
M A N N I N G

Alex Young
Bradley Meck
Mike Cantelon
WITH Tim Oxley
 Marc Harter
 T.J. Holowaychuk
 Nathan Rajlich

SECOND EDITION

Praise for the First Edition

From the first edition of Node.js in Action by Mike Cantelon,
Marc Harter, T.J. Holowaychuk, and Nathan Rajlich.

“The content ramps up nicely from basic to advanced.”

From the Foreword by Isaac Z. Schlueter, Node.js Project Lead

“The definitive guide to Node and the Node.js ecosystem.”
Kevin Baister, 1KB Software Solutions

“Superbly written with practical (and even funny) real-world examples.”
Àlex Madurell, Polymedia SpA

“Thoroughly enjoyable...will get you up and running very quickly.”
Gary Ewan Park, Honeywell

“An excellent resource written by the people behind the code.”
Brian Falk, NodeLingo, GoChime
Licensed to Samir Mashlum <smashlum@gmail.com>

PRAISE FOR THE FIRST EDITIONii
Licensed to Samir Mashlum <smashlum@gmail.com>

Node.js in Action
SECOND EDITION

ALEX YOUNG
BRADLEY MECK

MIKE CANTELON
WITH

 TIM OXLEY
MARC HARTER

T.J. HOLOWAYCHUK
NATHAN RAJLICH
M A N N I N G
SHELTER ISLAND

Licensed to Samir Mashlum <smashlum@gmail.com>

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2017 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Cynthia Kane
20 Baldwin Road Review editor: Aleksandar Dragosavljević
PO Box 761 Technical development editor: Stan Bice
Shelter Island, NY 11964 Project editors: Kevin Sullivan, David Novak

Copyeditor: Sharon Wilkey
Proofreader: Melody Dolab

Technical proofreader: Doug Warren
Typesetter and cover design: Marija Tudor

ISBN 9781617292576

Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 22 21 20 19 18 17

Licensed to Samir Mashlum <smashlum@gmail.com>

www.manning.com

brief contents
PART 1 WELCOME TO NODE ... 1

1 ■ Welcome to Node.js 3
2 ■ Node programming fundamentals 19
3 ■ What is a Node web application? 50

PART 2 WEB DEVELOPMENT WITH NODE 65
4 ■ Front-end build systems 67
5 ■ Server-side frameworks 81
6 ■ Connect and Express in depth 108
7 ■ Web application templating 159
8 ■ Storing application data 182
9 ■ Testing Node applications 224

10 ■ Deploying Node applications and maintaining uptime 250

PART 3 BEYOND WEB DEVELOPMENT 265
11 ■ Writing command-line applications 267
12 ■ Conquering the desktop with Electron 279

v

Licensed to Samir Mashlum <smashlum@gmail.com>

BRIEF CONTENTSvi

Licensed to Samir Mashlum <smashlum@gmail.com>

contents
preface xv
acknowledgments xvi
about this book xvii
about the author xix
about the cover illustration xx

PART 1 WELCOME TO NODE 1

1 Welcome to Node.js 3
1.1 A typical Node web application 4

Nonblocking I/O 4 ■ The event loop 5

1.2 ES2015, Node, and V8 6
Node and V8 9 ■ Working with feature groups 10
Understanding Node’s release schedule 10

1.3 Installing Node 10
1.4 Node’s built-in tools 11

npm 12 ■ The core modules 12 ■ The debugger 14

1.5 The three main types of Node program 15
Web applications 15 ■ Command-line tools and daemons 16
Desktop applications 17 ■ Applications suited to Node 17
vii

1.6 Summary 18

Licensed to Samir Mashlum <smashlum@gmail.com>

CONTENTSviii

2 Node programming fundamentals 19
2.1 Organizing and reusing Node functionality 20
2.2 Starting a new Node project 22

Creating modules 22

2.3 Fine-tuning module creation by using
module.exports 24

2.4 Reusing modules by using the node_modules
folder 26

2.5 Exploring caveats 27
2.6 Using asynchronous programming techniques 28
2.7 Handling one-off events with callbacks 29
2.8 Handling repeating events with event emitters 33

An example event emitter 33 ■ Responding to an event that should
occur only once 34 ■ Creating event emitters: a publish/subscribe
example 34 ■ Extending the event emitter: a file watcher
example 37

2.9 Challenges with asynchronous development 39
2.10 Sequencing asynchronous logic 40
2.11 When to use serial flow control 42
2.12 Implementing serial flow control 43
2.13 Implementing parallel flow control 45
2.14 Using community tools 48
2.15 Summary 49

3 What is a Node web application? 50
3.1 Understanding a Node web application’s structure 51

Starting a new web app 52 ■ Comparing other platforms 53
What’s next? 53

3.2 Building a RESTful web service 54
3.3 Adding a database 57

Making your own model API 58 ■ Making articles readable and
saving them for later 60

3.4 Adding a user interface 61
Supporting multiple formats 61 ■ Rendering templates 62
Using npm for client-side dependencies 63
3.5 Summary 64

Licensed to Samir Mashlum <smashlum@gmail.com>

CONTENTS ix

PART 2 WEB DEVELOPMENT WITH NODE 65

4 Front-end build systems 67
4.1 Understanding front-end development with Node 68
4.2 Using npm to run scripts 68

Creating custom npm scripts 69 ■ Configuring front-end build
tools 70

4.3 Providing automation with Gulp 71
Adding Gulp to a project 72 ■ Creating and running Gulp
tasks 72 ■ Watching for changes 74 ■ Using separate files for
larger projects 74

4.4 Building web apps with webpack 75
Using bundles and plugins 76 ■ Configuring and running
webpack 76 ■ Using webpack development server 77
Loading CommonJS modules and assets 79

4.5 Summary 80

5 Server-side frameworks 81
5.1 Personas 82

Phil: agency developer 82 ■ Nadine: open source developer 82
Alice: product developer 83

5.2 What is a framework? 83
5.3 Koa 84

Setting up 86 ■ Defining routes 86 ■ REST APIs 87
Strengths 87 ■ Weaknesses 87

5.4 Kraken 87
Setting up 88 ■ Defining routes 88 ■ REST APIs 89
Strengths 89 ■ Weaknesses 90

5.5 hapi 90
Setting up 90 ■ Defining routes 91 ■ Plugins 92
REST APIs 93 ■ Strengths 93 ■ Weaknesses 93

5.6 Sails.js 94
Setting up 94 ■ Defining routes 95 ■ REST APIs 95
Strengths 96 ■ Weaknesses 96

5.7 DerbyJS 96
Setting up 96 ■ Defining routes 97 ■ REST APIs 98

Strengths 98 ■ Weaknesses 98

Licensed to Samir Mashlum <smashlum@gmail.com>

CONTENTSx

5.8 Flatiron.js 99
Setting up 99 ■ Defining routes 100 ■ REST APIs 101
Strengths 101 ■ Weaknesses 101

5.9 LoopBack 102
Setting up 102 ■ Defining routes 104 ■ REST APIs 104
Strengths 104 ■ Weaknesses 105

5.10 Comparison 105
HTTP servers and routes 106

5.11 Writing modular code 106
5.12 Persona choices 106
5.13 Summary 107

6 Connect and Express in depth 108
6.1 Connect 109

Setting up a Connect application 109 ■ Understanding how
Connect middleware works 109 ■ Combining middleware 110
Ordering middleware 111 ■ Creating configurable
middleware 112 ■ Using error-handling middleware 114

6.2 Express 116
Generating the application skeleton 117 ■ Configuring Express
and your application 121 ■ Rendering views 122
Express routing 101 128 ■ Authenticating users 135
Registering new users 140 ■ Logging in registered users 145
Working with user-loading middleware 148 ■ Creating a public
REST API 150 ■ Enabling content negotiation 156

6.3 Summary 158

7 Web application templating 159
7.1 Using templating to keep code clean 159

Templating in action 161 ■ Rendering HTML without a
template 162

7.2 Templating with Embedded JavaScript 164
Creating a template 164 ■ Integrating EJS into your
application 166 ■ Using EJS for client-side applications 167

7.3 Using the Mustache templating language with
Hogan 168
Creating a template 168 ■ Using Mustache tags 169

Fine-tuning Hogan 171

Licensed to Samir Mashlum <smashlum@gmail.com>

CONTENTS xi

7.4 Templating with Pug 171
Pug basics 172 ■ Logic in Pug templates 175
Organizing Pug templates 177

7.5 Summary 181

8 Storing application data 182
8.1 Relational databases 182
8.2 PostgreSQL 183

Performing installation and setup 183 ■ Creating the
database 183 ■ Connecting to Postgres from Node 184
Defining tables 184 ■ Inserting data 185 ■ Updating
data 185 ■ Querying data 186

8.3 Knex 186
jQuery for databases 187 ■ Connecting and running queries
with Knex 187 ■ Swapping the database back end 189
Beware of leaky abstractions 190

8.4 MySQL vs. PostgreSQL 190
8.5 ACID guarantees 191

Atomicity: transactions either succeed or fail in entirety 191
Consistency: constraints are always enforced 192
Isolation: concurrent transactions don’t interfere 192
Durability: transactions are permanent 192

8.6 NoSQL 192
8.7 Distributed databases 193
8.8 MongoDB 194

Performing installation and setup 194 ■ Connecting to
MongoDB 195 ■ Inserting documents 195 ■ Querying 196
Using MongoDB identifiers 197 ■ Using replica sets 199
Understanding write concerns 200

8.9 Key/value stores 201
8.10 Redis 202

Performing installation and setup 203 ■ Performing
initialization 203 ■ Working with key/value pairs 204
Working with keys 204 ■ Encoding and data types 205
Using hashes 206 ■ Using lists 207 ■ Using sets 208
Providing pub/sub with channels 209 ■ Improving Redis
performance 210
8.11 Embedded databases 210

Licensed to Samir Mashlum <smashlum@gmail.com>

CONTENTSxii

8.12 LevelDB 210
LevelUP and LevelDOWN 211 ■ Installation 212
API overview 212 ■ Initialization 212 ■ Key/value
encodings 212 ■ Reading and writing key/value pairs 213
Pluggable back ends 214 ■ The modular database 215

8.13 Serialization and deserialization are expensive 216
8.14 In-browser storage 217

Web storage: localStorage and sessionStorage 217 ■ Reading and
writing values 218 ■ localForage 220 ■ Reading and
writing 221

8.15 Hosted storage 222
Simple Storage Service 222

8.16 Which database? 223
8.17 Summary 223

9 Testing Node applications 224
9.1 Unit testing 225

The assert module 226 ■ Mocha 229 ■ Vows 234
Chai 237 ■ Should.js 238 ■ Spies and stubs with
Sinon.JS 240

9.2 Functional testing 242
Selenium 243

9.3 Dealing with failing tests 245
Getting more-detailed logs 245 ■ Getting better stack traces 248

9.4 Summary 249

10 Deploying Node applications and maintaining uptime 250
10.1 Hosting Node applications 250

Platform as a service 251 ■ Servers 253 ■ Containers 254

10.2 Understanding deployment basics 255
Deploying from a Git repository 255 ■ Keeping Node
running 256

10.3 Maximizing uptime and performance 257
Maintaining uptime with Upstart 258 ■ The cluster API: taking
advantage of multiple cores 260 ■ Hosting static files and
proxying 262
10.4 Summary 263

Licensed to Samir Mashlum <smashlum@gmail.com>

CONTENTS xiii

PART 3 BEYOND WEB DEVELOPMENT 265

11 Writing command-line applications 267
11.1 Understanding conventions and philosophy 268
11.2 Introducing parse-json 269
11.3 Using command-line arguments 269

Parsing command-line arguments 269 ■ Validating
arguments 270 ■ Passing stdin as a file 271

11.4 Sharing command-line tools with npm 272
11.5 Connecting scripts with pipes 272

Piping data into parse-json 273 ■ Working with errors and exit
codes 273 ■ Using pipes in Node 275 ■ Pipes and command
execution order 276

11.6 Interpreting real-world scripts 277
11.7 Summary 278

12 Conquering the desktop with Electron 279
12.1 Introducing Electron 279

Electron’s stack 280 ■ Interface design 282

12.2 Creating an Electron app 282
12.3 Building a full desktop application 284

Bootstrapping React and Babel 285 ■ Installing the
dependencies 285 ■ Setting up webpack 286

12.4 The React app 287
Defining the Request component 288 ■ Defining the Response
component 291 ■ Communicating between React
components 293

12.5 Builds and distribution 294
Building with Electron Packager 294 ■ Packaging 295

12.6 Summary 296

appendix A Installing Node 297

appendix B Automating the web with scraping 301

appendix C Connect’s officially supported middleware 312

glossary 347
index 355

Licensed to Samir Mashlum <smashlum@gmail.com>

CONTENTSxiv
Licensed to Samir Mashlum <smashlum@gmail.com>

preface
Since the first edition of Node.js in Action, Node has merged with io.js and has dramati-
cally changed its governance model. Node’s package manager has been spun off into
a successful new company, npm, and technologies such as Babel and Electron have
transformed the development landscape.

 And yet, not much has changed in Node’s core libraries. JavaScript itself has
changed: most developers now use features from ES2015, so all of the original listings
have been rewritten to take advantage of arrow functions, constants, and destructur-
ing. Node’s libraries and built-in tools still look broadly similar to Node pre 4.x,
though, so we’ve looked to the community for updates to this edition.

 To reflect the realities a Node developer now faces, we’ve restructured the book.
There is less focus on Express and Connect, and more focus on a broader range of
technologies. Everything you need to be a full-stack developer is here, including front-
end build systems, choosing a web framework, working with databases in Node, writ-
ing tests, and deploying web apps.

 In addition to web development, we’ve included chapters on writing command-
line applications and Electron desktop apps. This lets you take full advantage of your
Node and JavaScript skills.

 Understanding Node and its ecosystem isn’t the only thing this book is about. Where
possible, I’ve tried to add background details on what has influenced Node. Ideas such
as Unix philosophy and using databases correctly and safely are covered alongside the
usual Node and JavaScript topics. Hopefully, this gives you a broad enough picture of
Node and JavaScript to seek out your own solutions to unique problems.

 —ALEX YOUNG
xv

Licensed to Samir Mashlum <smashlum@gmail.com>

acknowledgments
This book was built on the work of the previous authors and owes a great debt to their
efforts: Mike Cantelon, Marc Harter, T.J. Holowaychuk, and Nathan Rajlich. This edi-
tion wouldn’t have been possible without the encouragement of the team at Manning.
Cynthia Kane, my development editor, kept me focused during the long process of
updating the original content. Without Doug Warren’s detailed technical proofread,
this book and the sample code wouldn’t be half as good as it is. Finally, thanks to the
many reviewers who provided feedback during the writing and development process:
Austin King, Carl Hope, Chris Salch, Christopher Reed, Dale Francis, Hafiz Waheed
ud din, Harinath Mallepally, Jeff Smith, Marc-Philippe Huget, Matthew Bertoni,
Philippe Charrière, Randy Kamradt, Sander Rossel, Scott Dierbeck, and William
Wheeler.

—ALEX YOUNG
xvi

Licensed to Samir Mashlum <smashlum@gmail.com>

about this book
The first edition of Node.js in Action was about web development with a particular focus
on the Connect and Express web frameworks. Node.js in Action, Second Edition has been
updated to suit the changing requirements of Node development. You’ll learn about
front-end build systems, popular Node web frameworks, and how to build a web appli-
cation with Express from scratch. You’ll also learn how to create automated tests and
deploy Node web applications.

 Node is being increasingly used for command-line developer tools and desktop
applications with Electron, so you’ll find chapters dedicated to both of these areas.

 This book assumes you’re familiar with basic programming concepts. The first
chapter provides an overview of JavaScript and ES2015 for those of you who haven’t
yet discovered the joys of modern JavaScript.

Roadmap

This book is organized into three parts.
 Part 1 provides an introduction to Node.js, teaching the fundamental techniques

needed to develop with it. Chapter 1 explains the characteristics of JavaScript and
Node and steps through example code. Chapter 2 guides you through fundamental
Node.js programming concepts. Chapter 3 is a full tutorial on how to build a web
application from scratch.

 Part 2, the largest section of the book, focuses on web application development.
Chapter 4 dispels some of the mystery around front-end build systems: if you’ve ever
had to use webpack or Gulp in a project but didn’t really understand it, this is the
chapter for you. Chapter 5 reviews some of the most popular server-side frameworks
xvii

available for Node, and chapter 6 goes into Connect and Express in more depth.

Licensed to Samir Mashlum <smashlum@gmail.com>

ABOUT THIS BOOKxviii

Chapter 7 is dedicated to templating languages, which can improve your productivity
when writing server-side code. Most web applications need a database, so chapter 8
covers the many types of databases that you can use with Node, from relational to
NoSQL. Chapters 9 and 10 deal with testing and deployment, and this includes cloud
deployment.

 Part 3 goes beyond web application development. Chapter 11 is about building
command-line applications with Node so you can create developer-friendly text inter-
faces. If you’re excited about the prospect of building desktop apps such as Atom with
Node, then take a look at chapter 12, which is all about Electron.

 We’ve also included three detailed appendixes. Appendix A has instructions on
how to install Node for macOS and Windows. Appendix B is a detailed tutorial on web
scraping, and appendix C reviews each of the officially supported middleware compo-
nents for the Connect web framework.

Code conventions and downloads

The code in this book follows common JavaScript conventions. Spaces, rather than
tabs, are used for indentation. Lines longer than 80 characters are avoided. In many
listings, the code is annotated to point out key concepts.

 A single statement per line is used and semicolons are added at the end of simple
statements. For blocks of code, where one or more statements are enclosed in curly
braces, the left curly brace is placed at the end of the opening line of the block. The
right curly brace is indented so it’s vertically aligned with the opening line of the
block.

 Source code for the examples in this book is available for download from the pub-
lisher’s website at www.manning.com/books/node-js-in-action-second-edition.

Book Forum

Purchase of Node.js in Action, Second Edition includes free access to a private web forum
run by Manning Publications where you can make comments about the book, ask tech-
nical questions, and receive help from the author and from other users. To access the
forum, go to https://forums.manning.com/forums/node-js-in-action-second-edition.
You can also learn more about Manning’s forums and the rules of conduct at
https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://forums.manning.com/forums/node-js-in-action-second-edition
www.manning.com/books/node-js-in-action-second-edition
https://forums.manning.com/forums/about

about the author
ALEX YOUNG

Alex is a web developer based in London, England, and is the author of Node.js in Prac-
tice (Manning, 2014). Alex created the popular JavaScript blog DailyJS, and is currently
employed by Sky as a senior developer for NOW TV. You can find him on GitHub
(https://github.com/alexyoung) and Twitter as @alex_young.

BRADLEY MECK

Bradley is a member of TC39 and part of the Node.js Foundation. When not working
his time is spent working on tooling solutions for Javascript, gardening, and mentor-
ing students. His work at GoDaddy comes after a long resume of using Node.js for
other companies like NodeSource and Nodejitsu. While always eager to teach and
explain, he tries to keep people motivated because learning is hard for him as well as
for many others.
xix

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/alexyoung

about the cover illustration
The figure on the cover of Node.js in Action, Second Edition is captioned “Man about
Town.” The illustration is taken from a 19th-century edition of Sylvain Maréchal’s
four-volume compendium of regional dress customs published in France. Each illus-
tration is finely drawn and colored by hand. The rich variety of Maréchal’s collection
reminds us vividly of how culturally apart the world’s towns and regions were just 200
years ago. Isolated from each other, people spoke different dialects and languages.
Whether on city streets, in small towns, or in the countryside, it was easy to identify
where they lived and what their trade or station in life was just by their dress.

 Dress codes have changed since then, and the diversity by region and class, so rich
at the time, has faded away. It is now hard to tell apart the inhabitants of different con-
tinents, let alone different towns or regions. Perhaps we have traded cultural diversity
for a more varied personal life—certainly for a more varied and fast-paced technolog-
ical life.

 At a time when it is hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xx

Licensed to Samir Mashlum <smashlum@gmail.com>

Part 1

Welcome to Node

Node is now a mature web development platform. In chapters 1 to 3, you’ll
learn about Node’s main features, including how to use the core modules and
npm. You’ll also see how Node uses modern JavaScript, and how to build a web
application from scratch. After reading these chapters, you’ll have a solid under-
standing of what Node can do and of how to create your own projects.

Licensed to Samir Mashlum <smashlum@gmail.com>

2 CHAPTER
Licensed to Samir Mashlum <smashlum@gmail.com>

Welcome to Node.js
Node.js is an asynchronous, event-driven JavaScript runtime that offers a powerful
but concise standard library. It’s managed and supported by the Node.js Founda-
tion, an industry consortium with an open governance model. Two actively sup-
ported versions of Node are available: Long-Term Support (LTS) and Current. If
you want to learn more about how Node is managed, the official website has plenty
of documentation (https://nodejs.org/).

 Since Node.js appeared in 2009, JavaScript has gone from a barely tolerated
browser-centric language to one of the most important languages for all kinds of
software development. This is partly due to the arrival of ECMAScript 2015, which
solved several critical problems in previous versions of the language. Node uses
Google’s V8 JavaScript engine that’s based on the sixth edition of the ECMAScript
standard, which is sometimes called ES6 and abbreviated as ES2015. It’s also due

This chapter covers
 What is Node.js?

 Defining Node applications

 The advantages of using Node

 Asynchronous and nonblocking I/O
3

to innovative technologies such as Node, React, and Electron, which allow Java-
Script to be used everywhere: from the server to the browser, and in native mobile

Licensed to Samir Mashlum <smashlum@gmail.com>

https://nodejs.org/

4 CHAPTER 1 Welcome to Node.js

applications. Even big companies such as Microsoft are embracing JavaScript, and
Microsoft has even contributed to the success of Node.

 In this chapter, you’ll learn more about Node, its event-driven nonblocking model,
and some of the reasons that JavaScript has become a great general-purpose program-
ming language. First, let’s look at a typical Node web application.

1.1 A typical Node web application
One of the strengths of Node and JavaScript in general is their single-threaded
programming model. Threads are a common source of bugs, and although some
recent programming languages, including Go and Rust, have attempted to offer safer
concurrency tools, Node retains the model used in the browser. In browser-based
code, we write sequences of instructions that execute one at a time; code doesn’t
execute in parallel. This doesn’t make sense for user interfaces, however: users don’t
want to wait around for slow operations such as network or file access to finish. To
get around this, browsers use events: when you click a button, an event fires, and a
function runs that has previously been defined but not yet executed. This avoids
some of the issues found in threaded programming, including resource deadlocks
and race conditions.

1.1.1 Nonblocking I/O

What does this mean in the context of server-side programming? The situation is simi-
lar: I/O requests such as disk and network access are also comparatively slow, so we
don’t want the runtime to block business logic from executing while reading files or
sending messages over the network. To solve this, Node uses three techniques: events,
asynchronous APIs, and nonblocking I/O. Nonblocking I/O is a low-level term from a
Node programmer’s perspective. It means your program can make a request for a net-
work resource while doing something else, and then, when the network operation has
finished, a callback will run that handles the result.

 Figure 1.1 shows a typical Node web application that uses the web application
library Express to handle the order flow for a shop. Browsers make requests to buy a
product, and then the application checks the current stock inventory, creates an
account for the user, emails the receipt, and sends back a JSON HTTP response.
Concurrently, other things happen as well: an email receipt is sent, and a database
is updated with the user’s details and order. The code itself is straightforward,
imperative JavaScript, but the runtime behaves concurrently because it uses non-
blocking I/O.

 In figure 1.1 the database is accessed over the network. In Node, that network
access is nonblocking, because Node uses a library called libuv (http://libuv.org/) to
provide access to the operating system’s nonblocking network calls. This is imple-
mented differently in Linux, macOS, and Windows, but all you have to worry about
is your friendly JavaScript database library. While you’re writing code such as

db.insert(query, err => {}), Node is doing highly optimized, nonblocking
networking underneath.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://libuv.org/

5A typical Node web application

Disk access is similar, but intriguingly not the same. When the email receipt is gener-
ated and the email template is read from the disk, libuv uses a thread pool to provide
the illusion that a nonblocking call is being used. Managing a thread pool is no fun at
all, but writing email.send('template.ejs', (err, html) => {}) is definitely
much easier to understand.

 The real benefit to using asynchronous APIs with nonblocking I/O is that Node
can do other things while these comparatively slow processes happen. Even though
you have only a single-threaded, single-process Node web app running, it can handle
more than one connection from potentially thousands of website visitors at any one
time. To understand this, you need to look at the event loop.

1.1.2 The event loop

Now let’s zoom into a specific aspect of figure 1.1: responding to browser requests. In
this application, Node’s built-in HTTP server library, which is a core module called
http.Server, handles the request by using a combination of streams, events, and

Check
inventory

Request body: order info
Response

JSON

SQL INSERT

Error
handler

Register
user

Thread
A

Thread
C

Thread
B

Email
receipt

HTTP
response

Load template
from disk

JavaScript
error object

next
(error)

called

Node and ExpressYour application

libuv

HTTP
router

Nonblocking
network I/O

Browser

Receipt
email

Database

Figure 1.1 Asynchronous and nonblocking components in a Node application
Node’s HTTP request parser, which is native code. This triggers a callback in your
application to run, which has been added using the Express (https://expressjs.com/)

Licensed to Samir Mashlum <smashlum@gmail.com>

https://expressjs.com/

6 CHAPTER 1 Welcome to Node.js

web application library. The callback that runs causes a database query to run, and
eventually the application responds with JSON using HTTP. This whole process uses a
minimum of three nonblocking network calls: one for the request, one for the data-
base, and another for the response. How does Node schedule all these nonblocking
network operations? The answer is the event loop. Figure 1.2 shows how the event
loop is used for these three network operations.

The event loop runs one way (it’s a first-in, first-out queue) and goes through several
phases. Figure 1.2 shows a simplified set of the important phases that run on each iter-
ation of the loop. First, the timers execute, which are the timers scheduled with the
JavaScript functions setTimeout and setInterval. Next, I/O callbacks run, so if
any I/O has returned from one of the nonblocking network calls, this is where your
callback is triggered. The poll phase is where new I/O events are retrieved, and then
callbacks scheduled with setImmediate run at the end. This is a special case because
it allows you to schedule a callback to run immediately after the current I/O callbacks
already in the queue. This might sound abstract at this stage, but what you should take
away is the idea that although Node is single-threaded, it does give you tools to write
efficient and scalable code.

 Over the last few pages, you might have noticed that the examples have been written
using ES2015 arrow functions. Node supports many new JavaScript features, so before
moving on, let’s look at what new language features you can use to write better code.

1.2 ES2015, Node, and V8
If you’ve ever used JavaScript and been disheartened by the lack of classes and
strange scoping rules, you’re in luck: Node has fixed most of these problems! You can

libuv

Function:
post/order Create user

Send JSON
to browser

Event loop

Run timers
Call pending callbacks

Poll for I/O
setImmediate

Database

1. Request call 2. Database call 3. Response call

Figure 1.2 The event loop
now make classes, and using const and let (instead of var) fixes scoping issues. As
of Node 6, you can use default function parameters, rest parameters, the spread

Licensed to Samir Mashlum <smashlum@gmail.com>

7ES2015, Node, and V8

operator, for…of loops, template strings, destructuring, generators, and more. A
great summary of Node’s ES2015 support can be found at http://node.green.

 First, let’s look at classes. ES5 and earlier versions required the use of prototype
objects to create class-like constructs:

function User() {
 // constructor
}

User.prototype.method = function() {
 // Method
};

With Node 6 and ES2015, you can now write the same code by using classes:

class User {
 constructor() {}
 method() {}
}

This uses less code and is a little easier to read. But there’s more: Node also supports
subclassing, super, and static methods. For those versed in other languages, the adop-
tion of class syntax makes Node more accessible than when we were stuck with ES5.

 Another important feature in Node 4 and above is the addition of const and let.
In ES5, all variables were created with var. The problem with var is it defines variables
in function or global scope, so you couldn’t define a block-level variable in an if state-
ment, for loop, or other block.

Node also has native promises and generators. Promises are supported by lots of librar-
ies, allowing you to write asynchronous code with a fluent interface style. You’re prob-
ably familiar with fluent interfaces already: if you’ve ever used an API such as jQuery
or even JavaScript arrays, you’ll have seen it. The following short example shows you
how to chain calls to manipulate an array in JavaScript:

[1, 2, 3]
 .map(n => n * 2)
 .filter(n => n > 3);

Generators are used to give a synchronous programming style to asynchronous I/O. If

Should I use const or let?
When deciding whether to use const or let, you almost always want const.
Because most of your code will use instances of your own classes, object literals, or
values that don’t change, you can use const most of the time. Even instances of
objects that have properties that change can be declared with const, because
const means only that the reference is read-only, not that the value is immutable.
you want to see a practical example of generators in Node, take a look at the Koa web

Licensed to Samir Mashlum <smashlum@gmail.com>

https://atom.io/
https://atom.io/
http://localhost:3000
http://localhost:3000
http://node.green

8 CHAPTER 1 Welcome to Node.js

application library (http://koajs.com/). If you use promises or other generators with
Koa, you can yield on values rather than nesting callbacks.

 One other useful ES2015 feature in Node is template strings. In ES5, string literals
didn’t support interpolation or multiple lines. Now by using the backtick symbol (`),
you can insert values and span strings over several lines. This is useful when stubbing
quick bits of HTML for web apps:

this.body = `
 <div>
 <h1>Hello from Node</h1>
 <p>Welcome, ${user.name}!</p>
 </div>
`;

In ES5, the previous example would have to be written like this:

this.body = '\n';
this.body += '<div>\n';
this.body += ' <h1>Hello from Node</h1>\n';
this.body += ' <p>Welcome, ' + user.name + '</p>\n';
this.body += '<div>\n';

The older style not only used more code but also made introducing bugs easy. The
final big feature, which is of particular importance to Node programmers, is arrow
functions. Arrow functions let you streamline syntax. For example, if you’re writing a
callback that has a single argument and returns a value, you can write it with hardly
any syntax at all:

[1, 2, 3].map(v => v * 2);

In Node we typically need two arguments, because the first argument to a callback is
often an error object. In that case, you need to use parentheses around the arguments:

const fs = require('fs');
fs.readFile('package.json',
 (err, text) => console.log('Length:', text.length)
);

If you need to use more than one line in the function body, you need to use curly
brackets. The value of arrow functions isn’t just in the streamlined syntax; it has to do
with JavaScript scopes. In ES5 and before, defining functions inside other functions
makes the this reference become the global object. Here’s an ES5-style class that suf-
fers from a bug due to this issue:

function User(id) {
// constructor
 this.id = id;
}

User.prototype.load = function() {

 var self = this;
 var query = 'SELECT * FROM users WHERE id = ?';

Licensed to Samir Mashlum <smashlum@gmail.com>

http://koajs.com/

9ES2015, Node, and V8

 sql.query(query, this.id, function(err, users) {
 self.name = users[0].name;
 });
};

The line that assigns self.name can’t be written as this.name, because the function’s
this will be the global object. A workaround used to be to assign a variable to this at
the entry point to the parent function or method. But arrow functions are bound cor-
rectly. In ES2015, the previous example can be rewritten to be much more intuitive:

class User {
 constructor(id) {
 this.id = id;
 }

 load() {
 const query = 'SELECT * FROM users WHERE id = ?';
 sql.query(query, this.id, (err, users) => {
 this.name = users[0].name;
 });
}
}

Not only can you use const to better model the database query, but there’s also no
need for the clumsy self variable. ES2015 has many other great features that make
Node code more readable, but let’s look at what powers this in Node and how it
relates to the nonblocking I/O features that you’ve already looked at.

1.2.1 Node and V8

Node is powered by the V8 JavaScript engine, which is developed by the Chromium
project for Google Chrome. The notable feature of V8 is that it compiles directly to
machine code, and it includes code-optimization features that help keep Node fast. In
section 1.1.1, we talked about the other main native part of Node, libuv. That part
handles I/O; V8 handles interpreting and running your JavaScript code. To use libuv
with V8, you use a C++ binding layer. Figure 1.3 shows all of the separate software com-
ponents that make up Node.

Your cool app.js

Node’s JavaScript core modules

Node.js platform's JavaScript,
C, and C++ libraries

C++ bindings
V8

libuv c-ares http
The operating system
Figure 1.3 Node’s software stack

Licensed to Samir Mashlum <smashlum@gmail.com>

10 CHAPTER 1 Welcome to Node.js

The specific JavaScript features that are available to Node therefore come down to
what V8 supports. This support is managed through feature groups.

1.2.2 Working with feature groups

Node includes ES2015 features based on what V8 provides. Features are grouped
under shipping, staged, and in progress. The shipping features are turned on by default,
but staged and in progress can be enabled using command-line flags. If you want to
use staged features, which are almost complete but not considered complete by the V8
team, then you can run Node with the --harmony flag. In-progress features, however,
are less stable and are enabled with specific feature flags. Node’s documentation rec-
ommends querying the currently available in-progress features by grepping for in
progress:

node --v8-options | grep "in progress"

The list will vary between Node releases. Node itself also has a versioning schedule
that defines which APIs are available.

1.2.3 Understanding Node’s release schedule

Node releases are grouped into Long-Term Support (LTS), Current, and Nightly. LTS
releases get 18 months of support and then 12 months of maintenance support.
Releases are made according to semantic versioning (SemVer). SemVer gives releases
a major, minor, and patch version number. For example, 6.9.1 has a major version of
6, minor of 9, and patch of 1. Whenever you see a major version change for Node, it
means some of the APIs may be incompatible with your projects, and you’ll need to
retest them against this version of Node. Also, in Node release terminology, a major
version increment means a new Current release has been cut. Nightly builds are auto-
matically generated every 24 hours with the latest changes, but are typically used only
for testing Node’s latest features.

 Which version you use depends on your project and organization. Some may pre-
fer LTS because updates are less frequent: this might work well in larger enterprises
that find it harder to manage frequent updates. But if you want the latest performance
and feature improvements, Current is a better choice.

1.3 Installing Node
The easiest way to install Node is to use the installer from https://nodejs.org. Install
the latest Current version (version 6.5 at the time of this writing) by using the Mac or
Windows installer. You can download the source yourself, or install it by using your
operating system’s package manager. Debian, Ubuntu, Arch, Fedora, FreeBSD, Gen-
too, and SUSE all have packages. There are also packages for Homebrew and
SmartOS. If your operating system doesn’t have a package, you can build from source.

NOTE Appendix A provides more details on installing Node.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://ghost.org/
https://ghost.org/
https://ghost.org/
https://nodejs.org

11Node’s built-in tools

The full list of packages is on Node’s website (https://nodejs.org/en/download/
package-manager/), and the source is on GitHub (https://github.com/nodejs/node).
Bookmarking the GitHub source is worthwhile in case you want to poke around in the
source without downloading it.

 Once you’ve installed Node, you can try it out straight away by typing node -v in
the terminal. This should print out the version of Node that you just downloaded and
installed. Next, create a file called hello.js that looks like this:

console.log("hello from Node");

Save the file and run it by typing node hello.js. Congratulations—you’re now
ready to start writing applications with Node!

When you install Node, you also get some built-in tools. Node isn’t just the inter-
preter: it’s a whole suite of tools that form the Node platform. Let’s look in more
detail at the tools that are bundled with Node.

1.4 Node’s built-in tools
Node comes with a built-in package manager, the core JavaScript modules that sup-
port everything from file and network I/O to zlib compression, and a debugger. The
npm package manager is a critical piece of this infrastructure, so let’s look at it in
more detail.

 If you want to verify that Node has been installed correctly, you can run node -v
and npm -v on the command-line. These commands show the version of Node and
npm that you have installed.

Getting started quickly in Windows, Linux, and macOS
If you’re fairly new to programming in general and you don’t yet have a preferred text
editor, then a solid choice for Node is Visual Studio Code (https://code.visualstudio
.com/). It’s made by Microsoft, but it’s open source and a free download, and sup-
ports Windows, Linux, and macOS.

Some of the beginner-friendly features in Visual Studio Code include JavaScript syn-
tax highlighting and Node core module completion, so your JavaScript will look clearer
and you’ll be able to see lists of supported methods and objects as you type. You
can also open a command-line interface where Node can be invoked just by typing
Node. This is useful for running Node and npm commands. Windows users might pre-
fer this to using cmd.exe. We tested the listings with Windows and Visual Studio
Code, so you shouldn’t need anything special to run the examples.

To get started, you can follow a Visual Studio Code Node.js tutorial (https://
code.visualstudio.com/docs/runtimes/nodejs).
Licensed to Samir Mashlum <smashlum@gmail.com>

https://nodejs.org/en/download/package-manager/
https://nodejs.org/en/download/package-manager/
https://github.com/nodejs/node
https://code.visualstudio.com/
https://code.visualstudio.com/
https://code.visualstudio.com/docs/runtimes/nodejs
https://code.visualstudio.com/docs/runtimes/nodejs

12 CHAPTER 1 Welcome to Node.js

1.4.1 npm

The npm command-line tool can be invoked by typing npm. You can use it to install
packages from the central npm registry, but you can also use it to find and share your
own open and closed source projects. Every npm package in the registry has a website
that shows the readme file, author, and statistics about downloads.

 That doesn’t cover everything, though. npm is also npm, Inc.—the company that
runs the npm service and that provides services used by commercial enterprises. This
includes hosting private npm packages: you can pay a monthly fee to host your com-
pany’s source code so your JavaScript developers can easily install it with npm.

 When installing packages with the npm install command, you have to decide
whether you’re adding them to your current project or installing them globally. Glob-
ally installed packages are usually used for tools, typically programs you run on the
command line. A good example of this is the gulp-cli package.

 To use npm, create a package.json file in a directory that will contain your Node
project. The easiest way to create a package.json file is to use npm to do it for you.
Type the following on the command line:

mkdir example-project
cd example-project
npm init -y

If you open package.json, you’ll see a simple JSON file that describes your project. If
you now install a module from www.npmjs.com and use the --save option, npm will
automatically update your package.json file. Try it out by typing npm install, or npm
i for short:

npm i --save express

If you open your package.json file, you should see express added under the depen-
dencies property. Also, if you look inside the node_modules folder, you’ll see an
express directory. This contains the version of Express that you just installed. You can
also install modules globally by using the --global option. You should use local mod-
ules as much as possible, but global modules can be useful for command-line tools
that you want to use outside Node JavaScript code. An example of a command-line
tool that’s installable with npm is ESLint (http://eslint.org/).

 When you’re starting out with Node, you’ll often use packages from npm. Node
comes with lots of useful built-in libraries, which are known as the core modules. Let’s
look at these in more detail.

1.4.2 The core modules

Node’s core modules are similar to other languages’ standard libraries; these are the
tools you need to write server-side JavaScript. The JavaScript standards themselves
don’t include anything for working with the network, or even file I/O as most server-

side developers know it. Node has to add features for files and TCP/IP networking at a
minimum to be a viable server-side language.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://eslint.org/

13Node’s built-in tools

FILESYSTEM

Node ships with a filesystem library (fs, path), TCP clients and servers (net), HTTP
(http and https), and domain name resolution (dns). There’s a useful assertion
library that’s used mostly to write tests (assert), and an operating system library for
querying information about the platform (os).

 Node also has libraries that are unique to Node. The events module is a small
library for working with events, and it’s used as a basis for much of Node’s APIs. For
example, the stream module uses the events module to provide abstract interfaces for
working with streams of data. Because all data streams in Node use the same APIs, you
can easily compose software components; if you have a file-stream reader, you can
pipe it through a zlib transform that compresses the data, and then pipe it through a
file-stream writer to write the data out to a file.

 The following listing shows how to use Node’s fs module to create read- and write-
streams that can be piped through another stream (gzip) to transform the data—in
this case, by compressing it.

const fs = require('fs');
const zlib = require('zlib');
const gzip = zlib.createGzip();
const outStream = fs.createWriteStream('output.js.gz');

fs.createReadStream('./node-stream.js')
 .pipe(gzip)
 .pipe(outStream);

NETWORKING

For a while, we used to say that creating a simple HTTP server was Node’s true Hello
World example. To build a server in Node, you just need to load the http module and
give it a function. The function accepts two arguments: the incoming request and the
outgoing response. The next listing shows an example you can run in your terminal.

const http = require('http');
const port = 8080;

const server = http.createServer((req, res) => {
 res.end('Hello, world.');
});

server.listen(port, () => {
 console.log('Server listening on: http://localhost:%s', port);
});

Listing 1.1 Using core modules and streams

Listing 1.2 Hello World with Node’s http module
Save listing 1.2 as hello.js and run it with node hello.js. If you visit http://local-
host:8080, you should see the message from line 4.

Licensed to Samir Mashlum <smashlum@gmail.com>

14 CHAPTER 1 Welcome to Node.js

 Node’s core modules are minimal but also powerful. You can often achieve a lot
just by using these modules, without even installing anything from npm. For more on
the core modules, refer to https://nodejs.org/api/.

 The final built-in tool is the debugger. The next section introduces Node’s debug-
ger with an example.

1.4.3 The debugger

Node includes a debugger that supports single-stepping and a REPL (read-eval-print
loop). The debugger works by talking to your program with a network protocol. To
run your program with a debugger, use the debug argument at the command line.
Let’s say you’re debugging listing 1.2:

node debug hello.js

Then you should see the following output:

< Debugger listening on [::]:5858
connecting to 127.0.0.1:5858 ... ok
break in node-http.js:1
> 1 const http = require('http');
 2 const port = 8080;
 3

Node has invoked your program and is debugging it by connecting on port 5858. At
this point, you can type help to see the list of available commands, and then c to con-
tinue program execution. Node always starts the program in a break state, so you always
need to continue execution before you can do anything else.

 You can make the debugger break by adding a debugger statement anywhere in
your code. When the debugger statement is encountered, the debugger will halt,
allowing you to issue commands. Imagine you’ve written a REST API that creates
accounts for new users, and your user creation code doesn’t seem to be persisting the
new user’s password hash to the database. You could add debugger to the save
method in the User class, and then step over each instruction to see what happens.

Interactive debugging
Node supports the Chrome Debugging Protocol. To debug a script using Chrome’s
Developer Tools, use the --inspect flag when running a program:

node --inspect --debug-brk

This will make Node launch the debugger and break on the first line. It’ll print a URL
to the console that you can open in Chrome so you can use Chrome’s built-in debug-
ger. Chrome’s debugger lets you step through code line by line, and it shows the
value in each variable and object. It’s a much better alternative to typing con-
sole.log.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://nodejs.org/api/

15The three main types of Node program

Debugging is covered in more detail in chapter 9. If you want to try it right now, the
best place to start is the Node manual page on the debugger (https://nodejs.org/api/
debugger.html).

 So far in this chapter, we’ve talked about how Node works and what it provides to
developers. You’re probably also itching to hear about the kinds of things that people
are using Node for in production. The next section looks at the types of programs you
can make with Node.

1.5 The three main types of Node program
Node programs can be divided into three typical types: web applications, command-
line tools and daemons, and desktop applications. Web applications include simple
apps that serve up single-page applications, REST microservices, and full-stack web
apps. You may have already used command-line tools written with Node—for exam-
ple, npm, Gulp, and webpack. Daemons are background services. A good example is
the PM2 (www.npmjs.com/package/pm2) process manager. Desktop applications
tend to be software written with the Electron framework (http://electron.atom.io/),
which uses Node as the back end for web-based desktop apps. Examples include the
Atom (https://atom.io/) and Visual Studio Code (https://code.visualstudio.com/)
text editors.

1.5.1 Web applications

Node is server-side JavaScript, so it makes sense as a platform for building web applica-
tions. By running JavaScript on both the client and server, opportunities exist for code
reuse between each environment. Node web apps tend to be written with frameworks
such as Express (http://expressjs.com/). Chapter 6 reviews the major server-side
frameworks available for Node. Chapter 7 is specifically about Express and Connect,
and chapter 8 is about web application templating.

 You can create a quick Express web application by creating a new directory and
then installing the Express module:

mkdir hello_express
cd hello_express
npm init -y
npm i express --save

Next, add the following JavaScript code to a file called server.js.

const express = require('express');
const app = express();

app.get('/', (req, res) => {
 res.send('Hello World!');

Listing 1.3 A Node web application
});

Licensed to Samir Mashlum <smashlum@gmail.com>

https://nodejs.org/api/debugger.html
https://nodejs.org/api/debugger.html
http://electron.atom.io/
https://atom.io/
https://code.visualstudio.com/
http://expressjs.com/

16 CHAPTER 1 Welcome to Node.js

app.listen(3000, () => {
 console.log('Express web app on localhost:3000');
});

Now type npm start and you’ll have a Node web server running on port 3000. If you
open http://localhost:3000 in a browser you’ll be able to see the text from the
res.send line.

 Node is also a big part of the front-end development world, because it’s the main
tool used when transpiling other languages such as TypeScript to JavaScript.
Transpilers compile languages from one high-level language to another; this contrasts
with traditional compilers, which compile from high-level to low-level languages.
Chapter 4 is dedicated to front-end build systems, where we look at using npm scripts,
Gulp, and webpack.

 Not all web development involves building web apps. Sometimes you need to do
things such as extract data from a legacy website to use when rebuilding it. We’ve
included appendix B, which is all about web scraping, as a way of showing how Node’s
JavaScript runtime can be used to work with the Document Object Model (DOM), as
well as showing how to use Node outside the comfort zone of typical Express web
apps. If you just want to quickly make a basic web app, chapter 3 provides a self-con-
tained tutorial on building Node web applications.

1.5.2 Command-line tools and daemons

Node is used to write command-line tools such as process managers and JavaScript
transpilers that are used by JavaScript developers. But it’s also used as a convenient
way to write handy command-line tools that do other things, including image conver-
sion, and scripts for controlling media playback.

 Here’s a quick command-line example that you can try. Create a new file called
cli.js and add the following lines:

const [nodePath, scriptPath, name] = process.argv;
console.log('Hello', name);

Run the script with node cli.js yourName and you’ll see Hello yourName. This
works by using ES2015 destructuring to pull out the third argument from pro-
cess.argv. The process object is available to every Node program and forms the
basis for accepting arguments when users run your programs.

 You can do a few other things with Node command-line programs. If you add a line
to the start of the program that starts with #!, and grant it execute permissions
(chmod +x cli.js), then you can make the shell use Node when it invokes the pro-
gram. Now you can run your Node programs just like any other shell script. Just use a
line like this for Unix-like systems:

#!/usr/bin/env node

By using Node this way, you can replace your shell scripts with Node. This means

Node can be used with any other command-line tools, including background pro-
grams. Node programs can be invoked by cron, or run in the background as daemons.

Licensed to Samir Mashlum <smashlum@gmail.com>

17The three main types of Node program

 If all of this is new to you, don’t worry: chapter 11 introduces writing command-
line utilities, and shows how this type of program plays into Node’s strengths. For
example, command-line tools make heavy use of streams as a universal API, and
streams are one of Node’s most powerful features.

1.5.3 Desktop applications

If you’ve been using the Atom or Visual Studio Code text editors, then you’ve been
using Node all along. The Electron framework uses Node as the back end, so when-
ever I/O such as disk or network access is required, Electron uses Node. Electron also
uses Node for managing dependencies, which means you can add packages from npm
to Electron projects.

 If you want to quickly try Electron now, you can clone the Electron repository and
start up an application:

git clone https://github.com/electron/electron-quick-start
cd electron-quick-start
npm install && npm start
curl localhost:8081

To learn how to write an app with Electron, flip ahead to chapter 12.

1.5.4 Applications suited to Node

We’ve walked through some of the types of applications you can build with Node, but
there are certain types of applications that Node excels at. Node is commonly used to
create real-time web applications, which can mean anything from user-facing applica-
tions such as chat servers to back ends for collecting analytics. Because functions are
first-class objects in JavaScript, and Node has a built-in event model, writing asynchro-
nous real-time programs feels more natural than other scripting languages.

 If you’re building traditional Model-View-Controller (MVC) web applications,
Node can do this well. Popular blogging engines are built with Node, such as Ghost
(https://ghost.org/); Node is now a proven platform for building these types of web
applications. The style of development is different from WordPress, which is built with
PHP, but Ghost supports similar features, including templates and a multiuser admin-
istration area.

 Node can also do things that are much harder in other languages. It’s based on
JavaScript, and it’s possible to run browser JavaScript in Node. Complex client-side
applications can be adapted to run on a Node server, allowing servers to pre-render
web applications, which speeds up page rendering time in the browser and also facili-
tates search engines.

 Finally, if you’re considering building a desktop or mobile app, you should try
Electron, which is powered by Node. Now that web user interfaces are as rich as desk-
top experiences, Electron desktop apps can rival native web applications and cut

down development time. Electron also supports three major platforms, so you can
reuse your code across Windows, Linux, and macOS.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://ghost.org/

18 CHAPTER 1 Welcome to Node.js

1.6 Summary
 Node is an evented and nonblocking platform for building JavaScript applica-

tions.
 V8 is used as the JavaScript runtime.
 libuv is the native library that provides fast, cross-platform, nonblocking I/O.
 Node has a small standard library known as the core modules that add network

and disk I/O to JavaScript.
 Node comes with a debugger and a dependency manager (npm).
 Node is used for building web applications, command-line tools, and even desk-

top applications.
Licensed to Samir Mashlum <smashlum@gmail.com>

Node programming
fundamentals
Node, unlike many open source platforms, is easy to set up and doesn’t require
much in terms of memory and disk space. No complex integrated development
environments or build systems are required. Some fundamental knowledge will,
however, help you a lot when starting out. In this chapter, we address two chal-
lenges that new Node developers face:

 How to organize your code
 How asynchronous programming works

In this chapter, you’ll learn important asynchronous programming techniques that
will allow you to keep a tight rein on how your application executes. You’ll learn

 How to respond to one-time events

This chapter covers
 Organizing your code into modules

 Handling one-off events with callbacks

 Handling repeating events with event emitters

 Implementing serial and parallel flow control

 Using flow-control tools
19

 How to handle repeating events
 How to sequence asynchronous logic

Licensed to Samir Mashlum <smashlum@gmail.com>

20 CHAPTER 2 Node programming fundamentals

We’ll start, however, with how you can tackle the problem of code organization
through the use of modules, which are Node’s way of keeping code organized and
packaged for easy reuse.

2.1 Organizing and reusing Node functionality
When creating an application, Node or otherwise, you often reach a point where put-
ting all your code in a single file becomes unwieldy. When this happens, the conven-
tional approach, as represented in figure 2.1, is to take a file containing a lot of code
and try to organize it by grouping related logic and moving it into separate files.

Figure 2.1 Navigating your code is easier if you organize it into directories and separate
files rather than keeping your application in one long file.

In some language implementations, such as PHP and Ruby, incorporating the logic
from another file (we call this the included file) can mean that all the logic executed in
that file affects the global scope. Any variables created and functions declared in the
included file risk overwriting those created and declared by the application.

 Say you’re programming in PHP; your application might contain the following
logic:

function uppercase_trim($text) {
 return trim(strtoupper($text));
}
include('string_handlers.php');

If your string_handlers.php file also attempted to define an uppercase_trim func-
tion, you’d receive the following error:

Fatal error: Cannot redeclare uppercase_trim()

In PHP you can avoid this by using namespaces, and Ruby offers similar functionality

index.js lib/utilityFunctions.js

Utilities

All code in one file Code with related logic grouped
together in separate files

Commands

index.js

Utilities

lib/commands.js

Commands
through modules. Node, however, avoids this potential problem by not offering an easy
way to accidentally pollute the global namespace.

Licensed to Samir Mashlum <smashlum@gmail.com>

21Organizing and reusing Node functionality

PHP NAMESPACES, RUBY MODULES PHP namespaces are discussed in the PHP
language manual at http://php.net/manual/en/language.namespaces.php.
Ruby modules are explained in the Ruby documentation: http://ruby-
doc.org/core-2.3.1/Module.html.

Node modules bundle up code for reuse, but they don’t alter global scope. Suppose,
for example, you’re developing an open source content management system (CMS)
application by using PHP, and you want to use a third-party API library that doesn’t use
namespaces. This library could contain a class with the same name as one in your
application, which would break your application unless you changed the class name
either in your application or the library. Changing the class name in your application,
however, could cause problems for other developers using your CMS as the basis of
their own projects. Changing the class name in the library would require you to
remember to repeat this hack each time you update the library in your application’s
source tree. Naming collisions are a problem best avoided altogether.

 Node modules allow you to select which functions and variables from the included
file are exposed to the application. If the module is returning more than one function
or variable, the module can specify these by setting the properties of an object called
exports. If the module is returning a single function or variable, the property mod-
ule.exports can instead be set. Figure 2.2 shows how this works.

Figure 2.2 The population of the module.exports property or the exports object allows
a module to select what should be shared with the application.

If this seems a bit confusing, don’t worry; we run through several examples in this
chapter. By avoiding pollution of the global scope, Node’s module system avoids nam-
ing conflicts and simplifies code reuse. Modules can then be published to the npm
(package manager) registry, an online collection of ready-to-use Node modules, and

Application Module
Requires module

Module logic populates
module.exports
or exports

Contents of module.exports
or exports returned
during require

module.exports
or

exports
shared with the Node community without those using the modules having to worry
about one module overwriting the variables and functions of another.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://mng.bz/wKnV
http://mng.bz/wKnV
http://mng.bz/wKnV
http://php.net/manual/en/language.namespaces.php
http://ruby-doc.org/core-2.3.1/Module.html
http://ruby-doc.org/core-2.3.1/Module.html

22 CHAPTER 2 Node programming fundamentals

 To help you organize your logic into modules, we cover the following topics:

 How you can create modules
 Where modules are stored in the filesystem
 Things to be aware of when creating and using modules

Let’s dive into learning the Node module system by starting a new Node project and
then creating a simple module.

2.2 Starting a new Node project
Creating a new Node project is easy: create a folder and then run npm init. That’s it!
The npm command will ask you a few questions, and you can answer yes to all of them.
Here’s a full example:

mkdir my_module
cd my_module
npm init -y

The -y flag means yes. That means npm will create a package.json file with default val-
ues. If you want more control, leave off the -y flag, and npm will run you through a
set of questions about the project’s license, author name, and so on. After you’ve done
this, look at the contents of package.json. You can manually edit it, but remember, it
has to be valid JSON.

 Now that you have an empty project, you can create your own module.

2.2.1 Creating modules

Modules can be either single files or
directories containing one or more
files, as you can see in figure 2.3. If a
module is a directory, the file in the
module directory that will be evaluated
is typically named index.js (although
this can be overridden: see section 2.5).

 To create a typical module, you create a file that defines properties on the
exports object with any kind of data, such as strings, objects, and functions.

 To show how a basic module is created, let’s see how to add some currency conver-
sion functionality to a file named currency.js. This file, shown in the following listing,
will contain two functions that convert Canadian dollars to U.S. dollars, and vice versa.

const canadianDollar = 0.91;

function roundTwo(amount) {
 return Math.round(amount * 100) / 100;

Listing 2.1 Defining a Node module (currency.js)

Figure 2.3 Node modules can be created by using
either files (example 1) or directories (example 2).
}

Licensed to Samir Mashlum <smashlum@gmail.com>

https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Closures

23Starting a new Node project

exports.canadianToUS = canadian => roundTwo(canadian * canadianDollar);
exports.USToCanadian = us => roundTwo(us / canadianDollar);

Note that only two properties of the exports object are set. Therefore, only the two
functions, canadianToUS and USToCanadian, can be accessed by the application
including the module. The variable canadianDollar acts as a private variable that
affects the logic in canadianToUS and USToCanadian but can’t be directly accessed
by the application.

 To use your new module, use Node’s require function, which takes a path to the
module you wish to use as an argument. Node performs a synchronous lookup to
locate the module and loads the file’s contents. The order in which Node looks for
files is first core modules, then the current directory, and finally node_modules.

In the next listing, which shows test-currency.js, you require the currency.js module.

const currency = require('./currency');
console.log('50 Canadian dollars equals this amount of US dollars:');
console.log(currency.canadianToUS(50));
console.log('30 US dollars equals this amount of Canadian dollars:');
console.log(currency.USToCanadian(30));

Requiring a module that begins with ./ means that if you were to create your applica-

A note about require and synchronous I/O
require is one of the few synchronous I/O operations available in Node. Because
modules are used often and are typically included at the top of a file, having
require be synchronous helps keep code clean, ordered, and readable.

Avoid using require in I/O-intensive parts of your application. Any synchronous call
will block Node from doing anything until the call has finished. For example, if you’re
running an HTTP server, you’d take a performance hit if you used require on each
incoming request. This is typically why require and other synchronous operations
are used only when the application initially loads.

Listing 2.2 Requiring a module (test_currency.js)

canadianToUS function is set in exports module
so it can be used by code requiring this module

USToCanadian function is
also set in exports module

Path uses ./ to indicate that module exists
within same directory as application script

Uses currency module’s
canadianToUS function

Uses currency module’s
USToCanadian function
tion script named test-currency.js in a directory named currency_app, then your cur-
rency.js module file, as represented in figure 2.4, would also need to exist in the

Licensed to Samir Mashlum <smashlum@gmail.com>

24 CHAPTER 2 Node programming fundamentals

currency_app directory. When requiring, the .js extension is assumed, so you can omit
it if desired. If you don’t include .js, Node will also check for a .json file. JSON files are
loaded as JavaScript objects.

After Node has located and evaluated your module, the require function returns the
contents of the exports object defined in the module. You’re then able to use the
two functions returned by the module to perform currency conversion.

 If you want to organize related modules, you can put modules into subdirectories.
If, for example, you want to put the currency module in a folder called lib/, you can
do so by changing the line with require to the following:

const currency = require('./lib/currency');

Populating the exports object of a module gives you a simple way to group reusable
code in separate files.

2.3 Fine-tuning module creation by using module.exports
Although populating the exports object with functions and variables is suitable for
most module-creation needs, at times you’ll want a module to deviate from this
model.

 The currency converter module created in the previous section, for example,
could be redone to return a single Currency constructor function rather than an
object containing functions. An object-oriented implementation could behave some-
thing like the following:

const Currency = require('./currency');
const canadianDollar = 0.91;
const currency = new Currency(canadianDollar);
console.log(currency.canadianToUS(50));

Returning a function from require, rather than an object, will make your code more

test-currency.js

currency.js

currency_app

require('./currency');

Figure 2.4 When you put ./ at the beginning of a
module require, Node will look in the same
directory as the program file being executed.
elegant if it’s the only thing you need from the module.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://caolan.github.io/async/)

25Fine-tuning module creation by using module.exports

 To create a module that returns a single variable or function, you might guess that
you need to set exports to whatever you want to return. But this won’t work, because
Node expects exports to not be reassigned to any other object, function, or variable.
The module code in the next listing attempts to set exports to a function.

class Currency {
 constructor(canadianDollar) {
 this.canadianDollar = canadianDollar;
 }

 roundTwoDecimals(amount) {
 return Math.round(amount * 100) / 100;
 }

 canadianToUS(canadian) {
 return this.roundTwoDecimals(canadian * this.canadianDollar);
 }

 USToCanadian(us) {
 return this.roundTwoDecimals(us / this.canadianDollar);
 }
}
exports = Currency;

To get the previous module code to work as expected, you’d need to replace exports
with module.exports. The module.exports mechanism enables you to export a
single variable, function, or object. If you create a module that populates both
exports and module.exports, module.exports will be returned, and exports
will be ignored.

Listing 2.3 Module won’t work as expected

What really gets exported
What ultimately gets exported in your application is module.exports. exports is
set up as a global reference to module.exports, which initially is defined as an
empty object that you can add properties to. exports.myFunc is shorthand for
module.exports.myFunc.

As a result, if exports is set to anything else, it breaks the reference between
module.exports and exports. Because module.exports is what gets
exported, exports will no longer work as expected—it doesn’t reference module
.exports anymore. If you want to maintain that link, you can make mod-
ule.exports reference exports again as follows:

module.exports = exports = Currency;

By using either exports or module.exports, depending on your needs, you can
organize functionality into modules and avoid the pitfall of ever-growing application

Incorrect; Node doesn’t allow
exports to be overwritten
scripts.

Licensed to Samir Mashlum <smashlum@gmail.com>

26 CHAPTER 2 Node programming fundamentals

2.4 Reusing modules by using the node_modules folder
Requiring modules in the filesystem to exist relative to an application is useful for
organizing application-specific code, but isn’t as useful for code you’d like to reuse
between applications or share with others. Node includes a unique mechanism for
code reuse that allows modules to be required without knowing their location in the
filesystem. This mechanism is the use of node_modules directories.

 In the earlier module example, you required ./currency. If you omit the ./ and
simply require currency, Node will follow certain rules, as specified in figure 2.5, to
search for this module.

Is the
module a core

module?

Is module
in node_modules

directory in the current
directory?

Does
module exist in a directory

specified by the NODE_PATH
environment variable?

Yes

Yes

Yes

No

Attempt to move to parent directory.

Does
parent directory

exist?

No

No

No

Yes

Start looking in the same
directory as the program file.

Return module.
Throw exception.
Figure 2.5 Steps to finding a module

Licensed to Samir Mashlum <smashlum@gmail.com>

27Exploring caveats

The NODE_PATH environmental variable provides a way to specify alternative locations
for Node modules. If used, NODE_PATH should be set to a list of directories separated
by semicolons in Windows, or colons in other operating systems.

2.5 Exploring caveats
Although the essence of Node’s module system is straightforward, you should be
aware of two points.

 First, if a module is a directory, the file in the module directory that will be evalu-
ated must be named index.js, unless specified otherwise by a file in the module direc-
tory named package.json. To specify an alternative to index.js, the package.json file
must contain JavaScript Object Notation (JSON) data defining an object with a key
named main that specifies the path, within the module directory, to the main file. Fig-
ure 2.6 shows a flowchart summarizing these rules.

Figure 2.6 The package.json file, when placed in a module directory, allows you to define your module
by using a file other than index.js.

Here’s an example of a package.json file specifying that currency.js is the main file:

{
 "main": "currency.js"
}

The other thing to be aware of is Node’s capability to cache modules as objects. If two

Contains
package.json

file?

package.json
file contains a main

element?

Does file
named index.js

exist?

No No

Yes

File named by main
element defines module

File index.js
defines module

Yes

No

File named
by main element

exists?

Yes No

Module directory found

Throw exception.

Yes
files in an application require the same module, the first require will store the data
returned in application memory so the second require won’t need to access and

Licensed to Samir Mashlum <smashlum@gmail.com>

28 CHAPTER 2 Node programming fundamentals

evaluate the module’s source files. This means loading a module with require in the
same process returns the same object. Imagine you’ve built an MVC web application
that has a main app object. You can set up that app object, export it, and then
require it from anywhere within the project. If you’ve added useful configuration
values to the app object, you can then access those values from other files, given a
directory structure as follows:

project
 app.js
 models
 post.js

Figure 2.7 shows how this works.

Figure 2.7 Shared app object in a web app

The best way to get comfortable with Node’s module system is to play with it, verifying
the behavior described in this section yourself. Now that you have a basic understand-
ing of how modules work, let’s move on to asynchronous programming techniques.

2.6 Using asynchronous programming techniques
If you’ve done front-end web programming in which interface events (such as mouse
clicks) trigger logic, you’ve done asynchronous programming. Server-side asynchro-
nous programming is no different: events occur that trigger response logic. Two pop-
ular models are used in the Node world for managing response logic: callbacks and
event listeners.

 Callbacks generally define logic for one-off responses. If you perform a database
query, for example, you can specify a callback to determine what to do with the query
results. The callback may display the database results, perform a calculation based on
the results, or execute another callback by using the query results as an argument.

 Event listeners, on the other hand, are callbacks associated with a conceptual entity

const app = express();
app.config.set('db', 'mysql://…')
module.exports = app;

const db = require('db');
const app = require('../app');
db.connect(app.config('db'));

{ config: { db: 'mysql://' } }

app.js models/post.js

app object instance in memory
(an event). For comparison, a mouse click is an event you would handle in the browser
when someone clicks the mouse. As an example, in Node an HTTP server emits a

Licensed to Samir Mashlum <smashlum@gmail.com>

http://nodejs.org/api/domain.html
http://nodejs.org/api/domain.html

29Handling one-off events with callbacks

request event when an HTTP request is made. You can listen for that request event
to occur and add response logic. In the following example, the function handle-
Request will be called whenever a request event is emitted, by using the Event-
Emitter.prototype.on method to bind an event listener to the server:

server.on('request', handleRequest)

A Node HTTP server instance is an example of an event emitter, a class (Event-
Emitter) that can be inherited and that adds the ability to emit and handle events.
Many aspects of Node’s core functionality inherit from EventEmitter, and you can
also create your own event emitter.

 Now that we’ve established that response logic is generally organized in one of two
ways in Node, you’re ready to jump into how it all works by learning about the following:

 How to handle one-off events with callbacks
 How to respond to repeating events by using event listeners
 How to handle some of the challenges of asynchronous programming

Let’s look first at one of the most common ways asynchronous code is handled: the
use of callbacks.

2.7 Handling one-off events with callbacks
A callback is a function, passed as an argument to an asynchronous function, that
describes what to do after the asynchronous operation has completed. Callbacks are
used frequently in Node development, more so than event emitters, and they’re sim-
ple to use.

 To demonstrate the use of callbacks in an application, let’s see how to make a sim-
ple HTTP server that does the following:

 Pulls the titles of recent posts stored as a JSON file asynchronously
 Pulls a basic HTML template asynchronously
 Assembles an HTML page containing the titles
 Sends the HTML page to the user

The results will be similar to figure 2.8.

Figure 2.8 An HTML response from a

web server that pulls titles from a JSON
file and returns results as a web page

Licensed to Samir Mashlum <smashlum@gmail.com>

fro

As
30 CHAPTER 2 Node programming fundamentals

The JSON file (titles.json), shown in the following listing, is formatted as an array of
strings containing titles of posts.

[
 "Kazakhstan is a huge country... what goes on there?",
 "This weather is making me craaazy",
 "My neighbor sort of howls at night"
]

The HTML template file (template.html), shown next, includes just a basic structure
to insert the titles of the blog posts.

<!doctype html>
<html>
 <head></head>
 <body>
 <h1>Latest Posts</h1>
 %
 </body>
</html>

The code that pulls in the JSON file and renders the web page is shown next
(blog_recent.js).

const http = require('http');
const fs = require('fs');
http.createServer((req, res) => {
 if (req.url == '/') {
 fs.readFile('./titles.json', (err, data) => {
 if (err) {
 console.error(err);
 res.end('Server Error');
 } else {
 const titles = JSON.parse(data.toString());
 fs.readFile('./template.html', (err, data) => {
 if (err) {
 console.error(err);
 res.end('Server Error');
 } else {
 const tmpl = data.toString();
 const html = tmpl.replace('%', titles.join(''));
 res.writeHead(200, { 'Content-Type': 'text/html' });
 res.end(html);
 }

Listing 2.4 A list of post titles

Listing 2.5 A basic HTML template to render the blog titles

Listing 2.6 Using callbacks in a simple application

% will be replaced
with title data

Creates HTTP server and uses
callback to define response logic

Reads JSON file and uses
callback to define what to
do with its contents

If error occurs, logs
error and returns
“Server Error” to client

Parses data
m JSON text Reads HTML template

and uses callback
when it’s loaded

sembles HTML
page showing

blog titles
 });
 }

Sends HTML
page to user

Licensed to Samir Mashlum <smashlum@gmail.com>

31Handling one-off events with callbacks

 });
 }
}).listen(8000, '127.0.0.1');

This example nests three levels of callbacks:

http.createServer((req, res) => { ...
 fs.readFile('./titles.json', (err, data) => { ...
 fs.readFile('./template.html', (err, data) => { ...

Using three levels isn’t bad, but the more levels of callbacks you use, the more clut-
tered your code looks, and the harder it is to refactor and test, so it’s good to limit call-
back nesting. By creating named functions that handle the individual levels of
callback nesting, you can express the same logic in a way that requires more lines of
code, but that could be easier to maintain, test, and refactor. The following listing is
functionally equivalent to listing 2.6.

const http = require('http');
const fs = require('fs');
http.createServer((req, res) => {
 getTitles(res);
}).listen(8000, '127.0.0.1');

function getTitles(res) {
 fs.readFile('./titles.json', (err, data) => {
 if (err) {
 hadError(err, res);
 } else {
 getTemplate(JSON.parse(data.toString()), res);
 }
 });
}
function getTemplate(titles, res) {
 fs.readFile('./template.html', (err, data) => {
 if (err) {
 hadError(err, res);
 } else {
 formatHtml(titles, data.toString(), res);
 }
 });
}
function formatHtml(titles, tmpl, res) {
 const html = tmpl.replace('%', titles.join(''));
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(html);
}
function hadError(err, res) {
 console.error(err);
 res.end('Server Error');

Listing 2.7 Reducing nesting by creating intermediary functions

Client request initially
comes in here

Control is passed
to getTitles

getTitles pulls titles and passes
control to getTemplate

getTemplate reads template file
and passes control to formatHtml

formatHtml takes titles and
template, and renders a
response back to client

If an error occurs along the way,
hadError logs error to console and
responds to client with “Server Error”
}

Licensed to Samir Mashlum <smashlum@gmail.com>

,

e
32 CHAPTER 2 Node programming fundamentals

You can also reduce the nesting caused by if/else blocks with another common
idiom in Node development: returning early from a function. The following listing is
functionally the same but avoids further nesting by returning early. It also explicitly
indicates that the function shouldn’t continue executing.

const http = require('http');
const fs = require('fs');
http.createServer((req, res) => {
 getTitles(res);
}).listen(8000, '127.0.0.1');
function getTitles(res) {
 fs.readFile('./titles.json', (err, data) => {
 if (err) return hadError(err, res);
 getTemplate(JSON.parse(data.toString()), res);
 });
}
function getTemplate(titles, res) {
 fs.readFile('./template.html', (err, data) => {
 if (err) return hadError(err, res);
 formatHtml(titles, data.toString(), res);
 });
}
function formatHtml(titles, tmpl, res) {
 const html = tmpl.replace('%', titles.join(''));
 res.writeHead(200, { 'Content-Type': 'text/html'});
 res.end(html);
}
function hadError(err, res) {
 console.error(err);
 res.end('Server Error');
}

Now that you’ve learned how to use callbacks to handle one-off events for such tasks as
defining responses when reading files and web server requests, let’s move on to orga-
nizing events by using event emitters.

Listing 2.8 Reducing nesting by returning early

The Node convention for asynchronous callbacks
Most Node built-in modules use callbacks with two arguments: the first argument is
for an error, should one occur, and the second argument is for the results. The error
argument is often abbreviated as err.

Here’s a typical example of this common function signature:

const fs = require('fs');
fs.readFile('./titles.json', (err, data) => {
 if (err) throw err;
 // do something with data if no error has occurred

Instead of creating an else branch
you return, because if an error
occurs, you don’t need to continu
executing this function
});

Licensed to Samir Mashlum <smashlum@gmail.com>

33Handling repeating events with event emitters

2.8 Handling repeating events with event emitters
Event emitters fire events and include the ability to handle those events when trig-
gered. Some important Node API components, such as HTTP servers, TCP servers, and
streams, are implemented as event emitters. You can also create your own.

 As we mentioned earlier, events are handled through the use of listeners. A listener
is the association of an event with a callback function that gets triggered each time the
event occurs. For example, a TCP socket in Node has an event called data that’s trig-
gered whenever new data is available on the socket:

socket.on('data', handleData);

Let’s look at using data events to create an echo server.

2.8.1 An example event emitter

A simple example of repeated events
occurs in an echo server. When you send
data to an echo server, it echoes the data
back, as shown in figure 2.9.

 Listing 2.9 shows the code needed to
implement an echo server. Whenever a
client connects, a socket is created. The
socket is an event emitter to which you
can then add a listener, using the on
method, to respond to data events. These data events are emitted whenever new
data is available on the socket.

const net = require('net');
const server = net.createServer(socket => {
 socket.on('data', data => {
 socket.write(data);
 });
});
server.listen(8888);

You run this echo server by entering the following command:

node echo_server.js

After the echo server is running, you can connect to it by entering the following
command:

telnet 127.0.0.1 8888

Listing 2.9 Using the on method to respond to events

Figure 2.9 An echo server repeating the data
sent to it

data events handled whenever
new data has been read

Data is written (echoed
back) to the client
Every time data is sent from your connected telnet session to the server, it will be
echoed back into the telnet session.

Licensed to Samir Mashlum <smashlum@gmail.com>

34 CHAPTER 2 Node programming fundamentals

TELNET ON WINDOWS If you’re using the Microsoft Windows operating sys-
tem, telnet may not be installed by default, and you’ll have to install it your-
self. TechNet has instructions for the various versions of Windows: http://
mng.bz/egzr.

2.8.2 Responding to an event that should occur only once

Listeners can be defined to repeatedly respond to events, as the previous example
shows, or listeners can be defined to respond only once. The following listing, using
the once method, modifies the previous echo server example to echo only the first
chunk of data sent to it.

const net = require('net');
const server = net.createServer(socket => {
 socket.once('data', data => {
 socket.write(data);
 });
});
server.listen(8888);

2.8.3 Creating event emitters: a publish/subscribe example

In the previous example, you used a built-in Node API that uses event emitters. Node’s
built-in events module, however, allows you to create your own event emitters.

 The following code defines a channel event emitter with a single listener that
responds to someone joining the channel. Note that you use on (or, alternatively, the
longer form addListener) to add a listener to an event emitter:

const EventEmitter = require('events').EventEmitter;
const channel = new EventEmitter();
channel.on('join', () => {
 console.log('Welcome!');
});

This join callback, however, won’t ever be called, because you haven’t emitted any
events yet. You could add a line to the listing that would trigger an event using the
emit function:

channel.emit('join');

EVENT NAMES Events are keys that can have any string value: data, join, or
some crazy long event name. Only one event, called error, is special, and
you’ll look at it soon.

Let’s look at how you could implement your own publish/subscribe logic by using
EventEmitter to make a communication channel. If you run the script in listing

Listing 2.10 Using the once method to respond to a single event

data event will be
handled only once
2.11, you’ll have a simple chat server. A chat server channel is implemented as an
event emitter that responds to join events emitted by clients. When a client joins the

Licensed to Samir Mashlum <smashlum@gmail.com>

http://mng.bz/egzr
http://mng.bz/egzr

35Handling repeating events with event emitters

channel, the join listener logic, in turn, adds an additional client-specific listener to
the channel for the broadcast event that will write any message broadcast to the cli-
ent socket. The names of the event types, such as join and broadcast, are com-
pletely arbitrary. You could use other names for these event types if you wished.

const events = require('events');
const net = require('net');
const channel = new events.EventEmitter();
channel.clients = {};
channel.subscriptions = {};
channel.on('join', function(id, client) {
 this.clients[id] = client;
 this.subscriptions[id] = (senderId, message) => {
 if (id != senderId) {
 this.clients[id].write(message);
 }
 };
 this.on('broadcast', this.subscriptions[id]);
});
const server = net.createServer(client => {
 const id = `${client.remoteAddress}:${client.remotePort}`;
 channel.emit('join', id, client);
 client.on('data', data => {
 data = data.toString();
 channel.emit('broadcast', id, data);
 });
});
server.listen(8888);

After you have the chat server running, open a new command line and enter the fol-
lowing code to enter the chat:

telnet 127.0.0.1 8888

If you open up a few command lines, you’ll see that anything typed in one command
line is echoed to the others.

 The problem with this chat server is that when users close their connections and
leave the chat room, they leave behind a listener that will attempt to write to a client
that’s no longer connected. This will, of course, generate an error. To fix this issue,
you need to add the listener in the following listing to the channel event emitter, and
add logic to the server’s close event listener to emit the channel’s leave event. The
leave event removes the broadcast listener originally added for the client.

...
channel.on('leave', function(id) {

Listing 2.11 A simple publish/subscribe system using an event emitter

Listing 2.12 Creating a listener to clean up when clients disconnect

Adds a listener for the join event
that stores a user’s client
object, allowing the application
to send data back to the user

Ignores data if it’s been
directly broadcast by the user

Adds a listener, specific
to the current user, for
the broadcast event

Emits a join event when a user
connects to the server, specifying
the user ID and client object

Emits a channel broadcast event,
specifying the user ID and message,
when any user sends data
 channel.removeListener(
Creates listener
for leave event

Licensed to Samir Mashlum <smashlum@gmail.com>

36 CHAPTER 2 Node programming fundamentals

 'broadcast', this.subscriptions[id]
);
 channel.emit('broadcast', id, `${id} has left the chatroom.\n`);
});
const server = net.createServer(client => {
 ...
 client.on('close', () => {
 channel.emit('leave', id);
 });
});
server.listen(8888);

If you want to prevent a chat for some reason but don’t want to shut down the server,
you can use the removeAllListeners event emitter method to remove all listeners
of a given type. The following code shows how this is implemented for our chat server
example:

channel.on('shutdown', () => {
 channel.emit('broadcast', '', 'The server has shut down.\n');
 channel.removeAllListeners('broadcast');
});

You can then add support for a chat command that triggers the shutdown. To do so,
change the listener for the data event to the following code:

client.on('data', data => {
 data = data.toString();
 if (data === 'shutdown\r\n') {
 channel.emit('shutdown');
 }
 channel.emit('broadcast', id, data);
});

Now when any chat participant enters shutdown into the chat, it’ll cause all partici-
pants to be kicked off.

Error handling
A convention you can use when creating event emitters is to emit an error type
event instead of directly throwing an error. This allows you to define custom event
response logic by setting one or more listeners for this event type.

The following code shows how an error listener handles an emitted error by logging
on the console:

const events = require('events');
const myEmitter = new events.EventEmitter();
myEmitter.on('error', err => {
 console.log(`ERROR: ${err.message}`);
});
myEmitter.emit('error', new Error('Something is wrong.'));

Removes broadcast listener
for specific client

Emits leave event when
client disconnects
Licensed to Samir Mashlum <smashlum@gmail.com>

37Handling repeating events with event emitters

If you want to provide users connecting to chat with a count of currently connected
users, you can use the following listeners method, which returns an array of listen-
ers for a given event type:

channel.on('join', function(id, client) {
const welcome = `
 Welcome!
 Guests online: ${this.listeners('broadcast').length}
 `;
 client.write(`${welcome}\n`);
 ...

To increase the number of listeners that an event emitter has, and to avoid the warn-
ings Node displays when there are more than 10 listeners, you can use the setMax-
Listeners method. Using your channel event emitter as an example, you use the
following code to increase the number of allowed listeners:

channel.setMaxListeners(50);

2.8.4 Extending the event emitter: a file watcher example

If you want to build upon the event emitter’s behavior, you can create a new JavaScript
class that inherits from the event emitter. For example, you can create a class called
Watcher that processes files placed in a specified filesystem directory. You then use
this class to create a utility that watches a directory (renaming any files placed in it to

(continued)

If no listener for this event type is defined when the error event type is emitted, the
event emitter will output a stack trace (a list of program instructions that executed
up to the point when the error occurred) and halt execution. The stack trace indicates
an error of the type specified by the emit call’s second argument. This behavior is
unique to error type events; when other event types are emitted, and they have no
listeners, nothing happens.

If an error type event is emitted without an error object supplied as the second
argument, a stack trace will indicate an Uncaught, unspecified 'error'
event error, and your application will halt. There is a deprecated method you can
use to deal with this error—you can define your own response by defining a global
handler via the following code:

process.on('uncaughtException', err => {
 console.error(err.stack);
 process.exit(1);
});

Alternatives to this, such as domains (http://nodejs.org/api/domain.html), are being
developed, but they’re not considered production-ready.
lowercase and then copying the files into a separate directory).

Licensed to Samir Mashlum <smashlum@gmail.com>

http://nodejs.org/api/domain.html

38 CHAPTER 2 Node programming fundamentals

 After setting up the Watcher object, you need to extend the methods inherited
from EventEmitter with two new methods, as shown in the following listing.

const fs = require('fs');
const events = require('events');

class Watcher extends events.EventEmitter {
 constructor(watchDir, processedDir) {
 super();
 this.watchDir = watchDir;
 this.processedDir = processedDir;
 }

 watch() {
 fs.readdir(this.watchDir, (err, files) => {
 if (err) throw err;
 for (var index in files) {
 this.emit('process', files[index]);
 }
 });
 }

 start() {
 fs.watchFile(this.watchDir, () => {
 this.watch();
 });
 }
}

module.exports = Watcher;

The watch method cycles through the directory, processing any files found. The
start method starts the directory monitoring. The monitoring uses Node’s
fs.watchFile function, so when something happens in the watched directory, the
watch method is triggered, cycling through the watched directory and emitting a
process event for each file found.

 Now that you’ve defined the Watcher class, you can put it to work by creating a
Watcher object with the following code:

const watcher = new Watcher(watchDir, processedDir);

With your newly created Watcher object, you can use the on method, inherited from
the event emitter class, to set the logic used to process each file, as shown in this snippet:

watcher.on('process', (file) => {
 const watchFile = `${watchDir}/${file}`;
 const processedFile = `${processedDir}/${file.toLowerCase()}`;
 fs.rename(watchFile, processedFile, err => {
 if (err) throw err;

Listing 2.13 Extending the event emitter’s functionality

Extends EventEmitter with
method that processes files

Processes each file
in watch directory

Adds method
to start watching
 });
});

Licensed to Samir Mashlum <smashlum@gmail.com>

39Challenges with asynchronous development

Now that all the necessary logic is in place, you can start the directory monitor by
using the following code:

watcher.start();

After putting the Watcher code into a script and creating watch and done directories,
you should be able to run the script by using Node, drop files into the watch directory,
and see the files pop up, renamed to lowercase, in the done directory. This is an exam-
ple of how the event emitter can be a useful class from which to create new classes.

 By learning how to use callbacks to define one-off asynchronous logic and how to
use event emitters to dispatch asynchronous logic repeatedly, you’re one step closer to
mastering control of a Node application’s behavior. In a single callback or event emit-
ter listener, however, you may want to include logic that performs additional asynchro-
nous tasks. If the order in which these tasks are performed is important, you may be
faced with a new challenge: how to control exactly when each task, in a series of asyn-
chronous tasks, executes.

 Before we get to controlling when tasks execute—coming up in section 2.10—let’s
take a look at some of the challenges you’ll likely encounter as you write asynchronous
code.

2.9 Challenges with asynchronous development
When creating asynchronous applications, you have to pay close attention to the way
your application flows and keep a watchful eye on application state: the conditions of
the event loop, application variables, and any other resources that change as program
logic executes.

 Node’s event loop, for example, keeps track of asynchronous logic that hasn’t com-
pleted processing. As long as there’s uncompleted asynchronous logic, the Node pro-
cess won’t exit. A continually running Node process is desirable behavior for
something like a web server, but it isn’t desirable to continue running processes that
are expected to end after a period of time, such as command-line tools. The event
loop keeps track of any database connections until they’re closed, preventing Node
from exiting.

 Application variables can also change unexpectedly if you’re not careful. Listing
2.14 shows an example of how the order in which asynchronous code executes can
lead to confusion. If the example code was executing synchronously, you’d expect the
output to be “The color is blue.” Because the example is asynchronous, however, the
value of the color variable changes before console.log executes, and the output is
“The color is green.”

function asyncFunction(callback) {

Listing 2.14 How scope behavior can lead to bugs
 setTimeout(callback, 200);
}

Licensed to Samir Mashlum <smashlum@gmail.com>

40 CHAPTER 2 Node programming fundamentals

let color = 'blue';
asyncFunction(() => {
 console.log(`The color is ${color}`);
});
color = 'green';

To “freeze” the contents of the color variable, you can modify your logic and use a
JavaScript closure. In listing 2.15, you wrap the call to asyncFunction in an anony-
mous function that takes a color argument. You then execute the anonymous func-
tion immediately, sending it the current contents of color. By making color an
argument for the anonymous function, it becomes local to the scope of that function,
and when the value of color is changed outside the anonymous function, the local
version is unaffected.

function asyncFunction(callback) {
 setTimeout(callback, 200);
}

let color = 'blue';

(color => {
 asyncFunction(() => {
 console.log('The color is', color);
 });
})(color);

color = 'green';

This is but one of many JavaScript programming tricks you’ll come across in your
Node development.

CLOSURES For more information on closures, see the Mozilla JavaScript doc-
umentation: https://developer.mozilla.org/en-US/docs/JavaScript/Guide/
Closures.

Now that you understand how to use closures to control your application state, let’s
look at sequencing asynchronous logic in order to keep the flow of your application
under control.

2.10 Sequencing asynchronous logic
During the execution of an asynchronous program, some tasks can happen anytime,
independent of what the rest of the program is doing, without causing problems. But
some tasks should happen only before or after certain other tasks.

 The concept of sequencing groups of asynchronous tasks is called flow control by
the Node community. There are two types of flow control: serial and parallel, as figure

Listing 2.15 Using an anonymous function to preserve a global variable’s value

This is executed last
(200 ms later)
2.10 shows.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Closures
https://developer.mozilla.org/en-US/docs/JavaScript/Guide/Closures

41Sequencing asynchronous logic

Figure 2.10 Serial execution of asynchronous tasks is similar, conceptually, to synchronous logic: tasks
are executed in sequence. Parallel tasks, however, don’t have to execute one after another.

Tasks that need to happen one after the other are called serial. A simple example is the
task of creating a directory and the task of storing a file in it. You can’t store the file
before creating the directory.

 Tasks that don’t need to happen one after the other are called parallel. It isn’t nec-
essarily important when these tasks start and stop relative to one another, but they
should all be completed before further logic executes. One example is downloading
numerous files that will later be compressed into a zip archive. The files can be down-
loaded simultaneously, but all of the downloads should be completed before creating
the archive.

 Keeping track of serial and parallel flow control requires programmatic bookkeep-
ing. When you implement serial flow control, you need to keep track of the task cur-
rently executing or maintain a queue of unexecuted tasks. When you implement
parallel flow control, you need to keep track of how many tasks have executed to com-
pletion.

 Flow-control tools handle the bookkeeping for you, which makes grouping asyn-
chronous serial or parallel tasks easy. Although plenty of community-created add-ons
deal with sequencing asynchronous logic, implementing flow control yourself demys-
tifies it and helps you gain a deeper understanding of how to deal with the challenges
of asynchronous programming.

 In the following sections we show you

Task 1

Then task 2

TaskTaskTask

Then task 3

Continue when
all tasks complete

Continue when
task 3 completes

Start

Serial execution

Start

Parallel execution
 When to use serial flow control
 How to implement serial flow control

Licensed to Samir Mashlum <smashlum@gmail.com>

42 CHAPTER 2 Node programming fundamentals

 How to implement parallel flow control
 How to use third-party modules for flow control

Let’s start by looking at when and how you handle serial flow control in an asynchro-
nous world.

2.11 When to use serial flow control
To execute numerous asynchronous tasks in sequence, you could use callbacks, but if
you have a significant number of tasks, you’ll have to organize them. If you don’t,
you’ll end up with messy code due to excessive callback nesting.

 The following code is an example of executing tasks in sequence by using call-
backs. The example uses setTimeout to simulate tasks that take time to execute: the
first task takes one second, the next takes half of a second, and the last takes one-tenth
of a second. setTimeout is only an artificial simulation; in real code you could be
reading files, making HTTP requests, and so on. Although this example code is short,
it’s arguably a bit messy, and there’s no easy way to programmatically add another task.

setTimeout(() => {
 console.log('I execute first.');
 setTimeout(() => {
 console.log('I execute next.');
 setTimeout(() => {
 console.log('I execute last.');
 }, 100);
 }, 500);
}, 1000);

Alternatively, you can use a flow-control tool such as Async (http://caolan.github.io/
async/) to execute these tasks. Async is straightforward to use and benefits from hav-
ing a small codebase (a mere 837 bytes, minified and compressed). You can install
Async with the following command:

npm install async

Now, use the code in the next listing to re-implement the previous code snippet with
serial flow control.

const async = require('async');
async.series([
 callback => {
 setTimeout(() => {
 console.log('I execute first.');
 callback();
 }, 1000);
 },

Listing 2.16 Serial control using a community-created add-on

Provides an array of functions for
Async to execute, one after the other
 callback => {
 setTimeout(() => {

Licensed to Samir Mashlum <smashlum@gmail.com>

http://caolan.github.io/async/
http://caolan.github.io/async/

43Implementing serial flow control

 console.log('I execute next.');
 callback();
 }, 500);
 },
 callback => {
 setTimeout(() => {
 console.log('I execute last.');
 callback();
 }, 100);
 }
]);

Although the implementation using flow control means more lines of code, it’s gener-
ally easier to read and maintain. You’re likely not going to use flow control all the
time, but if you run into a situation where you want to avoid callback nesting, it’s a
handy tool for improving code legibility.

 Now that you’ve seen an example of the use of serial flow control with a specialized
tool, let’s look at how to implement it from scratch.

2.12 Implementing serial flow control
To execute numerous asynchronous tasks in sequence by using serial flow control, you
first need to put the tasks in an array, in the desired order of execution. This array, as
figure 2.11 shows, acts as a queue: when you finish one task, you extract the next task
in sequence from the array.

Figure 2.11 How serial flow control works

Each task exists in the array as a function. When a task has completed, the task should
call a handler function to indicate error status and results. The handler function in
this implementation will halt execution if there’s an error. If there isn’t an error, the
handler will pull the next task from the queue and execute it.

Task TaskTaskTask

Tasks stored in array in order of desired execution

Task performs function,
then calls dispatch function
to execute next task in queue
 To demonstrate an implementation of serial flow control, you’ll make a simple
application that displays a single article’s title and URL from a randomly chosen RSS

Licensed to Samir Mashlum <smashlum@gmail.com>

44 CHAPTER 2 Node programming fundamentals

feed. The list of possible RSS feeds is specified in a text file. The application’s output
will look something like the following text:

Of Course ML Has Monads!
http://lambda-the-ultimate.org/node/4306

Our example requires the use of two helper modules from the npm registry. First,
open a command-line prompt, and then enter the following commands to create a
directory for the example and install the helper modules:

mkdir listing_217
cd listing_217
npm init -y
npm install --save request@2.60.0
npm install --save htmlparser@1.7.7

The request module is a simplified HTTP client that you can use to fetch RSS data.
The htmlparser module has functionality that allows you to turn raw RSS data into
JavaScript data structures.

 Next, create a file named index.js inside your new directory that contains the code
shown here.

const fs = require('fs');
const request = require('request');
const htmlparser = require('htmlparser');
const configFilename = './rss_feeds.txt';
function checkForRSSFile() {
 fs.exists(configFilename, (exists) => {
 if (!exists)
 return next(new Error(`Missing RSS file: ${configFilename}`));
 next(null, configFilename);
 });
}
function readRSSFile(configFilename) {
 fs.readFile(configFilename, (err, feedList) => {
 if (err) return next(err);
 feedList = feedList
 .toString()
 .replace(/^\s+|\s+$/g, '')
 .split('\n');
 const random = Math.floor(Math.random() * feedList.length);
 next(null, feedList[random]);
 });
}
function downloadRSSFeed(feedUrl) {
 request({ uri: feedUrl }, (err, res, body) => {
 if (err) return next(err);
 if (res.statusCode !== 200)

Listing 2.17 Serial flow control implemented in a simple application

Task 1: Make sure the
file containing the list of
RSS feed URLs exists

Whenever there’s an
error, return early

Task 2: Read and parse the file
containing the feed URLs

Converts list of feed URLs to a string
and then into an array of feed URLs

Selects random feed URL
from array of feed URLs

Task 3: Do an HTTP request and
get data for the selected feed
 return next(new Error('Abnormal response status code'));
 next(null, body);

Licensed to Samir Mashlum <smashlum@gmail.com>

E

45Implementing parallel flow control

 });
}
function parseRSSFeed(rss) {
 const handler = new htmlparser.RssHandler();
 const parser = new htmlparser.Parser(handler);
 parser.parseComplete(rss);
 if (!handler.dom.items.length)
 return next(new Error('No RSS items found'));
 const item = handler.dom.items.shift();
 console.log(item.title);
 console.log(item.link);
}
const tasks = [
 checkForRSSFile,
 readRSSFile,
 downloadRSSFeed,
 parseRSSFeed
];
function next(err, result) {
 if (err) throw err;
 const currentTask = tasks.shift();
 if (currentTask) {
 currentTask(result);
 }
}
next();

Before trying out the application, create the file rss_feeds.txt in the same directory as
the application script. If you don’t have any feeds at hand, you can try the Node blog’s
feed, which is http://blog.nodejs.org/feed/. Put the URLs of RSS feeds into the text
file, one on each line of the file. After you’ve created this file, open a command line
and enter the following commands to change to the application directory and exe-
cute the script:

cd listing_217
node index.js

Serial flow control, as this example implementation shows, is a way of putting call-
backs into play when they’re needed, rather than simply nesting them.

 Now that you know how to implement serial flow control, let’s look at how to exe-
cute asynchronous tasks in parallel.

2.13 Implementing parallel flow control
To execute numerous asynchronous tasks in parallel, you again need to put the tasks
in an array, but this time the order of the tasks is unimportant. Each task should call a
handler function that will increment the number of completed tasks. When all tasks
are complete, the handler function should perform some subsequent logic.

 For a parallel flow-control example, you’ll make a simple application that reads the

Task 4: Parse RSS data
into the array of items

Displays title and URL of
the first feed item, if it exists

Adds each task to be performed
to an array in execution order

A function called next
executes each task

Throws exception if task
encounters an errorNext task comes

from array of tasks
xecutes
current

task Starts serial execution
of tasks
contents of text files and outputs the frequency of word use throughout the files.
Reading the contents of the text files will be done using the asynchronous readFile

Licensed to Samir Mashlum <smashlum@gmail.com>

http://blog.nodejs.org/feed/

46 CHAPTER 2 Node programming fundamentals

function, so numerous file reads can be done in parallel. Figure 2.12 shows how this
application works.

 The output looks something like the following text (although it’ll likely be much
longer):

would: 2
wrench: 3
writeable: 1
you: 24

Open a command-line prompt and enter the following commands to create two direc-
tories—one for the example, and another within that to contain the text files you want
to analyze:

mkdir listing_218
cd listing_218
mkdir text

Next, create a file named word_count.js inside the listing_218 directory that contains
the code that follows.

const fs = require('fs');

Listing 2.18 Parallel flow control implemented in a simple application

Get list of files
in directory.

Handle each file by using
asynchronous logic.

Read
file

Count
words

Read
file

Count
words

Read
file

Count
words

Read
file

Count
words

Read
file

Count
words

Each file is read and the
subsequent word count
is done in parallel.

Display word
counts.

Are all the files read
and words counted?

Figure 2.12 Using parallel flow control to implement a frequency count of word use in numerous files
const tasks = [];
const wordCounts = {};

Licensed to Samir Mashlum <smashlum@gmail.com>

47Implementing parallel flow control

const filesDir = './text';
let completedTasks = 0;

function checkIfComplete() {
 completedTasks++;
 if (completedTasks === tasks.length) {
 for (let index in wordCounts) {
 console.log(`${index}: ${wordCounts[index]}`);
 }
 }
}

function addWordCount(word) {
 wordCounts[word] = (wordCounts[word]) ? wordCounts[word] + 1 : 1;
}

function countWordsInText(text) {
 const words = text
 .toString()
 .toLowerCase()
 .split(/\W+/)
 .sort();

 words
 .filter(word => word)
 .forEach(word => addWordCount(word));
}

fs.readdir(filesDir, (err, files) => {
 if (err) throw err;
 files.forEach(file => {
 const task = (file => {
 return () => {
 fs.readFile(file, (err, text) => {
 if (err) throw err;
 countWordsInText(text);
 checkIfComplete();
 });
 };
 })(`${filesDir}/${file}`);
 tasks.push(task);
 }
 tasks.forEach(task => task());
});

Before trying out the application, create some text files in the text directory you cre-
ated earlier. Then open a command line and enter the following commands to
change to the application directory and execute the script:

cd word_count
node word_count.js

Now that you’ve learned how serial and parallel flow control work under the hood,

When all tasks have completed,
list each word used in the files and
the number of times it was used

Counts word
occurrences in text

Gets a list of the
files in the text directory

Defines a task to handle each file.
Each task includes a call to a function
that will asynchronously read the file
and then count the file’s word usage

Adds each task to an array of
functions to call in parallel

Starts executing
 every task in parallel
let’s look at how to use community-created tools that allow you to easily benefit from
flow control in your applications, without having to implement it yourself.

Licensed to Samir Mashlum <smashlum@gmail.com>

E
do
in
48 CHAPTER 2 Node programming fundamentals

2.14 Using community tools
Many community add-ons provide convenient flow-control tools. Some popular add-
ons include Async, Step, and Seq. Although each of these is worth checking out, we’ll
use Async again for another example.

COMMUNITY ADD-ONS FOR FLOW CONTROL For more information about com-
munity add-ons for flow control, see the article “Virtual Panel: How to Survive
Asynchronous Programming in JavaScript” by Werner Schuster and Dio Syn-
odinos on InfoQ: http://mng.bz/wKnV.

Listing 2.19 is an example of using Async to sequence tasks in a script that uses paral-
lel flow control to download two files simultaneously and then archive them.

THE FOLLOWING EXAMPLE WON’T WORK IN MICROSOFT WINDOWS Because the
Windows operating system doesn’t come with the tar and curl commands,
the following example won’t work in this operating system.

In this example, we use serial control to make sure that the downloading is done
before proceeding to archiving.

const async = require('async');
const exec = require('child_process').exec;
function downloadNodeVersion(version, destination, callback) {
 const url = `http://nodejs.org/dist/v${version}/node-v${version}.tar.gz`;
 const filepath = `${destination}/${version}.tgz`;
 exec(`curl ${url} > ${filepath}`, callback);
}
async.series([
 callback => {
 async.parallel([
 callback => {
 console.log('Downloading Node v4.4.7...');
 downloadNodeVersion('4.4.7', '/tmp', callback);
 },
 callback => {
 console.log('Downloading Node v6.3.0...');
 downloadNodeVersion('6.3.0', '/tmp', callback);
 }
], callback);
 },
 callback => {
 console.log('Creating archive of downloaded files...');
 exec(
 'tar cvf node_distros.tar /tmp/4.4.7.tgz /tmp/6.3.0.tgz',
err => {
 if (err) throw err;
 console.log('All done!');

Listing 2.19 Using a community add-on flow-control tool in a simple application

Downloads Node source
code for given version

Executes series of
tasks in sequence

xecutes
wnloads
 parallel

Creates
archive file
 callback();
 }

Licensed to Samir Mashlum <smashlum@gmail.com>

http://mng.bz/wKnV

49Summary

);
 }
]);

The script defines a helper function that downloads any specified release version of
the Node source code. Two tasks are then executed in series: the parallel downloading
of two versions of Node and the bundling of the downloaded versions into a new
archive file.

2.15 Summary
 Node modules can be organized into reusable modules.
 The require function is used to load modules.
 The module.exports and exports objects are used to share functions and

variables from within a module.
 The package.json file is used to specify dependencies and which file is exported

as the main file.
 Asynchronous logic can be controlled with nested callbacks, event emitters, and

flow-control utilities.
Licensed to Samir Mashlum <smashlum@gmail.com>

What is a Node web
application?
This chapter is all about Node web applications. After reading this chapter, you’ll
understand what Node web applications look like and how to start building them.
You’ll do everything a modern web developer does when building an application.

 You’re going to build a web application called later that’s inspired by popular
read-it-later websites such as Instapaper (www.instapaper.com) and Pocket (get-
pocket.com). This involves starting a new Node project, managing dependencies,
creating a RESTful API, saving data to a database, and making an interface with tem-
plates. That might sound like a lot, but you’ll explore each of the ideas in this chap-
ter again in subsequent chapters.

 Figure 3.1 shows what the result should look like.
 The read-it-later page on the left has stripped away all of the navigation from

the target website, preserving the main content and title. More significantly, the

This chapter covers
 Creating a new web application

 Building RESTful services

 Persisting data

 Working with templates
50

article is permanently saved to a database, which means you can read it at a future
date when the original article may no longer be retrievable.

Licensed to Samir Mashlum <smashlum@gmail.com>

www.instapaper.com
https://getpocket.com
https://getpocket.com

51Understanding a Node web application’s structure

Before building a web application, you should create a fresh project. The next section
shows how to create Node projects from scratch.

3.1 Understanding a Node web application’s structure
A typical Node web application has the following components:

 package.json—A file that contains a list of dependencies, and the command
that runs the application

 public/—A folder of static assets, such as CSS and client-side JavaScript
 node_modules/—The place where the project’s dependencies get installed
 One or more JavaScript files that contains your application code

The application code is often further subdivided as follows:

 app.js or index.js—The code that sets up the application
 models/—Database models
 views/—The templates that are used to render the pages in the application
 controllers/ or routes/—HTTP request handlers
 middleware/—Middleware components

There are no rules that dictate how your application should be structured: most web
frameworks are flexible and require configuration. But this template is the general
outline that you’ll find in most projects.

Figure 3.1 A read-it-later web application
Licensed to Samir Mashlum <smashlum@gmail.com>

52 CHAPTER 3 What is a Node web application?

 It’s much easier to learn how to do this if you practice, so let’s see how to create a
skeleton web application the way a seasoned Node programmer would.

3.1.1 Starting a new web app

To create a new web app, you need to make a new Node project. Refer to chapter 2 if
you want to refresh your memory, but to recap, you need to create a directory and run
npm init with defaults:

mkdir later
cd later
npm init -fy

Now you have a fresh project; what’s next? Most people would add a module from
npm that makes web development easier. Node has a built-in http module that has a
server, but it’s easier to use something that reduces the boilerplate required for com-
mand web development tasks. Let’s see how to install Express.

ADDING A DEPENDENCY

To add a dependency to a project, use npm install. The following command installs
Express:

npm install --save express

Now if you look at package.json, you should see that Express has been added. The fol-
lowing snippet shows the section in question:

"dependencies": {
 "express": "^4.14.0"
}

The Express module is in the project’s node_modules/ folder. If you wanted to unin-
stall Express from the project, you would run npm rm express --save. This
removes it from node_modules/ and updates the package.json file.

A SIMPLE SERVER

Express is focused on modeling your application in terms of HTTP requests and
responses, and it’s built using Node’s built-in http module. To make a basic applica-
tion, you need to make an application instance by using express(), add a route han-
dler, and then bind the application to a TCP port. Here’s a full example:

const express = require('express');
const app = express();

const port = process.env.PORT || 3000;

app.get('/', (req, res) => {
 res.send('Hello World');
});

app.listen(port, () =>

 console.log(`Express web app available at localhost: ${port}`);
};

Licensed to Samir Mashlum <smashlum@gmail.com>

53Understanding a Node web application’s structure

It’s not as complicated as it sounds! Save this code to a file called index.js, and run it
by typing node index.js. Then visit http://localhost:3000 to view the result. To
avoid having to remember exactly how to run each application, most people use npm
scripts to simplify the process.

NPM SCRIPTS

To save your server start command (node index.js) as an npm script, open pack-
age.json and add a new property under scripts called start:

"scripts": {
 "start": "node index.js",
 "test": "echo \"Error: no test specified\" && exit 1"
},

Now you can run your application by typing npm start. If you see an error because
port 3000 is already being used on your machine, you can use a different port by run-
ning PORT=3001 npm start. People use npm scripts for all kinds of things: building
client-side bundles, running tests, and generating documentation. You can put any-
thing you like in there; it’s basically a mini-script invocation tool.

3.1.2 Comparing other platforms

For comparison, the equivalent PHP Hello World application is shown here:

<?php echo '<p>Hello World</p>'; ?>

It fits on one line and is easy to understand, so what benefits does the more complex
Node example have? The difference is in terms of programming paradigm: with PHP,
your application is a page; in Node, it’s a server. The Node example has complete con-
trol over the request and response, so you can do all kinds of things without configur-
ing a server. If you want to use HTTP compression or URL redirection, you can
implement these features as part of your application logic. You don’t need to separate
HTTP and application logic; they become part of your application.

 Instead of having a separate HTTP server configuration, you can keep it in the
same place, and that means the same directory. This makes Node applications easy to
deploy and manage.

 Another feature that makes Node applications easy to deploy is npm. Because
dependencies are installed per project, you don’t get clashes between projects on the
same system.

3.1.3 What’s next?

Now that you have the hang of creating projects with npm init and installing depen-
dencies with npm install --save, you can create new projects quickly. This is
great, because it means you can try out ideas without messing up other projects. If

there’s a hot new web framework you want to try, then create a new directory, run npm
init, and install the module from npm.

Licensed to Samir Mashlum <smashlum@gmail.com>

54 CHAPTER 3 What is a Node web application?

 With all of this in place, you’re ready to start writing code. At this stage, you can
add JavaScript files to your project and load modules that you’ve installed with npm
--save by using require. Let’s focus on what most web developers would do next:
add some RESTful routes. This will help you define your application’s API and deter-
mine what database models are needed.

3.2 Building a RESTful web service
Your application will be a RESTful web service that allows articles to be created and
saved in a similar way to Instapaper or Pocket. It’ll use a module that was inspired by
the original Readability service (www.readability.com) to turn messy web pages into
elegant articles that you can read later.

 When designing a RESTful service, you need to think about which operations you
need and map them to routes in Express. In this case, you need to be able to save arti-
cles, fetch them so they can be read, fetch a list of all of them, and delete articles you
no longer want. That maps to these routes:

 POST /articles—Create a new article
 GET /articles/:id—Get a single article
 GET /articles—Get all articles
 DELETE /articles/:id—Delete an article

Before getting into issues such as databases and web interfaces, let’s focus on creating
RESTful resources with Express. You can use cURL to make requests to a sample appli-
cation to get the hang of it, and then move on to more complicated operations such
as storing data to make it like a real web application.

 The following listing is a simple Express app that implements these routes by using
a JavaScript array to store the articles.

const express = require('express');
const app = express();
const articles = [{ title: 'Example' }];

app.set('port', process.env.PORT || 3000);

app.get('/articles', (req, res, next) => {
 res.send(articles);
});

app.post('/articles', (req, res, next) => {
 res.send('OK');
});

app.get('/articles/:id', (req, res, next) => {
 const id = req.params.id;
 console.log('Fetching:', id);

Listing 3.1 RESTful routes example

Gets all articlesb

Creates an articlec

Gets a single articled
 res.send(articles[id]);
});

Licensed to Samir Mashlum <smashlum@gmail.com>

https://www.npmjs.com/package/bootstrap

55Building a RESTful web service

app.delete('/articles/:id', (req, res, next) => {
 const id = req.params.id;
 console.log('Deleting:', id);
 delete articles[id];
 res.send({ message: 'Deleted' });
});

app.listen(app.get('port'), () => {
 console.log('App started on port', app.get('port'));
});

module.exports = app;

Save this listing as index.js and you should be able to run it with node index.js.
To use this example, follow these steps:

mkdir listing3_1
cd listing3_1
npm init -fy
run npm install --save express@4.12.4

Creating new Node projects is explored in more detail in chapter 2.

Listing 3.1 has a built-in array of sample data that’s used to respond with JSON for all
articles b by using the Express res.send method. Express will automatically convert
the array to a valid JSON response, so it’s perfect for making quick REST APIs.

 This example can also respond with a single article by using the same principle d.
You can even delete an article e by using the standard JavaScript delete keyword
and a numerical ID specified in the URL. You can get values from the URL by putting
them in the route string (/articles/:id) and then getting the value with
req.params.id.

 Listing 3.1 can’t create articles c, because for that it needs a request body parser;
you’ll look at this in the next section. First, let’s look at how you can use this example
with cURL (http://curl.haxx.se).

 After the example is running with node index.js, you can make requests to it
with a browser or cURL. To fetch one article, run the following snippet:

Running the examples and making changes
To run these examples, make sure you restart the server after editing the code each
time. You can do this by pressing Ctrl-C to end the Node process and then type node
index.js to start it again.

The examples are presented in snippets, so you should be able to combine them
sequentially to produce a working app. If you can’t get it running, try downloading the
book’s source code from https://github.com/alexyoung/nodejsinaction.

Deletes an articlee
curl http://localhost:3000/articles/0

Licensed to Samir Mashlum <smashlum@gmail.com>

http://curl.haxx.se
https://github.com/alexyoung/nodejsinaction

56 CHAPTER 3 What is a Node web application?

To fetch all articles, you need to make a request to /articles:

curl http://localhost:3000/articles

And you can even delete an article:

curl -X DELETE http://localhost:3000/articles/0

But why did we say you couldn’t create articles? The main reason is that implementing
a POST request requires body parsing. Express used to come with a built-in body parser,
but there are so many ways to implement it that the developers opted to make it a sep-
arate dependency.

 A body parser knows how to accept MIME-encoded (Multipurpose Internet Mail
Extensions) POST request bodies and turn them into data you can use in your code.
Usually, you get JSON data that’s easy to work with. Whenever you’ve submitted a form
on a website, a body parser has been involved somewhere in the server-side software.

 To add the officially supported body parser, run the following npm command:

npm install --save body-parser

Now load the body parser in your application, near the top of the file, as shown in the
following listing. If you’re following along, you can save this to the same folder as list-
ing 3.1 (listing3_1), but we’ve also saved it in its own folder in the book’s source code
(ch03-what-is-a-node-web-app/listing3_2).

const express = require('express');
const app = express();
const articles = [{ title: 'Example' }];
const bodyParser = require('body-parser');

app.set('port', process.env.PORT || 3000);

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));

app.post('/articles', (req, res, next) => {
 const article = { title: req.body.title };
 articles.push(article);
 res.send(article);
});

This adds two useful features: JSON body parsing b and form-encoded bodies c. It
also adds a basic implementation for creating articles: if you make a POST request with
a field called title, a new article will be added to the articles array! Here’s the cURL
command:

Listing 3.2 Adding a body parser

Supports request bodies
encoded as JSON

b

Supports form-
encoded bodiesc
curl --data "title=Example 2" http://localhost:3000/articles

Licensed to Samir Mashlum <smashlum@gmail.com>

57Adding a database

Now you’re not too far away from building a real web application. You need just two
more things: a way to save data permanently in a database, and a way to generate the
readable version of articles found on the web.

3.3 Adding a database
There’s no predefined way to add a database to a Node application, but the process
usually involves the following steps:

1 Decide on the database you want to use.
2 Look at the popular modules on npm that implement a driver or object-

relational mapping (ORM).
3 Add the module to your project with npm --save.
4 Create models that wrap database access with a JavaScript API.
5 Add the models to your Express routes.

Before adding a database, let’s continue focusing on Express by designing the route-
handling code from step 5. The HTTP route handlers in the Express part of the appli-
cation will make simple calls to the database models. Here’s an example:

app.get('/articles', (req, res, err) => {
 Article.all(err, articles) => {
 if (err) return next(err);
 res.send(articles);
 });
});

Here the HTTP route is for getting all articles, so the model method could be some-
thing like Article.all. This will vary depending on your database API; typical exam-
ples are Article.find({}, cb),1 and Article.fetchAll().then(cb).2 Note
that in these examples, cb is an abbreviation of callback.

 Given the amazing number of databases out there, how do you decide which one
to use? Read on for the reasons that we’re going with SQLite for this example.

Which database?
For our project, we’re going to use SQLite (www.sqlite.org), with the popular sqlite3
module (http://npmjs.com/package/sqlite3). SQLite is convenient because it’s an
in-process database: you don’t need to install a server that runs in the background
on your system. Any data that you add is written to a file that’s kept after your appli-
cation is stopped and started again, so it’s a good way to get started with databases.
1 Mongoose: http://mongoosejs.com
2 Bookshelf.js http://bookshelfjs.org

Licensed to Samir Mashlum <smashlum@gmail.com>

http://mongoosejs.com
http://bookshelfjs.org
http://npmjs.com/package/sqlite3
www.sqlite.org

58 CHAPTER 3 What is a Node web application?

3.3.1 Making your own model API

Articles should be created, retrieved, and deleted. Therefore, you need the following
methods for an Article model class:

 Article.all(cb)—Return all articles.
 Article.find(id, cb)—Given an ID, find the corresponding article.
 Article.create({ title, content }, cb)—Create an article with a title

and content.
 Article.delete(id, cb)—Delete an article by ID.

You can implement all of this with the sqlite3 module. This module allows you to fetch
multiple rows of results with db.all, and single rows with db.get. First you need a
database connection.

 The following listing shows how to do each of these things with SQLite in Node.
This code should be saved as db.js in the same folder as the code from listing 3.1.

const sqlite3 = require('sqlite3').verbose();
const dbName = 'later.sqlite';
const db = new sqlite3.Database(dbName);

db.serialize(() => {
const sql = `
 CREATE TABLE IF NOT EXISTS articles
 (id integer primary key, title, content TEXT)
 `;
 db.run(sql);
});

class Article {
 static all(cb) {
 db.all('SELECT * FROM articles', cb);
 }

 static find(id, cb) {
 db.get('SELECT * FROM articles WHERE id = ?', id, cb);
 }

 static create(data, cb) {
 const sql = 'INSERT INTO articles(title, content) VALUES (?, ?)';
 db.run(sql, data.title, data.content, cb);
 }

 static delete(id, cb) {
 if (!id) return cb(new Error('Please provide an id'));
 db.run('DELETE FROM articles WHERE id = ?', id, cb);
 }
}

Listing 3.3 An Article model

Connects to a
database fileb

Creates an “articles”
table if there isn’t onec

Fetches all articlesd

Selects a
specific articlee

Specifies parameters
with question marksf
module.exports = db;
module.exports.Article = Article;

Licensed to Samir Mashlum <smashlum@gmail.com>

59Adding a database

In this example, an object is created called Article that can create, fetch, and delete
data by using standard SQL and the sqlite3 module. First, a database file is opened by
using sqlite3.Database b, and then an articles table is created c. The IF NOT
EXISTS SQL syntax is useful here because it means you can rerun the code without
accidentally deleting and re-creating the articles table.

 When the database and tables are ready, the application is ready to make queries.
To fetch all articles, you use the sqlite3 all method d. To fetch a specific article, use
the question mark query syntax with a value e; the sqlite3 module will insert the ID
into the query. Finally, you can insert and delete data by using the run method f.

 For this example to work, you need to have installed the sqlite3 module with npm
install --save sqlite3. It’s version 3.1.8 at the time of writing.

 Now that the basic database functionality is ready, you need to add it to the HTTP
routes from listing 3.2.

 The next listing shows how to add each method except for POST. (You’ll deal with
that separately, because it needs to use the readability module, which you haven’t yet
set up.)

const express = require('express');
const bodyParser = require('body-parser');
const app = express();
const Article = require('./db').Article;

app.set('port', process.env.PORT || 3000);

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));

app.get('/articles', (req, res, next) => {
 Article.all((err, articles) => {
 if (err) return next(err);
 res.send(articles);
 });
});

app.get('/articles/:id', (req, res, next) => {
 const id = req.params.id;
 Article.find(id, (err, article) => {
 if (err) return next(err);
 res.send(article);
 });
});

app.delete('/articles/:id', (req, res, next) => {
 const id = req.params.id;
 Article.delete(id, (err) => {
 if (err) return next(err);

Listing 3.4 Adding the Article model to the HTTP routes

Loads the database moduleb

Fetches all articlesc

Finds a specific articled

Deletes an article

 res.send({ message: 'Deleted' });
 });

e

Licensed to Samir Mashlum <smashlum@gmail.com>

60 CHAPTER 3 What is a Node web application?

});

app.listen(app.get('port'), () => {
 console.log('App started on port', app.get('port'));
});

module.exports = app;

Listing 3.4 is written assuming that you’ve saved listing 3.3 as db.js in the same direc-
tory. Node will load that module b and then use it to fetch each article c, find a spe-
cific article d, and delete an article e.

 The final thing to do is add support for creating articles. To do this, you need to be
able to download articles and process them with the magic readability algorithm.
What you need is a module from npm.

3.3.2 Making articles readable and saving them for later

Now that you’ve built a RESTful API and data can be persisted to a database, you
should add code that converts web pages into simplified “reader view” versions. You
won’t implement this yourself; instead, you can use a module from npm.

 If you search npm for readability, you’ll find quite a few modules. Let’s try using
node-readability (which is at version 1.0.1 at the time of this writing). Install it with
npm install node-readability --save. The module provides an asynchronous
function that downloads a URL and turns the HTML into a simplified representation.
The following snippet shows how node-readability is used; if you want to try it, add the
snippet to index.js in addition to listing 3.5:

const read = require('node-readability');
const url = 'http://www.manning.com/cantelon2/';
read(url, (err, result)=> {
 // result has .title and .content
});

The node-readability module can be used with your database class to save articles with
the Article.create method:

read(url, (err, result) => {
 Article.create(
 { title: result.title, content: result.content },
 (err, article) => {
 // Article saved to the database
 }
);
});

To use this in the application, open the index.js file and add a new app.post route
handler that downloads and saves articles. Combining this with everything you
learned about HTTP POST in Express and the body parser gives the example in the fol-

lowing listing.

Licensed to Samir Mashlum <smashlum@gmail.com>

61Adding a user interface

const read = require('node-readability');

// ... The rest of the index.js from listing 3.4

app.post('/articles', (req, res, next) => {
 const url = req.body.url;

read(url, (err, result) => {
 if (err || !result) res.status(500).send('Error downloading article');
 Article.create(
 { title: result.title, content: result.content },
 (err, article) => {
 if (err) return next(err);
 res.send('OK');
 }
);
 });
});

Here you first get the URL from the POST body b and then use the node-readability
module to get the URL c. You save the article by using your Article model class. If
an error occurs, you pass handling along the Express middleware stack d; otherwise,
a JSON representation of the article is sent back to the client.

 You can make a POST request that will work with this example by using the --data
option:

curl --data "url=http://manning.com/cantelon2/" http://localhost:3000/articles

Over the course of the preceding section, you added a database module, created a
JavaScript API that wraps around it, and tied it in to the RESTful HTTP API. That’s a lot
of work, and it will form the bulk of your efforts as a server-side developer. You’ll learn
more about databases later in this book as you look at MongoDB and Redis.

 Now that you can save articles and programmatically fetch them, you’ll add a web
interface so you can read articles as well.

3.4 Adding a user interface
Adding an interface to an Express project involves several things. The first is the use of
a template engine; we’ll show you how to install one and render templates shortly.
Your application should also serve static files, such as CSS. Before rendering templates
and writing any CSS, you need to know how to make the router handlers from the pre-
vious examples respond with both JSON and HTML when necessary.

3.4.1 Supporting multiple formats

So far you’ve used res.send() to send JavaScript objects back to the client. You used

Listing 3.5 Generating readable articles and saving them

Gets the URL from
the POST body

b

Uses the
readability mode
to fetch the URL c

After saving the article,
sends back a 200d
cURL to make requests, and in this case JSON is convenient because it’s easy to read in

Licensed to Samir Mashlum <smashlum@gmail.com>

62 CHAPTER 3 What is a Node web application?

the console. But to really use the application, it needs to support HTML as well. How
can you support both?

 The basic technique is to use the res.format method provided by Express. It
allows your application to respond with the right format based on the request. To use
it, provide a list of formats with functions that respond the desired way:

res.format({
 html: () => {
 res.render('articles.ejs', { articles: articles });
 },
 json: () => {
 res.send(articles);
 }
});

In this snippet, res.render will render the articles.ejs template in the views folder.
But for this to work, you need to install a template engine and create some templates.

3.4.2 Rendering templates

Many template engines are available, and a simple one that’s easy to learn is EJS
(Embedded JavaScript). Install the EJS module from npm (EJS is at version 2.3.1 at the
time of writing):

npm install ejs --save

Now res.render can render HTML files formatted with EJS. If you replace res.send
(articles) in the app.get('/articles') route handler from listing 3.4, visiting
http://localhost:3000/articles in a browser should attempt to render articles.ejs.

 Next you need to create the articles.ejs template in a views folder. The next listing
shows a full template that you can use.

<% include head %>

 <% articles.forEach((article) => { %>

 <a href="/articles/<%= article.id %>">
 <%= article.title %>

 <% }) %>

<% include foot %>

The article list template uses a header b and footer template that are included as snip-
pets in the following code examples. This is to avoid duplicating the header and footer

Listing 3.6 Article list template

Includes another templateb

Loops over each article
and renders itc

Includes the article’s
title as the link textd
in every template. The article list is iterated over c by using a standard JavaScript

Licensed to Samir Mashlum <smashlum@gmail.com>

63Adding a user interface

forEach loop, and then the article IDs and titles are injected into the template by using
the EJS <%= value %> syntax d.

 Here’s an example header template, saved as views/head.ejs:

<html>
 <head>
 <title>Later</title>
 </head>
 <body>
 <div class="container">

And this is a corresponding footer (saved as views/foot.ejs):

 </div>
 </body>
</html>

The res.format method can be used for displaying specific articles as well. This is
where things start to get interesting, because for this application to make sense, arti-
cles should look clean and easy to read.

3.4.3 Using npm for client-side dependencies

With the templates in place, the next step is to add some style. Rather than creating a
style sheet, it’s easier to reuse existing styles, and you can even do this with npm! The
popular Bootstrap (http://getbootstrap.com/) client-side framework is available on
npm (www.npmjs.com/package/bootstrap), so add it to this project:

npm install bootstrap --save

If you look at node_modules/bootstrap/, you’ll see the source for the Bootstrap proj-
ect. Then, in the dist/css folder, you’ll find the CSS files that come with Bootstrap. To
use this in your project, you need to be able to serve static files.

SERVING STATIC FILES

When you need to send client-side JavaScript, images, and CSS back to the browser,
Express has some built-in middleware called express.static. To use it, you point it
at a directory that contains static files, and those files will then be available to the
browser.

 Near the top of the main Express app file (index.js), there are some lines that load
the middleware required by the project:

app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: true }));

To load Bootstrap’s CSS, use express.static to register the file at the right URL:

app.use(
 '/css/bootstrap.css',

 express.static('node_modules/bootstrap/dist/css/bootstrap.css')
);

Licensed to Samir Mashlum <smashlum@gmail.com>

http://getbootstrap.com/
www.npmjs.com/package/bootstrap

64 CHAPTER 3 What is a Node web application?

Now you can add /css/bootstrap.css to your templates to get some cool Bootstrap
styles. Here’s what views/head.ejs should look like:

<html>
 <head>
 <title>later;</title>
 <link rel="stylesheet" href="/css/bootstrap.css">
 </head>
 <body>
 <div class="container">

This is only Bootstrap’s CSS; Bootstrap also comes with other files, including icons,
fonts, and jQuery plugins. You could add more of these files to your project, or use a
tool to bundle them all up so loading them is easier.

DOING MORE WITH NPM AND CLIENT-SIDE DEVELOPMENT

The previous example is a simple use of a library intended for browsers through npm.
Web developers typically download Bootstrap’s files and then add them to their proj-
ect manually, particularly web designers who work on simpler static sites.

 But modern front-end developers use npm for both downloading libraries
and loading them in client-side JavaScript. With tools such as Browserify (http://
browserify.org/) and webpack (http://webpack.github.io/), you get all the power of
npm installation and require for loading dependencies. Imagine being able to type
const React = require('react') in not just Node code, but code for front-end
development as well! This is beyond the scope of this chapter, but it gives you a hint of
the power you can unlock by combining techniques from Node programming with
front-end development.

3.5 Summary
 You can quickly build a Node web application from scratch with npm init and

Express.
 The command to install a dependency is npm install.
 Express allows you to make web applications with RESTful APIs.
 Selecting the right database and database module requires some up-front inves-

tigation and depends on your requirements.
 SQLite is handy for small projects.
 EJS is an easy way to render templates in Express.
 Express supports lots of template engines, including Pug and Mustache.
Licensed to Samir Mashlum <smashlum@gmail.com>

http://browserify.org/
http://browserify.org/
http://webpack.github.io/

Part 2

Web development with Node

Now you’re ready to learn about server-side development in more depth.
Node has found an important niche outside server-side code: front-end build
systems. In this part, you’ll learn how to start projects with webpack and Gulp.
We’ll also introduce the most popular web frameworks and compare them from
multiple developers’ perspectives to help you decide on the perfect framework
for your projects.

 If you want to learn in detail about Connect and Express, chapter 6 is entirely
dedicated to building web applications with these modules. There’s also a chap-
ter dedicated to templating and using databases with Node.

 To complete the journey of full-stack web development with Node, we’ve
included chapters on testing and deployment, so you can prepare your first
Node application.

Licensed to Samir Mashlum <smashlum@gmail.com>

66 CHAPTER

Licensed to Samir Mashlum <smashlum@gmail.com>

Front-end build systems
In modern web development, Node is increasingly used to run tools and services
depended on by front-end engineers. As a Node programmer, you may be respon-
sible for setting up and maintaining these tools. As a full-stack developer, you’ll
want to use these tools to create faster and more reliable web applications. In this
chapter, you’ll learn how to use npm scripts, Gulp, and webpack to build maintain-
able projects.

 The benefits of using front-end build systems can be huge. They can help you to
write more readable and future-proof code. There’s no need to worry about ES2015
browser support when you can transpile it with Babel. Also, because you can gener-
ate source maps, browser-based debugging is still possible.

 The next section provides a brief introduction to front-end development with
Node. After that, you’ll see some examples of modern front-end technologies such
as React that you can use with your own projects.

This chapter covers
 Simplifying complex commands with npm scripts

 Using Gulp to manage repetitive tasks

 Bundling client-side web apps with webpack
67

Licensed to Samir Mashlum <smashlum@gmail.com>

68 CHAPTER 4 Front-end build systems

4.1 Understanding front-end development with Node
Recently, front-end and server-side developers have converged on using npm for dis-
tributing JavaScript. That means npm is used for front-end modules, such as React,
and server-side code, such as Express. But some modules don’t neatly fall into either
side: lodash is an example of a general-purpose library that can be used in Node and
browsers. By packing lodash carefully, the same module can be consumed by Node
and browsers, and the dependency within a project can be managed with npm.

 You may have seen other module systems dedicated to client-side development,
such as Bower (http://bower.io/). You can still use these tools, but as a Node devel-
oper, you should consider using npm.

 Package distribution isn’t the only thing Node gets used for, however. Front-end
developers are also increasingly dependent on tools for generating portable, back-
ward-compatible JavaScript. Transpilers such as Babel (https://babeljs.io/) are used to
convert modern ES2015 into more widely supported ES5 code. Other tools include
minifiers (for example, UglifyJS; https://github.com/mishoo/UglifyJS) and linters
(for example, ESLint, http://eslint.org/) for verifying the correctness of your code
before shipping it.

 Test runners are also often driven by Node. You can run the tests for UI code in a
Node process, or use a Node script to drive tests that run in a browser.

 It’s also typical to use these tools together. When you start juggling a transpiler,
minifier, linter, and test runner, you’ll need a way to record how the build process
works. Some projects use npm scripts; others use Gulp or webpack. You’ll look at all of
these approaches in this chapter and see some related best practices.

4.2 Using npm to run scripts
Node comes with npm, and npm has built-in features for running scripts. Therefore,
you can rely on your collaborators or users being able to invoke commands such as
npm start and npm test. To add your own command for npm start, you add it to
the scripts property of your project’s package.json file:

{
 ...
 "scripts": {
 "start": "node server.js"
 },
 ...
}

Even if you don’t define start, node server.js is the default, so technically you
can leave this blank if that’s all you need—just remember to create a file called
server.js. Defining the test property is useful because you can include your test
framework as a dependency and run it by typing npm test. Let’s say you’re using
Mocha (www.npmjs.com/package/mocha) for tests, and you’ve installed it with npm

install --save-dev. To avoid having to install Mocha globally, you can add the fol-
lowing statement to your package.json file:

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/mocha
http://bower.io/
https://github.com/mishoo/UglifyJS
https://babeljs.io/
http://eslint.org/

69Using npm to run scripts

{
 ...
 "scripts": {
 "test": "./node_modules/.bin/mocha test/*.js"
 },
 ...
}

Notice that in the previous example, arguments were passed to Mocha. You can also
pass arguments when running npm scripts by using two hyphens:

npm test -- test/*.js

Table 4.1 shows a breakdown of some of the available npm commands.

More commands are available, including some for cleaning up packages before pub-
lishing them, and pre/post version commands for migrating between package versions.
But for most web development tasks, start and test are the commands you want.

 Plenty of tasks that you may want to define won’t fit into the supported command
names. For example, let’s say you’re working on a simple project that’s written in ES2015
but you want to transpile it to ES5. You can do this with npm run. In the next section,
you’ll run through a tutorial that sets up a new project that can build ES2015 files.

4.2.1 Creating custom npm scripts

The npm run command, aliased from npm run-script, is used to define arbitrary
scripts that are invoked with npm run script-name. Let’s see how to make one for
building a client-side script with Babel.

 Start by setting up a new project and installing the necessary dependencies:

mkdir es2015-example
cd es2015-example
npm init -y
npm install --save-dev babel-cli babel-preset-es2015
echo '{ "presets": ["es2015"] }' > .babelrc

Table 4.1 npm commands

Command package.json property Example uses

start scripts.start Start a web application server or an Electron app.

stop scripts.stop Stop a web server.

restart Run stop and then restart.

install,
postinstall

scripts.install,
scripts.postinstall

Run native build commands after a package is
installed. Note that postinstall can be run only
with npm run postinstall.
Now you should have a new Node project with the basic Babel ES2015 tools and
plugins. Next, open the package.json file and add a babel property under scripts.

Licensed to Samir Mashlum <smashlum@gmail.com>

70 CHAPTER 4 Front-end build systems

It should run the script that has been installed into the project’s node_modules/
.bin folder:

"babel": "./node_modules/.bin/babel browser.js -d build/"

Here’s a sample file with ES2015 syntax that you can use; save it to browser.js:

class Example {
 render() {
 return '<h1>Example</h1>';
 }
}

const example = new Example();
console.log(example.render());

You’ll be able to test this by running npm run babel. If everything is configured cor-
rectly, you should now have a build folder with browser.js. Open browser.js to confirm
that it’s indeed an ES5 file. It’s too long to print, so look for something like var
_createClass near the top of the file.

 If this is all your project ever does when it builds, you could name it build
instead of babel in the package.json file. But you can go a little further by adding
UglifyJS as well:

npm i --save-dev uglify-es

UglifyJS can be invoked by using node_modules/.bin/uglifyjs, so add it to the pack-
age.json under scripts with the name uglify:

./node_modules/.bin/uglifyjs build/browser.js -o build/browser.min.js

Now you should be able to invoke npm run uglify. You can tie all of this together by
combining both of these scripts. Add another script property called build that
invokes both tasks:

"build": "npm run babel && npm run uglify"

Both scripts are run by typing npm run build. People on your team can now com-
bine multiple front-end packaging tools by invoking this simple command. The rea-
son this works is that Babel and UglifyJS can be run as command-line scripts, and both
accept command-line arguments, so it’s easy to add them as one-liners to a pack-
age.json file. In the case of Babel, you can manage complex behavior by defining a
.babelrc file, which you did earlier in this chapter.

4.2.2 Configuring front-end build tools

In general, you can configure front-end build tools in three ways when used with npm
scripts:
 Specifying command-line arguments. For example, ./node_modules/.bin/
uglify --source-map.

Licensed to Samir Mashlum <smashlum@gmail.com>

71Providing automation with Gulp

 Creating a project-specific configuration file with options. This is often done for
Babel and ESLint.

 Adding configuration options to package.json. Babel supports this as well.

What if your build requirements have more steps, and include things like copying,
concatenating, or moving files? You could create a shell script and invoke it with an
npm script, but it may help your JavaScript-savvy collaborators if you use JavaScript.
Many build systems provide JavaScript APIs for automating builds. In the next section,
you’ll learn all about one such solution: Gulp.

4.3 Providing automation with Gulp
Gulp (http://gulpjs.com/) is a build system based on streams. You can route streams
together to create build processes that do more than just transpile or minify code.
Imagine you have a project with an administration area that’s built with Angular, but
you have a React-based public area; both subprojects share certain build require-
ments. With Gulp, you can reuse parts of the build process for each stage. Figure 4.1
shows an example of these two build processes that share functionality.

Figure 4.1 Two build processes that share functionality

Gulp helps you achieve a high level of reuse through two techniques: using plugins

Browserify
• admin/index.js
 => build/admin.js

• public/index.js
 => build/public.js

Concat

• build/admin.js
• lib/shared.js
 => build/admin.js

• build/public.js
• lib/shared.js
 => build/public.js

Minify
• build/admin.js
 => assets/admin.min.js

• build/admin.js
 => assets/public.min.js

Process
images

React

Concat

Minify

Process
images

• Retina
• CSS sprite sheets
• Branding shared between admin and public

• Retina
• CSS sprite sheets
• Branding shared between admin and public

Angular-based administration area React-based public area
and defining your own build tasks. As the figure suggests, the build process is a
stream, so you can pipe tasks and plugins through each other. For example, you can

Licensed to Samir Mashlum <smashlum@gmail.com>

http://gulpjs.com/

72 CHAPTER 4 Front-end build systems

handle the React part of the previous example with Gulp Babel (www.npmjs.com/
package/gulp-babel/) and the built-in gulp.src file globbing method:

gulp.src('public/index.jsx')
 .pipe(babel({
 presets: ['es2015', 'react']
 }))
 .pipe(minify())
 .pipe(gulp.dest('build/public.js'));

You can even add the concat stage to this chain quite easily. Before looking more
closely at this syntax, let’s see how to set up a small Gulp project.

4.3.1 Adding Gulp to a project

To add Gulp to a project, you need to install both the gulp-cli and gulp packages with
npm. Most people install gulp-cli globally, so Gulp recipes can be run simply by typing
gulp. Note that you should run npm rm --global gulp if you had previously
installed the gulp package globally. In the next snippet, you install gulp-cli globally
and create a new Node project that has a Gulp development dependency:

npm i --global gulp-cli
mkdir gulp-example
cd gulp-example
npm init -y
npm i –save-dev gulp

Next create a file called gulpfile.js:

touch gulpfile.js

Open the gulpfile. Now you’ll use Gulp to build a small React project. It’ll use gulp-
babel (www.npmjs.com/package/gulp-babel), gulp-sourcemaps, and gulp-concat:

npm i --save-dev gulp-sourcemaps gulp-babel babel-preset-es2015
npm i --save-dev gulp-concat react react-dom babel-preset-react

Remember to use npm with --save-dev when you want to add Gulp plugins to a
project. If you’re experimenting with new plugins and decide to remove them, you
can use npm uninstall --save-dev to remove them from ./node_modules and
update the project’s package.json file.

4.3.2 Creating and running Gulp tasks

Creating Gulp tasks involves writing Node code with Gulp’s API in a file called gulp-
file.js. Gulp’s API has methods for things like finding files and piping them through
plugins that transform them in some way.

 To try this for yourself: Open gulpfile.js and set up a build task that uses gulp.src to
find JSX files, Babel to process ES2015 and React, and then concat to join each file

together, as shown in the following listing.

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/gulp-babel/
www.npmjs.com/package/gulp-babel/
www.npmjs.com/package/gulp-babel

Conc
th

files
73Providing automation with Gulp

const gulp = require('gulp');
const sourcemaps = require('gulp-sourcemaps');
const babel = require('gulp-babel');
const concat = require('gulp-concat');

gulp.task('default', () => {
 return gulp.src('app/*.jsx')
 .pipe(sourcemaps.init())
 .pipe(babel({
 presets: ['es2015', 'react']
 }))
 .pipe(concat('all.js'))
 .pipe(sourcemaps.write('.'))
 .pipe(gulp.dest('dist'));
});

Listing 4.1 uses several Gulp plugins to capture, process, and write files. First you find
all of the input files by using file globbing, and then you use the gulp-sourcemaps
plugin to collect source-map metrics for client-side debugging. Notice that source
maps require two stages: one to state that you want to use source maps, and another to
write the source-map files. Meanwhile, gulp-babel is configured to process files with
ES2015 and React.

 This Gulp task can be run by typing gulp in a terminal.
 In this example, all of the files are transformed by using a single plugin. It just so

happens that Babel is transpiling React JSX code and converting ES2015 to ES5. Once
that’s done, the files are concatenated using the gulp-concat plugin. Now that all of
the transpiling is done, it’s safe to write the source maps, and the final build can be
placed in the dist folder.

 You can try this gulpfile out by creating a JSX file named app/index.jsx. Here’s a
simple JSX file that you can use to test Gulp:

import React from 'react';
import ReactDOM from 'react-dom';

ReactDOM.render(
 <h1>Hello, world!</h1>,
 document.getElementById('example')
);

Gulp makes it easy to express build stages in JavaScript, and by using gulp.task(),
you can add your own tasks to this file. Tasks usually follow the same pattern:

1 Source—Gather input files
2 Transpile—Pipe them through a plugin that transforms them
3 Concat—Pipe the files together to create a monolithic build

Listing 4.1 A gulpfile for ES2015 and React with Babel

Gulp plugins are loaded like
standard Node modules

The built-in gulp.src file globbing utility
is used to find all React jsx files

Starts watching source
files to build source
maps for debugging

Configures gulp-babel to
use ES2015 and React (JSX)

ats all of
e source

 together
into all.js

Writes the source
map files separatelyRedirects all files to

the dist/ folder
4 Output—Set a file destination or move the output files

Licensed to Samir Mashlum <smashlum@gmail.com>

74 CHAPTER 4 Front-end build systems

In the previous example, sourcemaps is a special case because it requires two pipes:
one for configuration and a final one to output the files. That makes sense because
source maps depend on mapping the original line numbers to the transpiled build’s
line numbers.

4.3.3 Watching for changes

The last thing front-end developers want is a build/refresh cycle. The simplest way to
streamline builds is to use a Gulp plugin to watch the filesystem for changes. But alter-
natives exist. Some libraries work well with hot reloading, and more-generic DOM and
CSS-based projects can work well with the LiveReload (http://livereload.com/) project.

 As an example, you can add gulp-watch (www.npmjs.com/package/gulp-watch) to
the previous project in listing 4.1. Add the package to the project:

npm i --save-dev gulp-watch

Now remember to load the package in gulpfile.js:

const watch = require('gulp-watch');

And add a watch task that calls the default task from the previous example:

gulp.task('watch', () => {
 watch('app/**.jsx', () => gulp.start('default'));
});

This defines a task called watch, and then uses watch() to watch React JSX files for
changes. Whenever a file changes, the default build task will run. With minor modifi-
cations, this recipe could be used to build Syntactically Awesome Style Sheets (SASS)
files, optimize images, or pretty much anything else you might need for front-end
projects.

4.3.4 Using separate files for larger projects

As projects grow, they tend to need more Gulp tasks. Eventually, you’ll end up with a
long file that’s hard to understand. You can fix this, however: break up your code into
separate modules.

 As you’ve seen, Gulp uses Node’s module system for loading plugins. There’s no
special plugin-loading system; it just uses standard modules. You can also use Node’s
module system to split up long gulpfiles, to make your files more maintainable. To use
separate files, you need to follow these steps:

1 Create a folder called gulp, and a subfolder called tasks.
2 Define your tasks by using the usual gulp.task() syntax in separate files. One

file per task is a good rule of thumb.
3 Create a file called gulp/index.js to require each Gulp task file.

4 Require the gulp/index.js file in gulpfile.js.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://livereload.com/
www.npmjs.com/package/gulp-watch

75Building web apps with webpack

The file tree should look like the following snippet:

gulpfile.js
gulp/
gulp/index.js
gulp/tasks/development-build.js
gulp/tasks/production-build.js

This technique can help you organize projects with complex build tasks, but it can
also be paired with the gulp-help (www.npmjs.com/package/gulp-help) module. This
module allows you to document
Gulp tasks; running gulp help
shows information about each
task. This helps when you’re
working in a team, or if you
switch between lots of projects
that use Gulp. Figure 4.2 shows
what the output looks like.

 Gulp is a general-purpose
project-automation tool. It’s
good when adding cross-
platform housekeeping scripts
to projects—for example, run-
ning complex client-side tests or bringing up fixtures for a database. Although it can
be used for building client-side assets, there are also tools specifically designed to do
that, which means they typically require less code and configuration than Gulp. One
such tool is webpack, which focuses on bundling JavaScript and CSS modules. The
next section demonstrates how to use webpack for a React project.

4.4 Building web apps with webpack
webpack is specifically designed to build web applications. Imagine that you’re work-
ing with a designer who has already created a static site for a single-page web app, and
you want to adapt it to build more-efficient CSS and ES2015 JavaScript. With Gulp, you
write JavaScript code to drive the build system, so this would involve writing a gulpfile
and several build tasks. With webpack, you write a configuration file and then bring in
new functionality by using plugins and loaders. In some cases, no extra configuration
is required: you type webpack on the command-line with an argument for the source-
file path, and it’ll build your project. Skip to section 4.4.4 to see what this looks like.

 One of the advantages of webpack is that it’s easier to quickly set up a build system
that supports incremental builds. If you set it up to automatically build when files
change, it won’t need to rebuild the entire project when a single file changes. As a
result, builds can be faster and easier to understand.

 This section shows you how to use webpack for a small React project. First, let’s

Figure 4.2 Sample gulp-help output
define the terminology webpack uses.

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/gulp-help

76 CHAPTER 4 Front-end build systems

4.4.1 Using bundles and plugins

Before setting up a webpack project, some terminology should be clarified. webpack
plugins are used to change the behavior of the build process. This can include things
like automatically uploading assets to Amazon S3 (https://github.com/MikaAK/s3-
plugin-webpack) or removing duplicated files from the output.

 In contrast to plugins, loaders are transformations that are applied to resource
files. If you need to convert SASS to CSS, or ES2015 to ES5, you need a loader. Loaders
are functions that transform input source text into output. They can be asynchronous
or synchronous. Plugins are instances of classes that can hook into webpack’s more
low-level APIs.

 If you need to convert React code, CoffeeScript, SASS, or any other transpiled lan-
guages, you’re looking for a loader. If you need to instrument your JavaScript, or
manipulate sets of files in some way, you’ll need a plugin.

 In the next section you’ll see how to use the Babel loader to convert a React ES2015
project to a browser-friendly bundle.

4.4.2 Configuring and running webpack

You’re going to re-create the React example from listing 4.1 by using webpack. To get
started, install React in a new project:

mkdir webpack-example
npm init -y
npm install --save react react-dom
npm install --save-dev webpack babel-loader babel-core
npm install --save-dev babel-preset-es2015 babel-preset-react

The last line installs Babel’s ES2015 plugin and the React transformer for Babel. Now
you need to make a file called webpack.config.js that instructs webpack on where to
find the input file, where to write the output, and what loaders to use. You’re going to
use babel-loader with some extra settings for React, as shown in the next listing.

const path = require('path');
const webpack = require('webpack');

module.exports = {
 entry: './app/index.jsx',
 output: { path: __dirname, filename: 'dist/bundle.js' },
 module: {
 loaders: [
 {
 test: /.jsx?$/,
 loader: 'babel-loader',
 exclude: /node_modules/,
 query: {
 presets: ['es2015', 'react']

Listing 4.2 A webpack.config.js file

Input file
Output file

Matches all
JSX files

Uses the Babel ES2015
and React plugins
 }
 }

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/MikaAK/s3-plugin-webpack
https://github.com/MikaAK/s3-plugin-webpack

77Building web apps with webpack

]
 },
};

This configuration file encapsulates everything you need to successfully build a React
app with ES2015. The settings are easy to follow: define an entry, which is the main
file that loads the application. Then specify the directory where the output should be
written; this directory will be created if it doesn’t yet exist. Next, define a loader and
associate it with a file glob search by using the test property. Finally, make sure to set
any options for the loader. In this example, these options load the ES2015 and React
Babel plugins.

 You need to include a sample React JSX file in app/index.jsx; use the snippet from
section 4.3.2. Now running ./node_modules/.bin/webpack will compile an ES5 ver-
sion of the file with the React dependencies.

4.4.3 Using webpack development server

If you want to avoid having to rebuild the project whenever a React file changes, you
can use the webpack development server (http://webpack.github.io/docs/webpack-
dev-server.html). In the book’s source code, this can be found under webpack-
hotload-example (ch04-front-end/webpack-hotload-example). This small Express
server will run webpack with your webpack configuration file when files change, and
then serve the changed assets to the browser. You should run it on a different port to
your main web server, and this means your script tags will have to include different
URLs during development. The server builds assets and stores them in memory rather
than in your webpack output folder. You can also use webpack-dev-server for hot mod-
ule loading, in a similar way to LiveReload servers.

 To add webpack-dev-server to a project, follow these steps:

1 Install webpack-dev-server with npm i --save-dev webpack-dev-server@
1.14.1.

2 Add a publicPath option to the output property in webpack.config.js.
3 Add an index.html file to your build directory to act as a harness to load your

JavaScript and CSS bundles. Ensure that the port is the port specified in the
next step.

4 Run the server with the options you want. For example, webpack-dev-server
--hot --inline --content-base dist/ --port 3001.

5 Visit http://localhost:3001/ and load the app.

Open webpack.config.js from listing 4.2 and change the output property to include a
publicPath:

output: {
 path: path.resolve(__dirname, 'dist'),
 filename: 'bundle.js',

 publicPath: '/assets/'
},

Licensed to Samir Mashlum <smashlum@gmail.com>

http://webpack.github.io/docs/webpack-dev-server.html
http://webpack.github.io/docs/webpack-dev-server.html

78 CHAPTER 4 Front-end build systems

Create a new file called dist/index.html, as shown in the next listing.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Warning: Dev server only</title>
</head>
<body>
 <div id="example"></div>
 <script src="/assets/bundle.js"></script>
</body>
</html>

Next open package.json and add the command that runs the webpack server under
the scripts property:

"scripts": {
 "server:dev": "webpack-dev-server --hot –inline
 --content-base dist/ --port 3001"
 },

The --hot option makes the dev server use hot module reloading. If you edit the
example React file in app/index.jsx, you should see the browser refresh. The refresh
mechanism is specified with the --inline option. Inline refresh means the dev
server will inject code to manage refreshing the bundle. There’s also an iframe ver-
sion that wraps the entire page in an iframe.

 Now run the dev server:

npm run server:dev

Running the webpack development server will trigger the build and start a server lis-
tening on port 3001. You can test everything by going to http://localhost:3001 in a
browser.

Listing 4.3 An example HTML template for a React web app

Hot reloading
Because of React and other frameworks including AngularJS, there are framework-
specific hot module reloading projects. Some take into account data-flow frameworks
such as Redux and Relay, which means code can be refreshed while the current state
is maintained. This is the ideal way to perform code reloading, because you don’t
have to keep running through steps to re-create the UI state that you’re working on.

The example we’ve given you here, however, is less React-specific and is a good way
to get you started with webpack dev servers. Be sure to experiment to find the best
option for your project.

The public path of the
webpack-built bundle
Licensed to Samir Mashlum <smashlum@gmail.com>

79Building web apps with webpack

4.4.4 Loading CommonJS modules and assets

We’ve been using React and Babel in this chapter, but if you’re using webpack with a
more vanilla, CommonJS project, then webpack can provide everything you need with-
out a CommonJS browser shim. It’s even capable of loading CSS files.

WEBPACK AND COMMONJS
To use CommonJS module syntax with webpack, you don’t need to set anything up.
Let’s say you have a file that uses require:

const hello = require('./hello');

hello();

And another that defines the hello function:

module.exports = function() {
 return 'hello';
};

Then you need only a small webpack config file to define the entry point (the first
snippet), and the build destination path:

const path = require('path');
const webpack = require('webpack');

module.exports = {
 entry: './app/index.js',
 output: { path: __dirname, filename: 'dist/bundle.js' },
};

This example clarifies how different Gulp and webpack are. webpack is entirely
focused on building bundles, and as part of that, is capable of generating bundles with
CommonJS shims. If you open dist/bundle.js, you’ll see the webpackBootstrap shim
at the top of the file, and then each file from the original source tree is wrapped in
closures to simulate the module system. The following snippet is part of the bundle:

function(module, exports, __webpack_require__) {

 const hello = __webpack_require__(1);

 hello();

 /***/ },
 /* 1 */
 /***/ function(module, exports) {

 module.exports = function() {
 return 'hello';
 };
Licensed to Samir Mashlum <smashlum@gmail.com>

80 CHAPTER 4 Front-end build systems

The code comments show where the modules are defined, and the files have access to
module and exports objects as arguments to their closures to simulate the Com-
monJS module API.

USING NPM PACKAGES WITH WEBPACK

You can take this a step further by including modules downloaded from npm. Let’s say
you want to use jQuery. Rather than making it a script tag on the page, you can
install it with npm i --save-dev jquery, and then load it just like a Node module:

const jquery = require('jquery');

That means webpack gives you CommonJS modules and access to modules from npm
out of the box without any additional configuration!

4.5 Summary
 If you need to automate simple tasks or invoke scripts, npm scripts are perfect.
 Gulp can be used to write more-complex tasks with JavaScript and is cross-

platform.
 When gulpfiles get too long, you can divide the code into separate files.
 webpack can be used to generate client-side bundles.
 If you just need to build a client-side bundle, using webpack might be less work

than setting up the equivalent script with Gulp.
 webpack supports hot module reloading, which means you’ll see code changes

without refreshing your browser.

Finding loaders and plugins
The webpack website has a list of loaders (https://webpack.github.io/docs/list-of-
loaders.html) and plugins (https://webpack.github.io/docs/list-of-plugins.html). You
can also find webpack tools on npm; the webpack keyword is a good place to start
(www.npmjs.com/browse/keyword/webpack).
Licensed to Samir Mashlum <smashlum@gmail.com>

https://webpack.github.io/docs/list-of-loaders.html
https://webpack.github.io/docs/list-of-loaders.html
https://webpack.github.io/docs/list-of-plugins.html
www.npmjs.com/browse/keyword/webpack

Server-side frameworks
This chapter is all about server-side web development. It answers questions includ-
ing how do I choose the perfect framework for a given project, and what are the
advantages and disadvantages of each framework?

 Deciding on the right framework is difficult because it’s hard to compare them
on a level playing field. Most people don’t have time to learn all of them, so we
tend to make superficial decisions about the frameworks we have experience with.
In some cases, you might use different frameworks together. Express, for instance,
could be used for larger applications, whereas microservices that support larger
applications could be written in hapi.

 Imagine you’re building a content management system (CMS). It’s used to
manage legal documents collected by a research firm. It can output PDFs and has
an e-commerce component. Such a system could be built with separate frame-
works as follows:

This chapter covers
 Working with popular Node web frameworks

 Choosing the right framework

 Building web apps with web frameworks
81

 Document upload, download, and reading—Express

Licensed to Samir Mashlum <smashlum@gmail.com>

82 CHAPTER 5 Server-side frameworks

 PDF generator microservice—hapi
 E-commerce component—Sails.js

The perfect framework for a given project is dependent on the needs of the project
and the team working on it. In this chapter, we use personas—hypothetical people—
as a way of exploring which framework is right for a specific type of project. You’ll
learn about Koa, hapi, Sails.js, DerbyJS, Flatiron, and LoopBack through these imagi-
nary programmers. The personas are defined in the next section.

5.1 Personas
We want to avoid selling a single framework that you’ll use for every project. It’s much
better to be eclectic and use a mix of tools that suit each problem. Using personas to
think about design is a widespread practice, in part because it helps designers to
empathize with users.

 In this chapter, personas are used to help you to think about frameworks in the
third person, to see how different classes of projects suit different solutions. The per-
sonas are defined in terms of professional situation and development tools. You
should be able to identify with at least one of the three people we’ve invented here.

5.1.1 Phil: agency developer

Phil has been working for three years as a full-stack web developer. He’s done a little
Ruby, Python, and client-side JavaScript:

 Job situation—Employee, full-stack developer
 Work type—Front-end engineering, server-side development
 Computer—MacBook Pro
 Tools—Sublime Text, Dash, xScope, Pixelmator, Sketch, GitHub
 Background—High school education; started as a hobbyist programmer

A typical day for Phil involves working with designers and user-experience experts in
agile-style meetings to develop or review new features, as well as maintenance and
bug fixes.

5.1.2 Nadine: open source developer

Nadine moved to contracting after a successful early career working as a corporate
web developer:

 Job situation—Contractor, JavaScript specialist
 Work type—Server-side programming, occasional high-performance program-

ming in Go and Erlang. Also writes a popular open source, web-based movie
catalog app

 Computer—High-end PC, Linux
 Tools—Vim, tmux, Mercurial, anything in the shell

 Background—Computer science degree

Licensed to Samir Mashlum <smashlum@gmail.com>

83What is a framework?

Nadine’s day usually involves balancing clocking enough hours for her two major cli-
ents with working on her open source projects. Her client work is test-driven, but her
open source projects are more feature-driven.

5.1.3 Alice: product developer

Alice works on a successful iOS app but also helps with her company’s web APIs:

 Job situation—Employee, programmer
 Work type—iOS development; also responsible for web apps and web services
 Computer—MacBook Pro, iPad Pro
 Tools—Xcode, Atom, Babel, Perforce
 Background—Science degree; one of the first five employees at her current

startup

Alice grudgingly works with Xcode, Objective-C, and Swift, but secretly prefers Java-
Script and is excited by ES2015 and Babel. She relishes developing new web services to
support her company’s iOS and desktop apps, and wants to work on React-based web
apps more often.

 Now that the personas have been defined, let’s define the term framework.

5.2 What is a framework?
Some of the server-side frameworks discussed in this chapter are technically not
frameworks at all. The term framework is unfortunately overloaded and means differ-
ent things to different programmers. In the Node community, it’s more accurate to
call most of these projects modules, but a more nuanced definition is useful when
directly comparing this family of libraries.

 The LoopBack project (http://loopback.io/resources/#compare) uses the follow-
ing definitions:

 API framework—A library for building web APIs, backed by a framework that
helps to structure the application. LoopBack itself is defined as this type of
framework.

 HTTP server library—Anything based on Express falls into this category, includ-
ing Koa and Kraken.js. These libraries help you build applications that are
based around HTTP verbs and routes.

 HTTP server framework—A framework for building modular servers that speak
HTTP. hapi is an example of this type of framework.

 Web MVC framework—Model-View-Controller frameworks including Sails.js fall
into this category.

 Full-stack framework—These frameworks use JavaScript on the server and
browser, and are able to share code between both ends. This is known as isomor-
phic code. DerbyJS is a full-stack MVC framework.
Licensed to Samir Mashlum <smashlum@gmail.com>

http://loopback.io/resources/#compare

84 CHAPTER 5 Server-side frameworks

Most Node developers understand framework to mean the second term: HTTP server
library. The next section introduces Koa, a server library that uses the innovative
ES2015 syntax known as generators to offer a unique way to handle HTTP middleware.

5.3 Koa
Koa (http://koajs.com/) is based on Express, but uses the ES2015 generator syntax to
define middleware. That means you can write middleware in an almost synchronous
fashion. This partly solves the problem of middleware that depends highly on call-
backs. With Koa, you can use the yield keyword to exit and then reenter middleware.
Table 5.1 is an overview of Koa’s main features.

The following listing shows how to use Koa to benchmark requests by yielding to the
next middleware component and then continuing execution in the callee when it’s
finished.

const koa = require('koa');
const app = koa();

app.use(function*(next) {
 const start = new Date;
 yield next;
 const ms = new Date - start;
 console.log('%s %s - %s', this.method, this.url, ms);
});

app.use(function*() {
 this.body = 'Hello World';
});

app.listen(3000);

Listing 5.1 uses generators to switch context between two middleware components.

Table 5.1 Koa’s main features

Library type HTTP server library

Features Generator-based middleware, request/response model

Suggested uses Lightweight web apps, nonstrict HTTP APIs, serving single-page web app

Plugin architecture Middleware

Documentation http://koajs.com/

Popularity 10,000 GitHub stars

License MIT

Listing 5.1 Koa’s middleware ordering

Uses the
generator syntax
for middleware
functions

b

Yields to run the next
middleware component

c

Execution passes back to
the original yield hered
b
Notice that we use the keyword function*—it’s not possible to use an arrow function

Licensed to Samir Mashlum <smashlum@gmail.com>

http://koajs.com/
http://koajs.com/

85Koa

here. By using the yield keyword c, execution steps down the middleware stack,
then back again when the next middleware component returns d. An added benefit
of using generator functions is you can just set this.body. In contrast, Express uses a
function to send responses: res.send(response). In Koa middleware, this is
known as a context. A context is created for every request, and it’s used to encapsulate
Node’s HTTP request and response objects (https://nodejs.org/api/http.html).
Whenever you need to access something from the request, such as the GET parame-
ters or cookies, you can use the context. The same is true for the response: as you saw
in listing 5.1, you can control what gets sent to the browser by setting values on
this.body.

 If you’ve used both Express middleware and generator syntax before, Koa should
be easy to learn. If either of these things is new to you, Koa might be hard to follow—
or at least it might be hard to see why this style is beneficial. Figure 5.1 shows in more
detail how yield hands off execution between middleware components.

 Each of the stages in figure 5.1 corresponds to the numbers in listing 5.1. First, the
timer is set up in the first middleware component b, and then execution is yielded to
the second middleware component that renders the body c. After the response has
been sent, execution returns to the first middleware component, and the time is cal-
culated d. This is displayed in the terminal with console.log, and the request is

Set up timer

Middleware: Benchmark Middleware: Render view

Yield

Calculate total time Calculate total time

Print log

Timer set up in
first middleware
component

Execution yielded to
second middleware
component

With response,
execution returns
to first component

Log displayed
with total time

Render body

Send response
Figure 5.1 Koa middleware execution order

Licensed to Samir Mashlum <smashlum@gmail.com>

https://nodejs.org/api/http.html

86 CHAPTER 5 Server-side frameworks

then finished e. Note that stage e isn’t visible in listing 5.1; it’s handled by Koa and
Node’s HTTP server.

5.3.1 Setting up

Setting up a project with Koa requires installing the module and then defining mid-
dleware. If you want more functionality, such as a routing API that makes it easier to
define and respond to various types of HTTP request, then you’ll need to install router
middleware. That means a typical workflow requires planning the middleware your
project will use beforehand, so you need to research popular modules first.

The next section demonstrates a third-party module that implements a powerful rout-
ing library for Koa.

5.3.2 Defining routes

A popular router middleware component is koa-router (https://www.npmjs.com/
package/koa-router). Like Express, it’s based on HTTP verbs, but unlike Express, it
has a chainable API. The next snippet shows how groups of routes are defined:

 router
 .post('/pages', function*(next) {
 // Create a page
 })
 .get('/pages/:id', function*(next) {
 // Render the page
 })
 .put('pages-update', '/pages/:id', function*(next) {
 // Update a page
 });

Routes can be named by using an additional argument. This is great because you can
generate URLs, which not all Node web frameworks support. Here’s an example:

router.url('pages-update', '99');

This module has a unique blend of features from Express and other web frameworks.

Persona thoughts
Alice: “As a product developer, I like Koa’s minimal feature set—because our project
has unique requirements, and we really want to shape the entire stack according to
our needs.”

Phil: “As an agency developer, I find dealing with the middleware research stage too
much trouble. I’d prefer this to be handled for me, because many of my projects have
similar requirements, and I don’t want to keep installing the same modules to do
basic things.”
Licensed to Samir Mashlum <smashlum@gmail.com>

https://www.npmjs.com/package/koa-router
https://www.npmjs.com/package/koa-router

87Kraken

5.3.3 REST APIs

Koa doesn’t come with the tools necessary to make RESTful APIs without implement-
ing some kind of route-handling middleware. The previous example can be extended
to implement a RESTful API in Koa.

5.3.4 Strengths

It would be easy to say that Koa’s strengths come from its early adoption of generator
syntax, but now that ES2015 is widespread in the Node community, this is no longer as
unique as it once was. Currently, Koa’s main advantage is that it’s streamlined yet has
some excellent third-party modules; check out the Koa wiki for more information
(https://github.com/koajs/koa/wiki#middleware). Product developers love it, beca-
use it has elegant syntax and can be tailored for projects with specific requirements.

5.3.5 Weaknesses

Koa’s level of configurability alienates some developers. Creating many small projects
with Koa can lead to low levels of code reuse, unless you already have code-sharing
strategies in place.

5.4 Kraken
Kraken is based on Express, but adds new functionality through custom modules
developed by PayPal. One useful module in particular is Lusca (https://github.com/
krakenjs/lusca), which provides an application security layer. Although it’s possible to
use Lusca without Kraken, one of Kraken’s benefits is its predefined project structure.
Express and Koa applications don’t require any specific project structure, so if you’re
looking for help with starting new projects, Kraken can help get things going. Table
5.2 shows an overview of Kraken’s main features.

Persona thoughts
Phil: “This routing library reminds me of some of the things I liked about Ruby on
Rails, so Koa could win me over after all!”

Nadine: “I can see opportunities for modularizing my existing projects with Koa, and
then sharing this code with the community.”

Table 5.2 Kraken’s main features

Library type HTTP server library

Features Strict project structure, models, templates (Dust), security hardening (Lusca),
configuration management, internationalization

Suggested uses Corporate web apps
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/koajs/koa/wiki#middleware
https://github.com/krakenjs/lusca
https://github.com/krakenjs/lusca

88 CHAPTER 5 Server-side frameworks

5.4.1 Setting up

If you already have an Express project, you can add Kraken as a middleware
component:

const express = require('express'),
const kraken = require('kraken-js');

const app = express();
app.use(kraken());
app.listen(3000);

But if you want to start a new project, you should try Kraken’s Yeoman generator. Yeo-
man is a tool that helps you to generate new projects. By using Yeoman generators, you
can create bootstrapped projects for a variety of frameworks. Here are the steps to cre-
ate a tailored Kraken project using Yeoman, with Kraken’s preferred filesystem layout:

$ npm install -g yo generator-kraken bower grunt-cli
$ yo kraken

 ,'""`.
hh / _ _ \
 |(@)(@)| Release the Kraken!
) __ (
 /,'))((`.\
 (((())))
 `\ `)(' /'

Tell me a bit about your application:

[?] Name: kraken-test
[?] Description: A Kraken application
[?] Author: Alex R. Young
...

The generator creates a new directory, so you don’t need to do this yourself. After the
generator finishes, you should be able to start a server and visit http://localhost:8000
to try it out.

5.4.2 Defining routes

In Kraken, routes are defined alongside the controller. Rather than separating out
route definitions and route handlers as Express does, Kraken uses an MVC-inspired

Plugin architecture Express middleware

Documentation https://www.kraken.com/help/api

Popularity 4,000 GitHub stars

License Apache 2.0

Table 5.2 Kraken’s main features (continued)
approach, which is lightweight thanks to the use of ES6 arrow functions:

Licensed to Samir Mashlum <smashlum@gmail.com>

https://www.kraken.com/help/api

89Kraken

module.exports = (router) => {
 router.get('/', (req, res) => {
 res.render('index');
 });
};

Routes can include parameters in the URL:

module.exports = (router) => {
 router.get('/people/:id', (req, res) => {
 const people = { alex: { name: 'Alex' } };
 res.render('people/edit', people[req.param.id]);
 });
};

Kraken’s routing API is express-enrouten (https://github.com/krakenjs/express-
enrouten), and it partly infers the route from the directory the file is in. Say you have
a file layout like this:

controllers
 |-user
 |-create.js
 |-list.js

Then Kraken will generate routes such as /user/create and /user/list.

5.4.3 REST APIs

Kraken can be used to make REST APIs but doesn’t provide specific support for them.
The capabilities of express-enrouten combined with middleware for parsing JSON
means you can use Kraken to implement REST APIs.

 Kraken’s router has HTTP verbs for DELETE, GET, POST, PUT, and so on, which
makes implementing REST similar to Express.

5.4.4 Strengths

Because Kraken comes with a generator, Kraken projects look similar from a high
level. Although Express projects can vary wildly in their layout, Kraken projects typi-
cally put files and directories in the same places.

 Because Kraken provides both a templating library (Dust) and internationalization
(Makara), the two are seamlessly integrated. To write Dust templates with internation-
alization, you need to specify a key:

<h1>{@pre type="content" key="greeting"/}</h1>

Then add a .properties file to locales/language-code/view-name.properties. These
properties files are simple key/value pairs, so if the previous example was in a view file
called public/templates/profile.dust, the .profile file would be locales/US/en/pro-

file.properties.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/krakenjs/express-enrouten
https://github.com/krakenjs/express-enrouten

90 CHAPTER 5 Server-side frameworks

5.4.5 Weaknesses

It takes more effort to learn Kraken than Koa or Express. Some tasks that are done
programmatically in Express are done through JSON configuration files, and it’s some-
times hard to figure out exactly what JSON properties are needed to get things to work
the desired way.

5.5 hapi
hapi (http://hapijs.com/) is a server framework that focuses on web API develop-
ment. It has its own hapi plugin API, and doesn’t come with any client-side support or
database model layer. It comes with a routing API and has its own HTTP server wrap-
per. In hapi, you design APIs by thinking about the server as the main abstraction. The
built-in server features for connections and logging make hapi good at scaling and
management from a DevOps point of view. Table 5.3 contains an overview of hapi’s
main features.

5.5.1 Setting up

First, create a new Node project and install hapi:

mkdir listing5_2
cd listing5_2
npm init –y

Persona thoughts
Phil: “The fact that Kraken has a filesystem layout and uses controllers for routes
appeals to me a lot. Some of my team know Django and Ruby on Rails, so this will
be an easy transition for them. Kraken’s documentation also seems really good;
there’s lots of useful stuff on the blog.”

Alice: “I like the idea of getting better application security with Lusca, but Kraken pro-
vides things I don’t really need. I’m going to try just using Lusca by itself.”

Table 5.3 hapi’s main features

Library type HTTP server framework

Features High-level server container abstraction, security headers

Suggested uses Single-page web apps, HTTP APIs

Plugin architecture hapi plugins

Documentation http://hapijs.com/api

Popularity 6,000 GitHub stars

License BSD 3 Clause
npm install --save hapi

Licensed to Samir Mashlum <smashlum@gmail.com>

http://hapijs.com/
http://hapijs.com/api

91hapi

Then create a new file called server.js. Add the code from the following listing.

const Hapi = require('hapi');
const server = new Hapi.Server();

server.connection({
 host: 'localhost',
 port: 8000
});

server.start((err) => {
 if (err) {
 throw err;
 }
 console.log('Server running at:', server.info.uri);
});

You could run this example as it is, but it won’t do much without any routes. Read on
to learn about how hapi handles routes.

5.5.2 Defining routes

hapi has a built-in API for creating routes. You must provide an object that includes
properties for the request method, a URL, and a callback to run, which is known as a
handler. The next listing shows how to define a route with a handler method.

const Hapi = require('hapi');
const server = new Hapi.Server();

server.connection({
 host: 'localhost',
 port: 8000
});

server.route({
 method: 'GET',
 path:'/hello',
 handler: (request, reply) => {
 return reply('hello world');
 }
});

server.start((err) => {
 if (err) {
 throw err;
 }
 console.log('Server running at:', server.info.uri);

Listing 5.2 Basic hapi server

Listing 5.3 hapi hello world server
});

Licensed to Samir Mashlum <smashlum@gmail.com>

92 CHAPTER 5 Server-side frameworks

Add this code to the previous listing to define a route and handler that will respond
with the text hello world. You can run this example by typing npm start. Open
http://localhost:8000/hello to see the response.

 hapi doesn’t come with a predefined folder structure or any MVC features; it’s
entirely based around servers. In this regard, it’s similar to Express. Notice, however, a
key difference: the request, reply route handler signature is different from
Express’s req, res. hapi’s request and reply objects are different from Express’s
equivalents as well: you must call reply rather than manipulate Express’s res object.
Express is more similar to Node’s built-in HTTP server.

 To go beyond this simple example and get more functionality, such as serving static
files, you need plugins.

5.5.3 Plugins

hapi has its own plugin architecture, and most projects require several plugins to pro-
vide features such as authentication and user input validation. A simple plugin that
most projects need is inert (https://github.com/hapijs/inert), which adds static file
and directory handlers.

 To add inert to a hapi project, you need to first register the plugin with the
server.register method. This adds the reply.file method for sending single
files, and a built-in directory handler. Let’s look at the directory handler.

 Make sure you have a project set up based on listing 5.2. Next, install inert:

npm install --save inert

Now the plugin can be loaded and registered. Open the server.js file and add the fol-
lowing lines.

const Inert = require('inert');

server.register(Inert, () => {});

server.route({
 method: 'GET',
 path: '/{param*}',
 handler: {
 directory: {
 path: '.',
 redirectToSlash: true,
 index: true
 }
 }
});

Instead of accepting only functions, hapi routes can also accept configuration objects

Listing 5.4 Adding a plugin with hapi
for plugins. In this listing, the directory object includes the inert settings to serve
files in the current path and show an index of the files in that directory. This is

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/hapijs/inert

93hapi

different from Express middleware, and shows how plugins extend the server’s behav-
ior in hapi applications.

5.5.4 REST APIs

hapi supports HTTP verbs and URL parameterization, allowing REST APIs to be imple-
mented by using the standard hapi route API. The following snippet is the route
required for a generalized delete method:

server.route({
 method: 'DELETE',
 path: '/items/{id}',
 handler: (req, reply) => {
 // Delete "item" here, based on req.params.id
 reply(true);
 }
});

In addition, plugins make creating RESTful APIs easier. For example, hapi-sequelize-
crud (https://www.npmjs.com/package/hapi-sequelize-crud) automatically generates
a RESTful API based on Sequelize models (http://docs.sequelizejs.com/en/latest/).

5.5.5 Strengths

hapi’s plugin API is one of the biggest advantages of using hapi. Plugins can extend
hapi’s server but also add all kinds of other behavior, from data validation to templat-
ing. Also, because hapi is based around HTTP servers, it suits certain types of deploy-
ment scenarios. If you’re deploying many servers that need to be connected together
or load balanced, you might prefer hapi’s server-based API to Express or Koa.

5.5.6 Weaknesses

hapi has similar weaknesses to Express: it’s minimal, so there’s no guidance on project

Persona thoughts
Phil: “I would definitely like to try hapi-sequelize-crud because we already have apps
that use PostgreSQL and MySQL, so Sequelize might be a good fit. But, because hapi
doesn’t come with features like this out of the box, I’m worried that this plugin might
become unsupported, so I’m not sure if hapi will work well in an agency scenario.”

Alice: “As a product developer, I think hapi is interesting because like Express, it’s
minimal, yet the plugin API is more formal and expressive.”

Nadine: “I can see several opportunities for making open source plugins for hapi, and
the existing plugins mostly seem well written. hapi seems to have a technically com-
petent audience, which appeals to me.”
structure. You can never be sure whether development on a plugin might cease, so
relying on lots of plugins could cause maintenance issues in the future.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://www.npmjs.com/package/hapi-sequelize-crud
http://docs.sequelizejs.com/en/latest/

94 CHAPTER 5 Server-side frameworks

5.6 Sails.js
The frameworks you’ve seen so far have been minimal server libraries. Sails (http://
sailsjs.org/) is a Model-View-Controller (MVC) framework, which is fundamentally dif-
ferent from a server library. It comes with an object-relational mapping (ORM) library
for working with databases, and it can automatically generate REST APIs. It has mod-
ern features as well, including built-in WebSocket support. And if you’re a fan of React
or Angular, you’ll be glad to know it’s front-end agnostic: it’s not a full-stack frame-
work, so you can use it with practically any front-end library or framework. Table 5.4
shows the main features of Sails.

5.6.1 Setting up

Sails comes with a project generator, so it’s best if you install it globally to make creat-
ing new projects easier. Install it with npm and then use sails new to make a project:

npm install -g sails
sails new example-project

This creates a new directory with a package.json for the basic Sails dependencies. The
new project includes Sails itself, EJS, and Grunt. You can run npm start to start
the server, or type sails lift. When the server is running, you’ll be able to see the
built-in Getting Started page by visiting http://localhost:1337.

Table 5.4 The main features of Sails

Library type MVC framework

Features Database support with an ORM, REST API generation, WebSocket

Suggested uses Rails-style MVC apps

Plugin architecture Express middleware

Documentation http://sailsjs.org/documentation/concepts/

Popularity 6,000 GitHub stars

License BSD 3 Clause

Persona thoughts
Phil: “This sounds exactly what I’m looking for—what’s the catch?!”

Alice: “I thought this wouldn’t be for me because we’ve already invested development
time in a React app, but because it’s focused on the server, it may work for our
product.”
Licensed to Samir Mashlum <smashlum@gmail.com>

http://sailsjs.org/
http://sailsjs.org/
http://sailsjs.org/documentation/concepts/

95Sails.js

5.6.2 Defining routes

To add routes, known as custom routes in Sails, open config/routes.js and add a prop-
erty to the exported routes. This property is the HTTP verb and partial URL. For exam-
ple, these are some valid Sails routes:

module.exports.routes = {
 'get /example': { view: 'example' },
 'post /items': 'ItemController.create
};

The first route expects a file called views/example.ejs. The second route expects a file
called api/controllers/ItemController with a method called create. You can generate
this controller with a method called create by running sails generate control-
ler item create. A similar command can be used to quickly create RESTful APIs.

5.6.3 REST APIs

Sails combines database models and controllers into APIs, so to quickly stub RESTful
APIs, use sails generate api resource-name. To use a database, you first need
to install a database adapter. Adding MySQL involves finding the name of the Water-
line MySQL package (https://github.com/balderdashy/waterline) and then adding it
to the project:

npm install --save waterline sails-mysql

Next, open config/connections.js and fill out the connection details for your MySQL
server. Sails model files allow you to specify the database connection, so you can use
different models with different databases. That allows situations like a user session
database in Redis and other, more permanent resources in a relational database such
as MySQL.

 Waterline is the database library for Sails, and it has its own documentation reposi-
tory (https://github.com/balderdashy/waterline-docs). Other than supporting multi-
ple databases, Waterline has useful features: you can define table and column names
to support legacy schemas, and the query API supports promises so queries look like
modern JavaScript.

Persona thoughts
Phil: “The ease of creating APIs and the fact that Waterline models can support exist-
ing database schemas means Sails sounds ideal for us. We have clients that we
want to slowly move from MySQL to PostgreSQL, so we may be able to do this with
Waterline. Some of our developers and designers have already worked with Ruby on
Rails, so I think they’ll pick up Sails with Node’s modern ES2015 syntax in no time.”

Alice: “This framework provides things that I don’t need for our product. I feel like Koa
or hapi would be a better fit.”
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/balderdashy/waterline
https://github.com/balderdashy/waterline-docs

96 CHAPTER 5 Server-side frameworks

5.6.4 Strengths

The built-in project creation and API generation means that setting up projects and
adding typical REST APIs is fast. It works well for quickly creating new projects and col-
laborating, because Sails projects have the same filesystem layout. The creators of
Sails, Mike McNeil and Irl Nathan, have written a book called Sails.js in Action (Man-
ning Publications, 2017), which shows how Sails welcomes to Node beginners as well.

5.6.5 Weaknesses

Sails has some of the weaknesses shared by other server-side MVC frameworks: the
routing API means you have to design your application with the Sails routing features
in mind, and you may find it hard to adapt your schema to suit the Waterline way of
handling things.

5.7 DerbyJS
DerbyJS is a full-stack framework that supports data synchronization and server ren-
dering of views. It depends on MongoDB and Redis. The data synchronization layer is
provided by ShareJS, and it supports automatic conflict resolution. Table 5.5 summa-
rizes DerbyJS’ main features.

5.7.1 Setting up

If you don’t have MongoDB or Redis, you need to install both of them to run the Der-
byJS examples. The DerbyJS documentation explains how to do this for Mac OS,
Linux, and Windows (http://derbyjs.com/started#environment).

 To create a new DerbyJS project quickly, install derby and derby-starter. The derby-
starter package is used to bootstrap a Derby application:

mkdir example-derby-app
cd example-derby-app
npm init -f

Table 5.5 DerbyJS features

Library type Full-stack framework

Features Database support with an ORM (Racer), isomorphic

Suggested uses Single-page web apps with server-side support

Plugin architecture DerbyJS plugins

Documentation http://derbyjs.com/docs/derby-0.6

Popularity 4,000 GitHub stars

License MIT
npm install --save derby derby-starter derby-debug

Licensed to Samir Mashlum <smashlum@gmail.com>

http://derbyjs.com/docs/derby-0.6
http://derbyjs.com/started#environment

97DerbyJS

Derby applications are split into several smaller applications, so create a new app
directory with three files: index.js, server.js, and index.html. The following listing
shows a simple Derby app that renders a template.

const app = module.exports = require('derby')
 .createApp('hello', __filename);
app.loadViews(__dirname);

app.get('/', (page, model) => {
 const message = model.at('hello.message');
 message.subscribe(err => {
 if (err) return next(err);
 message.createNull('');
 page.render();
 });
});

The server file needs to load only the derby-starter module, as shown in the following
snippet. Save this as app/server.js:

require('derby-starter').run(__dirname, { port: 8005 });

The app/index.html file renders an input field and the message that the user types:

<Body:>
 Holler: <input value="{{hello.message}}">
 <h2>{{hello.message}}</h2>

You should be able to run the application from the example-derby-app directory by
typing node derby/server.js. Once it’s running, editing the app/index.html file
will cause the application to restart; you automatically get real-time updates when edit-
ing code and templates.

5.7.2 Defining routes

DerbyJS uses derby-router for routing. Because DerbyJS is powered by Express, the
routing API is similar for server-side routes, and the same routing module is used in
the browser. When clicking a link in a DerbyJS app, it’ll attempt to render the
response in the client.

 DerbyJS is a full-stack framework, so adding routes isn’t quite the same as with the
other libraries that you’ve looked at in this chapter. The most idiomatic way to add a
basic route is by adding a view. Open apps/app/index.js and add a route by using
app.get:

Listing 5.5 Derby app/index.js file
app.get('hello', '/hello');

Licensed to Samir Mashlum <smashlum@gmail.com>

98 CHAPTER 5 Server-side frameworks

Next, open apps/app/views/hello.pug and add a simple Pug template:

index:
 h2 Hello
 p Hello world

Now open apps/app/views/index.pug and import the template:

import:(src="./hello")

The project should constantly update if you’ve run npm start, so opening http://
localhost:3000/hello will now show the new view.

 The line that reads index: is the namespace for the view. In DerbyJS, view names
have colon-separated namespaces, so you just created hello:index. The idea behind
this is to encapsulate views so they don’t clash in larger projects.

5.7.3 REST APIs

In DerbyJS projects, you need to create RESTful APIs by adding routes and route han-
dlers with Express. Your DerbyJS project will have a server.js file that uses Express to
create a server. If you open server/routes.js, you’ll find an example route, defined by
using the standard Express routing API.

 In the server routes file, you could use app.use to mount another Express appli-
cation, so you could model a REST API as a completely separate Express app that the
main DerbyJS app mounts.

5.7.4 Strengths

DerbyJS has a database model API and a data synchronization API. You can use it to
build single-page web apps, and modern real-time applications. Because it comes with
WebSocket and synchronization built in, you don’t have to worry about which Web-
Socket library to use, or how to sync data between the client and server.

5.7.5 Weaknesses

It’s hard to convince people who are already experienced with either server-side or cli-
ent-side libraries to use DerbyJS. Client-side developers who love React, for example,
don’t typically want to use DerbyJS. Server-side developers who love making REST APIs

Persona thoughts
Phil: “We had a client asking about building a data visualization project based on real-
time data, so I think DerbyJS could be good for that. But the learning curve seems
steep, so I’m not sure I can convince our developers to use it.”

Alice: “As a product developer, I find it hard to see how to fit our product’s needs to
DerbyJS’ architecture, so I don’t think it’s a good fit for my project.”
or MVC projects and who are comfortable with WebSocket also fail to be motivated to
learn DerbyJS.

Licensed to Samir Mashlum <smashlum@gmail.com>

99Flatiron.js

5.8 Flatiron.js
Flatiron is a web framework that includes features for URL routing, data management,
middleware, plugins, and logging. Unlike most web frameworks, Flatiron’s modules
are designed to be decoupled, so you don’t have to use all of them. You could even use
one or more in your own projects—if you like the logging module, for example, you
could drop it into an Express project. Unlike many Node frameworks, Flatiron’s
URL routing and middleware layers aren’t written using Express or Connect, although
the middleware is backward-compatible with Connect. Table 5.6 summarizes
Flatiron’s features.

5.8.1 Setting up

Installing Flatiron requires globally installing the command-line tool to create new
Flatiron projects:

npm install -g flatiron
flatiron create example-flatiron-app

After running these commands, you’ll find a new directory that contains a pack-
age.json file with the necessary dependencies. Run npm install to install the depen-
dencies, and then npm start to run the app.

 The main app.js file looks a lot like a typical Express app:

const flatiron = require('flatiron');
const path = require('path');
const app = flatiron.app;

app.config.file({ file: path.join(__dirname, 'config', 'config.json') });

app.use(flatiron.plugins.http);

app.router.get('/', () => {
 this.res.json({ 'hello': 'world' })
});

Table 5.6 Flatiron’s features

Library type Modular MVC framework

Features Database management layer (Resourceful), decoupled reusable modules

Suggested uses Lightweight MVC apps, use Flatiron modules in other frameworks

Plugin architecture Broadway plugin API

Documentation https://github.com/flatiron

Popularity 1,500 GitHub stars

License MIT
app.start(3000);

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/flatiron

100 CHAPTER 5 Server-side frameworks

Notice, however, that the router is different from both Express and Koa. Responses
are returned by using this.res, instead of an argument to the responder callback.
Let’s look at Flatiron’s routes in more detail.

5.8.2 Defining routes

Flatiron’s routing library is called Director. Although it can be used for server routes,
it also supports routes in browsers, so it can be used to make single-page apps as well.
Director calls Express-style HTTP verb routes ad hoc:

router.get('/example', example);
router.post('/example', examplePost);

Routes can have parameters, and parameters can be defined with a regular expression:

router.param('id', /([\\w\\-]+)/);
router.on('/pages/:id', pageId => {});

To generate a response, use res.writeHead to send headers, and res.end to send
the response body:

router.get('/', () => {
 this.res.writeHead(200, { 'content-type': 'text/plain' });
 this.res.end('Hello, World');
});

The routing API can also be used as a class, with a routing table object. To use it, instan-
tiate a new router and then use the dispatch method when HTTP requests arrive:

const http = require('http');
const director = require('director');
const router = new director.http.Router({
 '/example': {
 get: () => {
 this.res.writeHead(200, { 'Content-Type': 'text/plain' })
 this.res.end('hello world');
 }
 }
});
const server = http.createServer((req, res) =>
 router.dispatch(req, res);
});

Using the routing API as a class also means you can hook into the streaming API. This
makes dealing with large requests possible in a quick and easy way, which is good for
doing things such as parsing uploaded data and exiting early:

const director = require('director');
const router = new director.http.Router();

router.get('/', { stream: true }, () => {
 this.req.on('data', (chunk) => {
 console.log(chunk);

 });
});

Licensed to Samir Mashlum <smashlum@gmail.com>

101Flatiron.js

Director has a scoped routing API, which can be useful for creating REST APIs.

5.8.3 REST APIs

REST APIs can be created with the standard Express HTTP verb style methods, or
Director’s scoped routing feature. This allows routes to be grouped together based on
URL fragments and URL parameters:

router.path(/\/users\/(\w+)/, () => {
 this.get((id) => {});
 this.delete((id) => {});
 this.put((id) => {});
});

Flatiron also provides a high-level REST wrapper called Resourceful (https://
github.com/flatiron/resourceful), which supports CouchDB, MongoDB, Socket.IO,
and data validation.

5.8.4 Strengths

It’s hard for frameworks to gain traction, which is why Flatiron’s decoupled design is a
major strength. You can use some of its modules without using the entire framework.
For example, the Winston logging module (https://github.com/winstonjs/winston) is
used by many projects that don’t use the rest of Flatiron. This means some parts of
Flatiron receive a good level of open source contributions.

 The Director URL-routing API is isomorphic, so you can use it as a solution for
both client- and server-side development. Director’s API differs from the Express-style
routing APIs as well: Director has a simplified streaming API, and the routing object
emits events before and after routes are executed.

 Unlike most Node web frameworks, Flatiron has a plugin manager. Therefore, it's
easier to extend Flatiron projects with community-supported plugins.

5.8.5 Weaknesses

Flatiron isn’t as easy to use for larger MVC-style projects as some other frameworks. For
example, Sails is easier to set up. If you’re creating several medium-sized traditional
web apps, Flatiron may work well. The ability to configure Flatiron is an added bonus,
but make sure you evaluate it next to other options first.

Persona thoughts
Nadine: “I love Flatiron’s modular design, and the plugin manager is great. I can
already think of some plugins that I’d like to make.”

Alice: “I don't like the sound of all of Flatiron’s modules, so I’d like to try it with a
different ORM and template library.”
 One strong competitor is LoopBack, which is the last framework that features in
this chapter.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/flatiron/resourceful
https://github.com/flatiron/resourceful
https://github.com/winstonjs/winston

102 CHAPTER 5 Server-side frameworks

5.9 LoopBack
LoopBack was created by StrongLoop, a company offering several commercial ser-
vices that support the development of Node web apps. It’s billed as an API framework,
but has features that make it work well with databases and for MVC apps. It even comes
with a web interface for exploring and managing REST APIs. If you’re looking for
something that will help create web APIs for mobile and desktop clients, LoopBack’s
features are ideal. See table 5.7 for details about LoopBack.

LoopBack is open source, and since StrongLoop’s acquisition by IBM, the framework
now has major commercial endorsement. That makes it a unique offering in the Node
community. It comes with Yeoman generators for quickly setting up application scaf-
folds. In the next section, you’ll see how to create a fresh LoopBack application.

5.9.1 Setting up

To set up a new LoopBack project, you need to use the StrongLoop command-line
tools (www.npmjs.com/package/strongloop). Globally installing the strongloop pack-
age makes the command-line tools available through the slc command. This package
includes features for process management, but what we’re interested in is the Loop-
Back project generator:

npm install -g strongloop
slc loopback

The StrongLoop command-line tool walks you through the steps necessary to set up a
new project. Type in a name for the project and then select the api-server application
skeleton. When the generator has finished installing the project’s dependencies, it
will display some handy tips for working with the new project. Figure 5.2 shows what
this should look like.

 To run the project, type node ., and to create a model, use slc loop-

back:model. You’ll use the slc command regularly as you set up a new LoopBack

Table 5.7 LoopBack’s features

Library type API framework

Features ORM, API user interface, WebSocket, client SDKs (including iOS)

Suggested uses APIs that support multiple clients (mobile, desktop, web)

Plugin architecture Express middleware

Documentation http://loopback.io/doc/

Popularity 6,500 GitHub stars

License Dual license: MIT and StrongLoop Subscription Agreement
project.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://loopback.io/doc/
www.npmjs.com/package/strongloop

103LoopBack

When the project is running, you should be able to access the API explorer at http://
0.0.0.0:3000/explorer/. Click User to expand the User endpoint. You should see a
large list of available API methods, including standard RESTful routes such as PUT
/Users and DELETE /Users/{id}. Figure 5.3 shows the API explorer.

Figure 5.2
LoopBack’s
project generator

Figure 5.3
The StrongLoop API

explorer showing
User routes

Licensed to Samir Mashlum <smashlum@gmail.com>

http://0.0.0.0:3000/explorer/
http://0.0.0.0:3000/explorer/

104 CHAPTER 5 Server-side frameworks

5.9.2 Defining routes

In LoopBack, you can add routes at the Express level. Add a new file called server/
boot/routes.js, and add a route by accessing the LoopBack Router instance:

module.exports = (app) => {
 const router = app.loopback.Router();
 router.get('/hello', (req, res) => {
 res.send('Hello, world');
 });
 app.use(router);
};

Visiting http://localhost:3000/hello will now respond with Hello, world. Adding routes
this way, however, isn’t typical in a LoopBack project. It may be required for certain
unusual API endpoints, but in general, routes are added automatically when models
are generated.

5.9.3 REST APIs

The easiest way to create REST APIs in a LoopBack project is by using the model gener-
ator. This is part of the slc command’s features. If you want to add a new model
called product, for example, run slc loopback:model:

slc loopback:model product

The slc command walks you through the steps to create a model, allowing you to
select whether the model is server-only, and set up some properties and validators.
After you add a model, take a look at the corresponding JSON file—it should be in
common/models/product.json. This JSON file is a lightweight way of defining how
models behave, including all of the properties you specified in the previous step.

 If you want to add more properties, type slc loopback:property. You can add
properties to models at any time.

5.9.4 Strengths

Persona thoughts
Phil: “Our teams love the sound of LoopBack, mainly because of the ability to quickly
add RESTful resources and browse them with the API explorer. But I like it because
it looks like it’s flexible enough to support our legacy MVC web apps. We could hook
into the older database and move these projects over to Node.”

Alice: “This is the only framework that really targets iOS and Android, as well as rich
web clients. LoopBack has client libraries for iOS and Android, so this is a big deal
for us as product developers who depend on mobile apps.”
Even from this short introduction, it should be clear that one of the strengths of
LoopBack is it removes the need to write boilerplate code. The command-line tool

Licensed to Samir Mashlum <smashlum@gmail.com>

105Comparison

generates almost everything you need for lightweight RESTful web APIs, even database
models and validation. At the same time, LoopBack doesn’t dictate too much about
the front-end code. It also enables you to think about which models should be accessi-
ble to the browser and which are server-side only. Some frameworks get this wrong
and push everything to the browser.

 If you have mobile apps that need to talk to your web APIs, take a look at Loop-
Back’s client SDKs (http://loopback.io/doc/en/lb2/Client-SDKs.html). LoopBack
supports API integration and push messages for both iOS and Android.

5.9.5 Weaknesses

LoopBack’s JSON-based model API is different from most JavaScript database APIs. It
can take a while to learn how to map it to an existing project’s database schema. And
because the HTTP layer is based on Express, it’s partly limited to what Express sup-
ports. Although Express is a solid HTTP server library, newer libraries are available for
Node with more-modern APIs. LoopBack doesn’t have a specific plugin API. You can
use Express middleware, but this isn’t as convenient as Flatiron or hapi’s plugin APIs.

 This concludes the frameworks that are covered in this chapter. Before moving on
to the next chapter, let’s compare the frameworks to help you decide which is the
right choice for your next project.

5.10 Comparison
If you’ve been following the persona thoughts throughout this chapter, you may
already have decided which framework to use. If not, the rest of this chapter compares
the benefits of each framework. And, if you’re still lost, figure 5.4 will help you pick
the right framework by answering some questions.

Start

What kind of framework are you looking for?

What type of MVC? What kind of route API?DerbyJS

Full-stack

Sails.js

Rails/Django

Web API Another ES6

Koa

HTTP libraryServer MVC

Connect

Databases/views?

No

Hapi

Yes

No

Isomorphic?

Databases/views?

No

Hapi

Yes

Flatiron

API tools and GUI?

No

Kraken

Yes

LoopBack

Yes
KrakenDerby
Figure 5.4 Choosing
a Node framework

Licensed to Samir Mashlum <smashlum@gmail.com>

http://loopback.io/doc/en/lb2/Client-SDKs.html

106 CHAPTER 5 Server-side frameworks

If you glance through Node’s popular server-side frameworks, they all sound similar.
They offer lightweight HTTP APIs, and they use the server model instead of PHP’s page
model. But the differences in their design have big implications for projects made
with them, so to compare these frameworks, we’ll start at the HTTP level.

5.10.1 HTTP servers and routes

The majority of Node frameworks are based on Connect or Express. In this chapter,
you’ve seen three that aren’t based on Express at all, and have their own solutions to
HTTP APIs: Koa, hapi, and Flatiron.

 Koa was created by the same author as Express, but offers a fresh approach by
using more-modern JavaScript features. If you like Express but want to use ES2015 gen-
erator syntax, Koa may work for you.

 hapi’s server and routing APIs are highly modular and feel different from those of
Express. If you find Express’s syntax awkward, you should give hapi a try. hapi makes it
easier to reason about HTTP servers, so if you need to do things such as connect serv-
ers or cluster them, you may prefer hapi to Express descendants.

 Flatiron’s router is backward-compatible with Express but has extra features. The
router emits events and uses a routing table. That’s different from the Express-style
stack of middleware components. You can pass an object literal to Flatiron’s router.
The router also works in browsers, so if you have server-side developers trying to tackle
modern client-side development, they might be more at home with Flatiron than
going all out with something like React Router.

5.11 Writing modular code
Not all of the frameworks covered here directly support plugins, but they’re all exten-
sible in some way. The Express-based frameworks can use Connect middleware, but
hapi and Flatiron have their own plugin APIs. Well-defined plugin APIs are useful
because they make it easier for new users of a framework to extend it.

 If you’re using a larger MVC framework such as Sails.js or LoopBack, a plugin API
makes it much easier to set up a new project. LoopBack partly sidesteps needing a
plugin API by providing a highly capable project management tool. If you look at
StrongLoop’s npm account (www.npmjs.com/~strongloop), you’ll see lots of loop-
back-related projects that add support for things like Angular and several databases.

5.12 Persona choices
The personas in this chapter now have enough background to make the right choice
for their next project:

 Phil: “In the end I decided to go with LoopBack. It was a difficult choice because
Sails and Kraken both have excellent features that my team liked, but we felt like
LoopBack has stronger long-term support and reduces so much effort on server-side

development.”

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/~strongloop

107Summary

 Nadine: “As an open source developer, I’ve opted for Flatiron. It’ll adapt to the var-
ious projects that I’m working on. For example, some projects will just use Winston
and Director, but others will use the whole stack.”

 Alice: “I’ve chosen hapi for my next project. It’s minimal, so I can adapt it to the
project’s unique requirements. Most of the code will be Node and not rely on any spe-
cific framework, so I feel this works well with hapi.”

5.13 Summary
 Koa is lightweight, minimal, and uses ES2015 generator syntax for middleware.

It’s good for hosting single-page web apps that depend on external web APIs.
 hapi is focused on HTTP servers and routes. It’s good for lightweight back ends

composed of lots of small services.
 Flatiron is a set of decoupled modules that can be used like either a web MVC

framework or a more lightweight Express library. Flatiron is compatible with
Connect middleware.

 Kraken is based on Express, with added security features. It can be used for
MVC.

 Sails.js is a Rails/Django-inspired MVC framework. It has an ORM and a tem-
plate system.

 DerbyJS is an isomorphic framework that’s good for real-time applications.
 LoopBack removes the need to write boilerplate code for quickly generating

REST APIs complete with database support and an API explorer.
Licensed to Samir Mashlum <smashlum@gmail.com>

Connect and
Express in depth
In chapter 3, you saw how to build a simple Express application. This chapter pro-
vides a more in-depth study of Express and Connect. These two popular Node
modules are used by many web developers. This chapter shows you how to build
web apps and REST APIs with the most commonly used patterns.

This chapter covers
 Understanding what Connect and Express are for

 Using and creating middleware

 Creating and configuring an Express application

 Using key Express techniques for error handling,
rendering views, and forms

 Using Express architectural techniques for
routes, REST APIs, and authentication

Connect and Express
The concepts discussed in the following section are directly applicable to the higher-
level framework Express because it extends and builds upon Connect with addi-
108

tional higher-level sugar. After reading this section, you’ll have a firm understanding

Licensed to Samir Mashlum <smashlum@gmail.com>

109Connect

To start, let’s see how to create a basic Connect application. Later in the chapter,
you’ll see how to build a more complex Express application by using popular Express
techniques.

6.1 Connect
In this section, you’ll learn about Connect. You’ll see how its middleware can be used to
build simple web applications, and how middleware ordering matters. This will help
you to build more-modular Express applications later.

6.1.1 Setting up a Connect application

Express is built with Connect, but do you know you can make a fully functionally web
app with Connect alone? You can download and install Connect from the npm regis-
try by using the command shown here:

$ npm install connect@3.4.0

Here’s what a minimal Connect application looks like:

const app = require('connect')();
app.use((req, res, next) => {
 res.end('Hello, world!');
});
app.listen(3000);

This simple application (found under ch06-connect-and-express/hello-world in the
sample code) will respond with Hello, world! The function passed to app.use is a mid-
dleware component that ends the request by sending back the Hello, world! text as a
response. Middleware components form the basis of all Connect and Express apps.
Let’s look at them in more detail.

6.1.2 Understanding how Connect middleware works

In Connect, a middleware component is a JavaScript function that by convention accepts
three arguments: a request object, a response object, and an argument commonly
named next, which is a callback function indicating that the component is done and
the subsequent middleware component can be executed.

 Before your middleware runs, Connect uses a dispatcher that takes in requests and
then hands them off to the first middleware component that you’ve added to your

of how Connect middleware works and how to compose components together to create
an application. Other Node web frameworks work in a similar way, so learning Connect
will give you a head start when learning new frameworks.
application. Figure 6.1 shows a typical Connect application, which is composed of the

Licensed to Samir Mashlum <smashlum@gmail.com>

http://en.wikipedia.org/wiki/Rainbow_table
http://en.wikipedia.org/wiki/Rainbow_table
https://chocolatey.org/

110 CHAPTER 6 Connect and Express in depth

dispatcher as well as an arrangement of middleware including a logger, a body parser,
a static file server, and custom middleware.

 As you can see, the design of the middleware API means that more-complex behav-
ior can be composed of smaller building blocks. In the next section, you’ll see how to
do this by combining components.

6.1.3 Combining middleware

Connect provides a method called use for combining middleware components. Let’s
define two middleware functions and add them both to the application. One is the
simple Hello World function from earlier, and the other is a logger.

const connect = require('connect');
function logger(req, res, next) {
 console.log('%s %s', req.method, req.url);
 next();
}
function hello(req, res) {
 res.setHeader('Content-Type', 'text/plain');
 res.end('hello world');
}
connect()
 .use(logger)

Listing 6.1 Using multiple Connect middleware components

GET /img/logo.png

res.end()

Dispatcher receives request and
passes it to the first middleware

Dispatcher

logger

next()

next()

bodyParser

next()

static

next()

customMiddleware

POST /user/save

res.end()

Request is logged and passed to the
next middleware by using next()

Request body is parsed, if any exists,
and then passed to the next
middleware by using next()

If request is for a static file, response
is sent with that file and next() is not
called; otherwise, the request moves
to the next middleware

Request is handled with a custom
middleware and response is ended

Figure 6.1 The life cycle of two HTTP requests making their way through a Connect server

Prints HTTP method and
requests URL and calls next()

Ends response to HTTP
request with “hello world”
 .use(hello)
 .listen(3000);

Licensed to Samir Mashlum <smashlum@gmail.com>

111Connect

This middleware has two signatures: one with next, and one without. That’s because
this component finishes the HTTP response and never needs to give control back to
the dispatcher.

 The use() function returns an instance of a Connect application to support
method chaining, as shown previously. Note that chaining the .use() calls isn’t
required, as shown in the following snippet:

const app = connect();
app.use(logger);
app.use(hello);
app.listen(3000);

Now that you have a simple Hello World application working, we’ll look at why the
ordering of middleware .use() calls is important, and how to strategically use that
ordering to alter the way your application works.

6.1.4 Ordering middleware

The ordering of middleware in your application can dramatically affect the way it
behaves. Execution can be stopped by omitting next(), and middleware can be com-
bined to implement features such as authentication.

 What happens when middleware components don’t call next? Consider the previ-
ous Hello World example, where the logger middleware component is used first, fol-
lowed by the hello component. In that example, Connect logs to stdout and then
responds to the HTTP request. But consider what would happen if the ordering were
switched, as follows.

const connect = require('connect');
function logger(req, res, next) {
 console.log('%s %s', req.method, req.url);
 next();
}
function hello(req, res) {
 res.setHeader('Content-Type', 'text/plain');
 res.end('hello world');
}
const app = connect()
 .use(hello)
 .use(logger)
 .listen(3000);

In this example, the hello middleware component is called first and responds to the
HTTP request as expected. But logger is never called because hello never calls
next(), so control is never passed back to the dispatcher to invoke the next middle-

Listing 6.2 Wrong: hello middleware component before logger component

Always calls next(), so subsequent
middleware is invoked

Doesn’t call next(), because
component responds to request

logger will never be invoked
because hello doesn’t call next().
ware component. The moral here is that when a component doesn’t call next(), no
remaining middleware in the chain of command will be invoked.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://redis.io/commands
http://redis.io/commands

112 CHAPTER 6 Connect and Express in depth

Figure 6.2 shows how this example would skip the logger, and how to correct it.
 As you can see, placing hello in front of logger is rather useless, but when used

properly, ordering can be to your benefit.

6.1.5 Creating configurable middleware

You’ve learned some middleware basics; now we’ll go into detail and look at how to
create more-generic and reusable middleware.

 Middleware commonly follows a simple convention in order to provide configura-
tion capabilities to developers: using a function that returns another function (a clo-
sure). The basic structure for configurable middleware of this kind looks like this:

function setup(options) {
 // setup logic

 return function(req, res, next) {
 // middleware logic

 }
}

This type of middleware is used as follows:

hello

• Set headers
• res.end(): Send text to the browser

• Never called

• Print request information
• Call next()

• Set headers
• res.end(): Send text to the browserlogger

logger

hello

HTTP GET request

Browser receives response

Browser receives response

Log message displayed on console

HTTP GET request

Figure 6.2 Middleware ordering is important.

Additional middleware
initialization here

Options still accessible even though
outer function has returned
app.use(setup({ some: 'options' }));

Licensed to Samir Mashlum <smashlum@gmail.com>

113Connect

Notice that the setup function is invoked in the app.use line, whereas in previous
examples you were just passing a reference to the function.

 In this section, you’ll apply this technique to build three reusable, configurable
middleware components:

 A logger component with a configurable printing format
 A router component that invokes functions based on the requested URL

 A URL rewriter component that converts URL slugs to IDs

You’ll start by expanding your logger component to make it more configurable. The
logger middleware component you created earlier in this chapter wasn’t configu-
rable. It was hardcoded to print out the request’s req.method and req.url when
invoked. But what if you want to change what the logger displays at some point in the
future?

 In practice, using configurable middleware is just like using any of the middleware
you’ve created so far, except that you can pass additional arguments to the middle-
ware component to alter its behavior. Using the configurable component in your
application might look a little like the following example, where logger can accept a
string that describes the format that it should print out:

const app = connect()
 .use(logger(':method :url'))
 .use(hello);

To implement the configurable logger component, you first need to define a setup
function that accepts a single string argument (in this example, you’ll name it for-
mat). When setup is invoked, a function is returned, and it’s the middleware compo-
nent Connect will use. The returned component retains access to the format
variable, even after the setup function has returned, because it’s defined within the
same JavaScript closure. The logger then replaces the tokens in the format string
with the associated request properties on the req object, logs to stdout, and calls
next(), as shown in the following listing.

function setup(format) {
 const regexp = /:(\w+)/g;

 return function createLogger(req, res, next) {
 const str = format.replace(regexp, (match, property) => {
 return req[property];
 });

Listing 6.3 A configurable logger middleware component for Connect

Setup function can be called multiple
times with different configurations

Logger component uses a regexp
to match request properties

Logger
component
that Connect
will useUses regexp to format

log entry for request
Licensed to Samir Mashlum <smashlum@gmail.com>

114 CHAPTER 6 Connect and Express in depth

 console.log(str);
 next();
 }
}
module.exports = setup;

Because you’ve created this logger middleware component as configurable middle-
ware, you can .use() the logger multiple times in a single application with different
configurations or reuse this logger code in any number of future applications you
might develop. This simple concept of configurable middleware is used throughout
the Connect community, and it’s used for all core Connect middleware to maintain
consistency.

 To use the logger middleware in listing 6.3, you need to pass it a string that
includes some of the properties found on the request object. For example,
.use(setup(':method :url')) prints the HTTP method (GET, POST, and so
forth) and URL of each request.

 Before moving on to Express, let’s look at how Connect supports error handling.

6.1.6 Using error-handling middleware

All applications have errors, whether at the system level or the user level, and being
well prepared for error situations—even ones you aren’t anticipating—is a smart thing
to do. Connect implements an error-handling variant of middleware that follows the
same rules as regular middleware but accepts an error object along with the request
and response objects.

 Connect’s error handling is intentionally minimal, allowing the developer to spec-
ify the way errors should be handled. For example, you could pass only system and
application errors through the middleware (for example, foo is undefined) or user
errors (password is invalid) or a combination of both. Connect lets you choose which is
best for your application.

 In this section, you’ll use both types, and you’ll learn how error-handling middle-
ware works. You’ll also learn some useful patterns that can be applied while we look at
the following:

 Using Connect’s default error handler
 Handing application errors yourself
 Using multiple error-handling middleware components

Let’s jump in with a look at how Connect handles errors without any configuration.

USING CONNECT’S DEFAULT ERROR HANDLER

Consider the following middleware component, which will throw a ReferenceError
error because the function foo() isn’t defined by the application:

const connect = require('connect')

Prints request log
entry to consolePasses control to next

middleware component Directly exports logger
setup function
connect()
 .use((req, res) => {

Licensed to Samir Mashlum <smashlum@gmail.com>

115Connect

 foo();
 res.setHeader('Content-Type', 'text/plain');
 res.end('hello world');
 })
.listen(3000)

By default, Connect will respond with a 500 status code, a response body containing
the text Internal Server Error, and more information about the error itself. This is fine,
but in any kind of real application, you’d probably want to do more-specialized things
with those errors, such as send them off to a logging daemon.

HANDLING APPLICATION ERRORS YOURSELF

Connect also offers a way for you to handle application errors yourself, using error-
handling middleware. For instance, in development you might want to respond to the
client with a JSON representation of the error for quick and easy reporting, whereas in
production you’d want to respond with a simple Server error, so as not to expose sensi-
tive internal information (such as stack traces, filenames, and line numbers) to a
potential attacker.

 An error-handling middleware function must be defined to accept four argu-
ments—err, req, res, and next—as shown in listing 6.4, whereas regular middle-
ware takes the arguments req, res, and next. The following listing shows an example
error middleware. For a full example with a server, look at ch06-connect-and-express/
listing6_4 in the book’s source code.

const env = process.env.NODE_ENV || 'development';

function errorHandler(err, req, res, next) {
 res.statusCode = 500;
 switch (env) {
 case 'development':
 console.error('Error:');
 console.error(err);
 res.setHeader('Content-Type', 'application/json');
 res.end(JSON.stringify(err));
 break;
 default:
 res.end('Server error');
 }
}

module.exports = errorHandler;

USE NODE_ENV TO SET THE APPLICATION’S MODE A common Connect conven-
tion is to use the NODE_ENV environment variable (process.env.NODE_ENV)
to toggle the behavior between server environments, such as production and

Listing 6.4 Error-handling middleware in Connect

Error-handling middleware
uses four arguments

errorHandler middleware
component behaves differently,
depending on value of NODE_ENV
development.

Licensed to Samir Mashlum <smashlum@gmail.com>

116 CHAPTER 6 Connect and Express in depth

Figure 6.3 The life cycle of an HTTP request causing an error in a Connect server

When Connect encounters an error, it’ll switch to invoking only error-handling mid-
dleware, as you can see in figure 6.3.

 Imagine you have an application that allows people to authenticate to an adminis-
tration area for a blog. If the routing middleware component for the user routes
causes an error, both the blog and admin middleware components will be skipped,
because they don’t act as error-handling middleware—they only define three argu-
ments. Connect will then see that errorHandler accepts the error argument and will
invoke it. The middleware components could look something like this:

connect()
 .use(router(require('./routes/user')))
 .use(router(require('./routes/blog'))) // Skipped
 .use(router(require('./routes/admin'))) // Skipped
 .use(errorHandler);

Short-circuiting functionality based on middleware execution is a fundamental con-
cept used to organize Express applications. Now that you’ve learned the basics of
Connect, it’s time to go into more detail about Express.

6.2 Express
Express is a popular web framework formerly built on Connect but still compatible with

HTTP request to a URL
that will throw an error
on the server.

HTTP GET request
/bad-url

HTTP client
(Web browser)

Connect application
(does error handling)

Dispatcher passes the request
down the middleware stack
as usual.

Uh-oh! The router middleware
has some kind of error!

The hello middleware gets
skipped, because it wasn’t
defined as error-handling
middleware.

The errorHandler middleware
gets the Error that was created
by the logger middleware, and
can respond to the request in
the context of the Error.

Dispatcher

next()

Router

hello middleware

Error handler
Connect middleware. Although Express comes with basic functionality, such as

Licensed to Samir Mashlum <smashlum@gmail.com>

117Express

serving static files, URL routing, and application configuration, it’s still minimal. It
provides enough structure so you can compose reusable chunks without being too
restrictive of your development practices.

 Over the next few sections, you’ll implement a new Express application by using
the Express skeleton app generator. This process is more detailed than the brief over-
view in chapter 3, so by the end of this chapter you should have enough knowledge of
Express to build your own Express web apps and RESTful APIs. As the chapter contin-
ues, you’ll keep adding functionality to the skeleton to produce a full app by the end.

6.2.1 Generating the application skeleton

Express doesn’t force application structure on the developer. You can place routes in
as many files as you want, public assets in any directory you want, and so on. A minimal
Express application can be as small as the following listing, which implements a fully
functional HTTP server.

const express = require('express');
const app = express();

app.get('/', (req, res) => {
 res.send('Hello');
});

app.listen(3000);

The express(1) command-line tool available in the express-generator package
(www.npmjs.com/package/express-generator) can set up an application skeleton for
you. Using the generated application is a good way to get started if you’re new to
Express, as it sets up an application complete with templates, public assets, configura-
tion, and more.

 The default application
skeleton that express(1)
generates consists of only a
few directories and files, as
shown in figure 6.4. This
structure is designed to get
developers up and running
with Express in seconds,
but the application’s struc-
ture is entirely up to you
and your team to create.

Figure 6.4

Listing 6.5 A minimal Express application

Responds to any
web request to /

Sends “Hello” as
response text

Listens on port 3000
Default application skeleton
structure using EJS templates

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/express-generator

118 CHAPTER 6 Connect and Express in depth

This chapter’s example uses Embedded JavaScript (EJS) templates, which are similar
in structure to HTML. EJS is similar to PHP, JSP (for Java), and ERB (for Ruby), because
server-side JavaScript is embedded in an HTML document and executed prior to being
sent to the client. You’ll look at EJS more closely in chapter 7.

 In this section, you’ll do the following:

 Install Express globally with npm
 Generate the application
 Explore the application and install dependencies

Let’s get started.

INSTALLING THE EXPRESS EXECUTABLE

First, install express-generator globally with npm:

$ npm install -g express-generator

Next, you can use the --help flag to see the options available, as shown in figure 6.5.

Some of these options will generate small portions of the application for you. For
example, you can specify a template engine to generate a dummy template file for the
chosen template engine. Similarly, if you specify a CSS preprocessor by using the
--css option, a dummy template file will be generated for it.

 Now that the executable is installed, let’s see how to generate what will become the
photo application.

GENERATING THE APPLICATION

For this application, you use the -e (or --ejs) flag to use the EJS templating engine.
Execute express -e shoutbox. If you want to duplicate the code samples in our
GitHub repository, use express -e listing6_6.

 A fully functional application is created in the shoutbox directory. It contains a

Figure 6.5 Express help
package.json file to describe the project and dependencies, the application file itself,
the public file directories, and a directory for route handlers.

Licensed to Samir Mashlum <smashlum@gmail.com>

119Express

EXPLORING THE APPLICATION

Let’s take a closer look at what was gener-
ated. Open the package.json file in your
editor to see the application’s dependen-
cies, as shown in figure 6.6. Express can’t
guess which version of the dependencies
you’ll want, so it’s good practice to supply
the major, minor, and patch levels of the
module so you don’t introduce any sur-
prise bugs. For example, "express":

"~4.13.1" is explicit and will provide you
with identical code on each installation.

 Now look at the application file gener-
ated by express(1), shown in the follow-
ing listing. For now, you’ll leave this file as
is. You should be familiar with these middle-
ware components from the Connect sections earlier in this chapter, but it’s worth tak-
ing a look at how the default middleware configuration is set up.

var express = require('express');
var path = require('path');
var favicon = require('serve-favicon');
var logger = require('morgan');
var cookieParser = require('cookie-parser');
var bodyParser = require('body-parser');
var routes = require('./routes/index');
var users = require('./routes/users');
var app = express();

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'ejs');

app.use(logger('dev'));
app.use(bodyParser.json());
app.use(bodyParser.urlencoded({ extended: false }));
app.use(cookieParser());
app.use(express.static(path.join(__dirname, 'public')));

app.use('/', routes);
app.use('/users', users);

app.use(function(req, res, next) {
 let err = new Error('Not Found');
 err.status = 404;
 next(err);
});

Listing 6.6 Generated Express application skeleton

Figure 6.6 Generated package.json
contents

Serves default
favicon

Outputs development-
friendly colored logs

Parses request bodies

Serves static
files from ./public

Specifies
application
routes
if (app.get('env') === 'development') {
 app.use(function(err, req, res, next) {

Displays styled HTML error
pages in development

Licensed to Samir Mashlum <smashlum@gmail.com>

120 CHAPTER 6 Connect and Express in depth

 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: err
 });
 });
}

app.use(function(err, req, res, next) {
 res.status(err.status || 500);
 res.render('error', {
 message: err.message,
 error: {}
 });
});

module.exports = app;

You have the package.json and app.js files, but the application won’t run yet because
the dependencies haven’t been installed. Whenever you generate a package.json file
from express(1), you need to install the dependencies. Execute npm install to do
this, and then execute npm start to run the application.

 Check out the application by visiting http://localhost:3000 in your browser. The
default application looks like the one in figure 6.7.

Now that you’ve seen the generated skeleton, you can start building a real Express
application. The application will be a shoutbox that allows people to post messages.
When building applications like this, most seasoned Express developers start by plan-
ning their API and hence the required routes and resources that will be required.

PLANNING THE SHOUTBOX APPLICATION

Here are the requirements for the shoutbox application:

1 It should allow users to register accounts, sign in, and sign out.
2 Users should be able to post messages (entries).

Figure 6.7 Default
Express application
3 Site visitors should be able to paginate through entries.
4 There should be a simple REST API that supports authentication.

Licensed to Samir Mashlum <smashlum@gmail.com>

121Express

You need to store data and handle authentication. You also need to validate user
input. The necessary routes look something like this:

 API routes
 GET /api/entries: Get a list of entries
 GET /api/entries/page: Get a single page of entries
 POST /api/entry: Create a new shoutbox entry
 Web UI routes
 GET /post: The form for a new entry
 POST /post: Post a new entry
 GET /register: Show the registration form
 POST /register: Create a new account
 GET /login: Show the sign-in form
 POST /login: Sign in
 GET /logout: Sign out

This layout is similar to that of most web applications. Hopefully, you’ll be able to use
the example from this chapter as a template for your own applications in the future.

 In the previous listing, you may have noticed some calls to app.set:

app.set('views', path.join(__dirname, 'views'));
app.set('view engine', 'ejs');

This is how Express applications are configured. The next section explains Express
configuration in more detail.

6.2.2 Configuring Express and your application

Your application’s requirements will depend on the environment in which it’s running.
For example, you may want verbose logging when your product is in development, but
a leaner set of logs and gzip compression when it’s in production. In addition to con-
figuring environment-specific functionality, you may want to define some application-
level settings so Express knows what template engine you’re using and where it can find
the templates. Express also lets you define custom configuration key/value pairs.

Setting environment variables
To set an environment variable in UNIX systems, you can use this command:

$ NODE_ENV=production node app

In Windows, you can use this code:

$ set NODE_ENV=production
$ node app

These environment variables will be available in your application on the pro-

cess.env object.

Licensed to Samir Mashlum <smashlum@gmail.com>

122 CHAPTER 6 Connect and Express in depth

Express has a minimal environment-driven configuration system, consisting of several
methods, all driven by the NODE_ENV environment variable:

 app.set()

 app.get()

 app.enable()

 app.disable()

 app.enabled()

 app.disabled()

In this section, you’ll see how to use the configuration system to customize the way
Express behaves, as well as how to use this system for your own purposes throughout
development.

 Let’s take a closer look at what environment-based configuration means. Although the
NODE_ENV environment variable originated in Express, many other Node frameworks
have adopted it as a means to notify the Node application which environment it’s
operating within, defaulting to development.

 The app.configure() method accepts optional strings representing the envi-
ronment, and a function. When the environment matches the string passed, the call-
back is immediately invoked; when only a function is given, it’s invoked for all
environments. These environment names are completely arbitrary. For example, you
may have development, stage, test, and production, or prod for short:

if (app.get('env') === 'development') {
 app.use(express.errorHandler());
}

Express uses the configuration system internally, allowing you to customize the way
Express behaves, but it’s also available for your own use.

 Express also provides Boolean variants of app.set() and app.get(). For exam-
ple, app.enable(setting) is equivalent to app.set(setting, true), and
app.enabled (setting) can be used to check whether the value was enabled. The
methods app.disable (setting) and app.disabled(setting) complement
the truthful variants.

 A useful setting for developing APIs with Express is the json spaces option. If
you add it to your app.js file, your JSON will be printed in a more readable format:

app.set('json spaces', 2);

Now that you’ve seen how to take advantage of the configuration system for your own
use, let’s look at rendering views in Express.

6.2.3 Rendering views

In this chapter’s application, you’ll use EJS templates, though as previously men-

tioned, almost any template engine in the Node community can be used. If you’re not
familiar with EJS, don’t worry. It’s similar to templating languages found in other web

Licensed to Samir Mashlum <smashlum@gmail.com>

123Express

development platforms (PHP, JSP,
ERB). We cover some basics of EJS in
this chapter, but we discuss EJS and
several other template engines in
greater detail in chapter 7.

 Whether it’s rendering an entire
HTML page, an HTML fragment, or an
RSS feed, rendering views is crucial for
nearly every application. The concept
is simple: you pass data to a view, and
that data is transformed, typically to
HTML for web applications. You’re
likely familiar with the idea of views,
because most frameworks provide similar functionality; figure 6.8 illustrates how a
view forms a new representation for the data.

 The template that generates template 6.8 can be found in the following snippet:

<h1><%= name %></h1>
<p><%= name %> is a 2 year old <%= species %>.</p>

Express provides two ways to render views: at the application level with app.ren-
der(), and at the response with res.render(), which uses the former internally. In
this chapter, you’ll use only res.render(). If you look in ./routes/index.js, a func-
tion is defined that invokes res.render('index') in order to render the ./views/
index.ejs template, as shown in the following code (found in listing6_8):

router.get('/', (req, res, next) => {
 res.render('index', { title: 'Express' });
});

Before looking at res.render() more closely, let’s see how to configure the view
system.

CONFIGURING THE VIEW SYSTEM

Configuring the Express view system is simple. But even though express(1) gener-
ated the configuration for you, it’s still useful to know what’s going on behind the
scenes so you can make changes. We’ll focus on three areas:

 Adjusting the view lookup
 Configuring the default template engine
 Enabling view caching to reduce file I/O

First up is the views setting.

CHANGING THE LOOKUP DIRECTORY

The following snippet shows the views setting that the Express executable created:

Figure 6.8 HTML template plus data = HTML view
of data
app.set('views', __dirname + '/views');

Licensed to Samir Mashlum <smashlum@gmail.com>

124 CHAPTER 6 Connect and Express in depth

This specifies the directory that Express will use during view lookup. It’s a good idea
to use __dirname so that your application isn’t dependent on the current working
directory being the application’s root.

The next setting is view engine.

USING THE DEFAULT TEMPLATE ENGINE

When express(1) generated the application, the view engine setting was assigned
ejs because EJS was the template engine selected by the -e command-line option.
This setting enables you to render index rather than index.ejs. Otherwise, Express
requires the extension in order to determine which template engine is to be used.

 You might be wondering why Express even considers extensions. The use of exten-
sions allows you to use multiple template engines within a single Express application,
while providing a clean API for common use cases, because most applications will use
one template engine.

 Suppose, for example, you find writing RSS feeds easier with another template
engine, or perhaps you’re migrating from one template engine to another. You might
use Pug as the default, and EJS for the /feed route, as indicated in the following code
by the .ejs extension:

app.set('view engine', 'pug');
app.get('/', function(){
 res.render('index');
 });
app.get('/feed', function(){
 res.render('rss.ejs');
});

KEEPING PACKAGE.JSON IN SYNC Keep in mind that any additional template
engines you wish to use should be added to your package.json dependencies
object. Try to remember to install packages with npm install --save
package-name. Remove them with npm uninstall --save package-
name to delete them from node_modules and package.json. This makes
experimenting with different template engines easier when you’re still trying
to figure out which one you want to use.

VIEW CACHING

__dirname
__dirname (with two leading underscores) is a global variable in Node that identifies
the directory in which the currently running file exists. Often in development this direc-
tory will be the same as your current working directory (CWD), but in production the
Node executable may run from another directory. Using __dirname helps keep
paths consistent across environments.
The view cache setting is enabled by default in the production environment and
prevents subsequent render() calls from performing disk I/O. The contents of the

Licensed to Samir Mashlum <smashlum@gmail.com>

125Express

templates are saved in memory, greatly improving performance. The side effect of
enabling this setting is that you can no longer edit the template files without restarting
the server, which is why it’s disabled in development. If you’re running a staging envi-
ronment, you’ll likely want to enable this option.

 As illustrated in figure 6.9, when view cache is disabled, the template is read
from disk on every request. This is what allows you to make changes to a template
without restarting the application. When view cache is enabled, the disk is hit only
once per template.

 You’ve seen how the view-caching mechanism helps improve performance in a
nondevelopment environment. Now let’s see how Express locates views in order to
render them.

1

Request Caching disabled

res.render('user', {name: 'Tobi'})

Request

res.render('user', {name: 'Tobi'})

Response

Cache

Disk

2

res.render('user', {name: 'Tobi'})

Request

Response

Cache

Disk

1

Request Caching enabled

res.render('user', {name: 'Tobi'})

Request

Response

Cache

Disk

2
Request

Response

Cache

Disk
Figure 6.9 The view cache setting

Licensed to Samir Mashlum <smashlum@gmail.com>

126 CHAPTER 6 Connect and Express in depth

VIEW LOOKUP

The process of looking up a view is similar to the way Node’s require() works. When
res.render() or app.render() is invoked, Express first checks whether a file
exists at an absolute path. Next, Express looks relative to the views directory. Finally,
Express tries an index file. This process is represented as a flowchart in figure 6.10.

Because ejs is set as the default engine, the render call omits the .ejs extension, and
the template file will still be resolved correctly.

 As the application evolves, you’ll need more views, and sometimes several for a sin-
gle resource. Using view lookup can help with organization—for example, you can
use subdirectories related to the resource and create views within them.

 Adding subdirectories allows you to eliminate redundant parts of names (such as
edit-entry.ejs and show-entry.ejs). Express then adds the view engine extension and
resolves res.render('entries/edit') to ./views/entries/edit.ejs.

 Express checks to see whether a file named index resides in subdirectories of the
view directory. When files are named with a pluralized resource, such as entries, this
typically implies a resource listing. This means you can use res.ren-

der('entries') to render the file in views/entries/index.ejs.

METHODS OF EXPOSING DATA TO VIEWS

You’ve seen how to pass local variables directly to res.render() calls, but you can

No

No

Does a file exist with
an absolute path?

No

Does a file exist relative to the
“views” setting directory?

Does an index file exist?

View render requested

Return error

Yes

Yes
Processing view using file

Yes

Figure 6.10 Express view
lookup process
also use a few other mechanisms for this. For example, you can use app.locals for
application-level variables, and res.locals for request-level local variables that are

Licensed to Samir Mashlum <smashlum@gmail.com>

127Express

typically set by middleware components prior to the final route-handling method
where views are rendered.

 The values passed directly to res.render() take precedence over values set in
res.locals and app.locals, as figure 6.11 shows.

By default, Express exposes only one application-level variable, settings, to views,
which is the object containing all of the values set with app.set(). For example,
using app.set('title', 'My Application') would expose settings.title in
the template, as shown in the following EJS snippet:

<html>
 <head>
 <title><%= settings.title %></title>
 </head>
 <body>
 <h1><%= settings.title %></h1>
 <p>Welcome to <%= settings.title %>.</p>
 </body>

Internally, Express exposes this object with the following JavaScript:

app.locals.settings = app.settings;

No

No

YesFound in values
passed to render?

No

Yes
Found in app.locals?

Found in res.locals?

Return value

Variable found in template

Return error

Yes

Figure 6.11 Values passed directly to
the render function take precedence
when rendering a template.
That’s all there is to it! Now that you’ve seen how to render views and send data to
them, let’s look at how routes are defined and see how to write route handlers that

Licensed to Samir Mashlum <smashlum@gmail.com>

128 CHAPTER 6 Connect and Express in depth

can render views for the shoutbox application. You’ll also set up database models to
persist data.

6.2.4 Express routing 101

The primary function of Express routes is to pair a URL pattern with response logic.
But routes also can pair a URL pattern with middleware. This allows you to use middle-
ware to provide reusable functionality to certain routes.

 In this section, you’ll do the following:

 Validate user-submitted content by using route-specific middleware
 Implement route-specific validation
 Implement pagination

Let’s explore some of the ways to use route-specific middleware.

VALIDATING USER CONTENT SUBMISSION

To give you something to apply validation to, you’re going to finally add the ability to
post to the shoutbox application. To add the ability to post, you need to do a few things:

 Create an entry model
 Add entry-related routes
 Create an entry form
 Add logic to create entries using submitted form data

You’ll start by creating an entry model.

CREATING AN ENTRY MODEL

Before moving on, you need to install the Node redis module into the project. Install
it with npm install --save redis. If you don’t have Redis installed, go to http://
redis.io/ to learn how to install it; if you’re using macOS, you can easily install it with
Homebrew (http://brew.sh/), and Windows has a Redis Chocolatey package (https://
chocolatey.org/).

 We’re using Redis to cheat a little bit: the features of Redis and ES6 make creating
lightweight models without a complex database library easy. If you’re feeling ambi-
tious, you could use another database library (see chapter 8 for more about databases
in Node).

 Let’s see how to create a lightweight model to store your shoutbox entries. Create
a file to contain the entry model definition at models/entry.js. Add the code con-
tained in the following listing to this file. The entry model will be a simple ES6 class
that saves data in a Redis list.

const redis = require('redis');
const db = redis.createClient();

Listing 6.7 A model for entries

Instantiates

class Entry {
 constructor(obj) {

Redis client

Licensed to Samir Mashlum <smashlum@gmail.com>

http://redis.io/
http://redis.io/
http://brew.sh/
https://chocolatey.org/
https://chocolatey.org/

129Express

 for (let key in obj) {
 this[key] = obj[key];
 }
 }

 save(cb) {
 const entryJSON = JSON.stringify(this);
 db.lpush(
 'entries',
 entryJSON,
 (err) => {
 if (err) return cb(err);
 cb();
 }
);
 }
}

module.exports = Entry;

With the basic model fleshed out, you now need to add a function called getRange,
using the contents of the following listing. This function will allow you to retrieve
entries.

class Entry {
 static getRange(from, to, cb) {
 db.lrange('entries', from, to, (err, items) => {
 if (err) return cb(err);
 let entries = [];
 items.forEach((item) => {
 entries.push(JSON.parse(item));
 });
 cb(null, entries);
 });
 }
 ...
}

With a model created, you can now add routes to create and list entries.

CREATING AN ENTRY FORM

The app has the ability to list entries, but no way to add them. You’ll add this capabil-
ity next, starting by adding the following lines to the routing section of app.js:

app.get('/post', entries.form);
app.post('/post', entries.submit);

Next, add the following route to routes/entries.js. This route logic will render a tem-
plate containing a form:

exports.form = (req, res) => {

Listing 6.8 Logic to retrieve a range of entries

Iterates keys in
the object passedMerges

values

Converts saved entry
data to JSON string

Saves JSON
string to Redis list

Redis lrange function is
used to retrieve entries

Decodes entries previously
stored as JSON
 res.render('post', { title: 'Post' });
};

Licensed to Samir Mashlum <smashlum@gmail.com>

130 CHAPTER 6 Connect and Express in depth

Next, use the EJS template in the following listing to create a template for the form
and save it to views/post.ejs.

<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 <link rel='stylesheet' href='/stylesheets/style.css' />
 </head>
 <body>
 <% include menu %>
 <h1><%= title %></h1>
 <p>Fill in the form below to add a new post.</p>
 <form action='/post' method='post'>
 <p>
 <input type='text' name='entry[title]' placeholder='Title' />
 </p>
 <p>
 <textarea name='entry[body]' placeholder='Body'></textarea>
 </p>
 <p>
 <input type='submit' value='Post' />
 </p>
 </form>
 </body>
</html>

This form uses input names such as entry[title], so extended body parsing is
required. To change the body parser, open app.js, and move to the line that reads

app.use(bodyParser.urlencoded({ extended: false }));

Change this to use extended parsing:

app.use(bodyParser.urlencoded({ extended: true }));

With form display taken care of, let’s move on to creating entries from the submitted
form data.

IMPLEMENTING ENTRY CREATION

To add the capability to create entries from submitted form data, add the logic in the
next listing to the file routes/entries.js. This logic will add entries when form data is
submitted.

exports.submit = (req, res, next) => {
 const data = req.body.entry;
 const user = res.locals.user;

Listing 6.9 A form for entering post data

Listing 6.10 Add an entry using submitted form data

Entry title text

Entry body text

Comes from name=”entry[…]”
in the form
 const username = user ? user.name : null;
The middleware for loading users
will be added in listing 6.28

Licensed to Samir Mashlum <smashlum@gmail.com>

131Express

 const entry = new Entry({
 username: username,
 title: data.title,
 body: data.body
 });
 entry.save((err) => {
 if (err) return next(err);
 res.redirect('/');
 });
};

Now when you use a browser to access /post on your application, you’ll be able to add
entries. You’ll take care of forcing the user to sign in first in listing 6.21.

 With posting content taken care of, it’s time to render lists of entries.

ADDING FRONT-PAGE DISPLAY OF ENTRIES

Start by creating the file routes/entries.js. Then add the code in the following listing
to require the entry model and export a function for rendering a list of entries.

const Entry = require('../models/entry');
exports.list = (req, res, next) => {
 Entry.getRange(0, -1, (err, entries) => {
 if (err) return next(err);
 res.render('entries', {
 title: 'Entries',
 entries: entries,
 });
 });
};

With route logic defined for listing entries, you now need to add an EJS template to
display them. In the views directory, create a file named entries.ejs and put the follow-
ing EJS in it.

<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 <link rel='stylesheet' href='/stylesheets/style.css' />
 </head>
 <body>
 <% include menu %>
 <% entries.forEach((entry) => { %>
 <div class='entry'>
 <h3><%= entry.title %></h3>
 <p><%= entry.body %></p>

Listing 6.11 Listing entries

Listing 6.12 The entries.ejs view

Retrieves
entries

Renders HTTP
response
 <p>Posted by <%= entry.username %></p>
 </div>

Licensed to Samir Mashlum <smashlum@gmail.com>

132 CHAPTER 6 Connect and Express in depth

 <% }) %>
 </body>
</html>

Before running the application, run touch views/menu.ejs to create a temporary
file that will hold the menu at a later stage. When the views and routes are ready, you
need to tell the application where to find the routes.

ADDING ENTRY-RELATED ROUTES

Before you add entry-related routes to the application, you need to make modifications
to app.js. First, add the following require statement to the top of your app.js file:

const entries = require('./routes/entries');

Next, also in app.js, change the line containing the text app.get('/' to the follow-
ing to make any requests to the path / to return the entry listing:

app.get('/', entries.list);

When you run the application, the front page will display a list of entries. Now that
entries can be created and listed, let’s move on to using route-specific middleware to
validate form data.

USING ROUTE-SPECIFIC MIDDLEWARE

Suppose you want the entry text field in the post entry form to be required. The first
way you might think of to address this problem is to add it straight in your route call-
back, as shown in the following snippet. This approach isn’t ideal, however, because it
tightly ties the validation logic to this particular form. In many cases, validation logic
can be abstracted into reusable components, making development easier, faster, and
more declarative:

...
exports.submit = (req, res, next) => {
 let data = req.body.entry;
 if (!data.title) {
 res.error('Title is required.');
 res.redirect('back');
 return;
 }
 if (data.title.length < 4) {
 res.error('Title must be longer than 4 characters.');
 res.redirect('back');
 return;
 }
...

Express routes can optionally accept middleware of their own, applied only when that
route is matched, before the final route callback. The route callbacks themselves that
you’ve been using throughout the chapter aren’t treated specially. These are the same
as any other middleware, even the ones you’re about to create for validation!
 Let’s get started with route-specific middleware by looking at a simple, but inflexi-
ble, way to implement validation as route-specific middleware.

Licensed to Samir Mashlum <smashlum@gmail.com>

133Express

PERFORMING FORM VALIDATION WITH ROUTE-SPECIFIC MIDDLEWARE

The first possibility is to write a few simple, yet specific, middleware components to
perform validation. Extending the POST /post route with this middleware might
look something like the following:

app.post('/post',
 requireEntryTitle,
 requireEntryTitleLengthAbove(4),
 entries.submit
);

Note that this route definition, which normally has only a path and routing logic as
arguments, has two additional arguments specifying validation middleware.

 The two example middleware components in the following listing illustrate how
the original validations can be abstracted out. But they’re still not modular and work
only for the single field entry[title].

function requireEntryTitle(req, res, next) {
 const title = req.body.entry.title;
 if (title) {
 next();
 } else {
 res.error('Title is required.');
 res.redirect('back');
 }
}
function requireEntryTitleLengthAbove(len) {
 return (req, res, next) => {
 const title = req.body.entry.title;
 if (title.length > len) {
 next();
 } else {
 res.error(`Title must be longer than ${len}.`);
 res.redirect('back');
 }
 };
}

A more viable solution is to abstract the validators and pass the target field name. Let’s
take a look at approaching it this way.

BUILDING FLEXIBLE VALIDATION MIDDLEWARE

You can pass the field name, as shown in the following snippet. This allows you to
reuse validation logic, lessening the amount of code you need to write:

app.post('/post',
 validate.required('entry[title]'),

Listing 6.13 Two more potential, but imperfect, attempts at validation middleware
 validate.lengthAbove('entry[title]', 4),
 entries.submit);

Licensed to Samir Mashlum <smashlum@gmail.com>

134 CHAPTER 6 Connect and Express in depth

Swap the line app.post('/post', entries.submit); in the routing section of
app.js with this snippet. It’s worth noting that the Express community has created
many similar libraries for public consumption, but understanding how validation mid-
dleware works, and how to author your own, is invaluable.

 Let’s get on with it. Create a file named ./middleware/validate.js by using the pro-
gram code in listing 6.14. In validate.js, you’ll export several middleware compo-
nents—in this case, validate.required() and validate.lengthAbove(). The
implementation details aren’t important; the point of this example is that a small
amount of effort can go a long way if the code is common within the application.

function parseField(field) {
 return field
 .split(/\[|\]/)
 .filter((s) => s);
}
function getField(req, field) {
 let val = req.body;
 field.forEach((prop) => {
 val = val[prop];
 });
 return val;
}
exports.required = (field) => {
 field = parseField(field);
 return (req, res, next) => {
 if (getField(req, field)) {
 next();
 } else {
 res.error(`${field.join(' ')} is required`);
 res.redirect('back');
 }
 };
};
exports.lengthAbove = (field, len) => {
 field = parseField(field);
 return (req, res, next) => {
 if (getField(req, field).length > len) {
 next();
 } else {
 const fields = field.join(' ');
 res.error(`${fields} must have more than ${len} characters`);
 res.redirect('back');
 }
 };
};

To make this middleware available to your application, add the following line at the
top of app.js:

Listing 6.14 Validation middleware implementation

Parses entry[name]
notation

Looks up property based
on parseField() results

Parses field
once

On each request, checks
whether field has a value

If it does, moves on
to next middleware
component

If it doesn’t,
displays an error
const validate = require('./middleware/validate');

Licensed to Samir Mashlum <smashlum@gmail.com>

135Express

If you try the application now, you’ll find that the validation will be in effect. This vali-
dation API could be made even more fluent, but we’ll leave that for you to investigate.

6.2.5 Authenticating users

In this section, you’ll create an authentication system for the application from scratch.
You’ll go through the following steps:

 Implement logic to store and authenticate registered users
 Add account registration functionality
 Allow people to sign in
 Create and use middleware to load users

You’ll continue using Redis to implement user accounts. Now let’s see how to create a
user model to make working with Redis easier in our Node code.

SAVING AND LOADING USER RECORDS

In this section, you’ll implement user loading, saving, and authentication. You’ll do
the following:

 Define application dependencies by using a package.json file
 Create a user model
 Add logic to load and save user data by using Redis
 Secure user passwords by using bcrypt
 Add logic to authenticate attempts to log in

Bcrypt is a salted hashing function that’s available as a third-party module designed
specifically for hashing passwords. Bcrypt is great for passwords because it incorpo-
rates an iteration count argument to make it slower over time.

 Before continuing, add bcrypt to your shoutbox project:

npm install --save redis bcrypt

CREATING A USER MODEL

You now need to create a user model. Add a file named user.js to the models/ directory.
 Listing 6.15 is the user model. In this code, the redis and bcrypt dependencies

are required, and then a Redis connection is opened with redis.createClient().
The User function accepts an object and merges this object’s properties into its own.
For example, new User({ name: 'tobi' }) creates an object and sets the object’s
name property to Tobi.

const redis = require('redis');
const bcrypt = require('bcrypt');
const db = redis.createClient();

Listing 6.15 Starting to create a user model

Creates long-running
class User {
 constructor(obj) {

Redis connection

Licensed to Samir Mashlum <smashlum@gmail.com>

136 CHAPTER 6 Connect and Express in depth

 for (let key in obj) {
 this[key] = obj[key];
 }
 }
}

module.exports = User;

At the moment, the user mode is just a stub. You’ll need to add methods for creating
and updating user records as well.

SAVING A USER INTO REDIS

The next functionality you need is the ability to save a user, storing the user’s data with
Redis. The save method shown in listing 6.16 checks whether the user already has an
ID, and if so, save invokes the update method, indexing the user ID by name, and
populating a Redis hash with the object’s properties. Otherwise, a user who doesn’t
have an ID is considered a new user; the user:ids value is then incremented, which
gives the user a unique ID, and the password is hashed before saving into Redis with
the same update method.

 Add the code in the following listing to models/user.js.

class User {
 // ...
 save(cb) {
 if (this.id) {
 this.update(cb);
 } else {
 db.incr('user:ids', (err, id) => {
 if (err) return cb(err);
 this.id = id;
 this.hashPassword((err) => {
 if (err) return cb(err);
 this.update(cb);
 });
 });
 }
 }

 update(cb) {
 const id = this.id;
 db.set(`user:id:${this.name}`, id, (err) => {
 if (err) return cb(err);
 db.hmset(`user:${id}`, this, (err) => {
 cb(err);
 });
 });
 }

Listing 6.16 Updating user records

Iterates over the
passed-in object

Sets each property
on the current class

Exports the
User class

The user already exists
if an ID is set

Creates a
unique ID

Sets the
ID so it’ll
be saved

Hashes the
password

Saves the user
properties

Indexes users
by name

Uses Redis to store the
current class’s properties
Licensed to Samir Mashlum <smashlum@gmail.com>

137Express

SECURING USER PASSWORDS

When the user is first created, you need to set a .pass property to the user’s pass-
word. The user-saving logic then replaces the .pass property with a hash generated
by using the password.

 The hash is salted. Per-user salting helps to protect against rainbow table attacks:
the salt acts as a private key for the hashing mechanism. You can use bcrypt to gener-
ate a 12-character salt for the hash with genSalt().

RAINBOW TABLE ATTACKS Rainbow table attacks use precomputed tables to
break hashed passwords. You can read more about this topic in Wikipedia:
http://en.wikipedia.org/wiki/Rainbow_table.

After the salt is generated, bcrypt.hash() is called, which hashes the.pass prop-
erty and the salt. This final hash value then replaces the .pass property before
.update() stores it in Redis, ensuring that plain-text passwords aren’t saved, only the
hash.

 The following listing, which you’ll add to models/user.js, defines a function that
creates the salted hash and stores it in the user’s .pass property.

class User {
 // ...

 hashPassword(cb) {
 bcrypt.genSalt(12, (err, salt) => {
 if (err) return cb(err);
 this.salt = salt;
 bcrypt.hash(this.pass, salt, (err, hash) => {
 if (err) return cb(err);
 this.pass = hash;
 cb();
 });
 });
 }
}

That’s all there is to it.

TESTING THE USER-SAVING LOGIC

To try out saving users, start the Redis server by entering redis-server on the com-
mand line. Then add the code in the following listing, which creates an example user,
to the bottom of models/user.js. You can then run node models/user.js on the
command line to execute the creation of the example user.

Listing 6.17 Adding bcrypt encryption to the user model

Listing 6.18 Testing the user model

Generates a
12-character salt

Sets salt
so it’ll be

saved

Generates
hash

Sets hash so it’ll be
saved by update()
const User = require('./models/user');
const user = new User({ name: 'Example', pass: 'test' }); Creates new user

Licensed to Samir Mashlum <smashlum@gmail.com>

http://en.wikipedia.org/wiki/Rainbow_table

138 CHAPTER 6 Connect and Express in depth

user.save((err) => {
 if (err) console.error(err);
 console.log('user id %d', user.id);
});

You should see output indicating that the user has been created: user id 1, for
example. After testing the user model, remove the code in listing 6.18 from models/
user.js.

 When you use the redis-cli tool that comes with Redis, you can use the HGETALL
command to fetch each key and value of the hash, as the following command-line ses-
sion demonstrates.

$ redis-cli
redis> get user:ids
"1"
redis> hgetall user:1
 1) "name"
 2) "tobi"
 3) "pass"
 4) "$2a$12$BAOWThTAkNjY7Uht0UdBku46eDGpKpK5iJcf0eLW08sMcfPL7.PN."
 5) "age"
 6) "2"
 7) "id"
 8) "4"
 9) "salt"
10) "$2a$12$BAOWThTAkNjY7Uht0UdBku"
redis> quit

Having defined logic to save a user, you now need to add logic to retrieve user infor-
mation.

OTHER REDIS COMMANDS YOU CAN RUN IN THE REDIS-CLI TOOL For more infor-
mation about Redis commands, see the Redis command reference at http://
redis.io/commands.

RETRIEVING USER DATA

When a user attempts to log in to a web application, the user usually enters a user-
name and password into a form, and this data is then submitted to the application for
authentication. Once the login form is submitted, you need a method for fetching the
user via name.

 This logic is defined in the following listing as User.getByName(). The function
first performs an ID lookup with User.getId() and then passes the ID that it finds to
User.get(), which gets the Redis hash data for that user. Add the following methods

Listing 6.19 Querying with the Redis command-line tool

Saves user

Starts the Redis
command line Finds out the ID of the most

recently created user

Retrieves data in a
hash map itemProperties of a

hash map item

Quits the Redis
command line
to models/user.js.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://redis.io/commands
http://redis.io/commands

th
p

139Express

class User {
 // ...
 static getByName(name, cb) {
 User.getId(name, (err, id) => {
 if (err) return cb(err);
 User.get(id, cb);
 });
 }

 static getId(name, cb) {
 db.get(`user:id:${name}`, cb);
 }

 static get(id, cb) {
 db.hgetall(`user:${id}`, (err, user) => {
 if (err) return cb(err);
 cb(null, new User(user));
 });
 }
}

If you want to try fetching a user, you can try code like this:

User.getByName('tobi', (err, user) => {
 console.log(user);
});

Having retrieved the hashed password, you can now proceed with authenticating the
user.

AUTHENTICATING USER LOGINS

The final component needed for user authentication is a method, defined in the fol-
lowing listing, that takes advantage of the functions defined earlier for user data
retrieval. Add this logic to models/user.js.

static authenticate(name, pass, cb) {
 User.getByName(name, (err, user) => {
 if (err) return cb(err);
 if (!user.id) return cb();
 bcrypt.hash(pass, user.salt, (err, hash) => {
 if (err) return cb(err);
 if (hash == user.pass) return cb(null, user);
 cb();
 });
 });
}

The authentication logic begins by fetching the user by name. If the user isn’t found,

Listing 6.20 Fetching a user from Redis

Listing 6.21 Authenticating a user’s name and password

Looks up user
ID by name

Grabs user
with the ID

Gets ID indexed
by name

Fetches plain-
object hash

Converts plain object
to a new User object

Looks up user by name

User doesn’t exist

Hashes
e given

assword
Match found

Invalid password
the callback function is immediately invoked. Otherwise, the user’s stored salt and the

Licensed to Samir Mashlum <smashlum@gmail.com>

140 CHAPTER 6 Connect and Express in depth

password submitted are hashed to produce what should be identical to the stored
user.pass hash. If the submitted and stored hashes don’t match, the user has
entered invalid credentials. When looking up a key that doesn’t exist, Redis will give
you an empty hash, which is why the check for !user.id is used instead of !user.

 Now that you’re able to authenticate users, you need a way for users to register.

6.2.6 Registering new users

To allow users to create new accounts and then sign in, you need both registration and
login capabilities.

 In this section, you’ll do the following to implement registration:

 Map registration and login routes to URL paths
 Add route logic to display a registration form
 Add logic to store user data submitted from the

form

The form will look like figure 6.12.
 This form is displayed when a user visits /register

with a web browser. Later you’ll create a similar form
that allows users to log in.

ADDING REGISTRATION ROUTES

To get the registration form to show up, you first want
to create a route to render the form and return it to
the user’s browser for display.

 Listing 6.22 shows how you should alter app.js, using Node’s module system to
import a module defining registration route behavior from the routes directory, and
associating HTTP methods and URL paths to route functions. This forms a sort of
“front controller.” As you can see, there are both GET and POST register routes.

...
const register = require('./routes/register');
...
app.get('/register', register.form);
app.post('/register', register.submit);

Next, to define the route logic, create an empty file in the routes directory called reg-
ister.js. Start defining registration route behavior by exporting the following function
from routes/register.js—a route that renders the registration template:

exports.form = (req, res) => {
 res.render('register', { title: 'Register' });
};

Listing 6.22 Adding registration routes

Figure 6.12 User registration
form

Requires route logic

Adds routes
This route uses an EJS template, which you’ll create next, to define the registration
form’s HTML.

Licensed to Samir Mashlum <smashlum@gmail.com>

141Express

CREATING A REGISTRATION FORM

To define the registration form’s HTML, create a file in the views directory called regis-
ter.ejs. You can define this form by using the HTML/EJS detailed in the following listing.

<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 <link rel='stylesheet' href='/stylesheets/style.css' />
 </head>
 <body>
 <% include menu %>
 <h1><%= title %></h1>
 <p>Fill in the form below to sign up!</p>
 <% include messages %>
 <form action='/register' method='post'>
 <p>
 <input type='text' name='user[name]' placeholder='Username' />
 </p>
 <p>
 <input type='password' name='user[pass]'
 ➥ placeholder='Password' />
 </p>
 <p>
 <input type='submit' value='Sign Up' />
 </p>
 </form>
 </body>
</html>

Note the use of include messages, which includes another template: messages.ejs.
This template, which you’ll define next, is used to communicate with the user.

RELAYING FEEDBACK TO USERS

During user registration, and in many other parts of a typical application, it can be
necessary to relay feedback to the user. A user, for example, may attempt to register
with a username that someone else is already using. In this case, you need to tell the
user to choose another name.

 In your application, the messages.ejs template will be used to display errors.
Numerous templates throughout the application will include the messages.ejs tem-
plate.

 To create the messages template, create a file in the views directory called mes-
sages.ejs and put the logic in the following snippet into that file. The template logic
checks whether the locals.messages variable is set. If so, the template cycles
through the variable, displaying message objects. Each message object has a type

Listing 6.23 A view template that provides a registration form

Navigation links
will be added later

Display of messages
will be added later

User must
enter a

username

User must enter
a password
property (allowing you to use messages for nonerror notifications if need be) and a
string property (the message text). Application logic can queue an error for display

Licensed to Samir Mashlum <smashlum@gmail.com>

142 CHAPTER 6 Connect and Express in depth

by adding to the res.locals.messages array. After messages are displayed,
removeMessages is called to empty the messages queue:

<% if (locals.messages) { %>
 <% messages.forEach((message) => { %>
 <p class='<%= message.type %>'><%= message.string %></p>
 <% }) %>
 <% removeMessages() %>
<% } %>

Figure 6.13 shows the registration form when displaying
an error message.

 Adding a message to res.locals.messages is a
simple way to communicate with the user, but because
res.locals doesn’t persist across redirects, you need to
make it more robust by using sessions to store messages
between requests.

STORING TRANSIENT MESSAGES IN SESSIONS

A common web application design pattern is the Post/
Redirect/Get (PRG) pattern. In this pattern, a user
requests a form, the form data is submitted as an HTTP
POST request, and the user is then redirected to another
web page. Where the user is redirected to depends on whether the form data was con-
sidered valid by the application. If the form data isn’t considered valid, the application
redirects the user back to the form page. If the form data is valid, the user is redi-
rected to a new web page. The PRG pattern is primarily used to prevent duplicate form
submissions.

 In Express, when a user is redirected, the content of res.locals is reset. If you’re
storing messages to the user in res.locals, the messages are lost before they can be
displayed. By storing messages in a session variable, however, you can work around
this. Messages can then be displayed on the final redirect page.

 To accommodate the ability to queue messages to the user in a session variable,
you need to add a module to your application. Create a file named ./middleware/
messages.js, and add the following code:

const express = require('express');

function message(req) {
 return (msg, type) => {
 type = type || 'info';
 let sess = req.session;
 sess.messages = sess.messages || [];
 sess.messages.push({ type: type, string: msg });
 };
};

Figure 6.13 Registration
form error reporting
The res.message function provides a way to add messages to a session variable from
any Express request. The express.response object is the prototype that Express

Licensed to Samir Mashlum <smashlum@gmail.com>

143Express

uses for the response objects. Adding properties to this object means they’ll then be
available to all middleware and routes alike. In the preceding snippet,
express.response is assigned to a variable named res to make it easier to add
properties on the object and to improve readability.

 This feature requires session support. To add support for sessions, you need an
Express-compatible middleware module. There’s an officially supported package
called express-session. Install it with npm install --save express-session, and
then add the middleware to app.js, like this:

const session = require('express-session');
...
app.use(session({
 secret: 'secret',
 resave: false, saveUninitialized: true
}));

It’s best to place the middleware after the cookie middleware is inserted (it should be
around line 26).

 To make it even easier to add messages, add the code in the following snippet. The
res.error function allows you to easily add a message of type error to the message
queue. Use the res.message function you previously defined in the module:

res.error = msg => this.message(msg, 'error');

The last step is to expose these messages to the templates for output. If you don’t do
this, you have to pass req.session.messages to every res.render() call in the
application, which isn’t exactly ideal.

 To address this, you’ll create middleware that populates res.locals.messages
with the contents of res.session.messages on each request, effectively exposing
the messages to any templates that are rendered. So far, ./middleware/messages.js
extends the response prototype, but it doesn’t export anything. But adding the follow-
ing snippet to this file exports the middleware you need:

module.exports = (req, res, next) => {
 res.message = message(req);
 res.error = (msg) => {
 return res.message(msg, 'error');
 };
 res.locals.messages = req.session.messages || [];
 res.locals.removeMessages = () => {
 req.session.messages = [];
 };
 next();
};

First, a messages template variable is defined to store the session’s messages; it’s an
array that may or may not exist from the previous request (remember that these are

session-persisted messages). Next, you need a way to remove the messages from the
session; otherwise, they’ll build up, because nothing is clearing them.

Licensed to Samir Mashlum <smashlum@gmail.com>

144 CHAPTER 6 Connect and Express in depth

 Now, all you need to do to integrate this new feature is to require() the file in
app.js. You should mount this middleware below the session middleware because it
depends on req.session being defined. Note that because this middleware was
designed not to accept options and doesn’t return a second function, you can call
app.use(messages) instead of app.use(messages()). For future-proofing, it’s
typically best for third-party middleware to use app.use(messages()), regardless of
whether it accepts options:

...
const register = require('./routes/register');
const messages = require('./middleware/messages');
...
app.use(express.methodOverride());
app.use(express.cookieParser());
 app.use(session({
 secret: 'secret',
 resave: false,
 saveUninitialized: true
 }));
app.use(messages);
...

Now you’re able to access messages and removeMessages() within any view, so
messages.ejs should work perfectly when included in any template.

 With the display of the registration form completed and a way to relay any necessary
feedback to the user worked out, let’s move on to handling registration submissions.

IMPLEMENTING USER REGISTRATION

You need to create the route function to handle HTTP POST requests to /register. This
function is called submit.

 When form data is submitted, the bodyParser() middleware populates
req.body with the submitted data. The registration form uses the object notation
user[name], which translates to req.body.user.name after parsing by the body
parser. Likewise, req.body.user.pass is used for the password field.

 You need only a small amount of code in the submission route to handle valida-
tion, such as ensuring that the username isn’t already taken, and to save the new user,
as listing 6.24 shows.

 Once registration is complete, the user.id is assigned to the user’s session, which
you’ll later check to verify that the user is authenticated. If validation fails, a message is
exposed to templates as the messages variable, via res.locals.messages, and the
user is redirected back to the registration form.

 To add this functionality, add the contents of the following listing to routes/register.js.

const User = require('../models/user');
...

Listing 6.24 Creating a user with submitted data
exports.submit = (req, res, next) => {
 const data = req.body.user;

Licensed to Samir Mashlum <smashlum@gmail.com>

co
e

oth
145Express

 User.getByName(data.name, (err, user) => {
 if (err) return next(err);
 // redis will default it
 if (user.id) {
 res.error('Username already taken!');
 res.redirect('back');
 } else {
 user = new User({
 name: data.name,
 pass: data.pass
 });
 user.save((err) => {
 if (err) return next(err);
 req.session.uid = user.id;
 res.redirect('/');
 });
 }
 });
};

You can now fire up the application, visit /register, and register a user. The next thing
you need is a way for returning registered users to authenticate, via the /login form.

6.2.7 Logging in registered users

Adding login functionality is even simpler than registration, because the bulk of the
necessary logic is already in User.authenticate(), the general-purpose authentica-
tion method defined earlier. In this section, you’ll add the following:

 Route logic to display a login form
 Logic to authenticate user data submitted from the form

The form will look like figure 6.14.
 You’ll start by modifying app.js so login routes are

required and the route paths are established:

...
const login = require('./routes/login');
...
app.get('/login', login.form);
app.post('/login', login.submit);
app.get('/logout', login.logout);
...

Next, you’ll add functionality to display a login form.

DISPLAYING A LOGIN FORM

The first step in implementing a login form is creating a file for login- and logout-
related routes: routes/login.js. The route logic you need to add to display the login
form is nearly identical to the logic used earlier to display the registration form; the
only differences are the name of the template displayed and the page title:

exports.form = (req, res) => {

Checks whether
username is uniqueDefers

database
nnection

rrors and
er errors

Username is
already taken

Creates a user
with POST data

Saves
new user Stores uid

for authentication

Redirects to entry
listing page

Figure 6.14 User login form
 res.render('login', { title: 'Login' });
};

Licensed to Samir Mashlum <smashlum@gmail.com>

D

146 CHAPTER 6 Connect and Express in depth

The EJS login form that you’ll define in ./views/login.ejs, shown in the following list-
ing, is extremely similar to register.ejs as well; the only differences are the instruction
text and the route that data is submitted to.

<!DOCTYPE html>
<html>
 <head>
 <title><%= title %></title>
 <link rel='stylesheet' href='/stylesheets/style.css' />
 </head>
 <body>
 <% include menu %>
 <h1><%= title %></h1>
 <p>Fill in the form below to sign in!</p>
 <% include messages %>
 <form action='/login' method='post'>
 <p>
 <input type='text' name='user[name]' placeholder='Username' />
 </p>
 <p>
 <input type='password' name='user[pass]'
 ➥ placeholder='Password' />
 </p>
 <p>
 <input type='submit' value='Login' />
 </p>
 </form>
 </body>
</html>

Now that you’ve added the route and template needed to display the login form, the
next step is to add logic to handle login attempts.

AUTHENTICATING LOGINS

To handle login attempts, you need to add route logic that will check the submitted
username and password and, if they’re correct, set a session variable to the user’s ID
and redirect the user to the home page. The following listing contains this logic,
which you should add to routes/login.js.

const User = require('../models/user');
...
exports.submit = (req, res, next) => {
 const data = req.body.user;
 User.authenticate(data.name, data.pass, (err, user) => {
 if (err) return next(err);
 if (user) {

Listing 6.25 A view template for a login form

Listing 6.26 A route to handle logins

User must enter
a username

User must enter
a password

Checks credentials

elegates

errors Handles a user

with valid credentials

Licensed to Samir Mashlum <smashlum@gmail.com>

R
e

147Express

 req.session.uid = user.id;
 res.redirect('/');
 } else {
 res.error('Sorry! invalid credentials. ');
 res.redirect('back');
 }
 });
};

Here, if the user is authenticated by using User.authenticate(), req.session
.uid is assigned in the same way as in the POST /register route: the session will persist
this value, which you can use later to retrieve the User or other associated user data. If
a match isn’t found, an error is set and the form is redisplayed.

 Users may also prefer to explicitly log out, so you should provide a link for this
somewhere in the application. In app.js, set up the route with this:

const login = require('./routes/login');
…
app.get('/logout', login.logout);

Then in ./routes/login.js, the following function will remove the session, which is
detected by the session() middleware, causing the session to be assigned for subse-
quent requests:

exports.logout = (req, res) => {
 req.session.destroy((err) => {
 if (err) throw err;
 res.redirect('/');
 })
};

Now that the registration and login pages have been created, the next thing you need
to add is a menu so users can reach them. Let’s see how to create one.

CREATING A MENU FOR AUTHENTICATED AND ANONYMOUS USERS

In this section, you’ll create a menu for both anonymous and authenticated users,
allowing them to sign in, register, submit entries, and log out. Figure 6.15 shows the
menu for an anonymous user.

Stores uid for authentication
edirects to
ntry listing Exposes an error

message

Redirects back
to login form
Figure 6.15 User login and registration menu used to access the forms you created

Licensed to Samir Mashlum <smashlum@gmail.com>

148 CHAPTER 6 Connect and Express in depth

When the user is authenticated, you’ll display a different menu showing that user’s
username, as well as a link to a page for posting messages to the shoutbox and a link
allowing the user to log out. Figure 6.16 shows this menu.

Figure 6.16 Menu when the user is authenticated

Each EJS template you’ve created, representing an application page, has contained
the code <% include menu %> after the <body> tag. This includes the ./views/
menu.ejs template, which you’ll create next with the contents of the following listing.

<% if (locals.user) { %>
 <div id='menu'>
 <%= user.name %>
 post
 logout
 </div>
<% } else { %>
 <div id='menu'>
 login
 register
 </div>
<% } %>

In this application, you can assume that if a user variable is exposed to the template,
a user is authenticated, because you won’t be exposing the variable otherwise; you’ll
see this next. When this variable is present, you can display the username along with
the entry submission and logout links. When an anonymous user is visiting, the site
login and register links are displayed.

 You may be wondering where this user local variable comes from—you haven’t
written it yet. Next you’ll write some code to load the logged-in user’s data for each
request and make this data available to templates.

6.2.8 Working with user-loading middleware

A common task when you work with a web application is loading user information
from a database, typically represented as a JavaScript object. Having this data readily

Listing 6.27 Anonymous and authenticated user menu template

Menu for
logged-in users

Menu for
anonymous users
available makes interacting with the user simpler. For this chapter’s application, you’ll
load the user data on every request, using middleware.

Licensed to Samir Mashlum <smashlum@gmail.com>

149Express

 You’ll place this middleware script in ./middleware/user.js, requiring the User
model from the directory above (../models). The middleware function is first
exported, and then it checks the session for the user ID. When the user ID is present, a
user is authenticated, so it’s safe to fetch the user data from Redis.

 Because Node is single-threaded, there’s no thread-local storage. In the case of an
HTTP server, the request and response variables are the only contextual objects avail-
able. High-level frameworks could build upon Node to provide additional objects to
store the authenticated user, but Express made the choice to stick with the original
objects that Node provides. As a result, contextual data is typically stored on the
request object, as shown in listing 6.28, where the user is stored as req.user; subse-
quent middleware and routes can access the user object by using the same property.

 You may wonder what the assignment to res.locals.user is for. res.locals is
the request-level object that Express provides to expose data to templates, much like
app.locals. It’s also a function that can be used to merge existing objects into itself.

const User = require('../models/user');
module.exports = (req, res, next) => {
 const uid = req.session.uid;
 if (!uid) return next();
 User.get(uid, (err, user) => {
 if (err) return next(err);
 req.user = res.locals.user = user;
 next();
 });
};

To use this new middleware, first delete all lines in app.js containing the text user.
You can then require the module as usual and pass it to app.use(). In this applica-
tion, user is used above the router, so only the routes and middleware following user
have access to req.user. If you’re using middleware that loads data, as this middle-
ware does, you may want to move the express.static middleware above it; other-
wise, each time a static file is served, a needless round-trip to the database takes place
to fetch the user.

 The following listing shows how to enable this middleware in app.js.

const user = require('./middleware/user');
...
app.use(express.session());
app.use(express.static(__dirname + '/public'));
app.use(user);
app.use(messages);

Listing 6.28 Middleware that loads a logged-in user’s data

Listing 6.29 Enabling user-loading middleware

Gets logged-in user
ID from session

Gets logged-in user’s
data from Redis

Exposes user data to
response object

Adds the middleware
to the application
app.use(app.router);
...

Licensed to Samir Mashlum <smashlum@gmail.com>

150 CHAPTER 6 Connect and Express in depth

If you fire up the application again and visit either the /login or /register pages in
your browser, you should see the menu. If you want to style the menu, add the follow-
ing lines of CSS to public/stylesheets/style.css.

#menu {
 position: absolute;
 top: 15px;
 right: 20px;
 font-size: 12px;
 color: #888;
}
#menu .name:after {
 content: ' -';
}
#menu a {
 text-decoration: none;
 margin-left: 5px;
 color: black;
}

With the menu in place, you should be able to register yourself as a user. Then you
should see the authenticated user menu with the Post link.

 In the next section, you’ll learn how to create a public REST API for the application.

6.2.9 Creating a public REST API

In this section, you’ll implement a RESTful public API for the shoutbox application, so
that third-party applications can access and add to publication data. REST enables
application data to be queried and changed using verbs and nouns, represented by
HTTP methods and URLs, respectively. A REST request typically returns data in a
machine-readable form, such as JSON or XML.

 To implement an API, you’ll do the following:

 Design an API that allows users to show, list, remove, and post entries
 Add Basic authentication
 Implement routing
 Provide JSON and XML responses

Various techniques can be used to authenticate and sign API requests, but implement-
ing the more complex solutions are beyond the scope of this book. To illustrate how
to integrate authentication, you’ll use the basic-auth package.

DESIGNING THE API
Before proceeding with the implementation, it’s a good idea to rough out the routes
involved. For this application, you’ll prefix the RESTful API with the /api path, but this
is a design choice you can alter. For example, you may wish to use a subdomain such

Listing 6.30 CSS that can be added to style.css to style application menus
as http://api.myapplication.com.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://api.myapplication.com

151Express

 The following snippet illustrates why it can be a good choice to move the callback
functions into separate Node modules, versus defining them inline with the
app.VERB() calls. A single list of routes gives you a clear picture of what you and the
rest of your team have implemented, and where the implementation callback lives:

app.get('/api/user/:id', api.user);
app.get('/api/entries/:page?', api.entries);
app.post('/api/entry', api.add);

ADDING BASIC AUTHENTICATION

As previously mentioned, there are many ways to approach API security and restric-
tions that fall outside the scope of this book. But it’s worth illustrating the process with
Basic authentication.

 The api.auth middleware will abstract this process, because the implementation
will live in the soon-to-be-created ./routes/api.js module. The app.use() method
can be passed a pathname, which is known in Express as a mount point. With this
mount point, pathnames beginning with /api and any HTTP verb will cause this mid-
dleware to be invoked.

 The line app.use('/api', api.auth), as shown in the following snippet,
should be placed before the middleware that loads user data. This is so that you can
later modify the user-loading middleware to load data for authenticated API users:

...
const api = require('./routes/api');
...
app.use('/api', api.auth);
app.use(user);
...

To perform Basic authentication, install the basic-auth module: npm install

--save basic-auth. Next, create the ./routes/api.js file, and require both
Express and the user model, as shown in the following snippet. The basic-auth
package accepts a function to perform the authentication, taking the function signa-
ture (username, password, callback). Your User.authenticate method is a
perfect fit:

const auth = require('basic-auth');
const express = require('express');
const User = require('../models/user');

exports.auth = (req, res, next) => {
 const { name, pass } = auth(req);
 User.authenticate(name, pass, (err, user) => {
 if (user) req.remoteUser = user;
 next(err);
 });
};
Authentication is ready to roll. Let’s move on to implementing the API routes.

Licensed to Samir Mashlum <smashlum@gmail.com>

152 CHAPTER 6 Connect and Express in depth

IMPLEMENTING ROUTING
The first route you’ll implement is GET /api/user/:id. The logic for this route has
to first fetch the user by ID, responding with a 404 Not Found code if the user doesn’t
exist. If the user exists, the user data will be passed to res.send() to be serialized,
and the application will respond with a JSON representation of this data. Add the logic
in the following snippet to routes/api.js:

exports.user = (req, res, next) => {
 User.get(req.params.id, (err, user) => {
 if (err) return next(err);
 if (!user.id) return res.sendStatus(404);
 res.json(user);
 });
};

Next, add the following route path to app.js:

app.get('/api/user/:id', api.user);

You’re now ready to test it.

TESTING USER DATA RETRIEVAL

Fire up the application and test it with the cURL command-line tool. The following
snippet shows how to test the application’s REST authentication. Credentials are pro-
vided in the URL tobi:ferret, which cURL uses to produce the Authorization
header field:

$ curl http://tobi:ferret@127.0.0.1:3000/api/user/1 -v

The following listing shows the result of a successful test. To perform a similar test,
you need to make sure you know the ID of a user. Try using redis-cli and GET
user:ids if 1 doesn’t work and you’ve registered a user.

* About to connect() to local port 80 (#0)
* Trying 127.0.0.1... connected
* Connected to local (127.0.0.1) port 80 (#0)
* Server auth using Basic with user 'tobi'
> GET /api/user/1 HTTP/1.1
> Authorization: Basic Zm9vYmFyYmF6Cg==
> User-Agent: curl/7.21.4 (universal-apple-darwin11.0) libcurl/7.21.4
 ➥ OpenSSL/0.9.8r zlib/1.2.5
> Host: local
> Accept: */*
>
< HTTP/1.1 200 OK
< X-Powered-By: Express
< Content-Type: application/json; charset=utf-8
< Content-Length: 150
< Connection: keep-alive

Listing 6.31 Test output

Display of HTTP
headers sent

Display of HTTP
headers received

Display of JSON
data received
<
{"id":"1","name":"tobi"}

Licensed to Samir Mashlum <smashlum@gmail.com>

153Express

REMOVING SENSITIVE USER DATA

As you can see by the JSON response, both the user’s password and salt are provided in
the response. To alter this, you can implement.toJSON() on the User in models/
user.js:

class User {
 // ...
 toJSON() {
 return {
 id: this.id,
 name: this.name
 };
 }

If .toJSON exists on an object, it will be used by JSON.stringify calls to get the
JSON format. If the cURL request shown earlier was to be issued again, you’d now
receive only the ID and name properties:

{
 "id": "1",
 "name": "tobi"
}

The next thing you’ll add to the API is the ability to create entries.

ADDING ENTRIES

The processes for adding an entry via the HTML form and through an API are nearly
identical, so you’ll likely want to reuse the previously implemented entries.sub-
mit() route logic.

 When adding entries, however, the route logic stores the name of the user, adding
the entry in addition to the other details. For this reason, you need to modify the user-
loading middleware to populate res.locals.user with the user data loaded by the
basic-auth middleware. The basic-auth middleware returns this data, and you set
it to req.remoteUser. Adding a check for this in the user-loading middleware is
straightforward; change the module.exports definition in middleware/user.js as fol-
lows to make the user-loading middleware work with the API:

...
module.exports = (req, res, next) => {
 if (req.remoteUser) {
 res.locals.user = req.remoteUser;
 }
 const uid = req.session.uid;
 if (!uid) return next();
 User.get(uid, (err, user) => {
 if (err) return next(err);
 req.user = res.locals.user = user;
 next();
 });
};
With this change made, you’re now able to add entries via the API.

Licensed to Samir Mashlum <smashlum@gmail.com>

154 CHAPTER 6 Connect and Express in depth

 One more change to implement, however, is an API-friendly response, rather than
redirection to the application’s home page. To add this functionality, change the
entry.save call in routes/entries.js to the following:

...
 entry.save(err => {
 if (err) return next(err);
 if (req.remoteUser) {
 res.json({ message: 'Entry added.' });
 } else {
 res.redirect('/');
 }
 });
...

Finally, to activate the entry-adding API in your application, add the contents of the
following snippet to the routing section of app.js:

app.post('/api/entry', entries.submit);

By using the following cURL command, you can test adding an entry via the API. Here
the title and body data is sent using the same field names that are in the HTML form:

$ curl -X POST -d "entry[title]='Ho ho ho'&entry[body]='Santa loves you'"
 http://tobi:ferret@127.0.0.1:3000/api/entry

Now that you’ve added the ability to create entries, you need to add the ability to
retrieve entry data.

ADDING ENTRY LISTING SUPPORT

The next API route to implement is GET /api/entries/:page?. The route imple-
mentation is nearly identical to the existing entry list route in ./routes/entries.js. You
also need to add pagination middleware, which is page() in the following snippets.
You’ll add page() shortly.

 Because the routing logic will be accessing entries, you require the Entry model at
the top of routes/api.js by using the following line:

const Entry = require('../models/entry');

Next, add the lines in the following snippet to app.js:

const Entry = require('./models/entry');
...
app.get('/api/entries/:page?', page(Entry.count), api.entries);

Now add the routing logic in the following snippet to routes/api.js. The difference
between this route logic and the similar logic in routes/entries.js reflects the fact that
you’re no longer rendering a template, but JSON instead:

exports.entries = (req, res, next) => {

 const page = req.page;
 Entry.getRange(page.from, page.to, (err, entries) => {

Licensed to Samir Mashlum <smashlum@gmail.com>

D

155Express

 if (err) return next(err);
 res.json(entries);
 });
};

IMPLEMENTING PAGINATION MIDDLEWARE

For pagination, you use the query-string ?page=N value to determine the current
page. Add the following middleware function to ./middleware/page.js.

module.exports = (cb, perpage) => {
 perpage = perpage || 10;
 return (req, res, next) => {
 let page = Math.max(
 parseInt(req.params.page || '1', 10),
 1
) - 1;
 cb((err, total) => {
 if (err) return next(err);
 req.page = res.locals.page = {
 number: page,
 perpage: perpage,
 from: page * perpage,
 to: page * perpage + perpage - 1,
 total: total,
 count: Math.ceil(total / perpage)
 };
 next();
 });
 }
};

This middleware grabs the value assigned to ?page=N; for example, ?page=1. It then
fetches the total number of results and exposes the page object with precomputed
values to any views that may later be rendered. These values are computed outside the
template to allow for a cleaner template containing less logic.

TESTING THE ENTRIES ROUTE

The following cURL command requests entry data from the API:

$ curl http://tobi:ferret@127.0.0.1:3000/api/entries

This cURL command should result in output similar to the following JSON:

[
 {
 "username": "rick",
 "title": "Cats can't read minds",
 "body": "I think you're wrong about the cat thing."
 },

Listing 6.32 Pagination middleware

Defaults to
10 per page

Returns middleware
function

Parses page param
as a base 10 integer

Invokes the
function passedelegates

errors
Stores page properties
for future reference

Passes control to next
middleware component
 {
 "username": "mike",

Licensed to Samir Mashlum <smashlum@gmail.com>

156 CHAPTER 6 Connect and Express in depth

 "title": "I think my cat can read my mind",
 "body": "I think cat can hear my thoughts."
 },
...

With basic API implementation covered, let’s move on to how APIs can support multi-
ple response formats.

6.2.10 Enabling content negotiation

Content negotiation enables a client to specify the formats that it’s willing to accept, and
which it prefers. In this section, you’ll provide JSON and XML representations of the
API content so that the API consumers can decide what they want.

 HTTP provides the content negotiation mechanism via the Accept header field.
For example, a client who prefers HTML but is willing to accept plain text could set
the following request header:

Accept: text/plain; q=0.5, text/html

The qvalue, or quality value (q=0.5 in this example), indicates that even though text/
html is specified second, it’s favored by 50% over text/plain. Express parses this
information and provides a normalized req.accepted array:

[{ value: 'text/html', quality: 1 },
 { value: 'text/plain', quality: 0.5 }]

Express also provides the res.format() method, which accepts an array of MIME
types and callbacks. Express will determine what the client is willing to accept and
what you’re willing to provide, and it’ll invoke the appropriate callback.

IMPLEMENTING CONTENT NEGOTIATION

Implementing content negotiation for the GET /api/entries route, in routes/
api.js, might look something like listing 6.33. JSON is supported as it was before—you
serialize the entries as JSON with res.send(). The XML callback iterates the entries
and writes to the socket as it does so. Note that there’s no need to set the Content-
Type explicitly; res.format() sets it to the associated type automatically.

exports.entries = (req, res, next) => {
 const page = req.page;
 Entry.getRange(page.from, page.to, (err, entries) => {
 if (err) return next(err);
 res.format({
 'application/json': () => {
 res.send(entries);
 },
 'application/xml': () => {
 res.write('<entries>\n');

Listing 6.33 Implementing content negotiation

Fetches entry
data

Responds differently, based
on Accept header valueJSON

response

XML response
 entries.forEach((entry) => {
 res.write(```

Licensed to Samir Mashlum <smashlum@gmail.com>

157Express

 <entry>
 <title>${entry.title}</title>
 <body>${entry.body}</body>
 <username>${entry.username}</username>
 </entry>
            ```
          );
        });
        res.end('</entries>');
      }
    })
  });
};

If you set a default response format callback, this will execute if a user hasn’t
requested a format you’ve explicitly handled.

 The res.format() method also accepts an extension name that maps to an asso-
ciated MIME type. For example, json and xml can be used in place of application/
json and application/xml, as the following snippet shows:

...
res.format({
  json: () => {
    res.send(entries);
  },
  xml: () => {
    res.write('<entries>\n');
    entries.forEach((entry) => {
      res.write(```
        <entry>
             <title>${entry.title}</title>
          <body>${entry.body}</body>
          <username>${entry.username}</username>
        </entry>
        ```
);
 });
 res.end('</entries>');
 }
})
...

RESPONDING WITH XML
Writing a bunch of custom logic in the route in order to respond with XML may not
be the cleanest way to go, so let’s see how to use the view system to clean this up.

 Create a template named ./views/entries/xml.ejs with the following EJS iterating
the entries to generate <entry> tags.

Listing 6.34 Using an EJS template to generate XML
<entries>
<% entries.forEach(entry => { %>

Cycles through
each entry

Licensed to Samir Mashlum <smashlum@gmail.com>

158 CHAPTER 6 Connect and Express in depth

 <entry>
 <title><%= entry.title %></title>
 <body><%= entry.body %></body>
 <username><%= entry.username %></username>
 </entry>
<% }) %>
</entries>

The XML callback can now be replaced with a single res.render() call, passing the
entries array, as shown in the following code:

...
 xml: () => {
 res.render('entries/xml', { entries: entries });
 }
})
...

You’re now ready to test the XML version of the API. Enter the following in the com-
mand line to see the XML output:

curl -i -H 'Accept: application/xml'

➥ http://tobi:ferret@127.0.0.1:3000/api/entries

6.3 Summary
 Connect is an HTTP framework that lets you stack middleware components

before and after requests are processed.
 Connect middleware components are functions that accept Node’s request and

response objects, as well as a function that calls the next middleware and an
optional error object.

 Express web applications are also built with middleware components.
 You can build REST APIs with Express by using HTTP verbs to define routes.
 Express routes can respond with JSON, HTML, or other data formats.
 Express has a simple template engine API that supports many engines.

Outputs the fields
Licensed to Samir Mashlum <smashlum@gmail.com>

Web application
templating
In chapters 3 and 6, you learned some basics about templates in Express applications
in order to create views. In this chapter, you’ll focus exclusively on templating, learn-
ing how to use three popular template engines, and how to use templating to keep
any web application’s code clean by separating logic from presentation markup.

 If you’re familiar with templating and the Model-View-Controller (MVC) pat-
tern, you can skim through to section 7.2, where you’ll start learning about the tem-
plate engines detailed in this chapter, which include Embedded JavaScript, Hogan,
and Pug. If you’re not familiar with templating, keep reading—you’ll explore it
conceptually in the next few sections.

7.1 Using templating to keep code clean
You can use the MVC pattern to develop conventional web applications in Node as

This chapter covers
 Organizing applications with templating

 Creating templates by using Embedded JavaScript

 Learning minimalist templating with Hogan

 Using Pug to create templates
159

well as in nearly every other web technology. One of the key concepts in MVC is the

Licensed to Samir Mashlum <smashlum@gmail.com>

160 CHAPTER 7 Web application templating

separation of logic, data, and presentation. In MVC web applications, the user typically
requests a resource from the server, which causes the controller to request application
data from the model and then pass the data to the view, which finally formats the data
for the end user. This view portion of the MVC pattern is often implemented by using
one of various templating languages. When an application uses templating, the view
relays selected values, returned by the model, to a template engine, and specifies the
template file that defines how to display the provided values.

 Figure 7.1 shows how templating logic fits into the overall architecture of an MVC
application. Template files typically contain placeholders for application values as well
as HTML, CSS, and sometimes small bits of client-side JavaScript to implement dynamic
behavior, including displaying third-party widgets such as Facebook’s Like button, or to
trigger interface behavior, such as hiding or revealing parts of the page. Because tem-
plate files focus on presentation rather than logic, front-end developers and server-side
developers can work on them, which can help with a project’s division of labor.

 In this section, we’ll render HTML with, and without, a template to show you the
difference. But first, let’s start with an example of templating in action.

Figure 7.1 The flow of an MVC application and its interaction with the template layer

Web application

Controller

Templating
logic

7. Application
 response

5. Template files
 read from disk

6. Receives HTML/CSS
 that has been structured
 by the template engine

1. Browser request 2. Routes request to

View

3. Sends data to view

4. Sends raw data

Browser
Model

Template
files
Licensed to Samir Mashlum <smashlum@gmail.com>

Pa
i
p

161Using templating to keep code clean

7.1.1 Templating in action

As a quick illustration of applying templat-
ing, let’s look at the problem of elegantly
outputting HTML from a simple blogging
application. Each blog entry has a title,
date of entry, and body text. The blog
looks similar to figure 7.2 in a web browser.

 Blog entries are read from a text file
formatted like the following snippet from
entries.txt. The --- in the following listing
indicates where one entry stops and
another begins.

title: It's my birthday!
date: January 12, 2016
I am getting old, but thankfully I'm not in jail!

title: Movies are pretty good
date: January 2, 2016
I've been watching a lot of movies lately. It's relaxing,
except when they have clowns in them.

The blog application code in blog.js starts by requiring necessary modules and read-
ing in the blog entries, as shown in the following listing.

const fs = require('fs');
const http = require('http');
function getEntries() {
 const entries = [];
 let entriesRaw = fs.readFileSync('./entries.txt', 'utf8');
 entriesRaw = entriesRaw.split('---');
 entriesRaw.map((entryRaw) => {
 const entry = {};
 const lines = entryRaw.split('\n');
 lines.map((line) => {
 if (line.indexOf('title: ') === 0) {
 entry.title = line.replace('title: ', '');
 } else if (line.indexOf('date: ') === 0) {
 entry.date = line.replace('date: ', '');
 } else {
 entry.body = entry.body || '';
 entry.body += line;
 }

Listing 7.1 Blog entries text file

Listing 7.2 Blog entry file-parsing logic for a simple blogging application

Figure 7.2 Example blog application browser
output

Function to read and
parse blog entry text

Reads blog entry
 data from file

Parses text into individual
blog entries

Parses entry text
into individual lines

rses lines
nto entry
roperties
 });
 entries.push(entry);

Licensed to Samir Mashlum <smashlum@gmail.com>

162 CHAPTER 7 Web application templating

 });
 return entries;
}
const entries = getEntries();
console.log(entries);

The following code, when added to the blog application, defines an HTTP server. When
the server receives an HTTP request, it returns a page containing all blog entries. This
page is rendered using a function called blogPage, which you’ll define next:

const server = http.createServer((req, res) => {
 const output = blogPage(entries);
 res.writeHead(200, {'Content-Type': 'text/html'});
 res.end(output);
});
server.listen(8000);

Now you need to define the blogPage function, which renders the blog entries into a
page of HTML that can be sent to the user’s browser. You’ll implement this by trying
two approaches:

 Rendering HTML without a template
 Rendering HTML using a template

Let’s look at rendering without a template first.

7.1.2 Rendering HTML without a template

The blog application could output the HTML directly, but including the HTML with
the application logic would result in clutter. In the following listing, the blogPage
function illustrates a nontemplated approach to displaying blog entries.

function blogPage(entries) {
 let output = `
 <html>
 <head>
 <style type="text/css">
 .entry_title { font-weight: bold; }
 .entry_date { font-style: italic; }
 .entry_body { margin-bottom: 1em; }
 </style>
 </head>
 <body>
 `;
 entries.map(entry => {
 output += `
 <div class="entry_title">${entry.title}</div>
 <div class="entry_date">${entry.date}</div>
 <div class="entry_body">${entry.body}</div>

Listing 7.3 Template engines separate presentation details from application logic

Too much HTML
interspersed with logic
 `;
 });

Licensed to Samir Mashlum <smashlum@gmail.com>

163Using templating to keep code clean

 output += '</body></html>';
 return output;
}

Note that all of this presentation-related content, CSS definitions, and HTML adds
many lines to the application.

RENDERING HTML BY USING A TEMPLATE

Rendering HTML by using templating allows you to remove the HTML from the appli-
cation logic, cleaning up the code considerably.

 To try the demos in this section, you need to install the Embedded JavaScript (EJS)
module into your application directory. You can do this by entering the following on
the command line:

npm install ejs

The following snippet loads a template from a file and then defines a new version of
the blogPage function, this time using the EJS template engine, which we’ll show you
how to use in section 7.2:

const fs = require('fs');
const ejs = require('ejs');
const template = fs.readFileSync('./templatess/blog_page.ejs', 'utf8');
function blogPage(entries) {
 const values = { entries };
 return ejs.render(template, values);
}

The full listing can be found in this book’s listings under ch07-templates/listing7_4/.
The EJS template file contains HTML markup (keeping it out of the application logic)
and placeholders that indicate where data passed to the template engine should be
put. The EJS template file that shows the blog entries contains the HTML and place-
holders shown in the following listing.

<html>
 <head>
 <style type="text/css">
 .entry_title { font-weight: bold; }
 .entry_date { font-style: italic; }
 .entry_body { margin-bottom: 1em; }
 </style>
 </head>
 <body>
 <% entries.map(entry => { %>
 <div class="entry_title"><%= entry.title %></div>
 <div class="entry_date"><%= entry.date %></div>
 <div class="entry_body"><%= entry.body %></div>
 <% }); %>

Listing 7.4 An EJS template for displaying blog entries

Placeholder that loops
through blog entries

Placeholders for bits
of data in each entry
 </body>
</html>

Licensed to Samir Mashlum <smashlum@gmail.com>

164 CHAPTER 7 Web application templating

Community-contributed Node modules also provide template engines, and a wide
variety of them exist. If you consider HTML and/or CSS inelegant, because HTML
requires closing tags and CSS requires opening and closing braces, take a closer look
at template engines. They allow template files to use special languages (such as the
Pug language, which we cover later in this chapter) that provide a shorthand way of
specifying HTML, CSS, or both.

 These template engines can make your templates cleaner, but you may not want to
take the time to learn an alternative way of specifying HTML and CSS. Ultimately, what
you decide to use comes down to a matter of personal preference.

 In the rest of this chapter, you’ll learn how to incorporate templating in your Node
applications through the lens of three popular template engines:

 The Embedded JavaScript (EJS) engine
 The minimalist Hogan engine
 The Pug template engine

Each engine allows you to write HTML in an alternative way. Let’s start with EJS.

7.2 Templating with Embedded JavaScript
Embedded JavaScript (https://github.com/visionmedia/ejs) takes a fairly straightfor-
ward approach to templating, and it will be familiar territory for folks who’ve used
template engines in other languages, such as Java Server Pages (JSP), Smarty (PHP),
Embedded Ruby (ERB), and so on. EJS allows you to embed EJS tags as placeholders
for data within HTML. EJS also lets you execute raw JavaScript logic in your templates
for tasks such as conditional branching and iteration, much as PHP does.

 In this section, you’ll learn how to do the following:

 Create EJS templates
 Use EJS filters to provide commonly needed, presentation-related functionality,

such as text manipulation, sorting, and iteration
 Integrate EJS with your Node applications
 Use EJS for client-side applications

Let’s dive deeper into the world of EJS templating.

7.2.1 Creating a template

In the world of templating, the data sent to the template engine for rendering is
sometimes called the context. The following is a bare-bones example of Node using EJS
to render a simple template in a context:

const ejs = require('ejs');
const template = '<%= message %>';
const context = { message: 'Hello template!' };
console.log(ejs.render(template, context));
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/visionmedia/ejs
http://jade-lang.com
http://jade-lang.com
http://jade-lang.com

165Templating with Embedded JavaScript

Note the use of locals in the second argument sent to render. The second argu-
ment can include rendering options as well as context data, which means the use of
locals ensures that individual bits of context data aren’t interpreted as EJS options.
But it’s possible in most cases to pass the context itself as the second option, as the fol-
lowing render call illustrates:

console.log(ejs.render(template, context));

If you pass a context to EJS directly as the second argument to render, make sure you
don’t name context values by using any of the following terms: cache, client,
close, compileDebug, debug, filename, open, or scope. These values are
reserved to allow the changing of template engine settings.

CHARACTER ESCAPING

When rendering, EJS escapes any special characters in context values, replacing them
with HTML entity codes. This is intended to prevent cross-site scripting (XSS) attacks,
in which malicious web application users attempt to submit JavaScript as data in the
hopes that when displayed, it’ll execute in some other user’s browser. The following
code shows EJS’s escaping at work:

const ejs = require('ejs');
const template = '<%= message %>';
const context = {message: "<script>alert('XSS attack!');</script>"};
console.log(ejs.render(template, context));

The previous code displays the following output:

<script>alert('XSS attack!');</script>

If you trust the data being used in your template and don’t want to escape a context
value in an EJS template, you can use <%- instead of <%= in your template tag, as the
following code demonstrates:

const ejs = require('ejs');
const template = '<%- message %>';
const context = {
 message: "<script>alert('Trusted JavaScript!');</script>"
};
console.log(ejs.render(template, context));

Note that if you don’t like the characters used by EJS to specify tags, you can customize
them, like so:

const ejs = require('ejs');
ejs.delimiter = '$'
const template = '<$= message $>';
const context = { message: 'Hello template!' };
console.log(ejs.render(template, context));
Now that you know the basics of EJS, let’s look at some more detailed examples.

Licensed to Samir Mashlum <smashlum@gmail.com>

166 CHAPTER 7 Web application templating

7.2.2 Integrating EJS into your application

Because it’s awkward to store templates in files along with application code, and doing
so clutters up your code, we’ll show you how to use Node’s filesystem API to read them
from separate files.

 Move to a working directory and create a file named app.js containing the code in
the following listing.

const ejs = require('ejs');
const fs = require('fs');
const http = require('http');
const filename = './templates/students.ejs';
const students = [
 { name: 'Rick LaRue', age: 23 },
 { name: 'Sarah Cathands', age: 25 },
 { name: 'Bob Dobbs', age: 37 }
];

const server = http.createServer((req, res) => {
 if (req.url === '/') {
 fs.readFile(filename, (err, data) => {
 const template = data.toString();
 const context = { students: students };
 const output = ejs.render(template, context);
 res.setHeader('Content-type', 'text/html');
 res.end(output);
 });
 } else {
 res.statusCode = 404;
 res.end('Not found');
 }
});

server.listen(8000);

Next, create a child directory called templates. You’ll keep your templates in this
directory. Create a file named students.ejs in the templates directory. Enter the code
in the following listing into templates/students.ejs.

<% if (students.length) { %>

 <% students.forEach((student) => { %>
 <%= student.name %> (<%= student.age %>)
 <% }) %>

<% } %>

Listing 7.5 Storing template code in files

Listing 7.6 EJS template that renders an array of students

Notes location
of template file

Data to pass to
template engine

Creates HTTP
server

Reads template
from file

Renders
template

Sends HTTP
response
Licensed to Samir Mashlum <smashlum@gmail.com>

167Templating with Embedded JavaScript

CACHING EJS TEMPLATES

EJS supports optional, in-memory caching of template functions: after parsing your
template file once, EJS will store the function that’s created by the parsing. Rendering
a cached template will be faster because the parsing step can be skipped.

 If you’re doing initial development of a Node web application, and you want to see
any changes you make to your template files reflected immediately, don’t enable cach-
ing. But if you’re deploying an application to production, enabling caching is a quick,
easy win. Caching is conditionally enabled via the NODE_ENV environment variable.

 To try out caching, change the call to EJS’s render function in the previous exam-
ple to the following:

const cache = process.env.NODE_ENV === 'production';
const output = ejs.render(
 template,
 { students, cache, filename }
);

Note that the filename option doesn’t necessarily have to be a file; you can use a
unique value that identifies whichever template you’re rendering.

 Now that you’ve learned how to integrate EJS with your Node applications, let’s
look at how EJS can be used in a different way: in web browsers.

7.2.3 Using EJS for client-side applications

To use EJS on the client side, you first need to download the EJS engine to your work-
ing directory, as shown by the following commands:

cd /your/working/directory
curl -O https://raw.githubusercontent.com/tj/ejs/master/lib/ejs.js

After you download the ejs.js file, you can use EJS in your client-side code. The follow-
ing listing shows a simple client-side application of EJS. If you save this file as
index.html, you should be able to open it in a browser to see the results.

<html>
 <head>
 <title>EJS example</title>
 <script src="ejs.js"></script>
 <script
 src="http://ajax.googleapis.com/ajax/libs/jquery/1.8/jquery.js">
 </script>
 </head>
 <body>
 <div id="output"></div>

Listing 7.7 Using EJS to add templating capabilities to the client side

Includes jQuery library
for DOM manipulation

Placeholder for
rendered template output

Template to use
 <script>
 const template = "<%= message %>"; to render content

Licensed to Samir Mashlum <smashlum@gmail.com>

168 CHAPTER 7 Web application templating

 const context = { message: 'Hello template!' };
 $(document).ready(() => {
 $('#output').html(
 ejs.render(template, context)
);
 });
 </script>
 </body>
</html>

You’ve now learned how to use a fully featured Node template engine, so it’s time to
look at the Hogan template engine, which deliberately limits the functionality avail-
able to templating code.

7.3 Using the Mustache templating language with Hogan
Hogan.js (https://github.com/twitter/hogan.js) is a template engine that was created
by Twitter for its templating needs. Hogan is an implementation of the popular Mus-
tache (http://mustache.github.com/) template language standard, which was created
by GitHub’s Chris Wanstrath.

 Mustache takes a minimalist approach to templating. Unlike EJS, the Mustache
standard deliberately doesn’t include conditional logic, or any built-in content-filter-
ing capabilities other than escaping content to prevent XSS attacks. Mustache advo-
cates that template code should be kept as simple as possible.

 In this section you’ll learn

 How to create and implement Mustache templates in your application
 How to use the various template tags in the Mustache standard
 How to organize your templates by using partials
 How to fine-tune Hogan with your own delimiters and other options

Let’s look at the alternative approach Hogan provides for templating.

7.3.1 Creating a template

To use Hogan in an application, or to try the demos in this section, you need to install
Hogan in your application directory (ch07-templates/hogan-snippet). You can do this
by entering the following command on the command line:

npm i --save hogan.js

The following is a bare-bones example of Node using Hogan to render a simple tem-
plate in a context. Running it outputs the text Hello template!

const hogan = require('hogan.js');
const templateSource = '{{message}}';
const context = { message: 'Hello template!' };
const template = hogan.compile(templateSource);
console.log(template.render(context));

Data to
use with
template

Waits until browser
loads page

Renders template to
div with ID “output”
Now that you know how to process Mustache templates with Hogan, let’s look at what
tags Mustache supports.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/twitter/hogan.js
http://mustache.github.com/

169Using the Mustache templating language with Hogan

7.3.2 Using Mustache tags

Mustache tags are conceptually similar to EJS’s tags. Mustache tags serve as placehold-
ers for variable values, indicate where iteration is needed, and allow you to augment
Mustache’s functionality and add comments to your templates.

DISPLAYING SIMPLE VALUES

To display a context value in a Mustache template, include the name of the value in
double braces. Braces, in the Mustache community, are known as mustaches. If you want
to display the value for context item name, for example, you use the Hogan tag
{{name}}.

 Like most template engines, Hogan escapes content by default to prevent XSS
attacks. But to display an unescaped value in Hogan, you can either add a third mus-
tache or prepend the name of the context item with an ampersand. Using the previ-
ous name example, you could display the context value unescaped by either using the
{{{name}}} or {{&name}} tag formats.

 If you want to add a comment in a Mustache template, you can use this format:
{{! This is a comment }}.

SECTIONS: ITERATING THROUGH MULTIPLE VALUES

Although Hogan doesn’t allow the inclusion of logic in templates, it does include an
elegant way to iterate through multiple values in a context item by using Mustache sec-
tions. The following context, for example, contains an item with an array of values:

const context = {
 students: [
 { name: 'Jane Narwhal', age: 21 },
 { name: 'Rick LaRue', age: 26 }
]
};

If you want to create a template that displays each student in a separate HTML para-
graph, with output similar to the following, it’s a straightforward task using a Hogan
template:

<p>Name: Jane Narwhal, Age: 21 years old</p>
<p>Name: Rick LaRue, Age: 26 years old</p>

The following template produces the desired HTML:

{{#students}}
 <p>Name: {{name}}, Age: {{age}} years old</p>
{{/students}}

INVERTED SECTIONS: DEFAULT HTML WHEN VALUES DON’T EXIST

What if the value of the students item in the context data isn’t an array? If the value
is a single object, for example, the template will display it. But sections won’t display if
the corresponding item’s value is undefined or false, or is an empty array.
 If you want your template to output a message indicating that values don’t exist for
a section, Hogan supports what Mustache calls inverted sections. The following template

Licensed to Samir Mashlum <smashlum@gmail.com>

170 CHAPTER 7 Web application templating

code, if added to the previous student display template, would display a message when
no student data exists in the context:

{{^students}}
 <p>No students found.</p>
{{/students}}

SECTION LAMBDAS: CUSTOM FUNCTIONALITY IN SECTION BLOCKS

In order to allow developers to augment Mustache’s functionality, the Mustache stan-
dard lets you define section tags that process template content through a function
call, rather than iterating through arrays. This is called a section lambda.

 Listing 7.8 shows an example of using a section lambda to add Markdown support
when rendering a template. Note that the example uses the github-flavored-mark-
down module, which you install by entering npm install github-flavored-

markdown --dev on your command line. If you’re using the book’s source code,
run npm install from ch07-templates/listing7_8 to run the example.

 In the following listing, the **Name** in the template gets rendered to
Name when passing through the Markdown parser called by the
section lambda logic.

const hogan = require('hogan.js');
const md = require('github-flavored-markdown');
const templateSource = `
 {{#markdown}}**Name**: {{name}}{{/markdown}}
`;
const context = {
 name: 'Rick LaRue',
 markdown: () => text => md.parse(text)
};
const template = hogan.compile(templateSource);
console.log(template.render(context));

Section lambdas allow you to easily implement features such as caching and transla-
tion mechanisms in your templates.

PARTIALS: REUSING TEMPLATES WITHIN OTHER TEMPLATES

When writing templates, you want to avoid unnecessarily repeating the same code in
multiple templates. One way to avoid this is to create partials. Partials are templates
used as building blocks that are included in other templates. Another use of partials is
to break up complicated templates into simpler templates.

 The following listing, for example, uses a partial to separate the template code
used to display student data from the main template.

const hogan = require('hogan.js');

Listing 7.8 Using a lambda in Hogan

Listing 7.9 Using partials in Hogan

Requires Markdown parser

Mustache template also
contains Markdown formatting

Template context includes a
section lambda to parse
Markdown in the template
const studentTemplate = `
 <p>

Template code used for partial

Licensed to Samir Mashlum <smashlum@gmail.com>

171Templating with Pug

 Name: {{name}},
 Age: {{age}} years old
 </p>
`;
const mainTemplate = `
 {{#students}}
 {{>student}}
 {{/students}}
`;
const context = {
 students: [{
 name: 'Jane Narwhal',
 age: 21
 }, {
 name: 'Rick LaRue',
 age: 26
 }]
};
const template = hogan.compile(mainTemplate);
const partial = hogan.compile(studentTemplate);
const html = template.render(context, {student: partial });
console.log(html);

7.3.3 Fine-tuning Hogan

Hogan is fairly simple to use—after you’ve learned its vocabulary of tags, you should
be off and running. You may need to tweak only a couple of options as you use it.

 If you don’t like Mustache-style braces, you can change the delimiters Hogan uses
by passing the compile method an option to override them. The following example
shows compiling in Hogan using EJS-style delimiters:

hogan.compile(text, { delimiters: '<% %>' });

In addition to Mustache, other template languages are available. One that attempts to
eliminate as much of HTML’s noise as possible is Pug.

7.4 Templating with Pug
Pug (http://pugjs.org), formerly known as Jade, offers an alternative way to specify
HTML. It’s the default template engine in Express. The key difference between Pug
and the majority of other templating systems is the use of meaningful whitespace.
When creating a template in Pug, you use indentation to indicate HTML tag nesting.
HTML tags also don’t have to be explicitly closed, which eliminates the problem of
accidentally closing tags prematurely or not at all. Using indentation also results in
templates that are less visually dense and easier to maintain.

 For a quick example of this at work, let’s look at how you’d represent this snippet
of HTML:

<html>
 <head>
 <title>Welcome</title>

Main template code

Compiling the main
and partial templates

Rendering the
main template
and partial
 </head>
 <body>

Licensed to Samir Mashlum <smashlum@gmail.com>

http://pugjs.org

172 CHAPTER 7 Web application templating

 <div id="main" class="content">
 "Hello world!"
 </div>
 </body>
</html>

This HTML could be represented using the following Pug template:

html
 head
 title Welcome
 body
 div.content#main
 strong "Hello world!"

Pug, like EJS, allows you to embed JavaScript, and you can use it on the server or client
side. But Pug offers additional features, such as support for template inheritance and
mixins. Mixins allow you to define easily reusable mini-templates to represent the
HTML used for commonly occurring visual elements, such as item lists and boxes. Mix-
ins are similar in concept to the Hogan.js partials, which you learned about in the pre-
vious section. Template inheritance makes it easy to organize the Pug templates
needed to render a single HTML page into multiple files. You’ll learn about these fea-
tures in detail later in this section. To install Pug in a Node application directory,
enter the following on the command line:

npm install pug --save

In this section, you’ll learn

 Pug basics, such as specifying class names, attributes, and block expansion
 How to add logic to your Pug templates by using built-in keywords
 How to organize your templates by using inheritance, blocks, and mixins

To get started, let’s look at the basics of Pug usage and syntax.

7.4.1 Pug basics

Pug uses the same tag names as HTML, but it lets you lose the opening and closing
< and > characters and instead uses indentation to express tag nesting. A tag can have
one or more CSS classes associated with it by adding .<classname>. A div element
with the content and sidebar classes applied to it would be represented like this:

div.content.sidebar

CSS IDs are assigned by adding #<ID> to the tag. You add a CSS ID of featured
_content to the previous example by using the following Pug representation:

div.content.sidebar#featured_content

USING DIV TAG SHORTHAND

Because the div tag is commonly used in HTML, Pug offers a shorthand way of speci-

fying it. The following example renders to the same HTML as the previous example:

.content.sidebar#featured_content

Licensed to Samir Mashlum <smashlum@gmail.com>

173Templating with Pug

Now that you know how to specify HTML tags and their CSS classes and IDs, let’s look
at how to specify HTML tag attributes.

SPECIFYING TAG ATTRIBUTES

You can specify tag attributes by enclosing the attributes in parentheses, separating
the specification of each attribute from the next with a comma. You can specify a
hyperlink that’ll open in a different tab by using the following Pug representation:

a(href='http://nodejs.org', target='_blank')

Because the specification of tag attributes can lead to long lines of Pug, the template
engine provides you with some flexibility. The following Pug is valid and equivalent to
the previous example:

a(href='http://nodejs.org',
 target='_blank')

You can also specify attributes that don’t require a value. The next Pug example shows
the specification of an HTML form that includes a select element with an option
preselected:

strong Select your favorite food:
form
 select
 option(value='Cheese') Cheese
 option(value='Tofu', selected) Tofu
Specifying tag content

In the previous code snippet, you can also see examples of tag content: Select your
favorite food: after the strong tag; Cheese after the first option tag; and Tofu
after the second option tag.

 This is the normal way to specify tag content in Pug, but it’s not the only way.
Although this style is great for short bits of content, it can result in Pug templates with
overly long lines if a tag’s content is lengthy. Luckily, as the following example shows,
Pug allows you to specify tag content by using the | character:

textarea
 | This is some default text
 | that the user should be
 | provided with.

If the HTML tag, such as the style and script tags, accepts only text (meaning it
doesn’t allow nested HTML elements), then the | characters can be left out entirely, as
the following example shows:

style
 h1 {
 font-size: 6em;

 color: #9DFF0C;
 }

Licensed to Samir Mashlum <smashlum@gmail.com>

174 CHAPTER 7 Web application templating

Having two separate ways to express long tag content and short tag content helps you
keep your Pug templates looking elegant. Pug also supports an alternative way to
express nesting, called block expansion.

KEEPING IT ORGANIZED WITH BLOCK EXPANSION

Pug normally expresses nesting through indentation, but sometimes indentation can
lead to excess whitespace. For example, here’s a Pug template that uses indentation to
define a simple list of links:

ul
 li
 a(href='http://nodejs.org/') Node.js homepage
 li
 a(href='http://npmjs.org/') NPM homepage
 li
 a(href='http://nodebits.org/') Nodebits blog

A more compact way to express the previous example is by using Pug block expansion.
With block expansion, you add a colon after your tag to indicate nesting. The following
code generates the same output as the previous listing, but in four lines instead of seven:

ul
 li: a(href='http://nodejs.org/') Node.js homepage
 li: a(href='http://npmjs.org/') NPM homepage
 li: a(href='http://nodebits.org/') Nodebits blog

Now that you’ve had a good look at how to represent markup using Pug, let’s look at
how to integrate Pug with your web application.

INCORPORATING DATA IN PUG TEMPLATES

Data is relayed to the Pug engine in the same basic way as in EJS. The template is first
compiled into a function that’s then called with a context in order to render the
HTML output. The following is an example of this:

const pug = require('pug');
const template = 'strong #{message}';
const context = { message: 'Hello template!' };
const fn = pug.compile(template);
console.log(fn(context));

Here, the #{message} in the template specifies a placeholder to be replaced by a
context value.

 Context values can also be used to supply values for attributes. The next example
renders :

const pug = require('pug');
const template = 'a(href = url)';
const context = { url: 'http://google.com' };
const fn = pug.compile(template);
console.log(fn(context));
Now that you’ve learned how HTML is represented using Pug, and how to provide Pug
templates with application data, let’s look at how to incorporate logic in Pug.

Licensed to Samir Mashlum <smashlum@gmail.com>

175Templating with Pug

7.4.2 Logic in Pug templates

After you supply Pug templates with application data, you need logic to deal with that
data. Pug allows you to directly embed lines of JavaScript code into your templates,
which is how you define logic in your templates. Code such as if statements, for
loops, and var declarations are common. Before we dive into the details, here’s an
example for template rendering a contact list, to give you a practical feel for how you
might use Pug logic in an application:

h3.contacts-header My Contacts
if contacts.length
 each contact in contacts
 - var fullName = contact.firstName + ' ' + contact.lastName
 .contact-box
 p fullName
 if contact.isEditable
 p: a(href='/edit/+contact.id) Edit Record
 p
 case contact.status
 when 'Active'
 strong User is active in the system
 when 'Inactive'
 em User is inactive
 when 'Pending'
 | User has a pending invitation
else
 p You currently do not have any contacts

Let’s first look at the various ways Pug handles output when embedding JavaScript
code.

USING JAVASCRIPT IN PUG TEMPLATES

Prefixing a line of JavaScript logic with - will execute the JavaScript without including
any value returned from the code in the template’s output. Prefixing JavaScript logic
with = will include a value returned from the code, escaped to prevent XSS attacks. But
if your JavaScript generates code that shouldn’t be escaped, you can prefix it with !=.
Table 7.1 summarizes the output resulting from these prefixes.

Table 7.1 Prefixes used to embed JavaScript in Pug

Prefix Output

= Escaped output (for untrusted or unpredictable values, XSS safe)

!= Output without escaping (for trusted or predictable values)

- No output
Pug includes commonly used conditional and iterative statements that can be written
without prefixes: if, else, case, when, default, until, while, each, and unless.

Licensed to Samir Mashlum <smashlum@gmail.com>

176 CHAPTER 7 Web application templating

 Pug also allows you to define variables. The following shows two ways to assign val-
ues that are equivalent in Pug:

- count = 0
count = 0

The unprefixed statements have no output, just like the - prefix discussed previously.

ITERATING THROUGH OBJECTS AND ARRAYS

Values passed in a context are accessible to JavaScript in Pug. In the next example,
you’ll read a Pug template from a file and pass the Pug template a context containing
a couple of messages that you intend to display in an array:

const pug = require('pug');
const fs = require('fs');
const template = fs.readFileSync('./template.pug');
const context = { messages: [
 'You have logged in successfully.',
 'Welcome back!'
]};
const fn = pug.compile(template);
console.log(fn(context));

The Pug template contains the following:

- messages.forEach(message => {
 p= message
- })

The final HTML output looks like this:

<p>You have logged in successfully.</p><p>Welcome back!</p>

Pug also supports a non-JavaScript form of iteration: the each statement, which allows
you to cycle through arrays and object properties with ease.

 The following is equivalent to the previous example, but using each instead:

each message in messages
 p= message

You can cycle through object properties by using a slight variation, like this:

each value, key in post
 div
 strong #{key}
 p value

CONDITIONALLY RENDERING TEMPLATE CODE

Sometimes templates need to make decisions about how data is displayed, depending
on the value of the data. The next example illustrates a conditional in which, roughly
half the time, the script tag is outputted as HTML:
- n = Math.round(Math.random() * 1) + 1
- if (n == 1) {

Licensed to Samir Mashlum <smashlum@gmail.com>

177Templating with Pug

 script
 alert('You win!');
- }

Conditionals can also be written in Pug by using a cleaner, alternative form:

- n = Math.round(Math.random() * 1) + 1
 if n == 1
 script
 alert('You win!');

If you’re writing a negated conditional, such as if (n != 1), you can use Pug’s
unless keyword:

- n = Math.round(Math.random() * 1) + 1
 unless n == 1
 script
 alert('You win!');

USING CASE STATEMENTS IN PUG

Pug also supports a non-JavaScript form of conditional similar to a switch: the
case statement, which allows you to specify an outcome based on various template
scenarios.

 The following example template shows how the case statement can be used to dis-
play results from the search of a blog in three ways. If the search finds nothing, a mes-
sage is shown indicating that. If a single blog post is found, it’s displayed in detail. If
multiple blog posts are found, an each statement is used to iterate through the posts,
displaying their titles:

case results.length
 when 0
 p No results found.
 when 1
 p= results[0].content
 default
 each result in results
 p= result.title

7.4.3 Organizing Pug templates

With your templates defined, you next need to know how to organize them. As with
application logic, you don’t want to make your template files overly large. A single
template file should correspond to a conceptual building block: a page, a sidebar, or
blog post content, for example.

 In this section, you’ll learn a few mechanisms that allow template files to work
together to render content:

 Structuring multiple templates with template inheritance
 Implementing layouts by using block prepending/appending

 Template including
 Reusing template logic with mixins

Licensed to Samir Mashlum <smashlum@gmail.com>

178 CHAPTER 7 Web application templating

Let’s begin by looking at template inheritance in Pug.

STRUCTURING MULTIPLE TEMPLATES WITH TEMPLATE INHERITANCE

Template inheritance is one means of structuring multiple templates. The concept
treats templates, conceptually, like classes in the object-oriented programming para-
digm. One template can extend another, which can in turn extend another. You can
use as many levels of inheritance as makes sense.

 As a simple example, let’s look at using template inheritance to provide a basic
HTML wrapper that you can use to wrap page content. In a working directory, create a
folder called templates in which you’ll put the example’s Pug file. For a page tem-
plate, you’ll create a file called layout.pug containing the following Pug:

html
 head
 block title
 body
 block content

The layout.pug template contains the bare-bones definition of an HTML page as well
as two blocks. Blocks are used in template inheritance to define where a descendant
template can provide content. In layout.pug, there’s a title block, allowing a descen-
dent template to set the title, and a content block, allowing a descendant template to
set what's to be displayed on the page.

 Next, in your working directory’s templates directory, create a file named
page.pug. This template file will populate the title and content blocks:

extends layout
block title
 title Messages
block content
 each message in messages
 p= message

Finally, add the logic in the following listing (a modification of an earlier example in
this section), which will display the template results, showing inheritance in action.

const pug = require('pug');
const fs = require('fs');
const templateFile = './templates/page.pug';
const iterTemplate = fs.readFileSync(templateFile);
const context = { messages: [
 'You have logged in successfully.',
 'Welcome back!'
]};
const iterFn = pug.compile(
 iterTemplate,
 { filename: templateFile }

Listing 7.10 Template inheritance in action
);
console.log(iterFn(context));

Licensed to Samir Mashlum <smashlum@gmail.com>

179Templating with Pug

Now let’s look at another template inheritance feature: block prepending and
appending.

IMPLEMENTING LAYOUTS BY USING BLOCK PREPENDING/APPENDING

In the previous example, the blocks in layout.pug contain no content, which makes
setting the content in the page.pug template straightforward. But if a block in an
inherited template does contain content, this content can be built upon, rather than
replaced, by descendant templates using block prepending and appending. This
allows you to define common content and add to it, rather than replace it.

 The following layout.pug template contains an additional block, scripts, which
contains content—a script tag that loads the jQuery JavaScript library:

html
 head
 - const baseUrl = "http://ajax.googleapis.com/ajax/libs/jqueryui/1.8/"
 block title
 block style
 block scripts
 body
 block content

If you want the page.pug template to additionally load the jQuery UI library, you can
do this by using the template in the following listing.

extends layout
block title
 title Messages
block style
 link(rel="stylesheet", href=baseUrl+"themes/flick/jquery-ui.css")
block scripts
 script(src=baseUrl+"jquery-ui.js")
block content
 - count = 0
 each message in messages
 - count = count + 1
 script
 $(() => {
 $("#message_#{count}").dialog({
 height: 140,
 modal: true
 });
 });
 != '<div id="message_' + count + '">' + message + '</div>'

Template inheritance isn’t the only way to integrate multiple templates. You also can
use the include Pug command.

TEMPLATE INCLUDING

Listing 7.11 Using block appending to load an additional JavaScript file

This template extends
the layout template Defines style block

Defines scripts block
Another tool for organizing templates is Pug’s include command. This command
incorporates the contents of another template. If you add the line include footer

Licensed to Samir Mashlum <smashlum@gmail.com>

180 CHAPTER 7 Web application templating

to the layout.pug template from the earlier example, you end up with the following
template:

html
 head
 block title
 block style
 block scripts
 script(src='//ajax.googleapis.com/ajax/libs/jquery/1.8/jquery.js')
 body
 block content
 include footer

This template includes the contents
of a template named footer.pug in
the rendered output of layout.pug, as
illustrated in figure 7.3.

 This can be used, for example, to
add information about the site or
design elements to layout.pug. You
can also include non-Pug files by spec-
ifying the file extension (for example,
include twitter_widget.html).

REUSING TEMPLATE LOGIC WITH MIXINS

Although Pug’s include command
is useful for bringing in previously
created chunks of code, it’s not ideal
for creating a library of reusable func-
tionality that you can share between pages and applications. For this, Pug provides the
mixin command, which lets you define reusable Pug snippets.

 A Pug mixin is analogous to a JavaScript function. A mixin can, like a function,
take arguments, and these arguments can be used to generate Pug code.

 Let’s say, for example, your application handles a data structure similar to the fol-
lowing:

const students = [
 { name: 'Rick LaRue', age: 23 },
 { name: 'Sarah Cathands', age: 25 },
 { name: 'Bob Dobbs', age: 37 }
];

If you want to define a way to output an HTML list derived from a given property of
each object, you could define a mixin like the following one to accomplish this:

mixin list_object_property(objects, property)
 ul

layout.jade

footer.jade

footer.jade

include

Figure 7.3 Pug’s include mechanism provides a
simple way to include the contents of one template in
another template during rendering.
 each object in objects
 li= object[property]

Licensed to Samir Mashlum <smashlum@gmail.com>

181Summary

You could then use the mixin to display the data using this line of Pug:

mixin list_object_property(students, 'name')

By using template inheritance, include statements, and mixins, you can easily reuse
presentation markup and can prevent your template files from becoming larger than
they need to be.

7.5 Summary
 Templating engines help keep application logic and presentation organized.
 Node has several popular template engines, including EJS, Hogan.js, and Pug.
 EJS supports simple control flow and escape or unescaped interpolation.
 Hogan.js is a simple template engine that doesn't support control flow, but does

support the Mustache standard.
 Pug is a more complex template language that can output HTML, but doesn’t

use angled brackets.
 Pug relies on whitespace for embedding tags.
Licensed to Samir Mashlum <smashlum@gmail.com>

Storing application data
Node.js serves an incredibly diverse set of developers with equally diverse needs. No
single database or storage solution solves the number of use cases tackled by Node.
This chapter provides a broad overview of the data storage possibilities, along with
some important high-level concepts and terminology.

8.1 Relational databases
For most of the history of the web, relational databases have been the dominant
choice for application data storage. This topic has been covered at length in many
other texts and university programs, so we don’t spend too much time elaborating
on this topic in this chapter.

 Relational databases, built upon the mathematical ideas of relational algebra
and set theory, have been around since the 1970s. A schema specifies the format of

This chapter covers
 Relational databases: PostgreSQL

 NoSQL databases: MongoDB

 ACID categories

 Hosted cloud databases and storage services
182

various data types and the relationships that exist among those types. For example,
if you’re building a social network, you may have User and Post data types, and

Licensed to Samir Mashlum <smashlum@gmail.com>

183PostgreSQL

define a one-to-many relationship between User and Post. Then using Structured
Query Language (SQL), you can issue queries on this data, such as, “Give me all posts
belonging to a user with ID 123,” or in SQL: SELECT * FROM post WHERE
user_id=123.

8.2 PostgreSQL
Both MySQL and PostgreSQL (Postgres) are popular relational database choices for
Node applications. The differences between relational databases are mostly aesthetic,
so for the most part, this section also applies to using other relational databases such as
MySQL in Node. First, let’s look at how to install Postgres on your development machine.

8.2.1 Performing installation and setup

Postgres needs to be installed on your system. You can’t simply npm install it. Installation
instructions vary from platform to platform. On macOS, installation is as simple as this:

brew update
brew install postgres

You may run into upgrade issues if you already have a Postgres installation. Follow the
instructions for your platform to migrate your existing databases, or wipe the database
directory:

WARNING: will delete existing postgres configuration & data
rm –rf /usr/local/var/postgres

Then initialize and start Postgres:

initdb -D /usr/local/var/postgres
pg_ctl -D /usr/local/var/postgres -l logfile start

This starts a Postgres daemon. This daemon needs to be started every time you boot
your computer. You may want to automatically boot the Postgres daemon on startup,
and many online guides detail this process for your particular operating system.

 Similarly, most Linux systems have a package for installing Postgres. With Win-
dows, you should download the installer from postgresql.org (www.postgresql.org/
download/windows/).

 Several command-line administration utilities are installed with Postgres. You may
want to familiarize yourself with some of them by reading their man pages.

8.2.2 Creating the database

After the Postgres daemon is running, you need to create a database to use. This
needs to be done only once. The simplest way is to use createdb from the command
line. Here you create a database named articles:

createdb articles
Licensed to Samir Mashlum <smashlum@gmail.com>

http://redis.io/commands
http://redis.io/commands
http://leveldb.org/
http://mozilla.github.io/localForage/)
www.postgresql.org/download/windows/
www.postgresql.org/download/windows/
https://www.npmjs.com/package/levelup
https://www.npmjs.com/package/levelup
https://www.npmjs.com/package/leveldown

184 CHAPTER 8 Storing application data

There is no output if this succeeds. If a database with this name already exists, this
command does nothing and reports a failure.

 Most applications connect to only a single database at a time, though multiple
databases may be configured, depending on the environment the database is running
in. Many applications have at least two environments: development and production.

 To drop all the data from an existing database, you can run the dropdb command
from a terminal, passing the database name as an argument:

dropdb articles

You need to run createdb before using this database again.

8.2.3 Connecting to Postgres from Node

The most popular package for interfacing with Postgres from node is pg. You can
install pg by using npm:

npm install pg --save

With the Postgres server running, a database created, and the pg package installed,
you’re ready to start using the database from Node. Before you can issue any com-
mands against the server, you need to establish a connection to it, as shown in the
next listing.

const pg = require('pg');
const db = new pg.Client({ database: 'articles' });

db.connect((err, client) => {
 if (err) throw err;
 console.log('Connected to database', db.database);
 db.end();
});

Comprehensive documentation for pg.Client and other methods can be found on
the pg package’s wiki page on GitHub: https://github.com/brianc/node-postgres/
wiki.

8.2.4 Defining tables

In order to store data in PostgreSQL, you first need to define some tables and the
shape of the data to be stored within them, as shown in the following listing (ch08-
databases/listing8_3 in the book’s source code).

db.query(`

Listing 8.1 Connecting to the database

Listing 8.2 Defining a schema

Configuration parameters
for the connection

Closes database connection,
allows the node process to exit
 CREATE TABLE IF NOT EXISTS snippets (
 id SERIAL,

Licensed to Samir Mashlum <smashlum@gmail.com>

https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/
https://github.com/brianc/node-postgres/wiki
https://github.com/brianc/node-postgres/wiki

185PostgreSQL

 PRIMARY KEY(id),
 body text
);
`, (err, result) => {
 if (err) throw err;
 console.log('Created table "snippets"');
 db.end();
});

8.2.5 Inserting data

After your table is defined, you can insert data into it by using INSERT queries, as
shown in the next listing. If you don’t specify the id value, PostgreSQL will select an ID
for you. To learn which ID was chosen for a particular row, you append RETURNING
id to your query, and it appears in the rows of the result passed to the callback.

const body = 'hello world';
db.query(`
 INSERT INTO snippets (body) VALUES (
 '${body}'
)
 RETURNING id
`, (err, result) => {
 if (err) throw err;
 const id = result.rows[0].id;
 console.log('Inserted row with id %s', id);
 db.query(`
 INSERT INTO snippets (body) VALUES (
 '${body}'
)
 RETURNING id
 `, () => {
 if (err) throw err;
 const id = result.rows[0].id;
 console.log('Inserted row with id %s', id);
 });
});

8.2.6 Updating data

After data is inserted, you can update the data by using an UPDATE query, as shown in
the next listing. The number of affected rows will be available in the rowCount prop-
erty of the query result. You can find the full example for this listing in ch08-data-
bases/listing8_4.

const id = 1;
const body = 'greetings, world';

Listing 8.3 Inserting data

Listing 8.4 Updating data
db.query(`
 UPDATE snippets SET (body) = (

Licensed to Samir Mashlum <smashlum@gmail.com>

186 CHAPTER 8 Storing application data

 '${body}'
) WHERE id=${id};
`, (err, result) => {
 if (err) throw err;
 console.log('Updated %s rows.', result.rowCount);
});

8.2.7 Querying data

One of the most powerful features of a relational database is the ability to perform
complex ad hoc queries on your data. Querying is performed by using SELECT state-
ments, and the simplest example of this is shown in the following listing.

db.query(`
 SELECT * FROM snippets ORDER BY id
`, (err, result) => {
 if (err) throw err;
 console.log(result.rows);
});

8.3 Knex
Many developers prefer to not work with SQL statements directly in their applications,
instead using an abstraction over the top. This is understandable, given that concate-
nating strings into SQL statements can be a clunky process and that queries can grow
hard to understand and maintain. This has been particularly true for JavaScript, which
didn’t have a syntax for representing multiline strings until ES2015 introduced template
literals (see https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/
Template_literals). Figure 8.1 shows Knex’s statistics, including the number of down-
loads, which demonstrates its popularity.

Knex is a Node package implementing a type of lightweight abstraction over SQL,
known as a query builder. A query builder constructs SQL strings though a declarative API
that closely resembles the generated SQL. The Knex API is intuitive and unsurprising:

knex({ client: 'mysql' })
 .select()
 .from('users')

Listing 8.5 Querying data

Figure 8.1 Knex’s usage
statistics
 .where({ id: '123' })
 .toSQL();

Licensed to Samir Mashlum <smashlum@gmail.com>

https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://www.wikivs.com/wiki/MySQL_vs_PostgreSQL
https://eng.uber.com/mysql-migration/
https://eng.uber.com/mysql-migration/
https://docs.mongodb.com/manual/reference/method/ObjectId/
https://docs.mongodb.com/manual/reference/method/ObjectId/
https://docs.mongodb.com/manual/reference/method/ObjectId/
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals
https://developer.mozilla.org/en/docs/Web/JavaScript/Reference/Template_literals

187Knex

This produces a parameterized SQL query in the MySQL dialect of SQL:

select * from `users` where `id` = ?

8.3.1 jQuery for databases

Despite ANSI and ISO SQL standards existing since the mid-1980s, most databases still
speak their own SQL dialects. PostgreSQL is a notable exception; it prides itself on
adhering to the SQL:2008 standard. A query builder can normalize differences across
SQL dialects, providing a single, unified interface for SQL generation for multiple
technologies. This has clear benefits for teams that regularly context-switch between
various database technologies.

 Knex.js currently supports the following databases:

 PostgreSQL

 MSSQL

 MySQL

 MariaDB

 SQLite3
 Oracle

Table 8.1 compares the ways Knex generates an insert statement, depending on which
database is selected.

Knex supports promises and Node-style callbacks.

8.3.2 Connecting and running queries with Knex

Unlike many other query builders, Knex can also connect and execute queries for you
against the selected database driver:

db('articles')
 .select('title')
 .where({ title: 'Today’s News' })
 .then(articles => {
 console.log(articles);
 });

Table 8.1 Comparing Knex-generated SQL for various databases

Database SQL

PostgreSQL, SQLite, and
Oracle

insert into "users" ("name", "age") values (?, ?)

MySQL and MariaDB insert into `users` (`name`, `age`) values (?, ?)

Microsoft SQL Server insert into [users] ([name], [age]) values (?, ?)
Licensed to Samir Mashlum <smashlum@gmail.com>

188 CHAPTER 8 Storing application data

Knex queries return promises by default, but can also support Node’s callback con-
vention with .asCallback:

db('articles')
 .select('title')
 .where({ title: 'Today’s News' })
 .asCallback((err, articles) => {
 if (err) throw err;
 console.log(articles);
 });

In chapter 3, you interacted with a SQLite database by using the sqlite3 package
directly. This API can be rewritten using Knex. To run this example, first ensure that
both the knex and sqlite3 packages are installed from npm:

npm install knex@~0.12.0 sqlite3@~3.1.0 --save

The next listing uses sqlite3 to implement a simple Article model. Save this file as
db.js; you’ll use it in listing 8.7 to interact with the database.

const knex = require('knex');

const db = knex({
 client: 'sqlite3',
 connection: {
 filename: 'tldr.sqlite'
 },
 useNullAsDefault: true
});

module.exports = () => {
 return db.schema.createTableIfNotExists('articles', table => {
 table.increments('id').primary();
 table.string('title');
 table.text('content');
 });
};

module.exports.Article = {
 all() {
 return db('articles').orderBy('title');
 },

 find(id) {
 return db('articles').where({ id }).first();
 },

 create(data) {
 return db('articles').insert(data);

Listing 8.6 Using Knex to connect and query sqlite3

Setting this as a default works
better when changing back ends

Define a primary key named
“id” that autoincrements
upon insertion
 },

Licensed to Samir Mashlum <smashlum@gmail.com>

http://bsonspec.org/
https://github.com/Level/levelup/wiki/Modules
https://github.com/Level/levelup/wiki/Modules

189Knex

 delete(id) {
 return db('articles').del().where({ id });
 }
};

Now Article entries can be added by using db.Article. The following listing can
be used with the previous one to create articles and then print them. See ch08-data-
bases/listing8_7/index.js for the full example.

db().then(() => {
 db.Article.create({
 title: 'my article',
 content: 'article content'
 }).then(() => {
 db.Article.all().then(articles => {
 console.log(articles);
 process.exit();
 });
 });
})
.catch(err => { throw err });

SQLite requires minimal configuration: you don’t need to boot up a server daemon or
create databases from outside the application. SQLite writes everything into a single
file. If you run the preceding code, you’ll find an articles.sqlite file in your current
directory. Wiping a SQLite database is as simple as deleting this one file:

rm articles.sqlite

SQLite also has an in-memory mode, which avoids writing to disk entirely. This mode
is commonly used to decrease the running time of automated tests. You can configure
in-memory mode by using the special :memory: filename. Opening multiple connec-
tions to the :memory: file gives each connection its own private database:

const db = knex({
 client: 'sqlite3',
 connection: {
 filename: ':memory:'
 },
 useNullAsDefault: true
});

8.3.3 Swapping the database back end

Because you’re using Knex, it’s trivial to change listings 8.6 and 8.7 to use PostgreSQL
over sqlite3. Knex needs the pg package installed to talk to the PostgreSQL server,

Listing 8.7 Interacting with the Knex-powered API
which you’ll need to have installed and running. Install the pg package into the folder

Licensed to Samir Mashlum <smashlum@gmail.com>

http://nosql-database.org/

190 CHAPTER 8 Storing application data

with listing 8.7 (ch08-databases/listing8_7 in the book’s code) and remember to cre-
ate the appropriate database by using PostgreSQL’s createdb command-line utility:

npm install pg --save
createdb articles

The only code changes required to use this new database are in the Knex configura-
tion; otherwise, the consumer API and usage are identical:

const db = knex({
 client: 'pg',
 connection: {
 database: 'articles'
 }
})

Note that in a real-world scenario, you’d also need to migrate any existing data.

8.3.4 Beware of leaky abstractions

Query builders can normalize SQL syntax, but can do little to normalize behavior.
Some features are supported in only particular databases, and some databases may
exhibit entirely different behavior given identical queries. For example, the following
are two methods of defining a primary key when using Knex:

 table.increments('id').primary();

 table.integer('id').primary();

Both options work as expected in SQLite3, but the second option will cause an error
in PostgreSQL when inserting a new record:

"null value in column "id" violates not-null constraint"

Values inserted into SQLite with a null primary key will be assigned an automatically
incremented ID, regardless of whether the primary-key column was explicitly config-
ured to autoincrement. PostgreSQL, on the other hand, requires autoincrement col-
umns to be defined explicitly. Many such behavioral differences exist between
databases, and some differences may be subtle without visible errors. Thorough test-
ing needs to be applied if you do choose to transition to a different database.

8.4 MySQL vs. PostgreSQL
Both MySQL and PostgreSQL are mature and powerful databases, and for many proj-
ects, there will be minimal differences when selecting one over the other. Many dis-
tinctions, which won’t be significant until the project needs to scale, exist below or at
the edge of the interface exposed to the application developer.

 An exhaustive comparison between relational databases is mostly beyond the scope
of this book, as the topic is complicated. Some notable distinctions are listed here:
 PostgreSQL supports more-expressive data types, including arrays, JSON, and
user-defined types.

Licensed to Samir Mashlum <smashlum@gmail.com>

191ACID guarantees

 PostgreSQL has built-in full-text search.
 PostgreSQL supports the full ANSI SQL:2008 standard.
 PostgreSQL’s replication support isn’t as powerful or battle-tested as MySQL’s.
 MySQL is older and has a bigger community. More compatible tools and

resources are available for MySQL.
 The MySQL community has more fragmentation through subtly different forks

(for example, MariaDB and WebScaleSQL from Facebook, Google, Twitter, and
so forth).

 MySQL’s pluggable storage engine can make it more complicated to under-
stand, administer, and tune. On the other hand, this can be seen as an opportu-
nity for more fine-grained control over performance.

MySQL and PostgreSQL express different performance characteristics at scale,
depending on the type of workload. The subtleties of your workload may not become
obvious until the project matures.

 Many online resources provide far more in-depth comparisons between relational
databases:

 www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-
comparison-of-relational-database-management-systems

 https://blog.udemy.com/mysql-vs-postgresql/
 https://eng.uber.com/mysql-migration/

Which relational database you initially choose is unlikely to be a significant factor in the
success of your project, so don’t worry about this decision too much. You can migrate
to another database later, but Postgres should be powerful enough to provide most of
the features and scalability that you’ll ever need. But if you’re in a position to evaluate
several databases, you should familiarize yourself with the idea of ACID guarantees.

8.5 ACID guarantees
ACID describes a set of desirable properties for database transactions: atomicity, consis-
tency, isolation, and durability. The exact definitions of these terms can vary. As a gen-
eral rule, the more strictly a system guarantees ACID properties, the greater the
performance compromise. This ACID categorization is a common way for developers
to quickly communicate the trade-offs of a particular solution, such as those found in
NoSQL systems.

8.5.1 Atomicity: transactions either succeed or fail in entirety

An atomic transaction can’t be partially executed: either the entire operation com-
pletes, or the database is left unchanged. For example, if a transaction is to delete all
comments by a particular user, either all comments will be deleted, or none of them
will be deleted. There is no way to end up with some comments deleted and some not.

Atomicity should apply even in the case of system error or power failure. Atomic is used
here with its original meaning of indivisible.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://docs.mongodb.com/manual/faq/replica-sets/
https://docs.mongodb.com/manual/faq/concurrency/
https://docs.mongodb.com/manual/faq/concurrency/
www.digitalocean.com/community/tutorials/sqlite-vs-mysql-vs-postgresql-a-comparison-of-relational-database-management-systems
https://blog.udemy.com/mysql-vs-postgresql/
https://eng.uber.com/mysql-migration/
http://nolanlawson.com/2015/09/29/indexeddb-websql-localstorage-what-blocks-the-dom/
http://nolanlawson.com/2015/09/29/indexeddb-websql-localstorage-what-blocks-the-dom/
http://nolanlawson.com/2015/09/29/indexeddb-websql-localstorage-what-blocks-the-dom/

192 CHAPTER 8 Storing application data

8.5.2 Consistency: constraints are always enforced

The completion of a successful transaction must maintain all data-integrity constraints
defined in the system. Some example constraints are that primary keys must be
unique, data conforms to a particular schema, or foreign keys must reference entities
that exist. Transactions that would lead to inconsistent state typically result in transac-
tion failures, though minor issues may be resolved automatically; for example, coerc-
ing data into the correct shape. This isn’t to be confused with the C of consistency in
the CAP theorem, which refers to guaranteeing a single view of the data being pre-
sented to all readers of a distributed store.

8.5.3 Isolation: concurrent transactions don’t interfere

Isolated transactions should produce the same result, whether the same transactions
are executed concurrently or sequentially. The level of isolation a system provides
directly affects its ability to perform concurrent operations. A naïve isolation scheme
is the use of a global lock, whereby the entire database is locked for the duration of a
transaction, thus effectively processing all transactions in series. This gives a strong
isolation guarantee but it’s also pathologically inefficient: transactions operating on
entirely disjointed datasets are needlessly blocked (for example, a user adding a com-
ment ideally doesn’t block another user updating their profile). In practice, systems
provide various levels of isolation using more fine-grained and selective locking
schemes (for example, by table, row, or field). More-sophisticated systems may even
optimistically attempt all transactions concurrently with minimal locking, only to
retry transactions by using increasingly coarse-grained locks in cases where conflicts
are detected.

8.5.4 Durability: transactions are permanent

The durability of a transaction is the degree to which its effects are guaranteed to per-
sist, even after restarts, power failures, system errors, or even hardware failures. For
example, an application using the SQLite in-memory mode has no transaction dura-
bility; all data is lost when the process exits. On the other hand, SQLite persisting to
disk will have good transaction durability, because data persists even after the machine
is restarted.

 This may seem like a no-brainer: just write the data to disk—and voila, you have
durable transactions. But disk I/O is one of the slowest operations your application
can perform and can quickly become a significant bottleneck in your application,
even at moderate levels of scale. Some databases offer different durability trade-offs
that can be employed to maintain acceptable system performance.

8.6 NoSQL
The umbrella term for data stores that don’t fit in the relational model is NoSQL.

Today, because some NoSQL databases do speak SQL, the term NoSQL has a meaning
closer to nonrelational or as the backronym not only SQL.

Licensed to Samir Mashlum <smashlum@gmail.com>

193Distributed databases

 Here’s a subset of paradigms and example databases that can be considered
NoSQL:

 Key-value/tuple—DynamoDB, LevelDB, Redis, etcd, Riak, Aerospike, Berkeley DB

 Graph—Neo4J, OrientDB

 Document—CouchDB, MongoDB, Elastic (formerly Elasticsearch)
 Column—Cassandra, HBase
 Time series—Graphite, InfluxDB, RRDtool
 Multiparadigm—Couchbase (document database, key/value store, distributed

cache)

For a more comprehensive list of NoSQL databases, see http://nosql-database.org/.
 NoSQL concepts can be difficult to digest if you’ve worked only with relational

databases, because NoSQL usage often goes directly against well-established best prac-
tices: No defined schemas. Duplicate data. Loosely enforced constraints. NoSQL sys-
tems take responsibilities normally assigned to the database and place them in the
realm of the application. It can all seem dirty.

 Usually, only a small set of access patterns create the bulk of the workload for the
database, such as the queries that generate the landing screen of your application,
where multiple domain objects need to be fetched. A common technique for improv-
ing read performance in a relational database is denormalization, whereby domain
queries are preprocessed and shaped into a form that reduces the number of reads
required for consumption by the client.

 NoSQL data is more frequently denormalized by default. The domain modeling
step may be entirely skipped. This can discourage overengineering of the data model,
allow changes to be executed more quickly, and lead to an overall simpler, better-per-
forming design.

8.7 Distributed databases
An application can scale vertically by increasing the capacity of the machines running
it, or horizontally by adding more machines. Vertical scaling is usually the less compli-
cated option, but constraints borne by the hardware limit how far one machine can
scale. Vertical scaling also tends to get expensive quickly. Horizontal scaling, on the
other hand, has a far higher capacity for growth as you add capacity by adding more
processes and more machines. This comes at the cost of complexity in orchestrating
many more moving parts. All growing systems eventually reach a point where they
must scale horizontally.

 Distributed databases are designed from the outset with horizontal scaling as the
premise. Data stored across multiple machines improves the durability of the data by
removing any single point of failure. Many relational systems have some capacity to
perform horizontal scaling in the form of sharding, master/slave, master/master rep-

lication, though even with these capacities, relational systems aren’t designed to scale
beyond a few hundred nodes. For example, the upper limit for a MySQL cluster is 255

Licensed to Samir Mashlum <smashlum@gmail.com>

http://nosql-database.org/

194 CHAPTER 8 Storing application data

nodes. Distributed databases, on the other hand, can scale into the thousands of
nodes by design.

8.8 MongoDB
MongoDB is a document-oriented, distributed database that’s hugely popular among
Node developers. It’s the M in the fashionable MEAN stack (MongoDB, Express, Angu-
lar, Node) and is often one of the first databases people encounter when they start
working with Node. Figure 8.2 shows how popular the mongodb module is on npm.

MongoDB attracts more than its fair share of criticism and controversy; despite this, it
remains a staple data store for many developers. MongoDB has known deployments in
prominent companies including Adobe, LinkedIn, and eBay and is even used in a
component of the Large Hadron Collider at the European Organization for Nuclear
Research (CERN).

 A MongoDB database stores documents in schemaless collections. Documents don’t
need to have a predefined schema, and documents in a single collection needn’t
share the same schema. This grants a lot of flexibility to MongoDB, though the burden
is now upon the application to ensure that documents maintain a predictable struc-
ture (guaranteeing consistency—the C in ACID).

8.8.1 Performing installation and setup

MongoDB needs to be installed on your system. Installation varies between platforms.
On macOS, installation is as simple as this:

brew install mongodb

The MongoDB server is started by using the mongod executable:

mongod --config /usr/local/etc/mongod.conf

The most popular MongoDB driver is the official mongodb package by Christian
Amor Kvalheim:

npm install mongodb@^2.1.0 --save

Windows users should note that driver installation requires msbuild.exe, which is

Figure 8.2 MongoDB’s
usage statistics
installed by Microsoft Visual Studio.

Licensed to Samir Mashlum <smashlum@gmail.com>

195MongoDB

8.8.2 Connecting to MongoDB

After installing the mongodb package and starting the mongod server, you can con-
nect as a client from Node, as shown in the following listing.

const { MongoClient } = require('mongodb');

MongoClient.connect('mongodb://localhost:27017/articles')
 .then(db => {
 console.log('Client ready');
 db.close();
 }, console.error);

The connection’s success handler is passed a database client instance, from which all
database commands are executed.

 Most interactions with the database are via the collection API:

 collection.insert(doc)—Insert one or more documents
 collection.find(query)—Find documents matching the query
 collection.remove(query)—Remove documents matching the query
 collection.drop()—Remove the entire collection
 collection.update(query)—Update documents matching the query
 collection.count(query)—Count documents matching the query

Operations such as find, insert, and delete come in a few flavors, depending on
whether you’re operating on one or many values. For example:

 collection.insertOne(doc)—Insert a single document
 collection.insertMany([doc1, doc2])—Insert many documents
 collection.findOne(query)—Find a single document matching the query
 collection.updateMany(query)—Update all documents matching the

query

8.8.3 Inserting documents

collection.insertOne places a single object into the collection as a document, as
shown in the next listing. The success handler is passed an object containing metadata
about the state of the operation.

const article = {
 title: 'I like cake',
 content: 'It is quite good.'
};

Listing 8.8 Connecting to MongoDB

Listing 8.9 Inserting a document
db.collection('articles')
 .insertOne(article)

Licensed to Samir Mashlum <smashlum@gmail.com>

w ID
t ID
196 CHAPTER 8 Storing application data

 .then(result => {
 console.log(result.insertedId);
 console.log(article._id); B
 });

The insertMany call is similar, except it takes an array of multiple documents. The
insertMany response will contain an array of insertedIds, in the order the docu-
ments were supplied, instead of a singular insertedId.

8.8.4 Querying

Methods that read documents from the collection (such as find, update, and
remove) take a query argument that’s used to match documents. The simplest form of
a query is an object with which MongoDB will match documents with the same structure
and same values. For example, this finds all articles with the title “I like cake”:

db.collection('articles')
 .find({ title: 'I like cake' })
 .toArray().then(results => {
 console.log(results);
 });

Queries can be used to match objects by their unique _id:

collection.findOne({ _id: someID })

Or match based on a query operator:

db.collection('articles')
 .find({title: { $regex: /cake$/I })

Many query operators exist in the MongoDB query language—for example:

 $eq—Equal to a particular value
 $neq—Not equal to a particular value
 $in—In array
 $nin—Not in array
 $lt, $lte, $gt, $gte—Greater/less than or equal to comparison
 $near—Geospatial value is near a certain coordinate
 $not, $and, $or, $nor—Logical operators

These can be combined to match almost any condition and create a highly readable,
sophisticated, and expressive query language. See https://docs.mongodb.com/
manual/reference/operator/query/ for more information on queries and query
operators.

 The next listing shows an example that the previous Articles API implemented by
using MongoDB, while maintaining a nearly identical external interface. Save this file

If the document has no _id, a ne
is created. insertedId will be tha

The original object defining the document
is mutated, adding an _id property

An array of documents
matching the query

Title ends with ‘cake’,
case-insensitive
as db.js (it’s listing8_10/db.js in the book’s sample code).

Licensed to Samir Mashlum <smashlum@gmail.com>

https://docs.mongodb.com/manual/reference/operator/query/
https://docs.mongodb.com/manual/reference/operator/query/

197MongoDB

const { MongoClient, ObjectID } = require('mongodb');

let db;

module.exports = () => {
 return MongoClient
 .connect('mongodb://localhost:27017/articles')
 .then((client) => {
 db = client;
 });
};

module.exports.Article = {
 all() {
 return db.collection('articles2').find().sort({ title: 1 }).toArray();
 },

 find(_id) {
 if (typeof _id !== 'object') _id = ObjectID(_id);
 return db.collection('articles2').findOne({ _id });
 },

 create(data) {
 return db.collection('articles2').insertOne(data, { w: 1 });
 },

 delete(_id) {
 if (typeof _id !== 'object') _id = ObjectID(_id);
 return db.collection('articles2').deleteOne({ _id }, { w: 1 });
 }
};

The following snippet shows how to use listing 8.10 (listing 8_10/index.js in the sam-
ple code):

const db = require('./db');

db().then(() => {
 db.Article.create({ title: 'An article!' }).then(() => {
 db.Article.all().then(articles => {
 console.log(articles);
 process.exit();
 });
 });
});

This uses a promise from listing 8.10 to connect to the database, then creates an arti-
cle using Article’s create method. After that, it loads all articles and logs them out.

8.8.5 Using MongoDB identifiers

Identifiers from MongoDB are encoded in Binary JSON (BSON) format. The _id prop-

Listing 8.10 Implementing the Article API with MongoDB

Adds support for
passing _id as a
String or ObjectID
erty on a document is a JavaScript Object that wraps a BSON-formatted ObjectID
value. MongoDB uses BSON to represent documents internally and as a transmission

Licensed to Samir Mashlum <smashlum@gmail.com>

t
198 CHAPTER 8 Storing application data

format. BSON is more space-efficient than JSON and can be parsed more quickly,
which means faster database interactions using less bandwidth.

 A BSON ObjectID isn’t just a random sequence of bytes; it encodes metadata
about where and when the ID was generated. For example, the first four bytes of an
ObjectID are a timestamp. This removes the need to have to store a createdAt
timestamp property in your documents:

const id = new ObjectID(61bd7f57bf1532835dd6174b);
id.getTimestamp();

See https://docs.mongodb.com/manual/reference/method/ObjectId/ for more
information about the ObjectID format.

 ObjectIDs may superficially appear to be strings because of the way they’re
printed in the terminal, but they’re objects. ObjectIDs suffer from classic object
comparison gotchas: seemingly totally equivalent values are reported as inequivalent
because they reference different objects.

 In the following snippet, we extract the same value twice. Using the node’s built-in
assert module, we try to assert that the objects or the IDs are equivalent, but both
result in failure:

 const Articles = db.collection('articles');
 Articles.find().then(articles => {
 const article1 = articles[0];
 return Articles
 .findOne({_id: article1._id})
 .then(article2 => {
 assert.equal(article2._id, article1._id);
 });
 });

These assertions produce error messages that at first seem confusing, as the actual val-
ues appear to match the expected values:

operator: equal
expected: 577f6b45549a3b991e1c3c18
actual: 577f6b45549a3b991e1c3c18
operator: equal
expected:
 { _id: 577f6b45549a3b991e1c3c18, title: 'attractive-money' ... }
actual:
 { _id: 577f6b45549a3b991e1c3c18, title: 'attractive-money' ... }

Equivalence can be detected correctly by using the ObjectID’s equal method that’s
available on every _id. Alternatively, you can coerce the identifiers and compare them
as strings, or use a deepEquals method such as that found on Node’s built-in assert
module:

article1._id.equals(article2._id);

getTimestamp returns a JavaScrip
Date: 2016-07-08T14:49:05.000Z
String(article1._id) === String(article2._id);
assert.deepEqual(article1._id, article2._id);

Note that this will throw if the
assertion doesn’t hold true

Licensed to Samir Mashlum <smashlum@gmail.com>

https://docs.mongodb.com/manual/reference/method/ObjectId/

199MongoDB

Identifiers passed to the Node mongodb driver must be a BSON-formatted ObjectID.
A string can be converted into an ObjectID by using the ObjectID constructor:

const { ObjectID } = require('mongodb');
const stringID = '577f6b45549a3b991e1c3c18';
const bsonID = new ObjectID(stringID);

Where possible, the BSON form should be maintained; the cost of marshalling to and
from strings works against the potential performance gains MongoDB hopes to
achieve by serving client identifiers as BSON. See http://bsonspec.org/ for detailed
information about the BSON format.

8.8.6 Using replica sets

The distributed features of MongoDB are mostly beyond the scope of this book, but in
this section we quickly cover the basics of replica sets. Many mongod processes can be
run as nodes/members of a replica set. A replica set consists of a single primary node
and numerous secondary nodes. Each member of a replica set needs to be allocated a
unique port and directory to store its data. Instances can’t share ports or directories,
and the directories must already exist before startup.

 In the following listing, you create a unique directory for each member and start
them on a sequential port number starting from 27017. You may want to run each of
the mongod commands in a new terminal tab without backgrounding them (without
the trailing &).

mkdir –p ./mongodata/db0 ./mongodata/db1 ./mongodata/db2

pkill mongod
sleep 3

mongod --port 27017 --dbpath ./rs0-data/db0 --replSet rs0 &
mongod --port 27018 --dbpath ./rs0-data/db1 --replSet rs0 &
mongod --port 27019 --dbpath ./rs0-data/db2 --replSet rs0 &

After the replica set is running, MongoDB needs to perform some initiation. You need
to connect to the port of the instance that you want to become the first primary node
(27017 by default) and call rs.initiate(), as shown in the following listing. Then
you need to add each instance as a member of the replica set. Note that you need to
supply the hostname of the machine you’re connecting to.

mongo --eval "rs.initiate()"
mongo --eval "rs.add('`hostname`:27017')"

Listing 8.11 Starting a replica set

Listing 8.12 Initiating a replica set

Ensures no other mongod
instances are running

Gives existing
instances a moment
to shut down

The hostname UNIX command prints

mongo --eval "rs.add('`hostname`:27018')"
mongo --eval "rs.add('`hostname`:27019')"

the current machine’s hostname

Licensed to Samir Mashlum <smashlum@gmail.com>

http://bsonspec.org/

200 CHAPTER 8 Storing application data

MongoDB clients need to know about all the possible replica set members when they
connect, though not all members need to currently be online. After connecting, you
may use the MongoDB client as usual. Listing 8.13 shows how to create a replica set
with three members.

const os = require('os');
const { MongoClient } = require('mongodb');
const hostname = os.hostname();

const members = [
 `${hostname}:27018`,
 `${hostname}:27017`,
 `${hostname}:27019`
];

MongoClient.connect(`mongodb://${members.join(',')}/test?replSet=rs0`)
.then(db => {
 db.admin().replSetGetStatus().then(status => {
 console.log(status);
 db.close();
 });
});

If any of the mongod nodes crash, the system will continue working, as long as at least
two instances are running. If the primary node crashes, a secondary node will auto-
matically be elected to be promoted into the primary.

8.8.7 Understanding write concerns

MongoDB gives the developer fine-grained control over which performance and safety
trade-offs are acceptable for various areas of your application. It’s important to under-
stand the concepts of both write and read concerns in order to use MongoDB without
surprises, especially as the number of nodes in your replica set increases. In this sec-
tion, we touch only on write concerns, as they’re the most important.

 Write concerns dictate the number of mongod instances that the data needs to be suc-
cessfully written to before the overall operation responds with a success. If not explicitly
specified, the default write concern is 1, which ensures that the data has been written
to at least one node. It may not provide an adequate level of assurance for critical data;
data may be lost if the node goes down before replicating to other nodes.

 It’s possible and often desirable to set a zero write concern, whereby the applica-
tion doesn’t wait for any response:

db.collection('data').insertOne(data, { w: 0 });

A zero write concern grants the highest performance but provides the least durability

Listing 8.13 Connecting to a replica set

test is the name of the database;
rs0 is the name of the replica set

replSetGetStatus prints the
members and metadata
about the replica set
assurances, and is typically used for only temporary or unimportant data (such as the
writing of logs or caches).

Licensed to Samir Mashlum <smashlum@gmail.com>

201Key/value stores

 If you’re connected to a replica set, you can indicate a write concern greater than
1. Replicating to more nodes decreases the likelihood of data loss, at the expense of
more latency when performing operations:

db.collection('data').insertOne(data, { w: 2 });
db.collection('data').insertOne(data, { w: 5 });

You may want to scale the write concern as the number of nodes in the cluster changes.
This can be done dynamically by MongoDB itself if you set the write concern to major-
ity. This ensures that data is written to more than 50% of the available nodes:

db.collection('data').insertOne(data, { w: 'majority' });

The default write concern of 1 may not provide an adequate level of assurance for crit-
ical data. Data may be lost if the node goes down before replicating to other nodes.

 Setting a write concern higher than 1 ensures that the data exists across multiple
mongod instances before continuing. Running multiple instances on the same
machine adds protection but doesn’t help in the case of systemwide failures such as
running out of disk space or RAM. You can protect against machine failure by running
instances across multiple machines and ensuring that writes propagate to these nodes,
but this again will be slower and doesn’t protect against datacenter-wide failure. Run-
ning nodes across different datacenters protects against datacenter outage, but ensur-
ing that data is replicated across datacenters will greatly impact performance.

 As always, the more assurances you add, the slower and more complicated the sys-
tem becomes. This isn’t an issue specific to MongoDB; it’s an issue with any and all
data storage. No perfect solution exists, and you’ll need to decide the acceptable level
of risk for the various parts of your application.

 For more information about how MongoDB replication works, see the following
resources:

 https://docs.mongodb.com/manual/faq/replica-sets/
 https://docs.mongodb.com/manual/faq/concurrency/

8.9 Key/value stores
Each record in a key/value store comprises a single key and a single value. In many
key/value systems, values can be of any data type, of any length or structure. From the
perspective of the database, values are opaque atoms: the database doesn’t know or
care about the type of the data and can’t be subdivided or accessed other than in its
entirety. Contrast this with value storage in a relational database: data is stored in a
series of tables, which contain rows of data separated into predefined columns. In a
key/value store, the responsibility of managing the format of the data is handed to the
application.

 Key/value stores can often be found in performance-critical paths of an application.

Ideally, values are laid out in a manner such that the absolute minimum number of
reads is required to fulfill a task. Key/value stores come with simpler querying

Licensed to Samir Mashlum <smashlum@gmail.com>

https://docs.mongodb.com/manual/faq/replica-sets/
https://docs.mongodb.com/manual/faq/concurrency/

202 CHAPTER 8 Storing application data

capabilities than other database types. Ideally, complex queries are precalculated; oth-
erwise, they need to be performed within the application rather than the database. This
constraint can lead to easily understood and predictable performance characteristics.

 The most popular key/value stores, such as Redis and Memcached, are often used
for volatile storage (if the process exits, the data is lost). Avoiding writing to disk is one
of the best ways to improve performance. This can be an acceptable trade-off for fea-
tures when data can be regenerated or loss is of little concern; for example, caches
and user sessions.

 Key/value stores may carry a stigma that they can’t be used for primary storage, but
this isn’t always true. Many key/value stores provide just as much durability as a “real”
database.

8.10 Redis
Redis is a popular in-memory, data-structure store. Although many consider Redis to
be a key/value store, keys and values represent only a subset of the features Redis sup-
ports across a variety of useful, basic data structures. Figure 8.3 shows the usage statis-
tics for the redis package on npm.

The data structures built into Redis include the following:

 Strings
 Hashes
 List
 Set
 Sorted set

Redis also comes with many other useful features out of the box:

 Bitmap data—Direct bit manipulation in values.
 Geospatial indexes—Storing geospatial data with radius queries.
 Channels—A publish/subscribe data-delivery mechanism.
 TTLs—Values can be configured with an expiry time, after which they’re auto-

matically removed.
 LRU eviction—Optionally removes values that haven’t been recently used in

order to maintain maximum memory usage.

Figure 8.3 The redis
package’s statistics on npm
 HyperLogLog—High-performing approximation of set cardinality, while main-
taining a low-memory footprint (doesn’t need to store every member).

Licensed to Samir Mashlum <smashlum@gmail.com>

203Redis

 Replication, clustering, and partitioning—Horizontal scaling and data durability.
 Lua scripting—Extend Redis with custom commands.

In this section, you’ll find several bulleted lists of Redis commands. They’re not
intended to be a reference, but rather to give some insight into what’s possible with
Redis. It’s an incredibly powerful and versatile tool. See http://redis.io/commands for
more details.

8.10.1 Performing installation and setup

Redis can be installed through your system’s package management tool. On macOS,
you can easily install it with Homebrew:

brew install redis

Starting the server is done using the redis-server executable:

redis-server /usr/local/etc/redis.conf

The server listens on port 6379 by default.

8.10.2 Performing initialization

A Redis client instance is created with the createClient function from the redis
npm package:

const redis = require('redis');
const db = redis.createClient(6379, '127.0.0.1');

This function takes the port and a host as arguments. But if you’re running the Redis
server on the default port on your local machine, you don’t need to supply any argu-
ments at all:

const db = redis.createClient();

The Redis client instance is an EventEmitter, so you can attach listeners for various
Redis status events, as shown in the next listing. You can immediately start issuing
commands to the client, and they’ll be buffered until the connection is ready.

const redis = require('redis');

const db = redis.createClient();
db.on('connect', () => console.log('Redis client connected to server.'));
db.on('ready', () => console.log('Redis server is ready.'));
db.on('error', err => console.error('Redis error', err));

The error handler will fire if a connection or client problem occurs. If an error event
is fired and no error handler is attached, the application process will throw the error

Listing 8.14 Connecting to Redis and listening for status events
and crash; this is a feature of all EventEmitters in Node. If the connection fails and
an error handler is supplied, the Redis client will attempt to retry the connection.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://redis.io/commands

204 CHAPTER 8 Storing application data

8.10.3 Working with key/value pairs

Redis can be used as a generic key/value store for strings and arbitrary binary data.
Reading and writing a key/value pair can be done using the set and get methods,
respectively:

db.set('color', 'red', err => {
 if (err) throw err;
});

db.get('color', (err, value) => {
 if (err) throw err;
 console.log('Got:', value);
});

If you set an existing key, the value will be overwritten. If you try to get a key that
doesn’t exist, the value will be null; it’s not considered an error.

 The following commands can be used to retrieve and manipulate values:

 append

 decr
 decrby
 get

 getrange
 getset
 incr

 incrby
 incrbyfloat
 mget

 mset
 msetnx
 psetex

 set
 setex

 setnx
 setrange
 strlen

8.10.4 Working with keys

You can check whether a key exists by using exists. This works with any data type:

db.exists('users', (err, doesExist) => {
 if (err) throw err;

 console.log('users exists:', doesExist);
});

Along with exists, the following commands can all be used with any key, regardless
of the type of the value (these commands work with strings, sets, lists, and so forth):
 del
 exists

Licensed to Samir Mashlum <smashlum@gmail.com>

205Redis

 rename
 renamenx

 sort
 scan
 type

8.10.5 Encoding and data types

The Redis server stores keys and values as binary objects; it’s not dependent on the
encoding of the value passed to the client. Any valid JavaScript string (UCS2/UTF16)
can be used as a valid key or value:

db.set('greeting', '你好 ', redis.print);
db.get('greeting', redis.print);
db.set('icon', '?', redis.print);
db.get('icon', redis.print);

By default, keys and values are coerced to strings as they’re written. For example, if
you set a key with a number, it will be a string when you try to get that same key:

db.set('colors', 1, (err) => {
 if (err) throw err;
});

db.get('colors', (err, value) => {
 if (err) throw err;
 console.log('Got: %s as %s', value, typeof value);
});

The Redis client silently coerces numbers, Booleans, and dates into strings, and it also
happily accepts buffer objects. Trying to set any other JavaScript type as a value (for
example, Object, Array, RegExp) prints a warning that should be heeded:

db.set('users', {}, redis.print);

Deprecated: The SET command contains a argument of type Object.
This is converted to "[object Object]" by using .toString() now
 and will return an error from v.3.0 on.
Please handle this in your code to make sure everything works
 as you intended it to.

In the future, this will be an error, so the calling application must be responsible for
ensuring that the correct types are passed to the Redis client.

GOTCHA: SINGLE VS. MULTIPLE VALUE ARRAYS

The client produces a cryptic error, “ReplyError: ERR syntax error,” if you try to set an
array of values:

db.set('users', ['Alice', 'Bob'], redis.print);

But note that no error occurs when the array contains only a single value:

Value will be
of type string
db.set('user', ['Alice'], redis.print);
db.get('user', redis.print);

Licensed to Samir Mashlum <smashlum@gmail.com>

206 CHAPTER 8 Storing application data

This type of bug may show symptoms only when you’re running it in production, as it
can easily elude detection if the test suite happens to produce only single-valued
arrays, which is common for stripped-down test data. Be aware!

BINARY DATA WITH BUFFERS

Redis is capable of storing arbitrary byte data, which means you can store any type of
data in it. The Node client supports this feature with special handling for Node’s Buf-
fer type. When a buffer is passed to the Redis client as a key or value, the bytes are
sent unmodified to the Redis server. This avoids accidental data corruption and per-
formance penalties of unnecessary marshalling between strings and buffers. For
example, if you want to write data from disk or network directly into Redis, it’s more
efficient to write the buffers directly to Redis than to convert them into strings first.

Redis has recently added commands for manipulating individual bits of string values,
which can be of use when working with buffers:

 bitcount

 bitfield

 bitop

 setbit

 bitpos

8.10.6 Using hashes

A hash is a collection of key/value pairs. The hmset command takes a key and an
object representing the key/value pairs of the hash. You can get the key/value pairs
back as an object by using hmget, as shown in the next listing.

db.hmset('camping', {
 shelter: '2-person tent',
 cooking: 'campstove'
}, redis.print);

Buffers
Buffers are what you receive from Node’s core file and network APIs by default.
They’re a container around contiguous blocks of binary data, and were introduced in
Node before JavaScript had its own native binary data types (Uint8Array,
Float32Array, and so forth). Today, buffers are implemented in Node as a special-
ized subclass of Uint8Array. The Buffer API is available globally in Node; you don’t
need to require anything to use it.

See https://github.com/nodejs/node/blob/master/lib/buffer.js

Listing 8.15 Storing data in elements of Redis hashes

Sets hash
key/value pairs

Gets the

db.hget('camping', 'cooking', (err, value) => {
 if (err) throw err;

“camping.cooking” value

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/nodejs/node/blob/master/lib/buffer.js

207Redis

 console.log('Will be cooking with:', value);
});

db.hkeys('camping', (err, keys) => {
 if (err) throw err;
 keys.forEach(key => console.log(` ${key}`));
});

You can’t store nested objects in a Redis hash. It provides only a single level of keys
and values.

 The following commands operate on hashes:

 hdel

 hexists

 hget

 hgetall

 hincrby

 hincrbyfloat

 hkeys

 hlen

 hmget

 hmset

 hset

 hsetnx

 hstrlen

 hvals

 hscan

8.10.7 Using lists

A list is an ordered collection of string values. A list can contain multiple copies of the
same value. Lists are conceptually similar to arrays. Lists are best used for their ability
to behave as a stack (LIFO: last in, first out) or queue (FIFO: first in, first out) data
structures.

 The following code shows the storage and retrieval of values in a list. The lpush
command adds a value to a list. The lrange command retrieves a range of values,
using start and end indices. The -1 argument in the following code signifies the last
item of the list, so this use of lrange retrieves all list items:

client.lpush('tasks', 'Paint the bikeshed red.', redis.print);
client.lpush('tasks', 'Paint the bikeshed green.', redis.print);
client.lrange('tasks', 0, -1, (err, items) => {
 if (err) throw err;
 items.forEach(item => console.log(` ${item}`));
});

Gets hash keys
as an array
Lists don’t contain any built-in means to determine whether a value is in the list, or
any means of discovering the index of a particular value in the list. You can manually

Licensed to Samir Mashlum <smashlum@gmail.com>

208 CHAPTER 8 Storing application data

iterate over the list to obtain this information, but this is a highly inefficient approach
that should be avoided. If you need these types of features, you should consider a
different data structure, such as a set, perhaps even used in addition to a list. Duplicat-
ing data across multiple data structures is often desirable in order to take advantage of
various performance characteristics.

 The following commands operate on lists:

 blpop
 brpop
 lindex
 linsert
 llen
 lpop
 lpush
 lpushx
 lrange
 lrem
 lset
 ltrim
 rpop
 rpush
 rpushx

8.10.8 Using sets

A set is an unordered collection of unique values. Testing membership, and adding
and removing items from a set can be performed in O(1) time, making it a high-per-
forming structure suitable for many tasks:

db.sadd('admins', 'Alice', redis.print);
db.sadd('admins', 'Bob', redis.print);
db.sadd('admins', 'Alice', redis.print);
db.smembers('admins', (err, members) => {
 if (err) throw err;
 console.log(members);
});

The following commands operate on Redis sets:

 sadd

 scard

 sdiff

 sdiffstore

 sinter

 sinterstore

 sismember
 smembers

 spop

Licensed to Samir Mashlum <smashlum@gmail.com>

Sub
to a c

Wh
e

m
publ
209Redis

 srandmember

 srem

 sunion

 sunionstore

 sscan

8.10.9 Providing pub/sub with channels

Redis goes beyond the traditional
role of a data store by providing
channels. Channels are a data-
delivery mechanism that provides
publish/subscribe functionality,
as shown conceptually in figure
8.4. They can be useful for real-
time applications such as chat
and gaming.

 A Redis client can subscribe or publish to a channel. A message published to a
channel will be delivered to all subscribers. A publisher doesn’t need to know about
the subscribers, nor the subscribers about the publishers. This decoupling of publish-
ers and subscribers is what makes this a powerful and clean pattern.

 The following listing shows an example of how Redis’s publish/subscribe function-
ality can be used to implement a TCP/IP chat server.

const net = require('net');
const redis = require('redis');

const server = net.createServer(socket => {
 const subscriber = redis.createClient();
 subscriber.subscribe('main');
 subscriber.on('message', (channel, message) => {
 socket.write(`Channel ${channel}: ${message}`);
 });

 const publisher = redis.createClient();
 socket.on('data', data => {
 publisher.publish('main', data);
 });

 socket.on('end', () => {
 subscriber.unsubscribe('main');
 subscriber.end(true);
 publisher.end(true);
 });
});

Listing 8.16 A simple chat server implemented with Redis pub/sub functionality

Channel

Subscriber SubscriberSubscriber

Figure 8.4 Redis channels provide an easy solution to a
common data-delivery scenario.

Defines setup logic for each
user connecting to chat server

Creates subscriber
client for each userscribes

hannel

When a message is
received from a channel,

shows it to user

Creates publisher
client for each user

en user
nters a
essage,
ishes it

If user disconnects,
ends client connections
server.listen(3000);

Licensed to Samir Mashlum <smashlum@gmail.com>

210 CHAPTER 8 Storing application data

8.10.10 Improving Redis performance

The hiredis npm package is a native binding from JavaScript to the protocol parser in
the official Hiredis C library. Hiredis can significantly improve the performance of
Node Redis applications, particularly if you’re using sunion, sinter, lrange, and
zrange operations with large datasets.

 To use hiredis, simply install it alongside the redis package in your application, and
the Node redis package will detect it and use it automatically the next time it starts:

npm install hiredis --save

There are few downsides to using hiredis, but because it’s compiled from C code,
some complications or limitations may arise when building hiredis for some plat-
forms. As with all native add-ons, you may need to rebuild hiredis with npm rebuild
after updating Node.

8.11 Embedded databases
An embedded database doesn’t require the installation or administration of an exter-
nal server. It runs embedded within your application process itself. Communication with
an embedded database usually occurs via direct procedure calls in your application,
rather than across an interprocess communication (IPC) channel or a network.

 In many situations, an application needs to be self-contained, so an embeddable
database is the only option (for example, mobile or desktop applications). Embedded
databases can also be used on web servers, often found powering high-throughput fea-
tures such as user sessions or caching, and sometimes even as the primary storage.

 Some embeddable databases commonly used in Node and Electron apps are as
follows:

 SQLite
 LevelDB

 RocksDB

 Aerospike
 EJDB

 NeDB

 LokiJS
 Lowdb

NeDB, LokiJS, and Lowdb are all written in pure JavaScript, which by nature makes
them embeddable into Node/Electron applications. Most embedded databases are
simple key/value or document stores, though SQLite is a notable exception as an
embeddable relational store.

8.12 LevelDB

LevelDB is an embeddable, persistent key/value store developed in early 2011 by
Google, initially for use as the backing store for the IndexedDB implementation in

Licensed to Samir Mashlum <smashlum@gmail.com>

211LevelDB

Chrome. LevelDB’s design is built on concepts from Google’s Bigtable database. Lev-
elDB is comparable to databases such as Berkley DB, Tokyo/Kyoto Cabinet, and Aero-
spike, but in the context of this book, you can think of LevelDB as an embeddable
Redis with only the bare minimum of features. Like many embedded databases, Lev-
elDB isn’t multithreaded and doesn’t support multiple instances using the same
underlying file storage, so it doesn’t work in a distributed setting without a wrapping
application.

 LevelDB stores arbitrary byte arrays, sorted lexicographically by key. Values are
compressed by using Google’s Snappy compression algorithm. Data is always persisted
to disk; the total data capacity isn’t constrained by the amount of RAM on the
machine, unlike an in-memory store such as Redis.

 Only a small set of self-explanatory operations are provided with LevelDB: Get,
Put, Del, and Batch. LevelDB can also capture snapshots of the current database
state and create bidirectional iterators for moving forward or backward through the
dataset. Creating an iterator creates an implicit snapshot; the data an iterator can see
can’t be changed by subsequent writes.

 LevelDB forms the foundation for other databases, in the form of LevelDB forks.
The number of significant LevelDB offshoots could be attributed to the simplicity of
LevelDB itself:

 RocksDB by Facebook
 HyperLevelDB by Hyperdex
 Riak by Basho
 leveldb-mcpe by Mojang (creators of Minecraft)
 bitcoin/leveldb for the bitcoind project

For more information about LevelDB, see http://leveldb.org/.

8.12.1 LevelUP and LevelDOWN

LevelDB support in Node is provided by the LevelUP and LevelDOWN packages written
by Node foundation chair and prolific Australian developer Rod Vagg. LevelDOWN is
a simple, sugar-free C++ binding to LevelDB for Node, and it’s unlikely you’ll interface
with it directly. LevelUP wraps the LevelDOWN API with a more convenient, idiomatic
node interface, adding support for key/value encodings, JSON, buffering writes until
the database is open, and wrapping the LevelDB iterator interface in a Node stream.
Figure 8.5 shows levelup’s popularity on npm.
Figure 8.5 The levelup
package’s statistics on npm

Licensed to Samir Mashlum <smashlum@gmail.com>

http://leveldb.org/

212 CHAPTER 8 Storing application data

8.12.2 Installation

A major convenience of using LevelDB in your Node application is that it’s embedded:
you can install everything you need solely with npm. You don’t need to install any
additional software; just issue the following command and you’re ready to start using
LevelDB:

npm install level --save

The level package is a simple convenience wrapper around the LevelUP and Level-
DOWN packages, providing a LevelUP API preconfigured to use a LevelDown back
end. Documentation for the LevelUP API exposed by the level package can be found
on the LevelUP readme:

 www.npmjs.com/package/levelup
 www.npmjs.com/package/leveldown

8.12.3 API overview

The LevelDB client’s main methods for storing and retrieving values are as follows:

 db.put(key, value, callback—Store a value under key
 db.get(key, callback)—Get the value under key
 db.del(key, callback)—Remove the value under key
 db.batch().write()—Perform batch operations
 db.createKeyStream(options)—Stream of keys in database
 db.createValueStream(options)—Stream of values in database

8.12.4 Initialization

When you initialize level, you need to provide a path to the directory that will store
the data, as shown in the following listing; the directory will be created if it doesn’t
already exist. There’s a loose community convention of giving this directory a .db
extension (for example, ./app.db).

const level = require('level');

const db = level('./app.db', {
 valueEncoding: 'json'
});

After level() is called, the returned LevelUP instance is immediately ready to start
accepting commands, synchronously. Commands issued before the LevelDB store is
open will be buffered until the store is open.

8.12.5 Key/value encodings

Listing 8.17 Initializing a level database
Because LevelDB can store arbitrary data of any type for both keys and values, it’s up
to the calling application to handle data serialization and deserialization. LevelUp

Licensed to Samir Mashlum <smashlum@gmail.com>

213LevelDB

can be configured to encode keys and values by using the following data types out of
the box:

 utf8

 json
 binary
 id

 hex
 ascii
 base64

 ucs2
 utf16le

By default, both keys and values are encoded as UTF-8 strings. In listing 8.17, keys will
remain as UTF-8 strings, but values are encoded/decoded as JSON. JSON encoding per-
mits storage and retrieval of structured values such as objects or arrays in a somewhat
similar fashion to that of a document store such as MongoDB. But note that unlike a
real document store, there’s no way to access keys within values with vanilla LevelDB;
values are opaque. Users can also supply their own custom encodings—for example,
to support a different structured data format such as MessagePack.

8.12.6 Reading and writing key/value pairs

The core API is simple: use put(key, value) to write a value, get(key) to read a
value, and del(key) to delete a value, as shown in the next listing. The code in listing
8.18 should be appended to the code in listing 8.17; for a full example, see ch08-data-
bases/listing8_18/index.js in the book’s sample code.

const key = 'user';
const value = {
 name: 'Alice'
};

db.put(key, value, err => {
 if (err) throw err;
 db.get(key, (err, result) => {
 if (err) throw err;
 console.log('got value:', result);
 db.del(key, (err) => {
 if (err) throw err;
 console.log('value was deleted');
 });
 });
});

If you put a value on a key that already exists, the old value will be overwritten. Trying

Listing 8.18 Reading and writing values
to get a key that doesn’t exist will result in an error. This error object will be of a par-
ticular type, NotFoundError, and has a special property, err.notFound, that can be

Licensed to Samir Mashlum <smashlum@gmail.com>

214 CHAPTER 8 Storing application data

used to differentiate it from other types of errors. This may seem unusual, but because
LevelDB doesn’t have a built-in method to check for existence, LevelUp needs to be
able to disambiguate nonexistent values and values that are undefined. Unlike with
get, trying to del a nonexistent key will not cause an error.

db.get('this-key-does-not-exist', (err, value) => {
 if (err && !err.notFound) throw err;
 if (err && err.notFound) return console.log('Value was not found.');
 console.log('Value was found:', value);
});

All data reading and writing operations take an optional options argument for over-
riding the encoding options of the current operation, as shown in the next listing.

const options = {
 keyEncoding: 'binary',
 valueEncoding: 'hex'
};

db.put(new Uint8Array([1, 2, 3]), '0xFF0099', options, (err) => {
 if (err) throw err;
 db.get(new Uint8Array([1, 2, 3]), options, (err, value) => {
 if (err) throw err;
 console.log(value);
 });
});

8.12.7 Pluggable back ends

A happy side effect of the separation of LevelUP/LevelDOWN is that LevelUP isn’t
restricted to using LevelDB as the storage back end. Anything you can wrap with the
MemDown API can be used as a storage back end for LevelUP, allowing you to use the
exact same API to interface with many data stores.

 Some examples of alternative back ends are as follows:

 MySQL

 Redis
 MongoDB

 JSON files
 Google spreadsheets
 AWS DynamoDB

 Windows Azure table storage
 Browser web storage (IndexedDB/localStorage)

Listing 8.19 Getting keys that don’t exist

Listing 8.20 Overriding encoding for specific operations
Licensed to Samir Mashlum <smashlum@gmail.com>

215LevelDB

This ability to easily swap out the storage medium or even write your own custom back
end means you can use a single, consistent set of database APIs and tooling across
many situations and environments. One database API to rule them all!

 A commonly used alternative back end is memdown, which stores values entirely in
memory rather than disk, akin to using SQLite in-memory mode. This can be particu-
larly useful in a test environment to reduce the cost of test setup and teardown.

 To run the following listing, make sure you have the LevelUP and memdown pack-
ages installed:

npm install --save levelup memdown

const level = require('levelup')
const memdown = require('memdown')

const db = level('./level-articles.db', {
 keyEncoding: 'json',
 valueEncoding: 'json',
 db: memdown
});

In this sample, you could’ve used the same level package you used before, because it’s
just a wrapper for LevelUP. But if you’re not using the LevelDB-backed LevelDOWN
that comes bundled with level, you can just use LevelUP and avoid the binary depen-
dency on LevelDB via LevelDOWN.

8.12.8 The modular database

LevelDB’s performance and minimalism resonate with many Node developers, and it
has fostered a modular database movement within the Node community. The concept
is to be able to pick and choose exactly which features your application needs and tai-
lor a database for your specific use case.

 Here are just a few examples of modular LevelDB functionality available through
npm packages:

 Atomic updates
 Autoincrementing keys
 Geospatial queries
 Live update streams
 LRU eviction
 Map/reduce jobs
 Master/master replication
 Master/slave replication

Listing 8.21 Using memdown with LevelUP

For memdown, the “path” here can be
any string, since it doesn’t use the disk

The only real difference is in passing
memdown as the db parameter
 SQL queries

Licensed to Samir Mashlum <smashlum@gmail.com>

216 CHAPTER 8 Storing application data

 Secondary indexes
 Triggers
 Versioned data

The LevelUP wiki maintains a fairly comprehensive overview of the LevelDB ecosystem:
https://github.com/Level/levelup/wiki/Modules, or you can search for leveldb on
npm, for which there are 898 packages at the time of this writing. Figure 8.6 shows
how popular LevelDB is on npm.

Figure 8.6 Examples of third-party LevelDB packages on npm

8.13 Serialization and deserialization are expensive
It’s important to remember that the built-in JSON operations are both expensive and
blocking; your process can’t do anything else while it’s marshalling data to and from
JSON. The same goes for most other serialization formats. It’s common for serializa-
tion to be a key bottleneck on a web server. The best way to reduce its impact is to min-
imize how often it’s performed and how much data it needs to handle.

 You may experience some speed improvement by using a different serialization
format (for example, MessagePack or Protocol Buffers), but alternative formats
should be considered only after you've squeezed the possible gains out of reducing
the payload sizes and unnecessary serialization/deserialization steps.
 JSON.stringify and JSON.parse are native functions and have been thor-
oughly optimized, but they can easily be overwhelmed when needing to handle

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/Level/levelup/wiki/Modules

217In-browser storage

megabytes of data. To demonstrate, the following listing benchmarks serializing and
deserializing about 10 MB of data.

const bytes = require('pretty-bytes');
const obj = {};
for (let i = 0; i < 200000; i++) {
 obj[i] = {
 [Math.random()]: Math.random()
 };
}

console.time('serialise');
const jsonString = JSON.stringify(obj);
console.timeEnd('serialise');
console.log('Serialised Size', bytes(Buffer.byteLength(jsonString)));
console.time('deserialise');
const obj2 = JSON.parse(jsonString);
console.timeEnd('deserialise');

On a 2015 3.1 GHz Intel Core i7 MacBook Pro running Node 6.2.2, it takes roughly
140 ms to serialize, and 335 ms to deserialize, the approximately 10 MB of data. This
would be a disaster if such a load were to occur on a web server, because these steps
are totally blocking and have to be processed in series. Such a server would be able to
handle only about a dismal seven requests a second when serializing, and about three
requests a second when deserializing.

8.14 In-browser storage
The asynchronous programming model used in Node works well for many use cases
because the assumption holds that I/O is the single biggest bottleneck for most web
applications. The single most significant thing you can do to simultaneously reduce
server workload and improve user experience is to take advantage of client-side data
storage. A happy user is one who doesn’t have to wait for a full network round-trip to
get results. Client-side storage can also facilitate improved application availability by
allowing your application to remain at least semifunctional while the user or your ser-
vice is offline.

8.14.1 Web storage: localStorage and sessionStorage

Web storage defines a simple key/value store and has great support across both desk-
top and mobile browsers. Using web storage, a domain can persist a moderate amount
of data in the browser and retrieve it at a later time, even after the website has been
refreshed, the tab closed, or the browser shut down. Web storage is your first resort for
client-side persistence. Its winning feature is its bare simplicity.

 There are two web storage APIs: localStorage and sessionStorage. sessionStorage

Listing 8.22 Serialization benchmarking
implements an identical API to localStorage, though it differs in its persistence behav-
ior. Like localStorage, data stored in sessionStorage is persisted across page reloads,

Licensed to Samir Mashlum <smashlum@gmail.com>

218 CHAPTER 8 Storing application data

but unlike localStorage, all sessionStorage data expires when the page session ends
(when the tab or browser is closed). sessionStorage data can’t be accessed from differ-
ent browser windows.

 The web storage APIs were developed to overcome limitations with browser cook-
ies. Specifically, cookies aren’t well suited for sharing data between multiple active
tabs on the same domain. If a user is performing an activity across multiple tabs, ses-
sionStorage can be used for sharing state between those tabs, without requiring the
use of the network.

 Cookies are also ill-suited for handling more long-term data that should live across
multiple sessions, tabs, and windows; for example, user-authored documents or email.
This is the use case that localStorage was designed to handle. Depending on the par-
ticular browser, varying upper limits exist for the amount of data that can be stored in
web storage. Mobile browsers are limited to just 5 MB of storage.

API OVERVIEW

The localStorage API provides the following methods for working with keys and values:

 localStorage.setItem(key, value)—Store a value under key
 localStorage.getItem(key)—Get the value under key
 localStorage.removeItem(key)—Remove the value under key
 localStorage.clear()—Remove all keys and values
 localStorage.key(index)—Get value at index
 localStorage.length—Total number of keys in localStorage

8.14.2 Reading and writing values

Both keys and values must be strings. If you pass a value that isn’t a string, it’ll be
coerced into a string for you. This conversion doesn’t produce JSON strings; instead,
it’s a naïve conversion using .toString. Objects will end up serialized as the string
[object Object]. The application must serialize values to and from strings in order
to store more-complicated data types in web storage. The next listing shows how to
store JSON in localStorage.

const examplePreferences = {
 temperature: 'Celcius'
};

// serialize on write
localStorage.setItem('preferences', JSON.stringify(examplePreferences));

// deserialize on read
const preferences = JSON.parse(localStorage.getItem('preferences'));
console.log('Loaded preferences:', preferences);

Access to web storage data is reasonably fast, though it’s also synchronous. Web storage

Listing 8.23 Storing JSON in web storage
blocks the UI thread while performing read and write operations. For small workloads,
this overhead will be unnoticeable, but care should be taken to avoid excessive reads or

Licensed to Samir Mashlum <smashlum@gmail.com>

219In-browser storage

writes, especially with large quantities of data. Unfortunately, web storage is also
unavailable from web workers, so all reads and writes must happen on the main UI
thread. For a detailed analysis of the performance impact of various client-side storage
technologies, see this post by Nolan Lawson, author of PouchDB: http://nolanlawson
.com/2015/09/29/indexeddb-websql-localstorage-what-blocks-the-dom/.

 Web storage APIs provide no built-in facilities to perform queries, select keys by
range, or search through values. You’re limited to accessing items key by key. To per-
form searches, you can set up and maintain your own indexes; or if your dataset is
small enough, you can iterate over it in its entirety. The following listing iterates over
all the keys in localStorage.

function getAllKeys() {
 return Object.keys(localStorage);
}

function getAllKeysAndValues() {
 return getAllKeys()
 .reduce((obj, str) => {
 obj[str] = localStorage.getItem(str);
 return obj;
 }, {});
}

// Get all values
const allValues = getAllKeys().map(key => localStorage.getItem(key));

// As an object
console.log(getAllKeysAndValues());

As in most key/value stores, there’s only a single namespace for keys. For example, if
you have posts and comments, there’s no way to create separate stores for posts and
comments. It’s easy enough to create your own “namespace” by using a prefix on each
key to delineate namespaces, as shown in the next listing.

localStorage.setItem(`/posts/${post.id}`, post);
localStorage.setItem(`/comments/${comment.id}`, comment);

To get all items within a namespace, you can filter through all items using the preced-
ing getAllKeys function, as shown in the next listing.

function getNamespaceItems(namespace) {
 return getAllKeys().filter(key => key.startsWith(namespace));

Listing 8.24 Iterating over entire dataset in localStorage

Listing 8.25 Namespacing keys

Listing 8.26 Getting all items in a namespace
}
console.log(getNamespaceItems('/exampleNamespace'));

Licensed to Samir Mashlum <smashlum@gmail.com>

http://nolanlawson.com/2015/09/29/indexeddb-websql-localstorage-what-blocks-the-dom/
http://nolanlawson.com/2015/09/29/indexeddb-websql-localstorage-what-blocks-the-dom/

220 CHAPTER 8 Storing application data

Note that this loops over every single key in localStorage, so be wary of performance
when iterating over many items.

 As a result of the localStorage API being synchronous, a few restrictions exist on
when and where it can be used. For example, you could use localStorage to perma-
nently memoize the result of any function that takes and returns JSON-serializable
data, as shown in the following listing.

// subsequent calls with the same argument will fetch the memoized result
function memoizedExpensiveOperation(data) {
 const key = `/memoized/${JSON.stringify(data)}`;
 const memoizedResult = localStorage.getItem(key);
 if (memoizedResult != null) return memoizedResult;
 // do expensive work
 const result = expensiveWork(data);
 // save result to localStorage, never calculate again
 localStorage.setItem(key, result);
 return result;
}

Note that an operation would need to be particularly slow in order for the memoiza-
tion benefits to outweigh the overhead of the serialization/deserialization process
(for example, a cryptographic algorithm). As such, localStorage works best when it’s
saving time spent moving data across a network.

 Web storage does have limitations, but for the right tasks, it can be a powerful and
simple tool. Other in-browser storage topics to investigate are as follows:

 IndexedDB

 Service workers
 Offline-first

8.14.3 localForage

Web storage’s main drawbacks are its blocking, synchronous API and limited storage
capacity in some browsers. In addition to web storage, most modern browsers also sup-
port one or both of WebSQL and IndexedDB. Both data stores are nonblocking and
can reliably hold far more data than web storage.

 But using either of these databases directly, as we did with the web storage APIs, is
inadvisable. WebSQL is deprecated, and its successor, IndexedDB, has a particularly
unfriendly and verbose API, not to mention patchier browser support. To conve-
niently and reliably store data in the browser without blocking, we’re relegated to
using a nonstandard tool to “normalize” the landscape. The localForage library from
Mozilla (http://mozilla.github.io/localForage/) is one such normalizing tool.

API OVERVIEW

Listing 8.27 Using localStorage for persistent memoization
Conveniently, the localForage interface closely mirrors that of web storage, though in
an asynchronous, nonblocking form:

Licensed to Samir Mashlum <smashlum@gmail.com>

http://mozilla.github.io/localForage/

221In-browser storage

 localforage.setItem(key, value, callback)—Store a value under key
 localforage.getItem(key, callback)—Get the value under key
 localforage.removeItem(key, callback)—Remove the value under key
 localforage.clear(callback)—Remove all keys and values
 localforage.key(index, callback)—Get value at index
 localforage.length(callback)—Number of keys in localForage

The localForage API also includes useful additions with no web storage equivalent:

 localforage.keys(callback)—Remove all keys and values
 localforage.iterate(iterator, callback)—Iterate over keys and values

8.14.4 Reading and writing

The localForage API supports both promises and Node’s error-first callback convention.

const value = localStorage.getItem(key);
console.log(value);

localforage.getItem(key)
 .then(value => console.log(value));

localforage.getItem(key, (err, value) => {
 console.log(value);
});

Under the hood, localForage utilizes the best storage mechanism available in the cur-
rent browser environment. If IndexedDB is available, localForage will use that. Other-
wise, it’ll try to fall back to WebSQL or even using web storage if required. You can
configure the order in which the stores will be tried and even blacklist certain options:

// e.g. will not use localStorage
localforage.setDriver([localforage.INDEXEDDB, localforage.WEBSQL]);

Unlike localStorage, localForage isn’t limited to storing just strings. It supports most
JavaScript primitives such as arrays and objects, as well as binary data types: Typed-
Arrays, ArrayBuffers, and Blobs. Note that IndexedDB is the only back end that
can store binary data natively: the WebSQL and localStorage back ends will incur mar-
shalling overheads:

Promise.all([
 localforage.setItem('number', 3),
 localforage.setItem('object', { key: 'value' }),

Listing 8.28 Comparison of getting data with localStorage vs. localForage

localStorage: blocking,
synchronous

localForage: nonblocking,
asynchronous using promises

localForage: nonblocking,
asynchronous call using
node callback-style

This will never fall back
to using localStorage
 localforage.setItem('typedarray', new Uint32Array([1,2,3]))
]);

Licensed to Samir Mashlum <smashlum@gmail.com>

222 CHAPTER 8 Storing application data

Mirroring the web storage APIs makes localForage intuitive to use, while also overcom-
ing many of the shortcomings and compatibility issues when trying to store data in the
browser.

8.15 Hosted storage
Hosted storage is another tactic you can use to avoid managing your own server-side
storage. Hosted infrastructure services such as those provided by Amazon Web Ser-
vices (AWS) are often considered as only a scaling and performance optimization, but
smart usage of hosted services early on can save a lot of time implementing unneces-
sary infrastructure poorly.

 Many, if not all, of the databases listed in this chapter have a hosted offering.
Hosted services allow you to try tools quickly and even deploy publicly accessible pro-
duction applications without the hassles of setting up your own database hosting. But
hosting your own is becoming increasingly easy. Many cloud services provide prebuilt
server images, loaded with all the right software and configurations needed to run a
machine hosting the database of your choosing.

8.15.1 Simple Storage Service

Amazon Simple Storage Service (S3) is a remote file-hosting service provided as a part
of the popular AWS suite. S3 is a cost-effective means of storing and hosting network-
accessible files. It’s a filesystem in the cloud. Using RESTful HTTP calls, files can be
uploaded into buckets, along with up to 2 KB of metadata. Bucket contents can then
be accessed via HTTP GET or the BitTorrent protocol.

 Buckets and their contents can be configured with various permissions, including
time-based access. You can also specify a time to live (TTL) on bucket contents them-
selves, after which they’ll become inaccessible and be removed from your bucket. It’s
easy to promote your S3 data up to a content delivery network (CDN). AWS provides
the CloudFront CDN, which can be easily connected to your files and will be accessible
with low latency from around the world.

 Not all data needs to be or should be stored in a database. Are there components
of your data that could be treated as files? After you’ve generated the results of an
expensive calculation for a user, perhaps you can push those results up to S3 then for-
ever step out of the way.

 A common and obvious use for S3 is the hosting of user-uploaded assets such as
images. Uploaded assets live in a temporary directory on the application machine,
processed by using a tool such as ImageMagick to reduce the file size, and then
uploaded to S3 for hosting to web browsers. This process can be simplified even fur-
ther by streaming uploads directly to S3, where they can trigger further processing.
The client-side applications can also upload to S3 directly. Some more developer-cen-
tric services even opt for providing absolutely zero storage, requiring users to provide
access tokens so the application can use their S3 buckets.
Licensed to Samir Mashlum <smashlum@gmail.com>

223Summary

S3 ISN’T LIMITED TO THE STORAGE OF IMAGES

S3 can be used to store any type of file, up to 5 terabytes in size, of any format. S3 works
best for large blobs of data that change infrequently and need to be accessed as a sin-
gle atom.

 Storing data in S3 steps around the complications and complexity of setting up and
maintaining a server for the hosting and storage of files. It’s great for instances where
writes are infrequent, large chunks of data need to be accessed as a single atom, and
there are many reads and potentially many read locations.

8.16 Which database?
In this chapter, we’ve covered just a few of the many databases commonly used in
Node applications. Successful applications can be and have been built using any of
these databases. Within a single application, there’s not always one ideal data storage
solution; there’s no silver bullet. Each database presents its own unique set of trade-
offs, and it’s up to the developer to evaluate which trade-offs make sense for the cur-
rent state of the project. A hybrid of technologies is frequently the most appropriate.

 Rather than asking, “What database should I use?” you could be asking, “How far
can I go without using a database at all?” How much of your project can you build with
the fewest long-lasting decisions? It’s often best to defer decisions; you’ll always be
able to make a better decision later, when you have more information.

8.17 Summary
 Both relational and NoSQL databases can be used with Node.
 The simple pg Node module is great for working with the SQL language.
 The Knex module allows you to use several databases with Node.
 ACID is a set of properties for database transactions and ensures safety.
 MongoDB is a NoSQL database that uses JavaScript.
 Redis is a data-structure store that can be used as a database and cache.
 LevelDB is a fast key/value store by Google that maps from strings to values.
 LevelDB is a modular database.
 Web-based storage, including localForage and localStorage, can be used to save

data in browsers.
 Storage services, such as Amazon S3, can be used to persist data to cloud providers.
Licensed to Samir Mashlum <smashlum@gmail.com>

Testing Node applications
As features are added to your application, the risk of introducing bugs is increased.
An application isn’t complete if it’s not tested, and because manual testing is
tedious and prone to human error, automated testing has become increasingly
popular with developers. Automated testing involves writing logic to test your code,
rather than running through application functionality by hand.

 If the idea of automated testing is new to you, think of it as a robot doing all of
the boring stuff while you focus on the interesting work. Every time you make a
change to the code, the robot ensures that bugs haven’t crept in. Although you may
not have completed or started your first Node application yet, it’s good to get a
handle on how to implement automated testing because you’ll be able to write tests

This chapter covers
 Testing logic with Node’s assert module

 Using other assertion libraries

 Using Node unit-testing frameworks

 Simulating and controlling web browsers using
Node

 Getting more details when tests fail
224

as you develop.

Licensed to Samir Mashlum <smashlum@gmail.com>

225Unit testing

 In this chapter, you’ll look at two types of automated testing: unit testing and
acceptance testing. Unit testing is used to verify logic, typically at a function or method
level, and it’s applicable to all types of applications. Unit-testing methodologies can be
divided into two major forms: test-driven development (TDD) and behavior-driven
development (BDD). Practically speaking, TDD and BDD are largely the same thing,
but they differ stylistically. This can be important, depending on who needs to read
your tests. Other differences between TDD and BDD exist, but they’re beyond the
scope of this book. Acceptance testing is an additional layer of testing most commonly
used for web applications. Acceptance testing involves scripting control of a browser
and attempting to trigger web application functionality with it.

 This chapter covers established solutions for both unit and acceptance testing. For
unit testing, we cover Node’s assert module; the Mocha, Vows, and Should.js frame-
works; and Chai. For acceptance testing, we look at using Selenium with Node. Figure
9.1 places the tools alongside their respective testing methodologies and flavors.

Figure 9.1 Test framework overview

Let’s start with unit testing.

9.1 Unit testing
Unit testing is a type of automated testing in which you write logic to test discrete parts
of your application. Writing tests helps you think more critically about your applica-
tion design choices and helps you avoid pitfalls early on. The tests also give you confi-

Unit testing

Test application logic

TDD

Mocha
Jasmine

Node’s assert module
Chai

BDD

Mocha
Vows
Chai

Should.js

Acceptance testing

Test application interface and functionality

Browser

WebdriverIO
Selenium

Headless

WebdriverIO
Phantom
Zombie.js
dence that your recent changes haven’t introduced errors. Although unit tests take a

Licensed to Samir Mashlum <smashlum@gmail.com>

226 CHAPTER 9 Testing Node applications

bit of work up front to write, they can save you time by lessening the need to manually
retest every time you make a change to an application.

 Unit testing can be tricky, and testing asynchronous logic can present its own chal-
lenges. Asynchronous unit tests can run in parallel, so you have to be careful to ensure
that tests don’t interfere with each other. For example, if your tests create temporary
files on disk, you have to be careful that when you delete the files after a test, you
don’t delete the working files of another test that hasn’t yet finished. For this reason,
many unit-testing frameworks include flow control to sequence the running of tests.

 In this section, we show you how to use the following:

 Node’s built-in assert module—A good building block for TDD-style automated
testing

 Mocha—A relatively new testing framework that can be used for TDD- or BDD-
style testing

 Vows—A widely used BDD-style testing framework
 Should.js—A module that builds on Node’s assert module to provide BDD-style

assertions

The next section demonstrates how to test business logic with the assert module,
which is included with Node.

9.1.1 The assert module

The basis for most Node unit testing is the built-in assert module, which tests a condi-
tion and, if the condition isn’t met, throws an error. Node’s assert module is used by
many third-party testing frameworks. Even without a testing framework, you can do
useful testing with it. If you’re trying out a quick idea, you can use the assert module
by itself to write a quick test.

A SIMPLE EXAMPLE

Suppose you have a simple to-do application that stores items in memory, and you
want to assert that it’s doing what you think it’s doing.

 The following listing defines a module containing the core application functional-
ity. Module logic supports creating, retrieving, and deleting to-do items. It also
includes a simple doAsync method, so you can look at testing asynchronous methods
too. Save this file as todo.js.

class Todo {
 constructor() {
 this.todos = [];
 }

 add(item) {

Listing 9.1 A model for a to-do list

Defines to-do
database

Adds a to-do item
 if (!item) throw new Error('Todo.prototype.add requires an item');

Licensed to Samir Mashlum <smashlum@gmail.com>

http://visionmedia.github.com/mocha
http://visionmedia.github.com/mocha
http://visionmedia.github.com/mocha

Del
r

227Unit testing

 this.todos.push(item);
 }

 deleteAll() {
 this.todos = [];
 }

 get length() {
 return this.todos.length;
 }

 doAsync(cb) {
 setTimeout(cb, 2000, true);
 }
}

module.exports = Todo;

Now you can use Node’s assert module to test the code. In a file called test.js, enter the
following code to load the necessary modules, set up a new to-do list, and set a variable
that tracks the number of completed tests.

const assert = require('assert');
const Todo = require('./todo');
const todo = new Todo();
let testsCompleted = 0;

USING EQUAL TO TEST THE CONTENTS OF A VARIABLE

Next, you can add a test of the to-do application’s delete functionality. Add the func-
tion in the following listing to the end of test.js.

function deleteTest() {
 todo.add('Delete Me');
 assert.equal(todo.length, 1, '1 item should exist');
 todo.deleteAll();
 assert.equal(todo.length, 0, 'No items should exist');
 testsCompleted++;
}

This test adds a todo item and then deletes it. Because there should be no to-dos at
the end of this test, the value of todo.length should be 0 if the application logic is
working properly. If a problem occurs, an exception is thrown. If the value returned
by todo.length isn’t set to 0, the assertion will result in a stack trace showing an
error message, “No items should exist,” outputted to the console. After the assertion,

Listing 9.2 Set up necessary modules

Listing 9.3 Test to make sure that no to-do items remain after deletion

Deletes all
to-do items

Gets count of
to-do items

Calls back with
“true” after 2 secs

Exports Todo
function

Adds some data in
order to test delete Asserts data was

added correctly

etes all
ecords

Asserts record
was deleted

Notes that test
has completed
testsCompleted is incremented to note that a test has completed.

Licensed to Samir Mashlum <smashlum@gmail.com>

valu
228 CHAPTER 9 Testing Node applications

USING NOTEQUAL TO FIND PROBLEMS IN LOGIC

Next, add the code in the following listing to test.js. This code is a test of the to-do
application’s add functionality.

function addTest() {
 todo.deleteAll();
 todo.add('Added');
 assert.notEqual(todo.getCount(), 0, '1 item should exist');
 testsCompleted++;
}

The assert module also allows notEqual assertions. This type of assertion is useful
when the generation of a certain value by application code indicates a problem in
logic. Listing 9.4 shows the use of a notEqual assertion. All to-do items are deleted,
an item is added, and the application logic then gets all items. If the number of items
is 0, the assertion will fail and an exception will be thrown.

USING ADDITIONAL FUNCTIONALITY: STRICTEQUAL, NOTSTRICTEQUAL, DEEPEQUAL, NOTDEEPEQUAL

In addition to equal and notEqual functionality, the assert module offers strict ver-
sions of assertions called strictEqual and notStrictEqual. These use the strict
equality operator (===) rather than the more permissive version (==).

 To compare objects, the assert module offers deepEqual and notDeepEqual.
The deep in the names of these assertions indicates that they recursively compare two
objects, comparing two object’s properties, and if the properties are themselves
objects, comparing these as well.

USING OK TO TEST FOR AN ASYNCHRONOUS VALUE BEING TRUE

Now it’s time to add a test of the to-do application’s doAsync method, as shown in list-
ing 9.5. Because this is an asynchronous test, you’re providing a callback function
(cb) to signal to the test runner when the test has completed; you can’t rely on the
function returning to tell you, as you can with synchronous tests. To see whether the
result of doAsync is the value true, use the ok assertion. The ok assertion provides
an easy way to test a value for being true.

function doAsyncTest(cb) {
 todo.doAsync(value => {
 assert.ok(value, 'Callback should be passed true');
 testsCompleted++;
 cb();
 });
}

Listing 9.4 Test to make sure adding a to-do works

Listing 9.5 Test whether the doAsync callback is passed true

Deletes any
existing items

Adds item

Asserts that
items exist

Notes that test
has completed

Callback will fire
2 secs laterAsserts

e is true Notes that test
has completedTriggers callback

when done
Licensed to Samir Mashlum <smashlum@gmail.com>

http://vowsjs.org/
http://vowsjs.org/

229Unit testing

TESTING THAT THROWN ERRORS ARE CORRECT

You can also use the assert module to check that thrown error messages are correct, as
the following listing shows. The second argument in the throws call is a regular
expression that looks for the text requires in the error message.

function throwsTest(cb) {
 assert.throws(todo.add, /requires/);
 testsCompleted++;
}

ADDING LOGIC TO RUN YOUR TESTS

Now that you’ve defined the tests, you can add logic to the file to run each of the tests.
The logic in the following listing runs each test, and then prints the number of tests
that were run and completed.

deleteTest();
addTest();
throwsTest();
doAsyncTest(() => {
 console.log(`Completed ${testsCompleted} tests`);
});

You can run the tests with the following command:

$ node chapter09-testing/listing_09_1-7/test.js

If the tests don’t fail, the script informs you of the number of tests completed. It also
can be smart to keep track of when tests start execution as well as when they complete,
to protect against flaws in individual tests. For example, a test may execute without
reaching the assertion.

 In order to use Node’s built-in functionality, each test case has to include a lot of
boilerplate to set up the test (such as deleting all items) and to keep track of progress
(the completed counter). All this boilerplate shifts the focus away from the primary
concern of writing test cases, and it’s better left to a dedicated framework that can do
the heavy lifting while you focus on testing business logic. Let’s look at making things
easier by using Mocha, a third-party unit-testing framework.

9.1.2 Mocha

Mocha, a popular testing framework, is easy to grasp. Although it defaults to a BDD
style, you can also use it in a TDD style. Mocha has a wide variety of features, including
global variable leak detection and client-side testing.

Listing 9.6 Test whether add throws when missing a parameter

Listing 9.7 Running the tests and reporting test completion

todo.add called with
no argumentsNotes that test

has completed

Indicates
completion
Licensed to Samir Mashlum <smashlum@gmail.com>

230 CHAPTER 9 Testing Node applications

By default, Mocha tests are defined and their logic is set up by using BDD-flavored
functions called describe, it, before, after, beforeEach, and afterEach. Alter-
natively, you can use Mocha’s TDD interface, which replaces the use of describe with
suite, it with test, before with setup, and after with teardown. For our exam-
ple, you’ll stick with the default BDD interface.

TESTING NODE APPLICATIONS WITH MOCHA

Let’s dive right in and see how to create a small project called memdb—a small in-mem-
ory database—and use Mocha to test it. First, you need to create the directories and
files for the project:

$ mkdir -p memdb/test
$ cd memdb
$ touch index.js
$ touch test/memdb.js
$ npm init -y
$ npm install --save-dev mocha

Open package.json and add a scripts property that defines how the tests are run:

"scripts": {
 "test": "mocha"
},

The test directory is where the tests will live. By default, Mocha uses the BDD interface.
The following listing shows what it looks like (chapter09-testing/memdb in the book’s
sample code).

const memdb = require('..');
describe('memdb', () => {
 describe('.saveSync(doc)', () => {
 it('should save the document', () => {
 });

Global variable leak detection
You should have little need for global variables that are readable application-wide,
and it’s considered a programming best practice to minimize your use of them. But
in ES5, it’s easy to inadvertently create global variables by forgetting to include the
var keyword when declaring a variable. Mocha helps detect accidental global vari-
able leaks by throwing an error when you create a global variable during testing.

If you want to disable global leak detection, run mocha with the --ignored-leaks
command-line option. Alternatively, if you want to allow a select number of globals to
be used, you can specify them by using the --globals command-line option fol-
lowed by a comma-delimited list of allowable global variables.

Listing 9.8 Basic structure for a Mocha test
 });
});

Licensed to Samir Mashlum <smashlum@gmail.com>

Desc
exp
231Unit testing

Mocha also supports TDD and qunit, and exports style interfaces, which are detailed
on the project’s site (https://mochajs.org/). To illustrate the concept of interfaces,
here’s the exports interface:

module.exports = {
 'memdb': {
 '.saveSync(doc)': {
 'should save the document': () => {
 }
 }
 }
}

All of these interfaces provide the same functionality, but for now you’ll stick to the
BDD interface and write the first test, shown in the following listing, in test/memdb.js.
This test uses Node’s assert module to perform the assertions.

const memdb = require('..');
const assert = require('assert');
describe('memdb', () => {
 describe('.saveSync(doc)', () => {
 it('should save the document', () => {
 const pet = { name: 'Tobi' };
 memdb.saveSync(pet);
 const ret = memdb.first({ name: 'Tobi' });
 assert(ret == pet);
 });
 });
});

To run the tests, all you need to do is execute npm test. Mocha looks in the ./test
directory by default for JavaScript files to execute. Because you haven’t implemented
the .saveSync() method yet, you’ll see that the single defined test fails, as shown in
figure 9.2.

Listing 9.9 Describing the memdb .save functionality

Describes memdb
functionality

Describes .save()
method’s functionality

ribes the
ectation

Ensures the pet
was found

Figure 9.2

Failing test
in Mocha

Licensed to Samir Mashlum <smashlum@gmail.com>

https://mochajs.org/

232 CHAPTER 9 Testing Node applications

Let’s make it pass! Add the code in the following listing to index.js.

const db = [];
exports.saveSync = (doc) => {
 db.push(doc);
};
exports.first = (obj) => {
 return db.filter((doc) => {
 for (let key in obj) {
 if (doc[key] != obj[key]) {
 return false;
 }
 }
 return true;
 }).shift();
};

Run the tests again with npm, and the results should be similar to figure 9.3.

Figure 9.3 Successful test in Mocha

DEFINING SETUP AND CLEANUP LOGIC BY USING MOCHA HOOKS

The test case in listing 9.10 makes the assumption that memdb.first() works cor-
rectly, so you’ll want to add a few test cases for that as well. The revised test file, listing
9.11, includes a new concept—the concept of Mocha hooks. The BDD interface
exposes beforeEach(), afterEach(), before(), and after(), which take call-
backs for defining setup and cleanup logic.

const memdb = require('..');
const assert = require('assert');
describe('memdb', () => {
 beforeEach(() => {
 memdb.clear();

Listing 9.10 Added save functionality

Listing 9.11 Adding a beforeEach hook

Adds the doc to
database array

Selects docs that match
every property in obj

Not a match; returns false
and doesn’t select this doc

They all matched; returns
and selects the doc

Wants only the
first doc or null

Clears database before each test
case to keep tests stateless
 });
 describe('synchronous .saveSync(doc)', () => {

Licensed to Samir Mashlum <smashlum@gmail.com>

d

233Unit testing

 it('should save the document', () => {
 const pet = { name: 'Tobi' };
 memdb.saveSync(pet);
 const ret = memdb.first({ name: 'Tobi' });
 assert(ret == pet);
 });
 });
 describe('.first(obj)', () => {
 it('should return the first matching doc', () => {
 const tobi = { name: 'Tobi' };
 const loki = { name: 'Loki' };
 memdb.saveSync(tobi);
 memdb.saveSync(loki);
 let ret = memdb.first({ name: 'Tobi' });
 assert(ret == tobi);
 ret = memdb.first({ name: 'Loki' });
 assert(ret == loki);
 });
 it('should return null when no doc matches', () => {
 const ret = memdb.first({ name: 'Manny' });
 assert(ret == null);
 });
 });
});

Ideally, test cases share no state whatsoever. To achieve this with memdb, you need to
remove all the documents by implementing the .clear() method in index.js:

exports.clear = () => {
 db.length = 0;
};

Running Mocha again should show you that three tests have passed.

TESTING ASYNCHRONOUS LOGIC

One thing we haven’t yet looked at in Mocha is testing asynchronous logic. To see how
this is done, you’ll make a small change to one of the functions defined earlier in
index.js. By changing the save function to the following, a callback can be optionally
provided that will execute after a small delay (meant to simulate some sort of asyn-
chronous operation):

exports.save = (doc, cb) => {
 db.push(doc);
 if (cb) {
 setTimeout(() => {
 cb();
 }, 1000);
 }
};

Mocha test cases can be defined as asynchronous by adding an argument to a function

The first expectation
for .first()

Saves two
ocuments Makes sure each one

can be returned properly

The second
expectation
for .first()
defining testing logic. The argument is commonly named done. The following listing
shows how to write a test for the asynchronous save method.

Licensed to Samir Mashlum <smashlum@gmail.com>

cal
234 CHAPTER 9 Testing Node applications

describe('asyncronous .save(doc)', () => {
 it('should save the document', (done) => {
 const pet = { name: 'Tobi' };
 memdb.save(pet, () => {
 const ret = memdb.first({ name: 'Tobi' });
 assert(ret == pet);
 done();
 });
 });
});

This same rule applies to all of the hooks. For example, the beforeEach() hook to
clear the database could add a callback, and Mocha could wait until it’s called in order
to move on. If done() is invoked with an error as the first argument, Mocha will
report the error and mark the hook or test case as a failure:

beforeEach((done) => {
 memdb.clear(done);
});

For more about Mocha, check out its full online documentation: http://mochajs.org.
Mocha also works for client-side JavaScript.

9.1.3 Vows

The tests you can write using the Vows unit-testing framework are more structured
than those of many other frameworks, with the structure intended to make the tests
easy to read and maintain.

 Vows uses its own BDD-flavored terminology to define test structure. In the realm
of Vows, a test suite contains one or more batches. A batch can be thought of as a
group of related contexts, or conceptual areas of concern that you want to test. The
batches and contexts run in parallel. A context may contain a topic, one or more vows,
and/or one or more related contexts (inner contexts also run in parallel). A topic is

Listing 9.12 Testing asynchronous logic

Mocha’s use of nonparallel testing
Mocha executes tests one after another rather than in parallel, which makes test
suites execute more slowly but makes writing tests easier. But Mocha won’t let any
test run for an inordinately long time. Mocha, by default, allows any given test to run
for only 2,000 milliseconds before failing it. If you have tests that take longer, you
can run Mocha with the --timeout command-line option and then specify a larger
number.

For most testing, running tests serially is fine. If you find this problematic, other
frameworks, such as Vows, execute in parallel, and are covered in the next section.

Saves doc

Invokes
lback with

first doc
Asserts document
saved properlyTells Mocha you’re

done with this test case
testing logic that’s related to a context. A vow is a test of the result of a topic. Figure
9.4 shows how Vows structures tests.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://mochajs.org

235Unit testing

Vows, like Mocha, is geared toward automated application testing. The difference is
primarily in flavor and parallelism, with Vows tests requiring a specific structure and
terminology. In this section, we run through an example application test and explain
how to use a Vows test to run multiple tests at the same time.

 Add Vows to the to-do project by installing it using npm:

mkdir -p vows-todo/test
cd vows-todo
touch todo.js
touch test/todo-test.js
npm init -y
npm install --save-dev –g vows

You need to add Vows to the test property in package.json so you can run the tests by
typing npm test:

"scripts": {
 "test": "vows test/*.js"
},

TESTING APPLICATION LOGIC WITH VOWS

You can trigger testing in Vows either by running a script containing test logic or by
using the vows command-line test runner. The following example of a standalone test
script (which can be run like any other Node script) uses one of the tests of the to-do
application’s core logic.

 Listing 9.13 creates a batch. Within the batch, you define a context. Within the
context, you define a topic and a vow. Note how the code uses the callback to deal

Suite

Topic

Contains

One or more
batches

Contains

May containMay contain May contain

One or more
contexts

One or more
contexts

One or more
vows

Figure 9.4 Vows can structure tests
in a suite using batches, contexts,
topics, and vows.
with asynchronous logic in the topic. If a topic isn’t asynchronous, a value can be
returned rather than being sent via a callback. Save the file as test/todo-test.js.

Licensed to Samir Mashlum <smashlum@gmail.com>

236 CHAPTER 9 Testing Node applications

const vows = require('vows');
const assert = require('assert');
const Todo = require('./../todo');
vows.describe('Todo').addBatch({
 'when adding an item': {
 topic: () => {
 const todo = new Todo();
 todo.add('Feed my cat');
 return todo;
 },
 'it should exist in my todos': (er, todo) => {
 assert.equal(todo.length, 1);
 }
 }
}).export(module);

You should be able to run this test by typing npm test. If you install Vows globally
with npm i -g vows, you can also run all tests in a folder named test by entering the
following command:

$ vows test/*

For more about Vows, check out the project’s online documentation (http://
vowsjs.org/), as shown in figure 9.5.

 Vows offers a comprehensive testing solution, but you can mix and match test
library features by using a different assertion library. Perhaps you like Mocha but
don’t like Node’s assertion library. The next section introduces Chai, an assertion
library that you can use in place of Node’s assert module.

Listing 9.13 Using Vows to test the to-do application

A batch
A context

A topic

A vow
Figure 9.5 Vows combines full-featured BDD testing with macros and flow control.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://vowsjs.org/
http://vowsjs.org/

237Unit testing

9.1.4 Chai

Chai (http://chaijs.com/) is a popular assertion library that comes with three inter-
faces: should, expect, and assert. The assert interface, shown in the following listing,
looks like Node’s built-in assertion module, but it comes with useful tools for compar-
ing objects, arrays, and their properties. For example, typeOf can be used to com-
pare types, and property checks that an object has the desired property.

const chai = require('chai');
const assert = chai.assert;
const foo = 'bar';
const tea = { flavors: ['chai', 'earl grey', 'pg tips'] };

assert.typeOf(foo, 'string');

assert.equal(foo, 'bar');
assert.lengthOf(foo, 3);

assert.property(tea, 'flavors');
assert.lengthOf(tea.flavors, 3);

The main reason you might want to try Chai is the should and expect interfaces.
They provide fluent APIs that are more like BDD-style libraries. Here’s the expect
interface:

const chai = require('chai');
const expect = chai.expect;
const foo = 'bar';
expect(foo).to.be.a('string');
expect(foo).to.equal('bar');

This API reads more like an English sentence—the declarative style is more verbose
but easier to read aloud. The should interface switches this around: objects are deco-
rated to have extra properties, so you don’t need to wrap assertions in a call as with
expect:

const chai = require('chai');
chai.should();
const foo = 'bar';
foo.should.be.a('string');
foo.should.equal('bar');

Deciding which interface to use depends on the project. If you’re writing tests first
and using them to document the project, the verbose expect and should interfaces
will work well. JavaScript purists prefer expect because it doesn’t change prototypes,
but those with Ruby experience may be familiar with APIs such as should.

 The main advantage of using Chai is the range of plugins. This includes handy things

Listing 9.14 Chai’s assert interface

Selects assertion
interface
such as chai-as-promised (http://chaijs.com/plugins/chai-as-promised/), which helps
test code that uses promises, and chai-stats (http://chaijs.com/plugins/chai-stats/), a

Licensed to Samir Mashlum <smashlum@gmail.com>

http://chaijs.com/
http://chaijs.com/plugins/chai-as-promised/
http://chaijs.com/plugins/chai-stats/

238 CHAPTER 9 Testing Node applications

library for comparing numbers according to statistical methods. Note that Chai is an
assertion library, so you should use it alongside a test runner like Mocha.

 Another BDD assertion library like Chai is Should.js. The next section introduces
Should.js and demonstrates how to write tests with it.

9.1.5 Should.js

Should.js is an assertion library that can help make your tests easier to read by allow-
ing you to express assertions in a BDD-like style. It’s designed to be used in conjunc-
tion with other testing frameworks, which lets you continue to use your own preferred
framework. In this section, you’ll learn how to write assertions with Should.js and, as
an example, you’ll write a test for a custom module.

 Should.js is easy to use with other frameworks because it augments Object.
-prototype with a single property: should. This allows you to write expressive asser-
tions such as user.role.should.equal('admin'), or users.should.include
('rick').

 Let’s say you’re writing a Node command-line tip calculator that you want to use to
figure out who should pay what amount when you split a bill with friends. You’d like to
write tests for your calculation logic in a way that’s easily understood by your nonpro-
grammer friends, because then they won’t think you’re cheating them.

 To set up your tip calculator application, enter the following commands, which set
up a folder for the application, and then install Should.js for testing:

mkdir -p tips/test
cd tips
touch index.js
touch test/tips.js

Now you can install Should.js by running the following commands:

npm init -y
npm install --save-dev should

Next, edit the index.js file, which will contain the logic defining the application’s core
functionality. Specifically, the tip calculator logic includes four helper functions:

 addPercentageToEach—Increases each number in an array by a given
percentage

 sum—Calculates the sum of each element in an array
 percentFormat—Formats a percentage for display
 dollarFormat—Formats a dollar value for display

Add this logic by populating index.js with the contents of the following listing.

exports.addPercentageToEach = (prices, percentage) => {
 return prices.map((total) => {

Listing 9.15 Logic for calculating tips when splitting a bill

Adds percentage
 total = parseFloat(total);
 return total + (total * percentage);

to array elements

Licensed to Samir Mashlum <smashlum@gmail.com>

239Unit testing

 });
};
exports.sum = (prices) => {
 return prices.reduce((currentSum, currentValue) => {
 return parseFloat(currentSum) + parseFloat(currentValue);
 });
};
exports.percentFormat = (percentage) => {
 return parseFloat(percentage) * 100 + '%';
};
exports.dollarFormat = (number) => {
 return `$${parseFloat(number).toFixed(2)}`;
};

Now edit the test script in test/tips.js, as shown in the following listing. The script
loads the tip logic module; defines a tax, tip percentage, and the bill items to test; tests
the addition of a percentage to each array element; and tests the bill total.

const tips = require('..');
const should = require('should');
const tax = 0.12;
const tip = 0.15;
const prices = [10, 20];

const pricesWithTipAndTax = tips.addPercentageToEach(prices, tip + tax);
pricesWithTipAndTax[0].should.equal(12.7);
pricesWithTipAndTax[1].should.equal(25.4);

const totalAmount = tips.sum(pricesWithTipAndTax).toFixed(2);
totalAmount.should.equal('38.10');

const totalAmountAsCurrency = tips.dollarFormat(totalAmount);
totalAmountAsCurrency.should.equal('$38.10');

const tipAsPercent = tips.percentFormat(tip);
tipAsPercent.should.equal('15%');

Run the script by using the following command. If all is well, the script should gener-
ate no output, because no assertions have been thrown, and your friends will be reas-
sured of your honesty:

$ node test/tips.js

To make this easier to run, add it as the test property under scripts in package.json:

"scripts": {
 "test": "node test/tips.js"
}

Listing 9.16 Logic that calculates tips when splitting a bill

Calculates sum of
array elements

Formats percentage
for display

Formats dollar value
for display

Uses tip logic module

Defines tax and tip rates

Defines bill items to test

Tests tax and tip addition

Tests bill totaling
Should.js supports many types of assertions—everything from assertions that use regu-
lar expressions to assertions that check object properties—allowing comprehensive

Licensed to Samir Mashlum <smashlum@gmail.com>

240 CHAPTER 9 Testing Node applications

testing of data and objects generated by your application. The project’s GitHub page
(https://github.com/shouldjs/should.js) provides comprehensive documentation of
Should.js’s functionality.

 Spies, stubs, and mocks are often used in addition to assertion libraries to control
the way that code under tests is executed. The next section demonstrates how to do
these with Sinon.JS.

9.1.6 Spies and stubs with Sinon.JS

The final tool for your testing toolbox is a mock and stub library. The reason we write
unit tests is to isolate parts of a system to test, but sometimes this is difficult. For exam-
ple, imagine you’re testing code that resizes images. You don’t want to write to real
image files, so how do you write tests? The code shouldn’t have special test branches
that avoid touching the filesystem, because then you wouldn’t be truly testing the
code. In cases like this, you need to stub the filesystem functionality. The practice of
writing stubs also helps you do true TDD, because you can stub dependencies that
aren’t ready yet.

 In this section, you’ll learn how to use Sinon.JS (http://sinonjs.org/) to write test
spies, stubs, and mocks. Before you get started, create a new project and install Sinon:

mkdir sinon-js-examples
cd sinon-js-examples
npm init -y
mkdir test
npm i --save-dev sinon

Next create a sample file to test. The example we use is a simple JSON key/value data-
base. Our goal is to be able to stub the filesystem API so it doesn’t create real files on
the filesystem. This will allow us to test only our database code rather than the file-
handling code, as shown in the next listing.

const fs = require('fs');

class Database {
 constructor(filename) {
 this.filename = filename;
 this.data = {};
 }

 save(cb) {
 fs.writeFile(this.filename, JSON.stringify(this.data), cb);
 }

 insert(key, value) {
 this.data[key] = value;
 }

Listing 9.17 Database class
}

module.exports = Database;

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/shouldjs/should.js
http://sinonjs.org/
http://sinonjs.org/

241Unit testing

Save the listing as db.js. Now you’ll try testing it with Sinon’s spies.

SPIES

Sometimes you just want to see whether a method has been called. Spies are perfect for
this. The API lets you replace a method with something you can use to make assertions
on. To mock the fs.writeFile call in db.js, use Sinon’s method replacement, spy:

sinon.spy(fs, 'writeFile');

When the test is finished, you can get the original method back with restore:

fs.writeFile.restore();

In a test library like Mocha, you’d place these calls in the beforeEach and after-
Each blocks. The following listing shows a full example of using spies. Save this file as
spies.js.

const sinon = require('sinon');
const Database = require('./db');
const fs = require('fs');
const database = new Database('./sample.json');

const fsWriteFileSpy = sinon.spy(fs, 'writeFile');
const saveDone = sinon.spy();

database.insert('name', 'Charles Dickens');
database.save(saveDone);

sinon.assert.calledOnce(fsWriteFileSpy);

fs.writeFile.restore();

After setting up the spy b, the code under test is run. Then you ensure that the
expected method was called with sinon.assert c. The original method is then
restored d. In this test, restoring it isn’t strictly necessary, but it’s best practice to
always restore methods that you’ve changed.

STUBS

Sometimes you need to control code flow. For example, you might want to force an
error branch to be executed so you can test error handling in your code. The preced-
ing example could be rewritten to use a stub instead of a spy to cause writeFile to
execute its callback. Note that you still want to avoid calling the original method, but
instead force the code under test to run the supplied callback. The next listing shows
how to use stubs to replace functions. Save it as stub.js.

Listing 9.18 Using spies

Listing 9.19 Using stubs

Replaces original
fs method

b

Ensures writeFile is
called only once

c

Restores the
original method

d

const sinon = require('sinon');
const Database = require('./db');

Licensed to Samir Mashlum <smashlum@gmail.com>

242 CHAPTER 9 Testing Node applications

const fs = require('fs');
const database = new Database('./sample.json');

const stub = sinon.stub(fs, 'writeFile', (file, data, cb) => {
 cb();
});
const saveDone = sinon.spy();

database.insert('name', 'Charles Dickens');
database.save(saveDone);

sinon.assert.calledOnce(stub);
sinon.assert.calledOnce(saveDone);

fs.writeFile.restore();

Using a combination of stubs and spies is ideal for testing Node code that makes heavy
use of user-supplied functions, callbacks, and promises. Now that you’ve looked at
tools designed for unit testing, let’s move on to an altogether different style of testing:
functional testing.

9.2 Functional testing
In most web development projects, functional tests work by driving the browser and
then checking for various DOM transformations against a list of user-specific require-
ments. Imagine you’re building a content management system. A functional test for
the image library upload feature would upload an image, check that it gets added, and
then check that it’s added to a corresponding list of images.

 The choice of tools to implement
functional testing in Node is bewil-
dering. From a high level, however,
they fall into two broad groups:
headless and browser-based tests.
Headless tests typically use something
like PhantomJS to provide a termi-
nal-friendly browser environment,
but lighter solutions use libraries
such as Cheerio and JSDOM. Browser-
based tests use a browser automation
tool such as Selenium (www.seleni-
umhq.org) so you can write scripts
that drive a real browser. Both
approaches can use the same under-
lying Node test tools, so you could use Mocha, Jasmine, or even Cucumber to drive
Selenium against your application. Figure 9.6 shows an example test environment.

Replaces writeFile with
your own function

Ensures writeFile
was called

Ensures database.save’s
callback was run

• Application running with NODE_ENV=test
• Test database

Test scripts

• Mocha
• Chai
• DOM assertion tools

Browser
layer

Your
application

• Selenium
• Firefox

Figure 9.6 Testing with browser automation
 In this section, you’ll learn about functional testing solutions for Node, so you can
set up test environments based on your own requirements.

Licensed to Samir Mashlum <smashlum@gmail.com>

www.seleniumhq.org
www.seleniumhq.org

243Functional testing

9.2.1 Selenium

Selenium is a popular Java-based browser automation library. With the aid of a lan-
guage-specific driver, you can connect to a Selenium server and run tests against a real
browser. In this section, you’ll learn how to use WebdriverIO (http://webdriver.io/), a
Node Selenium driver.

 Getting Selenium running is trickier than pure Node test libraries, because you
need to install Java and download the Selenium JAR file. Download Java for your oper-
ating system, and then go to the Selenium download site (http://docs.seleniumhq.org/
download/) to download the JAR file. You can then run a Selenium server like this:

java -jar selenium-server-standalone-2.53.0.jar

Note that your exact Selenium version may be different. You may also have to supply a
path to the browser binary. For example, in Windows 10 with Firefox set as the
browserName, you can specify Firefox’s full path like this:

java -jar -Dwebdriver.firefox.driver="C:\path\to\firefox.exe" selenium-
server-standalone-3.0.1.jar

The exact path will depend on how Firefox is installed on your machine. For more
about the Firefox driver, read the SeleniumHQ documentation (https://github.com/
SeleniumHQ/selenium/wiki/FirefoxDriver). Drivers for Chrome and Microsoft Edge
are configured in similar ways.

 Now create a new Node project and install WebdriverIO:

mkdir -p selenium/test/specs
cd selenium
npm init -y
npm install --save-dev webdriverio
npm install --save express

WebdriverIO comes with a friendly config file generator. To run it, run wdio config:

./node_modules/.bin/wdio config

Follow the questions
and accept the
defaults. Figure 9.7
shows my session.

Figure 9.7 Using

wdio to configure

Selenium tests

Licensed to Samir Mashlum <smashlum@gmail.com>

http://webdriver.io/
http://docs.seleniumhq.org/download/
http://docs.seleniumhq.org/download/
https://github.com/SeleniumHQ/selenium/wiki/FirefoxDriver
https://github.com/SeleniumHQ/selenium/wiki/FirefoxDriver

244 CHAPTER 9 Testing Node applications

Update the package.json file with the wdio command so tests can be run with npm
test:

"scripts": {
 "test": "wdio wdio.conf.js"
},

Now add something to the test. A basic Express server will suffice. The example in the
following listing will be used in the subsequent listing for testing. Save this listing as
index.js (it’s c09-testing/selenium/index.js in the book’s sample code).

const express = require('express');
const app = express();
const port = process.env.PORT || 4000;

app.get('/', (req, res) => {
 res.send(`
<html>
 <head>
 <title>My to-do list</title>
 </head>
 <body>
 <h1>Welcome to my awesome to-do list</h1>
 </body>
</html>
 `);
});

app.listen(port, () => {
 console.log('Running on port', port);
});

The good thing about WebdriverIO is it provides a simple, fluent API for writing Sele-
nium tests. The syntax is clear and easy to learn—you can even write tests with CSS
selectors. The next listing (found in test/specs/todo-test.js in the book’s sample code)
shows a simple test that sets up a WebdriverIO client and then checks the title on the
page.

const assert = require('assert');
const webdriverio = require('webdriverio');

describe('todo tests', () => {
 let client;

 before(() => {
 client = webdriverio.remote();

Listing 9.20 Sample Express project

Listing 9.21 A WebdriverIO test

Sets up WebdriverIO
client

b

 return client.init();
 });

Licensed to Samir Mashlum <smashlum@gmail.com>

f

245Dealing with failing tests

 it('todo list test', () => {
 return client
 .url('/')
 .getTitle()
 .then(title => assert.equal(title, 'My to-do list'));
 });
});

After WebdriverIO is connected b, you can use an instance of the client to fetch pages
from your app c. Then you can query the current state of the document in the
browser—this example uses getTitle to get the title element from the docu-
ment’s head. If you want to query the document for CSS elements, you can use .ele-
ments instead (http://webdriver.io/api/protocol/elements.html). There are all
kinds of methods for manipulating the document, forms, and even cookies.

 This test, which looks like the other Mocha tests in this chapter, is capable of run-
ning a real browser against a Node web app. To run it, start the server on port 4000:

PORT=4000 node index.js

Then type npm test. You should see Firefox open and the tests run in the command
line. If you want to use Chrome, open wdio.conf.js and change the browserName
property.

9.3 Dealing with failing tests
When you’re working on an established project, there will come a point when tests
begin to fail. Node provides several tools for getting more detail on failed tests, and in
this section you’ll learn about how to enrich the output generated when debugging
failing tests.

 The first thing to do when tests fail is to generate more-verbose logging output.
The next section demonstrates how to do that with NODE_DEBUG.

9.3.1 Getting more-detailed logs

When tests fail, it’s useful to get information on what the program is doing. Node has

More-advanced testing with Selenium
If you use WebdriverIO and Selenium to test a more complex web app that uses
something like React or Angular, you’ll want to check out the utility methods.
Some of the methods will pause the test until certain elements are available, which
is great for React apps that may asynchronously render the document, updating it
several times based on when remote data is available.

Take a look at the waitFor* methods, such as waitForVisible (http://web-
driver.io/api/utility/waitForVisible.html) to learn more.

Gets home pagec

Gets title
rom head

Asserts title
is expected
two ways to do this: one for Node’s internals, and another for npm modules. To debug
Node’s core modules, use NODE_DEBUG.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://webdriver.io/api/utility/waitForVisible.html
http://webdriver.io/api/utility/waitForVisible.html
http://webdriver.io/api/protocol/elements.html

246 CHAPTER 9 Testing Node applications

USING NODE_DEBUG
To see how NODE_DEBUG works, imagine you have a deeply nested filesystem call
where you’ve forgotten to use a callback. For example, the following example will
throw an exception:

const fs = require('fs');

function deeplyNested() {
fs.readFile('/');
}

deeplyNested();

The stack trace shows only a limited amount of detail about the exception, and in par-
ticular doesn’t include full information on the call site where the exception originated:

fs.js:60
 throw err; // Forgot a callback but don't know where? Use

NODE_DEBUG=fs
 ^

Error: EISDIR: illegal operation on a directory, read
 at Error (native)

Without the helpful comment, many programmers see a trace like this and blame
Node for the unhelpful error. But, as the comment points out, NODE_DEBUG=fs can
be used to get more information on the fs module. Run the script like this instead:

NODE_DEBUG=fs node node-debug-example.js

Now you’ll see a more detailed trace that helps debug the issue:

fs.js:53
 throw backtrace;
 ^

Error: EISDIR: illegal operation on a directory, read
 at rethrow (fs.js:48:21)
 at maybeCallback (fs.js:66:42)
 at Object.fs.readFile (fs.js:227:18)
 at deeplyNested (node-debug-example.js:4:6)
 at Object.<anonymous> (node-debug-example.js:7:1)
 at Module._compile (module.js:435:26)
 at Object.Module._extensions..js (module.js:442:10)
 at Module.load (module.js:356:32)
 at Function.Module._load (module.js:311:12)
 at Function.Module.runMain (module.js:467:10)

It’s clear from this trace that the problem lies in our file, inside a function on line 4
that was originally called from line 7. This makes debugging any code that uses core
modules much easier, and that includes not only the filesystem, but also network

libraries such as Node’s HTTP client and server modules.

Licensed to Samir Mashlum <smashlum@gmail.com>

247Dealing with failing tests

USING DEBUG
The public alternative to NODE_DEBUG is DEBUG. Many packages on npm look for the
DEBUG environment variable. It mimics the parameter style used by NODE_DEBUG, so
you can specify a list of modules to debug or see all of them with DEBUG='*'. Figure
9.8 shows the project from chapter 4 running with DEBUG='*'.

Figure 9.8 Running an Express application with DEBUG='*'

If you want to incorporate the NODE_DEBUG functionality into your own projects, use
the built-in util.debuglog method:

const debuglog = require('util').debuglog('example');
debuglog('You can only see these messages by setting NODE_DEBUG=example!');

To make custom debug loggers that are configured with DEBUG, you need to use the
debug package from npm (www.npmjs.com/package/debug). You can create as many
loggers as you want. Imagine you’re building an MVC web application. You could cre-
ate separate loggers for models, views, and controllers. Then, when tests fail, you’ll be
able to specify the debug logs that are necessary to debug the specific part of the
application. The following listing (found in ch09-testing/debug-example/index.js)
demonstrates how to use the debug module.

const debugViews = require('debug')('debug-example:views');
const debugModels = require('debug')('debug-example:models');

debugViews('Example view message');
debugModels('Example model message');

To run this example and see the view logs, set DEBUG to debug-example:views:

Listing 9.22 Using the debug package
DEBUG=debug-example:views node index.js

Licensed to Samir Mashlum <smashlum@gmail.com>

248 CHAPTER 9 Testing Node applications

One final feature of debug logging is that you can prefix a debug section with a
hyphen to remove it from logs:

DEBUG='* -debug-example:views' node index.js

Hiding certain modules means you can still use the wildcard, but omit unneeded or
noisy sections from the output.

9.3.2 Getting better stack traces

If you’re using asynchronous operations, and that includes anything you’ve written
using asynchronous callbacks or promises, then you may run into problems when
stack traces aren’t detailed enough. Packages on npm can help you in such cases. For
example, when callbacks run asynchronously, Node won’t keep the call stack from
when the operation was queued. To test this, create two files, one called async.js that
defines an asynchronous function, and another called index.js that requires async.js.
This snippet is aync.js (found in ch09-testing/debug-stacktraces/async.js in the book’s
sample code):

module.exports = () => {
 setTimeout(() => {
 throw new Error();
 })
};

And index.js just needs to require async.js:

require('./async.js')();

Now if you run index.js with node index.js, you’ll get a short stack trace that doesn’t
show the caller of the failed function, only the location of the thrown exception:

 throw new Error();
 ^

Error
 at null._onTimeout (async.js:3:11)
 at Timer.listOnTimeout (timers.js:92:15)

To improve this reporting, install the trace package (www.npmjs.com/package/trace)
and run it with node -r trace index.js. The -r flag tells Node to require the
trace module before loading anything else.

 Another problem with stack traces is they can be too detailed. This happens when
the trace includes too much detail about Node’s internals. To clear up your stack
traces, use clarify (www.npmjs.com/package/clarify). Again, you can run it with
the -r flag:

$ node -r clarify index.js
 throw new Error();

 ^

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/trace
www.npmjs.com/package/clarify

249Summary

Error
 at null._onTimeout (async.js:3:11)

clarify is particularly useful if you want to include stack traces in error alert emails
for a web application.

 If you’re running code intended for browsers in Node, perhaps as part of an iso-
morphic web application, then you can get better stack traces by using source-map-
support (www.npmjs.com/package/source-map-support). This can be run with -r,
but it also works with some test frameworks:

$ node -r source-map-support/register index.js
$ mocha --require source-map-support/register index.js

The next time you’re struggling with a stack trace generated by asynchronous code,
look for tools such as trace and clarify to make sure you’re getting the best out of
what V8 and Node can offer.

9.4 Summary
 Writing unit tests requires a test runner such as Mocha.
 Node has a built-in assertion library called assert.
 There are other assertion libraries, including Chai and Should.js.
 If you don’t want to run certain code, such as network requests, you can use

Sinon.JS.
 Sinon.JS also allows you to spy on code and verify that certain functions or

methods were run.
 Selenium can be used to write browser tests by scripting real browsers.
Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/source-map-support

Deploying Node applications
and maintaining uptime
Developing a web application is one thing, but putting it into production is
another. For every web technology, tips and tricks are available that can increase
stability and maximize performance, and Node is no different. In this chapter,
you’ll get an overview of how to choose the right deployment environment for your
application, and you’ll also learn about how to maintain uptime.

 The following section outlines the main types of environments you’ll deploy to.
Then you’ll look at ways to maintain high uptimes.

10.1 Hosting Node applications
The web applications you’ve developed in this book use a Node-based HTTP server.
A browser can talk to your application without a dedicated HTTP server such as
Apache or Nginx. It’s possible to sit a server such as Nginx in front of your applica-
tion, however, so Node can often be hosted anywhere you’ve previously been able

This chapter covers
 Choosing where to host your Node application

 Deploying a typical application

 Maintaining uptime and maximizing performance
250

to run a web server.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://upstart.ubuntu.com

251Hosting Node applications

 Cloud providers, including Heroku and Amazon, also support Node. As a result,
you have three ways to run your application in a reliable and scalable way:

 Platform as a service—Run your application on Amazon, Azure, or Heroku
 Server or virtual machine—Run your application on a UNIX or Windows server in

the cloud, a private hosting company, or internally at your place of business
 Container—Run your application and any other associated services by using a

software container such as Docker

Choosing which of these three approaches to use can be difficult, particularly because
trying them out first isn’t always easy. Note that each option isn’t tied to a particular
vendor: Amazon and Azure are both capable of providing all of these deployment
strategies, for example. To understand which option is right for you, this section
explains their requirements as well as their advantages and disadvantages. Fortunately,
every option has free or affordable options, so they should all be accessible to hobby-
ists and professionals alike.

10.1.1 Platform as a service

With platform as a service (PaaS), you typically prepare an application for deployment
by signing up for the service, creating a new app, and then adding a Git remote to
your project. Pushing to that remote deploys your application. By default, it’ll run on
a single container—the exact definition of container varies among vendors—and the
service will attempt to restart the application if it crashes. You’ll get limited access to
logs, and web and command-line interfaces for managing your app. To scale, you’ll
run more instances of your application, which carries an additional fee. Table 10.1
contains an overview of the features of a typical PaaS offering.

PaaS providers support their own preferred database and third-party databases. For
Heroku, this is PostgreSQL; and for Azure, it’s SQL Database. The database connection

Table 10.1 PaaS features

Ease of use High

Features Git push to deploy, simple horizontal scalability

Infrastructure Abstracted/black box

Commercial suitability Good: applications are typically network isolated

Pricinga

a $: Cheap, $$$$$: Expensive

Low traffic: $$; Popular site: $$$$

Vendors Heroku, Azure, AWS Elastic Beanstalk
details will be in environment variables, so you can connect without adding database

Licensed to Samir Mashlum <smashlum@gmail.com>

252 CHAPTER 10 Deploying Node applications and maintaining uptime

credentials to your project’s source code. PaaS is great for hobbyists, because it can be
cheap or even sometimes free to run small projects with low traffic.

 Some vendors are easier to use than others: Heroku is extremely easy for program-
mers familiar with Git, even with little or no sysadmin or DevOps knowledge. PaaS sys-
tems typically know how to run projects made with popular tools such as Node, Rails,
and Django, so they’re almost plug-and-play.

EXAMPLE: NODE ON HEROKU IN 10 MINUTES

In this section, you'll deploy an application to Heroku. Using Heroku’s default set-
tings, you'll deploy the application to a single lightweight Linux container, known as a
dyno in Heroku’s terminology, to serve your application. To deploy a basic Node app
to Heroku, you need the following prerequisites:

 An app to deploy
 An account with Heroku: https://signup.heroku.com/
 The Heroku CLI: https://devcenter.heroku.com/articles/heroku-cli

After you have these elements, sign in to Heroku on the command-line:

heroku login

Heroku then prompts you to enter your email address and Heroku password. Next,
make a simple Express app:

mkdir heroku-example
npm i -g express-generator
express
npm i

You can run npm start and visit http://localhost:3000 to ensure that everything is
running correctly. The next step is to make a Git repository and create a Heroku
application:

git init
git add .
git commit –m 'Initial commit'
heroku create
git push heroku master

This displays a randomly generated URL for your application, and a Git remote. When-
ever you want to deploy, commit your changes with Git and push to heroku master.
You can change the URL and the name of the application with heroku rename.

 Now visit the herokuapp.com URL from the previous step to see your basic Express
app. To see the application logs, run heroku logs, and to get a shell in the applica-
tion’s dyno, run heroku run bash.

 Heroku is a quick and easy way to run a Node application. Notice that you don’t have
to do any Node-specific tailoring—Heroku runs basic Node apps out of the box without

extra configuration. Sometimes you need more control over the environment, how-
ever, so in the next section we introduce using servers for hosting Node apps.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://devcenter.heroku.com/articles/heroku-cli
http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/
https://signup.heroku.com/
http://mmonit.com/monit/
http://www.zabbix.com
http://www.zabbix.com

253Hosting Node applications

10.1.2 Servers

Getting your own server has some advantages over PaaS. Instead of worrying about
where to run the database, you can install PostgreSQL, MySQL, or even Redis on the
same server if you want. You can install anything you like: custom logging software,
HTTP servers, caching layers—it’s up to you. Table 10.2 summarizes the main charac-
teristics of running your own servers.

You can obtain and maintain a server in various ways. You can get a cheap virtual
machine from a company such as Linode or Digital Ocean; this will be a full server
that you can configure however you like, but it’ll share resources with other virtual
machines on the same hardware. You can also buy your own hardware or rent a server.
Some hosting companies offer managed hosting, whereby they’ll help maintain the
server’s operating system.

 You have to decide which operating system you want to use. Debian has several fla-
vors, and Node also works well in Windows and Solaris, so the choice is more difficult
than it seems.

 Another critical decision is how to expose your app to the world: traffic can be
redirected from port 80 and 443 to your app, but you could also sit Nginx in front of it
to proxy requests and potentially handle static files.

 You have various ways to move your code from your repository to the server as well.
You can manually copy files with scp, sftp, or rsync, or you can use Chef to control
multiple servers and manage releases. Some people set up a Heroku-like Git hook that
will automatically update the app on the server, based on pushes to a certain Git
branch.

 The important thing to realize is that managing your own server is difficult. Con-
figuration takes a lot of work, and the server also has to be maintained with the latest
OS bug fixes and security updates. If you’re a hobbyist, this may put you off—but
you’ll learn a lot and may discover an interest in DevOps.

 Running Node apps on a virtual machine or full server doesn’t require anything
special. If you want to see some of the techniques used to run a Node app on a server
and keep it running for long periods of time, skip forward to section 10.2, Under-

Table 10.2 Server features

Ease of use Low

Features Complete control over the whole stack, run your own database and caching layer

Infrastructure Open to the developer (or sysadmin/DevOps)

Commercial suitability Good if you have staff capable of maintaining the server

Pricing Small VM: $; Large hosted server: $$$$$

Vendors Azure, Amazon, hosting companies
standing deployment basics. Otherwise, continue reading to learn about Node and
Docker.

Licensed to Samir Mashlum <smashlum@gmail.com>

254 CHAPTER 10 Deploying Node applications and maintaining uptime

10.1.3 Containers

Using software containers is a kind of OS virtualization that automates the deployment
of applications. The most well-known project is Docker, which is open source but also
has commercial services that help you deploy production applications. Table 10.3
shows the main features of containers.

Docker allows you to define your application in terms of images. If you’ve built a typi-
cal content management system that has a microservice for image processing, a main
service for storing application data, and then a back-end database, you could deploy it
with four separate Docker images:

 Image 1—Microservice for resizing images that are uploaded to the CMS

 Image 2—PostgreSQL

 Image 3—Your main CMS web application with the administration interface
 Image 4—The public front-end web application

Because Docker is open source, you’re not limited to a single vendor for deploying
Dockerized applications. You can use Amazon’s Elastic Beanstalk to deploy your
images, Docker Cloud, or even Microsoft’s Azure. Amazon also offers EC2 Container
Service (ECS), and AWS CodeCommit for cloud Git repositories, which can be
deployed to Elastic Beanstalk in a similar fashion to Heroku.

 The amazing thing about using containers is that after you’ve containerized your
app, you can bring up a fresh instance of it with a single command. If you get a new
computer, you just need to check out your app’s repository, install Docker locally, and
then run the script to start your app. Because your application has a well-defined rec-
ipe for deployment, it’s easier for you and your collaborators to understand how your
application is supposed to run outside the local development environment.

EXAMPLE: RUNNING NODE APPS WITH DOCKER

Example: https://nodejs.org/en/docs/guides/nodejs-docker-webapp/
 To run a Node app with Docker, you need to do a few things first:

Table 10.3 Server features

Ease of use Medium

Features Complete control over the whole stack, run your own database and caching
layer, redeploy to various providers and local machines

Infrastructure Open to the developer (or sysadmin/DevOps)

Commercial suitability Great: deploy to a managed host, Docker host, or your own datacenter

Pricing $$$

Vendors Azure, Amazon, Docker Cloud, Google Cloud Platform (with Kubernetes), host-
ing companies that allow you to run Docker containers
1 Install Docker: https://docs.docker.com/engine/installation/.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://nginx.org/en/
https://nodejs.org/en/docs/guides/nodejs-docker-webapp/
https://docs.docker.com/engine/installation/

255Understanding deployment basics

2 Create a Node app. Refer to section 10.1.1, Platform as a service, for details on
how to quickly make an example Express app.

3 Add a new file to the project called Dockerfile.

The Dockerfile tells Docker how to build your application’s image, and how to install
the app and run it. You’ll use the official Node Docker image (https://hub.docker
.com/_/node/) by specifying FROM node:boron in the Dockerfile, and then run
npm install and npm start with the RUN and CMD instructions. The following snip-
pet is a full Dockerfile that works for simple Node apps:

FROM node:argon

RUN mkdir -p /usr/src/app
WORKDIR /usr/src/app

COPY package.json /usr/src/app/
RUN npm install

COPY . /usr/src/app

EXPOSE 3000
CMD ["npm", "start"]

After you’ve created the Dockerfile, run the docker build (https://docs.docker
.com/engine/reference/commandline/build/) command in the terminal to create
an application image. You need to specify only the directory to build, so if you’re in
the example Express app, you should be able to type docker build . to build the
image and send it to the Docker daemon.

 Run docker images to see a list of images. Get the image ID, and then run
docker run -p 8080:3000 -d <image ID> to run the app. We’ve bound the
internal port (3000) to 8080 on localhost, so to access the app, we used http://local-
host:8080 in a browser.

10.2 Understanding deployment basics
Suppose you’ve created a web application that you want to show off, or maybe you’ve
created a commercial application and need to test it before putting it into full produc-
tion. You’ll likely start with a simple deployment, and then do some work later to max-
imize uptime and performance. In this section, we walk you through a simple,
temporary Git deployment, as well as details on how to keep the application up and
running with Forever. Temporary deployments don’t persist beyond reboots, but they
have the advantage of being quick to set up.

10.2.1 Deploying from a Git repository

Let’s quickly go through a basic deployment using a Git repository to give you a feel for
the fundamental steps. Deployment is most commonly done by following these steps:

1 Connect to a server by using SSH.

2 Install Node and version-control tools (such as Git or Subversion) on the server

if needed.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://hub.docker.com/_/node/
https://hub.docker.com/_/node/
https://docs.docker.com/engine/reference/commandline/build/
https://docs.docker.com/engine/reference/commandline/build/

256 CHAPTER 10 Deploying Node applications and maintaining uptime

3 Download application files, including Node scripts, images, and CSS style
sheets, from a version-control repository to the server.

4 Start the application.

Here’s an example of an application starting after downloading the application files
using Git:

git clone https://github.com/Marak/hellonode.git
cd hellonode
node server.js

Like PHP, Node doesn’t run as a background task. Because of this, the basic deploy-
ment we've outlined requires keeping the SSH connection open. As soon as the SSH
connection closes, the application will terminate. Luckily, it’s fairly easy to keep your
application running by using a simple tool.

10.2.2 Keeping Node running

Let’s say you’ve created a personal blog by using the Ghost blogging application
(https://ghost.org/), and you want to deploy it, making sure that it stays running even
if you disconnect from SSH.

 The most popular tool in the Node community for dealing with this is Nodejitsu’s
Forever (https://github.com/foreverjs/forever). It keeps your application running
after you disconnect from SSH and, additionally, restarts it if it crashes. Figure 10.1
shows, conceptually, how Forever works.

Automating deployment
You can automate deployment of your Node application in various ways. One is to
use a tool such as Fleet (https://github.com/substack/fleet), which allows you to
deploy to one or more servers by using git push. A more traditional approach is to
use Capistrano, as detailed in the “Deploying node.js applications with Capistrano”
post on Evan Tahler’s Bricolage blog (https://blog.evantahler.com/deploying-node-js-
applications-with-capistrano-af675cdaa7c6#.8r9v0kz3l).

Forever

Launches
and monitors

The Forever application launches your server
application and monitors it for any potential crashes.

When the application crashes, Forever takes
action and relaunches the application.

Application

Forever

Relaunches
and monitors

Application

Application
crashes
Figure 10.1 The Forever tool helps you keep your application running, even if it crashes.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/substack/fleet
https://blog.evantahler.com/deploying-node-js-applications-with-capistrano-af675cdaa7c6#.8r9v0kz3l
https://blog.evantahler.com/deploying-node-js-applications-with-capistrano-af675cdaa7c6#.8r9v0kz3l
https://ghost.org/
https://github.com/foreverjs/forever

257Maximizing uptime and performance

You can install Forever globally by using the sudo command.

THE SUDO COMMAND Sometimes when installing an npm module globally
(with the -g flag), you need to prefix the npm command with the sudo com-
mand (www.sudo.ws) in order to run npm with superuser privileges. The first
time you use the sudo command, you’ll be prompted to enter your password.
Then the command specified after it will be run.

If you’re following along, install Forever now by using this command:

npm install -g forever

After you’ve installed Forever, you can use it to start your blog and keep it running
with the following command:

forever start server.js

If you want to stop your blog for some reason, you can use Forever’s stop command:

forever stop server.js

When using Forever, you can get a list of applications that the tool is managing by
using its list command:

forever list

Another useful capability of Forever is that it can optionally restart your application
when any source files have changed. This frees you from having to manually restart
each time you add a feature or fix a bug.

 To start Forever in this mode, use the -w flag:

forever -w start server.js

Although Forever is an extremely useful tool for deploying applications, you may want
to use something more full-featured for long-term deployments. In the next section,
you’ll look at some industrial-strength monitoring solutions and see how to maximize
application performance.

10.3 Maximizing uptime and performance
When a Node application is release-worthy, you’ll want to make sure it starts and stops
when the server starts and stops, and that it automatically restarts when the server
crashes. It’s easy to forget to stop an application before a reboot or to forget to restart
an application afterward.

 You’ll also want to make sure you’re taking steps to maximize performance. For
example, it makes sense when you’re running your application on a server with a
quad-core CPU to not use only a single core. If you’re using only a single core and
your web application’s traffic increases significantly, a single core may not have the

processing capability to handle the traffic, and your web application won’t be able to
consistently respond.

Licensed to Samir Mashlum <smashlum@gmail.com>

www.sudo.ws

258 CHAPTER 10 Deploying Node applications and maintaining uptime

 In addition to using all CPU cores, you’ll want to avoid using Node to host static
files for high-volume production sites. Node is geared toward interactive applications,
such as web applications and TCP/IP protocols, and it can’t serve static files as effi-
ciently as software optimized to do only that. For serving static files, you should use
technologies such as Nginx (http://nginx.org/en/), which specializes in serving static
files. Alternatively, you could upload all your static files to a content delivery network
(CDN), such as Amazon S3 (http://aws.amazon.com/s3/), and reference those files in
your application.

 This section covers some server uptime and performance tips:

 Using Upstart to keep your application up and running through restarts and
crashes

 Using Node’s cluster API for multicore processors
 Serving Node application static files using Nginx

Let’s start by looking at a powerful and easy-to-use tool for maintaining uptime:
Upstart.

10.3.1 Maintaining uptime with Upstart

Let’s say you’re happy with an application and want to market it to the world. You
want to make dead sure that if you restart a server, you don’t then forget to restart
your application. You also want to make sure that if your application crashes, it’s not
only automatically restarted, but the crash is logged and you’re notified, which allows
you to diagnose any underlying issues.

 Upstart (http://upstart.ubuntu.com) is a project that provides an elegant way to
manage the starting and stopping of any Linux application, including Node applica-
tions. Modern versions of Ubuntu and CentOS support the use of Upstart. An alterna-
tive for macOS is to create launchd files (node-launchd on npm can do this), and the
Windows equivalent is to use Windows Services, which is supported by the node-win-
dows package on npm.

 You can install Upstart on Ubuntu, if it’s not already installed, with this command:

sudo apt-get install upstart

You can install Upstart on CentOS, if it’s not already installed, with this command:

sudo yum install upstart

After you install Upstart, you need to add an Upstart configuration file for each of
your applications. These files are created in the /etc/init directory and are named
something like my_application_name.conf. The configuration files don't need to be
marked as executable.

 The following creates an empty Upstart configuration file for this chapter’s exam-
ple application:
sudo touch /etc/init/hellonode.conf

Licensed to Samir Mashlum <smashlum@gmail.com>

http://nginx.org/en/
http://aws.amazon.com/s3/
http://upstart.ubuntu.com

S
applic

on shutd

Res
applic

wh
cra
259Maximizing uptime and performance

Now add the contents of the following listing to your config file. This setup will run
the application when the server starts and will stop the application upon shutdown.
The exec section gets executed by Upstart.

author "Robert DeGrimston"
description "hellonode"
setuid "nonrootuser"
start on (local-filesystems and net-device-up IFACE=eth0)
stop on shutdown
respawn
console log
env NODE_ENV=production
exec /usr/bin/node /path/to/server.js

This configuration will keep your process up and running after the server restarts and
even after it crashes unexpectedly. All the application-generated output will be sent to
/var/log/upstart/hellonode.log, and Upstart will manage the log rotation for you.

 Now that you’ve created an Upstart configuration file, you can start your applica-
tion by using the following command:

sudo service hellonode

If your application was started successfully, you’ll see a line like this:

hellonode start/running, process 6770

Upstart is highly configurable. Check out the online cookbook (http://
upstart.ubuntu.com/cookbook/) for all the available options.

UPSTART AND RESPAWNING

When the respawn option is used, Upstart will by default continually reload your
application on crashes unless the application is restarted 10 times within 5 seconds.
You can change this limit by using the respawn limit COUNT INTERVAL option,
where COUNT is the number of times within the INTERVAL, which is specified in sec-
onds. For example, you set a limit of 20 times in 5 seconds like this:

respawn
respawn limit 20 5

If your application is reloaded 10 times within 5 seconds (the default limit), typically
there’s something wrong in the code or configuration, and it will never start success-

Listing 10.1 A typical Upstart configuration file

Specifies application
author name Sets application name

or description
Runs application as
user nonrootuser

Starts application on
startup after filesystem and

network are available

tops
ation
own

tarts
ation
en it
shes

Logs stdin and stderr to
/var/log/upstart/yourapp.log

Sets any environmental
variables necessary to

the application
Specifies command to

execute application
fully. Upstart won’t try to restart after reaching the limit, in order to save resources for
other processes.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://upstart.ubuntu.com/cookbook/
http://upstart.ubuntu.com/cookbook/

260 CHAPTER 10 Deploying Node applications and maintaining uptime

 It’s a good idea to do health checks outside Upstart that provide alerts to the devel-
opment team through email or some other means of quick communication. A health
check, for a web application, can simply involve hitting the website and seeing
whether you get a valid response. You could roll your own methods or use tools such
as Monit (http://mmonit.com/monit/) or Zabbix (www.zabbix.com) for this.

 Now that you know how to keep your application running regardless of crashes
and server reboots, the next logical concern is performance. Node’s cluster API can
help with this.

10.3.2 The cluster API: taking advantage of multiple cores

Most modern computer CPUs have multiple cores, but a Node process uses only one
of them when running. If you're hosting a Node application on a server and want to
maximize the server’s usage, you can manually start multiple instances of your applica-
tion on different TCP/IP ports and use a load balancer to distribute web traffic to
these instances, but that’s laborious to set up.

 To make it easier to use multiple cores for a single application, the cluster API was
added to Node. This API makes it easy for your application to simultaneously run mul-
tiple workers on different cores that each do the same thing and respond to the same
TCP/IP port. Figure 10.2 shows how an application’s processing would be organized
using the cluster API on a four-core processor.

The following listing automatically spawns a master process and a worker for each
additional core.

const cluster = require('cluster');
const http = require('http');
const numCPUs = require('os').cpus().length;
if (cluster.isMaster) {
 for (let i = 0; i < numCPUs; i++) {
 cluster.fork();

Listing 10.2 A demonstration of Node’s cluster API

Master

Worker

CPU core

Worker

CPU core CPU core

Worker Worker

Figure 10.2 A master
spawning three workers
on a four-core processor

Determines the server’s
number of cores

Creates a fork
for each core
 }
 cluster.on('exit', (worker, code, signal) => {

Licensed to Samir Mashlum <smashlum@gmail.com>

http://mmonit.com/monit/
www.zabbix.com

261Maximizing uptime and performance

 console.log('Worker %s died.', worker.process.pid);
 });
} else {
 http.Server((req, res) => {
 res.writeHead(200);
 res.end('I am a worker running in process: ' + process.pid);
 }).listen(8000);
}

Because masters and workers run in separate operating system processes, which is nec-
essary if they’re to run on separate cores, they can’t share state through global vari-
ables. But the cluster API does provide a means for the master and workers to
communicate.

 The following listing shows an example in which messages are passed between the
master and the workers. A count of all requests is kept by the master, and whenever a
worker reports handling a request, it’s relayed to each worker.

const cluster = require('cluster');
const http = require('http');
const numCPUs = require('os').cpus().length;
const workers = {};
let requests = 0;

if (cluster.isMaster) {
 for (let i = 0; i < numCPUs; i++) {
 workers[i] = cluster.fork();
 ((i) => {
 workers[i].on('message', (message) => {
 if (message.cmd == 'incrementRequestTotal') {
 requests++;
 for (var j = 0; j < numCPUs; j++) {
 workers[j].send({
 cmd: 'updateOfRequestTotal',
 requests: requests
 });
 }
 }
 });
 })(i);
 }
 cluster.on('exit', (worker, code, signal) => {
 console.log('Worker %s died.', worker.process.pid);
 });
} else {
 process.on('message', (message) => {
 if (message.cmd === 'updateOfRequestTotal') {
 requests = message.requests;
 }

Listing 10.3 A demonstration of Node’s cluster API

Defines work to be
done by each worker

Listens for messages
from worker

Increases
request total Sends new request

total to each worker

Uses closure to preserve
the value of worker

Listens for messages
from master

Updates request count
using master’s message
 });
 http.Server((req, res) => {

Licensed to Samir Mashlum <smashlum@gmail.com>

262 CHAPTER 10 Deploying Node applications and maintaining uptime

 res.writeHead(200);
 res.end(`Worker ${process.pid}: ${requests} requests.`);
 process.send({ cmd: 'incrementRequestTotal' });
 }).listen(8000);
}

Using Node’s cluster API is a simple way of creating applications that take advantage of
modern hardware.

10.3.3 Hosting static files and proxying

Although Node is an effective solution for serving dynamic web content, it’s not the
most efficient way to serve static files such as images, CSS style sheets, or client-side
JavaScript. Serving static files over HTTP is a specific task for which specific software
projects are optimized, because they’ve focused primarily on this task for many years.

 Fortunately, Nginx (http://nginx.org/en/), an open source web server optimized
for serving static files, is easy to set up alongside Node to serve those files. In a typical
Nginx/Node configuration, Nginx initially handles each web request, relaying requests
that aren’t for static files back to Node. Figure 10.3 illustrates this configuration.

 The configuration in the following listing, which would be put in the Nginx config-
uration file’s http section, implements this setup. The configuration file is conven-
tionally stored in a Unix server’s /etc directory at /etc/nginx/nginx.conf.

http {
 upstream my_node_app {
 server 127.0.0.1:8000;
 }
 server {
 listen 80;
 server_name localhost domain.com;
 access_log /var/log/nginx/my_node_app.log;
 location ~ /static/ {
 root /home/node/my_node_app;
 if (!-f $request_filename) {
 return 404;
 }
 }
 location / {
 proxy_pass http://my_node_app;
 proxy_redirect off;
 proxy_set_header X-Real-IP $remote_addr;
 proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
 proxy_set_header Host $http_host;
 proxy_set_header X-NginX-Proxy true;
 }
 }
}

Listing 10.4 A configuration file that uses Nginx to proxy Node.js and serve static files

Lets master know request
total should increase

IP and port of Node
application

Port on which proxy
will receive requests

Handles file requests for URL
paths starting with /static/

Defines URL path the
proxy will respond to
Licensed to Samir Mashlum <smashlum@gmail.com>

http://nginx.org/en/

263Summary

By using Nginx to handle your static web assets, you ensure that Node is dedicated to
doing what it does best.

10.4 Summary
 Node applications can be hosted by PaaS providers, dedicated services, virtual

private servers, and cloud hosting.
 You can quickly deploy Node applications to Linux servers by using Forever and

Upstart.
 To make your application perform better, Node’s cluster module lets you run

multiple processes.

Nginx

Web browser

ResponseRequest

Node applicationIs request for
a static file?Filesystem

File response

Yes No

Node response

Figure 10.3 You can use
Nginx as a proxy to relay
static assets quickly
back to web clients.

Licensed to Samir Mashlum <smashlum@gmail.com>

264 CHAPTER 10 Deploying Node applications and maintaining uptime

Licensed to Samir Mashlum <smashlum@gmail.com>

Part 3

Beyond web development

Millions of people depend on apps that are built with Node. If you’ve
ever used Slack or Visual Studio Node, you’ve used applications that are pow-
ered by Node. This part introduces both Electron and modules for writing com-
mand-line tools with Node. If you’ve ever wanted to make an app for Linux,
macOS, or Windows, now you can.
Licensed to Samir Mashlum <smashlum@gmail.com>

266 CHAPTER
Licensed to Samir Mashlum <smashlum@gmail.com>

Writing command-line
applications
Node command-line utilities are used everywhere, from project automation tools,
such as Gulp and Yeoman, to XML and JSON parsers. If you’ve ever wondered how
to build command-line tools with Node, this chapter will show you everything you
need to know to get started. You’ll learn how Node programs accept command-line
arguments and how to handle I/O with pipes. We’ve also included shell tips that
will help you use the command line more effectively.

 Although writing command-line tools with Node isn’t hard, it’s important to
follow community conventions. This chapter includes many of these conventions
so you’ll be able to write tools that other people can use, without too much docu-
mentation.

This chapter covers
 Designing command-line applications by using

common conventions

 Communicating with pipes

 Using exit codes
267

Licensed to Samir Mashlum <smashlum@gmail.com>

268 CHAPTER 11 Writing command-line applications

11.1 Understanding conventions and philosophy
A big part of command-line development is understanding the conventions used by
established programs. As a real-world example, take a look at Babel:

 Usage: babel [options] <files ...>

 Options:

 -h, --help output usage information
 -f, --filename [filename] filename to use when reading from

stdin
 [...]
 -q, --quiet Don't log anything
 -V, --version output the version number

Several points are worth noting here. The first is the use of both -h and --help for
printing help: this is a flag that many programs use. The second flag is -f for file-
name—this is an easy mnemonic to learn. Lots of flags are based on mnemonics.
Using -q for quiet output is also a popular convention, and so is -v for showing the
program’s version. Your applications should include these flags.

 This user interface isn’t merely a convention, however. The use of the hyphen and
double hyphen (--) is recognized by the Open Group’s Utility Conventions.1 This
document even specifies how they should be used:

 Guideline 4—All options should be preceded by the - delimiter character.
 Guideline 10—The first -- argument that’s not an option-argument should be

accepted as a delimiter indicating the end of options. Any following arguments
should be treated as operands, even if they begin with the - character.

Another aspect of command-line application design is philosophy. This dates back to
the creators of UNIX, who wanted to design “small, sharp tools” that could be used
together with a simple, text-based interface.

This is the UNIX philosophy: Write programs that do one thing and do it well. Write
programs to work together. Write programs to handle text streams, because that is a
universal interface.

—Doug McIlroy2

In this chapter, we provide a broad overview of shell techniques and UNIX conven-
tions so you can design command-line tools that other people can use. We offer guid-
ance for Windows-specific usage as well, but for the most part, your Node tools should
be cross-platform by default.

1 “The Open Group Base Specifications Issue 7,” http://pubs.opengroup.org/onlinepubs/9699919799/

basedefs/V1_chap11.html.

2 “Basics of the Unix Philosophy”, www.catb.org/~esr/writings/taoup/html/ch01s06.html.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap11.html
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/V1_chap11.html
www.catb.org/~esr/writings/taoup/html/ch01s06.html

269Using command-line arguments

11.2 Introducing parse-json
For JavaScript programmers, one of the simplest useful applications reads JSON and
prints it if it’s valid. By following this chapter, you’ll re-create this tool.

 Let’s start with what a command line for this application should look like. The fol-
lowing snippet shows how to invoke such a program:

node parse-json.js -f my.json

The first thing you need to do is figure out how to grab -f my.json from the com-
mand line; these are the program’s arguments. You also need to read input from
stdin. Read on to learn how to do both of these things.

11.3 Using command-line arguments
Most—but not all—command-line programs accept arguments. Node has a built-in
way to handle these arguments, but third-party modules on npm offer extra features.
You need these features in order to implement some widely used conventions. Read
on to learn more.

11.3.1 Parsing command-line arguments

Command-line arguments can be accessed by using the process.argv array. The
items in the array are the strings passed to the shell when running a command. So if
you split up the command, you can figure out what each item in the array is. The item
at process.argv[0] is node, the item at process.argv[1] is parse-json.js,
[2] is -f, and so forth.

 If you’ve ever used command-line applications before, you may have seen argu-
ments with - or --. These prefixes are special conventions for passing options to
applications: -- denotes a full string for an option name, and - denotes a single char-
acter for an option name. The npm command-line binary is a great example of this
with -h and --help.

Shell tips: getting help
If you get stuck when using the shell, try typing man <cmd>. This loads the manual
page for the command.

If you can’t remember the command’s name, you can use apropos <cmd> to search
the database of system commands.

Argument conventions
Other argument conventions are as follows:

 --version to print the version of your application

 -y or --yes to use default values for any missing options

Licensed to Samir Mashlum <smashlum@gmail.com>

270 CHAPTER 11 Writing command-line applications

Adding aliases for arguments, such as -h and –-help, makes parsing awkward after
you add support for several options, but luckily there’s a module for parsing argu-
ments called yargs. The following snippet shows how yargs works in the simplest case.
All you need to do is require yargs, and then access the argv property to inspect the
arguments that were passed to the script:

const argv = require('yargs').argv;
console.log({ f: argv.f });

Figure 11.1 shows how Node’s built-in version of the command-line arguments differs
from the object generated by yargs.

Although an options object is useful, it doesn’t provide much structure for validating
arguments and generating usage text. The next section shows how to describe and val-
idate arguments.

11.3.2 Validating arguments

The yargs module includes methods for validating the arguments. The following listing
shows how to use yargs to parse the -f argument that your JSON parser will need, and
it uses the describe and nargs methods to enforce the expected argument format.

const readFile = require('fs').readFile;
const yargs = require('yargs');
const argv = yargs
 .demand('f')
 .nargs('f', 1)
 .describe('f', 'JSON file to parse')
 .argv;
const file = argv.f;
readFile(file, (err, dataBuffer) => {
 const value = JSON.parse(dataBuffer.toString());

Listing 11.1 Using yargs to parse command-line arguments

node script.js -f filename -g search --save file

['node', 'script.js',
 '-f', 'filename',
 '-g', 'search',
 '--save', 'file']

Node’s process.argv yargs’ argv object

f filename

g search

save file
Figure 11.1 Node’s argv
compared to yargs

Requires –f to run

Tells yargs –f needs one
argument after it
 console.log(JSON.stringify(value));
});

Licensed to Samir Mashlum <smashlum@gmail.com>

271Using command-line arguments

Using yargs is easier than manipulating the process.argv array, and it’s better
because rules can be enforced. Listing 11.1 uses demand to force an argument, and
then declares that it requires a single parameter, which will be the JSON file to parse.
To make the program easier to use, you can provide usage text with yargs as well. The
convention here is to print the usage text when -h or --help is passed. You can add
these with the help of yargs, as shown in this snippet:

yargs
 // ...
 .usage('parse-json [options]')
 .help('h')
 .alias('h', 'help')
 // ...

Now your JSON parser can accept a file argument and process the file. File handling
isn’t yet finished for this project, however, because it also needs to accept stdin. Read
on to learn how to do that with a common UNIX convention.

11.3.3 Passing stdin as a file

If a file parameter is given as a hyphen (-f -), it means grab the data from stdin. This
is another common command-line convention. You can use the mississippi package to
do this easily. You have to concatenate all the data piped to your application prior to
calling JSON.parse, though, because it expects a full JSON string to parse. With the
mississippi module, the example now looks like the following listing.

#!/usr/bin/env node
const concat = require('mississippi').concat;
const readFile = require('fs').readFile;
const yargs = require('yargs');
const argv = yargs
 .usage('parse-json [options]')
 .help('h')
 .alias('h', 'help')
 .demand('f') // require -f to run
 .nargs('f', 1) // tell yargs -f needs 1 argument after it
 .describe('f', 'JSON file to parse')
 .argv;
const file = argv.f;
function parse(str) {
 const value = JSON.parse(str);

Shell tips: history
Your shell stores a log of the commands you’ve typed previously. Type history to
view the log; this is often aliased to h.

Listing 11.2 Reading a file from stdin
 console.log(JSON.stringify(value));
}

Licensed to Samir Mashlum <smashlum@gmail.com>

272 CHAPTER 11 Writing command-line applications

if (file === '-') {
 process.stdin.pipe(concat(parse));
} else {
 readFile(file, (err, dataBuffer) => {
 if (err) {
 throw err;
 } else {
 parse(dataBuffer.toString());
 }
 });
}

This code loads mississippi and calls it concat. It then uses concat with the stdin
stream. Because mississippi accepts a function that receives the final full set of data,
the original parse function from listing 11.1 can still be used. This is done only when
the filename is -.

11.4 Sharing command-line tools with npm
Any application that you want others to be able to use should be easily installed with
npm. The simplest way to make npm see a command-line application is to use the bin
field in package.json. This field makes npm install an executable available to any
scripts in the current project. The bin field also tells npm to install the executable
globally if you use npm install --global. This isn’t useful only for Node develop-
ers, but also for anyone else who might want to use your scripts.

 This snippet and the #!/usr/bin/env node line in listing 11.2 are all you need
for the JSON parser example in this chapter:

...
 "name": "parse-json",
 "bin": {
 "parse-json": "index.js"
 },
...

If you install this package with npm install –global, it will make the parse-json
command available systemwide. To try it, open a terminal (or command prompt in
Windows) and type parse-json. Note that this works even in Windows, because npm
will automatically install a wrapper enabling it to work in Windows transparently.

11.5 Connecting scripts with pipes
The parse-json program is simple—it accepts text and validates it. What if you have
other command-line tools that you want to use it with? Imagine you have a program
that can add syntax highlighting to JSON files. It would be great if the JSON could be
parsed first and then highlighted. In this section, you’ll learn about pipes, which can
do all of this and more.

 You’ll be using parse-json and other programs to perform fancy workflows with
pipes. Windows and Unix shells differ, but the important bits are (luckily) the same in

both shells. A few differences arise during debugging, but they shouldn’t affect you
when you’re writing command-line applications.

Licensed to Samir Mashlum <smashlum@gmail.com>

273Connecting scripts with pipes

11.5.1 Piping data into parse-json

The main way to connect command-line applications is called piping. Piping is taking
an application’s stdout and attaching it to a different process’s stdin stream. It’s the
central component of interprocess communication: enabling programs to talk to each
other. You can access stdin in Node with process.stdin because it’s a readable
stream. Look at the following code to parse JSON coming in from stdin:

echo "[1,2,3]" | parse-json -f –

Notice the | character. This tells the shell that echo '{}' should send its output to
parse-json’s stdin.

11.5.2 Working with errors and exit codes

Right now the program doesn’t output anything. But if you give it incorrect data, how
do you know that it was able to complete successfully, even if you don’t know the
expected output of an executable? The answer is the exit code. You can see the exit
code of the last command you ran, but note that the echo and node commands are
treated as a single command unit because of piping.

 On Windows, you can inspect the exit code with the following:

echo %errorlevel%

On UNIX, you can see the exit code by using this command:

echo $?

If a command is successful, it has an exit code of 0 (zero). So if you feed incorrect
JSON to the script, it should exit with a nonzero value:

Shell tips: keyboard shortcuts
Now that you’ve seen how pipes work, you can search the command history by com-
bining history with grep:

history | grep node

An even better way to access previous commands is by using the up and down arrows
on the keyboard. People do this all the time—but there’s an even better way! Type
Ctrl-R to recursively search through the command history. This lets you fish out
lengthy commands based on a partial text match.

Here are more shortcuts: Ctrl-S does a forward search, and Ctrl-G aborts the search.
You can also edit text more efficiently with these shortcuts: Ctrl-W deletes words, ALT-
F/B moves forward or backward one word, and Ctrl-A/E moves to the start or end of
the line.
parse-json -f invalid.json

Licensed to Samir Mashlum <smashlum@gmail.com>

274 CHAPTER 11 Writing command-line applications

If you run this, the application will exit with a nonzero status and print a message indi-
cating the reason. This is because when an error is thrown but not caught, Node auto-
matically exits and prints the error message.

ERROR STREAMS

Although printing your output to the console can be useful, saving it to a file to read is
even better, because you can keep it for debugging purposes. Luckily, you can do this
with the shell by redirecting the stdout stream:

echo 'you can overwrite files!' > out.log
echo 'you can even append to files!' >> out.log

When you try this with invalid JSON, it would make sense for parse-json to save the
error message:

parse-json -f invalid.json >out.log

But doing this won’t log any errors. This is the expected behavior once you under-
stand the difference between stderr and stdout:

 stdout is for other command-line applications to consume.
 stderr is for developers to consume.

Node logs to stderr when console.error is called or an error is thrown. This is dif-
ferent from echo, which logs to stdout, just like console.log. With that knowledge,
you may want to redirect stderr to a file instead of to stdout. Luckily, that’s a simple
change.

 The stdin, stdout, and stderr streams all have associated numbers, from 0 to 2,
respectively. stderr has a stream number of 2. You can redirect it by using 2>
out.log, which tells the shell the stream number you want to redirect and the file in
which to place the output:

parse-json -f invalid.json 2> out.log

Redirecting output is what piping does, but with processes instead of files. Take the
following snippet:

node -e "console.log(null)" | parse-json

You’re logging null and piping it to parse-json. null won’t be logged to the console
here because it’s being piped to only the next command. Say you do something simi-
lar, but use console.error:

node -e "console.error(null)" | parse-json

You’ll see an error because no text is being sent over to parse-json to consume. null
was logged to stderr and will be printed to the console. The data should be piped to
stdout and not stderr.

Licensed to Samir Mashlum <smashlum@gmail.com>

275Connecting scripts with pipes

Figure 11.2 Combining pipes and output streams

Figure 11.2 shows how pipes and numbered output streams can be used to connect
programs and then route the output into separate files.

 Node also has an API for working with pipes. It’s based on Node streams, so you
can use it with anything that implements Node’s stream classes. Read on to learn more
about pipes in Node.

11.5.3 Using pipes in Node

You’re now going to learn how pipes work by using Node’s API. To do this, you’ll write
a short script that displays how long it takes a program to run, without interrupting
piping.

 A program can monitor a pipe without interrupting it by waiting for stdin to close
and then piping the results to stdout. Because Node programs end when there’s no
more input to consume, you can print a message when the program is exiting. Here’s
an example, which you can save as time.js to try it out:

process.stdin.pipe(process.stdout);
const start = Date.now();
process.on('exit', () => {
 const timeTaken = Date.now() - start;
 console.error(`Time (s): ${timeTaken / 1000}`);
});

By piping to stdout again, you can put time.js in the middle of commands you pipe

Shell tips: clearing a line
Some of these commands are pretty long; what do you do when you need to delete
a long command and don’t want to run it? One useful shortcut is Ctrl-U, which deletes
the current line. If you type Ctrl-Y, you’ll get the line back, so you can use these key-
board commands as you’d use copy and paste.

echo "[1,2,3]" | parse-json -f - > out.json 2> errors.log

pipe stdout

stderr

echo "[1,2,3]" parse-json

errors.log

out.json
together and still have them work! In fact, both parse-json and time.js can easily be

Licensed to Samir Mashlum <smashlum@gmail.com>

276 CHAPTER 11 Writing command-line applications

used together with pipes. For example, this shows how long it takes to parse JSON and
send the data:

parse-json -f test.json | node time.js

Now that you have a basic idea of what to output and how to get input from other
applications, you can start making applications that are much more complex. But
first, we should talk about timing while processes are piping to each other.

11.5.4 Pipes and command execution order

When you pipe commands, each command starts immediately. The commands don’t
wait for each other in any way. This means piping data won’t wait for any command to
exit, and you can consume only the data it gives you. Because the commands don’t
wait, you can’t know how the previous command exited.

 Imagine you want to log a message only when JSON is successfully parsed. To do
this, you need new operators. The && and || operators act similarly in a shell to the
way they do in JavaScript when used on numbers. Using && executes the next com-
mand if the previous exit code is zero, and || executes the next command if the exit
code is a nonzero number.

 Let’s see how to make a little script that logs a message when a process is exiting
over stderr. It’s important to note that this is different from echo, because it’s printing
to stderr—it’s meant for developers to use rather than other programs. All you need
to do is listen for the process exit event, and then write the arguments to stderr:

process.stdin.pipe(process.stdout);
process.on('exit', () => {
 const args = process.argv.slice(2);
 console.error(args.join(' '));
});

Using &&, you can call exit-message.js if the JSON parsed successfully:

parse-json -f test.json && node exit-message.js "parsed JSON successfully"

But exit-message.js won’t get the output of parse-json. The && operator must wait for
parse-json.js to finish, to see whether it should execute the next command. While
using &&, there’s no automatic redirection as there is when piping.

REDIRECTING INPUT

Shell tips: completion
In addition to providing command history, most shells are capable of matching com-
mands or files when the Tab key is pressed. Some even allow you to see the comple-
tions with Alt-?.
You’ve already seen how to redirect output, but you can also redirect input in a similar
fashion. This is a rare need, but can be a valuable asset if an executable doesn’t accept

Licensed to Samir Mashlum <smashlum@gmail.com>

277Interpreting real-world scripts

a filename as an argument. If you want a command to read a file into stdin, use
<filename to do so:

parse-json -f - <invalid.json

By combining both forms of redirection, you can use a temporary file to recover the
output of parse-json:

parse-json -f test.json >tmp.out &&
 node exit-message.js "parsed JSON successfully" <tmp.out

Now that you’ve learned how to handle streams, exit codes, and command order, you
should be able to write scripts with Node commands for your own packages. The next
section demonstrates how to use Browserify and UglifyJS together using pipes.

11.6 Interpreting real-world scripts
You’re ready to start writing your own scripts fields in package.json files. As an
example, let’s look at how to combine the browserify and uglifyjs packages from npm.
Browserify (http://browserify.org/) is an application that takes Node modules and
bundles them up for use in the browser. UglifyJS (https://github.com/mishoo/
UglifyJS2) is an application that minifies a JavaScript file so that it takes up less band-
width and time to send to a browser. Your script will take a file called main.js (found in
the book’s listings under ch11-command-line/snippets/uglify-example), concatenate
it for use in a browser, and then minify the concatenated script:

{
 "devDependencies": {
 "browserify": "13.3.0",
 "uglify-js": "2.7.5"
 },
 "scripts": {
 "build": "browserify -e main.js > bundle.js && uglifyjs bundle.js >

bundle.min.js"
 }
}

You can run the build script by typing npm run build. The build script in this exam-
ple makes bundle.js. Then, if creating bundle.js is successful, the script creates bun-
dle.min.js. By using the && operator, you can ensure that the second stage runs only if
the first stage succeeds.

Shell tips: clearing the display
You may sometimes cat binary data to the terminal and basically break it. Like a
scene from The Matrix, garbled characters will appear everywhere. In cases like this,
you can either press Ctrl-L to refresh the display or type reset to reset the terminal.
 Using the techniques demonstrated in this chapter, you can create and use
command-line applications. Remember, you can always use the command lines to

Licensed to Samir Mashlum <smashlum@gmail.com>

http://browserify.org/
https://github.com/mishoo/UglifyJS2
https://github.com/mishoo/UglifyJS2

278 CHAPTER 11 Writing command-line applications

combine scripts from other languages together—if you have a useful Python, Ruby, or
Haskell command-line program, you can easily use it with your Node programs.

11.7 Summary
 Command-line arguments can be read from process.argv.
 Modules such as yargs make it easier to parse and validate arguments.
 A handy way to add scripts to your Node projects is by defining npm scripts in

the package.json file.
 Data is read and written to command-line programs by using standard I/O pipes.
 Standard input, output, and errors can be redirected to different processes

and files.
 Programs emit exit codes that are used to determine whether they ran

successfully.
 Command-line programs adhere to established conventions that other users

will expect.
Licensed to Samir Mashlum <smashlum@gmail.com>

Conquering the desktop
with Electron
In the preceding chapter, you learned about building command-line tools with
Node. Node is starting to become prominent in another area, however: desktop
software. Programmers are increasingly harnessing web technology to solve the
problems of cross-platform development. In this chapter, you’ll learn how to make
a desktop web application based on native desktop features, Node, and client-side
web technology. You can develop and run this application in Linux, macOS, and
Windows. You’ll also use Node modules in a model that isn’t too far removed from
client-server web application development.

12.1 Introducing Electron
Electron, originally known as Atom Shell, enables you to build desktop applications
with web technology. The application and user interface are left up to you to create

This chapter covers
 Building desktop apps with Electron

 Showing desktop menus

 Sending desktop notifications

 Creating cross-platform builds
279

Licensed to Samir Mashlum <smashlum@gmail.com>

280 CHAPTER 12 Conquering the desktop with Electron

with HTML, CSS, and JavaScript, but some of the “hard parts” of desktop software are
provided for you. These include the following:

 Automatic updates
 Crash reporting
 Installers for Microsoft Windows
 Debugging
 Native menus and notifications

Some famous applications have been made with Electron. The first was Atom,
GitHub’s text editor, but more recent applications include Slack, the popular chat ser-
vice, and Visual Studio Code by Microsoft, shown in figure 12.1.

Figure 12.1 Visual Studio Code’s application window and a native context menu

You should try out some of these applications to see the kinds of things that are possi-
ble with Electron. It’s exciting to think that armed with Node and JavaScript skills, you
can build compelling desktop software.

12.1.1 Electron’s stack
Before getting started with Electron, you should familiarize yourself with the way Elec-
tron fits in with Node, HTML, and CSS. An Electron app has the following components:

Licensed to Samir Mashlum <smashlum@gmail.com>

281Introducing Electron

 The main process—A Node script that boots the application and provides access
to native Node modules

 The render process—A web page managed by Chromium

A real application, however, has several other dependencies. The previous list can be
fleshed out as follows:

 Includes the main process
 Connects to a native database (for example, SQLite)
 Communicates with web APIs
 Reads and writes any local files (for example, configuration files)
 Provides access to native features (for example, context menus)
 Includes the render process
 Shows a modern rich web application using your preferred client-side technol-

ogy (for example, React or Angular)
 Triggers native features (for example, context menus and notifications)
 Provides build scripts
 Generates the front-end JavaScript by using your preferred build system

(Grunt, Gulp, npm scripts)
 Prepares releases for distribution

Figure 12.2 shows an overview of the three main parts of a typical Electron app. As
you can see, Node is used to run the main process and to communicate with the oper-
ating system for services including opening files, reading and writing to a database,
and communicating with web services. Although a large part of the focus is on the
UI in the rendering process, Node is still used for a critical part of the application’s
architecture.

Main
process

Node.js script

SQLite
Database

Native
menu
items

REST
APIs

Render
process

Build
scripts

Chromium (browser)

Node.js or shell scripts
Figure 12.2 The main parts of
a typical Electron application

Licensed to Samir Mashlum <smashlum@gmail.com>

282 CHAPTER 12 Conquering the desktop with Electron

12.1.2 Interface design

Now that you’ve seen the main components of an Electron app, let’s look at how to
design suitable interfaces. Electron applications are based on HTML, CSS, and Java-
Script, so you can’t pull in native widgets. Imagine that you want to make a native Mac-
style interface. You can fake the macOS toolbar by using CSS gradients. Using native
fonts provided by macOS and Windows is possible through CSS, and you can even
tweak the antialiasing to look like a native application. You can also remove text selec-
tion for certain UI components, and make the UI work with drag-and-drop. Currently,
most Electron apps use CSS that uses the same colors, border styles, icons, and gradi-
ents as macOS and Windows.

 Some applications go the extra mile in terms of duplicating the native experience;
one example is the N1 email application (https://github.com/nylas/N1). Other appli-
cations, such as Slack (https://slack.com/), have their own unique branding and iden-
tity that’s clean enough to work well without too much modification on each platform.

 When you build your own Electron apps, you’ll have to decide which approach is
right for your project. If you want to make an app that looks like it uses native desktop
widgets, you have to create styles that suit each platform. That requires more time
designing each target UI. Your customers may prefer it, but it may also result in more
overhead when deploying new features.

 In the next section, you’ll use a skeleton Electron application to create a new one.
This is the standard way to build new projects with Electron.

12.2 Creating an Electron app
The easiest way to get started with Electron is to use the electron-quick-start project,
available on GitHub (https://github.com/atom/electron-quick-start). This small
repository contains the dependencies necessary to run a basic Electron application.

 To use it, check out the repository and install the dependencies with npm:

git clone https://github.com/atom/electron-quick-start
cd electron-quick-start
npm install

After everything has finished downloading, you can start the main process with npm
start. It’s safe to use this project as the basis for the rest of your Electron application;
you shouldn’t need to create your own project from scratch.

 When the application starts, you should see a window with a web page and the
Chromium Developer Tools. If you’re a web developer who uses Chrome, this might
not seem that exciting: the app looks like a web page with no CSS rendering in
Chrome. But a lot more is going on under the hood to make this work. Figure 12.3
shows what this looks like in macOS.

 This is a self-contained macOS application bundle: it includes a version of Node
that’s different from the one running on my system, and it has its own menu items and

About window.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/nylas/N1
https://slack.com/
https://github.com/atom/electron-quick-start

283Creating an Electron app

At this point, you can start to build your web application in index.html by using
HTML, JavaScript, and CSS. But as a Node programmer, you’re probably eager to use
Node for something, so let’s see how to do that first.

 Electron comes with a module called remote that uses interprocess communication
(IPC) between the rendering process and the main Node process. The remote module
can even provide access to Node modules. To try it, add a file called readfile.js to your
Electron project, and add the code in the following listing.

const fs = require('fs');

module.exports = (cb) => {
 fs.readFile('./main.js', { encoding: 'utf8' }, cb);
};

Now open index.html and change it to add an element with an ID of source, and a
script that loads readfile.js, as shown in the next listing.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Hello World!</title>
 </head>
 <body>
 <h1>Hello World!</h1>
 <pre id="source"></pre>
 <script>
var readfile = require('remote').require('./readfile');
readfile(function(err, text) {

Listing 12.1 A simple Node module

Listing 12.2 Loading Node modules from the rendering process

Figure 12.3 The
electron-quick-start
project running in
macOS
 console.log('readfile:', err, text);
 document.getElementById('source').innerHTML = text;

Licensed to Samir Mashlum <smashlum@gmail.com>

284 CHAPTER 12 Conquering the desktop with Electron

});
 </script>
 </body>
</html>

Listing 12.2 uses the remote module to load readfile.js and then run it on the main
process. The interaction between the two processes is seamless, so it doesn’t seem that
much different from using standard Node modules. The only real difference is the
use of require('remote').require(file).

12.3 Building a full desktop application
Now that you’ve seen how to create a basic Electron app and how to use Node mod-
ules, let’s go a step further and see how to build a fully fledged desktop app with
native features. The application you’ll create is intended to be a developer tool for
making and viewing HTTP requests. Think of it as a GUI for the request module
(www.npmjs.com/package/request).

 Although you can build Electron apps with pure HTML, JavaScript, CSS, and Node,
for this example you’ll use modern front-end development tools to make the app
more maintainable and extensible. Here’s a list of what you’ll use:

 electron-quick-start as the basis for the project
 request module for making HTTP requests
 React for the user-interface code
 Babel for converting modern ES6 into browser-friendly ES5

 webpack for building the client-side app

Figure 12.4 shows what the finished application should look like.
Figure 12.4 The HTTP Master Electron application

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/request

285Building a full desktop application

Next you’ll learn how to set up a React-based project with webpack and Babel.

12.3.1 Bootstrapping React and Babel

The biggest challenge in building a new app with a sophisticated front end is setting
up libraries such as React and Babel with a maintainable build system. You have many
choices, including Grunt, Gulp, and webpack. And what makes things even more diffi-
cult is that these libraries change over time, so books and tutorials quickly become
out-of-date.

 To mitigate the fast-paced world of front-end development, we specify the exact
versions of each dependency, so you should be able to follow the tutorial and obtain
similar results. If you get lost, you can use tools such as Yeoman (http://yeoman.io/)
to generate a skeleton app. Then you can modify it to work like the app outlined in
this chapter.

12.3.2 Installing the dependencies

Create a new electron-quick-start project. To recap, you must clone the project from
GitHub:

git clone https://github.com/atom/electron-quick-start
cd electron-quick-start
npm install

Now install react, react-dom, and babel-core:

npm install --save-dev react@0.14.3 react-dom@0.14.3 babel-core@6.3.17

Next, you need to install Babel plugins. The main one is babel-preset-es2015, which
may be overkill for a project limited to Chromium, but including it makes it easier for
you to experiment with ES2015 features that Chromium doesn’t yet support. Use these
commands for installation:

npm install --save-dev babel-preset-es2015@6.3.13
npm install --save-dev babel-plugin-transform-class-properties@6.3.13

This plugin adds JSX support to Babel:

npm install --save-dev babel-plugin-transform-react-jsx@6.3.13

Then install webpack:

npm install --save-dev webpack@1.12.9

You also need babel-loader for webpack to work with Babel:

npm install --save-dev babel-loader@6.2.0

Now that most of the dependencies are ready, add a .babelrc file to your project. It
tells Babel to use the ES2015 and React plugins:
{
 "plugins": [

Licensed to Samir Mashlum <smashlum@gmail.com>

mailto:babel-plugin-transform-react-jsx@6.3.13
http://yeoman.io/

286 CHAPTER 12 Conquering the desktop with Electron

 "transform-react-jsx"
],
 "presets": ["es2015"]
}

Finally, open package.json and update the scripts property to include a webpack
invocation:

 "scripts": {
 "start": "electron main.js",
 "build": "node_modules/.bin/webpack --progress --colors"
 },

This allows the application to be built with npm run build. Webpack plugins are
available for React hot-loading, but we don’t cover that here. If you want to automati-
cally build your client-side code when files change, you could use something like
fswatch or nodemon.

12.3.3 Setting up webpack

To use webpack, you need a webpack.config.js file. Add it to the root of your project.
The basic format is JavaScript, using a Node-style CommonJS module:

const webpack = require('webpack');
module.exports = {
 setting: 'value'
};

Our project requires settings for finding React files (.jsx), loading the entry point
(/app/index.jsx), and then placing the output in a place where the Electron UI can
find it (js/app.js). The React files also have to be processed with Babel. Putting those
requirements together produces the file in the following listing.

const webpack = require('webpack');
module.exports = {
 module: {
 loaders: [
 { test: /\.jsx?$/, loaders: ['babel-loader'] }
]
 },
 entry: [
 './app/index.jsx'
],
 resolve: {
 extensions: ['', '.js', '.jsx']
 },
 output: {
 path: __dirname + '/js',
 filename: 'app.js'

Listing 12.3 webpack.config.js
 }
};

Licensed to Samir Mashlum <smashlum@gmail.com>

287The React app

In this listing, webpack is told to transform .jsx (React) files with Babel through the
module.loaders property. Babel has already been set up to handle React files with
transform-react-jsx in .babelrc. Next, the entry property is used to define the main
entry point for the React code. This works well because React components are based
on HTML elements. Because HTML elements must have one parent node, a single
entry point can encompass the entire application.

 The resolve.extensions property tells webpack that .jsx files must be treated
as modules. If you use a statement such as import {Class} from 'class', it’ll
check class.js and class.jsx.

 Finally, the output property tells webpack where to write the output file. Here I’ve
used js/, but you could use any path that’s accessible to the Electron UI.

 This is a good time to start fleshing out the React app. Let’s start by looking at the
main entry point and how it’ll pull in the request and response UI elements.

12.4 The React app
In figure 12.4, you saw a preview of what this app should look like. It has two main
groups of UI components that can be divided into seven items:

 Request
 URL: String
 Method: String
 Headers: Object of string pairs
 Response
 HTTP status code
 Headers: Object of string pairs
 Body: String
 Errors: String

But in React, you can’t render two things side by side: they need to be contained by a
single parent. You need a top-level app object, which contains the UI elements for the
request and response.

 Given classes for Request and Response, which you’ll implement later, the App
class itself should look like the following listing.

import React from 'react';
import ReactDOM from 'react-dom';
import Request from './request';
import Response from './response';

class App extends React.Component {
 render() {
 return (
 <div className="container">

Listing 12.4 The App class
 <Request />
 <Response />

Licensed to Samir Mashlum <smashlum@gmail.com>

288 CHAPTER 12 Conquering the desktop with Electron

 </div>
);
 }
}

ReactDOM.render(<App />, document.getElementById('app'));

Save this file as app/index.jsx. It first loads the Request and Response classes, and
then renders them in a div. The last line uses ReactDOM to render the DOM nodes for
the App class. React allows you to refer to the App class with <App />.

 To make this work, you also need to define the Request and Response compo-
nents.

12.4.1 Defining the Request component

The Request class takes input for the URL and HTTP method, and then generates a
request that’s posted with the Node request module. It renders the interface by using
JSX, but unlike the previous example, it doesn’t render the element directly with
ReactDOM; this happens when it’s included into the main app class in app/index.jsx.

 The following listing (app/request.js) contains the code for the full class. We’ve
removed the header-editing capability to reduce the length of the example; for an
example with more features, including header editing, see our HTTP Wizard GitHub
repository (https://github.com/alexyoung/http-wizard).

import React from 'react';
import Events from './events';

const request = remote.require('request');

class Request extends React.Component {
 constructor(props) {
 super(props);
 this.state = { url: null, method: 'GET' };
 }

 handleChange = (e) => {
 const state = {};
 state[e.target.name] = e.target.value;
 this.setState(state);
 }

 makeRequest = () => {
 request(this.state, (err, res, body) => {
 const statusCode = res ? res.statusCode : 'No response';
 const result = {
 response: `(${statusCode})`,
 raw: body ? body : '',
 headers: res ? res.headers : [],
 error: err ? JSON.stringify(err, null, 2) : ''
 };

Listing 12.5 The Request class
 Events.emit('result', result);

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/alexyoung/http-wizard

289The React app

 new Notification(`HTTP response finished: ${statusCode}`)
 });
 }

 render() {
 return (
 <div className="request">
 <h1>Request</h1>
 <div className="request-options">
 <div className="form-row">
 <label>URL</label>
 <input
 name="url"
 type="url"
 value={this.state.url}
 onChange={this.handleChange} />
 </div>
 <div className="form-row">
 <label>Method</label>
 <input
 name="method"
 type="text"
 value={this.state.method}
 placeholder="GET, POST, PATCH, PUT, DELETE"
 onChange={this.handleChange} />
 </div>
 <div className="form-row">
 Make request
 </div>
 </div>
 </div>
);
 }
}

export default Request;

The bulk of the listing is taken up by the render method’s HTML. Let’s focus on the
rest before going over how the UI is built up. First, we’ve used a descendent of Node’s
EventEmitter in app/events.jsx to communicate between this component and the
response component. The following snippet is app/events.jsx:

import { EventEmitter } from 'events';
const Events = new EventEmitter();
export default Events;

Notice that Request is a React.Component descendant class. It defines a construc-
tor that sets up a default state: the state property is special in React and can be set
this way only in a constructor. Elsewhere, you must use this.setState.

 The handleChange method sets state based on the HTML element’s name attri-
bute. To understand how this works, skip ahead to the URL <input> element in the
render method:
<input
 name="url"

Licensed to Samir Mashlum <smashlum@gmail.com>

290 CHAPTER 12 Conquering the desktop with Electron

 type="url"
 value={this.state.url}
 onChange={this.handleChange} />

The name specified here is used to set the URL when it’s edited. Setting the state also
causes render to run, and React will update the value attribute with the updated
state. Let’s move on to look at how the request module is used by this class.

 This class is client-side code that runs in a web view, so you need a way of accessing
the request module to make HTTP requests. Electron provides a way of loading
remote modules without any unnecessary boilerplate. Near the top of the class, you
use the global remote object to require the Node request module:

const request = remote.require('request');

Then later in makeRequest, the HTTP request can be made with a simple call to
request(). The arguments for the request have been set in the class’s state, so all you
need to do is handle the callback that runs when the request is complete. Here that’s
very little imperative code: the class’s state is set based on the outcome of the request,
and then the result is emitted so the Response component can use it. A desktop noti-
fication is also displayed; if the request is slow, the user will be notified visually by
using the operating system’s notification pop-up:

new Notification(`HTTP response finished: ${statusCode}`)

Figure 12.5 shows a typical notification.
Figure 12.5 A desktop notification

Licensed to Samir Mashlum <smashlum@gmail.com>

291The React app

Now let’s look at how the Response component displays the HTTP response.

12.4.2 Defining the Response component

The Response component listens for result events and then sets its state to contain
the results of the last request. It displays the results by using a table for headers, and
divs for the request body and any errors.

 The following listing has the whole Response component. This file is app/
response.jsx.

import React from 'react';
import Events from './events';
import Headers from './headers';

class Response extends React.Component {
 constructor(props) {
 super(props);
 this.state = { result: {}, tab: 'body' };
 }

 componentWillUnmount() {
 Events.removeListener('result', this.handleResult.bind(this));
 }

 componentDidMount() {
 Events.addListener('result', this.handleResult.bind(this));
 }

 handleResult(result) {
 this.setState({ result: result });
 }

 handleSelectTab = (e) => {
 const tab = e.target.dataset.tab;
 this.setState({ tab: tab });
 }

 render() {
 const result = this.state.result;
 const tabClasses = {
 body: this.state.tab === 'body' ? 'active' : null,
 errors: this.state.tab === 'errors' ? 'active' : null,
 };
 const rawStyle = this.state.tab === 'body'
 ? null
 : { display: 'none' }
 const errorsStyle = this.state.tab === 'errors'
 ? null
 : { display: 'none' };

Listing 12.6 The Response component
 return (

Licensed to Samir Mashlum <smashlum@gmail.com>

292 CHAPTER 12 Conquering the desktop with Electron

 <div className="response">
 <h1>Response {result.response}</h1>
 <div className="content-container">
 <div className="content">
 <div id="headers">
 <table className="headers">
 <thead>
 <tr>
 <th className="name">Header Name</th>
 <th className="value">Header Value</th>
 </tr>
 </thead>
 <Headers headers={result.headers} />
 </table>
 </div>
 <div className="results">
 <ul className="nav">
 <li className={tabClasses.body}>
 <a data-tab='body' onClick={this.handleSelectTab}>Body

 <li className={tabClasses.errors}>
 <a data-tab='errors' href="#"

onClick={this.handleSelectTab}>Errors

 <div
 className="raw"
 id="raw"
 style={rawStyle}>{result.raw}</div>
 <div
 className="raw"
 id="error"
 style={errorsStyle}>{result.error}</div>
 </div>
 </div>
 </div>
 </div>
);
 }
}

export default Response;

The Response component doesn’t have any code specific to handling HTTP
responses; it displays its state in various HTML elements. It’s able to switch tabs by
binding an onclick event to the handleSelectTab method that switches between
the body and errors by using an attribute (data-tab).

 The Response component uses another component, Headers, to render the
HTTP response headers. Breaking components into ever smaller components is stan-
dard practice in React. The values of each header are passed to the subcomponent by
using an attribute; in React, these are known as props, or properties:
<Headers headers={result.headers} />

Licensed to Samir Mashlum <smashlum@gmail.com>

293The React app

The following listing shows the Headers component. This is in the app/headers.jsx
file.

import React from 'react';

class Headers extends React.Component {
 render() {
 const headers = this.props.headers || {};
 const headerRows = Object.keys(headers).map((key, i) => {
 return (
 <tr key={i}>
 <td className="name">{key}</td>
 <td className="value">{headers[key]}</td>
 </tr>
);
 });

 return (
 <tbody className="header-body">
 {headerRows}
 </tbody>
);
 }
}

export default Headers;

Notice how the props are accessed near the top of the render() method, at
this.props.headers.

12.4.3 Communicating between React components

The Request and Response classes are fairly well isolated; they’re focused on solving
their particular tasks without directly calling each other. React has other, more sophis-
ticated state-management approaches, but they’re beyond the scope of this chapter.
This example application doesn’t need a sophisticated communication mechanism,
because it has only two main components, so instead it uses EventEmitter from
Node to communicate.

 To use EventEmitter this way, instantiate it inside its own file and then export
the instance. This file is app/events.jsx in the example project for this chapter:

import { EventEmitter } from 'events';
const Events = new EventEmitter();
export default Events;

Now components can require events and either emit events or attach listeners to
communicate. The Request component does this in the makeRequest method, with
the result of the HTTP request:

Listing 12.7 The Headers component
Events.emit('result', result);

Licensed to Samir Mashlum <smashlum@gmail.com>

294 CHAPTER 12 Conquering the desktop with Electron

Then in the Response class, you can capture results by setting up a listener early in
the component’s life cycle:

componentWillUnmount() {
 Events.removeListener('result', this.handleResult.bind(this));
}

As an application grows, this pattern becomes harder to maintain. One particular
problem is tracking the names of events. Because they’re strings, it’s easy to forget
them or write them incorrectly. An extension of this pattern is to use a list of constants
for event names. If you extend this pattern again to split the responsibility of dispatch-
ing events and storing data, you end up with something similar to Facebook’s Redux
state container (http://redux.js.org/), which is why many React programmers use it to
design and build larger applications.

12.5 Builds and distribution
Now that you have a usable desktop application, you can bundle it for macOS, Linux,
and Windows. App distribution with Electron has three stages:

1 Rebrand the Electron app with your application’s name and icon
2 Package your app into a file
3 Create a binary for each platform

The electron-quick-start project is already almost suitable for distribution. You just
need to copy your code into Electron’s Contents/Resources/app folder in macOS, or
electron/resources/app in Windows and Linux.

 But manually copying files isn’t the best way to build a redistributable binary. A
more foolproof method is to use electron-packager (www.npmjs.com/package/elec-
tron-packager) by Max Ogden. This package provides a command-line tool for build-
ing executables for Windows, Linux, and macOS.

12.5.1 Building with Electron Packager

To install electron-packager, install it globally. This will allow you to build any project
that you want to create platform-specific binaries for:

npm install electron-packager –g

After it’s installed, you can run it from your application’s directory. You must invoke it
with the path to your application, the application name, platform, architecture (32- or
64-bit), and the Electron version:

electron-packager . HttpWizard --version=1.4.5

This downloads Electron version 1.4.5 and generates binaries for all supported plat-
forms and architectures. This may take some time (Electron is about 40 MB), but when

it’s done, you’ll have binaries that can be run on all major operating systems.

Licensed to Samir Mashlum <smashlum@gmail.com>

http://redux.js.org/
www.npmjs.com/package/electron-packager
www.npmjs.com/package/electron-packager

295Builds and distribution

12.5.2 Packaging

To further improve your application’s performance, you can package the client-side
and Node JavaScript file by using Atom Shell archives (https://github.com/atom/
asar). These archives are known as asar files, and they work like the UNIX tar com-
mand. They hide your JavaScript but don’t obscure it enough to stop people from
decoding the packages, so you can’t use it to truly obfuscate code. But they solve the
issue of long filenames breaking in Windows, which you might run into if you have
deeply nested dependencies.

 In Electron, Chromium can read asar files as well as Node, so you don’t have to do
anything special to support it. Also, electron-packager can create asar packages for
you with the --asar command-line option.

 Figure 12.6 shows what an application packaged without asar looks like.

Hiding the developer tools
Before sharing builds, you should remove or change the line in main.js that opens
the Chromium development tools:

mainWindow.webContents.openDevTools();

Alternatively, you could wrap this with a flag to hide it when working on the app:

if (process.env.NODE_ENV === 'debug') {
 mainWindow.webContents.openDevTools();
}

Figure 12.6 A typical Electron application bundle’s contents

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/atom/asar
https://github.com/atom/asar

296 CHAPTER 12 Conquering the desktop with Electron

Notice that you can open the JavaScript files to view the source. The only binary files
in an Electron application are resources such as images, or binary Node modules.

 To generate a build with asar files, you can use electron-packager with the --asar
flag:

electron-packager . HttpWizard --version=0.36.0 --asar=true

This is the easiest way to do it, because electron-packager runs all the necessary com-
mands. To do it manually, you need to install asar, and then you need to invoke the
command-line tool to create a package:

npm install -g asar
asar pack path-to-your-app/ app.asar

After you have the asar archive, download an Electron binary (https://github.com/
atom/electron/releases) for the platform you want to support, and add the archive to
the resources directory, as shown in figure 12.6. Running the application executable
or bundle should cause your application to run.

 Editing the vendor-supplied binaries is also how Electron applications are
branded. You can change the application’s name and icons this way. If you run an
Electron binary with no modifications, it provides a window that allows you to run
Electron apps made with the electron-quick-start repository.

12.6 Summary
 Using Electron, you can make desktop applications with Node, JavaScript,

HTML, and CSS.
 You can generate native menus and notifications without using C++, C#, or

Objective-C.
 If you have useful Node modules, you can use them from the client-side Java-

Script within the Electron application’s UI.
 Electron uses a fully fledged browser, so you can build UIs with the latest Java-

Script technology, such as React or Angular.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/atom/electron/releases
https://github.com/atom/electron/releases

appendix A
Installing Node

This appendix provides more details on installing Node.js. If you’re fairly new to
Node, we recommend installing it with a prebuilt package. We explain this for each
major operating system.

 Depending on your requirements, you can install Node in other ways instead. If
you’re more experienced with Node or have specific DevOps requirements, skip
ahead to review other ways you can install Node.

A.1 Installing Node by using an installer
Node has two installers and several prebuilt binary packages. If you use macOS or
Windows, you can use either binaries or installers. The binary packages contain
executable files, but the installers have installation wizards that help you put Node
on your system in a place that’s easy to find when you’re running commands such
as node or npm in the terminal.

 If you’re new to Node, use an installer. All of the versions can be found on
Node’s website under Downloads (https://nodejs.org/en/download/).

A.1.1 The macOS installer

For macOS, download the
64-bit .pkg file from Node’s
website (https://nodejs.org/
en/download/). You can use
either the LTS or Current
release. You should see a
package file, as shown in fig-
ure A.1.

297

Figure A.1 The installer .pkg file

Licensed to Samir Mashlum <smashlum@gmail.com>

https://nodejs.org/en/download/
https://nodejs.org/en/download/
https://nodejs.org/en/download/

298 APPENDIX A Installing Node

After you’ve downloaded the
installer, double-click it to open
the installation wizard (Figure
A.2).

 Click the Continue button
and follow the instructions; the
default options will install Node
correctly. After the installation
process has finished, you
should be able to open a termi-
nal and type node to run the
Node REPL. Figure A.3 shows
what this should look like.

 The next section includes
the same instructions for Win-
dows users.

Figure A.3 Node’s REPL

A.1.2 The Windows installer

On the Node Downloads page (https://nodejs.org/en/download/), click the Win-
dows Installer icon, or click the Windows Installer .msi link. There are 32- and 64-bit
options, but you probably want 64-bit. After the file has downloaded, double-click it to
run the installation wizard, shown in figure A.4.

Figure A.2 The installation wizard
Figure A.4 The Windows .msi installer

Licensed to Samir Mashlum <smashlum@gmail.com>

https://nodejs.org/en/download/

299Using other ways to install Node

Accept all of the default options, and then open cmd.exe to try out the Node REPL.
Figure A.5 shows Node’s REPL in Windows.

Figure A.5 Node’s REPL in Windows

If you don’t usually install software this way or don’t want to install Node systemwide,
continue reading to see how else Node can be installed.

A.2 Using other ways to install Node
You can install Node from source, through your operating system’s package manager,
or by using a Node version manager. If you install it from source, you’ll need a work-
ing build system and Python installed.

A.2.1 Installing Node from source

You can download Node’s source from the nodejs.org downloads page, but it’s also
available via Git on GitHub (https://github.com/nodejs/node). The full build guide
is also on GitHub under node/Building.md (https://github.com/nodejs/node/
blob/master/BUILDING.md). You’ll need the following prerequisites to build Node:

 Linux—Python 2.6 or 2.7, gcc and g++ 4.8 or newer, or clang and clang++ 3.4 or
newer. The easiest way to get this is with the build-essentials package in Debian-
like distributions, or its equivalent for other distributions.

 macOS—Xcode and the command-line tools, which can be installed with Xcode.
 Windows—Python 2.6 or 2.7, Visual C++ Build Tools, Visual Studio 2015

Update 3.

When your build tools are ready, you can run ./configure and make in UNIX-like
operating systems. In Windows, you can run .\vcbuild nosign.

A.2.2 Installing Node with a package manager

If you use Linux or macOS, you may want to install Node with a package manager.
This can make it easier to update Node. For example, if you’re using a Linux web

server, you might want to install Node so that it gets automatic security updates.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://github.com/nodejs/node
https://github.com/nodejs/node/blob/master/BUILDING.md
https://github.com/nodejs/node/blob/master/BUILDING.md

300 APPENDIX A Installing Node

 Node’s website has a large list of installation instructions for operating systems that
provide Node as a package (https://nodejs.org/en/download/package-manager/).
In Debian and Ubuntu-based systems, for example, you can get Node from the Node-
Source binary distribution repository. This has its own repository on GitHub with
more details (https://github.com/nodesource/distributions).

 In macOS, you can install Node with Homebrew (http://brew.sh/). If you have
Homebrew installed, you just need to run brew install node.

 Node is also available from Docker Hub. If you add FROM node:argon to your
Dockerfile, you’ll get the LTS version of Node installed into your image.
Licensed to Samir Mashlum <smashlum@gmail.com>

https://nodejs.org/en/download/package-manager/
https://github.com/nodesource/distributions
http://brew.sh/

appendix B
Automating the web

with scraping

In the preceding chapter, you learned some general Node programming tech-
niques, but now we’re going to start focusing on web development. Scraping the
web is an ideal way to do this, because it requires a combination of server and cli-
ent-side programming skills. Scraping is all about using programming techniques
to make sense of web pages and transform them into structured data. Imagine
you’re tasked with creating a new version of a book publisher’s website that’s cur-
rently just a set of old-fashioned, static HTML pages. You want to download the
pages and analyze them to extract the titles, descriptions, authors, and prices for all
the books. You don’t want to do this by hand, so you write a Node program to do it.
This is web scraping.

 Node is great at scraping because it strikes a perfect balance between browser-

This appendix covers
 Creating structured data from web pages

 Performing basic web scraping with cheerio

 Handling dynamic content with jsdom

 Parsing and outputting structured data
301

based technology and the power of general-purpose scripting languages. In this

Licensed to Samir Mashlum <smashlum@gmail.com>

302 APPENDIX B Automating the web with scraping

chapter, you’ll learn how to use HTML parsing libraries to extract useful data based on
CSS selectors, and even to run dynamic web pages in a Node process.

B.1 Understanding web scraping
Web scraping is the process of extracting useful
information from websites. This usually
involves downloading the required pages, pars-
ing them, and then querying the raw HTML by
using CSS or XPath selectors. The results of the
queries are then exported as CSV files or saved
to a database. Figure B.1 shows how scraping
works from start to finish.

 Web scraping may be against the terms of
use of some websites, because of its cost or
because of resource limitations. If thousands of
scrapers hit a single site that runs on an old and
slow server, the server could be knocked
offline. Before you scrape any content, you
should ensure that you have permission to
access and duplicate the content. You can tech-
nically check the site’s robots.txt (www.robotstxt.org) file for this information, but you
should contact the site’s owners first. In some cases, the site’s owners may have invited
you to index its information—perhaps as part of a larger web development contract.

 In this section, you’ll learn how people use scrapers for real sites, and then you’ll
look at the required tools that allow Node to become a web-scraping powerhouse.

B.1.1 Uses of web scraping

A great example of web scraping is
the vertical search engine Octopart
(https://octopart.com/). Octopart,
shown in figure B.2, indexes elec-
tronics distributors and manufac-
turers to make it easier for people to
find electronics. For example, you
can search for resistors based on
resistance, tolerance, power rating,
and case type. A site like this uses
web crawlers to download content,
scrapers to make sense of the con-
tent and extract interesting values
(for example, the tolerance of a
resistor), and an internal database

Download pages Parse HTML

Query
with selectors

Store in
a database

<html>

<body>

 ...

</body>

</html>

{ "html":

 { "body":

 { ... }

 }

}

h3.title

Figure B.1 Steps for scraping and
storing content

Figure B.2 Octopart allows users to search for

to store the processed information. electronic parts.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://www.npmjs.com/package/numeral
https://www.npmjs.com/package/numeral
https://www.npmjs.com/package/numeral
www.robotstxt.org
https://octopart.com/

303Performing basic web scraping with cheerio

Web scraping isn’t used for only search engines, however. It’s also used in the growing
fields of data science and data journalism. Data journalists use databases to produce
stories, but because there’s so much data that isn’t stored in easily accessible formats,
they may use tools such as web scraping to automate the collection and processing
of data. This allows journalists to present information in new ways, through data-
visualization techniques including infographics and interactive graphics.

B.1.2 Required tools

To get down to business, you need a couple of easily accessible tools: a web browser
and Node. Browsers are one of the most useful scraping tools—if you can right-click
and select Inspect Element, you’re already partway to making sense of websites and
converting them into raw data. The next step is to parse the pages with Node. In this
chapter, you’ll learn about two types of parser:

 Lightweight and forgiving: cheerio
 A web-standards-aware, Document Object Model (DOM) simulator: jsdom

Both of these libraries are installed with npm. You may need to parse loosely struc-
tured human-readable data formats such as dates as well. We’ll briefly look at Java-
Script’s Date.parse and Moment.js.

 The first example uses cheerio, which is a fast way to parse most static web pages.

B.2 Performing basic web scraping with cheerio
The cheerio library (www.npmjs.com/package/cheerio), by Felix Böhm, is perfect for
scraping because it combines two key features: fast HTML parsing, and a jQuery-like
API for querying and manipulating the HTML.

 Imagine you need to extract information about books from a publisher’s website.
The publisher doesn’t yet have an API that exposes book details, so you need to down-
load pages from its website and turn them into usable JSON output that includes the
author name and book title. Figure B.3 shows how scraping with cheerio works.

Download page Parse HTML

<div class="book">

 <h2>Catch-22</h2>

 <h3>Joseph Heller

 ...

</div>

{ "div":

 { "h2":

 { ... }

 }

}

> node index.js

{ title: "Catch-22",

 author: "Joseph Heller"}

Parse HTML

.book h2
Display in the console
Query

with cheerio Figure B.3 Scraping with cheerio

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/cheerio

304 APPENDIX B Automating the web with scraping

The following listing contains a small scraper that uses cheerio. Sample HTML has
been included, so you don’t need to worry about how to download the page itself yet.

const html = `
<html>
<body>
 <div class="book">
 <h2>Catch-22</h2>
 <h3>Joseph Heller</h3>
 <p>A satirical indictment of military madness.</p>
 </div>
</body>
</html>`;
const cheerio = require('cheerio');
const $ = cheerio.load(html);

const book = {
 title: $('.book h2').text(),
 author: $('.book h3').text(),
 description: $('.book p').text()
};

console.log(book);

Listing B.1 uses cheerio to parse a hardcoded HTML document by using the cheerio
.load() method and CSS selectors. In a simple example like this, the CSS selectors
are simple and clear, but often real-world HTML is far messier. Unfortunately, poorly
structured HTML is unavoidable, and your skill as a web scraper is defined by coming
up with clever ways to pull out the values you need.

 Making sense of bad HTML requires two steps. The first is to visualize the docu-
ment, and the second is to define the selectors that target the elements you’re inter-
ested in. You use cheerio’s features to define the selector in just the right way.

 Fortunately, modern browsers offer a point-and-click solution for finding selectors:
if your browser has development tools, you can usually right-click and select Inspect
Element. Not only will you see the underlying HTML, but the browser should also
show a representation of the selector that targets the element.

 Let’s say you’re trying to extract book information from a quirky site that uses
tables without any handy CSS classes. The HTML might look like this:

<html>
 <body>
 <h1>Alex's Dated Book Website</h1>
 <table>
 <tr>
 <td>Catch-22</td>
 <td>Joseph Heller</td>
 </tr>
 </table>

Listing B.1 Extracting a book’s details

Defines HTML
to parse

Parses the entire
document

Extracts the fields by
using CSS selectors
 </body>
</html>

Licensed to Samir Mashlum <smashlum@gmail.com>

305Performing basic web scraping with cheerio

If you open that in Chrome and right-click the title, you’ll see something like
figure B.4.

 The white bar under the HTML shows “html body table tbody tr td a”—this is close
to the selector that you need. But it’s not quite right, because the real HTML doesn’t
have a tbody. Chrome has inserted this element. When you’re using browsers to visu-
alize documents, you should be prepared to adjust what you discover based on the
true underlying HTML. This example shows that you need to search for a link inside a
table cell to get the title, and the next table cell is the corresponding author.

 Assuming the preceding HTML is in a file called messy_html_example.html, the
following listing will extract the title, link, and author.

const fs = require('fs');
const html = fs.readFileSync('./messy_html_example.html', 'utf8');
const cheerio = require('cheerio');
const $ = cheerio.load(html);

const book = {
 title: $('table tr td a').first().text(),

 href: $('table tr td a').first().attr('href'),
 author: $('table tr td').eq(1).text()
};

console.log(book);

Listing B.2 Dealing with messy HTML

Added by Chrome!
Not in the real HTML.

Helps find
selectors

Figure B.4 Viewing HTML in Chrome

Loads the HTML
 from a fileUses cheerio’s first() method

to get the specific link

Uses cheerio’s attr()
method to get the URL

Uses cheerio’s eq() method to
skip to the second element
You use the fs module to load the HTML; that’s so you don’t have to keep printing
HTML in the example. In reality, your data source might be a live website, but the data

Licensed to Samir Mashlum <smashlum@gmail.com>

306 APPENDIX B Automating the web with scraping

could also be from a file or a database. After the document has been parsed, you use
first() to get the first table cell with an anchor. To get the anchor’s URL, you use
cheerio’s attr() method; it returns a specific attribute from an element, just like
jQuery. The eq() method is also useful; in this listing, it’s used to skip the first td,
because the second contains the author’s text.

One of cheerio’s limitations is that it allows you to work only with a static version of a
document; it’s used for working with pure HTML documents rather than dynamic
pages that use client-side JavaScript. In the next section, you’ll learn how to use jsdom
to create a browser-like environment in your Node applications, so client-side Java-
Script will be executed.

B.3 Handling dynamic content with jsdom
jsdom is the web scraper’s dream tool: it downloads HTML, interprets it according to
the DOM as found in a typical browser, and runs client-side JavaScript. You can specify
the client-side JavaScript that you want to run, which typically means including jQuery.
That means you can inject jQuery (or your own custom debugging scripts) into any
pages. Figure B.5 shows how jsdom combines HTML and JavaScript to make otherwise
unscrapeable content accessible.

Web-parsing dangers
Using a module such as cheerio is a quick and dirty way of interpreting web docu-
ments. But be careful of the type of content that you attempt to parse with it. It may
throw an exception with binary data, for example, so using it in a web application
could crash the Node process. This would be dangerous if your scraper is embedded
in the same process that serves your web application.

It’s best to check the content type before passing it through a parser, and you may
want to consider running your web scrapers in their own Node processes to reduce
the impact of any serious crashes.

Download HTML and JavaScript Parse HTML and execute JavaScript

<div class="book">

 <h2> class="title">

 </h2>

 ...

</div>

app.js

jquery.js

{ "div":

 { "h2":

 { ... }

 }

}

$('.title')

 .text('Catch-22')

> node index.js

{ title: "Catch-22",

 author: "Joseph Heller"}

.title
Display in the console
Query

Figure B.5
Scraping with jsdom

Licensed to Samir Mashlum <smashlum@gmail.com>

307Handling dynamic content with jsdom

jsdom does have a downside. It’s not a perfect simulation of a browser, it’s slower than
cheerio, and the HTML parser is strict, so it may fail for pages with poorly written
markup. Some sites don’t make sense without client-side JavaScript support, however,
so it’s an indispensible tool for some scraping tasks.

 The basic usage of jsdom is through the jsdom.env method. The following listing
shows how jsdom can be used to scrape a page by injecting jQuery and pulling out
useful values.

const jsdom = require('jsdom');
const html = `
<div class="book">
 <h2>Catch-22</h2>
 <h3>Joseph Heller</h3>
 <p>A satirical indictment of military madness.</p>
</div>
`;

jsdom.env(html, ['./node_modules/jquery/dist/jquery.js'], scrape);

function scrape(err, window) {
 var $ = window.$;
 $('.book').each(function() {
 var $el = $(this);
 console.log({
 title: $el.find('h2').text(),
 author: $el.find('h3').text(),
 description: $el.find('p').text()
 });
 });
}

To run listing B.3, you need to save jQuery locally and install jsdom.1 You can install
both with npm. The modules are called jsdom (www.npmjs.com/package/jsdom) and
jQuery (www.npmjs.com/package/jquery), respectively. After everything is set up, this
code should print out the title, author, and description of the HTML fragment.

 The jsdom.env method is used to parse the document and inject jQuery. jQuery
is injected by downloading it from npm, but you could supply the URL to jQuery on a
content delivery network (CDN) or your filesystem; jsdom will know what to do. The
jsdom.env method is asynchronous and requires a callback to work. The callback
receives error and window objects; the window object is how you access the document.
Here the window’s jQuery object has been aliased so it can be easily accessed with $.

 A selector is used with jQuery’s .each method to iterate over each book. This
example has only one book, but it demonstrates that jQuery’s traversal methods are
indeed available. Each value from the book is accessed by using jQuery’s traversal
methods as well.

Listing B.3 Scraping with jsdom

Includes a suitable
HTML fragment

Parses the document
and loads jQuery

Aliases the jQuery
object for
convenience

Iterates over the books
using jQuery’s $.each method

Uses jQuery’s traversal
methods to get the
values of the book
1 jsdom 6.3.0 is the current version at the time of writing.

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/jsdom
www.npmjs.com/package/jquery

308 APPENDIX B Automating the web with scraping

 Listing B.3 is similar to the earlier cheerio example in listing B.1, but the main dif-
ference is that jQuery has been parsed and run by Node, within the current process.
Listing B.1 used cheerio to provide similar functionality, but cheerio provides its own
jQuery-like layer. Here you’re running code intended for a browser as if it’s really run-
ning in a browser.

 The jsdom.env method is useful only for working with static pages. To parse
pages that use client-side JavaScript, you need to use jsdom.jsdom instead. This syn-
chronous method returns a window object that you can manipulate with other jsdom
utilities. The following listing uses jsdom to parse a document with a script tag, and
jsdom.jQueryify to make scraping it easier.

const jsdom = require('jsdom');
const jqueryPath = './node_modules/jquery/dist/jquery.js';
const html = `
<div class="book">
 <h2></h2>
 <h3></h3>
 <script>
document.querySelector('h2').innerHTML = 'Catch-22';
document.querySelector('h3').innerHTML = 'Joseph Heller';
 </script>
</div>
`;

const doc = jsdom.jsdom(html);
const window = doc.defaultView;

jsdom.jQueryify(window, jqueryPath, function() {
 var $ = window.$;
 $('.book').each(function() {
 var $el = $(this);
 console.log({
 title: $el.find('h2').text(),
 author: $el.find('h3').text()
 });
 });
});

Listing B.4 requires jQuery to be installed, so if you’re creating this listing by hand,
you need to set up a new project with npm init and npm install --save jquery
jsdom. It uses a simple HTML document in which the useful values that you’re look-
ing for are dynamically inserted. They’re inserted using client-side JavaScript found in
a script tag.

 This time, jsdom.jsdom is used instead of jsdom.env. It’s synchronous because
the document object is created in memory, but won’t do much until you attempt to

Listing B.4 Parsing dynamic HTML with jsdom

Specifies the
jQuery path

HTML with no
static values

A script that
dynamically
inserts
the values

Creates an object that
represents the document

Inserts jQuery into
the document

Extracts the
book values
query or manipulate it. To do this, you use jsdom.jQueryify to insert your specific
version of jQuery into the document. After jQuery has been loaded and run, the

Licensed to Samir Mashlum <smashlum@gmail.com>

309Making sense of raw data

callback is run, which queries the document for the values you’re interested in and
prints them to the console. The output is shown here:

{ title: 'Catch-22', author: 'Joseph Heller' }

This proves that jsdom has invoked the necessary client-side JavaScript. Now imagine
this is a real web page and you’ll see why jsdom is so powerful: even websites made
with very little static HTML and dynamic technologies such as Angular and React can
be scraped.

B.4 Making sense of raw data
After you finally get useful data from a page, you need to process it so it’s suitable for
saving to a database or for an export format such as CSV. Your scraped data will either
be unstructured plain text or encoded using microformats.

 Microformats are lightweight, markup-based data formats that are used for things
like addresses, calendars and events, and tags or keywords. You can find established
microformats at microformats.org. Here’s an example of a name represented as a
microformat:

Joseph Heller

Microformats are relatively easy to parse; with cheerio or jsdom, a simple expression
such as $('.h-card').text() is sufficient to extract Joseph Heller. But plain text
requires more work. In this section, you’ll see how to parse dates and then convert
them into more database-friendly formats.

 Most web pages don’t use microformats. One area where this is problematic but
potentially manageable is date values. Dates can appear in many formats, but they’re
usually consistent on a given website. After you’ve identified the format, you can parse
and then format the date.

 JavaScript has a built-in date parser: if you run new Date('2016 01 01'), an
instance of Date will be returned that corresponds to the first of January, 2016. The
supported input formats are determined by Date.parse, which is based on RFC 2822
(http://tools.ietf.org/html/rfc2822#page-14) or ISO 8601 (www.w3.org/TR/NOTE-
datetime). Other formats may work and are often worth trying out with your source
data to see what happens.

 The other approach is to match values in the source data with a regular expres-
sion, and then use Date’s constructor to make new Date objects. The signature for
the constructor is as follows:

new Date(year, month[,day[,hour[,minutes[,seconds[,millis]]]]]);

Date parsing in JavaScript is usually good enough to handle many cases, but it falls
down in reformatting dates. A great solution to this is Moment.js (http://
momentjs.com), a date-parsing, validation, and formatting library. It has a fluent API,
so calls can be chained like this:
moment().format("MMM Do YY"); // Sep 7th 15

Licensed to Samir Mashlum <smashlum@gmail.com>

http://tools.ietf.org/html/rfc2822#page-14
www.w3.org/TR/NOTE-datetime
www.w3.org/TR/NOTE-datetime
http://momentjs.com
http://momentjs.com
http://www.microformats.org

310 APPENDIX B Automating the web with scraping

This is convenient for turning scraped data into CSV files that work well with programs
such as Microsoft Excel. Imagine you have a web page with books that include title
and published date. You want to save the values to a database, but your database
requires dates to be formatted as YYYY-MM-DD. The following listing shows how to use
Moment with cheerio to do this.

'use strict';
const cheerio = require('cheerio');
const fs = require('fs');
const html = fs.readFileSync('./input.html');
const moment = require('moment');
const $ = cheerio.load(html);
const books = $('.book')
 .map((i, el) => {
 return {
 author: $(el).find('h2').text(),
 title: $(el).find('h3').text(),
 published: $(el).find('h4').text()
 };
 })
 .get();

console.log('title, author, sourceDate, dbDate');

books.forEach((book) => {
 let date = moment(new Date(book.published));
 console.log(
 '%s, %s, %s, %s',
 book.author,
 book.title,
 book.published,
 date.format('YYYY-MM-DD')
);
});

Listing B.5 requires that you install cheerio, Moment, and books. It takes as input
HTML (from input.html) and then outputs CSV. The HTML should have dates in h4
elements, like this:

<div>
 <div class="book">
 <h2>Catch-22</h2>
 <h3>Joseph Heller</h3>
 <h4>11 November 1961</h4>
 </div>
 <div class="book">
 <h2>A Handful of Dust</h2>
 <h3>Evelyn Waugh</h3>
 <h4>1934</h4>

Listing B.5 Parsing dates and generating CSV

Loads the
input file

Requires moment

Maps each book into author,
title, and published date

The headers for
the CSV file

Parses the date
 </div>
</div>

Licensed to Samir Mashlum <smashlum@gmail.com>

311Summary

After the scraper has loaded the input file, it loads up Moment, and then maps each
book to a simple JavaScript object by using cheerio’s .map and .get methods. The
.map method iterates over each book, and the callback extracts each element that
you’re interested in by using the .find selector traversal method. To get the resulting
text values as an array, .get is used.

 Listing B.5 outputs CSV by using console.log. The header is printed, and then
each row is logged in a loop that iterates over each book. The dates are converted to a
format compatible with MySQL by using Moment; first the date is parsed using new
Date, and then it’s formatted using Moment.

 After you’ve become used to parsing and formatting dates, you can apply similar
techniques to other data formats. For example, currency and distance measurements
can be captured with regular expressions, and then formatted by using a more generic
number-formatting library such as Numeral (www.npmjs.com/package/numeral).

B.5 Summary
 Web scraping is the automated transformation of sometimes badly structured

web pages into computer-friendly formats such as CSV or databases.
 Web scraping is used for vertical search engines but also for data journalism.
 If you're going to scrape a site, you should get permission first. You can do this

by checking the site’s robots.txt file and contacting the site’s owner.
 The main tools are static HTML parsers (cheerio) and parsers capable of run-

ning JavaScript (jsdom), but also browser developer tools for finding the right
CSS selector for the elements you’re interested in.

 Sometimes the data itself is not well formatted, so you may need to parse things
such as dates or currencies to make them work with databases.
Licensed to Samir Mashlum <smashlum@gmail.com>

appendix C
Connect’s officially

supported middleware

Connect is a minimal wrapper around Node’s built-in HTTP client and server mod-
ules. The Connect authors and contributors have also produced officially sup-
ported middleware components that implement low-level features used by most
web frameworks, including things like cookie handling, body parsing, sessions,
basic auth, and cross-site request forgery (CSRF). This appendix demonstrates all of
the officially supported modules so you can use them to build lightweight web
applications without a larger framework.

C.1 Parsing cookies, request bodies, and query strings
Node’s core doesn’t provide modules for higher-level web application concepts
such as parsing cookies, buffering request bodies, or parsing complex query
strings, so Connect modules implement these features. This section covers four
modules that parse request data:

 cookie-parser—Parses cookies from web browsers into req.cookies
 qs—Parses the request URL query string into req.query
 body-parser—Consumes and parses the request body into req.body

The first module we’ll look at is cookie-parser. This makes it easy to retrieve data
stored by a website visitor’s browser so you can read things such as authorization
status, website settings, and so on.

C.1.1 cookie-parser: parse HTTP cookies

The cookie-parser module supports regular cookies, signed cookies, and special
312

JSON cookies (www.npmjs.com/package/cookie-parser). By default, regular
unsigned cookies are used, populating the req.cookies object. If you want signed

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/cookie-parser

313Parsing cookies, request bodies, and query strings

cookie support, which helps prevent cookies from being tampered with, you’ll want to
pass a secret string when creating the cookie-parser instance.

SETTING COOKIES ON THE SERVER SIDE The cookie-parser module doesn’t
provide any helpers for setting outgoing cookies. For this, you should use the
res.setHeader() function with Set-Cookie as the header name. Connect
patches Node’s default res.setHeader() function to special-case the Set-
Cookie headers so that it just works, as you’d expect it to.

REGULAR COOKIES

To read cookies, you need to load the module, add it to the middleware stack, and
then read the cookies in a request. The following listing illustrates each of these steps.

const connect = require('connect');
const cookieParser = require('cookie-parser');

connect()
 .use(cookieParser())
 .use((req, res, next) => {
 res.end(JSON.stringify(req.cookies));
 })
 .listen(3000);

This example loads the middleware component b. Remember that you need to
install the middleware with npm install cookie-parser for this to work. Next it
adds an instance of the cookie parser to the middleware stack for this application c.
The final step is to send back the cookies to the browser as a string d, so you can see
it working.

 If you run this example, you’ll need to set cookies with the request. If you go to
http://localhost:3000 in a browser, you probably won’t see much; it should return an
empty object ({}). You can use cURL to set a cookie like this:

curl http://localhost:3000/ -H "Cookie: foo=bar, bar=baz"

SIGNED COOKIES

Signed cookies are better suited for sensitive data, as the integrity of the cookie data
can be verified, helping to prevent man-in-the-middle attacks. Signed cookies are
placed in the req.signedCookies object when valid. The reasoning behind having
two separate objects is that it shows the developer’s intention. If you were to place
both signed and unsigned cookies in the same object, a regular cookie could be
crafted to contain data to mimic a signed cookie.

 A signed cookie looks something like s:tobi.DDm3AcVxE9oneYnbmpqxoy[…],1

where the content to the left of the period (.) is the cookie’s value, and the content to

Listing C.1 Reading cookies sent in a request

Loads the cookie-
parser middlewareb

Adds it to the middleware
for this application

c

Responds with a string
version of the cookiesd
1 The signed values have been shortened.

Licensed to Samir Mashlum <smashlum@gmail.com>

es
t

314 APPENDIX C Connect’s officially supported middleware

the right is the secret hash generated on the server with SHA-256 HMAC (hash-based
message authentication code). When Connect attempts to unsign the cookie, it will
fail if either the value or HMAC has been altered.

 Suppose, for example, you set a signed cookie with a key of name and a value of
luna. cookieParser would encode the cookie to s:luna.PQLM0wNvqOQEObZX[…].
The hash portion is checked on each request, and when the cookie is sent intact, it
will be available as req.signedCookies.name:

$ curl http://localhost:3000/ -H "Cookie:

➥ name=s:luna.PQLM0wNvqOQEObZXU[…]"
{}
{ name: 'luna' }
GET / 200 4ms

If the cookie’s value were to change, as shown in the next curl command, the name
cookie would be available as req.cookies.name because it wasn’t valid. It might still
be of use for debugging or application-specific purposes:

$ curl http://localhost:3000/ -H "Cookie:

➥ name=manny.PQLM0wNvqOQEOb[…]"
{ name: 'manny.PQLM0wNvqOQEOb[…]' }
{}
GET / 200 1ms

The first argument to cookieParser is the secret to be used for signing cookies. In
the following listing, the secret is tobi is a cool ferret.

const connect = require('connect');
const cookieParser = require('cookie-parser');
const secret = 'tobi is a cool ferret';

connect()
 .use(cookieParser(secret))
 .use((req, res) => {
 console.log('Cookies:', req.cookies);
 console.log('Signed cookies:', req.signedCookies);
 res.end('hello\n');
 }).listen(3000);

In this example, the signed cookies are parsed automatically because the secret
argument was passed to the cookieParser middleware component b. The values
can be accessed on the request object c. The cookie-parser module also makes the
cookie parsing functionality available through the signedCookie and signedCook-
ies methods.

 Before moving on, let’s look at how to use this example. As with listing C.1, you can
use curl with the -H option to send a cookie. But for it to be considered a signed

Listing C.2 Parsing signed cookies

The signed cookies are automatically
added to the request object

b

Access the signed cooki
from the request objecc
cookie, it needs to be encoded in a certain way.

Licensed to Samir Mashlum <smashlum@gmail.com>

315Parsing cookies, request bodies, and query strings

 Node’s crypto module is used to unsign cookies in the signedCookie method. If
you want to sign a cookie to test listing C.2, you need to install cookie-signature
and then sign a string with the same secret:

const signature = require('cookie-signature');
const message = 'luna';
const secret = 'tobi is a cool ferret';
console.log(signature.sign(message, secret);

Now if the signature or message were modified, the server would be able to tell. In
addition to signed cookies, this module supports JSON-encoded cookies. The next sec-
tion shows how these work.

JSON COOKIES

The special JSON cookie is prefixed with j:, which informs Connect that it’s intended
to be serialized JSON. JSON cookies can be either signed or unsigned.

 Frameworks such as Express can use this functionality to provide developers with a
more intuitive cookie interface, instead of requiring them to manually serialize and
parse JSON cookie values. Here’s an example of how Connect parses JSON cookies:

$ curl http://localhost:3000/ -H 'Cookie: foo=bar,
bar=j:{"foo":"bar"}'
{ foo: 'bar', bar: { foo: 'bar' } }
{}
GET / 200 1ms

As mentioned, JSON cookies can also be signed, as illustrated in the following request:

$ curl http://localhost:3000/ -H "Cookie:

➥ cart=j:{\"items\":[1]}.sD5p6xFFBO/4ketA1OP43bcjS3Y"
{}
{ cart: { items: [1] } }
GET / 200 1ms

SETTING OUTGOING COOKIES

As noted earlier, the cookie-parser module doesn’t provide any functionality for writ-
ing outgoing headers to the HTTP client via the Set-Cookie header. Connect, how-
ever, provides explicit support for multiple Set-Cookie headers via the
res.setHeader() function.

 Say you want to set a cookie named foo with the string value bar. Connect enables
you to do this in one line of code by calling res.setHeader(). You can also set the
various options of a cookie, such as its expiration date, as shown in the second set-
Header() call here:

var connect = require('connect');

connect()
 .use((req, res) => {

 res.setHeader('Set-Cookie', 'foo=bar');
 res.setHeader('Set-Cookie',

Licensed to Samir Mashlum <smashlum@gmail.com>

316 APPENDIX C Connect’s officially supported middleware

 'tobi=ferret; Expires=Tue, 08 Jun 2021 10:18:14 GMT'
);
 res.end();
})
.listen(3000);

If you check out the headers that this server sends back to the HTTP request by using
the --head flag of curl, you can see the Set-Cookie headers set as you would
expect:

$ curl http://localhost:3000/ --head
HTTP/1.1 200 OK
Set-Cookie: foo=bar
Set-Cookie: tobi=ferret; Expires=Tue, 08 Jun 2021 10:18:14 GMT
Connection: keep-alive

That’s all there is to sending cookies with your HTTP response. You can store any kind
of text data in cookies, but it has become usual to store a single session cookie on the
client side so that you can have full user state on the server. This session technique is
encapsulated in the express-session module, which you’ll learn about later in this
appendix.

 Now that you can handle cookies, you’re probably eager to handle the other usual
methods for accepting user input. The next two sections cover parsing query strings
and request bodies, and you’ll discover that even though Connect is relatively low-
level, you can still get the same features as more complicated web frameworks without
writing lots of code.

C.1.2 Parsing query strings

One method for accepting input is to use GET parameters. You place a question mark
after a URL, with a list of arguments separated by ampersands:

http://localhost:3000/page?name=tobi&species=ferret

This type of URL can be presented to your application by a form that’s set to use the
GET method, or by anchor elements within your application’s templates. You’ve prob-
ably seen this used for pagination.

 The request object that’s passed to each middleware component in Connect appli-
cations includes a url property, but what you want is the last part of the URL: just the
portion after the question mark. Node comes with a URL-parsing module, so you
could technically use url.parse to get the query string. But Connect also has to
parse the URL, so it sets an internal property with a parsed version.

 The recommended module for parsing query strings is qs (www.npmjs.com/
package/qs). This module isn’t officially supported by Connect, and alternatives are
available through npm. To use qs and similar modules, you need to call its .parse()
method from your own middleware component.
Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/qs
www.npmjs.com/package/qs

317Parsing cookies, request bodies, and query strings

BASIC USAGE

The following listing uses the qs.parse method to create an object that’s stored on
the req.query property for subsequent middleware components to use.

const connect = require('connect');
const qs = require('qs');
connect()
 .use((req, res, next) => {
 console.log(req._parsedUrl.query);
 req.query = qs.parse(req._parsedUrl.query);
 next();
 })
 .use((req, res) => {
 console.log('query string:', req.query);
 res.end('\n');
 })
 .listen(3000);

This example uses a custom middleware component to obtain the parsed URL, parse
it using qs.parse b, and then display it in a subsequent component.

 Suppose you’re designing a music library app. You could offer a search engine and
use the query string to build up the search parameters, like this:

/songSearch?artist=Bob%20Marley&track=Jammin.

This example query produces a res.query object like this:

{ artist: 'Bob Marley', track: 'Jammin' }

The qs.parse method supports nested arrays, so complex query strings such as
?images[]=foo.png&images[]=bar.png produce objects like this one:

{ images: ['foo.png', 'bar.png'] }

When no query-string parameters are given in the HTTP request, such as /song-
Search, req.query will default to an empty object:

{}

Higher-level frameworks such as Express tend to have query-string parsing built in,
because it’s such a common requirement for web development. Another common fea-
ture of web frameworks is parsing request bodies, so you can accept data posted in
forms. The next section explains how to parse request bodies, handle forms and file
uploads, and validate these requests to ensure they’re safe.

C.1.3 body-parser: parse request bodies

Most web applications have to accept and process user input. This can be from forms

Listing C.3 Parsing query strings

Uses qs to parse
the query string

b

Displays the parsed
query string
or even other programs in the case of RESTful APIs. HTTP requests and responses are

Licensed to Samir Mashlum <smashlum@gmail.com>

uest
318 APPENDIX C Connect’s officially supported middleware

collectively known as HTTP messages. The format of a message consists of a list of
headers and then a message body. In Node web applications, the body is usually a
stream, and it can be encoded in various ways: a POST from a form will usually be
application/x-www-form-urlencoded, and a RESTful JSON request could
be application/json.

 That means your Connect applications need mid-
dleware that’s capable of decoding streams of form-
encoded data, JSON, or even compressed data using
gzip or deflate. In this section, we’ll show how to do
the following:

 Handle input from forms
 Parse JSON requests
 Validate bodies based on content and size
 Accept file uploads

FORMS

Suppose you want to accept registration information
for your application though a form. All you have to do
is add the body-parser component (www.npmjs.com/
package/body-parser) before any other middleware
that will access the req.body object. Figure C.1 shows
how this works.

 The following listing shows how to use the body-
parser module with HTTP POSTs from forms.

const connect = require('connect');
const bodyParser = require('body-parser');

connect()
 .use(bodyParser.urlencoded({ extended: false }))
 .use((req, res, next) => {
 res.setHeader('Content-Type', 'text/plain');
 res.end('You sent: ' + JSON.stringify(req.body) + '\n');
 })
 .listen(3000);

To use this example, you need to install the body-parser module,2 and then you need a
way to make a simple HTTP request with a URL-encoded body. The easiest way is to use
curl with the -d option:

curl -d name=tobi http://localhost:3000

Listing C.4 Parsing form requests

User posts form

First name Last name

Email Password

bodyParser

Decompress

Parse form values into req.body

Continue to other middleware

Figure C.1 How a form is
processed by body-parser

Adds the body parser
to the middleware stack

b

Returns the req
body as a stringc
2 We used version 1.11.0.

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/body-parser
www.npmjs.com/package/body-parser

319Parsing cookies, request bodies, and query strings

This should cause the server to display You sent: {"name":"tobi"}. To make this
work, the body parser is added to the middleware stack b, and then the parsed body
in req.body is converted to a string c so it can be displayed more easily. The
urlencoded body parser accepts a UTF-8 encoded string, and it’ll automatically
decompress request bodies encoded with gzip or deflate.

 In this example, the options passed to the body parser are extended: false.
When set to true, this option causes the body parser to use another library to parse
the query-string format. This allows you to use more complex, nested, JSON-like
objects in forms. The other options are presented in the next section, where you’ll
look at validating requests.

VALIDATING REQUESTS

Each parser that comes with the body-parser module supports two options for validat-
ing requests: limit and verify. The limit option allows you to block requests over
a certain size: the default is 100 KB, so you can increase it if you want to accept larger
forms. If you’re making something like a content management system or blog, where
people can potentially enter valid but lengthy fields, this would be useful.

 The verify option allows you to use a function to validate requests. It’s useful if you
want to get the raw request body and check that it’s in the correct format. For example,
you could use this to ensure that API methods that accept XML always start with the cor-
rect XML header. The following listing shows how to use both of these options.

const connect = require('connect');
const bodyParser = require('body-parser');

function verifyRequest(req, res, buf, encoding) {
 if (!buf.toString().match(/^name=/)) {
 throw new Error('Bad format');
 }
}

connect()
 .use(bodyParser.urlencoded({
 extended: false,
 limit: 10,
 verify: verifyRequest
 }))
 .use(function(req, res, next) {
 res.setHeader('Content-Type', 'text/plain');
 res.end('You sent: ' + JSON.stringify(req.body) + '\n');
 })
 .listen(3000);

Notice that an Error object should be thrown by using the throw keyword b. The
body-parser module is set up to catch these before parsing the request, so it’ll pass the

Listing C.5 Validating form requests

Throws an error when
the format is incorrectb

Sets the request limitc

Adds a verify
functiond
error back to Connect. After a request validation function has been created, you need
to pass it to the body-parser middleware component by using the verify option d.

Licensed to Samir Mashlum <smashlum@gmail.com>

320 APPENDIX C Connect’s officially supported middleware

 The body size limit is in bytes; here it’s quite small, at 10 bytes c. You can easily see
what happens when the request is too large by using the previous curl command with
a larger name value. Also, if you want to see what happens when the validation error is
thrown, use curl to send another value instead of name.

WHY IS LIMIT NEEDED?
Let’s take a look at how a malicious user can render a vulnerable server useless. First,
create the following small Connect application named server.js, which does nothing
other than parse request bodies by using the bodyParser() middleware component:

const connect = require('connect');
const bodyParser = require('body-parser');

connect()
 .use(bodyParser.json({ limit: 99999999, extended: false }))
 .use((req, res, next) => {
 res.end('OK\n');
 })
 .listen(3000);

Now create a file named dos.js, as shown in the following listing. You can see how a
malicious user could use Node’s HTTP client to attack the preceding Connect applica-
tion, simply by writing several megabytes of JSON data:

const http = require('http');
let req = http.request({
 method: 'POST',
 port: 3000,
 headers: {
 'Content-Type': 'application/json'
 }
});
req.write('[');
let n = 300000;
while (n--) {
 req.write('"foo",');
}
req.write('"bar"]');
req.end();

Fire up the server and run the attack script:

$ node server.js &
$ node dos.js

If you watch the node process in top(1), you should see that it starts to use more CPU
and RAM as dos.js runs. This is bad, but thankfully it’s exactly why all the body parsing
middleware components accept a limit option.

PARSING JSON DATA

Notifies server that you’re
sending JSON data

Begins sending a large
 array object

Array contains 300,000
“foo” string entries
If you’re making web applications with Node, you’re going to be dealing with a lot of
JSON. The body-parser module’s JSON parser has a few handy options that you’ve seen

Licensed to Samir Mashlum <smashlum@gmail.com>

321Parsing cookies, request bodies, and query strings

in the previous examples. The following listing shows how parsing JSON and using the
resulting values works.

const connect = require('connect');
const bodyParser = require('body-parser');

connect()
 .use(bodyParser.json())
 .use((req, res, next) => {
 res.setHeader('Content-Type', 'application/json');
 res.end(`Name: ${req.body.name}\n`);
 })
 .listen(3000);

After the JSON parser has been loaded b, your request handlers can treat the
req.body value as a JavaScript object rather than a string. This example assumes that
a JSON object with a name property has been sent, and it’ll send the value back in the
response c. That means your request has to have a Content-Type of applica-
tion/json, and you need to send valid JSON. By default, the json middleware com-
ponent uses strict parsing, but you can relax encoding requirements by setting this to
false.

The following curl request could be used to submit data to your application, and will
send a JSON object with the username property set to tobi:

curl -d '{"name":"tobi"}' -H "Content-Type: application/json"

➥ http://localhost:3000
Name: tobi

PARSING MULTIPART <FORM> DATA

The body-parser module doesn’t handle multipart request bodies. You need to handle
multipart messages to support file uploads, so anything such as uploading a user’s ava-
tar needs multipart support.

 There’s no officially supported multipart parser for Connect, but some popular
ones are well maintained. Two examples are busboy (www.npmjs.com/package/
busboy) and multiparty (www.npmjs.com/package/multiparty). Both of these mod-

Listing C.6 Validating form requests

Setting the JSON Content-Type option
One option that you need to be aware of is type. This allows you to change the Con-
tent-Type that’ll be parsed as JSON. In the following example, we use the default,
which is application/json. But in some cases your application might have to
interact with HTTP clients that don’t send this header, so be warned.

Adds the JSON
body parser

b

Gets a value from
the body object

c

ules have associated connect modules: connect-busboy and connect-multiparty. The
reason for this is that the multipart parsers themselves are dependent on Node’s

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/busboy
www.npmjs.com/package/busboy
www.npmjs.com/package/multiparty

322 APPENDIX C Connect’s officially supported middleware

lower-level HTTP modules, so a wide range of frameworks can use them. They’re not
specifically tied into Connect.

 The following listing is based on multiparty, and will print out the details of an
uploaded file in the console.

const connect = require('connect');
const multipart = require('connect-multiparty');

connect()
 .use(multipart())
 .use((req, res, next) => {
 console.log(req.files);
 res.end('Upload received\n');
 })
 .listen(3000);

This short example adds the multiparty middleware component b and then logs the
received files c. The files will be uploaded to a temporary location, so you have to use
the fs module to delete the files when your application is finished with them.

 To use this example, make sure you’ve installed connect-multiparty.3 Then start
the server and send it a file with curl’s -F option:

curl -F file=@index.js http://localhost:3000

The filename is placed after the @ symbol, and it’s prefixed with a field name. The
field name will be available in the req.files object, so you can distinguish between
separate uploaded files.

 If you take a look at the output of the application, you’ll see something similar to
the following example output. As you can see, req.files.file.path would be
available to your application, and you could rename the file on disk, transfer the data
to a worker for processing, upload to a content delivery network, or do anything else
your app requires:

{ fieldName: 'file',
 originalFilename: 'index.js',
 path: '/var/folders/d0/_jqj3lf96g37s5wrf79v_g4c0000gn/T/60201-p4pohc.js',
 headers:
 { 'content-disposition': 'form-data; name="file"; filename="index.js"',
 'content-type': 'application/octet-stream' },

Although body-parser copes with compression, you may be wondering about com-
pressing outgoing responses. Read on to learn about the compression middleware
component that can reduce your bandwidth bills and make your web applications feel
faster.

Listing C.7 Handling uploaded files

Adds the multipart
middleware component

b

Logs the files
that were sentc
3 We used version 1.2.5 to test this example.

Licensed to Samir Mashlum <smashlum@gmail.com>

323Parsing cookies, request bodies, and query strings

C.1.4 compression: compressing outgoing responses

In the preceding section, you may have noticed that the body parsers are capable of
decompressing requests that used gzip or deflate. Node comes with a core module for
handling compression called zlib, and this is used to implement both compression
and decompression methods. The compression middleware component (www.npmjs
.com/package/compression) can be used to compress outgoing responses, which
means the data your server sends can be compressed.

 Google’s PageSpeed Insights tool recommends enabling gzip compression,4 and if
you look at requests made by your browser in the developer tools, you should see that
many sites send gzipped responses. Compression adds CPU overhead, but because for-
mats such as plain text and HTML compress well, it can improve your site’s perfor-
mance and reduce bandwidth usage.

The compression module detects the accepted encodings from the Accept-Encod-
ing header field. If this field isn’t present, the identity encoding is used, meaning the
response is untouched. Otherwise, if the field contains gzip, deflate, or both, the
response will be compressed.

BASIC USAGE

You should generally add compression high in the Connect stack, because it wraps the
res.write() and res.end() methods.

 In the following example, the content will be compressed:

const connect = require('connect');
const compression = require('compression');
connect()
 .use(compression({ threshold: 0 }))
 .use((req, res) => {
 res.setHeader('Content-Type', 'text/plain');
 res.end('This response is compressed!\n');
 })
 .listen(3000);

Deflate or gzip?
Having two compression options can be confusing. You’re probably wondering which
is best, and why two exist at all. Well, according to the standards (RFC 1950 and RFC
2616), both use the same compression algorithm, but they differ in the way the
header and checksum are handled.

Unfortunately, some browsers don’t correctly handle deflate, so the general advice is
to use gzip. In the case of body parsing, it’s best to be able to support both, but if
you’re compressing your server’s output, use gzip to be on the safe side.
4 See https://developers.google.com/speed/docs/insights/EnableCompression for more information.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://developers.google.com/speed/docs/insights/EnableCompression
www.npmjs.com/package/compression
www.npmjs.com/package/compression

324 APPENDIX C Connect’s officially supported middleware

To run this example, you need to install the compression module from npm. Then,
start the server and try making a request with curl that sets Accept-Encoding to
gzip:

$ curl http://localhost:3000 -i -H "Accept-Encoding: gzip"

The -i argument makes cURL show you the headers, so you should see the Content-
Encoding set to gzip. The output should be garbled, because the compressed data
won’t be standard characters. Try piping it through gunzip without the -i option to
see the output:

$ curl http://localhost:3000 -H "Accept-Encoding: gzip" | gunzip

This is powerful and relatively simple to set up, but you won’t always want to compress
everything your server sends. To skip compression, you can use custom filter
functions.

USING A CUSTOM FILTER FUNCTION

By default, compression includes the MIME types text/*, */json, and */java-
script in the default filter function to avoid compressing these data types:

exports.filter = function(req, res){
 const type = res.getHeader('Content-Type') || '';
 return type.match(/json|text|javascript/);
};

To alter this behavior, you can pass a filter in the options object, as shown in the fol-
lowing snippet, which will compress only plain text:

function filter(req) {
 const type = req.getHeader('Content-Type') || '';
 return 0 === type.indexOf('text/plain');
}
connect()
 .use(compression({ filter: filter }));

SPECIFYING COMPRESSION AND MEMORY LEVELS

Node’s zlib bindings provide options for tweaking performance and compression
characteristics, and they can also be passed to the compression function.

 In the following example, the compression level is set to 3 for less but faster com-
pression, and memLevel is set to 8 for faster compression by using more memory.
These values depend entirely on your application and the resources available to it.
Consult Node’s zlib documentation for details:

connect()
 .use(compression({ level: 3, memLevel: 8 }));

That’s all there is to it. Next we’ll look at middleware that covers core web application

needs, such as logging and sessions.

Licensed to Samir Mashlum <smashlum@gmail.com>

325Implementing core web application functions

C.2 Implementing core web application functions
Connect aims to implement and provide built-in middleware for the most common
web application needs so that they don’t need to be reimplemented over and over by
every developer. Core web application functions such as logging, sessions, and virtual
hosting are all provided by Connect out of the box.

 In this section, you’ll learn about five useful middleware components that you’ll
likely use in your applications:

 morgan—Provides flexible request logging
 serve-favicon—Takes care of the /favicon.ico request without you having to think

about it
 method-override—Enables incapable clients to transparently overwrite req

.method

 vhost—Sets up multiple websites on a single server (virtual hosting)
 express-session—Manages session data

Up until now, you’ve created your own custom logging middleware, but the Connect
maintainers provide a flexible solution named morgan, so let’s explore that first.

C.2.1 morgan: log requests

The morgan module (www.npmjs.com/package/morgan) is a flexible request-logging
middleware component with customizable log formats. It also has options for buffer-
ing log output to decrease disk writes, and for specifying a log stream if you want to
log to something other than the console, such as a file or socket.

BASIC USAGE

To use morgan in your own application, invoke it as a function to return a middleware
function, as shown in the following listing.

const connect = require('connect');
const morgan = require('morgan');

connect()
 .use(morgan('combined'))
 .use((req, res) => {
 res.setHeader('Content-Type', 'application/json');
 res.end('Logging\n');
 })
 .listen(3000);

To use this example, you need to install the morgan module from npm.5 It adds the
module at the top of the middleware stack b and then outputs a simple text response

Listing C.8 Using the morgan module for logging

The “combined” logging
option is used for each request

b

Responds to the
request with a messagec
5 We used version 1.5.1.

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/morgan

326 APPENDIX C Connect’s officially supported middleware

c. By using the combined logging format argument b, this Connect application will
output the Apache log format. This is a flexible format that many command-line utili-
ties can parse, so you can run your logs through log-processing applications that can
generate useful statistics. If you try making requests from different clients, such as
curl, wget, and a browser, you should see the user agent string in the logs.

 The combined logging format is defined like this:

:remote-addr - :remote-user [:date[clf]] ":method :url

➥ HTTP/:http-version" :status :res[content-length] ":referrer" ":user-agent"

Each of the :something pieces are tokens, and in a log entry they’d contain real val-
ues from the HTTP request that’s being logged. For example, a simple curl(1)
request would generate a log line similar to the following:

127.0.0.1 - - [Thu, 05 Feb 2015 04:27:07 GMT]
 ➥ "GET / HTTP/1.1" 200 - "-"
 ➥ "curl/7.37.1"

CUSTOMIZING LOG FORMATS

You can also create your own log formats. To do this, pass a custom string of tokens.
For example, the following format would output something like GET /users 15 ms:

connect()
 .use(morgan(':method :url :response-time ms'))
 .use(hello)
 .listen(3000);

By default, the following tokens are available for use (note that the header names
aren’t case-sensitive):

 :req[header] example: :req[Accept]
 :res[header] example: :res[Content-Length]
 :http-version

 :response-time

 :remote-addr

 :date

 :method

 :url

 :referrer

 :user-agent
 :status

You can even define custom tokens. All you have to do is provide a token name and
callback function to the connect.logger.token function. For example, say you
want to log each request’s query string. You might define it like this:

var url = require('url');
morgan.token('query-string', function(req, res){

 return url.parse(req.url).query;
});

Licensed to Samir Mashlum <smashlum@gmail.com>

327Implementing core web application functions

The morgan module comes with predefined formats other than the default one, such
as short and tiny. Another predefined format is dev, which produces concise out-
put for development, for situations when you’re usually the only user on the site and
you don’t care about the details of the HTTP requests. This format also color-codes
the response status codes by type: responses with a status code in the 200s are green,
300s are blue, 400s are yellow, and 500s are red. This color scheme makes it great for
development.

 To use a predefined format, you provide the name to logger():

connect()
 .use(morgan('dev'))
 .use(hello);
 .listen(3000);

Now that you know how to format the logger’s output, let’s look at the options you can
provide to it.

LOGGER OPTIONS: STREAM, IMMEDIATE, AND BUFFER

As mentioned previously, you can use options to tweak how morgan behaves.
 One such option is stream, which allows you to pass a Node Stream instance that

the logger will write to instead of stdout. This allows you to direct the logger output to
its own log file, independent of your server’s own output, by using a Stream instance
created from fs.createWriteStream.

 When you use these options, it's generally recommended to also include the format
property. The following example uses a custom format and logs to /var/log/myapp.log
with the append flag, so that the file isn’t truncated when the application boots:

const fs = require('fs');
const morgan = require('morgan');
const log = fs.createWriteStream('/var/log/myapp.log', { flags: 'a' })
connect()
 .use(morgan({ format: ':method :url', stream: log }))
 .use('/error', error)
 .use(hello)
 .listen(3000);

Another useful option is immediate, which writes the log line when the request is
first received, rather than waiting for the response. You might use this option if you’re
writing a server that keeps its requests open for a long time, and you want to know
when the connection begins. Or you might use it for debugging a critical section of
your app. Tokens such as :status and :response-time can’t be used, because
they’re related to the response. To enable immediate mode, pass true for the imme-
diate value, as shown here:

const app = connect()
 .use(connect.logger({ immediate: true }))
 .use('/error', error)
 .use(hello);
That’s it for logging! Next we’ll look at the favicon-serving middleware component.

Licensed to Samir Mashlum <smashlum@gmail.com>

328 APPENDIX C Connect’s officially supported middleware

C.2.2 serve-favicon: address bar and bookmark icons

A favicon is that tiny website icon your browser dis-
plays in the address bar and bookmarks. To get
this icon, the browser makes a request for a file at
/favicon.ico. It’s usually best to serve favicon files
as soon as possible, so the rest of your application
can simply ignore them. The serve-favicon module
(www.npmjs.com/package/serve-favicon) causes
Connect’s icon to be displayed by default. This can be configured by passing argu-
ments for other icons. This favicon is shown in figure C.2.

BASIC USAGE

The serve-favicon middleware component can be placed at the top of the stack, which
causes favicon requests to be ignored by any subsequent logging components. The
icon is cached in memory for fast responses.

 The following example shows serve-favicon sending an .ico file by passing the file
path as the only argument:

const connect = require('connect');
const favicon = require('serve-favicon');
connect()
 .use(favicon(__dirname + '/favicon.ico'))
 .use((req, res) => {
 res.end('Hello World!\n');
 });

Note that you need a file called favicon.ico to test this out. Optionally, you can pass in
a maxAge argument to specify how long browsers should cache the favicon in memory.

 Next we have another small but helpful middleware component: method-override.
It provides the means to fake the HTTP request method when client capabilities are
limited.

C.2.3 method-override: fake HTTP methods

Sometimes it’s useful to use HTTP verbs beyond the common GET and POST methods.
Imagine that you’re building a blog, and you want to allow people to create, update,
and delete articles. It feels more natural to say DELETE /article rather than GET or
POST. Unfortunately, not every browser understands the DELETE method.

 A common workaround is to allow the server to get a hint about which HTTP
method to use from the query parameters, form values, and sometimes even the HTTP
headers. One way this is done is by adding <input type=hidden> with the value set
to the method name you want to use. The server can then check the value and pre-
tend it’s the request method.

 Most web frameworks support this technique, and the method-override module
(www.npmjs.com/package/method-override) is the recommended way to do it with

Figure C.2 A favicon
Connect.

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/method-override
www.npmjs.com/package/serve-favicon

329Implementing core web application functions

BASIC USAGE

By default, the HTML input name is _method, but you can pass a custom value to
methodOverride, as shown in the following snippet:

connect()
const connect = require('connect');
const methodOverride = require('method-override');
connect()
 .use(methodOverride('__method__'))
 .listen(3000)

To demonstrate how methodOverride() is implemented, let’s see how to create a
tiny application to update user information. The application consists of a single form
that will respond with a simple success message when the form is submitted by the
browser and processed by the server, as illustrated in figure C.3.

The application updates the user data through the use of two separate middleware
components. In the update function, next() is called when the request method isn’t
PUT. As mentioned previously, most browsers don’t respect the form attribute
method="put", so the application in the following listing won’t function properly.

const connect = require('connect');
const morgan = require('morgan');
const bodyParser = require('body-parser');

Listing C.9 A broken user-update application

Figure C.3 Using method-
override to simulate a PUT
request to update a form in
the browser
function edit(req, res, next) {
 if ('GET' != req.method) return next();

Licensed to Samir Mashlum <smashlum@gmail.com>

330 APPENDIX C Connect’s officially supported middleware

 res.setHeader('Content-Type', 'text/html');
 res.write('<form method="put">');
 res.write('<input type="text" name="user[name]" value="Tobi" />');
 res.write('<input type="submit" value="Update" />');
 res.write('</form>');
 res.end();
}

function update(req, res, next) {
 if ('PUT' != req.method) return next();
 res.end('Updated name to ' + req.body.user.name);
}

connect()
 .use(morgan('combined'))
 .use(bodyParser.urlencoded({ extended: false }))
 .use(edit)
 .use(update)
 .listen(3000);

In this example, a form has been set up that sends a PUT to the server b. The form
should send data to the update function, but only if it’s sent with a PUT c. You can
try this with different browsers and HTTP clients; you can send a PUT with curl by
using the -X option.

 To improve browser support, you’ll add the method-override module. Here an
additional input with the name _method has been added to the form, and method-
Override() has been added below the bodyParser() method because it references
req.body to access the form data.

const connect = require('connect');
const morgan = require('morgan');
const bodyParser = require('body-parser');
const methodOverride = require('method-override');

function edit(req, res, next) {
 if ('GET' != req.method) return next();
 res.setHeader('Content-Type', 'text/html');
 res.write('<form method="post">');
 res.write('<input type="hidden" name="_method" value="put" />');
 res.write('<input type="text" name="user[name]" value="Tobi" />');
 res.write('<input type="submit" value="Update" />');
 res.write('</form>');
 res.end();
}

function update(req, res, next) {
 if ('PUT' != req.method) return next();
 res.end('Updated name to ${req.body.user.name}');;

Listing C.10 Using method-override to support HTTP PUT

A form that sends
a PUT instead of

a GET or POST b

Ensures the request
has been sent with a PUTc

Sends a hint for the HTTP
method by including the

_method form variable
}

Licensed to Samir Mashlum <smashlum@gmail.com>

331Implementing core web application functions

connect()
 .use(morgan('dev'))
 .use(bodyParser.urlencoded({ extended: false }))
 .use(methodOverride('_method'))
 .use(edit)
 .use(update)
 .listen(3000);

If you run this example, you should see that you can now send PUT requests from
almost any browser.

ACCESSING THE ORIGINAL REQ.METHOD

methodOverride() alters the original req.method property, but Connect copies
over the original method, which you can always access with req.originalMethod.
The previous form would output values like these:

console.log(req.method);
 // "PUT"
console.log(req.originalMethod);
 // "POST"

To avoid including extra form variables, HTTP headers are supported as well. Differ-
ent vendors use different headers, so you can create servers that support several
header field names. This will help if you want to support client tools and libraries that
assume a specific header. In the following example, the three header field names are
supported:

app.use(methodOverride('X-HTTP-Method'))
app.use(methodOverride('X-HTTP-Method-Override'))
app.use(methodOverride('X-Method-Override'))

Routing based on headers is a common task. One good example of this is supporting
virtual hosts. You may have seen Apache servers that do this when you want to host
multiple websites on a smaller number of IP addresses. Apache and Nginx can deter-
mine which website should be served based on the Host header.

 Connect can do this too, and it’s easier than you might think. Read on to learn
about virtual hosts and the vhost module.

C.2.4 vhost: virtual hosting

The vhost (virtual host) module (www.npmjs.com/package/vhost) is a simple, light-
weight middleware component that routes requests via the Host request header. This
task is commonly performed by a reverse proxy, which then forwards the request to a
web server running locally on a different port. The vhost component does this in the
same Node process by passing control to a Node HTTP server associated with the
vhost instance.

Uses the methodOverride
middleware component to
watch for the form variable

Microsoft
Google/GData

IBM
Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/vhost

332 APPENDIX C Connect’s officially supported middleware

BASIC USAGE

Like most middleware, a single line is all it takes to get up and running with the
vhost component. It takes two arguments: The first is the hostname string that this
vhost instance will match against. The second is the http.Server instance that’ll be
used when an HTTP request with a matching hostname is made (all Connect apps are
subclasses of http.Server, so an application instance will work as well):

const connect = require('connect');
const server = connect();
const vhost = require('vhost');
const app = require('./sites/expressjs.dev');
server.use(vhost('expressjs.dev', app));
server.listen(3000);

In order to use the preceding ./sites/expressjs.dev module, it should assign the HTTP
server to module.exports, as in the following example:

const http = require('http')
module.exports = http.createServer((req, res) => {
 res.end('hello from expressjs.com\n');
});

USING MULTIPLE VHOST INSTANCES

As with any other middleware, you can use vhost more than once in an application to
map several hosts to their associated applications:

const app = require('./sites/expressjs.dev');
server.use(vhost('expressjs.dev', app));
const app = require('./sites/learnboost.dev');
server.use(vhost('learnboost.dev', app));

Rather than setting up the vhost middleware manually like this, you could generate a
list of hosts from the filesystem. That’s shown in the following example, with the
fs.readdirSync() method returning an array of directory entries:

const connect = require('connect')
const fs = require('fs');
cons app = connect()
const sites = fs.readdirSync('source/sites');
sites.forEach((site) => {
 console.log(' ... %s', site);
 app.use(vhost(site, require('./sites/' + site)));
});
app.listen(3000);

The benefit of using vhost instead of a reverse proxy is simplicity. It allows you to
manage all your applications as a single unit. This is ideal for serving several smaller
sites, or for serving sites that are largely composed of static content, but it also has the
downside that if one site causes a crash, all your sites will be taken down (because they

all run in the same process).

Licensed to Samir Mashlum <smashlum@gmail.com>

333Implementing core web application functions

 Next we’ll take a look at one of the most fundamental middleware components
that Connect provides: the session management component, appropriately named
express-session.

C.2.5 express-session: session management

The way web applications handle sessions is dependent on varying requirements. For
example, one important choice is the storage back end: some applications benefit
from high-performance databases such as Redis; others require simplicity and use the
same database as the main application. The express-session module (www.npmjs.com
/package/express-session) provides an API that can be extended to suit different data-
bases. It’s robust and easy to extend, so it has many community-supported extensions.
In this section, you’ll learn how to use the memory-backed version and Redis.

 First, let’s see how to set up the middleware and explore the options available.

BASIC USAGE

Listing C.11 implements a small application that counts the number of times a given
user has accessed the page. The data is stored in the user’s session. By default, the
cookie name is connect.sid, and it’s set to be httpOnly, meaning client-side scripts
can’t access its value. The data in the session itself is stored in-memory on the server.
The listing shows the basic usage for express-session in Connect.6

const connect = require('connect');
const session = require('express-session');

connect()
 .use(session({
 secret: 'example secret',
 resave: false,
 saveUninitialized: true
 }))
 .use((req, res) => {
 req.session.views = req.session.views || 0;
 req.session.views++;
 res.end('Views:' + req.session.views);
 })
 .listen(3000);

This short example sets up sessions and then manipulates a single session variable
called views. First, the session middleware component is initialized with the required
options: secret, resave, and saveUninitialized b. The secret option is
required and determines whether the cookie used to identify the session is signed.
The resave option is used to force the session to be saved on each request, even if it

Listing C.11 Using sessions in Connect

These are the basic options
required to use sessions

b

Sets up a “views” session
variable and increments it

Sends the value back
to the browser
6 This was tested with express-session 1.10.2.

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/express-session
www.npmjs.com/package/express-session

334 APPENDIX C Connect’s officially supported middleware

hasn’t changed. Some session storage back ends require this, so you need to check
before enabling it. The last option, saveUninitialized, causes a session to be cre-
ated even if no values were saved. You can turn this off if you want to comply with laws
that require consent before saving cookies.

SETTING THE SESSION EXPIRATION DATE

Suppose you want sessions to expire in 24 hours, to send the session cookie only when
HTTPS is used, and to configure the cookie name. You can control how long the ses-
sion lasts by setting the expires or maxAge properties on the expression object:

const hour = 3600000
req.session.cookie.expires = new Date(Date.now() + hour * 24);
req.session.cookie.maxAge = hour * 24;

When using Connect, you’ll often set maxAge, specifying a number of milliseconds
from that point in time. This method of expressing future dates is often written more
intuitively, expanding to new Date(Date.now() + maxAge).

 Now that sessions are set up, let’s look at the methods and properties available
when working with session data.

WORKING WITH SESSION DATA

The express-session data management API is simple. The basic principle is that any
properties assigned to the req.session object are saved when the request is com-
plete; then they’re loaded on subsequent requests from the same user (browser). For
example, saving shopping cart information is as simple as assigning an object to the
cart property, as shown here:

req.session.cart = { items: [1,2,3] };

When you access req.session.cart on subsequent requests, the .items array will
be available. Because this is a regular JavaScript object, you can call methods on the
nested objects in subsequent requests, as in the following example, and they’ll be
saved as you expect:

req.session.cart.items.push(4);

One important thing to keep in mind is that this session object gets serialized as JSON
between requests, so the req.session object has the same restrictions as JSON:
cyclic properties aren’t allowed, function objects can’t be used, Date objects can’t
be serialized correctly, and so on. Keep those restrictions in mind when using the ses-
sion object.

 Connect will save session data for you automatically, but internally it’s calling the
Session#save([callback]) method, which is also available as a public API. Two
additional helpful methods are Session#destroy() and Session#regenerate(),
which are often used when authenticating a user to prevent session fixation attacks.
When you build applications with Express, you’ll use these methods for authentication.
 Now let’s move on to manipulating session cookies.

Licensed to Samir Mashlum <smashlum@gmail.com>

335Implementing core web application functions

MANIPULATING SESSION COOKIES

Connect allows you to provide global cookie settings for sessions, but it’s also possible
to manipulate a specific cookie via the Session#cookie object, which defaults to the
global settings.

 Before you start tweaking properties, let’s see how to extend the previous session
application to inspect the session cookie properties by writing each property into indi-
vidual <p> tags in the response HTML, as shown here:

...
res.write('<p>views: ' + sess.views + '</p>');
res.write('<p>expires in: ' + (sess.cookie.maxAge / 1000) + 's</p>');
res.write('<p>httpOnly: ' + sess.cookie.httpOnly + '</p>');
res.write('<p>path: ' + sess.cookie.path + '</p>');
res.write('<p>domain: ' + sess.cookie.domain + '</p>');
res.write('<p>secure: ' + sess.cookie.secure + '</p>');
...

Express-session allows all the cookie properties (such as expires, httpOnly,
secure, path, and domain) to be altered programmatically on a per-session basis.
For example, you could expire an active session in 5 seconds like this:

req.session.cookie.expires = new Date(Date.now() + 5000);

An alternative, more intuitive API for expiry is the .maxAge accessor, which allows you
to get and set the value in milliseconds relative to the current time. The following also
expires the session in 5 seconds:

req.session.cookie.maxAge = 5000;

The remaining properties, domain, path, and secure, limit the cookie scope, restrict-
ing it by domain, path, or to secure connections, whereas httpOnly prevents client-
side scripts from accessing the cookie data. These properties can be manipulated in
the same manner:

req.session.cookie.path = '/admin';
req.session.cookie.httpOnly = false;

So far you’ve been using the default memory store to store session data, so let’s take a
look at how to plug in alternative data stores.

SESSION STORES

In the previous examples, we’ve been using the built-in MemoryStore session storage.
It’s a simple, in-memory data store, which is ideal for running application tests
because no other dependencies are necessary. But during development and in pro-
duction, it’s best to have a persistent, scalable database backing your session data; oth-
erwise, you’ll keep losing your session when you restart the server.

 Just about any database can act as a session store, but low-latency key/value stores

work best for such volatile data. The Connect community has created several session

Licensed to Samir Mashlum <smashlum@gmail.com>

336 APPENDIX C Connect’s officially supported middleware

stores for databases, including CouchDB, MongoDB, Redis, Memcached, PostgreSQL,
and others.

 Here you’ll use Redis with the connect-redis module (https://www.npmjs.com/
package/connect-redis). Redis is a good backing store because it supports key expira-
tion, provides great performance, and is easy to install.

 Invoke redis-server to make sure you’ve got Redis installed:

$ redis-server
[11790] 16 Oct 16:11:54 * Server started, Redis version 2.0.4
[11790] 16 Oct 16:11:54 * DB loaded from disk: 0 seconds
[11790] 16 Oct 16:11:54 * The server is now ready to accept

➥ connections on port 6379
[11790] 16 Oct 16:11:55 - DB 0: 522 keys (0 volatile) in 1536 slots HT.

Next, you need to install connect-redis by adding it to your package.json file and run-
ning npm install, or by executing npm install --save connect-redis

directly.7 The connect-redis module exports a function that should be passed con-
nect, as shown in the following listing.

const connect = require('connect');
const session = require('express-session');
const RedisStore = require('connect-redis')(session);
const favicon = require('serve-favicon');
const options = {
 host: 'localhost'
};

connect()
 .use(favicon(__dirname + '/favicon.ico'))
 .use(session({
 store: new RedisStore(options),
 secret: 'keyboard cat',
 resave: false,
 saveUninitialized: true
 }))
 .use((req, res) => {
 req.session.views = req.session.views || 0;
 req.session.views++;
 res.end('Views: ' + req.session.views);
 })
 .listen(3000);

This example sets up a session store that uses Redis. Passing the connect reference to
connect-redis allows it to inherit from connect.session.Store.prototype.
This is important because in Node a single process may use multiple versions of a

Listing C.12 Using Redis as a session store

Passes the instance
of express-session
to RedisStore

Configures the session with the
recommended defaults and RedisStore

Changes session values
the usual way
7 We used version 2.2.0 when writing this book.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://www.npmjs.com/package/connect-redis
https://www.npmjs.com/package/connect-redis

337Handling web application security

module simultaneously; by passing your specific version of Connect, you can be sure
that connect-redis uses the proper copy.

 The instance of RedisStore is passed to session() as the store value, and any
options you want to use, such as a key prefix for your sessions, can be passed to the
RedisStore constructor. After both of these steps are done, you can access session
variables the same way as with MemoryStore. One small detail about this example is
that we included the favicon middleware component to prevent the session variable
from being incremented twice; otherwise, the views value will appear to be increased
by 2 on each request as the browser fetches the page and /favicon.ico.

 Whew! session was a lot to cover, but that finishes up all the core concept mid-
dleware. Next we’ll go over the built-in middleware that handles web application secu-
rity. This is an important subject for applications that need to secure their data.

C.3 Handling web application security
As we’ve stated many times, Node’s core API is intentionally low-level. This means it pro-
vides no built-in security or best practices when it comes to building web applications.
Fortunately, Connect middleware components implement these security practices.

 This section will teach you about three security-related modules that you can install
from npm:

 basic-auth—Provides HTTP Basic authentication for protecting data
 csurf—Implements protection against cross-site request forgery (CSRF) attacks
 errorhandler—Helps you debug during development

First, let’s see how to set up an application that uses basic-auth to provide HTTP Basic
authentication.

C.3.1 basic-auth: HTTP Basic authentication

In chapter 4, you created a crude Basic authentication middleware component. Well,
it turns out that several Connect modules can do this for you. As previously men-
tioned, Basic authentication is a simple HTTP authentication mechanism, and it
should be used with caution because user credentials can be trivial for an attacker to
intercept unless Basic authentication is served over HTTPS. That being said, it can be
useful for adding quick and dirty authentication to a small or personal application.

 When your application has the basic-
auth module in use, web browsers will
prompt for credentials the first time the
user attempts to connect to your appli-
cation, as shown in figure C.4.

Figure C.4 Basic authentication prompt

Licensed to Samir Mashlum <smashlum@gmail.com>

en
ct
338 APPENDIX C Connect’s officially supported middleware

BASIC USAGE

The basic-auth module (www.npmjs.com/package/basic-auth) allows you to get the
credentials from the HTTP Authorization header field. The following listing shows
how to use it with your own password verification function.

const auth = require('basic-auth');
const connect = require('connect');

function passwordValid(credentials) {
 return credentials
 && credentials.name === 'tj'
 && credentials.pass === 'tobi';
}

connect()
 .use((req, res, next) => {
 const credentials = auth(req);

 if (passwordValid(credentials)) {
 next();
 } else {
 res.writeHead(401, {
 'WWW-Authenticate': 'Basic realm="example"'
 });
 res.end();
 }
 })
 .use((req, res) => {
 res.end('This is the secret area\n');
 })
 .listen(3000);

The basic-auth module provides only the Authorization header field parsing part
of the authentication process. You have to check the password yourself by calling it in
a middleware component and then the basic-auth module sends back the right head-
ers when authentication fails. This example calls next() when authentication has
succeeded so execution will continue to the protected parts of the application.

AN EXAMPLE WITH CURL

Now try issuing an HTTP request to the server with curl, and you’ll see that you’re
unauthorized:

$ curl http://localhost:3000 -i
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Basic realm="Authorization Required"
Connection: keep-alive
Transfer-Encoding: chunked

Listing C.13 Using the basic-auth module

Checks the password is valid
using a hardcoded username

Gets the parsed
credentials

Sends back the WWW-
Authenticate header wh
the password is incorre

Otherwise, next() will cause
execution to continue to
the “secret area”
Unauthorized

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/basic-auth

339Handling web application security

Issuing the same request with HTTP Basic authorization credentials (notice the begin-
ning of the URL) will provide access:

$ curl --user tj:tobi http://localhost:3000 -i
HTTP/1.1 200 OK
Date: Sun, 16 Oct 2011 22:42:06 GMT
Cache-Control: public, max-age=0
Last-Modified: Sun, 16 Oct 2011 22:41:02 GMT
ETag: "13-1318804862000"
Content-Type: text/plain; charset=UTF-8
Accept-Ranges: bytes
Content-Length: 13
Connection: keep-alive
I'm a secret

Continuing on with the security theme of this section, let’s look at the csurf module,
which is designed to help protect against cross-site request forgery attacks.

C.3.2 csurf: cross-site request forgery protection

Cross-site request forgery (CSRF) is a form of attack that exploits the trust that a web
browser has in a site. The attack works by having an authenticated user on your appli-
cation visit a different site that an attacker has either created or compromised, and
then making requests on the user’s behalf without them knowing about it.

 It’s easier to understand this process with an example. Suppose that in your appli-
cation the request DELETE /account will trigger a user’s account to be destroyed
(though only while the user is logged in). Now suppose that user visits a forum that hap-
pens to be vulnerable to CSRF. An attacker could post a script that issues the DELETE /
account request, thus destroying the user’s account. This is a bad situation for your
application to be in, and the csurf module can help protect against such an attack.

 The csurf module (https://www.npmjs.com/package/csurf) works by generating a
24-character unique ID, the authenticity token, and assigning it to the user’s session as
req.session._csrf. This token can then be included as a hidden form input
named _csrf, and the CSRF component can validate the token on submission. This
process is repeated for each interaction.

BASIC USAGE

To ensure that csurf can access req.body._csrf (the hidden input value) and
req.session._csrf, you need to make sure that you add the module’s middleware
function below body-parser and express-session, as shown in the following listing.8

const bodyParser = require('body-parser');
const connect = require('connect');
const csurf = require('csurf');

Listing C.14 CSRF protection
8 We tested this example with csurf 1.6.6.

Licensed to Samir Mashlum <smashlum@gmail.com>

https://www.npmjs.com/package/csurf

340 APPENDIX C Connect’s officially supported middleware

const session = require('express-session');
const sesionOptions = {
 resave: false,
 saveUninitialized: false,
 secret: '1234'
};

connect()
 .use(bodyParser.urlencoded({ extended: false }))
 .use(session(sesionOptions))
 .use(csurf())
 .use((req, res, next) => {
 if ('/' != req.url) return next();

 const token = req.csrfToken();
 const html = `
 <form method="post" action="/save">
 <input type="text" name="_csrf" value="${token}">
 <button type="submit">Submit</button>
 </form>`;

 res.setHeader('Content-Type', 'text/html');
 res.end(html);
 })
 .use((req, res) => {
 const html = `
 <p>Body: ${req.body._csrf}</p>
 <p>Session secret: ${req.session.csrfSecret}</p>
 `;
 res.end(html);
 })
 .use((err, req, res, next) => {
 console.error(err);
 res.end('Did you get the csrf token wrong?');
 })
 .listen(3000);

To use csurf, you have to first load the body-parser and session middleware compo-
nents. This example then shows a form, which includes a text field with the current
CSRF token. This token will cause all requests of certain method types to be checked
based on the secret in the session. You can get the current token with req.csrf-
Token, which is a method added by csurf. Posts with invalid tokens will automatically
be flagged by csurf, so we’ve included a “token successful” handler and an error han-
dler. This example uses a text field so you can see what happens if you change it.

 This example shows that csurf automatically kicks in for certain kinds of requests.
This is defined by the ignoreMethods option that you can pass to csurf. By default,
HTTP GET, HEAD, and OPTIONS are ignored, but you could add others if required.

 Another aspect of web development is ensuring that verbose logs and detailed

Loads the csurf
middleware component

after the body parser
and session handler

Shows a form for the / route

Gets the current CSRF
token by using this
method added by csurf

This function will run after a
POST with the right token

This is an error handler for
when the token is incorrect
error reporting are available both in production and development environments.
Let’s look at the errorhandler module, which is designed to do exactly that.

Licensed to Samir Mashlum <smashlum@gmail.com>

341Handling web application security

C.3.3 errorhandler: displaying errors during development

The errorhandler module (www.npmjs.com/package/errorhandler) is ideal for devel-
opment, providing verbose HTML, JSON, and plain-text error responses based on the
Accept header field. It’s meant for use during development and shouldn’t be part of
the production configuration.

BASIC USAGE

Typically, this component should be the last used so it can catch all errors:

connect()
 .use((req, res, next) => {
 setTimeout(function () {
 next(new Error('something broke!'));
 }, 500);
 })
 .use(errorhandler());

RECEIVING AN HTML ERROR RESPONSE

If you view any page in your browser with the setup shown here, you’ll see a Connect
error page like the one shown in figure C.5, displaying the error message, the
response status, and the entire stack trace.

RECEIVING A PLAIN-TEXT ERROR RESPONSE

Now suppose you’re testing an API built with Connect. It’s far from ideal to respond
with a large chunk of HTML, so by default errorHandler() will respond with text/
plain, which is ideal for command-line HTTP clients such as curl(1). This is illus-
trated in the following stdout:

Figure C.5
The default errorhandler
HTML as displayed in a
web browser
$ curl localhost:3000 -H "Accept: text/plain"
Error: something broke!

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/errorhandler

342 APPENDIX C Connect’s officially supported middleware

 at Object.handle (/Users/tj/Projects/node-in-action/source
 ➥ /connect-middleware-errorHandler.js:12:10)
 at next (/Users/tj/Projects/connect/lib/proto.js:179:15)
 at Object.logger [as handle] (/Users/tj/Projects/connect
 ➥ /lib/middleware/logger.js:155:5)
 at next (/Users/tj/Projects/connect/lib/proto.js:179:15)
 at Function.handle (/Users/tj/Projects/connect/lib/proto.js:192:3)
 at Server.app (/Users/tj/Projects/connect/lib/connect.js:53:31)
 at Server.emit (events.js:67:17)
 at HTTPParser.onIncoming (http.js:1134:12)
 at HTTPParser.onHeadersComplete (http.js:108:31)
 at Socket.ondata (http.js:1029:22)

RECEIVING A JSON ERROR RESPONSE

If you send an HTTP request that has the Accept: application/json HTTP header,
you’ll get the following JSON response:

$ curl http://localhost:3000 -H "Accept: application/json"
{"error":{"stack":"Error: something broke!\n
 ➥ at Object.handle (/Users/tj/Projects/node-in-action
 ➥ /source/connect-middleware-errorHandler.js:12:10)\n
 ➥ at next (/Users/tj/Projects/connect/lib/proto.js:179:15)\n
 ➥ at Object.logger [as handle] (/Users/tj/Projects
 ➥ /connect/lib/middleware/logger.js:155:5)\n
 ➥ at next (/Users/tj/Projects/connect/lib/proto.js:179:15)\n
 ➥ at Function.handle (/Users/tj/Projects/connect/lib/

proto.js:192:3)\n
 ➥ at Server.app (/Users/tj/Projects/connect/lib/connect.js:53:31)\n
 ➥ at Server.emit (events.js:67:17)\n
 ➥ at HTTPParser.onIncoming (http.js:1134:12)\n
 ➥ at HTTPParser.onHeadersComplete (http.js:108:31)\n
 ➥ at Socket.ondata (http.js:1029:22)","message":"something broke!"}}

We’ve added additional formatting to the JSON response, so it’s easier to read on the
page, but when Connect sends the JSON response, it gets compacted nicely by
JSON.stringify().

 Are you feeling like a Connect security guru now? Maybe not yet, but you should
have enough of the basics down to make your applications secure. Now let’s move on
to a common web application function: serving static files.

C.4 Serving static files
Serving static files is another requirement common to many web applications that’s
not provided by Node’s core. Fortunately, with some simple modules, Connect has
you covered here as well.

 In this section, you’ll learn about two more of Connect’s officially supported mod-
ules—this time focusing on serving files from the filesystem. These types of features
are provided by HTTP servers such as Apache and Nginx, but with a little bit of config-
uration you can add them to your Connect projects:
 serve-static —Serves files from the filesystem from a given root directory
 serve-index —Serves pretty directory listings when a directory is requested

Licensed to Samir Mashlum <smashlum@gmail.com>

343Serving static files

First we’ll show you how to serve static files with a single line of code by using the
server-static module.

C.4.1 serve-static: automatically serving files to the browser

The serve-static module (www.npmjs.com/package/serve-static) implements a high-
performance, flexible, feature-rich static file server supporting HTTP cache mecha-
nisms, Range requests, and more. It also includes security checks for malicious paths,
disallows access to hidden files (beginning with a period) by default, and rejects poison
null bytes. In essence, serve-static is a secure and compliant static file-serving middle-
ware component, ensuring compatibility with the various HTTP clients out there.

BASIC USAGE

Suppose your application follows the typical scenario of serving static assets from a
directory named ./public. This can be achieved with a single line of code:

app.use(serveStatic('public'));

With this configuration, serve-static will check for regular files that exist in ./public/
based on the request URL. If a file exists, the response’s Content-Type field value
will be defaulted based on the file’s extension, and the data will be transferred. If the
requested path doesn’t represent a file, the next() callback will be invoked, allowing
subsequent middleware (if any) to handle the request.

 To test it out, create a file named ./public/foo.js with console.log('tobi'),
and issue a request to the server by using curl(1) with the -i flag, telling it to print
the HTTP headers. You’ll see that the HTTP cache-related header fields are set appro-
priately, the Content-Type reflects the .js extension, and the content is transferred:

$ curl http://localhost/foo.js -i
HTTP/1.1 200 OK
Date: Thu, 06 Oct 2011 03:06:33 GMT
Cache-Control: public, max-age=0
Last-Modified: Thu, 06 Oct 2011 03:05:51 GMT
ETag: "21-1317870351000"
Content-Type: application/javascript
Accept-Ranges: bytes
Content-Length: 21
Connection: keep-alive
console.log('tobi');

Because the request path is used as is, files nested within directories are served as you’d
expect. For example, you might have a GET /javascripts/jquery.js request and
a GET /stylesheets/app.css request on your server, which would serve the files
./public/javascripts/jquery.js and ./public/stylesheets/app.css, respectively.

USING SERVE-STATIC WITH MOUNTING

Sometimes applications prefix pathnames with /public, /assets, /static, and so on.

With the mounting concept that Connect implements, serving static files from multi-
ple directories is simple. Just mount the app at the location you want. As mentioned in

Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/serve-static

344 APPENDIX C Connect’s officially supported middleware

chapter 5, the middleware itself has no knowledge that it’s mounted, because the pre-
fix is removed.

 For example, a request to GET /app/files/js/jquery.js with serve-static
mounted at /app/files will appear to the middleware as GET /js/jquery. This works
out well for the prefixing functionality because /app/files won’t be part of the file res-
olution:

app.use('/app/files', connect.static('public'));

The original request of GET /foo.js won’t work anymore, because the middleware
isn’t invoked unless the mount point is present, but the prefixed version GET /app/
files/foo.js will transfer the file:

$ curl http://localhost/foo.js
Cannot get /foo.js
$ curl http://localhost/app/files/foo.js
console.log('tobi');

ABSOLUTE VS. RELATIVE DIRECTORY PATHS

Keep in mind that the path passed to serve-static is relative to the current working
directory. Passing in "public" as your path will essentially resolve to pro-
cess.cwd() + "public".

 Sometimes, though, you may want to use absolute paths when specifying the base
directory, and the __dirname variable helps with that:

app.use('/app/files', connect.static(__dirname + '/public'));

SERVING INDEX.HTML WHEN A DIRECTORY IS REQUESTED

Another useful feature of serve-static is its ability to serve index.html files. When a
request for a directory is made and an index.html file lives in that directory, it will be
served.

 Serving static files is useful for web application assets, such as CSS, JavaScript, and
images. But what if you want to allow people to download a list of arbitrary files from a
list of directories? That’s where serve-index comes in.

C.4.2 serve-index: generating directory listings

The serve-index module (www.npmjs.com/package/serve-index) is a small directory-
listing component that provides a way for users to browse remote files. Figure C.6 illus-
trates the interface provided by this component, complete with a search input field,
file icons, and clickable breadcrumbs.
Licensed to Samir Mashlum <smashlum@gmail.com>

www.npmjs.com/package/serve-index

345Serving static files

BASIC USAGE

This component is designed to work with serve-static, which will perform the file serv-
ing; serve-index simply serves the listings. The setup can be as simple as the following
snippet, where the request GET / serves the ./public directory:

const connect = require('connect');
const serveStatic = require('serve-static');
const serveIndex = require('serve-index');

connect()
 .use(serveIndex('public'))
 .use(serveStatic('public'))
 .listen(3000);

USING DIRECTORY() WITH MOUNTING

Through the use of middleware mounting, you can prefix both the server-static and
serve-index modules to any path you like, such as GET /files in the following exam-
ple. Here the icons option is used to enable icons, and hidden is enabled for both
components to allow the viewing and serving of hidden files:

connect()
 .use('/files', serveIndex('public', { icons: true, hidden: true }))
 .use('/files', serveStatic('public', { hidden: true }))
 .listen(3000);

Figure C.6 Serving directory listings with Connect’s directory()
middleware component
It’s now possible to navigate through files and directories with ease.

Licensed to Samir Mashlum <smashlum@gmail.com>

346 APPENDIX C Connect’s officially supported middleware

Licensed to Samir Mashlum <smashlum@gmail.com>

Glossary

Chapter 1
abstract interface A programmatic description of an API that doesn’t include an implemen-

tation. In Node.js, a good example is the Streams API.

arrow function A function written in a shorthand syntax. Instead of writing function ()
{}, write () => {} when passing functions as arguments to other functions. If the func-
tion accepts only one argument, the parentheses can be omitted.

asynchronous Describes code that doesn’t necessarily run in the order in which it appears.
In Node.js, this term is used to distinguish APIs that accept callbacks that will be run at a
point in the future. For example, fs.readFile accepts a callback that receives the file’s
contents after it has been read.

core modules The libraries that are built into Node.

destructuring ECMAScript 2015 introduced destructuring, which allows objects and arrays
to be broken into variables and constants. For example, const { name } = { name:
'Alex' } creates a constant called name with the value alex.

ECMAScript standard ECMAScript is a scripting language specification standardized by
Ecma International. There are several ECMAScript standards; this book focuses on
ECMAScript 2015 (ECMAScript 6th Edition). JavaScript implementers use the ECMAScript
standard to make sure their interpreter is compatible with JavaScript written for other
implementations.

event A string that causes a function to be called. The function is known as an object lis-
tener. An emitter sends the named event. The basic class for creating emitters in Node
is EventEmitter.

event loop Node’s event loop waits for external events and converts them into callback
invocations. Other systems use similar things—message dispatchers and run loops—to
quickly route events to the corresponding event handler.

JSON (JavaScript Object Notation) JSON is a lightweight data-interchange format, intended
to be easy to read and write, and based on a subset of JavaScript.
347

libuv A multiplatform library for asynchronous I/O. It’s used in Node, but also other librar-
ies and languages such as Julia.

Licensed to Samir Mashlum <smashlum@gmail.com>

348 GLOSSARY

nonblocking I/O Blocking operations halt execution until the operation completes. Node
uses nonblocking I/O, which means reads from a network or file resource won’t block execu-
tion.

npm Node’s package manager. It allows you to install Node packages from a large central
repository and to manage dependencies in Node projects.

Promise The Promise object is a standardized ECMAScript 2015 API for representing values
that may be available now, in the future, or never.

REPL (read-eval-print loop) A command-line interface enabling you to evaluate code and see
the results.

rest parameters The rest parameter syntax in ECMAScript 2015 allows an unknown number of
arguments in a function to be represented as an array. To name two arguments but put the
rest in an array, use function (a, b, ...rest). It can also be used with destructuring to
copy objects: const newObject = { ...oldObject }.

semantic versioning A convention for specifying library compatibility using three numbers:
major, minor, and patch, written as 1.0.2 (major: 1, minor: 0, patch: 2). An application that
depends on version 1.0.2 should be compatible with 1.1.1, but not 2.0.0.

Chapter 2
callback A function that has been passed to a function and may run later.

closure JavaScript functions capture the variables defined in their enclosing scope. If you
define function B inside function A, B will have access to all of A’s values.

CommonJS module specification A module format for defining which values should be
exported from the current JavaScript file. See module.

content management system (CMS) Web application used to edit text and images that will be
displayed on a public-facing website.

flow control (or control flow) The order in which statements will be executed. Because Node
is asynchronous, control flow is of interest, as JavaScript offers many ways of dealing with
control flow, including callbacks, promises, generators, basic looping primitives, and itera-
tors. In Node, flow control refers to the way we group sequences of asynchronous tasks.

global scope Scope means the parts of the program that can access a value, so global scope means
a value is accessible everywhere within a program.

module Node modules are single files that contain JavaScript. Values (typically, functions and
constants) can be exported so they can be used in other files.

nested callback A callback within a callback; when a callback has been passed to a function,
it’s sometimes necessary to define another callback inside the first callback.

package.json A file that defines a Node project’s name, author, license, and dependencies.
Every Node program and library you create should have a package.json file.

property JavaScript objects are collections of keys and values, and keys and values are known
as the object’s properties.

stack trace A list of program instructions that had executed up to the point when an error

occurred.

state The value of all the variables in a program at a given time.

Licensed to Samir Mashlum <smashlum@gmail.com>

349 GLOSSARY

Chapter 3
boilerplate Code that’s frequently duplicated and that could be automated.

client-side bundle Preprocessed JavaScript code from several source files that’s usually mini-
fied and compressed, and then served to clients.

cURL A command-line tool and programmer library for making HTTP requests. It’s often used
as a debugging tool for quickly checking how web servers respond to requests.

database model A programmer-friendly data model that makes it easier to interact with data-
base tables or documents than using the database’s native language.

form encoding When an HTTP POST is made to a web server, including a simple form POST,
the form’s contents are encoded into the request body. The most common format, appli-
cation/x-www-form-urlencoded, is similar to URL encoding, which replaces unsafe
ASCII characters with percent signs.

MIME (Multipurpose Internet Mail Extensions) An internet standard for adding nontextual
data to emails and multipart message bodies. This allows email clients to show HTML,
images, and text in non-ASCII character sets.

object-relational mapping (ORM) A library that maps between programmer-friendly data struc-
tures (for example, JavaScript objects) and database data structures (for example, tables and
foreign keys).

REST (Representational State Transfer), RESTful API Stateless web API using a set of pre-
defined operations in HTTP. The operations are based on HTTP verbs; the most common are
GET, POST, PUT, and DELETE.

route The URL fragment and HTTP verb that a given route handler should process.

route handler A user-defined callback that runs when an HTTP request is made to a web appli-
cation. The route handler usually generates content, perhaps from a database, or modifies a
database, and then generates the response by using a template or format such as JSON.

static asset A file that’s served by a web server without any additional processing. Typically,
images, CSS files, and client-side JavaScript files are static assets.

template Plain-text format that can include embedded data or JavaScript code and be used to
generate HTML to streamline HTML’s syntax.

Chapter 4
build system A set of tools and configuration files for generating JavaScript that will run effi-

ciently in a browser.

linter A program that checks the correctness of a source file’s format. Linters can be used to
enforce a given programming style on a project by checking against a set of linting rules.

method chain Running a method on the return value of a previously called method.

pipe Connecting a data output to an input. In UNIX, processes are pipelined by using the ver-
tical bar character (|); in Node, streams are connected by using method chaining.

source map A file that allows browser debuggers to map from a line in a transpiled source file
to the original code.

stream An efficient data input and/or output channel that may be text or binary data. Node

supports readable, writable, and other stream types, and these streams can be linked
together by using pipes.

Licensed to Samir Mashlum <smashlum@gmail.com>

350 GLOSSARY

test runner A program that runs and collates the results of unit tests found in one or more
files.

transpile Also known as source-to-source compilers, JavaScript transpilers convert one type of
ECMAScript to another. The most common use is to convert modern ES2015 to backward-
compatible ECMAScript 5, which can run in more browsers. Another example is TypeScript,
which is a superset of JavaScript that gets transpiled into ES5 or ES2015.

webpack loader Transforms or transpiles source code.

webpack plugin Changes the behavior of the build process itself, rather than the output files.

Chapter 5
database adapter Some database libraries are written in a generic fashion and can be

extended with specific adapters that implement functionality for the desired database.

decoupled If a function, class, or module can easily be changed in a project, or reused in
another project, then it is loosely coupled.

full-stack framework A framework that includes features for working with both client-side and
server-side code. That usually means it has libraries for dealing with HTTP requests, request
routing, database modeling, and communication with code running in a browser.

GET parameters URL parameters that appear after a question mark and are separated by
ampersands.

HTTP verb The HTTP method (GET, POST, PUT, PATCH, DELETE) representing the action that
should be performed on a remote resource.

isomorphic JavaScript applications that run both client-side and server-side by sharing the
same code.

middleware Functions that can be called in sequence to modify an HTTP request and
response.

Model-View-Controller (MVC) Design pattern for separating software into components; the
model manages data and logic, the view transforms the data into a user interface, and the
controller converts interactions into operations for the model or view.

relational database A database structure based around relations between the stored entities.

single-page web app An application that’s served to the browser once and doesn’t require a
full-page reload. If the application needs to change the URL in the browser for any reason,
the HTML5 History API is used to give the impression that the URL has changed and the
browser has loaded a new page from the server.

web framework A set of libraries for developing a web application with support for extensibil-
ity through plugins or middleware.

Chapter 6
bcrypt A password-hashing function. This function maps arbitrary amounts of data to a string

of fixed size that can be stored safely in a database, so the user’s plain-text password isn’t
stored.

content negotiation Part of the HTTP standard that deals with serving different versions of a

document at the same URI. User agents (browsers) can request a different data format if the
server supports it.

Licensed to Samir Mashlum <smashlum@gmail.com>

351 GLOSSARY

CSS preprocessor Programs that convert supersets of CSS to CSS that a browser can interpret.
The Sass and LESS stylesheet languages both include CSS preprocessors, and these languages
add features such as variables, nesting, and mixins.

password salt Random data used in addition to the input of a hash function, making diction-
ary attacks harder.

Redis database An in-memory database that’s also used as a cache and message broker. It’s
useful for storing user sessions and dealing with push messages in web applications.

Redis hash A map from a string field and a value, used to represent objects in a Redis data-
base.

response object An object that determines how your server will respond to a given HTTP

request. It includes the response body, which is usually a web page, and the headers.

single-threaded A running program (process) can be made up of threads that execute concur-
rently. JavaScript’s model is to use a single thread, but allow the thread to switch context and
run different code when events happen. The events in a browser are interactions such as the
user clicking a button; in Node, they’re typically I/O events, such as network operations or
data being read from a disk.

template language Lightweight markup languages that are converted to HTML and add fea-
tures that make it easier to inject values from code, and iterate over arrays or objects.

third-party middleware Middleware components that aren’t distributed by the authors of the
original web library or framework.

Chapter 7
lexical scope The visibility of a variable is determined by its scope. In JavaScript, adding a

function adds a new level of scope. Any variables defined in that function are visible by any
functions defined within that function.

mixin This usually means a class that contains methods for use in other classes. In Sass, mixins
are groups of CSS declarations that can be reused in multiple places; in Pug, mixins are used
to define reusable template fragments.

partial Small, reusable template.

section lambda A lambda is an anonymous function, so a section lambda in Hogan is a way of
associating a function with a tag in a template.

significant whitespace In JavaScript, curly brackets, semicolons, and newlines are used to sepa-
rate statements. If a new lexical block is required, a function or control statement is used. In
languages with significant whitespace, such as Pug, lines of code are grouped together by the
number of spaces used to indent each line.

XSS (cross-site scripting) attack If a web application accepts user input from forms or URL

parameters, and those values are redisplayed in templates, then it may be possible to inject
malicious code. Values must be escaped first to be safe from this type of attack.

Chapter 8
ACID (atomicity, consistency, isolation, durability) For a database to be ACID-compliant, it
must support operations that are atomic (the operation succeeds, or the operation fails and
the database is left unchanged), consistent (the data changes only in the allowed ways),

Licensed to Samir Mashlum <smashlum@gmail.com>

352 GLOSSARY

isolated (ensuring concurrent execution), and durable (after a change has been made, it
will remain, even if the system crashes or is rebooted).

BSON A binary format used by MongoDB for representing objects. Objects consist of an
ordered set of elements; the elements are made up of a field name, a type, and a value. The
types supported by BSON include string, integer, date, and JavaScript code.

daemon A program that runs in the background, usually starting automatically when the sys-
tem boots.

database schema A formal definition of the data and relationships between items in a data-
base. It’s the design of the database.

database transaction One or more database operations that are grouped together and run
according to the ACID properties.

distributed database A database stored on multiple computers, potentially but not necessarily
in different geographical locations.

leaky abstraction An attempt to hide complexity that exposes too many details and issues of
the underlying implementation.

document-oriented database A database that stores semistructured data without a predefined
schema, sometimes in JSON or XML. Examples include MongoDB and CouchDB.

memoize An optimization technique that stores the result of a function so it doesn’t have to
be called again.

NoSQL A database that doesn’t use tabular relations as found in relational databases.

primary key A column in a database table that’s used to uniquely identify each row.

publish-subscribe A pattern in which messages can be sent to multiple receivers.

query builder An API that’s more convenient for programmers than writing SQL queries by
hand.

relational algebra Used as the theoretical basis for relational databases to model the stored
data and queries that can be performed on it.

replica set A group of MongoDB processes that maintain the same dataset.

web worker A way of allowing JavaScript to run on background threads in browsers.

Chapter 9
assert, assertion Ensure that an expression matches an expectation. This can be a simple Bool-

ean statement, equality, or practically anything else. In Node, assertions throw exceptions
when they fail. A test runner can catch and collate these exceptions to produce test reports.

BDD (behavior-driven development) An extension of TDD that uses a different API style to
encourage a focus on where in the process the test occurs, what to test and what not to test,
and how much to test in one go. It also tries to improve understanding of test failures, and
the naming of test units.

functional testing Testing a slice of functionality through the whole system. In web develop-
ment, that means full-stack testing: the browser and server are tested at the same time.

mocks Objects or values that behave like real counterparts, but are usually a simple veneer

that provides just enough behavior to allow a test to run. Rather than accessing real files or

Licensed to Samir Mashlum <smashlum@gmail.com>

353 GLOSSARY

networks in tests, which could be slow or dangerous if destructive operations occur, mocks
can be used to safely simulate their behavior.

test-driven development (TDD) Writing tests before the code under test.

test runner A program that manages loading tests, running them, and then collecting the
results so they can be displayed. Mocha is a test runner.

typeof A JavaScript operator that returns a string for a given object or value.

unit testing Small parts of a module, such as functions or methods of a class, are tested in iso-
lation against assertions in small test cases (units).

Chapter 10
Amazon EC2 (Amazon Elastic Compute Cloud) Amazon’s virtual computer service.

container A type of virtualization, containers are isolated user-space instances of an operating
system, running on top of a host operating system. Containers offer additional control over
resource usage and security benefits, and they can be quickly started up and destroyed.

Content delivery network (CDN) Distributed servers that deliver static content.

Docker image An image of the filesystem that Docker will use to create a container.

dyno Heroku’s term for a container; this is used to run both servers and arbitrary commands
in an isolated environment on Heroku’s servers.

Elastic Beanstalk An orchestration service run by Amazon for scripting deployments to Ama-
zon’s other services, such as EC2.

log rotation A command that runs periodically and renames log files based on the date, and
then optionally compresses them to use less storage space.

SSH (Secure Shell) Provides an encrypted command-line (or X11) interface to a remote com-
puter for running commands. It can form the workflow of a web developer when initially con-
figuring a new server, or connecting to servers to run maintenance or debugging commands.

sudo A program for running programs with other user privileges. It’s usually used to run com-
mands that need special privileges, such as editing system configuration files.

Chapter 11
arguments Program arguments are the flags provided on the command line that enable or dis-

able certain features.

exit status Value returned by a program when it completes. Nonzero values indicate an error.

interprocess communication The methods an operating system provides to allow running pro-
grams to communicate. An example is pipes, which use the output of one program as the
input of another, but even files can be considered a form of interprocess communication.

Open Group A consortium that publishes the Single UNIX Specification, a family of standards
that qualifies producers of operating systems to use the UNIX trademark.

shell Command-line user interface enabling commands to be entered and the results viewed.
It’s called a shell because it’s a layer around the operating system.

redirection Capturing the output from a program and sending it as input to another program

or file.

Licensed to Samir Mashlum <smashlum@gmail.com>

354 GLOSSARY

stderr The error stream for outputting error messages from a running program.

stdin The input stream for a running program.

stdout The output stream for messages printed by a program.

Chapter 12
Chromium An open source browser from which Google’s Chrome browser derives its code.

Electron main process A Node process that manages the Electron app and access to files and
the network.

Electron render process The Chromium web view.

JSX React applications use a mix of HTML fragments alongside JavaScript. This is prepro-
cessed into pure JavaScript before it runs in a browser. This language is called JSX.

native A program or library that’s written using the operating system’s built-in APIs.

React A library by Facebook for building data-driven web and mobile user interfaces.

Appendix A
constructor A function that creates and initializes a JavaScript object.

CSV (comma-separated values) A text format for tabular data that’s typically used with data-
bases or spreadsheet programs. The values are split into columns by using commas, and rows
by using new lines.

DOM (Document Object Model) The standards that define the API for JavaScript working with
HTML. The DOM is a language-independent interface working with HTML.

microformats A way of including structured data in HTML that’s readable by both humans
and software. Because HTML doesn’t always represent structured data clearly, microformats
can be used to embed data such as addresses, geographical locations, and calendar entries in
HTML without any special tags.

regular expression An expression that matches patterns in a string.

robots.txt A standard used by websites to tell web crawlers and scrapers what content can be
scanned or excluded from scraping.

vertical search engine Search engine that focuses on a niche.

web scraping Converting HTML into structured data that can be stored in files or a database.

XPath A query language for selecting nodes from an XML document.
Licensed to Samir Mashlum <smashlum@gmail.com>

index
Symbols

- prefix 175
-- (double hyphen) 268
!= prefix 175
' (backtick) symbol 8
{} (curly brackets) 8
@ symbol 322
&& operator 276
= prefix 175
=== operator 228
|| operator 276

Numerics

404 Not Found code 152
500 status code 115

A

absolute directory path 344
abstract interface 347
Accept-Encoding header 323
acceptance testing 225
ACID (atomicity, consistency, isolation,

durability) 351
ACID guarantees 191–192

atomicity 191
consistency 192
durability 192
isolation 192

addListener function 34
addPercentageToEach function 238

Amazon EC2 (Amazon Elastic Compute
Cloud) 353

Amazon S3 258
App class 287
app.configure() method 122
app.get() method 122
app.post route handler 60
app.render() method 123
app.set() method 122
app.use() method 149, 151
append command 204
application data, storing 182–223

distributed databases, MongoDB 194–201
embedded databases, LevelDB 210–216
expense of serialization and

deserialization 216–217
hosted storage 222–223
in-browser storage 217–222

localForage API 220–221
localStorage and sessionStorage APIs

217–218
reading and writing 221–222
reading and writing values 218–220

key/value stores, Redis 202–210
relational databases 182–183

ACID guarantees 191–192
Knex 186–190
NoSQL 192–193
PostgreSQL 183, 186–191

selecting database type 223
applications

building with webpack 75–80
bundles and plugins 76
355

after function 230
afterEach function 230

CommonJS 79–80
configuring and running 76–77

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX356

applications (continued)
development server 77–78
npm packages 80

comparing other platforms to Node 53
database 57–61

making articles readable and saving them for
later 60–61

making model API 58–60
dependency 52
deploying 255–257

from Git repository 255
keeping Node running 256–257

hosting 250–255
containers 254–255
platform as service 251–252
servers 253

npm scripts 53
RESTful web service 54–57
server start command 52–53
starting new 52–53
structure of 51–54
user interface 61–64

multiple format support 61–62
npm for client-side dependencies 63–64
templates 62–63

argument conventions 269
arguments 353
ArrayBuffers 221
arrow functions 8, 347
Article class 58, 61
Article.create method 60
articles 183
articles.sqlite file 189
asar option 295
assert interface 237
assert module 226–229

adding logic to run tests 229
deepEqual assertion 228
equal assertion 227
example using 226–227
notDeepEqual assertion 228
notEqual assertion 228
notStrictEqual assertion 228
ok assertion 228
strictEqual assertion 228
testing that thrown errors are correct 229

assert, assertion 352
Async 42
asyncFunction 40
asynchronous programming

challenges with 39–40
one-off events with callbacks 29–32

creating event emitters 34–37
example of 33
extending event emitters 37–39
responding to events that should occur

once 34
sequencing asynchronous logic 40–42
serial flow control

implementing 43–45
when to use 42–43

atomicity, consistency, isolation, durability. See
ACID

attr() method 306
autoincrement 190
automating deployment 256
automation, using Gulp 71–75

adding to projects 72
creating and running tasks 72–74
using separate files for larger projects 74–75
watching filesystem for changes 74

B

babel property 69
backtick symbol 8
basic-auth security module 337–339

basic usage 338
example with curl 338–339

bcrypt 135, 350
bcrypt.hash() function 137
BDD (behavior-driven development) 225, 352
before function 230
beforeEach function 230
bitcount command 206
bitfield command 206
bitop command 206
bitpos command 206
Blobs 221
block expansion, Pug 174
block prepending/appending, Pug 179
blogPage function 162–163
blpop command 208
body-parser 317–322

forms 318–319
JSON data 320–321
limit option 320
multipart data 321–322
validating requests 319–320

bodyParser() method 144, 320, 330
boilerplate 349
break state 14
brew install node command 300
parallel flow control, implementing 45–47
repeating events with event emitters 33–39

broadcast event 35
browser-based tests 242

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX 357

brpop command 208
BSON 352
buffer logger option 327
build system 349

C

cache value 165
callbacks 29–32, 348
case statements, Pug 177
cb (callback function) 228
CDN (content delivery network) 222, 258, 307,

353
Chai 237–238
channel event emitter 34
character escaping, Embedded JavaScript 165
cheerio, scraping with 303–306
cheerio.load() method 304
Chocolatey package, Redis 128
Chromium 285, 354
.clear() method 233
client value 165
client-side bundle 349
close event 35
close value 165
closures 40, 348
cluster API 260–262
CMS (content management system) 21, 81, 348
collections 194
color variable 40
comma-separated values. See CSV
command-line applications 267–278

command-line arguments 269–272
parsing 269–270
reading files from stdin 271–272
validating 270–271

conventions and philosophy of 268
example of 269
interpreting real-world scripts 277–278
pipes 272–277

command execution order and 276–277
errors and exit codes 273–275
piping data 273
using in Node 275–276

sharing via npm 272
command-line arguments 269–272

parsing 269–270
reading files from stdin 271–272
validating 270–271

command-line tools and daemons 16–17
CommonJS

loading modules and assets 79–80

CommonJS shims 79
compileDebug value 165
completed counter 229
compression middleware component 323–324

basic usage 323–324
custom filter function 324
specifying compression and memory levels

324
compression options 323
Connect middleware 109–116, 312–345

body-parser 317–322
forms 318–319
JSON data 320–321
limit option 320
multipart data 321–322
validating requests 319–320

combining components 110–111
compression component 323–324

basic usage 323–324
custom filter function 324
specifying compression and memory

levels 324
cookie-parser 312–316

JSON cookies 315
regular cookies 313
setting outgoing cookies 315–316
signed cookies 313–315

creating configurable 112–114
error-handling 114–116

default error handler 114–115
handling errors yourself 115–116

express-session module 333–337
basic usage 333–334
manipulating session cookies 335
session stores 335–337
setting session expiration date 334
working with session data 334

function of 109–110
method-override module 328–331

accessing req.method property 331
basic usage 329–330

morgan module 325–327
basic usage 325–326
customizing log formats 326–327
logger options 327

ordering of 111–112
qs parse method 316–317
serve-favicon module 328
serve-index module 344–345

basic usage 345
using directory() with mounting 345

serve-static module 343–344

module specification 348
webpack and 79–80

absolute vs. relative directory paths 344
basic usage 343

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX358

Connect middleware (continued)
serving index.html when directory is

requested 344
using serve-static with mounting 343–344

setting up 109
vhost module 331–333

basic usage 332
using multiple vhost instances 332–333

web application security 337–342
basic-auth module 337–339
csurf module 339–340
errorhandler module 341–342

connect.session.Store.prototype 336
const vs. let 7
constructor 354
container 353
content block 178
content delivery network. See CDN
content management system. See CMS
content negotiation, shoutbox app 156–158

implementing 156–157
responding with XML 157–158

Content-Type option 321
context 85
control flow 348
controller 88, 160
cookie-parser 312–316

JSON cookies 315
regular cookies 313
setting outgoing cookies 315–316
signed cookies 313–315

core modules 347
create method 95
createdAt property 198
createdb command 183
CSRF (cross-site request forgery) 312, 337,

339–340
_csrf property 339
--css option 118
CSS preprocessor 351
csurf security module 339–340
CSV (comma-separated values) 354
cURL 349
curl command 48
curly brackets 8
custom filter function 324
custom routes 95
CWD (current working directory) 124

D

daemons 16–17, 352

database model 349
database schema 352
database transaction 352
databases

ACID guarantees 191–192
atomicity 191
consistency 192
durability 192
isolation 192

adding to web applications 57–61
making articles readable and saving for

later 60–61
making model API 58–60

Knex 186–190
connecting and running queries 187–189
jQuery for databases 187
leaky abstractions 190
swapping database back end 189–190

MongoDB 194–201
connecting to 195
identifiers 197–199
inserting documents 195–196
installation and setup 194
querying 196–197
replica sets 199–200
write concerns 200–201

NoSQL 192–193
PostgreSQL 183–186

connecting to from Node 184
creating database 183–184
defining tables 184
inserting data 185
MySQL vs. 190–191
performing installation and setup 183
querying data 186
updating data 185

DEBUG 247–248
debug value 165
debugger 14–15
decoupled 350
decr command 204
decrby command 204
deepEqual assertion 228
deepEquals method 198
del command 204
delete keyword 55
DELETE method 328
dependencies property 12
dependency, adding to web applications 52
deploying applications 255–257

from Git repository 255–256
keeping Node running 256–257

DerbyJS 96–98

data events 33
database adapter 350

RESTful APIs 98
route definition 97–98

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX 359

setting up 96–97
strengths of 98
weaknesses of 98

describe method 230, 270
desktop apps, building with Electron 284–294

bootstrapping libraries 285
communicating between components 293–294
defining Request component 288–291
defining Response component 291–293
installing dependencies 285–286
setting up webpack 286–287

destructuring 347
developer tools 295
directory object 92
__dirname variable 124, 344
distributed databases, MongoDB 194–201

connecting to 195
identifiers 197–199
inserting documents 195–196
installation and setup 194
querying 196–197
replica sets 199–200
write concerns 200–201

div tag, shorthand for in Pug 172
doAsync method 226, 228
Docker 254–255, 353
document-oriented database 352
dollarFormat function 238
DOM (Document Object Model) 16, 303, 354
domain property 335
double hyphen 268
dropdb command 184
Dust 89
dyno 252, 353

E

echo command 273
ECMAScript 6–10, 347
ECS (EC2 Container Service) 254
EJS (Embedded JavaScript)

integrating in application 166
web application templating with 164–168

caching templates 167
character escaping 165
client-side applications 167–168
creating templates 164–165
integrating into application 166–167

Elastic Beanstalk 353
Electron 279–296

builds and distribution 294–296
electron-packager 294

creating full desktop apps 284–294
bootstrapping libraries 285
communicating between components

293–294
defining Request component 288–291
defining Response component 291–293
installing dependencies 285–286
setting up webpack 286–287

interface design 282
main process 354
render process 354
stack 280–281

electron-packager 294
embedded databases, LevelDB 210–216

API overview 212
installation 212
key/value encodings 212–213
LevelUP and LevelDOWN packages 210–211
modular database 215–216
pluggable back ends 214–215
reading and writing key/value pairs 213–214

Embedded JavaScript. See EJS
entries.submit() method 153
entry property 287
environment variables 121
environment-based configuration 122
eq() method 306
equal assertion 227
equality operator 228
err argument 115
err.notFound property 213
error event 203
error handling, Connect middleware 114–116

default error handler 114–115
handling errors yourself 115–116

error streams 274–275
errorhandler security module 341–342

basic usage 341
HTML error response 341
JSON error response 342
plain-text error response 341

errorHandler() function 341
event emitters 33–39

creating 34–37
events that should occur only once 34
example of 33
extending 37–39

event handling
one-off events with callbacks 29–32
repeating events with event emitters 33–39

creating event emitters 34–37
events that should occur only once 34
packaging 295–296
creating apps 282–284

example of 33
extending event emitters 37–39

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX360

event listeners 28
event loop 5–6, 347
EventEmitter class 29, 203, 293
events, defined 347
exists command 204
exit codes 273–275
exit status 353
expect interface 237
expires property 335
exports object 21–22
Express 116–158

application skeleton 117–121
generating application 118
installing Express executable 118
overview of application 119–120
planning application 120–121

configuring 121–122
content negotiation 156–158

implementing 156–157
responding with XML 157–158

RESTful API 150–156
adding basic authentication 151
adding entries 153–154
adding entry listing support 154
designing 150–151
implementing routing 152
pagination middleware 155
removing sensitive user data 153
testing entries route 155–156
testing user data retrieval 152

user authentication 135–140
authenticating user logins 139–140
creating user model 135–136
retrieving user data 138–139
saving and loading user records 135
saving user into Redis 136
securing user passwords 137
testing user-saving logic 137–138

user login 145–148
authenticating 146–147
creating menu for users 147–148
displaying form 145–146

user registration 140–145
adding registration routes 140
creating registration form 141
implementing 144–145
relaying feedback to users 141–142
storing transient messages in sessions

142–144
user-loading middleware 148–150
user-submitted content 128–135

adding entry-related routes 132

creating entry model 128–129
flexible validation middleware 133–135
implementing entry creation 130–131
performing form validation 133
route-specific middleware 132
validating user content submission 128

view rendering 122–128
changing lookup directory 123–124
configuring view system 123
default template engine 124
methods of exposing data to 126–128
view caching 124–125
view lookup 126

express-enrouten API 89
express-session module 333–337

basic usage 333–334
manipulating session cookies 335
session stores 335–337
setting session expiration date 334
working with session data 334

express.response object 142
express.static 63

F

FIFO (first in, first out) 207
file watcher utility, event emitters 37–39
filename value 165
filesystem (fs) module) 13
filter function 324
Flatiron.js 99–101

RESTful APIs 101
route definition 100–101
setting up 100
strengths of 101
weaknesses of 101

Float32Array 206
flow control

parallel 45–47
serial 42–45

flow control, community tools for 42–49
foo() function 114
for loops 175
forEach loop 63
form encoding 349
form requests, parsing 318–319
format property 327
format variable 113
frameworks, server-side 81–107

comparison of 105–106
defined 83–84
DerbyJS 96–98
adding front-page display of entries 131–132
creating entry form 129–130

RESTful APIs 98
route definition 97–98

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX 361

setting up 96–97
strengths of 98
weaknesses of 98

Flatiron.js 99–101
RESTful APIs 101
route definition 100–101
setting up 100
strengths of 101
weaknesses of 101

hapi 90–93
plugins 92–93
RESTful APIs 93
route definition 91–92
setting up 90–91
strengths of 93
weaknesses of 93

Koa 84–87
RESTful APIs 87
route definition 86
setting up 86
strengths of 87
weaknesses of 87

Kraken 87–90
RESTful APIs 89
route definition 88–89
setting up 88
strengths of 89
weaknesses of 90

LoopBack 102–105
RESTful APIs 104
route definition 104
setting up 102–103
strengths of 104–105
weaknesses of 105

Sails.js 94–96
RESTful APIs 95
route definition 95
setting up 94
strengths of 96
weaknesses of 96

typical users of 82–83, 106–107
agency developer 82
open source developer 82–83
product developer 83

writing modular code 106
front-end build systems 67–80

Gulp 71–75
adding to projects 72
creating and running tasks 72–74
using separate files for larger projects 74–75
watching filesystem for changes 74

npm scripts 68–71

overview 68
webpack 75–80

bundles and plugins 76
CommonJS 79–80
configuring and running 76–77
development server 77–78
npm packages 80

fs module 305
fs.createWriteStream 327
fs.watchFile function 38
full-stack framework 350
functional testing 242–245, 352

G

generators 7
geospatial indexes 202
get command 204
GET method 328
GET parameters 350
getAllKeys function 219
getrange command 204
getRange function 129
getset command 204
Git repository, deploying applications from

255–256
global leak detection 230
global lock 192
--global option 12
global scope 348
global variables 230
Gulp 71–75

adding to projects 72
creating and running tasks 72–74
using separate files for larger projects 74–75
watching filesystem for changes 74

gulp-concat plugin 73
gulp-sourcemaps plugin 73
gulp.task() method 73–74

H

handleChange method 289
handleRequest function 29
handleSelectTab method 292
hapi 90–93

plugins 92–93
RESTful APIs 93
route definition 91–92
setting up 90–91
strengths of 93
configuring front-end build tools 70–71
creating custom 69–70

weaknesses of 93
--harmony flag 10

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX362

hashed password 139
hdel command 207
Headers component 293
headless tests 242
--help flag 118
Heroku 252
hexists command 207
hget command 207
HGETALL command 138
hgetall command 207
hidden option 345
hincrby command 207
hincrbyfloat command 207
hkeys command 207
hlen command 207
hmget command 207
hmset command 206–207
Hogan 168–171

creating templates 168
fine-tuning 171
Mustache tags 169–170

displaying simple values 169
inverted sections 169–170
partials 170
section lambdas 170
sections 169

hosted storage 222–223
hosting applications 250–255

containers 254–255
platform as service 251–252
servers 253

hot reloading 78
hscan command 207
hset command 207
hsetnx command 207
hstrlen command 207
HTML error response 341
htmlparser module 44
HTTP Authorization header field 338
HTTP messages 318
HTTP verb 350
:http-version token 326
httpOnly property 335
hvals command 207
HyperLogLog 202
hyphen 268

I

-i option 324
icons option 345
_id property 197

ignoreMethods 340
ImageMagick 222
immediate logger option 327
immediate option 327
in progress features 10
in-browser storage 217–222

localForage API 220–221
localStorage and sessionStorage APIs 217–218
reading and writing 221–222
reading and writing values 218–220

include command, Pug 179–180
included file 20
incr command 204
incrby command 204
incrbyfloat command 204
index.html files, serving when directory is

requested 344
--inline option 78
install command 69
installing Node 297–300

from source 299
with MacOS installer 297–298
with package manager 299–300
with Windows Installer 298–299

interactive debugging 14
interprocess communication 353
IPC (interprocess communication) 210, 283
isomorphic, defined 350
it function 230

J

JavaScript, in Pug templates 175–176
join callback 34
jQuery 187
jsdom, scraping with 306–309
jsdom.env method 307
JSON (JavaScript Object Notation) 27, 315,

320–321, 347
json spaces option 122
JSON.parse function 216
JSON.stringify() function 216, 342
JSX 354

K

key/value stores, Redis 202–210
encoding and data types 205–206
hashes 206–207
initialization 203
installation and setup 203
if statements 175
if/else blocks 32

key/value pairs 204
keys 204

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX 363

lists 207–208
performance improvement 210
pub/sub with channels 209
sets 208

keyboard shortcuts 273
Knex 186–190

connecting and running queries 187–189
jQuery for databases 187
leaky abstractions 190
swapping database back end 189–190

Koa 84–87
RESTful APIs 87
route definition 86
setting up 86
strengths of 87
weaknesses of 87

Kraken 87–90
RESTful APIs 89
route definition 88–89
setting up 88
strengths of 89
weaknesses of 90

L

leaky abstraction 352
let vs. const 7
level option 324
LevelDB 210–216

API overview 212
installation 212
key/value encodings 212–213
LevelUP and LevelDOWN packages 210–211
modular database 215–216
pluggable back ends 214–215
reading and writing key/value pairs 213–214

LevelDOWN package 212
LevelUp package 212
lexical scope 351
libraries, bootstrapping 285
libuv 347
LIFO (last in, first out) 207
limit option 319–320
lindex command 208
linsert command 208
linter 349
listener 33
listeners method 37
llen command 208
loaders 76
localForage API 220–221
locals.messages variable 141

log rotation 353
logger options 327
LoopBack 102–105

RESTful APIs 104
route definition 104
setting up 102–103
strengths of 104–105
weaknesses of 105

lpop command 208
lpush command 208
lpushx command 208
lrange command 208
lrem command 208
LRU eviction 202
lset command 208
ltrim command 208
LTS (Long-Term Support) 3
Lua scripting 203

M

MacOS installer, installing Node with 297–298
maintenance 257–263

cluster API 260–262
hosting static files and proxying 262–263
with Upstart 258–260

Makara 89
map method 311
maxAge argument 328, 334
MEAN stack (MongoDB, Express, Angular,

Node) 194
memdb project 230
memdown 215
memLevel option 324
memoize 352
memory levels, specifying compression and 324
MemoryStore 335, 337
messages variable 144
messages.ejs template 141
method chain 349
method property 331
:method token 326
method-override module 328–331

accessing req.method property 331
basic usage 329–330

methodOverride() function 329–330
mget command 204
microformats 309, 354
middleware 350
MIME (Multipurpose Internet Mail

Extensions) 56, 324, 349

localStorage API 217–218
log formats, customizing 326–327

mixin 351
mixin command, Pug 180–181

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX364

Mocha 229–230
hooks 232–233
testing asynchronous logic 233–234
testing Node applications 230

mocks 352
module.exports mechanism, fine-tuning module

creation using 24–25
module.exports property 21
module.loaders property 287
modules 348

caveats regarding 27–28
core 12–14
creation of 22–24
organizing and reusing functionality 20–22
reusing 27

MongoDB 194–201
connecting to 195
identifiers 197–199
inserting documents 195–196
installation and setup 194
querying 196–197
replica sets 199–200
write concerns 200–201

mongodb module 194
MongoDB, Express, Angular, Node. See MEAN

stack
Monit 260
morgan module 325–327

basic usage 325–326
customizing log formats 326–327
logger options 327

mount point 151
mounting middleware

using directory() with 345
using serve-static module with 343–344

mset command 204
msetnx command 204
.msi installer, Windows 298
multipart data 321–322
Mustache templating language 168–171

creating templates 168
tags 169–170

displaying simple values 169
inverted sections 169–170
partials 170
section lambdas 170
sections 169

MVC (Model-View-Controller) 94, 350
MySQL, PostgreSQL vs. 190–191

N

native 354
nested callback 348
networking (http) module 13–14
next argument 115
next() method 111, 329
Nginx 258, 262
node command 273
NODE_DEBUG 246
NODE_ENV variable 115, 122, 167
node_modules folder, reusing modules 26–27
NODE_PATH variable 27
Node, using pipes in 275–276
Node.js 3–49

asynchronous programming 28–29
challenges with 39–40
community tools for flow control 48–49
one-off events with callbacks 29–32
parallel flow control 45–47
repeating events with event emitters 33–39
sequencing asynchronous logic 40–42
serial flow control 42–45

built-in tools 11–15
core modules 12–14
debugger 14–15
npm command-line tool 12

ECMAScript 2015 support 6–10
event loop 5–6
example of typical web application 4–6
feature groups 10
installing 10–11
modules

caveats regarding 27–28
creating 22–24
fine-tuning creation of 24–25
reusing 26–27

nonblocking I/O 4–5
organizing and reusing functionality 20–22
release schedule 10
starting new projects 22–24
types of Node program 15–18

applications suited to Node 17–18
command-line tools and daemons 16–17
desktop applications 17
web applications 15–16

V8 JavaScript engine 9–10
nonblocking I/O 4–5, 348
nonparallel testing 234
NoSQL 192–193, 352
notDeepEqual assertion 228
notEqual assertion 228
NotFoundError 213
notStrictEqual assertion 228
namespaces 20
nargs method 270

npm command-line tool 12
for client-side dependencies 63–64

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX 365

npm packages with webpack 80
npm scripts 68–71

configuring front-end build tools 70–71
creating custom 69–70

npm install cookie-parser 313
npm run build command 70
npm start command 68
npm test command 68

O

ObjectIDs 198
Octopart 302
ok assertion 228
once method 34
Open Group 353
open value 165
option tag 173
originalMethod property 331
ORM (object-relational mapping) 94, 349
outgoing cookies, setting 315–316
output property 77

P

PaaS (platform as service) 251–252
package manager, installing Node with 299–300
package.json 348
page() method 154
parallel flow control, implementing 45–47
parse() method 316
partial 351
.pass property 137
password salt 351
path property 335
percentFormat function 238
performance maintenance 257–263

cluster API 260–262
hosting static files and proxying 262–263
with Upstart 258–260

pg package 184
pipes 272–277

command execution order and 276–277
errors and exit codes 273–275
piping data 273
using in Node 275–276

plain-text error response 341
plugins, jQuery 64
POST request 56, 61, 142
PostgreSQL 183–186

connecting to from Node 184
creating database 183–184

MySQL vs. 190–191
performing installation and setup 183
querying data 186
updating data 185

postinstall command 69
prefixes 175
PRG (Post/Redirect/Get) pattern 142
primary key 352
process.argv array 269
programming 28–29

challenges with 39–40
one-off events with callbacks 29–32
parallel flow control, implementing 45–47
repeating events with event emitters 33–39

creating event emitters 34–37
example of 33
extending event emitters 37–39
responding to events that should occur

once 34
sequencing asynchronous logic 40–42
serial flow control

implementing 43–45
when to use 42–43

Promise object 348
promises 7
property 348
proxying 262–263
psetex command 204
publicPath option 77
publish-subscribe 352
publish/subscribe logic

event emitters 34–37
Redis 209

Pug 171–181
block expansion 174
div tag shorthand 172
incorporating data 174
logic 175–177

case statements 177
conditionally rendering code 176–177
iterating through objects and arrays 176
JavaScript 175–176

organizing templates 177–181
block prepending/appending 179
include command 179–180
mixin command 180–181
template inheritance 178–179

specifying tag attributes 173
specifying tag content 174

Q

defining tables 184
inserting data 185

qs parse method, query strings 316–317
query builder 352

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX366

query operators 196
query property 317
query strings 316–317

R

rainbow table attacks 137
React 354
React.Component class 289
readability 60–61
readdirSync method 332
readFile function 46
redirection 353
Redis 202–210

encoding and data types 205–206
hashes 206–207
initialization 203
installation and setup 203
key/value pairs 204
keys 204
lists 207–208
performance improvement 210
pub/sub with channels 209
saving users into 136
sets 208

redis-server command 336
redis.createClient() function 135
ReferenceError error 114
:referrer token 326
regular cookies 313
regular expressions 354
relational algebra 352
relational databases 182–183, 350

ACID guarantees 191–192
atomicity 191
consistency 192
durability 192
isolation 192

Knex 186–190
connecting and running queries 187–189
jQuery for databases 187
leaky abstractions 190
swapping database back end 189–190

NoSQL 192–193
PostgreSQL 183–186

connecting to from Node 184
creating database 183–184
defining tables 184
inserting data 185
MySQL vs. 190–191
performing installation and setup 183
querying data 186

:remote-addr token 326
removeAllListeners method 36
removeMessages() method 142, 144
rename command 205
renamenx command 205
render() method 167, 293
REPL (read-eval-print loop) 348
replica set 352
reply.file method 92
req argument 115
:req token 326
req.accepted array 156
req.body object 318
req.cookies object 312
req.files object 322
req.files.file.path 322
req.method property, accessing 331
req.query property 317
req.remoteUser function 153
req.session object 334
req.session._csrf 339
req.session.cart 334
req.session.messages function 143
req.session.uid function 147
Request component 288–291
request module 44
request() method 290
require() method 23–24, 27, 144
res argument 115
:res token 326
res.end() method 323
res.error function 143
res.format() method 62–63, 156–157
res.locals.messages function 142–143
res.locals.user function 149
res.message function 142–143
res.render() method 123
res.send() method 55, 61, 152, 156
res.setHeader() function 313, 315
res.write() method 323
resolve.extensions property 287
Response component 291–293
response object 351
:response-time token 326–327
REST (Representational State Transfer) 349
rest parameters 348
restart command 69
RESTful APIs

DerbyJS 98
Flatiron.js 101
hapi 93
Koa 87
updating data 185
relative directory path 344

Kraken 89
LoopBack 104

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX 367

Sails.js 95
shoutbox app 150–156

adding basic authentication 151
adding entries 153–154
adding entry listing support 154
designing 150–151
implementing routing 152
pagination middleware 155
removing sensitive user data 153
testing entries route 155–156
testing user data retrieval 152

RESTful web service, building 54–57
robots.txt 354
route 349
route definition

DerbyJS 97–98
Flatiron.js 100–101
hapi 91–92
Koa 86
Kraken 88–89
LoopBack 104
Sails.js 95

route handler 349
rowCount property 185
rpop command 208
rpush command 208
rpushx command 208
rs.initiate() method 199

S

S3 (Simple Storage Service) 222–223
sadd command 208
Sails.js 94–96

RESTful APIs 95
route definition 95
setting up 94
strengths of 96
weaknesses of 96

salted hash 137
SASS (Syntactically Awesome Style Sheets) files 74
save method 233
--save option 12
.saveSync() method 231
saveUninitialized 333
scan command 205
scard command 208
scope value 165
scope, for cookies 335
scraping 301–311

defined 302–303
processing raw data 309–311

with cheerio 303–306
with jsdom 306–309

script tag 80, 173, 179, 308
scripts property 68, 78
sdiff command 208
sdiffstore command 208
section lambda 351
secure property 335
Secure Shell. See SSH
select element 173
SELECT statements 186
Selenium 243–245
semantic versioning 348
SemVer 10
serial flow control

implementing 43–45
when to use 42–43

serve-favicon module 328
serve-index module 344–345

basic usage 345
using directory() with mounting 345

serve-static module 343–344
absolute versus relative directory paths 344
basic usage 343
serving index.html when directory is

requested 344
using with mounting middleware 343–344

server-side frameworks 81–107
comparison of 105–106
defined 83–84
DerbyJS 96–98

RESTful APIs 98
route definition 97–98
setting up 96–97
strengths of 98
weaknesses of 98

Flatiron.js 99–101
RESTful APIs 101
route definition 100–101
setting up 100
strengths of 101
weaknesses of 101

hapi 90–93
plugins 92–93
RESTful APIs 93
route definition 91–92
setting up 90–91
strengths of 93
weaknesses of 93

Koa 84–87
RESTful APIs 87
route definition 86
setting up 86
required tools for 303
uses of 302–303

strengths of 87
weaknesses of 87

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX368

server-side frameworks (continued)
Kraken 87–90

RESTful APIs 89
route definition 88–89
setting up 88
strengths of 89
weaknesses of 90

LoopBack 102–105
RESTful APIs 104
route definition 104
setting up 102–103
strengths of 104–105
weaknesses of 105

Sails.js 94–96
RESTful APIs 95
route definition 95
setting up 94
strengths of 96
weaknesses of 96

typical users of 82–83, 106–107
agency developer 82
open source developer 82–83
product developer 83

writing modular code 106
server.register method 92
session() function 337
sessionStorage API 217–218
set command 204
Set-Cookie header 313, 315
setbit command 206
setex command 204
setHeader method 315
setImmediate function 6
setInterval function 6
setMaxListeners method 37
setnx command 204
setrange command 204
setTimeout function 6, 42
shell 353
shipping features 10
should interface 237
Should.js 238–240
signed cookies 313–315
significant whitespace 351
Simple Storage Service. See S3
single-page web app 350
single-threaded 351
Sinon.JS 240–242

spies 241
stubs 241–242

sinter command 208
sinterstore command 208

smembers command 208
sort command 205
source map 349
source, installing Node from 299
spop command 208
spread operator 7
SQL (Structured Query Language) 183
SQLite 57
srandmember command 209
srem command 209
sscan command 209
SSH (Secure Shell) 353
stack trace 348
stack, Electron 280–281
staged features 10
start method 38
state 348
static asset 349
:status token 326–327
stderr stream 274, 354
stdin, reading files from 271–272
stdout stream 274, 354
storing application data 182–223

distributed databases 193–194
embedded databases 210
expense of serialization and

deserialization 216–217
hosted storage 222–223
in-browser storage 217–222

localForage API 220–221
localStorage and sessionStorage APIs

217–218
reading and writing 221–222
reading and writing values 218–220

key/value stores, Redis 202–210
relational databases 182–183

ACID guarantees 191–192
Knex 186–190
NoSQL 192–193
PostgreSQL 183, 186–191

selecting database type 223
stream option 327, 349
strictEqual assertion 228
string property 141
strlen command 204
StrongLoop 102
style tag 173
sudo command 257, 353
sum function 238
sunion command 209
sunionstore command 209
sismember command 208
slc command 102, 104

synchronous I/O operations 23
Syntactically Awesome Style Sheets files. See SASS

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX 369

T

tar command 48, 295
TDD (test-driven development) 225, 353
template engine 160
template language 351
template strings 8
templates, for web applications 159–181

clean code 159–164
EJS, integrating in application 166
example of 161–162

rendering HTML using templates 163–164
rendering HTML without templates 162–164

Express default view template engine 124
user interface 62–63
with Embedded JavaScript 164–168

caching templates 167
character escaping 165
client-side applications 167–168
creating templates 164–165
integrating into application 166–167

with Hogan and Mustache templating
language 168–171
creating templates 168
fine-tuning Hogan 171
Mustache tags 169–170

with Pug 171–181
block expansion 174
div tag shorthand 172
incorporating data 174
logic 175–177
organizing templates 177–181
specifying tag attributes 173
specifying tag content 174

test property 68, 77
test runner 350, 353
testing 224–249

failed tests 245–249
better stack traces 248–249
more-detailed logs 245–248

functional testing 242–245
unit testing 225–242

assert module 226–229
Chai 237–238
Mocha 229–230
Should.js 238–240
Sinon.JS 240–242
Vows 234–236

testsCompleted 227
third-party middleware 351
--timeout command 234
title block 178

transpilers 350
TTL (time to live) 222
type command 205
type property 141
TypedArrays 221
typeof operator 353
TypeScript 16

U

Uint8Array 206
unit testing 225–242, 353

assert module 226–229
adding logic to run tests 229
deepEqual assertion 228
equal assertion 227
example using 226–227
notDeepEqual assertion 228
notEqual assertion 228
notStrictEqual assertion 228
ok assertion 228
strictEqual assertion 228
testing that thrown errors are correct 229

Chai 237–238
Mocha 229–230

hooks 232–233
testing asynchronous logic 233–234
testing Node applications 230

Should.js 238–240
Sinon.JS 240–242

spies 241
stubs 241–242

Vows 234–236
update method 136
UPDATE query 185
uppercase_trim function 20
Upstart 258–260
uptime and performance maintenance 257–263

cluster API 260–262
hosting static files and proxying 262–263
with Upstart 258–260

url property 316
:url token 326
urlencoded body parser 319
use() function 111
user authentication, shoutbox app 135–140

authenticating user logins 139–140
creating user model 135–136
retrieving user data 138–139
saving and loading user records 135
saving user into Redis 136
token function 326
tokens 326

securing user passwords 137
testing user-saving logic 137–138

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX370

user interface, adding to web applications 61–64
multiple format support 61–62
npm for client-side dependencies 63–64
templates 62–63

user login, shoutbox app 145–148
authenticating 146–147
creating menu for authenticated and anony-

mous users 147–148
displaying form 145–146

user registration, shoutbox app 140–145
adding registration routes 140
creating registration form 141
implementing 144–145
relaying feedback to users 141–142
storing transient messages in sessions 142–144

:user-agent token 326
user-submitted content, shoutbox app 128–135

adding entry-related routes 132
adding front-page display of entries 131–132
creating entry form 129–130
creating entry model 128–129
flexible validation middleware 133–135
implementing entry creation 130–131
performing form validation 133
validating submission 128

user:ids value 136
User.authenticate() method 145, 147, 151
User.get() function 138
User.getByName() function 138
User.getId() function 138
user.pass hash 140
utility method 245

V

V8 JavaScript engine 9–10
validate.lengthAbove() function 134
validate.required() function 134
validating requests 319–320
var declarations 175
verify option 319
vertical search engine 354
vhost module 331–333

basic usage 332
using multiple vhost instances 332–333

view rendering, shoutbox app 122–128
changing lookup directory 123–124
configuring view system 123
default template engine 124
methods of exposing data to 126–128
view caching 124–125

W

waitForVisible method 245
Wanstrath, Chris 168
watch() method 38, 74
Watcher object 38
web application security 337–342

basic-auth module 337–339
basic usage 338
example with curl 338–339

csurf module 339–340
errorhandler module 341–342

basic usage 341
HTML error response 341
JSON error response 342
plain-text error response 341

web application templating 159–181
clean code 159–164
example of 161–162

rendering HTML using templates 163–164
rendering HTML without templates 162–164

with Embedded JavaScript 164–168
caching templates 167
character escaping 165
client-side applications 167–168
creating templates 164–165
integrating into application 166–167

with Hogan and Mustache templating
language 168–171
creating templates 168
fine-tuning Hogan 171
Mustache tags 169–170

with Pug 171–181
block expansion 174
div tag shorthand 172
incorporating data 174
logic 175–177
organizing templates 177–181
specifying tag attributes 173
specifying tag content 174

web applications 15–16, 50–64
building with webpack 75–80

bundles and plugins 76
CommonJS 79–80
configuring and running 76–77
development server 77–78
npm packages 80

comparing other platforms to Node 53
database 57–61

making articles readable and saving them for
later 60–61

making model API 58–60
dependency 52
view lookup 126
Vows 234–236

example of typical 4–6
npm scripts 53

Licensed to Samir Mashlum <smashlum@gmail.com>

INDEX 371

RESTful web service 54
server start command 52–53
starting new 52–53
structure of 51–54
user interface 61–64

multiple format support 61–62
npm for client-side dependencies 63–64
templates 62–63

web framework 350
web scraping 354
web worker 352
web-parsing 306
WebdriverIO test 244
webpack

bundles and plugins 76
CommonJS 79–80
configuring and running 76–77
development server 77–78
npm packages 80

webpack plugin 350
webpackBootstrap shim 79
Windows Installer, installing Node with 298–299

X

XML, content negotiation 157–158
XPath 354
XSS (cross-site scripting) attacks 165
XSS attack 351

Y

-y flag 22
yargs 270
Yeoman 88, 285
yield keyword 84

Z

setting up 286–287

webpack loader 350 Zabbix 260

Licensed to Samir Mashlum <smashlum@gmail.com>

For ordering information go to www.manning.com

Node.js in Practice
by Alex Young and Marc Harter

ISBN: 9781617290930
424 pages, $49.99
December 2014

Secrets of the JavaScript Ninja,
Second Edition
by John Resig, Bear Bibeault, and Josip Maras

ISBN: 9781617292859
464 pages, $44.99
August 2016

Getting MEAN with Mongo, Express,
Angular, and Node, Second Edition
by Simon D. Holmes

ISBN: 9781617294754
450 pages, $44.99
April 2018

The Tao of Microservices
by Richard Rodger

ISBN: 9781617293146
275 pages, $49.99
September 2017

RELATED MANNING TITLES

Licensed to Samir Mashlum <smashlum@gmail.com>

https://www.manning.com/books/node-js-in-practice
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/the-tao-of-microservices
https://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node-second-edition
https://www.manning.com/books/node-js-in-practice
https://www.manning.com/books/secrets-of-the-javascript-ninja-second-edition
https://www.manning.com/books/getting-mean-with-mongo-express-angular-and-node-second-edition
https://www.manning.com/books/the-tao-of-microservices

Young ● Meck ● Cantelon ● Oxley ● Harter ● Holowaychuk ● Rajlich

Y
ou already know JavaScript. Th e trick to mastering
Node.js is learning how to build applications that fully
exploit its powerful asynchronous event handling and

non-blocking I/O features. Th e Node server radically simplifi es
event-driven real-time apps like chat, games, and live data
analytics, and with its incredibly rich ecosystem of modules,
tools, and libraries, it’s hard to beat!

Based on the bestselling fi rst edition, Node.js in Action, Second
Edition is a completely new book. Packed with practical examples,
it teaches you how to create high-performance web servers using
JavaScript and Node. You’ll master key design concepts such as
asynchronous programming, state management, and event-
driven programming. And you’ll learn to put together MVC
servers using Express and Connect, design web APIs, and set up
the perfect production environment to build, lint, and test.

What’s Inside
● Mastering non-blocking I/O
● Th e Node event loop
● Testing and deploying
● Web application templating

Written for web developers with intermediate JavaScript skills.

Th e Second Edition author team includes Node masters
Alex Young, Bradley Meck, Mike Cantelon, and Tim Oxley,
along with original authors Marc Harter, T.J. Holowaychuk, and
Nathan Rajlich.

To download their free eBook or read it in their browser,
owners of this book should visit

www.manning.com/books/node-js-in-action-second-edition

$49.99 / Can $65.99 [INCLUDING eBOOK]

Node.js IN ACTION Second Edition

JAVASCRIPT/WEB DEVELOPMENT

M A N N I N G

“Th e defi nitive guide to one
of the most important tools

 of the modern web.”
—William E. Wheeler

TEKsystems

“Everything you need to
know about Node.js ... and

then some.”—Sander Rossel
COAS Soft ware Systems

“Node is a vast subject;
this book is both a lighthouse

and a manual.”
—Philippe Charrière

Clever Cloud

“A gentle but powerful
introduction to the

 Node.js ecosystem.”—Jeff Smith, Ascension

SEE INSERT

	Node.js in Action, Second Edition
	Praise for the First Edition
	brief contents
	contents
	preface
	acknowledgments
	about this book
	Roadmap
	Code conventions and downloads
	Book Forum

	about the author
	about the cover illustration
	Part 1 Welcome to Node
	1 Welcome to Node.js
	1.1 A typical Node web application
	1.1.1 Nonblocking I/O
	1.1.2 The event loop

	1.2 ES2015, Node, and V8
	1.2.1 Node and V8
	1.2.2 Working with feature groups
	1.2.3 Understanding Node’s release schedule

	1.3 Installing Node
	1.4 Node’s built-in tools
	1.4.1 npm
	1.4.2 The core modules
	1.4.3 The debugger

	1.5 The three main types of Node program
	1.5.1 Web applications
	1.5.2 Command-line tools and daemons
	1.5.3 Desktop applications
	1.5.4 Applications suited to Node

	1.6 Summary

	2 Node programming fundamentals
	2.1 Organizing and reusing Node functionality
	2.2 Starting a new Node project
	2.2.1 Creating modules

	2.3 Fine-tuning module creation by using module.exports
	2.4 Reusing modules by using the node_modules folder
	2.5 Exploring caveats
	2.6 Using asynchronous programming techniques
	2.7 Handling one-off events with callbacks
	2.8 Handling repeating events with event emitters
	2.8.1 An example event emitter
	2.8.2 Responding to an event that should occur only once
	2.8.3 Creating event emitters: a publish/subscribe example
	2.8.4 Extending the event emitter: a file watcher example

	2.9 Challenges with asynchronous development
	2.10 Sequencing asynchronous logic
	2.11 When to use serial flow control
	2.12 Implementing serial flow control
	2.13 Implementing parallel flow control
	2.14 Using community tools
	2.15 Summary

	3 What is a Node web application?
	3.1 Understanding a Node web application’s structure
	3.1.1 Starting a new web app
	3.1.2 Comparing other platforms
	3.1.3 What’s next?

	3.2 Building a RESTful web service
	3.3 Adding a database
	3.3.1 Making your own model API
	3.3.2 Making articles readable and saving them for later

	3.4 Adding a user interface
	3.4.1 Supporting multiple formats
	3.4.2 Rendering templates
	3.4.3 Using npm for client-side dependencies

	3.5 Summary

	Part 2 Web development with Node
	4 Front-end build systems
	4.1 Understanding front-end development with Node
	4.2 Using npm to run scripts
	4.2.1 Creating custom npm scripts
	4.2.2 Configuring front-end build tools

	4.3 Providing automation with Gulp
	4.3.1 Adding Gulp to a project
	4.3.2 Creating and running Gulp tasks
	4.3.3 Watching for changes
	4.3.4 Using separate files for larger projects

	4.4 Building web apps with webpack
	4.4.1 Using bundles and plugins
	4.4.2 Configuring and running webpack
	4.4.3 Using webpack development server
	4.4.4 Loading CommonJS modules and assets

	4.5 Summary

	5 Server-side frameworks
	5.1 Personas
	5.1.1 Phil: agency developer
	5.1.2 Nadine: open source developer
	5.1.3 Alice: product developer

	5.2 What is a framework?
	5.3 Koa
	5.3.1 Setting up
	5.3.2 Defining routes
	5.3.3 REST APIs
	5.3.4 Strengths
	5.3.5 Weaknesses

	5.4 Kraken
	5.4.1 Setting up
	5.4.2 Defining routes
	5.4.3 REST APIs
	5.4.4 Strengths
	5.4.5 Weaknesses

	5.5 hapi
	5.5.1 Setting up
	5.5.2 Defining routes
	5.5.3 Plugins
	5.5.4 REST APIs
	5.5.5 Strengths
	5.5.6 Weaknesses

	5.6 Sails.js
	5.6.1 Setting up
	5.6.2 Defining routes
	5.6.3 REST APIs
	5.6.4 Strengths
	5.6.5 Weaknesses

	5.7 DerbyJS
	5.7.1 Setting up
	5.7.2 Defining routes
	5.7.3 REST APIs
	5.7.4 Strengths
	5.7.5 Weaknesses

	5.8 Flatiron.js
	5.8.1 Setting up
	5.8.2 Defining routes
	5.8.3 REST APIs
	5.8.4 Strengths
	5.8.5 Weaknesses

	5.9 LoopBack
	5.9.1 Setting up
	5.9.2 Defining routes
	5.9.3 REST APIs
	5.9.4 Strengths
	5.9.5 Weaknesses

	5.10 Comparison
	5.10.1 HTTP servers and routes

	5.11 Writing modular code
	5.12 Persona choices
	5.13 Summary

	6 Connect and Express in depth
	6.1 Connect
	6.1.1 Setting up a Connect application
	6.1.2 Understanding how Connect middleware works
	6.1.3 Combining middleware
	6.1.4 Ordering middleware
	6.1.5 Creating configurable middleware
	6.1.6 Using error-handling middleware

	6.2 Express
	6.2.1 Generating the application skeleton
	6.2.2 Configuring Express and your application
	6.2.3 Rendering views
	6.2.4 Express routing 101
	6.2.5 Authenticating users
	6.2.6 Registering new users
	6.2.7 Logging in registered users
	6.2.8 Working with user-loading middleware
	6.2.9 Creating a public REST API
	6.2.10 Enabling content negotiation

	6.3 Summary

	7 Web application templating
	7.1 Using templating to keep code clean
	7.1.1 Templating in action
	7.1.2 Rendering HTML without a template

	7.2 Templating with Embedded JavaScript
	7.2.1 Creating a template
	7.2.2 Integrating EJS into your application
	7.2.3 Using EJS for client-side applications

	7.3 Using the Mustache templating language with Hogan
	7.3.1 Creating a template
	7.3.2 Using Mustache tags
	7.3.3 Fine-tuning Hogan

	7.4 Templating with Pug
	7.4.1 Pug basics
	7.4.2 Logic in Pug templates
	7.4.3 Organizing Pug templates

	7.5 Summary

	8 Storing application data
	8.1 Relational databases
	8.2 PostgreSQL
	8.2.1 Performing installation and setup
	8.2.2 Creating the database
	8.2.3 Connecting to Postgres from Node
	8.2.4 Defining tables
	8.2.5 Inserting data
	8.2.6 Updating data
	8.2.7 Querying data

	8.3 Knex
	8.3.1 jQuery for databases
	8.3.2 Connecting and running queries with Knex
	8.3.3 Swapping the database back end
	8.3.4 Beware of leaky abstractions

	8.4 MySQL vs. PostgreSQL
	8.5 ACID guarantees
	8.5.1 Atomicity: transactions either succeed or fail in entirety
	8.5.2 Consistency: constraints are always enforced
	8.5.3 Isolation: concurrent transactions don’t interfere
	8.5.4 Durability: transactions are permanent

	8.6 NoSQL
	8.7 Distributed databases
	8.8 MongoDB
	8.8.1 Performing installation and setup
	8.8.2 Connecting to MongoDB
	8.8.3 Inserting documents
	8.8.4 Querying
	8.8.5 Using MongoDB identifiers
	8.8.6 Using replica sets
	8.8.7 Understanding write concerns

	8.9 Key/value stores
	8.10 Redis
	8.10.1 Performing installation and setup
	8.10.2 Performing initialization
	8.10.3 Working with key/value pairs
	8.10.4 Working with keys
	8.10.5 Encoding and data types
	8.10.6 Using hashes
	8.10.7 Using lists
	8.10.8 Using sets
	8.10.9 Providing pub/sub with channels
	8.10.10 Improving Redis performance

	8.11 Embedded databases
	8.12 LevelDB
	8.12.1 LevelUP and LevelDOWN
	8.12.2 Installation
	8.12.3 API overview
	8.12.4 Initialization
	8.12.5 Key/value encodings
	8.12.6 Reading and writing key/value pairs
	8.12.7 Pluggable back ends
	8.12.8 The modular database

	8.13 Serialization and deserialization are expensive
	8.14 In-browser storage
	8.14.1 Web storage: localStorage and sessionStorage
	8.14.2 Reading and writing values
	8.14.3 localForage
	8.14.4 Reading and writing

	8.15 Hosted storage
	8.15.1 Simple Storage Service

	8.16 Which database?
	8.17 Summary

	9 Testing Node applications
	9.1 Unit testing
	9.1.1 The assert module
	9.1.2 Mocha
	9.1.3 Vows
	9.1.4 Chai
	9.1.5 Should.js
	9.1.6 Spies and stubs with Sinon.JS

	9.2 Functional testing
	9.2.1 Selenium

	9.3 Dealing with failing tests
	9.3.1 Getting more-detailed logs
	9.3.2 Getting better stack traces

	9.4 Summary

	10 Deploying Node applications and maintaining uptime
	10.1 Hosting Node applications
	10.1.1 Platform as a service
	10.1.2 Servers
	10.1.3 Containers

	10.2 Understanding deployment basics
	10.2.1 Deploying from a Git repository
	10.2.2 Keeping Node running

	10.3 Maximizing uptime and performance
	10.3.1 Maintaining uptime with Upstart
	10.3.2 The cluster API: taking advantage of multiple cores
	10.3.3 Hosting static files and proxying

	10.4 Summary

	Part 3 Beyond web development
	11 Writing command-line applications
	11.1 Understanding conventions and philosophy
	11.2 Introducing parse-json
	11.3 Using command-line arguments
	11.3.1 Parsing command-line arguments
	11.3.2 Validating arguments
	11.3.3 Passing stdin as a file

	11.4 Sharing command-line tools with npm
	11.5 Connecting scripts with pipes
	11.5.1 Piping data into parse-json
	11.5.2 Working with errors and exit codes
	11.5.3 Using pipes in Node
	11.5.4 Pipes and command execution order

	11.6 Interpreting real-world scripts
	11.7 Summary

	12 Conquering the desktop with Electron
	12.1 Introducing Electron
	12.1.1 Electron’s stack
	12.1.2 Interface design

	12.2 Creating an Electron app
	12.3 Building a full desktop application
	12.3.1 Bootstrapping React and Babel
	12.3.2 Installing the dependencies
	12.3.3 Setting up webpack

	12.4 The React app
	12.4.1 Defining the Request component
	12.4.2 Defining the Response component
	12.4.3 Communicating between React components

	12.5 Builds and distribution
	12.5.1 Building with Electron Packager
	12.5.2 Packaging

	12.6 Summary

	appendix A Installing Node
	A.1 Installing Node by using an installer
	A.1.1 The macOS installer
	A.1.2 The Windows installer

	A.2 Using other ways to install Node
	A.2.1 Installing Node from source
	A.2.2 Installing Node with a package manager

	appendix B Automating the web with scraping
	B.1 Understanding web scraping
	B.1.1 Uses of web scraping
	B.1.2 Required tools

	B.2 Performing basic web scraping with cheerio
	B.3 Handling dynamic content with jsdom
	B.4 Making sense of raw data
	B.5 Summary

	appendix C Connect’s officially supported middleware
	C.1 Parsing cookies, request bodies, and query strings
	C.1.1 cookie-parser: parse HTTP cookies
	C.1.2 Parsing query strings
	C.1.3 body-parser: parse request bodies
	C.1.4 compression: compressing outgoing responses

	C.2 Implementing core web application functions
	C.2.1 morgan: log requests
	C.2.2 serve-favicon: address bar and bookmark icons
	C.2.3 method-override: fake HTTP methods
	C.2.4 vhost: virtual hosting
	C.2.5 express-session: session management

	C.3 Handling web application security
	C.3.1 basic-auth: HTTP Basic authentication
	C.3.2 csurf: cross-site request forgery protection
	C.3.3 errorhandler: displaying errors during development

	C.4 Serving static files
	C.4.1 serve-static: automatically serving files to the browser
	C.4.2 serve-index: generating directory listings

	Connect’s officially supported middleware

	Glossary
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Appendix A

	index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Node.js in Action, Second Edition, back

