lengthCompare = (str1, str2) -> str1.length() - str2.length();
System.out.println(Arrays.stream(string).min(lengthCompare).get());

With this change, the program prints “you” because it is the smallest word by length in the given string.
There are additional data and calculation methods such as sum() and average() provided in the

primitive versions of Stream<T> interface. Table 6-2 lists the important methods in IntStream interface that
we discuss in this section.

Table 6-2.  Important Data and Calculation Methods in IntStream Interface

Method Short Description

int sum() Returns the sum of elements in the stream; 0 in case the stream is empty.

long count() Returns the number of elements in the stream; 0 if the stream is empty.

OptionalDouble average() Returns the average value of the elements in the stream; an empty
OptionalDouble value in case the stream is empty.

OptionalInt min() Returns the minimum integer value in the stream; an empty OptionalInt
value in case the stream is empty.

OptionalInt max() Returns the maximum integer value in the stream; an empty OptionalInt
value in case the stream is empty.

IntSummaryStatistics
summaryStatistics()

Returns an IntSummaryStatistics object that has sum, count, average,
min, and max values.

The LongStream and DoubleStream interfaces have methods similar to ones listed for IntStream in this
table (Table 6-2). Here is a simple program that uses them (Listing 6-6).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

177

Listing 6-6.  WordStatistics.java

import java.util.IntSummaryStatistics;
import java.util.regex.Pattern;
 
public class WordStatistics {
 public static void main(String []args) {
 String limerick = "There was a young lady named Bright " +
 "who traveled much faster than light " +
 "She set out one day " +
 "in a relative way " +
 "and came back the previous night ";
 
 IntSummaryStatistics wordStatistics =
 Pattern.compile(" ")
 .splitAsStream(limerick)
 .mapToInt(word -> word.length())
 .summaryStatistics();
 
 System.out.printf(" Number of words = %d \n Sum of the length of the words = %d \n" +
 " Minimum word size = %d \n Maximum word size %d \n " +
 " Average word size = %f \n", wordStatistics.getCount(),
 wordStatistics.getSum(), wordStatistics.getMin(),
 wordStatistics.getMax(), wordStatistics.getAverage());
 }
}

This program prints:

Number of words = 28
Sum of the length of the words = 115
Minimum word size = 1
Maximum word size 8
Average word size = 4.107143

After splitting the words as a stream using splitAsStream() method in the Pattern class, this
program calls mapToInt() method to transform the word into their lengths. Why mapToInt() instead of
map() method? The map() method returns a Stream but we want to perform calculations on the underlying
elements in the stream. The Stream interface does not have methods that perform calculations but its
primitive type versions have data and calculation methods. Hence, we call the mapToInt() method that
returns an IntStream: IntStream has many useful data and calculation methods (listed in Table 6-2). We
have called summaryStatistics() method on the IntStream. Finally, we have called various methods such
as sum() and average() on the returned IntSummaryStatistics object to summarize the calculation on
words used in the given limerick.

You can also directly call methods such as sum() and average() provided in IntStream, as in:

IntStream.of(10, 20, 30, 40).sum();

These methods are more concise than their equivalent using the reduce() method:

IntStream.of(10, 20, 30, 40).reduce(0, ((sum, val) -> sum + val));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

178

Why does stream API provide reduce() method when we can use methods such as sum() that are more
concise, convenient to use, and also easy to read?

The answer is that reduce() is a generalized method: you can use it when you want to perform repeated
operations on stream elements to compute a result. Consider the factorial of 10. We don’t have a method like
sum() in IntStream that can help us multiply all the values. Hence, we can use reduce() method in this case:

// factorial of 5
System.out.println(IntStream.rangeClosed(1, 5).reduce((x, y) -> (x * y)).getAsInt());
// prints: 120

In fact, the sum() method of IntStream is internally implemented by calling reduce() method
(in IntPipeline class):

@Override
public final int sum() {
 return reduce(0, Integer::sum);
}

In this case, the sum() method is implemented by passing the method reference Integer::sum as the
second argument to the reduce() method.

 Reduction operations (aka “reducers”) could be implicit or explicit. Methods such as sum(), min(),
and max() in IntStream are examples of implicit reducers. When we use reduce() method directly in our code,
we are using explicit reducers. We can convert implicit reducers to their equivalent explicit reducers.

Sort a Collection Using Stream API
Certification Objectives

Sort a collection using Stream API

In Chapter 4 (on Generics and Collections), we discussed how to sort a collection using Comparator and
Comparable interfaces. Streams simplify the task of sorting a collection. Here is a program that sorts strings
with lexicographical comparison (Listing 6-7).

Listing 6-7.  SortingCollection.java

import java.util.Arrays;
import java.util.List;
 
public class SortingCollection {
 public static void main(String []args) {
 List words =
 Arrays.asList("follow your heart but take your brain with you".split(" "));
 words.stream().distinct().sorted().forEach(System.out::println);
 }
}

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_4
http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

179

This program prints:

brain
but
follow
heart
take
with
you
your

In this code, words is a collection of type List. We first get a stream from that list using the stream()
method and then call the distinct() method to remove duplicates (the word “your” is repeated in the
collection). After that, we call the sorted() method.

The sorted() method sorts the elements in their “natural order”; the sorted() method requires that
the elements in the stream implement the Comparable interface. How to sort the elements in some other
order? For that you can invoke the overloaded sorted method that takes a Comparator as the argument:

Stream<T> sorted(Comparator<? super T> comparator)

Here (Listing 6-8) is the modified version of the earlier program (in Listing 6-7) that sorts the elements
based on the length of the strings.

Listing 6-8.  SortByLength.java

import java.util.Arrays;
import java.util.List;
import java.util.Comparator;
 
public class SortByLength {
 public static void main(String []args) {
 List words =
 Arrays.asList("follow your heart but take your brain with you".split(" "));
 Comparator<String> lengthCompare = (str1, str2) -> str1.length() - str2.length();
 words.stream().distinct().sorted(lengthCompare).forEach(System.out::println);
 }
}

This program prints:

but
you
your
take
with
heart
brain
follow

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

180

In this output, the words are sorted based on the length of the words. The word “heart” appears before
“brain” though they are of same length. So, what if we want to first sort the words by length and then sort the
words of same length by natural order? For that you can use thenComparing() default method provided in
the Comparator interface (Listing 6-9).

Listing 6-9.  SortByLengthThenNatural.java

import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
 
public class SortByLengthThenNatural {
 public static void main(String []args) {
 List words =
 Arrays.asList("follow your heart but take your brain with you".split(" "));
 Comparator<String> lengthCompare = (str1, str2) -> str1.length() - str2.length();
 words.stream()
 .distinct()
 .sorted(lengthCompare.thenComparing(String::compareTo))
 .forEach(System.out::println);
 }
}

This program prints:

but
you
take
with
your
brain
heart
follow

What if we want to reverse this order? Fortunately, the Comparator interface has been enhanced with
many useful default and static methods in Java 8. One such method added is reversed() and you can make
use of that (Listing 6-10).

Listing 6-10.  SortByLengthThenNaturalReversed.java

import java.util.Arrays;
import java.util.Comparator;
import java.util.List;
 
public class SortByLengthThenNaturalReversed {
 public static void main(String []args) {
 List words =
 Arrays.asList("follow your heart but take your brain with you".split(" "));
 Comparator<String> lengthCompare = (str1, str2) -> str1.length() - str2.length();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

181

 words.stream()
 .distinct()
 .sorted(lengthCompare.thenComparing(String::compareTo).reversed())
 .forEach(System.out::println);
 }
}

This program prints:

follow
heart
brain
your
with
take
you
but

Save Results to a Collection
Certification Objectives

Save results to a collection using the collect method and group/partition data using the Collectors class

The Collectors class has methods that support the task of collecting elements to a collection. You can
use methods such as toList(), toSet(), toMap(), and toCollection() to create a collection from a stream.
Here is a simple example that creates a List from a stream and returns it (Listing 6-11). This code uses
collect() method of Stream and the toList() method of the Collectors class.

Listing 6-11.  CollectorsToList.java

import java.util.stream.Collectors;
import java.util.regex.Pattern;
import java.util.List;
 
public class CollectorsToList {
 public static void main(String []args) {
 String frenchCounting = "un:deux:trois:quatre";
 List gmailList = Pattern.compile(":")
 .splitAsStream(frenchCounting)
 .collect(Collectors.toList());
 gmailList.forEach(System.out::println);
 }
}

The collect() method in Stream takes a Collector as an argument:

<R, A> R collect(Collector<? super T, A, R> collector);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

182

In this code, we have used toList() method in Collectors class to collect the elements from the stream
into a List.

Here is an example that uses Collectors.toSet() method (Listing 6-12):

Listing 6-12.  CollectorsToSet.java

import java.util.Arrays;
import java.util.Set;
import java.util.stream.Collectors;
 
public class CollectorsToSet {
 public static void main(String []args) {
 String []roseQuote = "a rose is a rose is a rose".split(" ");
 Set words = Arrays.stream(roseQuote).collect(Collectors.toSet());
 words.forEach(System.out::println);
 }
}

This program prints:

a
rose
is

This code converts the given sentence in a string into a stream of words. The Collectors.toSet()
method called within the collect() method collects the words into a Set. Since a Set removes duplicates,
this program prints only the words “a”, “rose” and “is” to the console.

Just like Lists and Sets, you can also create Maps from a stream. Here is a program that creates a Map
from a stream of strings (Listing 6-13).

Listing 6-13.  CollectorsToMap.java

import java.util.Map;
import java.util.stream.Collectors;
import java.util.stream.Stream;
 
public class CollectorsToMap {
 public static void main(String []args) {
 Map<String, Integer> nameLength = Stream.of("Arnold", "Alois", "Schwarzenegger")
 .collect(Collectors.toMap(name -> name, name -> name.length()));
 nameLength.forEach((name, len) -> System.out.printf("%s - %d \n", name, len));
 }
}

This program prints:

Alois - 5
Schwarzenegger - 14
Arnold - 6

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

183

The Collectors.toMap() method takes two arguments – the first one for keys and the second one for
values. Here, we have used the elements in the stream itself as the key and the length of the string as the
value. Did you notice that the order of strings “Arnold”, “Alois”, and “Schwarzenegger” in the stream is not
retained? It is because Map does not maintain the insertion order of the elements.

In this code, note that we have used name -> name:

Collectors.toMap(name -> name, name -> name.length())

We can simplify it by passing Function.identity() instead, as in:

Collectors.toMap(Function.identity(), name -> name.length())

Recall that identity() method in Function interface returns the argument it receives (discussed in
Chapter 5).

What if you want to use a specific collection–say TreeSet–to aggregate elements from the collect()
method? For that you can use Collections.toCollection() method and pass the constructor reference of
TreeSet as the argument (Listing 6-14).

Listing 6-14.  CollectorsToTreeSet.java

import java.util.Arrays;
import java.util.Set;
import java.util.TreeSet;
import java.util.stream.Collectors;
 
public class CollectorsToTreeSet {
 public static void main(String []args) {
 String []roseQuote = "a rose is a rose is a rose".split(" ");
 Set words = Arrays.stream(roseQuote).collect(Collectors.toCollection(TreeSet::new));
 words.forEach(System.out::println);
 }
}

This program prints:

a
is
rose

Remember that a TreeSet orders the elements and hence the output is in sorted order.
You can also group the elements in a stream based on certain criteria (Listing 6-15).

Listing 6-15.  GroupStringsByLength.java

import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import java.util.stream.Stream;
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_5
http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

184

public class GroupStringsByLength {
 public static void main(String []args) {
 String []string= "you never know what you have until you clean your room".split(" ");
 Stream<String> distinctWords = Arrays.stream(string).distinct();
 Map<Integer, List<String>> wordGroups =
 distinctWords.collect(Collectors.groupingBy(String::length));
 wordGroups.forEach(
 (count, words) -> {
 System.out.printf("word(s) of length %d %n", count);
 words.forEach(System.out::println);
 });
 }
}

This program prints:

word(s) of length 3
you
word(s) of length 4
know
what
have
your
room
word(s) of length 5
never
until
clean

The groupingBy() method in Collectors class takes a Function as an argument. It uses the result of
the function to return a Map. The Map object consists of the values returned by the Function and the List of
elements that matched.

What if you want to separate longer words from smaller words? For that you can use partitioningBy()
method in Collectors class (Listing 6-16). The partition method takes a Predicate as an argument.

Listing 6-16.  PartitionStrings.java

import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.stream.Collectors;
import java.util.stream.Stream;
 
public class PartitionStrings {
 public static void main(String []args) {
 String []string= "you never know what you have until you clean your room".split(" ");
 Stream<String> distinctWords = Arrays.stream(string).distinct();
 Map<Boolean, List<String>> wordBlocks =
 distinctWords.collect(Collectors.partitioningBy(str -> str.length() > 4));
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

185

 System.out.println("Short words (len <= 4): " + wordBlocks.get(false));
 System.out.println("Long words (len > 4): " + wordBlocks.get(true));
 }
}

This program prints:

Short words (len <= 4): [you, know, what, have, your, room]
Long words (len > 4): [never, until, clean]

In the partitioningBy() method, we have given the condition str -> str.length() > 4. Now,
the result will be divided into two parts: a part with elements that evaluated to true for this condition and
another part that evaluated to false. In this case, we have used partitioningBy() method to divide the
words into small words (with words of length <= 4) and long words (with words of length > 4).

 How are the methods groupingBy() and partitioningBy() different? The groupingBy() method takes
a classification function (of type Function) and returns the input elements and their matching entries based on
the classification function (and organizes the results in a Map<K, List<T>>). The partitioningBy() method
takes a Predicate as the argument and classifies the entries as true and false based on the given Predicate
(and organizes the results in a Map<Boolean, List<T>>).

Using flatMap Method in Stream
Certification Objective

Use flatMap() methods in the Stream API

In the earlier program, we found distinct words in a string after calling split() method:

String []string= "you never know what you have until you clean your room".split(" ");
Stream<String> distinctWords = Arrays.stream(string).distinct();

What if we want to find distinct (unique) characters in the sentence? How about this code, does it work?

String []string= "you never know what you have until you clean your room".split(" ");
Arrays.stream(string)
 .map(word -> word.split(""))
 .distinct()
 .forEach(System.out::print);

This code prints gibberish like this:

Ljava.lang.String;@5f184fc6[Ljava.lang.String;@3feba861[Ljava.lang.String;@5b480cf9[

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

186

Why? Because the word.split() returns a String[] and distinct() removes duplicate references.
Since the elements in the stream are of type String[], the forEach() prints calls the default toString()
implementation that prints something that is not human-readable.

One way to solve this problem is to use Arrays.stream() again on word.split(""), and convert the
resulting streams into individual entries (i.e., “flatten” the streams) as in: flatMap(word ->
Arrays.stream(word.split(""))). With this change, here is the program (Listing 6-17) that prints unique
characters in a sentence.

Listing 6-17.  UniqueCharacters.java

import java.util.Arrays;
 
public class UniqueCharacters {
 public static void main(String []args) {
 String []string= "you never know what you have until you clean your room".split(" ");
 Arrays.stream(string)
 .flatMap(word -> Arrays.stream(word.split("")))
 .distinct()
 .forEach(System.out::print);
 }
}

This program correctly prints:

younevrkwhatilcm

Let us discuss an example that clearly illustrates the difference between map() and flatMap() methods
(Listings 6-18 and 6-19).

Listing 6-18.  UsingMap.java

import java.util.Arrays;
import java.util.List;
 
public class UsingMap {
 public static void main(String []args) {
 List<Integer> integers = Arrays.asList(1, 2, 3, 4, 5);
 integers.stream()
 .map(i -> i * i)
 .forEach(System.out::println);
 }
}

This program prints:

1
4
9
16
25

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

187

In this program, we have a List<Integer> with values 1 to 5. Since we have Integer elements, we can
directly call map() method and transform the elements to their square values (see Figure 6-3).

Now, things become difficult if we have a List of List<Integer>, as in Listing 6-19.

Listing 6-19.  UsingFlatMap.java

import java.util.Arrays;
import java.util.List;
 
public class UsingFlatMap {
 public static void main(String []args) {
 List<List<Integer>> intsOfInts = Arrays.asList(
 Arrays.asList(1, 3, 5),
 Arrays.asList(2, 4));
 intsOfInts.stream()
 .flatMap(ints -> ints.stream())
 .sorted()
 .map(i -> i * i)
 .forEach(System.out::println);
 }
}

The output of this program is same as the previous program (Listing 6-18). It also prints the squares of
the values 1 to 5.

In this program, we have a variable intsOfInts that is a List of List<Integer>. When you call the
stream() method on intsOfInts, what will be the type of elements? It will be List<Integer>. How do we
process the elements within the List<Integer>? For that, one way is to call stream() method on each of its
elements. To convert those streams into Integer elements, we call the flatMap() method. After the call to
flatMap(), we have a stream of Integers. We can now perform operations such as sorted(), and map() to
process or transform those elements. Figure 6-4 visually shows the difference between map() and flatMap()
methods in a Stream.

Figure 6-3.  The map() method transforms elements in a stream

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

188

 The flatMap() method operates on elements just like map() method. However, flatMap() flattens the
streams that result from mapping each of its elements into one flat stream.

Summary
Let us briefly review the key points for each certification objective in this chapter. Please read it before
appearing for the exam.

Develop code to extract data from an object using peek() and map() methods including primitive
versions of the map() method

•	 The peek() method is useful for debugging: it helps us understand how the elements
are transformed in the pipeline.

•	 You can transform (or just extract) elements in a stream using map() method

Search for data by using search methods of the Stream classes including findFirst, findAny,
anyMatch, allMatch, noneMatch

•	 You can match for a given predicate in a stream using the allMatch(), noneMatch(),
and anyMatch() methods. Unlike the anyMatch() method that returns false when the
stream is empty, the allMatch() and noneMatch() methods return true if the stream
is empty.

•	 You can look for elements in a stream using the findFirst() and findAny()
methods. The findAny() method is faster to use than the findFirst() method in
case of parallel streams.

•	 The “match” and “find” methods “short-circuit”: the evaluation stops once the result
is found and the rest of the stream is not evaluated.

Figure 6-4.  The flatMap() method flattens the streams

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

189

Develop code that uses the Optional class

•	 When there are no entries in a stream and operations such as max are called, then
instead of returning null or throwing an exception, the (better) approach taken in
Java 8 is to return Optional values.

•	 Primitive type versions of Optional<T> for int, long, and double are
OptionalInteger, OptionalLong, and OptionalDouble respectively.

Develop code that uses Stream data methods and calculation methods

•	 The Stream<T> interface has data and calculation methods count(), min() and
max(); you need to pass a Comparator object as the parameter when invoking these
min() and max() methods.

•	 The primitive type versions of Stream interface have the following data and
calculation methods: count(), sum(), average(), min(), and max().

•	 The summaryStatistics() method in IntStream, LongStream, and DoubleStream
have methods for calculating count, sum, average, minimum, and maximum values
of elements in the stream.

Sort a collection using Stream API

•	 One way to sort a collection is to get a stream from the collection and call sorted()
method on that stream. The sorted() method sorts the elements in the stream
in natural order (it requires that the stream elements implements the Comparable
interface).

•	 When you want to sort elements in the stream other than the natural order, you can
pass a Comparator object to the sorted() method.

•	 The Comparator interface has been enhanced with many useful static or default
methods in Java 8 such as thenComparing() and reversed() methods.

Save results to a collection using the collect method and group/partition data using the
Collectors class

•	 The collect() method of the Collectors class has methods that support the task of
collecting elements to a collection.

•	 The Collectors class provides methods such as toList(), toSet(), toMap(), and
toCollection() to create a collection from a stream.

•	 You can group the elements in a stream using the Collectors.groupingBy()
method and pass the criteria for grouping (given as a Function) as the argument.

•	 You can separate the elements in a stream based on a condition (given as a
Predicate) using the partition() method in the Collectors class. .

Use flatMap() method of the Stream API

•	 The flatMap() method in Stream flattens the streams that result from mapping each
element into one flat stream.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

190

QUESTION TIME

1.	 Choose the best option based on this code segment:

"abracadabra".chars().distinct().peek(ch ->
System.out.printf("%c ", ch)).sorted();

A.	 It prints: “a b c d r”

B.	 It prints: “a b r c d”

C.	 It crashes by throwing a java.util.IllegalFormatConversionException

D.	T his code segment terminates normally without printing any output in
the console

2.	 Choose the best option based on this program:

import java.util.function.IntPredicate;
import java.util.stream.IntStream;
 
public class MatchUse {
 public static void main(String []args) {
 IntStream temperatures = IntStream.of(-5, -6, -7, -5, 2, -8, -9);
 IntPredicate positiveTemperature = temp -> temp > 0; // #1
 
 if(temperatures.anyMatch(positiveTemperature)) { // #2
 int temp = temperatures
 .filter(positiveTemperature)
 .findAny()
 .getAsInt(); // #3
 System.out.println(temp);
 }
 }
}

A.	T his program results in a compiler error in line marked with comment #1

B.	T his program results in a compiler error in line marked with comment #2

C.	T his program results in a compiler error in line marked with comment #3

D.	T his program prints: 2

E.	T his program crashes by throwing java.lang.IllegalStateException

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

191

3.	 Choose the best option based on this program:

import java.util.stream.Stream;
 
public class AllMatch {
 public static void main(String []args) {
 boolean result = Stream.of("do", "re", "mi", "fa", "so", "la", "ti")
 .filter(str -> str.length() > 5) // #1
 .peek(System.out::println) // #2
 .allMatch(str -> str.length() > 5); // #3
 System.out.println(result);
 }
}

A.	T his program results in a compiler error in line marked with comment #1

B.	T his program results in a compiler error in line marked with comment #2

C.	T his program results in a compiler error in line marked with comment #3

D.	T his program prints: false

E.	T his program prints the strings “do”, “re”, “mi”, “fa”, “so”, “la”, “ti”, and
“false” in separate lines

F.	T his program prints: true

4.	 Choose the best option based on this program:

import java.util.*;
 
class Sort {
 public static void main(String []args) {
 List<String> strings = Arrays.asList("eeny ", "meeny ", "miny ", "mo ");
 Collections.sort(strings, (str1, str2) -> str2.compareTo(str1));
 strings.forEach(string -> System.out.print(string));
 }
}

A.	 Compiler error: improper lambda function definition

B.	T his program prints: eeny meeny miny mo

C.	T his program prints: mo miny meeny eeny

D.	T his program will compile fine, and when run, will crash by throwing a runtime
exception.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

192

5.	 Choose the best option based on this program:

import java.util.regex.Pattern;
import java.util.stream.Stream;
 
public class SumUse {
 public static void main(String []args) {
 Stream<String> words = Pattern.compile(" ").splitAsStream("a bb ccc");
 System.out.println(words.map(word -> word.length()).sum());
 }
}

A.	 Compiler error: Cannot find symbol “sum” in interface Stream<Integer>

B.	T his program prints: 3

C.	T his program prints: 5

D.	T his program prints: 6

E.	T his program crashes by throwing java.lang.IllegalStateException

6.	 Choose the best option based on this program:

import java.util.OptionalInt;
import java.util.stream.IntStream;
 
public class FindMax {
 public static void main(String args[]) {
 maxMarks(IntStream.of(52,60,99,80,76)); // #1
 }
 public static void maxMarks(IntStream marks) {
 OptionalInt max = marks.max(); // #2
 if(max.ifPresent()) { // #3
 System.out.print(max.getAsInt());
 }
 }
}

A.	T his program results in a compiler error in line marked with comment #1

B.	T his program results in a compiler error in line marked with comment #2

C.	T his program results in a compiler error in line marked with comment #3

D.	T his program prints: 99

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

193

7.	 Choose the best option based on this program:

import java.util.Optional;
import java.util.stream.Stream;
 
public class StringToUpper {
 public static void main(String args[]){
 Stream.of("eeny ","meeny ",null).forEach(StringToUpper::toUpper);
 }
 private static void toUpper(String str) {
 Optional <String> string = Optional.ofNullable(str);
 System.out.print(string.map(String::toUpperCase).orElse("dummy"));
 }
}

A.	T his program prints: EENY MEENY dummy

B.	T his program prints: EENY MEENY DUMMY

C.	T his program prints: EENY MEENY null

D.	T his program prints: Optional[EENY] Optional[MEENY] Optional[dummy]

E.	T his program prints: Optional[EENY] Optional[MEENY] Optional[DUMMY]

Answers:

1.	 D. This code segment terminates normally without printing any output in the
console.

A stream pipeline is lazily evaluated. Since there is no terminal operation provided (such as
count(), forEach(), reduce(), or collect()), this pipeline is not evaluated and hence the
peek() method does not print any output to the console.

2.	 E. This program crashes by throwing java.lang.IllegalStateException

A stream once used–i.e., once “consumed”–cannot be used again. In this program,
anyMatch() is a terminal operation. Hence, once anyMatch() is called, the stream
in temperatures is considered “used” or “consumed”. Hence, calling findAny()
terminal operation on temperatures results in the program throwing java.lang.
IllegalStateException.

3.	 F. This program prints: true

The predicate str -> str.length() > 5 returns false for all the elements because the
length of each string is 2. Hence, the filter() method results in an empty stream and the
peek() method does not print anything. The allMatch() method returns true for an empty
stream and does not evalute the given predicate. Hence this program prints true.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6 ■ Java Stream API

194

4.	 C. This program prints: mo miny meeny eeny

This is a proper definition of a lambda expression. Since the second argument of
Collections.sort() method takes the functional interface Comparator and a matching
lambda expression is passed in this code. Note that second argument is compared with the
first argument in the lambda expression (str1, str2) -> str2.compareTo(str1). For this
reason, the comparison is performed in descending order.

5.	 A. Compiler error: Cannot find symbol “sum” in interface Stream<Integer>

Data and calculation methods such as sum() and average() are not available in the
Stream<T> interface; they are available only in the primitive type versions IntStream,
LongStream, and DoubleStream. To create an IntStream, one solution is to use mapToInt()
method instead of map() method in this program. If mapToInt() were used, this program
would compile without errors, and when executed, it will print 6 to the console.

6.	 C. This program results in a compiler error in line marked with comment #3

The ifPresent() method in Optional takes a Consumer<T> as the argument. This program
uses ifPresent() without passing an argument and hence it results in a compiler error. If
the method isPresent() were used instead of ifPresent() in this program, it will compile
cleanly and print 99 on the console.

7.	 A. This program prints: EENY MEENY dummy

Note that the variable string points to Optional.ofNullable(str). When the element null
is encountered in the stream, it cannot be converted to uppercase and hence the orElse()
method executes to return the string “dummy”. In this program, if Optional.of(str) were
used instead of Optional.ofNullable(str) the program would have resulted in throwing a
NullPointerException.

www.it-ebooks.info

http://www.it-ebooks.info/

195

Chapter 7

Exceptions and Assertions

Certification Objectives

Use try-catch and throw statements

Use catch, multi-catch, and finally clauses

Use Autoclose resources with a try-with-resources statement

Create custom exceptions and Auto-closeable resources

Test invariants by using assertions

In this chapter, you’ll learn about Java’s support for exception handling in detail. The OCAJP 8 exam
(which is a pre-requisite for OCPJP 8 exam) covers fundamentals of exception handling as an exam topic.
Hence, we assume that you are already familiar with the basic syntax used for exception handling and types
of exceptions. In this chapter, you’ll learn how to provide try, catch, multi-catch, and finally block. You’ll also
learn about the recently added language features such as try-with-resources and multi-catch statements.
Following that, you’ll learn how to define your own exception classes (custom exceptions). Finally, we’ll
discuss the related topic of assertions and teach you how to use them in your programs. Many programming
examples in this chapter make use of I/O functions (Chapters 9 and 10) to illustrate the concepts of
exception handling.

Throwable and its Subclasses
In Java the thrown object should be an instance of the class Throwable or one of its subclasses (Throwable
is the apex class of the exception hierarchy in Java). Exception handling constructs such as the throw
statement, throws clause, and catch clause deal only with Throwable and its subclasses. There are
three important subclasses of Throwable that you need to learn in detail: the Error, Exception, and
RuntimeException classes. Figure 7-1 provides a high-level overview of these classes.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_9
http://dx.doi.org/10.1007/978-1-4842-1836-5_10
http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

196

Here is a brief description of the three important classes that extends the Throwable class:

•	 Exceptions of type Exception are known as checked exceptions. If code can throw an
Exception, you must handle it using a catch block or declare that the method throws
that exception, forcing the caller of that method to handle that exception.

•	 RuntimeException is a derived class of the Exception class. The exceptions deriving
from this class are known as unchecked exceptions. It is optional to handle unchecked
exceptions. If a code segment you write in a method can throw an unchecked
exception, it is not mandatory to catch that exception or declare that exception in the
throws clause of that method.

•	 When the JVM detects a serious abnormal condition in the program, it raises an
exception of type Error. Exceptions of type Error indicate an abnormal condition
in the program. There is no point in catching this exception and trying to continue
execution and pretending nothing has happened. It is a really bad practice to do so!

Now, let us start discussing how to throw and catch exceptions.

Figure 7-1.  Java’s exception hierarchy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

197

Throwing Exceptions

Certification Objective

Use try-catch and throw statements

Listing 7-1 is a very simple programming example in which you want to echo the text typed as
command-line arguments back to the user. Assume that the user must type some text as command-line
arguments to echo, or else you need to inform the user about the “error condition.”

Listing 7-1.  Echo.java

// A simple program without exception handling code
class Echo {
 public static void main(String []args) {
 if(args.length == 0) {
 // no arguments passed – display an error to the user
 System.out.println("Error: No input passed to echo command... ");
 System.exit(-1);
 }
 else {
 for(String str : args) {
 // command-line arguments are separated and passed as an array
 // print them by adding a space between the array elements
 System.out.print(str + " ");
 }
 }
 }
}

In this case, you print the error in the console using a println() statement. This is a trivial program and
the error occurred in the main() method, so the error handling is easy. In this case, you can terminate the
program after printing the error message to the console. However, if you are deep within the function calls
in a complex application, you need a better way to indicate that an “exceptional condition” has occurred
and then inform the caller about that condition. Further, you often need to recover from an error condition
instead of terminating the program. So you need to be able to “handle” an exception or “rethrow” that
exception further up in the call stack so that a caller can handle that exception. (We’ll revisit this topic of
rethrowing exceptions later in this chapter.) At present, you’ll change the program in Listing 7-1 to throw an
exception instead of printing an error message (in a separate program, Echo1.java), like so:

if(args.length == 0) {
 // no arguments passed - throw an exception
 throw new IllegalArgumentException("No input passed to echo command");
}

This block inside the if condition for args.length == 0 is the only part that needs to be changed
within this program. Note the syntax for throwing an exception: the throw keyword followed by the exception
object. Here you make use of IllegalArgumentException, which is already defined in the Java library. Later
in this chapter, you’ll see how to define your own exceptions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

198

Now, if you run this program without passing any arguments in the command line, the program will
throw an IllegalArgumentException:

Exception in thread "main" java.lang.IllegalArgumentException: No input passed to echo command
 at Echo1.main(Echo1.java:5)

Since there was no handler for this exception, this uncaught exception terminated the program. In this
case, you explicitly threw an exception. Exceptions can also get thrown when you write some code or call
Java APIs. Let’s look at an example now.

Unhandled Exceptions
Consider the program in Listing 7-2, which attempts to read an integer value that the user types in the
console and prints the read integer back to the console. For reading an integer from the console, you make
use of the nextInt() method provided in the java.util.Scanner class. To instantiate the Scanner class, you
pass in System.in, which is a reference to the system input stream.

Listing 7-2.  ScanInt1.java

// A simple progam to accept an integer from user
 
import java.util.Scanner;
 
class ScanInt1 {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 Scanner consoleScanner = new Scanner(System.in);
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 }
}

When you run this program and type an integer, say 10, in the console, the program works correctly and
prints the integer back to you successfully.

D:\> java ScanInt1
Type an integer in the console:
10
You typed the integer value: 10

However, what if you (or the user of the program) mistakenly type the string “ten” instead of the integer
value “10”? The program will terminate after throwing an exception like this:

D:\> java ScanInt1
Type an integer in the console:
ten
Exception in thread "main" java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:909)
 at java.util.Scanner.next(Scanner.java:1530)
 at java.util.Scanner.nextInt(Scanner.java:2160)
 at java.util.Scanner.nextInt(Scanner.java:2119)
 at ScanInt.main(ScanInt1.java:7)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

199

If you read the documentation of nextInt(), you’ll see that this method can throw
InputMismatchException - “if the next token does not match the Integer regular expression, or is out
of range.” In this simple program, you assume that you (or the user) will always type an integer value as
expected, and when that assumption fails, an exception gets thrown. If there is an exception thrown from a
program, and it is left unhandled, the program will terminate abnormally after throwing a stack trace like the
ones shown here.

A stack trace shows the list of the method (with the line numbers) that was called before the control
reached the statement where the exception was thrown. As a programmer, you’ll find it useful to trace the
control flow for debugging the program and fix the problem that led to this exception.

So, how do you handle this situation? You need to put this code within try and catch blocks and then
handle the exception.

Try and Catch Statements

Certification Objective

Use catch, multi-catch, and finally clauses

Java provides the try and catch keywords to handle any exceptions that can get thrown in the code you
write. Listing 7-3 is the improved version of the program from Listing 7-2.

Listing 7-3.  ScanInt2.java

// A simple progam to accept an integer from user in normal case,
// otherwise prints an error message
 
import java.util.Scanner;
import java.util.InputMismatchException;
 
class ScanInt2 {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 Scanner consoleScanner = new Scanner(System.in);
 try {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 } catch(InputMismatchException ime) {
 // nextInt() throws InputMismatchException in case anything
 // other than an integer is typed in the console; so handle it
 System.out.println("Error: You typed some text that is not an integer value...");
 }
 }
}

If anything other than a valid integer is typed in the input, this program prints a readable error message
to the user.

D:\> java ScanInt2
Type an integer in the console:
ten
Error: You typed some text that is not an integer value...

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

200

Now let’s analyze this code. The block followed by the try keyword limits the code segment for which
you expect that some exceptions could be thrown. If any exception gets thrown from the try block, the Java
runtime will search for a matching handler (which we’ll discuss in more detail a bit later). In this case, an
exception handler for InputMismatchException is present, which is of exactly the same type as the exception
that got thrown. This exactly matching catch handler is available just outside the try block in the form of a
block preceded by the keyword catch, and this catch block gets executed. In the catch block you caught the
exception, so you’re handling the exception here. You are providing a human readable error string rather
than throwing a raw stack trace (as you did in the earlier program in Listing 7-2), so you’re providing a
graceful exit for the program.

Multiple Catch Blocks

In Listing 7-2, you used a Scanner object to read an integer from the console. Note that you can use a
Scanner object to read from a String as well (see Listing 7-4).

Listing 7-4.  ScanInt3.java

// A program that scans an integer from a given string
 
import java.util.Scanner;
import java.util.InputMismatchException;
 
class ScanInt3 {
 public static void main(String [] args) {
 String integerStr = "100";
 System.out.println("The string to scan integer from it is: " + integerStr);
 Scanner consoleScanner = new Scanner(integerStr);
 try {
 System.out.println("The integer value scanned from string is: " +
 consoleScanner.nextInt());
 } catch(InputMismatchException ime) {
 // nextInt() throws InputMismatchException in case
 // anything other than an integeris provided in the string
 System.out.println("Error: Cannot scan an integer from the given string");
 }
 }
}

This program prints the following:

The string to scan integer from it is: 100
The integer value scanned from string is: 100

What happens if you modify the program in Listing 7-4 so that the string contains a non-integer value,
as in

String integerStr = "hundred";

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

201

The try block will throw an InputMismatchException, which will be handled in the catch block, and
you’ll get this output:

The string to scan integer from it is: hundred
Error: Cannot scan an integer from the given string

Now, what if you modify the program in Listing 7-4 so that the string contains an empty string, as in

String integerStr = "";

For this, nextInt() will throw a NoSuchElementException, which is not handled in this program, so this
program would crash.

The string to scan integer from it is:
Exception in thread "main" java.util.NoSuchElementException
 at java.util.Scanner.throwFor(Scanner.java:907)
 at java.util.Scanner.next(Scanner.java:1530)
 at java.util.Scanner.nextInt(Scanner.java:2160)
 at java.util.Scanner.nextInt(Scanner.java:2119)
 at ScanInt3.main(ScanInt.java:11)

Further, if you look at the JavaDoc for Scanner.nextInt() method, you’ll find that it can also throw an
IllegalStateException (this exception is thrown if the nextInt() method is called on a Scanner object that
is already closed). So, let’s provide catch handlers for InputMismatchException, NoSuchElementException,
and IllegalStateException (see Listing 7-5).

Listing 7-5.  ScanInt4.java

// A program that scans an integer from a given string
 
import java.util.Scanner;
import java.util.InputMismatchException;
import java.util.NoSuchElementException;
 
class ScanInt4 {
 public static void main(String [] args) {
 String integerStr = "";
 System.out.println("The string to scan integer from it is: " + integerStr);
 Scanner consoleScanner = new Scanner(integerStr);
 try {
 System.out.println("The integer value scanned from string is: " +
 consoleScanner.nextInt());
 } catch(InputMismatchException ime) {
 System.out.println("Error: Cannot scan an integer from the given string");
 } catch(NoSuchElementException nsee) {
 System.out.println("Error: Cannot scan an integer from the given string");
 } catch(IllegalStateException ise) {
 System.out.println("Error: nextInt() called on a closed Scanner object");
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

202

Here is the output when you run this program:

The string to scan integer from it is:
Error: Cannot scan an integer from the given string

As you can see from the output, since the string is empty, NoSuchElementException gets thrown. It is
caught in the catch handler for this exception, and the code provided inside the catch block gets executed to
result in a graceful exit.

Note how you provided more than one catch handler by stacking them up: you provided specific
(i.e., derived type) exception handlers followed by more general (i.e., base type) exception handlers. If you
provide a derived exception type after a base exception type, you get a compiler error. You might not already
know, but NoSuchElementException is the base class of InputMismatchException! See what happens when
you try to reverse the order of catch handlers for InputMismatchException and NoSuchElementException.

try {
 System.out.println("The integer value scanned from string is: "
 + consoleScanner.nextInt());
} catch(NoSuchElementException nsee) {
 System.out.println("Error: Cannot scan an integer from the given string");
} catch(InputMismatchException ime) {
 System.out.println("Error: Cannot scan an integer from the given string");
}

This code segment will result in this compiler error:

ScanInt4.java:14: error: exception InputMismatchException has already been caught
 
 } catch(InputMismatchException ime) {
 ^
1 error

 When providing multiple catch handlers, handle specific exceptions before handling general exceptions.
If you provide a derived class exception catch handler after a base class exception handler, your code will
not compile.

Multi-Catch Blocks

Java provides a feature named multi-catch blocks in which you can combine multiple catch handlers. Let’s
use this feature to combine the catch clauses of NoSuchElementException and IllegalStateException
(see Listing 7-6):

Listing 7-6.  ScanInt5.java

// A program that illustrates multi-catch blocks
 
import java.util.Scanner;
import java.util.NoSuchElementException;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

203

class ScanInt5 {
 public static void main(String [] args) {
 String integerStr = "";
 System.out.println("The string to scan integer from it is: " + integerStr);
 Scanner consoleScanner = new Scanner(integerStr);
 try {
 System.out.println("The integer value scanned from string is: " +
 consoleScanner.nextInt());
 } catch(NoSuchElementException | IllegalStateException multie) {
 System.out.println("Error: An error occured while attempting to scan the integer");
 }
}
}

Note how you combine the catch handlers together using the | (OR) operator here (the same operator
you use for performing bit-wise OR operation on integral values) for combining the catch clauses of
NoSuchElementException and IllegalStateException.

Unlike the combined catch clauses for NoSuchElementException and IllegalStateException, you
cannot combine the catch clauses of NoSuchElementException and InputMismatchException. As we’ve
already discussed, NoSuchElementException is the base class of InputMismatchException, and you cannot
catch both of them in the multi-catch block. If you try compiling such a multi-catch clause, you’ll get this
compiler error:

ScanInt5.java:11: error: Alternatives in a multi-catch statement cannot be related by
subclassing
 } catch(InputMismatchException | NoSuchElementException exception) {
 ^

So what is the alternative? When you need such a catch handler for the exceptions where one exception
is the base class of another exception class, providing the catch handler for the base class alone is sufficient
(since that base class catch handler will handle the derived class exception if it occurs).

 In a multi-catch block, you cannot combine catch handlers for two exceptions that share a base- and
derived-class relationship. You can only combine catch handlers for exceptions that do not share the
parent-child relationship between them.

How do you know if it is better to combine exception handling blocks or stack them? It is a design
choice where you must consider the following aspects: (a) Do the exceptions get thrown for similar reasons
or for different reasons? (b) Is the handling code similar or different? If you answer “similar” for both the
questions, it is better to combine them; if you say “different” for either one of these two questions, then it is
better to separate them.

How about the specific situation in Listing 7-6? Is it better to combine or separate the handlers for the
InputMismatchException and IllegalStateException exceptions? You can see that the exception handling
is the same for both of the catch blocks. But the reasons for these two exceptions are considerably different.
The InputMismatchException gets thrown invalid input is passed (e.g., “hundred” as we discussed earlier).
The IllegalStateException gets thrown because of a programming mistake when you call the nextInt()
method after calling the close() method on Scanner. So, in this case, it is a better design choice to separate
the handlers for these two exceptions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

204

General Catch Handlers

Did you notice that many exceptions can get thrown when you use APIs related to I/O operations? We just
discussed that in order to call just one method, nextInt() of the Scanner class, you need to handle three
exceptions: the InputMismatchException, the NoSuchElementException, and the IllegalStateException.
If you keep handling specific exceptions such as this that may or may not actually result in an exceptional
condition when you run the program, most of your code will consist of try-catch code blocks! Is there a
better way to say “handle all other exceptions”? Yes, you can provide a general exception handler.

Here is the code snippet that shows only the try-catch blocks for the class ScanInt3 from Listing 7-4,
enhanced with a general exception handler:

try {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
} catch(InputMismatchException ime) {
 // if something other than integer is typed, we'll get this exception, so handle it
 System.out.println("Error: You typed some text that is not an integer value...");
} catch(Exception e) {
 // catch IllegalStateException here which is unlikely to occur...
 �System.out.println("Error: Encountered an exception and could not read an integer from

the console... ");
}

This code provides a catch handler for the base exception of the type Exception. So, if the try block throws
any other exception than the InputMismatchException, and if that exception is a derived class of the Exception
class, this general catch handler will handle it. It is recommended practice to catch specific exceptions, and then
provide a general exception handler to ensure that all other exceptions are handled as well.

Releasing Resources

Do you notice that programs we discussed in Listings 7-2, 7-3, and 7-4 have a resource leak (because we
opened a Scanner object but did not close it)? The word “resource” refers to any of the classes that acquire
some system sources from the underlying operating system, such as network, file, database, and other
handles. But how do you know which classes need to be closed? The answer is that if a class implements
java.io.Closeable, then you must call the close() method of that class; otherwise, it will result in a
resource leak.

 The Garbage Collector (GC) is responsible for releasing only memory resources. If you are using any
class that acquires system resources, it is your responsibility to release them by calling the close() method on
that object.

ScanInt6 (Listing 7-7) calls the close() method of the Scanner object in its main() method; you want
to shorten the code, so you’ll use a general exception handler for handling all exceptions that can be thrown
within the try block.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

205

Listing 7-7.  ScanInt6.java

import java.util.Scanner;
 
class ScanInt6 {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 Scanner consoleScanner = new Scanner(System.in);
 try {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 System.out.println("Done reading the text... closing the Scanner");
 consoleScanner.close();
 } catch(Exception e) {
 // call all other exceptions here ...
 �System.out.println("Error: Encountered an exception and could not read an

integer from the console... ");
 System.out.println("Exiting the program - restart and try the program again!");
 }
 }
}

Let’s see if this program works.

D:\> java ScanInt6
Type an integer in the console:
10
You typed the integer value: 10
Done reading the text... closing the Scanner

Because the program printed "Done reading the text... closing the Scanner", and completed
the execution normally, you can assume that the statement consoleScanner.close(); has executed
successfully. What happens if an exception gets thrown?

D:\> java ScanInt6
Type an integer in the console:
ten
Error: Encountered an exception and could not read an integer from the console...
Exiting the program - restart and try the program again!

As you can see from the output, the program did not print "Done reading the text... closing the
Scanner", so the statement consoleScanner.close(); has not executed. How can you fix it? One way is to
call consoleScanner.close() in the catch block as well, like this:

try {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 System.out.println("Done reading the text... closing the Scanner");
 consoleScanner.close();
} catch(Exception e) {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

206

 // call all other exceptions here ...
 consoleScanner.close();
 �System.out.println("Error: Encountered an exception and could not read an integer from

the console... ");
 System.out.println("Exiting the program - restart and try the program again!");
}

This solution will work but is not elegant. You know you can have multiple catch blocks and you have
to provide calls to consoleScanner.close(); in all the catch blocks! Is there a better way to release the
resources? Yes, you can use release resources in a finally block (see Listing 7-8).

Listing 7-8.  ScanInt7.java

import java.util.Scanner;
 
class ScanInt7 {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 Scanner consoleScanner = new Scanner(System.in);
 try {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 } catch(Exception e) {
 // call all other exceptions here ...
 �System.out.println("Error: Encountered an exception and could not read an

integer from the console... ");
 System.out.println("Exiting the program - restart and try the program again!");
 } finally {
 System.out.println("Done reading the integer... closing the Scanner");
 consoleScanner.close();
 }
 }
}

In this case, a finally block is provided after the catch block. This finally block will be executed
whether an exception has occurred or not. So, the finally block is a good place to call the close() method
on the Scanner object to ensure that this resource is always released.

 If you call System.exit() inside a method, it will abnormally terminate the program. So, if the calling
method has a finally block, it will not be called and resources may leak. For this reason, it is a bad programming
practice to call System.exit() to terminate a program.

Now, let’s see if the scanner is closed both in the case when the program completes normally
(i.e., without throwing an exception) and when the program terminates after throwing an exception.

D:\> java ScanInt7
Type an integer in the console:
10
You typed the integer value: 10
Done reading the integer... closing the Scanner
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

207

D:\> java ScanInt7
Type an integer in the console:
ten
Error: Encountered an exception and could not read an integer from the console...
Exiting the program - restart and try the program again!
Done reading the integer... closing the Scanner

Yes, the statement "Done reading the integer... closing the Scanner" is called whether an
exception is thrown or not. Note that you can have a finally block directly after a try block without a catch
block as well; though this feature is used rarely, it is a useful feature.

A note: the finally block is always executed irrespective of whether the code in the try block throws an
exception or not. Consider the following method. Will it return true or false to the caller?

boolean returnTest() {
 try {
 return true;
 }
 finally {
 return false;
 }
}

This method will always return false because finally is always invoked though it is unintuitive. In fact,
if you use the "-Xlint" option, you’ll get this compiler warning: “finally clause cannot complete normally.”
(Note that you can have a try block followed by either catch block or finally block or both blocks.)

The Throws Clause
A method can throw checked exceptions; the clause throw specifies these checked exceptions in the method
signature. In the throws clause, you list checked exceptions that a method can throw. Why do we need the
throws clause? By looking at the throws clause, you can get a clear idea of what exceptions the method can
throw. Understanding checked exceptions is a prerequisite for understanding the throws clause. Since we’ve
covered checked exceptions in the previous section on exception types, we’ll cover the throws clause now.

Let’s try reading an integer stored in a file named integer.txt in the current directory. There is an
overloaded constructor of the Scanner class that takes a File object as input, so let’s try using it. Listing 7-9
shows the program. Will it work?

Listing 7-9.  ThrowsClause1.java

import java.io.File;
import java.util.Scanner;
 
class ThrowsClause1 {
 public static void main(String []args) {
 System.out.println("Reading an integer from the file 'integer.txt': ");
 Scanner consoleScanner = new Scanner(new File("integer.txt"));
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

208

This code will result in a compiler error of "unreported exception FileNotFoundException; must
be caught or declared to be thrown". If you look at the declaration of this Scanner method, you’ll see a
throws clause:

public Scanner(File source) throws FileNotFoundException {

So, any method that invokes this constructor should either handle this exception or add a throws
clause to declare that the method can throw this exception. Add a throws clause to the main() method;
see Listing 7-10.

Listing 7-10.  ThrowsClause2.java

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
 
class ThrowsClause2 {
 public static void main(String []args) throws FileNotFoundException {
 System.out.println("Reading an integer from the file 'integer.txt': ");
 Scanner consoleScanner = new Scanner(new File("integer.txt"));
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 }
}

If you run this program and there is no file named integer.txt, the program will crash after throwing
this exception:

Reading an integer from the file 'integer.txt':
Exception in thread "main" java.io.FileNotFoundException: integer.txt (The system cannot
find the file specified)
 at java.io.FileInputStream.open(Native Method)
 at java.io.FileInputStream.<init>(FileInputStream.java:138)
 at java.util.Scanner.<init>(Scanner.java:656)
 at ThrowsClause2.main(ThrowsClause2.java:7)

Let’s now extract the code inside the main() method to a new method named readIntFromFile().
You have defined it as an instance method, so you also create an object of the ThrowsClause3 class to
invoke this method from the main() method. Since the code inside readIntFromFile() can throw a
FileNotFoundException, it has to either introduce a catch handler to handle this exception or declare this
exception in its throws clause (see Listing 7-11).

Listing 7-11.  ThrowsClause3.java

import java.io.File;
import java.io.FileNotFoundException;
import java.util.Scanner;
 
class ThrowsClause3 {
 // since this method does not handle FileNotFoundException,
 // the method must declare this exception in the throws clause

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

209

 public int readIntFromFile() throws FileNotFoundException {
 Scanner consoleScanner = new Scanner(new File("integer.txt"));
 return consoleScanner.nextInt();
 }
 
 // since readIntFromFile() throws FileNotFoundException and main() does not handle
 // it, the main() method declares this exception in its throws clause
 public static void main(String []args) throws FileNotFoundException {
 System.out.println("Reading an integer from the file 'integer.txt': ");
 System.out.println("You typed the integer value: "
 + new ThrowsClause3().readIntFromFile());
 }
}

The behavior of the program remains the same in both Listings 7-10 and 7-11. However, Listing 7-11
shows how the main() method also must still declare to throw the FileNotFoundException in its throws
clause (otherwise, the program will not compile).

Method Overriding and the Throws Clause
When an overridable method has a throws clause, there are many things to consider while overriding
that method. Consider the program in Listing 7-12, which implements an interface named IntReader.
This interface declares a single method named readIntFromFile() with the throws clause listing a
FileNotFoundException.

Listing 7-12.  ThrowsClause4.java

import java.io.File;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.Scanner;
 
// This interface is meant for implemented by classes that would read an integer from a file
interface IntReader {
 int readIntFromFile() throws IOException;
}
 
class ThrowsClause4 implements IntReader {
 // implement readIntFromFile with the same throws clause
 // or a more specific throws clause
 public int readIntFromFile() throws FileNotFoundException {
 Scanner consoleScanner = new Scanner(new File("integer.txt"));
 return consoleScanner.nextInt();
 }
 // main method elided in this code since the focus here is to understand
 // issues related to overriding when throws clause is present
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

210

In this code, you can observe a few important facts:

•	 You can declare the throws clause for methods declared in interfaces; in fact, you can
provide the throws clause for abstract methods declared in abstract classes as well.

•	 The method declared in the IntReader interface declares to throw IOException,
which is a more general exception than a FileNotFoundException (Figure 7-2).
While implementing a method, it is acceptable to either provide the throws clause
listing the same exception type as the base method or a more specific type than
the base method. In this case, the readIntFromFile() method lists a more specific
exception (FileNotFoundException) in its throws clause against the more general
exception of IOException listed in the throws clause of the base method declared in
the IntReader interface.

What if you try changing the throws clause? There are many ways to change the throws clause in the
overriding method, including the following:

	 a.	 Listing more general checked exceptions to throw.

	 b.	 Listing more checked exceptions in addition to the given checked exception(s) in
the base method.

If you attempt any of these cases, you’ll get a compiler error. For example, if you provide a more general
exception than specified in the base class will result in a compiler error.

You can choose not to specify any exception using throws clause in the overridden method provided the
overridden method does not throw any checked exception or if it does, it provides a try-catch block.

To summarize, the base class method’s throws clause is a contract that it provides to the caller of
that method: it says that the caller should handle the listed exceptions or declare those exceptions in its
throws clause. When overriding the base method, the derived method should also adhere to that contract.
The caller of the base method is prepared to handle only the exceptions listed in the base method, so the
overriding method cannot throw more general or other than the listed checked exceptions.

Figure 7-2.  Class hierarchy of FileNotFoundException

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

211

However, note that this discussion that the derived class method’s throws clause should follow the
contract for the base method’s throws clause is limited to checked exceptions. Unchecked exceptions can
still be added or removed from the contract when compared to the base class method’s throws clause. For
example, consider the following:

public int readIntFromFile() throws IOException, NoSuchElementException {
 Scanner consoleScanner = new Scanner(new File("integer.txt"));
 return consoleScanner.nextInt();
}

This is an acceptable throws clause since NoSuchElementException can get thrown from the
readIntFromFile() method. This exception is an unchecked exception, and it gets thrown when the nextInt()
method could not read an integer from the file. This is a common situation, for example, if you have an empty
file named integer.txt; an attempt to read an integer from this file will result in this exception.

@THROWS TAG

It is a good practice to use the @throws JavaDoc tag (or its synonym @exception tag) to document
the specific situations or cases in which an (unchecked or checked) exception might be thrown from a
method. Here is the format for providing @throws tag with an example:

@throws exception-name description-text
@throws IllegalStateException if this scanner is closed

This tag can be used only for methods and constructors.

Here is an example of JavaDoc comment for nextInt() method in Scanner class:

/**
 * Scans the next token of the input as an <tt>int</tt>.
 *
 * <p> An invocation of this method of the form
 * <tt>nextInt()</tt> behaves in exactly the same way as the
 * invocation <tt>nextInt(radix)</tt>, where <code>radix</code>
 * is the default radix of this scanner.
 *
 * @return the <tt>int</tt> scanned from the input
 * @throws InputMismatchException
 * if the next token does not match the <i>Integer</i>
 * regular expression, or is out of range
 * @throws NoSuchElementException if input is exhausted
 * @throws IllegalStateException if this scanner is closed
 */
public int nextInt() {
 return nextInt(defaultRadix);
}

Note the @throws tag for InputMismatchException, NoSuchElementException and
IllegalStateException. When a method can throw multiple exceptions, they are listed in alphabetical
order by convention (as in this case).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

212

Points to Remember
Here are some noteworthy points about the throws statement that could help you in the OCPJP 8 exam:

•	 If a method does not have a throws clause, it does not mean it cannot throw any
exceptions; it just means it cannot throw any checked exceptions.

•	 Static initialization blocks cannot throw any checked exceptions. Why? Remember
that static initialization blocks are invoked when the class is loaded, so there is no
way to handle the thrown exceptions in the caller. Further, there is no way to declare
the checked exceptions in a throws clause (because they are blocks, not methods).

•	 Non-static initialization blocks can throw checked exceptions; however, all the
constructors should declare those exceptions in their throws clause. Why? The
compiler merges the code for non-static initialization blocks and constructors during
its code generation phase, hence the throws clause of the constructor can be used for
declaring the checked exceptions that a non-static initialization block can throw.

•	 An overriding method cannot declare more checked exceptions in the throws clause
than the list of exceptions declared in the throws clause of the base method. Why?
The callers of the base method see only the list of the exceptions given in the throws
clause of that method and will declare or handle these checked exceptions in their
code (and not more than that).

•	 An overriding method can declare more specific exceptions than the exception(s)
listed in the throws clause of the base method; in other words, you can declare
derived exceptions in the throws clause of the overriding method.

•	 If a method is declared in two or more interfaces, and if that method declares to
throw different exceptions in the throws clause, the method implementation should
list all of these exceptions.

Chaining and Rethrowing Exceptions

You can catch exceptions and wrap them into more generic exceptions and throw them higher up in the call
stack. When you catch an exception and create a more general exception, you can retain reference to the
original exception; this is called exception chaining.

catch(LowLevelException lle) {
 // wrap the low-level exception to a higher-level exception;
 // also, chain the original exception to the newly thrown exception
 throw new HighLevelException(lle);
}

Chaining exceptions is useful for debugging purposes. When you get a general exception, you can check
if there is a chained lower-level exception and try to understand why that lower-level exception occurred.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

213

Try-with-Resources
Certification Objective

Use Autoclose resources with a try-with-resources statement

It is a fairly common mistake by Java programmers to forget releasing resources, even in the finally
block. Also, if you’re dealing with multiple resources, it is tedious to remember to call the close() method
in the finally block. Try-with-resources feature (introduced in Java 7) will help make your life easier.
Listing 7-13 makes use of this feature; it is an improved version of Listing 7-8 which made an explicit call to
close, as in, consoleScanner.close().

Listing 7-13.  TryWithResources1.java

import java.util.Scanner;
 
class TryWithResources1 {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 try(Scanner consoleScanner = new Scanner(System.in)) {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 } catch(Exception e) {
 // catch all other exceptions here ...
 �System.out.println("Error: Encountered an exception and could not read an

integer from the console... ");
 System.out.println("Exiting the program - restart and try the program again!");
 }
 }
}

Make sure you take a closer look at the syntax for try-with-resources block.

try(Scanner consoleScanner = new Scanner(System.in)) {

In this statement, you have acquired the resources inside the parenthesis after the try keyword,
but before the try block. Also, in the example, you don’t provide the finally block. The Java compiler will
internally translate this try-with-resources block into a try-finally block (of course, the compiler will retain
the catch blocks you provide). You can acquire multiple resources in the try-with-resources block. Such
resource acquisition statements must be separated using semicolons.

Can you provide try-with-resources statements without any explicit catch or finally blocks? Yes!
Remember that a try block can be associated with a catch block, finally block, or both. A try-with-resources
statement block gets expanded internally into a try-finally block. So, you can provide a try-with-resources
statement without explicit catch or finally blocks. Listing 7-14 uses a try-with-resources statement without
any explicit catch or finally blocks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

214

Listing 7-14.  TryWithResources2.java

import java.util.Scanner;
 
class TryWithResources2 {
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 try(Scanner consoleScanner = new Scanner(System.in)) {
 System.out.println("You typed the integer value: " + consoleScanner.nextInt());
 }
 }
}

Although it is possible to create a try-with-resources statement without any explicit catch or finally, it
doesn’t mean you should do so! For example, since this code does not have a catch block, if you type some
invalid input, the program will crash.

D:\> java TryWithResources2
Type an integer in the console:
ten
Exception in thread "main" java.util.InputMismatchException
 at java.util.Scanner.throwFor(Scanner.java:864)
 at java.util.Scanner.next(Scanner.java:1485)
 at java.util.Scanner.nextInt(Scanner.java:2117)
 at java.util.Scanner.nextInt(Scanner.java:2076)
 at TryWithResources2.main(TryWithResources2.java:7)

So, the benefit of a try-with-resources statement is that it simplifies your life by not having to provide
finally blocks explicitly. However, you still need to provide necessary catch blocks.

Note that for a resource to be usable with a try-with-resources statement, the class of that resource
must implement the java.lang.AutoCloseable interface. This interface declares one single method named
close(). Along with try-with-resources feature, AutoCloseable interface was also introduced in Java 7, and
the interface is made of the base interface of the Closeable interface. This is to make sure that the existing
resource classes work seamlessly with a try-with-resources statement. In other words, you can use all old
stream classes with try-with-resources because they implement the AutoCloseable interface.

Figure 7-3.  Closeabe Interface extends AutoCloseable Interface

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

215

Closing Multiple Resources
You can use more than one resource in a try-with-resources statement. Here is a code snippet for creating a
zip file from a given text file that makes use of a try-with-resources statement:

// buffer is the temporary byte buffer used for copying data
// from one stream to another stream
byte [] buffer = new byte[1024];
 
// these stream constructors can throw FileNotFoundException
try (ZipOutputStream zipFile = new ZipOutputStream(new FileOutputStream(zipFileName));
 FileInputStream fileIn = new FileInputStream(fileName)) {
 zipFile.putNextEntry(new ZipEntry(fileName)); // putNextEntry can throw
 // IOException
 int lenRead = 0; // the variable to keep track of number of bytes sucessfully read
 // copy the contents of the input file into the zip file
 while((lenRead = fileIn.read(buffer)) > 0) { // read can throw IOException
 zipFile.write(buffer, 0, lenRead); // write can throw IOException
 }
 // the streams will be closed automatically because they are within try-with-
 // resources statement
}

In this code, the buffer is a byte array. This array is temporary storage useful for copying raw data from
one stream to another stream. In the try-with-resources statement, you open two streams: ZipOutputStream
for writing to the zip file and FileInputStream for reading in the text file. (Note: API support for zip (and jar)
files is available in java.util.zip package.) You want to read the input text file, zip it, and put that entry
in the zip file. For putting a file/directory entry into the zip file, the ZipOutputStream class provides a
method named putNextEntry(), which takes a ZipEntry object as an argument. The statement
zipFile.putNextEntry(new ZipEntry(fileName)); puts a file entry named fileName into the zipFile.

For reading the contents of the text file, you use the read() method in the FileInputStream class. The
read() method takes the buffer array as the argument. The amount of data to read per iteration (i.e., “data
chunk size” to read) is given by the size of the passed array; it is 1024 bytes in this code. The read() method
returns the number of bytes it read, and if there is no more data to read, it returns -1. The while loop checks
if read succeeded (using the > 0 condition) before writing it to the zip file.

For writing data to the zip file, you use the write() method in the ZipOutputStream class. The write()
method takes three arguments: the first argument is the data buffer; the second argument is start offset in
the data buffer (which is 0 because you always read from the start of the buffer); and the third is the number
of bytes to be written.

Now we come to the main discussion. Note how you open two resources in the try block and
semicolons separate these two resource acquisition statements. You do not have an explicit finally block to
release the resources because the compiler will automatically insert calls to the close methods for these two
streams in the finally block(s).

Listing 7-15 is the complete program that makes use of this code segment to illustrate the use of try-
with-resources statement for auto-closing multiple streams.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

216

Listing 7-15.  ZipTextFile.java

import java.util.*;
import java.util.zip.*;
import java.io.*;
 
// class ZipTextFile takes the name of a text file as input and creates a zip file
// after compressing that text file.
 
class ZipTextFile {
 public static final int CHUNK = 1024; // to help copy chunks of 1KB
 public static void main(String []args) {
 if(args.length == 0) {
 �System.out.println("Pass the name of the file in the current directory to be

zipped as an argument");
 System.exit(-1);
 }
  
 String fileName = args[0];
 // name of the zip file is the input file name with the suffix ".zip"
 String zipFileName = fileName + ".zip";
 
 byte [] buffer = new byte[CHUNK];
 // these constructors can throw FileNotFoundException
 try (ZipOutputStream zipFile = new ZipOutputStream(new FileOutputStream(zipFileName));
 FileInputStream fileIn = new FileInputStream(fileName)) {
 // putNextEntry can throw IOException
 zipFile.putNextEntry(new ZipEntry(fileName));
 int lenRead = 0; // variable to keep track of number of bytes
 // successfully read
 // copy the contents of the input file into the zip file
 while((lenRead = fileIn.read(buffer)) > 0) {
 // both read and write methods can throw IOException
 zipFile.write (buffer, 0, lenRead);
 }
 // the streams will be closed automatically because they are
 // within try-with-resources statement
 }
 // this can result in multiple exceptions thrown from the try block;
 // use "suppressed exceptions" to get the exceptions that were suppressed!
 catch(Exception e) {
 System.out.println("The caught exception is: " + e);
 System.out.print("The suppressed exceptions are: ");
 for(Throwable suppressed : e.getSuppressed()) {
 System.out.println(suppressed);
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

217

We’ve already discussed try-with-resources block. What we have not discussed is suppressed exceptions.
In a try-with-resources statement, there might be more than one exception that could get thrown; for
example, one within the try block, one within the catch block, and another one within the finally block.
However, only one exception can be caught, so the other exception(s) will be listed as suppressed
exceptions. From a given exception object, you can use the method getSuppressed() to get the list of
suppressed exceptions.

Points to Remember
Here are some interesting points about try-with-resources statement that will help you in the OCPJP 8 exam:

•	 You cannot assign to the resource variables declared in the try-with-resources within
the body of the try-with-resources statement. This is to make sure that the same
resources acquired in the try-with-resources header are released in the finally block.

•	 It is a common mistake to close a resource explicitly inside the try-with-resources
statement. Remember that try-with-resources expands to calling the close()
method in the finally block, so the expanded code will have a double call to the
close() method if you explicitly provide a close() method. Consider the
following code:

try(Scanner consoleScanner = new Scanner(System.in)) {
 �System.out.println("You typed the integer value: " +

consoleScanner.nextInt());
 consoleScanner.close();
 // explicit call to close() method - remember that try-with-resources
 // statement will also expand to calling close() in finally method;
 // hence this will result in call to close() method in Scanner twice!
}

•	 The documentation of the close() method in the Scanner class says that if the
scanner object is already closed, then invoking the method again will have no effect.
So, you are safe in this case. However, in general, you cannot expect all the resources
to have implemented a close() method that is safe to call twice. So, it is a bad
practice to explicitly call the close() method inside a try-with-resource statement.

Custom Exceptions
Certification Objective

Create custom exceptions and Auto-closeable resources

In most situations, it will be sufficient to throw exceptions that are already provided in the Java library.
For example, if you’re checking for the validity of the arguments passed to a public function, and you find
them to be null or out of expected range, you can throw an IllegalArgumentException. However, for
most non-trivial applications, it will be necessary for you to develop your own exception classes (custom
exceptions) to indicate exceptional conditions.

How do you define a custom exception? There are two options: you can extend either the Exception or
RuntimeException class depending on your need.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

218

If you want to force the users of your custom exception to handle the exception, then you can extend
your exception class from the Exception class – that will make your custom exception a checked exception.

If you want to give flexibility to the users of your custom exception, and leave it to the users of your
exception to decide if they want to handle the exception or not, you can derive your exception from the
RuntimeException class.

So you need to make a decision if you want to make your custom exception a checked exception or
unchecked exception by extending from either Exception class or RuntimeException class.

How about extending the Throwable or Error class for custom exceptions? The Throwable class is too
generic to make it the base class of your exception, so it is not recommended. The Error class is reserved for
fatal exceptions that the JVM can throw (such as StackOverflowError), so it is not advisable to make this the
base class of your exception.

 Custom exceptions should extend either the Exception or RuntimeException class. It is a bad practice
to create custom exceptions by extending the Throwable or Error classes.

For extending from a base class, you need to see what methods the base class provides. In this case,
you want to create a custom exception by extending the Exception or RuntimeException classes. Since the
Exception class is the base class of the RuntimeException class, it is sufficient to know the members of the
Exception class. Table 7-1 lists the important methods (including constructors) of the Exception class.

Table 7-1.  Important Methods and Constructors of the Exception Class

Member Short description

Exception() Default constructor of the Exception class with no additional
(or detailed) information on the exception.

Exception(String) Constructor that takes a detailed information string about the
constructor as an argument.

Exception(String, Throwable) In addition to a detailed information string as an argument, this
exception constructor takes the cause of the exception (which is
another exception) as an argument.

Exception(Throwable) Constructor that takes the cause of the exception as an argument.

String getMessage() Returns the detailed message (passed as a string when the exception
was created).

Throwable getCause() Returns the cause of the exception (if any, or else returns null).

Throwable[] getSuppressed() Returns the list of suppressed exceptions (typically caused when
using a try-with-resources statement) as an array.

void printStackTrace() Prints the stack trace (i.e., the list of method calls with relevant line
numbers) to the console (standard error stream). If the cause of an
exception (which is another exception object) is available in the
exception, then that information will also be printed. Further, if there
are any suppressed exceptions, they are also printed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

219

For illustrating how to create your own exception classes, assume that you want to create a custom
exception named InvalidInputException. When you try to read input (read an integer, in this case), and if
it fails, you want to throw this InvalidInputException. Listing 7-16 defines this exception class by extending
the RuntimeException class.

Listing 7-16.  InvalidInputException.java

// a custom "unchecked exception" that is meant to be thrown
// when the input provided by the user is invalid
class InvalidInputException extends RuntimeException {
 // default constructor
 public InvalidInputException() {
 super();
 }
 
 // constructor that takes the String detailed information we pass while
 // raising an exception
 public InvalidInputException(String str) {
 super(str);
 }
 
 // constructor that remembers the cause of the exception and
 // throws the new exception
 public InvalidInputException(Throwable originalException) {
 super(originalException);
 }
 
 // first argument takes detailed information string created while
 // raising an exception
 // and the second argument is to remember the cause of the exception
 public InvalidInputException(String str, Throwable originalException) {
 super(str, originalException);
 }
}

In this InvalidInputException class, you did not introduce any new fields but you can add any fields if
necessary. This is also a simple custom exception where the constructors simply call the base class versions
of the same constructor type. The class CustomExceptionTest (see Listing 7-17) shows how to make use of
this custom exception.

Listing 7-17.  CustomExceptionTest.java

import java.util.Scanner;
import java.util.NoSuchElementException;
 
// class for testing the custom exception InvalidInputException
class CustomExceptionTest {
 public static int readIntFromConsole() {
 Scanner consoleScanner = new Scanner(System.in);
 int typedInt = 0;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

220

 try {
 typedInt = consoleScanner.nextInt();
 } catch(NoSuchElementException nsee) {
 System.out.println("Wrapping up the exception and throwing it...");
 throw new InvalidInputException("Invalid integer input typed in console", nsee);
 } catch(Exception e) {
 // call all other exceptions here ...
 �System.out.println("Error: Encountered an exception and could not read an

integer from the console... ");
 }
 return typedInt;
 }
  
 public static void main(String [] args) {
 System.out.println("Type an integer in the console: ");
 try {
 System.out.println("You typed the integer value: " + readIntFromConsole());
 } catch(InvalidInputException iie) {
 System.out.println("Error: Invalid input in console... ");
 System.out.println("The current caught exception is of type: " + iie);
 System.out.println("The originally caught exception is of type: " +
 iie.getCause());
 }
 }
 }

First compile and run this program before reading the discussion of the code.

D:\> java CustomExceptionTest
Type an integer in the console:
one
Wrapping up the exception and throwing it...
Error: Invalid input in console...
The current caught exception is of type: InvalidInputException: Invalid integer input typed
in console
The originally caught exception is of type: java.util.InputMismatchException

In this code, you use InvalidInputException just like any other exception already defined in the
Java library. You are catching the InvalidInputException InputMismatchException (which extends
InvalidInputException for which catch handler is provided) thrown from the readIntFromConsole()
method in the main() method. The following statement invokes the toString() method of the
InvalidInputException:

System.out.println("The current caught exception is of type: " + iie);

You did not override the toString() method, so the InvalidInputException class inherits the default
implementation of the toString() method from the RuntimeException base class. This default toString()
method prints the name of the exception thrown (InvalidInputException) and it also includes the detailed
information string ("Invalid integer input typed in console") that you passed while creating the
exception object. The last statement in the main() method is to get the cause of the exception.

System.out.println("The originally caught exception is of type: " + iie.getCause());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

221

Since the cause of InvalidInputException is InputMismatchException, this exception name is
printed in the console as a fully qualified name, java.util.InputMismatchException. You can think of
InputMismatchException causing InvalidInputException; these two exceptions are known as chained
exceptions.

Assertions
Certification Objective

Test invariants by using assertions

When creating application programs, you assume many things. However, often it happens that the
assumptions don’t hold, resulting in an erroneous condition. The assert statement is used to check or test
your assumptions about the program.

The keyword assert provides support for assertions in Java. Each assertion statement contains a
Boolean expression. If the result of the Boolean expression is true, it means the assumption is true, so
nothing happens. However, if the Boolean result is false, then the assumption you had about the program
holds no more, and an AssertionError is thrown. Remember that the Error class and its derived classes
indicate serious runtime errors and are not meant to be handled. In the same way, if an AssertionError is
thrown, the best course of action is not to catch the exception and to allow the program to terminate. After
that, you need to examine why the assumption did not hold true and then fix the program.

There are many reasons you should add assertions to the program. One reason is that it helps find
the problems early; when you check your assumptions in the program, and when any of them fail, you
immediately know where to look out for the problem and what to fix. Also, when other programmers read
your code with assertions, they will be in a better position to understand the code because you are making
your assumptions explicit using assertions.

Assert Statement
Assert statements in Java are of two forms:

assert booleanExpression;
 
assert booleanExpression : "Detailed error message string";

It is a compiler error if a non-Boolean expression is used within the assert statement. Listing 7-18
contains the first example for assertions.

Listing 7-18.  AssertionExample1.java

class AssertionExample1 {
 public static void main(String []args) {
 int i = -10;
 if(i < 0) {
 // if negative value, convert into positive value
 i = -i;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

222

 System.out.println("the value of i is: " + i);
 // at this point the assumption is that i cannot be negative;
 // assert this condition since its an assumption that will always hold
 assert (i >= 0) : "impossible: i is negative!";
 }
}

In this program, you are checking if the value of i is < 0; you are using the expression –i to convert it to
a positive value. Once the condition check if(i < 0) is completed, the value of i cannot be negative, or that is
your assumption. Such assumptions can be asserted with an assert statement. Here is the assert statement:

assert (i >= 0) : "impossible: i is negative!";

The program will run fine if the Boolean expression (i >= 0) evaluates to true. However, if it evaluates to
false, the program will crash by throwing an AssertionError. Let’s check this behavior (you need to use the
–ea flag to enable assertions at runtime; we will discuss more about this flag in a moment).

D:\>java -ea AssertionExample1
the value of i is: 10

Yes, this program executed successfully without throwing any exceptions.
Is there any value of i for which the condition will fail? Yes, there is! If the value of i is a minimum

possible value of integer, then it cannot be converted into a positive value. Why? Remember that the range
of integers is -231 to 231 – 1, so the integer values the value of i as -2147483648 to 2147483647. In other words,
the positive value 2147483648 is not in the range of integers. So, if the value of i is -2147483648, then the
expression -i will overflow and again result in the value -2147483648. Thus, your assumption is not true.

In Listing 7-26, change the value of i to the minimum value of an integer, as in the following:

int i = Integer.MIN_VALUE;

Now, try running this program.

D:\> java -ea AssertionExample1
the value of i is: -2147483648
Exception in thread "main" java.lang.AssertionError: impossible: i is negative!
 at AssertionExample1.main(AssertionExample1.java:12)

In this output, note how the assertion failed. The application crashes because the program threw the
AssertionError, and there is no handler, so the program terminates.

An important point to remember from an exam perspective is that assertions are disabled by default
at runtime; to enable assertions at runtime, use an -ea switch (or its longer form of -enableasserts). To
disable assertions at runtime, use a -da switch. If assertions are disabled by default at runtime, then what
is the use of -da switch? There are many uses. For example, if you want to enable assertions for all classes
within a given package and want to disable asserts in a specific class in that package, then a -da switch is
useful. Table 7-2 lists the important command-line arguments and their meaning. Note that you need not
recompile your programs to enable or disable assertions; just use the command-line arguments when
invoking the JVM to enable or disable them.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

223

Summary
Let us briefly review the key points for each certification objective in this chapter. Please read it before
appearing for the exam.

Use try-catch and throw statements

•	 When an exception is thrown from a try block, the JVM looks for a matching catch
handler from the list of catch handlers in the method call-chain. If no matching
handler is found, that unhandled exception will result in crashing the application.

•	 While providing multiple exception handlers (stacked catch handlers), specific
exception handlers should be provided before general exception handlers.

•	 You can programmatically access the stack trace using the methods such as
printStackTrace() and getStackTrace(), which can be called on any
exception object.

Use catch, multi-catch, and finally clauses

•	 A try block can have multiple catch handlers. If the cause of two or more exceptions
is similar, and the handling code is also similar, you can consider combining the
handlers and make it into a multi-catch block.

•	 A catch block should either handle the exception or rethrow it. To hide or swallow an
exception by catching an exception and doing nothing is really a bad practice.

•	 You can wrap one exception and throw it as another exception. These two exceptions
become chained exceptions. From the thrown exception, you can get the cause of the
exception.

•	 The code inside a finally block will be executed irrespective of whether a try block
has successfully executed or resulted in an exception.

Table 7-2.  Important Command-Line Arguments for Enabling/Disabling Assertions

Command-Line Argument Short Description

-ea Enables assertions by default (except system classes).

-ea:<class name> Enables assertions for the given class name.

-ea:<package name>... Enables assertions in all the members of the given package <package name>.

-ea:... Enable assertions in the given unnamed package.

-esa Short for -enablesystemsassertions; enables assertions in system classes.
This option is rarely used.

-da Disable assertions by default (except system classes).

-da:<class name> Disable assertions for the given class name.

-da:<package name>... Disables assertions in all the members of the given package <package name>.

-da:... Disable assertions in the given unnamed package.

-dsa Short for -disablesystemsassertions; disables assertions in system classes.
This option is rarely used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

224

Use autoclose resources with a try-with-resources statement

•	 Forgetting to release resources by explicitly calling the close() method is a common
mistake. You can use a try-with-resources statement to simplify your code and
auto-close resources.

•	 You can auto-close multiple resources within a try-with-resources statement.
These resources need to be separated by semicolons in the try-with-resources
statement header.

•	 If a try block throws an exception, and a finally block also throws exception(s), then
the exceptions thrown in the finally block will be added as suppressed exceptions to
the exception that gets thrown out of the try block to the caller.

Create custom exceptions and auto-closeable resources

•	 It is recommended that you derive custom exceptions from either the Exception or
RuntimeException class.

•	 A method’s throws clause is part of the contract that its overriding methods in
derived classes should obey.

•	 An overriding method can provide the same throw clause as the base method’s
throws clause or a more specific throws clause than the base method’s throws clause.

•	 The overriding method cannot provide a more general throws clause or declare to
throw additional checked exceptions when compared to the base method’s
throws clause.

•	 For a resource to be usable in a try-with-resources statement, the class of that
resource must implement the java.lang.AutoCloseable interface and define the
close() method.

Test invariants by using assertions

•	 Assertions are condition checks in the program and should be used for explicitly
checking the assumptions you make while writing programs.

•	 The assert statement is of two forms: one that takes a Boolean argument and one
that takes an additional string argument.

•	 If the Boolean condition given in the assert argument fails (i.e., evaluates to false),
the program will terminate after throwing an AssertionError. It is not advisable to
catch and recover from when an AssertionError is thrown by the program.

•	 By default, assertions are disabled at runtime. You can use the command-line
arguments of –ea (for enabling asserts) and –da (for disabling asserts) and their
variants when you invoke the JVM.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

225

QUESTION TIME!

1.	 Consider the following class hierarchy from the package java.nio.file and
answer the question.

In the following class definitions, the base class Base has the method foo() that throws a
FileSystemException; the derived class Deri extending the class Base overrides the foo() definition.

class Base {
 public void foo() throws FileSystemException {
 throw new FileSystemException("");
 }
}
class Deri extends Base {
 /* provide foo definition here */
}

Which of the following overriding definitions of the foo() method in the Deri class are compatible with
the base class foo() method definition? Choose ALL the foo() method definitions that could compile
without errors when put in the place of the comment: /* provide foo definition here */

A.
public void foo() throws IOException {
 super.foo();
}
 
B.
public void foo() throws AccessDeniedException {
 throw new AccessDeniedException("");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

226

C.
public void foo() throws FileSystemException, RuntimeException {
 throw new NullPointerException();
}

D.
public void foo() throws Exception {
 throw new NullPointerException();
}

2.	 Consider the following program:

class ChainedException {
 public static void foo() {
 try {
 throw new ArrayIndexOutOfBoundsException();
 } catch(ArrayIndexOutOfBoundsException oob) {
 RuntimeException re = new RuntimeException(oob);
 re.initCause(oob);
 throw re;
 }
 }
 
 public static void main(String []args) {
 try {
 foo();
 } catch(Exception re) {
 System.out.println(re.getClass());
 }
 }
}

When executed, this program prints which of the following?

A.	 class java.lang.RuntimeException

B.	 class java.lang.IllegalStateException

C.	 class java.lang.Exception

D.	 class java.lang.ArrayIndexOutOfBoundsException

3.	 Consider the following program:

class ExceptionTest {
 public static void foo() {
 try {
 throw new ArrayIndexOutOfBoundsException();
 } catch(ArrayIndexOutOfBoundsException oob) {
 throw new Exception(oob);
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

227

 public static void main(String []args) {
 try {
 foo();
 } catch(Exception re) {
 System.out.println(re.getCause());
 }
 }
}

Which one of the following options correctly describes the behavior of this program?

A.	 java.lang.Exception

B.	 java.lang.ArrayIndexOutOfBoundsException

C.	 class java.lang.IllegalStateException

D.	T his program fails with compiler error(s)

4.	 Consider the following program:

import java.io.FileNotFoundException;
import java.sql.SQLException;
 
class MultiCatch {
 public static void fooThrower() throws FileNotFoundException {
 throw new FileNotFoundException();
 }
 public static void barThrower() throws SQLException {
 throw new SQLException();
 }
 public static void main(String []args) {
 try {
 fooThrower();
 barThrower();
 } catch(FileNotFoundException || SQLException multie) {
 System.out.println(multie);
 }
 }
}

Which one of the following options correctly describes the behavior of this program?

A.	T his program prints the following: java.io.FileNotFoundException

B.	T his program prints the following: java.sql.SQLException

C.	T his program prints the following: java.io.FileNotFoundException ||
java.sql.SQLException

D.	T his program fails with compiler error(s)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

228

5.	 Consider the following class hierarchy from the package javax.security.auth.login
and answer the questions.

5.1.	 Which of the following handlers that makes use of multi-catch exception handler
feature will compile without errors?

A.	 catch (AccountException | LoginException exception)

B.	 catch (AccountException | AccountExpiredException exception)

C.	 catch (AccountExpiredException | AccountNotFoundException
exception)

D.	 catch (AccountExpiredException exception1 |
AccountNotFoundException exception2)

5.2.	 Consider the following code segment, which makes use of this exception
hierarchy:

try {
 LoginException le = new AccountNotFoundException();
 throw (Exception) le;
}
catch (AccountNotFoundException anfe) {
 System.out.println("In the handler of AccountNotFoundException");
}
catch (AccountException ae) {
 System.out.println("In the handler of AccountException");
}
catch (LoginException le) {
 System.out.println("In the handler of LoginException");
}
catch (Exception e) {
 System.out.println("In the handler of Exception");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

229

When executed, which of the following statements will this code segment print?

A.	I n the handler of AccountNotFoundException

B.	I n the handler of AccountException

C.	I n the handler of LoginException

D.	I n the handler of Exception

6.	 Consider the following program:

import java.sql.SQLException;
 
class CustomSQLException extends SQLException {}
 
class BaseClass {
 void foo() throws SQLException {
 throw new SQLException();
 }
}
 
class DeriClass extends BaseClass {
 public void foo() throws CustomSQLException { // LINE A
 throw new CustomSQLException();
 }
}

class EHTest {
 public static void main(String []args) {
 try {
 BaseClass base = new DeriClass();
 base.foo();
 } catch(Exception e) {
 System.out.println(e);
 }
 }
}

Which one of the following options correctly describes the behavior of this program?

A.	T he program prints the following: SQLException

B.	T he program prints the following: CustomSQLException

C.	T he program prints the following: Exception

D.	 When compiled, the program will result in a compiler error in line marked
with comment Line A due to incompatible throws clause in the overridden
foo method

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

230

7.	 Consider the following program:

class EHBehavior {
 public static void main(String []args) {
 try {
 int i = 10/0; // LINE A
 System.out.print("after throw -> ");
 } catch(ArithmeticException ae) {
 System.out.print("in catch -> ");
 return;
 } finally {
 System.out.print("in finally -> ");
 }
 System.out.print("after everything");
 }
}

Which one of the following options best describes the behavior of this program?

A.	T he program prints the following: in catch -> in finally -> after everything

B.	T he program prints the following: after throw -> in catch -> in finally -> after
everything

C.	T he program prints the following: in catch -> after everything

D.	T he program prints the following: in catch -> in finally ->

E.	 When compiled, the program results in a compiler error in line marked with
comment in LINE A for divide-by-zero

8.	 Consider the following program:

import java.util.Scanner;
 
class AutoCloseableTest {
 public static void main(String []args) {
 try (Scanner consoleScanner = new Scanner(System.in)) {
 consoleScanner.close(); // CLOSE
 consoleScanner.close();
 }
 }
}

Which one of the following statements is correct?

A.	T his program terminates normally without throwing any exceptions

B.	T his program throws an IllegalStateException

C.	T his program throws an IOException

D.	T his program throws an AlreadyClosedException

E.	T his program results in a compiler error in the line marked with the
comment CLOSE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

231

9.	 Consider the following program:

class AssertionFailure {
 public static void main(String []args) {
 try {
 assert false;
 } catch(RuntimeException re) {
 System.out.println("RuntimeException");
 } catch(Exception e) {
 System.out.println("Exception");
 } catch(Error e) { // LINE A
 System.out.println("Error" + e);
 } catch(Throwable t) {
 System.out.println("Throwable");
 }
 }
}

This program is invoked from the command line as follows:

java AssertionFailure

Choose one of the following options describes the behavior of this program:

A.	 Compiler error at line marked with comment LINE A

B.	P rints "RuntimeException" in console

C.	P rints "Exception"

D.	P rints "Error"

E.	P rints "Throwable"

F.	D oes not print any output on console

10.	 Consider the following program:

import java.io.*;
class ExceptionTest {
 public static void thrower() throws Exception {
 try {
 throw new IOException();
 } finally {
 throw new FileNotFoundException();
 }
 }
 
 public static void main(String []args) {
 try {
 thrower();
 } catch(Throwable throwable) {
 System.out.println(throwable);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

232

When executed, this program prints which one of the following?

A.	 java.io.IOException

B.	 java.io.FileNotFoundException

C.	 java.lang.Exception

D.	 java.lang.Throwable

Answers:

1.	 Options B and C

In option A and D, the throws clause declares to throw exceptions IOException and
Exception respectively, which are more general than the FileSystemException,
so they are not compatible with the base method definition. In option B, the foo()
method declares to throw AccessDeniedException, which is more specific than
FileSystemException, so it is compatible with the base definition of the foo()
method. In option C, the throws clause declares to throw FileSystemException, which
is the same as in the base definition of the foo() method. Additionally it declares to
throw RuntimeException, which is not a checked exception, so the definition of the
foo() method is compatible with the base definition of the foo() method.

2.	 B. class java.lang.IllegalStateException

In the expression new RuntimeException(oob);, the exception object oob is already
chained to the RuntimeException object. The method initCause() cannot be
called on an exception object that already has an exception object chained during
the constructor call. Hence, the call re.initCause(oob); results in initCause()
throwing an IllegalStateException.

3.	 D. This program fails with compiler error(s)

The foo() method catches ArrayIndexOutOfBoundsException and chains it to an
Exception object. However, since Exception is a checked exception, it must
be declared in the throws clause of foo(). Hence this program results in this
compiler error:

ExceptionTest.java:6: error: unreported exception Exception; must be caught or
declared to be thrown
 throw new Exception(oob);
 ^
1 error

4.	 D. This program fails with compiler error(s)

For multi-catch blocks, the single pipe (|) symbol needs to be used and not double pipe
(||), as provided in this program. Hence this program will fail with compiler error(s).

5.1.	 C. catch (AccountExpiredException | AccountNotFoundException exception)

For A and B, the base type handler is provided with the derived type handler, hence the
multi-catch is incorrect. For D, the exception name exception1 is redundant and will
result in a syntax error. C is the correct option and this will compile fine without errors.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7 ■ Exceptions and Assertions

233

5.2.	 A. In the handler of AccountNotFoundException

In this code, the created type of the exception is AccountNotFoundException. Though
the exception object is stored in the variable of type LoginException and then type-
casted to Exception, the dynamic type of the exception remains the same, which is
AccountNotFoundException. When looking for a catch handler, the Java runtime looks
for the exact handler based on the dynamic type of the object. Since it is available
immediately as the first handler, this exactly matching catch handler got executed.

6.	 B. The program prints the following: CustomSQLException

The exception thrown is CustomSQLException object from the overridden foo method
in DeriClass. Note that SQLException is a checked exception since it extends the
Exception class. Inside the BaseClass, the foo method lists SQLException in its throws
clause. In the DeriClass, the overridden foo method lists CustomSQLException
in its throws clause: it is acceptable to have a more restrictive exception throws
clause in a derived class. Hence, the given program compiles successfully and prints
CustomSQLException.

7.	 D. The program prints the following: in catch -> in finally ->

The statement println("after throw -> "); will never be executed since the
line marked with the comment LINE A throws an exception. The catch handles
ArithmeticException, so println("in catch -> "); will be executed.
Following that, there is a return statement, so the function returns. But before
the function returns, the finally statement should be called, hence the statement
println("in finally -> "); will get executed. So, the statement println("after
everything"); will never get executed.

8.	 A. This program terminates normally without throwing any exceptions

The try-with-resources statement internally expands to call the close() method in the
finally block. If the resource is explicitly closed in the try block, then calling close()
again does not have any effect. From the description of the close() method in the
AutoCloseable interface: “Closes this stream and releases any system resources
associated with it. If the stream is already closed, then invoking this method has no
effect.”

9.	 F. Does not print any output on the console

By default, assertions are disabled. If -ea (or the -enableassertions option to enable
assertions), then the program would have printed "Error" since the exception thrown
in the case of assertion failure is java.lang.AssertionError, which is derived from
the Error class.

10.	 B. java.io.FileNotFoundException

If both the try block and finally block throw exceptions, the exception thrown
from the try block will be ignored. Hence, the method thrower() throws
a FileNotFoundException. The dynamic type of the variable throwable is
FileNotFoundException, so the program prints that type name.

www.it-ebooks.info

http://www.it-ebooks.info/

235

Chapter 8

Using the Java SE 8 Date/Time API

Certification Objectives

Create and manage date-based and time-based events including a combination of date and time into
a single object using LocalDate, LocalTime, LocalDateTime, Instant, Period, and Duration

Work with dates and times across timezones and manage changes resulting from daylight savings
including format date and times values

Define and create and manage date-based and time-based events using Instant, Period, Duration, and
TemporalUnit

The new Java date and time API is provided in the java.time package. This new API in Java 8 replaces
the older classes supporting date- and time-related functionality such as the Date, Calendar, and TimeZone
classes provided as part of the java.util package.

Why did Java 8 introduce a new date and time API when it already had classes such as Date and
Calendar from the early days of Java? The main reason was inconvenient API design. For example, the
Date class has both date and time components; if you only want time information and not date-related
information, you have to set the date-related values to zero. Some aspects of the classes are unintuitive
as well. For example, in the Date constructor, the range of date values is 1 to 31 but the range of month
values is 0 to 11 (not 1 to 12)! Further, there are many concurrency-related issues with java.util.Date and
SimpleDateFormatter because they are not thread-safe.

Java 8 provides very good support for date- and time-related functionality in the newly introduced
java.time package. Most of the classes in this package are immutable and thread-safe. This chapter
explains how to use important classes and interfaces in this package, including LocalDate, LocalTime,
LocalDateTime, Instant, Period, Duration, and TemporalUnit. You also learn how to work with time zones
and daylight savings and how to format date and times values.

The java.time API incorporates the concept of fluent interfaces: it is designed in such a way that the
code is more readable and easier to use. For this reason, classes in this package have numerous static
methods (many of them factory methods). In addition, the methods in the classes follow a common naming
convention (for example, they use the prefixes plus and minus to add or subtract date or time values).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

236

Understanding Important Classes in java.time
Certification Objectives

Create and manage date-based and time-based events including a combination of date and time into
a single object using LocalDate, LocalTime, LocalDateTime, Instant, Period, and Duration

Define and create and manage date-based and time-based events using Instant, Period, Duration, and
TemporalUnit

The java.time package consists of four subpackages:

•	 java.time.temporal—Accesses date/time fields and units

•	 java.time.format—Formats the input and output of date/time objects

•	 java.time.zone—Handles time zones

•	 java.time.chrono—Supports calendar systems such as Japanese and Thai calendars

This chapter focuses only on date/time topics covered by the exam objectives. Let’s get started by
learning to use the LocalDate, LocalTime, LocalDateTime, Instant, Period, and Duration classes.

Using the LocalDate class
java.time.LocalDate represents a date without time or time zone. LocalDate is represented in the
ISO-8601 calendar system in a year-month-day format (YYYY-MM-DD): for example, 2015-10-26.

 The Java 8 date and time API uses ISO 8601 as the default calendar format. In this internationally
accepted format, the date and time values are sorted from the largest to the smallest unit of time: year,
month/week, day, hour, minute, second, and millisecond/nanosecond.

Here’s an example that uses LocalDate:

LocalDate today = LocalDate.now();
System.out.println("Today's date is: " + today);

This code printed the following when we ran it:

Today's date is: 2015-10-26

The LocalDate.now() method gets the current date using the system clock, based on the default time
zone. You can get a LocalDate object by explicitly specifying the day, month, and year components:

LocalDate newYear2016 = LocalDate.of(2016, 1, 1);
System.out.println("New year 2016: " + newYear2016);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

237

This code prints the following:

New year 2016: 2016-01-01

How about this code?

LocalDate valentinesDay = LocalDate.of(2016, 14, 2);
System.out.println("Valentine's day is on: " + valentinesDay);

It throws an exception:

Exception in thread "main" java.time.DateTimeException: Invalid value for MonthOfYear
(valid values 1 - 12): 14

In this case, the month and dayOfMonth argument values are interchanged. The of() method of
LocalDate is declared as follows:

LocalDate of(int year, int month, int dayOfMonth)

To avoid making this mistake, you can use the overloaded version LocalDate.of(int year, Month
month, int day). The second argument, java.time.Month, is an enumeration that represents the 12 months
of the year. If you interchange the day and month arguments, you get a compiler error. Here is the improved
version that uses this enumeration:

LocalDate valentinesDay = LocalDate.of(2016, Month.FEBRUARY, 14);
System.out.println("Valentine's day is on: " + valentinesDay);

This code prints

Valentine's day is on: 2016-02-14

The LocalDate class has methods with which you can add or subtract days, weeks, months, or years to
or from the current LocalDate object. For example, suppose your visa expires 180 days from now. Here is a
code segment that shows the expiry date (assuming today’s date is 2015-10-26):

long visaValidityDays = 180L;
LocalDate currDate = LocalDate.now();
System.out.println("My Visa expires on: " + currDate.plusDays(visaValidityDays));

This code segment prints the following:

My Visa expires on: 2016-04-23

In addition to the plusDays() method, LocalDate also provides plusWeeks(), plusMonths(), and
plusYears() methods, as well as methods for subtracting: minusDays(), minusWeeks(), minusMonths(), and
minusYears(). Table 8-1 lists a few more methods in the LocalDate class that you need to know (this table
mentions classes such as ZoneId—they’re discussed later in this chapter).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

238

Using the LocalTime Class
The java.time.LocalTime class is similar to LocalDate except that LocalTime represents time without dates
or time zones. The time is in the ISO-8601 calendar system format: HH:MM:SS.nanosecond. Both LocalTime
and LocalDate use the system clock and the default time zone.

Here is an example that uses LocalTime:

LocalTime currTime = LocalTime.now();
System.out.println("Current time is: " + currTime);

When we executed it, it printed the following:

Current time is: 12:23:05.072

As mentioned, LocalTime uses the system clock and its default time zone. To create different time
objects based on specific time values, you can use the overloaded of() method of the LocalTime class:

System.out.println(LocalTime.of(18,30));
// prints: 18:30

Table 8-1.  Important Methods in the LocalDate Class

Method Short Description Example Code

LocalDate now(Clock
clock)
LocalDate now(ZoneId
zone)

Returns a LocalDate object
with the current date using
the passed clock or zone
argument

// assume today's date is 26 Oct 2015

LocalDate.now(Clock.systemDefaultZone());
// returns current date as 2015-10-26

LocalDate.now(ZoneId.of("Asia/Kolkata"));
// returns current date as 2015-10-26

LocalDate.now(ZoneId.of("Asia/Tokyo"));
// returns current date as 2015-10-27

LocalDate ofYearDay(int
year, int dayOfYear)

Returns the LocalDate from
the year and dayOfYear
passed as arguments

LocalDate.ofYearDay(2016,100);
// returns date as 2016-04-09

LocalDate
parse(CharSequence
dateString)

Returns the LocalDate from
the dateString passed as
the argument

LocalDate.parse("2015-10-26");
// returns a LocalDate corresponding
// to the passed string argument;
hence it
// returns date as 2015-10-26

LocalDate
ofEpochDay(Long
epochDay)

Returns the LocalDate by
adding the number of days
to the epoch starting day
(the epoch starts in 1970)

LocalDate.ofEpochDay(10);
// returns 1970-01-11;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

239

LocalTime provides many useful methods with which you can add or subtract hours, minutes, seconds,
and nanoseconds. For example, assume that you have a meeting 6.5 hours from now, and you want to find
the exact meeting time. Here is a code segment for that:

long hours = 6;
long minutes = 30;
LocalTime currTime = LocalTime.now();
System.out.println("Current time is: " + currTime);
System.out.println("My meeting is at: " + currTime.plusHours(hours).plusMinutes(minutes));

This code segment prints the following:

Current time is: 12:29:13.624
My meeting is at: 18:59:13.624

In addition to plusHours(), LocalTime supports plusMinutes(), plusSeconds(), and plusNanos()
methods; also, for subtracting, it supports minusHours(), minusMinutes(), minusNanos(), and
minusSeconds(). Table 8-2 lists some of the important methods in the LocalTime class.

Table 8-2.  Important Methods in the LocalTime Class

Method Short Description Example Code

LocalTime now(Clock
clock)
LocalTime now(ZoneId
zone)

Returns a LocalTime object
with the current time using the
passed clock or zone argument

LocalTime.now(Clock.systemDefaultZone())
// returns current time as 18:30:35.744

LocalDate.now(ZoneId.of("Asia/Tokyo");
// returns current time as 22:00:35.193

LocalTime
ofSecondOfDay(long
daySeconds)

Returns the LocalTime from
daySeconds passed as the
argument (note that a 24-hour
day has 86,400 seconds)

LocalTime.ofSecondOfDay(66620);
// returns 18:30:20 because
// 66620 seconds have elapsed

LocalTime
parse(CharSequence
timeString)

Returns the LocalTime from
the dateString passed as the
argument

LocalTime.parse("18:30:05");
// returns a LocalTime object
// corresponding to the given String
// hence it prints: 18:30:05

Using the LocalDateTime Class
The class java.time.LocalDateTime represents both date and time without time zones. You can think of
LocalDateTime as a logical combination of the LocalTime and LocalDate classes. The date and time formats
use the ISO-8601 calendar system: YYYY-MM-DD HH:MM:SS.nanosecond.

Here is a simple example that prints today’s date and the current time:

LocalDateTime currDateTime = LocalDateTime.now();
System.out.println("Today's date and current time is: " + currDateTime);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

240

When we ran this code, it printed the following:

Today's date and current time is: 2015-10-29T21:04:36.376

In this output, note that the character T stands for time, and it separates the date and time components.
Using LocalDateTime.now() gets the current date and time using the system clock and its default time zone.

Many classes in the java.time package, including LocalDate, LocalTime, and LocalDateTime, support
isAfter() and isBefore() methods for comparison:

LocalDateTime christmas = LocalDateTime.of(2015, 12, 25, 0, 0);
LocalDateTime newYear = LocalDateTime.of(2016, 1, 1, 0, 0);
System.out.println("New Year 2016 comes after Christmas 2015? "+newYear.isAfter(christmas));

This code prints the following:

New Year 2016 comes after Christmas 2015? true

You can use the toLocalDate() and toLocalTime() methods, respectively, to get LocalDate and
LocalTime objects from a given LocalDateTime object:

LocalDateTime dateTime = LocalDateTime.now();
System.out.println("Today's date and current time: " + dateTime);
System.out.println("The date component is: " + dateTime.toLocalDate());
System.out.println("The time component is: " + dateTime.toLocalTime());

When we executed this code, it printed

Today's date and current time: 2015-11-04T13:19:10.497
The date component is: 2015-11-04
The time component is: 13:19:10.497

Similar to the methods listed in Tables 8-1 and 8-2, LocalDateTime has methods such as now(), of(),
and parse(). Again, similar to LocalDate and LocalTime, this class also provides methods to add or subtract
years, months, days, hours, minutes, seconds, and nanoseconds. To avoid repetition, these methods are not
listed again here.

Using the Instant Class
Suppose you want to trace the execution of a Java application or store the application events in a file. For
these purposes, you need to get timestamp values, and you can do so using the java.time.Instant class.
The instant values began on January 1, 1970, at 00:00:00 hours (known as the Unix epoch).

The Instant class internally uses a long variable that holds the number of seconds since the start of
the Unix epoch: 1970-01-01T00:00:00Z (values that occur before this epoch are treated as negative values).
In addition, Instant uses an integer variable to store the number of nanoseconds elapsed for each second.
The program in Listing 8-1 uses the Instant class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

241

Listing 8-1.  UsingInstant.java

import java.time.Instant;
 
public class UsingInstant {
 public static void main(String args[]){
 // prints the current timestamp with UTC as time zone
 Instant currTimeStamp = Instant.now();
 System.out.println("Instant timestamp is: "+ currTimeStamp);
  
 // prints the number of seconds as Unix timestamp from epoch time
 System.out.println("Number of seconds elapsed: " + currTimeStamp.getEpochSecond());
 
 // prints the Unix timestamp in milliseconds
 System.out.println("Number of milliseconds elapsed: " + currTimeStamp.toEpochMilli());
 }
}

When executed, it prints the following:

Instant timestamp is: 2015-11-02T03:16:04.502Z
Number of seconds elapsed: 1446434164
Number of milliseconds elapsed: 1446434164502

What is the difference between LocalDateTime and Instant? Here is an example that illustrates:

LocalDateTime localDateTime = LocalDateTime.now();
Instant instant = Instant.now();
System.out.println("LocalDateTime is: " + localDateTime + " \nInstant is: " + instant);

When we executed this, it printed the following:

LocalDateTime is: 2015-11-02T17:21:11.402
Instant is: 2015-11-02T11:51:11.404Z

As you can see, the time value printed by LocalDateTime is different from the result of Instant. Why?
Because we live in the Asia/Kolkata time zone, which is +05:30 hours from Greenwich time. LocalDateTime
uses the default time zone, but Instant doesn’t.

Using the Period Class
The java.time.Period class is used to measure an amount of time in terms of years, months, and days.
Assume that you have bought some expensive medicine and want to use it before it expires. Here is how you
can find out when it will expire:

LocalDate manufacturingDate = LocalDate.of(2016, Month.JANUARY, 1);
LocalDate expiryDate = LocalDate.of(2018, Month.JULY, 18);
 
Period expiry = Period.between(manufacturingDate, expiryDate);
System.out.printf("Medicine will expire in: %d years, %d months, and %d days (%s)\n",
 expiry.getYears(), expiry.getMonths(), expiry.getDays(), expiry);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

242

This code segment prints the following:

Medicine will expire in: 2 years, 6 months, and 17 days (P2Y6M17D)

This example uses the Period.between() method, which takes two LocalDate values as arguments and
returns a Period. This program uses the methods getYears(), getMonths(), and getDays() (these three
methods return an int value), which respectively return the number of years, months, and days in the given
period. The toString() method of Period prints the value P2Y6M17D. In this string, the characters P, Y, M, and
D, respectively, stand for period, years, months, and days.

From a Period, you can add or subtract years, months, and days using the methods plusYears(),
plusMonths(), plusDays(), minusYears(), minusMonths(), and minusDays(). Table 8-3 lists other important
methods in this class.

Table 8-3.  Important Methods in the Period Class

Method Short Description Example Code

Period of(int years, int
months, int days)

Returns a Period
object based on the
given arguments

LocalDate christmas = LocalDate.of(2015,
12, 25);
System.out.println(
Period.between(LocalDate.now(), christmas));
// prints P1M23D as of 2015-11-02

Period ofWeeks(int unit)

Period ofDays(int unit)

Period ofMonths(int unit)

Period ofYears (int unit)

Returns a Period
object based on the
unit in the argument

Period.ofWeeks(2)
// returns P14D

Period.ofDays(15)
// returns P15D

Period.ofMonths(6)
// returns P6M

Period.ofYears(4)
// returns P4Y

Period parse(CharSequence
string)

Returns a Period from
the string passed as
the argument

Period.parse("P4Y6M15D");
// returns P4Y6M15D

 The Java 8 date and time API differentiates how humans and computers use date- and time-related
information. For example, the Instant class represents a Unix timestamp and internally uses long and int
variables. Instant values are not very readable or usable by humans because the class does not support
methods related to day, month, hours, and so on (in contrast, the Period class supports such methods).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

243

Using the Duration Class
We discussed the Period class earlier—it represents time in terms of years, months, and days. Duration is the
time equivalent of Period. The Duration class represents time in terms of hours, minutes, seconds, and so
on. It is suitable for measuring machine time or when working with Instance objects. Similar to the Instance
class, the Duration class stores the seconds component as a long value and nanoseconds using an int value.

Say you want to wish your best friend Becky a happy birthday at midnight tonight. Here is how you can
find out how many hours to go:

LocalDateTime comingMidnight =
 LocalDateTime.of(LocalDate.now().plusDays(1), LocalTime.MIDNIGHT);
LocalDateTime now = LocalDateTime.now();
  
Duration between = Duration.between(now, comingMidnight);
System.out.println(between);
  

This code prints the following:

PT7H13M42.003S

This example uses the overloaded version of the of() method in the LocalDateTime class:
LocalDateTime of(LocalDate, LocalTime). The LocalDate.now() call returns the current date, but you
need to add a day to this value so that you can use LocalTime.MIDNIGHT to refer to the upcoming midnight.
The between() method in Duration takes two time values—in this case, two LocalDateTime objects. When
we executed this program, the time was 16:46:17; from then to midnight was 7 hours, 13 minutes, and
42 seconds. That is indicated by the toString() output, Period: PT7H13M42.003S. The prefix PT indicates
eriod time, H indicates hours, M indicates minutes, and S indicates seconds.

Table 8-4 lists some of the important methods of the Duration class. TemporalUnit and ChronoUnit are
discussed later in this chapter.

Table 8-4.  Important Methods in the Duration Class

Method Short Description Example Code

Duration of(long number,
TemporalUnit unit)

Duration ofDays(long unit)
Duration ofHours(long unit)
Duration ofMinutes(long unit)
Duration ofSeconds(long unit)
Duration ofMillis(long unit)
Duration ofNanos(long unit)

Returns a Duration object for the
given number in the specified format

Returns Duration based on the unit
given in the argument

Duration.of(3600, ChronoUnit.
MINUTES) // returns "PT60H"

Duration.ofDays(4)
// returns "PT96H"
Duration.ofHours(2)
// returns "PT2H"
Duration.ofMinutes(15)
// returns "PT15M"
Duration.ofSeconds(30)
//returns "PT30S"
Duration.ofMillis(120)
// returns "PT0.12S"
Duration.ofNanos(120)
// returns "PT0.00000012S"

Duration parse(CharSequence
string)

Returns a Period from the string
passed as the argument

Duration.parse("P2DT10H30M")
// returns a Duration object
// with value PT58H30M

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

244

Using the TemporalUnit Interface
The TemporalUnit interface is part of the java.time.temporal package. It represents date or time units
such as seconds, hours, days, months, years, and so on. The enumeration java.time.temporal.ChronoUnit
implements this interface. Instead of using constant values, it is better to use their equivalent enumeration
values. Why? Because using enumeration values in ChronoUnit results in more readable code; further, you
are less likely to make mistakes.

Listing 8-2 prints the enumeration values, whether they are date-based or time-based, and the duration.

Listing 8-2.  ChronoUnitValues.java

import java.time.temporal.ChronoUnit;
 
public class ChronoUnitValues {
 public static void main(String []args) {
 System.out.println("ChronoUnit DateBased TimeBased Duration");
 System.out.println("---------------------------------------");
 for(ChronoUnit unit : ChronoUnit.values()) {
 System.out.printf("%10s \t %b \t\t %b \t\t %s %n",
 unit, unit.isDateBased(), unit.isTimeBased(), unit.getDuration());
 }
 }
}

Figure 8-1.  Summary of the Instant, Period, and Duration classes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

245

The result is as follows:

ChronoUnit DateBased TimeBased Duration
--------------------------------------- --------------------
 Nanos false true PT0.000000001S
 Micros false true PT0.000001S
 Millis false true PT0.001S
 Seconds false true PT1S
 Minutes false true PT1M
 Hours false true PT1H
 HalfDays false true PT12H
 Days true false PT24H
 Weeks true false PT168H
 Months true false PT730H29M6S
 Years true false PT8765H49M12S
 Decades true false PT87658H12M
 Centuries true false PT876582H
 Millennia true false PT8765820H
 Eras true false PT8765820000000H
 Forever false false PT2562047788015215H30M7.999999999S

Numerous methods in the java.time package take TemporalUnit as the argument. For example,
consider the of() method in the Duration class:

Duration of(long amount, TemporalUnit unit)

Because the ChronoUnit enumeration implements the TemporalUnit interface, you can pass a
ChronoUnit enumeration value as the second argument in this constructor:

System.out.println(Duration.of(1, ChronoUnit.MINUTES).getSeconds());
// prints: 60
System.out.println(Duration.of(1, ChronoUnit.HOURS).getSeconds());
// prints:3600
System.out.println(Duration.of(1, ChronoUnit.DAYS).getSeconds());
// prints: 86400

As you can see from this example, ChronoUnit helps you deal with time unit values such as seconds,
minutes, and hours and date values such as days, months, and years.

Dealing with Time Zones and Daylight Savings
Certification Objective

Work with dates and times across timezones and manage changes resulting from daylight savings
including format date and times values

The previous section discussed some of the important classes in the java.time package. This section
discusses how to work with dates and times across time zones, deal with daylight savings, and format date
and time values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

246

Using Time Zone–Related Classes
There are three important classes related to time zones that you need to know in order to work with dates
and times across time zones: ZoneId, ZoneOffset, and ZonedDateTime. Let’s discuss them now.

Using the ZoneId Class
In the java.time package, the java.time.ZoneId class represents time zones. Time zones are typically
identified using an offset from Greenwich Mean Time (GMT, also known as UTC/Greenwich).

For instance, we live in India, and the only time zone in India is Asia/Kolkata (zones are given using this
region/city format). This code prints the time zone:

System.out.println("My zone id is: " + ZoneId.systemDefault());

For our time zone, it printed this:

My zone id is: Asia/Kolkata

You can get the list of time zones by calling the static method getAvailableZoneIds() in ZoneId, which
returns a Set<String>:

Set<String> zones = ZoneId.getAvailableZoneIds();
System.out.println("Number of available time zones is: " + zones.size());
zones.forEach(System.out::println);

Here is the result:

Number of available time zones is: 589
Asia/Aden
America/Cuiaba
// rest of the output elided...

You can pass any of these time-zone identifiers to the of() method to create the corresponding ZoneId
object, as in

ZoneId AsiaKolkataZoneId = ZoneId.of("Asia/Kolkata");

Using the ZoneOffset Class
ZoneId identifies a time zone, such as Asia/Kolkata. Another class, ZoneOffset, represents the time-zone
offset from UTC/Greenwich. For example, zone ID “Asia/Kolkata” has a zone offset of +05:30 (plus 5 hours
and 30 minutes) from UTC/Greenwich. The ZoneOffset class extends the ZoneId class. We discuss an
example that uses ZoneOffset in the next section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

247

Using the ZonedDateTime Class
In Java 8, if you want to deal only with the date, time, or time zone, you can use LocalDate, LocalTime, or
ZoneId, respectively. What if you want all three—date, time, and time zone—together? For that, you can use
the ZonedDateTime class:

LocalDate currentDate = LocalDate.now();
LocalTime currentTime = LocalTime.now();
ZoneId myZone = ZoneId.systemDefault();
ZonedDateTime zonedDateTime = ZonedDateTime.of(currentDate, currentTime, myZone);
System.out.println(zonedDateTime);

Here is the result:

2015-11-05T11:38:40.647+05:30[Asia/Kolkata]

This code segment uses the overloaded static method ZonedDateTime of(LocalDate, LocalTime, ZoneID).
Given a LocalDateTime, you can use a ZoneId to get a ZonedDateTime object:

LocalDateTime dateTime = LocalDateTime.now();
ZoneId myZone = ZoneId.systemDefault();
ZonedDateTime zonedDateTime = dateTime.atZone(myZone);

To illustrate the conversion between these different time zone–related classes, here is a code segment
that creates a ZoneId object, adds that zone information to a LocalDateTime object to get a ZonedDateTime
object, and finally gets the zone offset from the ZonedDateTime:

ZoneId myZone = ZoneId.of("Asia/Kolkata");
LocalDateTime dateTime = LocalDateTime.now();
ZonedDateTime zonedDateTime = dateTime.atZone(myZone);
ZoneOffset zoneOffset = zonedDateTime.getOffset();
System.out.println(zoneOffset);

It prints the following:

+05:30

Assume that you are in Singapore, the date is January 1, 2016, and the time is 6:00 a.m. Before talking
to your friend who lives in Auckland (New Zealand), you want to find out the time difference between
Singapore and Auckland. Listing 8-3 shows a program that uses the ZoneId, ZonedDateTime, and Duration
classes, to illustrate how to use these classes together.

Listing 8-3.  TimeDifference.java

import java.time.LocalDateTime;
import java.time.Month;
import java.time.ZoneId;
import java.time.ZonedDateTime;
import java.time.Duration;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

248

public class TimeDifference {
 public static void main(String[] args) {
 ZoneId singaporeZone = ZoneId.of("Asia/Singapore");
 ZonedDateTime dateTimeInSingapore = ZonedDateTime.of(
 LocalDateTime.of(2016, Month.JANUARY, 1, 6, 0), singaporeZone);
 
 ZoneId aucklandZone = ZoneId.of("Pacific/Auckland");
 ZonedDateTime sameDateTimeInAuckland =
 dateTimeInSingapore.withZoneSameInstant(aucklandZone);
 
 Duration timeDifference = Duration.between(
 dateTimeInSingapore.toLocalTime(),
 sameDateTimeInAuckland.toLocalTime());
 
 System.out.printf("Time difference between %s and %s zones is %d hours",
 singaporeZone, aucklandZone, timeDifference.toHours());
 }
}

Here is the result:

Time difference between Asia/Singapore and Pacific/Auckland zones is 5 hours

This program creates two ZoneIds: one for Singapore and another for Auckland. After creating a
ZonedDateTime object for the Singapore time zone with the given date and time, you get the equivalent
ZonedDateTime object for Auckland by calling the withZoneSameInstant() method of the ZonedDateTime
class. To find the time difference in hours, you use the Duration.between() method and the toHours()
method of Duration.

Dealing with Daylight Savings
The amount of daylight does not remain the same throughout the year, because the seasons change. There
is more daylight in summer, for example. With daylight savings time (DST), the clock is set one hour earlier
or later to make the best use of the daylight. As the saying goes, “Spring forward, fall back”—the clock is
typically set one hour earlier when Spring begins and one hour later at the start of Fall:

ZoneId kolkataZone = ZoneId.of("Asia/Kolkata");
Duration kolkataDST = kolkataZone.getRules().getDaylightSavings(Instant.now());
System.out.printf("Kolkata zone DST is: %d hours %n", kolkataDST.toHours());
 
ZoneId aucklandZone = ZoneId.of("Pacific/Auckland");
Duration aucklandDST = aucklandZone.getRules().getDaylightSavings(Instant.now());
System.out.printf("Auckland zone DST is: %d hours", aucklandDST.toHours());

Here is the result (when executed on November 5, 2015):

Kolkata zone DST is: 0 hours
Auckland zone DST is: 1 hours

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

249

The call zoneId.getRules().getDaylightSavings(Instant.now()); returns a Duration object
based on whether DST is in effect at that time. If Duration.isZero() is false, DST is in effect in that zone;
otherwise, it is not. In this example, the Kolkata time zone does not have DST in effect, but the Auckland
time zone has +1 hour of DST.

Formatting Dates and Times
When programming with dates and times, you often have to print them in different formats. Also, you may
have to read date/time information given in different formats. To read or print date and time values in
various formats, you can use the DateTimeFormatter class in the java.time.format package.

The DateTimeFormatter class provides many predefined constants for formatting date and time values.
Here is a list of a few such predefined formatters (with sample output values):

•	 ISO_DATE (2015-11-05)

•	 ISO_TIME (11:25:47.624)

•	 RFC_1123_DATE_TIME (Thu, 5 Nov 2015 11:27:22 +0530)

•	 ISO_ZONED_DATE_TIME (2015-11-05T11:30:33.49+05:30[Asia/Kolkata])

Here is a simple example that uses the predefined ISO_TIME of type DateTimeFormatter:

LocalTime wakeupTime = LocalTime.of(6, 0, 0);
System.out.println("Wake up time: " + DateTimeFormatter.ISO_TIME.format(wakeupTime));

This printed the following:

Wake up time: 06:00:00

What if you want to use a custom format instead of any of the predefined formats? To do so, you can use
the ofPattern() method in the DateTimeFormatter class:

DateTimeFormatter customFormat = DateTimeFormatter.ofPattern("dd MMM yyyy");
System.out.println(customFormat.format(LocalDate.of(2016, Month.JANUARY, 01)));

Here is the result:

01 Jan 2016

You encode the format of the date or time using letters to form a date or time pattern string. Usually
these letters are repeated in the pattern.

 Uppercase and lowercase letters can have similar or different meanings when used in format strings for
dates and times. Read the Javadoc for these patterns carefully before trying to use these letters. For example,
in dd-MM-yy, MM refers to month; however, in dd-mm-yy, mm refers to minutes !

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

250

The previous code segment gave a simple example of creating a custom date format. Similar letters
are available for creating custom date and time pattern strings. Here is the list of important letters and their
meanings for creating patterns for dates (with examples):

•	 G (era: BC, AD)

•	 y (year of era: 2015, 15)

•	 Y (week-based year: 2015, 15)

•	 M (month: 11, Nov, November)

•	 w (week in year: 13)

•	 W (week in month: 2)

•	 E (day name in week: Sun, Sunday)

•	 D (day of year: 256)

•	 d (day of month: 13)

The program in Listing 8-4 uses simple and complex pattern strings to create custom date formats.

Listing 8-4.  CustomDatePatterns.java

import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
 
public class CustomDatePatterns {
 public static void main(String []args) {
 // patterns from simple to complex ones
 String [] dateTimeFormats = {
 "dd-MM-yyyy", /* d is day (in month), M is month, y is year */
 "d '('E')' MMM, YYYY", /*E is name of the day (in week), Y is year*/
 "w'th week of' YYYY", /* w is the week of the year */
 "EEEE, dd'th' MMMM, YYYY" /*E is day name in the week */
 };
 LocalDateTime now = LocalDateTime.now();
 for(String dateTimeFormat : dateTimeFormats) {
 System.out.printf("Pattern \"%s\" is %s %n", dateTimeFormat,
 DateTimeFormatter.ofPattern(dateTimeFormat).format(now));
 }
 }
 }

Here is the result:

Pattern "dd-MM-yyyy" is 05-11-2015
Pattern "d '('E')' MMM, YYYY" is 5 (Thu) Nov, 2015
Pattern "w'th week of' YYYY" is 45th week of 2015
Pattern "EEEE, dd'th' MMMM, YYYY" is Thursday, 05th November, 2015

As you can see, repeated letters result in a longer form for an entry. For example, when you use E
(which is the name of the day in the week), the result is “Thu”, whereas using EEEE prints the full form of the
day name, which is “Thursday”.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

251

Another important thing to notice is how to print text within the given pattern string. For that, you use
text separated by single quotes, which is printed as is by DateTimeFormatter. For example, '('E')' prints
“(Wed)”. If you give an incorrect pattern or forget to use single quotes to separate your text from pattern
letters in the pattern string, you get a DateTimeParseException for passing an “Illegal pattern.”

Now, let’s look at a similar example for creating custom time-pattern strings. Here is the list of important
letters for defining a custom time pattern:

a (marker for the text a.m./p.m. marker)

H (hour: value range 0–23)

k (hour: value range 1–24)

K (hour in a.m./p.m.: value range 0–11)

h (hour in a.m./p.m.: value range 1–12)

m (minute

s (second)

S (fraction of a second)

z (time zone: general time-zone format)

For more letters and their descriptions, see the Javadoc for the DateTimeFormatter class. Listing 8-5
shows a program that uses simple and complex pattern strings to create custom time formats.

Listing 8-5. CustomTimePatterns.java

import java.time.LocalTime;
import java.time.format.DateTimeFormatter;
 
// Using examples, illustrates how to use "pattern strings" for creating custom time formats
class CustomTimePatterns {
 public static void main(String []args) {
 // patterns from simple to complex ones
 String [] timeFormats = {
 "h:mm", /* h is hour in am/pm (1-12), m is minute */
 "hh 'o''clock'", /* '' is the escape sequence to print a single quote */
 "H:mm a", /* H is hour in day (0-23), a is am/pm*/
 "hh:mm:ss:SS", /* s is seconds, S is milliseconds */
 "K:mm:ss a" /* K is hour in am/pm(0-11) */
 };
 LocalTime now = LocalTime.now();
 for(String timeFormat : timeFormats) {
 System.out.printf("Time in pattern \"%s\" is %s %n", timeFormat,
 DateTimeFormatter.ofPattern(timeFormat).format(now));
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

252

Here is the result:

Time in pattern "h:mm" is 12:27
Time in pattern "hh 'o''clock'" is 12 o'clock
Time in pattern "H:mm a" is 12:27 PM
Time in pattern "hh:mm:ss:SS" is 12:27:10:41
Time in pattern "K:mm:ss a" is 0:27:10 PM

Note how the output differs based on the pattern string used.

Flight Travel Example
Let’s look at an example that uses many of the classes covered so far. Assume that you need to catch a flight
from Singapore on January 1, 2016 at 6:00 a.m. The flight takes 10 hours to reach Auckland, New Zealand.
Can you get the arrival time in Auckland? The program in Listing 8-6 solves this problem.

Listing 8-6.  FlightTravel.java

import java.time.Month;
import java.time.ZoneId;
import java.time.ZonedDateTime;
import java.time.LocalDateTime;
import java.time.format.DateTimeFormatter;
 
public class FlightTravel {
 public static void main(String[] args) {
 DateTimeFormatter dateTimeFormatter =
 DateTimeFormatter.ofPattern("dd MMM yyyy hh.mm a");
 
 // Leaving on 1st Jan 2016, 6:00am from "Singapore"
 ZonedDateTime departure = ZonedDateTime.of(
 LocalDateTime.of(2016, Month.JANUARY, 1, 6, 0),
 ZoneId.of("Asia/Singapore"));
 
 System.out.println("Departure: " + dateTimeFormatter.format(departure));
 
 // Arrival on the same day in 10 hours in "Auckland"
 ZonedDateTime arrival =
 departure.withZoneSameInstant(ZoneId.of("Pacific/Auckland"))
 .plusHours(10);
 
 System.out.println("Arrival: " + dateTimeFormatter.format(arrival));
 }
}

Here is the result:

Departure: 01 Jan 2016 06.00 AM
Arrival: 01 Jan 2016 09.00 PM

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

253

Summary
Let’s briefly review the key points from each certification objective in this chapter. Please read it before
appearing for the exam.

Create and manage date-based and time-based events including a combination of date and time into a
single object using LocalDate, LocalTime, LocalDateTime, Instant, Period, and Duration

•	 The Java 8 date and time API uses ISO 8601 as the default calendar format.

•	 The java.time.LocalDate class represents a date without time or time zones; the
java.time.LocalTime class represents time without dates and time zones; the
java.time.LocalDateTime class represents both date and time without time zones.

•	 The java.time.Instant class represents a Unix timestamp.

•	 The java.time.Period is used to measure the amount of time in terms of years,
months, and days.

•	 The java.time.Duration class represents time in terms of hours, minutes, seconds,
and fraction of seconds.

Work with dates and times across timezones and manage changes resulting from daylight savings
including Format date and times values

•	 ZoneId identifies a time zone; ZoneOffset represents time zone offset from
UTC/Greenwich.

•	 ZonedDateTime provides support for all three aspects: date, time, and time zone.

•	 You have to account for daylight savings time (DST) when working with different
time zones.

•	 The java.time.format.DateTimeFormatter class provides support for reading or
printing date and time values in different formats.

•	 The DateTimeFormatter class provides predefined constants (such as ISO_DATE and
ISO_TIME) for formatting date and time values.

•	 You encode the format of the date or time using case-sensitive letters to form a date
or time pattern string with the DateTimeFormatter class.

Define and create and manage date-based and time-based events using Instant, Period, Duration, and
TemporalUnit

•	 The enumeration java.time.temporal.ChronoUnit implements the
java.time.temporal.TemporalUnit interface.

•	 Both TemporalUnit and ChronoUnit deal with time unit values such as seconds,
minutes, and hours and date values such as days, months, and years.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

254

QUESTION TIME

1.	 Choose the correct option based on this code segment:

LocalDate babyDOB = LocalDate.of(2015, Month.FEBRUARY, 20);
LocalDate now = LocalDate.of(2016, Month.APRIL, 10);
System.out.println(Period.between(now, babyDOB).getYears()); // PERIOD_CALC

A.	T he code segment results in a compiler error in the line marked with the
comment PERIOD_CALC

B.	T he code segment throws a DateTimeException

C.	T he code segment prints: 1

D.	T he code segment prints: -1

2.	 Which one of the following classes is best suited for storing timestamp values
of application events in a file?

A.	 java.time.ZoneId class

B.	 java.time.ZoneOffset class

C.	 java.time.Instant class

D.	 java.time.Duration class

E.	 java.time.Period class

3.	 Given this code segment

ZoneId zoneId = ZoneId.of("Asia/Singapore");
ZonedDateTime zonedDateTime =
 ZonedDateTime.of(LocalDateTime.now(), zoneId);
System.out.println(zonedDateTime.getOffset());

assume that the time-offset value for the Asia/Singapore time zone from
UTC/Greenwich is +08:00. Choose the correct option.

A.	T his code segment results in throwing DateTimeException

B.	T his code segment results in throwing UnsupportedTemporalTypeException

C.	T he code segment prints: Asia/Singapore

D.	T he code segment prints: +08:00

E.	T his code segment prints: +08:00 [Asia/Singapore]

4.	 Choose the correct option based on this code segment:

DateTimeFormatter dateFormat = DateTimeFormatter.ISO_DATE; // DEF
LocalDate dateOfBirth = LocalDate.of(2015, Month.FEBRUARY, 31);
System.out.println(dateFormat.format(dateOfBirth)); // USE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

255

A.	T he program gives a compiler error in the line marked with the comment DEF

B.	T he program gives a compiler error in the line marked with the comment USE

C.	T he code segment prints: 2015-02-31

D.	T he code segment prints: 2015-02-03

E.	T his code segment throws java.time.DateTimeException with the message
"Invalid date 'FEBRUARY 31'"

5.	 Consider this code segment:

DateTimeFormatter formatter =
 DateTimeFormatter.ofPattern("EEEE", Locale.US);
System.out.println(formatter.format(LocalDateTime.now()));

Which of the following outputs matches the string pattern "EEEE" given in
this code segment?

A.	 F

B.	 Friday

C.	S ept

D.	S eptember

Answers:

1.	 The code segment prints: -1

Here are the arguments to the between() method in the Period class:

Period between(LocalDate startDateInclusive, LocalDate
endDateExclusive)

The first argument is the start and the second argument is the end, and hence the
call Period.between(now, babyDOB) results in -1 (not +1).

2.	 C. Instant class

The Instant class stores the number of seconds elapsed since the start of the Unix
epoch (1970-01-01T00:00:00Z). The Instant class is suitable for storing a log of
application events in a file as timestamp values.

The ZoneId and ZoneOffset classes are related to time zones and hence are
unrelated to storing timestamp values. The Duration class is for time-based values
in terms of quantity of time (such as seconds, minutes, and hours). The Period
class is for date-based values such as years, months, and days.

3.	 D. The code segment prints: +08:00

Given a ZonedDateTime object, the getOffset() method returns a ZoneOffset
object that corresponds to the offset of the time zone from UTC/Greenwich. Given that
the time-offset value for the Asia/Singapore zone from UTC/Greenwich is +08:00, the
toString() method of ZoneOffset prints the string “+08:00” to the console.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8 ■ Using the Java SE 8 Date/Time API

256

4.	 E. This code segment throws java.time.DateTimeException with the message
"Invalid date 'FEBRUARY 31'".

The date value 31 passed in the call LocalDate.of(2015, 2, 31); is invalid for
the month February, and hence the of() method in the LocalDate class throws
DateTimeException.

One of the predefined values in DateTimeFormatter is ISO_DATE. Hence, it does
not result in a compiler error for the statement marked with the comment DEF.
The statement marked with the comment USE compiles without errors because it is
the correct way to use the format() method in the DateTimeFormatter class.

5.	 B. Friday

E is the day name in the week; the pattern "EEEE" prints the name of the day
in its full format. “Fri” is a short form that would be printed by the pattern "E",
but "EEEE" prints the day of the week in full form: for example, “Friday”. Because
the locale is Locale.US, the result is printed in English. The output “Sept” or
“September” is impossible because E refers to the name in the week, not
in a month.

www.it-ebooks.info

http://www.it-ebooks.info/

257

Chapter 9

Java I/O Fundamentals

Certification Objectives

Read and write data from the console

Use BufferedReader, BufferedWriter, File, FileReader, FileWriter, FileInputStream, FileOutputStream,
ObjectOutputStream, ObjectInputStream, and PrintWriter in the java.io package

In this chapter, we’ll introduce you to the fundamentals of Java I/O programming. We’ll cover two
topics: how to read and write data from console, and then how to use (file) streams to read and write data.

The support for file manipulation is provided in the java.io and java.nio packages. In the initial part
of this chapter, we’ll focus only on the java.io package; later, we’ll focus on reading and writing data using
streams, but none of the other features provided in the java.io package. The java.nio package provides
comprehensive support for file I/O, and we cover it in Chapter 10.

Reading from and Writing to Console
Certification Objective

Read and write data from the console

For reading from and writing to console, you can use standard input, output, and error streams or use
the Console class. Let us discuss both of these approaches now.

Understanding Standard Streams
The public static fields in, out, and err in java.lang.System class respectively represent the standard input,
output and error streams. System.in is of type java.io.InputStream and System.out and System.err are of
type java.io.PrintStream.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_10
http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

258

Here is a programming example that reads and prints an integer from console (Listing 9-1):

Listing 9-1.  Read.java

import java.io.IOException;
 
class Read {
 public static void main(String []args) {
 System.out.print("Type a character: ");
 int val = 0;
 try {
 // the return type of read is int, but it returns a byte value!
 val = System.in.read();
 } catch(IOException ioe) {
 System.err.println("Cannot read input " + ioe);
 System.exit(-1);
 }
 System.out.println("You typed: " + val);
 }
}

Here is a sample run of the program:

D:\> $ java Read
Type a character: 5
You typed: 53

The return type of read method is int but it returns a byte value in the range 0 to 255 (yes, it is
unintuitive). Hence, for the input 5, the program prints its ASCII value 53. The read method “blocks”
(i.e., waits) for the user input; if an I/O exception occurs when reading, the method throws an IOException.

This program illustrates the use of all the three streams – System.in is used here to get the input from
console, System.out is used for printing the read integer value, and System.err is used for issuing the error
in case an I/O exception occurs.

The overloaded read method is low-level in nature and works in terms of bytes. Reading other types of
input such as Strings requires using it with Reader or Scanner classes, as in:

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String str = br.readLine();
 
// or use java.util.Scanner, as in:
 
Scanner scanner = new Scanner(System.in);
String str = scanner.next();

We will discuss more about Reader and Scanner classes later in this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

259

Reassigning Standard Streams
The standard streams are initialized when the JVM starts. Sometimes it is useful to redirect the standard
streams by reassigning them. The method System.setIn takes an InputStream object, and the methods
System.setOut and System.setError take PrintStream objects as arguments. Here is a code snippet that
captures the standard output into a file by reassigning the System.out stream to an output text file:

import java.io.*;
 
class StreamTest {
 public static void main(String []args){
 try{
 PrintStream ps = new PrintStream("log.txt");
 System.setOut(ps);
 System.out.println("Test output to System.out");
 } catch(Exception ee){
 ee.printStackTrace();
 }
 }
}

When you execute this code segment, the program will create a file named “log.txt” and print the string
“Test output to System.out” in that file.

Redirecting the streams is useful in many situations. For example, instead of reading from console,
you may want to read the input from a text file for testing purposes. You can achieve that by redirecting the
standard input stream to the text file. Similarly, you may want to reassign the error stream to a text file to
store all the error messages in a log file. You can achieve that by calling the System.setErr method.

Understanding the Console Class
Using the Console class helps reading the data from the console and writing the data to the console. Note
that the word “console” here refers to the character input device (typically a keyboard), and the character
display device (typically the screen display). You can obtain a reference to the console using the
System.console() method; if the JVM is not associated with any console, this method will return null.

Your first exercise is to implement a simple Echo command that prints back the line of text typed as
input when you run this program (Listing 9-2).

Listing 9-2.  Echo.java

import java.io.Console;
 
// simple implementation of Echo command
class Echo {
 public static void main(String []args) {
 // get the System console object
 Console console = System.console();
 if(console == null) {
 �System.err.println("Cannot retrieve console object - are you running your

application from an IDE? Exiting the application ... ");
 System.exit(-1); // terminate the application
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

260

 // read a line and print it through printf
 console.printf(console.readLine());
 }
}

Here is how the program behaves for different output (in the first run, we type “hello world” as input
and in the second run we terminate the program):

D:\>java Echo
hello world
hello world
 
D:\>java Echo
^Z
Exception in thread "main" java.lang.NullPointerException
 at java.util.regex.Matcher.getTextLength(Matcher.java:1234)
 ... [this part of the stack trace elided to save space]
 at Echo.main(Echo.java:14)

For normal text input, this program works fine. If you type no input and try terminating the program
with ^z or ^d (Ctrl+Z or Ctrl+D key combinations), then the program receives no input, so the readLine()
method returns null; when printf takes a null argument, it throws a NullReferenceException.

Note that you ran this program from the command line. The method System.console() will succeed if
the JVM is invoked from a command line without redirecting input or output streams since the JVM will be
associated with a console (typically a keyboard and display screen). If the JVM is invoked indirectly by IDE,
or if the JVM is invoked from a background process, then the method call System.console() will fail and
return null. For example, if you run from IntelliJ IDEA or Eclipse IDEs, the System.console() will fail by
returning null.

 If the JVM is invoked indirectly by IDE, or if the JVM is invoked from a background process, then the
method call System.console() will fail and return null.

Some of the important methods available in the Console class are listed in Table 9-1.

Table 9-1.  Important Methods in the Console Class

Method Short description

Reader reader() Returns the Reader object associated with this Console object; can
perform read operations through this returned reference.

PrintWriter writer() Returns the PrintWriter object associated with this Console object;
can perform write operations through this returned reference.

String readLine() Reads a line of text String (and this returned string object does not
include any line termination characters); returns null if it fails
(e.g., the user pressed Ctrl+Z or Ctrl+D in the console)

String readLine(String fmt,
Object... args)

Same as the readLine() method, but it first prints the string fmt.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

261

Formatted Output with the Console Class
The Console class supports formatted I/O in the methods printf() and format() plus the overloaded
methods of readPassword() and readLine(). We will now discuss formatted output with methods printf()
(and the similar format() method) and later discuss the readPassword() and readLine() methods.

The method printf() uses string-formatting flags to format strings. It is quite similar to the printf()
function provided in the library of the C programming language. The first parameter of the printf() method
is a format string. A format string may contain string literals and format specifiers. The actual arguments are
passed after the format string. This method can throw IllegalFormatException if the passed format is not
correct.

Format specifiers are the crux of the string formatting concepts. They define the placeholder for a
specific data type and its format (such as alignment and width). The remaining parameters of the printf()
method are the variables (or literals) that provide the actual data to fill in the placeholders in sequence of the
format specifiers.

Let’s discuss a detailed example of when and why we need to use the format specifiers. Suppose you
want to print a table of soccer players along with their names, played matches, scored goals, and goals per
match information. However, there are a few constraints:

•	 You want to print the name of players to the left (left aligned).

•	 You want to specify at least 15 characters for the name of the players.

•	 You want to print each column at a distance of a tab-stop.

•	 You want to specify only one precision point in goals per match info.

Listing 9-3 shows how to implement this.

Method Short description

char[] readPassword() Reads a password text and returns as a char array; echoing is
disabled with this method, so when the user types the password,
nothing will be displayed in the console.

char[] readPassword(String fmt,
Object... args)

Same as the readPassword() method, but it first prints the string
given as the format string argument before reading the password
string.

Console format(String fmt,
Object... args)

Writes the formatted string (created based on values of fmt string
and the args passed) to the console.

Console printf(String fmt,
Object... args)

Writes the formatted string (created based on values of fmt string
and the args passed) to the console. This printf method is the
same as the format method: This is a “convenience method”—the
method printf and the format specifiers are familiar to most C/C++
programmers, so this method is provided in addition to the format
method.

void flush() Flushes any of the data still remaining to be printed in the console
object’s buffer.

Table 9-1.  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

262

Listing 9-3.  FormattedTable.java

// This program demonstrates the use of format specifiers in printf
import java.io.Console;
 
class FormattedTable {
 void line(Console console) {
 console.printf("--\n");
 }
 void printHeader(Console console) {
 �console.printf("%-15s \t %s \t %s \t %s \n", "Player", "Matches", "Goals",

"Goals per match");
 
 }
  
 void printRow(Console console, String player, int matches, int goals) {
 console.printf("%-15s \t %5d \t\t %d \t\t %.1f \n", player, matches, goals,
 ((float)goals/(float)matches));
 }
 
 public static void main(String[] str) {
 FormattedTable formattedTable = new FormattedTable();
 Console console = System.console();
 if(console != null) {
 formattedTable.line(console);
 formattedTable.printHeader(console);
 formattedTable.line(console);
 formattedTable.printRow(console, "Demando", 100, 122);
 formattedTable.printRow(console, "Mushi", 80, 100);
 formattedTable.printRow(console, "Peale", 150, 180);
 formattedTable.line(console);
 }
 }
}

This program produces following output:

Player Matches Goals Goals per match

Demando 100 122 1.2
Mushi 80 100 1.3
Peale 150 180 1.2

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

263

Let’s analyze the format string specified in the printRow() method - "%-15s \t %5d \t\t %d \t\t
%.1f \n"

•	 The first part of the format string is "%-15s". Here, the expression starts with %, which
indicates the start of a format-specifier string.

•	 The next symbol is '-', which is used to make the string left aligned. The number
"15" specifies the width of the string and finally data type specifier of "s" indicates
the input data type as String.

•	 The next format specifier string is "%5d", which signifies it expects an integer that will
be displayed in the minimum 5 digits.

•	 The last format specifier string is "%.1f", which expects a floating-point number that
will be displayed with one precision digit.

•	 All format specifier strings are separated with one or more "\t"s (tab stops) to make
space between the columns.

Let’s now discuss the template of format specifiers in the printf() method:

%[argument_index][flags][width][.precision]datatype_specifier

•	 As you can see, each format specifier starts with % sign followed by argument index,
flags, width, and precision information and ends with a data type specifier. In this
string, the argument index, flags, width, and precision information are optional while
the % sign and data type specifiers are mandatory.

•	 Argument index refers to the position of the argument in the argument list; it is an
integer followed by $, as in 1$ and 2$ for first and second argument respectively.

•	 Flags are single-character symbols that specify characteristics such as alignment
and filling character. For instance, flag "-" specifies left alignment and "0" pads the
number with leading zeroes.

•	 The width specifier indicates the minimum number of characters that will span in
the final formatted string. If the input data is shorter than the specified width, then it
is padded with spaces by default. In case the input data is bigger than the specified
width, the full data appears in the output without trimming.

•	 The precision field specifies the number of precision digits in the output. This
optional field is particularly useful with floating point numbers.

•	 Finally, the data type specifier indicates the type of expected input data. The field
is a placeholder for the specified input data. Table 9-2 provides a list of commonly
used data type specifiers.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

264

Note that the discussion about printf() applies to format() method in the Console class. In fact,
printf just invokes format method internally:

// code from java.io.Console.java
public Console printf(String format, Object ... args) {
 return format(format, args);
}

Points to Remember
Here are some points that might prove useful on your OCPJP 8 exam:

•	 If you do not specify any string formatting specifier, the printf() method will not
print anything from the given arguments!

•	 Flags such as "-" and “0" make sense only when you specify width with the format
specifier string.

•	 You can also print the % character in a format string; however, you need to use an
escape sequence for it. In format specifier strings, % is an escape character, which
means you need to use %% to print a single %.

•	 You can use the argument index feature (an integer value followed by $ symbol) to
explicitly refer to the arguments by their index position. For example, the following
prints “world hello” because the order of arguments are reversed:

console.printf("%2$s %1$s %n", "hello", "world");
// $2 refers to the second argument ("world") and
// $1 refers to the first argument ("hello")

Table 9-2.  Commonly Used Data Type Specifiers

Symbol Description

%b Boolean

%c Character

%d Decimal integer (signed)

%e Floating point number in scientific format

%f Floating point number in decimal format

%g Floating point number in decimal or scientific format
(depending on the value passed as argument)

%h Hashcode of the passed argument

%n Line separator (new line character)

%o Integer formatted as an octal value

%s String

%t Date/time

%x Integer formatted as an hexadecimal value

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

265

•	 The < symbol in a format string supports relative index with which you can reuse the
argument matched by the previous format specifier. For example, assuming console
is a valid Console object, the following code segment prints “10 a 12”:
console.printf("%d %<x %<o", 10);

// 10 – the decimal value, a – the hexadecimal value of 10, and
// 12 – the octal value of 10

•	 If you do not provide the intended input data type as expected by the format
string, then you can get an IllegalFormatConversionException. For instance,
if you provide a string instead of an expected integer in your printRow() method
implementation, you will get following exception:

Exception in thread "main" java.util.IllegalFormatConversionException:
 d != java.lang.String

Getting Input with the Console Class
You can get input from console using the overloaded methods of readPassword() and readLine() provided
within the Console class. In these methods, the first argument is the format specifier string, and the
following arguments are the values that will be passed to the format specifier string. These two methods
return the character data read from the console. What’s the difference between the readLine() and
readPassword() methods? The main difference is that the readPassword() does not display the typed string
in the console (for the obvious reason of not displaying the secret password), whereas readLine() displays
the input you type in the console. Another minor difference is that the readLine() method returns a String
whereas readPassword() returns a char array (see Listing 9-4).

Listing 9-4.  Login.java

import java.io.Console;
import java.util.Arrays;
 
// code to illustrate the use of readPassword method
class Login {
 public static void main(String []args) {
 Console console = System.console();
 if(console != null) {
 String userName = null;
 char[] password = null;
 userName = console.readLine("Enter your username: ");
 // typed characters for password will not be displayed in the screen
 password = console.readPassword("Enter password: ");
 // password is a char[]: convert it to a String first
 // before comparing contents
 if(userName.equals("scrat") && new String(password).equals("nuts")) {
 // we're hardcoding username and password here for
 // illustration, don't do such hardcoding in pratice!
 console.printf("login successful!");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

266

 else {
 console.printf("wrong user name or password");
 }
 // "empty" the password since its use is over
 Arrays.fill(password, ' ');
 }
 }
}

Here is an instance of running this program typing the correct username and password:

D:\>java Login
Enter your username: scrat
Enter password:
login successful!

Note that nothing was displayed in the console when typing the password. Why is the statement
Arrays.fill(password, ' '); provided in this program? It is a recommended practice to “empty” the
read password string once its use is over; here you use Array’s fill() method for this purpose. This is a
secure programming practice to avoid malicious reads of program data to discover password strings. In fact,
unlike the readLine() method, which returns a String, the readPassword() method returns a char array.
With a char array, as soon as the password is validated, it is possible to empty it and remove the trace of the
password text from memory; with a String object, which is garbage collected, it is not as easy as with a char
array.

Using Streams to Read and Write Files
Certification Objective

Use BufferedReader, BufferedWriter, File, FileReader, FileWriter, FileInputStream, FileOutputStream,
ObjectOutputStream, ObjectInputStream, and PrintWriter in the java.io package

What are streams? Streams are ordered sequences of data. Java deals with input and output in terms
of streams. For example, when you read a sequence of bytes from a binary file, you’re reading from an
input stream; similarly, when you write a sequence of bytes to a binary file, you’re writing to an output
stream. Note how we referred to reading or writing bytes from binary files, but what about reading or writing
characters from text files? Java, similar to other languages and operating systems, differentiates between
processing text and binary data. Before delving deeper into streams and reading or writing data from files,
you must first understand the difference between the character streams and byte streams, which is essential
for understanding the rest of the chapter.

 The streams API (covered in Chapter 6) introduced in Java 8 are different from the I/O streams we discuss
in this chapter.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_6
http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

267

Character Streams and Byte Streams
Consider the difference between Java source files and class files generated by the compiler. The Java source
files have the extension of “.java” and are meant to be read by humans as well as programming tools such as
compilers. However, the Java class files have extension of “.class” and are not meant to be read by humans;
they are meant to be processed by low-level tools such as a JVM (the executable java.exe in Windows) and
Java disassember (the executable javap.exe in Windows).

Text files are human-readable files containing text (or characters); binary files are machine
readable or low-level data storage.

Naturally, how you interpret what is inside text files vs. binary files is different. For example, in text
files, you can interpret the data read from the file and differentiate between a tab character, whitespace
character, newline character, and so on. However, you don’t deal with data from binary files like that;
they are low-level values. To give another example, consider a .txt file you create with a text editor such as
Notepad in Windows; it contains human-readable text. Now, consider storing your photo in a .bmp or .jpeg
file; these files are certainly not human readable. They are meant for processing by photo editing or image
manipulation software, and the files contain data in some pre-determined low-level format.

The java.io package has classes that support both character streams and byte streams. You can
use character streams for text-based I/O. Byte streams are used for data-based I/O. Character streams
for reading and writing are called readers and writers, respectively (represented by the abstract classes
of Reader and Writer). Byte streams for reading and writing are called input streams and output streams,
respectively (represented by the abstract classes of InputStream and OutputStream). Table 9-3 summarizes
the differences between character streams and byte streams for your quick reference.

Table 9-3.  Differences Between Character Streams and Byte Streams

Character streams Byte streams

Meant for reading or writing to character- or
text-based I/O such as text files, text documents,
XML, and HTML files.

Meant for reading or writing to binary data I/O such as
executable files, image files, and files in low-level file
formats such as .zip, .class, .obj, and .exe.

Data dealt with is 16-bit Unicode characters. Data dealt with is bytes (i.e., units of 8-bit data).

Input and output character streams are called
readers and writers, respectively.

Input and output byte streams are simply called input
streams and output streams, respectively.

The abstract classes of Reader and Writer and
their derived classes in the java.io package
provide support for character streams.

The abstract classes of InputStream and OutputStream
and their derived classes in the java.io package provide
support for byte streams.

 If you try using a byte stream when a character stream is needed and vice versa, you’ll get a nasty
surprise in your programs. For example, a bitmap (.bmp) image file must be processed using a byte stream; if
you try using character stream, your program won’t work. So don’t mix up the streams!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

268

Character Streams
In this section, you’ll explore I/O with character streams. You’ll learn how to read from and write to text files
plus some optional features such as buffering to speed up the I/O. For reading and writing text files, you can
use the classes derived from the Reader and Writer abstract classes, respectively. For character streams,
Figure 9-1 shows important Reader classes, and Table 9-4 provides a short description of these classes.
Figure 9-2 shows important Writer classes, and Table 9-5 provides a short description of these classes. Note
that we’ll cover only a few important classes in this class hierarchy in this chapter.

Figure 9-2.  Important classes deriving from the Writer class

Figure 9-1.  Important classes deriving from the Reader class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

269

Reading Text Files
Reader classes read the contents in the stream and try interpreting them as characters, such as a tab,
end-of-file, and newline. Listing 9-5 implements a simplified version of the type command in Windows
(a similar command is cat command in Linux/Unix/Mac). The type command displays the contents of the
file(s) passed as command-line arguments.

Table 9-5.  Important Classes Deriving from the Writer Class

Class name Short description

StringWriter A character stream that collects the output in a string buffer, which can be used
for creating a string.

OutputStreamWriter This class is a bridge between character streams and byte streams.

FileWriter Derived class of OutputStreamWriter that provides support for writing character
files.

PipedWriter The PipedReader and PipedWriter classes form a pair for “piped” reading/
writing of characters in character stream.

FilterWriter Abstract base class for streams that supports a filtering operation applied on
data as characters when writing them to a character stream.

PrintWriter Supports formatted printing of characters to the output character stream.

BufferedWriter Adds buffering to the underlying character stream so that there is no need to
access the underlying file system for each read and write operation.

Table 9-4.  Important Classes Deriving from the Reader Class

Class name Short description

StringReader A character stream that operates on a string.

InputStreamReader This class is a bridge between character streams and byte streams.

FileReader Derived class of InputStreamReader that provides support for reading character
files.

PipedReader The PipedReader and PipedWriter classes form a pair for “piped” reading/
writing of characters.

FilterReader Abstract base class for streams that support a filtering operation applied on data
as characters are read from the stream.

PushbackReader Derived class of FilterReader that allows read characters to be pushed back into
the stream.

BufferedReader Adds buffering to the underlying character stream so that there is no need to
access the underlying file system for each read and write operation.

LineNumberReader Derived class of BufferedReader that keeps track of line numbers as the
characters are read from the underlying character stream.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

270

Listing 9-5.  Type.java

import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.IOException;
 
// implements a simplified version of "type" command provided in Windows given
// a text file name(s) as argument, it prints the content of the text file(s) on console
class Type {
 public static void main(String []files) {
 if(files.length == 0) {
 System.err.println("pass the name of the file(s) as argument");
 System.exit(-1);
 }
 // process each file passed as argument
 for(String file : files) {
 // try opening the file with FileReader
 try (FileReader inputFile = new FileReader(file)) {
 int ch = 0;
 // while there are characters to fetch, read, and print the
 // characters when EOF is reached, read() will return -1,
 // terminating the loop
 while((ch = inputFile.read()) != -1) {
 // ch is of type int - convert it back to char
 // before printing
 System.out.print((char)ch);
 }
 } catch (FileNotFoundException fnfe) {
 // the passed file is not found ...
 System.err.printf("Cannot open the given file %s ", file);
 }
 catch(IOException ioe) {
 // some IO error occurred when reading the file ...
 System.err.printf("Error when processing file %s... skipping it", file);
 }
 // try-with-resources will automatically release FileReader object
 }
 }
}

For a sample text file, here is the output for the type command in Windows and our Type program:

D:\> type SaturnMoons.txt
Saturn has numerous icy moons in its rings. Few large moons of Saturn are - Mimas,
Enceladus, Tethys, Dione, Rhea, Titan, Iapetus, and Hyperion.
 
D:\> java Type SaturnMoons.txt
Saturn has numerous icy moons in its rings. Few large moons of Saturn are - Mimas,
Enceladus, Tethys, Dione, Rhea, Titan, Iapetus, and Hyperion.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

271

It works as expected. In this program, you are instantiating the FileReader class and passing
the name of the file to be opened. If the file is not found, the FileReader constructor will throw a
FileNotFoundException.

Once the file is open, you use the read() method to fetch characters in the underlying file. You are
reading character by character. Alternatively, you can use methods such as readLine() to read line by line.

Note that the read() method returns an int instead of a char—it’s because when read() reaches
End-Of-File (EOF), it returns -1, which is outside the range of char. So, the read() method returns an int
to indicate that the end of file has been reached and that you should stop attempting to read any more
characters from the underlying stream.

In this program, you only read a text file; you’ll now try to read from as well as write to a text file.

Reading and Writing Text Files
In the previous example (Listing 9-5) of reading a text file, you created the character stream as follows:

FileReader inputFile = new FileReader(file);

This uses unbuffered I/O, which is less efficient when compared to buffered I/O. In other words, the
read characters are directly passed instead of using a temporary (internal) buffer, which would speed up
the I/O. To programmatically use buffered I/O, you can pass the FileReader reference to a BufferedReader
object, as in the following:

BufferedReader inputFile = new BufferedReader(new FileReader(file));

In the same way, you can also use BufferedWriter for buffered output. (In case of byte streams, you can
use BufferedInputStream and BufferedOutputStream, which we’ll discuss later in this chapter).

You’ll now use buffered I/O to read from and write to a text file. Listing 9-6 contains a simplified version
of the copy command in Windows.

Listing 9-6.  Copy.java

import java.io.BufferedReader;
import java.io.BufferedWriter;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
 
// implements a simplified version of "copy" command provided in Windows
// syntax: java Copy SrcFile DstFile
// copies ScrFile to DstFile; over-writes the DstFile if it already exits
class Copy {
 public static void main(String []files) {
 if(files.length != 2) {
 System.err.println("Incorrect syntax. Correct syntax: Copy SrcFile DstFile");
 System.exit(-1);
 }
 String srcFile = files[0];
 String dstFile = files[1];

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

272

 // try opening the source and destination file
 // with FileReader and FileWriter
 try (BufferedReader inputFile = new BufferedReader(new FileReader(srcFile));
 BufferedWriter outputFile = new BufferedWriter(new FileWriter(dstFile))) {
 int ch = 0;
 // while there are characters to fetch, read the characters from
 // source stream and write them to the destination stream
 while((ch = inputFile.read()) != -1) {
 // ch is of type int - convert it back to char before
 // writing it
 outputFile.write((char)ch);
 }
 // no need to call flush explicitly for outputFile - the close()
 // method will first call flush before closing the outputFile stream
 } catch (FileNotFoundException fnfe) {
 // the passed file is not found ...
 System.err.println("Cannot open the file " + fnfe.getMessage());
 }
 catch(IOException ioe) {
 // some IO error occurred when reading the file ...
 System.err.printf("Error when processing file; exiting ... ");
 }
 // try-with-resources will automatically release FileReader object
 }
}

Let’s first check if this program works. Copy this Java source program itself (Copy.java) into another
file (DuplicateCopy.java). You can use the fc (file compare) command provided in Windows (or diff
command in Linux/Unix/Mac) to make sure that the contents of the original file and the copied file are the
same, to ensure that the program worked correctly.

D:\> java Copy Copy.java DuplicateCopy.java
D:\> fc Copy.java DuplicateCopyjava
Comparing files Copy.java and DuplicateCopy.java
FC: no differences encountered

Yes, it worked correctly. What if you give it a source file name that does not exist?

D:\> java Copy Cpy.java DuplicateCopyjava
Cannot open the file Cpy.java (The system cannot find the file specified)

You typed Cpy.java instead of Copy.java and the program terminates with a readable error message, as
expected.

Here’s how this program works. In the try-with-resources statement, you opened srcFile for reading
and dstFile for writing. You wanted to use buffered I/O, so you passed FileReader and FileWriter
references to BufferedReader and BufferedWriter, respectively.

try (BufferedReader inputFile = new BufferedReader(new FileReader(srcFile));
 BufferedWriter outputFile = new BufferedWriter(new FileWriter(dstFile)))

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

273

You’re using the try-with-resources statement (discussed in Chapter 7), and the close() method for
BufferedWriter will first call the flush() method before closing the stream.

 When you’re using buffered I/O in your programs, it’s a good idea to call the flush() method explicitly in
places where you want to ensure that all pending characters or data is flushed (i.e., written to the underlying file).

“Tokenizing” Text
In the last two examples (Listings 9-5 and 9-6), you just read or wrote to text files. However, in real-world
programs, you may want to perform some processing when reading or writing files. For example, you may
want to look out for certain patterns, search for some specific strings, replace one sequence of characters
with another sequence of characters, filter out specific words, or format the output in a certain way. You can
use existing APIs such as regular expressions and Scanner for such purposes.

For illustration, consider that you want to list all the words in a given text file and eliminate all
unnecessary whitespaces, punctuation characters, and so on. Also, you need to print the resulting words in
alphabetical order. To solve this problem, you can use a Scanner and pass the regular expression that you
want to match or delimit (see Listing 9-7).

Listing 9-7.  Tokenize.java

import java.io.FileNotFoundException;
import java.io.FileReader;
import java.util.Scanner;
import java.util.Set;
import java.util.TreeSet;
 
// read the input file and convert it into "tokens" of words;
// convert the words to same case (lower case), remove duplicates, and print the words
class Tokenize {
 public static void main(String []args) {
 // read the input file
 if(args.length != 1) {
 System.err.println("pass the name of the file to be read as an argument");
 System.exit(-1);
 }
 String fileName = args[0];
 // use a TreeSet<String> which will automatically sort the words
 // in alphabetical order
 Set<String> words = new TreeSet<>();
 try (Scanner tokenizingScanner = new Scanner(new FileReader(fileName))) {
 // set the delimiter for text as non-words (special characters,
 // white-spaces, etc), meaning that all words other than punctuation
 // characters, and white-spaces will be returned
 tokenizingScanner.useDelimiter("\\W");
 while(tokenizingScanner.hasNext()) {
 String word = tokenizingScanner.next();

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_7
http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

274

 if(!word.equals("")) { // process only non-empty strings
 // convert to lowercase and then add to the set
 words.add(word.toLowerCase());
 }
 }
 // now words are in alphabetical order without duplicates,
 // print the words separating them with tabs
 for(String word : words) {
 System.out.print(word + '\t');
 }
 } catch (FileNotFoundException fnfe) {
 System.err.println("Cannot read the input file - pass a valid file name");
 }
 }
}

Let’s see if it works:

D:\> type limerick.txt
There was a young lady of Niger
Who smiled as she rode on a tiger.
They returned from the ride
With the lady inside
And a smile on the face of the tiger.
 
D:\> java Tokenize limerick.txt
a and as face from inside lady niger of on returned ride
rode she smile smiled the there they tiger was who with young

Yes, it does work correctly. Now let’s see what this program does. The program first opens the file
using a FileReader and passes it to the Scanner object. The program sets the delimiter for Scanner
with useDelimiter("\\W"); the “\W” matches for non-words, so any non-word characters will become
delimiters. (Note that you’re setting the delimiter and not the pattern that you want to match). The program
makes use of a TreeSet<String> to store the read strings. The program reads words from the underlying
stream, checks if it is a non-empty string, and adds the lower-case versions of the string to the TreeSet.
Since the data structure is a TreeSet, it removes duplicates (remember that a TreeSet is-a Set, which does
not allow duplicates). Further, it is also an ordered data structure, meaning that it maintains an “ordering”
of values inserted, which in this case is an alphabetical ordering of Strings. Hence the program correctly
prints the words from given text file that contained a limerick.

Byte Streams
In this section, you’ll explore I/O with byte streams. You’ll first learn how to read and write data files, and
also how to stream objects, store them in files and then read them back. The class of OutputStream and its
derived classes are shown in Figure 9-3; InputStream and its derived classes are shown in Figure 9-4.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

275

Table 9-6 summarizes the important classes of InputStream and OutputStream.

Figure 9-4.  Important classes deriving from the InputStream abstract class

Table 9-6.  Important Classes Deriving from the InputStream and OutputStream Classes

Class name Short description

PipedInputStream,
PipedOutputStream

PipedInputStream and PipedOutputStream create a communication channel
on which data can be sent and received. PipedOutputStream sends the data
and PipedInputStream receives the data sent on the channel.

FileInputStream,
FileOutputStream

FileInputStream receives a byte stream from a file, FileOutputStream writes a
byte stream into a file.

FilterInputStream,
FilterOutputStream

These filtered streams are used to add functionalities to plain streams. The
output of an InputStream can be filtered using FilterInputStream. The output
of an OutputStream can be filtered using FilterOutputStream.

BufferedInputStream,
BufferedOutputStream

BufferedInputStream adds buffering capabilities to an input stream.
BufferedOutputStream adds buffering capabilities to an output stream.

PushbackInputStream A subclass of FilterInputStream, it adds “pushback” functionality to an input
stream.

DataInputStream,
DataOutputStream

DataInputStream can be used to read java primitive data types from an input
stream. DataOutputStream can be used to write Java primitive data types to an
output stream.

Figure 9-3.  Important classes deriving from the OutputStream abstract class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

276

Reading a Byte Stream
Byte streams are used for processing files that do not contain human-readable text. For example, a Java
source file has human-readable content, but a ".class" file does not. A ".class" file is meant for processing
by the JVM, hence you must use byte streams to process the ".class" file.

The contents of a ".class" file are written in a specific file format, described in the specification of the
Java Virtual Machine (JVM). Don’t worry; you’re not going to understand this complex file format, but you’ll
just check its “magic number.” Each file format has a magic number used to quickly check the file format. For
example “.MZ” is the magic number (or more properly, magic string) for .exe files in Windows. Similarly, the
".class" files have the magic number "0xCAFEBABE", written as a hexadecimal value. These magic numbers
are typically written as first few bytes of a variable length file format.

To understand how byte streams work, you’ll just check if the given file starts with the magic number
“0xCAFEBABE” (Listing 9-8). If so, it could be a valid ".class" file; if not, it’s certainly not a ".class" file.

Listing 9-8.  ClassFileMagicNumberChecker.java

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.util.Arrays;
 
// check if the passed file is a valid .class file or not.
// note that this is an elementary version of a checker that checks if the given file
// is a valid file that is written according to the JVM specification
// it checks only the magic number
class ClassFileMagicNumberChecker {
 public static void main(String []args) {
 if(args.length != 1) {
 System.err.println("Pass a valid file name as argument");
 System.exit(-1);
 }
 
 String fileName = args[0];
 // create a magicNumber byte array with values for four bytes in 0xCAFEBABE
 // you need to have an explicit down cast to byte since
 // the hex values like 0xCA are of type int
 byte []magicNumber = {(byte) 0xCA, (byte)0xFE, (byte)0xBA, (byte)0xBE};
 try (FileInputStream fis = new FileInputStream(fileName)) {
 // magic number is of 4 bytes –
 // use a temporary buffer to read first four bytes
 byte[] u4buffer = new byte[4];
 // read a buffer full (4 bytes here) of data from the file
 if(fis.read(u4buffer) != -1) { // if read was successful
 // the overloaded method equals for two byte arrays
 // checks for equality of contents
 if(Arrays.equals(magicNumber, u4buffer)) {
 �System.out.printf("The magic number for passed file %s matches

that of a .class file", fileName);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

277

 else {
 �System.out.printf("The magic number for passed file %s does not

match that of a .class file", fileName);
 }
 }
 } catch(FileNotFoundException fnfe) {
 System.err.println("file does not exist with the given file name ");
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 }
 }
 }

Let’s first see if it works by passing the source (.java) file and the ".class" file for the same program.

D:> java ClassFileMagicNumberChecker ClassFileMagicNumberChecker.java
The magic number for passed file ClassFileMagicNumberChecker.java does not match that
of a .class file
 
D:\> java ClassFileMagicNumberChecker ClassFileMagicNumberChecker.class
The magic number for passed file ClassFileMagicNumberChecker.class matches that of a
.class file

Yes, it works. The classes InputStream and OutputStream form the base of the hierarchies for byte
streams. You perform file I/O, so open the given file as a FileInputStream. You need to check the first four
bytes, so you read four bytes in a temporary buffer. You need to compare the contents of this buffer against
the sequence of bytes 0xCA, 0xFE, 0xBA, and 0xBE. If the contents of these two arrays are not equal, then the
passed file is not a ".class" file.

In this program, you directly manipulate the underlying byte stream using a FileInputStream. In case
you need to speed up the program when you read large number of bytes, you can use a buffered output
stream, as in

BufferedInputStream bis = new BufferedInputStream(new FileInputStream(fileName));

Similar to these input streams, you can use output streams to write a sequence of bytes to a data file.
You can use FileOutputStream and BufferedOutputStream for that.

After reading this program, didn’t you think that reading an array of four bytes and comparing the
contents of the byte arrays was awkward (instead of directly comparing the contents of an integer)? In
other words, 0xCAFEBABE is an integer value, and you could read this value directly as an integer value and
compare it against the read integer value. For this, you need to use data streams, which provide methods like
readInt(), which we’ll discuss now.

Data Streams
To understand how to write or read with byte streams, let’s write a simple program that writes and then reads
constant values to a data file (see Listing 9-9). To keep the problem simple, you will write only the values 0 to
9 in the form of the following primitive type values: byte, short, int, long, float, and double.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

278

Listing 9-9.  DataStreamExample.java

import java.io.DataInputStream;
import java.io.DataOutputStream;
import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
 
// A simple class to illustrate data streams; write constants 0 and 1 in different
// data type values into a file and read the results back and print them
class DataStreamExample {
 public static void main(String []args) {
 // write some data into a data file with hard-coded name "temp.data"
 try (DataOutputStream dos =
 new DataOutputStream(new FileOutputStream("temp.data"))) {
 // write values 1 to 10 as byte, short, int, long, float and double
 // omitting boolean type because an int value cannot
 // be converted to boolean
 for(int i = 0; i < 10; i++) {
 dos.writeByte(i);
 dos.writeShort(i);
 dos.writeInt(i);
 dos.writeLong(i);
 dos.writeFloat(i);
 dos.writeDouble(i);
 }
 } catch(FileNotFoundException fnfe) {
 System.err.println("cannot create a file with the given file name ");
 System.exit(-1); // don't proceed – exit the program
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 System.exit(-1); // don't proceed – exit the program
 }
 // the DataOutputStream will auto-close, so don't have to worry about it
 // now, read the written data and print it to console
 try (DataInputStream dis = new DataInputStream(new FileInputStream("temp.data"))) {
 // the order of values to read is byte, short, int, long, float and
 // double since we've written from 0 to 10,
 // the for loop has to run 10 times
 for(int i = 0; i < 10; i++) {
 // %d is for printing byte, short, int or long
 // %f, %g, or %e is for printing float or double
 // %n is for printing newline
 System.out.printf("%d %d %d %d %g %g %n",
 dis.readByte(),
 dis.readShort(),
 dis.readInt(),
 dis.readLong(),
 dis.readFloat(),
 dis.readDouble());
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

279

 } catch(FileNotFoundException fnfe) {
 System.err.println("cannot create a file with the given file name ");
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 } // the DataOutputStream will auto-close, so don't have to worry about it
 }
}

First, let’s see if it works by executing the program.

D:> java DataStreamExample
0 0 0 0 0.000000 0.000000
1 1 1 1 1.000000 1.000000
2 2 2 2 2.000000 2.000000
3 3 3 3 3.000000 3.000000
4 4 4 4 4.000000 4.000000
5 5 5 5 5.000000 5.000000
6 6 6 6 6.000000 6.000000
7 7 7 7 7.000000 7.000000
8 8 8 8 8.000000 8.000000
9 9 9 9 9.000000 9.000000

Yes, it works. Now, as mentioned earlier, the contents of data files are not human readable. In this case,
you’re writing values 0 to 9 as various primitive type values into the temporary file write named temp.data.
If you try to open this data file and see the contents, you won’t be able to recognize or understand what it
contains. Here’s an example of its contents:

D:>type temp.data
 ☺ ☺ ☺ ☺?Ç ? ☻ ☻ ☻ ☻@ @
♥ ♥ ♥ ♥@@ ♦ ♦ ♦ ♦@Ç @ ♣ ♣ ♣ ♣@á @¶
♠ ♠ ♠ ♠@L @� @a @L A @
 A @"

The typed contents of the file temp.data look like garbage values because the primitive type values
like the integer values 0 or 9 are stored in terms of bytes. However, the type command in Windows (or the
cat command in Linux/Unix/Mac) tries to convert these bytes into human-readable characters, hence the
output does not make any sense. The data will make sense only if we know the format of the data stored in
the file and read it according to that format.

Now let’s get back to the program and see how it works. The program writes to the data file with a hard-coded
file named temp.data in the current directory from which the program is run. This program first writes the data,
so it opens the file as an output stream. What does the following statement within the first try block mean?

DataOutputStream dos = new DataOutputStream(new FileOutputStream("temp.data"))

You can directly perform binary I/O with OutputStream and its derived class of FileOutputStream,
but to process data formats such as primitive type values, you need to use DataOutputStream, which
acts as a wrapper over the underlying FileOutputStream. So, you use the DataOutputStream here, which
provides methods such as writeByte and writeShort. You use these methods to write the primitive type
values 0 to 9 into the data file. Note that you don’t have to close the streams explicitly since you opened
the DataOutputStream in a try-with-resources statement, hence the close() method on dos reference will
automatically be invoked. The close() method also flushes the underlying stream; this close() method will
also close the underlying reference to the FileOutputStream.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

280

Once the file is written, you read the data file in a similar way. You open a FileInputStream and wrap
it with a DataInputStream. You read the data from the stream and print it in console. You used format
specifiers such as %d (which is a common format specifier for printing integral values like byte, short, int,
or long) as well as %f, %g, or %e specifiers for printing floating point values of type float or double; %n is for
printing a newline character.

In this program, you wrote and read primitive type values. What about reference type objects, such
as Objects, Maps, and so on? Reading and writing objects is achieved through object streams, which we’ll
discuss now.

Writing to and Reading from Object Streams
Assume that you are creating an online e-commerce web site. You can choose to write data contained in objects
such as customers and purchase requests made, to an RDBMS (we’ll cover JDBC in Chapter 12). Alternatively,
instead of storing the data in a RDBMS, you can store the objects directly in f lat files: in that case, you must know
how to read or write objects into streams. The classes ObjectInputStream and ObjectOutputStream support
reading and writing Java objects that you use in the program.

Listing 9-10 contains a simple example of writing the contents of a Map data structure to a file and
reading it back to illustrate the use of the classes ObjectInputStream and ObjectOutputStream to read or
write objects. You store the details of the last three US presidents in this map.

Listing 9-10.  ObjectStreamExample.java

import java.io.FileInputStream;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.util.HashMap;
import java.util.Map;
 
// A simple class to illustrate object streams: fill a data structure, write it to a
// temporary file and read it back and print the read data structure
class ObjectStreamExample {
 public static void main(String []args) {
 Map<String, String> presidentsOfUS = new HashMap<>();
 presidentsOfUS.put("Barack Obama", "2009 to --, Democratic Party, 56th term");
 �presidentsOfUS.put("George W. Bush", "2001 to 2009, Republican Party, 54th and 55th

terms");
 �presidentsOfUS.put("Bill Clinton", "1993 to 2001, Democratic Party, 52nd and 53rd

terms");
 try (ObjectOutputStream oos =
 new ObjectOutputStream(new FileOutputStream("object.data"))) {
  
 oos.writeObject(presidentsOfUS);
 } catch(FileNotFoundException fnfe) {
 System.err.println("cannot create a file with the given file name ");
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 } // the ObjectOutputStream will auto-close, so don't have to worry about it
 

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_12
http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

281

 try (ObjectInputStream ois =
 new ObjectInputStream(new FileInputStream("object.data"))) {
  
 Object obj = ois.readObject();
 // first check if obj is of type Map
 if(obj != null && obj instanceof Map) {
 Map<?, ?> presidents = (Map<?, ?>) obj;
 System.out.println("President name \t Description");
 for(Map.Entry<?, ?> president : presidents.entrySet()) {
 System.out.printf("%s \t %s %n", president.getKey(),
 president.getValue());
 }
 }
 } catch(FileNotFoundException fnfe) {
 System.err.println("cannot create a file with the given file name ");
 } catch(IOException ioe) {
 System.err.println("an I/O error occurred while processing the file");
 } catch(ClassNotFoundException cnfe) {
 System.err.println("cannot recognize the class of the object - is the file
 corrupted?");
 }
 }
}

Before discussing how the program works, let’s check if it works.

D:\> java ObjectStreamExample
President name Description
Barack Obama 2009 to --, Democratic Party, 56th term
Bill Clinton 1993 to 2001, Democratic Party, 52nd and 53rd terms
George W. Bush 2001 to 2009, Republican Party, 54th and 55th terms

The serialization process converts contents of the objects in memory with the description of the
contents (known as metadata). When the object has references to other objects, the serialization mechanism
also includes them as part of the serialized bytes. If you try to open the file in which the object is persisted,
you cannot read these serialized and then persisted objects. For example, if you try to read the object.data
file, you’ll see numerous unreadable characters.

Now, let’s get back to the program and see how it works. In this program, you fill the HashMap container
with details of last three US presidents. Then, you open an output stream as follows:

ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("object.data"))

The FileOutputStream opens a temporary file named object.data in the current directory. The
ObjectOutputStream is a wrapper over this underlying FileOutputStream. Inside this try-with-resources
block, you’ve only one statement, oos.writeObject(presidentsOfUS), which writes the object to the
object.data file.

Reading the object requires a bit more work than writing the object. The readObject() method in
ObjectInputStream returns an Object type. You need to convert it back to Map<String, String>. Before
downcasting it to this specific type, you check if the obj is of type Map. Note that you don’t have to check if it’s
Map<String, String> because these generic types are lost in the process known as type erasure. Hence
we are using wildcards for the generic type parameters, as in: Map<?, ?> presidents = (Map<?, ?>) obj.
Once the downcast succeeds, you can read the values of the contents in this object. See discussion on type
erasure and wildcard character in Chapter 4 Generics and Collections.

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_4
http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

282

Points to Remember
Here are the noteworthy points that may help when you attend the OCPJP 8 exam:

•	 When you use buffered streams, you should call flush() once you are done with
data transmission. The internal buffer might be holding some data that will be
cleared and sent to the destination once you call flush(). However, the method
close() on the stream will automatically call flush().

•	 You might have observed that you can combine stream objects. You can create an
object of BufferedInputStream that takes a FileInputStream object. In this way, the
output of one stream is chained to the filtered stream. This is the important, useful,
and beautiful way to customize the stream in a desired way.

•	 If you want to customize the process of serialization, you can implement
readObject() and writeObject(). Note that both of these methods are private
methods, which means you are not overriding or overloading these methods. The
JVM checks the implementation of these methods and calls them instead of the
usual methods. It sounds weird but it is the way the customization of the serialization
process is implemented in the JVM.

Summary
Let us briefly review the key points for each certification objective in this chapter. Please read it before
appearing for the exam.

Read and write data from the console

•	 The public static fields in, out, and err in java.lang.System class respectively
represent the standard input, output and error streams. System.in is of type
java.io.InputStream and System.out and System.err are of type
java.io.PrintStream.

•	 You can redirect standard streams by calling the methods System.setIn,
System.setOut and System.setError.

•	 You can obtain a reference to the console using the System.console() method; if the
JVM is not associated with any console, this method will fail and return null.

•	 Many methods are provided in Console-support formatted I/O. You can use the
printf() and format() methods available in the Console class to print formatted
text; the overloaded readLine() and readPassword() methods take format strings as
arguments.

•	 The template of format specifiers is: %[flags][width][.precision]datatype_specifier
Each format specifier starts with the % sign, followed by flags, width, and precision
information, and ending with a data type specifier. In the format string, the flags,
width, and precision information are optional but the % sign and data type specifier
are mandatory.

•	 Use the readPassword() method for reading secure strings such as passwords. It is
recommended to use Array’s fill() method to “empty” the password read into the
character array (to avoid malicious access to the typed passwords).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

283

Use BufferedReader, BufferedWriter, File, FileReader, FileWriter, FileInputStream, FileOutputStream,
ObjectOutputStream, ObjectInputStream, and PrintWriter in the java.io package

•	 The java.io package has classes supporting both character streams and byte streams.

•	 You can use character streams for text-based I/O. Byte streams are used for data-
based I/O.

•	 Character streams for reading and writing are called readers and writers respectively
(represented by the abstract classes of Reader and Writer).

•	 Byte streams for reading and writing are called input streams and output streams
respectively (represented by the abstract classes of InputStream and OutputStream).

•	 You should only use character streams for processing text files (or human-readable
files), and byte streams for data files. If you try using one type of stream instead of
another, your program won’t work as you would expect; even if it works by chance,
you’ll get nasty bugs. So don’t mix up streams, and use the right stream for a given
task at hand.

•	 For both byte and character streams, you can use buffering. The buffer classes are
provided as wrapper classes for the underlying streams. Using buffering will speed
up the I/O when performing bulk I/O operations.

•	 For processing data with primitive data types and strings, you can use data streams.

•	 You can use object streams (classes ObjectInputStream and ObjectOutputStream)
for reading and writing objects in memory to files and vice versa.

QUESTION TIME

1.	 Consider the following code segment:

OutputStream os = new FileOutputStream("log.txt");
System.setErr(new PrintStream(os)); // SET SYSTEM.ERR
System.err.println("Error");

Which one of the following statements is true regarding this code segment?

A.	T he line with comment SET SYSTEM.ERR will not compile and will result in a
compiler error.

B.	T he line with comment SET SYSTEM.ERR will result in throwing a runtime
exception since System.err cannot be programmatically redirected.

C.	T he program will print the text “Error” in console since System.err by default
sends the output to console.

D.	T his code segment redirects the System.err to the log.txt file and will write
the text “Error” to that file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

284

2.	 Which one of the following options correctly reads a line of string from the console?

A.	  BufferedReader br = new BufferedReader(System.in);

String str = br.readLine();

B.	  BufferedReader br =

new BufferedReader(new InputStreamReader(System.in));
String str = br.readLine();

C.	  InputStreamReader isr =

new InputStreamReader (new BufferedReader(System.in));
String str = isr.readLine();

D.	  String str = System.in.readLine();

String str;
System.in.scanf(str);

3.	 Consider the following code snippet:

console.printf("%d %1$x %1$o", 16);

Assuming that console is a valid Console object, what will it print?

A.	T his program crashes after throwing an IllegalFormatException

B.	T his program crashes after throwing ImproperFormatStringException

C.	T his program prints: 16 16 16

D.	T his program prints: 16 10 20

4.	 There are two kinds of streams in the java.io package: character streams
(i.e., those deriving from Reader and Writer interfaces) and byte streams (i.e., those
deriving from InputStream and OutputStream). Which of the following statements is
true regarding the differences between these two kinds of streams?

A.	 In character streams, data is handled in terms of bytes; in byte streams, data
is handled in terms of Unicode characters.

B.	 Character streams are suitable for reading or writing to files such as
executable files, image files, and files in low-level file formats such as .zip,
.class, and .jag.

C.	 Byte streams are suitable for reading or writing to text-based I/O such as
documents and text, XML, and HTML files.

D.	 Byte streams are meant for handling binary data that is not human-readable;
character streams are meant for human-readable characters.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

285

5.	 Consider the following code snippet:

USPresident usPresident = new USPresident("Barack Obama", "2009 to --", 56);
try (ObjectOutputStream oos =
new ObjectOutputStream(new FileOutputStream("USPresident.data"))) {
 oos.writeObject(usPresident);
 usPresident.setTerm(57);
 oos.writeObject(usPresident);
}

If you deserialize the object and print the field term (term is declared as int and is
not a transient), what will it print?

A.	 56

B.	 57

C.	 null

D.	 Compiler error

E.	R untime exception

6.	 Consider the following code segment:

FileInputStream findings = new FileInputStream("log.txt");
DataInputStream dataStream = new DataInputStream(findings);
BufferedReader br = new BufferedReader(new InputStreamReader(dataStream));
String line;
while ((line = br.readLine()) != null) {
 System.out.println(line);
}
br.close();

Which TWO options are true regarding this code segment?

A.	 br.close() statement will close only the BufferedReader object, and
findings and dataStream will remain unclosed.

B.	T he br.close() statement will close the BufferedReader object and the
underlying stream objects referred by findings and dataStream.

C.	T he readLine() method invoked in the statement br.readLine() can throw
an IOException; if this exception is thrown, br.close() will not be called,
resulting in a resource leak.

D.	T he readLine() method invoked in the statement br.readLine() can throw
an IOException; however, there will not be any resource leaks since Garbage
Collector collects all resources.

E.	 In this code segment, no exceptions can be thrown calling br.close(), so
there is no possibility of resource leaks.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 9 ■ Java I/O Fundamentals

286

Answers:

1.	 D. This code segment redirects the System.err to the log.txt file and will write
the text “Error” to that file.

Note that you can redirect the System.err programmatically using the setErr()
method. System.err is of type PrintStream, and the System.setErr() method takes a
PrintStream as an argument. Once the error stream is set, all writes to System.err will
be redirected to it. Hence, this program will create log.txt with the text “Error” in it.

2.	 B.

BufferedReader br =
 new BufferedReader(new InputStreamReader(System.in));
String str = br.readLine();

This is the right way to read a line of a string from the console where you pass a
System.in reference to InputStreamReader and pass the returning reference to
BufferedReader. From the BufferedReader reference, you can call the readLine()
method to read the string from the console.

3.	 D. This program prints: 16 10 20

In the format specifier, “1$” refers to first argument, which is 16 in this printf statement.
Hence “%1$x” prints the hexadecimal value of 16, which is 10. Further, “%1$o” prints
the octal value of 16, which is 20. Hence the output “16 10 20” from this program.

4.	 D. Byte streams are meant for handling binary data that is not human readable;
character streams are for human-readable characters.

In character streams, data is handled in terms of Unicode characters, whereas in byte
streams, data is handled in terms of bytes. Byte streams are suitable for reading or
writing to files such as executable files, image files, and files in low-level file formats
such as .zip, .class, and .jar. Character streams are suitable for reading or writing to
text-based I/O such as documents and text, XML, and HTML files.

5.	 A. 56

Yes, it will print 56 even though you changed the term using its setter to 57 and
serialized again. At the time of serialization, JVM checks for the duplicate object; if an
object is already serialized then JVM do not serialize the object again; instead, JVM
stores a reference to the serialized object.

6.	 Options B and C.

The br.close() statement will close the BufferedReader object and the underlying
stream objects referred to by findings and dataStream. The readLine() method
invoked in the statement br.readLine() can throw an IOException; if this exception
is thrown, br.close() will not be called, resulting in a resource leak. Note that Garbage
Collector will only collect unreferenced memory resources; it is the programmer’s
responsibility to ensure that all other resources such as stream objects are released.

www.it-ebooks.info

http://www.it-ebooks.info/

287

Chapter 10

Java File I/O (NIO.2)

Certification Objectives

Use Path interface to operate on file and directory paths

Use Files class to check, read, delete, copy, move, manage metadata of a file or directory

Use Stream API with NIO.2

Java offers a rich set of APIs you can use to manipulate files and directories. Java 7 introduced a set of
I/O APIs called NIO.2 that offered convenient ways to perform operations related to a file system. In Java 8,
you can use the Stream API (discussed in Chapter 6) with NIO.2.

The previous chapter covered I/O fundamentals; you learned how to read and write from the console
and how to use streams to read and write to files. In this chapter, you learn how to operate on file and
directory paths using the Path interface. You also learn to perform various file operations such as create,
move, copy, and delete using the Files class. Finally, you see how to use the Stream API with NIO.2.
This chapter uses functional interfaces in the java.util.function package and the Stream API in the
java.util.stream package, and we assume that you have read the Chapters 3, 4, 5, and 6 before reading
this chapter.

We give file and directory paths assuming that you are using a Windows machine. If you are on Linux,
Mac OS, or any other platform, you may need to make small changes to the path names in order for the
programs to work on your machine.

Using the Path Interface
Certification Objective

Use Path interface to operate on file and directory paths

File systems usually form a tree. The file system starts with a root directory that contains files and
directories (directories are also called folders in Windows). Each directory, in turn, may have subdirectories
or hold files. To locate a file, you just need to put together the directories from the root directory to the
immediate directory containing the file, along with a file separator, followed by the file name. For instance,
if the myfile.txt file resides in a mydocs directory, which resides in root directory C:\, then the path of the
file is C:\mydocs\myfile.txt. Every file has a unique path to locate it (apart from symbolic links).

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_6
http://dx.doi.org/10.1007/978-1-4842-1836-5_3
http://dx.doi.org/10.1007/978-1-4842-1836-5_4
http://dx.doi.org/10.1007/978-1-4842-1836-5_5
http://dx.doi.org/10.1007/978-1-4842-1836-5_6
http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

288

A path can be an absolute path (such as C:\mydocs\myfile.txt), which starts from a root element.
On the other hand, a path can be specified as a relative path. When you try to compile a Java program, you
write something like javac programFileName.java; this example specifies the Java source file path relative
to the currently selected directory, so this is a relative path. You need a reference path (such as the current
directory path, in this case) to interpret a relative path.

Before proceeding, let’s talk about symbolic links. A symbolic link is like a pointer or reference to an
actual file. In general, symbolic links are transparent to applications, which means operations are performed
directly on the files rather than on the links (except, of course, for symbolic link–specific operations).

The Path interface is a programing abstraction for a path. A path object contains the names of
directories and files that form the full path of the file/directory represented by the Path object; the Path
abstraction provides methods to extract path elements, manipulate them, and append them. You see later
that almost all the methods that access files/directories to get information about them or manipulate them
use Path objects. Table 10-1 summarizes the important methods in this interface.

Table 10-1.  Important Methods in the Path Interface

Method Description

Path getRoot() Returns a Path object representing the root of the given path, or null if
the path does not have a root.

Path getFileName() Returns the file name or directory name of the given path. Note that
the file/directory name is the last element or name in the given path.

Path getParent() Returns the Path object representing the parent of the given path, or
null if no parent component exists for the path.

int getNameCount() Returns the number of file/directory names in the given path; returns 0
if the given path represents the root.

Path getName(int index) Returns the ith file/directory name; the index 0 starts from closest
name to the root.

Path subpath(int beginIndex,
int endIndex)

Returns a Path object that is part of this Path object; the returned
Path object has a name that begins at beginIndex and ends with
the element at index endIndex - 1. In other words, beginIndex
is inclusive of the name in that index and exclusive of the name in
endIndex. This method may throw IllegalArgumentException if
beginIndex is >= number of elements, or endIndex <= beginIndex, or
endIndex > number of elements.

Path normalize() Removes redundant elements in the path, such as . (dot symbol
that indicates the current directory) and .. (double-dot symbol that
indicates the parent directory).

Path resolve(Path other)
Path resolve(String other)

Resolves a path against the given path. For example, this method can
combine the given path with the other path and return the resulting
path.

Boolean isAbsolute() Returns true if the given path is an absolute path; returns false if not
(when the given path is a relative path, for example).

Path startsWith(String path)
Path startsWith(Path path)

Returns true if this Path object starts with the given path, or false
otherwise.

Path toAbsolutePath() Returns the absolute path.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

289

Getting Path Information
Let’s create a Path object and retrieve the basic information associated with the object. Listing 10-1 shows
how to create a Path object and get information about it.

Listing 10-1.  PathInfo1.java

import java.nio.file.Path;
import java.nio.file.Paths;
 
// Class to illustrate how to use Path interface and its methods
public class PathInfo1 {
 public static void main(String[] args) {
 // create a Path object by calling static method get() in Paths class
 Path testFilePath = Paths.get("D:\\test\\testfile.txt");
  
 // retrieve basic information about path
 System.out.println("Printing file information: ");
 System.out.println("\t file name: " + testFilePath.getFileName());
 System.out.println("\t root of the path: " + testFilePath.getRoot());
 System.out.println("\t parent of the target: " + testFilePath.getParent());
  
 // print path elements
 System.out.println("Printing elements of the path: ");
 for(Path element : testFilePath) {
 System.out.println("\t path element: " + element);
 }
 }
}

The program prints the following:

Printing file information:
 file name: testfile.txt
 root of the path: D:\
 parent of the target: D:\test
Printing elements of the path:
 path element: test
 path element: testfile.txt

The output is self-explanatory. Let’s examine the program:

•	 First, you create a Path instance using the get() method of the Paths class. The
get() method expects a string representing a path as an input. This is the easiest
way to create a Path object.

•	 Note that you use an escape character (\) in Paths.get("D:\\test\\testfile.txt").
In the path, if you gave D:\test, then \t would mean a tab character, and you’d get a
java.nio.file.InvalidPathException when you ran the program. Make sure that
you provide necessary escape characters in path strings.

•	 You extract the file name represented by this Path object using the getFilename()
method of the Path object.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

290

•	 You also use getRoot() to get the root element of the Path object and getParent()
to get the parent directory of the target file.

•	 You iterate over the elements in the path using a for loop. Alternatively, you can
use getNameCount() to get the number of elements or names in the path and
getName(index) to iterate over and access elements/names one by one.

Let’s try another example. It explores some interesting aspects of a Path object, such as how to get an
absolute path from a relative path and how you can normalize a path. Before looking at the example, you
need to first understand the methods it uses:

•	 The toUri() method returns the URI (a path that can be opened from a browser)
from the path.

•	 The toAbsolutePath() method returns the absolute path from a given relative path.
If the input path is already an absolute path, the method returns the same object.

•	 The normalize() method performs normalization on the input path. In other words,
it removes unnecessary symbols (such as . and ..) from the Path object.

•	 toRealPath() is an interesting method. It returns an absolute path from the input
path object (as toAbsolutepath()). It also normalizes the path (as in normalize()).
Further, if linking options are chosen properly, it resolves symbolic links. However,
the target file/directory must exist in the file system, which is not a prerequisite for
other Path methods.

Listing 10-2 shows the example. Assume that the file name Test does not exist in your file system.

Listing 10-2.  PathInfo2.java

import java.io.IOException;
import java.nio.file.LinkOption;
import java.nio.file.Path;
import java.nio.file.Paths;
 
// To illustrate important methods such as normalize(), toAbsolutePath(), and toRealPath()
class PathInfo2 {
 public static void main(String[] args) throws IOException {
 // get a path object with relative path
 Path testFilePath = Paths.get(".\\Test");
 System.out.println("The file name is: " + testFilePath.getFileName());
 System.out.println("Its URI is: " + testFilePath.toUri());
 System.out.println("Its absolute path is: " + testFilePath.toAbsolutePath());
 System.out.println("Its normalized path is: " + testFilePath.normalize());
 
 // get another path object with normalized relative path
 Path testPathNormalized = Paths.get(testFilePath.normalize().toString());
 System.out.println("Its normalized absolute path is: " +
 testPathNormalized.toAbsolutePath());
 System.out.println("Its normalized real path is: " +
 testFilePath.toRealPath (LinkOption.NOFOLLOW_LINKS));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

291

On our machine, this code printed the following:

The file name is: Test
Its URI is: file:///D:/OCPJP/programs/NIO2/./Test
Its absolute path is: D:\OCPJP\programs\NIO2\.\Test
Its normalized path is: Test
Its normalized absolute path is: D:\OCPJP\programs\NIO2\Test
Exception in thread "main" java.nio.file.NoSuchFileException: D:\OCPJP\programs\NIO2\Test
 at sun.nio.fs.WindowsException.translateToIOException(WindowsException.java:79)
 [... stack trace elided ...]
 at PathInfo2.main(PathInfo2.java:16)

Depending on the directory in which you run this program, the directory path will be different for you.
This program instantiates a Path object using a relative path. The method getFileName() returns the target
file name, as you saw in the last example. The getUri() method returns the URI, which can be used with
browsers, and the toAbsolutePath() method returns the absolute path of the given relative path. (Note that
we are executing the program from the D:/OCPJP/programs/NIO2/ folder; hence it becomes the current
working directory and appears in the absolute path and URI.)

You call the normalize() method to remove redundant symbols from the path, so it removes the
leading dot. (In many operating systems, the . [single dot symbol represents the current directory and
.. [double dot] represents the parent directory.) You then instantiate another Path object using normalized
output and print the absolute path again. Finally, you try to call toRealpath(); however, you get an
exception (NoSuchFileException). Why? Because, you have not created the Test directory in the current
working directory.

Now, let’s create a Test directory in the D:/OCPJP/programs/NIO2/ directory and run this example
again. We got the following output:

The file name is: Test
Its URI is: file:///D:/OCPJP/programs/NIO2/./Test/
Its absolute path is: D:\OCPJP\programs\NIO2\.\Test
Its normalized path is: Test
Its normalized absolute path is: D:\OCPJP\programs\NIO2\Test
Its normalized real path is: D:\OCPJP\programs\NIO2\Test

Now the last call of toRealPath() works fine and returns the absolute normalized path.
Path provides many other useful methods, including those listed earlier in Table 10-1. For example,

here’s how to use the resolve() method:

Path dirName = Paths.get("D:\\OCPJP\\programs\\NIO2\\");
Path resolvedPath = dirName.resolve("Test");
System.out.println(resolvedPath);

This code segment prints the following:

D:\OCPJP\programs\NIO2\Test

This resolve() method considers the given path to be a directory and joins (resolves) the passed path
with it, as shown here.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

292

 The toPath() method in the java.io.File class returns the Path object; this method was added
in Java 7. Similarly, you can use the toFile() method in the Path interface to get a File object.

Comparing Two Paths
The Path interface provides two methods to compare two Path objects: equals() and compareTo(). The
equals() method checks the equality of two Path objects and returns a Boolean value, whereas compareTo()
compares two Path objects character by character and returns an integer: 0 if both Path objects are equal;
a negative integer if this path is lexicographically less than the parameter path; and a positive integer if
this path is lexicographically greater than the parameter path. Listing 10-3 contains a small program that
demonstrates these methods.

Listing 10-3.  PathCompare1.java

import java.nio.file.Path;
import java.nio.file.Paths;
 
// illustrates how to use compareTo and equals and also shows
// the difference between the two methods
class PathCompare1 {
 public static void main(String[] args) {
 Path path1 = Paths.get("Test");
 Path path2 = Paths.get("D:\\OCPJP\\programs\\NIO2\\Test");
 // comparing two paths using compareTo() method
 System.out.println("(path1.compareTo(path2) == 0) is: "
 + (path1.compareTo(path2) == 0));
  
 // comparing two paths using equals() method
 System.out.println("path1.equals(path2) is: " + path1.equals(path2));
  
 // comparing two paths using equals() method with absolute path
 System.out.println("path2.equals(path1.toAbsolutePath()) is "
 + path2.equals(path1.toAbsolutePath()));
 }
}

Intentionally, one path is a relative path and the other is an absolute path. Assume that the current
directory from which you are executing this program is D:\\OCPJP\\programs\\NIO2\\Test. Can you guess
the output of the program?

It’s as follows:

(path1.compareTo(path2) == 0) is: false
path1.equals(path2) is: false
path2.equals(path1.toAbsolutePath()) is true

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

293

Let’s examine the program step by step:

•	 It first compares two paths using the compareTo() method, which compares paths
character by character and returns an integer. In this case, because one path is a
relative path and another one is an absolute path, you first expect to get a message
that says the paths are not equal.

•	 Then you compare both paths using equals(). The result is the same, which means
even if the two Path objects are pointing to the same file/directory, it is possible for
equals() to return false. You need to make sure both paths are absolute paths.

•	 In the next step, you convert the relative path to an absolute path and then compare
them using equals(). This time both paths match.

 Even if two Path objects point to the same file/directory, it is not guaranteed that the equals() method
will return true. You need to make sure both are absolute and normalized paths for an equality comparison to
succeed for paths.

Using the Files Class
Certification Objective

Use Files class to check, read, delete, copy, move, manage metadata of a file or directory

The previous section discussed how to create a Path instance and extract useful information from it.
In this section, you use Path objects to manipulate files/directories. Java 7 offers a Files class (in the
java.nio.file package) that you can use to perform various file-related operations on files or directories.
Note that Files is a utility class, meaning it is a final class with a private constructor and consists only of
static methods. So you can use the Files class by calling the static methods it provides, such as copy() to
copy files. This class provides a wide range of functionality. You can create directories, files, or symbolic
links; create streams such as directory streams, byte channels, and input/output streams; examine the
attributes of files; walk the file tree; and perform file operations such as read, write, copy, and delete.
Table 10-2 provides a sample of the important methods in the Files class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

294

Table 10-2.  Some Important Methods in the Files Class

Method Description

Path createDirectory(Path dirPath,
FileAttribute<?>... dirAttrs)
Path createDirectories(Path dir,
FileAttribute<?>... attrs)

Creates a file given by the dirPath, and sets the
attributes given by dirAttributes. May throw an
exception such as FileAlreadyExistsException or
UnsupportedOperationException (for example, when the file
attributes cannot be set as given by dirAttrs). The difference
between createDirectory and createDirectories is that
createDirectories creates intermediate directories given by
dirPath if they are not already present.

Path createTempFile(Path dir,
String prefix, String suffix,
FileAttribute<?>... attrs)

Creates a temporary file with the given prefix, suffix, and
attributes in the directory given by dir.

Path createTempDirectory(Path dir,
String prefix, FileAttribute<?>...
attrs)

Creates a temporary directory with the given prefix and
directory attributes in the path specified by dir.

Path copy(Path source, Path target,
CopyOption... options)

Copies the file from source to target. CopyOption can
be REPLACE_EXISTING, COPY_ATTRIBUTES, or
NOFOLLOW_LINKS. Can throw exceptions such as
FileAlreadyExistsException.

Path move(Path source, Path target,
CopyOption... options)

Similar to the copy operation, but the source file is removed.
If the source and target are in the same directory, it is a
file-rename operation.

boolean isSameFile(Path path, Path
path2)

Checks whether the two Path objects locate the same file.

boolean exists(Path path,
LinkOption... options)

Checks whether a file/directory exists in the given path;
can specify LinkOption.NOFOLLOW_LINKS to not to follow
symbolic links.

Boolean isRegularFile(Path path,
LinkOption...)

Returns true if the file represented by path is a regular file.

Boolean isSymbolicLink(Path path) Returns true if the file represented by path is a symbolic link.

Boolean isHidden(Path path) Return true if the file represented by path is a hidden file.

long size(Path path) Returns the size of the file represented by path in bytes.

UserPrincipal getOwner(Path path,
LinkOption...), Path setOwner(Path
path, UserPrincipal owner)

Gets/sets the owner of the file.

FileTime getLastModifiedTime(Path
path, LinkOption...), Path
setLastModifiedTime(Path path,
FileTime time)

Gets/sets the last modified time for the specified file.

Object getAttribute(Path path,
String attribute, LinkOption...),
Path setAttribute(Path path,
String attribute, Object value,
LinkOption...)

Gets/sets the specified attribute of the specified file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

295

Checking File Properties and Metadata
In the previous section on the Path interface, you tried to figure out whether two paths pointed to the same
file (see Listing 10-3). There is another way to find out the same thing: you can use the isSameFile() method
from the Files class. Listing 10-4 shows how to do so.

Listing 10-4.  PathCompare2.java

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
 
// illustrates how to use Files class to compare two paths
class PathCompare2 {
 public static void main(String[] args) throws IOException {
 Path path1 = Paths.get("Test");
 Path path2 = Paths.get("D:\\OCPJP\\programs\\NIO2\\Test");
 
 System.out.println("Files.isSameFile(path1, path2) is: "
 + Files.isSameFile(path1, path2));
 }
}

Assume that the directory D:\\OCPJP\\programs\\NIO2\\Test exists on your machine. The program
prints the following:

Files.isSameFile(path1, path2) is: true

In this case, you have the Test directory in the path D:\OCPJP\programs\NIO2\, so the code worked fine.
If the Test file/directory does not exist in the given path, you get a NoSuchFileException. But how can

you figure out whether a file/directory exists on the given path? The Files class offers the exists() method
to do that. You can also distinguish between a file and a directory using the isDirectory() method from the
Files class. Listing 10-5 uses these methods.

Listing 10-5.  PathExists.java

import java.nio.file.Files;
import java.nio.file.LinkOption;
import java.nio.file.Path;
import java.nio.file.Paths;
 
class PathExists {
 public static void main(String[] args) {
 Path path = Paths.get(args[0]);
  
 if(Files.exists(path, LinkOption.NOFOLLOW_LINKS)) {
 System.out.println("The file/directory " + path.getFileName() + " exists");
 // check whether it is a file or a directory
 if(Files.isDirectory(path, LinkOption.NOFOLLOW_LINKS)) {
 System.out.println(path.getFileName() + " is a directory");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

296

 else {
 System.out.println(path.getFileName() + " is a file");
 }
 }
 else {
 System.out.println("The file/directory " + path.getFileName()
 + " does not exist");
 }
 }
}

This program accepts a file/directory name from the command line and creates a Path object. Then, you
use the exists() method from the Files class to find out whether the file/directory exists. The second
parameter of the exists() method is link option, which is used to specify whether to follow symbolic links; in
this case, you are not following symbolic links. If the file/directory associated with the input path exists, then you
check whether the input path indicates a file or a directory, using the isDirectory() method of the Files class.

We ran this program with two different command-line arguments and got the following output (assume
that PathExists.java is stored in the directory D:\OCPJP\programs\NIO2\src):

D:\OCPJP\programs\NIO2\src>java PathExists PathExists.java
The file/directory PathExists.java exists
PathExists.java is a file
 
D:\OCPJP\programs\NIO2\src>java PathExists D:\OCPJP\
The file/directory OCPJP exists
OCPJP is a directory
 
D:\OCPJP\programs\NIO2\src>java PathExists D:\
The file/directory null exists
null is a directory

In this output, you may have noticed the behavior when the root name (drive name in Windows, in
this case) is given as an argument. A root name is a directory, but path.getFileName() returns null if the
path is a root name—hence the result.

Existing files may not allow you to read, write, or execute based on your credentials. You can check
the ability of a program to read, write, or execute programmatically. The Files class provides the methods
isReadable(), isWritable(), and isExecutable() to do that. Listing 10-6 uses these methods: for this
program, create a file named readonly.txt with the permissions readable and executable but not writable.

Listing 10-6.  FilePermissions.java

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
 
class FilePermissions {
 public static void main(String[] args) {
 Path path = Paths.get(args[0]);
 System.out.printf("Readable: %b, Writable: %b, Executable: %b ",
 Files.isReadable(path), Files.isWritable(path), Files.isExecutable(path));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

297

Let’s execute this program with two different inputs. Here is the output:

D:\OCPJP\programs\NIO2\src>java FilePermissions readonly.txt
Readable: true, Writable: false, Executable: true
D:\OCPJP\programs\NIO2\src>java FilePermissions FilePermissions.java
Readable: true, Writable: true, Executable: true

For the readonly.txt file, the permissions are readable and executable but not writable. The file
FilePermissions.java has all three permissions: readable, writable, and executable.

You can use many other methods to fetch file properties. Let’s use the getAttribute() method to get
some attributes of a file. The method takes a variable number of parameters: a Path object, an attribute
name, and the link options (see Listing 10-7).

Listing 10-7.  FileAttributes.java

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.LinkOption;
import java.nio.file.Path;
import java.nio.file.Paths;
 
class FileAttributes {
 public static void main(String[] args) {
 Path path = Paths.get(args[0]);
 try {
 Object object = Files.getAttribute(path, "creationTime",
 LinkOption.NOFOLLOW_LINKS);
 System.out.println("Creation time: " + object);
  
 object = Files.getAttribute(path, "lastModifiedTime", LinkOption.NOFOLLOW_LINKS);
 System.out.println("Last modified time: " + object);
  
 object = Files.getAttribute(path, "size", LinkOption.NOFOLLOW_LINKS);
 System.out.println("Size: " + object);
  
 object = Files.getAttribute(path, "dos:hidden", LinkOption.NOFOLLOW_LINKS);
 System.out.println("isHidden: " + object);
  
 object = Files.getAttribute(path, "isDirectory", LinkOption.NOFOLLOW_LINKS);
 System.out.println("isDirectory: " + object);
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

298

Let’s first execute this program by giving the name of this program and then look at what happens:

D:\> java FileAttributes FileAttributes.java
Creation time: 2012-10-06T10:20:10.34375Z
Last modified time: 2012-10-06T10:21:54.859375Z
Size: 914
isHidden: false
isDirectory: false

The tricky part of the example is the second parameter of the getAttribute() method. You need to
provide a correct attribute name to extract the associated value. The expected string should be specified in
view:attribute format, where view is the type of FileAttributeView and attribute is the name of the
attribute supported by view. If no view is specified, it is assumed to be basic. In this case, you specify all
attributes belonging to a basic view except one attribute from the dos view. If you do not specify the correct
view name, you get an UnsupportedOperationException; and if you mess up the attribute name, you get an
IllegalArgumentException.

For example, if you type sized instead of size, you’ll get this exception:

Exception in thread "main" java.lang.IllegalArgumentException: 'sized' not recognized
[...stack trace elided...]

Yyou now know how to read metadata associated with files using the getAttribute() method.
However, if you want to read many attributes, calling getAttribute() for each attribute might not be a good
idea (from a performance standpoint). In this case, Java 7 offers a solution: an API—readAttributes()—to
read the attributes in one shot. The API comes in two flavors:

Map<String,Object> readAttributes(Path path, String attributes, LinkOption... options)
 
<A extends BasicFileAttributes> A readAttributes(Path path, Class<A> type, LinkOption...
options)

The first method returns a Map of attribute-value pairs and takes variable-length parameters. The
attributes parameter is the key parameter where you specify what you want to retrieve. This parameter
is similar to what you use in the getAttribute() method; however, here you can specify a list of attributes,
and you can also use an asterisk (*) to specify all attributes. For instance, using * means all attributes of
the default FileAttributeView, such as BasicFileAttributes (specified as basic-file-attributes). Another
example is dos:*, which refers to all attributes of dos file attributes.

The second method uses generic syntax (Chapter 4). The second parameter here takes a class from
the BasicFileAttributes hierarchy, which is discussed shortly. The method returns an instance from the
BasicFileAttributes hierarchy.

The file-attributes hierarchy is shown in Figure 10-1. BasicFileAttributes is the base interface from
which DosFileAttributes and PosixFileAttributes are derived. Note that these attribute interfaces are
provided in the java.nio.file.attribute package.

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/api/java/util/Map.html#interface%20in%20java.util
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#class%20in%20java.lang
http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#class%20in%20java.lang
http://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
http://docs.oracle.com/javase/7/docs/api/java/lang/String.html#class%20in%20java.lang
http://docs.oracle.com/javase/7/docs/api/java/nio/file/LinkOption.html#enum%20in%20java.nio.file
http://docs.oracle.com/javase/7/docs/api/java/nio/file/attribute/BasicFileAttributes.html#interface%20in%20java.nio.file.attribute
http://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
http://docs.oracle.com/javase/7/docs/api/java/lang/Class.html#class%20in%20java.lang
http://docs.oracle.com/javase/7/docs/api/java/nio/file/LinkOption.html#enum%20in%20java.nio.file
http://dx.doi.org/10.1007/978-1-4842-1836-5_4
http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

299

As you can see, the BasicFileAttributes interface defines the basic attributes supported by all
common platforms. However, specific platforms define their own file attributes, which are captured
by DosFileAttributes and PosixFileAttributes. You can specify any one of these interfaces to
retrieve associated file attributes. Listing 10-8 contains a program to retrieve all attributes of a file using
BasicFileAttributes.

Listing 10-8.  FileAttributes2.java

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.attribute.BasicFileAttributes;
 
class FileAttributes2 {
 public static void main(String[] args) {
 Path path = Paths.get(args[0]);
 try {
 BasicFileAttributes fileAttributes =
 Files.readAttributes(path, BasicFileAttributes.class);
 System.out.println("File size: " + fileAttributes.size());
 System.out.println("isDirectory: " + fileAttributes.isDirectory());
 System.out.println("isRegularFile: " + fileAttributes.isRegularFile());
 System.out.println("isSymbolicLink: " + fileAttributes.isSymbolicLink());
 System.out.println("File last accessed time: " + fileAttributes.lastAccessTime());
 System.out.println("File last modified time: " +
 fileAttributes.lastModifiedTime());
 System.out.println("File creation time: " + fileAttributes.creationTime());
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

The following is some sample output from the program:

D:\>java FileAttributes2 FileAttributes2.java
File size: 904
isDirectory: false
isRegularFile: true

Figure 10-1.  The hierarchy of BasicFileAttributes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

300

isSymbolicLink: false
File last accessed time: 2012-10-06T10:28:29.0625Z
File last modified time: 2012-10-06T10:28:22.4375Z
File creation time: 2012-10-06T10:26:39.1875Z

You use the readAttribute() method along with BasicFileAttributes to retrieve basic file
properties. Similarly, you can retrieve attributes associated with a file in a DOS or Unix environment using
DosFileAttributes and PosixFileAttributes, respectively.

Copying a File
Now let’s try copying a file/directory from one location to another. This task is easy to accomplish: just call
Files.copy() to copy the file from source to target. Here is the signature of this method:

Path copy(Path source, Path target, CopyOption... options)

Listing 10-9 uses this method to write a simple file-copy program.

Listing 10-9.  FileCopy.java

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
 
public class FileCopy {
 public static void main(String[] args) {
 if(args.length != 2){
 System.out.println("usage: FileCopy <source-path> <destination-path>");
 System.exit(1);
 }
 Path pathSource = Paths.get(args[0]);
 Path pathDestination = Paths.get(args[1]);
 try {
 Files.copy(pathSource, pathDestination);
 System.out.println("Source file copied successfully");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

Let’s execute it and see whether it works.

D:\> java FileCopy FileCopy.java Backup.java
Source file copied successfully

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
http://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
http://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
http://docs.oracle.com/javase/7/docs/api/java/nio/file/CopyOption.html#interface%20in%20java.nio.file
http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

301

Yes, it’s working. Try running it again with the same arguments:

D:\OCPJP\programs\NIO2\src>java FileCopy FileCopy.java Backup.java
java.nio.file.FileAlreadyExistsException: Backup.java
 at sun.nio.fs.WindowsFileCopy.copy(Unknown Source)
 [...stack trace elided...]

Oops! What happened? When you try copying the file for the second time, you get a
FileAlreadyExistsException because the destination file already exists. What if you want to overwrite the
existing file? The solution: you need to tell the copy() method that you would like to overwrite an existing
file. In Listing 10-9, change copy() as follows:

Files.copy(pathSource, pathDestination, StandardCopyOption.REPLACE_EXISTING);

You specify an additional argument (because the copy() method supports variable arguments) to tell
the method that you want to overwrite a file if it already exists. Run this program and see whether it works:

D:\>java FileCopy FileCopy.java Backup.java
Source file copied successfully
 
D:\>java FileCopy FileCopy.java Backup.java
Source file copied successfully

Yes, it works. Now, try to copy a file to a new directory:

D:\OCPJP\programs\NIO2\src>java FileCopy FileCopy.java bak\Backup.java
java.nio.file.NoSuchFileException: FileCopy.java -> bak\Backup.java
 [...stack trace elided ...]

Well, here you tried to copy a file back to a directory that does not exist. So, you got the
NoSuchFileException. Not just the given directory but also all intermediate directories on a path must exist
for the copy() method to succeed.

 All the directories (except the last one, if you are copying a directory) on the specified path must exist to
avoid NoSuchFileException.

What if you try copying a directory? It will work, but remember that it will only copy the top-level
directory, not the files/directories contained within that directory.

 If you copy a directory using the copy() method, it does not copy the files/directories contained in the
source directory; you need to explicitly copy them to the destination folder.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

302

Moving a File
Moving a file is similar to copying a file; for this purpose, you can use the Files.move() method. The
signature of this method is as follows:

Path move(Path source, Path target, CopyOption... options)

Listing 10-10 contains a small program that uses this method. Note that once the move() method
successfully executes, the source file no longer exists.

Listing 10-10.  FileMove.java

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.nio.file.StandardCopyOption;
 
public class FileMove {
 public static void main(String[] args) {
 if(args.length != 2){
 System.out.println("usage: FileMove <source-path> <destination-path>");
 System.exit(-1);
 }
 Path pathSource = Paths.get(args[0]);
 Path pathDestination = Paths.get(args[1]);
 try {
 Files.move(pathSource, pathDestination, StandardCopyOption.REPLACE_EXISTING);
 System.out.println("Source file moved successfully");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

This is how to execute this program (assuming that a file named text.txt exists in the current directory):

D:\OCPJP\programs\NIO2\src> java FileMove text.txt newtext.txt
Source file moved successfully

Here are some observations about the move() method:

•	 Like the copy() method, the move() method does not overwrite the existing
destination file unless you specify that it should do so using REPLACE_EXISTING.

•	 If you move a symbolic link, the link itself is moved, not the target file of the link. It is
important to note that in the case of copy(), if you specify a symbolic link, the target
of the link is copied, not the link itself.

www.it-ebooks.info

http://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
http://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
http://docs.oracle.com/javase/7/docs/api/java/nio/file/Path.html#interface%20in%20java.nio.file
http://docs.oracle.com/javase/7/docs/api/java/nio/file/CopyOption.html#interface%20in%20java.nio.file
http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

303

•	 A non-empty directory can be moved if moving the directory does not require
moving the containing files/directories. For instance, moving a directory from one
physical drive to another may be unsuccessful (an IOException will be thrown). If
moving a directory is successful, then all the contained files/directories are
also moved.

•	 You can specify move() as an atomic operation using the ATOMIC_MOVE copy option.
When you specify an atomic move, you are assured that either the move completes
successfully or the source continues to be present. If move() is performed as a
non-atomic operation and it fails while in process, the state of both files is unknown
and undefined.

Deleting a File
The Files class provides a delete() method to delete a file/directory/symbolic link. Listing 10-11 contains a
simple program to delete a specified file.

Listing 10-11.  FileDelete.java

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
 
public class FileDelete {
 public static void main(String[] args) {
 if(args.length != 1){
 System.out.println("usage: FileDelete <source-path>");
 System.exit(1);
 }
 Path pathSource = Paths.get(args[0]);
 try {
 Files.delete(pathSource);
 System.out.println("File deleted successfully");
 } catch (IOException e) {
 e.printStackTrace();
 }
 }
}

It prints the following when executed:

D:\> java FileDelete log.txt
File deleted successfully

There are a few points to remember when using the Files.delete() method. In the case of a directory,
the delete() method should be invoked on an empty directory; otherwise, the method will fail. In the case
of a symbolic link, the link is deleted, not the target file of the link. The file you intend to delete must exist;
otherwise you get a NoSuchFileException. If you silently delete a file and do not want to be bothered with
this exception, then you may use the deleteIfExists() method, which does not complain if the file does
not exist and deletes the file if it exists. Also, if a file is read-only, some platforms may prevent you from
deleting the file.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

304

Points to Remember
Remember these points to help you pass the OCPJP 8 exam.

•	 Do not confuse File with Files, and Path with Paths: they are different. File is
an old class (Java 4) that represents file/directory path names, whereas Files was
introduced in Java 7 as a utility class with comprehensive support for I/O APIs. The
Path interface represents a file/directory path and defines a useful list of methods.
However, the Paths class is a utility class that offers only two methods (both to get
the Path object).

•	 The file or directory represented by a Path object may not exist. Other than methods
such as toRealPath(), methods in Path do not require that the underlying file or
directory be present for a Path object.

•	 You learned how to perform a copy for files/directories. However, it is not necessary
to perform a copy on only two files/directories. You can take input from an
InputStream and write to a file, or you can take input from a file and copy to an
OutputStream. The methods copy(InputStream, Path, CopyOptions...) and
copy(Path, OutputStream, CopyOptions...) can be used here.

Using the Stream API with NIO.2
Certification Objective

Use Stream API with NIO.2

Numerous enhancements to the JDK in Java 8 simplify programming using NIO.2. This section
discusses some of the important enhancements to the java.nio package in Java 8.

Using the list( ) Method in the Files Class
Let’s start by using the Files.list() method added in Java 8 to list all the files in the current directory
(see Listing 10-12). Underneath, it uses a DirectoryStream, and hence the close() method must be called
to release the I/O resource. This program uses the stream with a try-with-resources statement that
automatically closes the stream.

Listing 10-12.  ListFiles.java

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.io.IOException;
import java.util.stream.Stream;
 
class ListFiles {
 public static void main(String []args) throws IOException {
 try(Stream<Path> entries = Files.list(Paths.get("."))) {
 entries.forEach(System.out::println);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

305

It printed the files in the current directory:

./ListFiles.class

./ListFiles.java

... (rest of the output elided)

The list() method is declared as follows:

static Stream<Path> list(Path dir) throws IOException

Because the list() method returns a Stream, you can use any of the numerous methods provided
in the Stream interface, including map(), filter(), findFirst(), findAny(), distinct(), sorted(),
allMatch(), noneMatch(), and anyMatch().

This code segment is a modified version of Listing 10-12 that prints the absolute paths of the files:

Files.list(Paths.get("."))
 .map(path -> path.toAbsolutePath())
 .forEach(System.out::println);

The result is as follows:

D:\OCPJP\NIO2\src\ListFiles.class
D:\OCPJP\NIO2\src\ListFiles.java
... (rest of the output elided)

Note that the list() method does not recursively traverse the entries in the given Path. To recursively
traverse the directories, you can use the Files.walk() method:

Files.walk(Paths.get(".")).forEach(System.out::println);

The Files.walk() method is an overloaded method:

static Stream<Path> walk(Path path, FileVisitOption... options) throws IOException
static Stream<Path> walk(Path path, int maxDepth, FileVisitOption... options) throws
IOException

The FileVisitOption has one enumeration value: FileVisitOption.FOLLOW_LINKS. You can pass that
to the walk() method. You can also specify maxDepth: the limit on the nesting level for recursively traversing
the directory entries (see Listing 10-13).

Listing 10-13.  CountEntriesRecur.java

import java.nio.file.FileVisitOption;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.io.IOException;
import java.util.stream.Stream;
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

306

class CountEntriesRecur {
 public static void main(String []args) throws IOException {
 try(Stream<Path> entries =
 Files.walk(Paths.get("."), 4, FileVisitOption.FOLLOW_LINKS)) {
 long numOfEntries = entries.count();
 System.out.printf("Found %d entries in the current path", numOfEntries);
 }
 }
}

On our machine, this program printed the following:

Found 179 entries in the current path

This code gives an arbitrary limit of 4 for the nesting depth as the second argument to the Files.walk()
method.

Finally, let’s use the Files.find() method to list the files that match a given condition (Listing 10-14).

Listing 10-14.  FindFiles.java

import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.io.IOException;
import java.nio.file.attribute.BasicFileAttributes;
import java.util.function.BiPredicate;
import java.util.stream.Stream;
 
class FindFiles {
 public static void main(String []args) throws IOException {
 BiPredicate<Path, BasicFileAttributes> predicate = (path, attrs)
 -> attrs.isRegularFile() && path.toString().endsWith("class");
 try(Stream<Path> entries = Files.find(Paths.get("."), 4, predicate)) {
 entries.limit(100).forEach(System.out::println);
 }
 }
}

This program prints long output, so it is not given here.
This example used the limit() method on the Stream<Path> object to limit the number of entries

processed when returned from the Files.find() method. The find() method takes the path to start
searching from, the maximum depth to search, a BiPredicate, and an optional FileVisitOption as
arguments:

static Stream<Path> find(Path path, int maxDepth, BiPredicate<Path,BasicFileAttributes>
 matcher, FileVisitOption... options) throws IOException

In this example, you are looking for files that end with a class extension, and you limit the number of
entries to 100.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

307

Using the lines( ) Method in the Files Class
Files.lines() is a very convenient method to read the contents of a file:

static Stream<String> lines(Path path)

Internally, it uses a Reader and hence must be closed after use. You use try-with-resources in
Listing 10-15 to print the contents of the file whose name is passed as the argument.

Listing 10-15.  Type.java

import java.io.IOException;
import java.nio.file.Paths;
import java.nio.file.Files;
import java.util.Arrays;
import java.util.stream.Stream;
 
// implements a simplified version of "type" command provided in Windows;
// given a text file name(s) as argument, it prints the content of the file(s)
 
class Type {
 private static void processFile(String file) {
 try(Stream<String> lines = Files.lines(Paths.get(file))) {
 lines.forEach(System.out::println);
 } catch (IOException ioe) {
 System.err.println("IOException occurred when reading the file... exiting");
 System.exit(-1);
 }
 }
 
 public static void main(String[] files) throws IOException {
 if (files.length == 0) {
 System.err.println("pass the name of the file(s) as argument");
 System.exit(-1);
 }
 // process each file passed as argument
 Arrays.stream(files).forEach(Type::processFile);
 }
}

This code is much concise than the version you saw in the chapter on IO fundamentals (Listing 9-5 in
Chapter 9).

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_9
http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

308

Summary
Let’s briefly review the key points from each certification objective in this chapter. Please read this section
before you appear for the exam.

Use Path interface to operate on file and directory paths

•	 A Path object is a programming abstraction to represent the path of a file/directory.

•	 You can get an instance of Path using the get() method of the Paths class.

•	 Path provides two methods to compare Path objects: equals() and compareTo().
Even if two Path objects point to the same file/directory, the equals() method is not
guaranteed to return true.

Use Files class to check, read, delete, copy, move, manage metadata of a file or directory

•	 You can check the existence of a file using the exists() method of the Files class.

•	 The Files class provides the methods isReadable(), isWritable(), and
isExecutable() to check the ability of the program to read, write, and execute
programmatically, respectively.

•	 You can retrieve the attributes of a file using the getAttributes() method.

•	 You can use the readAttributes() method of the Files class to read file attributes
in bulk.

•	 The copy() method can be used to copy a file from one location to another. Similarly,
the move() method moves a file from one location to another.

•	 While copying, all the directories (except the last one, if you are copying a directory)
on the specified path must exist to avoid a NoSuchFileException.

•	 Use the delete() method to delete a file; use the deleteIfExists() method to
delete a file only if it exists.

Use Stream API with NIO.2

•	 The Files.list() method returns a Stream<Path>. It does not recursively traverse
the directories in the given Path.

•	 The Files.walk() method returns a Stream<Path> by recursively traversing the
entries from the given Path; in one of its overloaded versions, you can also pass the
maximum depth for such traversal and provide FileVisitOption.FOLLOW_LINKS as
the third option.

•	 The Files.find() method returns a Stream<Path> by recursively traversing
the entries from the given Path; it also takes the maximum depth to search, a
BiPredicate, and an optional FileVisitOption as arguments.

•	 Files.lines() is a very convenient method to read the contents of a file. It returns a
Stream<String>.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

309

QUESTION TIME

1.	 Consider the following program:

import java.nio.file.*;
 
public class PathInfo {
 public static void main(String[] args) {
 Path aFilePath = Paths.get("D:\\directory\\file.txt");
 // FILEPATH
  
 while(aFilePath.iterator().hasNext()) {
 �System.out.println("path element: " + aFilePath.

iterator().next());
 }
 }
}

Assume that the file D:\directory\file.txt exists in the underlying file
system. Which one of the following options correctly describes the behavior
of this program?

A.	T he program gives a compiler error in the line marked with the comment
FILEPATH because the checked exception FileNotFoundException is not
handled.

B.	T he program gives a compiler error in the line marked with the comment
FILEPATH because the checked exception InvalidPathException is not
handled.

C.	T he program gets into an infinite loop, printing “path element: directory”
forever.

D.	T he program prints the following:

path element: directory
path element: file.txt

2.	 Consider the following program:

import java.nio.file.*;
 
class SubPath {
 public static void main(String []args) {
 �Path aPath = Paths.get("D:\\OCPJP\\programs\\..\\NIO2\

\src\\.\\SubPath.java");
 aPath = aPath.normalize();
 System.out.println(aPath.subpath(2, 3));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

310

This program prints the following:

A.	 ..

B.	 src

C.	 NIO2

D.	 NIO2\src

E.	 ..\NIO2

3.	 Consider the following program:

import java.nio.file.*;
import java.io.IOException;
 
class PathExists {
 public static void main(String []args) throws IOException {
 Path aFilePath = Paths.get("D:\\directory\\file.txt");
 System.out.println(aFilePath.isAbsolute());
 }
}

Assuming that the file D:\\directory\\file.txt does not exist, what will be the
behavior of this program?

A.	T his program prints false.

B.	T his program prints true.

C.	T his program crashes by throwing a java.io.IOException.

D.	T his program crashes by throwing a java.nio.file.NoSuchFileException.

4.	 Given this code segment (assume that necessary import statements are
provided in the program that contains this code segment)

Stream<String> lines = Files.lines(Paths.get("./text.txt"))
// line n1

If a file named text.txt exists in the current directory in which you are running
this code segment, which one of the following statements will result in
printing the first line of the file’s contents?

A.	 lines.limit(1).forEach(System.out::println);

B.	 lines.forEach(System.out::println);

C.	 lines.println();

D.	 lines.limit(1).println();

E.	 lines.forEach(1);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

311

5.	 Consider the following code segment:

try(Stream<Path> entries = Files.find(Paths.get("."), 4, predicate)) {
 entries.forEach(System.out::println);
}

Which one of the following is a valid definition of the variable predicate that
can be used in this code segment?

A.	 BiPredicate<Path, BasicFileAttributes> predicate = (path, attrs)
-> true;

B.	 Predicate<Path> predicate = (path) -> true

C.	 Predicate<BasicFileAttributes> predicate = (attrs) -> attrs.
isRegularFile();

D.	 Predicate predicate = FileVisitOption.FOLLOW_LINKS;

Answers:

1.	 C. The program gets into an infinite loop, printing “path element: directory” forever.

In the while loop, you use iterator() to get a temporary iterator object. So,
the call to next() on the temporary variable is lost, and the while loop gets into
an infinite loop. In other words, the following loop terminates after printing the
directory and file.txt parts of the path:

Iterator<Path> paths = aFilePath.iterator();
while(paths.hasNext()) {
 System.out.println("path element: " + paths.next());
}

Option A is wrong because the Paths.get method does not throw
FileNotFoundException.

Option B is wrong because InvalidPathException is a RuntimeException. Also,
even if the file path does not exist in the underlying file system, this exception will
not be thrown when the program is executed.

Option D is wrong because the program gets into an infinite loop.

2.	 B. src

The normalize() method removes redundant name elements in the given path, so
after the call to the normalize() method, the aPath value is D:\OCPJP\NIO2\src\
SubPath.java.

The subpath(int beginIndex, int endIndex) method returns a path based on
the values of beginIndex and endIndex. The name that is closest to the root has
index 0; note that the root itself (in this case, D:\) is not considered an element in
the path. Hence, the name elements “OCPJP”, “NIO2”, “src”, and “SubPath.java”
are in index positions 0, 1, 2, and 3, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 10 ■ Java File I/O (NIO.2)

312

Note that beginIndex is the index of the first element, inclusive of that element;
endIndex is the index of the last element, exclusive of that element. Hence, the
subpath is src, which is at index position 2 in this path.

3.	 B. This program prints: true

To use methods such as isAbsolute(), the actual file need not exist. Because the
path represents an absolute path (and not a relative path), this program prints true.

4.	 A. lines.limit(1).forEach(System.out::println);

The limit(1) method truncates the result to one line; and the forEach() method,
when passed with the System.out::println method reference, prints that line
to the console. Option B prints all the lines in the given file and thus is the wrong
answer. The code segments given in the other three options will result in compiler
errors.

5.	 A. BiPredicate<Path, BasicFileAttributes> predicate = (path, attrs)
-> true;

The find() method takes the path to start searching from, the maximum depth to
search, a BiPredicate, and an optional FileVisitOption as arguments:

static Stream<Path> find(Path path, int maxDepth, BiPredicate<Path,
BasicFileAttributes>
matcher, FileVisitOption... options) throws IOException

Option A provides a definition of BiPredicate and hence it is the correct answer.
Using the other options will result in a compiler error.

www.it-ebooks.info

http://www.it-ebooks.info/

313

Chapter 11

Java Concurrency

Certification Objectives

Create worker threads using Runnable, Callable, and use an ExecutorService to concurrently
execute tasks

Identify potential threading problems among deadlock, starvation, livelock, and race conditions

Use synchronized keyword and java.util.concurrent.atomic package to control the order of thread
execution

Use java.util.concurrent collections and classes including CyclicBarrier and CopyOnWriteArrayList

Use parallel Fork/Join Framework

Use parallel Streams including reduction, decomposition, merging processes, pipelines, and
performance

Concurrency is gaining importance with more widespread use of multicore processors. The Latin root
of the word concurrency means “running together.” In programming, you can have multiple threads running
in parallel in a program executing different tasks at the same time. When used correctly, concurrency can
improve the performance and responsiveness of the application, and hence it is a powerful and useful
feature. In this chapter, we use the terms multi-threading and concurrency interchangeably.

From the beginning, Java supported concurrency in the form of low-level threads management, locks,
synchronization, and APIs for concurrency. Since 5.0, Java also supports high-level concurrency APIs in its
java.util.concurrent package. From version 8.0, Java has gotten even better support for concurrency with
the introduction of parallel streams.

The OCPJP 8 exam objectives cover a wide range of topics related to concurrency, including different
ways of creating worker threads to using parallel streams. You can expect many questions from this topic in
your exam. For this reason, we will discuss Java’s concurrency support in detail in this chapter.

Creating Threads to Execute Tasks Concurrently
Certification Objective

Create worker threads using Runnable, Callable, and use an ExecutorService to concurrently
execute tasks

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

314

The Thread and Object classes and the Runnable interface provide the necessary support for
concurrency in Java. The Thread class has methods such as run(), start(), and sleep() that are useful for
multi-threading (Table 11-1 lists important methods in the Thread class). The Object class has methods
such as wait() and notify() that support concurrency. Since every class in Java derives from the Object
class, all the objects have some basic multi-threading capabilities. For example, you can acquire a lock on
any object in Java (using synchronized keyword, which we’ll discuss later in this chapter). However, to create
a thread, this basic support from Object is not useful. For that, a class should extend the Thread class or
implement the Runnable interface. Both Thread and Runnable are in the java.lang package, so you don’t
have to import these classes explicitly for writing multi-threaded programs.

Table 11-1.  Important Methods in the Thread Class

Method Method Type Short Description

Thread currentThread() Static method Returns reference to the current thread.

String getName() Instance method Returns the name of the current thread.

int getPriority() Instance method Returns the priority value of the current thread.

void join(),
void join(long),
void join(long, int)

Overloaded
instance methods

The current thread invoking join on another thread
waits until the other thread completes. You can optionally
give the timeout in milliseconds (given in long) or
timeout in milliseconds as well as nanoseconds (given in
long and int).

void run() Instance method Once you start a thread (using the start() method), the
run() method will be called when the thread is ready to
execute.

void setName(String) Instance method Changes the name of the thread to the given name in the
argument.

void setPriority(int) Instance method Sets the priority of the thread to the given argument value.

void sleep(long)
void sleep(long, int)

Overloaded static
methods

Makes the current thread sleep for given milliseconds
(given in long) or for given milliseconds and nanoseconds
(given in long and int).

void start() Instance method Starts the thread; JVM calls the run() method of the thread.

String toString() Instance method Returns the string representation of the thread; the string
has the thread’s name, priority, and its group.

Creating Threads
Let us now create threads using the Thread class and Runnable interface. We will discuss how to create
worker threads using Callable and ExecutorService later in this chapter.

Creating Threads by Extending the Thread Class
To extend the Thread class, you need to override the run() method. If you don’t override the run() method,
the default run() method from the Thread class will be called, which does nothing. To override the run()
method, you need to declare it as public; it takes no arguments and has a void return type; in other words,
it should be declared as public void run().

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

315

You can create a thread by invoking the start() method on an object of the Thread class (Listing 11-1).
When the JVM schedules the thread, it will move the thread to a runnable state and then execute the run()
method. When the run() method completes its execution and returns, the thread will terminate.

Listing 11-1.  MyThread.java

class MyThread extends Thread {
 public void run() {
 try {
 sleep(1000);
 }
 catch (InterruptedException ex) {
 ex.printStackTrace();
 // ignore the InterruptedException - this is perhaps the one of the
 // very few of the exceptions in Java which is acceptable to ignore
 }
 System.out.println("In run(); thread name is: " + getName());
 }
 public static void main(String args[]) {
 Thread myThread = new MyThread();
 myThread.start();
 System.out.println("In main(); thread name: " +
 Thread.currentThread().getName());
 }
}

This program prints the following:

In main(); thread name is: main
In run(); thread name is: Thread-0

In this example, the MyThread class extends the Thread class. You have overridden the run() method
in this class. This run() method will be called when the thread runs. In the main() function, you create a
new thread and start it using the start() method. An important note: you do not invoke the run() method
directly. Instead you start the thread using the start() method; the run() method is invoked automatically
by the JVM.

For printing the name of the thread, you can use the instance method getName(), which returns a
String. Since main() is a static method, you don’t have access to this reference. So you get the current
thread name using the static method currentThread() in the Thread class (which returns a Thread object).
Now you can call getName on that returned object. As you’ll see later, the main() method is also executed as
a thread! However, inside the run() method, you can directly call the getName() method: MyThread extends
Thread, so all base class members are available in MyThread also.

Creating Threads by Implementing Runnable Interface
Another way to create a thread is to implement the Runnable interface. The Thread class itself implements
the Runnable interface. The Runnable interface declares a sole method, run().Hence, when you implement
the Runnable interface, you need to define the run() method. Remember Runnable does not declare the
start() method. So, how do you create a thread if you implement the Runnable interface? Thread has
an overloaded constructor, which takes a Runnable object as an argument. Listing 11-2 implements the
Runnable interface and creates a Thread.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

316

Listing 11-2.  RunnableImpl.java

class RunnableImpl implements Runnable {
 public void run() {
 System.out.println("In run(); thread name is: " +
 Thread.currentThread().getName());
 }
 
 public static void main(String args[]) throws Exception {
 Thread myThread = new Thread(new RunnableImpl());
 myThread.start();
 System.out.println("In main(); thread name is: " +
 Thread.currentThread().getName());
 }
}

This program prints:

In main(); thread name is: main
In run(); thread name is: Thread-0

You are implementing the run() method in this program. However, to get the name of the string, you
must follow a round-about route and get the thread name with Thread.currentThread().getName().
In the main() method, to create a thread you must pass the object of the RunnableImpl class to the Thread
constructor. The start() method starts the thread and the JVM later calls the run() method of the thread.

Thread Synchronization With synchronized Keyword

Certification Objective

Use synchronized keyword and java.util.concurrent.atomic package to control the order of thread
execution

Java’s synchronized keyword helps in thread synchronization. You can use it in two forms: synchronized
blocks and synchronized methods. Why do we need to use the synchronized keyword? To avoid the problem
of race conditions. Let us discuss this topic now.

Race Conditions
Threads share memory, and they can concurrently modify data. Since the modification can be done at the
same time without safeguards, this can lead to unintuitive results.

When two or more threads are trying to access a variable and one of them wants to modify it, you get a
problem known as a race condition (also known as data race or race hazard). Listing 11-3 shows an example
of a race condition.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

317

Listing 11-3.  RaceCondition.java

// This class exposes a publicly accessible counter
// to help demonstrate race condition problem
class Counter {
 public static long count = 0;
}
 
// This class implements Runnable interface
// Its run method increments the counter three times
class UseCounter implements Runnable {
 public void increment() {
 // increments the counter and prints the value
 // of the counter shared between threads
 Counter.count++;
 System.out.print(Counter.count + " ");
 }
 public void run() {
 increment();
 increment();
 increment();
 }
}
 
// This class creates three threads
public class RaceCondition {
 public static void main(String args[]) {
 UseCounter c = new UseCounter();
 Thread t1 = new Thread(c);
 Thread t2 = new Thread(c);
 Thread t3 = new Thread(c);
 t1.start();
 t2.start();
 t3.start();
 }
}

In this program, there is a Counter class that has a static variable count. In the run() method of the
UseCounter class, you increment the count three times by calling the increment() method. You create three
threads in the main() function in the RaceCondition class and start it. You expect the program to print 1 to
9 sequentially as the threads run and increment the counters. However, when you run this program, it does
print nine integer values, but the output looks like garbage! In a sample run, we got these values:

3 3 5 6 3 7 8 4 9

Note that the values will usually be different every time you run this program; when we ran it two more
times, we got these outputs:

3 3 5 6 3 4 7 8 9
 
3 3 3 6 7 5 8 4 9

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

318

So, what is the problem?
The expression Counter.count++ is a write operation, and the next System.out.print statement has

a read operation for Counter.count. When the three threads execute, each of them has a local copy of the
value Counter.count and when they update the counter with Counter.count++, they need not immediately
reflect that value in the main memory (see Figure 11-1). In the next read operation of Counter.count, the
local value of Counter.count is printed.

Therefore, this program suffers from the race condition problem. To avoid this problem, you need to
ensure that a single thread does the write and read operations together (atomically). The section of code that
is commonly accessed and modified by more than one thread is known as critical section. To avoid the race
condition problem, you need to ensure that the critical section is executed by only one thread at a time.

How do you do that? By acquiring a lock on the object using the synchronized keyword, which we’ll
discuss now. Only a single thread can acquire a lock on an object at a time, and only that thread can execute
the block of code (i.e., the critical section) protected by the lock. Until then, the other threads have to wait.

Synchronized Blocks
In synchronized blocks, you use the synchronized keyword for a reference variable and follow it by a block
of code. A thread has to acquire a lock on the synchronized variable to enter the block; when the execution
of the block completes, the thread releases the lock. For example, you can acquire a lock on this reference if
the block of code is within a non-static method:

synchronized(this) {
 // code segment guarded by the mutex lock
}

What if an exception gets thrown inside the synchronized block? Will the lock get released? Yes,
regardless of whether the block is executed fully or an exception is thrown, the lock will be automatically
released by the JVM. With synchronized blocks, you can acquire a lock on a reference variable only. If you
use a primitive type, you will get a compiler error.

Let us fix the race condition problem in Listing 11-3 by adding a synchronized block in the increment()
method, as in:

// within the UseCounter class
public void increment() {
 // increments the counter and prints the value
 // of the counter shared between threads

Figure 11-1.  Threads t1, t2, and t3 trying to change Counter.count, causing a race condition

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

319

 synchronized(this) {
 Counter.count++;
 System.out.print(Counter.count + " ");
 }
}

With this change, the program prints value count incremented correctly:

1 2 3 4 5 6 7 8 9

In the increment() method, you acquire a lock on the this reference before reading and writing to
Counter.count. So, it is not possible for more than one thread to execute these statements at the same
time. Since only one thread can acquire a lock and execute the “critical section” code block, the counter is
incremented by only one thread at a given time; as a result, the program prints the values 1 to 9 correctly.
Without the synchronized block, three different threads would freely modify the variable and hence you will
not get the values 1 to 9 printed correctly (because of the race condition problem which we discussed earlier).

Synchronized Methods
An entire method can be declared synchronized. In that case, when the method declared as synchronized
is called, a lock is obtained on the object on which the method is called, and it is released when the method
returns to the caller. Here is an example:

public synchronized void assign(int i) {
 val = i;
}

Now the assign() method is a synchronized method. If you call the assign() method, it will acquire
the lock on the this reference implicitly and then execute the statement val = i;. What happens if some
other thread acquired the lock already? Just like synchronized blocks, if the thread cannot get the lock, it will
be blocked and the thread will wait until the lock becomes available.

A synchronized method is equivalent to a synchronized block if you enclose the whole method body in
a synchronized(this) block. So, the equivalent assign() method using synchronized blocks is,

public void assign(int i) {
 synchronized(this) {
 val = i;
 }
}

You can declare static methods synchronized. However, what is the reference variable on which the
lock is obtained? Remember that static methods do not have the implicit this reference. Static synchronized
methods acquire locks on the class object. Every class is associated with an object of Class type, and you
can access it using ClassName.class syntax. For example,

class SomeClass {
 private static int val;
 public static synchronized void assign(int i) {
 val = i;
 }
 // more members ...
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

320

In this case, the assign method acquires a lock on the SomeClass.class object when it is called. Now
the equivalent assign() method using synchronized blocks can be written as

class SomeClass {
 private static int val;
 public static void assign(int i) {
 synchronized(SomeClass.class) {
 val = i;
 }
 }
 // more members ...
}

You cannot declare constructors synchronized; it will result in a compiler error. For example, for

class Synchronize {
 public synchronized Synchronize() { /* constructor body */}
 // more methods
}

you get this error:

Synchronize.java:2: modifier synchronized not allowed here
 public synchronized Synchronize() { /* constructor body */}

Why can’t you declare constructors synchronized? The JVM ensures that only one thread can invoke
a constructor call (for a specific constructor) at a given point in time. So, there is no need to declare a
constructor synchronized. However, if you want, you can use synchronized blocks inside constructors.

Let’s get back to the RaceCondition example in Listing 11-3. The increment() method in the
UseCounter class can be rewritten as a synchronized method also:

// declaring the increment synchronized instead of using
// a synchronized statement for a block of code inside the method
public synchronized void increment() {
 Counter.count++;
 System.out.print(Counter.count + " ");
}

This program prints:

1 2 3 4 5 6 7 8 9

The program prints the expected output correctly.

 Beginners commonly misunderstand that a synchronized block obtains a lock for a block of code. Actually,
the lock is obtained for an object and not for a piece of code. The obtained lock is held until all the statements in
that block complete execution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

321

Threading Problems
Certification Objective

Identify potential threading problems among deadlock, starvation, livelock, and race conditions

Concurrent programming in threads is fraught with pitfalls and problems. We have already discussed
race conditions that occur when we don’t use locks in the previous section. In this section, let us discuss
three more threading problems: deadlock, starvation, and livelock.

Deadlocks
Obtaining and using locks is tricky, and it can lead to lots of problems. One of the difficult (and common)
problems is known as a deadlock. A deadlock arises when locking threads result in a situation where they
cannot proceed and thus wait indefinitely for others to terminate. Say, one thread acquires a lock on resource
r1 and waits to acquire another on resource r2. At the same time, say there is another thread that has
already acquired r2 and is waiting to obtain a lock on r1. Neither of the threads can proceed until the other
one releases the lock, which never happens—so they are stuck in a deadlock. Listing 11-4 shows how this
situation can arise (using the example from the Cricket game).

Listing 11-4.  DeadLock.java

// Balls class has a globally accessible data member to hold the number of balls thrown
class Balls {
 public static long balls = 0;
}
 
// Runs class has a globally accessible data member to hold the number of runs scored
class Runs {
 public static long runs = 0;
}
 
// Counter class has two methods – IncrementBallAfterRun and IncrementRunAfterBall.
// For demonstrating deadlock, we call these two methods in the run method, so that
// locking can be requested in opposite order in these two methods
class Counter implements Runnable {
 // this method increments runs variable first and then increments the balls variable
 // since these variables are accessible from other threads,
 // we need to acquire a lock before processing them
 public void IncrementBallAfterRun() {
 // since we're updating runs variable first, first lock the Runs.class
 synchronized(Runs.class) {
 // lock on Balls.class before updating balls variable
 synchronized(Balls.class) {
 Runs.runs++;
 Balls.balls++;
 }
 }
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

322

 public void IncrementRunAfterBall() {
 // since we're updating balls variable first; so first lock Balls.class
 synchronized(Balls.class) {
 // acquire lock on Runs.class before updating runs variable
 synchronized(Runs.class) {
 Balls.balls++;
 Runs.runs++;
 }
 }
 }
 
 public void run() {
 // call these two methods which acquire locks in different order
 // depending on thread scheduling and the order of lock acquision,
 // a deadlock may or may not arise
 IncrementBallAfterRun();
 IncrementRunAfterBall();
 }
}
 
public class DeadLock {
 public static void main(String args[]) throws InterruptedException {
 Counter c = new Counter();
 // create two threads and start them at the same time
 Thread t1 = new Thread(c);
 Thread t2 = new Thread(c);
 t1.start();
 t2.start();
 System.out.println("Waiting for threads to complete execution...");
 t1.join();
 t2.join();
 System.out.println("Done.");
 }
}

If you execute this program, the program might run fine, or it might deadlock and never terminate
(the occurrence of deadlock in this program depends on how threads are scheduled).

D:\> java DeadLock
Waiting for threads to complete execution...
Done.
 
D:\> java DeadLock
Waiting for threads to complete execution...
[deadlock – user pressed ctrl + c to terminate the program]
 
D:\> java DeadLock
Waiting for threads to complete execution...
Done.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

323

In this example, there are two classes, Balls and Runs, with static members called balls and runs. The
Counter class has two methods, IncrementBallAfterRun() and IncrementRunAfterBall(). They acquire
locks on the Balls.class and Runs.class in the opposite order. The run() method calls these two methods
consecutively. The main() method in the Dead class creates two threads and starts them.

When the threads t1 and t2 execute, they invoke the methods IncrementBallAfterRun and
IncrementRunAfterBall. In these methods, locks are obtained in opposite order. It might happen that t1
acquires a lock on Runs.class and then waits to acquire a lock on Balls.class. Meanwhile, t2 might have
acquired the Balls.class and now will be waiting to acquire a lock on the Runs.class. Therefore, this
program can lead to a deadlock (Figure 11-2).

Figure 11-2.  Deadlock between threads t1 and t2

It cannot be assured that this program will lead to a deadlock every time you execute this program.
Why? You never know the sequence in which threads execute and the order in which locks are acquired and
released. For this reason, such problems are said to be non-deterministic, and such problems cannot be
reproduced consistently.

There are different strategies to deal with deadlocks, such as deadlock prevention, avoidance, or
detection. For exam purposes, this is what you need to know about deadlocks:

•	 Deadlocks can arise in the context of multiple locks.

•	 If multiple locks are acquired in the same order, then a deadlock will not occur;
however, if you acquire them in a different order, then deadlocks may occur.

•	 Deadlocks (just like other multi-threading problems) are non-deterministic; you
cannot consistently reproduce deadlocks.

Avoid acquiring multiple locks. If you want to acquire multiple locks, make sure that they are acquired in the
same order everywhere to avoid deadlocks.

Livelocks
To help understand livelocks, let’s consider an analogy. Assume that there are two robotic cars that are
programmed to automatically drive in the road. There is a situation where two robotic cars reach the two
opposite ends of a narrow bridge. The bridge is so narrow that only one car can pass through at a time. The
robotic cars are programmed such that they wait for the other car to pass through first. When both the cars
attempt to enter the bridge at the same time, the following situation could happen: each car starts to enter

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

324

the bridge, notices that the other car is attempting to do the same, and reverses! Note that the cars keep
moving forward and backward and thus appear as if they’re doing lots of work, but there is no progress made
by either of the cars. This situation is called a livelock.

Consider two threads t1 and t2. Assume that thread t1 makes a change and thread t2 undoes that
change. When both the threads t1 and t2 work, it will appear as though lots of work is getting done, but no
progress is made. This situation is called a livelock in threads.

The similarity between livelocks and deadlocks is that the process “hangs” and the program never
terminates. However, in a deadlock, the threads are stuck in the same state waiting for other thread(s) to
release a shared resource; in a livelock, the threads keep executing a task, and there is continuous change in
the process states, but the application as a whole does not make progress.

Lock Starvation
Consider the situation in which numerous threads have different priorities assigned to them (in the range
of lowest priority, 1, to highest priority, 10, which is the range allowed for priority of threads in Java). When
a lock is available, the thread scheduler will give priority to the threads with high priority over low priority.
If there are many high-priority threads that want to obtain the lock and also hold the lock for long time
periods, when will the low-priority threads get a chance to obtain the lock? In other words, in a situation
where low-priority threads “starve” for a long time trying to obtain the lock is known as lock starvation.

There are many techniques available for detecting or avoiding threading problems like livelocks and
starvation, but they are not within the scope of OCPJP 8 exam. From the exam perspective, you are expected
to know the different kinds of threading problems that we’ve already covered in this chapter.

Using java.util.concurrent.atomic Package
Certification Objective

Use synchronized keyword and java.util.concurrent.atomic package to control the order of thread
execution

The java.util.concurrent package has two subpackages: java.util.concurrent.atomic and
java.util.concurrent.locks. In this section we discuss atomic variables in java.util.concurrent.atomic
package from the OCPJP 8 exam perspective.

Often you can see code that acquires and releases locks for implementing primitive/simple operations
like incrementing a variable, decrementing a variable, and so on? (We have already seen an example
on incrementing an integer variable when we discussed synchronized keyword earlier in this chapter.)
Acquiring and releasing locks for such primitive operations is not efficient. In such cases, Java provides an
efficient alternative in the form of atomic variables.

Here is a list of some of the classes in this package and their short description:

•	 AtomicBoolean: Atomically updatable Boolean value.

•	 AtomicInteger: Atomically updatable int value; inherits from the Number class.

•	 AtomicIntegerArray: An int array in which elements can be updated atomically.

•	 AtomicLong: Atomically updatable long value; inherits from Number class.

•	 AtomicLongArray: A long array in which elements can be updated atomically.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

325

•	 AtomicReference<V>: An atomically updatable object reference of type V.

•	 AtomicReferenceArray<E>: An atomically updatable array that can hold object
references of type E (E refers to the base type of elements).

 Only AtomicInteger and AtomicLong extend from Number class but not AtomicBoolean. All other classes
in the java.util.concurrent.atomic subpackage inherit directly from the Object class.

Of the classes in the java.util.concurrency.atomic subpackage, AtomicInteger and AtomicLong
are the most important. Table 11-2 lists important methods in the AtomicInteger class. (The methods in
AtomicLong are analogous to these.)

Table 11-2.  Important Methods in the AtomicInteger Class

Method Short Description

AtomicInteger() Creates an instance of AtomicInteger with initial value 0.

AtomicInteger(int initVal) Creates an instance of AtomicInteger with initial value initVal.

int get() Returns the integer value held in this object.

void set(int newVal) Resets the integer value held in this object to newVal.

int getAndSet(int newValue) Returns the current int value held in this object and sets the value
held in this object to newVal.

boolean compareAndSet(int
expect, int update)

Compares the int value of this object to the expect value, and if they
are equal, sets the int value of this object to the update value.

int getAndIncrement() Returns the current value of the integer value in this object and
increments the integer value in this object. Similar to the behavior of
i++ where i is an int.

int getAndDecrement() Returns the current value of the integer value in this object and
decrements the integer value in this object. Similar to the behavior of
i-- where i is an int.

int getAndAdd(int delta) Returns the integer value held in this object and adds given delta value
to the integer value.

int incrementAndGet() Increments the current value of the integer value in this object and
returns that value. Similar to the behavior of ++i where i is an int.

int decrementAndGet() Decrements the current integer value in this object and returns that
value. Similar to behavior of --i where i is an int.

int addAndGet(int delta) Adds the delta value to the current value of the integer in this object
and returns that value.

int intValue()
long longValue()
float floatValue()
double doubleValue()

Casts the current int value of the object and returns it as int, long,
float, or double values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

326

Let’s try out an example to understand how to use AtomicInteger or AtomicLong. Assume that you
have a counter value that is public and accessible by all threads. How do you update or access this common
counter value safely without introducing the race condition problem (discussed earlier in this chapter)?
Obviously, you can use the synchronized keyword to ensure that the critical section (the code that modifies
the counter value) is accessed by only one thread at a given point in time. The critical section will be very
small, as in

public void run() {
 synchronized(SharedCounter.class) {
 SharedCounter.count++;
 }
}

However, this code is inefficient since it acquires and releases the lock every time just to increment the
value of count. Alternatively, if you declare count as AtomicInteger or AtomicLong (whichever is suitable).
The classes such as AtomicInteger do not use a lock; rather, they internally use volatile variables and a
low-level mechanism known as Compare-And-Set (CAS). For this reason, using AtomicInteger and related
classes is faster than using locks using synchronized keyword.

Listing 11-5 shows how to use AtomicLong in practice.

Listing 11-5.  AtomicVariableTest.java

import java.util.concurrent.atomic.AtomicInteger;
 
// Class to demonstrate how mutating "normal" (i.e., thread unsafe) integers
// and mutating "atomic" (i.e., thread safe) integers are different:
// Mutating a shared Integer object without locks can result in a race condition;
// however, mutating a shared AtomicInteger will not result in a race conditiond.
 
class Counter {
 public static Integer integer = new Integer(0);
 public static AtomicInteger atomicInteger = new AtomicInteger(0);
}
 
class AtomicVariableTest {
 static class Incrementer extends Thread {
 public void run() {
 Counter.integer++;
 Counter.atomicInteger.incrementAndGet();
 }
 }
 static class Decrementer extends Thread {
 public void run() {
 Counter.integer--;
 Counter.atomicInteger.decrementAndGet();
 }
 }
 public static void main(String []args) throws InterruptedException {
 Thread incremeterThread[] = new Incrementer[1000];
 Thread decrementerThread[] = new Decrementer[1000];
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

327

 for(int i = 0; i < 1000; i++) {
 incremeterThread[i] = new Incrementer();
 decrementerThread[i] = new Decrementer();
 incremeterThread[i].start();
 decrementerThread[i].start();
 }
 for(int i = 0; i < 1000; i++) {
 incremeterThread[i].join();
 decrementerThread[i].join();
 }
 System.out.printf("Integer value = %d AtomicInteger value = %d ",
 Counter.integer, Counter.atomicInteger.get());
 }
}

The actual output depends on thread scheduling. In different runs it printed the following outputs:

Integer value = -2 AtomicInteger value = 0
Integer value = 2 AtomicInteger value = 0
Integer value = -1 AtomicInteger value = 0
Integer value = -1 AtomicInteger value = 0
Integer value = 0 AtomicInteger value = 0

Let’s analyze this program. The Counter class has two data members—one of type Integer and the
other of type AtomicInteger—with the same initial value 0.

There are two Thread classes. The Incrementer class has run() method that increments Integer and
AtomicInteger values. On the other hand, Decrementer class has run() method that decrements Integer
and AtomicInteger values.

In this output, notice that incrementing the Integer object could result in a race condition: the final
value of Integer or AtomicInteger after incrementing and decrementing an equal number of times should
always be 0–if not we have a race condition. As you can observe from the output, sometimes for Integer
object it is 0 (meaning no race condition), but most of the time it is not equal to 0 (which means it has race
condition). However, for AtomicInteger, the result is always zero (meaning that it has no race condition). In
other words, this program shows that it is safe to manipulate an AtomicInteger value without any locks.

Use java.util.concurrent Collections
Certification Objective

Use java.util.concurrent collections and classes including CyclicBarrier and CopyOnWriteArrayList

There are many classes and interfaces in the java.util.concurrent package that provide high-level
APIs for concurrent programming. In this section, we will mainly discuss synchronizer classes provided in
this package. Following that, we will briefly cover the important concurrent collection classes provided in
the java.util.concurrent package.

You already understand the low-level concurrency constructs such as the use of the synchronized
keyword and using Runnable interfaces for creating threads. In the case of a shared resource that needs to be
accessed by multiple threads, access and modifications to the shared resource need to be protected.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

328

When you use the synchronized keyword, you employ mutexes to synchronize between threads for
safe shared access. Threads also often needed to coordinate their executions to complete a bigger higher-
level task. It is possible to build higher-level abstractions for thread synchronization. These high-level
abstractions for synchronizing activities of two or more threads are known as synchronizers. Synchronizers
internally make use of the existing low-level APIs for thread coordination.

The synchronizers provided in the java.util.concurrent library and their uses are:

•	 A Semaphore controls access to shared resources. A semaphore maintains a counter
to specify number of resources that the semaphore controls.

•	 CountDownLatch allows one or more threads to wait for a countdown to complete.

•	 The Exchanger class is meant for exchanging data between two threads. This class is
useful when two threads need to synchronize between each other and continuously
exchange data.

•	 CyclicBarrier helps provide a synchronization point where threads may need to
wait at a predefined execution point until all other threads reach that point.

•	 Phaser is a useful feature when few independent threads have to work in phases to
complete a task.

The OCPJP 8 exam objective covers only the CyclicBarrier class and we discuss it with the help of an
example in this section.

CyclicBarrier
There are many situations in concurrent programming where threads may need to wait at a predefined
execution point until all other threads reach that point. CyclicBarrier helps provide such a synchronization
point; see Table 11-3 for the important methods in this class.

Table 11-3.  Important Methods in the CyclicBarrier Class

Method Short Description

CyclicBarrier(int
numThreads)

Creates a CyclicBarrier object with the number of threads waiting on it
specified. Throws IllegalArgumentException if numThreads is negative or zero.

CyclicBarrier(int
parties, Runnable
barrierAction)

Same as the previous constructor; this constructor additionally takes the thread to
call when the barrier is reached.

int await()
int await(long
timeout, TimeUnit
unit)

Blocks until the specified number of threads have called await() on this barrier.
The method returns the arrival index of this thread. This method can throw an
InterruptedException if the thread is interrupted while waiting for other threads
or a BrokenBarrierException if the barrier was broken for some reason (for
example, another thread was timed-out or interrupted).The overloaded method
takes a time-out period as an additional option; this overloaded version throws a
TimeoutException if all other threads aren’t reached within the time-out period.

boolean isBroken() Returns true if the barrier is broken. A barrier is broken if at least one thread in
that barrier was interrupted or timed-out, or if a barrier action failed throwing an
exception.

void reset() Resets the barrier to the initial state. If there are any threads waiting on that
barrier, they will throw the BrokenBarrier exception.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

329

Listing 11-6 is an example that makes use of CyclicBarrier class.

Listing 11-6.  CyclicBarrierTest.java

import java.util.concurrent.CyclicBarrier;
import java.util.concurrent.BrokenBarrierException;
 
// The run() method in this thread should be called only when
// four players are ready to start the game
class MixedDoubleTennisGame extends Thread {
 public void run() {
 System.out.println("All four players ready, game starts \n Love all...");
 }
}
 
// This thread simulates arrival of a player.
// Once a player arrives, he/she should wait for other players to arrive
class Player extends Thread {
 CyclicBarrier waitPoint;
 public Player(CyclicBarrier barrier, String name) {
 this.setName(name);
 waitPoint = barrier;
 this.start();
 }
 public void run() {
 System.out.println("Player " + getName() + " is ready ");
 try {
 waitPoint.await(); // await for all four players to arrive
 } catch(BrokenBarrierException | InterruptedException exception) {
 System.out.println("An exception occurred while waiting... "
 + exception);
 }
 }
}
 
// Creates a CyclicBarrier object by passing the number of threads and the thread to run
// when all the threads reach the barrier
class CyclicBarrierTest {
 public static void main(String []args) {
 // a mixed-double tennis game requires four players;
 // so wait for four players
 // (i.e., four threads) to join to start the game
 System.out.println("Reserving tennis court \n"
 + "As soon as four players arrive, game will start");
 CyclicBarrier barrier = new CyclicBarrier(4, new MixedDoubleTennisGame());
 new Player(barrier, "G I Joe");
 new Player(barrier, "Dora");
 new Player(barrier, "Tintin");
 new Player(barrier, "Barbie");
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

330

The program prints the following:

Reserving tennis court
As soon as four players arrive, game will start
Player Dora is ready
Player G I Joe is ready
Player Tintin is ready
Player Barbie is ready
All four players ready, game starts
 Love all...

Now let’s see how this program works. In the main() method you create a CyclicBarrier object.
The constructor takes two arguments: the number of threads to wait for, and the thread to invoke when
all the threads reach the barrier. In this case, you have four players to wait for, so you create four threads,
with each thread representing a player. The second argument for the CyclicBarrier constructor is the
MixedDoubleTennisGame object since this thread represents the game, which will start once all four players
are ready.

Inside the run() method for each Player thread, you call the await() method on the CyclicBarrier
object. Once the number of awaiting threads for the CyclicBarrier object reaches four, the run() method in
MixedDoubleTennisGame is called.

Concurrent Collections
The java.util.concurrent package provides a number of classes that are thread-safe equivalents
of the ones provided in the collections framework classes in the java.util package. For example,
java.util.concurrent.ConcurrentHashMap is a concurrent equivalent to java.util.HashMap. The main
difference between these two containers is that you need to explicitly synchronize insertions and deletions
with HashMap, whereas such synchronization is built into the ConcurrentHashMap. If you know how to use
HashMap, you know how to use ConcurrentHashMap implicitly. From the OCPJP 8 exam perspective, you only
need to have an overall understanding of the classes in Table 11-4, so we won’t delve into details on how to
make use of these classes. We’ll only cover a detailed example of using CopyOnWriteArrayList.

Table 11-4.  Some Concurrent Collection Classes/Interfaces in the java.util.concurrent Package

Class/Interface Short Description

BlockingQueue This interface extends the Queue interface. In BlockingQueue, if the queue is
empty, it waits (i.e., blocks) for an element to be inserted, and if the queue is
full, it waits for an element to be removed from the queue.

ArrayBlockingQueue This class provides a fixed-sized array based implementation of the
BlockingQueue interface.

LinkedBlockingQueue This class provides a linked-list-based implementation of the BlockingQueue
interface.

DelayQueue This class implements BlockingQueue and consists of elements that are of
type Delayed. An element can be retrieved from this queue only after its delay
period.

PriorityBlockingQueue Equivalent to java.util.PriorityQueue, but implements the BlockingQueue
interface.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

331

CopyOnWriteArrayList Class
Both ArrayList and CopyOnWriteArrayList implement the List interface. There are three main differences
between ArrayList and CopyOnWriteArrayList:

•	 ArrayList is not thread-safe but CopyOnWriteArrayList is thread-safe. That means,
it is unsafe to use ArrayList in contexts where multiple threads are executing
(especially when some of the threads modify the container) but it is safe to use
CopyOnWriteArrayList in this context.

•	 Methods in ArrayList such as remove(), add(), and set() methods can throw
java.util.ConcurrentModificationException if another thread modifies the
ArrayList when one thread is accessing it. However, it is safe to perform these
operations from multiple threads in CopyOnWriteArrayList, and hence methods
such as remove(), add(), and set() do not throw this exception. How? All the active
iterators will still have access to the unmodified version of the container and hence
they remain unaffected; if you try to create an iterator after the modification, you will
get the iterator for the modified container.

•	 You can get an iterator by calling the Iterator() method on a List object. If you
call remove() method when the underlying container is modified, you may get
a ConcurrentModificationException. However, you cannot call the remove()
method on an Iterator of a CopyOnWriteArrayList: it always throws the
UnsupportedOperationException.

The behavior of CopyOnWriteArrayList is sometimes useful even in contexts where multithreading is
not used. For instance, Listing 11-7 shows an ArrayList that is being modified when the iterator executes.

Class/Interface Short Description

SynchronousQueue This class implements BlockingQueue. In this container, each insert() by a
thread waits (blocks) for a corresponding remove() by another thread and vice
versa.

LinkedBlockingDeque This class implements BlockingDeque where insert and remove operations
could block; uses a linked-list for implementation.

ConcurrentHashMap Analogous to Hashtable, but with safe concurrent access and updates.

ConcurrentSkipListMap Analogous to TreeMap, but provides safe concurrent access and updates.

ConcurrentSkipListSet Analogous to TreeSet, but provides safe concurrent access and updates.

CopyOnWriteArrayList Similar to ArrayList, but provides safe concurrent access. When the container
is modified, it creates a fresh copy of the underlying array.

CopyOnWriteArraySet A Set implementation, but provides safe concurrent access and is
implemented using CopyOnWriteArrayList. When the container is modified,
it creates a fresh copy of the underlying array.

Table 11-4.  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

332

Listing 11-7.  ModifyingList.java

import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
 
public class ModifyingList {
 public static void main(String []args) {
 List<String> aList = new ArrayList<>();
 aList.add("one");
 aList.add("two");
 aList.add("three");
 
 Iterator listIter = aList.iterator();
 while(listIter.hasNext()) {
 System.out.println(listIter.next());
 aList.add("four");
 }
 }
}

This program crashes by throwing java.util.ConcurrentModificationException. Why? Because the
iterators of ArrayList are fail-fast; it fails by throwing ConcurrentModificationException if it detects that
the underlying container has changed when it is iterating over the elements in the container. This behavior
is useful in concurrent contexts when one thread modifies the underlying container when another thread is
iterating over the elements of the container.

You can use CopyOnWriteArrayList for making such changes to the underlying container
when iteration is happening. Listing 11-8 is the modified version of Listing 11-7. This version uses a
CopyOnWriteArrayList.

Listing 11-8.  COWList.java

import java.util.Iterator;
import java.util.List;
import java.util.concurrent.CopyOnWriteArrayList;
 
public class COWList {
 public static void main(String []args) {
 List<String> aList = new CopyOnWriteArrayList<>();
 aList.add("one");
 aList.add("two");
 aList.add("three");
 
 Iterator listIter = aList.iterator();
 while(listIter.hasNext()) {
 System.out.println(listIter.next());
 aList.add("four");
 }
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

333

Now the program does not crash, it prints:
 
one
two
three

Observe that the element “four” added three times is not printed as part of the output. This is because
the iterator still has access to the original (unmodified) container that had three elements. If you create a
new iterator and access the elements, you will find that new elements have been added to aList.

Using Callable and ExecutorService Interfaces
Certification Objective

Create worker threads using Runnable, Callable, and use an ExecutorService to concurrently
execute tasks

You can directly create and manage threads in the application by creating Thread objects. However,
if you want to abstract away the low-level details of multi-threaded programming, you can make use of the
Executor interface.

Figure 11-3 shows the important classes and interfaces in the Executor hierarchy. In this section,
you’ll focus on using the Executor and the ExecutorService interfaces. We’ll cover ForkJoinPool later in
this chapter.

Figure 11-3.  Important Classes/Interfaces in the Executor hierarchy

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

334

Executor
Executor is an interface that declares only one method: void execute(Runnable). This may not look
like a significant interface by itself, but its derived classes (or interfaces), such as ExecutorService,
ThreadPoolExecutor, and ForkJoinPool, support useful functionality. We will discuss some of the derived
classes of Executor in more detail later in this chapter. For now, check out Listing 11-9 for a simple example
of the Executor interface to understand how to implement this interface and use it in practice.

Listing 11-9.  ExecutorTest.java

 import java.util.concurrent.Executor;
 
// This Task class implements Runnable, so its a Thread object
class Task implements Runnable {
 public void run() {
 System.out.println("Calling Task.run() ");
 }
}
 
// This class implements Executor interface and should override execute(Runnable) method.
// We provide an overloaded execute method with an additional argument 'times' to create and
// run the threads for given number of times
class RepeatedExecutor implements Executor {
 public void execute(Runnable runnable) {
 new Thread(runnable).start();
 }
 public void execute(Runnable runnable, int times) {
 System.out.printf("Calling Task.run() %d times thro' Executor.execute() %n",
 times);
 for(int i = 0; i < times; i++) {
 execute(runnable);
 }
 }
}
 
// This class spawns a Task thread and explicitly calls start() method.
// It also shows how to execute a Thread using Executor
class ExecutorTest {
 public static void main(String []args) {
 Runnable runnable = new Task();
 System.out.println("Calling Task.run() by directly creating a Thread");
 Thread thread = new Thread(runnable);
 thread.start();
 RepeatedExecutor executor = new RepeatedExecutor();
 executor.execute(runnable, 3);
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

335

Here is the output of this program:

Calling Task.run() by directly creating a Thread
Calling Task.run()
Calling Task.run() 3 times thro' Executor.execute()
Calling Task.run()
Calling Task.run()
Calling Task.run()

In this program, you have a Task class that implements Runnable by providing the definition of the
run() method. The class RepeatedExecutor implements the Executor interface by providing the definition
of the execute(Runnable) method.

Both Runnable and Executor are similar in the sense that they provide a single method for
implementation. In this definition you may have noticed that Executor by itself is not a thread, and you must
create a Thread object to execute the Runnable object passed in the execute() method. However, the main
difference between Runnable and Executor is that Executor is meant to abstract how the thread is executed.
For example, depending on the implementation of the Executor, an Executor may schedule a thread to run
at a certain time, or execute the thread after a certain delay period.

In this program, you have overloaded the execute() method with an additional argument to create
and execute threads a certain number of times. In the main() method, you first create a Thread object and
schedule it for running. After that, you instantiate RepeatedExecutor to execute the thread three times.

Callable and ExecutorService
Callable is an interface that declares only one method: call(). Its full signature is V call() throws
Exception. It represents a task that needs to be completed by a thread. Once the task completes, it returns a
value. For some reason, if the call() method cannot execute or fails, it throws an Exception.

To execute a task using the Callable object, you first create a thread pool. A thread pool is a collection
of threads that can execute tasks. You create a thread pool using the Executors utility class. This class
provides methods to get instances of thread pools, thread factories, and so on.

The ExecutorService interface extends the Executor interface and provides services such as
termination of threads and production of Future objects. Some tasks may take considerable execution time
to complete. So, when you submit a task to the executor service, you get a Future object.

Future represents objects that contain a value that is returned by a thread in the future (i.e., it returns
the value once the thread terminates in the “future”). You can use the isDone() method in the Future class
to check if the task is complete and then use the get() method to fetch the task result. If you call the get()
method directly while the task is not complete, the method blocks until it completes and returns the value
once available.

Here is a simple example to see how these classes work together (Listing 11-10).

Listing 11-10.  CallableTest.java

import java.util.concurrent.Callable;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Future;
import java.util.concurrent.Executors;
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

336

// Factorial implements Callable so that it can be passed to a ExecutorService
// and get executed as a task.
class Factorial implements Callable<Long> {
 long n;
 public Factorial(long n) {
 this.n = n;
 }
 public Long call() throws Exception {
 if(n <= 0) {
 throw new Exception("for finding factorial, N should be > 0");
 }
 long fact = 1;
 for(long longVal = 1; longVal <= n; longVal++) {
 fact *= longVal;
 }
 return fact;
 }
}
 
// Illustrates how Callable, Executors, ExecutorService, and Future are related;
// also shows how they work together to execute a task
class CallableTest {
 public static void main(String []args) throws Exception {
 // the value for which we want to find the factorial
 long N = 20;
 // get a callable task to be submitted to the executor service
 Callable<Long> task = new Factorial(N);
 // create an ExecutorService with a fixed thread pool having one thread
 ExecutorService es = Executors.newSingleThreadExecutor();
 // submit the task to the executor service and store the Future object
 Future<Long> future = es.submit(task);
 // wait for the get() method that blocks until the computation is complete.
 System.out.printf("factorial of %d is %d", N, future.get());
 // done. shutdown the executor service since we don't need it anymore
 es.shutdown();
 }
}

The program prints the following:

factorial of 20 is 2432902008176640000

In this program, you have a Factorial class that implements Callable. Since the task is to compute
the factorial of a number N, the task needs to return a result. You use Long type for the factorial value, so
you implement Callable<Long>. Inside the Factorial class, you define the call() method that actually
performs the task (the task here is to compute the factorial of the given number). If the given value N is
negative or zero, you don’t perform the task and throw an exception to the caller. Otherwise, you loop from 1
to N and find the factorial value.

In the CallableTest class, you first create an instance of the Factorial class. You then need to execute this
task. For the sake of simplicity, you get a singled-threaded executor by calling the newSingleThreadExecutor()
method in the Executors class. Note that you could use other methods such as newFixedThreadPool(nThreads)
to create a thread pool with multiple threads depending on the level of parallelism you need.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

337

Once you get an ExecutorService, you submit the task for execution. ExecutorService abstracts
details such as when the task is executed and how the task is assigned to the threads. You get a reference
to Future<Long> when you call the submit(task) method. From this future reference, you call the get()
method to fetch the result after completing the task. If the task is still executing when you call future.get(),
this get() method will block until the task execution completes. Once the execution is complete, you need
to manually release the ExecutorService by calling the shutdown() method.

Use Parallel Fork/Join Framework
Certification Objective

Use parallel Fork/Join Framework

The Fork/Join framework in the java.util.concurrent package helps simplify writing parallelized
code. The framework is an implementation of the ExecutorService interface and provides an easy-to-use
concurrent platform in order to exploit multiple processors. This framework is very useful for modeling
divide-and-conquer problems. This approach is suitable for tasks that can be divided recursively and
computed on a smaller scale; the computed results are then combined. Dividing the task into smaller tasks is
forking, and merging the results from the smaller tasks is joining.

The Fork/Join framework uses the work-stealing algorithm: when a worker thread completes its work
and is free, it takes (or “steals”) work from other threads that are still busy doing some work. Initially, it will
appear to you that using Fork/Join is a complex task. Once you get familiar with it, however, you’ll realize
that it is conceptually easy and that it significantly simplifies your job. The key is to recursively subdivide the
task into smaller chunks that can be processed by separate threads.

Briefly, the Fork/Join algorithm is designed as follows:

forkJoinAlgorithm() {
 fork (split) the tasks;
 join the tasks;
 compose the results;
}

Here is the pseudo-code of how these steps work:

doRecursiveTask(input) {
 if (the task is small enough to be handled by a thread) {
 compute the small task;
 if there is a result to return, do so
 }
 else {
 divide (i.e., fork) the task into two parts
 call compute() on first task, join() on second task, return combined results
 }
}

Figure 11-4 visualizes how the task is recursively subdivided into smaller tasks and how the partial
results are combined. As shown by the figure, a task is split into two subtasks, and then each subtask is
again split in two subtasks, and so on until each split subtask is computable by each thread. Once a thread
completes the computation, it returns the result for combining it with other results; in this way all the
computed results are combined back.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

338

Useful Classes in the Fork/Join Framework
The following classes play key roles in the Fork/Join framework: ForkJoinPool, ForkJoinTask,
RecursiveTask, and RecursiveAction. Let’s consider these classes in more detail.

•	 ForkJoinPool is the most important class in the Fork/Join framework. It is a thread
pool for running fork/join tasks and it executes an instance of ForkJoinTask. It
executes tasks and manages their lifecycle. Table 11-5 lists the important methods
belonging to this abstract class.

•	 ForkJoinTask<V> is a lightweight thread-like entity representing a task that defines
methods such as fork() and join(). Table 11-6 lists the important methods of this
class.

Table 11-5.  Important Methods in the ForkJoinPool Class

Method Short Description

void execute(ForkJoinTask<?> task) Executes a given task asynchronously.

<T> T invoke(ForkJoinTask<T> task) Executes the given task and returns the
computed result.

<T> List<Future<T>> invokeAll(Collection<?
extends Callable<T>> tasks)

Executes all the given tasks and returns a list of
future objects when all the tasks are completed.

boolean isTerminated() Returns true if all the tasks are completed.

int getParallelism()
int getPoolSize()
long getStealCount()
int getActiveThreadCount()

These are status-checking methods.

<T> ForkJoinTask<T> submit(Callable<T> task)
<T> ForkJoinTask<T> submit(ForkJoinTask<T> task)
ForkJoinTask<?> submit(Runnable task)
<T> ForkJoinTask<T> submit(Runnable task, T
result)

These methods are executing a submitted task.
Overloaded versions take different types of
tasks; returns a Task object or a Future object.

Figure 11-4.  The Fork/Join Framework Uses Divide-and-Conquer to Complete the Task

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

339

•	 RecursiveTask<V> is a task that can run in a ForkJoinPool; the compute() method
returns a value of type V. It inherits from ForkJoinTask.

•	 RecursiveAction is a task that can run in a ForkJoinPool; its compute() method
performs the actual computation steps in the task. It is similar to RecursiveTask, but
does not return a value.

Using the Fork/Join Framework
Let’s ascertain how you can use Fork/Join framework in problem solving. Here are the steps to use the
framework:

•	 First, check whether the problem is suitable for the Fork/Join framework or not.
Remember: the Fork/Join framework is not suitable for all kinds of tasks. This
framework is suitable if your problem fits this description:

•	 The problem can be designed as a recursive task where the task can be
subdivided into smaller units and the results can be combined together.

•	 The subdivided tasks are independent and can be computed separately without
the need for communication between the tasks when computation is in process.
(Of course, after the computation is over, you will need to join them together.)

•	 If the problem you want to solve can be modeled recursively, then define a task class
that extends either RecursiveTask or RecursiveAction. If a task returns a result,
extend from RecursiveTask; otherwise extend from RecursiveAction.

•	 Override the compute() method in the newly defined task class. The compute()
method actually performs the task if the task is small enough to be executed; or
splits the task into subtasks and invoke them. The subtasks can be invoked either by
invokeAll() or fork() method (use fork() when the subtask returns a value). Use
the join() method to get the computed results (if you used fork() method earlier).

Table 11-6.  Important Methods in the ForkJoinTask Class

Method Short Description

boolean cancel(boolean
mayInterruptIfRunning)

Attempts to cancel the execution of the task.

ForkJoinTask<V> fork() Executes the task asynchronously.

V join() Returns the result of the computation when the computation is done.

V get() Returns the result of the computation; waits if the computation is
not complete.

V invoke()
static <T extends
ForkJoinTask<?>> Collection<T>
invokeAll(Collection<T> tasks)

Starts the execution of the submitted tasks; waits until computation
complete, and returns results.

boolean isCancelled() Returns true if the task is cancelled.

boolean isDone() Returns true if the task is completed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

340

•	 Merge the results, if computed from the subtasks.

•	 Then instantiate ForkJoinPool, create an instance of the task class, and start the
execution of the task using the invoke() method on the ForkJoinPool instance.

•	 That’s it—you are done.

Now let’s try solving the problem of how to sum 1..N where N is a large number. You can solve this
problem rescursively using the Fork/Join framework (Listing 11-11).

Listing 11-11.  SumOfNUsingForkJoin.java

import java.util.concurrent.RecursiveTask;
import java.util.concurrent.ForkJoinPool;
 
// This class illustrates how we can compute sum of 1..N numbers using fork/join framework.
// The range of numbers are divided into half until the range can be handled by a thread.
// Once the range summation completes, the result gets summed up together.
 
class SumOfNUsingForkJoin {
 
 private static long N = 1000_000; // one million - we want to compute sum
 // from 1 .. one million
 
 private static final int NUM_THREADS = 10;
 // number of threads to create for
 // distributing the effort
 
 // This is the recursive implementation of the algorithm; inherit from RecursiveTask
 // instead of RecursiveAction since we're returning values.
 static class RecursiveSumOfN extends RecursiveTask<Long> {
 long from, to;
 // from and to are range of values to sum-up
 
 public RecursiveSumOfN(long from, long to) {
 this.from = from;
 this.to = to;
 }
 
 // the method performs fork and join to compute the sum if the range
 // of values can be summed by a threadremember that we want to divide
 // the summation task equally among NUM_THREADS) then, sum the range
 // of numbers from..to using a simple for loop;
 // otherwise, fork the range and join the results
 public Long compute() {
 
 if((to - from) <= N/NUM_THREADS) {
 // the range is something that can be handled
 // by a thread, so do summation
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

341

 long localSum = 0;
 // add in range 'from' .. 'to' inclusive of the value 'to'
 for(long i = from; i <= to; i++) {
 localSum += i;
 }
 System.out.printf("\tSum of value range %d to %d is %d %n",
 from, to, localSum);
 return localSum;
 }
 else {
 // no, the range is too big for a thread to handle,
 // so fork the computation
 // we find the mid-point value in the range from..to
 long mid = (from + to)/2;
 System.out.printf("Forking computation into two ranges: " +
 "%d to %d and %d to %d %n", from, mid, mid, to);
  
 // determine the computation for first half
 // with the range from..mid
 RecursiveSumOfN firstHalf = new RecursiveSumOfN(from, mid);
  
 // now, fork off that task
 firstHalf.fork();
 // determine the computation for second half
 // with the range mid+1..to
 RecursiveSumOfN secondHalf
 = new RecursiveSumOfN(mid + 1, to);
 long resultSecond = secondHalf.compute();
 
 // now, wait for the first half of computing sum to
 // complete, once done, add it to the remaining part
 return firstHalf.join() + resultSecond;
 }
 }
 }
 
 public static void main(String []args) {
 // Create a fork-join pool that consists of NUM_THREADS
 ForkJoinPool pool = new ForkJoinPool(NUM_THREADS);
 
 // submit the computation task to the fork-join pool
 long computedSum = pool.invoke(new RecursiveSumOfN(0, N));
 
 // this is the formula sum for the range 1..N
 long formulaSum = (N * (N + 1)) / 2;
 
 // Compare the computed sum and the formula sum
 System.out.printf("Sum for range 1..%d; computed sum = %d, " +
 "formula sum = %d %n", N, computedSum, formulaSum);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

342

The program prints the following:

Forking computation into two ranges: 0 to 500000 and 500000 to 1000000
Forking computation into two ranges: 500001 to 750000 and 750000 to 1000000
Forking computation into two ranges: 0 to 250000 and 250000 to 500000
Forking computation into two ranges: 500001 to 625000 and 625000 to 750000
Forking computation into two ranges: 750001 to 875000 and 875000 to 1000000
Forking computation into two ranges: 500001 to 562500 and 562500 to 625000
Forking computation into two ranges: 625001 to 687500 and 687500 to 750000
Forking computation into two ranges: 0 to 125000 and 125000 to 250000
Forking computation into two ranges: 250001 to 375000 and 375000 to 500000
 Sum of value range 562501 to 625000 is 37109406250
Forking computation into two ranges: 0 to 62500 and 62500 to 125000
 Sum of value range 687501 to 750000 is 44921906250
Forking computation into two ranges: 250001 to 312500 and 312500 to 375000
Forking computation into two ranges: 750001 to 812500 and 812500 to 875000
 Sum of value range 250001 to 312500 is 17578156250
Forking computation into two ranges: 875001 to 937500 and 937500 to 1000000
 Sum of value range 750001 to 812500 is 48828156250
 Sum of value range 812501 to 875000 is 52734406250
 Sum of value range 312501 to 375000 is 21484406250
Forking computation into two ranges: 125001 to 187500 and 187500 to 250000
 Sum of value range 625001 to 687500 is 41015656250
Forking computation into two ranges: 375001 to 437500 and 437500 to 500000
 Sum of value range 187501 to 250000 is 13671906250
 Sum of value range 62501 to 125000 is 5859406250
 Sum of value range 500001 to 562500 is 33203156250
 Sum of value range 437501 to 500000 is 29296906250
 Sum of value range 125001 to 187500 is 9765656250
 Sum of value range 875001 to 937500 is 56640656250
 Sum of value range 0 to 62500 is 1953156250
 Sum of value range 937501 to 1000000 is 60546906250
 Sum of value range 375001 to 437500 is 25390656250
Sum for range 1..1000000; computed sum = 500000500000, formula sum = 500000500000

Let’s analyze how this program works. In this program, you want to compute the sum of the values in
the range 1..1,000,000. For the sake of simplicity, you decide to use ten threads to execute the tasks. The class
RecursiveSumOfN extends RecursiveTask<Long>. In RecursiveTask<Long>, you use <Long> because the
sum of numbers in each sub-range is a Long value. In addition, you chose RecursiveTask<Long> instead of
plain RecursiveAction because each subtask returns a value. If the subtask does not return a value, you can
use RecursiveAction instead.

In the compute() method, you decide whether to compute the sum for the range or subdivide the task
further using following condition:

(to - from) <= N/NUM_THREADS)

You use this “threshold” value in this computation. In other words, if the range of values is within the
threshold that can be handled by a task, then you perform the computation; otherwise you recursively divide
the task into two parts. You use a simple for loop to find the sum of the values in that range. In the other
case, you divide the range similarly to how you divide the range in a binary search algorithm: for the range
from .. to, you find the mid-point and create two sub-ranges from .. mid and mid + 1 .. to. Once you

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

343

call fork(), you wait for the first task to complete the computation of the sum and spawn another task for
the second half of the computation.

In the main() method, you create a ForkJoinPool with number of threads given by NUM_THREADS. You
submit the task to the fork/join pool and get the computed sum for 1..1,000,000. Now you also calculate the
sum using the formula to sum N continuous numbers.

From the output of the program, you can observe how the task got subdivided into subtasks. You can
also verify from the output that the computed sum and sum computed from the formula are the same,
indicating that your division of tasks for summing the sub-ranges is correct.

In this program, you arbitrarily assumed the number of threads to use was ten threads. This was to
simplify the logic of this program. A better approach to decide the threshold value is to divide the data size
length by the number of available processors. In other words,

threshold value = (data length size) / (number of available processors);

How do you programmatically get the number of available processors? For that you can use the method
Runtime.getRuntime().availableProcessors()).

In Listing 11-11, you used RecursiveTask; however, if a task is not returning a value, then you should
use RecursiveAction. There will be several differences in the program if you use RecursiveAction instead
of RecursiveTask. One change is that you need to extend the task class from RecursiveAction. Also,
compute() method does not return anything. Another change is that you need to use the invokeAll()
method to submit the subtasks to execute. Finally, an obvious change is that you need to carry out the search
in the compute() method instead of summation in the earlier case.

Points to Remember
Remember these points for your OCPJP 8 exam:

•	 It is possible to achieve what the Fork/Join framework offers using basic concurrency
constructs such as start() and join(). However, the Fork/Join framework abstracts
many lower-level details and thus is easier to use. In addition, it is much more
efficient to use the Fork/Join framework instead of handling the threads at lower
levels. Furthermore, using ForkJoinPool efficiently manages the threads and
performs much better than conventional threads pools. For all these reasons, you are
encouraged to use the Fork/Join framework.

•	 Each worker thread in the Fork/Join framework has a work queue, which is
implemented using a Deque. Each time a new task (or subtask) is created, it is pushed
to the head of its own queue. When a task completes a task and executes a join with
another task that is not completed yet, it works smart. The thread pops a new task
from the head of its queue and starts executing rather than sleeping (in order to
wait for another task to complete). In fact, if the queue of a thread is empty, then the
thread pops a task from the tail of the queue belonging to another thread. This is
nothing but a work-stealing algorithm.

•	 It looks obvious to call fork() for both the subtasks (if you are splitting in two
subtasks) and call join() two times. It is correct—but inefficient. Why? Well,
basically you are creating more parallel tasks than are useful. In this case, the original
thread will be waiting for the other two tasks to complete, which is inefficient
considering task creation cost. That is why you call fork() once and call compute()
for the second task.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

344

•	 The placement of fork() and join() calls are very important. For instance, let’s
assume that you place the calls in the following order:

first.fork();
resultFirst = first.join();
resultSecond = second.compute();

This usage is a serial execution of two tasks, since the second task starts executing
only after the first is complete. Thus, it is less efficient even than its sequential
version since this version also includes cost of the task creation. The take-away:
watch your placement of fork/join calls.

•	 Performance is not always guaranteed while using the Fork/Join framework. One of
the reasons we mentioned earlier is the placement of fork/join calls.

Use Parallel Streams
Certification Objective

Use parallel Streams including reduction, decomposition, merging processes, pipelines, and
performance

Streams can be sequential or parallel. When we discussed Stream API (in Chapter 6), we discussed only
sequential streams. In this section, let us discuss parallel streams.

What are parallel streams? Parallel streams split the elements into multiple chunks, process each chunk
with different threads, and (if necessary) combine the results from those threads to evaluate the final result.

In the last section, we discussed the fork/join framework: tasks are executed by recursively splitting
them into sub-tasks and then the sub-tasks are executed in parallel. Parallel streams internally use this
fork/join framework. The process steps should consist of stateless and independent tasks.

Here is an example of counting number of primes from 1 to N. The logic used for checking if a given
number is straightforward is that we check if there is any number divisible from 2 to N/2. Of course we can
simplify the logic to speed-up the computation but our objective here is to show how the parallel streams
work, so we have retained using this simple logic to check if a given number is prime or not. First, let us see
the sequential version of this program (Listing 11-12).

Listing 11-12.  PrimeNumbers.java

import java.util.stream.LongStream;
 
class PrimeNumbers {
 private static boolean isPrime(long val) {
 for(long i = 2; i <= val/2; i++) {
 if((val % i) == 0) {
 return false;
 }
 }
 return true;
 }

www.it-ebooks.info

http://dx.doi.org/10.1007/978-1-4842-1836-5_6
http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

345

 public static void main(String []args) {
 long numOfPrimes = LongStream.rangeClosed(2, 100_000)
 .filter(PrimeNumbers::isPrime)
 .count();
 System.out.println(numOfPrimes);
 }
}

This program prints:

9592

This program correctly reports that there are 9,592 prime numbers till 1,00,000. When we timed it, it
took 2.510 seconds to run (in my machine that has a 2.4 GHz Intel Core i5 dual core processor).

It is very easy to make the computation parallel: we have to call parallel() method provided in the
LongStream interface. The code segment with this change is:

long numOfPrimes = LongStream.rangeClosed(2, 100_000)
 .parallel()
 .filter(PrimeNumbers::isPrime)
 .count();
System.out.println(numOfPrimes);

Because of the call to parallel(), the stream becomes a parallel stream, and the work to be executed
is split and dispatched to be executed by threads available in the fork/join pool. When the computation
of the number of prime numbers is performed in parallel, the time taken now reduces to 1.235 seconds.
This is almost half the time taken when compared to the 2.510 seconds it took when the computation was
performed in the sequential stream.

If you compare the complexity of the code to use fork/join framework (check the code example in
Listing 11-9), the code that uses parallel streams is very simple: all we have to do is just call parallel()
method in the stream!

 When you call the stream() method of the Collection class, you will get a sequential stream. When you
call parallelStream() method of the Collection class, you will get a parallel stream.

You can check if the stream is sequential or parallel by calling the isParallel() method. Here is a
simple code segment that illustrates using is method in a stream:

System.out.println(IntStream.range(1, 10).filter(i -> (i % 2) == 0).isParallel());

This code segment prints: false. Why? Because the underlying stream (is by default) sequential, and
hence the isParallel() method returns false. How about this code segment?

List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5);
System.out.println(ints.parallelStream().filter(i -> (i % 2) == 0).isParallel());

Because the underlying stream is parallel (because of the parallelStream() method call), the
isParallel() method returns true.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

346

 You can convert a sequential stream to a parallel stream by calling the parallel() method; similarly, you
can convert a parallel stream to a sequential stream by calling the sequential() method.

What will this code segment print?

List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5);
System.out.println(ints.parallelStream().filter(i -> (i % 2) == 0).sequential().
isParallel());

This code segment prints: false. Why? Though the created stream is a parallel stream, the call to the
sequential() method has made the stream sequential. Hence, the call isParallel() prints false.

Performing Correct Reductions
To use parallel streams correctly, it is important not to depend on global state. In other words, the
computations should be “side-effect” free. To give an example of wrong use of streams, here is an example
(Listing 11-13).

Listing 11-13.  StringSplitAndConcatenate.java

import java.util.Arrays;
 
class StringConcatenator {
 public static String result = "";
 public static void concatStr(String str) {
 result = result + " " + str;
 }
}
 
class StringSplitAndConcatenate {
 public static void main(String []args) {
 String words[] = "the quick brown fox jumps over the lazy dog".split(" ");
 Arrays.stream(words).forEach(StringConcatenator::concatStr);
 System.out.println(StringConcatenator.result);
 }
}

This program prints:

the quick brown fox jumps over the lazy dog

In this program, we are splitting the words in the string "the quick brown fox jumps over the
lazy dog" and then combining it again. For combining the words, we are using a global variable result and
modifying it by passing the StringConcatenator::concatStr() method reference in the forEach() method
of the stream. Because the underlying stream is a sequential stream, we don’t seem to get into trouble and
we were able to reconstruct the string correctly. However, here is a modified version of the program that
converts the stream to a parallel stream by calling parallel().

Arrays.stream(words).parallel().forEach(StringConcatenator::concatStr);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

347

With this single change, we get garbled string! When we ran this program it printed:

quick the fox brown lazy dog the jumps

When we ran it again, it printed:

fox quick the jumps lazy dog

Clearly, there is something seriously going wrong when we used the parallel() method. What is
happening?

When the stream is parallel, the task is split into multiple sub-tasks and different threads execute it.
The calls to forEach(StringConcatenator::concatStr) now access the globally accessible variable result
in StringConcatenator class. Hence this program suffers from a race condition problem (discussed earlier
in this chapter). How do we fix this problem? We need to get rid of modifying the global state and keep the
reduction localized. We can use the reduce() method instead, as in Listing 11-14. Remember that you can
use reduce() method on a stream when you want to perform repeated operations on stream elements to
compute a result.

Listing 11-14.  CorrectStringSplitAndConcatenate.java

import java.util.Arrays;
import java.util.Optional;
 
class CorrectStringSplitAndConcatenate {
 public static void main(String []args) {
 String words[] = "the quick brown fox jumps over the lazy dog".split(" ");
 Optional<String> originalString =
 (Arrays.stream(words).parallel().reduce((a, b) -> a + " " + b));
 System.out.println(originalString.get());
 }
}

This program correctly prints:

the quick brown fox jumps over the lazy dog

If you remove the parallel() method or retain it (it does not matter), this program will correctly
concatenate the words to print the original string because we have used the reduce operation correctly
without depending on global state changes.

Parallel Streams and Performance
An important note of caution on using parallel streams: it is not always the case that the performance with
parallel streams is better than sequential streams. Only if the operations are performed on a significantly
large number of elements, the operations are computationally expensive, and the data structures are
efficiently splittable, you will see performance improvements with parallel streams; otherwise, execution
with a parallel stream may be slower than with sequential streams!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

348

By default, the fork/join thread pool has the number of threads is typically equal to the number of
processors you have in your machine. You can get the number of processors in your machine using this
call: Runtime.getRuntime().availableProcessors(). This default configuration is good enough for most
uses of parallel streams. Alternatively, you can check the default parallelism by using the getParallelism()
method in the ForkJoinPool:

System.out.println(ForkJoinPool.commonPool().getParallelism());
// it printed 3 in my machine

The getParallelism() method gets the value from the system property java.util.concurrent.
ForkJoinPool.common.parallelism. You can use the System.setProperty method to modify the value of
this system property (Listing 11-15).

Listing 11-15.  Parallelism.java

import java.util.concurrent.ForkJoinPool;
 
public class Parallelism {
 public static void main(String []args) {
 System.setProperty("java.util.concurrent.ForkJoinPool.common.parallelism", "8");
 System.out.println(ForkJoinPool.commonPool().getParallelism());
 }
}

When executed, this program prints: 8. An alternative to using System.setProperty() is to set this
property by passing it as a JVM parameter when invoking the JVM, as in:

java -Djava.util.concurrent.ForkJoinPool.common.parallelism=8 GetParallelism

Summary
Let us briefly review the key points for each certification objective in this chapter. Please read it before
appearing for the exam.

Create worker threads using Runnable, Callable, and use an ExecutorService to concurrently
execute tasks

•	 You can create classes that are capable of multi-threading by implementing the
Runnable interface or by extending the Thread class.

•	 Always implement the run() method. The default run() method in Thread does
nothing.

•	 Call the start() method and not the run() method directly in code. (Leave it to the
JVM to call the run() method.)

•	 The Callable interface represents a task that needs to be completed by a thread.
Once the task completes, the call() method of a Callable implementation returns
a value.

•	 The Executor hierarchy abstracts the lower-level details of multi-threaded
programming and offers high-level user-friendly concurrency constructs.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

349

Identify potential threading problems among deadlock, starvation, livelock, and race conditions

•	 Concurrent reads and writes to resources may lead to the race condition problem.

•	 You must use thread synchronization (i.e., locks) to access shared values and avoid
race conditions. Java provides thread synchronization features to provide protected
access to shared resources—namely, synchronized blocks and synchronized
methods.

•	 Using locks can introduce problems such as deadlocks. When a deadlock happens,
the process will hang and will never terminate.

•	 A deadlock typically happens when two threads acquire locks in opposite order.
When one thread has acquired one lock and waits for another lock, another thread
has acquired that other lock and waits for the first lock to be released. So, no progress
is made and the program deadlocks.

•	 When a change done by a thread is repeatedly undone by another thread, both
the threads are busy but the application as a whole does not make progress; this
situation is known as a livelock.

•	 The situation in which low-priority threads “starve” for a long time trying to obtain
the lock is known as lock starvation.

Use synchronized keyword and java.util.concurrent.atomic package to control the order of thread
execution

•	 In synchronized blocks, you use the synchronized keyword for a reference variable
and follow it by a block of code. A thread has to acquire a lock on the synchronized
variable to enter the block; when the execution of the block completes, the thread
releases the lock.

•	 Java provides an efficient alternative in the form of atomic variables where one needs
to acquire and release a lock just to carry out primitive operations on variables.

•	 A lock ensures that only one thread accesses a shared resource at a time.

•	 Performing locking and unlocking for performing operations on primitive
types is inefficient. A better alternative is to use atomic variables provided in
java.util.concurrent.atomic package including AtomicBoolean, AtomicInteger,
AtomicIntegerArray, AtomicLong, AtomicLongArray, AtomicReference<V>, and
AtomicReferenceArray<E>.

Use java.util.concurrent collections and classes including CyclicBarrier and CopyOnWriteArrayList

•	 Semaphore controls access to one or more shared resources.

•	 CountDownLatch allows threads to wait for a countdown to complete.

•	 Exchanger supports exchanging data between two threads.

•	 Phaser is used to support a synchronization barrier.

•	 CyclicBarrier enables threads to wait at a predefined execution point.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

350

•	 The java.util.concurrent package provides a number of classes that are thread-
safe equivalents of the ones provided in the collections framework classes in the
java.util package; for example, java.util.concurrent.ConcurrentHashMap is a
concurrent equivalent to java.util.HashMap.

•	 CopyOnWriteArrayList is similar to ArrayList, but provides safe concurrent access.
When you modify a CopyOnWriteArrayList, a fresh copy of the underlying array is
created.

Use Parallel Fork/Join Framework

•	 The Fork/Join framework is a portable means of executing a program with decent
parallelism.

•	 The framework is an implementation of the ExecutorService interface and provides
an easy-to-use concurrent platform in order to exploit multiple processors.

•	 This framework is very useful for modeling divide-and-conquer problems.

•	 The Fork/Join framework uses the work-stealing algorithm: when a worker thread
completes its work and is free, it takes (or “steals”) work from other threads that are
still busy doing some work.

•	 The work-stealing technique results in decent load balancing thread management
with minimal synchronization cost.

•	 ForkJoinPool is the most important class in the Fork/Join framework. It is a thread
pool for running fork/join tasks—it executes an instance of ForkJoinTask. It
executes tasks and manages their lifecycles.

•	 ForkJoinTask<V> is a lightweight thread-like entity representing a task that defines
methods such as fork() and join().

Use parallel Streams including reduction, decomposition, merging processes, pipelines, and
performance

•	 Parallel streams split the elements into multiple chunks, process each chunk with
different threads, and (if necessary) combine the results from those threads to
evaluate the final result.

•	 When you call the stream() method of the Collection class, you will get a
sequential stream. When you call the parallelStream() method of the Collection
class, you will get a parallel stream.

•	 Parallel streams internally use the fork/join framework. To use parallel streams
correctly, the process steps should consist of stateless and independent tasks.

•	 You can convert a sequential stream to a parallel stream by calling the parallel()
method; similarly, you can convert a parallel stream to a sequential stream by calling
the sequential() method.

•	 You can check if the stream is sequential or parallel by calling the isParallel()
method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

351

Q0075estion Time

1.	 Here is a class named PingPong that extends the Thread class. Which of the
following PingPong class implementations correctly prints “ping” from the
worker thread and then prints “pong” from the main thread?

A.	 

class PingPong extends Thread {
 public void run() {
 System.out.println("ping ");
 }
 public static void main(String []args) {
 Thread pingPong = new PingPong();
 System.out.print("pong");
 }
 }

B.	 

class PingPong extends Thread {
 public void run() {
 System.out.println("ping ");
 }
 public static void main(String []args) {
 Thread pingPong = new PingPong();
 pingPong.run();
 System.out.print("pong");
 }
 }

C.	 

class PingPong extends Thread {
 public void run() {
 System.out.println("ping");
 }
 public static void main(String []args) {
 Thread pingPong = new PingPong();
 pingPong.start();
 System.out.println("pong");
 }
}

D.	 

class PingPong extends Thread {
 public void run() {
 System.out.println("ping");
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

352

 public static void main(String []args) throws InterruptedException{
 Thread pingPong = new PingPong();
 pingPong.start();
 pingPong.join();
 System.out.println("pong");
 }
}

2.	 You’ve written an application for processing tasks. In this application, you’ve
separated the critical or urgent tasks from the ones that are not critical or
urgent. You’ve assigned high priority to critical or urgent tasks.

In this application, you find that the tasks that are not critical or urgent are
the ones that keep waiting for an unusually long time. Since critical or urgent
tasks are high priority, they run most of the time. Which one of the following
multi-threading problems correctly describes this situation?

A.	 Deadlock

B.	 Starvation

C.	 Livelock

D.	R ace condition

3.	 Which of the following two definitions of Sync (when compiled in separate
files) will compile without errors?

A.	 

class Sync {
 public synchronized void foo() {}
}

B.	 
abstract class Sync {
 public synchronized void foo() {}
}

C.	 

abstract class Sync {
 public abstract synchronized void foo();
}
D.	 

interface Sync {
 public synchronized void foo();
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

353

4.	 Consider the following program:

import java.util.concurrent.atomic.*;
 
class AtomicIntegerTest {
 static AtomicInteger ai = new AtomicInteger(10);
 public static void check() {
 assert (ai.intValue() % 2) == 0;
 }
 public static void increment() {
 ai.incrementAndGet();
 }
 public static void decrement() {
 ai.getAndDecrement();
 }
 public static void compare() {
 ai.compareAndSet(10, 11);
 }
 public static void main(String []args) {
 increment();
 decrement();
 compare();
 check();
 System.out.println(ai);
 }
}

The program is invoked as follows:

java -ea AtomicIntegerTest

What is the expected output of this program?

A.	 It prints 11

B.	 It prints 10

C.	 It prints 9

D.	 It crashes throwing an AssertionError

5.	 Which one of the following options correctly makes use of Callable that will
compile without any errors?

A.	 import java.util.concurrent.Callable;

class CallableTask implements Callable {
 public int call() {
 System.out.println("In Callable.call()");
 return 0;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

354

B.	 import java.util.concurrent.Callable;

class CallableTask extends Callable {
 public Integer call() {
 System.out.println("In Callable.call()");
 return 0;
 }
}

C.	 import java.util.concurrent.Callable;

class CallableTask implements Callable<Integer> {
 public Integer call() {
 System.out.println("In Callable.call()");
 return 0;
 }
}

D.	 import java.util.concurrent.Callable;

class CallableTask implements Callable<Integer> {
 public void call(Integer i) {
 System.out.println("In Callable.call(i)");
 }
}

6.	 Choose the correct option based on this program:

import java.util.concurrent.*;
import java.util.*;
class COWArrayListTest {
 public static void main(String []args) {
 ArrayList<Integer> aList =
 new CopyOnWriteArrayList<Integer>(); // LINE A
 aList.addAll(Arrays.asList(10, 20, 30, 40));
 System.out.println(aList);
 }
}

A.	 When executed the program prints the following: [10, 20, 30, 40].

B.	 When executed the program prints the following: CopyOnWriteArrayList.class.

C.	T he program does not compile and results in a compiler error in line marked
with comment LINE A.

D.	 When executed the program throws a runtime exception
ConcurrentModificationException.

E.	 When executed the program throws a runtime exception
InvalidOperationException.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

355

7.	 Which one of the following methods return a Future object?

A.	T he overloaded replace() methods declared in the ConcurrentMap interface

B.	T he newThread() method declared in the ThreadFactory interface

C.	T he overloaded submit() methods declared in the ExecutorService interface

D.	T he call() method declared in the Callable interface

Answers:

1.	 D.

class PingPong extends Thread {
 public void run() {
 System.out.println("ping");
 }
 public static void main(String []args) throws InterruptedException{
 Thread pingPong = new PingPong();
 pingPong.start();
 pingPong.join();
 System.out.println("pong");
 }
}

The main thread creates the worker thread and waits for it to complete (which
prints “ping”). After that it prints “pong”. So, this implementation correctly prints
“ping pong”.

Why are the other options wrong?

Option a) The main() method creates the worker thread, but doesn’t start it. So, the
code given in this option only prints “pong”.

Option b) The program always prints “ping pong”, but it is misleading. The code in
this option directly calls the run() method instead of calling the start() method.
So, this is a single threaded program: both “ping” and “pong” are printed from the
main thread.

Option c) The main thread and the worker thread execute independently without
any coordination. (Note that it does not have a call to join() in the main method.)
So, depending on which thread is scheduled first, you can get “ping pong” or “pong
ping” printed.

2.	 B. Starvation

The situation in which low-priority threads keep waiting for a long time to acquire
the lock and execute the code in critical sections is known as starvation.

3.	 A. and B.

Abstract methods (in abstract classes or interfaces) cannot be declared
synchronized, hence the options C and D are incorrect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

356

4.	 D. It crashes throwing an AssertionError.

The initial value of AtomicInteger is 10. Its value is incremented by 1 after
calling incrementAndGet(). After that, its value is decremented by 1 after calling
getAndDecrement(). The method compareAndSet(10, 11) checks if the current
value is 10, and if so sets the atomic integer variable to value 11. Since the assert
statement checks if the atomic integer value % 2 is zero (that is, checks if it is an
even number), the assert fails and the program results in an AssertionError.

5.	 C.

import java.util.concurrent.Callable;
 
class CallableTask implements Callable<Integer> {
 public Integer call() {
 System.out.println("In Callable.call()");
 return 0;
 }
}

The Callable interface is defined as follows:

public interface Callable<V> {
 V call() throws Exception;
}

In option A), the call() method has the return type int, which is incompatible with
the return type expected for overriding the call method and so will not compile.

In option B), the extends keyword is used, which will result in a compiler
(since Callable is an interface, the implements keyword should be used).

Option C) correctly defines the Callable interface providing the type parameter
<Integer>. The same type parameter Integer is also used in the return type of
the call() method that takes no arguments, so it will compile without errors.

In option D), the return type of call() is void and the call() method also takes a
parameter of type Integer. Hence, the method declared in the interface Integer
call() remains unimplemented in the CallableTask class, so the program will not
compile.

6.	 C. The program does not compile and results in a compiler error in the line marked
with comment LINE A.

The class CopyOnWriteArrayList does not inherit from ArrayList, so an
attempt to assign a CopyOnWriteArrayList to an ArrayList reference will
result in a compiler error. Note that the ArrayList suffix in the class named
CopyOnWriteArrayList could be misleading as these two classes do not share an
IS-A relationship.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 11 ■ Java Concurrency

357

7.	 C. The overloaded submit() methods declared in ExecutorService interface

Option A) The overloaded replace() methods declared in the ConcurrentMap
interface remove an element from the map and return the success status
(a Boolean value) or the removed value.

Option B) The newThread() is the only method declared in the ThreadFactory
interface and it returns a Thread object as the return value.

Option C) The ExecutorService interface has overloaded submit() method that
takes a task for execution and returns a Future representing the pending results of
the task.

Option D) The call() method declared in Callable interface returns the result of
the task it executed.

www.it-ebooks.info

http://www.it-ebooks.info/

359

Chapter 12

Building Database Applications
with JDBC

Certification Objectives

Describe the interfaces that make up the core of the JDBC API including the Driver, Connection,
Statement, and ResultSet interfaces and their relationship to provider implementations

Identify the components required to connect to a database using the DriverManager class including
the JDBC URL

Submit queries and read results from the database including creating statements, returning result
sets, iterating through the results, and properly closing result sets, statements, and connections

JDBC (Java Database Connectivity) is an important Java API that defines how a client accesses a
database. As such, it is critical in building large-scale enterprise Java solutions.

At a high level, interacting with a database involves the following steps:

	 1.	 Establish a connection to a database.

	 2.	 Execute SQL queries to retrieve, create, or modify tables in the database.

	 3.	 Close the connection to the database.

Java provides a set of APIs (JDBC) to carry out these activities with databases. You can use JDBC to
establish a connection to a database, execute your SQL query, and close the connection with the database.
The benefit of JDBC is that you are not writing a program for a specific database. JDBC creates a loose
coupling between your Java program and the type of database used. For instance, databases may differ in
how they establish a connection (the API name may differ, and so on). JDBC hides all the heterogeneity
of these databases and offers a single set of APIs you can use to interact with all types of databases. Note
that JDBC supports only relational databases such as MySQL, Oracle, Microsoft SQL, and DB2. It does not
support new-generation databases (also known as NoSQL databases) such as MongoDB and Neo4j.

From an OCPJP 8 exam perspective, you are expected to know how to connect to a database using JDBC
and perform database operations such as inserting, updating, and creating database entities. You are also
expected to know how to submit queries and read results from the database and properly release database
resources.

The JDBC classes and interfaces are part of the packages java.sql.* and javax.sql.*. This chapter
assumes that you’re already familiar with SQL queries and have some basic understanding of database
concepts. The chapter describes JDBC 4.2, which is part of the Java SE 8 release.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

360

Introduction to JDBC
Certification Objective

Describe the interfaces that make up the core of the JDBC API including the Driver, Connection,
Statement, and ResultSet interfaces and their relationship to provider implementations

Let’s examine the vital components of JDBC and how these components work together to achieve
seamless integration with databases. A simplified architecture of JDBC is represented in Figure 12-1. A Java
application uses JDBC APIs to interact with databases. JDBC APIs interact with the JDBC driver manager to
transparently connect and perform various database activities with different types of databases. The JDBC
driver manager uses various JDBC drivers to connect to their specific DBMSs.

JDBC drivers and the driver manager play a key role in realizing the objective of JDBC. JDBC drivers are
specifically designed to interact with their respective DBMSs. The driver manager works as a directory of
JDBC drivers—it maintains a list of available data sources and their drivers. The driver manager chooses an
appropriate driver to communicate with the respective DBMS. It can manage multiple concurrent drivers
connected to their respective data sources.

You can see in the figure that the complexity of heterogeneous interactions is delegated to the JDBC
driver manager and JDBC drivers. Low-level details and the associated complexity are hidden from the
application developer by the JDBC API.

Figure 12-1.  JDBC architecture

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

361

Setting Up the Database
Before you begin exploring JDBC APIs and their usage, you must set up a database with which to work.
The database needs to be configured properly before you can start writing JDBC programs. You can use
any database. The examples in this chapter use MySQL to explain various aspects of JDBC APIs because
this database is free and widely available. This section shows the steps to set up a MySQL database on
your machine, assuming that you use Windows (if you are using a different operating system, the steps will
slightly differ):

	 1.	 Download the latest MySQL installer from the MySQL download page
(www.mysql.com/downloads/mysql).

	 2.	 Invoke the MySQL installer, and follow all the steps shown by the installation
wizard. Keep the default values, and complete the installation. The installer asks
you to provide a root/admin password; remember it, because it’s used in the
examples.

	 3.	 Invoke the MySQL command-line client (in our case, it is MySQL 5.5 Command
Line Client, shown on the Start menu). You see a MySQL prompt once you
provide the root/admin password.

The following code sets up a database and creates two records:

Enter password: ********
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.5.27 MySQL Community Server (GPL)
 
Copyright (c) 2000, 2011, Oracle and/or its affiliates. All rights reserved.
 
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names
may be trademarks of their respective owners.
 
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
 
mysql> /* Let's create a database for our use.*/
 
mysql> create database addressBook;
Query OK, 1 row affected (0.01 sec)
 
mysql> /* Now, let's create a table in this database and insert two records for our use
later. */
 
mysql> use addressBook;
Database changed
 
mysql> create table contact (id int not null auto_increment, firstName varchar(30) Not null,
lastName varchar(30), email varchar(30), phoneNo varchar(13), primary key (id));
Query OK, 0 rows affected (0.20 sec)
 
mysql> insert into contact values (default, 'Michael', 'Taylor', 'michael@abc.com',
'+919876543210');
Query OK, 1 row affected (0.10 sec)
 

www.it-ebooks.info

http://www.mysql.com/downloads/mysql
http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

362

mysql> insert into contact values (default, 'William', 'Becker', 'william@abc.com',
'+449876543210');
Query OK, 1 row affected (0.03 sec)
 
mysql> select * from contact;
+----+-----------+----------+-----------------+---------------+
| id | firstName | lastName | email | phoneNo |
+----+-----------+----------+-----------------+---------------+
| 1 | Michael | Taylor | michael@abc.com | +919876543210 |
| 2 | William | Becker | william@abc.com | +449876543210 |
+----+-----------+----------+-----------------+---------------+
2 rows in set (0.00 sec)
 
mysql> /* That's it. Our database is ready to use now.*/

Connecting to a Database
This section discusses how to programmatically connect to a database. First, let’s briefly cover the
Connection interface.

The Connection Interface
The Connection interface of the java.sql package represents a connection from application to the database.
It is a channel through which your application and the database communicate. Table 12-1 lists important
methods in the Connection interface. All of these methods throw SQLExceptions, so this isn’t mentioned in
the table.

Table 12-1.  Important Methods in the Connection Interface

Method Description

Statement createStatement() Creates a Statement object that can be used to send SQL statements to
the database.

PreparedStatement
prepareStatement(String sql)

Creates a PreparedStatement object that can contain SQL statements.
The SQL statement can have IN parameters; they may contain ?
symbol(s), which are used as placeholders for passing actual values later.

CallableStatement
prepareCall(String sql)

Creates a CallableStatement object for calling stored procedures in
the database. The SQL statement can have IN or OUT parameters; they
may contain ? symbol(s), which are used as placeholders for passing
actual values later.

DatabaseMetaData
getMetaData()

Gets the DataBaseMetaData object. This metadata contains database
schema information, table information, and so on, which is especially
useful when you don’t know the underlying database.

Clob createClob() Returns a Clob object (Clob is the name of the interface). Character
Large Object (CLOB) is a built-in type in SQL; it can be used to store a
column value in a row of a database table.

(continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

363

Connecting to the Database Using DriverManager

Certification Objective

Identify the components required to connect to a database using the DriverManager class including
the JDBC URL

The first step in communicate with your database is to set up a connection between your application
and the database server. Establishing a connection requires understanding the database URL, so let’s discuss
it now.

Here is the general format of the JDBC URL:

jdbc:<subprotocol>:<subname>

An example of a URL string is jdbc:mysql://localhost:3306/:

•	 jdbc (<protocol>) is the same for all DBMSs.

•	 <subprotocol> differs for each DBMS—it is mysql in this case. Sometimes it includes
the vendor name (absent in this example).

•	 The format of <subname> depends on the database, but its general format is
//<server>:<port>/database. <server> depends on the location in which you
host the database. Each DBMS uses a specific <port> number (3306 in the case of
MySQL). Finally, the database name is provided

Here are few more examples:

jdbc:postgresql://localhost/test
jdbc:oracle://127.0.0.1:44000/test
jdbc:microsoft:sqlserver://himalaya:1433

Now, let’s write a simple application to acquire a connection (see Listing 12-1).

Method Description

Blob createBlob() Returns a Blob object (Blob is the name of the interface). Binary Large
Object (BLOB) is a built-in type in SQL; it can be used to store a column
value in a row of a database table.

void setSchema(String schema) When passed the schema name, sets this Connection object to the
database schema to access.

String getSchema() Returns the schema name of the database associated with this
Connection object; returns null if no schema is associated with it.

Table 12-1.  (continued)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

364

Listing 12-1.  DbConnect.java

import java.sql.Connection;
import java.sql.DriverManager;
 
// The class attempts to acquire a connection with the database
class DbConnect {
 public static void main(String[] args) {
 // URL points to JDBC protocol: mysql subprotocol;
 // localhost is the address of the server where we installed our
 // DBMS (i.e. on local machine) and 3306 is the port on which
 // we need to contact our DBMS
 String url = "jdbc:mysql://localhost:3306/";
 
 // we are connecting to the addressBook database we created earlier
 String database = "addressBook";
 // we login as "root" user with password "mysql123"
 String userName = "root";
 String password = "mysql123";
 
 try (Connection connection = DriverManager.getConnection
 (url + database, userName, password)){
 System.out.println("Database connection: Successful");
 } catch (Exception e) {
 System.out.println("Database connection: Failed");
 e.printStackTrace();
 }
 }
}

Let’s analyze the program step by step:

	 1.	 The URL jdbc:mysql://localhost:3306/ indicates that jdbc is the protocol
and mysql is a subprotocol; localhost is the address of the server where we
installed our DBMS (the local machine), and 3306 is the port on which to contact
the DBMS. (Note that this port number is different when you use some other
database. We used the default port number provided by the MySQL database,
which can be changed if required. Additionally, if you are using another
database, the subprotocol also changes.) You need to use the addressBook
database with root credentials.

	 2.	 You can get a connection object by invoking the DriverManager.getConnection()
method. The method expects the URL of the database along with a database
name, username, and password.

	 3.	 You need to close the connection before exiting the program. This example uses
a try-with-resources statement; hence the close() method for the connection
is automatically called.

	 4.	 If anything goes wrong, you get an exception. In that case, the program prints the
exception’s stack trace.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

365

Go ahead and run the program. Here is the output:

Database connection: Failed
java.sql.SQLException: No suitable driver found for jdbc:mysql://localhost:3306/addressBook
 at java.sql.DriverManager.getConnection(DriverManager.java:604)
 at java.sql.DriverManager.getConnection(DriverManager.java:221)
 at DbConnect.main(DbConnect.java:16)

Oops! Why did you get this SQLException? When you attempt to connect to the database using JDBC,
the DriverManager searches for the MySQL driver. You need to explicitly install the relevant drivers—they
are not part of JDK.

You can download the connector for MySQL from its download page (http://dev.mysql.com/
downloads/connector/j). Do not forget to add the path of the connector to the CLASSPATH. If the connector
name is mysql-connector-java-5.1.21-bin.jar, stored in C:\mysql-connector-java-5.1.21, then add
c:\ mysql-connector-java-5.1.21\mysql-connector-java-5.1.21-bin.jar to the CLASSPATH .

It is a common mistake to forget to add the path of the jar in the CLASSPATH environment variable. In
this case, the JDBC API will not be able to locate the JDBC driver and will throw an exception. Remember,
entering the path of the jar is not enough: you need to add the jar name along with the full path to the
CLASSPATH variable or pass the jar file’s path with the –cp command when invoking the JVM.

Update the CLASSPATH variable and then try again. You may get another exception:

Database connection: Failed
java.sql.SQLException: Access denied for user 'root'@'localhost' (using password: YES)
 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:1074)
 [... rest of the stack trace elided ...]

This program gives the username “root” and password “mysql123”. If you’ve set the root user password
to something else, you’ll get this exception with the message “access denied for user.” There are two ways to
fix this problem. The first way is to change the program to give your password instead of the “mysql123” used
in this program. The second way is to reset the password in your database. For MySQL, you can reset the
password as follows for the user “root”:

UPDATE mysql.user SET Password=PASSWORD('mysql123') WHERE User='root';
FLUSH PRIVILEGES;

Here is the output when the program runs successfully:

Database connection: Successful

When you see this output, it means you are able to establish a connection with the database. If you want
to try the programs in the rest of this chapter, you should get this program working in your system; you need
to establish a connection to query or update the database.

 You’ve already seen two examples of SQLException thrown from the JDBC API. When you get a
SQLException, you can rarely do anything in the program to recover from it. In a real-world application, you can
wrap it as a higher-level exception and rethrow it to the calling component. To save space in the chapter’s code
segments, we print the stack trace of the exception and ignore it in the programs.

www.it-ebooks.info

http://dev.mysql.com/downloads/connector/j
http://dev.mysql.com/downloads/connector/j
http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

366

Understanding he DriverManager Class
The DriverManager class helps establish the connection between the program (the user) and the JDBC
drivers. This class also keeps track of different data sources and JDBC drivers. Hence, there is no need to
explicitly load the JDBC driver: DriverManager searches for a suitable driver and, if found, automatically
loads it when you call the getConnection() method. Listing 12-1 contains the following code to get the
connection (given within a try-with-resources statement) when you don’t explicitly load the JDBC driver:

Connection connection = DriverManager.getConnection(url + database, userName, password);

The driver manager also manages multiple concurrent drivers connected to their respective data
sources. Table 12-2 lists other important methods provided in the DriverManager class, including the
overloaded versions of getConnection().

Using the getDriver() method, you can load the driver by passing the database URL:

String url = "jdbc:mysql://localhost:3306/";
Driver driver = DriverManager.getDriver(url);
System.out.println(driver.getClass().getName());

This code segment prints com.mysql.jdbc.Driver—this is the fully qualified name of the MySQL JDBC
driver, and DriverManager was able to load it. From this Driver object, you can establish a connection by
calling the connect() method and passing the database URL and the optional Properties file reference:

Connection connection = driver.connect(url, /*properties = */ null);

In the Properties file, you can provide the username and password in addition to any other details.

Table 12-2.  Important Methods in the DriverManager Class

Method Description

static Connection getConnection(String url)
static Connection getConnection(String url,
Properties info)
static Connection getConnection(String url,
String user, String password) ()

Attempts to establish a connection given the
database URL. Additionally, you can provide
Information such as a username and password
directly as String arguments or through
a Properties file. This method throws an
SQLException if the connection can’t be established.

static Driver getDriver(String url) Searches the list of registered JDBC drivers and,
if found, returns the appropriate Driver object
matching the database URL.

static void registerDriver(Driver driver) Add to the list of registered Driver objects in the
DriverManager.

static void deregisterDriver(Driver driver) Deregisters a driver from the list of registered Driver
objects in the DriverManager

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

367

Querying and Updating the Database
Certification Objective

Submit queries and read results from the database including creating statements, returning result
sets, iterating through the results, and properly closing result sets, statements, and connections

Once you establish a connection to the desired database, you can perform various operations on it.
Common operations are known by the acronym CRUD (create, read, update, delete). You can read data
using a SELECT SQL statement and modify the database using INSERT, UPDATE, and DELETE. JDBC provides
two important interfaces to support queries: Statement and ResultSet. The next two subsections discuss
these interfaces.

Statement Interface
As the name suggests, Statement is a SQL statement that can be used to communicate a SQL statement to
the connected database and receive results from the database. You can form SQL queries using Statement
and execute it using APIs provided in the Statement interface (or one of its derived interfaces). Statement
comes in three flavors: Statement, PreparedStatement, and CallableStatement; these are shown in the
inheritance hierarchy in Figure 12-2.

Figure 12-2.  The Statement interface and its subinterfaces

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

368

How do you choose from these three Statement interfaces for a given situation? Let’s look at the
differences:

•	 Statement: Sends a SQL statement to the database without any parameters. For
typical uses, you need to use this interface. You can create an instance of Statement
using the createStatement() method in the Connection interface.

•	 PreparedStatement: Represents a precompiled SQL statement that can be
customized using IN parameters. Usually, it is more efficient than a Statement
object; hence, it is used to improve performance, especially if a SQL statement is
executed multiple times. You can get an instance of PreparedStatement by calling
the preparedStatement() method in the Connection interface.

•	 CallableStatement: Executes stored procedures. CallableStatement instances can
handle IN as well as OUT and INOUT parameters. You need to call the prepareCall()
method in the Connection interface to get an instance of this class.

Once you have created an appropriate Statement object, you are ready to execute a SQL statement. The
Statement interface provides three execute methods: executeQuery(), executeUpdate(), and execute().
If your SQL statement is a SELECT query, use the executeQuery() method, which returns a ResultSet
(discussed in the next section). When you want to update a database using an INSERT, UPDATE, or DELETE
statement, you should use the executeUpdate() method, which returns an integer reflecting the updated
number of rows. If you don’t know the type of SQL statement, you can use the execute() method, which
may return multiple resultsets or multiple update counts or a combination of both. From the OCPJP 8 exam
perspective, you need to know about the Statement interface and its derived interfaces (see Table 12-3). The
rest of this chapter uses the Statement interface.

Table 12-3.  Important Methods of the Statement Interface

Method Description

boolean execute(String sql) Executes the given SQL query. This method returns true if the
query resulted in a ResultSet. You can retrieve the ResultSet
object by calling the getResultSet() method. This method
returns false if the SQL query has no results or if there is an
update count. You can use the getUpdateCount() method
to get the update count. In rare situations, this method may
return multiple ResultSets; in that case, you can call the
getMoreResults() method.

ResultSet executeQuery(String sql) Executes the query and returns the ResultSet object as the
result. If there are no results, the method does not return null;
rather, the returned ResultSet object will return false when the
next() method is called.

int executeUpdate(String sql) Executes CREATE, INSERT, UPDATE, or DELETE SQL queries. It
returns the number of rows updated (or zero if there is no result,
such as with the CREATE statement).

Connection getConnection() Returns the Connection object with which the Statement object
was created.

void close() Closes the database and other JDBC resources associated with
this Statement object. Calling close() on an already-closed
Statement object has no effect.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

369

 Choose the relevant execute method based on the type of the SQL statement. Remember that each
execute method returns different output. The method executeQuery() returns a ResultSet, executeUpdate()
returns an update count, and execute() method may return multiple ResultSets or multiple update counts or
a combination of both.

ResultSet Interface
Relational databases contain tables. Each table has a set of attributes (properties of an object modeled by
the table) that are represented by columns; rows are records containing values for those properties. When
you query a database, it results in tabular data: a certain number of rows containing the columns requested
by the query. This tabular data is referred to as resultset. A resultset is a table with column headings and
associated values requested by the query.

A resultset maintains a cursor pointing to the current row. You can read only one row at a time, so you
must change the position of the cursor to read/navigate through the entire resultset. Initially, the cursor is
set to just before the first row. You need to call the next() method on the resultset to advance the cursor
position by one row. This method returns a Boolean value; hence you can use it in a while loop to iterate
over the entire resultset. Table 12-4 shows other methods supported by ResultSet for moving the cursor.

Figure 12-3 illustrates these methods with an example. The figure has five rows, with the cursor pointing
to the row with ID 3. If you call beforeFirst(), the cursor is moved to the position before row ID 1. If you
call afterLast(), the cursor is moved to the position after row ID 5. If you call relative(-2), because the
current position is at row ID 3, the cursor moves two position backward and points to the position with row
ID 1. Calling previous() and next() moves the cursor to positions with row ID 2 and row ID 4, respectively.
Finally, calling absolute(5) moves the cursor to the position with row ID 5.

Table 12-4.  Useful ResultSet Methods to Move the Cursor

Method Description

void beforeFirst() Sets the cursor just before the first row in the resultset.

void afterLast() Sets the cursor just after the last row of the resultset.

boolean absolute(int rowNumber) Sets the cursor to the requested row number (absolute position in
the table—not relative to the current position).

boolean relative(int rowNumber) Sets the cursor to the requested row number relative to the current
position. rowNumber can be a positive or negative value: a positive
value moves forward, and a negative value moves backward
relative to the current position.

boolean next() Sets the cursor to the next row of the resultset.

boolean previous() Sets the cursor to the previous row of the resultset.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

370

ResultSet also provides a set of methods to read the value at the desired column in the current row.
In general, these methods come in two flavors: the first flavor takes a column number as the input, and the
second flavor accepts a column name as the input. For instance, the methods to read a double value are
double getDouble(int columnNumber) and double getDouble(String columnName). In a similar way,
ResultSet provides get() methods for all basic types.

Similarly, ResultSet provides a set of methods to update values at the desired column in the selected
row. These methods also come in two variants: void updateXXX(int columnNumber, XXX x) and void
updateXXX(String columnName, XXX x), where the update methods are defined for various data types
represented as XXX.

Querying the Database
Now you know all the necessary interfaces that are used to execute a simple SQL query on a database:
Connection, Statement, and ResultSet. Figure 12-4 shows the high-level steps for establishing connection
to the database, executing SQL queries, and processing the results.

Figure 12-4.  Connecting to, querying, and processing results from a database

Figure 12-3.  Moving the cursor by calling ResultSet methods

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

371

Let’s query a database and print the output. Recollect that you created a database named addressBook
and a table named contact in this database, and inserted two rows in the table. Assume that you want to
print the table contents; Listings 12-2 and 12-3 contain the program to do so

Listing 12-2.  DbConnector.java

import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.SQLException;
 
// Utility class with method connectToDb() that will be used by other programs in this
chapter
public class DbConnector {
 public static Connection connectToDb() throws SQLException {
 String url = "jdbc:mysql://localhost:3306/";
 String database = "addressBook";
 String userName = "root";
 String password = "mysql123";
 return DriverManager.getConnection(url + database, userName, password);
 }
}

Listing 12-3.  DbQuery.java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.ResultSet;
import java.sql.SQLException;
 
// Program to illustrate how to query a database
class DbQuery {
 public static void main(String[] args) {
 // Get connection, execute query, get the result set
 // and print the entries from the result rest
 try (Connection connection = DbConnector.connectToDb();
 Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("SELECT * FROM contact")){
 System.out.println("ID \tfName \tlName \temail \t\tphoneNo");
 while (resultSet.next()) {
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 }
 catch (SQLException sqle) {
 sqle.printStackTrace();
 System.exit(-1);
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

372

The output of the program is as follows:

ID fName lName email phoneNo
1 Michael Taylor michael@abc.com +919876543210
2 William Becker william@abc.com +449876543210

Let’s look at what is happening in this code step by step:

•	 In the main() method, there is a try-with-resources statement. The first statement
is a call to the connectToDb() method, which is defined in the program. The
connectToDb() method simply connects to the database (which you saw in the last
example) and returns a Connection object if it succeeds.

•	 The next statement creates a Statement object from the connection.

•	 The Statement object is now used to execute a query. You want to fetch all the
columns in the contact table; hence you write SELECT * FROM contact as a SQL
query. You execute the query using the executeQuery() method of the Statement
object. The outcome of the query is stored in a ResultSet object.

•	 The ResultSet object is used to print the fetched data. You read all column values in
the current row and do the same for each row in the ResultSet object.

•	 Because you’ve created the Connection, Statement, and ResultSet objects within a
try-with-resources statement, there is no need to explicitly call close() on these
resources. However, if you are not using try-with-resources, you need to release
them explicitly in a finally block.

Here, you are using column names to read the associated values. You can use column numbers instead
to do the same job. Here is the modified code in the while loop to use column numbers:

while (resultSet.next()) {
 System.out.println(resultSet.getInt(1)
 + "\t" + resultSet.getString(2)
 + "\t" + resultSet.getString(3)
 + "\t" + resultSet.getString(4)
 + "\t" + resultSet.getString(5));
}

This code produces exactly the same result as the last example. However, it’s important to observe that
here the column index starts from 1, not 0.

 The column index in the ResultSet object starts from 1, not 0.

While referring to columns by column index, if you refer to a column by an index that is more than the
total number of columns, you get an exception. For instance, if you change one of the column indices used
in the previous example to 6, you get the following exception:

java.sql.SQLException: Column Index out of range, 6 > 5.
 at com.mysql.jdbc.SQLError.createSQLException(SQLError.java:1074)
 [... this part of the stack trace elided ...]
 at DbQuery.main(DbQuery.java:18)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

373

Be careful to always provide the correct column indices.
In this example, you know the number of columns as well as the data types in the columns. What if you

know neither the number of columns in each row nor the data types in the columns? In that case, you first
need to call the getMetaData() method on the ResultSet object that returns a ResultMetaData object; on
that ResultMetaData object, you can use the getColumnCount() method to get the column count. When you
don’t know the data type of a column entry, you can use the getObject() method on the ResultSet object.
You can pass the column index to getObject() to get the value in the corresponding column. Here is the
modified code that uses these methods:

// from resultSet metadata, find out how many columns there are
// and then read the column entries
int numOfColumns = resultSet.getMetaData().getColumnCount();
while (resultSet.next()) {
 // remember that the column index starts from 1 not 0
 for(int i = 1; i <= numOfColumns; i++) {
 // since we do not know the data type of the column, we use getObject()
 System.out.print(resultSet.getObject(i) + "\t");
 }
 System.out.println("");
}

The output of the program is

ID fName lName email phoneNo
1 Michael Taylor michael@abc.com +919876543210
2 William Becker william@abc.com +449876543210

Let’s carry out another exercise. This time, you just want to print the name and e-mail address of
records where the first name matches “Michael” (see Listing 12-4).

Listing 12-4.  DbQuery4.java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.ResultSet;
import java.sql.SQLException;
 
class DbQuery4 {
 public static void main(String[] args) throws SQLException {
 try (Connection connection = DbConnector.connectToDb();
 Statement statement = connection.createStatement();
 �ResultSet resultset = statement.executeQuery("SELECT firstName, email FROM

contact WHERE firstName=\"Michael\"")) {
 System.out.println("fName \temail");
 while (resultset.next()){
 System.out.println(resultset.getString("firstName") + "\t"
 + resultset.getString("email"));
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

374

 } catch (SQLException e) {
 e.printStackTrace();
 System.exit(-1);
 }
 }
}

This program prints the following:

fName email
Michael michael@abc.com

Updating the Database
Now let’s update the database. You can do so in two ways: you can use SQL queries to update the database
directly, or you can fetch a resultset using a SQL query and then change it and the database. JDBC supports
both of these methods. Let’s focus on retrieving the resultset and modifying it and the database.

In order to modify the resultset and the database, the ResultSet class provides a set of update methods
for each data type. There are also other supporting methods, such as updateRow() and deleteRow(), to
make the task simpler. It’s time to get your hands dirty: assume that one of the contacts in your addressBook
database has changed their phone number, and you need to update the phone number in the database
using a JDBC program (see Listing 12-5).

Listing 12-5.  DbUpdate.java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.ResultSet;
import java.sql.SQLException;
 
// To illustrate how we can update a database
class DbUpdate {
 public static void main(String[] args) throws SQLException {
 try (Connection connection = DbConnector.connectToDb();
 Statement statement = connection.createStatement();
 �ResultSet resultSet = statement.executeQuery("SELECT * FROM contact WHERE

firstName=\"Michael\"")) {
 // first fetch the data and display it before the update operation
 System.out.println("Before the update");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 while (resultSet.next()) {
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 // now update the resultset and display the modified data
 resultSet.absolute(1);
 resultSet.updateString("phoneNo", "+919976543210");
 System.out.println("After the update");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

375

 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 resultSet.beforeFirst();
 while (resultSet.next()) {
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 } catch (SQLException e) {
 e.printStackTrace();
 System.exit(-1);
 }
 }
}

Let’s pick out the nitty-gritty of the program, step by step:

•	 You establish the connection using the DbConnector.connectToDb() method.

•	 After creating a Statement object, you execute a query on the database to find the
record associated with Michael. (For the sake of simplicity, assume that the resultset
will contain exactly one record.)

•	 You print the retrieved record.

•	 You use the absolute() method to move the cursor to the first row in the ResultSet
object; then you update the phone number using the updateString() method.

•	 Finally, you print the modified resultset.

That looks straightforward. Execute the program and see what it prints:

Before the update
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919876543210
com.mysql.jdbc.NotUpdatable: Result Set not updatable.(...rest of the text elided)
 at com.mysql.jdbc.ResultSetImpl.updateString(ResultSetImpl.java:8618)
 at com.mysql.jdbc.ResultSetImpl.updateString(ResultSetImpl.java:8636)
 at DbUpdate.main(DbUpdate.java:34)

Oops—the program crashed after throwing an exception! What happened?
You are trying to update a ResultSet object that is not updatable. In order to make the update in the

resultset and the database, you need to make this resultset updatable. You can do that by creating a proper
Statement object; while calling the createStatement() method, you can pass inputs such as whether you
want a scrollable resultset that is sensitive to changes or an updatable resultset.

Make this single change to the call to createStatement() in Listing 12-5:

Statement statement = connection.createStatement(ResultSet.TYPE_SCROLL_SENSITIVE,
ResultSet.CONCUR_UPDATABLE);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

376

Now run the changed program to see if it works:

Before the update
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919876543210
After the update
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919876543210

Good, the program did not result in an exception. But wait—the phone number is not updated! What
happened? You forgot a vital statement after the update: the updateRow() method. Every time you make a
change in the resultset using the appropriate updateXXX() method, you need to call updateRow() to make
sure all the values are actually updated in the database. Make this change, and try again (see Listing 12-6).

Listing 12-6.  DbUpdate2.java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.ResultSet;
import java.sql.SQLException;
 
// To illustrate how we can update a database
class DbUpdate2 {
 public static void main(String[] args) throws SQLException {
 try (Connection connection = DbConnector.connectToDb();
 // create a statement from which the created ResultSets
 // are "scroll sensitive" as well as "updatable"
 �Statement statement = connection.createStatement(ResultSet.TYPE_SCROLL_

SENSITIVE, ResultSet.CONCUR_UPDATABLE);
 �ResultSet resultSet = statement.executeQuery("SELECT * FROM contact WHERE

firstName=\"Michael\"")) {
 // first fetch the data and display it before the update operation
 System.out.println("Before the update");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 while (resultSet.next()) {
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 // now update the resultset and display the modified data
 resultSet.absolute(1);
 resultSet.updateString("phoneNo", "+919976543210");
 // reflect those changes back to the database
 // by calling updateRow() method
 resultSet.updateRow();
 System.out.println("After the update");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 resultSet.beforeFirst();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

377

 while (resultSet.next()) {
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 } catch (SQLException e) {
 e.printStackTrace();
 System.exit(-1);
 }
 }
}

The revised program prints the following:

Before the update
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919876543210
After the update
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919976543210

It is working fine. Now you know the requirements and steps required to update a row in a database.

 Always call updateRow after modifying the row contents; otherwise, you will lose the changes.

Next, how about inserting a record in the resultset and the database? Try the example shown
in Listing 12-7.

Listing 12-7.  DbInsert.java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.ResultSet;
import java.sql.SQLException;
 
// To illustrate how to insert a row in a resultset and in the database
class DbInsert {
 public static void main(String[] args) throws SQLException {
 try (Connection connection = DbConnector.connectToDb();
 Statement statement = connection.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
 ResultSet resultSet =
 statement.executeQuery("SELECT * FROM contact")) {
 System.out.println("Before the insert");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

378

 while (resultSet.next()){
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 resultSet.moveToInsertRow();
 resultSet.updateString("firstName", "John");
 resultSet.updateString("lastName", "K.");
 resultSet.updateString("email", "john@abc.com");
 resultSet.updateString("phoneNo", "+19753186420");
 resultSet.insertRow();
 System.out.println("After the insert");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 resultSet.beforeFirst();
 while (resultSet.next()){
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }
}

What happens in this example? After printing the current records, you call the moveToInsertRow()
method. This method sets the cursor to a new record and prepares the resultset for the insertion of a row
(it creates a buffer to hold the column values). After that, you use updateString() to modify each column
value in the newly added row. And finally, you call insertRow() to insert the new row into the resultset and
the database. One important thing to note here is that you need to provide the correct type of values for each
column. Also, you cannot leave a column blank (not provide any value) if the column value cannot be left
unfilled. In the case of either of these violations, you may get a SQLException.

Let’s see what this program prints:

Before the insert
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919976543210
2 William Becker william@abc.com +449876543210
After the insert
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919976543210
2 William Becker william@abc.com +449876543210
3 John K. john@abc.com +19753186420

Looks good! Now let’s try another operation: deleting a record from the database. Take a look at the
program in Listing 12-8.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

379

Listing 12-8.  DbDelete.java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.ResultSet;
import java.sql.SQLException;
 
// To illustrate how to delete a row in a resultset and in the database
class DbDelete {
 public static void main(String[] args) throws SQLException {
 try (Connection connection = DbConnector.connectToDb();
 Statement statement = connection.createStatement(
 ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
 ResultSet resultSet1 = statement.executeQuery
 ("SELECT * FROM contact WHERE firstName=\"John\"")) {
 if(resultSet1.next()){
 // delete the first row
 resultSet1.deleteRow();
 }
 resultSet1.close();
  
 // now fetch again from the database
 try (ResultSet resultSet2 = statement.executeQuery("SELECT * FROM contact")) {
 System.out.println("After the deletion");
 System.out.println("id \tfName \tlName \temail \t\tphoneNo");
 while (resultSet2.next()){
 System.out.println(resultSet2.getInt("id") + "\t"
 + resultSet2.getString("firstName") + "\t"
 + resultSet2.getString("lastName") + "\t"
 + resultSet2.getString("email") + "\t"
 + resultSet2.getString("phoneNo"));
 }
 }
 } catch (SQLException e) {
 e.printStackTrace();
 System.exit(-1);
 }
 }
}

This program simply selects a proper row to delete and calls the deleteRow() method on the current
selected row. Here’s the output of the program:

After the deletion
id fName lName email phoneNo
1 Michael Taylor michael@abc.com +919976543210
2 William Becker william@abc.com +449876543210

The program works fine and correctly removes the row where the person’s first name is John.
You may remember that you created a table named contact in your database. At that time, you created

the table from the MySQL command prompt. The same task can be done using a JDBC program. Let’s create
a new table named familyGroup in the database programmatically (see Listing 12-9).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

380

Listing 12-9.  DbCreateTable.java

import java.sql.Connection;
import java.sql.Statement;
import java.sql.SQLException;
 
class DbCreateTable {
 public static void main(String[] args) {
 try (Connection connection = DbConnector.connectToDb();
 Statement statement = connection.createStatement()){
 // use CREATE TABLE SQL statement to
 // create table familyGroup
 �statement.executeUpdate("CREATE TABLE familyGroup (id int not null

auto_increment, nickName varchar(30) not null, primary key(id));");
 System.out.println("Table created successfully");
 }
 catch (SQLException sqle) {
 sqle.printStackTrace();
 System.exit(-1);
 }
 }
}

The program prints the following:

Table created successfully

The program is working as expected. You connect to the database and get the Statement object as you
did earlier. Then, you issue a SQL statement using the executeUpdate() method. Using the SQL statement,
you declare that a table called familyGroup needs to be created along with two columns: id and nickName.
Also, you declare that id should be treated as the primary key. That’s it; the SQL statement creates a new
table in your database.

What happens when you pass a SQL statement that has syntax errors? For example, if you misspell
“TABLE” as “TABL”, you get this exception:

com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: You have an error in your SQL
syntax; check the manual that corresponds to your MySQL server version for the right syntax
to use near 'TABL familyGroup (id int not null auto_increment, nickName varchar(30) not
null,' at line 1

Passing correct SQL statements (without syntax errors) is your responsibility.

Points to Remember
Here is a list of points that may be helpful on your OCPJP 8 exam:

•	 The boolean absolute(int) method in ResultSet moves the cursor to the passed
row number in that ResultSet object. If the row number is positive, it moves to that
position from the beginning of the ResultSet object; if the row number is negative,
it moves to that position from the end of the ResultSet object. Assume that there
are ten entries in the ResultSet object. Calling absolute(3) moves the cursor to the
third row. Calling absolute(−bs) moves the cursor to the eighth row. If you give
out-of-range values, the cursor moves to either the beginning or the end.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

381

•	 In a ResultSet object, calling absolute(1) is equivalent to calling first(), and
calling absolute(-1) is equivalent to calling last().

•	 You can use a column name or column index with ResultSet methods. The index
you use is the index of the ResultSet object, not the column number in the
database table.

•	 A Statement object closes the current ResultSet object if the Statement object is
closed, re-executed, or made to retrieve the next set of results. That means it is not
necessary to call close() explicitly with a ResultSet object; however, it is good
practice to call close() once you are done with the object.

•	 You may use the column name of a ResultSet object without worrying about the
case: getXXX() methods accept case-insensitive column names to retrieve the
associated value.

•	 Think of a case in which you have two columns in a ResultSet object with the same
name. How you can retrieve the associated values using the column name? If you use
a column name to retrieve the value, it always points to the first column that matches
the given name. Hence, you have to use column index in this case to retrieve values
associated with both columns.

•	 You may remember that the PreparedStatement interface inherits from Statement.
However, PreparedStatement overrides all flavors of execute methods. For instance,
the behavior of executeUpdate() may be different from its base method.

•	 You may cancel any update you made using the method cancelRowUpdates().
However, you must call this method before calling updateRow(). In all other cases, it
has no impact on the row.

•	 While connecting to the database, you need to specify the correct username
and password. If the provided username or password is not correct, you get a
SQLException.

Summary
Let’s briefly review the key points for each certification objective in this chapter. Please read this section
before appearing for the exam.

Identify the components required to connect to a database using the DriverManager class including the
JDBC URL

•	 JDBC hides the heterogeneity of all the DBMSs and offers a single set of APIs to
interact with all types of databases. The complexity of heterogeneous interactions is
delegated to the JDBC driver manager and JDBC drivers.

•	 The getConnection() method in the DriverManager class takes three arguments: a
URL string, a username string, and a password string.

•	 The syntax of the URL (which needs to be specified to get the Connection object) is
jdbc: <subprotocol>:<subname>.

•	 If the JDBC API is not able to locate the JDBC driver, it throws a SQLException. If jars
for the drivers are available, they need to be included in the classpath to enable the
JDBC API to locate the driver.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

382

Describe the interfaces that make up the core of the JDBC API including the Driver, Connection,
Statement, and ResultSet interfaces and their relationship to provider implementations

•	 The java.sql.Connection interface provides a channel through which the
application and the database communicate.

•	 JDBC supports two classes for querying and updating: Statement and Resultset.

•	 A Statement is a SQL statement that can be used to communicate a SQL statement to
the connected database and receive results from the database. There are three types
of Statements:

•	 Statement: Sends a SQL statement to the database without any parameters

•	 PreparedStatement: Represents a precompiled SQL statement that can be
customized using IN parameters

•	 CallableStatement: Executes stored procedures; can handle IN as well as OUT
and INOUT parameters

•	 A resultset is a table with column heading and associated values requested by
the query.

Submit queries and read results from the database including creating statements, returning result sets,
iterating through the results, and properly closing result sets, statements, and connections

•	 A ResultSet object maintains a cursor pointing to the current row. Initially, the
cursor is set to just before the first row; calling the next() method advances the
cursor position by one row.

•	 The column index in the ResultSet object starts from 1 (not from 0).

•	 You need to call updateRow() after modifying the row contents in a resultset;
otherwise, changes made to the ResultSet object are lost.

•	 You can use a try-with-resources statement to close resources (Connection,
ResultSet, and Statement) automatically.

QUESTION TIME

1.	 Which one of the given options is not correct with respect to the driver manager
belonging to the JDBC architecture?

A.	A driver manager maintains a list of available data sources and their drivers.

B.	A driver manager chooses an appropriate driver to communicate to the
respective DBMS.

C.	A driver manager ensures the atomic properties of a transaction.

D.	A driver manager manages multiple concurrent drivers connected to their
respective data sources.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

383

2.	 Consider the following code segment. Assume that the connection object is valid
and the statement.executeQuery() method successfully returns a ResultSet
object with a few rows in it:

Statement statement = connection.createStatement();
ResultSet resultSet = statement.executeQuery("SELECT * FROM contact"));
 
int numOfColumns = resultSet.getMetaData().getColumnCount();
 
while (resultSet.next()) {
 // traverse the columns by index values
 for(int i = 0; i < numOfColumns; i++) {
 // since we do not know the data type of the column, we use getObject()
 System.out.print(resultSet.getObject(i) + "\t");
 }
 System.out.println("");
}

Which of the following statements is true regarding this code segment?

A.	T he code segment will successfully print the contents of the rows in the
ResultSet object.

B.	T he looping header is wrong. To traverse all the columns, it should be

for(int i = 0; i <= numOfColumns; i++) {

C.	T he looping header is wrong. To traverse all the columns, it should be

for(int i = 1; i <= numOfColumns; i++) {

D.	T he looping header is wrong. To traverse all the columns, it should be

for(int i = 1; i < numOfColumns; i++) {

3.	 Consider this program, and choose the best option describing its behavior (assume
that the connection is valid):

try (Statement statement = connection.createStatement();
 ResultSet resultSet = statement.executeQuery("SELECT * FROM contact")){
 System.out.println(resultSet.getInt("id") + "\t"
 + resultSet.getString("firstName") + "\t"
 + resultSet.getString("lastName") + "\t"
 + resultSet.getString("email") + "\t"
 + resultSet.getString("phoneNo"));
}
catch (SQLException sqle) {
 System.out.println("SQLException");
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

384

A.	T his program will print the following: SQLException.

B.	T his program will print the first row from contact.

C.	T his program will print all the rows from contact.

D.	T his program will report compiler errors.

4.	 Which two of the following statements are true regarding Statement and its
derived types?

A.	 Statement can handle SQL queries with IN, OUT, and INOUT parameters.

B.	 PreparedStatement is used to execute stored procedures.

C.	 You can get an instance of PreparedStatement by calling the
preparedStatement() method in the Connection interface.

D.	 CallableStatement extends the PreparedStatement class;
PreparedStatement in turn extends the Statement class.

E.	T he Statement interface and its derived interfaces implement the
AutoCloseable interface, hence Statement objects can be used with the try-
with-resources statement.

5.	 Which one of the following statements is a correct way to instantiate a Statement
object?

A.	 Statement statement = connection.getStatement();

B.	 Statement statement = connection.createStatement();

C.	 Statement statement = connection.newStatement();

D.	 Statement statement = connection.getStatementInstance();

6.	 Consider the following code snippet:

try(ResultSet resultSet = statement.executeQuery("SELECT * FROM contact")) {
 
 // Stmt #1
 
 resultSet.updateString("firstName", "John");
 resultSet.updateString("lastName", "K.");
 resultSet.updateString("email", "john@abc.com");
 resultSet.updateString("phoneNo", "+19753186420");
 
 // Stmt #2
 
 // rest of the code elided
}

Assume that resultSet and statement are legitimate instances of the ResultSet
and Statement interfaces, respectively. Which one of the following statements is
correct with respect to Stmt #1 and Stmt #2 for successfully inserting a new row?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

385

A.	R eplacing Stmt #1 with resultSet.moveToInsertRow() will make the
program work.

B.	R eplacing Stmt #1 with resultSet.insertRow() will make the program work.

C.	R eplacing Stmt #1 with resultSet.moveToInsertRow() and Stmt #2 with
resultSet.insertRow() will make the program work.

D.	R eplacing Stmt #1 with resultSet.insertRow() and Stmt #2 with
resultSet.moveToInsertRow() will make the program work.

7.	 Which one of the following statements is true with respect to ResultSet?

A.	 Calling absolute(1) on a ResultSet instance is equivalent to calling
first(), and calling absolute(-1) is equivalent to calling last().

B.	 Calling absolute(0) on a ResultSet instance is equivalent to calling
first(), and calling absolute(-1) is equivalent to calling last().

C.	 Calling absolute(-1) on a ResultSet instance is equivalent to calling
first(), and calling absolute(0) is equivalent to calling last().

D.	 Calling absolute(1) on a ResultSet instance is equivalent to calling
first(), and calling absolute(0) is equivalent to calling last().

8.	 Consider the following code snippet. Assume that DbConnector.connectToDb()
returns a valid Connection object and that the contact table has an entry with the
value “Michael” in the firstName column:

ResultSet resultSet = null;
try (Connection connection = DbConnector.connectToDb()) {
 Statement statement = connection.createStatement();
 �resultSet = statement.executeQuery("SELECT * FROM contact WHERE firstName

LIKE 'M%'"); // #LINE1
 }
 while (resultSet.next()){ //#LINE2
 // print the names by calling resultSet.getString("firstName"));
 }

A.	T his program results in a compiler error in the statement marked with
comment #LINE1.

B.	T his program results in a compiler error in the statement marked with
comment #LINE2.

C.	T his program crashes by throwing an SQLException.

D.	T his program crashes by throwing a NullPointerException.

E.	T his program prints firstName column values that start with the
character “M”.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

386

Answers:

1.	 C. A driver manager ensures the atomic properties of a transaction.

The other three options A, B, and D are true. A driver manager maintains a list of
available data sources and their drivers. Given a database URL, the driver manager
chooses an appropriate driver to communicate with the respective DBMS. Further, a
driver manager manages multiple concurrent drivers connected to their respective
data sources. However, it is not responsible for maintaining atomicity properties
when performing transactions.

2.	 C. The looping header is wrong. To traverse all the columns, it should be

for(int i = 1; i <= numOfColumns; i++) {

Given N columns in a table, the valid column indexes are from 1 to N, not 0 to N - 1.

3.	 A. This program will print the following: SQLException.

The statement while (resultSet.next()) is missing.

4.	 The correct options are C and E.

You can get an instance of PreparedStatement by calling the
preparedStatement() method in the Connection interface. The Statement
interface and its derived interfaces implement the AutoCloseable interface, so
Statement objects can be used with the try-with-resources statement.

The other three options A, B, and D are incorrect for the following reasons:

A: Statement objects can be used for SQL queries that have no parameters. Only a
CallableStatement can handle IN, OUT, and INOUT parameters.

B: PreparedStatement is used for precompiled SQL statements. The
CallableStatement type is used for stored procedures.

D: CallableStatement implements the PreparedStatement interface.
PreparedStatement in turn implements the Statement interface. Further, these
three types are interfaces, not classes.

5.	 B. Statement statement = connection.createStatement();

6.	 C. Replacing Stmt #1 with resultSet.moveToInsertRow(); and Stmt #2 with
resultSet.insertRow(); will make the program work.

You need to call the moveToInsertRow() method in order to insert a new row: this
method prepares the resultset for creating a new row. Once the row is updated, you
need to call insertRow() to insert the row into the resultset and the database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 12 ■ Building Database Applications with JDBC

387

7.	 A. Calling absolute(1) on a ResultSet instance is equivalent to calling first(),
and calling absolute(-1) is equivalent to calling last().

8.	 C. This program crashes by throwing a SQLException.

The try-with-resources block is closed before the while statement executes.
Calling resultSet.next() results in making a call on the closed ResultSet object.
Hence, this program results in throwing a SQLException (“Operation not allowed
after ResultSet closed”).

www.it-ebooks.info

http://www.it-ebooks.info/

389

Chapter 13

Localization

Certification Objectives

Read and set the locale by using the Locale object

Create and read a Properties file

Build a resource bundle for each locale and load a resource bundle in an application

Computers and software have become so prevalent today that they are used everywhere in the world
for human activities. For any software to be relevant and useful to these users, it needs to be localized. The
process in which we adapt the software to the local language and customs is known as localization.

Localization is all about making the software relevant and usable for the users from different cultures—
in other words, customizing software for people from different countries or languages. How do you localize a
software application? Two important guidelines should be heeded when you localize a software application:

•	 Do not hardcode text (such as messages to the users, textual elements in GUIs, etc.)
and separate them into external files or dedicated classes. With this accomplished
there is usually minimal effort to add support for a new locale in your software.

•	 Handle cultural-specific aspects such as date, time, currency, and formatting
numbers with localization in mind. Instead of assuming a default locale, design in
such a way that the current locale is fetched and customized.

In this chapter, you’ll learn how to localize your software. Localization mainly involves creating resource
bundles for different locales, as well as making the software culture-aware by adapting it for use in different
locales. You will also learn how to create and use these resource bundles in this chapter.

Locales
Certification Objective

Read and set the locale by using the Locale object

A locale is “a place representing a country, language, or culture.” Consider the Canada-French locale.
French is spoken in many parts of Canada, and this could be a locale. In other words, if you want to sell
software that is customized for Canadians who speak French, then you need to facilitate your software for
this locale. In Java, this locale is represented by the code fr_CA where fr is short for French and CA is short
for Canada; we’ll discuss the naming scheme for locales in more detail later in this section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

390

The Locale Class
In Java, the java.util.Locale class provides programming support for locales. Table 13-1 lists important
methods in this class.

Table 13-1.  Important Methods in the Locale Class

Method Short Description

static Locale[] getAvailableLocales() Returns a list of available locales (i.e., installed locales)
supported by the JVM.

static Locale getDefault() Returns the default locale of the JVM.

static void setDefault(Locale newLocale) Sets the default locale of the JVM.

String getCountry() Returns the country code for the locale object.

String getDisplayCountry() Returns the country name for the locale object.

String getLanguage() Returns the language code for the locale object.

String getDisplayLanguage() Returns the language name for the locale object.

String getVariant() Returns the variant code for the locale object.

String getDisplayVariant() Returns the name of the variant code for the locale object.

String toString() Returns a String composed of the codes for the
locale’s language, country, variant, etc.

The code in Listing 13-1 detects the default locale and checks the available locales in the JVM.

Listing 13-1.  AvailableLocales.java

import java.util.Locale;
import java.util.Arrays ;
 
class AvailableLocales {
 public static void main(String []args) {
 System.out.println("The default locale is: " + Locale.getDefault());
 Locale [] locales = Locale.getAvailableLocales();
 System.out.printf("No. of other available locales is: %d, and they are: %n",
 locales.length);
 Arrays.stream(locales).forEach(
 locale -> System.out.printf("Locale code: %s and it stands for %s %n",
 locale, locale.getDisplayName()));
 }
}
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

391

It prints the following:

The default locale is: en_US
No. of other available locales is: 160, and they are:
Locale code: ms_MY and it stands for Malay (Malaysia)
Locale code: ar_QA and it stands for Arabic (Qatar)
Locale code: is_IS and it stands for Icelandic (Iceland)
Locale code: sr_RS_#Latn and it stands for Serbian (Latin,Serbia)
Locale code: no_NO_NY and it stands for Norwegian (Norway,Nynorsk)
Locale code: th_TH_TH_#u-nu-thai and it stands for Thai (Thailand,TH)
Locale code: fr_FR and it stands for French (France)
Locale code: tr and it stands for Turkish
Locale code: es_CO and it stands for Spanish (Colombia)
Locale code: en_PH and it stands for English (Philippines)
Locale code: et_EE and it stands for Estonian (Estonia)
Locale code: el_CY and it stands for Greek (Cyprus)
Locale code: hu and it stands for Hungarian
 [...rest of the output elided...]

Let’s look at the methods in the program before analyzing the output. You use the method
getDefault() in Locale to get the code of the default locale. After that you use getAvailableLocales() in
the Locale class to get the list of locales supported by the JVM. Now, for each locale you print the code for
the locale and also print the descriptive name using the getDisplayName() method of Locale.

The program prints the default locale as en_US for this JVM, which means the default is the English
language spoken in US. Then it prints a very long list of available locales; to save space, we’ve shown only
small part of the output. From this program, you know that there are many locales available and supported,
and there is a default locale associated with every JVM.

There are four different kinds of locale codes in this output:

•	 “hu and it stands for Hungarian”: just one code where hu stands for Hungarian

•	 “ms_MY and it stands for Malay (Malaysia)”: two codes separated by underscore
where ms stands for Malay and MY stands for Malaysia

•	 “no_NO_NY and it stands for Norwegian (Norway,Nynorsk)”: three codes separated
by underscores, as in no_NO_NY where no stands for Norwegian, NO for Norway, and
NY for Nynorsk

•	 “th_TH_TH_#u-nu-thai and it stands for Thai (Thailand,TH)”: two or three initial
codes separated by underscores and the final one by # or _#, as in th_TH_TH_#u-nu-thai,
which we’ll discuss now.

Here is how these locale names are encoded:

language + "_" + country + "_" + (variant + "_#" | "#") + script + "-" + extensions

This locale coding scheme allows combining different variations to create a locale. For the locale code
of “th_TH_TH_#u-nu-thai”,

•	 The language code is "th" (Thai) and it is always written in lowercase

•	 The country code is "TH" (Thailand) and it is always written in uppercase

•	 The variant name is "TH"; here it repeats the country code, but it could be any string

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

392

•	 The script name is an empty string here; if given, it will be a four-letter string with the
first letter in uppercase and the rest in lowercase (e.g., Latn)

•	 The extension follows the # or _# character (since script is an empty string); it is
“u-nu-thai” in this example

To give another example, consider the locale code "sr_RS_#Latn",

•	 The language code is "sr" (Serbian)

•	 The country code is "RS" (Serbia)

•	 The variant name is empty here

•	 The script name is "Latn" (Latin) which is a four-letter string with the first letter in
uppercase and the rest in lowercase

•	 The extension is empty here

Consider English, which is spoken in many countries. There are variations in English based on the country
in which the language is spoken. We all know that American English is different from British English, but there are
many such versions. Here is the code (Listing 13-2) that filters only English locales from all the available locales:

Listing 13-2.  AvailableLocalesEnglish.java

import java.util.Locale;
import java.util.Arrays;
 
class AvailableLocalesEnglish {
 public static void main(String []args) {
 Arrays.stream(Locale.getAvailableLocales())
 .filter(locale -> locale.getLanguage().equals("en"))
 .forEach(locale ->
 System.out.printf("Locale code: %s and it stands for %s %n",
 locale, locale.getDisplayName()));
 }
}

It prints the following (the output and order may change in your machine):

Locale code: en_MT and it stands for English (Malta)
Locale code: en_GB and it stands for English (United Kingdom)
Locale code: en_CA and it stands for English (Canada)
Locale code: en_US and it stands for English (United States)
Locale code: en_ZA and it stands for English (South Africa)
Locale code: en and it stands for English
Locale code: en_SG and it stands for English (Singapore)
Locale code: en_IE and it stands for English (Ireland)
Locale code: en_IN and it stands for English (India)
Locale code: en_AU and it stands for English (Australia)
Locale code: en_NZ and it stands for English (New Zealand)
Locale code: en_PH and it stands for English (Philippines)

The output refers to different locales in English and makes use of only language code and the country
code. We used the getLanguage() method in Locale, which returns the locale code. What are other such
methods? Let’s explore the methods available in the Locale class now.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

393

Getting Locale Details and Setting Locales
The getter methods in the Locale class such as getLanguage(), getCountry(), and getVariant() return codes,
whereas the similar methods getDisplayCountry(), getDisplayLanguage(), and getDisplayVariant()
return names. Listing 13-3 illustrates how to use these methods for the locale Locale.CANADA_FRENCH.

Listing 13-3.  LocaleDetails.java

import java.util.Locale;
 
public class LocaleDetails {
 public static void main(String args[]) {
 Locale.setDefault(Locale.CANADA_FRENCH);
 Locale defaultLocale = Locale.getDefault();
 System.out.printf("The default locale is %s %n", defaultLocale);
 System.out.printf("The default language code is %s and the name is %s %n",
 defaultLocale.getLanguage(), defaultLocale.getDisplayLanguage());
 System.out.printf("The default country code is %s and the name is %s %n",
 defaultLocale.getCountry(), defaultLocale.getDisplayCountry());
 System.out.printf("The default variant code is %s and the name is %s %n",
 defaultLocale.getVariant(), defaultLocale.getDisplayVariant());
 }
}

It prints the following:

The default locale is fr_CA
The default language code is fr and the name is français
The default country code is CA and the name is Canada
The default variant code is and the name is

Let’s understand the program. The setDefault() method takes a Locale object as argument. In this
program, you set the default locale as Locale.CANADA_FRENCH with this statement:

Locale.setDefault(Locale.CANADA_FRENCH);

The Locale class has many static Locale objects representing common locales so that you don’t have
to instantiate them and use them directly in your programs. In this case, Locale.CANADA_FRENCH is a static
Locale object.

Instead of using this static Locale object, you can choose to instantiate a Locale object. Here is an
alternative way to set the default locale by creating a new Canada (French) locale object:

Locale.setDefault(new Locale("fr", "CA", ""));

The getDefault() method in Locale returns the default locale object set in the JVM. The next
statement uses methods to get information related to the country. The difference between the getCountry()
and getDisplayCountry() methods is that the former method returns the country code (which is not very
readable for us), and the latter returns the country name, which is human readable. The country code is a
two or three letter code (this code comes from an international standard: ISO 3166).

The behavior of getLanguage() and getDisplayLanguage() is similar to getting country details. The
language code consists of two or three letters (this code comes from another international standard: ISO 639).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

394

There was no variant in this locale, so nothing got printed when you used the getVariant() and
getDisplayVariant() methods. However, for some other locale, there could be variant values, and
those values would get printed for that locale. The variant could be any extra details such as operating
environments (like MAC for Macintosh machine) or name of the company (such as Sun or Oracle).

Other than these, you also have less widely used methods such as getScript() and
getDisplayCountry() that returns the script code and the country name for the locale.

 Instead of calling Locale’s getDisplayCountry() method, which takes no arguments, you can choose
the overloaded version of getDisplayCountry(Locale), which takes a Locale object as an argument.
This will print the name of the country as in the passed locale. For example, for the call Locale.GERMANY.
getDisplayCountry(), you’ll get the output “Deutschland” (that’s how Germans refer to their country);
however, for the call Locale.GERMANY.getDisplayCountry(Locale.ENGLISH), you’ll get the output “Germany”
(that’s how British refer to the country name Germany)

DIFFERENT WAYS TO CREATE A LOCALE OBJECT

There are many ways to get or create a Locale object. We list four options here for creating an instance
of Italian locale that corresponds to the language code of it.

Option 1: Use the constructor of the Locale class: Locale(String language, String country,
String variant):

Locale locale1 = new Locale("it", "", "");

Option 2: Use the forLanguageTag(String languageTag) method in the Locale class:

Locale locale2 = Locale.forLanguageTag("it");

Option 3: Build a Locale object by instantiating Locale.Builder and then call setLanguageTag()
from that object:

Locale locale3 = new Locale.Builder().setLanguageTag("it").build();

Option 4: Use the predefined static final constants for locales in the Locale class:

Locale locale4 = Locale.ITALIAN;

You can choose the way to create a Locale object based on your need. For example, the Locale class
has only a few predefined constants for locales. If you want a Locale object from one of the predefined
ones, you can straightaway use it, or you’ll have to check which other option to use.

Resource Bundles
Certification Objective

Build a resource bundle for each locale and load a resource bundle in an application

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

395

In the last section, we discussed the Locale class and the way to get details of the default locale and the
list of available locales. How do you use this locale information to customize the behavior of your programs?
Let’s take a simple example of greeting someone: in English, you say “Hello,” but if the locale is different, how
do you change this greeting to say, for example, “Ciao” if the locale is Italian (Italy)?

One obvious solution is to get the default locale, check if the locale is Italy and print “Ciao.” It will work,
but this approach is neither flexible nor extensible. How about customizing to other locales like Saudi Arabia
(Arabic) or Thailand (Thai)? You have to find and replace all the locale specific strings for customizing for
each locale. This task will be a nightmare if your application consists of thousands of such strings spread
over a million lines of code and there are many locales to support.

In Java, resource bundles provide a solution to this problem of how to customize the application to
locale-specific needs. So, what is a resource bundle? A resource bundle is a set of classes or property files
that help define a set of keys and map those keys to locale specific values.

The abstract class java.util.ResourceBundle provides an abstraction of resource bundles in Java. It has two
derived classes: java.util.PropertyResourceBundle and java.util.ListResourceBundle (see Figure 13-1).
The two derived classes provide support for resource bundles using two different mechanisms:

•	 The PropertyResourceBundle Class: This concrete class provides support for
multiple locales in the form of property files. For each locale, you specify the
keys and values in a property file for that locale. For a given locale, if you use
the ResourceBundle.getBundle() method, the relevant property file will be
automatically loaded. Of course, there is no magic in it; you have to follow certain
naming conventions for creating the property files, which we’ll discuss in the section
dedicated to discussing property files. You can use only Strings as keys and values
when you use property files.

•	 The ListResourceBundle Class: For adding support to a locale, you can extend
this abstract class. In your derived class, you have to override the getContents()
method, which returns an Object [][]. This array must have the list of keys and
values. The keys must be Strings. Typically the values are also Strings, but values
can be anything: sound clips, video clips, URLs, or pictures.

Figure 13-1.  ResourceBundle and its two derived classes

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

396

Let’s take a quick look at the methods supported by the ResourceBundle abstract class. Table 13-2
summarizes the important methods of this class. We’ll now discuss localization support using these two
derived classes of ResourceBundle.

Table 13-2.  Important Methods in the ResourceBundle Abstract Class

Method Short Description

Object getObject(String key) Returns the value mapped to the given key. Throws a
MissingResourceException if no object for a given key is
found.

static ResourceBundle getBundle
(String baseName),
static final ResourceBundle getBundle
(String baseName, Locale locale)

final ResourceBundle getBundle
(String baseName, Locale targetLocale,
Control control)

Returns the ResourceBundle for the given
baseName, locale, and control; throws a
MissingResourceException if no matching resource
bundle is found. The Control parameter is meant for
controlling or obtaining info about the resource bundle
loading process

String getString(String key) Returns the value mapped to the given key; equivalent
to casting the return value from getObject() to String.
Throws a MissingResourceException if no object for a
given key is found. Throws ClassCastException if the
object returned is not a String.

Using PropertyResourceBundle

Certification Objective

Create and read a Properties file

If you design your application with localization in mind using property files, you can add support for
new locales to the application without changing anything in the code!

We’ll now look at an example using resource files and it will become clear to you. Let’s start with a very
simple program that prints “Hello” to the user. This program has three property file resource bundles:

	 1.	 The default resource bundle that assumes the English (US) locale.

	 2.	 A resource bundle for the Arabic locale.

	 3.	 A resource bundle for the Italian locale.

As discussed above, property files define strings as key value pairs in a file. Here is an example of a
classpath that can be mapped to an actual path in your machine: classpath=C:\Program Files\Java\jre8.
Property files will usually contain numerous such key value pairs, with each such pair in separate lines, as in
the following:

classpath=C:\Program Files\Java\jre8
temp=C:\Windows\Temp
windir=C:\Windows

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

397

In the case of localization, you use property files to map the same key strings to different value
strings. In the program, you’ll refer the key strings, and by loading the matching property file for
the locale, the corresponding values for the keys will be fetched from the property files for use in
the program.

The naming of these property files is important (you’ll see why soon) and below is the content of
these bundles. To keep this example simple, there is only one key-value pair in these property files;
in real-world programs, there could be a few hundred or even thousands of pairs present in each
property file.

D:\> type ResourceBundle.properties
Greeting=Hello
 
D:\> type ResourceBundle_ar.properties
Greeting=As-Salamu Alaykum
 
D:\> type ResourceBundle_it.properties
Greeting=Ciao

As you can see, the default bundle is named ResourceBundle.properties. The resource bundle for
Arabic is named ResourceBundle_ar.properties. Note the suffix “_ar”, indicating Arabic as a local language.
Similarly, the resource bundle for Italian is named ResourceBundle_it.properties, which makes use of the
"_it" suffix to indicate the Italian as the associated language with this property file. Listing 13-4 makes use
of these resource bundles.

Listing 13-4.  LocalizedHello.java

import java.util.Locale;
import java.util.ResourceBundle;
 
public class LocalizedHello {
 public static void main(String args[]) {
 Locale currentLocale = Locale.getDefault();
 ResourceBundle resBundle =
 ResourceBundle.getBundle("ResourceBundle", currentLocale);
 System.out.printf(resBundle.getString("Greeting"));
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

398

There are two options to run this program in the desired way:

•	 Option I: Change the default locale in the program by calling the
setDefault() method:

Locale.setDefault(Locale.ITALY);

This option is not recommended since it will require changing the program
to set the locale.

•	 Option II: Change the default locale when invoking the JVM from the command
line (if you’re invoking the JVM from an IDE, provide the command line arguments
to the JVM in the IDE settings):

D:\> java -Duser.language=it -Duser.region=IT LocalizedHello

Let’s try the program by setting the locale with Option II (passing arguments to the command line when
invoking the JVM).

D:\> java LocalizedHello
Hello
D:\> java -Duser.language=it LocalizedHello
Ciao
D:\> java -Duser.language=ar LocalizedHello
As-Salamu Alaykum

As you can see, depending on the locale that you explicitly set (Italian or Arabic in this example), or the
default locale (US English in this example), the corresponding property file is loaded and the message string
is resolved.

Figure 13-2.  Getting relevant strings from ResourceBundles based on the locale

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

399

 If you forget to create property files or they are not in the path, you will get a MissingResourceException.

In the program, first you get the current locale in the statement.

Locale currentLocale = Locale.getDefault();

After that, you load the resource bundle that starts with the name ResourceBundle and pass the locale
for loading the resource bundle.

ResourceBundle resBundle = ResourceBundle.getBundle("ResourceBundle", currentLocale);

Finally, from the resource bundle, you look for the key “Greeting” and use the value of that key based on
the loaded resource bundle.

System.out.printf(resBundle.getString("Greeting"));

Using ListResourceBundle
Support for a new locale can be added using ListResourceBundle by extending it. While extending the
ListResourceBundle, you need to override the abstract method getContents(); the signature of this
method is:

protected Object[][] getContents();

Note that the keys are Strings, but values can be of any type, hence the array type is Object; further,
the method returns a list of key and value pairs. As a result, the getContents() method returns a
two-dimensional array of Objects.

 You create resource bundles by extending the ListResourceBundle class, whereas with
PropertyResourceBundle, you create the resource bundle as property files. Furthermore, when extending
ListResourceBundle, you can have any type of objects as values, whereas values in a properties file can only
be Strings.

Listing 13-5 shows an example of extending the ListResourceBundle, which returns the largest
box-office movie hit for that particular locale. It defines a resource bundle named ResBundle. Since the
name of the class does not have any suffix (such as "_it" or "_en_US"), it is the default implementation of
the resource bundle. When looking for a matching ResBundle for any locale, this default implementation will
be used in case no match is found.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

400

Listing 13-5.  ResBundle.java

import java.util.ListResourceBundle;
 
// default US English version
public class ResBundle extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents = {
 { "MovieName", "Avatar" },
 { "GrossRevenue", (Long) 2782275172L }, // in US dollars
 { "Year", (Integer)2009 }
 };
}

Now, let’s define a ResBundle for the Italian locale. You give the class the suffix "_it_IT". The language
code "it" stands for Italian and the country code "IT" stands for Italy (Listing 13-6).

Listing 13-6.  ResBundle_it_IT.java

import java.util.ListResourceBundle;
 
// Italian version
public class ResBundle_it_IT extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents = {
 { "MovieName", "Che Bella Giornata" },
 { "GrossRevenue", (Long) 43000000L }, // in euros
 { "Year", (Integer)2011 }
 };
}

As you can see, the implementations for ResBundle and ResBundle_it_IT are similar except for the
values mapped to the keys. Now how do you know if your resource bundles are working or not? Listing 13-7
loads ResBundle for both default and Italian locales.

Listing 13-7.  LocalizedBoxOfficeHits.java

import java.util.ResourceBundle;
import java.util.Locale;
 
public class LocalizedBoxOfficeHits {
 public void printMovieDetails(ResourceBundle resBundle) {
 String movieName = resBundle.getString("MovieName");
 Long revenue = (Long)(resBundle.getObject("GrossRevenue"));
 Integer year = (Integer) resBundle.getObject("Year");
 
 System.out.println("Movie " + movieName + "(" + year + ")" + " grossed "
 + revenue);
 }
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

401

 public static void main(String args[]) {
 LocalizedBoxOfficeHits localizedHits = new LocalizedBoxOfficeHits();
 // print the largest box-office hit movie for default (US) locale
 Locale locale = Locale.getDefault();
 localizedHits.printMovieDetails(ResourceBundle.getBundle("ResBundle", locale));
  
 // print the largest box-office hit movie for Italian locale
 locale = new Locale("it", "IT", "");
 localizedHits.printMovieDetails(ResourceBundle.getBundle("ResBundle", locale));
 }
}

It prints the following:

Movie Avatar (2009) grossed 2782275172
Movie Che Bella Giornata (2011) grossed 43000000

It loaded the default and Italian resource bundles successfully. However, there are problems with
this output. The value 2782275172 is a US dollar value and the value 43000000 is in Euros. Moreover, the
numbers are printed without commas, so it is difficult to make sense of these figures. It is possible to localize
formatting these currency values. But handling number format, decimal format and currency difference
between locales is not covered as part of the OCPJP 8 exam, so we are not discussing it further in this book.

Now, consider the following statement from this program:

Long revenue = (Long)(resBundle.getObject("GrossRevenue"));

This statement returns the value mapping to the key named GrossRevenue in the resource bundle. You
have defined it as a Long object in the classes ResBundle and ResBundle_it_IT—so it worked. If you cast the
types incorrectly, for example, as an Integer, you’ll get a ClassCastException, as in:

Integer revenue = (Integer)(resBundle.getObject("GrossRevenue"));
// This code change will result in throwing this exception:
// Exception in thread "main" java.lang.ClassCastException:
// java.lang.Long cannot be cast to java.lang.Integer

Here is another situation: if you mistype GrossRevenu instead of GrossRevenue as the key name, the
program will crash with this exception, as in:

Long revenue = (Long)(resBundle.getObject("GrossRevenu"));
// This code will crash with this exception:
// Exception in the thread "main" java.util.MissingResourceException:
// Can't find resources for bundle ResBundle, key GrossRevenu

 You need to be careful in providing the keyname to get an object from a resource bundle: the keyname is
case sensitive and the key name should exactly match—or else you'll get a MissingResourceException.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

402

Loading a Resource Bundle
Certification Objective

Build a resource bundle for each locale and load a resource bundle in an application

You’ve already loaded resource bundles in the programs you’ve written using ResourceBundle or its
two derived classes. From the exam perspective, you need to understand this loading process thoroughly, so
we’ll cover it in more detail in this section.

The process of finding a matching resource bundle is same for classes extended from
ListResourceBundles as for property files defined for PropertyResourceBundles.

 For the resource bundles implemented as classes extended from ListResourceBundles, Java uses
the reflection mechanism to find and load the class. You need to make sure that the class is public so that the
reflection mechanism will find the class.

Naming Convention for Resource Bundles
Java enforces a predefined naming convention to be followed for creating resource bundles. Only through
the names of the property bundles does the Java library load the relevant locales. Hence, it is important
to understand and follow this naming convention when creating the property bundles for localizing Java
applications.

You already saw how a locale name is encoded. Understanding this locale name encoding is important
for naming the resource bundles because it makes use of the same encoding scheme. A fully qualified
resource bundle has the following form:

packagequalifier.bundlename + "_" + language + "_" + country + "_" + (variant + "_#" | "#") +
script + "-" + extensions

Here is the description of the elements in this fully qualified name:

•	 packagequalifier: The name of the package (or the subpackages) in which the
resource bundle is provided.

•	 bundlename: The name of the resource bundle that you’ll use in the program to refer
and load it.

•	 language: A two-letter abbreviation typically given in lowercase for the locale’s
language (in rare cases, it could be three letters as well).

•	 country: A two-letter abbreviation typically given in uppercase for the locale’s
country (in rare cases, it could be three letters as well).

•	 variant: An arbitrary list of variants (in lowercase or uppercase) to differentiate
locales when you need more than one locale for a language and country
combination.

We’ve omitted describing script and extension since they are rarely used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

403

For example, consider this fully qualified name:

localization.examples.AppBundle_ en_US_Oracle_exam

In this case, localization.examples is the package, AppBundle is the name of the resource bundle, en
is language (which stands for English), US is the country, and Oracle_exam is the variant.

The two (or sometimes three) letter abbreviations for the locale’s language and country are predefined
since they are based on international standards. We don’t provide the detailed list and there is also no need
to know or remember all of them from the exam. You can look at the documentation of the Locale class to
understand that.

 On the OCPJP 8 exam, you’re not expected to memorize language codes or country codes that are used
for naming resource bundles. However, you are expected to remember the naming convention and recognize
the constituents of a fully qualified resource bundle name.

Given that there could be many resource bundles for a bundle name, what is the search sequence to
determine the resource bundle to be loaded? To clarify, we present the sequence as a series of steps. The
search starts from Step 1. If at any step the search finds a match, the resource bundle is loaded. Otherwise,
the search proceeds to the next step (see Figure 13-3).

Figure 13-3.  Seach sequence for ResourceBundles

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

404

The search starts with the given locale details and if not found, proceeds with checking for default
locale, as in:

BundleName + "_" + language + "_" + country + "_" + variant
BundleName + "_" + language + "_" + country
BundleName + "_" + language
BundleName + "_" + defaultLanguage + "_" + defaultCountry
BundleName + "_" + defaultLanguage

Consider an example to find out how the matching resource bundle is found, and it will become clear to
you. Assume that you have the following five entries in the search path, and your default locale is US English.

ResourceBundle.properties -- Global bundle
ResourceBundle_ar.properties -- Arabic language bundle
ResourceBundle_en.properties -- English bundle (assuming en_US is the default locale)
ResourceBundle_it.properties -- Italian language bundle
ResourceBundle_it_IT_Rome.properties -- Italian (Italy, Rome) bundle

 The getBundle() method takes a ResourceBundle.Control object as an additional parameter.
By extending this ResourceBundle.Control class and passing the instance of that extended class to the
getBundle() method, you can change the default resource bundle search process or read from non-standard
resource bundle formats (such as XML files).

How can we find out what is the sequence of locales that Java is searching for? For that, let us
extend the ResourceBundle.Control class and override the getCandidateLocales() method: this is to
programmatically access and print the list of candidate locales and finally display the matching locale. Note
that “candidate locale” refers to locales being considered by Java during the search process. Assume that
property files named ResourceBundle_it_IT_Rome.properties and ResourceBundle_en.properties are
available. The program is given in Listing 13-8.

Listing 13-8.  CandidateLocales.java

import java.util.ResourceBundle;
import java.util.List;
import java.util.Locale;
 
// Extend ResourceBundle.Control and override getCandidateLocales method
// to get the list of candidate locales that Java searches for
class TalkativeResourceBundleControl extends ResourceBundle.Control {
 // override the default getCandidateLocales method to print
 // the candidate locales first
 public List<Locale> getCandidateLocales(String baseName, Locale locale) {
 List<Locale> candidateLocales = super.getCandidateLocales(baseName, locale);
 System.out.printf("Candidate locales for base bundle name %s and locale %s %n",
 baseName, locale.getDisplayName());
 candidateLocales.forEach(System.out::println);
 return candidateLocales;
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

405

// Use a helper method loadResourceBundle to load a bundle given the bundle name and locale
class CandidateLocales {
 public static void loadResourceBundle(String resourceBundleName, Locale locale) {
 // Pass an instance of TalkativeResourceBundleControl
 // to print candidate locales
 ResourceBundle resourceBundle = ResourceBundle.getBundle(resourceBundleName,
 locale, new TalkativeResourceBundleControl());
 String rbLocaleName = resourceBundle.getLocale().toString();
 // if the resource bundle locale name is empty,
 // it means default property file
 if(rbLocaleName.equals("")) {
 System.out.println("Loaded the default property file with name: "
 + resourceBundleName);
 } else {
 System.out.println("Loaded the resource bundle for the locale: "
 + resourceBundleName + "." + rbLocaleName);
 }
 }
 
 public static void main(String[] args) {
 // trace how ResourceBundle_it_IT_Rome.properties is resolved
 loadResourceBundle("ResourceBundle", new Locale("it", "IT", "Rome"));
 }
}

It prints the following:

Candidate locales for base bundle name ResourceBundle and locale Italian (Italy, Rome)
it_IT_Rome
it_IT
it
 
Loaded the resource bundle for the locale: ResourceBundle.it_IT_Rome

Now, before trying with other locales, consider how the program works. To trace how Java resolves
the resource bundle to be finally loaded, you need to get the list of candidate locales. With the
ResourceBundle.getBundle() method, you can pass an additional argument that is an instance of the
ResourceBundle.Control class. For this reason, you define the TalkativeResourceBundleControl class.

The TalkativeResourceBundleControl class extends the ResourceBundle.Control class and
overrides the getCandidateLocales() method. This getCandidateLocales() method returns a
List<Locale> instance that contains the list of candidate locales for the given locale. You invoke
super.getCandidateLocales() and traverse the resulting List<Locale> object to print the candidate
locales so that you can examine the output later. From this overridden getCandidateLocales() method,
you simply return this List<Locale> object. So, the behavior of TalkativeResourceBundleControl
is identical to ResourceBundle.Control except that the overridden getCandidateLocales() in
TalkativeResourceBundleControl prints the candidate locales.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

406

The CandidateLocales class makes use of the TalkativeResourceBundleControl. It has a helper
method called loadResourceBundle() that takes the resource bundle name and the name of the locale
as arguments. This method simply passes these argument values to the ResourceBundle.getBundle()
method; additionally it instantiates TalkativeResourceBundleControl and passes that object as the third
argument to this method. The getBundle() method returns a ResourceBundle object. If the locale of
the ResourceBundle.getLocale() name is empty, it means Java has loaded the global resource bundle.
(Remember that the global resource bundle for that bundle name does not have any associated locale
details.) If the name of the locale is not empty, it means Java has resolved to that particular locale.

Now, consider the code in the main() method. It calls loadResourceBundle() for the locale it_IT_Rome.
There are three candidate locales and of that it correctly loaded the matching property file for the locale
it_IT_Rome. So you know that it loaded the property file ResourceBundle_it_IT_Rome.properties correctly.

To continue this experiment, let’s change the code inside the main() method of Listing 13-8 to this code:

loadResourceBundle("ResourceBundle", new Locale("fr", "CA", ""));

Now the program prints the following:

Candidate locales for base bundle name ResourceBundle and locale French (Canada)
fr_CA
fr
Candidate locales for base bundle name ResourceBundle and locale English (United States)
en_US
en
Loaded the resource bundle for the locale: ResourceBundle.en

Why does the program print the above output? Note that there is no corresponding property file for the
fr_CA locale in the list of property files. So, the search continues to check the property files for the default
locale. In this case, the default locale is en_US, and there is a property file for the en (English) locale. So, from
the candidate locales, Java resolves to load the property file ResourceBundle_en.properties correctly.

Here is the final example. Replace the code in the main() method with this statement:

loadResourceBundle("ResBundl", Locale.getDefault());

The program prints the following:

Candidate locales for base bundle name ResBundl and locale English (United States)
en_US
en
 
The exception in thread "main" java.util.MissingResourceException: Can't find bundle for
base name ResBundl, locale en_US
 [... thrown stack trace elided ...]

You don’t have any resource bundle named ResBundl and you’ve given the default locale (en_US in this
case). Java searches for the bundle for this locale, and you know that you have not provided any bundle with
name ResBundl. So, the program crashes after throwing a MissingResourceException.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

407

Summary
Let us briefly review the key points from each certification objective in this chapter. Please read it before
appearing for the exam.

Read and set the locale by using the Locale object

•	 A locale represents a language, culture, or country; the Locale class in Java provides
an abstraction for this concept.

•	 Each locale can have three entries: the language, country, and variant. You can use
standard codes available for language and country to form locale tags. There are no
standard tags for variants; you can provide variant strings based on your need.

•	 The getter methods in the Locale class—such as getLanguage(), getCountry(), and
getVariant()—return codes; whereas the similar methods of getDisplayCountry(),
getDisplayLanguage(), and getDisplayVariant() return names.

•	 The getDefault() method in Locale returns the default locale set in the JVM. You
can change this default locale to another locale by using the setDefault() method.

•	 There are many ways to create or get a Locale object corresponding to a locale:

•	 Use the constructor of the Locale class.

•	 Use the forLanguageTag(String languageTag) method in the Locale class.

•	 Build a Locale object by instantiating Locale.Builder and then call
setLanguageTag() from that object.

•	 Use the predefined static final constants for locales in the Locale class.

Create and read a Properties file

•	 A resource bundle is a set of classes or property files that help define a set of keys and
map those keys to locale-specific values.

•	 The class ResourceBundle has two derived classes: PropertyResourceBundle and
ListResourceBundle. You can use ResourceBundle.getBundle() to get the bundle
for a given locale.

•	 The PropertyResourceBundle class provides support for multiple locales in the form
of property files. For each locale, you specify the keys and values in a property file for
that locale. You can use only Strings as keys and values.

•	 To add support for a new locale, you can extend the ListResourceBundle class. In
this derived class, you have to override the Object [][] getContents() method.
The returned array must have the list of keys and values. The keys must be Strings,
and values can be any objects.

•	 When passing the key string to the getObject() method to fetch the matching value
in the resource bundle, make sure that the passed keys and the key in the resource
bundle exactly match (the keyname is case sensitive). If they don’t match, you'll get a
MissingResourceException.

•	 The naming convention for a fully qualified resource bundle name is
packagequalifier.bundlename + "_" + language + "_" + country + "_" +
(variant + "_#" | "#") + script + "-" + extensions.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

408

Build a resource bundle for each locale and load a resource bundle in an application

•	 The process of finding a matching resource bundle is same for classes extended from
ListResourceBundles as for property files defined for PropertyResourceBundles.

•	 Here is the search sequence to look for a matching resource bundle. Search starts
from Step 1. If at any step the search finds a match, the resource bundle is loaded.
Otherwise, the search proceeds to the next step.

•	 Step 1: The search starts by looking for an exact match for the resource bundle
with the full name.

•	 Step 2: The last component (the part separated by _) is dropped and the search
is repeated with the resulting shorter name. This process is repeated till the last
locale modifier is left.

•	 Step 3: The search is continued using the full name of the bundle for the default
locale.

•	 Step 4: Search for the resource bundle with just the name of the bundle.

•	 Step 5: The search fails, throwing a MissingBundleException.

•	 The getBundle() method takes a ResourceBundle.Control object as an additional
parameter. By extending this ResourceBundle.Control class and passing that object,
you can control or customize the resource bundle searching and loading process.

QUESTION TIME

1.	 Which one of the following statements makes use of a factory method?

A.	 Locale locale1 = new Locale("it", "", "");

B.	 NumberFormat.getInstance(Locale.GERMANY);

C.	 Locale locale3 = new Locale.Builder().setLanguageTag("it").build();

D.	 Date today = new Date();

E.	 Locale locale4 = Locale.ITALIAN;

2.	 Consider the following program and choose the correct option:

import java.util.Locale;

class Test {
 public static void main(String []args) {
 Locale locale1 = new Locale("en"); //#1
 Locale locale2 = new Locale("en", "in"); //#2
 Locale locale3 = new Locale("th", "TH", "TH"); //#3
 Locale locale4 = new Locale(locale3); //#4
 System.out.println(locale1 + " " + locale2 + " " + locale3 + " " + locale4);
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

409

	 A.	� This program will print the following: en en_IN th_TH_TH_#u-nu-thai th_TH_
TH_#u-nu-thai.

	 B.	� This program will print the following: en en_IN th_TH_TH_#u-nu-thai
(followed by a runtime exception).

	 C.	 This program results in a compiler error at statement #1.

	 D.	 This program results in a compiler error at statement #2.

	E .	 This program results in a compiler error at statement #3.

	 F.	 This program results in a compiler error at statement #4.

3.	 Choose the best option based on this program:

import java.util.Locale;
  
class LocaleTest {
 public static void main(String []args) {
 Locale locale = new Locale("navi", "pandora"); //#1
 System.out.println(locale);
 }
 }

	 A.	 The program results in a compiler error at statement #1.

	 B.	 The program results in a runtime exception of NoSuchLocaleException.

	 C.	 The program results in a runtime exception of MissingResourceException.

	 D.	 The program results in a runtime exception of IllegalArgumentException.

	E .	 The program prints the following: navi_PANDORA.

4.	 For localization, resource bundle property files are created that consist of key-value
pairs. Which one of the following is a valid key value pair as provided in a resource
bundle property file for some strings mapped to German language?

A.

<pair> <key>from</key> <value>von</value> </pair>
<pair> <key>subject</key> <value> betreff </value> </pair>
 
B.

from=von
subject=betreff
  
C.

key=from; value=von
key=subject; value=betreff
  
D.

pair<from,von>
pair<subject,betreff>

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

410

5.	 Assume that you’ve the following resource bundles in your classpath:

	 ResourceBundle.properties

	 ResourceBundle_ar.properties

	 ResourceBundle_en.properties

	 ResourceBundle_it.properties

	 ResourceBundle_it_IT_Rome.properties

Also assume that the default locale is English (US), where the language code is en and
country code is US. Which one of these five bundles will be loaded for the call

	 loadResourceBundle("ResourceBundle", new Locale("fr", "CA", ""));?

	 A.	 ResourceBundle.properties

	 B.	 ResourceBundle_ar.properties

	 C.	 ResourceBundle_en.properties

	 D.	 ResourceBundle_it.properties

	 E.	 ResourceBundle_it_IT_Rome.properties

6.	 Which of the following is a correct override for extending the ListResourceBundle class?

A. public HashMap<String, String> getContents() {
 Map<String, String> contents = new HashMap<>();
 contents.add("MovieName", "Avatar");
 return contents;
 }
  
B. public Object[] getContents() {
 return new Object[] { { "MovieName" } , { "Avatar" } };
 }
  
C. public Object[][] getContents() {
 return new Object[][] { { "MovieName", "Avatar" } };
 }
  
D. public String[] getKeysAndValues() {
 return new String[] { { "MovieName" } , { "Avatar" } };
 }
  
E. public String[] getProperties() {
 return new String[] { { "MovieName" }, { "Avatar" } };
 }
  

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

411

Answers:

1.	 B. NumberFormat.getInstance(Locale.GERMANY);

A factory method creates an instance and returns back. Using a constructor directly
to create an object is not related to a factory method, so A) and D) are not correct. C)
builds a locale and is an example for using the Builder pattern. E) merely accesses the
predefined Locale object; so it’s not a method.

2.	 F. This program results in a compiler error at #4.

The Locale class supports three constructors that are used in statements #1, #2, and #3;
however, there is no constructor in the Locale class that takes another Locale object
as argument, so the compiler gives an error for statement #4.

3.	 E. The program prints the following: navi_PANDORA.

To create a Locale object using the constructor Locale(String language, String
country), any String values can be passed. Just attempting to create a Locale object
will not result in throwing exceptions other than a NullPointerException, which could
be raised for passing null Strings.

The toString() method of Locale class returns a string representation of the Locale
object consisting of language, country, variant, etc.)

4.	 B.

	 from=von

	 subject=betreff

In the resource bundle property files, the key values are separated using the = symbol,
with each line in the resource file separated by a newline character.

5.	 C. ResourceBundle_en.properties

Java looks for candidate locales for a base bundle named ResourceBundle and locale
French (Canada), and checks for the presence of the following property files:

	 ResourceBundle_fr_CA.properties

	 ResourceBundle_fr.properties

Since both of them are not there, Java searches for candidate locales for the base
bundle named ResourceBundle and a default locale (English - United States):

	 ResourceBundle_en_US.properties

	 ResourceBundle_en.properties

	 Java finds that there is a matching resource bundle,
ResourceBundle_en.properties. Hence it loads this resource bundle.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 13 ■ Localization

412

6.	 C.

public Object[][] getContents() {
 return new Object[][] { { "MovieName", "Avatar" } };
}

The return type of the getContents() method is Object[][]. Further, the method should return a new
object of type Object [][] from the method body. Hence, option C) is the correct answer.

www.it-ebooks.info

http://www.it-ebooks.info/

413

Chapter 14

Mock Exam

The prospect of taking the OCPJP 8 exam raises many questions in your mind.

•	 “What types of questions are asked in the exam?”

•	 “What is the format of the questions?”

•	 “How hard are the questions?”

•	 “How do I know if I’m ready to take the exam?”

This chapter presents a mock exam that helps answer these questions. Use this mock exam as a mental
dipstick to gauge how prepared you are to pass the OCPJP 8 exam.

The questions in this mock exam closely mimic the actual questions you will encounter on your
OCPJP 8 exam. For instance, you will find these aspects in the actual OCPJP 8 exam: the questions will
assume that necessary import statements are included; most questions will contain only relevant code
segments (and not complete programs); and questions will appear in random order (and not according
to the sequence of exam topics given in the exam syllabus). In this mock exam, we have adopted a similar
approach to make this mock exam closely mimic the question format in the actual OCPJP 8 exam.

Before you get started, take a print out of the answer sheet given at the end of this exam. Take this exam
as if it were your real OCPJP 8 exam by simulating real test conditions. Find a quiet place where you can
take this mock exam without interruption or distraction. Mark your start and finish times, and stop if you
cross the exam time limit (2.5 hours). Observe closed-book rules: do not consult the answer key or any other
any print, human, or web resources during this mock exam. Check the answers only after you complete the
exam. Out of 85 questions, you need to answer at least 55 questions correctly to pass this exam (the passing
score is 65%).

Best of luck!

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

414

Time: 2 hours 30 minutes			 No. of questions: 85

1.	 What will be the result of executing this code segment?

Stream.of("ace ", "jack ", "queen ", "king ", "joker ")
 .mapToInt(card -> card.length())
 .filter(len -> len > 3)
 .peek(System.out::print)
 .limit(2);

a)	T his code segment prints: jack queen king joker

b)	T his code segment prints: jack queen

c)	T his code segment prints: king joker

d)	T his code segment does not print anything on the console

2.	 Consider the following snippet:

int ch = 0;
try (FileReader inputFile = new FileReader(file)) {
 // #1
 System.out.print((char)ch);
 }
}

Which one of the following statements can be replaced with statement #1
so that the contents of the file are correctly printed on the console and the
program terminates.

a)	 while((ch = inputFile.read()) != null) {

b)	 while((ch = inputFile.read()) != -1) {

c)	 while((ch = inputFile.read()) != 0) {

d)	 while((ch = inputFile.read()) != EOF) {

3.	 What will be the output of the following program?

class Base {
 public Base() {
 System.out.println("Base");
 }
}
 
class Derived extends Base {
 public Derived() {
 System.out.println("Derived");
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

415

class DeriDerived extends Derived {
 public DeriDerived() {
 System.out.println("DeriDerived");
 }
}
 
class Test {
 public static void main(String []args) {
 Derived b = new DeriDerived();
 }
}

a)	 Base

Derived

DeriDerived

b)	 Derived

DeriDerived

c)	 DeriDerived

Derived

Base

d)	 DeriDerived

Derived

e)	 DeriDerived

4.	 Given this code segment:

final CyclicBarrier barrier =
 �new CyclicBarrier(3, () -> System.out.println("Let's play"));

 // LINE_ONE
 
Runnable r = () -> { // LINE_TWO
 System.out.println("Awaiting");
 try {
 barrier.await();
 } catch(Exception e) { /* ignore */ }
};
 
Thread t1 = new Thread(r);
Thread t2 = new Thread(r);
Thread t3 = new Thread(r);
 
t1.start();
t2.start();
t3.start();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

416

Choose the correct option based on this code segment.

a)	T his code segment results in a compiler error in line marked with the
comment LINE_ONE

b)	T his code segment results in a compiler error in line marked with the
comment LINE_TWO

c)	T his code prints:

Let's play

d)	T his code prints:

Awaiting
Awaiting
Awaiting
Let's play

e)	T his code segment does not print anything on the console

5.	 Given this class definition:

class Point {
 private int x = 0, y;
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 // DEFAULT_CTOR
}

Which one of the following definitions of the Point constructor can be
replaced without compiler errors in place of the comment DEFAULT_CTOR?

a) public Point() {
 this(0, 0);
 super();
 }

b) public Point() {
 super();
 this(0, 0);
 }

c) private Point() {
 this(0, 0);
 }

d) public Point() {
 this();
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

417

e) public Point() {
 this(x, 0);
 }

6.	 Consider the following program:

class Base {
 public Base() {
 System.out.print("Base ");
 }
 public Base(String s) {
 System.out.print("Base: " + s);
 }
}
 
class Derived extends Base {
 public Derived(String s) {
 super(); // Stmt-1
 super(s); // Stmt-2
 System.out.print("Derived ");
 }
}
 
class Test {
 public static void main(String []args) {
 Base a = new Derived("Hello ");
 }
}

Select three correct options from the following list:

a)	R emoving only Stmt-1 will make the program compilable and it will print the
following: Base Derived

b)	R emoving only Stmt-1 will make the program compilable and it will print the
following: Base: Hello Derived

c)	R emoving only Stmt-2 will make the program compilable and it will print the
following: Base Derived

d)	R emoving both Stmt-1 and Stmt-2 will make the program compilable and it
will print the following: Base Derived

e)	R emoving both Stmt-1 and Stmt-2 will make the program compilable and it
will print the following: Base: Hello Derived

7.	 Consider the following program and choose the right option from the
given list:

class Base {
 public void test() {
 protected int a = 10; // #1
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

418

class Test extends Base { // #2
 public static void main(String[] args) {
 System.out.printf(null); // #3
 }
}

a)	T he compiler will report an error at statement marked with the comment #1

b)	T he compiler will report an error at statement marked with the comment #2

c)	T he compiler will report errors at statement marked with the comment #3

d)	T he program will compile without any error

8.	 Given this code segment:

LocalDate joiningDate = LocalDate.of(2014, Month.SEPTEMBER, 20);
LocalDate now = LocalDate.of(2015, Month.OCTOBER, 20);
// GET_YEARS
System.out.println(years);

Which one of the following statements when replaced by the comment
GET_YEARS will print 1 on the console?

a)	 Period years = Period.between(joiningDate, now).getYears();

b)	 Duration years = Period.between(joiningDate, now).getYears();

c)	 int years = Period.between(joiningDate, now).getYears();

d)	 Instant years = Period.between(joiningDate, now).getYears();

9.	 Consider the following program:

class Outer {
 class Inner {
 public void print() {
 System.out.println("Inner: print");
 }
 }
}
 
class Test {
 public static void main(String []args) {
 // Stmt#1
 inner.print();
 }
}

Which one of the following statements will you replace with // Stmt#1 to
make the program compile and run successfully to print “Inner: print” in
console?

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

419

a)	 Outer.Inner inner = new Outer.Inner();

b)	 Inner inner = new Outer.Inner();

c)	 Outer.Inner inner = new Outer().Inner();

d)	 Outer.Inner inner = new Outer().new Inner();

10.	 Consider the following program:

public class Outer {
 private int mem = 10;
 class Inner {
 private int imem = new Outer().mem; // ACCESS1
 }
  
 public static void main(String []s) {
 System.out.println(new Outer().new Inner().imem); // ACCESS2
 }
}

Which one of the following options is correct?

a)	 When compiled, this program will result in a compiler error in line marked with
comment ACCESS1

b)	 When compiled, this program will result in a compiler error in line marked with
comment ACCESS2

c)	 When executed, this program prints 10

d)	 When executed, this program prints 0

11.	 Consider the following program:

interface EnumBase { }
 
enum AnEnum implements EnumBase { // IMPLEMENTS_INTERFACE
 ONLY_MEM;
}
 
class EnumCheck {
 public static void main(String []args) {
 if(AnEnum.ONLY_MEM instanceof AnEnum) {
 System.out.println("yes, instance of AnEnum");
 }
 if(AnEnum.ONLY_MEM instanceof EnumBase) {
 System.out.println("yes, instance of EnumBase");
 }
 if(AnEnum.ONLY_MEM instanceof Enum) { // THIRD_CHECK
 System.out.println("yes, instance of Enum");
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

420

Which one of the following options is correct?

a)	T his program results in a compiler error in the line marked with comment
IMPLEMENTS_INTERFACE

b)	T his program results in a compiler in the line marked with comment
THIRD_CHECK

c)	 When executed, this program prints the following:

yes, instance of AnEnum

d)	 When executed, this program prints the following:

yes, instance of AnEnum
yes, instance of EnumBase

e)	 When executed, this program prints the following:

yes, instance of AnEnum
yes, instance of EnumBase
yes, instance of Enum

12.	 Which of the following statements are true with respect to enums? (Select all
that apply.)

a)	A n enum can have private constructor

b)	A n enum can have public constructor

c)	A n enum can have public methods and fields

d)	A n enum can implement an interface

e)	A n enum can extend a class

13.	 Choose the correct option based on this program:

class base1 {
 protected int var;
}
 
interface base2 {
 int var = 0; // #1
}
 
class Test extends base1 implements base2 { // #2
 public static void main(String args[]) {
 System.out.println("var:" + var); // #3
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

421

a)	T he program will report a compilation error at statement marked with the
comment #1

b)	T he program will report a compilation error at statement marked with the
comment #2

c)	T he program will report a compilation error at statement marked with the
comment #3

d)	T he program will compile without any errors

14.	 Consider the following program:

class WildCard {
 interface BI {}
 interface DI extends BI {}
 interface DDI extends DI {}
 
 static class C<T> {}
 static void foo(C<? super DI> arg) {}
 
 public static void main(String []args) {
 foo(new C<BI>()); // ONE
 foo(new C<DI>()); // TWO
 foo(new C<DDI>()); // THREE
 foo(new C()); // FOUR
 }
}

Which of the following options are correct?

a)	 Line marked with comment ONE will result in a compiler error

b)	 Line marked with comment TWO will result in a compiler error

c)	 Line marked with comment THREE will result in a compiler error

d)	 Line marked with comment FOUR will result in a compiler error

15.	 Consider the following definitions:

interface BI {}
interface DI extends BI {}

The following options provide definitions of a template class X. Which one
of the options specifies class X with a type parameter whose upper bound
declares DI to be the super type from which all type arguments must be
derived?

a)	 class X <T super DI> { }

b)	 class X <T implements DI> { }

c)	 class X <T extends DI> { }

d)	 class X <T extends ? & DI> { }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

422

16.	 In the context of Singleton pattern, which one of the following statements
is true?

a)	A Singleton class must not have any static members

b)	A Singleton class has a public constructor

c)	A Factory class may use Singleton pattern

d)	A ll methods of the Singleton class must be private

17.	 Consider the following program:

class ClassA {}
 
interface InterfaceB {}
 
class ClassC {}
 
class Test extends ClassA implements InterfaceB {
 String msg;
 ClassC classC;
}

Which one of the following statements is true?

a)	 Class Test is related with ClassA with a HAS-A relationship.

b)	 Class Test is related to ClassC with a composition relationship.

c)	 Class Test is related with String with an IS-A relationship.

d)	 Class ClassA is related with InterfaceB with an IS-A relationship.

18.	 Choose the correct option based on the following code segment:

Comparator<String> comparer =
 (country1, country2) ->
 country2.compareTo(country2); // COMPARE_TO
  
String[] brics = {"Brazil", "Russia", "India", "China"};
Arrays.sort(brics, null);
Arrays.stream(brics).forEach(country -> System.out.print(country + " "));

a)	T he program results in a compiler error in the line marked with the comment
COMPARE_TO

b)	T he program prints the following: Brazil Russia India China

c)	T he program prints the following: Brazil China India Russia

d)	T he program prints the following: Russia India China Brazil

e)	T he program throws the exception InvalidComparatorException

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

423

f)	T he program throws the exception InvalidCompareException

g)	T he program throws the exception NullPointerException

19.	 Which one of the following class definitions will compile without any errors?

a) class P<T> {
 static T s_mem;
 }
 
b) class Q<T> {
 T mem;
 public Q(T arg) {
 mem = arg;
 }
 }
 
c) class R<T> {
 T mem;
 public R() {
 mem = new T();
 }
 }
 
d) class S<T> {
 T []arr;
 public S() {
 arr = new T[10];
 }
 }

20.	 In a class that extends ListResourceBundle, which one of the following
method definitions correctly overrides the getContents() method of the
base class?

a) public String[][] getContents() {
 return new Object[][] { { "1", "Uno" }, { "2", "Duo" }, { "3", "Trie" }};
 }
 
b) public Object[][] getContents() {
 return new Object[][] { { "1", "Uno" }, { "2", "Duo" }, { "3", "Trie" }};
 }
 
c) private List<String> getContents() {
 �return new ArrayList (Arrays.AsList({ { "1", "Uno" }, { "2", "Duo" },

{ "3", "Trie" }});
 }
 
d) protected Object[] getContents(){
 return new String[] { "Uno", "Duo", "Trie" };
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

424

21.	 Which one of the following interfaces declares a single abstract method
named iterator()? (Note: Implementing this interface allows an object to be
the target of the for-each statement.)

a)	 Iterable<T>

b)	 Iterator<T>

c)	 Enumeration<E>

d)	 ForEach<T>

22.	 Choose the correct option based on this program:

import java.util.stream.Stream;
 
public class Reduce {
 public static void main(String []args) {
 Stream<String> words = Stream.of("one", "two", "three");
 �int len = words.mapToInt(String::length).reduce(0, (len1, len2) ->

len1 + len2);
 System.out.println(len);
 }
}

a)	T his program does not compile and results in compiler error(s)

b)	T his program prints: onetwothree

c)	T his program prints: 11

d)	T his program throws an IllegalArgumentException

23.	 Which one of the following options is best suited for generating random
numbers in a multi-threaded application?

a)	 Using java.lang.Math.random()

b)	 Using java.util.concurrent.ThreadLocalRandom

c)	 Using java.util.RandomAccess

d)	 Using java.lang.ThreadLocal<T>

24.	 Given this code segment:

DateTimeFormatter fromDateFormat = DateTimeFormatter.ofPattern("MM/dd/yyyy");
// PARSE_DATE
DateTimeFormatter toDateFormat = DateTimeFormatter.ofPattern("dd/MMM/YY");
System.out.println(firstOct2015.format(toDateFormat));

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

425

Which one of the following statements when replaced with the comment
PARSE_DATE will result in the code to print “10/Jan/15”?

a)	 DateTimeFormatter firstOct2015 = DateTimeFormatter.
parse("01/10/2015", fromDateFormat);

b)	 LocalTime firstOct2015 = LocalTime.parse("01/10/2015",
fromDateFormat);

c)	 Period firstOct2015 = Period.parse("01/10/2015", fromDateFormat);

d)	 LocalDate firstOct2015 = LocalDate.parse("01/10/2015",
fromDateFormat);

25.	 Consider the following program:

import java.util.*;
 
class ListFromVarargs {
 public static <T> List<T> asList1(T... elements) {
 ArrayList<T> temp = new ArrayList<>();
 for(T element : elements) {
 temp.add(element);
 }
 return temp;
 }
  
 public static <T> List<?> asList2(T... elements) {
 ArrayList<?> temp = new ArrayList<>();
 for(T element : elements) {
 temp.add(element);
 }
 return temp;
 }
  
 public static <T> List<?> asList3(T... elements) {
 ArrayList<T> temp = new ArrayList<>();
 for(T element : elements) {
 temp.add(element);
 }
 return temp;
 }
  
 public static <T> List<?> asList4(T... elements) {
 List<T> temp = new ArrayList<T>();
 for(T element : elements) {
 temp.add(element);
 }
 return temp;
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

426

Which of the asList definitions in this program will result in a compiler error?

a)	T he definition of asList1 will result in a compiler error

b)	T he definition of asList2 will result in a compiler error

c)	T he definition of asList3 will result in a compiler error

d)	T he definition of asList4 will result in a compiler error

e)	 None of the definitions (asList1, asList2, asList3, asList4) will result in
a compiler error

26.	 Given this code segment:

IntFunction<UnaryOperator<Integer>> func = i -> j -> i * j;
// LINE
System.out.println(apply);

Which one of these statements when replaced by the comment marked with
LINE will print 200?

a)	 Integer apply = func.apply(10).apply(20);

b)	 Integer apply = func.apply(10, 20);

c)	 Integer apply = func(10 , 20);

d)	 Integer apply = func(10, 20).apply();

27.	 Given this code segment:

List<Map<List<Integer>, List<String>>> list = new ArrayList<>(); // ADD_MAP
Map<List<Integer>, List<String>> map = new HashMap<>();
list.add(null); // ADD_NULL
list.add(map);
list.add(new HashMap<List<Integer>, List<String>>()); // ADD_HASHMAP
list.forEach(e -> System.out.print(e + " ")); // ITERATE

Which one of the following options is correct?

a)	T his program will result in a compiler error in line marked with comment
ADD_MAP

b)	T his program will result in a compiler error in line marked with comment
ADD_HASHMAP

c)	T his program will result in a compiler error in line marked with comment
ITERATE

d)	 When run, this program will crash, throwing a NullPointerException in line
marked with comment ADD_NULL

e)	 When run, this program will print the following: null {} {}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

427

28.	 Given this code snippet:

LocalDate dateOfBirth = LocalDate.of(1988, Month.NOVEMBER, 4);
MonthDay monthDay =
 MonthDay.of(dateOfBirth.getMonth(), dateOfBirth.getDayOfMonth());
boolean ifTodayBirthday =
 monthDay.equals(MonthDay.from(LocalDate.now())); // COMPARE
System.out.println(ifTodayBirthday ? "Happy birthday!" : "Yet another day!");

Assume that today’s date is 4th November 2015. Choose the correct answer
based on this code segment.

a)	T his code will result in a compiler error in the line marked with the
comment COMPARE

b)	 When executed, this code will throw DateTimeException

c)	T his code will print: Happy birthday!

d)	T his code will print: Yet another day!

29.	 Consider the following program:

class Base<T> { }
 
class Derived<T> { }
 
class Test {
 public static void main(String []args) {
 // Stmt #1
 }
}

Which statements can be replaced with // Stmt#1 and the program remains
compilable (choose two):

a)	 Base<Number> b = new Base<Number>();

b)	 Base<Number> b = new Derived<Number>();

c)	 Base<Number> b = new Derived<Integer>();

d)	 Derived<Number> b = new Derived<Integer>();

e)	 Base<Integer> b = new Derived<Integer>();

f)	 Derived<Integer> b = new Derived<Integer>();

30.	 Which of the following classes in the java.util.concurrent.atomic package
inherit from java.lang.Number? (Select all that apply.)

a)	 AtomicBoolean

b)	 AtomicInteger

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

428

c)	 AtomicLong

d)	 AtomicFloat

e)	 AtomicDouble

31.	 Given the class definition:

class Student{
 public Student(int r) {
 rollNo = r;
 }
 int rollNo;
}

Choose the correct option based on this code segment:

HashSet<Student> students = new HashSet<>();
students.add(new Student(5));
students.add(new Student(10));
System.out.println(students.contains(new Student(10)));

a)	T his program prints the following: true

b)	T his program prints the following: false

c)	T his program results in compiler error(s)

d)	T his program throws NoSuchElementException

32.	 Which of the following statements are true regarding resource bundles in the
context of localization? (Select ALL that apply.)

a)	 java.util.ResourceBundle is the base class and is an abstraction of
resource bundles that contain locale-specific objects

b)	 java.util.PropertyResourceBundle is a concrete subclass of java.util.
ResourceBundle that manages resources for a locale using strings provided in
the form of a property file

c)	 Classes extending java.util.PropertyResourceBundle must override the
getContents() method which has the return type Object [][]

d)	 java.util.ListResourceBundle defines the getKeys() method that returns
enumeration of keys contained in the resource bundle

33.	 Which of the following statements is true regarding the classes or interfaces
defined in the java.util.concurrent package? (Select ALL that apply.)

a)	T he Executor interface declares a single method execute(Runnable
command) that executes the given command at sometime in the future

b)	T he Callable interface declares a single method call() that computes a
result

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

429

c)	T he CopyOnWriteArrayList class is not thread-safe unlike ArrayList that is
thread-safe

d)	T he CyclicBarrier class allows threads to wait for each other to reach a
common barrier point

34.	 Given these two class declarations:

class CloseableImpl implements Closeable {
 public void close() throws IOException {
 System.out.println("In CloseableImpl.close()");
 }
}
 
class AutoCloseableImpl implements AutoCloseable {
 public void close() throws Exception {
 System.out.println("In AutoCloseableImpl.close()");
 }
}

Choose the correct option based on this code segment:

try (Closeable closeableImpl = new CloseableImpl();
 AutoCloseable autoCloseableImpl = new AutoCloseableImpl()) {
} catch (Exception ignore) {
 // do nothing
}
finally {
 // do nothing
}

a)	T his code segment does not print any output in console

b)	T his code segment prints the following output:

In AutoCloseableImpl.close()

c)	T his code segment prints the following output:

In AutoCloseableImpl.close()
In CloseableImpl.close()

d)	T his code segment prints the following output:

In CloseableImpl.close()
In AutoCloseableImpl.close()

35.	 Choose the correct option based on this code segment:

List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5);
ints.replaceAll(i -> i * i); // LINE
System.out.println(ints);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

430

a)	T his code segment prints: [1, 2, 3, 4, 5]

b)	T his program prints: [1, 4, 9, 16, 25]

c)	T his code segment throws java.lang.UnsupportedOperationException

d)	T his code segment results in a compiler error in the line marked with the
comment LINE

36.	 Choose the correct option for this code snippet:

public static void main(String []files) {
 try (FileReader inputFile = new FileReader(new File(files[0]))) { // #1
 inputFile.close(); // #2
 }
 catch (FileNotFoundException | IOException e) { // #3
 e.printStackTrace();
 }
}

a)	T he code snippet will compile without any errors

b)	T he compiler will report an error at statement marked with the comment #1

c)	T he compiler will report an error at statement marked with the comment #2

d)	T he compiler will report an error at statement marked with the comment #3

37.	 Given this program:

import java.time.*;
import java.time.temporal.ChronoUnit;
 
class DecadeCheck {
 public static void main(String []args) {
 Duration tenYears = ChronoUnit.YEARS.getDuration().multipliedBy(10);
 Duration aDecade = ChronoUnit.DECADES.getDuration();
 assert tenYears.equals(aDecade) : "10 years is not a decade!";
 }
}

Assume that this program is invoked as follows:

java DecadeCheck

Choose the correct option based on this program:

a)	T his program does not compile and results in compiler error(s)

b)	 When executed, this program prints: 10 years is not a decade!

c)	 When executed, this program throws an AssertionError with the message
“10 years is not a decade!”

d)	 When executed, this program does not print any output and terminates
normally

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

431

38.	 Consider the following code segment:

while((ch = inputFile.read()) != VALUE) {
 outputFile.write((char)ch);
}

Assume that inputFile is of type FileReader, and outputFile is of type
FileWriter, and ch is of type int. The method read() returns the character
if successful, or VALUE if the end of the stream has been reached. What is the
correct value of this VALUE checked in the while loop for end-of-stream?

a)	 -1

b)	 0

c)	 255

d)	 Integer.MAX_VALUE

e)	 Integer.MIN_VALUE

39.	 Consider the following code snippet.

String srcFile = "Hello.txt";
String dstFile = "World.txt";
 
try (BufferedReader inputFile = new BufferedReader(new FileReader(srcFile));
 BufferedWriter outputFile = new BufferedWriter(new FileWriter(dstFile))) {
 int ch = 0;
 inputFile.skip(6);
 while((ch = inputFile.read()) != -1) {
 outputFile.write((char)ch);
 }
 outputFile.flush();
} catch (IOException exception) {
 System.err.println("Error " + exception.getMessage());
}

Assume that you have a file named Hello.txt in the current directory with the
following contents:

Hello World!

Which one of the following options correctly describes the behavior of
this code segment (assuming that both srcFile and dstFile are opened
successfully)?

a)	T he program will throw an IOException because skip() is called before
calling read()

b)	T he program will result in creating the file World.txt with the contents
“World!” in it

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

432

c)	T his program will result in throwing CannotSkipException

d)	T his program will result in throwing IllegalArgumentException

40.	 Consider the following code segment:

try (BufferedReader inputFile = new BufferedReader(new FileReader(srcFile));
 BufferedWriter outputFile
 = new BufferedWriter(new FileWriter(dstFile))) { // TRY-BLOCK
 int ch = 0;
 while((ch = inputFile.read()) != -1) { // COND-CHECK
 outputFile.write((char)ch);
 }
} catch (Exception exception) {
 System.err.println("Error in opening or processing file "
 + exception.getMessage());
}

Assume that srcFile and dstFile are Strings. Choose the correct option.

a)	T his program will get into an infinite loop because the condition check for
end-of-stream (checking != -1) is incorrect

b)	T his program will get into an infinite loop because the variable ch is declared
as int instead of char

c)	T his program will result in a compiler error in line marked with comment
TRY-BLOCK because you need to use , (comma) instead of ; (semi-colon) as
separator for opening multiple resources

d)	T his program works fine and copies srcFile to dstFile

41.	 Given the following definitions:

interface InterfaceOne<T> {
 void foo();
}
 
interface InterfaceTwo<T> {
 T foo();
}
 
interface InterfaceThree<T> {
 void foo(T arg);
}
 
interface InterfaceFour<T> {
 T foo(T arg);
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

433

public class DateLambda {
 public static void main(String []args) {
 // STATEMENT
 System.out.println(val.foo());
 }
}

Which one of the following statements can be replaced with the line marked
with the comment STATEMENT that the program will print the result that is
same as the call LocalDateTime.now()?

a)	 InterfaceOne<LocalDateTime> val = LocalDateTime::now;

b)	 InterfaceTwo<LocalDateTime> val = LocalDateTime::now;

c)	 InterfaceThree<LocalDateTime> val = LocalDateTime::now;

d)	 InterfaceFour<LocalDateTime> val = LocalDateTime::now;

42.	 Which one of the following statements will compile without errors?

a)	 Locale locale1 = new Locale.US;

b)	 Locale locale2 = Locale.US;

c)	 Locale locale3 = new US.Locale();

d)	 Locale locale4 = Locale("US");

e)	 Locale locale5 = new Locale(Locale.US);

43.	 Choose the correct option based on this code segment:

String []exams = { "OCAJP 8", "OCPJP 8", "Upgrade to OCPJP 8" };
Predicate isOCPExam = exam -> exam.contains("OCP"); // LINE-1
List<String> ocpExams = Arrays.stream(exams)
 .filter(exam -> exam.contains("OCP"))
 .collect(Collectors.toList()); // LINE-2
boolean result =
 ocpExams.stream().anyMatch(exam -> exam.contains("OCA")); // LINE-3
System.out.println(result);

a)	T his code results in a compiler error in line marked with the comment LINE-1

b)	T his code results in a compiler error in line marked with the comment LINE-2

c)	T his code results in a compiler error in line marked with the comment LINE-3

d)	T his program prints: true

e)	T his program prints: false

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

434

44.	 Which one of the following code snippets shows the correct usage of
try-with-resources statement?

a) public static void main(String []files) {
 try (FileReader inputFile
 = new FileReader(new File(files[0]))) {
 //...
 }
 catch(IOException ioe) {}
 }
 
b) public static void main(String []files) {
 try (FileReader inputFile
 = new FileReader(new File(files[0]))) {
 //...
 }
 finally { }
 catch(IOException ioe) {}
 }
 
c) public static void main(String []files) {
 try (FileReader inputFile
 = new FileReader(new File(files[0]))) {
 //...
 }
 catch(IOException ioe) {}
 finally { inputFile.close(); }
 }
 
d) public static void main(String []files) {
 try (FileReader inputFile
 = new FileReader(new File(files[0]))) {
 //...
 }
 }

45.	 Two friends are waiting for some more friends to come so that they can go
to a restaurant for dinner together. Which synchronization construct could be
used here to programmatically simulate this situation?

a)	 java.util.concurrent.RecursiveTask

b)	 java.util.concurrent.locks.Lock

c)	 java.util.concurrent.CyclicBarrier

d)	 java.util.concurrent.RecursiveAction

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

435

46.	 Choose the correct option based on this program:

import java.util.*;
 
public class ResourceBundle_it_IT extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }
 static final Object[][] contents = {
 { "1", "Uno" },
 { "2", "Duo" },
 { "3", "Trie" },
 };
 public static void main(String args[]) {
 ResourceBundle resBundle =
 �ResourceBundle.getBundle("ResourceBundle",

new Locale("it", "IT", ""));
 System.out.println(resBundle.getObject(new Integer(1).toString()));
 }
}

a)	T his program prints the following: Uno

b)	T his program prints the following: 1

c)	T his program will throw a MissingResourceException

d)	T his program will throw a ClassCastException

47.	 Given this code segment:

Set<String> set = new CopyOnWriteArraySet<String>(); // #1
set.add("2");
set.add("1");
Iterator<String> iter = set.iterator();
set.add("3");
set.add("-1");
while(iter.hasNext()) {
 System.out.print(iter.next() + " ");
}

Choose the correct option based on this code segment.

a)	T his code segment prints the following: 2 1

b)	T his code segment the following: 1 2

c)	T his code segment prints the following: -1 1 2 3

d)	T his code segment prints the following: 2 1 3 -1

e)	T his code segment throws a ConcurrentModificationException

f)	T his code segment results in a compiler error in statement #1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

436

48.	 Choose the correct option based on this code segment:

Stream<Integer> ints = Stream.of(1, 2, 3, 4);
boolean result = ints.parallel().map(Function.identity()).isParallel();
System.out.println(result);

a)	T his code segment results in compiler error(s)

b)	T his code segment throws InvalidParallelizationException for
the call parallel()

c)	T his code segment prints: false

d)	T his code segment prints: true

49.	 Choose the correct option based on this code segment:

Path currPath = Paths.get(".");
try (DirectoryStream<Path> javaFiles = Files.newDirectoryStream(currPath,
"*.{java}")) {
 for(Path javaFile : javaFiles) {
 System.out.println(javaFile);
 }
} catch (IOException ioe) {
 System.err.println("IO Error occurred");
 System.exit(-1);
}

a)	T his code segment throws a PatternSyntaxException

b)	T his code segment throws an UnsupportedOperationException

c)	T his code segment throws an InvalidArgumentException

d)	T his code segment lists the files ending with suffix .java in the
current directory

50.	 Given this code segment:

Path aFilePath = Paths.get("D:\\dir\\file.txt");
Iterator<Path> paths = aFilePath.iterator();
while(paths.hasNext()) {
 System.out.print(paths.next() + " ");
}

Choose the correct option assuming that you are using a Windows machine and the
file D:\dir\file.txt does not exist in the underlying file system.

a)	T he program throws a FileNotFoundException

b)	T he program throws an InvalidPathException

c)	T he program throws an UnsupportedOperationException

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

437

d)	T he program gets into an infinite loop and keeps printing: path element: dir

e)	T he program prints the following: dir file.txt

51.	 Which of the following is NOT a problem associated with thread
synchronization using mutexes?

a)	 Deadlock

b)	 Lock starvation

c)	T ype erasure

d)	 Livelock

52.	 Assume that a thread acquires a lock on an object obj; the same thread again
attempts to acquire the lock on the same object obj. What will happen?

a)	 If a thread attempts to acquire a lock again, it will result in throwing an
IllegalMonitorStateException

b)	 If a thread attempts to acquire a lock again, it will result in throwing an
AlreadyLockAcquiredException

c)	 It is okay for a thread to acquire lock on obj again, and such an attempt
will succeed

d)	 If a thread attempts to acquire a lock again, it will result in a deadlock

53.	 Which one of the following interfaces is empty (i.e., an interface that does not
declare any methods)?

a)	 java.lang.AutoCloseable interface

b)	 java.util.concurrent.Callable<T> interface

c)	 java.lang.Cloneable interface

d)	 java.lang.Comparator<T> interface

54.	 Consider the following program and choose the correct option that describes
its output:

import java.util.concurrent.atomic.AtomicInteger;
 
class Increment {
 public static void main(String []args) {
 AtomicInteger i = new AtomicInteger(0);
 increment(i);
 System.out.println(i);
 }
 static void increment(AtomicInteger atomicInt){
 atomicInt.incrementAndGet();
 }
}
 

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

438

a)	 0

b)	 1

c)	T his program throws an UnsafeIncrementException

d)	T his program throws a NonThreadContextException

55.	 What is the output of the following program?

class EnumTest {
 enum Directions { North, East, West, South };
 enum Cards { Spade, Hearts, Club, Diamond };
 public static void main(String []args) {
 System.out.println("equals: " + Directions.East.equals(Cards.Hearts));
 System.out.println("ordinals: " +
 (Directions.East.ordinal() == Cards.Hearts.ordinal()));
 }
}

a)	 

 equals: false
 ordinals: false

b)	 

 equals: true
 ordinals: false

c)	 

 equals: false
 ordinals: true

d)	 

 equals: true
 ordinals: true

56.	 Consider the following program and choose the correct option:

import java.util.concurrent.atomic.AtomicInteger;

class AtomicVariableTest {
 private static AtomicInteger counter = new AtomicInteger(0);
 static class Decrementer extends Thread {
 public void run() {
 counter.decrementAndGet(); // #1
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

439

 static class Incrementer extends Thread {
 public void run() {
 counter.incrementAndGet(); // #2
 }
 }
 public static void main(String []args) {
 for(int i = 0; i < 5; i++) {
 new Incrementer().start();
 new Decrementer().start();
 }
 System.out.println(counter);
 }
}

a)	T his program will always print 0

b)	T his program will print any value between -5 to 5

c)	 If you make the run() methods in the Incrementer and Decrementer classes
synchronized, this program will always print 0

d)	T he program will report compilation errors at statements #1 and #2

57.	 Which one of the following statements will compile without any errors?

a)	 Supplier<LocalDate> now = LocalDate::now();

b)	 Supplier<LocalDate> now = () -> LocalDate::now;

c)	 String now = LocalDate::now::toString;

d)	 Supplier<LocalDate> now = LocalDate::now;

58.	 For the following enumeration definition, which one of the following prints the
value 2 in the console?

enum Pets { Cat, Dog, Parrot, Chameleon };

a)	 System.out.print(Pets.Parrot.ordinal());

b)	 System.out.print(Pets.Parrot);

c)	 System.out.print(Pets.indexAt("Parrot"));

d)	 System.out.print(Pets.Parrot.value());

e)	 System.out.print(Pets.Parrot.getInteger());

59.	 Assume that the current directory is “D:\workspace\ch14-test”. Choose the
correct option based on this code segment:

Path testFilePath = Paths.get(".\\Test");
System.out.println("file name:" + testFilePath.getFileName());
System.out.println("absolute path:" + testFilePath.toAbsolutePath());
System.out.println("Normalized path:" + testFilePath.normalize());

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

440

a)	 file name:Test

 absolute path:D:\workspace\ch14-test\.\Test
 Normalized path:Test

b)	 file name:Test

 absolute path:D:\workspace\ch14-test\Test
 Normalized path:Test

c)	 file name:Test

 absolute path:D:\workspace\ch14-test\.\Test
 Normalized path:D:\workspace\ch14-test\.\Test

d)	 file name:Test

 absolute path:D:\workspace\ch14-test\.\Test
 Normalized path:D:\workspace\ch14-test\Test

60.	 Given this code segment:

BufferedReader br = new BufferedReader(new FileReader("names.txt"));
System.out.println(br.readLine());
br.mark(100); // MARK
System.out.println(br.readLine());
br.reset(); // RESET
System.out.println(br.readLine());

Assume that names.txt exists in the current directory, and opening the file
succeeds, and br points to a valid object. The content of the names.txt is the
following:

olivea
emma
margaret
emily

Choose the correct option.

a)	T his code segment prints the following:

olivea
emma
margaret

b)	T his code segment prints the following:

olivea
emma
olivea

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

441

c)	T his code segment prints the following:

olivea
emma
emma

d)	T his code segment throws an IllegalArgumentException in the line MARK

e)	T his code segment throws a CannotResetToMarkPositionException in the
line RESET

61.	 Given this class definition:

abstract class Base {
 public abstract Number getValue();
}

Which of the following two options are correct concrete classes extending
Base class?

a)	 

 class Deri extends Base {
 protected Number getValue() {
 return new Integer(10);
 }
 }

b)	 

 class Deri extends Base {
 public Integer getValue() {
 return new Integer(10);
 }
 }

c)	 

 class Deri extends Base {
 public Float getValue(float flt) {
 return new Float(flt);
 }
 }

d)	 

 class Deri extends Base {
 public java.util.concurrent.atomic.AtomicInteger getValue() {
 return new java.util.concurrent.atomic.AtomicInteger(10);
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

442

62.	 Which TWO of the following classes are defined in the
java.util.concurrent.atomic package?

a)	 AtomicBoolean

b)	 AtomicDouble

c)	 AtomicReference<V>

d)	 AtomicString

e)	 AtomicObject<V>

63.	 Given the following class and interface definitions:

class CannotFlyException extends Exception {}
 
interface Birdie {
 public abstract void fly() throws CannotFlyException;
}
 
interface Biped {
 public void walk();
}
 
abstract class NonFlyer {
 public void fly() { System.out.print("cannot fly "); } // LINE A
}
 
class Penguin extends NonFlyer implements Birdie, Biped { // LINE B
 public void walk() { System.out.print("walk "); }
}

Select the correct option for this code segment:

Penguin pingu = new Penguin();
pingu.walk();
pingu.fly();

a)	 Compiler error in line with comment LINE A because fly() does not declare to
throw CannotFlyException

b)	 Compiler error in line with comment LINE B because fly() is not defined and
hence need to declare it abstract

c)	 It crashes after throwing the exception CannotFlyException

d)	 When executed, the program prints “walk cannot fly”

64.	 Given this class definition:

class Outer {
 static class Inner {
 public final String text = "Inner";
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

443

Which one of the following expressions when replaced for the text in place of
the comment /*CODE HERE*/ will print the output “Inner” in console?

class InnerClassAccess {
 public static void main(String []args) {
 System.out.println(/*CODE HERE*/);
 }
}

a)	 new Outer.Inner().text

b)	 Outer.new Inner().text

c)	 Outer.Inner.text

d)	 new Outer().Inner.text

65.	 Given this code snippet:

String[] fileList = { "/file1.txt", "/subdir/file2.txt", "/file3.txt" };
for (String file : fileList) {
 try {
 new File(file).mkdirs();
 }
 catch (Exception e) {
 System.out.println("file creation failed");
 System.exit(-1);
 }
}

Assume that the underlying file system has the necessary permissions to
create files, and that the program executed successfully without printing the
message “file creation failed.” (In the answers, note that the term “current
directory” means the directory from which you execute this program, and the
term “root directory” in Windows OS means the root path of the current drive
from which you execute this program.)

Choose the correct option:

a)	T his code segment will create file1.txt and file3.txt files in the current
directory, and file2.txt file in the subdir directory of the current directory

b)	T his code segment will create file1.txt and file3.txt directories in the current
directory and the file2.txt directory in the “subdir” directory in the current
directory

c)	T his code segment will create file1.txt and file3.txt files in the root directory,
and a file2.txt file in the “subdir” directory in the root directory

d)	T his code segment will create file1.txt and file3.txt directories in the root
directory, and a file2.txt directory in the “subdir” directory in the root directory

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

444

66.	 Given these class definitions:

class Book {
 public void read() {
 System.out.println("read!");
 }
}
 
public class BookUse {
 // DEFINE READBOOK HERE
 public static void main(String []args) {
 new BookUse().readBook(Book::new);
 }
}

Which one of the following code segments when replaced with the comment
“DEFINE READBOOK HERE” inside the BookUse class will result in printing
“read!” on the console?

a)	 

 private void readBook(Supplier<? extends Book> book) {
 book.get().read();
 }

b)	 

 private static void readBook(Supplier<? extends Book> book) {
 Book::read;
 }

c)	 

 private void readBook(Consumer<? extends Book> book) {
 book.accept();
 }

d)	 

 private void readBook(Function<? extends Book> book) {
 book.apply(Book::read);
 }

67.	 Given the class definition:

class Employee {
 String firstName;
 String lastName;
 public Employee (String fName, String lName) {
 firstName = fName;
 lastName = lName;
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

445

 public String toString() { return firstName + " " + lastName; }
 String getFirstName() { return firstName; }
 String getLastName() { return lastName; }
}

Here is a code segment:

Employee[] employees = { new Employee("Dan", "Abrams"),
 new Employee("Steve", "Nash"),
 new Employee("John", "Nash"),
 new Employee("Dan", "Lennon"),
 new Employee("Steve", "Lennon")
 };
Comparator<Employee> sortByFirstName =
 ((e1, e2) -> e1.getFirstName().compareTo(e2.getFirstName()));
Comparator<Employee> sortByLastName =
 ((e1, e2) -> e1.getLastName().compareTo(e2.getLastName()));
// SORT

The sorting needs to be performed in descending order of the first names; when
first names are the same, the names should then be sorted in ascending order of
the last names. For that, which one of the following code segment will you replace
for the line marked by the comment SORT?

a)	 Stream.of(employees)
.sorted(sortByFirstName.thenComparing(sortByLastName))
.forEach(System.out::println);

b)	 Stream.of(employees)
.sorted(sortByFirstName.reversed().thenComparing(sortByLastName))
.forEach(System.out::println);

c)	 Stream.of(employees)
.sorted(sortByFirstName.thenComparing(sortByLastName).reversed())
.forEach(System.out::println);

d)	 Stream.of(employees)
.sorted(sortByFirstName.reversed().thenComparing(sortByLastName).reversed())
.forEach(System.out::println);

68.	 Given this code snippet:

Statement statement = connection.createStatement
 (ResultSet.TYPE_SCROLL_SENSITIVE, ResultSet.CONCUR_UPDATABLE);
ResultSet resultSet = statement.executeQuery
 ("SELECT * FROM EMPLOYEE WHERE EMPNAME = \"John\"");
resultSet.updateString("EMPNAME", "Jonathan");
// UPDATE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

446

Assume that the variable connection points to a valid Connection object and
there exists an employee record with EMPNAME value “John”. The resultSet is
updated by changing the value of EMPNAME column with the value “Jonathan”
instead of “John”. For this change to be reflected in the underlying database,
which one of the following statements will you replace with the comment
UPDATE?

a)	 connection.updateAllResultSets();

b)	 resultSet.updateRow();

c)	 statement.updateDB();

d)	 connection.updateDatabase();

69.	 Given these class definitions:

class ReadDevice implements AutoCloseable {
 public void read() throws Exception {
 System.out.print("read; ");
 throw new Exception();
 }
 public void close() throws Exception {
 System.out.print("closing ReadDevice; ");
 }
}
 
class WriteDevice implements AutoCloseable {
 public void write() {
 System.out.print("write; ");
 }
 public void close() throws Exception {
 System.out.print("closing WriteDevice; ");
 }
}

What will this code segment print?

try(ReadDevice rd = new ReadDevice();
 WriteDevice wd = new WriteDevice()) {
 rd.read();
 wd.write();
} catch(Exception e) {
 System.out.print("Caught exception; ");
}

a)	 read; closing WriteDevice; closing ReadDevice; Caught exception;

b)	 read; write; closing WriteDevice; closing ReadDevice;
Caught exception;

c)	 read; write; closing ReadDevice; closing WriteDevice;
Caught exception;

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

447

d)	 read; write; Caught exception; closing ReadDevice;
closing WriteDevice;

e)	 read; Caught exception; closing ReadDevice; closing WriteDevice;

70.	 Select all the statements that are true about streams (supported in
java.util.stream.Stream interface)?

a)	 Computation on source data is performed in a stream only when the terminal
operation is initiated, i.e., streams are “lazy”

b)	O nce a terminal operation is invoked on a stream, it is considered consumed
and cannot be used again

c)	O nce a stream is created as a sequential stream, its execution mode cannot
be changed to parallel stream (and vice versa)

d)	 If the stream source is modified when the computation in the stream is being
performed, then it may result in unpredictable or erroneous results

71.	 Given the code segment:

List<Integer> integers = Arrays.asList(15, 5, 10, 20, 25, 0);
// GETMAX

Which of the code segments can be replaced for the comment marked with
GETMAX to return the maximum value?

a)	 Integer max = integers.stream().max((i, j) -> i - j).get();

b)	 Integer max = integers.stream().max().get();

c)	 Integer max = integers.max();

d)	 Integer max = integers.stream().mapToInt(i -> i).max();

72.	 Given the class definition:

class NullableBook {
 Optional<String> bookName;
 public NullableBook(Optional<String> name) {
 bookName = name;
 }
 public Optional<String> getName() {
 return bookName;
 }
}

Choose the correct option based on this code segment:

NullableBook nullBook = new NullableBook(Optional.ofNullable(null));
Optional<String> name = nullBook.getName();
name.ifPresent(System.out::println).orElse("Empty"); // NULL

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

448

a)	T his code segment will crash by throwing NullPointerException

b)	T his code segment will print: Empty

c)	T his code segment will print: null

d)	T his code segment will result in a compiler error in line marked with NULL

73.	 Choose the correct option for this code segment:

List<String> lines = Arrays.asList("foo;bar;baz", "", "qux;norf");
lines.stream()
 .flatMap(line -> Arrays.stream(line.split(";"))) // FLAT
 .forEach(str -> System.out.print(str + ":"));

a)	T his code will result in a compiler error in line marked with the comment FLAT

b)	T his code will throw a java.lang.NullPointerException

c)	T his code will throw a java.util.regex.PatternSyntaxException

d)	T his code will print foo:bar:baz::qux:norf:

74.	 Choose the correct option based on this code segment:

LocalDate feb28th = LocalDate.of(2015, Month.FEBRUARY, 28);
System.out.println(feb28th.plusDays(1));

a)	T his program prints: 2015-02-29

b)	T his program prints: 2015-03-01

c)	T his program throws a java.time.DateTimeException

d)	T his program throws a java.time.temporal.
UnsupportedTemporalTypeException

75.	 Choose the correct option based on this code segment:

List<Integer> ints = Arrays.asList(1, 2, 3, 4, 5);
ints.removeIf(i -> (i % 2 ==0)); // LINE
System.out.println(ints);

a)	T his code segment prints: [1, 3, 5]

b)	T his code segment prints: [2, 4]

c)	T his code segment prints: [1, 2, 3, 4, 5]

d)	T his code segment throws java.lang.UnsupportedOperationException

e)	T his code segment results in a compiler error in the line marked with the
comment LINE

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

449

76.	 Given the class definition:

class Point {
 public int x, y;
 public Point(int x, int y) {
 this.x = x;
 this.y = y;
 }
 public int getX() { return x; }
 public int getY() { return y; }
 // other methods elided
}

Which one of the following enforces encapsulation? (Select all that apply.)

a)	 Make data members x and y private

b)	 Make the Point class public

c)	 Make the constructor of the Point class private

d)	R emove the getter methods getX() and getY() methods from the Point class

e)	 Make the Point class static

77.	 Given the definition:

class Sum implements Callable<Long> { // LINE_DEF
 long n;
 public Sum(long n) {
 this.n = n;
 }
 public Long call() throws Exception {
 long sum = 0;
 for(long longVal = 1; longVal <= n; longVal++) {
 sum += longVal;
 }
 return sum;
 }
}

Given that the sum of 1 to 5 is 15, select the correct option for this code segment:

Callable<Long> task = new Sum(5);
ExecutorService es = Executors.newSingleThreadExecutor(); // LINE_FACTORY
Future<Long> future = es.submit(task); // LINE_CALL
System.out.printf("sum of 1 to 5 is %d", future.get());
es.shutdown();

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

450

a)	T his code results in a compiler error in the line marked with the comment
LINE_DEF

b)	T his code results in a compiler error in the line marked with the comment
LINE_FACTORY

c)	T his code results in a compiler error in the line marked with the comment
LINE_CALL

d)	T his code prints: sum of 1 to 5 is 15

78.	 Given this class definition:

public class AssertCheck {
 public static void main(String[] args) {
 int score = 0;
 int num = 0;
 assert ++num > 0 : "failed";
 int res = score / num;
 System.out.println(res);
 }
}

Choose the correct option assuming that this program is invoked as follows:

java –ea AssertCheck

a)	T his program crashes by throwing java.lang.AssertionError with the
message “failed”

b)	T his program crashes by throwing java.lang.ArithmeticException with the
message “/ by zero”

c)	T his program prints: 0

d)	T his program prints “failed” and terminates normally

79.	 Given this code segment:

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String integer = br.readLine();
// CODE
System.out.println(val);

Which one of the following statements when replaced by the comment CODE
will successfully read an integer value from console?

a)	 int val = integer.getInteger();

b)	 int val = Integer.parseInt(integer);

c)	 int val = String.parseInt(integer);

d)	 int val = Number.parseInteger(integer);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

451

80.	 Which one of the following definitions of the AResource class implementation
is correct so that it can be used with try-with-resources statement?

a) class AResource implements Closeable {
 protected void close() /* throws IOException */ {
 // body of close to release the resource
 }
 }
 
b) class AResource implements Closeable {
 public void autoClose() /* throws IOException */ {
 // body of close to release the resource
 }
 }
 
c) class AResource implements AutoCloseable {
 void close() /* throws IOException */ {
 // body of close to release the resource
 }
 }
 
d) class AResource implements AutoCloseable {
 public void close() throws IOException {
 // body of close to release the resource
 }
 }

81.	 Which of the following are functional interfaces? (Select all that apply.)

a) @FunctionalInterface
 interface Foo {
 void execute();
 }
 
b) @FunctionalInterface
 interface Foo {
 void execute();
 boolean equals(Object arg0);
 }
 
c) @FunctionalInterface
 interface Foo {
 boolean equals(Object arg0);
 }
 
d) interface Foo{}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

452

82.	 Choose the correct option based on this code segment:

Stream<String> words = Stream.of("eeny", "meeny", "miny", "mo");
// LINE_ONE
String boxedString = words.collect(Collectors.joining(", ", "[", "]"));
// LINE_TWO
System.out.println(boxedString);

a)	T his code results in a compiler error in line marked with the comment LINE_ONE

b)	T his code results in a compiler error in line marked with the comment LINE_TWO

c)	T his program prints: [eeny, meeny, miny, mo]

d)	T his program prints: [eeny], [meeny], [miny], [mo]

83.	 Choose the correct option based on the following code snippet. Assume that
DbConnector.connectToDb() returns a valid Connection object and that the
EMPLOYEE table has a column named CUSTOMERID of type VARCHAR(3).

ResultSet resultSet = null;
try (Connection connection = DbConnector.connectToDb()) {
 // LINE_ONE
 Statement statement = connection.createStatement();
 resultSet = statement.executeQuery
 ("SELECT * FROM CUSTOMER WHERE CUSTOMERID = 1212"); // LINE_TWO
}
while (resultSet.next()){ // LINE_THREE
 resultSet.getString("CUSTOMERID");
}

a)	T his code results in a compiler error in line marked with the comment
LINE_ONE

b)	T his code results in a compiler error in line marked with the comment
LINE_TWO

c)	T his code results in a compiler error in line marked with the comment
LINE_THREE

d)	T his code prints "1212" on the console and terminates

e)	T his code gets into an infinite loop and keeps printing "1212" on the console

f)	T his code throws SQLException

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

453

84.	 Given this code snippet:

public static Connection connectToDb() throws SQLException {
 String url = "jdbc:mysql://localhost:3306/";
 String database = "addressBook";
 String userName = "root";
 String password = "mysql123";
 // CONNECT_TO_DB
}

Which one of the following statements will you replace with the comment
CONNECT_TO_DB to create a Connection object?

a)	 return DatabaseManager.getConnection(url, database, userName,
password);

b)	 return Connection.getConnection(url, database, userName,
password);

c)	 return DriverManager.getConnection(url + database, userName,
password);

d)	 return DatabaseDriver.getConnection(url + database, userName,
password);

85.	 Choose the correct option based on this code segment:

Path path = Paths.get("file.txt");
// READ_FILE
lines.forEach(System.out::println);

Assume that a file named “file.txt” exists in the directory in which this code
segment is run and has the content “hello”. Which one of these options can
be replaced by the text READ_FILE that will successfully read the “file.txt”
and print “hello” on the console?

a)	 List<String> lines = Files.lines(path);

b)	 Stream<String> lines = Files.lines(path);

c)	 Stream<String> lines = File.readLines(path);

d)	 Stream<String> lines = Files.readAllLines(path);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

454

Answer Sheet

Question No Answer Question No Answer Question No Answer

1 31 61

2 32 62

3 33 63

4 34 64

5 35 65

6 36 66

7 37 67

8 38 68

9 39 69

10 40 70

11 41 71

12 42 72

13 43 73

14 44 74

15 45 75

16 46 76

17 47 77

18 48 78

19 49 79

20 50 80

21 51 81

22 52 82

23 53 83

24 54 84

25 55 85

26 56

27 57

28 58

29 59

30 60

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

455

Answers and Explanations

1.	 

d) This code segment does not print anything on the console

The limit() method is an intermediate operation and not a terminal operation.
Since there is no terminal operation in this code segment, elements are not
processed in the stream and hence it does not print anything on the console.

2.	 

b) while((ch = inputFile.read()) != -1) {

The read() method returns -1 when the file reaches the end.

Why other options are wrong:

Option a) Since ch is of type int, it cannot be compared with null.

Option c) With the check != 0, the program will never terminate since inputFile.
read() returns -1 when it reaches end of the file.

Option d) Using the identifier EOF will result in a compiler error.

3.	 

a) Base
 Derived
 DeriDerived

Whenever a class gets instantiated, the constructor of its base classes (the
constructor of the root of the hierarchy gets executed first) gets invoked before the
constructor of the instantiated class.

4.	 

d) This code prints:

Awaiting
Awaiting
Awaiting
Let's play

There are three threads expected in the CyclicBarrier because of the value
3 given as the first argument to the CyclicBarrier constructor. When a thread
executes, it prints “Awaiting” and awaits for the other threads (if any) to join. Once
all three threads join, they cross the barrier and the message “Let's play” gets
printed on the console.

5.	 

c) private Point() {
 this(0, 0);
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

456

Options a) and b) Both the calls super() and this() cannot be provided in a
constructor

Option d) The call this(); will result in a recursive constructor invocation for
Point() constructor (and hence the compiler will issue an error)

Option e) You cannot refer to an instance field x while explicitly invoking a
constructor using this keyword

6.	 

b) Removing Stmt-1 will make the program compilable and it will print the
following: Base: Hello Derived.

c) Removing Stmt-2 will make the program compilable and it will print the
following: Base Derived

d) Removing both Stmt-1 and Stmt-2 will make the program compilable and it will
print the following: Base Derived

Why other options are wrong:

Option a) If you remove Stmt-1, a call to super(s) will result in printing Base:
Hello, and then constructor of the Derived class invocation will print Derived.
Hence it does not print: Base Derived.

Option e) If you remove Stmt-1 and Stmt-2, you will get a compilable program but
it will result in printing: Base Derived and not Base: Hello Derived.

7.	 

a) The compiler will report an error at statement line marked with the comment #1

Statement #1 will result in a compiler error since the keyword protected is not
allowed inside a method body. You cannot provide access specifiers (public,
protected, or private) inside a method body.

Why other options are wrong:

Option b) It is acceptable to extend a base class and hence there is no compiler
error in line marked with comment #2.

Option c) It is acceptable to pass null to printf function hence there is no compiler
error in line marked with comment #2.

Option d) This program will not compile cleanly and hence this option is wrong.

8.	 

c) int years = Period.between(joiningDate, now).getYears();

The between() method in Period returns a Period object. The getYears()
method called on the returned Period returns an int. Hence, option c) that
declares years as int is the correct option.

Using the other three options will result in compiler errors because the getYears()
method of Period return an int.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

457

9.	 

d) Outer.Inner inner = new Outer().new Inner();

Option d) uses the correct syntax for instantiating Outer and Inner classes. The
other three options will result in compiler error(s).

10.	 

c) This program runs and prints 10

An inner class can access even the private members of the outer class. Similarly,
the private variable belonging to the inner class can be accessed in the outer class.

Why other options are wrong:

Options a) and b) are wrong because this program compiles without any errors. The
variable mem is initialized to value 10 and that gets printed by the program (and not 0)
and hence Option d) is wrong.

11.	 

e) When executed, this program prints the following:

yes, instance of AnEnum
yes, instance of EnumBase
yes, instance of Enum

An enumeration can implement an interface (but cannot extend a class, or cannot
be a base class). Each enumeration constant is an object of its enumeration type.
An enumeration automatically extends the abstract class java.util.Enum. Hence,
all the three instanceof checks succeed.

Why other options are wrong:

This program compiles cleanly and hence options a) and b) are wrong. Options c)
and d) do not provide the complete output of the program and hence they are also
incorrect.

12.	 

a) An enum can have private constructor

c) An enum can have public methods and fields

d) An enum can implement an interface

Why other options are wrong:

Option b) An enum cannot have public constructor(s)

Option e) An enum cannot extend a class

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

458

13.	 

c) The program will report a compilation error at statement marked with the
comment #3

Statements marked with the comment #1 and #2 will not result in any compiler
errors; only access to the variable var will generate a compiler error since the
access is ambiguous (since the variable is declared in both base1 and base2).

14.	 

c) The line marked with comment THREE will result in a compiler error

Options a) and b) For the substitution to succeed, the type substituted for the
wildcard ? should be DI or one of its super types.

Option c) The type DDI is not a super type of DI, so it results in a compiler error.

Option d) The type argument is not provided, meaning that C is a raw type in the
expression new C(). Hence, this will elicit a compiler warning, but not an error.

15.	 

c) class X <T extends DI> { }

The keyword extends is used to specify the upper bound for type T; with this,
only the classes or interfaces implementing the interface DI can be used as a
replacement for T. Note that the extends keyword is used for any base type—
irrespective of whether the base type is a class or an interface.

16.	 

c) A Factory class may use Singleton pattern

A Factory class generates the desired type of objects on demand. Hence, it might
be required that only one Factory object exists; in this case, Singleton can be
employed in a Factory class.

Why other options are wrong:

a) A Singleton class needs to have a static member to return a singleton instance

b) A Singleton class must declare its constructor(s) private to ensure that they are
not instantiated

d) A static method (typically named getInstance()) with public access may need
to be provided to get the instance of the Singleton class.

17.	 

b) Class Test is related with ClassC with a composition relationship.

When a class inherits from another class, they share an IS-A relationship. On the
other hand, if a class uses another class (by declaring an instance of another class),
then the first class has a HAS-A relationship with the used class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

459

18.	 

c) The program prints the following: Brazil China India Russia.

For the sort() method, null value is passed as the second argument, which
indicates that the elements’ “natural ordering” should be used. In this case, natural
ordering for Strings results in the strings sorted in ascending order. Note that
passing null to the sort() method does not result in a NullPointerException.

The statement marked with COMPARE_TO will compile without errors. Note that the
variable comparer is unused in this code segment.

19.	 

b) class Q<T> {
 T mem;
 public Q(T arg) {
 mem = arg;
 }
 }

Option a) You cannot make a static reference of type T in a generic class.

Option c) and d) You cannot instantiate the type T or T[] using new operator in a
generic class.

20.	 

b) public Object[][] getContents() {
 return new Object[][] { { "1", "Uno" }, { "2", "Duo" }, { "3", "Trie" }};
 }

The getContents() method is declared in ListResourceBundle as follows:

protected abstract Object[][] getContents()

The other three definitions are incorrect overrides and will result in compiler
error(s).

21.	 

a) Iterable<T>

The interface Iterable<T> declares this single method:

Iterator<T> iterator();

This iterator() method returns an object of type Iterator<T>. A class must
implement Iterable<T> for using its object in a for-each loop. Though Iterable
interface (in Java 8) defines forEach() and spliterator() methods, they are
default methods and not static methods.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

460

Why other options are wrong:

Option b) The Iterator<T> interface declares abstract methods hasNext() and
next(), and defines default methods remove() and forEachRemaining().

Option c) The Enumeration<T> interface declares hasMoreElements() and
nextElement() methods.

Option d) There is no interface named ForEach<T> in the Java core library.

22.	 

c) This program prints: 11

This program compiles without any errors. The variable words point to a stream
of Strings. The call mapToInt(String::length) results in a stream of Integers
with the length of the strings. One of the overloaded versions of reduce() method
takes two arguments:

T reduce(T identity, BinaryOperator<T> accumulator);

The first argument is the identity value, which is given as the value 0 here.
The second operand is a BinaryOperator match for the lambda expression
(len1, len2) -> len1 + len2. The reduce() method thus adds the length of all
the three strings in the stream, which results in the value 11.

23.	 

b) Using java.util.concurrent.ThreadLocalRandom

java.lang.Math.random() is not efficient for concurrent programs. Using
ThreadLocalRandom results in less overhead and contention when compared to
using Random objects in concurrent programs (and hence using this class type is
the best option in this case).

java.util.RandomAccess is unrelated to random number generation.
This interface is the base interface for random access data structures and
is implemented by classes such as Vector and ArrayList. java.lang.
ThreadLocal<T> class provides support for creating thread-local variables.

24.	 

d) LocalDate firstOct2015 = LocalDate.parse("01/10/2015",
fromDateFormat);

You need to use LocalDate for parsing the date string given in the
DateTimeFormatter variable fromDateFormat (with the format string
MM/dd/yyyy”). Other options will not compile.

25.	 

b) The definition of asList2 will result in a compiler error.

In the asList2 method definition, temp is declared as ArrayList<?>. Since the
template type is a wild-card, you cannot put any element (or modify the container).
Hence, the method call temp.add(element); will result in a compiler error.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

461

26.	 

a) Integer apply = func.apply(10).apply(20);

The IntFunction<R> takes an argument of type int and returns a value of type R.
The UnaryOperator<T> takes an argument of type T and returns a value of type T.

The correct way to invoke func is to call func.apply(10).apply(10) (the other
three options do not compile). The first call apply(10) results in an Integer object
that is passed to the lambda expression; calling apply(20) results in executing the
expression (i * j) that evaluates to 200.

The other three options will result in compiler error(s).

27.	 

e) When run, this program will print the following: null {} {}

The lines marked with comments ADD_MAP and ADD_HASHMAP are valid uses of
the diamond operator to infer type arguments. Calling the add() method passing
null does not result in a NullPointerException. The program, when run, will
successfully print the output null {} {} (null output indicates a null value was
added to the list, and the {} output indicates that Map is empty).

28.	 

c) This code will print: Happy birthday!

This code gets the month-and-day components from the given LocalDate and
creates a MonthDay object. Another way to create a MonthDay object is to call the
from() method and pass a LocalDate object. The equals() method compares if
the month and date components are equal and if so returns true. Since the month
and day components are equal in this code (assuming that the today’s date is 4th
November 2015 as given in the question), it results in printing “Happy birthday!”.

29.	 

a) Base<Number> b = new Base<Number>();

f) Derived<Integer> b = new Derived<Integer>();

Note that Base and Derived are not related by an inheritance relationship. Further,
for generic type parameters, subtyping doesn’t work: you cannot assign a derived
generic type parameter to a base type parameter.

30.	 

b) AtomicInteger

c) AtomicLong

Classes AtomicInteger and AtomicLong extend Number class.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

462

Why other options are wrong:

Option a) AtomicBoolean does not extend java.lang.Number.

Options d) and e) Classes named as AtomicFloat or AtomicDouble do not exist in
the java.util.concurrent.atomic package.

31.	 

b) This program prints the following: false

Since methods equals() and hashcode() methods are not overridden in the
Student class, the contains() method will not work as intended and prints false.

32.	 

a) ResourceBundle is the base class and is an abstraction of resource bundles that
contain locale-specific objects

b) java.util.PropertyResourceBundle is a concrete subclass of java.util.
ResourceBundle that manages resources for a locale using strings provided in the
form of a property file

d) java.util.ListResourceBundle defines the getKeys() method that returns
enumeration of keys contained in the resource bundle

The option c) is not to be selected. There is no such method named getContents()
method that has the return type Object [][]. It has the method getKeys()
that returns an enumeration of keys contained in the resource bundle. It is
classes that extend java.util.ListResourceBundle (and not java.util.
PropertyResourceBundle as given in this option) that must override the
getContents() method that has the return type Object [][].

33.	 

a) The Executor interface declares a single method execute(Runnable command)
that executes the given command at some time in the future

b) The Callable interface declares a single method call() that computes a result

d) The CyclicBarrier class allows threads to wait for each other to reach a
common barrier point

These three options are true.

Option c) is incorrect because the CopyOnWriteArrayList class is thread-safe
whereas ArrayList class is not thread-safe.

34.	 

c) This code segment prints the following output:

In AutoCloseableImpl.close()
In CloseableImpl.close()

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

463

The types implementing AutoCloseable can be used with a try-with-resources
statement. The Closeable interface extends AutoCloseable, so classes
implementing Closeable can also be used with a try-with-resources statement.

The close() methods are called in the opposite order when compared to the order
of resources acquired in the try-with-resources statement. So, this program calls
the close() method of AutoCloseableImpl first, and after that calls the close()
method on the CloseableImpl object.

35.	 

b) This program prints: [1, 4, 9, 16, 25]

The replaceAll() method (added in Java 8 to the List interface) takes an
UnaryOperator as the argument. In this case, the unary operator squares
the integer values. Hence, the program prints [1, 4, 9, 16, 25]. The underlying
List object returned by Arrays.asList() method can be modified using
the replaceAll() method and it does not result in throwing java.lang.
UnsupportedOperationException.

36.	 

d) The compiler will report an error at the statement marked with the comment #3

Both of the specified exceptions belong to the same hierarchy
(FileNotFoundException derives from an IOException), so you cannot specify
both exceptions together in the multi-catch handler block.

It is not a compiler error to explicitly call close() method for a FileReader object
inside a try-with-resources block.

37.	 

d) When executed, this program does not print any output and terminates normally

The program compiles cleanly without any errors. Assertions are disabled by
default. Since assertions are not enabled when invoking this program, it does not
evaluate the assert expression. Hence, the program terminates normally without
printing any output on the console.

38.	 

a) -1

The read() method returns the value -1 if end-of-stream (EOS) is reached, which
is checked in this while loop.

39.	 

b) The program will result in creating the file World.txt with the contents “World!”
in it.

The method call skip(n) skips n bytes (i.e., moves the buffer pointer by n bytes).
In this case, 6 bytes need to be skipped, so the string “Hello” is not copied in the
while loop while reading and writing the file contents.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

464

Why other options are wrong:

Option a) The skip() method can be called before the read() method.

Option c) No exception named CannotSkipException exists.

Option d) The skip() method will throw an IllegalArgumentException only if a
negative value is passed.

40.	 

d) This program works fine and copies srcFile to dstFile

Why other options are wrong:

Options a) and b) This program does not get into an infinite loop because the
condition check for end-of-stream (checking != -1) is correct and the variable
ch needs to be declared as int (and not char).

Option c) You can use ; (semi-colon) as separator for opening multiple resources in
try-with-resources statement.

41.	 

b) InterfaceTwo<LocalDateTime> val = LocalDateTime::now;

The method now() in LocalDateTime is declared with the signature:

LocalDateTime now()

The matching functional interface should also have an abstract method that takes
no argument and returns a value of type T. Since InterfaceTwo has the abstract
method declared as T foo(), the statement InterfaceTwo<LocalDateTime>
val = LocalDateTime::now; succeeds. From the interface, the method can
be invoked with val.foo(); since val refers to LocalDateTime::now, and it is
equivalent to making the call LocalDateTime.now().

42.	 

b) Locale locale2 = Locale.US;

The static public final Locale US member in the Locale class is accessed
using the expression Locale.US, as in option b).

The other options will result in compiler error(s).

43.	 

a) This code results in a compiler error in line marked with the comment LINE-1

The functional interface Predicate<T> takes type T as the generic parameter that
is not specified in LINE-1. This results in a compiler error because the lambda
expression uses the method contains() in the call exam.contains(“OCP”).

If Predicate<String> were specified (as in Predicate isOCPExam = exam ->
exam.contains("OCP")), this code segment would compile without errors, and
when executed will print “false”.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

465

44.	 

a) public static void main(String []files) {
 try (FileReader inputFile
 = new FileReader(new File(files[0]))) {
 //...
 }
 catch(IOException ioe) {}
 }

Why other options are wrong:

•	 Option b) provides finally before the catch block, it will result in a compiler error.

•	 Option c) uses the variable inputFile in the statement inputFile.close() that
is not accessible in the finally block and hence results in a compiler error. Option
d) the required catch block in this context is missing in the code (because the try
block code may throw IOException), and hence it is incorrect usage.

45.	 

c) java.util.concurrent.CyclicBarrier

CyclicBarrier is used when threads may need to wait at a predefined execution point
until all other threads reach that point. This construct matches the given requirements.

Why other options are wrong:

•	 Options a) and d) java.util.concurrent.RecursiveTask and
java.util.concurrent.RecursiveAction are used in the context of executing
tasks in fork-join framework.

•	 Option b) The java.util.concurrent.locks.Lock class provides better
abstraction for locking and unlocking than using the synchronized keyword.

46.	 

a) This program prints the following: Uno

This program correctly extends ListResourceBundle and defines a resource
bundle for the locale it_IT.

The getObject() method takes String as an argument; this method returns
the value of the matching key. The expression new Integer(1).toString() is
equivalent of providing the key “1”, so the program prints Uno in the console.

47.	 

a) This code segment prints the following: 2 1

This code segment modifies the underlying CopyOnWriteArrayList container
object using the add() method. After adding the elements “2” and “1”, the iterator
object is created. After creating this iterator object, two more elements are added,
so internally a copy of the underlying container is created due to this modification
to the container. But the iterator still refers to the original container that had two
elements. So, this program results in printing 2 and 1. If a new iterator is created
after adding these four elements, it will iterate over all those four elements.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

466

48.	 

d) This code segment prints: true

The stream pointed by ints is a sequential stream because sequential is the default
execution mode. The call to parallel() method changes the execution mode
to parallel stream. The isParallel() method returns true because the current
execution mode of the stream is parallel.

Why other options are wrong:

Option a) This code compiles without errors. The call to map(Function.
identity()) is acceptable because the argument Function.identity() just
returns the same stream element it is passed with.

Option b) It is possible to change the execution mode of a stream after it is created,
and it does not result in throwing any exceptions.

Option c) The isParallel() method returns the current execution mode and not
the execution mode when the stream was created. So the isParallel() method
returns true in this code (and not false as given in this option).

49.	 

d) This code segment lists the files ending with suffix .java in the current directory

The path “.” specifies the current directory. The pattern “*.{java}" matches file
names with suffix .java.

50.	 

e) This code segment prints the following: dir file.txt

The name elements in a path object are identified based on the separators. Note:
To iterate name elements of the Path object does not actually require that the
corresponding files/directories must exist, so it will not result in throwing any
exceptions.

51.	 

c) Type erasure

Deadlocks, lock starvation, and livelocks are problems that arise when using
mutexes for thread synchronization. Type erasure is a concept related to generics
where the generic type information is lost once the generic type is compiled.

52.	 

c) It is okay for a thread to acquire lock on obj again, and such an attempt will
succeed

Java locks are reentrant: a Java thread, if it has already acquired a lock, can
acquire it again, and such an attempt will succeed. No exception is thrown and no
deadlock occurs for this case.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

467

53.	 

c) java.lang.Cloneable interface

From the documentation of clone() method: “By convention, classes that
implement this interface should override the Object.clone() method. Note that
this interface does not contain the clone method.”

Why other options are wrong:

•	 Option a) The AutoCloseable interface declares the close() method.

•	 Option b) Callable declares call() method.

•	 Option d) The Comparator<T> interface declares compare() and equals()
methods.

54.	 

b) 1

The call atomicInt.incrementAndGet(); mutates the integer value passed
through the reference variable atomicInt, so the changed value is printed in
the main() method. Note that AtomicInteger can be used in thread or non-
thread context though it is not of any practical use when used in single-threaded
programs.

55.	 

c)

equals: false
ordinals: true

The equals() method returns true only if the enumeration constants are the same.
In this case, the enumeration constants belong to different enumerations, so the
equals() method returns false. However, the ordinal values of the enumeration
constants are equal since both are second elements in their respective
enumerations.

56.	 

b) This program will print any value between −5 to 5

You have employed AtomicInteger, which provides a set of atomic methods
such as incrementAndGet() and decrementAndGet(). Hence, you will always
get 0 as the final value of counter. However, depending on thread scheduling, the
intermediate counter values may be anywhere between −5 to +5, Hence the output
of the program can range between −5 and +5.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

468

57.	 

d) Supplier<LocalDate> now = LocalDate::now;

The now() method defined in LocalDate does not take any arguments and returns
a LocalDate object. Hence, the signature of now() method matches that of the only
abstract method in the Supplier interface: T get(). Hence, the method reference
Local::now can be assigned to Supplier<LocalDate> and the statement
compiles without any errors.

Other options show improper use of method reference and they will result in
compiler error(s).

58.	 

a) System.out.print(Pets.Parrot.ordinal());

The ordinal() method prints the position of the enumeration constant within an
enumeration and hence it prints 2 for this program.

Why other options are wrong:

•	 Option b) The call print(Pets.Parrot); prints the string “Parrot” to console

•	 Options c), d) and e) There are no methods named indexAt(), value(), or
getInteger() in Enum

59.	 

a)

file name:Test
absolute path:D:\workspace\ch14-test\.\Test
Normalized path:Test

The absolute path adds the path from the root directory; however, it does not
normalize the path. Hence, “.\” will be retained in the resultant path. On the other
hand, the normalize() method normalizes the path but does not make it absolute.

60.	 

c) This code segment prints the following:

olivea
emma
emma

The method void mark(int limit) in BufferedReader marks the current
position for resetting the stream to the marked position. The argument limit
specifies the number of characters that may be read while still preserving the mark.
This code segment marks the position after “olivea” is read, so after reading
“emma,” when the marker is reset and the line is read again, it reads “emma”
once again.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

469

61.	 

b)

 class Deri extends Base {
 public Integer getValue() {
 return new Integer(10);
 }
 }

d)

 class Deri extends Base {
 public java.util.concurrent.atomic.AtomicInteger getValue() {
 return new java.util.concurrent.atomic.AtomicInteger(10);
 }
 }

Option b) makes use of a co-variant return type (note that Integer extends
Number), and defines the overriding method correctly.

Option d) makes use of co-variant return type (note that AtomicInteger extends
Number), and defines the overriding method correctly.

Why the other two options are wrong:

•	 Option a) attempts to assign a weaker access privilege by declaring the method
protected when the base method is public, and thus is incorrect (results in a
compiler error).

•	 In option c) the method Float getValue(float flt) does not override the
getValue() method in Base since the signature does not match, so it is incorrect
(results in a compiler error).

62.	 

a) AtomicBoolean and c) AtomicReference<V>

The class AtomicBoolean supports atomically updatable Boolean values. The class
AtomicReference<V> supports atomically updatable references of type V. Classes
AtomicDouble, AtomicString, and AtomicObject are not part of the java.util.
concurrent.atomic package.

63.	 

d) When executed, the program prints “walk cannot fly”

In order to override a method, it is not necessary for the overridden method to
specify an exception. However, if the exception is specified, then the specified
exception must be the same or a subclass of the specified exception in the method
defined in the super class (or interface).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

470

64.	 

a) new Outer.Inner().text

The correct way to access fields of the static inner class is to use the inner class
instance along with the outer class, so new Outer.Inner().text will do the job.

65.	 

d) This code segment will create file1.txt and file3.txt directories in the root
directory, and a file2.txt directory in the “subdir” directory in the root directory.

The mkdirs() method creates a directory for the given name. Since the file names
have / in them, the method creates directories in the root directory (or root path for
the Windows drive based on the path in which you execute this program).

66.	 

a)

 private void readBook(Supplier<? extends Book> book) {
 book.get().read();
 }

The Supplier<T> interface declares the abstract method get(). The get()
method does not take any arguments and returns an object of type T. Hence, the
call book.get().read() succeeds and prints “read!” on the console.

Why other options are wrong:

•	 Option b) Method references can be used in places where lambda expressions can
be used. Hence, this code segment will result in a compiler error.

•	 Option c) The accept() method in the Consumer<T> interface requires an
argument to be passed – since it is missing here, it will result in a compiler error.

•	 Option d) The Function<T, R> interface takes two type parameters and hence this
method definition will result in a compiler error.

67.	 

b)

 Stream.of(employees)
 .sorted(sortByFirstName.reversed().thenComparing(sortByLastName))
 .forEach(System.out::println);

The sortByFirstName is a Comparator that sorts names by the Employee’s first
name. Because we need to sort the names in descending order, we need to call the
reversed() method. After that, we need to sort the last names in ascending order,
and hence we can call thenComparing(sortByLastName).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

471

68.	 

b) resultSet.updateRow();

The call updateRow() on the ResultSet object updates the database. Other
options will not compile.

69.	 

a) read; closing WriteDevice; closing ReadDevice; Caught exception;

The read() method of ReadDevice throws an exception, and hence the write()
method of WriteDevice is not called. The try-with-resources statement releases
the resources in the reverse order from which they were acquired. Hence, the
close() for WriteDevice is called first, followed by the call to the close() method
for ReadDevice. Finally, the catch block prints “Caught exception;” to the console.

70.	 

a) Computation on source data is performed in a stream only when the terminal
operation is initiated, i.e., streams are “lazy”

b) Once a terminal operation is invoked on a stream, it is considered consumed and
cannot be used again

d) If the stream source is modified when the computation in the stream is being
performed, then it may result in unpredictable or erroneous results

These three statements are true about streams.

Option c) is not correct. Once a stream is created as a sequential its execution
mode can be changed to parallel stream by calling parallel() method. Similarly,
once a parallel stream is created, you can make it a sequential stream by calling
sequential() method.

71.	 

a) Integer max = integers.stream().max((i, j) -> i - j).get();

Calling stream() method on a List<Integer> object results in a stream of type
Stream<Integer>. The max() method takes a Comparator as the argument that is
provided by the lambda expression (i, j) -> i - j. The max() method returns
an Optional<Integer> and the get() method returns an Integer value.

Why other options are wrong:

•	 Option b) The max() method in Stream requires a Comparator to be passed as the
argument

•	 Option c) There is no max() method in List<Integer>

•	 Option d) The mapToInt() method returns an IntStream, but the max() method
returns an OptionalInt and hence it cannot be assigned to Integer (as required
in this context)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

472

72.	 

d) This program will result in a compiler error in line marked with NULL

The ifPresent() method for Optional takes a Consumer as the argument and
returns void. Hence, it is not possible to chain the orElse() method after calling
the ifPresent() method.

73.	 

d) This code will print foo:bar:baz::qux:norf:

The flatMap() method flattens the streams by taking the elements in the stream.
The elements in the given strings are split using the separator “;” and the elements
from the resulting string stream are collected. The forEach() method prints the
resulting strings.

Why other options are wrong:

•	 Option a) This code does not issue any compiler errors

•	 Option b) This Splitting an empty string does not result in a null, and hence this
code does not throw NullPointerException.

•	 Option c) The syntax of the given regular expression is correct and hence it does
not result in PatternSyntaxException.

74.	 

b) This program prints: 2015-03-01

Since 2015 is not a leap year, there are only 28 days in February. Hence adding a
day from 28th February 2015 results in 1st March 2015 and that is printed.

75.	 

d) This code segment throws java.lang.UnsupportedOperationException

The underlying List object returned by Arrays.asList() method is a fixed-size
list and hence we cannot remove elements from that list. Hence calling removeIf()
method on this list results in throwing an UnsupportedOperationException.

76.	 

a) Make data members x and y private

Publicly visible data members violate encapsulation since any code can modify the
x and y values of a Point object directly. It is important to make data members
private to enforce encapsulation.

Why other options are wrong:

•	 Options b), c), and d) Making the Point class public, making the constructor of the
class private or removing the getter methods will not help enforce encapsulation.

•	 Option e) You cannot declare a class static.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

473

77.	 

d) This code prints: sum of 1 to 5 is 15

This code correctly uses Callable<T>, ExecutorService, and Future<T>
interfaces and the Executors class to calculate the sum of numbers from 1 to 5.

78.	 

c) This program prints: 0

The condition within the assert statement ++num > 0 holds true because num’s
value is 1 with the pre-increment expression ++num. The expression 0 / 1 results
in the value 0 and hence the output.

Why other options are wrong:

•	 Options a) and d) The assertion condition holds true; hence neither java.lang.
AssertionError is thrown nor the message “failed” get printed

•	 Since the assertions are enabled by passing the option “-ea” this does not result
in divide-by-zero. If the assertion were not disabled, it would have crashed by
throwing java.lang.ArithmeticException with the message “/ by zero”

79.	 

b) int val = Integer.parseInt(integer);

Using the method Integer.parseInt(String) is the correct way to get an int
value from a String object. The other three options will not compile.

80.	 

d)

 class AResource implements AutoCloseable {
 public void close() throws IOException {
 // body of close to release the resource
 }
 }

AutoCloseable is the base interface of the Closeable interface; AutoCloseable
declares close as void close() throws Exception; In Closeable, it is declared
as public void close() throws IOException;. For a class to be used with
try-with-resources, it should both implement Closeable or AutoCloseable and
correctly override the close() method.

Option a) declares close() protected; since the close() method is declared public
in the base interface, you cannot reduce its visibility to protected, so this will result
in a compiler error.

Option b) declares autoClose(); a correct implementation would define the
close() method.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

474

Option c) declares close() with default access; since the close method is declared
public in the base interface, you cannot reduce its visibility to default accesses, so it
will result in a compiler error.

Option d) is a correct implementation of the AResource class that overrides the
close() method.

81.	 

a) @FunctionalInterface
 interface Foo {
 void execute();
 }

 
b) @FunctionalInterface
 interface Foo {
 void execute();
 boolean equals(Object arg0);
 }

The interface in option a) declares exactly one abstract method and hence it is a
functional interface. In option b) note that equals() method belongs to Object
class, which is not counted as an abstract method required for a functional
interface. Hence, the interface in option b) has only one abstract method and it
qualifies as a functional interface.

Why other options are wrong:

•	 Option c) the interface does not have an abstract method declared and hence it is
not a functional interface.

•	 Option d) the interface does not have any methods and hence it is not a functional
interface.

82.	 

c) This program prints: [eeny, meeny, miny, mo]

Stream.of() method takes a variable length argument list of type T and it returns
a Stream<T>. The joining() method in Collectors class takes delimiter,
prefix, and suffix as arguments:

joining(CharSequence delimiter, CharSequence prefix, CharSequence
suffix)

Hence, the expression Collectors.joining(", ", "[", "]") joins the strings
with commas and encloses the resulting string within ‘[‘ and ‘]’.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 14 ■ Mock Exam

475

83.	 

f) This code throws SQLException

The try-with-resources block is closed before the while statement executes. Hence,
call resultSet.next() results in making a call on the closed ResultSet object,
thereby throwing an SQLException.

84.	 

c) return DriverManager.getConnection(url + database, userName,
password);

The getConnection() method in DriverManager takes three String arguments
and returns a Connection:

Connection getConnection(String url, String user, String password)

Hence, option c) is the correct answer.

The other three options will result in compiler errors.

85.	 

b) Stream<String> lines = Files.lines(path);

The lines(Path) method in Files class takes a Path and returns
Stream<String>. Hence option b) is the correct answer.

Option a) The code segment results in a compiler error because the return type of
lines() method is Stream<String> and not List<String>.

Option c) There is no such method named readLines(Path) in Files that returns
a Stream<String> and hence it results in a compiler error.

Option d) The readAllLines(Path) method returns a List<String> and not
Stream<String> and hence the given statement results in a compiler error.

www.it-ebooks.info

http://www.it-ebooks.info/

477

�       � A
absolute() method, 375
Advanced Class Design

abstract classes, 55
enum data type, 68
final classes, 57
flavors of nested classes

anonymous inner class, 66
inner classes, 62
local inner classes, 64
static nested class, 60

interfacese
vs. abstract classes, 74
declaration and implementation, 71
Diamond problem, 77
functional interfaces, 79

Lambda functions
block lambda, 85
final variables, 86
Syntax, 83

methods and variables, 58
Assertions

AssertionError, 221–222
Boolean expression, 221
command-line arguments, 222
-da switch, 222
integer values, 222
non-Boolean expression, 221
statement, 222

AtomicBoolean, 324
AtomicInteger, 324
AtomicIntegerArray, 324
AtomicLong, 324
AtomicLongArray, 324
AtomicReferenceArray<E>, 325
AtomicReference<V>, 325

�       � B
boolean absolute(int) method, 380

�       � C
cancelRowUpdates() method, 381
Character streams

vs. byte streams, 267
Reader class, 268–269
reading text files

BufferedReader, 272
close() method, 273
Copy.java, 271
FileNotFoundException, 271
FileReader class, 271
read() method, 271
temporary (internal) buffer, 271
Type.java, 270

tokenizing text, 273
Writer class, 268–269
writing text files, 271

close() method, 203–204, 206, 213–214,
217, 273, 279, 282, 364

Collection classes
abstract classes and interfaces, 111
concrete classes

ArrayList Class, 113
asList() method, 116
TreeSet Class, 116

Deque Interface and Array
Deque class, 119

filter() method, 132
interface, 112
Map interface, 117

Collection streams and filters, 124
Collectors.toMap() method, 183
Comparable and Comparator

Interfaces
ComparatorTest1.java, 121
ComparatorTest2.java, 122

Compare-And-Set (CAS), 326
compareTo() method, 292–293
connect() method, 366
connectToDb() method, 372

Index

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

478

Console class
character display device, 259
character input device, 259
char[] readPassword() method, 261
CPJP 8 exam, 264
Echo.java, 259
format() method, 261, 264
formatted output, 261
get input, 265
printf() method, 261
PrintWriter writer() method, 260
Reader reader() method, 260
readLine() method, 260–261
readPassword() method, 261
String readLine() method, 260
System.console() method, 260
void flush() method, 261

copy() method, 301–302
CountDownLatch, 328
createStatement() method, 368, 375
Custom exception

CustomExceptionTest.java, 219
definition, 217
Error class, 218
flexibility, 218
InvalidInputException.java, 219–220
methods and constructors, 218
RuntimeException class, 218
toString() method, 220

CyclicBarrier, 328

�       � D
DbConnector.connectToDb() method, 375
Deadlocks, 321
Default methods, 75
delete() method, 303
deleteIfExists() method, 303
deleteRow() method, 374, 379
DoubleStream interfaces, 176
DriverManager.getConnection() method, 364

�       � E
equals() method, 292, 293
Exceptions

custom exception
CustomExceptionTest.java, 219
definition, 217
Error class, 218
flexibility, 218
InvalidInputException.java, 219, 220
methods and constructors, 218

RuntimeException class, 218
toString() method, 220

Throwable class (see Throwable class)
try-with-resources (see

Try-with-resources)
Exchanger class, 328
execute() method, 368
executeQuery() method, 368, 372
executeUpdate() method, 368, 380
exists() method, 295–296

�       � F
Files class, 294

definition, 293
file properties and metadata

attributes parameter, 298
BasicFileAttributes, 298
copying file, 300
delete() method, 303
exists() method, 295
FileAttributes.java, 297
FilePermissions.java, 296
Files.move() method, 302
generic syntax, 298
getAttribute() method, 297–298
isSameFile() method, 295
NoSuchFileException, 295
PathCompare2.java, 295
PathExists.java, 295

Files.list() method, 304
lines() method, 307

Files.delete() method, 303
Files.list() method, 304
Files.move() method, 302
fill() method, 266
find() method, 306
flatMap() method, 188
flush() method, 273, 282
ForkJoinPool class, 338
format() method, 261, 264
Functional interfaces

BiConsumer interface, 159
BiFunction interface, 159
BiPredicate interface, 159
CombineFunctions.java, 152
constructor references, 154
consumer interface, 149
FunctionUse.java, 150
identity() function, 152
predicate interface, 146
primitive versions, 154
supplier interface, 152

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

479

�       � G
Garbage Collector (GC), 204
Generics

BoxPrinterTest.java, 98
Diamond syntax, 102
fill() method, 105
PairOfT.java, 101
PairTest.java, 99
raw type, 103
and subtyping, 107
Wildcard parameters

limitation, 109
WildCardUse.java, 108

getAttribute() method, 297–298
getColumnCount() method, 373
getConnection() method, 366
getDriver() method, 366
getFilename() method, 289, 291
getMetaData() method, 373
get() method, 289
getObject() method, 373
getSuppressed() method, 217
getXXX() methods, 381
groupingBy() method, 184

�       � H
hashCode() Method, 31

�       � I
IntStream Interface, 176
isDirectory() method, 295–296
isExecutable() method, 296
isReadable() method, 296
isSameFile() method, 295
isWritable() method, 296

�       � J, K
Java Class design

access modifiers
private access modifier, 11
protected and default access modifiers, 12
public access modifier, 11

composition vs. inheritance, 34
encapsulation, 9
immutable classes, 40
inheritance, 12
Invoking Superclass Methods, 29
object composition, 33
Overriding equals() Method, 26
Overriding toString() Method, 23

polymorphism
constructor overloading, 18
method overloading, 16
overload resolution, 19
runtime polymorphism, 15

singleton class, 37
static keyword

counter java, 43
static block, 44

Java concurrency
Callable and ExecutorService Interfaces

call() method, 335
CallableTest.java, 335
Classes/Interfaces, Executor hierarchy, 333
Executor interface, 334–335
Factorial class, 336
isDone() method, 335
newSingleThreadExecutor() method, 336
submit(task) method, 337

deadlocks, 321
java.util.concurrent.atomic Package (see

Java.util.concurrent.atomic Package)
java.util.concurrent Collections (see

Java.util.concurrent Collections)
livelocks, 323
lock starvation, 324
Parallel Fork/Join Framework (see Parallel

Fork/Join Framework)
parallel streams (see Parallel streams)
threads creation

Runnable interface, 314–315
Thread Class, 314
thread synchronization (see Thread

synchronization)
worker threads, 313

Java Database Connectivity (JDBC)
architecture, 360
benefit of, 359
Connection interface, 362
definition, 359
DriverManager class, 360

CLASSPATH variable, 365
connect() method, 366
connector, 365
DbConnect.java, 364
getConnection() method, 366
getDriver() method, 366
methods, 366
root user password, 365
URL string, 363

query and updates
boolean absolute(int) method, 380
cancelRowUpdates() method, 381
column numbers, 372

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

480

connectToDb() method, 372
createStatement() method, 375
DbConnector.java, 371
DbCreateTable.java, 380
DbDelete.java, 379
DbInsert.java, 377
DbQuery, 371, 373
DbUpdate.java, 374
DbUpdate2.java, 376
deleteRow() method, 374
exception, 372
executeQuery() method, 372
executeUpdate() method, 380
getColumnCount() method, 373
getMetaData() method, 373
getObject() method, 373
getXXX() methods, 381
main() method, 372
moveToInsertRow() method, 378
PreparedStatement interface, 381
ResultSet object, 372, 375, 381
ResultSet, 370
resultSet interface, 369
SQLException, 381
Statement interface, 367
Statement object, 372
syntax errors, 380
updateRow() method, 374, 376
updateXXX() method, 376

setting up, 361
steps, 359

Java SE 8 Date/Time API
daylight savings, 248
Duration Class, 243
FlightTravel.java, 252
fluent interfaces, 235
formatting dates and times, 249
Instant Class, 240
java.time.LocalDate, 236
java.time.LocalTime class, 238
java.time.Period class, 241
java.time.ZoneId class, 246
LocalDate class, 237
LocalDate.now() method, 236
LocalDateTime Class, 239
TemporalUnit interface, 244
ZonedDateTime Class, 247
ZoneOffset class, 246

Java Stream API
collection method, 181
extract data, 167
flatMap method, 185
optional class

ifPresent() method, 173
max() method, 172
optional object creation, 173
primitive type versions, 175
stream, 174

searching data, 169
stream data methods and calculation

methods, 175
Java.util.concurrent.atomic Package

AtomicBoolean, 324
AtomicInteger, 324
AtomicIntegerArray, 324
AtomicInteger Class, 325
AtomicLong, 324
AtomicLongArray, 324
AtomicReference<V>, 325
AtomicReferenceArray<E>, 325
AtomicVariableTest.java, 326
Compare-And-Set (CAS), 326
Counter class, 327
Decrementer class, 327
Incrementer class, 327
output, 327
volatile variables, 326

Java.util.concurrent Collections
Classes/Interfaces, 330
ConcurrentHashMap, 330
CopyOnWriteArrayList Class, 331
CyclicBarrier, 328
high-level abstractions, 328
synchronized keyword, 328
synchronizers, 328

Java Virtual Machine (JVM), 276

�       � L
limit() method, 306
lines() method, 307
Livelocks, 323
Localization

load, resource bundles, 402
bundlename, 402
CandidateLocales.java, 404
country, 402
language, 402
loadResourceBundle(), 406
locale details, 404
naming conventions for, 402
packagequalifier, 402
qualified name, 402
ResourceBundle.getBundle()

method, 405
sequences, 403
variant, 402

Java Database Connectivity (JDBC) (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

481

load, resource bundlesLgetCandidate
Locales() method, 405

locales
availability checking, 390, 392
class, 390
codes, 391
getAvailableLocales(), 391
getDefault(), 391
getDisplayName() method, 391
getDisplayVariant(), 394
getScript(), 394
getVariant(), 394
LocaleDetails, 393
methods in class, 390
static Locale[] getAvailableLocales(), 390
static Locale getDefault(), 390
static void setDefault

(Locale newLocale), 390
String getCountry(), 390
String getDisplayCountry(), 390
String getDisplayLanguage(), 390
String getDisplayVariant(), 390
String getLanguage(), 390
String getVariant(), 390
String toString, 390
toString() method, 391

point outs
Italian locale, 394
LIstResourceBundle class, 410
load resource bundle, 408
NumberFormat.getInstance(), 411–412
resource bundle buil, 407

resource bundles, 389, 394
abstract class, 395–396
ClassCastException, 401
derived classes, 395
English Locale, 396
getContents(), 399
Italian Locale, 396
in Java, 395
ListResourcesBundle, 395, 399
LocalizedHello.java, 397
MissingResourceException, 401
PropertyResourceBundle, 395–396
ResBundle.java, 400

resource bundles;Arabic locale, 396
Lock starvation, 324
LongStream interface, 176

�       � M
main() method, 197, 208–209, 220, 372
move() method, 302
moveToInsertRow() method, 378
MySQL database, 361, 364

�       � N
next() method, 369
nextInt() method, 198–199, 201, 203, 211
NIO.2

Files class (see Files class)
path interfaces

absolute path, 288
Boolean isAbsolute(), 288
compareTo() method, 292
definition, 288
equals() method, 292
file/directory path, 304
file system, 287
getFileName() method, 291
int getNameCount() method, 288
normalize() method, 290–291
output, 289
PathCompare1.java, 292
Path getFileName() method, 288
Path getName(int index), 288
Path getParent() method, 288
Path getRoot() method, 288
PathInfo1.java, 289
PathInfo2.java, 290
Path normalize() method, 288
Path resolve(Path other), 288
Path startsWith(Path path), 288
Path startsWith(String path), 288
Path subpath(int beginIndex,

int endIndex), 288
Path toAbsolutePath() method, 288
resolve() method, 291
symbolic link, 288
Test directory, 291
toAbsolutePath() method, 290
toRealPath() method, 290
toUri() method, 290

normalize() method, 290–291
NoSQL databases, 359

�       � O
OCPJP 7

compiler error, 409
Locale, 409

OCPJP 8 exam
abstract factory pattern, 439
accept() method, 470
access for class, 457
addition of strings, 428, 462
AResource class, 451
Arrays.asList() method, 472
asList2, 460
asList compilation, 425

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

482

asList definitions, 426
AtomicInteger, 438–439, 468
atomicInt.incrementAndGet(), 437, 467
AutoCloseable interface, 437, 463, 467
base and derived class, 414, 417
Boolean values, 442, 469
BufferedReader, 439–440, 468–469
class and interface definitions, 442
class declarations, 429
class definitions, 416, 423, 441, 446–447, 449
close(), 463
code segment, 414, 429, 435, 446, 448, 452
code snippet, 430
comments, error, 421
compilation error, 420
compiler error, 416, 419, 456, 458
concrete classes, 441
concurrent.atomic package, 462
CONNECT_TO_DB, 453
constructor, classes, 455
co-variant return type, 469
CyclicBarrier barrier, 415
DbConnector.connectToDb(), 452
deadlocks, 437, 466
DEFAULT_CTOR, 416
“DEFINE READBOOK HERE” comment, 444
dir file.txt, 466
dstFile, 432
end of stream (EOS), 463
enums, 420, 457
equals() method, 438, 467
error report, 417, 458
exam tests, 4
executions, 462
file creation failures, 470
flatMap() method, 472
Fork/Join framework, 439
functional interfaces, 451
getObject() method, 423
GET_YEARS comment, 418
inputFile, FileReader, 431
Integer.parseInt(integer), 473
interface EnumBase, 419
interface operation, 458
interface programming, 420
iterator() method, 424, 460
Java 1, 8
Java programmer, 5
java.util.concurrent.atomic package, 427
java.util.concurrent package, 428
ListResourceBundle, 423, 435, 459, 465
LocalDateTime.now(), 433

Locales, 433, 465
mapping, 461
multithreaded application, 424
and OCPJP 8 certifications, 2–3
ordinal method, 439, 468
outputFile, FileWriter, 431
override method, 469
parameter types, 461
PARSE_DATE comment, 425
Point(), 456
Point constructor, 416
questions, 3
read() method, 431, 471
reference types, 459
registration options, 6
relationship class, 422
replacement methods, 442–445, 470
resource bundles, 428
resultSet.updateRow(), 471
Singleton pattern, 422, 458
skip() method, 463
srcFile, 432
stmt, compile, 427, 456
string operation, 459
suffix .java, 436, 466
synchronization, 434, 465
TemplateType, 426
thread, 437, 467
ThreadLocalRandom, 460
TraversalRowSet, 442
try-with-resources statement, 434, 464, 465
type arguments, 421
VAL, 431

�       � P, Q
Parallel Fork/Join Framework

compute() method, 342
definition, 337
Divide-and-Conquer, 338
ForkJoinPool Class, 338, 343
ForkJoinTask<V>, 338
ForkJoinTask Class, 339
invokeAll() method, 343
problem solving, 339
pseudo-code, 337
RecursiveAction, 339, 343
RecursiveTask, 343
RecursiveTask<Long>, 342
RecursiveTask<V>, 339
SumOfNUsingForkJoin.java, 340
threshold value, 342–343
work-stealing algorithm, 337

OCPJP 8 exam (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

■ Index

483

Parallel streams
CorrectStringSplitAndConcatenate.java, 347
definition, 344
example, 344
isParallel() method, 345
parallel() method, 345–346
performance, 347
PrimeNumbers.java, 344
race condition problem, 347
reduce() method, 347
sequential() method, 346
sequential stream, 345
StringConcatenator::concatStr() method, 346
StringSplitAndConcatenate.java, 346

partitioningBy() method, 185
peek() method, 168
Phaser, 328
prepareCall() method, 368
preparedStatement() method, 368
Pretest

OCPJP 7 exam
classpath, 410–411
ResourceBundle properties, 411
ResourceBundle property, 409

printf() method, 261, 263
printRow() method, 263
putNextEntry() method, 215

�       � R
read() method, 215, 271
readAttribute() method, 300
readIntFromConsole() method, 220
readIntFromFile() method, 208–209, 210–211
readInt() method, 277
readLine() method, 260–261, 265
readObject() method, 281–282
readPassword() method, 261, 265–266
resolve() method, 291
ResultSet, 370

�       � S
Scanner method, 208
Scanner.nextInt() method, 201
Semaphore controls, 328
Serialization process, 281
SortingCollection.java, 178
splitAsStream() method, 177
Streams

binary files, 266
byte streams

data streams, 277
InputStream abstract cl, 275
object streams, 280

OutputStream abstract class, 275
read, 276

character (see Character streams)
definition, 266
input, 266
iterate, 124
method references, 125
output, 266
sources, 129
standard streams, 257
Stream interface, 126
“stream pipeline”, 124

Synchronizers, 328
System.console() method, 259–260
System input stream, 198
System.setErr method, 259

�       � T
Type erasure, 281
Thread synchronization

assign() method, 319
equivalent assign() method, 320
increment() method, 320
race conditions, 316
static methods, 319
synchronized blocks, 318

Throwable class
chaining exceptions, 212
checked exceptions, 196, 212
definition, 195
echo.java, 197
error condition, 197
error message, 197
IllegalArgumentException, 198
Java’s exception hierarchy, 196
rethrowing exceptions, 212
throws clause

FileNotFoundException, 208
integer.txt, 208
main() method, 208
overridable method, 209, 212
readIntFromFile() method, 208
ThrowsClause1.java, 207
@throws JavaDoc tag, 211

type Error, 196
unchecked exceptions, 196
unhandled exceptions

consoleScanner.close(), 205
error message, 199
exactly matching catch handler, 200
finally block, 207
general exception handler, 204
integer, 198
matching handler, 200

www.it-ebooks.info

http://www.it-ebooks.info/

■ index

484

multi-catch blocks, 202
multiple catch blocks, 200
nextInt() method, 199
resource leak, 204
ScanInt1.java, 198
ScanInt2.java, 199
ScanInt6.java, 205
stack trace, 199

toAbsolutePath() method, 290–291
toFile() method, 292
toPath() method, 292
toRealPath() method, 290, 304
toString() method, 220
toUri() method, 290
Try-with-resources

benefit, 214
byte array, 215
close() method, 217
consoleScanner.close(), 213
explicit catch/finally blocks, 213
finally bloc, 217

invalid input, 214
java.lang.AutoCloseable interface, 214
read() method, 215
suppressed exceptions, 217
try-finally block, 213
write() method, 215
zip file, 215
ZipOutputStream, 215
ZipTextFile.java, 216

�       � U, V
UnaryOperator interface, 160
updateRow() method, 374, 376
updateString() method, 375
updateXXX() method, 376

�       � W, X, Y, Z
walk() method, 305
write() method, 215
writeObject() method, 282

Throwable class (cont.)

www.it-ebooks.info

http://www.it-ebooks.info/

	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgements
	Introduction
	Chapter 1: The OCPJP 8 Exam: FAQ
	 Overview
	 FAQ 1. Can you provide details of the Java associate and professional exams for Java 8?
	 FAQ 2. Can you compare the specifications of the exams targeting OCAJP 8 and OCPJP 8 certifications ?

	 Details About the Exam
	 FAQ 3. OCAJP 8 certification is a prerequisite for OCPJP 8 certification. Does that mean that I have to take the OCAJP8 ex...
	 FAQ 4. How does the OCPJP 8 exam differ from the older OCPJP 7 exam?
	 FAQ 5.Should I take the OCPJP8 exam or earlier versions such as the OCPJP 7 exam?
	 FAQ 6. What kinds of questions are asked in the OCPJP 8exam?
	 FAQ 7. What does the OCPJP 8 exam test for?
	 FAQ 8. I’ve been a Java programmer for the last five years. Do I have to prepare for the OCPJP 8 exam?
	 FAQ 9. How do I prepare for the OCPJP 8 exam?
	 FAQ 10. How do I know when I’m ready to take the OCPJP 8 exam?

	 Taking the Exam
	 FAQ 11. What are my options to register for the exam?
	 FAQ 12. How do I register for the exam, schedule a day and time for taking the exam, and appear for the exam?
	 FAQ 13. What are the key things I need to remember before taking the exam and on the day of exam?

	Chapter 2: Java Class Design
	 Encapsulation
	Access Modifiers
	Public Access Modifier
	Private Access Modifier
	Protected and Default Access Modifiers
	Overriding the hashCode( ) Method

	 Inheritance
	 Polymorphism
	 Runtime Polymorphism
	Runtime Polymorphism: An Example

	 Method Overloading
	 Constructor Overloading
	 Overload Resolution
	 Points to Remember

	 Overriding Methods in Object Class
	 Overriding toString() Method
	Overriding Issues

	 Overriding equals() Method
	Invoking Superclass Methods

	 Object Composition
	 Composition vs. Inheritance

	 Singleton and Immutable Classes
	 Creating Singleton Class
	Ensuring That Your Singleton Is Indeed a Singleton
	Defining Immutable Classes

	 Immutable Classes

	 Using the “static” Keyword
	 Static Block
	 Points to Remember

	 Summary

	Chapter 3: Advanced Class Design
	 Abstract Classes
	 Points to Remember

	 Using the “final” Keyword
	 Final Classes
	 Final Methods and Variables
	 Points to Remember

	 Flavors of Nested Classes
	 Static Nested Classes (or Interfaces)
	Points to Remember

	 Inner Classes
	Points to Remember

	 Local Inner Classes
	Points to Remember

	 Anonymous Inner Classes
	Points to Remember

	 Enum Data Type
	 Points to Remember

	 Interfaces
	 Declaring and Implementing Interfaces
	Points to Remember

	 Abstract Classes vs. Interfaces
	Abstract, default and static methods
	Default methods

	Points to Remember
	 The Diamond Problem
	Functional Interfaces
	@FunctionalInterface annotation

	Points to Remember

	 Lambda Functions
	 Lambda Functions: Syntax
	Lambda Function—An Example
	Block Lambdas
	Anonymous Inner Classes vs. Lambda Expressions
	 Effectively Final Variables

	Points to Remember

	 Summary

	Chapter 4: Generics and Collections
	 Creating and Using Generic Classes
	 Diamond Syntax
	 Interoperability of Raw Types and Generic Types
	 Generic Methods
	 Generics and Subtyping
	 Wildcard Parameters
	Limitations of Wildcards

	 Points to Remember

	 Create and Use Collection Classes
	 Abstract Classes and Interfaces
	The Collection Interface

	 Concrete Classes
	ArrayList Class
	Using Arrays.asList()
	 The TreeSet Class

	 The Map Interface
	The NavigableMap Interface and TreeMap Class

	 The Deque Interface and ArrayDeque class

	 Comparable and Comparator Interfaces
	 Collection Streams and Filters
	 Iterate Using forEach
	 Method References with Streams
	 Understanding the Stream Interface
	 The Stream Pipeline
	 Stream Sources
	Intermediate Operations

	 Filtering a Collection
	 Terminal Operations

	 Summary

	Chapter 5: Lambda Built-in Functional Interfaces
	 Using Built-in Functional Interfaces
	 The Predicate Interface
	 The Consumer Interface
	 The Function Interface
	 The Supplier Interface
	Constructor References

	 Primitive Versions of Functional Interfaces
	Primitive Versions of Predicate Interface
	Primitive Versions of Function Interface
	Primitive Versions of Consumer Interface
	Primitive Versions of Supplier Interface

	 Binary Versions of Functional Interfaces
	The BiFunction Interface
	The BiPredicate Interface
	The BiConsumer Interface

	 The UnaryOperator Interface
	 Summary

	Chapter 6: Java Stream API
	 Extract Data from a Stream
	 Search Data from a Stream
	 The Optional class
	 Creating Optional Objects
	 Optional Stream
	 Primitive Versions of Optional<T>

	 Stream Data Methods and Calculation Methods
	 Sort a Collection Using Stream API
	 Save Results to a Collection
	 Using flatMap Method in Stream
	 Summary

	Chapter 7: Exceptions and Assertions
	 Throwable and its Subclasses
	 Throwing Exceptions
	 Unhandled Exceptions
	Try and Catch Statements
	 Multiple Catch Blocks
	 Multi-Catch Blocks
	 General Catch Handlers
	Releasing Resources

	 The Throws Clause
	Method Overriding and the Throws Clause
	Chaining and Rethrowing Exceptions

	 Points to Remember

	 Try-with-Resources
	 Closing Multiple Resources
	 Points to Remember

	 Custom Exceptions
	 Assertions
	 Assert Statement

	 Summary

	Chapter 8: Using the Java SE 8 Date/Time API
	 Understanding Important Classes in java.time
	 Using the LocalDate class
	 Using the LocalTime Class
	 Using the LocalDateTime Class
	 Using the Instant Class
	 Using the Period Class
	 Using the Duration Class

	 Using the TemporalUnit Interface
	 Dealing with Time Zones and Daylight Savings
	 Using Time Zone–Related Classes
	Using the ZoneId Class
	Using the ZoneOffset Class
	 Using the ZonedDateTime Class

	 Dealing with Daylight Savings

	 Formatting Dates and Times
	 Flight Travel Example
	 Summary

	Chapter 9: Java I/O Fundamentals
	 Reading from and Writing to Console
	 Understanding Standard Streams
	Reassigning Standard Streams

	 Understanding the Console Class
	 Formatted Output with the Console Class
	 Points to Remember
	 Getting Input with the Console Class

	 Using Streams to Read and Write Files
	 Character Streams and Byte Streams
	 Character Streams
	Reading Text Files
	 Reading and Writing Text Files
	 “Tokenizing” Text

	 Byte Streams
	Reading a Byte Stream
	 Data Streams
	 Writing to and Reading from Object Streams

	 Points to Remember
	 Summary

	Chapter 10: Java File I/O (NIO.2)
	 Using the Path Interface
	 Getting Path Information
	 Comparing Two Paths

	 Using the Files Class
	 Checking File Properties and Metadata
	 Copying a File
	 Moving a File
	 Deleting a File
	Points to Remember

	 Using the Stream API with NIO.2
	Using the list( ) Method in the Files Class
	 Using the lines( ) Method in the Files Class

	 Summary

	Chapter 11: Java Concurrency
	 Creating Threads to Execute Tasks Concurrently
	 Creating Threads
	Creating Threads by Extending the Thread Class
	Creating Threads by Implementing Runnable Interface

	 Thread Synchronization With synchronized Keyword
	 Race Conditions
	 Synchronized Blocks
	Synchronized Methods

	 Threading Problems
	 Deadlocks
	 Livelocks
	 Lock Starvation

	 Using java.util.concurrent.atomic Package
	 Use java.util.concurrent Collections
	 CyclicBarrier
	 Concurrent Collections
	CopyOnWriteArrayList Class

	 Using Callable and ExecutorService Interfaces
	 Executor
	 Callable and ExecutorService

	 Use Parallel Fork/Join Framework
	 Useful Classes in the Fork/Join Framework
	 Using the Fork/Join Framework

	 Points to Remember
	 Use Parallel Streams
	 Performing Correct Reductions
	 Parallel Streams and Performance

	 Summary

	Chapter 12: Building Database Applications with JDBC
	 Introduction to JDBC
	 Setting Up the Database

	 Connecting to a Database
	 The Connection Interface
	 Connecting to the Database Using DriverManager
	Understanding he DriverManager Class

	 Querying and Updating the Database
	 Statement Interface
	 ResultSet Interface
	 Querying the Database
	 Updating the Database
	 Points to Remember

	 Summary

	Chapter 13: Localization
	 Locales
	 The Locale Class
	Getting Locale Details and Setting Locales

	 Resource Bundles
	 Using PropertyResourceBundle
	 Using ListResourceBundle

	 Loading a Resource Bundle
	 Naming Convention for Resource Bundles

	 Summary

	Chapter 14: Mock Exam
	Index

