
M A N N I N G

Matthias Noback
Foreword by Ross Tuck

Style guide cheat sheet

final class Service
{

private properties;
// ...

public function __construct(
dependencies,
configurationValues

) {
// ...

}

public function commandMethod(input, context): void
{

// ...
}

public function queryMethod(input, context): returnType
{

// ...
}

}

final class Entity
{

private properties;

private array events = [];

private function __construct()
{
}

public static function namedConstructor(values)
{

// ...
}

 Continued on inside back cover

Not meant to be extended from.

All properties
are immutable.

All arguments are required. Don’t
inject contextual information;
make the service reusable.

Dependencies
are actual

dependencies,
not service

locators.
Only assign arguments
to properties.

Pass data relevant to the job, plus contextual
information (current time, current user, etc.).

Validate input
arguments.

Perform the
task. Produce

side effects.
Validate input arguments. Produce no
side effects, only return information.

Not meant to be extended from.

Properties can
be mutable.

Use named
constructors as
meaningful ways of
instantiating the
object.

Validate arguments. Instantiate a new copy. Assign
arguments to properties. Record domain event(s).

Object Design Style Guide

MATTHIAS NOBACK
FOREWORD BY ROSS TUCK

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2019 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books are
printed on paper that is at least 15 percent recycled and processed without the use of elemental
chlorine.

Development editor: Elesha HydeManning Publications Co.
20 Baldwin Road Technical development editor: Tanya Wilke

Review editor: Aleksandar DragosavljePO Box 761 vić
Production editor: Deirdre HiamShelter Island, NY 11964

Copyeditor: Andy Caroll
Proofreader: Keri Hales

Technical proofreader: Justin Coulston
Typesetter: Gordan Salinovic

Cover designer: Marija Tudor

ISBN 9781617296857
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – SP – 24 23 22 21 20 19

http://www.manning.com

 To my daughter Julia:
Don’t let anyone tell you that you can’t do something because you’re a girl.

 To women everywhere:

I hope you’ll never feel discouraged in any way to become a programmer.

 To programmers everywhere:
Let’s make our teams as welcoming as possible for anyone who wants to join us.

contents
foreword xi
preface xiii
acknowledgments xv
about this book xvi
about the author xix
about the cover illustration xx

1 Programming with objects: A primer 1
1.1 Classes and objects 2

1.2 State 4

1.3 Behavior 7

1.4 Dependencies 9

1.5 Inheritance 10

1.6 Polymorphism 13

1.7 Composition 14

1.8 Class organization 15

1.9 Return statements and exceptions 16

1.10 Unit testing 18

1.11 Dynamic arrays 23

v

CONTENTSvi

2 Creating services 25
2.1 Two types of objects 25

2.2 Inject dependencies and configuration values as constructor
arguments 27

Keeping together configuration values that belong together 28

2.3 Inject what you need, not where you can get it from 30

2.4 All constructor arguments should be required 34

2.5 Only use constructor injection 36

2.6 There’s no such thing as an optional dependency 37

2.7 Make all dependencies explicit 38
Turn static dependencies into object dependencies 38 ■ Turn
complicated functions into object dependencies 39 ■ Make system
calls explicit 41

2.8 Task-relevant data should be passed as method arguments
instead of constructor arguments 45

2.9 Don’t allow the behavior of a service to change
after it has been instantiated 48

2.10 Do nothing inside a constructor, only assign properties 50

2.11 Throw an exception when an argument is invalid 55

Define services as an immutable object graph2.12
59with only a few entry points

3 Creating other objects 66
3.1 Require the minimum amount of data needed

to behave consistently 67

3.2 Require data that is meaningful 68

Don’t use custom exception3.3 classes for invalid argument
74exceptions

Test for specific invalid argument exceptions by analyzing3.4
75the exception’s message

Extract new objects to preven3.5 t domain invariants from being
77verified in multiple places

3.6 Extract new objects to represent composite values 79

3.7 Use assertions to validate constructor arguments 81

CONTENTS vii

3.8 Don’t inject dependencies; optionally pass them
as method arguments 84

3.9 Use named constructors 88
Create from primitive-type values 88 ■ Don’t immediately add
toString(), toInt(), etc. 89 ■ Introduce a domain-specific
concept 89 ■ Optionally use the private constructor to enforce
constraints 89

3.10 Don’t use property fillers 91

3.11 Don’t put anything more into an object than it needs 92

3.12 Don’t test constructors 93

3.13 The exception to the rule: Data transfer objects 96
Use public properties 96 ■ Don’t throw exceptions, collect
validation errors 97 ■ Use property fillers when needed 98

4 Manipulating objects 102
4.1 Entities: Identifiable objects that track changes

and record events 103

4.2 Value objects: Replaceable, anonymous, and immutable
values 105

4.3 Data transfer objects: Simple objects with fewer design
rules 108

4.4 Prefer immutable objects 110
Replace values instead of modifying them 111

A modifier on an immutable object should return4.5
114a modified copy

On a mutable object, modifier methods should be4.6
117command methods

On an immutable object, modifier methods should have4.7
118declarative names

4.8 Compare whole objects 120

When comparing immutable objects, assert equality, not4.9
121sameness

Calling a modifier method should always result4.10
123in a valid object

4.11 A modifier method should verify that the requested state
change is valid 125

CONTENTSviii

Use internally recorded events to verify changes4.12
127on mutable objects

4.13 Don’t implement fluent interfaces on mutable objects 132

5 Using objects 137
5.1 A template for implementing methods 137

Precondition checks 138 ■ Failure scenarios 139 ■ Happy
path 140 ■ Postcondition checks 140 ■ Return value 141

5.2 Some rules for exceptions 141
Use custom exception classes only if needed 141 ■ Naming invalid
argument or logic exception classes 143 ■ Naming runtime
exception classes 143 ■ Use named constructors to indicate reasons
for failure 143 ■ Add detailed messages 144

6 Retrieving information 146
6.1 Use query methods for information retrieval 146

6.2 Query methods should have single-type return values 149

6.3 Avoid query methods that expose internal state 152

6.4 Define specific methods and return types
for the queries you want to make 157

6.5 Define an abstraction for queries that cross system
boundaries 159

6.6 Use stubs for test doubles with query methods 163

6.7 Query methods should use other query methods,
not command methods 166

7 Performing tasks 171
7.1 Use command methods with a name in the

imperative form 172

7.2 Limit the scope of a command method, and use events
to perform secondary tasks 172

7.3 Make services immutable from the outside
as well as on the inside 176

7.4 When something goes wrong, throw an exception 179

7.5 Use queries to collect information and commands
to take the next steps 180

CONTENTS ix

7.6 Define abstractions for commands that cross system
boundaries 182

7.7 Only verify calls to command methods with a mock 184

8 Dividing responsibilities 188
8.1 Separate write models from read models 189

8.2 Create read models that are specific for their use cases 196

8.3 Create read models directly from their data source 197

8.4 Build read models from domain events 198

9 Changing the behavior of services 205
9.1 Introduce constructor arguments to make behavior

configurable 206

9.2 Introduce constructor arguments to make behavior
replaceable 207

9.3 Compose abstractions to achieve more complicated
behavior 210

9.4 Decorate existing behavior 212

9.5 Use notification objects or event listeners
for additional behavior 215

9.6 Don’t use inheritance to change an object’s behavior 220
When is it okay to use inheritance? 223

9.7 Mark classes as final by default 224

9.8 Mark methods and properties private by default 225

10 A field guide to objects 231
10.1 Controllers 233

10.2 Application services 235

10.3 Write model repositories 237

10.4 Entities 239

10.5 Value objects 240

10.6 Event listeners 243

10.7 Read models and read model repositories 244

10.8 Abstractions, concretions, layers, and dependencies 247

CONTENTSx

11 Epilogue 250
11.1 Architectural patterns 251

11.2 Testing 251
Class testing versus object testing 251 ■ Top-down feature
development 252

11.3 Domain-driven design 253

11.4 Conclusion 253

appendix Coding standard for the code samples 254
index 259

foreword
All programmers can appreciate the value of a good name. A name is a promise: it
tells you what you can and can’t expect. It helps you make a decision and move on.

 But a Good Name, with capital letters, is more than just a contract. A Good Name
shares something about the soul of what’s described. It gives you a glimpse of the cre-
ator’s intention, its raison d’être. The name Walkie-Talkie tells you both the what and
the why of the thing. The name doesn’t need to be accurate: fire ants aren’t made of
fire but they might as well be. A Good Name reveals.

 I’m happy to say that the book you are now holding has an exceptionally Good
Name.

 You may be familiar with the style guides often used by journalists, such as the AP
Stylebook or The Chicago Manual of Style. Like those books, this one offers both guide-
lines and guidance on achieving a clear, consistent tone across a larger team.

 In following this model, Matthias Noback’s goal is humble and direct. There are
no new concepts, no fancy tools, no radical breakthroughs. Matthias has simply docu-
mented what he was already doing. He has captured his approach to designing sys-
tems and distilled it into the elements of his style.

 These elements are discussed in terms of existing patterns, some of which you may
have heard of elsewhere. What I find wonderful in this book is the realization that
these patterns seldom live in isolation. What seems reasonable on the page will often
fail in the IDE without the guarantees offered by other practices. For example, con-
sider how difficult unit tests are without dependency injection.

xi

FOREWORDxii

 And so, this Object Design Style Guide is greater than the sum of its parts. Taken
together, these patterns interlock and strengthen each other. Deeper treatments of
each topic exist elsewhere, but what Matthias has done is take a collection of best prac-
tices and turn them into a cohesive, recognizable style.

 Publishing your own style may seem strange, even arrogant. After all, why should
we follow this style rather than yours or mine? The most brutal argument suggests
that, like coding standards that dictate where the brackets and spaces go, it doesn’t
matter which style we follow, only that we follow one. This one just has the virtue of
already being documented.

 Yet I believe the intent is not to constrain the reader but to provide a reference
point. Innovation happens within constraints, they say. Iterate on this style, improve
on it, start here—but make it your own, because your circumstances are unique. After
all, the only thing worse than a newspaper written like a love letter would be a love let-
ter written like a newspaper.

 If you remain unconvinced, this book at least offers you the chance to see a high-
level practitioner at work. There is a remarkable honesty and vulnerability on display.
There is no secret sauce, no technique withheld in these pages. What you see here is
how Matthias approaches his daily work—nothing more, nothing less.

 Indeed, in the process of reviewing this book, I was struck several times by the
memory of watching over his shoulder as he codes, listening to him weigh each con-
cern and select a tool. I imagined myself pointing at something that seemed out of
place in his familiar style, and Matthias just smiling. “Oh yes,” he’d say, “that was the
interesting part.”

 I hope you enjoy that same experience as much as I have.

 —ROSS TUCK

 rosstuck.com

http://rosstuck.com/
http://rosstuck.com/

preface
Between learning how to program and learning about advanced design patterns and
principles, there isn’t much educational material for object-oriented programmers.
The recommended books are hard to read, and it often proves difficult to apply the
theory to your everyday coding problems. Besides, most developers don’t have a lot
of time to read a book. What’s left is a gap in programming education materials.

 Even without reading books, you will grow as a programmer over time. You’ll learn
how to make better design choices. You’ll collect a set of basic rules that you can pretty
much always apply, freeing mental capacity to focus on other interesting areas of the
code that need improving. So what can’t be learned from reading software books can,
in fact, be learned through years and years of struggling with code.

 I wrote this book to close part of the education-materials gap and to give you some
suggestions that will help you write better object-oriented code. These will be mostly
short and simple suggestions. Technically, there won’t be a lot to master. But I find
that following these suggestions (or “rules”) helps move your focus from trivial to
more interesting aspects of the code that deserve more of your attention. If everyone
on your team follows the same suggestions, the code in your project will have a more
uniform style.

 So I boldly claim that the object design rules provided in this book will improve
the quality of your objects, and of your entire project. This fits well with the other goal
I had in mind: that this book can be used as part of an on-boarding process for new
team members. After telling them about the coding standard for the project and
showing them the style guide for commit messages and code reviews, you can hand

xiii

PREFACExiv

out this book and explain how your team aims for good object design in all areas of
the project.

 I wish you good luck on your object design journey, together with your team, and
I’ll do my very best to reach the goals that I’ve just set.

acknowledgments
Before we get to it, let me thank some people here. First of all, I’d like to thank the 125
people who bought the book before it was even finished. This was very encouraging!
Thanks for your feedback, too, in particular from Сергей Лукьяненко, Iosif Chiriluta,
Nikola Paunovic, Niko Mouk, Damon Jones, and Mo Khaledi. A special mention goes
to Rémon van de Kamp, who provided quite a list of insightful comments.

 A big thank you goes to Ross Tuck and Laura Cody for performing a thorough
review of this book. Thanks to your suggestions, the arguments are better, the progres-
sion smoother, and the risk of misunderstanding lower.

 All of this happened before Manning Publications adopted this book and worked
on a new release with me. Mike Stephens, thanks for accepting my proposal. It has
been an absolutely wonderful experience. Every conversation I’ve had with any staff
member was very helpful: Deirdre Hiam, production editor; Andy Carroll, copyeditor;
Keri Hales, proofreader; Aleksandar Dragosavljević, review editor; Tanya Wilke, tech-
nical development editor; and Justin Coulston, technical proofreader. Thanks so
much for all of your hard work on this project!

 I would also like to thank all of the reviewers: Angel R. Rodriguez, Bruno Sonnino,
Carlos Ezequiel Curotto, Charles Soetan, Harald Kuhn, Joseph Timothy Lyons, Justin
Coulston, Maria Gemini, Patrick Regan, Paul Grebenc, Samantha Berk, Scott Stein-
man, Shayn Cornwell, and Steve Westwood.

 In particular, I want to thank Elesha Hyde, the development editor of this project.
She did a great job at managing the process, as well as providing invaluable input to
increase the educational value of this book.

xv

about this book
Who should read this book

This book is for programmers with at least some basic knowledge of an object-oriented
programming language. You should understand the language’s possibilities regarding
class design. That is, I expect you to know what it means to define a class, instantiate it,
extend it, mark it as abstract, define a method, call it, define parameters and
parameter types, define return types, define properties and their types, etc.

 I also expect you to have some actual experience with all of this, even if it’s not
much. I think you should be able to read this book if you’ve just finished a basic pro-
gramming course, but also if you’ve been working with classes for years.

How this book is organized: A roadmap

Writing a book means taking a huge amount of material and shaping it into some-
thing relatively small and manageable. This is why creativity, without any constraints, is
expected to produce chaos. If you mix in some constraints, the chances of success are
much larger. Setting a number of constraints for yourself will help you make most of
the micro-decisions along the way, preventing you from getting stuck.

 Here are the constraints I introduced for this book:

■ No chapter titles will have the name of a principle or pattern in them. It should be clear
what the advice is, without having to remember what all that jargon meant.

xvi

ABOUT THIS BOOK xvii

■ Sections will be short. I don’t want this to be a heavy book that takes months to fin-
ish. I want the programming advice to be readily available, instead of being bur-
ied deep inside oracle-like philosophical mumblings. The advice should be
clear and easy to follow.

■ Chapters will have useful summaries. If you want to quickly reread a piece of
advice, or refer to it, you shouldn’t be forced to read the whole chapter again.
Useful summaries should conclude every chapter.

■ Code samples should come with suggestions for testing. Good object design makes test-
ing an object easier, and at the same time, the design of an object can improve
by testing it in the right way. So it makes sense to show suggestions for (unit)
testing next to suggestions for object design.

I also chose to use the following conventions:

■ I use the word “client” to represent the place where the class or method gets
called. Sometimes I use the term “call site.”

■ I use the word “user” to represent the programmer who uses your class by
instantiating it and calling methods on it. Note that this usually isn’t the user of
the application as a whole.

■ In code samples, I abbreviate statements with // ... and expressions with
/* ... */. I sometimes use // or /* ... */ to add some more context to the
examples.

The book starts with a chapter about programming with objects (chapter 1). This
chapter also offers a very brief introduction to unit testing. It helps us settle on termi-
nology and provides an overview of some important object-oriented concepts.

 The actual style guide starts with chapter 2. We first make a distinction between
two types of objects: services, and other objects. Then we discuss how service objects
should be created, and that they shouldn’t be manipulated after instantiation. In
chapter 3 we take a look at other objects, how they should be created, and how, in
some cases, they can be manipulated afterwards (chapter 4).

 Chapter 5 covers some general guidelines for writing methods, allowing you to add
behavior to objects. There will be two kinds of things a client can do with an object:
retrieve information from it (chapter 6), or let it perform a task (chapter 7). These
two use cases of an object come with different implementation rules. Chapter 8 shows
how you can make a distinction between write and read models, which helps you
divide the responsibilities of making changes and providing information over multi-
ple objects.

 Chapter 9 provides some advice for when it comes to changing the behavior of a
service object. It shows how you can change, or enhance, the behavior of services by
composing existing objects into new objects or by making behavior configurable.

 Chapter 10 is a field guide to objects. It shows you around the different areas of an
application, and points out the different types of objects you may encounter in these
areas.

ABOUT THIS BOOKxviii

 The books ends with chapter 11, where I provide a brief overview of topics you can
look into if you want to know more about object design, including some recommenda-
tions for further reading.

 Although this book will provide a steady learning path from beginning to end, it’s
also supposed to be useful as a reference guide. If you’re looking for advice on a cer-
tain topic, feel free to skip to the corresponding chapter.

About the code

The code samples are written in a fictional object-oriented language that’s optimized
to be read by a large number of object-oriented programmers. This language does not
really exist, so the code in this book can’t be executed in any runtime environment.
I’m confident that the code samples will be easy to understand if you have experience
with a language like PHP, Java, or C#. If you want to know more about the properties
of the imagined language used in this book, take a look at this book’s appendix.

 Some code samples will have accompanying unit test code. I assume the availability
of an xUnit-style test framework (PHPUnit, JUnit, NUnit, etc.). I rely on a limited set
of features when it comes to making assertions, checking for exceptions, or creating
test doubles. This should make all the code samples easily portable to your own favor-
ite testing frameworks and libraries.

liveBook discussion forum

Purchase of Object Design Style Guide includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask technical
questions, and receive help from the author and from other users. To access the forum,
go to https://livebook.manning.com/book/object-design-style-guide/discussion. You
can also learn more about Manning’s forums and the rules of conduct at https://
livebook.manning.com/#!/discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://livebook.manning.com/book/object-design-style-guide/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion
https://livebook.manning.com/#!/discussion

about the author
Matthias Noback is a professional web developer (since 2003).
He lives in Zeist, The Netherlands, with his girlfriend, son,
and daughter.

 Matthias has his own web development, training, and con-
sultancy company called Noback’s Office. He has a strong
focus on backend development and architecture, and he’s
always looking for better ways to design software.

 Since 2011, he’s been blogging about all sorts of
programming-related topics on matthiasnoback.nl. Other books by Matthias are A Year
with Symfony (Leanpub, 2013), Microservices for Everyone (Leanpub, 2017), and Prin-
ciples of Package Design (Apress, 2018). You can reach Matthias by email (info
@matthiasnoback.nl) or on Twitter (@matthiasnoback).

xix

https://matthiasnoback.nl/
mailto:info@matthiasnoback.nl
mailto:info@matthiasnoback.nl
mailto:info@matthiasnoback.nl

about the cover illustration
The figure on the cover of Object Design Style Guide is a woman from the island of Ulijan
off the coast of Croatia. The illustration is taken from a French book of dress customs,
Encyclopedie des Voyages by Jacques Grasset de Saint-Sauveur (1757–1810), published in
1796. Travel for pleasure was a relatively new phenomenon at the time, and illustrated
guides such as this one were popular, introducing both the tourist and the armchair
traveler to the inhabitants of other far-off regions of the world, as well as to the more
familiar regional costumes of France and Europe.

 The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s countries and peoples just 200 years ago.
This was a time when the dress codes of two regions, sometimes separated by just a few
dozen miles, identified people as belonging to one or the other, and when members of
a social class or trade or tribe could be easily distinguished by what they were wearing.

 Dress codes have changed since then, and the diversity by region, so rich at the
time, has slowly faded away. Today it is often hard to tell the inhabitants of one conti-
nent apart from another. But diversity by nationality, ethnicity, and geography still
exists in our modern world and should be recognized and honored, and this is what
we at Manning celebrate with our series of historical covers that bring back to life the
richness of dress codes from two centuries ago.

xx

Programming
 with objects: A primer

This chapter covers
 Working with objects

 Unit testing

 Dynamic arrays

Before we get into the actual style guide, this chapter covers some of the fundamental
aspects of programming with objects. We’ll briefly go over some important concepts
and establish a shared terminology that we can build on in the following chapters.

We’ll be covering the following topics in this chapter:

 Classes and objects—Creating objects based on classes, using a constructor,
static versus object methods, static factory methods for creating new
instances, and throwing exceptions inside a constructor (section 1.1).

 State—Defining private and public properties, assigning values to them, con-
stants, and mutable versus immutable state (section 1.2).

 Behavior—Private and public methods, passing values as arguments, and
NullPointerExceptions (section 1.3).

 Dependencies—Instantiating them, locating them, and injecting them as con-
structor arguments (section 1.4).

1

2 CHAPTER 1 Programming with objects: A primer

 Inheritance—Interfaces, abstract classes, overriding implementations, and final
classes (section 1.5).

 Polymorphism—Same interface, different behavior (section 1.6).
 Composition—Assigning objects to properties and building more advanced

objects (section 1.7).
 Return statements and exceptions—Returning a value from a method, throwing an

exception inside a method, catching exceptions, and defining custom excep-
tion classes (section 1.9).

 Unit testing—Arrange-Act-Assert, testing for failures, and using test doubles to
replace dependencies (section 1.10).

 Dynamic arrays—Using them to create lists or maps (section 1.11).

If you are somewhat familiar with all of these topics, feel free to skip this chapter and
jump to chapter 2. If some topics are unknown to you, take a look at the correspond-
ing sections. If you are just beginning as an object-oriented programmer, I recom-
mend reading this whole chapter.

Classes and objects1.1
The runtime behavior of an object is defined by its class definition. Using a given
class, you can create any number of objects. The following listing shows a simple class,
with no state or behavior, which can be instantiated.

class Foo
{

// There's nothing here
}

object1 = new Foo();
object2 = new Foo();

object1 == object2 // false

Once you have an instance, you can call methods on it.

A minimum viable classListing 1.1

Calling a method on an instanceListing 1.2

Two instances of the
same class should not
be considered the same.

class Foo
{

public function someMethod(): void
{

// Do something
}

}

object1 = new Foo();
object1.someMethod();

3Classes and objects

A regular method,like someMethod(), can only be called on an instance of the class.
Such a method is called an object method. You can also define methods that can be
called without an instance. These are called static methods.

class Foo
{

public function anObjectMethod(): void
{

// ...
}

public static function aStaticMethod(): void
{

// ...
}

}

object1 = new Foo();
object1.anObjectMethod();

Foo.aStaticMethod();

Besides object and static methods, a class can also contain a special method: the con-
structor. This method will be called before a reference to the object gets returned. If
you need to do anything to prepare the object before it’s going to be used, you can do
it inside the constructor.

class Foo
{

public function __construct()
{

// Prepare the object
}

}

object1 = new Foo();

You can prevent an object from being fully instantiated by throwing an exception inside
the constructor, as shown in the following listing. You can read more about exceptions
in section 1.9.

Defining a static methodListing 1.3

Defining a constructor methodListing 1.4

Throwing an exception inside the constructorListing 1.5

anObjectMethod() can
only be called on an
instance of SomeClass.

aStaticMethod() can be
called without an instance.

__construct() will be implicitly
called before a Foo instance
gets assigned to object1.

class Foo
{

public function __construct()
{

4 CHAPTER 1 Programming with objects: A primer

throw new RuntimeException();
}

}

try {
object1 = new Foo();

} catch (RuntimeException exception) {
// `object1` will be undefined here

}

The standard way to instantiate a class is using the new operator, as we just saw. It’s also
possible to define a static factory method on the class itself, which returns a new instance
of the class.

class Foo
{

public static function create(): Foo
{

return new Foo();
}

}

object1 = Foo.create();
object2 = Foo.create();

The create() method has to be defined as static because it should be called on the
class, not on an instance of that class.

1.2 State
An object can contain data. This data will be stored in properties. A property will have a
name and a type, and it can be populated at any moment after instantiation. A common
place for assigning values to properties is inside the constructor.

class Foo
{

private int someNumber;
private string someString;

public function __construct()
{

this.someNumber = 10;
this.someString = 'Hello, world!';

}
}

object1 = Foo.create();

Defining a static factory methodListing 1.6

Defining properties and assigning valuesListing 1.7

It won’t be possible to instantiate
Foo because its constructor always
throws an exception.

After instantiation, someNumber
and someString will contain 10
and ‘Hello, world!’ respectively.

5State

The data contained in an object is also known as its state. If that data is going to be
hardcoded, as in the previous example, you might as well make it part of the property
definition or define a constant for it.

class Foo
{

private const int someNumber = 10;
private someString = 'Hello, world!';

}

On the other hand, if the initial value of a property should be variable, you can let the
client provide a value for it as a constructor argument. By adding a parameter to the
constructor, you force clients to provide a value when instantiating the class.

class Foo
{

private int someNumber;

public function __construct(int initialNumber)
{

this.someNumber = initialNumber;
}

}

object1 = new Foo(); // doesn't work
object2 = new Foo(20);

Marking the someNumber and someString properties as private makes them available
to instances of Foo only. This is called scoping. Alternative scopes for properties are
protected (see section 1.5) and public. By making a property public, you make it
accessible to any client.

class Foo
{

public const int someNumber;

public string someString;

// ...
}

object1 = new Foo();
number = object1.someNumber;
object2.someString = 'Cliché';

Defining constantsListing 1.8

Adding a constructor argumentListing 1.9

Defining and using a public propertyListing 1.10

Your programming language may have a
different syntax. For example, in Java you
would use “final private int someNumber.”

It won’t be possible to instantiate Foo
without providing a value for initialNumber.

This should work; it assigns the initial
value of 20 to the someNumber
property of the new Foo instance.

Because someNumber is defined as a
constant, we can’t change its value,
but we can at least retrieve it.

someString is not a constant, but
it’s public, so we can change it.

6 CHAPTER 1 Programming with objects: A primer

Property scoping (as well as method scoping; see section 1.3), is class-based, meaning
that if a property is private, any instance of the same class has access to this property
on any instance of the same class, including itself.

class Foo
{

private int someNumber;

// ...

public function getSomeNumber(): int
{

return this.someNumber;
}

public function getSomeNumberFrom(Foo other): int
{

return other.someNumber;
}

}

object1 = new Foo();
object2 = new Foo();

object2.getSomeNumberFrom(object1);

When the value of an object’s property can change during the lifetime of the object,
it’s considered a mutable object. If none of an object’s properties can be modified after
instantiation, the object is considered an immutable object. The following listing shows
examples of both cases.

Accessing another instance’s private propertyListing 1.11

Mutable vs. immutable objectsListing 1.12

Private should be your default scope
In general, a private scope is preferable and should be your default choice. Limiting
access to object data helps the object keep its implementation details to itself. It
ensures that clients won’t rely on any specific piece of data owned by the object, and
that they will always talk to the object through explicitly defined public methods (find
out more about methods in section 1.3). We’ll discuss this topic in more detail in
later chapters; for instance, in sections 6.3 and 9.8.

Foo, of course, has access to its
own someNumber property.

Foo also has access to other’s
private property someNumber.

This will return the value of
object1’s someNumber property.

class Mutable
{

private int someNumber;

public function __construct(int initialNumber)
{

7Behavior

this.someNumber = initialNumber;
}

public function increase(): void
{

this.someNumber = this.someNumber + 1;
}

}

class Immutable
{

private int someNumber;

public function __construct(int initialNumber)
{

this.someNumber = initialNumber;
}

public function increase(): Immutable
{

return new Immutable(someNumber + 1);
}

}

object1 = new Mutable(10);
object1.increase();

object2 = new Immutable(10);
object2 = object2.increase();

In section 4.4 we’ll take a closer look at mutable objects and how to make them
immutable.

1.3 Behavior
Besides state, an object also has behaviors that its clients can make use of. These
behaviors are defined as methods on the object’s class. The public methods are the
ones accessible to clients of the object. They can be called any time after the object
has been created.

 Some methods will return something to the caller. In that case an explicit type will
be declared as the return type. Some methods will return nothing. In that case the
return type will be void.

An object’s behaviors are defined as public methodsListing 1.13

Calling increase() on Mutable will change
the state of object1 by changing the value
of its someNumber property.

Calling increase() on Immutable doesn’t change the
state of object2. Instead, we receive a new instance
with the value of someNumber increased.

class Foo
{

public function someMethod(): int
{

return /* ... */;
}

public function someOtherMethod(): void

8 CHAPTER 1 Programming with objects: A primer

{
// ...

}
}

object1 = new Foo();
value = object1.someMethod();

object1.someOtherMethod();

A class can also contain private method definitions. This works in the same way as
with private properties. Any instance of a given class can call private methods on any
other instance of the same class, including itself. Usually though, private methods are
used to represent smaller steps in a larger process.

class Foo
{

public function someMethod(): int
{

value = this.stepOne();

return this.stepTwo(value);
}

private function stepOne(): int
{

// ...
}

private function stepTwo(int value): int
{

// ...
}

}

Just like you can define constructor parameters, you can define method parameters. A
caller then has to provide a specific value as an argument when calling the method.
The method itself can use the value to determine what to do, it can pass it on to col-
laborating objects, or it can use it to change the value of a property.

class Foo
{

private int number;

public function setNumber(int newNumber): void
{

this.number = newNumber;
}

Private methodsListing 1.14

Several ways in which method arguments can be usedListing 1.15

someMethod() returns an integer,
which we can capture in a variable.

someOtherMethod() doesn’t return
anything specific, so a client can’t
capture its return value.

Here, newNumber will
become the new value of
the number property.

9Dependencies

private function multiply(int other): int
{

return this.number * other;
}

private function someOtherMethod(Bar bar): void
{

bar.doSomething();
}

}

Dependencies1.4
If object Foo needs object Bar to perform part of its job, Bar is called a dependency of
Foo. There are different ways to make sure that Foo has access to the Bar dependency.

 It could instantiate Bar itself.
 It could fetch a Bar instance from a known location.
 It could get a Bar instance injected upon construction.

The following listing shows an example of each option.

Different ways forListing 1.16 Foo to get access to a Logger instance

In this case, other will be
multiplied by the current
value of the number property.

Here, another object gets
passed as an argument, so
Foo can call a method on it.

Check for null arguments
Some languages allow a client to pass null as an argument even if the type of a
parameter has been explicitly declared. So in the example in listing 1.15, the pro-
vided argument for bar may be null, even though it’s typed as Bar. Trying to call
doSomething() on bar would then cause a NullPointerException to be thrown.
This is why you always have to check for null, or preferably, let a compiler or static
analyzer warn you against potential NullPointerExceptions.

The fictional programming language used in this book by default does not allow null
to be passed as an argument. In examples where we want to allow it, we explicitly
have to declare it using a question mark (?) after the type declaration of a method
parameter. This also works for property types and return types:

class Foo
{

private string? foo;

private function someOtherMethod(Bar? bar): Baz?
{

// ...
}

}

class Foo
{

public function someMethod(): void

10 CHAPTER 1 Programming with objects: A primer

{
logger = new Logger();
logger.debug('...');

}
}

class Foo
{

public function someMethod(): void
{

logger = ServiceLocator.getLogger();
logger.debug('...');

}
}

class Foo
{

private Logger logger;

public function __construct(Logger logger)
{

this.logger = logger;
}

public function someMethod(): void
{

this.logger.debug('...');
}

}

We’ll take a closer look at how to deal with dependencies in section 2.2. For now, it’s
good to know that fetching dependencies from a known location is called service location,
and that retrieving dependencies as constructor arguments is called dependency injection.

1.5 Inheritance
It’s possible to define only part of a class and let others expand on it. For instance, you
can have a class with no properties and no methods, but only method signatures. Such
a class is usually called an interface, and many object-oriented languages allow you to
define it as such. A class can then implement the interface and provide the actual
implementations of the methods that were defined in the interface.

interface Foo
{

public function foo(): void;
}

class Bar implements Foo
{
}

Listing 1.17 Bar and Baz “implementing” the Foo interface

Foo instantiates a
Logger when needed.

Foo fetches a Logger instance
from a known location.

Foo has an instance of Logger provided
to it as a constructor argument.

The Foo interface declares
a foo() method but doesn’t
provide an implementation.

Bar is an incorrect implementation
of Foo, because it doesn’t have an
implementation for the foo() method.

11Inheritance

class Baz implements Foo
{

public foo(): void
{

// ...
}

}

An interface doesn’t define any implementation, but an abstract class does. It allows
you to provide the implementation for some methods and only the signatures for
some other methods. An abstract class can’t be instantiated, but first has to be
extended by a class that provides implementations for the abstract methods.

abstract class Foo
{

abstract public function foo(): void;

public function bar(): void
{

// ...
}

}

class Baz extends Foo
{

public function foo(): void
{
}

}

Finally, a class could provide a full implementation for all its methods but allow other
classes to extend and override some of its methods.

class Foo
{

public function bar(): void
{

// do something
}

}

class Bar extends Foo
{

public function bar(): void
{

// do something else
}

}

Listing 1.18 Baz extends the abstract Foo class

Listing 1.19 Bar extends the Foo class and changes part of its behavior

Baz is a correct implementation
of Foo, because it provides an
implementation for the foo() method.

The foo() method is abstract and
has to be defined by a subclass.

Foo provides an actual
implementation for the bar() method.

Baz is a correct implementation of Foo,
because it provides an implementation
for the previously abstract foo() method.

Foo is a regular class, without
any abstract methods.

Bar extends Foo, which is now its
parent class. It can change the
behavior of its bar() method.

Foo is a regular class, without
any abstract methods.

12 CHAPTER 1 Programming with objects: A primer

Classes that extend from another class have access to public and protected methods
of the parent class.

class Foo
{

public function foo(): void
{

// do something
}

protected function bar(): void
{
}

private function baz(): void
{
}

}

class Bar extends Foo
{

public function someMethod(): void
{

$this->foo();

$this->bar();

//$this->baz();
}

}

Subclasses can only override protected and public methods of a parent class too.

class Foo
{

public function foo(): void
{

// do something
}

protected function bar(): void
{
}

private function baz(): void
{
}

}

Access toListing 1.20 public and protected methods

OverridingListing 1.21 public and protected methods

foo() is available because
it’s a public method.

bar() is
available

because it’s
a protected

method.

baz() is not available because
it’s a private method.

13Polymorphism

class Bar extends Foo
{

public function foo(): void
{

// ...
}

protected function bar(): void
{

// ...
}

private function baz(): void
{

// does not work
}

}

In this book, inheritance plays a small role, even though it’s supposed to be a very
important feature of object-oriented programming. In practice, using inheritance
mostly leads to a confusing design. In this book, we’ll use inheritance mainly in two
situations:

 When defining interfaces for dependencies
 When defining a hierarchy of objects, such as when defining custom exceptions

that extend from built-in exception classes

In most other cases we’d want to actively prevent developers to extend from our
classes. You can do so by adding the final keyword in front of the class. You can read
more about it in section 9.7.

final class Bar
{

// ...
}

class Baz extends Bar // won't work
{

// ...
}

Polymorphism1.6
Polymorphism is one of the foundations of object-oriented programming. Polymor-
phism means that if a parameter has a certain class as its type, any object that is an
instance of that class can be provided as a valid argument. For example, any instance
of Foo can be passed as an argument to the bar() method in the following listing.

Listing 1.22 Bar can’t be extended

foo() can be overridden
because it’s a public method.

bar() can be overridden because
it’s a protected method.

baz() can’t be overridden
because it’s a private method.

Bar is marked as final,
so Baz can’t extend it.

14 CHAPTER 1 Programming with objects: A primer

class Foo
{

// ...
}

final class Bar
{

public function bar(Foo foo): void
{

foo.someMethod();
}

}

Since one instance of Foo could have been configured in a different way, or otherwise
have a different internal state than another instance of Foo, every instance of Foo
could in theory behave differently. This means that you can change the behavior of
bar() without changing the code in bar().

 Even more variation in behavior can be introduced by subclasses. We’ve already
looked at inheritance and how you can use it to change the behavior of a parent class
by overriding (part of) its behavior in a subclass. Any object that is an instance of a sub-
class of Foo also counts as an instance of Foo itself. This makes any instance of that
subclass of Foo a valid argument for Foo-type parameters as well.

 As you’ll learn in chapter 9, using subclasses to change the behavior of objects is
often not recommended. In most situations it’s better to use polymorphism with an
interface parameter type. This looks the same in code (see the following listing), but
now Foo is an interface.

interface Foo
{

// ...
}

1.7

AnyListing 1.23 Foo instance will be accepted by bar()

Listing 1.24 Any Foo instance will be accepted by bar()

Foo is an interface now.

final class Bar
{

public function bar(Foo foo): void
{

foo.someMethod();
}

}

Composition
Besides being an example of polymorphism, listing 1.25 also shows how an object of
instance Foo can be used by another object (of type Bar) to perform part of its job. If
Foo is a service, it can also be provided to Bar as a constructor argument. Bar could
then assign the Foo object to one of its properties.

15Class organization

final class Bar
{

private Foo foo;

public function __construct(Foo foo)
{

this.foo = foo;
}

}

Assigning an object to another object’s property is called object composition. You are
building up a more complicated object out of simpler objects. Object composition
can be combined with polymorphism to compose your object out of other objects,
whose (interface) type you know, but not the actual class.

 Composition can be used with a service object, making part of its behavior config-
urable. It can also be used with other types of objects, like entities (sometimes known
as models), where composition is used for related child elements. For example, an
Order object that contains Line objects could use composition to establish the rela-
tionship between an order and its lines. In that case, a client might provide not a sin-
gle Line object, but a collection (array) of Line objects.

final class Order
{

private array lines;

public function __construct(array lines)
{

this.lines = lines;
}

}

Class organization1.8
Programming languages offer varying options for organizing classes: directories,
namespaces, components, modules, packages, etc. Sometimes the language even
offers ways to keep classes private to the module or package they are in. Just like with
property and method scopes, this can help reduce the potential coupling surface
between modules. This book doesn’t contain specific rules for organizing classes into
larger groups—it focuses on design rules for the classes themselves. If you’re inter-
ested in component-level organization principles, take a look at one of my other
books, Principles of Package Design (Apress, 2018).

The providedListing 1.25 Foo instance gets assigned to a property

AnListing 1.26 Order object assigns multiple Line objects to its property

Each element in lines
is a Line object.

16 CHAPTER 1 Programming with objects: A primer

Return statements and exceptions1.9
When you call a method, it will normally be executed statement by statement from the
top until a return statement is encountered, or the end of the method is reached. If
at some point you want to prevent further execution of a method, you can insert a
return statement, making sure that the rest of the method will be skipped.

final class Foo
{

public function someMethod(): void
{

if (/* should we stop here? */) {
return;

}

// ...
}

public function someOtherMethod(): bool
{

if (/* should we stop here? */) {
return false;

}

// ...

return true;
}

}

Another way to stop execution of a method is to throw an exception in it. An exception is
a special kind of object that, when instantiated, collects information about where the
object was instantiated and what happened before (the so-called stack trace). Normally
an exception indicates some kind of failure, such as

 The wrong method arguments were provided.
 A map has no value for the given key.
 Some external service is unreachable.

The following listing shows how to throw an exception.

final class Foo
{

public function someMethod(): void
{

if (/* should we stop here? */) {
throw new RuntimeException(

'Something is wrong'

AListing 1.27 return statement will prevent further execution of a method

Throwing an exception also prevents further execution of the methodListing 1.28

A method with a void return
type returns nothing.

A method with a specific return
type can return a specific value.

You can provide a custom
message for an exception.

17Return statements and exceptions

);
}

// ...
}

}

As soon as it becomes clear that the method won’t be able to perform its job correctly,
it should throw an exception. The difference from a simple return statement is that
the method doesn’t return anything when it throws an exception. In fact, execution
stops and can only be picked up by a client that has wrapped the method call inside a
try/catch block. The following listing shows how that works.

foo = new Foo();

try {
foo.someMethod();

} catch (Exception) {
// ...

}

Programming languages come with their own built-in set of exception classes. They
form some kind of hierarchy, like RuntimeException extends Exception, Invalid-
ArgumentException extends LogicException. You can also define your own excep-
tion classes. They should always extend one of the built-in exception classes. The
following listing shows an example.

A client can recover from an exception if it uses aListing 1.29 try/catch block

Defining a custom exceptionListing 1.30

If someMethod() throws an exception,
catch() will have caught it, and we can
continue doing other things.

final class CanNotFindFoo extends RuntimeException
{

// ... 1((CO25-1))
}

final class Foo
{

public function someMethod(): void
{

if (/* should we stop here? */) {
throw new CanNotFindFoo();

}

// ...
}

}

Exceptions are an important aspect of object design. They are part of the complete set
of behaviors that a client can expect from an object. We’ll talk about exceptions in
more detail later, such as in section 5.2.

18 CHAPTER 1 Programming with objects: A primer

Unit testing1.10
Defining objects by writing classes is not enough. Objects serve a purpose: they will be
used to perform a particular task, or to provide an answer to a specific question. To be
reliable, an object needs to behave in the way clients expect. Of course, you can write
a bit of code, then compile and run your application, and then find out if what you
wrote provides the expected outcome. But a more solid approach would be to write a
script that instantiates your object, calls one of its methods, and compares the result to
some written expectation.

 Unit-testing frameworks support this type of “scripted” approach. A framework will
look for classes of a specific type, also called test classes. It will then instantiate each
test class, and call each of the methods that are marked as a test (methods with the
@test annotation).

 The basic structure of each test method is Arrange-Act-Assert:

1 Arrange—Bring the object that we’re testing (also known as the SUT, or Subject
Under Test) into a certain known state.

2 Act—Call one of its methods.
3 Assert—Make some assertions about the end state.

The following listing shows a simple class with some accompanying unit tests.

A simple class with some unit testsListing 1.31

final class Foo
{

private int someNumber;

public function __construct(int startWith)
{

this.someNumber = startWith;
}

public function increment(): void
{

this.someNumber++;
}

public function someNumber(): int
{

return this.someNumber;
}

}

final class FooTest
{

/**
* @test
*/

public function you_can_start_with_a_given_number(): void
{

19Unit testing

// Arrange
foo = new Foo(10);

// Act

// Assert
assertEquals(10, foo.someNumber());

}

/**
* @test
*/

public function you_can_increment_the_number(): void
{

// Arrange
foo = new Foo(10);

// Act
foo.increment();

// Assert
assertEquals(11, foo.someNumber());

}
}

If in the second test the return value of someNumber() is the expected value, namely
11, everything is fine. The execution flow will continue and give back control to the
test framework. If, however, someNumber() hasn’t been fully implemented yet, or has
been implemented incorrectly, the call to assertEquals() will cause an exception to
be thrown. If, for example, someNumber() returns 20, the test framework will record
that this test has failed. Once you have fixed the problem and run the test again, the
test will pass.

 assertEquals() and related assertions, such as assertTrue(), assertNull(), and
so on, are usually built into the testing framework. They can be used to compare the
return value of a successful method call. But sometimes you’ll want to verify that a
method call fails in a controlled way. For instance, if you wanted to put a restriction on
the initial number provided to the constructor of Foo (for example, “it should be
greater than or equal to 0”), you’d want to verify in a unit test that providing a nega-
tive number causes Foo to throw an exception. The following listing shows how you
could do this using plain code.

Testing for failuresListing 1.32

No actual action is performed
here. We just verify the
expected state of the object.

Here we call increment(), which is the
action. Afterwards, we verify that the
object is in the expected state.

final class Foo
{

private int someNumber;

public function __construct(int startWith)
{

if (startWith < 0) {

20 CHAPTER 1 Programming with objects: A primer

throw new InvalidArgumentException(
'A negative starting number is not allowed'

);
}
this.someNumber = startWith;

}

// ...
}

final class FooTest
{

/**
* @test
*/

public function you_cannot_start_with_a_negative_number(): void
{

try {
new Foo(-10);
throw new RuntimeException(

'The constructor should have failed'
);

} catch (Exception exception) {
if (exception.className != InvalidArgumentException.className) {

throw new RuntimeException(
'We expected a different type of exception'

);
}

assertContains('negative', exception.getMessage());
}

}

// ...
}

This is a lot of boilerplate code for every failure scenario you want to test. Luckily, test-
ing frameworks usually have some tooling for testing exceptions—something like the
expectException() utility function shown in the following listing.

final class FooTest
{

/**
* @test
*/

public function you_cannot_start_with_a_negative_number(): void
{

expectException(
InvalidArgumentException.className,
'negative',
function () {

A utility function for testing for failuresListing 1.33

If instantiating Foo with a negative
number doesn’t throw an exception,
we should mark the test as failed.

If a caught
exception’s

class doesn’t
match the
expected

exception
class, mark the

test as failed.

Finally, we verify that the exception’s
message contains the expected keyword.

The expected
exception classThe expected

message
keyword

An anonymous function that calls
the method that’s expected to fail

21Unit testing

new Foo(-10);
}

);
}

// ...
}

If the object you’re testing has a dependency, you may not want to use the real depen-
dency when testing. For example, maybe that dependency would make changes to a
database, or start sending out emails. Every test run would produce these undesired
side effects. In a situation like this, we’ll want to replace the actual dependency with a
stand-in object that looks like the real dependency but replaces part of its original
behavior. The following listing shows an example of this.

interface Mailer 1((CO28-1))
{

public function sendWelcomeEmail(UserId userId): void;
}

final class ActualMailer implements Mailer
{

public function sendWelcomeEmail(UserId userId): void
{

// Send an actual email
}

}

final class StandInMailer implements Mailer
{

public function sendWelcomeEmail(UserId userId): void
{

// Do nothing
}

}

class Foo
{

private Mailer mailer;

public function __construct(Mailer mailer)
{

this.mailer = mailer;
}

}

// In a test:
foo = new Foo(new StandInMailer());

If you also want to verify that Foo actually called sendWelcomeEmail(), you can use a
special kind of stand-in, called a mock. Testing frameworks usually offer special tooling

Using a test doubleListing 1.34

Define an
interface for the
dependency, and
provide a stand-in
implementation
for it.

In a test, we can instantiate
Foo, providing the stand-in
as a constructor argument.

22 CHAPTER 1 Programming with objects: A primer

for setting up such a mock and making the required assertions. The following listing
shows an example of mocking without the use of special tooling.

final class MockMailer implements Mailer
{

private bool hasBeenCalled = false;

public function sendWelcomeEmail(UserId userId): void
{

this.hasBeenCalled = true;
}

public function hasBeenCalled(): bool
{

return this.hasBeenCalled;
}

}

class Foo
{

private Mailer mailer;

public function __construct(Mailer mailer)
{

this.mailer = mailer;
}

public function someMethod(): void
{

this.mailer.sendWelcomeEmail();
}

}

// In a test:
mockMailer = new MockMailer();
foo = new Foo(mockMailer);

foo.someMethod();

assertTrue(mockMailer.hasBeenCalled());

We’ll talk in more detail about test doubles in sections 6.6 and 7.7.
 There’s a lot more to say about testing and how you should approach it, but it goes

beyond the scope of this book.1 In this section, I wanted to show some of the basic
techniques used in unit testing. There will be more detailed examples and discussions
later in this book.

Using a simple mock to verify that a method was actually calledListing 1.35

The only thing this mock does is record
the fact that its sendWelcomeEmail()
method was called.

We provide the mock
as a dependency.

At the end of the test, we verify
that the mock has in fact received
a call to sendWelcomeEmail().

1Other good books on this topic include Test-Driven Development: By Example by Kent Beck (Addison-Wesley
Professional, 2002); Growing Object-Oriented Software, Guided by Tests by Steve Freeman and Nat Pryce (Addison-
Wesley Professional, 2009); and XUnit Test Patterns by Gerard Meszaros (Addison-Wesley Professional, 2007).

23Dynamic arrays

Dynamic arrays1.11
This book is a style guide for object design. Most code samples will therefore focus on
classes, properties, and methods. The code inside the methods is less important, so I’ve
tried to make that code as simple as possible. However, for some examples I needed
data structures like maps and lists. Using dedicated List or Map classes and explicitly
specifying the types of the keys or values of their elements would make the code samples
too verbose, so I decided to use something known as a dynamic array instead.

 A dynamic array is a data structure that can be used to create both lists and maps. A
list is a collection of values with a particular order. A list can be looped over, and you
can retrieve a specific value by its index, which will be an integer starting with 0.

emptyList = [];

listOfStrings = ['foo', 'bar'];

// Looping over a list:
foreach (listOfStrings as key => value) {

// First time: key = 0, value = 'foo'
// Second time: key = 1, value = 'bar'

}

// Alternatively, if the key is irrelevant:
foreach (listOfStrings as value) {

// First time: value = 'foo'
// Second time: value = 'bar'

}

// Retrieving the value at a specific index:
fooString = listOfStrings[0];
barString = listOfStrings[1];

// Adding items to the list:
listOfStrings[] = 'baz';

A map is also a collection of values, but the values have no particular order. Instead,
each value can be added to the map with a particular key, which is a string. Using the
key, you can later retrieve the value from the map. The following listing shows an
example of how a dynamic array can be used as a map.

emptyMap = [];

mapOfStrings = [
'foo' => 'bar',
'bar' => 'baz'

];

A dynamic array used as a listListing 1.36

A dynamic array used as a mapListing 1.37

24 CHAPTER 1 Programming with objects: A primer

// Looping over a map:
foreach (mapOfStrings as key => value) {

// First time: key = 'foo', value = 'bar'
// Second time: key = 'bar', value = 'baz'

}

// Retrieving the value at a specific index:
fooString = mapOfStrings['foo'];
barString = mapOfStrings['bar'];

// Adding items to the map:
mapOfStrings['baz'] = 'foo';

These arrays are called dynamic because you don’t have to declare a type for the keys or
the values they contain, and because you don’t have to provide an initial size for them.
A dynamic array will grow automatically whenever you try to add a new value to it.

Summary
 Objects can be instantiated based on a given class.
 A class defines properties, constants, and methods.
 Private properties and methods are accessible to instances of the same class.

Public properties and methods are accessible to any client of an object.
 An object is immutable if all of its properties can’t be modified, and if all

objects contained in those properties are immutable themselves.
 Dependencies can be created on the fly, fetched from a known location, or

injected as constructor arguments (which is called dependency injection).
 Using inheritance you can override the implementation of certain methods of a

parent class. An interface can declare methods but leave their implementations
entirely to a class that implements the interface.

 Polymorphism means that code can use another object’s methods as defined by
its type (usually an interface), but that the runtime behavior can be different
depending on the specific instance that is provided by the client.

 When an object assigns other objects to its properties, it’s called composition.
 Unit tests specify and verify the behaviors of an object.
 While testing, you may replace an object’s actual dependencies with stand-ins

known as test doubles (such as stubs and mocks).
 Dynamic arrays can be used to define lists or maps without specifying types for

its keys and values.

Creating services

In the following two chapters, we’ll discuss different types of objects and the guide-
lines for instantiating them. Roughly speaking, there are two types of objects, and
they both come with different rules. In this chapter we’ll consider the first type of
objects: services. The creation of other objects will be the topic of chapter 3.

2.1 Two types of objects
In an application there will typically be two types of objects:

 Service objects that either perform a task or return a piece of information
 Objects that will hold some data, and optionally expose some behavior for

manipulating or retrieving that data

This chapter covers
 Instantiating service objects

 Injecting and validating dependencies and
configuration values

 Promoting optional constructor arguments
to required ones

 Making implicit dependencies explicit

 Designing services to be immutable

25

26 CHAPTER 2 Creating services

Objects of the first type will be created once, and then be used any number of times,
but nothing can be changed about them. They have a very simple lifecycle. Once
they’ve been created, they can run forever, like little machines with specific tasks.
These objects are called services.

 The second type of objects are used by the first type to complete their tasks. These
objects are the materials that the services work with. For instance, a service may
retrieve such an object from another service, and it would then manipulate the object
and hand it over to another service for further processing (figure 2.1). The lifecycle of
a material object may therefore be more complicated than that of a service: after it has
been created, it could optionally be manipulated, and it may even keep an internal
event log of everything that has
happened to it.

 Service objects are do-ers, and
they often have names indicating
what they do: controller, renderer,
calculator, etc. Service objects can
be constructed by using the new
keyword to instantiate their class,
e.g., new FileLogger().

 In this chapter we’ll discuss all
the relevant aspects of instantiat-
ing a service. You’ll learn how to
deal with its dependencies, what
you can and can’t do inside its
constructor, and to instantiate it
once and make it reusable many
times.

Exercises
1 Which of the following are likely to be the class name of a service object?

a User
b EventDispatcher
c UserRepository

d Route

2 Which of the following are likely to be the class name of some other object?

a DiscountCalculator

b Product
c TemplateRenderer

d Credentials

Figure 2.1 This UML-style sequence diagram shows how
services will call other services, passing along other types
of objects as method arguments or return values. Inside a
service method, such an object may be manipulated, or a
service may retrieve data from it.

Service

call

Service

return

Object

Object

Object

call

27Inject dependencies and configuration values as constructor arguments

Inject dependencies and configuration values2.2
as constructor arguments
A service usually needs other services to do its job. Those other services are its depen-
dencies, and they should be injected as constructor arguments. The following File-
Logger class is an example of a service with its dependency.

interface Logger
{

public function log(string message): void;
}

final class FileLogger implements Logger
{

private Formatter formatter;

public function __construct(Formatter formatter)
{

this.formatter = formatter;
}

public function log(string message): void
{

formattedMessage = this.formatter.format(message);

// ...
}

}

logger = new FileLogger(new DefaultFormatter());
logger.log('A message');

Making every dependency available as a constructor argument will make the service
ready for use immediately after instantiation. No further setup will be required, and
you can’t accidentally forget to provide a dependency.

 Sometimes a service needs some configuration values, like a location for storing
files or credentials for connecting to an external service. Inject such configuration val-
ues as constructor arguments too, as in the following listing.

final class FileLogger implements Logger
{

// ...

private string logFilePath;

public function __construct(
Formatter formatter,

string logFilePath

TheListing 2.1 FileLogger service

Listing 2.2 FileLogger has a dependency and needs a configuration value

Formatter is a
dependency of
FileLogger.

logFilePath is a configuration value
that tells the FileLogger to which file
the messages should be written.

28 CHAPTER 2 Creating services

) {
// ...

this.logFilePath = logFilePath;
}

public function log(string message): void
{

// ...

file_put_contents(
this.logFilePath,
formattedMessage,
FILE_APPEND

);
}

}

These configuration values may be globally available in your application in some kind
of parameter bag, settings object, or other large data structure, along with other con-
figuration values. Instead of injecting the whole configuration object, make sure you
only inject the values that the service actually needs.

2.2.1

Exercises
3 Rewrite the constructor of FileCache to receive only the configuration values it

needs, instead of the application’s entire configuration object:

final class FileCache implements Cache
{

private AppConfig appConfig;

public function __construct(AppConfig appConfig)
{

this.appConfig = appConfig;
}

public function get(string cacheKey): string
{

directory = this.appConfig.get('cache.directory');

// ...
}

}

Keeping together configuration values that belong together

A service shouldn’t get the entire global configuration object injected—only the
values that it needs. However, some of these values will always be used together, and
injecting them separately would break their natural cohesion. Take a look at the
following example, where an API client gets the credentials for connecting to the API
injected as separate constructor arguments.

29Inject dependencies and configuration values as constructor arguments

final class ApiClient
{

private string username;
private string password;

public function __construct(string username, string password)
{

this.username = username;
this.password = password;

}
}

To keep these values together, you can introduce a dedicated configuration object.
Instead of injecting the username and password separately, inject a Credentials
object that contains both.

final class Credentials
{

private string username;
private string password;

public function __construct(string username, string password)
{

this.username = username;
this.password = password;

}

public function username(): string
{

return this.username;
}

public function password(): string
{

return this.password;
}

}

final class ApiClient
{

private Credentials credentials;

public function __construct(Credentials credentials)
{

this.credentials = credentials;
}

}

Using separate constructor arguments for username and passwordListing 2.3

Username and password are now together in aListing 2.4 Credentials object

30 CHAPTER 2 Creating services

Inject what you need, no2.3 t where you can get it from
If a framework or library is complicated enough, it will offer you a special kind of
object that holds every service and configuration value you could ever want to use.
Common names for such a thing are service locator, manager, registry, or container.

Exercises
4 Rewrite the constructor of the MySQLTableGateway class in such a way that the

connection information can be passed as an object:

final class MySQLTableGateway
{

public function __construct(
string host,
int port,
string username,
string password,
string database,
string table

) {
// ...

}
}

What’s a service locator?
A service locator is itself a service, from which you can retrieve other services. The
following example shows a service locator that has a get() method. When called,
the locator will return the service with the given identifier, or throw an exception if the
identifier is invalid.

final class ServiceLocator
{

private array services;

public function __construct()
{

this.services = [
'logger' => new FileLogger(/* ... */)

];
}

public function get(string identifier): object
{

if (!isset(this.services[identifier])) {
throw new LogicException(

A simplified implementation of a service locatorListing 2.5

You can have
any number of
services here.

31Inject what you need, not where you can get it from

Because a service locator gives you access to all of the available services in an applica-
tion, it may be tempting to inject a service locator as a constructor argument and be
done with it, as in the following listing.

final class HomepageController
{

private ServiceLocator locator;

Listing 2.6 Using a ServiceLocator to retrieve dependencies

'Unknown service: ' . identifier
);

}

return this.services[identifier];
}

}

In this sense, a service locator is like a map; you can retrieve services from it as long
as you know the correct key. In practice, this key is often the name of the service
class or interface that you want to retrieve.

The implementation of a service locator is usually more advanced than the preceding
example. A service locator often knows how to instantiate all the services of an appli-
cation, and it will take care of providing the right constructor arguments when doing so.
It will also reuse already instantiated services, which can improve runtime performance.

Instead of injecting the dependencies we need, we
inject the whole ServiceLocator, from which we can

later retrieve any specific dependency.

public function __construct(ServiceLocator locator)
{

this.locator = locator;
}

public function execute(Request request): Response
{

user = this.locator.get(EntityManager.className)
.getRepository(User.className)
.getById(request.get('userId'));

return this.locator.get(ResponseFactory.className)
.create()
.withContent(

this.locator.get(TemplateRenderer.className)
.render(

'homepage.html.twig',
[

'user' => user
]

),
'text/html'

);
}

}

32 CHAPTER 2 Creating services

This results in a lot of extra function calls in the code, obscuring what Homepage-
Controller really does. Furthermore, because services aren’t injected as dependen-
cies, HomepageController needs to know how to retrieve them. Finally, this service now
has access to many other services that can be retrieved from the service locator. Even-
tually this service will end up fetching all kinds of unrelated things from the service loca-
tor because it doesn’t push the programmer to look for a better design alternative.

 To prevent all these problems, we can apply the following rule: Whenever a service
needs another service in order to perform its task, it should declare the latter explicitly
as a dependency and get it injected as a constructor argument. The ServiceLocator in
the preceding example is not a true dependency of HomepageController; it’s used to
retrieve the actual dependencies. So instead of declaring ServiceLocator as a depen-
dency, the controller should declare the actual dependencies that it needs as construc-
tor arguments, and expect them to be injected.

final class HomepageController
{

private EntityManager entityManager;
private ResponseFactory responseFactory;
private TemplateRenderer templateRenderer;

public function __construct(
EntityManager entityManager,
ResponseFactory responseFactory,
TemplateRenderer templateRenderer

) {
this.entityManager = entityManager;
this.responseFactory = responseFactory;
this.templateRenderer = templateRenderer;

}

public function execute(Request request): Response
{

user = this.entityManager.getRepository(User.className)
.getById(request.get('userId'));

return this.responseFactory
.create()
.withContent(

this.templateRenderer.render(
'homepage.html.twig',
[

'user' => user
]

),
'text/html'

);
}

}

Injecting the actual dependencies as constructor argumentsListing 2.7

33Inject what you need, not where you can get it from

The resulting dependency graph, shown in figure 2.2, is much more honest about the
actual dependencies of the class.

 We should make another iteration here. We only need EntityManager because we
fetch the user repository from it. We should make the repository an explicit depen-
dency instead.

final class HomepageController
{

private UserRepository userRepository;
// ...

public function __construct(
UserRepository userRepository,
/* ... */

) {
this.userRepository = userRepository
// ...

}

public function execute(Request request): Response
{

user = this.userRepository
.getById(request.get('userId'));

// ...
}

}

The actual dependency isListing 2.8 UserRepository, not EntityManager

TemplateRenderer

Uses

Before:

After:

ResponseFactory
Uses

EntityManagerUses

HomepageController

ServiceLocator
Uses

HomepageController
Figure 2.2 In the initial
version, Homepage-
Controller only seemed
to have one dependency.
After we get rid of the
ServiceLocator
dependency, it’s clear that
HomepageController
actually has three
dependencies.

What if I need the service and the service I retrieve from it?
Consider the following code that needs both the EntityManager and User-
Repository dependencies:

user = this.entityManager
.getRepository(User.className)
.getById(request.get('userId'));

user.changePassword(newPassword);
this.entityManager.flush();

34 CHAPTER 2 Creating services

All constructor argume2.4 nts should be required
Sometimes you may feel like a dependency is optional; the object could function very
well without it. An example of such an optional dependency could be the Logger we
just saw. You may consider logging to be a secondary concern for the task at hand.

 To make it an optional dependency of a service, you can make it an optional con-
structor argument, as in the following listing.

final class BankStatementImporter
{

private Logger? logger;

public function __construct(Logger? logger = null)
{

this.logger = logger;
}

public function import(string bankStatementFilePath): void

Listing 2.9 Logger as an optional constructor argument

(continued)
If we follow the advice to inject UserRepository instead of EntityManager, we’ll
end up with an extra dependency, because we’ll still need EntityManager for flush-
ing (persisting) the entity.

Situations like this usually require a redistribution of responsibilities. The object that
can retrieve a User entity might just as well be able to persist any changes that are
made to it. In fact, such an object would follow an established pattern, the Repository
pattern. Since we already have a UserRepository class, it would make sense to add
a flush(), or (now that we have the opportunity to choose another name) save()
method to it:

user = this.userRepository.getById(request.get('userId'));
user.changePassword(newPassword);
this.userRepository.save(user);

Exercises
5 How can you know if you’re injecting the right dependency into the constructor of

a service object?

a If the service calls any method on it.
b If the service retrieves a dependency from it.
c If the service doesn’t retrieve a dependency from it, but uses the dependency

directly.

logger can be null
or an instance of
Logger.

35All constructor arguments should be required

{
// Import the bank statement file

// Every now and then log some information for debugging...
}

}

importer = new BankStatementImporter();

However, this unnecessarily complicates the code inside the BankStatementImporter
class. Whenever you want to log something, you first have to check if a Logger
instance has indeed been provided (if you don’t, and no Logger has been injected,
you’ll get a fatal error):

public function import(string bankStatementFilePath): void
{

// ...

if (this.logger instanceof Logger) {
this.logger.log('A message');

}
}

To prevent this kind of workaround for optional dependencies, every dependency
should be a required one.

 The same goes for configuration values. You may feel like the user of a FileLogger
doesn’t really have to provide a path to write log messages to if a sensible default path exists.
You could add a default value for the corresponding constructor argument as follows.

final class FileLogger implements Logger
{

public function __construct(
string logFilePath = '/tmp/app.log'

) {
// ...

}
}

logger = new FileLogger();

However, when someone instantiates this FileLogger class, it won’t be immediately
clear to which file the log messages will be written. The situation gets worse if the
default value is buried deeper in the code, as in the following example.

The client doesn’t have to provide a value forListing 2.10 logFilePath

The default value forListing 2.11 logFilePath is hidden in log()

BankStatementImporter
can be instantiated without
a Logger instance.

If the user omits the
logFilePath argument,
/tmp/app.log will be used.

final class FileLogger implements Logger
{

private string? logFilePath;

36 CHAPTER 2 Creating services

public function __construct(string? logFilePath = null)
{

this.logFilePath = logFilePath;
}

public function log(string message): void
{

// ...

file_put_contents(
this.logFilePath != null ? this.logFilePath : '/tmp/app.log',
formattedMessage,
FILE_APPEND

);
}

}

To figure out which file path a FileLogger actually uses, the user must dive into the
code of the FileLogger class itself. Also, the default path is now an implementation
detail that could easily change without the user noticing.

 Instead, you should always let the user of the class provide any configuration value
the object needs. If you do this for all classes, you can find out how an object has been
configured simply by looking at how it’s instantiated.

 In summary, whether constructor arguments are used to inject dependencies or to
provide configuration values, constructor arguments should always be required and
not have default values.

2.5 Only use constructor injection
Another trick that’s used to optionally inject dependencies is to add a setter to the
class, which can be called if the user decides they want to use the dependency. An
example of this approach is the setLogger() method of BankStatementImporter,
which allows the client to inject a Logger service into it after it has been constructed.

final class BankStatementImporter
{

private Logger? logger;

public function __construct()
{
}

AListing 2.12 Logger can be provided later by calling setLogger ()

public function setLogger(Logger logger): void
{

this.logger = logger;
}

// ...

37There’s no such thing as an optional dependency

}

importer = new BankStatementImporter();

importer.setLogger(logger);

This solution comes with the same problem described earlier: it complicates the code
inside the class. Furthermore, setter injection violates two rules that we’ll cover later:

 It shouldn’t be possible to create an object in an incomplete state.
 Services should be immutable, that is, impossible to change after they have

been fully instantiated.

In short, don’t use setter injection; only use constructor injection.

2.6 There’s no such thing as an optional dependency
The previous sections can be summarized as: “There’s no such thing as an optional
dependency.” You either need the dependency, or you don’t. Still, suppose you really
consider logging to be a secondary concern. Now that I’ve advised you to use only
constructor injection and make all constructor arguments required, what can you do
about it? In many cases you can resort to using a stand-in object that looks just like the
real thing but doesn’t do anything, like the following NullLogger implementation of
the Logger interface.

final class NullLogger implements Logger
{

public function log(string message): void
{

// Do nothing
}

}

importer = new BankStatementImporter(new NullLogger());

Such a harmless object is often called a null object, or sometimes a dummy.
 If the injected optional dependency isn’t a service, but a configuration value of

some sort, you can use a similar approach. The configuration value should still be a
required argument, but you should provide a way for the user to obtain a sensible
default value.

final class MetadataFactory
{

public function __construct(Configuration configuration)
{

An implementation of theListing 2.13 Logger interface that does nothing

A defaultListing 2.14 Configuration object can easily be obtained

38 CHAPTER 2 Creating services

// ...
}

}

metadataFactory = new MetadataFactory(
Configuration.createDefault()

);

2.7

2.7.1

Instead of making MetadataFactory’s
configuration argument optional,
provide a Configuration class with a
sensible default state.

Exercises
6 The CsvImporter class has an optional dependency on an object that imple-

ments the EventDispatcher interface. Rewrite the CsvImporter class, promot-
ing EventDispatcher to a required dependency. Provide a convenient
alternative for users who don’t want to inject a full-blown EventDispatcher.

interface EventDispatcher
{

public function dispatch(string eventName): void;
}

final class CsvImporter
{

private EventDispatcher? eventDispatcher;

public function __construct(EventDispatcher? eventDispatcher)
{

this.setEventDispatcher(eventDispatcher);
}

public function setEventDispatcher(
EventDispatcher eventDispatcher

): void {
this.eventDispatcher = eventDispatcher;

}
}

Make all dependencies explicit
If all of your dependencies and configuration values have been properly injected as
constructor arguments, there may still be room for hidden dependencies. They are
hidden, because they can’t be recognized by taking a quick look at the constructor
arguments.

Turn static dependencies into object dependencies

In some applications, it’s possible to retrieve globally available dependencies using
static accessors. Anywhere in your code, you can make calls like ServiceRegistry

.get() or Cache.get(). Every time a service retrieves its dependencies like this,
rewrite the service to receive these dependencies as injected constructor arguments
instead. This has the extra advantage of making the all dependencies explicit.

39Make all dependencies explicit

2.7.2

Inject aListing 2.15 Cache instance instead of using its static methods

// Before:
final class DashboardController
{

public function execute(): Response
{

recentPosts = [];

if (Cache.has('recent_posts')) {
recentPosts = Cache.get('recent_posts');

}

// ...
}

}

// After:
final class DashboardController
{

private Cache cache;

public function __construct(Cache cache)
{

this.cache = cache;
}

public function execute(): Response
{

recentPosts = [];

if (this.cache.has('recent_posts')) {
recentPosts = this.cache.get('recent_posts');

}

// ...
}

}

Turn complicated functions into object dependencies

Sometimes dependencies are hidden because they are functions, not objects. These
functions are often part of the standard library of the language, such as json_encode()

or simplexml_load_file(), and there’s a lot of functionality behind these functions. If
you had to write the code for them yourself, you would have to introduce lots of classes
to deal with the complexity, and you would eventually inject the whole thing as a depen-
dency into your service. This would make it a true object dependency of the service,
instead of a hidden dependency, which a function usually is.

 You can promote these functions to become true service dependencies by intro-
ducing a custom class that wraps the function call. The wrapper class is a great starting
place to add custom logic around the standard library function, such as providing
default arguments or improving the way it handles errors.

40 CHAPTER 2 Creating services

// Before:

final class ResponseFactory
{

public function createApiResponse(array data): Response
{

return new Response(
json_encode(data, JSON_THROW_ON_ERROR | JSON_FORCE_OBJECT),
[

'Content-Type' => 'application/json'
]

);
}

}

// After:

final class JsonEncoder
{

/**
* @throws RuntimeException
*/

public function encode(array data): string
{

try {
return json_encode(

data,
JSON_THROW_ON_ERROR | JSON_FORCE_OBJECT

);
} catch (RuntimeException previous) {

throw new RuntimeException(
'Failed to encode data: ' . var_export(data, true),
0,
previous

);
}

}
}

final class ResponseFactory
{

private JsonEncoder jsonEncoder;

public function __construct(JsonEncoder jsonEncoder)
{

this.jsonEncoder = jsonEncoder;
}

public function createApiResponse(data): Response
{

return new Response(
this.jsonEncoder.encode(data),
[

Listing 2.16 JsonEncoder wraps the json_encode() call

json_encode() is a
hidden dependency.

From now on, a call
to json_encode() will
always have the
right arguments.

We can throw our own exception
now, providing more information
that will help us with debugging.

A JsonEncoder
instance can now be
injected as an actual,
explicit dependency.

41Make all dependencies explicit

'Content-Type' => 'application/json'
]

);
}

}

Promoting the job of JSON encoding to a true object dependency of Response-
Factory makes it easier for the user of this class to form a picture of what it does, sim-
ply by looking at its list of constructor arguments. Introducing an object dependency
is also the first step toward making the behavior of the service reconfigurable without
touching its code. We’ll get back to this topic in chapter 9.

Make system calls explicit2.7.3

A subset of functions and classes provided by the language will also count as implicit
dependencies: functions that reach out to the world outside. Examples are a DateTime
class and functions like time() and file_get_contents().

 Consider the following MeetupRepository class, which depends on the system
clock to get the current time.

final class MeetupRepository
{

private Connection connection;

Listing 2.17 MeetupRepository depends on the current time

Should all functions be promoted to object dependencies?
Not all functions have to wrapped in objects and be injected as dependencies. For
instance, functions that could easily be written inline (array_keys(), strpos(),
etc.) definitely don’t need to be wrapped.

To determine whether or not you should extract an object dependency, you could ask
the following questions:

 Will you want to replace or enhance the behavior provided by this dependency
at some point?

 Is there a certain level of complexity to the behavior of this dependency, such
that you couldn’t achieve the same result with just a few lines of custom
code?

 Is the function dealing with objects instead of just primitive-type values?

If the answers are mostly yes, you’d likely want to turn the function call into an object
dependency. An added benefit of doing so is that it will be easier to describe in a test
what behavior you expect from it. This will help you replace the function call with
another one, with some custom code, or maybe even with an entire library that
exposes the same behavior.

42 CHAPTER 2 Creating services

public function __construct(Connection connection)
{

this.connection = connection;
}

public function findUpcomingMeetups(string area): array
{

now = new DateTime();

return this.findMeetupsScheduledAfter(now, area);
}

public function findMeetupsScheduledAfter(
DateTime time,
string area

): array {
// ...

}
}

The current time isn’t something that this service could derive from either the pro-
vided method arguments, or from any of its dependencies, so it’s a hidden depen-
dency. Since there is no service available to get the current time, you have to define
your own, as in the following listing.

interface Clock
{

public function currentTime(): DateTime;
}

final class SystemClock implements Clock
{

public function currentTime(): DateTime
{

return new DateTime();
}

}

final class MeetupRepository
{

// ...
private Clock clock;

public function __construct(
Clock clock,
/* ... */

) {
this.clock = clock;

}

public function findUpcomingMeetups(string area): array

Listing 2.18 Clock can be used to retrieve the current time

Instantiating a
DateTime object
with no arguments
will implicitly ask
the system what the
current time is.

A suitable name for this new service,
which can tell us the current time,
would simply be “Clock.”

The standard implementation for
this service will use the system’s
clock to return a DateTime object
representing the current time.

43Make all dependencies explicit

{
now = this.clock.currentTime();

// ...
}

}

meetupRepository = new MeetupRepository(new SystemClock());
meetupRepository.findUpcomingMeetups('NL');

By moving the system call (“What’s the current time?”) outside of the Meetup-
Repository class, we have improved the testability of the MeetupRepository class
itself. If we had run tests in the original situation, the class would have used the actual
current time. This makes the result of the test dependent on the date and time when
the test runs. That’s likely to make the test unstable, and cause it to fail after a certain
date. Instead of applying patches to the problem, we can now use the Clock interface
and replace the “current time” based on the system’s clock with a “fixed time” that’s
completely under our control, something like the following.

final class FixedClock implements Clock
{

private DateTime now;

public function __construct(DateTime now)
{

this.now = now;
}

public function currentTime(): DateTime
{

return this.now;
}

}

meetupRepository = new MeetupRepository(
new FixedClock(

new DateTime('2018-12-24 11:16:05')
)

);
meetupRepository.findUpcomingMeetups('NL');

Passing in a Clock object as a constructor argument allows the MeetupRepository to
request the current time. But we could also let the client of MeetupRepository pro-
vide the current time as a method argument of findUpcomingMeetups(). Then there
would no longer be a need for the Clock dependency.

AListing 2.19 Clock implementation where time is fixed

Instead of “creating” the current
time on the spot, we can now ask
the Clock service for it.

The FixedClock implementation of
the Clock interface can be used in
tests. When instantiating it, we
have to provide a DateTime object
that represents the current time.

When testing MeetupRepository, we
pass in a FixedClock as a constructor
argument. This will make the test
results fully deterministic.

44 CHAPTER 2 Creating services

final class MeetupRepository
{

public function __construct(/* ... */)
{

// ...
}

public function findUpcomingMeetups(
string area,
DateTime now

): array {
// ...

}
}

We should now revise our initial assessment that retrieving the current time is some-
thing we need an object dependency for. Passing the current time as a method argu-
ment turns it into contextual information that is needed to perform the task of
finding upcoming meetups.

You can also pass the current time as a method argumentListing 2.20

The Clock dependency
is no longer needed.

The current time will be provided
by clients of this method.

Exercises
7 A UUID is a random number that can be used to refer uniquely to objects in your

application. Creating a new UUID relies on the system’s random device. The fol-
lowing code creates a new UUID using a package dedicated to this:

final class CreateUser
{

public function create(string username): void
{

userId = Uuid.create();

user = new User(userId, username);
// ...

}
}

What’s wrong with this code?

a Uuid is a static dependency and should be turned into an object dependency.
b The Uuid object is a dependency of the service, and should therefore be

injected as a constructor argument.
c Uuid is a configuration value, and should therefore be injected as a construc-

tor argument.
d Uuid.create() involves a call to something outside the application, so it

should be created by a service dependency.

45Task-relevant data should be passed as method arguments instead of constructor arguments

Task-relevant data shou2.8 ld be passed as method
arguments instead of constructor arguments
As you know, a service should get all of its dependencies and configuration values
injected as constructor arguments. But information about the task itself, including any
relevant contextual information, should be provided as method arguments.

 As a counterexample, consider an EntityManager that can only be used to save
one entity to the database.

final class EntityManager
{

private object entity;

public function __construct(object entity)
{

this.entity = entity;
}

public function save(): void
{

// ...
}

}

user = new User(/* ... */);
comment = new Comment(/* ... */);

entityManager = new EntityManager(user);
entityManager.save();

entityManager = new EntityManager(comment);
entityManager.save();

This wouldn’t be a very useful class, because you’d have to instantiate it again for every
job you have for it.

 Having an entity as a constructor argument may look like an obviously bad choice
of design. A more subtle, and more common scenario would be a service that gets the
current Request or the current Session object injected as a constructor argument.

AnListing 2.21 EntityManager that can only be used to save a single object

Listing 2.22 ContactRepository depends on a Session object

To save another entity, we’d
have to instantiate another
EntityManager.

final class ContactRepository
{

private Session session;

public function __construct(Session session)
{

this.session = session;
}

46 CHAPTER 2 Creating services

public function getAllContacts(): array
{

return this.select()
.where([

'userId' => this.session.getUserId(),
'companyId' => this.session.get('companyId')

])
.getResult();

}
}

This ContactRepository service can’t be used to get the contacts of a different user or
company than the one known to the current Session object. That is, it can only run in
one context.

 Injecting part of the job details as constructor arguments gets in the way of making
the service reusable, and the same goes for contextual data. All of this information
should be passed as method arguments, in order to make the service reusable for dif-
ferent jobs.

 A guiding question to help you decide whether something should be passed as a
constructor argument or as a method argument is, “Could I run this service in a batch,
without requiring it to be instantiated over and over again?” Depending on your pro-
gramming language, you may already be used to the idea that your service will be
instantiated once and should be prepared for reuse. However, if you use PHP, any
object that gets instantiated will usually last only as long as it takes to process an HTTP
request and return a response. In that case, when designing your services, you should
always ask yourself, “If memory was not wiped after every web request, could this ser-
vice be used for subsequent requests, or would it have to be reinstantiated?”

 Take another look at the EntityManager service we saw earlier. It would be impos-
sible to save multiple entities in a batch without instantiating the service again, so
entity should become a parameter of the save() method, instead of being a con-
structor argument.

final class EntityManager
{

public function save(object entity): void
{

// ...
}

}

The same goes for ContactRepository. It couldn’t be used in a batch to get the con-
tacts for different users and different companies. getAllContacts() should have
extra arguments for the current company and user ID, as follows.

Listing 2.23 entity should be a method argument

47Task-relevant data should be passed as method arguments instead of constructor arguments

final class ContactRepository
{

public function getAllContacts(
UserId userId,
CompanyId companyId

): array {
return this.select()

.where([
'userId' => userId,
'companyId' => companyId

])
.getResult();

}
}

In fact, the word “current” is a useful signal that this information is contextual infor-
mation that needs to be passed as method arguments: “the current time,” “the cur-
rently logged in user ID,” “the current web request,” etc.

Listing 2.24 UserId and CompanyId should be passed as method arguments

Exercises
8 What’s wrong with the following code?

final Translator
{

private string userLanguage;

public function __construct(string userLanguage)
{

this.userLanguage = userLanguage;
}

public function translate(string messageKey): string
{

// ...
}

}

a The userLanguage constructor argument should have a default value, in
case there is no logged-in user.

b The current user’s language should be retrieved from a service, which should
be injected as a constructor argument.

c userLanguage should be passed as an argument when calling translate().
d Passing in userLanguage as a constructor argument makes it harder for

Translator to be reused.

48 CHAPTER 2 Creating services

Don’t allow the behavior2.9 of a service to change
after it has been instantiated
As we saw earlier, when you inject optional dependencies into a service after instantia-
tion, you will change the behavior of a service. This makes the service unpredictable.
The same goes for methods that don’t inject dependencies but allow you to influence
the behavior of the service from outside. An example would be the ignoreErrors()
method of the Importer class in the following listing.

final class Importer
{

private bool ignoreErrors = true;

public function ignoreErrors(bool ignoreErrors): void
{

this.ignoreErrors = ignoreErrors;
}

// ...
}

importer = new Importer();

// ...

importer.ignoreErrors(false);

// ...

Make sure that this can’t happen. All dependencies and configuration values should
be there from the start, and it shouldn’t be possible to reconfigure the service after it
has been instantiated.

 Another example is an EventDispatcher in the following listing. It allows the list
of active listeners to be reconfigured after it has been instantiated.

final class EventDispatcher
{

private array listeners = [];

public function addListener(
string event,
callable listener

): void {
this.listeners[event][] = listener;

}

public function removeListener(

CallingListing 2.25 ignoreErrors() changes the behavior of Importer

The behavior ofListing 2.26 EventDispatcher can change after instantiation

When we use Importer now, it
will ignore errors.

When we use it now, it
won’t ignore errors.

You can add a new event listener
for the given type of event.

You can also remove
an existing listener.

49Don’t allow the behavior of a service to change after it has been instantiated

string event,
callable listener

): void {
foreach (this.listenersFor(event) as key => callable) {

if (callable == listener) {
unset(this.listeners[event][key]);

}
}

}

public function dispatch(object event): void
{

foreach (this.listenersFor(event.className) as callable) {
callable(event);

}
}

private function listenersFor(string event): array
{

if (isset(this.listeners[event])) {
return this.listeners[event];

}

return [];
}

}

Allowing event listeners to be added and removed on the fly makes the behavior of
EventDispatcher unpredictable because it can change over time. In this case, we
should turn the array of event listeners into a constructor argument and remove the
addListener() and removeListener() methods, as is done in the following listing.

final class EventDispatcher
{

private array listeners;

public function __construct(array listenersByEventName)
{

this.listeners = listenersByEventName;
}

// ...
}

Because array isn’t a very specific type and could contain anything (if you use a
dynamically typed programming language), you should validate the listenersBy-
EventName argument before assigning it. We’ll take a closer look at validating con-
structor arguments later in this chapter.

Listeners can only be configured at construction timeListing 2.27

Any listener that hasn’t
been removed yet will

be called.

50 CHAPTER 2 Creating services

If you don’t allow a service to be modified after instantiation, and you also don’t allow
it to have optional dependencies, the resulting service will behave predictably over
time, and won’t suddenly start to follow different execution paths based on who called
a method on it (see figure 2.3).

Do nothing inside a constr2.10 uctor, only assign properties
Creating a service means injecting constructor arguments, thereby preparing the ser-
vice for use. The real work will be done inside one of the object’s methods. Inside a
constructor, you may sometimes be tempted to do more than just assign properties, to
make the object truly ready for use. Take, for example, the following FileLogger class.
Upon construction, it will prepare the log file for writing.

Listing 2.28 FileLogger creates a log file directory if necessary

The execution path of a service,
the first time it gets called

The second time it gets called,
it takes a different path

Figure 2.3 Allowing the
behavior of a service to be
modified after instantiation
causes it to behave
unpredictably for some
clients, because it may
suddenly take a different
execution path.

“In the type of applications I build, I actually need mutable services.”
Good point. My background is mostly in web application development. Web applica-
tions really don’t need mutable services—the full set of behaviors of a service can
always be defined at construction time.

You may be working on other types of applications, where you do need a service like
an event dispatcher that allows you to add and remove listeners or subscribers after
construction time. For instance, if you’re creating a game, or some other kind of inter-
active application with a UI, and a user opens a new window, you’d want to register
event listeners for its UI elements. Later on, when the user closes the window, you’d
want to remove those listeners again. In those cases, services really do need to be
mutable. However, if you’re designing such mutable services, I encourage you to
think about ways to not let objects reconfigure other objects’ behaviors using public
methods like addListener() and removeListener().

final class FileLogger implements Logger
{

private string logFilePath;

public function __construct(string logFilePath)

51Do nothing inside a constructor, only assign properties

{
logFileDirectory = dirname(logFilePath);
if (!is_dir(logFileDirectory)) {

mkdir(logFileDirectory, 0777, true);
}

touch(logFilePath);

this.logFilePath = logFilePath;
}

// ...
}

But instantiating a FileLogger will leave a trace on the filesystem, even if you never
actually use the object to write a log message.

 It’s considered good object manners to not do anything inside a constructor. The
only thing you should do in a service constructor is validate the provided constructor
arguments, and then assign them to the object’s properties.

final class FileLogger implements Logger
{

private string logFilePath;

public function __construct(string logFilePath)
{

this.logFilePath = logFilePath;
}

public function log(string message): void
{

this.ensureLogFileExists();

// ...
}

private function ensureLogFileExists(): void
{

if (is_file(this.logFilePath)) {
return;

}

logFileDirectory = dirname(this.logFilePath);
if (!is_dir(logFileDirectory)) {

mkdir(logFileDirectory, 0777, true);
}

touch(this.logFilePath);
}

}

The constructor ofListing 2.29 FileLogger doesn’t create the directory

Create the directory if
it doesn’t exist yet.

Only copy values
into properties.

52 CHAPTER 2 Creating services

Pushing the work outside of the constructor, deeper into the class, is one possible
solution. In this case, however, we will only find out if it’s possible to write to the log
file when the first message is written to it. Most likely, we will want to hear about such
problems sooner. What we could do instead is push the work outside of the construc-
tor: we don’t want it to happen after constructing the FileLogger, but before. Maybe a
LoggerFactory could take care of that.

final class FileLogger implements Logger
{

private string logFilePath;

public function __construct(string logFilePath)
{

if (!is_writable(logFilePath)) {
throw new InvalidArgumentException(

'Log file path "{logFilePath}" should be writable'
);

}
this.logFilePath = logFilePath;

}

public function log(string message): void
{

// ...
}

}

final class LoggerFactory
{

public function createFileLogger(string logFilePath): FileLogger
{

if (!is_file(logFilePath)) {
logFileDirectory = dirname(logFilePath);
if (!is_dir(logFileDirectory)) {

mkdir(logFileDirectory, 0777, true);
}

touch(logFilePath);
}

return new FileLogger(logFilePath);
}

}

Note that moving the log file setup code outside the constructor of FileLogger
changes the contract of the FileLogger itself. In the initial situation, you could pass in
any log file path, and FileLogger would take care of everything (creating the direc-
tory if necessary, and checking that the file path itself is writable). In the new situa-
tion, FileLogger accepts a log file path and expects that its containing directory

TheListing 2.30 LoggerFactory will create the log file directory

We expect that the log file
path has already been
properly set up, so all we
do here is a safety check.

No need for a call to
ensureLogFileExists()
or anything.

The task of creating the log directory and
file should be moved to the bootstrap

phase of the application itself.

53Do nothing inside a constructor, only assign properties

already exists. We can push out even more to the bootstrap phase of the application
and rewrite the contract of FileLogger to state that the client has to provide a file
path to a file that already exists and is writable. The following listing shows what this
would look like.

final class FileLogger implements Logger
{

private string logFilePath;

/**
* @param string logFilePath Absolute path to a log file that
* already exists and is writable.
*/

public function __construct(string logFilePath)
{

this.logFilePath = logFilePath;
}

// ...
}

final class LoggerFactory
{

public function createFileLogger(string logFilePath): FileLogger
{

if (!is_file(logFilePath)) {
logFileDirectory = dirname(logFilePath);
if (!is_dir(logFileDirectory)) {

mkdir(logFileDirectory, 0777, true);
}

touch(logFilePath);
}

if (!is_writable(logFilePath)) {
throw new InvalidArgumentException(

'Log file path "{logFilePath}" should be writable'
);

}

return new FileLogger(logFilePath);
}

}

Let’s take a look at another, more subtle example of an object that does something in
its constructor. Take a look at the following Mailer class , which calls one of its depen-
dencies inside the constructor.

Listing 2.31 LoggerFactory takes care of everything FileLogger needs

Besides taking care of the directory,
LoggerFactory now also makes sure

that the log file exists and is writable.

54 CHAPTER 2 Creating services

final class Mailer
{

private Translator translator;
private string defaultSubject;

public function __construct(Translator translator)
{

this.translator = translator;

// ...

this.defaultSubject = this.translator
.translate('default_subject');

}

// ...
}

What happens if you change the order of assignments?

final class Mailer
{

private Translator translator;
private string defaultSubject;

public function __construct(
Translator translator,
string locale

) {
this.defaultSubject = this.translator

.translate('default_subject', locale);

// ...

this.translator = translator;
}

// ...
}

Now you’ll get a fatal error for calling translate() on null. This is why the rule that
you may only assign properties in service constructors comes with the consequence
that the assignments could happen in any order. If the assignments have to happen in
a specific order, you know that you’re doing something in your constructor.

 The constructor of this Mailer class is also an example of how contextual data,
namely the current user’s locale, is sometimes passed as a constructor argument. As
you know, contextual information should be passed as a method argument instead.

Listing 2.32 Mailer does something inside its constructor

Changing the order of assignments in theListing 2.33 Mailer constructor

55Throw an exception when an argument is invalid

Throw an exception when2.11 an argument is invalid
When a client of a class provides an invalid constructor argument, the type checker
will usually warn you, such as when the argument requires a Logger instance and the
client provides a bool value. However, there are other types of arguments where only
relying on the type system will be insufficient. For instance, in the following Alerting
class, one of the constructor arguments should be an int, representing a configura-
tion flag.

final class Alerting
{

private int minimumLevel;

Listing 2.34 Alerting requires an int constructor argument

Exercises
9 Take a look at the following MySQLTableGateway class. It connects to the data-

base using the provided ConnectionConfiguration.

final class MySQLTableGateway
{

private Connection connection;

public function __construct(
ConnectionConfiguration connectionConfiguration,
string tableName

) {
this.tableName = tableName;

this.connect(connectionConfiguration);
}

private function connect(
ConnectionConfiguration connectionConfiguration

): void {
this.connection = new Connection(

// ...
);

}

public function insert(array data): void
{

this.connection.insert(this.tableName, data);
}

}

Rewrite this class to make sure that the constructor doesn’t do anything, except
assign values to properties.

56 CHAPTER 2 Creating services

public function __construct(int minimumLevel)
{

this.minimumLevel = minimumLevel;
}

}

alerting = new Alerting(-99999999);

By accepting any int for minimumLevel, you can’t be sure that the provided value is
realistic and can be used by the remaining code in a meaningful way. Instead, the con-
structor should check that the value is valid, and if it isn’t, throw an exception. Only
after the argument has been validated should it be assigned, as follows.

final class Alerting
{

private int minimumLevel;

public function __construct(int minimumLevel)
{

if (minimumLevel <= 0) {
throw new InvalidArgumentException(

'Minimum alerting level should be greater than 0'
);

}
this.minimumLevel = minimumLevel;

}
}

alerting = new Alerting(-99999999);

By throwing an exception inside the constructor, you can prevent the object from
being constructed based on invalid arguments.

NOTE Instead of throwing custom exceptions, it’s quite common to use reus-
able assertion functions for validating method and constructor arguments.
We will talk about these in more detail in section 3.7.

Choosing not to throw an exception could also be an option, if that won’t break the
object’s behavior in a later stage. Consider the following Router class.

Validate a constructor argument before assigning itListing 2.35

Listing 2.36 Router doesn’t throw an exception

This will throw an
InvalidArgumentException.

final class Router
{

private array controllers;
private string notFoundController;

public function __construct(
array controllers,

57Throw an exception when an argument is invalid

string notFoundController
) {

this.controllers = controllers;

this.notFoundController = notFoundController;
}

public function match(string uri): string
{

foreach (this.controllers as pattern => controller) {
if (this.matches(uri, pattern)) {

return controller;
}

}

return this.notFoundController;
}

private function matches(string uri, string pattern): bool
{

// ...
}

}

router = new Router(
[

'/' => 'homepage_controller'
],
'not-found'

);

router.match('/');

Should you validate the controllers argument here, to verify that it contains at least
one URI pattern/controller name pair? Actually, you don’t have to, because the
behavior of the Router won’t be broken if the controllers array is empty. If you
accept an empty array, and the client calls match(), it will just return the “not found”
controller, because there are no matching patterns found for the given URI (nor any
other URI). This is the behavior you’d expect from a router, so it shouldn’t be consid-
ered a sign of broken logic.

 However, you should validate that all the keys and values in the controllers array
are strings. This will help you identify programming mistakes early on. Consider the
following example.

final class Router
{

// ...

public function __construct(array controllers)

Listing 2.37 Router should validate the controllers array

Should we check if the
controllers array is empty?

This will return
homepage_controller.

58 CHAPTER 2 Creating services

{
foreach (array_keys(controllers) as pattern) {

if (!is_string(pattern)) {
throw new InvalidArgumentException(

'All URI patterns should be provided as strings'
);

}
}
foreach (controllers as controller) {

if (!is_string(controller)) {
throw new InvalidArgumentException(

'All controllers should be provided as strings'
);

}
}
this.controllers = controllers;

}

// ...
}

Alternatively, you can use an assertion library or custom assertion functions to validate
the contents of controllers (we’ll discuss assertion functions in more detail in sec-
tion 3.7) or use the type system to check the types for you, as in the following listing.
Because the addController() method has explicit string types for its arguments, call-
ing this method on every key/value pair in the provided controllers array will be the
equivalent of asserting that all keys and values in the array are strings.

final class Router
{

private array controllers = [];

public function __construct(array controllers)
{

foreach (controllers as pattern => controller) {
this.addController(pattern, controller);

}
}

private function addController(
string pattern,
string controller

): void {
this.controllers[pattern] = controller;

}

// ...
}

An alternative for validating theListing 2.38 controllers array

Don’t assign
controllers directly;
let addController()
take care of that.

59Define services as an immutable object graph with only a few entry points

2.12

Exercises
10 The constructor of the following EventDispatcher class doesn’t properly verify

that the provided eventListeners argument has the mandatory structure.
Rewrite the constructor to throw an exception whenever a client supplies an
invalid value to it.

final class EventDispatcher
{

private array eventListeners;

public function __construct(array eventListeners)
{

this.eventListeners = eventListeners;
}

public function dispatch(object event): void
{

eventName = event.className;

listeners = isset(this.eventListeners[eventName]) ?
this.eventListeners[eventName] : [];

foreach (listeners as listener) {
listener(event);

}
}

}

Define services as an immutable object graph
with only a few entry points
Once the application framework calls your controller (be it a web controller or a con-
troller for a command-line application), you can consider every dependency to be
known. For instance, the web controller needs a repository to fetch some objects
from, it needs the templating engine to render a template, it needs a response factory
to create a response object, etc. All these dependencies have their own dependencies,
which, when carefully listed as constructor arguments, can be created at once, result-
ing in an often pretty large graph of objects.

 If the framework decides to call a different controller, it will use a different graph
of dependent objects to perform its task. The controller itself is also a service with
dependencies, so you can consider controllers to be the entry points of the applica-
tion’s object graph, as shown in figure 2.4.

 Most applications have something like a service container that describes how all of
the application’s services can be constructed, what their dependencies are, how they
can be constructed, and so on. The container behaves as a service locator too. You can
ask it to return one of its services so you can use it. You already saw how a service loca-
tor can be used, in section 2.3, when we discussed the rule that you should inject the

60 CHAPTER 2 Creating services

dependencies that you need, not a service locator that allows you to retrieve those
dependencies.

 Given the following,

 All the services in an application form one large object graph.
 The entry points will be the controllers.
 No service will need the service locator to retrieve services.

we should conclude that the service container only needs to provide public methods for
retrieving controllers. The other services defined in the container can and should remain
private, because they will only be needed as injected dependencies for controllers.

 Translated to code, this means we could use a service container as a service locator
to retrieve a controller from. All the other service instantiation logic that’s needed to
produce the controller objects can stay behind the scenes, in private methods.

final class ServiceContainer
{

public function homepageController(): HomepageController
{

return new HomepageController(
this.userRepository(),
this.responseFactory(),
this.templateRenderer()

);
}

private function userRepository(): UserRepository

Public methods for entry points, private ones for dependenciesListing 2.39

Controller Controller

ServiceService Service

Service Service

Controller

Figure 2.4 The graph contains all the services of an application, with controller services
marked as entry point services. These are the only services that can be retrieved directly;
all other services are only available as injected dependencies.

61Define services as an immutable object graph with only a few entry points

{
// ...

}

private function responseFactory(): ResponseFactory
{

// ...
}

private function templateRenderer(): TemplateRenderer
{

// ...
}

// ...
}

if (uri == '/') {
controller = serviceContainer.homepageController();
response = controller.execute(request);
// ...

} elseif (/* ... */) {
// ...

}

A service container allows for reuse of services, which is why, starting with the controller
as an entry point, not every branch of the object graph will be completely standalone.
For example, another controller may use the same TemplateRenderer instance as
HomepageController (see figure 2.5). This is why it’s important to make services
behave as predictably as possible. If you apply all the previously discussed rules, you will
end up with an object graph that can be instantiated once, and then reused many times.

The framework could use a router to find the
right controller for the current request. It can
then fetch the controller from the service
locator and let it handle the request.

Retrieve and call
another controller.

Controller Controller

ServiceService Service

Service Service

Controller

Different entry points useFigure 2.5 different branches of the object graph.

62 CHAPTER 2 Creating services

Summary
 Services should be created in one go, providing all their dependencies and con-

figuration values as constructor arguments. All service dependencies should be
explicit, and they should be injected as objects. All configuration values should
be validated. When a constructor receives an argument that is in any way
invalid, it should throw an exception.

 After construction, a service should be immutable; its behavior shouldn’t be
changed by calling any of its methods.

 All services of an application combined will form a large, immutable object
graph, often managed by a service container. Controllers are the entry points of
this graph. Services can be instantiated once and reused many times.

Answers to the exercises
1 Correct answers: b and c.
2 Correct answers: b and d.
3 Suggested answer:

final class FileCache implements Cache
{

private string cacheDirectory;

public function __construct(string cacheDirectory)
{

this.cacheDirectory = cacheDirectory;
}

// ...
}

4 Suggested answer:

final class MySQLTableGateway
{

public function __construct(
ConnectionConfiguration connectionConfiguration,
string table

) {
// ...

}
}

5 Correct answer: c. An injected dependency should be used directly, not to fetch
the actual dependency.

6 First, make eventDispatcher a required argument, and remove the setEvent-
Dispatcher() method:

The name of the table isn’t part of the
information needed to make the connection
to the database, so it isn’t moved to the new
ConnectionConfiguration object.

63Answers to the exercises

final class CsvImporter
{

private EventDispatcher eventDispatcher;

public function __construct(EventDispatcher eventDispatcher)
{

this.eventDispatcher = eventDispatcher;
}

}

Then provide a “dummy” implementation of EventDispatcher, which clients
can inject if they don’t actually want to use event dispatching:

final class EventDispatcherDummy implements EventDispatcher
{

public function dispatch(string eventName): void
{

// do nothing
}

}

7 Correct answer: d. Although Uuid.create() is a static method, it isn’t a static
dependency that could be injected as a constructor argument instead (it’s actu-
ally a named constructor). Uuid is also not a configuration value, since its actual
value will be unique every time you create a new instance of it by calling
Uuid.create().

8 Correct answers: c and d. The user’s language is contextual information that
should be provided as a method argument. It should not be injected as a con-
structor argument, nor should it be retrieved from an injected service. Passing
it on to translator will also save that service from relying on implicit contex-
tual information.

9 Suggested answer:

final class MySQLTableGateway
{

private ConnectionConfiguration connectionConfiguration;

public function __construct(
ConnectionConfiguration connectionConfiguration,
string tableName

) {
this.connectionConfiguration = connectionConfiguration;
this.tableName = tableName;

}

private function connect(): void
{

if (this.connection instanceof Connection) {
return;

}

Store the connection configuration in a
property so you can later use it to

connect to the database.

Check if
you aren’t
connected
already.

64 CHAPTER 2 Creating services

this.connection = new Connection(
// ...

);
}

public function insert(array data): void
{

this.connect();

this.connection.insert(this.tableName, data);
}

}

10 Suggested answer:

public function __construct(array eventListeners)
{

foreach (eventListeners as eventName => listeners) {
if (!is_string(eventName)) {

throw new InvalidArgumentException(
'eventName should be a string'

);
}
if (!is_array(listeners)) {

throw new InvalidArgumentException(
'listeners should be an array'

);
}
foreach (listeners as listener) {

if (!is_callable(listener)) {
throw new InvalidArgumentException(

'listener should be a callable'
);

}
}

}

this.eventListeners = eventListeners;
}

Here’s an alternative, which relies more on the type checker of the interpreter:

private array eventListeners = [];

public function __construct(array eventListeners)
{

foreach (eventListeners as eventName => listeners) {
this.addListeners(eventName, listeners);

}
}

Use this.connectionConfiguration
to set up the actual connection.

Whenever a connection
is needed, you first call
connect().

This gradually collects
values for the
eventListeners
property, so you have
to initialize it as an
empty array.

65Answers to the exercises

private function addListener(string eventName, array listeners): void
{

foreach (listeners as listener) {
if (!is_callable(listener)) {

throw new InvalidArgumentException(
'listener should be a callable'

);
}

}

this.eventListeners[eventName] = listeners;
}

The parameter types enforce
that the key of each value in

the original eventListeners
array is a string, and that
 the corresponding value

 is an array.

This gradually collects values for the
eventListeners property, so you have

to initialize it as an empty array.

Creating other objects

I mentioned earlier that there are two types of objects: services and other objects.
The second type of objects can be divided into more specific subtypes, namely value
objects and entities (sometimes known as “models”). Services will create or retrieve
entities, manipulate them, or pass them on to other services. They will also create
value objects and pass them on as method arguments, or create modified copies of
them. In this sense, entities and value objects are the materials that services use to
perform their tasks.

 In chapter 2 we looked at how a service object should be created. In this chap-
ter, we’ll look at the rules for creating these other objects.

This chapter covers
 Instantiating other types of objects

 Preventing objects from being incomplete

 Protecting domain invariants

 Using named constructors

 Using assertions

66

67Require the minimum amount of data needed to behave consistently

3.1 Require the minimum amount of data needed
to behave consistently
Take a look at the following Position class.

final class Position
{

private int x;
private int y;

public function __construct()
{

// empty
}

public function setX(int x): void
{

this.x = x;
}

public function setY(int y): void
{

this.y = y;
}

public function distanceTo(Position other): float
{

sqrt(return
+2**this.x)-(other.x

2**this.y)-(other.y
);

}
}

position = new Position();
position.setX(45);
position.setY(60);

Until we’ve called both setX() and setY(), the object is in an inconsistent state. We
can notice this if we call distanceTo() before calling setX() or setY(); it won’t give a
meaningful answer.

 Since it’s crucial to the concept of a position that it have both x and y parts, we
have to enforce this by making it impossible to create a Position object without pro-
viding values for both x and y.

TheListing 3.1 Position class

Listing 3.2 Position has required constructor arguments for x and y

final class Position
{

private int x;

68 CHAPTER 3 Creating other objects

private int y;

public function __construct(int x, int y)
{

this.x = x;
this.y = y;

}

public function distanceTo(Position other): float
{

sqrt(return
+2**this.x)-(other.x

2**this.y)-(other.y
);

}
}

position = new Position(45, 60);

This is an example of how a constructor can be used to protect a domain invariant,
which is something that’s always true for a given object, based on the domain knowl-
edge you have about the concept it represents. The domain invariant that’s being pro-
tected here is, “A position has both an x and a y coordinate.”

Require data that is meaningful3.2
In the previous example, the constructor would accept any integer, positive or nega-
tive and to infinity in both directions. Now consider another system of coordinates,
where positions consist of a latitude and a longitude, which together determine a
place on earth. In this case, not every possible value for latitude and longitude would
be considered meaningful.

x and y have to be provided,
or you won’t be able to get
an instance of Position.

Exercises
1 What’s wrong with the Money object used here?

money = new Money()
money.setAmount(100);
money.setCurrency('USD');

a It uses setters for providing the minimum required data.
b It has no dependencies.
c Apparently it has default constructor arguments.
d It can exist in an inconsistent state.

69Require data that is meaningful

final class Coordinates
{

private float latitude;
private float longitude;

public function __construct(float latitude, float longitude)
{

this.latitude = latitude;
this.longitude = longitude;

}

// ...
}

meaningfulCoordinates = new Coordinates(45.0, -60.0);

offThePlanet = new Coordinates(1000.0, -20000.0);

Always make sure that clients can’t provide data that is meaningless. What counts as
meaningless can be phrased as a domain invariant too. In this case, the invariant is,
“The latitude of a coordinate is a value between –90 and 90 inclusive. The longitude
of a coordinate is a value between –180 and 180 inclusive.”

 When you’re designing your objects, let yourself be guided by these domain
invariants. Collect more invariants as you go, and incorporate them in your unit tests.
As an example, the following listing uses the expectException() utility described in
section 1.10.

expectException(
InvalidArgumentException.className,
'Latitude',
function() {

new Coordinates(90.1, 0.0);
}

);
expectException(

InvalidArgumentException.className,
'Longitude',
function() {

new Coordinates(0.0, 180.1);
}

);
// and so on...

TheListing 3.3 Coordinates class

Verifying the domain invariants ofListing 3.4 Coordinates

Nothing stops us from
creating a Coordinates
object that doesn’t
make any sense.

The type of the
expected exception

A keyword that should be in
the exception’s message

An anonymous function that
should cause the exception
to be thrown

To make these tests pass, throw an exception in the constructor as soon as something
about the provided arguments looks wrong.

70 CHAPTER 3 Creating other objects

final class Coordinates
{

// ...

public function __construct(float latitude, float longitude)
{

if (latitude > 90 || latitude < -90) {
throw new InvalidArgumentException(

'Latitude should be between -90 and 90'
);

}
this.latitude = latitude;

if (longitude > 180 || longitude < -180) {
throw new InvalidArgumentException(

'Longitude should be between -180 and 180'
);

}
this.longitude = longitude;

}
}

Although the exact order of the statements in your constructor shouldn’t matter (as
we discussed earlier), it’s still recommended that you perform the checks directly
above their associated property assignments. This will make it easy for the reader to
understand how the two statements are related.

 In some cases it’s not enough to verify that every constructor argument is valid on
its own. Sometimes you may need to verify that the provided constructor arguments
are meaningful together. The following example shows the ReservationRequest
class, which is used to keep some information about a hotel reservation.

final class ReservationRequest
{

public function __construct(
int numberOfRooms,
int numberOfAdults,
int numberOfChildren

) {
// ...

}
}

Discussing the business rules for this object with a domain expert, you may learn
about the following rules:

 There should always be at least one adult (because children can’t book a hotel
room on their own).

Throwing exceptions for invalid constructor argumentsListing 3.5

TheListing 3.6 ReservationRequest class

71Require data that is meaningful

 Everybody can have their own room, but you can’t book more rooms than there
are guests. (It wouldn’t make sense to allow people to book rooms where
nobody will sleep.)

So it turns out that numberOfRooms and numberOfAdults are related, and can only be
considered to be meaningful together. We have to make sure that the constructor
takes both values and enforces the corresponding business rules, as in the following
listing.

final class ReservationRequest
{

public function __construct(
int numberOfRooms,
int numberOfAdults,
int numberOfChildren

) {
if (numberOfRooms > numberOfAdults + numberOfChildren) {

throw new InvalidArgumentException(
'Number of rooms should not exceed number of guests'

);
}

if (numberOfAdults < 1) {
throw new InvalidArgumentException(

'numberOfAdults should be at least 1'
);

}

if (numberOfChildren < 0) {
throw new InvalidArgumentException(

'numberOfChildren should be at least 0'
);

}
}

}

In other cases, constructor arguments may at first sight appear to be related, but a
redesign could help you avoid multi-argument validations. Consider the following
class, which represents a business deal between two parties, where there’s a total
amount of money that has to be divided between two parties.

Validating the meaningfulness of constructor argumentsListing 3.7

TheListing 3.8 Deal class

final class Deal
{

public function __construct(
int totalAmount,
int amountToFirstParty,
int amountToSecondParty

72 CHAPTER 3 Creating other objects

) {
// ...

}
}

You should at least validate the constructor arguments separately (the total amount
should be larger than 0, etc.). But there’s also an invariant that spans all the argu-
ments: the sum of what both parties get should be equal to the total amount. The fol-
lowing listing shows how you could verify this rule.

final class Deal
{

public function __construct(
int totalAmount,
int amountToFirstParty,
int amountToSecondParty

) {
// ...

if (amountToFirstParty + amountToSecondParty
!= totalAmount) {
throw new InvalidArgumentException(/* ... */);

}
}

}

As you may have noted, this rule could be enforced in a much simpler way. You could
say that the total amount itself doesn’t even have to be provided, as long as the client pro-
vides positive numbers for amountToFirstParty and amountToSecondParty. The Deal
object could figure out on its own what the total amount of the deal was by summing
these values. The need to validate the constructor arguments together disappears.

Listing 3.9 Deal validates the sum of the amounts for both parties

Removing the superfluous constructor argumentListing 3.10

final class Deal
{

private int amountToFirstParty;
private int amountToSecondParty;

public function __construct(
int amountToFirstParty,
int amountToSecondParty

) {
if (amountToFirstParty <= 0) {

throw new InvalidArgumentException(/* ... */);
}
this.amountToFirstParty = amountToFirstParty;

if (amountToSecondParty <= 0) {

73Require data that is meaningful

throw new InvalidArgumentException(/* ... */);
}
this.amountToSecondParty = amountToSecondParty;

}

public function totalAmount(): int
{

return this.amountToFirstParty
+ this.amountToSecondParty;

}
}

Another example where it would seem that constructor arguments have to be vali-
dated together is the following class, which represents a line.

final class Line
{

public function __construct(
bool isDotted,
int distanceBetweenDots

) {
if (isDotted && distanceBetweenDots <= 0) {

throw new InvalidArgumentException(
'Expect the distance between dots to be positive.'

);
}

// ...
}

}

However, this could more elegantly be dealt with by providing the client with two dis-
tinct ways of defining a line: dotted and solid. Different types of lines could be con-
structed with different constructors.

final class Line
{

private bool isDotted;
private int distanceBetweenDots;

public static function dotted(int distanceBetweenDots): Line
{

if (distanceBetweenDots <= 0) {
throw new InvalidArgumentException(

'Expect the distance between dots to be positive.'
);

}

TheListing 3.11 Line class

Listing 3.12 Line now offers different ways for lines to be constructed

We only care about the
distance if the line is a
dotted line. For solid lines,
there’s no distance to be
dealt with.

74 CHAPTER 3 Creating other objects

line = new Line(/* ... */);
line.distanceBetweenDots = distanceBetweenDots;
line.isDotted = true;

return line;
}

public static function solid(): Line
{

line = new Line();

line.isDotted = false;

return line;
}

}

These static methods are named constructors, and we’ll take a closer look at them in sec-
tion 3.9.

3.3

No need to worry about
distanceBetweenDots here!

Exercises
2 PriceRange represents the minimum and maximum price in cents that a bidder

would pay for a given object:

final class PriceRange
{

public function __construct(int minimumPrice, int maximumPrice)
{

this.minimumPrice = minimumPrice;
this.maximumPrice = maximumPrice;

}
}

The constructor currently accepts any int value for both arguments. Enhance the
constructor and make it fail when these values aren’t meaningful.

If you make sure that every object has the minimum required data provided to it at
construction time, and that this data is correct and meaningful, you will only encoun-
ter complete and valid objects in your application. It should be safe to assume that you
can use every object as intended. There should be no surprises and no need for extra
validation rounds.

Don’t use custom exception classes for invalid
argument exceptions
So far we’ve been throwing a generic InvalidArgumentException whenever a method
argument doesn’t match our expectations. We could use a custom exception class that
extends from InvalidArgumentException. The advantage of doing so is that we could
catch specific types of exceptions and deal with them in specific ways.

75Test for specific invalid argument exceptions by analyzing the exception’s message

final class SpecificException extends InvalidArgumentException
{
}

try {
// try to create the object

} catch (SpecificException exception) {
// handle this specific problem in a specific way

}

However, you should rarely need to do that with invalid argument exceptions. An
invalid argument means that the client is using the object in an invalid way. Usually
this will be caused be a programming mistake. In that case, you’d better fail hard and
not try to recover, but fix the mistake instead.

 For RuntimeExceptions on the other hand, it often makes sense to use custom
exception classes because you may be able to recover from them, or to convert them
into user-friendly error messages. We’ll discuss custom runtime exceptions and how to
create them in section 5.2.

3.4 Test for specific invalid argument exceptions by
analyzing the exception’s message
Even if you only use the generic InvalidArgumentException class to validate method
arguments, you still need a way to distinguish between them in a unit test. Let’s take
another look at the Coordinates class and constructor.

final class Coordinates
{

// ...

public function __construct(float latitude, float longitude)
{

if (latitude > 90 || latitude < -90) {
throw new InvalidArgumentException(

'Latitude should be between -90 and 90'
);

}
this.latitude = latitude;

if (longitude > 180 || longitude < -180) {
throw new InvalidArgumentException(

'Longitude should be between -180 and 180'
);

}
this.longitude = longitude;

}
}

Listing 3.13 SpecificException can be caught and dealt with

TheListing 3.14 Coordinates class

76 CHAPTER 3 Creating other objects

We want to verify that clients can’t pass in the wrong arguments, so we can write a few
tests, like the following ones.

// Latitude can't be more than 90.0
expectException(

InvalidArgumentException.className,
function() {

new Coordinates(90.1, 0.0);
}

);
// Latitude can't be less than -90.0
expectException(

InvalidArgumentException.className,
function() {

new Coordinates(-90.1, 0.0);
}

);

// Longitude can't be more than 180.0
expectException(

InvalidArgumentException.className,
function() {

new Coordinates(-90.1, 180.1);
}

);

In the last test case, the InvalidArgumentException that gets thrown from the con-
structor isn’t the one we’d expect it to be. Because the test case reuses an invalid value
for latitude (–90.1) from the previous test case, trying to construct a Coordinates
object will throw an exception telling us that “Latitude should be between –90.0 and
90.0.” But the test was supposed to verify that the code would reject invalid values for
longitude. This leaves the range check for longitude uncovered in a test scenario,
even though all the tests succeed.

 To prevent this kind of mistake, make sure to always verify that the exception you
catch in a unit test is in fact the expected one. A pragmatic way to do this is to verify
that the exception message contains certain predefined words.

expectException(
InvalidArgumentException.className,
'Longitude',
function() {

new Coordinates(-90.1, 180.1);
}

);

Tests for the domain invariants ofListing 3.15 Coordinates

Verifying that the exception message contains a specific stringListing 3.16

This word is supposed to be
in the exception message.

77Extract new objects to prevent domain invariants from being verified in multiple places

Adding this expectation about the exception message to the test in listing 3.15 will
make the test fail. It will pass again once we provide the constructor with a sensible
value for latitude.

3.5 Extract new objects to prevent domain invariants from
being verified in multiple places
You’ll often find the same validation logic repeated in the same class, or even in differ-
ent classes. As an example, take a look at the following User class and how it has to val-
idate an email address in multiple places, using a function from the language’s
standard library.

final class User
{

private string emailAddress;

public function __construct(string emailAddress)
{

if (!is_valid_email_address(emailAddress)) {
throw new InvalidArgumentException(

'Invalid email address'
);

}
this.emailAddress = emailAddress;

}

// ...

public function changeEmailAddress(string emailAddress): void
{

if (!is_valid_email_address(emailAddress)) {
throw new InvalidArgumentException(

'Invalid email address'
);

}
this.emailAddress = emailAddress;

}
}

expectException(
InvalidArgumentException.className,
'email',
function () {

new User('not-a-valid-email-address');
}

);

user = new User('valid@emailaddress.com');

expectException(

TheListing 3.17 User class

Validates that the provided
email address is valid

Validates it again, if it’s
going to be updated

The constructor will catch
invalid email addresses.

Creates a valid
User object first

changeEmailAddress() will also
catch invalid email addresses.

78 CHAPTER 3 Creating other objects

InvalidArgumentException.className,
'email',
function () use (user) {

user.changeEmailAddress('not-a-valid-email-address');
}

);

Although you could easily extract the email address validation logic into a separate
method, the better solution is to introduce a new type of object that represents a valid
email address. Since we expect all objects to be valid the moment they are created, we
can leave out the “valid” part from the class name and implement it as follows.

final class EmailAddress
{

private string emailAddress;

public function __construct(string emailAddress)
{

if (!is_valid_email_address(emailAddress)) {
throw new InvalidArgumentException(

'Invalid email address'
);

}
this.emailAddress = emailAddress;

}
}

Wherever you encounter an EmailAddress object, you will know it represents a value
that has already been validated:

final class User
{

private EmailAddress emailAddress;

public function __construct(EmailAddress emailAddress)
{

this.emailAddress = emailAddress;
}

// ...

public function changeEmailAddress(EmailAddress emailAddress): void
{

this.emailAddress = emailAddress;
}

}

Wrapping values inside new objects called value objects isn’t just useful for avoiding
repeated validation logic. As soon as you notice that a method accepts a primitive-type

TheListing 3.18 EmailAddress class

79Extract new objects to represent composite values

value (string, int, etc.), you should consider introducing a class for it. The guiding
question for deciding whether or not to do this is, “Would any string, int, etc., be
acceptable here?” If the answer is no, introduce a new class for the concept.

 You should consider the value object class itself to be a type, just like string, int,
etc., are types. By introducing more objects to represent domain concepts, you’re
effectively extending the type system. Your language’s compiler or runtime will be
able to support you much better, because it can do type-checking for you and make
sure that only the right types end up being used when passing method arguments and
returning values.

Extract new objects to3.6 represent composite values
When creating all these new types, you’ll find that some of them naturally belong
together and always get passed together from method call to method call. For example,
an amount of money always comes with the currency of the amount, as in the following
listing. If a method received just an amount, it wouldn’t know how to deal with it.

final class Amount
{

// ...
}

final class Currency
{

// ...
}

final class Product
{

public function setPrice(
Amount amount,

Currency currency
): void {

// ...
}

}

final class Converter
{

public function convert(

Listing 3.19 Amount and Currency

Exercises
3 A country code can be represented as a two-character string, but not every two-

character string will be a valid country code. Create a value object class that rep-
resents a valid country code. For now, assume that the list of known country
codes is NL and GB.

Amount and Currency
always go together.

80 CHAPTER 3 Creating other objects

Amount localAmount,
Currency localCurrency,
Currency targetCurrency

): Amount {
// ...

}
}

In this last example, the return type is actually quite confusing. An Amount will be
returned, and the currency of this amount is expected to match the given target-
Currency. But this is not evident by looking at the types used in this method.

 Whenever you notice that values belong together (or can always be found together),
wrap those values into a new type. In the case of Amount and Currency, a good name for
the combination of the two could be “money,” resulting in the Money class.

final class Money
{

public function __construct(Amount amount, Currency currency)
{

// ...
}

}

Using this type indicates that you want to keep these values together, although if you
wanted to use them separately, you still could.

TheListing 3.20 Money class

Adding more object types leads to more typing. Is that really necessary?
100 has fewer characters than new Amount(100), but all that extra typing gives you
the benefits of using object types:

1 You can be certain that the data the object wraps has been validated.
2 An object usually exposes additional, meaningful behaviors that make use of

its data.
3 An object can keep values together that belong together.
4 An object helps you keep implementation details away from its clients.

If you feel like it’s a hassle to create all these objects one by one based on primitive
values, you can always introduce helper methods for creating them. Here’s an example:

// Before:

money = new Money(new Amount(100), new Currency('USD'));

// After:

money = Money.create(100, 'USD');

You will learn more about this style of creating objects in section 3.9.

81Use assertions to validate constructor arguments

Use assertions to vali3.7 date constructor arguments
We’ve already seen several examples of constructors that throw exceptions when
something is wrong. The general structure is always like this:

if (somethingIsWrong()) {
throw new InvalidArgumentException(/* ... */);

}

These checks at the beginnings of methods are called “assertions,” and they’re basi-
cally safety checks. Assertions can be used to establish the situation, examine the mate-
rials, and signal if anything is wrong. For this reason, assertions are also called
“precondition checks.” Once you’re past these assertions, it should be safe to perform
the task at hand with the data that has been provided.

 Because you’ll often write the same kinds of checks in many different places, it’ll
be convenient to use an assertion library instead.1 Such a library contains many asser-
tion functions that will cover almost all situations. These are some examples:

Assertion.greaterThan(value, limit);
Assertion.isCallable(value);
Assertion.between(

value,
lowerLimit,
upperLimit

);
// and so on...

Exercises
4 With a Run object, you can save the distance you covered in a run:

final class Run
{

public function __construct(int distance)
{

// ...
}

}

The problem with the current implementation is that there’s no way to find out
what kind of value distance represents. Is it measured in meters, feet, kilome-
ters perhaps? This requires a new value object representing both the quantity and
the unit of the running distance. For your implementation, assume the distance
can only be measured in meters or feet.

1If you use PHP, take a look at the beberlei/assert or webmozart/assert package.

82 CHAPTER 3 Creating other objects

The question is always, “Should you verify that these assertions work in a unit test for
your object?” The guiding question is, “Would it be theoretically possible for the lan-
guage runtime to catch this case?” If the answer is yes, don’t write a unit test for it.

 For example, a dynamically typed language like PHP doesn’t have a way to set the
type of an argument to a list of <class name>. Instead, you’d have to rely on the
pretty generic array type. To verify that a given array is indeed a flat list of objects of a
certain type, you would use an assertion, as in the following listing.

final class EventDispatcher
{

public function __construct(array eventListeners)
{

Assertion.allIsInstanceOf(
eventListeners,
EventListener.className

);

// ...
}

}

Since this is an error condition that a more evolved type system could catch, you don’t
have to write a unit test that catches the AssertionFailedException thrown by
allIsInstanceOf(). However, if you have to inspect a given value and check that it’s
within a certain range, or if you have to verify the number of items in a list, etc., you
will have to write a unit test that shows you’ve covered the edge cases. Revisiting a pre-
vious example, the domain invariant that a given latitude is always between –90 and 90
inclusive should be verified with a test.

expectException(
AssertionFailedException.className,
'latitude',
function() {

new Coordinates(-90.1, 0.0)
}

);
// and so on...

Listing 3.21 EventDispatcher uses an assertion function in its constructor

Add unit tests for domain invariantsListing 3.22

Don’t collect exceptions
Although the tools sometimes allow it, you shouldn’t save up assertion exceptions
and throw them as a list. Assertions are not meant to provide the user with a conve-
nient list of things that are wrong. They are meant for the programmer, who needs to
know that they are using a constructor or method in the wrong way. As soon as you
notice anything wrong, just make the object scream.

83Use assertions to validate constructor arguments

If you want to supply the user with a list of things that are wrong about the data they
provided (by submitting a form, sending an API request, etc.) you should use a data
transfer object (DTO) and validate it instead. We’ll discuss this type of object at the
end of this chapter.

Exercises
5 You can use the following assertion functions:

Assertion.greaterThan(value, limit);
Assertion.between(

value,
lowerLimit,
upperLimit

);
Assertion.lessThan(value, limit);

Rewrite the constructor of PriceRange to use the appropriate assertion functions.

final class PriceRange
{

public function __construct(int minimumPrice, int maximumPrice)
{

if (minimumPrice < 0) {
throw new InvalidArgumentException(

'minimumPrice should be 0 or more'
);

}
if (maximumPrice < 0) {

throw new InvalidArgumentException(
'maximumPrice should be 0 or more'

);
}
if (maximumPrice <= minimumPrice) {

throw new InvalidArgumentException(
'maximumPrice should be greater than minimumPrice'

);
}

this.minimumPrice = miminumPrice;
this.maximumPrice = maximumPrice;

}
}

84 CHAPTER 3 Creating other objects

Don’t inject dependencies; optionally pass them3.8
as method arguments
Services can have dependencies, and they should be injected as constructor argu-
ments. But other objects shouldn’t get any dependencies injected, only values, value
objects, or lists of them. If a value object still needs a service to perform some task, you
could optionally inject it as a method argument, as in the next listing.

final class Money
{

private Amount amount;
private Currency currency;

public function __construct(Amount amount, Currency currency)
{

this.amount = amount;
this.currency = currency;

}

public function convert(
ExchangeRateProvider exchangeRateProvider,
Currency targetCurrency

): Money {
exchangeRate = exchangeRateProvider.getRateFor(

this.currency,
targetCurrency

);

return exchangeRate.convert(this.amount);
}

}

It may sometimes feel a bit strange to pass a service as a method argument, so it makes
sense to consider alternative implementations too. Maybe we shouldn’t pass the
ExchangeRateProvider service, but only the information we get from it: Exchange-
Rate. This would require Money to expose both its internal Amount and Currency
objects, but that may be a reasonable price to pay for not injecting the dependency.
This results in a situation like the following.

Listing 3.23 Money needs the ExchangeRateProvider service

Alternative implementation: don’t passListing 3.24 ExchangeRateProvider

ExchangeRateProvider
is a method argument,
not a constructor
argument.

final class ExchangeRate
{

public function __construct(
Currency from,
Currency to,
Rate rate

) {
// ...

85Don’t inject dependencies; optionally pass them as method arguments

}

public function convert(Amount amount): Money
{

// ...
}

}

money = new Money(/* ... */);
exchangeRate = exchangeRateProvider.getRateFor(

money.currency(),
targetCurrency

);
converted = exchangeRate.convert(money.amount());

After moving things around one more time, we could settle for a solution that involves
only exposing Money’s internal Currency object, not its Amount, as is done in the follow-
ing listing. (We will get back to the topic of exposing object internals in section 6.3.)

final class Money
{

public function convert(ExchangeRate exchangeRate): Money
{

Assertion.equals(
this.currency,
exchangeRate.fromCurrency()

);

return new Money(
exchangeRate.rate().applyTo(this.amount),
exchangeRate.targetCurrency()

);
}

}

money = new Money(/* ... */);
exchangeRate = exchangeRateProvider.getRateFor(

money.currency(),
targetCurrency

);
converted = money.convert(exchangeRate);

You could argue that this solution expresses more clearly the domain knowledge we
have about money and exchange rates. For example, the converted amount will be in
the target currency of the exchange rate, and its “source” currency will be the same
currency as the currency of the original amount.

 In some cases, the need for passing around services as method arguments could be
a hint that the behavior should be implemented as a service instead. In the case of
converting an amount of money to a given currency, we might as well create a service

PassingListing 3.25 ExchangeRate instead of ExchangeRateProvider

We retrieve
ExchangeRate up front.

Then we use it to convert
the amount we have.

86 CHAPTER 3 Creating other objects

and let it do the work, collecting all the relevant information from the Amount and
Currency objects provided to it.

final class ExchangeService
{

private ExchangeRateProvider exchangeRateProvider;

public function __construct(
ExchangeRateProvider exchangeRateProvider

) {
this.exchangeRateProvider = exchangeRateProvider;

}

public function convert(
Money money,
Currency targetCurrency

): Money {
exchangeRate = this.exchangeRateProvider

.getRateFor(money.currency(), targetCurrency);

return new Money(
exchangeRate.rate().applyTo(money.amount()),
targetCurrency

);
}

}

Which solution you choose will depend on how close you want to keep the behavior to
the data, whether or not you think it’s too much for an object like Money to know
about exchange rates too, or how much you want to avoid exposing object internals.

Alternative implementation:Listing 3.26 ExchangeService does all the work

Exercises
6 Given the following User class, how should you provide the PasswordHasher

service to it?

interface PasswordHasher
{

public function hash(string password): string
}

final class User
{

private string username;
private string hashedPassword;

public function __construct(string username)
{

this.username = username;
}

87Don’t inject dependencies; optionally pass them as method arguments

public function setPassword(
string plainTextPassword

): void {
this.hashedPassword = /* ... */;

}
}

a By adding an extra constructor argument:

private PasswordHasher hasher;

public function __construct(
string username,
PasswordHasher hasher

) {
this.hasher = hasher;

}

public function setPassword(
string plainTextPassword

): void {
this.hashedPassword = this.hasher.hash(

plainTextPassword
);

}

b By adding a setPasswordHasher(PasswordHasher passwordHasher) to the
class:

private PasswordHasher hasher;

public function setPasswordHasher(PasswordHasher hasher): void
{

this.hasher = hasher;
}

public function setPassword(
string plainTextPassword

): void {
this.hashedPassword = this.hasher.hash(

plainTextPassword
);

}

c By adding PasswordHasher as a method argument:

public function setPassword(
string plainTextPassword,
PasswordHasher hasher

): void {
this.hashedPassword = hasher.hash(

plainTextPassword
);

}

Here we’d like to use the
PasswordHasher service
to hash the password.

88 CHAPTER 3 Creating other objects

Use named constructors3.9
For services, it’s fine to use the standard way of defining constructors (public function
__construct()). However, for other types of objects, it’s recommended that you use
named constructors. These are public static methods that return an instance. They
could be considered object factories.

Create from primitive-type values3.9.1

A common case for using named constructors is constructing an object from one or
more primitive-type values. This results in methods like fromString(), fromInt(),
etc. As an example, take a look at the following Date class.

final class Date
{

private const string FORMAT = 'd/m/Y';
private DateTime date;

private function __construct()
{

// do nothing here
}

public static function fromString(string date): Date
{

object = new Date();

DateTime = DateTime.createFromFormat(
Date.FORMAT,
date

);

object.date = DateTime;

return object;
}

}

date = Date.fromString('1/4/2019');

TheListing 3.27 Date class wraps a date string

(continued)
d By making the PasswordHasher globally available:

public function setPassword(
string plainTextPassword

): void {
this.hashedPassword = PasswordHasher.getInstance()

.hash(
plainTextPassword

);
}

We’d still have to assert that
createFromFormat() doesn’t
return false.

89Use named constructors

It’s important to add a regular, but private, constructor method, so that clients won’t
be able to bypass the named constructor you offer to them, which would possibly leave
the object in an invalid or incomplete state.

Don’t immediately add toString(), toInt(), etc.3.9.2

When you add a named constructor that creates an object based on a primitive-type
value, you may feel the need for symmetry and want to add a method that can convert
the object back to the primitive-type value. For instance, having a fromString() con-
structor may lead you to automatically provide a toString() method too. Make sure
you only do this once there is a proven need for it.

Introduce a domain-specific concept3.9.3

When you discuss the concept of a “sales order” with your domain expert, they would
never speak about “constructing” a sales order. Maybe they would talk about “creating”
a sales order, or they might use a more specific term like “placing” a sales order. Look
out for these words and use them as method names for your named constructors.

3.9.4

In real life, sales orders aren’t “constructed,” but “placed”Listing 3.28

Wait, does this work?
It may seem strange that this public static fromString() method can create a
new object instance and manipulate the date property of the new instance. After all,
this property is private, so that shouldn’t be allowed, right?

Scoping of methods and properties is usually class-based, not instance-based, so private
properties can be manipulated by any object, as long as it’s of the exact same class.
The fromString() method in this example counts as a method of the same class, which
is why it can manipulate the date property directly, without the need for a setter.

final class SalesOrder
{

public static function place(/* ... */): SalesOrder
{

// ...
}

}

salesOrder = SalesOrder.place(/* ... */);

Optionally use the private constructor to enforce constraints

Some objects may offer multiple named constructors, because there are different ways
in which you can construct them. For example, if you want a decimal value with a cer-
tain precision, you could choose an integer value with a positive integer precision as
the normalized way of representing such a number. At the same time, you may want to

90 CHAPTER 3 Creating other objects

allow clients to use their existing values, which are strings or floats, as input for work-
ing with such a decimal value. Using a private constructor helps to ensure that what-
ever construction method is chosen, the object will end up in a complete and
consistent state. The following listing shows an example.

Protecting domain invariants inside a private constructorListing 3.29

final class DecimalValue
{

private int value;
private int precision;

private function __construct(int value, int precision)
{

this.value = value;

Assertion.greaterOrEqualThan(precision, 0);
this.precision = precision;

}

public static function fromInt(
int value,
int precision

): DecimalValue {
return new DecimalValue(value, precision);

}

public static function fromFloat(
float value,
int precision

): DecimalValue {
return new DecimalValue(

(int)round(value * pow(10, precision)),
precision

);
}

public static function fromString(string value): DecimalValue
{

result = preg_match('/^(\d+)\.(\d+)/', value, matches);
if (result == 0) {

throw new InvalidArgumentException(/* ... */);
}

wholeNumber = matches[1];
decimals = matches[2];

valueWithoutDecimalSign = wholeNumber . decimals;

return new DecimalValue(
(int)valueWithoutDecimalSign,
strlen(decimals)

);
}

}

91Don’t use property fillers

In summary, the using named constructors offers two main advantages:

 They can be used to offer several ways to construct an object.
 They can be used to introduce domain-specific synonyms for creating an object.

Besides creating entities and value objects, named constructors can be used to offer con-
venient ways to instantiate custom exceptions. We’ll discuss these later, in section 5.2.

Don’t use property fillers3.10
Applying all the object design rules in this book will lead to objects that are in com-
plete control of what goes into them, what stays inside, and what a client can do with
them. A technique that works completely against this object design style is property
filler methods, which look like the following fromArray() method.

Listing 3.30 Position has a property filler called fromArray()

Exercises
7 The following Date class can be instantiated by passing in a string in the right

format, which will then be converted to a DateTime instance. But what if the cli-
ent already has a DateTime instance available? How can we build in an option
for the client to pass their instance directly to the Date object, instead of
through an intermediate string representation?

final class Date
{

private DateTime date;

public function __construct(string date)
{

this.date = DateTime.createFromFormat(
'd/m/Y',
date

);
}

}

a Remove the string type from the constructor’s date parameter to allow cli-
ents to pass in a DateTime instance without any type errors.

b Add two named constructors to the class: fromString(string date): Date
and fromDateTime(DateTime dateTime): Date.

c Make the string date parameter optional, and add a second optional Date-
Time dateTime parameter to the constructor.

d Create a new class that extends from Date and overrides the constructor to
accept a DateTime instance instead of a string.

final class Position
{

private int x;
private int y;

92 CHAPTER 3 Creating other objects

public static function fromArray(array data): Position
{

position = new Position();
position.x = data['x'];
position.y = data['y'];
return position;

}
}

This kind of method could even be turned into a generic utility that would copy values
from the data array into the corresponding properties using reflection. Though it
may look convenient, the object’s internals are now out in the open, so always make
sure that the construction of an object happens in a way that’s fully controlled by the
object itself.

NOTE At the end of this chapter, we’ll look at an exception to this rule. For
data transfer objects, a property filler could be a way to map, for example, form
data onto an object. Such an object doesn’t need to protect its internal data as
much as an entity or a value object has to.

Don’t put anything more in3.11 to an object than it needs
It’s common to start designing an object by thinking about what needs to go in. For ser-
vices, you may end up injecting more dependencies than you need, so you should inject
dependencies only when you need them. The same is true for other types of objects:
don’t require more data than is strictly needed to implement the object’s behavior.

 One type of object that often ends up carrying around more data than needed is
an event object, representing something that has happened somewhere in the appli-
cation. An example of such an event is the following ProductCreated class.

final class ProductCreated
{

public function __construct(
ProductId productId,
Description description,
StockValuation stockValuation,
Timestamp createdAt,
UserId createdBy,
/* ... */

) {
// ...

}
}

this.recordThat(
new ProductCreated(

/* ... */
)

);

TheListing 3.31 ProductCreated class represents an event

Inside the
Product entity

Passes along all the data that
was available when creating
the product

93Don’t test constructors

If you don’t know which event data will be important for yet-to-be-implemented event
listeners, don’t add anything. Just add a constructor with no arguments at all, and add
more data when the data is needed. This way, you will provide data on a need-to-know
basis.

 How do you know what data should actually go into an object’s constructor? By
designing the object in a test-driven way. This means that you first have to know how
an object is going to be used.

3.12 Don’t test constructors
Writing tests for your objects, specifying their desired behavior, will let you figure out
which data is actually needed at construction time and which data can be provided
later. It will also help you figure out which data needs to be exposed later on and
which data can stay behind the scenes, as implementation details of the object.

 As an example, let’s take another look at the Coordinates class we saw earlier.

final class Coordinates
{

// ...

public function __construct(float latitude, float longitude)
{

if (latitude > 90 || latitude < -90) {
throw new InvalidArgumentException(

'Latitude should be between -90 and 90'
);

}
this.latitude = latitude;

if (longitude > 180 || longitude < -180) {
throw new InvalidArgumentException(

'Longitude should be between -180 and 180'
);

}
this.longitude = longitude;

}
}

How can we test that the constructor works? What about the following test?

public function it_can_be_constructed(): void
{

coordinates = new Coordinates(60.0, 100.0);

assertIsInstanceOf(Coordinates.className, coordinates);
}

The constructor ofListing 3.32 Coordinates

A first try at testing the constructor ofListing 3.33 Coordinates

94 CHAPTER 3 Creating other objects

This isn’t very informative. In fact, it’s impossible for the assertion to fail unless the
constructor has thrown an exception, which is an execution flow we’re explicitly not
testing here.

 What is the task of the constructor? Judging from the code, it’s to assign the given
constructor arguments to internal object properties. So how can we be sure that this
has worked? We could add getters, which would allow us to find out what’s inside the
object’s properties, as follows.

final class Coordinates
{

// ...

public function latitude(): float
{

return this.latitude;
}

public function longitude(): float
{

return this.longitude;
}

}

The next listing shows how we could use those getters in a unit test.

public function it_can_be_constructed(): void
{

coordinates = new Coordinates(60.0, 100.0);

assertEquals(60.0, coordinates.latitude());
assertEquals(100.0, coordinates.longitude());

}

But now we’ve introduced a way for internal data to get out of the object, for no other
reason than to test the constructor.

 Look back at what we’ve done here: We’ve been testing constructor code after we
wrote it. We’ve been testing this code, knowing what’s going on in there, meaning the
test is very close to the implementation of the class. We’ve been putting data into an
object, without even knowing if we’ll ever need that data again. In conclusion, we’ve
done too much, too soon, without a healthy dose of distance from the object’s imple-
mentation.

 The only thing we can and should do at this point is test that the constructor
doesn’t accept invalid arguments. We’ve discussed this before: you should verify that

Extra getters for testing theListing 3.34 Coordinates constructor

Using the new getters in a unit testListing 3.35

95Don’t test constructors

providing values for latitude and longitude outside of their acceptable ranges triggers
an exception, making it impossible to construct the Coordinates object.

 Further down the road, we’ll talk more about exposing data, but for now take the
following advice:

 Only test a constructor for ways in which it should fail.
 Only pass in data as constructor arguments when you need it to implement real

behavior on the object.
 Only add getters to expose internal data when this data is needed by some

other client than the test itself.

Once you start adding actual behavior to the object, you will implicitly test the happy
path for the constructor anyway, because when doing so you’ll need a fully instanti-
ated object.

Exercises
8 What’s wrong with the following code for the Product entity?

final class Product
{

private int id;
private string name;

public function __construct(int id, string name)
{

this.id = id;
this.name = name;

}

public function id(): int
{

return this.id;
}

public function name(): string
{

return this.name;
}

}

public function it_can_be_constructed(): void
{

product = new Product(1, 'Some name');

assertEquals(1, product.id());
assertEquals('Some name', product.name());

}

a It has getters.
b The getters seem to be there only to test the constructor.
c The properties aren’t nullable.

This is the only test
for the Product class.

96 CHAPTER 3 Creating other objects

3.13 The exception to the rule: Data transfer objects
The rules described in this chapter apply to entities and value objects; we care a lot
about the consistency and validity of the data that ends up inside such objects. These
objects can only guarantee correct behavior if the data they use is correct too.

 There’s another type of object that I haven’t mentioned so far, to which most of
the previous rules don’t apply. It’s a type of object that you will find at the edges of an
application, where data coming from the world outside is converted into a structure
that the application can work with. The nature of this process requires it to behave a
little differently from entities and value objects.

 This special type of object is known as a data transfer object (DTO):

 A DTO can be created using a regular constructor.
 Its properties can be set one by one.
 All of its properties are exposed.
 Its properties contain only primitive-type values.
 Properties can optionally contain other DTOs, or simple arrays of DTOs.

3.13.1 Use public properties

Since a DTO doesn’t protect its state and exposes all of its properties, there is no need
for getters and setters. This means it’s quite sufficient to use public properties for
them. Because DTOs can be constructed in steps and don’t require a minimum
amount of data to be provided, they don’t need constructor methods.

 DTOs are often used as command objects, matching the user’s intention and con-
taining all the data needed to fulfill their wish. An example of such a command object
is the following ScheduleMeetup command, which represents the user’s wish to sched-
ule a meetup with the given title on the given date.

final class ScheduleMeetup
{

public string title;
public string date;

}

The way you can use such an object is, for example, by populating it with the data sub-
mitted with a form, and then passing it to a service, which will schedule the meetup
for the user. An example implementation can be found in the following listing.

final class MeetupController
{

public function scheduleMeetupAction(Request request): Response
{

TheListing 3.36 ScheduleMeetup DTO

Populating theListing 3.37 ScheduleMeetup DTO and passing it to a service

97The exception to the rule: Data transfer objects

formData = /* ... */;

scheduleMeetup = new ScheduleMeetup();
scheduleMeetup.title = formData['title'];
scheduleMeetup.date = formData['date'];

this.scheduleMeetupService.execute(scheduleMeetup);

// ...
}

}

The service will create an entity and some value objects and eventually persist them. When
instantiated, these objects will throw exceptions if anything is wrong with the data that was
provided to them. However, such exceptions aren’t really user-friendly; they can’t even be
easily translated to the user’s language. Also, because they break the application’s flow,
exceptions can’t be collected and returned as a list of input errors to the user.

3.13.2 Don’t throw exceptions, collect validation errors

If you want to allow users to correct all their mistakes in one go, before resubmitting
the form, you should validate the command’s data before passing the object to the ser-
vice that’s going to handle it. One way to do this is by adding a validate() method to
the command, which can return a simple list of validation errors. If the list is empty, it
means that the submitted data was valid.

Validating theListing 3.38 ScheduleMeetup DTO

Extract the form
data from the
request body.Create the

command
object using

this data.

final class ScheduleMeetup
{

public string title;
public string date;

public function validate(): array
{

errors = [];

if (this.title == '') {
errors['title'][] = 'validation.empty_title';

}

if (this.date == '') {
errors['date'][] = 'validation.empty_date';

}

DateTime.createFromFormat('d/m/Y', this.date);
errors = DateTime.getLastErrors();
if (errors['error_count'] > 0) {

errors['date'][] = 'validation.invalid_date_format';
}

return errors;
}

}

98 CHAPTER 3 Creating other objects

Form and validation libraries may offer you more convenient and reusable tools for
validation. For instance, the Symfony Form and Validator components work really well
with this kind of data transfer object.

3.13.3 Use property fillers when needed

Earlier we discussed property fillers and how they shouldn’t be used when working
with most objects; they expose all the object’s internals. In the case of a DTO, this isn’t
a problem because a DTO doesn’t protect its internals anyway. So, if it makes sense,
you can add a property filler method to a DTO, such as to copy form data or JSON
request data directly into a command object. Since filling the properties is the first
thing that should happen to a DTO, it makes sense to implement the property filler as
a named constructor.

final class ScheduleMeetup
{

public string title;
public string date;

public static function fromFormData(
array formData

): ScheduleMeetup {
scheduleMeetup = new ScheduleMeetup();

scheduleMeetup.title = formData['title'];
scheduleMeetup.date = formData['date'];

return scheduleMeetup;
}

}

TheListing 3.39 ScheduleMeetup DTO has a property filler

Exercises
9 What type of object do you need if you want to provide a list of validation errors

to the user?

a An entity
b A DTO

10 What type of object would throw an exception if the data provided to it is incorrect?

a An entity
b A DTO

11 What type of object would limit the amount of data that it exposes?

a An entity
b A DTO

99Answers to the exercises

Summary
 Objects that are not service objects receive values or value objects, not depen-

dencies. Upon construction, an object should require a minimum amount of
data to be provided in order to behave consistently. If any of the provided con-
structor arguments is invalid in some way, the constructor should throw an
exception about it.

 It helps to wrap primitive-type arguments inside (value) objects. This makes it
easy to reuse validation rules for these values. It also adds more meaning to the
code by specifying a domain-specific name for the type (class) of the value.

 For objects that aren’t services, constructors should be static methods, also
known as named constructors, which offer yet another opportunity for introduc-
ing domain-specific names in your code.

 Don’t provide any more data to a constructor than is needed to make the object
behave as specified by its unit tests.

 A type of object for which most of these rules don’t count is a data transfer object.
DTOs are used to carry data provided by the world outside, and they expose all
their internals.

Answers to the exercises
1 Correct answers: a and d. Money is not a service, so it should not have any depen-

dencies injected as constructor arguments. Also, based on the example, there’s
no way to establish whether or not the constructor has default arguments.

2 Suggested answer:

final class PriceRange
{

public function __construct(int minimumPrice, int maximumPrice)
{

if (minimumPrice < 0) {
throw new InvalidArgumentException(

'minimumPrice should be 0 or more'
);

}
if (maximumPrice < 0) {

throw new InvalidArgumentException(
'maximumPrice should be 0 or more'

);
}
if (minimumPrice > maximumPrice) {

throw new InvalidArgumentException(
'maximumPrice should be greater than minimumPrice'

);
}

this.minimumPrice = miminumPrice;
this.maximumPrice = maximumPrice;

}
}

100 CHAPTER 3 Creating other objects

3 Suggested answer:

final class CountryCode
{

private static knownCountryCodes = ['NL', 'GB'];

private string countryCode;

public function __construct(string countryCode)
{

if (!in_array(
countryCode,
CountryCode.knownCountryCodes)

) {
throw new InvalidArgumentException(

'Unknown country code: ' . countryCode
);

}

this.countryCode = countryCode;
}

}

4 Suggested answer:

final class Distance
{

private int distance;
private string unit;

public function __construct(int distance, string unit)
{

if (distance <= 0) {
throw new InvalidArgumentException(

'distance should be greater than 0'
);

}
this.distance = distance;

if (!in_array(unit, ['meters', 'feet'])) {
throw new InvalidArgumentException(

'Unknown unit: ' unit
);

}
this.unit = unit;

}
}

final class Run
{

public function __construct(Distance distance)
{

// ...
}

}

101Answers to the exercises

5 Suggested answer:

final class PriceRange
{

public function __construct(int minimumPrice, int maximumPrice)
{

Assertion.greaterThanOrEqual(minimumPrice, 0);
Assertion.greaterThanOrEqual(maximumPrice, 0);
Assertion.greaterThan(maximumPrice, minimumPrice);

this.minimumPrice = miminumPrice;
this.maximumPrice = maximumPrice;

}
}

6 Correct answer: c. User is not a service, but an entity, so it should not get any
dependencies injected as constructor arguments or using setter methods. Also,
it should not need to reach out for dependencies. Instead, any dependency that
it needs to perform a task should be provided to it as a method argument.

7 Correct answer: b. The other options usually lead to bad design: removing
types, adding multiple arguments only one of which will be used each time, and
extending from a class you don’t own to add behavior to it.

8 Correct answer: b. Getters aren’t forbidden, and it’s okay for a property to be
null. The rule is not to add getters just for testing purposes.

9 Correct answer: b. As soon as an entity recognizes that a client passes invalid
data to it, it will throw an exception. This leaves no room for analyzing the avail-
able data and generating a list of validation errors.

10 Correct answer: a. A DTO will accept any data provided to it, as long as it has
the expected type. An entity will throw exceptions as soon as it receives even
one piece of invalid data.

11 Correct answer: a. A DTO by default exposes all of its data. An entity normally
protects most of its internal data.

Manipulating objects

As you’ve learned in the previous chapters, services should be designed to be
immutable. This means that once a service object has been created, it can never be
modified. The biggest advantage is that its behavior will be predictable, and it can
be reused to perform the same task using different input.

 So we know that services should be immutable objects, but what about the other
types of objects: entities, value objects, and data transfer objects?

This chapter covers
 Making a distinction between mutable and

immutable objects

 Using modifier methods to change state or create
modified copies

 Comparing objects

 Protecting against invalid state changes

 Using events to track changes in mutable objects

102

103Entities: Identifiable objects that track changes and record events

Entities: Identifiable objects that track changes4.1
and record events
Entities are the application’s core objects. They represent important concepts from
the business domain, like a reservation, an order, an invoice, a product, a customer,
etc. They model knowledge that developers have gained about that business domain.
An entity holds the relevant data, it may offer ways to manipulate that data, and it may
expose some useful information based on that data. An example of an entity is the fol-
lowing SalesInvoice class.

final class SalesInvoice
{

/**
* @var Line[]
*/

private array lines = [];

private bool finalized = false;

public static function create(/* ... */): SalesInvoice
{

// ...
}

public function addLine(/* ... */): void
{

if (this.finalized) {
throw new RuntimeException(/* ... */);

}

this.lines[] = Line.create(/* ... */);
}

public function finalize(): void
{

this.finalized = true;
// ...

}

public function totalNetAmount(): Money
{

// ...
}

public function totalAmountIncludingTaxes(): Money
{

// ...
}

}

TheListing 4.1 SalesInvoice entity

You can create
a sales invoice.

You can manipulate its
state, such as by adding
lines to it.

You can
finalize it.

It exposes some useful
information about itself.

104 CHAPTER 4 Manipulating objects

An entity may change over time, but it should always be the same object that under-
goes the changes. That’s why an entity needs to be identifiable. When creating it, we
give it an identifier.

final class SalesInvoice
{

private SalesInvoiceId salesInvoiceId;

public static function create(
SalesInvoiceId salesInvoiceId

): SalesInvoice {
object = new SalesInvoice();

object.salesInvoiceId = salesInvoiceId;

return object;
}

}

This identifier can be used by the entity’s repository to save the object. Later on, we
can use that same identifier to retrieve it from the repository, after which it can be
modified again.

salesInvoiceId = this.salesInvoiceRepository.nextIdentity();
salesInvoice = SalesInvoice.create(salesInvoiceId);
this.salesInvoiceRepository.save(salesInvoice);

salesInvoice = this.salesInvoiceRepository.getBy(salesInvoiceId);
salesInvoice.addLine(/* ... */);
this.salesInvoiceRepository.save(salesInvoice);

Given that the state of an entity changes over time, entities are mutable objects. They
come with specific rules for their implementation:

 The methods that change the entity’s state should have a void return type and
their names should be in the imperative form (e.g., addLine(), finalize()).

 These methods have to protect the entity against ending up in an invalid state
(e.g., addLine() checks that the invoice hasn’t been finalized already).

 The entity shouldn’t expose all its internals to test what’s going on inside.
Instead, an entity should keep a change log and expose that, so other objects
can find out what has changed about it, and why.

The following listing shows how SalesInvoice keeps a change log by recording inter-
nal domain events, which can be retrieved from outside by calling recordedEvents().

Listing 4.2 SalesInvoice gets an identifier at construction time

Using an identifier to modify an entity you created earlierListing 4.3

First, create
SalesInvoice
and save it.

Later, retrieve it again to
make further changes to it.

105Value objects: Replaceable, anonymous, and immutable values

final class SalesInvoice
{

/**
* @var object[]
*/

private array events = [];
private bool finalized = false;
public function finalize(): void
{

this.finalized = true;

this.events[] = new SalesInvoiceFinalized(/* ... */);
}

/**
* @return object[]
*/

public function recordedEvents(): array
{

return this.events;
}

}

salesInvoice = SalesInvoice.create(/* ... */);
salesInvoice.finalize();

assertEquals(
[

new SalesInvoiceFinalized(/* ... */)
],
salesInvoice.recordedEvents()

);

salesInvoice = this.salesInvoiceRepository.getBy(salesInvoiceId);
salesInvoice.finalize(/* ... */);
this.salesInvoiceRepository.save(salesInvoice);

this.eventDispatcher.dispatchAll(
salesInvoice.recordedEvents()

);

4.2 Value objects: Replaceable, anonymous, and
immutable values
Value objects are completely different. They are often much smaller, with just one or
two properties. They can represent a domain concept too, in which case they repre-
sent part of an entity, or an aspect of it. For example, in the SalesInvoice entity, we
need value objects for the ID of the sales invoice, the date on which the invoice was
created, and the ID and quantity of the product on each line. The following listing
shows an outline of the involved value object classes.

TheListing 4.4 SalesInvoice entity keeps an internal change log

In a test scenario …

In a service, we can allow
event listeners to respond to

the internally recorded events.

106 CHAPTER 4 Manipulating objects

final class SalesInvoiceId
{

// ...
}

final class Date
{

// ...
}

final class Quantity
{

// ...
}

final class ProductId
{

// ...
}

final class SalesInvoice
{

public static function create(
SalesInvoiceId salesInvoiceId,
Date invoiceDate

): SalesInvoice {
// ...

}

public function addLine(
ProductId productId,
Quantity quantity

): void {
this.lines[] = Line.create(

productId,
quantity

);
}

}

As you saw in the previous chapter, value objects wrap one or more primitive-type val-
ues, and they can be created by providing these values to their constructors:

final class Quantity
{

public static function fromInt(
int quantity,
int precision

): Quantity {
// ...

}
}

Value objects used by theListing 4.5 SalesInvoice entity

107Value objects: Replaceable, anonymous, and immutable values

final class ProductId
{

public static function fromInt(int productId): ProductId
{

// ...
}

}

We don’t need value objects to be identifiable. We don’t care about the exact instance
we’re working with, since we don’t need to track the changes that happen to a value
object. In fact, we shouldn’t change a value object at all. If we want to transform it to
some other value, we should just instantiate a new copy, which represents the modified
value. As an example, when adding two quantities, instead of changing the internal
value of the original Quantity, we return a new Quantity object to represent the sum.

final class Quantity
{

private int quantity;
private int precision;

private function __construct(
int quantity,
int precision

) {
this.quantity = quantity;
this.precision = precision;

}

public static function fromInt(
int quantity,
int precision

): Quantity {
return new Quantity(quantity, precision);

}

public function add(Quantity other): Quantity
{

Assertion.same(this.precision, other.precision);

return new Quantity(
this.quantity + other.quantity,
this.precision

);
}

}

originalQuantity = Quantity.fromInt(1500, 2);

newQuantity = originalQuantity.add(Quantity.fromInt(500, 2));

Listing 4.6 add() returns a new copy of Quantity

A quantity of 1500 with a
precision of 2 represents 15.00.

The modified quantity
represents 15.00 +

5.00 = 20.00.

108 CHAPTER 4 Manipulating objects

By returning a new copy instead of manipulating the existing object, we effectively
make the Quantity value object immutable. Once created, it won’t change.

 Value objects don’t only represent domain concepts. They can occur anywhere in the
application. A value object is any immutable object that wraps primitive-type values.

Data transfer objects:4.3 Simple objects with fewer
design rules
Another type of object that wraps primitive-type values is a data transfer object; we dis-
cussed them in the previous chapter. Although some people prefer to implement
DTOs as immutable objects, this level of protection often gets in the way of other char-
acteristics you may be after. For instance, you may want to fill the properties one by
one, based on data submitted by the user. You also won’t want to maintain or unit test
a DTO, as it has no significant behavior (it just holds data), so you won’t want it to
have too many methods (such as getters and setters). In the end, you may settle on
using public properties. If your programming language has a way to mark them as
read-only/write-once (e.g., Java has a final keyword to accomplish this), it would be
smart to use it on your DTOs.

 The following listing shows an example of the DTO class CreateSalesInvoice,
which also keeps instances of the DTO class Line.

final class CreateSalesInvoice
{

/**
* @final
*/

public string date;

/**
* @var Line[]
* @final
*/

public array lines = [];
}

final class Line
{

/**
* @final
*/

public int productId;

/**
* @final
*/

public int quantity;
}

DTO classes with public fieldsListing 4.7

109Data transfer objects: Simple objects with fewer design rules

We don’t have design rules for data transfer objects that are as strong as the rules for
entities and value objects. For the latter, design quality and data integrity are more
important than they are for data transfer objects. This is why the design rules in this
chapter apply to entities and value objects.

Exercises
1 What type of object is represented by the following class?

final class UserId
{

private int userId;

private function __construct(int userId)
{

this.userId = userId;
}

public static function fromInt(int userId): UserId
{

return new UserId(userId);
}

}

a Entity
b Value object
c Data transfer object

2 What type of object is represented by the following class?

final class User
{

private UserId userId;
private Username username;
private bool isActive;

private function __construct()
{
}

public static function create(
UserId userId,
Username username

): User {
user = new User();

user.userId = userId;
user.username = username;

return user;
}

110 CHAPTER 4 Manipulating objects

Prefer immutable objects4.4
Since an entity is designed to track changes, it is useful for it to be manipulable after
construction. In general, however, you should prefer objects to be immutable. In fact,
most objects that are not entities should be implemented as immutable value objects.
Let’s take a closer look at why you should prefer an object to be immutable.

 By definition, an object can be created and then reused in different places. We can
pass an object on as a method argument or a constructor argument, or we can assign
an object to a property:

object = new Foo();

this.someMethod(object);

this.someProperty = object;

return object;

If one call site has a reference to an object, and another call site then changes some
aspect of the object, it will be quite a surprise for the first call site. How can it know
that the object is still useful? Maybe the initial call site doesn’t know how to deal with
the new state of the object.

 But even within the same call site, problems related to mutability can occur. Take a
look at the following listing.

(continued)
public function deactivate(): void
{

this.active = false;
}

}

a Entity
b Value object
c Data transfer object

3 What type of object is represented by the following class?

final class CreateUser
{

public string username;
public string password;

}

a Entity
b Value object
c Data transfer object

Pass along the object.

Assign the object to a property.

Maybe return the object.

111Prefer immutable objects

final class Appointment
{

private DateTime time;

public function __construct(DateTime time)
{

this.time = time;
}

public function time(): string
{

return this.time.format('h:s');
}

public function reminderTime(): string
{

oneHourBefore = '-1 hour';

reminderTime = this.time.modify(oneHourBefore);

return reminderTime.format('h:s');
}

}

appointment = new Appointment(new DateTime('12:00'));

time = appointment.time();

reminderTime = appointment.reminderTime();

time = appointment.time();

Reading code like this, it may take a lot of time to figure out why, after requesting the
time for sending a reminder, the time of the appointment itself has changed. To pre-
vent this kind of situation, the general rule is to design every object that is not an
entity to be immutable. It’ll always be safe to keep a reference to an immutable object.

4.4.1 Replace values instead of modifying them

If you design objects to be immutable, they show a nice similarity with primitive-type
values. Consider this example:

i = 1;
i++;

Would you consider 1 to have been changed into 2? No, we should say that the vari-
able i previously contained 1, and now it contains 2. Integers are in fact immutable

TheListing 4.8 Appointment class has mutability issues

This actually modifies
the object stored in
the time property.

First, get the time of
the appointment. This
returns ‘12:00’.

Then get the time for
sending a reminder.
This returns ‘11:00’.

Finally, get the time of the
appointment again. This

returns ‘11:00’ now.

112 CHAPTER 4 Manipulating objects

themselves. We use them, and then we discard them, but we can always use them
again. Also, passing them around as method arguments or copying them into object
properties isn’t considered dangerous. Every time we need an integer, we create a new
one from the endless supply of integers. There’s no shared place in the computer’s
memory where we keep one instance of every integer.

 The same goes for objects that are implemented as immutable values. It doesn’t
feel like we share them anymore. And if we need the object to be different, we don’t
modify the object—we create a new one. This means that if an immutable object is
inside a variable or property, and we want to change something about it, we create a
new object and store it in our variable or property.

 To illustrate, let’s say we implemented Year as an immutable object, wrapping an
integer and offering a convenient method for returning a new Year instance repre-
senting the next year.

final class Year
{

private int year;

public function __construct(int year)
{

this.year = year;
}

public function next(): Year
{

return new Year(this.year + 1);
}

}

year = new Year(2019);

year.next();
assertEquals(new Year(2019), year);

year = year.next();
assertEquals(new Year(2020), year);

If we keep a Year instance in a property of a mutable object, and we want it to proceed
to the next year, we should not only call next(), but we should also store its return
value in the property that holds the current Year instance, as follows.

final class Journal
{

private Year currentYear;

TheListing 4.9 Year class

Replace values instead of modifying themListing 4.10

This has no effect, since next()
doesn’t actually change year.

Instead, we should capture
the return value of next().

113Prefer immutable objects

public function closeTheFinancialYear(): void
{

// ...

this.currentYear = this.currentYear.next();
}

}

How to decide if an object should be immutable
If an object is a service, it’s clear: it should be immutable. If it’s an entity, it’s
expected to change, so it should be mutable. All other types of objects should be
immutable, for all the reasons mentioned in the previous section.

In practice, depending on the type of application you work on, you may still need to
implement some objects as mutable, such as if your application has an interactive
GUI, or if you’re a game developer. If a framework forces you to let go of the rules,
sometimes you have to (and sometimes you have to let go of the framework). Just
make sure that your default choice is to make objects immutable.

Exercises
4 The following ColorPalette class represents an immutable object, which should

be created once and never modified. Unfortunately, the current implementation
won’t result in an immutable object. Can you see what’s wrong with it?

final class ColorPalette
{

private Collection colors;

private function __construct()
{

this.colors = new Collection();
}

public static function startWith(sRGB color): ColorPalette
{

palette = new ColorPalette();

palette.colors.add(color);

return palette;
}

public function withColorAdded(sRGB color): ColorPalette
{

copy = clone this;
copy.colors = clone this.colors;

copy.colors.add(color);

114 CHAPTER 4 Manipulating objects

A modifier on an immuta4.5 ble object should return
a modified copy
Based on our findings regarding immutability, immutable objects can have methods
that could be considered modifiers, but they don’t modify the state of the object on
which we call the method. Instead, such a method returns a copy of the object, but
with data that matches the method’s intention. The return type of the method should
be the class of that object itself, just like the return type of the next() method from
the previous example was Year.

 There are two basic templates for these methods. The first uses the (potentially pri-
vate) constructor of the object, to create the desired copy, like the plus() method in
the next listing.

Listing 4.11 plus() returns a new copy using the existing constructor

(continued)
return copy;

}

public function colors(): Collection
{

return this.colors;
}

}

a startWith() internally modifies the ColorPalette instance, making it a
mutable object.

b colors() returns a mutable collection, making the ColorPalette instance
indirectly mutable.

c withColorAdded() modifies the original ColorPalette instance.

final class Integer
{

private int integer;

public function __construct(int integer)
{

this.integer = integer;
}

public function plus(Integer other): Integer
{

return new Integer(this.integer + other.integer);
}

}

Since Integer already has a constructor that accepts an int value, we can add the
existing integers and pass the resulting int to the constructor of Integer.

115A modifier on an immutable object should return a modified copy

 The other option, which can sometimes be useful for immutable objects with mul-
tiple properties, is to create an actual copy of the object using the clone operator, and
then make the desired change to it. The withX() method does this in the following
listing.

final class Position
{

private int x;
private int y;

public function __construct(int x, int y)
{

this.x = x;
this.y = y;

}

public function withX(int x): Position
{

copy = clone this;

copy.x = x;

return copy;
}

}

position = new Position(10, 20);

nextPosition = position.withX(6);
assertEquals(new Position(6, 20), nextPosition);

In the previous example, withX() resembles a traditional setter method, which simply
allows a client to replace the value of a single property. This forces the client to make
the necessary calculations to find out what that new value should be. There are usually
better options. Make sure you look for ways to make modifier methods a bit smarter,
or at least give them a name that’s domain-oriented rather than technical. You may
find useful clues about how to accomplish that by looking at how clients use these
methods.

 For example, here’s a client of the withX() method:

nextPosition = position.withX(position.x() - 4);

Because Position only has a modifier method for setting a new value for x, this client
has to make its own calculations to determine which value it has to provide. But the
client isn’t really looking for a way to modify x; it’s looking for a way to find out what
the next position will be if it takes four steps to the left.

Listing 4.12 withX() uses the clone operator to create a copy

The next position will be 4
steps to the left (6, 20).

Move 4 steps to the left.

116 CHAPTER 4 Manipulating objects

 Instead of making the client do the calculations, you can let the Position object
do it. You only need to offer a more convenient modifier method, such as
toTheLeft() in the following listing.

final class Position
{

// ...

public function toTheLeft(int steps): Position
{

copy = clone this;

copy.x = copy.x - steps;

return copy;
}

}

position = new Position(10, 20);

nextPosition = position.toTheLeft(4);
assertEquals(new Position(6, 20), nextPosition);

assertEquals(new Position(10, 20), position);

Listing 4.13 toTheLeft() is more useful than withX()

The next position
will be (6, 20).

The original object should
not have been modified.

Exercises
5 Take a look at the following DiscountPercentage and Money value object

classes.

final class DiscountPercentage
{

private int percentage;

public static function fromInt(int percentage)
{

discount = new DiscountPercentage();

discount.percentage = percentage;

return discount;
}

public function percentage(): int
{

return this.percentage;
}

}

117On a mutable object, modifier methods should be command methods

On a mutable object, modifier methods should be4.6
command methods
Even though almost all of your objects should be immutable, there are usually some
objects that are not, namely entities. As we saw at the beginning of this chapter, an
entity has methods that allow it to be manipulated.

 Let’s look at another example, the Player class, which has a current position,
encoded as values for X and Y. It’s a mutable object: it has a moveLeft() method,
which updates (replaces, actually) the player’s position. The Position object is
immutable, but the Player object itself is mutable.

final class Money
{

private int amountInCents;

public static function fromInt(int amountInCents)
{

money = new Money();

money.amountInCents = amountInCents;

return money;
}

public function amountInCents(): int
{

return this.amountInCents;
}

}

This is how you can use Money and DiscountPercentage to calculate a dis-
counted price:

originalPrice = Money.fromInt(2000);

discountPercentage = DiscountPercentage.fromInt(10);

discount = (int)round(
discountPercentage.percentage() / 100)
* originalPrice.amountInCents()

);
discountedPrice = Money.fromInt(

originalPrice.amountInCents() - discount
);

Instead of doing this calculation outside a Money object, write a modifier method
called withDiscountApplied() on the Money class that can perform the calcu-
lation on itself.

20.00 euros

10% discount

Calculate the discount
and subtract the discount
from the original price.

118 CHAPTER 4 Manipulating objects

final class Player
{

private Position position;

public function __construct(Position initialPosition)
{

this.position = initialPosition;
}

public function moveLeft(int steps): void
{

this.position = this.position.toTheLeft(steps);
}

public function currentPosition(): Position
{

return this.position;
}

}

We can recognize mutability by the assignment operator in moveLeft(): the position
property gets a new value if you call this method. Another sign is the void return type.
These two characteristics are the trademarks of a so-called command method.

 Methods that change the state of an object should always be command methods
like this. They have a name in the imperative form, they’re allowed to make a change
to the object’s internal data structures, and they don’t return anything.

4.7 On an immutable object, modifier methods should
have declarative names
Modifier methods on mutable objects are expected to change the state of the object,
which nicely matches the traditional characteristics of a command method. For modi-
fier methods of immutable objects, we need another convention.

 Imagine having the same implementation of Position that we saw earlier, but this
time toTheLeft() was called moveLeft().

Listing 4.14 Player is mutable, Position is immutable

Listing 4.15 moveLeft(), instead of toTheLeft()

final class Position
{

// ...

public function moveLeft(int steps): Position
{

// ...
}

}

Given the rule that modifier methods on mutable objects are command methods, this
moveLeft() is confusing: it has an imperative name (moveLeft()), but it doesn’t have

119On an immutable object, modifier methods should have declarative names

a void return type. Unless they look at the implementation, readers will be unsure
whether or not calling this method will change the state of the object.

 To create a good name for modifier methods on immutable objects, you can fill in
the following template: “I want this . . . , but . . .”. In the case of Position, this becomes
“I want this position, but n steps to the left,” so toTheLeft() seems to be a suitable
method name.

final class Position
{

// ...

public function toTheLeft(int steps): Position
{

// ...
}

}

Following this template, you may often end up using the word “with,” or using so-
called participle adjectives in the past tense. For instance, “I want this quantity, but
multiplied n times.” Or “I want this response, but with a Content-Type: text/html
header.” These are declarative names: they don’t tell you what to do, but they
“declare” the result of the manipulation.

 When looking for good names, also aim for domain-specific, higher-level names
instead of generic names from the underlying technical domain. For example, we
chose toTheLeft() instead of withXDecreasedBy(), which has a different level of
abstraction.

Listing 4.16 toTheLeft() is a more suitable name

Exercises
6 An object has the following method:

public setPassword(string plainTextPassword): void

Is this object expected to be mutable or immutable?

a Mutable
b Immutable

7 An object has the following method:

public withPassword(string plainTextPassword): User

Is this object expected to be mutable or immutable?

a Mutable
b Immutable

120 CHAPTER 4 Manipulating objects

Compare whole objects4.8
With mutable objects, you can write tests like the following.

public function it_can_move_to_the_left(): void
{

position = new Position(10, 20);
position.moveLeft(4);
assertSame(6, position.x());

}

As mentioned earlier, this kind of testing usually forces additional getters to be added
to the class. These getters are only needed for writing the tests; no other client might
be interested in them.

 With immutable objects, you can often resort to a different kind of assertion—one
that allows the object to keep its internal data and implementation details on the
inside, as follows.

public function it_can_move_to_the_left(): void
{

position = new Position(10, 20);
nextPosition = position.toTheLeft(4);
assertEquals(new Position(6, 20), nextPosition);

}

assertEquals() will use a recursive method that tests for the equality of the proper-
ties of both objects, and of the objects it keeps inside those properties, and so on.
Using assertEquals() therefore prevents value objects from having some hidden
aspect that would make two objects incomparable.

A unit test forListing 4.17 moveLeft()

A unit test forListing 4.18 toTheLeft()

(continued)
8 An object has the following method:

withPassword(string plainTextPassword): void

Is this object expected to be mutable or immutable?

a Mutable
b Immutable

121When comparing immutable objects, assert equality, not sameness

When comparing immutable4.9 objects, assert equality,
not sameness
The following example shows how the Position class from the previous example can
be used in a (mutable) Player class.

final class Player
{

private Position position;

public function __construct(Position initialPosition)
{

this.position = initialPosition;
}

public function moveLeft(int steps): void
{

this.position = this.position.toTheLeft(steps);
}

public function currentPosition(): Position
{

return this.position;
}

}

A test for moveLeft() might look like the following.

function the_player_starts_at_a_position_and_can_move_left(): void
{

initialPosition = new Position(10, 20);
player = new Player(initialPosition);

assertSame(initialPosition, player.currentPosition());

player.moveLeft(4);

assertEquals(new Position(6, 20), player.currentPosition());
}

When comparing immutable objects, tests shouldn’t make a point of objects having
the same reference in memory. All that matters is the thing they represent. When
comparing integers, we don’t compare their memory locations. We just say, “Are their
values equal?” So you should always use assertEquals() when comparing objects.

 Sometimes you’ll want to compare two objects in production code rather than in a
test. In that case, you can’t use assertEquals(). What you should do will depend on

TheListing 4.19 Player class

A unit test forListing 4.20 moveLeft()

We can get away with using assertSame() here—the
Position object is still the same object we injected.

Here we have to use assertEquals().

122 CHAPTER 4 Manipulating objects

your programming language. Some languages, like Java and C#, have a built-in mech-
anism for object comparison. Objects in those languages will inherit an equals()
method from a generic Object class, which you can override to implement your own
comparison logic. If you’re using PHP, you should mimic this approach. Add an
equals() method to the object that compares the data contained in both objects, as
shown in the next listing.

final class Position
{

// ...

public function equals(Position other): bool
{

return this.x == other.x && this.y == other.y;
}

}

However, most value objects really don’t need a custom equals() method, and you
definitely shouldn’t implement one on every immutable object without thinking
about it. The rule for getters applies for the equals() method too: only add this
method if some other client than a test uses it. Also, if you can avoid typing other as
object, you should do so. In general, clients shouldn’t try to compare a Position
object to anything other than a Position object.

Listing 4.21 equals() helps with comparing two Position objects

Exercises
9 How should you compare two value objects in a unit test?

a By comparing the return values of their getters.
b By using a specialized object comparison function like assertEquals().
c By comparing the object reference (using ==).
d By calling the object’s equals() method.

10 How should you compare two value objects in production code?

a By comparing the return values of their getters.
b By using a specialized object comparison function like assertEquals().
c By comparing the object reference (using ==).
d By calling the object’s equals() method.

123Calling a modifier method should always result in a valid object

Calling a modifier meth4.10 od should always result
in a valid object
When we talked about creating objects earlier, we discussed concepts like meaningful
data and domain invariants. The same concepts can be applied to modifier methods,
and not just for modifier methods on immutable objects. The rules also apply to
mutable objects.

 A modifier method has to make sure that the client provides meaningful data, and
it has to protect domain invariants. It does so in the same way constructors do: by mak-
ing assertions about the arguments that have been provided. It can thereby prevent
the object from ending up in an invalid state. For an example, look at the following
add() method.

final class TotalDistanceTraveled
{

private int totalDistance = 0;

public function add(int distance): TotalDistanceTraveled
{

Assertion.greaterOrEqualThan(
distance,
0,
'You cannot add a negative distance'

);

copy = clone this;
copy.totalDistance += distance;

return copy;
}

}

totalDistanceTravelled = new TotalDistanceTraveled();
expectException(

InvalidArgumentException.className,
'distance',
function () use (totalDistanceTravelled) {

totalDistanceTravelled.add(-10);
}

);

If the modifier method doesn’t clone, but reuses the original constructor of the class,
you can often reuse the validation logic that’s already available. In fact, this can be a
good reason not to use clone, but always to go through the constructor.

 As an example, consider a Fraction class, which represents a fraction (e.g., 1/3,
2/5). The structure of a fraction is [numerator]/[denominator]. Both can be any whole
number, but the denominator can never be 0. The constructor enforces this rule

Listing 4.22 TotalDistanceTraveled doesn’t accept a negative distance

124 CHAPTER 4 Manipulating objects

already, so the modifier method withDenominator() only needs to forward the call to
the constructor, and the rule will be verified for the input of withDenominator() too.

final class Fraction
{

private int numerator;
private int denominator;

public function __construct(int numerator, int denominator)
{

Assertion.notEq(
denominator,
0,
'The denominator of a fraction cannot be 0'

);

this.numerator = numerator;
this.denominator = denominator;

}

public function withDenominator(newDenominator): Fraction
{

return new Fraction(this.numerator, newDenominator);
}

}

fraction = new Fraction(1, 2);

expectException(
InvalidArgumentException.className,
'denominator',
function () use (fraction) {

fraction.withDenominator(0);
}

);

Listing 4.23 withDenominator() reuses validation logic in the constructor

Forwarding the call
to the constructor
will also trigger any
of its assertions.

Exercises
11 Point out what’s wrong with the following implementation of a Range object:

final class Range
{

private int minimum;
private int maximum;

private function __construct(int minimum, int maximum)
{

Assertion.greaterThan(maximum, minimum);

this.minimum = minimum;
this.maximum = maximum;

}

125A modifier method should verify that the requested state change is valid

A modifier method should4.11 verify that the requested
state change is valid
Calling a modifier method on an object often means that the object’s properties will
be modified. For mutable objects like entities, such a change in the state of the object
can also represent an actual state transition. The transition may unlock new possibilities
or block options that were previously available.

 As an example, consider the following SalesOrder class. Once it has been marked
as “delivered,” it will be impossible to cancel it, since that state transition wouldn’t
make sense from a business perspective. The inverse is true for an order that has been
cancelled; it shouldn’t be possible to deliver it after all.

final class SalesOrder
{

// ...

Listing 4.24 SalesOrder doesn’t allow certain state changes

public static function fromIntegers(
int minimum,
int maximum

): Range {
return new Range(minimum, maximum);

}

public function withMinimum(int minimum): Range
{

copy = clone this;
copy.minimum = minimum;

return copy;
}

public function withMaximum(int maximum): Range
{

Assertion.greaterThan(maximum, this.minimum);

copy = clone this;
copy.maximum = maximum;

return copy;
}

}

a withMinimum() and withMaximum() create incomplete copies of the Range
object.

b The rule that “maximum should be greater than minimum” doesn’t get veri-
fied in every modifier method.

126 CHAPTER 4 Manipulating objects

public function markAsDelivered(Timestamp deliveredAt): void
{

/*
* You shouldn't be able to deliver the order if it has been
* cancelled.
*/

}

public function cancel(Timestamp cancelledAt): void
{

/*
* You shouldn't be able to cancel an order if it has already
* been delivered.
*/

}

// and so on...
}

Make sure that every one of your methods prevents against making invalid state transi-
tions. You should verify this with unit tests, like the one in the following listing.

public function a_delivered_sales_order_can_not_be_cancelled(): void
{

deliveredSalesOrder = /* ... */;
deliveredSalesOrder.markAsDelivered(/* ... */);

expectException(
LogicException.className,
'delivered',
function () use (deliveredSalesOrder) {

deliveredSalesOrder.cancel();
}

);
}

An appropriate exception to throw here would be a LogicException, but you can also
introduce your own exception type, like CanNotCancelOrder.

 If a client calls the same method twice, it requires a bit of contemplation. You
could throw an exception, but in most cases it’s not a big deal, and you can just ignore
the call.

public function cancel()
{

if (this.status.equals(Status.cancelled())) {
return;

A unit test for cancelling a delivered sales orderListing 4.25

If aListing 4.26 SalesOrder was already cancelled, we ignore the request

127Use internally recorded events to verify changes on mutable objects

}

// ...
}

4.12 Use internally recorded events to verify changes
on mutable objects
We’ve already seen how testing constructors leads to adding more getters to an object
than needed, only to test that what comes in can also go out again. This isn’t at all the
idea of an object, which is to hide information and implementation details. The same
goes for testing modifier methods.

 When testing the moveLeft() method of the mutable Player object we discussed
earlier, there are a few options. The first option is to use a getter to verify that the cur-
rent position after moving left is the position we expect it to be.

public function it_can_move_left(): void
{

player = new Player(new Position(10, 20));
player.moveLeft(4);

assertEquals(new Position(6, 20), player.currentPosition());
}

The other, more blunt, option is to verify that the whole object is now what we expect
it to be.

public function it_can_move_left(): void
{

player = new Player(new Position(10, 20));
player.moveLeft(4);

assertEquals(new Player(new Position(6, 20)), player);
}

This second option isn’t a bad solution, because at least we don’t need the getter to
retrieve the current position. The main issue with this test is that it covers too much
ground, and we can’t easily add new behavior to the Player object without modifying
this test too (in particular, if extra constructor arguments are added over time).

 Another option could be to change moveLeft() a bit and make it return the new
position.

We could test that the current position is the expected oneListing 4.27

We could compare the wholeListing 4.28 Player object to the expected one

128 CHAPTER 4 Manipulating objects

final class Player
{

public function moveLeft(): Position
{

this.position = this.position.toTheLeft(steps);

return this.position;
}

}

player = new Player(new Position(10, 20));
currentPosition = player.moveLeft(4);

assertEquals(new Position(6, 20), currentPosition);

This looks clever, but it’s a violation of the rule that a modifier method on a mutable
object should be a command method, and thus should have a void return type. But
on top of that, this test doesn’t really prove that the Player has moved to the expected
position. Consider, for example, the following implementation of moveLeft(), for
which the test in listing 4.29 would also pass. It returns the correct Position, but it
doesn’t modify the position property of Player.

public function moveLeft(): Position
{

return this.position.toTheLeft(steps);
}

A better way to test for changes in a mutable object is to record events inside the
object that can later be inspected. These events will act like a log of the changes that
happened to the object. Events are simple value objects, and you can create as many
of them as needed. In the following listing, the Player class is rewritten to record
PlayerMoved events and expose them through its recordedEvents() method.

final class Player
{

private Position position;

private array events = [];

public function __construct(Position initialPosition)
{

this.position = initialPosition;
}

Listing 4.29 moveLeft() returns a new Position

A broken implementation that would pass the testListing 4.30

Upon changing its state,Listing 4.31 Player records an event

129Use internally recorded events to verify changes on mutable objects

public function moveLeft(int steps): void
{

nextPosition = this.position.toTheLeft(steps);

this.position = nextPosition;

this.events[] = new PlayerMoved(nextPosition);
}

public function recordedEvents(): array
{

return this.events;
}

}

player = new Player(new Position(10, 20));

player.moveLeft(4);

assertEquals(
[

new PlayerMoved(new Position(6, 20))
],
player.recordedEvents()

);

You can do interesting things, like only recording events if something has actually
changed. For instance, maybe you allow the player to take 0 steps. If that happens, the
player hasn’t really moved, and the call to moveLeft() wouldn’t really deserve an
event to be created for it.

public function moveLeft(int steps): void
{

if (steps == 0) {
return;

}

nextPosition = this.position.toTheLeft(steps);

this.position = nextPosition;

this.events[] = new PlayerMoved(nextPosition);
}

After a while, assertEquals([/* ... */], player.recordedEvents()) may prove
not to be flexible enough to allow the implementation of the Player object to be
changed without making existing tests fail. For example, let’s see what happens if we
record another event to represent the moment the player took its initial position.

You may choose not to record an eventListing 4.32

After moving to the left,
we record an event that
can later be used to find
out what has happened
inside the Player object.

Create a new Player
object and set an initial
position for it.

Move it 4 steps to the left.

Verify that the player has moved by
comparing its recorded events to
an expected list of events.

Don’t throw an
exception, but also
don’t record an event.

130 CHAPTER 4 Manipulating objects

final class PlayerTookInitialPosition
{

// ...
}

final class Player
{

private events;

public function __construct(Position initialPosition)
{

this.position = initialPosition;

this.events[] = new PlayerTookInitialPosition(
initialPosition

);
}

}

This will break the existing test we had for moving to the left.

public function it_can_move_left(): void
{

player = new Player(new Position(10, 20));
player.moveLeft(4);

assertEquals(
[

new PlayerMoved(new Position(6, 20))
],
player.recordedEvents()

);
}

One thing we could do to make this test less brittle is to assert that the list of recorded
events contains the expected event.

Listing 4.33 Player also records a PlayerTookInitialPosition event

The existing test forListing 4.34 moveLeft(), which will fail now

Listing 4.35 assertContains () can compare recorded events

This assertion will fail because
the constructor now records a
PlayerTookInitialPosition event,
which will also be returned by
recordedEvents().

public function it_can_move_left(): void
{

player = new Player(new Position(10, 20));
player.moveLeft(4);

assertContains(
new PlayerMoved(new Position(6, 20)),
player.recordedEvents()

);
}

131Use internally recorded events to verify changes on mutable objects

Take a look at the alternative implementation of moveLeft() in the following listing,
which records an event, but doesn’t actually update the player’s position as stored in
its position property. The test in listing 4.35 would also pass for this alternative, but
obviously broken, implementation.

final class Player
{

//...

public function moveLeft(int steps): void
{

this.events[] = new PlayerMoved(nextPosition);
}

}

Actually, the implementation shouldn’t be considered “broken” at all. If the test
passes, but the production code isn’t correct, there must be something about the
object’s behavior that we didn’t fully specify in a test. So, in a sense, the test is broken.
To fix this issue, we would have to make sure that some other test forces us to update
the Player’s position property. If we can’t think of a good reason for doing so after
all, we shouldn’t worry about the position property at all, and simply remove it. The
object’s behavior will change in no observable way if we do.

Since the only information the Player exposes to its clients is a list of internal domain
events, there isn’t an easy way to find out the current position of the player. In prac-
tice, that’s probably not very useful; we need this information, if only to show the cur-
rent position of the player on the screen. We’ll get back to the topic of retrieving
information from objects in chapter 6.

Listing 4.36 moveLeft() only records an event, but the test would still pass

Isn’t it a bit too pushy to introduce events in every mutable object?
As mentioned at the beginning of this chapter, almost all objects will be immutable.
Those few objects that are mutable will be entities. These are objects for which it’s
already useful to have events (they are called “domain events” then). So, in practice,
adding support for recording events isn’t too much to ask—it’s a very natural thing
to happen.

This added support will likely prove useful anyway, because events are a way to
respond to changes in domain objects. One type of response could be to make even
more changes, or to use event data to populate search engines, build up read mod-
els, or collect useful business insights on the fly.

132 CHAPTER 4 Manipulating objects

Don’t implement fluent in4.13 terfaces on mutable objects
An object has a fluent interface when its modifier methods return this. If an object
has a fluent interface, you can call method after method on it, without repeating the
variable name of the object.

queryBuilder = QueryBuilder.create()
.select(/* ... */)
.from(/* ... */)
.where(/* ... */)
.orderBy(/* ... */);

However, a fluent interface can be very confusing regarding which object a method
gets called on. If QueryBuilder is immutable, then it doesn’t really matter. But who
knows if it’s mutable? If you look at the method signatures of QueryBuilder in the fol-
lowing listing, there’s no way to find that out.

final class QueryBuilder
{

public function select(/* ... */): QueryBuilder

Listing 4.37 QueryBuilder offers a fluent interface

Listing 4.38 QueryBuilder method signatures

Exercises
12 In a unit test, what’s the preferred way of finding out if a SalesInvoice object

instantiated from the following class has been finalized?

final class SalesInvoice
{

private string isFinalized = false;

// ...

public function finalize()
{

this.isFinalized = true;
}

}

a Add a isFinalized(): bool method to the SalesInvoice class, and call it
before and after a call to finalize(), to find out if that method did its job.

b Don’t add a getter, but use reflection to take a peek into the private property.
c Collect domain events inside the entity, which can later be analyzed to find

out if the invoice has indeed been finalized.
d Dispatch domain events and set up an event listener in the unit test, which

keeps track of whether or not the invoice has been finalized.

Do these methods update the
state of the object they’re
called on, or do they return a
modified copy? Or . . . both?

133Don’t implement fluent interfaces on mutable objects

{
// ...

}

public function from(/* ... */): QueryBuilder
{

// ...
}

// ...
}

Given that these method signatures look a lot like modifiers on immutable objects, we
might assume that QueryBuilder is immutable. So we may also assume that we can
safely reuse any intermediate stage of the QueryBuilder object, like in the next listing.

queryBuilder = QueryBuilder.create();

qb1 = queryBuilder
.select(/* ... */)
.from(/* ... */)
.where(/* ... */)
.orderBy(/* ... */);

qb2 = queryBuilder
.select(/* ... */)
.from(/* ... */)
.where(/* ... */)
.orderBy(/* ... */);

But it turns out that QueryBuilder isn’t immutable after all, as you can see by looking
at the following implementation of where().

public function where(string clause, string value): QueryBuilder
{

this.whereParts[] = clause;
this.values[] = value;

return this;
}

This method looks like a modifier of an immutable object, but it is, in fact, a regular
command method. And as a very confusing bonus, it returns the current object
instance after modifying it.

 To avoid this confusion, don’t give your mutable objects fluent interfaces. Query-
Builder would be better off as an immutable object anyway. This would not leave its

Reusing intermediate stages of aListing 4.39 QueryBuilder instance

The implementation ofListing 4.40 QueryBuilder.where()

134 CHAPTER 4 Manipulating objects

clients with an object in an unknown state. The following listing shows an alternative
implementation of where() that would make QueryBuilder immutable.

public function where(string clause, string value): QueryBuilder
{

copy = clone this;

copy.whereParts[] = clause;
copy.values[] = value;

return copy;
}

For immutable objects, having a fluent interface is not a problem. In fact, you could
say that using modifier methods as they are described in this chapter gives you a fluent
interface by definition, because every modifier will return a modified copy of itself.
This allows for chained method calls in the same way as a regular fluent interface does
(see the following listing).

position = Position.startAt(10, 5)
.toTheLeft(4)
.toTheRight(2);

AListing 4.41 where() implementation that supports immutability

Modifier methods on an immutable object form a fluent interfaceListing 4.42

Exercises
13 Take a look at the following sample from a Product entity class. Why is its set-

Price() method so confusing?

final class Product
{

// ...

public function setPrice(Money price): Product
{

// ...
}

}

a The client doesn’t know if the return value is the original object or a copy.
b Being an entity, Product is supposed to be an immutable object, but set-

Price() suggests that you can modify it.
c The method looks like a modifier method on an immutable object, but set-

Price() is not a declarative, but an imperative name.

135Answers to the exercises

Summary
 Always prefer immutable objects, which can’t be modified after they have been

created. If you want to allow something to be changed about them, first make a
copy and then make the change. Give the methods that do this declarative names,
and take the opportunity to implement some useful behavior instead of simply
allowing properties to be changed to new values. Make sure that after a modifier
method has been called, the object is in a valid state. To do this, accept only cor-
rect data, and make sure the object doesn’t make an invalid state transition.

 On mutable objects like entities, modifier methods should have a void return
type. The changes that occur in such objects can be exposed by analyzing inter-
nally recorded events. As opposed to immutable objects, mutable objects
shouldn’t have a fluent interface.

Answers to the exercises
1 Correct answer: b.
2 Correct answer: a.
3 Correct answer: c.
4 Correct answer: b. startWith() is a constructor, and it’s perfectly fine for a con-

structor to modify the instance it’s constructing. withColorAdded() doesn’t
modify the original ColorPalette instance, but its copy.

“A third-party library has some object design issues. What do I do?”
The QueryBuilder example in this section was inspired by the actual QueryBuilder
class from the Doctrine DBAL library (http://mng.bz/dx2v). It is just one example of
a class that doesn’t follow all the rules in this book. You’re likely to encounter other
classes that don’t (in third-party code, and in project code itself). What to do with
them?

There are different trade-offs to be made depending on how its used. For example,
do you use the “badly” designed class only inside your methods, or do instances of
it get passed around between methods or even objects? In the case of Query-
Builder, it will likely only be used inside repository methods. This means that it can’t
escape and be used in other parts of your application, mitigating the design risk of
using it in your project. So even if QueryBuilder has some design issues, there
really is no need to rewrite it or work around it.

There may be other cases where an object is very confusing; for example, is it
immutable, or mutable? A nice example is PHP’s built-in DateTime class, or Java’s
now-deprecated java.util.Date class. Immutable alternatives have been introduced
for them, but before those existed, it was a good idea to make copies of these objects
before doing anything with them, or to introduce your own immutable wrapper objects.
That would ensure that the mutable object never “escaped” and was modified by other
clients, which could cause strange state-related issues in your application.

http://mng.bz/dx2v

136 CHAPTER 4 Manipulating objects

5 Suggested answer:

final class Money
{

// ...

public function withDiscountApplied(
DiscountPercentage discountPercentage

): Money {
(int)round(=discount

100)/(discountPercentage.percentage()
* this.amountInCents()

);

return Money.fromInt(
this.amountInCents() - discount

);
}

}

6 Correct answer: a. If it were an immutable object, it would have a modifier
method returning a modified instance of the object.

7 Correct answer: b. If it were a mutable object, it would have a modifier method
with a void return type.

8 Correct answer: a. Admittedly, it’s a confusing method because it mixes a
declarative naming style with a command method return type (void).

9 Correct answer: b. Comparing the results of getters would make the test too
tightly coupled to the value object. We also can’t compare references, because
value objects aren’t supposed to share them. We should also not rely on any
standard or built-in equals() method to compare objects, since we wouldn’t
even need to compare value objects in production code—we shouldn’t add this
method only for testing purposes.

10 Correct answer: d. See the answer to exercise 9, but in this case there seems to
be an explicit need for comparing value objects in production code. Adding a
custom equals() method would be recommended in this case.

11 Correct answer: b. It may not look like it, but withMinimum() and withMaxi-
mum() create complete copies of the Range object. Each method only overwrites
the value for one property (minimum or maximum). The real problem is that
withMinimum() doesn’t have the assertion that withMaximum() has, leaving
room for minimum to be larger than maximum.

12 Correct answer: c. You shouldn’t add a getter just for testing; you should also
not start looking around in the object’s internals. Instead, use domain events to
record what’s going on inside the entity, and analyze it afterwards. There’s no
need to start dispatching events immediately either.

13 Correct answers: a and c. An entity isn’t supposed to be an immutable object.

Using objects

Having instantiated an object, you’re ready to use it. Objects can offer useful behav-
iors: they can give you information and they can perform tasks for you. Either way,
these behaviors will be implemented as object methods.

 Before we discuss the design rules that are specific for either retrieving informa-
tion or performing tasks, we’ll first discuss something these methods should have
in common: a template for their implementation.

5.1 A template for implementing methods
Whenever you design a method, you should remember the following template.

[scope] function methodName(type name, ...): void|[return-type]
{

[preconditions checks]

This chapter covers
 Using a template to write methods

 Validating method arguments and return values

 Dealing with failure inside a method

A template for methodsListing 5.1

137

138 CHAPTER 5 Using objects

[failure scenarios]

[happy path]

[postcondition checks]

[return void|specific-return-type]
}

Precondition checks5.1.1

The first step is to verify that the arguments provided by the client are correct and can
be used to fulfill the task at hand. Make any number of checks, and throw exceptions
when anything looks off.

 Precondition checks have the following shape:

if (/* some precondition wasn't met */) {
throw new InvalidArgumentException(/* ... */);

}

As discussed earlier, you can often use standard assertion functions for these kinds of
checks.

Assertion.inArray(value, ['allowed', 'values']);

Some of these precondition checks may only be needed because the type system of
the language lacks some features. For example, PHP has an array type, but no way to
tell the engine that the array must consist solely of objects of a certain type. For this,
you’ll need to add an assertion:

Assertion.allIsInstanceOf(value, EventListener.className);

Other checks will inspect the contents of an argument and warn the client that, for
instance, they provided a value in the wrong range:

Assertion.greaterThan(value, 0);

Introduce new types to get rid of precondition checks
Most of these assertions will be made to validate primitive-type arguments (int,
string, etc.). As we saw in section 3.5, it often makes sense to introduce wrapper
objects for these primitive-type values and move the related assertions to the con-
structors of these objects.

// Before:

public function sendConfirmationEmail(string emailAddress): void
{

Assertion.email(emailAddress);

139A template for implementing methods

If no assertion fails, this means we accept the input arguments as they are. These pre-
condition checks are still superficial, though, because they only inspect the values for
obvious issues.

5.1.2 Failure scenarios

Even if the values “look” right and therefore pass the precondition checks, things can
still go wrong. For example, even though an email address looks valid, sending an
email to it might still fail. Or even though the client provides a positive integer, it
might not match a record ID in the database. This means that things could still go
wrong while running the remaining method code.

 If something goes wrong in the method after the precondition checks, you should
throw a different kind of exception. It won’t be an exception indicating an invalid
argument. The type of the exception should indicate that an error condition
occurred that could only be detected at runtime. It’s not the method itself that fails;

// ...

}

// After:

final class EmailAddress
{

private string emailAddress;

public function __construct(string emailAddress)
{

Assertion.email(emailAddress);
this.emailAddress = emailAddress;

}
}

public function sendConfirmationEmail(
EmailAddress emailAddress

): void {
// no need to validate emailAddress anymore

}

This is a refactoring known as “replace primitive with object.”a

Depending on the programming language you use, a client might still be able to pro-
vide null as an argument, instead of an actual EmailAddress object. In that case,
make sure to always check for null arguments (or face the dreaded NullPointer-
Exception). If possible, make this process compiler-assisted. In Java, for instance,
you could use the Checker Framework for this (https://checkerframework.org/).

aMartin Fowler and Kent Beck, Refactoring: Improving the Design of Existing Code, Second Edition,
Addison-Wesley Professional, 2019.

https://checkerframework.org/

140 CHAPTER 5 Using objects

it’s some external condition that breaks the method. The following listing shows an
example of this.

public function getRowById(int id): array
{

Assertion.greaterThan(id, 0, 'ID should be greater than 0');

record = this.db.find(id);

if (record == null) {
throw new RuntimeException(

'Could not find record with ID "{id}"'
);

}

return record;
}

Downstream, every method that’s called may have its own precondition checks, so
besides RuntimeExceptions originating from the vendor code that calls the database,
we may run into an InvalidArgumentException (or its parent, LogicException).
Usually we just let these exceptions “bubble up.” Some higher-level application
error-handling mechanism should be able to deal with these errors. What matters in
this part of the method is the scenarios that the method itself can recognize as fail-
ure scenarios.

5.1.3 Happy path

The happy path, or happy part of a method, is where nothing is wrong, and the
method is just performing its task. If you keep your methods small, like you should,
you may find that there isn’t much going on in this part. Sometimes most of the code
is for dealing with failure scenarios.

5.1.4 Postcondition checks

Postcondition checks can be added to a method to verify that the method did what it
was supposed to do. You could analyze the return value before actually returning it, or
you could analyze the state of the object just before jumping out of it.

public function someVeryComplicatedCalculation(): int
{

// ...
result = /* ... */;

Listing 5.2 getRowById () throws a RuntimeException

Listing 5.3 someVeryComplicatedCalculation() performs a postcondition check

This could throw an
InvalidArgumentException.

This could cause either an
InvalidArgumentException or a
RuntimeException to be thrown
from the code that calls the
database.

This is our failure scenario: we couldn’t find the
record, so we throw a RuntimeException.

141Some rules for exceptions

Assertion.greaterThan(0, result);

return result;
}

In practice, most methods don’t need postcondition checks. If you write tests for your
methods, you already know that they are returning the right values, or that they are
changing the object’s state in the right way.

 If you have strong types in your code base, and don’t often use primitive-type val-
ues anymore, you will find that defining method parameters and return types with
these types results in solid code that can’t return something that’s invalid. After all, if
the return value is an object, we know that it can’t exist in an invalid state.

 If you’re dealing with legacy code, with lots of implicit type casting and no asser-
tions whatsoever, you may find adding postconditions a useful technique. They can
then be used as safety checks, to make sure there won’t be any problems downstream.

5.1.5

5.2

5.2.1

This postcondition check is just a safety
check, a.k.a. “This should never happen.”

Introduce new methods to get rid of postcondition checks
You could get rid of a method’s postcondition checks, just like you can remove pre-
condition checks, by promoting primitive-type values to proper objects and returning
those from your method. Another option is to wrap the method with postcondition
checks in a new method that performs these checks.

Return value

Finally, a method may return something. In fact, only query methods should do that.
We’ll discuss this topic in detail in the next chapter.

 Another good rule to keep in mind is to return early. We’ve encountered this rule
for exceptions already: as soon as you know something is going wrong, throw an
exception about it. The same applies to return values. As soon as you know what you
will return, return it right away instead of keeping the value around, skipping a few
more if clauses, and then returning it.

Some rules for exceptions
You’ve seen how exceptions are used for precondition and postcondition checks, as
well as for failure scenarios. Let’s take a look at design rules for exception classes.

Use custom exception classes only if needed

Adding a custom exception class can be very helpful in certain circumstances:

1 If you want to catch a specific exception type higher up

try {
// possibly throws `SomeSpecific` exception

} catch (SomeSpecific exception) {
// ...

}

142 CHAPTER 5 Using objects

2 If there are multiple ways to instantiate a single type of exception

final class CouldNotDeliverOrder extends RuntimeException
{

public static function itWasAlreadyDelivered():
CouldNotDeliverOrder

{
// ...

}

public static function insufficientQuantitiesInStock():
CouldNotDeliverOrder

{
// ...

}
}

3 If you want use named constructors for instantiating the exception

final class CouldNotFindProduct extends RuntimeException
{

public static function withId(
ProductId productId

): CouldNotFindProduct {
return new CouldNotFindProduct(

'Could not find a product with ID "{productId}"'
);

}
}

throw CouldNotFindProduct.withId(/* ... */);

Using a named constructor makes the code on the client side much cleaner. The
name of the exception class combined with the name of the constructor method reads
like a sentence: “Could not find product for ID” The message gets assembled
inside the exception class instead of at the call site.

 Having a custom exception class with a named constructor like this gives you the
option to add more than one named constructor, making it easier to reuse the same
exception class to point out different reasons for failure.

An exception class with multiple named constructorsListing 5.4

final class CouldNotPersistObject extends RuntimeException
{

public static function becauseDatabaseIsNotAvailable():
CouldNotPersistObject

{
return new CouldNotPersistObject(/* ... */);

}

public static function becauseMappingConfigurationIsInvalid():
CouldNotPersistObject

{

143Some rules for exceptions

return new CouldNotPersistObject(/* ... */);
}

// ...
}

5.2.2 Naming invalid argument or logic exception classes

Contrary to popular belief, exception class names don’t need to have “Exception” in
them. Instead, there are some naming helper sentences you could use. To indicate
invalid arguments or logic errors, you could use the template “Invalid . . .”, such as
InvalidEmailAddress, InvalidTargetPosition, or InvalidStateTransition.

5.2.3 Naming runtime exception classes

For runtime exceptions, a very helpful rule is to finish the sentence, “Sorry, [I]”
The words at the end will be the name of your exception class. These will be good
names because they communicate how the system tried to perform the requested job,
but couldn’t finish it successfully. For example, CouldNotFindProduct, CouldNot-
StoreFile, or CouldNotConnect.

5.2.4 Use named constructors to indicate reasons for failure

If you use named constructors, you can use the name to indicate the ingredients
needed to instantiate the exception, as in the following listing.

final class CouldNotFindStreetName extends RuntimeException
{

public static function withPostalCode(
PostalCode postalCode

): CouldNotFindStreetName {
// ...

}
}

In other cases, you may be able to use the method name to indicate the reason why
something is wrong.

final class InvalidTargetPosition extends LogicException
{

public static function becauseItIsOutsideTheMap(
/* ... */

): InvalidTargetPosition {
// ...

}
}

A named constructor receives the data that was usedListing 5.5

A named constructor indicates the reason for failureListing 5.6

144 CHAPTER 5 Using objects

Add detailed messages5.2.5

Providing named constructors will be useful for clients, because the constructor of the
exception, not the client itself, will set up the exception’s message.

// Before:

final class CouldNotFindProduct extends RuntimeException
{
}

// At the call site:
throw new CouldNotFindProduct(

'Could not find a product with ID "{productId}"'
);

// After:

final class CouldNotFindProduct extends RuntimeException
{

public static function withId(
ProductId productId

): CouldNotFindProduct {
return new CouldNotFindProduct(

'Could not find a product with ID "{productId}"'
);

}
}

// At the call site:
throw CouldNotFindProduct.withId(productId);

The named constructor composes a detailed messageListing 5.7

Exercises
1 Improve the arrangement of statements in the following method:

public function pop(): Element
{

if (count(this.elements)) > 0) {
lastElement = array_pop(this.elements);

return lastElement;
} else {

throw new RuntimeException('There are no more elements');
}

}

2 What type of exception should you throw in case of a file-not-found error?

a RuntimeException or a custom subclass
b InvalidArgumentException or a custom subclass

145Answers to the exercises

Summary
 The template for implementing methods aims at clearing the table before start-

ing the work. You start by analyzing the provided arguments and rejecting any-
thing that looks wrong by throwing an exception. Then you do the actual work,
and deal with any failures. Finally, you wrap up, after which you may return a
value to the client.

 InvalidArgumentExceptions should be used to signal a problem with an argu-
ment that the client provided. RuntimeExceptions should be used to let the cli-
ent know that a problem has occurred that isn’t a logical mistake.

 Define custom exception classes and named constructors to improve the quality
of your exception messages and make exceptions easier to create and throw.

Answers to the exercises
1 Suggested answer:

public function pop(): Element
{

if (count(this.elements)) == 0) {
throw new RuntimeException('There are no more elements');

}

lastElement = array_pop(this.elements);

return lastElement;
}

2 Correct answer: a. The fact that a file could not be found is not something you can
derive by simply looking at the contents of a provided argument, so a Runtime-
Exception should be thrown.

3 Correct answer: b. Just by looking at the contents of the provided argument, you
could know that a provided value is invalid, so an InvalidArgumentException
should be thrown.

3 What type of exception should you throw if an integer provided by the caller was
expected to be positive, but turns out to be negative?

a RuntimeException or a custom subclass
b InvalidArgumentException or a custom subclass

Move the check for
failure conditions to
the top of the method.

Always look for ways to
get rid of the else part
of an if statement.

Retrieving information

An object can be instantiated and sometimes modified. An object may also offer
methods for performing tasks or retrieving information. This chapter describes
how to implement methods that return information. In chapter 7 we’ll look at
methods that perform a task.

6.1 Use query methods for information retrieval
Earlier, we briefly discussed command methods. These methods have a void return
type and can be used to produce a side effect: change state, send an email, store a
file, etc. Such a method shouldn’t be used for retrieving information. If you want to
retrieve information from an object, you should use a query method. Such a method
does have a specific return type, and it’s not allowed to produce any side effects.

 Take a look at the Counter class.

This chapter covers
 Using query methods for retrieving information

 Using single, specific return types

 Designing an object to keep internal data to itself

 Introducing abstractions for query calls

 Using test doubles for query calls

146

147Use query methods for information retrieval

final class Counter
{

private int count = 0;

public function increment(): void
{

this.count++;
}

public function currentCount(): int
{

return this.count;
}

}

counter = new Counter();
counter.increment();

assertEquals(1, counter.currentCount());

According to the rules for command and query methods, it’s clear that increment() is
a command method, because it changes the state of a Counter object. current-
Count() is a query method, because it doesn’t change anything; it just returns the cur-
rent value of count. The good thing about this separation is that given the current
state of a Counter object, calling currentCount() will always return the same answer.

 Consider the following alternative implementation of increment().

public function increment(): int
{

this.count++;

return this.count;
}

This method makes a change and returns information. This is confusing from a client
perspective; the object changes even if you just want to look at it.

 It’s better to have safe methods that can be called any time (and, in fact, can be
called any number of times), and other methods that are “unsafe” to call. There are
two ways to achieve this:

 Follow the rule that a method should always be either a command or a query
method. This is called the command/query separation principle (CQS).1 We applied
it in the initial implementation of Counter (listing 6.1): increment() was a
command method, currentCount() a query method, and none of the methods
of Counter were both command and query methods at the same time.

TheListing 6.1 Counter class

An alternative implementation ofListing 6.2 increment()

1Martin Fowler, “CommandQuerySeparation” (2005), https://martinfowler.com/bliki/CommandQuery
Separation.html.

https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html
https://martinfowler.com/bliki/CommandQuerySeparation.html

148 CHAPTER 6 Retrieving information

 Make your objects immutable (as has been previously advised for almost all
objects in your application).

If Counter were implemented as an immutable object, increment() would become a
modifier method, and a better, more declarative name for it would be incremented().

final class Counter
{

private int count = 0;

public function incremented(): Counter
{

copy = clone this;

copy.count++;

return copy;
}

public function currentCount(): int
{

return this.count;
}

}

assertEquals(
1,
(new Counter()).incremented().currentCount()

);
assertEquals(

2,
(new Counter()).incremented().incremented().currentCount()

);

An alternativeListing 6.3 Counter implementation

Is a modifier method a command or a query method?
A modifier method doesn’t really return the information you’re after. In fact, it returns
a copy of the whole object, and once you have that copy, you can ask it questions.
So modifiers don’t seem to be query methods, but they aren’t traditional command
methods either. A command method on an immutable object would imply that it
changes the object’s state after all, which isn’t the case. It produces a new object,
which isn’t far from just answering a query.

Although it’s stretching the concept a bit, the incremented() method in listing 6.3
could answer the query “give me the current count, but incremented by 1.”

149Query methods should have single-type return values

Query methods should have6.2 single-type return values
When a method returns a piece of information, it should return a predictable thing.
No mixed types are allowed. Most languages don’t even support mixed types, but PHP,
being a dynamically typed language does. Take, for example, the following isValid()
method, which omits a return type, allowing several types of things to be returned.
This will be very confusing for its users.

/**
* @return string|bool
*/

public function isValid(string emailAddress)
{

if (/* ... */) {
return 'Invalid email address';

}

return true;
}

If the provided email address is valid, isValid() will return true; otherwise it will
return a string. This makes it hard to use the method. Instead, make sure always to
return values of a single type.

 There’s another situation to discuss here. Take a look at the following method that
doesn’t have multiple return types (its single return type is a Page object), but it may
alternatively return null:

public function findOneBy(type): Page?
{
}

This puts a burden on the caller: they will always have to check whether the returned
value is a Page object or if it’s null, and they will need to deal with that.

Listing 6.4 isValid() is a confusing method

Exercises
1 Which methods are expected to be query methods?

a name(): string

b changeEmailAddress(string emailAddress): void
c color(bool invert): Color
d findRecentMeetups(Date today): array

150 CHAPTER 6 Retrieving information

if (page instanceof Page) {
// ...

} else {
// ...

}

Returning null from a method isn’t always a problem. But you have to make sure that
the clients of the method will deal with this situation. For PHP, static analysis tools like
PHPStan (https://github.com/phpstan/phpstan) and Psalm (https://github.com/
vimeo/psalm) can verify this, and your IDE may also help you with it, telling you when
you are risking a possible null pointer exception. For Java, there’s the Checker Frame-
work (https://checkerframework.org/), which will provide you with compile-time
warnings that clients don’t deal with a possible null value.

 In most cases, though, it pays to consider alternatives to returning null. For exam-
ple, the following getById() method, which is supposed to retrieve a User entity by its
ID, shouldn’t return null if it can’t find the user. It should throw an exception. After
all, a client expects the User to exist; it’s even providing the user’s ID. It won’t take
null for an answer.

public function getById(id): User
{

user = /* ... */;

if (!user instanceof User) {
throw UserNotFound.withId(id);

}

return user;
}

Another alternative would be to return an object that can represent the null case.
Such an object is called a null object. Clients won’t have to check for null, since the
object has the correct type, as defined in the method signature.

public function findOneByType(PageType type): Page
{

page = /* ... */;

if (!page instanceof Page) {
return new EmptyPage();

}

return page;
}

Listing 6.5 getById() returns a User or throws an exception

Return a nullListing 6.6 object if it makes sense

page is a Page object and
can be used as such.

page is null, and we have to
decide what to do with it.

Try to find the Page.

https://github.com/phpstan/phpstan
https://github.com/vimeo/psalm
https://github.com/vimeo/psalm
https://github.com/vimeo/psalm
https://checkerframework.org/

151Query methods should have single-type return values

One last alternative for returning null is to return a result of the same type, but repre-
senting the empty case. If the method is expected to find and return a number of
things in an array, return an empty array if you couldn’t find anything.

public function eventListenersForEvent(string eventName): array
{

if (!isset(this.listeners[eventName])) {
return [];

}

return this.listeners[eventName];
}

Other return types will have different “empty” cases. For instance, if the return type is
int, the empty return value might be 0 (or maybe 1), and for strings it might be '' (or
maybe 'N/A').

 If you find yourself using an existing method that mixes return types, or that
returns null when it should return something more reliable, it might be a good idea
to write a new method that sets things straight. In the following example, the existing
findOneByType() method returns a Page object or null. If we want to make sure that
clients don’t have to deal with the null case and will actually get a Page object, we
could wrap a call to findOneByType() in a new method called getOneByType.

public function getOneByType(PageType type): Page
{

page = this.findOneByType(type);

if (!page instanceof Page) {
throw PageNotFound.withType(type);

}

return page;
}

Instead ofListing 6.7 null, return an empty list

Listing 6.8 getOneByType() wraps findOneByType(), which could return null

Show the uncertainty in the name of the method
You can let a method name indicate the uncertainty about whether or not the method
will return a value of the expected type. In the previous examples, we used get-
ById() instead of findById(), to communicate to the client that the method will
“get” the User, instead of trying to find it and possibly returning empty-handed.

Don’t return null; throw
an exception instead.

152 CHAPTER 6 Retrieving information

Avoid query methods that6.3 expose internal state
The simplest implementation for query methods is usually to return a property of the
object. These methods are known as getters, and they allow clients to “get” the object’s
internal data.

For clients, usually the reason to get data is to use it for further calculations, or to
make a decision based on it. Since objects are better off keeping their internals to
themselves, you should keep an eye on these simple getters and how their return val-
ues are used by clients. The things a client does with the information that an object
provides can often be done by the object itself.

 A first example is the following getItems() method, which returns the items in a
shopping basket just so the client can count them. Instead of directly exposing the
items, the basket could provide a method that counts the items for the client.

// Before:

final class ShoppingBasket
{

// ...

Providing an alternative to counting itemsListing 6.9

Exercises
2 What is true about a query method?

a It should produce an observable side effect.
b It should not return a mixed type (e.g., bool|int).
c It sometimes makes sense to return null from it.
d It sometimes makes sense to return nothing (void) from it.

“But according to the JavaBean conventions, every property needs a getter!”
Indeed, the JavaBean conventions prescribe objects to have a zero-argument con-
structor and to define both a getter and a setter for every property (http://mng.bz/
1woy). As you might guess, after reading the previous chapters, every style guide or
rule proposed in this book is incompatible with this convention. A zero-argument
constructor leads to objects that can be created with an invalid starting state. Allow-
ing every setter to be called separately leads to equally invalid intermediate states.
And allowing all of an object’s internal data to get out makes it hard to change any-
thing about that data without breaking its clients. The only type of object that could
be designed as a JavaBean is a data transfer object (we discussed those in sections
3.13 and 4.3).

http://mng.bz/1woy
http://mng.bz/1woy
http://mng.bz/1woy

153Avoid query methods that expose internal state

public function getItems(): array
{

return this.items;
}

}

count(basket.getItems());

// After

final class ShoppingBasket
{

// ...

public function itemCount(): int
{

return count(this.items);
}

}

basket.itemCount();

The naming of query methods is important too. We didn’t use getItemCount() or
countItems() because these method names sound like commands, telling the object
to do something. Instead, we named the method itemCount(), which makes it look
like the item count is an aspect of a shopping basket you can find out about.

With small rewrites like this, you can make an object absorb more and more logic,
thereby keeping the knowledge about the concept it represents inside it, instead of
scattering little bits of this knowledge all over the code base.

 Here’s another example: clients call a query method on an object, and then call
another method based on the return value of that first call.

How do you handle ambiguous naming?
What if your object has a name property? The getter for this property would be called
name(), but “name” can also be a verb. In fact, we already encountered the same
potential confusion when we used the word “count,” which can be a verb too.

Although the intended meaning of words will always be up for debate, most of the
ambiguity can be resolved by setting the right context. Once you establish a clear dif-
ference between query and command methods, it’ll be easy to notice when a method
is meant to return a piece of information (e.g., return the value of the name property),
or is meant to change the state of the object (e.g., change the value of the name prop-
erty and return nothing). This will provide the reader with an important clue as to
whether the word should be interpreted as a verb (which is most often the case with
a command method) or as a noun (which is often the sign of a query method).

154 CHAPTER 6 Retrieving information

final class Product
{

public function shouldDiscountPercentageBeApplied(): bool
{

// ...
}

public function discountPercentage(): Percentage
{

// ...
}

public function fixedDiscountAmount(): Money
{

}
}

amount = new Money(/* ... */);
if (product.shouldDiscountPercentageBeApplied()) {

netAmount = product.discountPercentage().applyTo(amount);
} else {

netAmount = amount.subtract(product.fixedDiscountAmount());
}

One way to keep the information about how a discount should be calculated for a
given product is to introduce a method with a name that matches this intention:
calculateNetAmount().

final class Product
{

public function calculateNetAmount(Money amount): Money
{

if (this.shouldDiscountPercentageBeApplied()) {
return this.discountPercentage().applyTo(amount);

}

return amount.subtract(this.fixedDiscountAmount());
}

private function shouldDiscountPercentageBeApplied(): bool
{

// ...
}

private function discountPercentage(): Percentage
{

// ...
}

Clients use the getters ofListing 6.10 Product to make decisions

Listing 6.11 calculateNetAmount() offers a better alternative

A product has a setting that defines whether a discount percentage
should be applied to it. If there’s no discount percentage, there can

still be a fixed discount.

Clients of Product
can calculate a net
amount by calling
applyDiscountPercentage()
first, and using its answer
to either apply a discount
percentage or a fixed
discount.

These methods can stay private now, or maybe
we could use the properties they expose.

155Avoid query methods that expose internal state

private function fixedDiscountAmount(): Money
{

}
}

amount = new Money(/* ... */);
netAmount = product.calculateNetAmount(amount);

Besides no longer needing to repeat this logic at different call sites, this alternative has
two more advantages. First, we can stop exposing internal data like the discount per-
centage and the fixed discount. Second, when the calculation changes, it can be
changed and tested in one place.

 In short, always look for ways to prevent the need for query methods that expose
the object’s internal data:

 Make the method smarter, and adapt it to the actual need of its clients.
 Move the call inside the object, letting it make its own decisions.

These approaches will let the object keep its internals to itself, and force clients to use
its explicitly defined public interface (see figure 6.1).

These methods can stay private
now, or maybe we could use the
properties they expose.

This object doesn’t implement
a proper boundary

Clients have
access to the

object’s
internal data

This object has a
proper boundary

Clients can only
retrieve some
information by
calling public

methods

Figure 6.1 An object can be seen as having boundaries. Instead of allowing clients to cross
those boundaries to retrieve information from the object, define explicitly which data and
which behaviors should be available to clients.

A naming convention for getters
You may have noticed that I don’t use the traditional “get” prefix for getters, as in
discountPercentage() (listing 6.11). This convention shows that the method isn’t
a command method, but that it simply provides a piece of information. The method
name is a description of the piece of information we’re looking for, not an instruction
for the object to “go get it” for us.

156 CHAPTER 6 Retrieving information

Exercises
3 Take a look at the following Order and Line classes and how they allow clients

to get all the information they need to calculate a total amount for the entire order:

final class Line
{

private int quantity;
private Money tariff;

// ...

public function quantity(): int
{

return this.quantity;
}

public function tariff(): Money
{

return this.tariff;
}

}

final class Order
{

/**
* @var Line[]
*/

private array lines = [];

// ...

/**
* @return Line[]
*/

public function lines(): array
{

return this.lines;
}

}

totalAmount = new Money(0);
foreach (order.lines() as line) {

totalAmount = totalAmount.add(
new Money(

line.quantity() * line.tariff()
)

);
}

Rewrite Order and Line in such a way that Order is no longer forced to expose
its internal lines array, any of the Line objects that are in this array, or the Line’s
tariff and quantity.

157Define specific methods and return types for the queries you want to make

Define specific methods and return types6.4
for the queries you want to make
When you need a specific bit of information, make sure you have a specific question,
and that you know what the answer should look like. As an example, if you’re working
on a piece of code and you need today’s exchange rate for USD to EUR, you may dis-
cover that there are web services you can call to figure that out, like https://fixer.io/.
So you might jump in and write a bit of code that makes the call.

final class CurrencyConverter
{

public function convert(Money money, Currency to): Money
{

httpClient = new CurlHttpClient();
response = httpClient.get(

'http://data.fixer.io/api/latest?access_key=...' .
'&base=' . money.currency().asString() .
'&symbols=' . to.asString()

);
decoded = json_decode(response.getBody());
rate = (float)decoded.rates[to.asString()];

return money.convert(to, rate);
}

}

There are many issues with this tiny bit of code (we won’t deal with the possibility of a
network failure, an error response, invalid JSON, a modified response structure, and
the fact that a float isn’t the most reliable data type to use when dealing with
amounts of money). At a conceptual level, we’re making much too large jumps as
well. All we needed at this point in the code is an answer to a question: “What’s the
current exchange rate for USD to EUR currency conversion?”

 Rewriting this question in code results in two new classes: FixerApi and Exchange-
Rate. The first has a single method, exchangeRateFor(), which represents the ques-
tion that the CurrencyConverter wants to ask. The second class, ExchangeRate,
represents the answer.

final class FixerApi
{

public function exchangeRateFor(
Currency from,
Currency to

): ExchangeRate {
httpClient = new CurlHttpClient();
response = httpClient.get(/* ... */);

TheListing 6.12 CurrencyConverter class

TheListing 6.13 FixerApi and ExchangeRate classes

We introduce FixerApi.exchangeRateFor()
to represent the question being asked:
“What’s the current exchange rate for
converting from … to … ?”

https://fixer.io/

158 CHAPTER 6 Retrieving information

decoded = json_decode(response.getBody());
rate = (float)decoded.rates[to.asString()];

return ExchangeRate.from(from, to, rate);
}

}

final class ExchangeRate
{

public static function from(
Currency from,
Currency to,
float rate

): ExchangeRate {
// ...

}
}

final class CurrencyConverter
{

private FixerApi fixerApi;

public function __construct(FixerApi fixerApi)
{

this.fixerApi = fixerApi;
}

public function convert(Money money, Currency to): Money
{

exchangeRate = this.fixerApi
.exchangeRateFor(

money.currency(),
to

);

return money.convert(exchangeRate);
}

}

The “answer” class, ExchangeRate, should be designed to be as useful as possible for
the client that needs it. Potentially, this class can be reused at other call sites, but it
doesn’t have to be.

 The important part is that the introduction of the exchangeRateFor() method
with a specific return type improves the conversation that’s going on in the code.
When reading the code of convert(), we can clearly see that there’s a need for infor-
mation, a question being asked, and an answer being returned, which is then used to
do some more work. Note that so far we’ve only refactored the code; its structure has
been improved, but it still has the same behavior.

This new class will represent
the answer to the question.

CurrencyConverter will get a FixerApi
instance injected, so it can find out the
current exchange rate when it needs to.

159Define an abstraction for queries that cross system boundaries

Define an abstraction for quer6.5 ies that cross system boundaries
The question “What’s the current exchange rate?” from the previous section is a ques-
tion that the application itself can’t answer, based on what it has in memory. It needs
to cross a system boundary to find the answer. In this case, it has to connect to a
remote service, reachable through the network. Another example of crossing a system
boundary would be when an application reaches out to the filesystem to load or store
a file. Or when it uses the system clock to find out the current time.

 As soon as an application crosses a system boundary, you should introduce an
abstraction, allowing you to hide the low-level communication details of the calls that
are going on behind the scenes.

 Abstraction in this case means two things, and it can only be successful when you
have both ingredients:

 Using a service interface instead of a service class
 Leaving out the implementation details

Introducing a proper abstraction will make it possible to run your code in a test sce-
nario, without making the actual network or filesystem calls. It will also make it possi-
ble to swap out implementations without having to modify the client code; you only
need to write a new implementation of the service interface.

 First we’ll discuss an example that fails to introduce a proper abstraction. Let’s take
another look at the FixerApi class. It makes a network call directly, using the Curl-
HttpClient class.

final class FixerApi
{

public function exchangeRateFor(
Currency from,
Currency to

): ExchangeRate {
httpClient = new CurlHttpClient();
response = httpClient.get(/* ... */);
decoded = json_decode(response.getBody());
rate = (float)decoded.rates[to.asString()];

return ExchangeRate.from(from, to, rate);
}

}

Instead of instantiating and using this specific class, we could define an interface for it
and inject an instance of it into the FixerApi class, as follows.

Using aListing 6.14 CurlHttpClient instance to connect to the API

160 CHAPTER 6 Retrieving information

interface HttpClient
{

public function get(url): Response;
}

final class CurlHttpClient implements HttpClient
{

// ...
}

final class FixerApi
{

public function __construct(HttpClient httpClient)
{

this.httpClient = httpClient;
}

public function exchangeRateFor(
Currency from,
Currency to

): ExchangeRate {
response = this.httpClient.get(/* ... */);
decoded = json_decode(response.getBody());
rate = (float)decoded.rates[to.asString()];

return ExchangeRate.from(from, to, rate);
}

}

We can now swap out HttpClient implementations because we rely on the interface,
not the concrete implementation. This could be useful if you may want to switch to a
different HTTP client implementation some day. But we haven’t abstracted the most
important part yet. What happens if we want to switch to a different API? It’s not likely
that a different API will send the same JSON response. Or maybe we will want to start
maintaining our own local database table with exchange rates. In that case, we
wouldn’t need an HTTP client anymore.

 To remove the low-level implementation details, we need to pick a more abstract
name that stands for what we’re doing. We’re looking for a way to retrieve exchange
rates. Where would we get them from? From something that can “provide” them. Or
from something that manages them, like a “collection.” A good name for this abstrac-
tion could be ExchangeRateProvider, or simply ExchangeRates if we look at this ser-
vice like a collection of known exchange rates. The following listing shows what this
would look like.

Adding anListing 6.15 HttpClient interface and using it in FixerApi

Introducing the abstractListing 6.16 ExchangeRates service

First we introduce an
interface for HTTP clients.

We also make sure the existing
CurlHttpClient implements this
new HttpClient interface.

We inject the interface,
not the concrete class.

We have to change the code
a bit to use the new interface
and its get() method.

/**
* We extract the "question" method and make it a public method on
* an abstract `ExchangeRates` service:

161Define an abstraction for queries that cross system boundaries

*/
interface ExchangeRates
{

public function exchangeRateFor(
Currency from,
Currency to

): ExchangeRate;
}

final class FixerApi implements ExchangeRates
{

private HttpClient httpClient;

public function __construct(HttpClient httpClient)
{

this.httpClient = httpClient;
}

public function exchangeRateFor(
Currency from,
Currency to

): ExchangeRate {
response = this.httpClient.get(/* ... */);
decoded = json_decode(response.getBody());
rate = (float)decoded.data.rate;

return ExchangeRate.from(from, to, rate);
}

}

final class CurrencyConverter
{

private ExchangeRates exchangeRates;

public function __construct(ExchangeRates exchangeRates)
{

this.exchangeRates = exchangeRates;
}

// ...

private function exchangeRateFor(
Currency from,
Currency to

): ExchangeRate {
return this.exchangeRates.exchangeRateFor(from, to);

}
}

As a final improvement, we should inline any existing calls to the private exchange-
RateFor() method because it’s just a proxy to the ExchangeRates service now.

 By defining an interface for the existing class, we performed the first step of a suc-
cessful abstraction. By hiding all the implementation details behind the interface, we

The existing FixerApi class
should implement the new
ExchangeRates interface.

Instead of a
Fixer object,
we can now
inject an
ExchangeRates
instance.

We use the
new service
here to get the
answer we’re
looking for.

162 CHAPTER 6 Retrieving information

also performed the second step, meaning we now have a proper abstraction for
retrieving exchange rates. This comes with two advantages:

 We can easily switch to a different exchange rate provider. As long as the new
class implements the ExchangeRates interface correctly, the Currency-

Converter won’t have to be modified because it depends on the ExchangeRates
abstraction.

 We can write a unit test for CurrencyConverter and inject a test double for
ExchangeRates—one that doesn’t make an internet connection. This will keep
our test fast and stable.

By the way, if you know about the SOLID principles, you’ve already encountered a
similar rule for abstraction of service dependencies, known as the dependency inversion
principle. You can read more about it in books and articles by Robert C. Martin.2

Not every question deserves its own service
In the previous examples, it was clear that the question, “What’s the exchange rate?”
deserved its own service. It was a question the application itself couldn’t answer. In
most situations, though, asking a question shouldn’t immediately cause a new object
to be introduced. Consider these alternatives too:

1 You could introduce better variable names to improve the conversation that’s
going on inside the code.

2 You could extract a private method, which represents the question and its
answer (like we just did by moving logic to the private exchangeRateFor()
method).

Only if the method becomes too large, needs to be tested separately, or crosses a
system boundary should you create a separate class for it. This should keep the num-
ber of objects involved limited, and will help keep the code readable; you won’t have
to click through lots of classes to find out what’s going on.

Exercises
4 Which two things would you need to do to create an abstraction for a service?

a Create an abstract class for the service.
b Create an interface for the service.
c Choose higher-level names that leave room for implementers to keep lower-

level implementation details to themselves.
d Provide at least two implementations for the abstract service.

2For instance, Robert C. Martin, “The Dependency Inversion Principle,” http://mng.bz/9woa. Other articles
about the SOLID principles can be found on http://mng.bz/j50y.

http://mng.bz/9woa
http://mng.bz/j50y
http://mng.bz/j50y

163Use stubs for test doubles with query methods

Use stubs for test do6.6 ubles with query methods
The moment you introduce an abstraction for your queries, you create a useful
extension point. You can easily change the implementation details of how the answer
will be found. Testing this logic will be easier too. Instead of only being able to test the
CurrencyConverter service when an internet connection (and the remote service) is
available, you can now test the logic by replacing the injected ExchangeRates service
with one that already has the answers and will supply them in a predictable manner.

final class ExchangeRatesFake implements ExchangeRates
{

private array rates = [];

public function __construct(
Currency from,
Currency to,
float rate

) {
this.rates[from.asString()][to.asString()] =

ExchangeRate.from(from, to, rate);
}

public function exchangeRateFor(
Currency from,
Currency to

): ExchangeRate {
if (!isset(this.rates[from.asString()][to.asString()])) {

throw new RuntimeException(
'Could not determine exchange rate from [...] to [...]

);
}
return this.rates[from.asString()][to.asString()];

}
}

/**
* @test
*/

public function it_converts_an_amount_using_the_exchange_rate(): void
{

exchangeRates = new ExchangeRatesFake();
exchangeRates.setExchangeRate(

new Currency('USD'),
new Currency('EUR'),
0.8

);

currencyConverter = new CurrencyConverter(exchangeRates);

TestingListing 6.17 CurrencyConverter with ExchangeRatesFake

This is a “fake” implementation of
the ExchangeRates service, which
we can set up to return whatever

exchange rates we provide it with.

We can use this fake in the unit
test for CurrencyConverter.

Set up the fake
ExchangeRates service.

Inject the fake service into
CurrencyConverter.

164 CHAPTER 6 Retrieving information

converted = currencyConverter
.convert(new Money(1000, new Currency('USD')));

assertEquals(new Money(800, new Currency('EUR')), converted);
}

By setting up the test like this, we focus only on the logic of the convert() method,
instead of all the logic involved in making the network connection, parsing the JSON
response, etc. This makes the test deterministic and therefore stable.

A fake is one kind of test double, which can be characterized as showing “somewhat com-
plicated” behavior, just like the real implementation that will be used in production.
When testing, you could also use a stub to replace a real service. A stub is a test double
that just returns hardcoded values. So whenever we’d call the exchangeRateFor()
method, it would return the same value, as follows.

final class ExchangeRatesStub
{

public function exchangeRateFor(
Currency from,
Currency to

): ExchangeRate {
return ExchangeRate.from(from, to, 1.2);

}
}

Listing 6.18 ExchangeRatesStub always returns the same value

Naming test methods
In listing 6.17, the test method has a name in so-called snake case: lower case with
underscores as word separators. If we followed the standard for naming methods, it
would have been itConvertsAnAmountUsingTheExchangeRate(). Most standards
would also suggest using relatively short names, but it_converts_an_amount
_using_the_exchange_rate() is anything but short. Because the purpose of test
methods is different from that of regular methods, the solution is not to submit test
method names to the same standard, but to set a different standard for them:

1 Test method names describe object behaviors. The best description is an
actual sentence.

2 Because they are sentences, test method names will be longer than regular
method names. It should still be easy to read them (so use snake case
instead).

If you’re not used to these rules, a good way to ease into them is to start a test method
name with it_. This should get you in the right mood for describing a particular object
behavior. Although it’s a good starting point, you’ll notice that not every test method
makes sense starting with it_. For instance, when_ or if_ could work too.

This is a sample stub
implementation of ExchangeRates.

The return value
is hardcoded.

165Use stubs for test doubles with query methods

An important characteristic of stubs and fakes is that in a test scenario, you can’t and
shouldn’t make any assertions about the number of calls made to them, or the order
in which those calls are made. Given the nature of query methods, they should be
without side effects, so it should be possible to call them any number of times, even
zero times. Making assertions about calls made to query methods leads to tests that
don’t keep sufficient distance from the implementation of the classes they’re testing.

 The opposite is the case for command methods, where you do want to verify that
calls have been made, how many have been made, and potentially in what order. We’ll
get back to this in the next chapter.

We shouldn’t forget to also test the real implementation that uses an HTTP connec-
tion to retrieve exchange rates. We have to test that it works correctly. But at that point
we’re no longer worried about testing the conversion logic itself, but only that the
implementation knows how to communicate well with the external service.

/**
* @test
*/

public function it_retrieves_the_current_exchange_rate(): void
{

exchangeRates = new FixerApi(new CurlHttpClient());

exchangeRate = exchangeRates.exchangeRateFor(
new Currency('USD'),
new Currency('EUR')

);

// Verify the result here...
}

The test forListing 6.19 FixerApi will be an integration test

Don’t use mocking tools for creating fakes and stubs
Mocking frameworks are often used to build test doubles on the fly. I recommend
against using these frameworks for creating fakes and stubs. They may save you a
few lines of boilerplate, but at the cost of code that is hard to read and maintain.

Even if you still prefer to use these mocking tools, I recommend using them only for
creating dummies (that is, test doubles that don’t return anything meaningful and are
only there to be passed as unused arguments). For stubs and fakes, mocking tools
usually get in the way of good design. They will verify if and how many times a query
method has been called, but they often make refactoring harder, because method
names often have to be provided as strings, and your refactoring tool may not recog-
nize them as actual method names.

166 CHAPTER 6 Retrieving information

You will find that this kind of test still needs some effort to make it more stable. You may
have to set up your own exchange rate server that replicates the real one. Or you may
be able to use a sandbox environment provided by the maintainers of the real service.

 Note that this test doesn’t count as a unit test anymore: it doesn’t test the behavior
of an object in memory. You could call this an integration test instead, since it tests the
integration of an object with the thing in the world outside that it relies on.

Query methods should6.7 use other query methods,
not command methods
As we discussed, command methods can have side effects. Command methods change
something, save something, send an email, etc. Query methods, on the other hand,
won’t do anything like that. They will just return a piece of information. Usually, a
query method needs some collaborating objects to build up the requested answer. If
we get the division between command and query methods right in our code, a chain
of calls that starts with a query won’t contain a call to a command method. This has to
be true, because queries are supposed to have no side effects, and calling a command
method somewhere in the chain will violate that rule.

There are some exceptions to this rule. Consider a controller method for a web appli-
cation, which can be called to register a new user. This method will have a side effect:
somewhere down the chain of commands it will store a new user record in the data-
base. This would normally force us to use a void return type for the controller itself,
but a web application should always return an HTTP response. So the controller will
have to return at least something.

query()

return

query()

return

command()

Side
effect!

There should be no calls to command methods hidden behind a query.Figure 6.2

167Query methods should use other query methods, not command methods

final class RegisterUserController
{

private RegisterUser registerUser;

public function __construct(
RegisterUser registerUser

) {
this.registerUser = registerUser;

}

public function execute(Request request): Response
{

newUser = this.registerUser
.register(request.get('username'));

return new Response(200, json_encode(newUser));
}

}

Technically speaking, the controller violates the command/query separation principle,
but there’s no way around that. At the very least, we should return an empty 200 OK
response or something like that. But that won’t be very useful for the frontend, which
makes the “register user” POST request, and would like to be given a response with a
JSON structure representing the newly created user.

 To solve this case, you should divide the controller’s action into two parts: register-
ing the new user and returning it. Preferably you’d also determine the new ID of the
user before calling the RegisterUser service, so the service doesn’t have to return
anything at all and can be a true command method. This is demonstrated in the fol-
lowing listing.

final class RegisterUserController
{

private UserRepository userRepository;
private RegisterUser registerUser;
private UserReadModelRepository userReadModelRepository;

public function __construct(
UserRepository userRepository,
RegisterUser registerUser,
UserReadModelRepository userReadModelRepository

) {
this.userRepository = userRepository;
this.registerUser = registerUser;
this.userReadModelRepository = userReadModelRepository;

}

A controller will always return somethingListing 6.20

A controller can be separated into command and query partsListing 6.21

168 CHAPTER 6 Retrieving information

public function execute(Request request): Response
{

userId = this.userRepository.nextIdentifier();

this.registerUser
.register(userId, request.get('username'));

newUser = this.userReadModelRepository.getById(userId);

return new Response(200, json_encode(newUser));
}

}

register() is
a command
method.

getById()
is a query
method.

Sometimes, CQS does not make sense
In almost all cases I find that it’s best to follow the command/query separation prin-
ciple, but it should not become a rule that you can’t deviate from. In fact, no program-
ming rule should ever be like that.

A common situation where CQS stops being a good rule is in the realm of concur-
rency. An example would be the following nextIdentity() method. It generates a
unique ID for an entity that you’re going to save. The ID is the next available number
in the sequence 1, 2, 3, etc.

final class EntityRepository
{

public function nextIdentity(): int
{

// ...
}

}

Two clients that call this method shouldn’t receive the same ID, since that might
result in them overwriting each other’s entity data. Calling nextIdentity() should
return an integer and at the same time mark the returned integer as “used.” How-
ever, that would make the method violate CQS: it returns information and performs
a task, thereby influencing the state of the system in an observable way. Calling the
method again will give you a different answer.

You could figure out a way to still follow CQS, but I think that would complicate your
code a lot.a In a case like this, feel free to let go of CQS and just implement the
method in a way that makes sense.

aTo find out more about this particular situation and possible solutions, take a look at Mark
Seemann’s article “CQS versus server generated IDs” (2014), http://mng.bz/Q0nQ.

http://mng.bz/Q0nQ

169Answers to the exercises

Summary
 A query method is a method you can use to retrieve a piece of information.

Query methods should have a single return type. You may still return null, but
make sure to look for alternatives, like a null object or an empty list. Possibly
throw an exception instead. Let query methods expose as little of an object’s
internals as possible.

 Define specific methods and return values for every question you want to ask
and every answer you want to get. Define an abstraction (an interface, free of
implementation details) for these methods if the answer to the question can
only be established by crossing the system’s boundaries.

 When testing services that use queries to retrieve information, replace them
with fakes or stubs you write yourself, and make sure not to test for actual calls
being made to them.

Answers to the exercises
1 Correct answers: a, c, and d. Answer b has a void return type, so it’s not a query

method.
2 Correct answers: b and c. A query method is explicitly not supposed to produce

a side effect. A query method always has a return value, even if it’s null, so it
can’t have a void return type.

3 Suggested answer:

final class Line
{

// ...

public function amount(): Money
{

return new Money(
line.quantity() * line.tariff()

);
}

}

final class Order
{

// ...

public function totalAmount(): Money
{

totalAmount = new Money(0);

foreach (this.lines() as line) {
totalAmount = totalAmount.add(

line.amount()
);

}

It’s safe to remove tariff() and
quantity() now, keeping this
data private.

It’s safe to remove lines() too,
keeping the lines array and
the Line objects private.

170 CHAPTER 6 Retrieving information

return totalAmount;
}

}

4 Correct answers: b and c. An abstract class is not preferable, since it leaves part
of the implementation defined, and it will be the same for any concrete sub-
class. Also, you don’t have to provide more than one implementation of the
interface.

Performing tasks

Besides retrieving information from objects, you can use objects to perform a vari-
ety of tasks for you:

 Send a reminder email
 Save a record in the database
 Change the password of a user
 Store something on disk
 And so on . . .

The following sections provide rules for methods that perform tasks like these.

This chapter covers
 Using command methods to perform tasks

 Using events and event listeners to split up
larger tasks

 Dealing with failure in command methods

 Introducing abstractions for commands

 Creating test doubles for command calls

171

172 CHAPTER 7 Performing tasks

Use command methods with a7.1 name in the imperative form
We already discussed query methods and how you should use them to retrieve infor-
mation. Query methods have a specific return type and no side effects, meaning that
it’s safe to call them several times, and the application’s state won’t be any different
afterwards.

 For performing tasks, you should always use a command method, which has a
void return type. The name of such a method should indicate that the client can
order the object to perform the task that the method name indicates. When looking
for a good name, you should always use the imperative form. The following listing
shows some examples.

public function sendReminderEmail(
EmailAddress recipient,
// ...

): void {
// ...

}

public function saveRecord(Record record): void
{

// ...
}

7.2 Limit the scope of a command method, and use events
to perform secondary tasks
When performing a task, make sure you don’t do too much in one method. These are
some guiding questions to determine if a method is too large:

 Should or does the method name have “and” in it, to indicate what else it does
besides its main job?

 Do all the lines of code contribute to the main job?
 Could a part of the work that the method does be performed in a background

process?

The following listing shows a method that does too much. It changes the user’s pass-
word, but it also sends them an email about it.

public function changeUserPassword(
UserId userId,
string plainTextPassword

): void {
user = this.repository.getById(userId);
hashedPassword = /* ... */;

Some command methods with imperative namesListing 7.1

Listing 7.2 changePassword () does too much

173Limit the scope of a command method, and use events to perform secondary tasks

user.changePassword(hashedPassword);
this.repository.save(user);
this.mailer.sendPasswordChangedEmail(userId);

}

This is a very common scenario where the answers to the guiding questions are “yes”
in all cases:

 The method name hides the fact that besides changing the user’s password it
will also send an email. It might as well have been named changeUserPassword-
AndSendAnEmailAboutIt().

 Sending the email can’t be considered the main job of this method; changing
the password is.

 The email could easily be sent in some other process that runs in the background.

One solution would be to move the email-sending code to a new public sendPassword-
ChangedEmail() method. However, this would transfer the responsibility of calling that
method to the client of changeUserPassword(). Considering the bigger picture, these
two tasks really belong together; we just don’t want to mix them in one method.

 The recommended solution is to use events as the link between changing the pass-
word and sending an email about it.

final class UserPasswordChanged

{
private UserId userId;

public function __construct(UserId userId)
{

this.userId = userId;
}

public function userId(): UserId
{

return this.userId;
}

}

public function changeUserPassword(
UserId userId,
string plainTextPassword

): void {
user = this.repository.getById(userId);
hashedPassword = /* ... */;
user.changePassword(hashedPassword);
this.repository.save(user);

this.eventDispatcher.dispatch(
new UserPasswordChanged(userId)

Listing 7.3 Using an event to split a task into multiple parts

The fact that a user changed their
password can be represented by a
UserPasswordChanged event object.

After changing the
password, dispatch a
UserPasswordChanged event so
other services can respond to it.

174 CHAPTER 7 Performing tasks

);
}

final class SendEmail
{

// ...

public function whenUserPasswordChanged(
UserPasswordChanged event

): void {
this.mailer.sendPasswordChangedEmail(event.userId());

}
}

You still need an event dispatcher that allows event listener services like SendEmail to
be registered. Most frameworks have an event dispatcher that you can use, or you
could write a simple one yourself, like the following.

final class EventDispatcher
{

private array listeners;

public function __construct(array listenersByType)
{

foreach (listenersByType as eventType => listeners) {
Assertion.string(eventType);
Assertion.allIsCallable(listeners);

}

this.listeners = listenersByType;
}

public function dispatch(object event): void
{

foreach (this.listenersFor(event.className) as listener) {
listener(event);

}
}

private function listenersFor(string event): array
{

if (isset(this.listeners[event])) {
return this.listeners[event];

}

return [];
}

}

listener = new SendEmail(/* ... */);
dispatcher = new EventDispatcher([

A sampleListing 7.4 EventDispatcher implementation

SendEmail is an event listener for
the UserPasswordChanged event.
When notified of the event, this
listener will send the email.

175Limit the scope of a command method, and use events to perform secondary tasks

UserPasswordChanged.className =>
[listener, 'whenUserPasswordChanged']

]);

dispatcher.dispatch(new UserPasswordChanged(/* ... */));

Using events like this has several advantages:

 You can add even more effects without modifying the original method.
 The original object will be more decoupled because it doesn’t get dependen-

cies injected that are only needed for effects.
 You can handle the effects in a background process if you want.

A possible disadvantage of using events is that the primary action and its secondary
effects may be implemented in remote parts of the code base. This could make it hard
for a future reader of the code to understand what’s going on. You should do two
things to overcome this problem:

 Make sure everybody knows that events are used to decouple parts of the appli-
cation. Someone who tries to understand what the code is doing will then look
out for event objects and use the IDE’s “find usages” functionality to find other
services that are interested in these events.

 Make sure that events are always explicitly dispatched, as is done in listing 7.3.
The call to EventDispatcher.dispatch() is a strong signal that more is about
to happen.

Because we’ve registered SendEmail as an event listener for the
UserPasswordChanged event, dispatching an event of that type

will trigger a call to SendEmail.whenUserPasswordChanged().

Exercises
1 Which parts of the following command method could be considered secondary

effects that could be handled in an event listener?

final class RegisterUser
{

// ...

public function register(
EmailAddress emailAddress
PlainTextPassword plainTextPassword

): void {
hashedPassword = this.passwordHasher

.hash(plainTextPassword);

userId = this.userRepository.nextIdentity();
user = User.create(userId, emailAddress, hashedPassword);

this.mailer.sendEmailAddressConfirmationEmail(

176 CHAPTER 7 Performing tasks

Make services immutable from the outside7.3
as well as on the inside
We already covered the rule that it should be impossible to change anything about a
service’s dependencies or configuration. Once it’s been instantiated, a service object
should be reusable for performing multiple different tasks in the same way, but using
different data or a different context. There shouldn’t be any risk that its behavior
changes between calls. This is true for services that offer query methods, but also for
ones that offer command methods.

 Even if you don’t offer clients a way to manipulate a service’s dependencies or con-
figuration, command methods may still change a service’s state in such a way that
behavior will be different for subsequent calls. For example, the following Mailer ser-
vice sends out confirmation emails, but it also remembers which users have already
received such an email. No matter how many times you call the same method, it will
only send out an email once.

final class Mailer
{

private array sentTo = [];

// ...

public function sendConfirmationEmail(
EmailAddress recipient

): void {
if (in_array(recipient, this.sentTo)) {

return;
}

AListing 7.5 Mailer service that keeps a list of previous recipients

(continued)
emailAddress

);

this.userRepository.save(user);

this.uploadService.preparePersonalUploadFolder(userId);
}

}

a Hashing the plain-text password
b Creating the User entity
c Sending the email address confirmation mail
d Saving the User entity
e Preparing a personal upload folder for the user

We don’t send
the email again.

177Make services immutable from the outside as well as on the inside

// Send the email here...

this.sentTo[] = recipient;
}

}

mailer = new Mailer(/* ... */);
recipient = EmailAddress.fromString('info@matthiasnoback.nl');

mailer.sendConfirmationEmail(recipient);

mailer.sendConfirmationEmail(recipient);

Make sure none of your services update internal state that influences its behavior
like this.

 A guiding question when deciding whether your service behaves properly in this
respect is, “Would it be possible to reinstantiate the service for every method call, and
would it still show the same behavior?” For the preceding Mailer class, this obviously
isn’t true: reinstantiating it would cause multiple emails to be sent to the same recipient.

 In the case of the stateful Mailer service, the question is, “How can we prevent
duplicate calls to sendConfirmationEmail()?” Somehow the client isn’t smart enough
to take care of this. What if, instead of providing just one EmailAddress, the client
could provide an already deduplicated list of EmailAddress instances? They could use
something like the following Recipients class.

Listing 7.6 Recipients can provide a list of deduplicated email addresses

This will send out
a confirmation
email.

The second call won’t
send another email.

final class Recipients
{

/**
* @var EmailAddress[]
*/

private array emailEmailAddresses;

/**
* @return EmailAddress[]
*/

public function uniqueEmailAddresses(): array
{

// Return a deduplicated list of of addresses...
}

}

final class Mailer
{

public function sendConfirmationEmails(
Recipients recipients

): void {
foreach (recipients.uniqueEmailAddresses()

178 CHAPTER 7 Performing tasks

as emailAddress) {
// Send the email...

}
}

}

This would certainly solve the problem and make the Mailer service stateless again.
But instead of letting Mailer make that special call to uniqueEmailAddresses(), what
we’re actually looking for is a list of Recipients that couldn’t contain duplicate email
addresses. You could most elegantly protect this domain invariant inside the Recipi-
ents class itself.

final class Recipients
{

/**
* @var EmailAddress[]
*/

private array emailAddresses;

private function __construct(array emailAddresses)
{

this.emailAddresses = emailAddresses;
}

public static function emptyList(): Recipients
{

return new Recipients([]);
}

public function with(EmailAddress emailAddress): Recipients
{

if (in_array(emailAddress, this.emailAddresses)) {
return this;

}

return new Recipients(
array_merge(this.emailAddresses),
[emailAddress]

);
}

public function emailAddresses(): array
{

return this.emailAddresses;
}

}

A more effective implementation ofListing 7.7 Recipients

Always start with
an empty list.

Any time a client wants to add an
email address to it, it will only be

added if it’s not already on the list.

No need to
add the email

address again.

There’s no need for a
uniqueEmailAddresses()
method anymore.

179When something goes wrong, throw an exception

When something goes wr7.4 ong, throw an exception
The same rule for retrieving information also counts for performing tasks: when some-
thing goes wrong, don’t return a special value to indicate it; throw an exception instead.
As discussed earlier, a method can have precondition checks that throw Invalid-
ArgumentExceptions or LogicExceptions. For the remainder of the failure scenarios,
we can’t determine upfront if they will occur, so we throw a RuntimeException. We’ve
already discussed the other important rules for using exceptions in section 5.2.

Immutable services and service containers
Service containers are often designed to share all service instances once they have
been created. This saves the runtime from instantiating the same service again,
should it be reused as a dependency of some other service. However, if a service is
immutable (as it should be), this sharing isn’t really needed. You could instantiate
the service over and over again.

Of course, there are services in a service container that shouldn’t be instantiated
again every time they’re used as a dependency. For instance, a database connection
object or any other kind of reference to a resource that needs to be created once and
then shared between dependent services. In general, however, your services
shouldn’t need to be shared. If you’ve followed all of the advice so far, you’re doing
well already, because immutable services don’t need to be shared. They can, but they
don’t have to.

Exercises
2 What would prevent a service from being immutable?

a Allowing an optional dependency to be injected by calling a method on it.
b Allowing a configuration value to be changed by calling a method on it.
c Offering a query method that itself calls a command method.
d Having too many constructor arguments.
e Changing some kind of internal state when a client calls a method on it.

Exercises
3 What type of exception would you expect save() to throw if it couldn’t store a

Product entity because its ID was already used?

interface ProductRepository
{

public function save(Product product): void;
}

180 CHAPTER 7 Performing tasks

Use queries to collect7.5 information and commands
to take the next steps
Earlier, when we discussed query methods, we saw how a chain of method calls that
starts with a call to a query method won’t have a call to a command method inside of
it. The command method may produce a side effect, which violates the rule that a
query method shouldn’t have any side effects.

 Now that we’re looking at command methods, we should note that the other way
around, there’s no such rule. When a chain of calls starts with a command method, it’s
possible that you’ll encounter a call to a query method down the line. For instance, the
changeUserPassword() method we saw earlier starts with a query to the user repository.

public function changeUserPassword(
UserId userId,
string plainTextPassword

): void {
user = this.repository.getById(userId);
hashedPassword = /* ... */;
user.changePassword(hashedPassword);
this.repository.save(user);
this.eventDispatcher.dispatch(

new UserPasswordChanged(userId)
);

}

Listing 7.8 changeUserPassword() starts with a query, then performs a task

(continued)
a An InvalidArgumentException, because the client has provided an invalid

Product argument.
b A RuntimeException, because whether or not a Product entity with that ID

already exists can’t be decided by just inspecting the arguments.

4 What type of exception would you expect set() to throw if an empty string were
provided for key?

interface Cache
{

public function set(string key, string value): void;
}

a An InvalidArgumentException, because the client has provided an invalid
argument.

b A RuntimeException, because the client may decide at runtime what the
value for key should be.

181Use queries to collect information and commands to take the next steps

The next method call is changePassword() on the user object, then another com-
mand on the repository. Inside the repository implementation, there may again be
calls to command methods, but it’s also possible that query methods are being called
there (see figure 7.1).

 However, when looking at how objects call each other’s command and query meth-
ods, be aware of the pattern illustrated in figure 7.2. This
pattern of calls often indicates a little conversation
between objects that could have been happening inside
the called object only. Consider the following example:

if (obstacle.isOnTheRight()) {
player.moveLeft();

} elseif (obstacle.isOnTheLeft()) {
player.moveRight();

}

The following is an improvement on this piece of code,
where the knowledge about which action to take is now
completely inside the object.

player.evade(obstacle);

This object is able to keep this knowledge to itself, and its
implementation can evolve freely, whenever it needs to
show more complicated behavior.

UserRepositoryUserService

changeUserPassword()

getById()

return

dispatch()

EventDispatcherUser

save()

assword()changeP

Inside a command method, you may call query methods to retrieve more information.Figure 7.1

query()

return

command()

Figure 7.2 Calling a query
method, then a command
method on the same object

182 CHAPTER 7 Performing tasks

Define abstractions for comman7.6 ds that cross system boundaries
If a command method has code that reaches out across the application’s own bound-
aries (that is, if it uses a remote service, the filesystem, a system device, etc.), you
should introduce an abstraction for it. For instance, the following listing shows a piece
of code that publishes a message to a queue, so background consumers can tune into
important events inside the main application.

final class SendMessageToRabbitMQ
{

// ...

public function whenUserChangedPassword(
UserPasswordChanged event

): void {
this.rabbitMqConnection.publish(

'user_events',
'user_password_changed',
json_encode([

'user_id' => (string)event.userId()
])

);
}

}

The publish() method will reach out to the RabbitMQ server and publish a message
to its queue, which is outside of the application’s boundaries, so we should come up
with an abstraction here. As discussed earlier, this requires an interface and a higher-
level concept. For example, preserving the notion that we want to queue a message,
we could introduce the following Queue abstraction.

interface Queue
{

public function publishUserPasswordChangedEvent(
UserPasswordChanged event

): void;
}

final class RabbitMQQueue implements Queue
{

// ...

public function publishUserPasswordChangedEvent(
UserPasswordChanged event

): void {
this.rabbitMqConnection.publish(

'user_events',

Listing 7.9 SendMessageToRabbitMQ publishes messages on a queue

Listing 7.10 Queue is an abstraction used by SendMessageToRabbitMQ

Queue is the abstraction.

The standard Queue implementation
is RabbitMQQueue, which contains
the code we already had.

183Define abstractions for commands that cross system boundaries

'user_password_changed',
json_encode([

'user_id' => (string)event.userId()
])

);
}

}

final class SendMessageToRabbitMQ
{

private Queue queue;

public function __construct(Queue queue)
{

this.queue = queue;
}

public function whenUserPasswordChanged(
UserPasswordChanged event

): void {
this.queue.publishUserPasswordChangedEvent(event);

}
}

The first step was to introduce an abstraction. Once you start adding more publish
…Event() methods to Queue, you may start noticing similarities between these meth-
ods. Then you could apply generalization to make these methods more generic. You
may need to implement a standard interface for all events.

interface CanBePublished
{

public function queueName(): string;
public function eventName(): string;
public function eventData(): array;

}

final class RabbitMQQueue implements Queue
{

// ...

public function publish(CanBePublished event): void
{

this.rabbitMqConnection.publish(
event.queueName(),
event.eventName(),
json_encode(event.eventData())

);
}

}

AListing 7.11 CanBePublished interface for publishable events

The event listener that is supposed to
publish a message to the queue whenever a
UserPasswordChanged event occurs will use
the new abstraction as a dependency.

184 CHAPTER 7 Performing tasks

It’s generally a good idea to start with the abstraction and leave the generalization
until you’ve seen about three cases that could be simplified by making the interface
and object types involved more generic. This prevents you from abstracting too early
and having to revise the interface and any of its implementations for every new case
you want your abstraction to support.

Only verify calls to command methods with a mock7.7
We already discussed that query methods shouldn’t be mocked. In a unit test, you
shouldn’t verify the number of calls made to them. Queries are supposed to be with-
out side effects, so you could make them many times if you want to. Allowing the
implementation to do so increases the stability of the test. If you decide to call a
method twice instead of remembering its result in a variable, the test won’t break.

 However, when a command method makes a call to another command method,
you may want to mock the latter. After all, this command is supposed to be called at
least once (you want to verify that, because it’s part of the job), but it shouldn’t be
called more than once (because you don’t want to have its side effects being produced
more than once too). This is demonstrated in the following listing.

final class ChangePasswordService
{

private EventDispatcher eventDispatcher;
// ...

public function __construct(
EventDispatcher eventDispatcher,
// ...

) {
this.eventDispatcher = eventDispatcher;

// ...
}

public function changeUserPassword(

Unit testing theListing 7.12 ChangePasswordService using a mock

Exercises
5 Why does the task of saving an entity to the database need its own abstraction?

a Because one day you may not have that entity anymore.
b Because having an abstraction allows you to replace the implementation in a

test scenario.
c Because you may want to reuse that abstraction to store other types of data.
d Because an abstraction uses a higher-level concept to explain what’s going

on, which makes it easier to read the code, because you can ignore all the
lower-level details.

185Only verify calls to command methods with a mock

UserId userId,
string plainTextPassword

): void {
// ...

this.eventDispatcher.dispatch(
new UserPasswordChanged(userId)

);
}

}

/**
* @test
*/

public function it_dispatches_a_user_password_changed_event(): void
{

userId = /* ... */;

eventDispatcherMock = this.createMock(EventDispatcher.className);
eventDispatcherMock

.expects(this.once())

.method('dispatch')

.with(new UserPasswordChanged(userId));

service = new ChangePasswordService(eventDispatcherMock, /* ... */);

service.changeUserPassword(userId, /* ... */);
}

There are no regular assertions at the end of this test method, because the mock
object itself will verify that our expectations were met. The test framework will ask all
mock objects that were created for a single test case to do this.

 If you prefer to have some actual assertions in your test case, you could use a spy as
a test double for EventDispatcher. In the most generic form, a spy will remember all
method calls that were made to it, including the arguments used. However, in our
case, a really simple EventDispatcher implementation would suffice.

final class EventDispatcherSpy implements EventDispatcher
{

private array events = [];

public function dispatch(object event): void
{

this.events[] = event;
}

public function dispatchedEvents(): array
{

return this.events;
}

}

AnListing 7.13 EventDispatcher spy

This defines a true mock object: we verify how many
times we expect a method to be called (once), and with
which arguments. We don’t make assertions about the

return value, since dispatch() is a command method.

The spy just keeps a
list of the events that
were dispatched to it.

186 CHAPTER 7 Performing tasks

/**
* @test
*/

public function it_dispatches_a_user_password_changed_event(): void
{

// ...
eventDispatcher = new EventDispatcherSpy();
service = new ChangePasswordService(eventDispatcher, /* ... */);

service.changeUserPassword(userId, /* ... */);

assertEquals(
[

new UserPasswordChanged(userId)
],
eventDispatcher.dispatchedEvents()

);
}

Now we can make an assertion
instead of waiting for the test
framework to verify the
method calls on our mock.

Exercises
6 Given the following interface,

interface UserRepository
{

public function save(User user): void;
}

if you write a unit test for a class that calls save() on its UserRepository depen-
dency, what type of test double could you use?

a Dummy
b Stub
c Fake
d Mock
e Spy

7 Given the following interface,

interface UserRepository
{

public function getById(UserId userId): User;
}

if you write a unit test for a class that calls getById() on its UserRepository
dependency, what type of test double could you use?

a Dummy
b Stub
c Fake
d Mock
e Spy

187Answers to the exercises

Summary
 Command methods should be used to perform tasks. These command methods

should have imperative names (“Do this,” “Do that”) and they should be limited
in scope. Make a distinction between the main job and the effects of this job.
Dispatch events to let other services perform additional tasks. While perform-
ing its task, a command method may also call query methods to collect any
information needed.

 A service should be immutable from the outside, as well as on the inside. Just as
with services for retrieving data, services that perform tasks should be reusable
many times. If something goes wrong while performing a task, throw an excep-
tion (as soon as you know it).

 Define an abstraction for commands that cross a system boundary (commands
that reach out to some remote service, database, etc.). When testing command
methods that themselves call command methods, you can use a mock or a spy
to test calls to these methods. You can use a mocking tool for this or write your
own spies.

Answers to the exercises
1 Correct answers: c and e. All the other options should be considered part of the

primary action. c and e are secondary actions or effects of the primary action.
2 Correct answers: a, b, and e. Switching out dependencies or configuration val-

ues makes a service object mutable. The number of constructor arguments
doesn’t have any effect on immutability. The same goes for collaborations with
other objects.

3 Correct answer: b. The reason has been provided in the answer itself.
4 Correct answer: a. The reason has been provided in the answer itself.
5 Correct answers: b and d. The reason has been provided in the answers. Answer

a is wrong because if you get rid of the entity, you also get rid of its repository.
Answer c is wrong because that would require us to make the repository generic
as well, which is not what we were after here.

6 Correct answers: d and e. save() is a command method, so we use a mock (to
assure that a call to that method was made) or a spy (to later find out if that
method call was made).

7 Correct answers: a, b, and c. getById() is a query method, so we provide a
dummy (a nonfunctional object with only the correct type), a stub (an object
with the correct type, which can return a previously configured value), or a fake
(a more evolved object, with some logic of its own). We don’t want to verify
actual function calls being made, which is why we don’t use a mock or a spy.

Dividing responsibilities

We’ve looked at how objects can be used to retrieve information or perform tasks.
The methods for retrieving information are called query methods, and the ones
that perform tasks are command methods.

 Service objects may combine both of these responsibilities. For instance, a
repository (like the one in the following listing) could perform the task of saving
an entity to the database and also retrieving an entity from the database.

This chapter covers
 Making a distinction between read and write

models

 Defining separate repositories for read and write
models

 Designing read models for their specific use
cases

 Building up a read model from events or a shared
data source

188

189Separate write models from read models

interface PurchaseOrderRepository
{

/**
* @throws CouldNotSavePurchaseOrder
*/

public function save(PurchaseOrder purchaseOrder): void;

/**
* @throws CouldNotFindPurchaseOrder
*/

public function getById(int purchaseOrderId): PurchaseOrder;
}

Saving and retrieving an entity are more or less each other’s inverse operations, so it’s
only natural to let one object have both responsibilities. However, in most other cases,
you will find that performing tasks and retrieving information are better off being
divided amongst different objects.

8.1 Separate write models from read models
As we saw earlier, there are services and other objects. Some of these other objects can
be characterized as entities, which model a particular domain concept. In doing so,
they contain some relevant data and offer ways to manipulate that data in valid and
meaningful ways. Entities can also expose data, allowing clients to retrieve informa-
tion from them, whether it is exposed internal data (like the date on which an order
was placed), or calculated data (like the total amount of an order).

 In practice, different clients use entities in different ways. Some clients will want to
manipulate an entity’s data using its command methods, while others just want to
retrieve a piece of information using its query methods. Nevertheless, all these clients
will share the same object and potentially have access to all the methods, even when
they don’t need them or shouldn’t have access to them.

 You should never pass an entity that can be modified to a client that isn’t allowed
to modify it. Even if the client doesn’t modify it today, one day it might, and then it
will be hard to find out what happened. That’s why the first thing you should do to
improve the design of an entity is separate the write model from the read model.

 We’ll explore how this can be done by looking at an example of a PurchaseOrder
entity. A purchase order represents the fact that a company buys a product from one
of its suppliers. Once the product has been received, it’s shelved in the company’s
warehouse. From that moment on, the company has this product in stock. We’ll use
this example for the rest of this chapter and work out different ways to improve it.

Listing 8.1 PurchaseOrderRepository can save and retrieve a PurchaseOrder

TheListing 8.2 PurchaseOrder entity

final class PurchaseOrder
{

private int purchaseOrderId;
private int productId;

190 CHAPTER 8 Dividing responsibilities

private int orderedQuantity;
private bool wasReceived;

private function __construct()
{
}

public static function place(
int purchaseOrderId,
int productId,
int orderedQuantity

): PurchaseOrder {
purchaseOrder = new PurchaseOrder();

purchaseOrder.productId = productId;
purchaseOrder.orderedQuantity = orderedQuantity;
purchaseOrder.wasReceived = false;

return purchaseOrder;
}

public function markAsReceived(): void
{

this.wasReceived = true;
}

public function purchaseOrderId(): int
{

return this.purchaseOrderId;
}

public function productId(): int
{

return this.productId;
}

public function orderedQuantity(): int
{

return this.orderedQuantity;
}

public function wasReceived(): bool
{

return this.wasReceived;
}

}

In the current implementation, the PurchaseOrder entity exposes methods for creating
and manipulating the entity (place() and markAsReceived()), as well as for retrieving
information from it (productId(), orderedQuantity(), and wasReceived()).

 Now take a look at how different clients use this entity. First, the ReceiveItems ser-
vice will be called from a controller, passing in a raw purchase order ID.

For brevity, I’ve used primitive-
type values; in practice, value
objects are recommended.

191Separate write models from read models

final class ReceiveItems
{

private PurchaseOrderRepository repository;

public function __construct(PurchaseOrderRepository repository)
{

this.repository = repository;
}

public function receiveItems(int purchaseOrderId): void
{

purchaseOrder = this.repository.getById(purchaseOrderId);

purchaseOrder.markAsReceived();

this.repository.save(purchaseOrder);
}

}

Note that this service doesn’t use any of the getters on PurchaseOrder. It’s only inter-
ested in changing the state of the entity.

 Next, let’s take a look at a controller that renders a JSON-encoded data structure
detailing how much of a product the company has in stock.

final class StockReportController
{

private PurchaseOrderRepository repository;

public function __construct(PurchaseOrderRepository repository)
{

this.repository = repository;
}

public function execute(Request request): Response
{

allPurchaseOrders = this.repository.findAll();

stockReport = [];

foreach (allPurchaseOrders as purchaseOrder) {
if (!purchaseOrder.wasReceived()) {

continue;
}

if (!isset(stockReport[purchaseOrder.productId()])) {
stockReport[purchaseOrder.productId()] = 0;

}

stockReport[purchaseOrder.productId()]

TheListing 8.3 ReceiveItems service

TheListing 8.4 StockReportController class

We haven’t received the
items yet, so we shouldn’t
add them to the quantity
in stock.

We haven’t
seen this
product

before …

Add the ordered (and
received) quantity to
the quantity in stock.

192 CHAPTER 8 Dividing responsibilities

+= purchaseOrder.orderedQuantity;
}

return new JsonResponse(stockReport);
}

}

This controller doesn’t make any change to a PurchaseOrder. It just needs a bit of
information from all of them. In other words, it isn’t interested in the write part of the
entity, only in the read part. Besides the fact that it is undesirable to expose more
behavior to a client than it needs, it isn’t very efficient to loop over all the purchase
orders of all time to find out how much of a product is in stock.

 The solution is to divide the entity’s responsibilities. First, we’ll create a new object
that can be used to retrieve information about a purchase order. Let’s call it Purchase-
OrderForStockReport.

TheListing 8.5 PurchaseOrderForStockReport class

final class PurchaseOrderForStockReport
{

private int productId;
private int orderedQuantity;
private bool wasReceived;

public function __construct(
int productId,
int orderedQuantity,
bool wasReceived

) {
this.productId = productId;
this.orderedQuantity = orderedQuantity;
this.wasReceived = wasReceived;

}

public function productId(): ProductId
{

return this.productId;
}

public function orderedQuantity(): int
{

return this.orderedQuantity;
}

public function wasReceived(): bool
{

return this.wasReceived;
}

}

This new PurchaseOrderForStockReport object can be used inside the controller as
soon as there is a repository that can provide it. A quick and dirty solution would be to

193Separate write models from read models

let PurchaseOrder return an instance of PurchaseOrderForStockReport, based on its
internal data.

final class PurchaseOrder
{

private int purchaseOrderId
private int productId;
private int orderedQuantity;
private bool wasReceived;

// ...

public function forStockReport(): PurchaseOrderForStockReport
{

return new PurchaseOrderForStockReport(
this.productId,
this.orderedQuantity,
this.wasReceived

);
}

}

final class StockReportController
{

private PurchaseOrderRepository repository;

public function __construct(PurchaseOrderRepository repository)
{

this.repository = repository;
}

public function execute(Request request): Response
{

allPurchaseOrders = this.repository.findAll();

forStockReport = array_map(
function (PurchaseOrder purchaseOrder) {

return purchaseOrder.forStockReport();
},
allPurchaseOrders

);

// ...
}

}

We can now remove pretty much all of the query methods (productId(), ordered-
Quantity(), and wasReceived()) from the original PurchaseOrder entity. This makes
it a proper write model; it isn’t used by clients who just want information from it anymore.

A quick solution:Listing 8.6 PurchaseOrder generates the report

For now, we still load
PurchaseOrder entities.

We immediately convert them to
PurchaseOrderForStockReport

instances.

194 CHAPTER 8 Dividing responsibilities

final class PurchaseOrder
{

private int purchaseOrderId
private int productId;
private int orderedQuantity;
private bool wasReceived;

private function __construct()
{
}

public static function place(
int purchaseOrderId,
int productId,
int orderedQuantity

): PurchaseOrder {
purchaseOrder = new PurchaseOrder();

purchaseOrder.productId = productId;
purchaseOrder.orderedQuantity = orderedQuantity;

return purchaseOrder;
}

public function markAsReceived(): void
{

this.wasReceived = true;
}

}

Removing these query methods won’t do any harm to the existing clients of
PurchaseOrder that use this object as a write model, like the ReceiveItems service we
saw earlier, as you can see in the following listing.

final class ReceiveItems
{

// ...

public function receiveItems(int purchaseOrderId): void
{

purchaseOrder = this.repository.getById(
PurchaseOrderId.fromInt(purchaseOrderId)

);

purchaseOrder.markAsReceived();

this.repository.save(purchaseOrder);
}

}

Listing 8.7 PurchaseOrder with its getters removed

Existing clients useListing 8.8 PurchaseOrder as a write model

This service doesn’t
use any query method
of PurchaseOrder.

195Separate write models from read models

Query methods aren’t forbidden
Some clients use the entity as a write model but still need to retrieve some informa-
tion from it. They need this information to make decisions based on it, perform extra
validations, etc. Don’t feel that you shouldn’t add query methods in these cases;
query methods aren’t by any means forbidden. The point of this chapter is that clients
that solely use an entity to retrieve information should use a dedicated read model
instead of a write model.

Exercises
1 Is the salesInvoice object in the following code a write model or a read model?

public function finalize(SalesInvoiceId salesInvoiceId): void
{

salesInvoice = salesInvoiceRepository.getById(salesInvoiceId);

if (salesInvoice.wasCancelled()) {
throw new CanNotFinalizeSalesInvoice

::becauseItWasAlreadyCancelled(salesInvoiceId);
}

salesInvoice.finalize();

eventDispatcher.dispatchAll(salesInvoice.recordedEvents());

salesInvoiceRepository.save(salesInvoice);
}

a A read model
b A write model

2 Is the meetup object in the following code a write model or a read model?

public function meetupDetailsAction(Request request): Response
{

meetup = meetupRepository.getById(request.get('meetupId'));

return this.templateRenderer.render(
'meetup-details.html.twig', [

'meetup' => meetup
]

);
}

a A read model
b A write model

196 CHAPTER 8 Dividing responsibilities

Create read models that ar8.2 e specific for their use cases
In the previous section, we split the PurchaseOrder entity into write and read models.
The write model still carries the old name, but we called the read model Purchase-
OrderForStockReport. The extra qualification ForStockReport indicates that this
object now serves a specific purpose. The object will be suitable for use in a very spe-
cific context, namely arranging the data to produce a useful stock report for the user.
The proposed solution isn’t optimal yet, because the controller still needs to load all
the PurchaseOrder entities and convert them to PurchaseOrderForStockReport
instances by calling forStockReport() on them, as in the following listing. This
means that the client still has access to the write model, even though our initial goal
was to prevent that from happening.

public function execute(Request request): Response
{

allPurchaseOrders = this.repository.findAll();

forStockReport = array_map(
function (PurchaseOrder purchaseOrder) {

return purchaseOrder.forStockReport();
},
allPurchaseOrders

);

// ...
}

Another aspect of the design isn’t quite right: even though we now have Purchase-
OrderForStockReport objects, we still need to loop over them and build up another
data structure before we can present the data to the user. What if we had an object
whose structure matched the way we intended to use it? Concerning the name of this
object, there’s already a hint in the name of the read model (ForStockReport). So
let’s call this new object StockReport, and assume it already exists. The controller
would become much simpler, as shown in the next listing.

Creating a stock report still relies on the write modelListing 8.9

Listing 8.10 StockReportController can retrieve the stock report directly

We still rely on
PurchaseOrder
instances here.

final class StockReportController
{

private StockReportRepository repository;

public function __construct(StockReportRepository repository)
{

this.repository = repository;
}

public function execute(Request request): Response

197Create read models directly from their data source

{
stockReport = this.repository.getStockReport();

return new JsonResponse(stockReport.asArray());
}

}

Besides StockReport, we may create any number of read models that correspond to
each of the application’s specific use cases. For instance, we could create a read model
that’s used for listing purchase orders only. It would expose just the ID and the date
on which it was created. We could then have a separate read model that provides all
the details needed to render a form so the user can update some of the information,
and so on.

 Behind the scenes, StockReportRepository could still create the StockReport
object based on PurchaseOrderForStock objects provided by the write model entities.
But there are much better and more efficient alternatives. We’ll cover some of them
in the following sections.

8.3 Create read models directly from their data source
Instead of creating a StockReport model from PurchaseOrderForStock objects, we
could go directly to the source of the data—the database where the application stores
its purchase orders. If this is a relational database, there might be a table called
purchase_orders, with columns for purchase_order_id, product_id, ordered

_quantity, and was_received. If that’s the case, StockReportRepository wouldn’t
have to load any other object before it could build a StockReport object; it could
make a single SQL query and use that to create the StockReport.

final class StockReportSqlRepository implements StockReportRepository
{

public function getStockReport(): StockReport
{

result = this.connection.execute(
'SELECT ' .
' product_id, ' .
' SUM(ordered_quantity) as quantity_in_stock ' .
'FROM purchase_orders ' .
'WHERE was_received = 1 ' .
'GROUP BY product_id'

);

data = result.fetchAll();

return new StockReport(data);
}

}

Listing 8.11 StockReportSqlRepository creates a stock report using plain SQL

asArray() is expected to
return an array like we
the one we created
manually before.

198 CHAPTER 8 Dividing responsibilities

Creating read models directly from the write model’s data source is usually pretty
efficient in terms of runtime performance. It’s also an efficient solution in terms of
development and maintenance costs. This solution will be less efficient if the write
model changes often, or if the raw data can’t easily be used as-is and needs to be
interpreted first.

Build read models from domain events8.4
One disadvantage of creating the StockReport read model directly from the write
model’s data is that the application will make the calculations again and again, every
time a user requests a stock report. Although the SQL query won’t take too long to
execute (until the table grows very large), in some cases it’ll be necessary to use
another approach for creating read models.

 Let’s take another look at the result of the SQL query we used in the previous
example (see table 8.1).

How else could we come up with the numbers in the second column, without looking
up all the records in the purchase_orders table and summing their ordered_quantity
values?

 What if we could sit next to the user with a piece of paper, and whenever they
marked a purchase order as received, we’d write down the ID of the product and how
many items of it were received. The resulting list would look like table 8.2.

Now, instead of having multiple rows for the same product, we could look up the row
with the product that was just received, and add the quantity we received to the num-
ber that’s already in the received column, as in table 8.3.

The result of the SQL query for generating a stock reportTable 8.1

product_id quantity_in_stock

10123

5124

The result of writing down every received productTable 8.2

product_id received

2123

4124

1124

8123

199Build read models from domain events

Doing the calculations, this amounts to the same result as when we used the SUM
query.

 Instead of sitting next to the user with a piece of paper, we should listen in on our
PurchaseOrder entity to find out when a user marks it as received. We can do this by
recording and dispatching domain events, a technique you already saw in section 4.12.

 First, we need to let PurchaseOrder record a domain event, indicating that the
ordered items were received

final class PurchaseOrderReceived
{

private int purchaseOrderId;
private int productId;
private int receivedQuantity;

public function __construct(
int purchaseOrderId,
int productId,
int receivedQuantity

) {
this.purchaseOrderId = purchaseOrderId;
this.productId = productId;
this.receivedQuantity = receivedQuantity;

}

public function productId(): int
{

return this.productId;
}

public function receivedQuantity(): int
{

return this.receivedQuantity;
}

}

final class PurchaseOrder
{

private array events = [];

// ...

The result of combining received quantities per productTable 8.3

product_id received

2 + 8123

4 + 1124

Listing 8.12 PurchaseOrder entities record PurchaseOrderReceived events

This is the new
domain event.

200 CHAPTER 8 Dividing responsibilities

public function markAsReceived(): void
{

this.wasReceived = true;

this.events[] = new PurchaseOrderReceived(
this.purchaseOrderId,
this.productId,
this.orderedQuantity

);
}

public function recordedEvents(): array
{

return this.events;
}

}

Calling markAsReceived() will now add a PurchaseOrderReceived event object to the
list of internally recorded events. These events can be taken out and handed over to
an event dispatcher, as in the following ReceiveItems service.

final class ReceiveItems
{

// ...

public function receiveItems(int purchaseOrderId): void
{

// ...

this.repository.save(purchaseOrder);

this.eventDispatcher.dispatchAll(
purchaseOrder.recordedEvents()

);
}

}

An event listener that has been registered for this particular event can take the rele-
vant data from the event object and update its own private list of products and quanti-
ties in stock. For instance, it could build up the stock report by maintaining its own
stock_report table with rows for every product. It would have to process incoming
PurchaseOrderReceived events and create new rows or update existing ones in this
stock_report table.

Listing 8.13 ReceiveItems dispatches any recorded domain event

Using the event to update theListing 8.14 stock_report table

We record the
domain event inside
PurchaseOrder.

final class UpdateStockReport
{

public function whenPurchaseOrderReceived(

201Build read models from domain events

PurchaseOrderReceived event
): void {

this.connection.transactional(function () {
try {

this.connection
.prepare(

'SELECT quantity_in_stock ' .
'FROM stock_report ' .
'WHERE product_id = :productId FOR UPDATE'

)
.bindValue('productId', event.productId())
.execute()
.fetch();

this.connection
.prepare(

'UPDATE stock_report ' .
'SET quantity_in_stock = ' .
' quantity_in_stock + :quantityReceived ' .
'WHERE product_id = :productId'

)
.bindValue(

'productId',
event.productId()

)
.bindValue(

'quantityReceived',
event.quantityReceived()

)
.execute();

} catch (NoResult exception) {
this.connection

.prepare(
'INSERT INTO stock_report ' .
' (product_id, quantity_in_stock) ' .
'VALUES (:productId, :quantityInStock)'

)
.bindValue(

'productId',
event.productId()

)
.bindValue(

'quantityInStock',
event.quantityReceived()

)
.execute();

}
});

}
}

Find out if
we have an

existing row.

If a row exists for this product,
update the existing one and
increase the quantity in stock.

Otherwise, create a new row
and set an initial value for
quantity in stock.

202 CHAPTER 8 Dividing responsibilities

Once we have a separate data source for the stock report, we can make Stock-
ReportSqlRepository even simpler, because all the information is already in the
stock_reports table.

final class StockReportSqlRepository implements StockReportRepository
{

public function getStockReport(): StockReport
{

result = this.connection.execute(
'SELECT * FROM stock_report'

);

data = result.fetchAll();

return new StockReport(data);
}

}

This kind of simplification may offer you a way to make your read model queries more
efficient. However, in terms of development and maintenance costs, using domain

The query inListing 8.15 StockReportSqlRepository is now much simpler

urchase-whenP
eceived()OrderR

PurchaseOrder-
Repository

ReceiveItems

receiveItems()

getById()

[PurchaseOrder]

dispatchAll()

EventDispatcher UpdateStock-
Report

PurchaseOrder

save()

eceived()markAsR

Events()recorded

events][array of

Figure 8.1 The ReceiveItems service makes a change to the PurchaseOrder write model and then
dispatches domain events to EventDispatcher to allow other services like UpdateStockReport to
listen in on those changes.

203Answers to the exercises

events to build up read models is more expensive. As you can see by looking at the
examples in this section, more moving parts are involved. If something changes about
a domain event, it will take more work to adapt the other parts that depend on it. If
one of the event listeners fails, you will need to fix the error and run it again, which
requires some extra effort in terms of tooling and operations.

Summary
 For your domain objects, separate write models from read models. Clients that

are only interested in an entity because they need data from it should use a ded-
icated object, instead of an entity that exposes methods for changing its state.

 A read model can be created directly from the write model, but a more efficient
way would be to create it from the data source used by the write model. If that is
impossible, or the read model can’t be created in an efficient way, consider
using domain events to build up the read model over time.

Answers to the exercises
1 Correct answer: b. The code does retrieve information from the model (it calls

the wasCancelled() method), but it also modifies the object (it calls its final-
ize() method). This makes it a write model, since a read model would not
offer methods to modify the state of the model to regular clients.

What about event sourcing?
Things will be even more complex if besides using events for building up read models,
you also use events for reconstructing write models. This technique is called event
sourcing, and it fits very well with the idea of separating write models from read mod-
els. However, as demonstrated in this chapter, you don’t need to apply event sourc-
ing if you’re only looking for a better way to divide responsibilities between objects.
You can provide clients that only want to retrieve information from an entity with a
separate read model by using any of the techniques described here.

Exercises
3 Write down a list of domain events you would need in order to build a read model

for a shopping cart with the following features:

a A user can add a product to it.
b A user can remove a product from it.
c A user can change the quantity of a product.

204 CHAPTER 8 Dividing responsibilities

2 Correct answer: a. In theory it could be a write model, but it really shouldn’t be.
Its only purpose is to show some information about the meetup by rendering an
HTML response for the user.

3 Suggested answer: You would need events that represent each of the things that
can happen to the shopping cart. Given the described features, these events
could be ProductWasAddedToCart, ProductWasRemovedFromCart, and Product-
QuantityWasModified. As always, the advice is to look for domain-specific terms
and use the words that your domain experts use. Why is there no event called
CartWasCreated? Because that’s already implied by ProductWasAddedToCart.

Changing the
 behavior of services

You can design your services to be created and used in certain ways. But the nature
of a software project is that it will change over time. You’ll often modify a class in
such a way that, when it’s used, it will behave the way you want it to. However, mod-
ifying a class comes with a cost: the danger of breaking it in some way. A common
alternative to changing a class is to override some of its methods, but this can cause
even more trouble. That’s why, in general, it’s preferable to modify the structure of

This chapter covers
 Changing behavior without changing code

 Making behaviors configurable and replaceable

 Introducing abstractions to allow for composition
and decoration

 Avoiding inheritance for overriding object
behaviors

 Making classes final and methods private to
prevent object abuse

205

206 CHAPTER 9 Changing the behavior of services

an object graph instead of the code in a class. It’s better to replace parts than to
change them.

Introduce constructor arguments to make behavior configurable9.1
We’ve discussed earlier how services should be created in one go, with all their depen-
dencies and configuration values provided as constructor arguments. When it comes
to changing the behavior of a service object, the constructor is again the place to be.
Always prefer using a replaceable constructor argument when you want to influence
the behavior of a service.

 Take for example the following FileLogger class, which logs messages to a file.

final class FileLogger
{

public function log(message): void
{

file_put_contents(
'/var/log/app.log',
message,
FILE_APPEND

);
}

}

To reconfigure the logger to log messages to another file, promote the log file path to
a constructor argument that gets copied into a property.

final class FileLogger
{

private string filePath;

public function __construct(string filePath)
{

this.filePath = filePath;
}

public function log(message): void
{

file_put_contents(this.filePath, message, FILE_APPEND);
}

}

logger = new FileLogger('/var/log/app.log');

TheListing 9.1 FileLogger class

Use a constructor argument to configure theListing 9.2 FileLogger

207Introduce constructor arguments to make behavior replaceable

Introduce constructor arguments to make behavior9.2
replaceable
You saw earlier how every dependency of a service should be injected as a constructor
argument. Just as configuration values can be changed, these dependencies can also
be replaced.

 Consider the following ParameterLoader, which can be used to load a list of keys
and values (“parameters”) from a JSON file.

final class ParameterLoader
{

public function load(filePath): array
{

rawParameters = json_decode(
file_get_contents(filePath),
true

);

parameters = [];

foreach (rawParameters as key => value) {
parameters[] = new Parameter(key, value);

}

TheListing 9.3 ParameterLoader class

Exercises
1 What are good options for making the base URL of the following API client config-

urable?

final class ApiClient
{

public function sendRequest(
string method,
string path

): Response {
url = 'https://api.acme.com' . path;

// ...
}

}

a Inject a Config object as a constructor argument from which the ApiClient
can retrieve the base URL.

b Inject the base URL as a string or a value object into the constructor of Api-
Client.

c Add baseUrl as an extra parameter to sendRequest().

Load parameters from the file
and add them to the already
loaded ones.

208 CHAPTER 9 Changing the behavior of services

return parameters;
}

}

loader = new ServiceConfigurationLoader(
__DIR__ . '/parameters.json'

);

Which part of this class should be replaced to support loading an XML or maybe even
a YAML file instead? Most of the ParameterLoader is pretty generic, except for the call
to json_decode(). To make this piece replaceable, we need to introduce an abstrac-
tion. This means finding a more abstract concept than “decoding a JSON file,” and
introducing an interface that can represent the abstraction.

 The abstract concept is “loading a file,” so FileLoader would be an appropriate
name for an interface that represents this task in code. We’ll have a standard imple-
mentation for this interface that loads parameters from a JSON file. Let’s call this
implementation JsonFileLoader.

interface FileLoader
{

public function loadFile(string filePath): array
}

final class JsonFileLoader implements FileLoader
{

public function loadFile(string filePath): array
{

Assertion.isFile(filePath);

result = json_decode(
file_get_contents(filePath),
true

);

if (!is_array(result)) {
throw new RuntimeException(

'Decoding "{filePath}" did not result in an array'
);

}

return result;
}

}

We’ve used the opportunity to add some precondition and postcondition checks to
make the JSON-specific implementation more reliable.

TheListing 9.4 FileLoader interface, implemented by JsonFileLoader

Load an array of key/
value pairs representing
parameters stored in a file
at the given location.

209Introduce constructor arguments to make behavior replaceable

 Now we need to make sure that ParameterLoader gets an instance of FileLoader
injected as a constructor argument, and we’ll replace the existing file-loading code in
ParameterLoader with a call to FileLoader.loadFile().

final class ParameterLoader
{

private FileLoader fileLoader;

public function __construct(FileLoader fileLoader)
{

this.fileLoader = fileLoader;
}

public function load(filePath): array
{

// ...

foreach (/* ... */) {
if (/* ... */) {

rawParameters = this.fileLoader.loadFile(
filePath

);
}

}

// ...
}

}

parameterLoader = new ParameterLoader(new JsonFileLoader());
parameterLoader.load(__DIR__ . '/parameters.json');

With part of the behavior of ParameterLoader abstracted, we can replace it with any
other concrete implementation, like an XML or YAML file loader.

final class XmlFileLoader implements FileLoader
{

// ...
}

parameterLoader = new ParameterLoader(new XmlFileLoader());
parameterLoader.load(__DIR__ . '/parameters.xml');

Listing 9.5 ParameterLoader depends on a FileLoader instance

Replacing theListing 9.6 FileLoader implementation is easy

210 CHAPTER 9 Changing the behavior of services

Compose abstractions to ac9.3 hieve more complicated behavior
With the proper abstraction in place, it will be easy to compose multiple concrete
instances into more complicated behavior. For instance, what if you want to support
multiple formats based on the filename’s extension? You could accomplish it using
object composition, as follows.

FileLoader

ParameterLoader

Uses

JsonFileLoader XmlFileLoader

Implements Implements
Figure 9.1 As long as the
FileLoader dependency of
ParameterLoader follows the
contract defined by the interface,
it doesn’t matter what goes on
behind the scenes of the real
FileLoader that gets injected.

Exercises
2 Make the formatting and writing behaviors of the following Logger class replaceable.

final class Logger
{

private string logFilePath;

public function __construct(string logFilePath)
{

this.logFilePath = logFilePath;
}

public function log(string message, array context): void
{

handle = fopen(logFilePath);

fwrite(
handle,
message . ' ' . json_encode(context)

);
}

}

211Compose abstractions to achieve more complicated behavior

interface FileLoader
{

/**
* ...
*
* @throws CouldNotLoadFile
*/

public function loadFile(string filePath): array
}

final class MultipleLoaders implements FileLoader
{

private array loaders;

public function __construct(array loaders)
{

Assertion.allIsInstanceOf(loaders, FileLoader.className);
this.loaders = loaders;

}

public function loadFile(string filePath): array
{

lastException = null;

foreach (this.loaders as loader) {
try {

return loader.loadFile(filePath);
} catch (CouldNotLoadFile exception) {

lastException = exception;
}

}

throw new CouldNotLoadFile(
'None of the file loaders was able to load file "{filePath}"',
lastException

);
}

}

Note that the new logic is placed outside of ParameterLoader itself, which has no idea
what’s going on behind the FileLoader interface it uses.

 Instead of simply trying different loaders, you may want a slightly different setup.
For instance, one where every loader can be registered for a particular file extension.
The following listing shows how to accomplish this (again, using object composition).

Listing 9.7 MultipleLoaders is a FileLoader that wraps other FileLoaders

An alternativeListing 9.8 MultipleLoaders implementation

Add an annotation to the interface,
indicating that loading a file may
throw a CouldNotLoadFile exception.

Introduce a new FileLoader
that’s composed of multiple
FileLoader instances. When
asked to load a file, it will
delegate the call to the loaders
until one of them doesn’t
throw a CouldNotLoadFile.

final class MultipleLoaders implements FileLoader
{

private array loaders;

public function __construct(array loaders)

212 CHAPTER 9 Changing the behavior of services

{
Assertion.allIsInstanceOf(loaders, FileLoader.className);
Assertion.allIsString(array_keys(loaders));
this.loaders = loaders;

}

public function loadFile(string filePath): array
{

extension = pathinfo(filePath, PATHINFO_EXTENSION);
if (!isset(this.loaders[extension])) {

throw new CouldNotLoadFile(
'There is no loader for file extension "{extension}"'

);
}

return this.loaders[extension].loadFile(filePath);
}

}

parameterLoader = new ParameterLoader(
new MultipleLoaders([

'json' => new JsonFileLoader(),
'xml' => new XmlFileLoader()

]);
);
parameterLoader.load('parameters.json');
parameterLoader.load('parameters.xml');

parameterLoader.load('parameters.yml');

As you can see, this setup is now very dynamic. However, always keep in mind that if
you’re writing this code for your project, you won’t usually have to support all these
different file formats. Introducing the FileLoader abstraction is a smart thing to do,
but writing all these different loader implementations should be considered “general-
ization before it’s needed.” Until it’s needed . . .

9.4 Decorate existing behavior
In the previous example, the multiple file loaders for JSON, XML, etc., all return an
array of raw parameters (key/value pairs). What if we wanted to allow the user to use
environment variables as the values for these parameters? We wouldn’t want to copy
this replacement logic into all the FileLoader implementations. Instead, we’ll want to
add the behavior on top of any existing behavior. We can do this using a particular
style of composition called decoration, demonstrated in the following listing.

final class ReplaceParametersWithEnvironmentVariables
implements FileLoader

{
private FileLoader fileLoader;

Listing 9.9 ReplaceParametersWithEnvironmentVariables

this.loaders is supposed to be a map
of keys and values, where the key is
 a file extension and the value is the

FileLoader that should be used for
loading a file with that extension.

This will throw a
CouldNotLoadFile
exception.

213Decorate existing behavior

private array envVariables;

public function __construct(
FileLoader fileLoader,
array envVariables

) {
this.fileLoader = fileLoader;
this.envVariables = envVariables;

}

public function loadFile(string filePath): array
{

parameters = this.fileLoader.loadFile(filePath);

foreach (parameters as key => value) {
parameters[key] = this.replaceWithEnvVariable(

value
);

}

return parameters;
}

private function replaceWithEnvVariable(string value): string
{

if (isset(this.envVariables[value])) {
return this.envVariables[value];

}

return value;
}

}

parameterLoader = new ParameterLoader(
new ReplaceParametersWithEnvironmentVariables(

new MultipleLoaders([
'json' => new JsonFileLoader(),
'xml' => new XmlFileLoader()

]),
[

'APP_ENV' => 'dev',
]

)
);

Decoration is also often used when the cost of using the real service is somewhat high.
For instance, if the application has to load and parse the parameters.json file many
times, it may be smart to wrap the original service and remember the last result it
returned.

The real file loader is injected
as a constructor argument.

We use the
real file loader
to load the file.

Any parameter value that is also the
name of an environment variable will

be replaced by the latter’s value.

214 CHAPTER 9 Changing the behavior of services

final class CachedFileLoader implements FileLoader
{

private FileLoader realLoader;

private cache = [];

public function __construct(FileLoader realLoader)
{

this.realLoader = realLoader;
}

public function loadFile(string filePath): array
{

if (isset(this.cache[filePath])) {
return this.cache[filePath];

}

result = this.realLoader.loadFile(filePath);

this.cache[filePath] = result;

return result;
}

}

loader = new CachedFileLoader(new JsonFileLoader());

loader.load('parameters.json');

loader.load('parameters.json');

The advantage of using composition in this scenario is that the caching logic doesn’t
have to be duplicated across the different file-loader implementations. In fact, the
logic in CachedFileLoader is agnostic concerning the FileLoader implementation
that’s being used. This means you can test it separately, and you can also develop it
separately. If you want to make the caching logic more advanced, you only have to
change the code of this single class dedicated to caching.

Listing 9.10 CachedFileLoader calls the real loader only if necessary

We’ve loaded this file
before, so we can return
the cached result.

We haven’t loaded this file
before, so we do it now.

We keep the result in our cache so
we don’t have to load the file again
next time.

This will forward the
call to JsonFileLoader.

The second time we won’t
hit the filesystem.

Exercises
3 All the log() statements in the following code distract from the real purpose of

the class: importing a CSV file. Use decoration and composition to move the
log() statements to separate classes. (Hint: you’ll have to introduce a dedicated
object for importing a single line so you can decorate it.)

215Use notification objects or event listeners for additional behavior

Use notification obje9.5 cts or event listeners
for additional behavior
We already looked at using event listeners as a technique for separating the main job
of a command method from its secondary tasks. If you want to reconfigure services to
do other things than they did before, you could use the same technique. As an exam-
ple, take a look at the ChangeUserPassword service.

TheListing 9.11 ChangeUserPassword service

final class CsvFileImporter
{

private Logger logger;

public function __construct(Logger logger)
{

this.logger = logger;
}

public function import(string csvFile): void
{

this.logger.log('Importing file: ' . csvFile);

foreach (linesIn(csvFile) as lineNumber => line) {
this.logger.log('Importing line: ' . lineNumber);

// import the line
fields = fieldsIn(line);
// ...

this.logger.log('Imported line: ' . lineNumber);
}

this.logger.log('Finished importing');
}

}

final class ChangeUserPassword
{

private PasswordEncoder passwordEncoder;

public function __construct(
PasswordEncoder passwordEncoder,
/* ... */

) {
// ...

}

public function changeUserPassword(
UserId userId,

216 CHAPTER 9 Changing the behavior of services

string plainTextPassword
): void {

encodedPassword = this.passwordEncoder.encode(
plainTextPassword

);

// Store the new password...
}

}

A new requirement for this service is that it should send an email to the user after-
ward, to tell them that their password has changed (just in case it was a hacker who
did it). Instead of adding more code to the existing class and method, this could be a
nice opportunity to dispatch an event and set up a listener that will send the email.

final class UserPasswordChanged
{

private UserId userId;

public function __construct(UserId userId)
{

this.userId = userId;
}

}

final class SendUserPasswordChangedNotification
{

// ...

public function whenUserPasswordChanged(
UserPasswordChanged event

): void {
// Send the email...

}
}

Finally, we have to rewrite the ChangeUserPassword service to dispatch the newly
defined UserPasswordChanged event.

TheListing 9.12 UserPasswordChanged event class and its listener

Listing 9.13 ChangeUserPassword dispatches a UserPasswordChanged event

Define a new
event type.

Define a listener
for this event.

final class ChangeUserPassword
{

private EventDispatcher eventDispatcher;

public function __construct(
/* ... */,
EventDispatcher eventDispatcher

) {
// ...

217Use notification objects or event listeners for additional behavior

}

public function changeUserPassword(
UserId userId,
string plainTextPassword

): void {
encodedPassword = this.passwordEncoder.encode(

newPassword
);

// Store the new password

this.eventDispatcher.dispatch(
new UserPasswordChanged(userId)

);
}

}

listener = new SendUserPasswordChangedNotification(/* ... */);
eventDispatcher = new EventDispatcher([

UserPasswordChanged.className => [
listener,
'whenUserPasswordChanged'

]
]);

service = new ChangeUserPassword(/* ... */, eventDispatcher);

service.changeUserPassword(new UserId(/* ... */), 'Test123');

The advantage of using an event dispatcher is that it enables you to add new behavior
to a service without modifying its existing logic. Once it’s in place, an event dispatcher
offers the option to add new behavior. You can always register another listener for an
existing event.

 A disadvantage of using an event dispatcher is that it has a very generic name.
When reading the code, it’s not very clear what’s going on behind that call to dis-
patch(). It can also be a bit difficult to figure out which listeners will respond to a cer-
tain event. An alternative solution is to introduce your own abstraction.

 As an example, take the following Importer class that imports CSV files from a
given directory and dispatches events to allow other services to listen in on the import
process.

Listing 9.14 Importer dispatches events

We have to make sure that
the listener is registered in

the correct way.

This will cause a
UserPasswordChanged event to be dispatched to

 the SendUserPasswordChangedNotification listener.

final class Importer
{

private EventDispatcher dispatcher;

public function __construct(EventDispatcher dispatcher)
{

this.dispatcher = dispatcher;

218 CHAPTER 9 Changing the behavior of services

}

public function import(string csvDirectory): void
{

foreach (Finder.in(csvDirectory).files() as file) {
// Read the file
lines = /* ... */;

foreach (lines as index => line) {
if (index == 0) {

// Parse the header
header = /* ... */;

this.dispatcher.dispatch(
new HeaderImported(file, header)

);
}
else {

data = /* ... */;

this.dispatcher.dispatch(
new LineImported(file, index)

);
}

}

this.dispatcher.dispatch(
new FileImported(file)

);
}

}
}

It turns out that every one of these events has just one listener—one that will write
some debug information about the event to a log file. Although this is a very simple
task, we have to maintain lots of code for it: we have event and event listener classes to
write, and we have to remember to register the listeners in the correct way.

 As you know now, most of these listeners do the same kind of job, so instead of
spreading this behavior across many classes, we might as well combine it in a single
class and introduce our own abstraction for it: ImportNotifications.

interface ImportNotifications
{

public function whenHeaderImported(
string file,
array header

): void;

public function whenLineImported(
string file,

A single abstraction can replace all import eventsListing 9.15

219Use notification objects or event listeners for additional behavior

int index
): void;

public function whenFileImported(
string file

): void;
}

final class ImportLogging implements ImportNotifications
{

private Logger logger;

public function __construct(Logger logger)
{

this.logger = logger;
}

public function whenHeaderImported(
string file,
array header

): void {
this.logger.debug('Imported header ...');

}

// And so on...
}

Instead of injecting the event dispatcher into the Importer class, we can now inject an
instance of ImportNotifications. And instead of calling dispatch(), we should now
make a call to the dedicated event method on the injected ImportNotifications
instance.

final class Importer
{

private ImportNotifications notify;

public function __construct(ImportNotifications notify)
{

this.notify = notify;
}

public function import(string csvDirectory): void
{

foreach (Finder.in(csvDirectory).files() as file) {
// Read the file
lines = /* ... */;

foreach (lines as index => line) {
if (index == 0) {

// Parse the header
header = /* ... */;

Listing 9.16 Importer calls ImportNotifications instead of EventDispatcher

220 CHAPTER 9 Changing the behavior of services

this.notify.whenHeaderImported(
file,
header

)
}
else {

data = /* ... */;

this.notify.whenLineImported(file, index);
}

}

this.notify.whenFileImported(file);
}

}
}

If besides logging you also want to output the debug information to the screen, you
can easily do that in the same class. Or you could add another class and use object
composition again to invoke both behaviors instead of just one.

9.6 Don’t use inheritance to change an object’s behavior
Let’s take another look at the ParameterLoader example we discussed earlier. What if
the original class looked like the one in the following listing?

class ParameterLoader
{

public function load(filePath): array
{

// ...

rawParameters = this.loadFile(filePath);

// ...

return parameters;
}

protected function loadFile(string filePath): array
{

return json_decode(
file_get_contents(filePath),
true

);
}

}

A differentListing 9.17 ParameterLoader than the one we saw before

221Don’t use inheritance to change an object’s behavior

There are two key differences:

 The ParameterLoader class isn’t marked as final, meaning that it’s possible to
define a subclass that extends ParameterLoader.

 There is now a dedicated method for loading the file, and this method is
protected, meaning it can be overridden by such a subclass.

With the class internals fully exposed, it’s now possible to extend the class, inherit the
core logic, and override the file-loading part to make it deal with XML.

final class XmlFileParameterLoader extends ParameterLoader
{

protected function loadFile(string filePath): array
{

rawXml = file_get_contents(filePath);

// Convert to array somehow

return /* ... */;
}

}

As you can imagine, this solution doesn’t come with all the benefits of the previous
one, like the file-loader abstraction itself, which offered clean options for composi-
tion, supporting multiple file loaders at once, etc. This alternative solution, where we
extend from the existing ParameterLoader class itself, doesn’t come with any of that
flexibility and reconfigurability. In fact, using class inheritance to change the behavior
of an existing object comes with many downsides:

 Subclass and parent class become tied together—Changing implementation details
that would normally be hidden behind the public interface of the class could
now break the implementation of a subclass. Consider what would happen if
that protected method’s name was changed, or if it got an extra required
parameter.

 Subclasses can override protected but also public methods—Subclasses gain access
to protected properties and their data types, which have so far been internal
information. In other words, a lot of the internals of the object are now
exposed.

What if, instead, the parent class offered a so-called template method, and allowed the
implementer to only provide that method, not exposing any more internals than
needed? The following listing shows what this would look like.

Loading XML files is possible when we extendListing 9.18 ParameterLoader

222 CHAPTER 9 Changing the behavior of services

abstract class ParameterLoader
{

// ...

final public function load(filePath): array
{

parameters = [];

foreach (/* ... */) {
// ...
if (/* ... */) {

rawParameters = this.loadFile(filePath);
// ...

}
}

return parameters;
}

abstract protected function loadFile(string filePath): array;
}

This is better, but it’s still not optimal. We may not have the downsides of inheritance
anymore, but we don’t have the endless possibilities of using composition either.

 Based on this example, we can generalize and claim that everything that can be
done with the template method pattern can also be achieved with composition. The
only thing you need to do is promote the abstract protected method to a regular
public method on an injected object. Then you can make the class itself final again.
In the case of our ParameterLoader, we already did that.

final class ParameterLoader
{

private FileLoader fileLoader;

public function __construct(FileLoader fileLoader)
{

this.fileLoader = fileLoader;
}

final public function load(filePath): array
{

parameters = [];

foreach (/* ... */) {
// ...
if (/* ... */) {

rawParameters = this.fileLoader.loadFile(
filePath

Listing 9.19 ParameterLoader implementing the template method pattern

Listing 9.20 ParameterLoader marked final

Mark all properties “private”
to keep them private to the
parent class. Mark all methods
“final” to make it impossible to
override them.

Only allow one method to be
implemented (not overridden).

Use the public loadFile() method
of the injected FileLoader here,

instead of the protected
loadFile() method we had earlier.

223Don’t use inheritance to change an object’s behavior

);

// ...
}

}

return parameters;
}

}

Since many projects still don’t mark their classes as “final” by default, you will encoun-
ter many frameworks and libraries that allow the behavior of their objects to be modi-
fied by extending their classes. Please refrain from doing so. Always choose a solution
that uses only public methods, preferably those that are part of the published inter-
face of a class. Don’t rely on class internals by inheriting them from another class. By
doing so, you would be making your solutions more fragile, because you’re relying on
things that are more likely to change the published, supported API offered by the
framework or library.

9.6.1 When is it okay to use inheritance?

Broadly speaking, inheritance should only be used to define a strict hierarchy of types.
For example, a content block can be either a paragraph or an image, and you could
write, Paragraph extends ContentBlock and Image extends ContentBlock. In prac-
tice, I rarely find a good case for using inheritance. It usually turns out a bit awkward
or “forced,” and soon it starts to get in the way.

 Inheritance is usually used for code reuse, and composition is a much more power-
ful form of code reuse. However, some object types like entities or value objects don’t
support dependency injection, so you can’t really achieve code reuse via that road. In
that case, I recommend using traits. Traits aren’t inheritance, because the name of the
trait doesn’t end up becoming part of the class’s hierarchy, like a parent class or an
interface would. A trait is plain code reuse—a compiler-level copy/paste of code.

 If, for example, you wanted to record domain events in all your entities, you could
define the following interface for entities. This will make sure that they all have meth-
ods for retrieving those events, and for clearing them after you’ve dispatched them.

interface RecordsEvents
{

public function releaseEvents(): array;

public function clearEvents(): void;
}

Because all entities will have the same implementation for these methods, and you
don’t want to manually copy/paste that implementation into all of the entity classes,
you could use a trait:

224

9.7

CHAPTER 9 Changing the behavior of services

trait EventRecordingCapabilities
{

private array events;

private function recordThat(object event): void
{

this.events[] = event;
}

public function releaseEvents(): array
{

return this.events;
}

public function clearEvents(): void
{

this.events = [];
}

}

Entities only have to implement this interface and use the accompanying trait, and
they will have “event recording capabilities”:

final class Product implements RecordsEvents
{

use EventRecordingCapabilities;

// ...
}

Mark classes as final by default
For services, we already made the case for marking classes as final: changing behav-
ior by using object composition, instead of inheritance, is the better, more flexible
way. If you go this way, there’s no need to allow a class to be extended at all. These
objects can keep their internals to themselves and only allow clients to use behavior
that is part of their public interface. That means every class can, and should be,
marked final. This will make it clear to the client that the class isn’t meant to be
extended, its methods aren’t meant to be overridden. It will force users to look for
better ways to change its behavior.

 For other types of objects, like entities and value objects, the question should be
asked also: do they also have to be final? Yes, they do. These objects represent domain
concepts and the knowledge you have gained about them. It would be weird to override
part of the behavior of these classes by extending from them. If you’ve learned some-
thing about the domain that makes you want to change the behavior of an entity, you
shouldn’t create a subclass to change its behavior, but change the entity itself.

 The only exception to the rule is when you want to declare a hierarchy of objects.
In that case, extending from a parent class can indicate the relation between these
objects: the subclass should be considered a special case of the parent class. Then the
parent class won’t be final, because the subclass has to be able to extend it.

225Mark methods and properties private by default

Mark methods and properties private by default9.8
So far, all the examples in this book have shown final classes with private properties.
As soon as you mark your classes final, you may notice that there is no need to have
protected properties anymore. Classes generally won’t be used to extend from, so
they can keep all of their internals to themselves. The only way in which clients can
interact with an object is by constructing it and calling public methods on it. By clos-
ing down the class definition itself, you can design some really strong objects. The
freedom to change anything about the object’s internals, as long as it doesn’t break
the contract defined by its published interface, is a big win.

Exercises
4 For the following class, there are no classes that extend it, nor has it been

designed to be extended. What should you change about the class definition?

class Product
{

protected int $id;
protected string description;

// ...
}

a The class should be marked as abstract.
b The class should be marked as final.
c The properties should be marked as private.
d The properties should be marked as public.

5 What is wrong with the following code?

class Preferences
{

private string preferencesFilePath;

public function __construct(string preferencesFilePath)
{

this.preferencesFilePath = preferencesFilePath;
}

public function getPreference(
string preference,
bool defaultValue

): bool {
preferences = this.loadPreferences();

if (isset(preferences[preference])) {
return preferences[preference];

}

return defaultValue;
}

226 CHAPTER 9 Changing the behavior of services

Summary
 When you feel the need to change the behavior of a service, look for ways to

make this behavior configurable through constructor arguments. If this isn’t an
option because you want to replace a larger piece of logic, look for ways to swap
out dependencies, which are also passed in as constructor arguments.

 If the behavior you want to change isn’t represented by a dependency yet, extract
one by introducing an abstraction: a higher level concept and an interface. You
will then have a part you can replace, instead of modify. Abstraction offers the
ability to compose and decorate behaviors, so they can become more compli-
cated without the initial service knowing about it (or being modified for it).

(continued)

protected function loadPreferences(): array
{

return json_decode(
file_get_contents(preferencesFilePath)

);
}

}

final class DatabaseTablePreferences extends Preferences
{

private Connection connection;

public function __construct(Connection connection)
{

this.connection = connection;
}

protected function loadPreferences(): array
{

return this.connection.executeQuery(
'SELECT * FROM preferences'

).fetchAll();
}

}

a DatabaseTablePreferences uses inheritance to change the behavior of a
service.

b Preferences should extend DatabaseTablePreferences instead.
c Preferences should dispatch events to allow loading preferences from a dif-

ferent location.
d Loading the preferences should be delegated to a dedicated service with its

own interface.

227Answers to the exercises

 Don’t use inheritance to change the behavior of a service by overriding its
methods. Always look for solutions that use object composition. In fact, com-
pletely close all your classes down for inheritance: mark them as final and
make all properties and methods private, unless they are part of the public
interface of the class.

Answers to the exercises
1 Correct answer: b. Injecting a generic Config object is not a smart idea (see also

section 2.3). Injecting a configuration value specifically for the base URL makes
a lot of sense. And although passing it as an argument to sendRequest() is an
option, it would force all clients to know this value. This is bad for the maintain-
ability of the code, but is also very inconvenient for its clients.

2 Suggested answer: The formatter of log messages and the writer of log messages
should have their own interfaces and standard implementations based on the
code that is already in Logger:

interface Formatter
{

public function format(
string message,
array context

): string;
}

final class JsonEncodedContextFormatter implements Formatter
{

public function format(string message, array context)
{

return message . ' ' . json_encode(context);
}

}

interface Writer
{

public function write(string formattedMessage): void;
}

final class FileWriter implements Writer
{

public function write(string formattedMessage): void
{

handle = fopen(logFilePath);
fwrite(formattedMessage);

}
}

final class Logger
{

private Formatter formatter;
private Writer writer;

228 CHAPTER 9 Changing the behavior of services

public function __construct(
Formatter formatter,
Writer writer

) {
this.formatter = formatter;
this.writer = writer;

}

public function log(string message, array context): void
{

this.writer.write(
this.formatter.format(message, context)

);
}

}

3 Suggested answer: The following code shows a possible solution. Since it
requires a lot of code just to get rid of the logging statements, you may look into
an aspect-oriented programming (AOP) solution for your programming lan-
guage. AOP tools allow you to hook into existing method calls and run code
before or after the original method.

interface LineImporter
{

public function import(int lineNumber, string line): void;
}

final class DefaultLineImporter implements LineImporter
{

public function import(int lineNumber, string line): void
{

// import the line
fields = fieldsIn(line);
// ...

}
}

final class LoggingLineImporter implements LineImporter
{

private LineImporter actualLineImporter
private Logger logger;

public function __construct(
LineImporter actualLineImporter
Logger logger

) {
this.actualLineImporter = actualLineImporter;
this.logger = logger;

}

public function import(int lineNumber, string line): void

The LineImporter interface
defines an extension point
for importing a line.

DefaultLineImporter contains the
original code for importing a line.

LoggingLineImporter adds
logging before and after

actually importing a line.

229Answers to the exercises

{
this.logger.log('Importing line: ' . lineNumber);

this.actualLineImporter.import(lineNumber, line);

this.logger.log('Imported line: ' . lineNumber);
}

}

interface FileImporter
{

public function import(string file): void;
}

final class CsvFileImporter implements FileImporter
{

private LineImporter lineImporter

public function __construct(LineImporter lineImporter)
{

this.lineImporter = lineImporter;
}

public function import(string file): void
{

foreach (linesIn(csvFile) as lineNumber => line) {
this.lineImporter.import(lineNumber, line);

}
}

}

final class LoggingFileImporter implements FileImporter
{

private Logger logger;
private FileImporter actualFileImporter

public function __construct(
FileImporter actualFileImporter,
Logger logger

) {
this.actualFileImporter = actualFileImporter;
this.logger = logger;

}

public function import(string csvFile): void
{

this.logger.log('Importing file: ' . csvFile);

this.actualFileImporter.import(csvFile);

this.logger.log('Finished importing');
}

}

logger = // ...

The FileImporter interface allows
the original CsvFileImporter to
be decorated.

The original CsvFileImporter
implements FileImporter.

LoggingFileImporter adds
logging before and after

importing a file.

230 CHAPTER 9 Changing the behavior of services

importer = new LoggingFileImporter(
new CsvFileImporter(

new LoggingLineImporter(
new DefaultLineImporter(),
logger

)
),
logger

);
importer.import(/* ... */);

4 Correct answers: b and c. Marking the class as abstract would mean the oppo-
site, namely that it’s intended to be extended. Marking the properties as public
fully exposes them to clients of Product, which is almost never desirable.

5 Correct answers: a and d. Using inheritance to change the behavior of a service
is not recommended. Extending the other way around doesn’t improve the situ-
ation, nor does using events. An event is meant to be a notification, allowing
other services to take further action, not to change the behavior of the service
itself. Instead of using inheritance, the Preference class should indeed dele-
gate the loading of the preferences to another service—one that can be
replaced and/or decorated.

Instantiating the importer
is more complicated, but its
usage has not changed.

A field guide to objects

This chapter covers
 Different types of objects you’ll find in a typical

web application

 How different types of objects work together

 In which application layer these objects live

 How these layers are related

So far we’ve discussed style guidelines for object design. These are meant to be
general-purpose rules that can be applied everywhere, but this doesn’t mean that all
the objects in your application will look the same. Some objects will have lots of query
methods and some will have only command methods. Some will have a mix of both,
but with a certain ratio of them. You may find that different types of objects often
share certain characteristics, which results in pattern names to be invented for them.
For instance, developers will talk about “entities,” “value objects,” or “application
services” to indicate the nature of the object they’re talking about.

 The last part of this book discusses some common types of objects you may find
in an application and how you can recognize them in their natural habitat. In this
sense, the following sections form a “field guide” for objects. If you find an object
that doesn’t really fit into a certain category, this guide may help you decide
whether or not the object should be redesigned to fit in better with the rest of its
species. On the other hand, if you encounter an object that doesn’t look like any of

231

232 CHAPTER 10 A field guide to objects

the objects described in this chapter, don’t worry. As long as it abides by the guidelines
for object design in this book, it’s perfectly fine.

 Figure 10.1 offers a quick overview of the types of objects we’ll encounter in the
following sections. If you find yourself lost in the woods, please refer to it.

Different types of objects and how theyFigure 10.1 work together in a regular (web) application

Entity or
Write model

Write model
repository

Read model

Read model
 repository

Gets extra information fromApplication service

Controller
or Action

Front controller

Domain event

Event
subscriber

Makes decisions based on

Is based onCreates or modifies

Displays information fromPerforms tasks by calling

Records zero or more Is managed by

Forwards request to

Listens to

Dispatches zero or more

Is managed by

233Controllers

Controllers10.1
In an application, there’s always some sort of front controller. This is where all the requests
come in. If you use PHP, this could be your index.php file. In Java’s Spring framework,
the DispatcherServlet plays this role—based on the request URI, its method, and
headers, etc., the call will be forwarded to a controller, where the application can do any-
thing it needs to do before it can return a proper response. For command-line (CLI)
applications, the “front controller” would be the executable you’d call, such as bin/
console, artisan, etc. Based on the arguments that the user provides, the call will be for-
warded to something like a command object, where the application can perform the task
requested by the user.

 Though they are technically quite different, console commands are conceptually
quite similar to web controllers. They both do work that was requested from outside
the application by a person, or some other application, that sent a web request or ran
the console application. So let’s call both console commands and web controllers
“controllers.”

 Controllers typically have code that reveals where the call came from. You’ll find
mentions of a Request object, request parameters, forms, HTML templates, a session
maybe, or cookies (see figure 10.2). All of these are web concepts. The classes used here
often originate from the web framework that your application uses.

 Other controllers mention command-line arguments, options, or flags and contain
code for outputting lines of text to the terminal and formatting them in ways that the
terminal can understand (see figure 10.3). These are all signs for the reader that this
class takes input from and produces output for the command line.

 Because controllers talk about the particular delivery mechanism that initiated a
call to them (the web, the terminal), controllers should be considered infrastructure
code. They facilitate the connection between the client, who lives in the world outside,
and the core of the application.

 When a controller has examined the provided input, it will take whatever informa-
tion it needs, and then call either an application service or a read model repository. An
application service will be called when the controller is supposed to produce some

content-type

parameter

redirect

template

response

request

cookiesession

render
header

submit

query

field

user body

html

post

form

get

Figure 10.2 A word cloud of the terms
you’ll find in a web controller

interactive

description

verbosity

shortcut

argument

execute

command

format

option

return
output

quiet

print

input
echo

line

exit

Figure 10.3 A word cloud of the terms
you’ll find in a console command

234 CHAPTER 10 A field guide to objects

kind of effect, such as when it’s supposed to make a change to the application’s state,
to send out an email, etc. A read model repository will be used if the controller is sup-
posed to return some information that the client requested.

A typical web controller would look something like the one in the following listing.
(The framework used in these examples is Symfony (https://symfony.com/), a solid
framework for PHP web applications.)

A typical web controllerListing 10.1

An object is a controller if . . .
 a front controller calls it, and it’s therefore one of the entry points for the

graph of services and their dependencies (see section 2.12),
 it contains infrastructure code that reveals what the delivery mechanism is,

and
 it makes calls to an application service or a read model repository (or both).

namespace Infrastructure\UserInterface\Web;

use Infrastructure\Web\Form\ScheduleMeetupType;
use Symfony\Bundle\FrameworkBundle\Controller\AbstractController;
use Symfony\Component\HttpFoundation\RedirectResponse;
use Symfony\Component\HttpFoundation\Response;
use Symfony\Component\HttpFoundation\Request;

final class MeetupController extends AbstractController
{

public function scheduleMeetupAction(Request request): Response
{

form = this.createForm(ScheduleMeetupType.className);

form.handleRequest(request);

if (form.isSubmitted() && form.isValid()) {
// ...

return new RedirectResponse(
'/meetup-details/' . meetup.meetupId()

);
}

return this.render(
'scheduleMeetup.html.twig',
[

'form' => form.createView()
]

);
}

}

https://symfony.com/

235Application services

The alternative controller for the command line might look something like the
following.

namespace Infrastructure\UserInterface\Cli;

use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

final class ScheduleMeetupCommand extends Command
{

protected function configure()
{

this
.addArgument('title', InputArgument.REQUIRED)
.addArgument('date', InputArgument.REQUIRED)
// ...

;
}

public function execute(
InputInterface input,
OutputInterface output

) {
title = input.getArgument('title');
date = input.getArgument('date');

// ...

output.writeln('Meetup scheduled');
}

}

10.2 Application services
An application service represents the task to be performed. It gets any dependency
injected as a constructor argument. All the relevant data that’s needed to perform the
task (see section 2.8), including contextual information like the logged-in user ID or
the current time, will be provided as method arguments. When the data originates
from the client itself, it will be primitive-type data. That way, the controller can pro-
vide the application service with the data as it was sent by the client, without convert-
ing it first.

 The code of an application service should read like a recipe, with all the steps
required to do the job. For instance, “Take out an object from this write model reposi-
tory, call a method on it, and save it again.” Or, “Collect some information from this
read model repository and send a report to a certain user.”

A typical command-line controller, or “console command”Listing 10.2

236 CHAPTER 10 A field guide to objects

The web controller and console handler we saw in listings 10.1 and 10.2 will take the
data from the request (via a form), or from the command-line arguments, and pro-
vide it to the application service, which looks something like the following.

namespace Application\ScheduleMeetup;

use Domain\Model\Meetup\Meetup;
use Domain\Model\Meetup\MeetupRepository;
use Domain\Model\Meetup\ScheduleDate;
use Domain\Model\Meetup\Title;

final class ScheduleMeetupService
{

private MeetupRepository meetupRepository;

public function __construct(MeetupRepository meetupRepository)
{

this.meetupRepository = meetupRepository;
}

public function schedule(
string title,
string date,
UserId currentUserId

): MeetupId {
meetup = Meetup.schedule(

this.meetupRepository.nextIdentity(),
Title.fromString(title),
ScheduledDate.fromString(date),
currentUserId

);

this.meetupRepository.save(meetup);

return meetup.meetupId();
}

}

Sometimes application services are called “command handlers,” but they will still be
application services. Instead of invoking an application service using primitive-type

An application serviceListing 10.3

An object is an application service if . . .
 it performs a single task,
 it contains no infrastructure code; that is, it doesn’t deal with the web

request itself, or SQL queries, or the filesystem, etc., and
 it describes a single use case that the application should have. It will often

correspond one-to-one with a feature request from a stakeholder. For exam-
ple, it should be possible to add a product to the catalog, to cancel an order,
to send a delivery note to a customer, etc.

The application service receives
primitive-type arguments.

It converts these primitive-type values
to value objects and instantiates a new
Meetup entity using these objects.

It saves the meetup to the
write model repository.

Finally, it returns the identifier
of the new Meetup.

237Write model repositories

arguments, you can also call it by providing a command object, which represents the cli-
ent’s request in a single object. Such an object is called a data transfer object (DTO)
because it can be used to carry the data provided by the client and transfer it as one
thing from controller to application service. This should be a simple, easy-to-construct
object and should contain only primitive-type values, simple lists, and optionally other
DTOs if some sort of hierarchy is required.

namespace Application\ScheduleMeetup;

final class ScheduleMeetup
{

public string title;
public string date;

}

final class ScheduleMeetupService
{

// ...

public function schedule(
ScheduleMeetup command,
UserId currentUserId

): MeetupId {
meetup = Meetup.schedule(

10.3

An example of passing a DTO when calling an application serviceListing 10.4

This command contains the
data needed to perform the
task of scheduling a meetup.

The application service could
then take the data from the
command object.

this.meetupRepository.nextIdentity(),
Title.fromString(command.title),
ScheduledDate.fromString(command.date),
currentUserId

);

// ...
}

}

The advantage of using a dedicated command object is that it’s easy to instantiate it
based on deserialized string data, like a JSON or XML request body. It also works well
with form libraries, which can map submitted data directly onto command DTO
properties.

Write model repositories
Often an application service makes a change to the application’s state, and this usually
means that a domain object has to be modified and persisted. The application service uses
an abstraction for this: a repository. To be more specific, a write model repository, because it’s
only concerned with retrieving an entity and storing the changes that are made to it.

 The abstraction itself will be an interface that the application service gets injected
as a dependency. This interface doesn’t expose any details about how the object is
going to be persisted. It just offers some general-purpose methods like getById(),

238 CHAPTER 10 A field guide to objects

save(), add(), or update(). A corresponding implementation will fill in the details,
such as which SQL queries will be issued, or which ORM will be used to map the
object to a row in the database.

As an example, the following listing shows the MeetupRepository that the application
service in listing 10.3 relies on.

namespace Domain\Model\Meetup;

interface MeetupRepository
{

public function save(Meetup meetup): void;

public function nextIdentity(): MeetupId;

/**
* @throws MeetupNotFound
*/

public function getById(MeetupId meetupId): Meetup
}

namespace Infrastructure\Persistence\DoctrineOrm;

use Doctrine\ORM\EntityManager;
use Domain\Model\Meetup\Meetup;
use Domain\Model\Meetup\MeetupId;
use Ramsey\Uuid\UuidFactoryInterface;

final class DoctrineOrmMeetupRepository
implements MeetupRepository

{
private EntityManager entityManager;
private UuidFactoryInterface uuidFactory;

public function __construct(
EntityManager entityManager,
UuidFactoryInterface uuidFactory

) {
this.entityManager = entityManager;
this.uuidFactory = uuidFactory;

}

public function save(Meetup meetup): void
{

A write model repository interface and its implementationListing 10.5

An object is a write model repository if . . .
 it offers methods for retrieving an object from storage and for saving it, and
 its interface hides the underlying technology that’s been used.

The default implementation
of MeetupRepository uses
Doctrine ORM.

239Entities

this.entityManager.persist(meetup);
this.entityManager.flush(meetup);

}

public function nextIdentity(): MeetupId
{

return MeetupId.fromString(
this.uuidFactory.uuid4().toString()

);
}

// ...
}

10.4 Entities
The objects that are being persisted will be the ones the user cares about—the ones
that should be remembered even when the application has to be restarted. These are
the application’s entities.

 Entities represent the domain concepts of the application. They contain relevant
data and offer useful behavior related to this data. In terms of object design, they will
often have named constructors because this allows you to use domain-specific names
for creating this particular kind of entity (see section 3.9). They will also have modifier
methods, which are command methods that change the entity’s state (see section 4.6).
Entities will have only a few, if any, query methods. Retrieving information is usually del-
egated to a particular kind of object, called a query object. We’ll get back to this.

When a state change is allowed, an entity usually produces a domain event represent-
ing the change (see section 4.12). These events can be used to find out what exactly
has changed and to announce this change to other parts of the application that want
to respond to it.

Proper entities
Just like any object, an entity fiercely protects itself against ending up in an invalid
state. Many entities in the wild shouldn’t be considered proper entities, according to
this definition.

An object is an entity if . . .
 it has a unique identifier,
 it has a life cycle,
 it will be persisted by a write model repository and can later be retrieved from it,
 it uses named constructors and command methods to provide the user with

ways to instantiate it and manipulate its state, and
 it produces domain events when it gets instantiated or modified.

240 CHAPTER 10 A field guide to objects

Value objects10.5
Value objects are wrappers for primitive-type values, adding meaning and useful
behavior to these values. We discussed them in detail earlier (chapter 3). In the con-
text of the journey from controller to application service to repository, it should be
noted that it’s often the application service that instantiates value objects and then
passes them as arguments to the constructor or a modifier method of an entity. There-
fore, they end up being used or stored inside the entity.

 However, it’s good to remember that value objects aren’t meant only to be used in
combination with entities. They can be used in any place, and a value object is in fact
a preferred way of passing around values.

The Meetup entity we saw being instantiated in listing 10.3, together with its related
value objects and domain events, looks something like the following.

An entityListing 10.6

callsHTTP request
MeetupController

createsScheduleMeetup-
Service Meetup

implemented by
MeetupRepository

DoctrineOrm-
MeetupRepository

SQL query

The
world
outside

eetup insaves M

How each of the objects discussedFigure 10.4 so far work together to schedule a meetup

An object is a value object . . .
 if it’s immutable,
 if it wraps primitive-type data,
 if it adds meaning by using domain-specific terms (e.g., this isn’t just an int,

it’s a Year),
 if it imposes limitations by means of validation (e.g., this isn’t just any string,

it’s a string with an '@' in it), and
 it acts as an attractor of useful behavior related to the concept (e.g., Posi-

tion.toTheLeft(int steps)).

namespace Domain\Model\Meetup;

final class Meetup
{

241Value objects

private array events = [];

private MeetupId meetupId;
private Title title;
private ScheduledDate scheduledDate;
private UserId userId;

private function __construct()
{
}

public static function schedule(
MeetupId meetupId,
Title title,
ScheduledDate scheduledDate,
UserId userId

): Meetup {
meetup = new Meetup();

meetup.meetupId = meetupId;
meetup.title = title;
meetup.scheduledDate = scheduledDate;
meetup.userId = userId;

meetup.recordThat(
new MeetupScheduled(

meetupId,
title,
scheduledDate,
userId

);
);

return meetup;
}

The following methods are
examples of other behavior that

this Meetup entity could offer.

public function reschedule(ScheduledDate scheduledDate): void
{

// ...

this.recordThat(
new MeetupRescheduled(this.meetupId, scheduledDate)

);
}

public function cancel(): void
{

// ...
}

// ...

private function recordThat(object event): void
{

this.events[] = event;

242 CHAPTER 10 A field guide to objects

}

public function releaseEvents(): array
{

return this.events;
}

public function clearEvents(): void
{

this.events = [];
}

}

final class Title
{

private string title;

private function __construct(string title)
{

Assertion.notEmpty(title);
this.title = title;

}

public static function fromString(string title): Title
{

return new Title(title);
}

public function abbreviated(string ellipsis = '...'): string
{

// ...
}

}

final class MeetupId
{

private string meetupId;

private function __construct(string meetupId)
{

Assertion.uuid(meetupId);
this.meetupId = meetupId;

}

public static function fromString(string meetupId): MeetupId
{

return new MeetupId(meetupId);
}

}

We might as well
have used a regular
public constructor
here …

This is an example of useful
behavior that value objects

tend to attract.

243Event listeners

Event listeners10.6
We’ve already encountered domain events. They can be used to notify other services
about things that have happened inside the write model. These other services can
then perform secondary actions, after the primary work has been done. Since applica-
tion services are the ones that perform these primary tasks, domain events can be
used to notify other services after the application service is done. They can also do it at
the last moment, just before returning. At that point, an application service could
fetch the recorded events from the entity it has modified, and hand them over to the
event dispatcher, as is shown in the following listing.

final class RescheduleMeetupService
{

private EventDispatcher dispatcher;

public function __construct(
// ...
EventDispatcher dispatcher

) {
this.dispatcher = dispatcher

}

public function reschedule(MeetupId meetupId, /* ... */): void
{

meetup = /* ... */;

meetup.reschedule(/* ... */);

this.dispatcher.dispatchAll(meetup.recordedEvents());
}

}

Internally, the dispatcher will forward all events to services called “listeners” or “sub-
scribers,” which have been registered for particular types of events.

 An event listener could then perform secondary actions, for which it may even call
another application service. It can use any other service it needs, such as to send noti-
fication emails about the domain event that has just occurred. Take, for example, the
following NotifyGroupMembers listener, which will notify group members when a
meetup has been rescheduled.

final class NotifyGroupMembers
{

public function whenMeetupRescheduled(
MeetupRescheduled event

): void {
/*

An application service dispatches domain eventsListing 10.7

An event listener responds to domain eventsListing 10.8

Dispatch any event that has been
recorded inside the Meetup entity.

A convenient naming standard for event
listeners is the name of the thing you’re
going to do (e.g., “notify group
members”). The methods will then
point out the reasons for doing so (e.g.,
“when meetup rescheduled”).

244 CHAPTER 10 A field guide to objects

* Send an email to group members using the information from
* the event object.
*/

}
}

Read models and read model repositories10.7
As mentioned earlier, a controller could invoke an application service to perform a
task, but it may also invoke a read model repository to retrieve information from. Such a
repository will return objects. These objects aren’t meant to be manipulated, but to
read information from. Earlier we called them “query objects”; they have only query
methods, meaning that their state can’t be influenced by their users.

 When the call to the read model repository happens inside the controller, the read
model that’s returned could be passed to the template renderer, which could gener-
ate an HTML response using it. Or it could just as easily be used to generate a JSON-
encoded response to an API call. In all these cases, the read model is specifically
designed to fit the response that is going to be generated. All the data required for a
particular use case should be available inside the read model, and no extra queries
should have to be made. Such a read model is a DTO, because it’s going to be used to
transfer data from the core of the application to the world outside. The values that can
be retrieved from such a read model should have primitive types.

 As an example, take the following read model repository, which returns a list of
upcoming meetups. It serves a specific use case and contains only the data required to
render a simple list.

namespace Application\UpcomingMeetups;

final class UpcomingMeetup
public string title;
public string date;

}

interface UpcomingMeetupRepository
{

/**
* @return UpcomingMeetup[]
*/

public function upcomingMeetups(DateTime today): array
}

A read model and its repositoryListing 10.9

An object is an event listener . . .
 if it’s an immutable service, with its dependencies injected, and
 if it has at least one method which accepts a single argument that is a

domain event.

UpcomingMeetup is a read model (or
“view model”)—a DTO that carries
relevant data about upcoming meetups
to be shown in a list on a web page.

It comes with a repository that returns
instances of UpcomingMeetup and could
be used by a web controller and passed
to a template renderer.

245Read models and read model repositories

namespace Infrastructure\ReadModel;

use Application\UpcomingMeetups\UpcomingMeetupRepository;
use Doctrine\DBAL\Connection;

final class UpcomingMeetupDoctrineDbalRepository implements
UpcomingMeetupRepository

{
private Connection connection;

public function __construct(Connection connection)
{

this.connection = connection;
}

public function upcomingMeetups(DateTime today): array
{

rows = this.connection./* ... */;

return array_map(
function (array row) {

upcomingMeetup = new UpcomingMeetup();
upcomingMeetup.title = row['title'];
upcomingMeetup.date = row['date'];

return upcomingMeetup;
},
rows

);
}

}

An application service itself can also use a read model repository to retrieve informa-
tion. It then can use the information to make decisions or take further actions. A read
model that’s used by an application service is often a “smarter” read model than one
that’s used to generate a response. It uses proper value objects for its return values,
instead of primitive-type values, so the application service doesn’t have to worry about
the validity of the read model. It often feels like such a read model is itself a write
model, except there’s no way to make changes to it; it’s a query object after all.

 As for the read model repositories themselves, they should be separated into an
abstraction and a concrete implementation. Just like with write model repositories, an
interface will offer one or more query methods that can be used to retrieve the read
models. The interface doesn’t give a hint about the underlying storage mechanism for
these models.

This implementation of UpcomingMeetupRepository
fetches data directly from the database. It then creates

instances of the UpcomingMeetup read model.

An object is a read model repository . . .
 if it has query methods that conform to a specific use case and will return

read models, which are also specific for that use case.

246 CHAPTER 10 A field guide to objects

Note that the distinction between a read model repository and a regular service that
returns a piece of information isn’t that clear. For example, consider the situation
where an application service needs an exchange rate to convert a monetary value to a
foreign currency. You might say that a service that can provide such information is basi-
cally a repository, from which you can get the exchange rate for a given currency con-
version. Such a service has access to a “collection” of exchange rates that’s defined in
some place we don’t care about. Still, this service could also be considered a regular ser-
vice, and it may just as well be called ExchangeRateProvider or something like that.

 The main idea is that for all these services you need an abstraction (see the following
listing for an example) and a concrete implementation, because the abstraction
describes what you’re looking for, and the implementation describes how you can get it.

namespace Application\ExchangeRates;

interface ExchangeRateProvider
{

public function getRateFor(
Currency from,
Currency to

): ExchangeRate;
}

final ExchangeRate
{

// ...
}

In terms of their design, some objects aren’t very different from others. For example,
domain events look a lot like value objects—they are immutable objects holding data
that belongs together. The difference between a domain event and a value object is
how and where it’s used: a domain event will be created and recorded inside an entity
and later dispatched; a value object models an aspect of the entity.

A regular serviceListing 10.10

An object is a read model . . .
 if it has only query methods, i.e., it’s a query object (and is therefore

immutable),
 if it’s designed specifically for a certain use case, and
 if all the data needed (and no more) becomes available the moment you

retrieve the object.

The abstraction is the interface
that represents the question
we’re asking.

The types of the return values used by the
interface are also part of the abstraction, because
we care about how we can use these values, but
not about how their data ends up in them.

247Abstractions, concretions, layers, and dependencies

Abstractions, concretion10.8 s, layers, and dependencies
So far we’ve encountered different types of objects that you can find in your average
web or console application. Besides certain characteristics, like the types of methods
these objects have, what kind of information they expose, or what kind of behavior
they offer, we should also consider whether they are abstract or concrete, and in which
ways these objects are dependent on each other.

 In terms of abstraction, we can define the following character traits for the object
types we’ve discussed so far:

 Controllers are concrete. They are often coupled to a particular framework and are
specific for the delivery mechanism. They don’t have, or need, an interface.
The only time you’d want to offer an alternative implementation is when you
switch frameworks. In that case, you’d want to rewrite these controllers instead
of creating a second implementation for them.

 Application services are concrete. They represent a very specific use case of your
application. If the story of a use case changes, the application service itself
changes, so they don’t have an interface.

 Entities and value objects are concrete. They are the specific result of the developer’s
understanding of the domain. These types of objects evolve over time. We don’t
provide an interface for them. The same goes for read model objects. We
define and use them as they are, never through an interface.

 Repositories (for write and read models) consist of an abstraction and at least one concrete
implementation. Repositories are services that will reach out and connect to
something outside of the application, like a database, the filesystem, or some
remote service. That’s why they need an abstraction that represents what the
service will do and what it will return. The implementation will then provide all
the low-level details about how it should do that. The same goes for other ser-
vice objects that will reach out to some service outside the application. These
services will also need an interface and a concrete implementation.

The services for which we have abstractions, according to the preceding list, should be
injected as abstract dependencies. If we do this, we can form three useful groups, or
layers, of objects:

1 The infrastructure layer:
– Controllers
– Write and read model repository implementations

2 The application layer:
– Application services
– Command objects
– Read models
– Read model repository interfaces
– Event listeners

248 CHAPTER 10 A field guide to objects

3 The domain layer:
– Entities
– Value objects
– Write model repository interfaces

Considering that the infrastructure layer contains the code that facilitates communica-
tion with the world outside, it can be drawn as a layer around application and domain
(see figure 10.5). Likewise, the application uses code in the domain layer to perform its
tasks, so the domain layer will be the innermost layer of an application.

 To show the use of layers in your code, you can make the layer names part of the
namespaces of your classes. The code samples in this chapter also use this convention.
By injecting abstract dependencies, we can ensure that objects will only depend in one
direction: from top to bottom. For instance, an application service that needs a write
model repository will depend on that repository’s interface, not its concrete imple-
mentation. This has two major advantages.

 First, we can test the application service code without an actual repository imple-
mentation that would need some sort of database that’s up and running, with the cor-
rect schema, etc. We have interfaces for all these services, and we can easily create test
doubles for them.

 Second, we can easily switch infrastructure implementations. Our application layer
would survive a switch between frameworks (or an upgrade to the framework’s next
major version), and it would also survive a switch of databases (when you realize
you’re better off with a graph database than a relational database, for instance) and
remove services (when you no longer want to fetch exchange rates from an external
service, but from your own local database).

The world
outside

Infrastructure • Controllers
• Write and read model repository
 implementations

• Application services
• Command objects
• Read models
• Read model repository interfaces
• Event listeners

• Entities
• Value objects
• Write model repository interfaces

Application

Domain

Layers can be visualized as concentric circles.Figure 10.5

249Summary

Summary
 An application’s front controller will forward an incoming request to one of its

controllers. These controllers are part of the application’s infrastructure layer,
and they know how to translate incoming data into a call to an application ser-
vice or a read model repository, which are both part of the application layer.

 An application service will be agnostic regarding the delivery mechanism and
can be used just as easily in web or console applications. It performs a single
task that could be considered one of the application’s use cases. Along the way,
it may take an entity from a write model repository, call a method on it, and save
its modified state. The entity itself, including its value objects, are part of the
domain layer.

 A read model repository is a service that can be used to retrieve information. It
returns read models that are specific to a use case and that provide all the infor-
mation that’s needed, and nothing more.

 The types of objects described in this chapter naturally belong to layers. A layer-
ing system where code only depends on code in lower layers offers a way to
decouple domain and application code from the infrastructural aspects of your
application.

Epilogue

This chapter covers
 Pointers to further reading material about

architectural patterns

 Suggestions for improving your testing strategy

 Some hints on domain-driven design and finding
out more about it

This book aims to be a style guide. It provides basic rules for object design that will
be reflected in the declarations of your classes and methods. For many of these
rules, you could build a static analysis tool that emits warnings when you don’t fol-
low the rules. Such a tool could, for instance, warn you about methods that make
state changes and return something. Or about services with methods that change
their behavior after construction time.

 There are two comments to be made here. First, I think it’s important to follow
the rules but also to allow yourself to bend them in some special cases, such as
when quality doesn’t really matter, because you don’t have to maintain the code for
a long time. Or when, in certain cases, it would take a lot of work to apply all the
rules, and the benefits don’t outweigh the required effort. However, don’t be too
quick to judge. I’d estimate that in 95% of real-world scenarios, there really isn’t a
case for taking shortcuts.

250

251Testing

 Second, these rules aren’t all there is to object design. They don’t tell you exactly
what objects you’ll need, what their responsibilities should be, etc. For me, the rules in
this book are rules I live by, almost without thinking. And because of this, there’s more
room for trying things out, for spending mental energy on different things.

 In this chapter, I’d like to point out one other topic that helps relieve part of the
cognitive burden of application development: architectural patterns. I’d also like to
provide two possible topics to dive into after reading this book: testing and domain-
driven design (DDD). Both fields can help you discover more about object design.

11.1 Architectural patterns
In the previous chapter, we discussed how certain types of objects form a natural set of
layers. Besides using layers to structure the application as a whole (which should be con-
sidered an act of architecture), it’s important to be aware of the ways in which your
application is connected to the world outside. Recognizing the ways in which it com-
municates and can be communicated with results in a clean separation between code
that supports this communication and code that is core to your application. This
approach to architecture is called hexagonal architecture, or sometimes ports and adapters.

 On this topic, I recommend taking a look at chapter 4 of Vaughn Vernon’s Imple-
menting Domain-Driven Design (Addison-Wesley Professional, 2013). A few of my own
articles are also relevant to this topic:

 “Layers, ports & adapters—Part 2, Layers,” http://mng.bz/2Jao
 “Layers, ports & adapters—Part 3, Ports & Adapters,” http://mng.bz/1wMQ
 “When to add an interface to a class,” http://mng.bz/POx8

11.2 Testing
In this book we’ve discussed object design, and we’ve been looking at a few testing
techniques as well. It’s very convenient to design objects while testing them. When you
adopt a test-first approach, you will find that you write only the code you actually need
to implement the desired behaviors. The tests prove that the objects you designed can
be used in the ways you imagined. And whenever you think of possible edge cases or
encounter bugs in the code behind your objects, you can describe the situation in a
test case, see it fail, and then fix it.

11.2.1 Class testing versus object testing

Note that I speak about testing objects. I find that developers, myself included, often
tend to test classes, not objects. This may seem to be a subtle difference, but it has
some pretty big consequences. If you test classes, you usually test one method of one
class with all its dependencies swapped out by test doubles. Such a test ends up being
too close to the implementation. You’ll be verifying that method calls are made, you’ll
be adding getters to get data out of the object, etc.

You could consider such tests that test classes to be white box tests, as opposed to
black box tests, which are definitely more desirable. A black box test will test an object’s

http://mng.bz/2Jao
http://mng.bz/1wMQ
http://mng.bz/POx8

252 CHAPTER 11 Epilogue

behavior as perceived from the outside, with no knowledge about the class’s internals.
It will instantiate the object with only test doubles for objects that reach across a sys-
tem boundary. Otherwise, everything is real. Such tests will show that not just a single
class, but a larger unit of code, works well as a whole.

 Class tests will change all the time, alongside the changes made to the classes them-
selves. Object tests are more decoupled from the implementation of the object that’s
being tested, so object tests will be more useful in the long run. In fact, here is a rule for
testing that you can follow: write your tests in such a way that as many implementation
details as possible could be changed before a change to the test code itself is required.

11.2.2 Top-down feature development

Another thing to be aware of when testing software is the level of detail you’re work-
ing with. I find that developers, myself included, often prefer working on the smaller
parts—building blocks that can later be used to complete the feature. You’ll often
think about everything you’re going to need for the full feature and start collecting all
the ingredients. Create a repository, a database table, an entity, etc. Once you’re trying
to connect all the parts, you’ll often find that you have to revisit them because you
made a few wrong assumptions, and the building blocks don’t work well together in
the end. This part of your development effort is more or less wasted.

 I recommend working the other way around and starting with the bigger picture.
Define how the feature will be used: describe user scenarios, make sketches of the
interaction, etc. In other words, specify the high-level behavior of the application as
you expect it to be after you’ve finished your work. Don’t dive into the low-level
details too quickly. Once you know what the application, when treated as a black box,
should be capable of, you can descend to deeper layers and write code for everything
that’s needed.

 Specifying application behavior should be done with tests, making this top-down
development style fully test-driven. The high-level tests that describe the completed
feature won’tpass until all the lower-level tests pass. Figure 11.1 shows how a feature

The higher-level
TDD cycle

Multiple lower-level
TDD cycles

Figure 11.1 A higher-level TDD cycle
comes to a close after successfully
closing several lower-level TDD cycles.

253Conclusion

can be finished by making lower-level tests pass, while gradually working toward mak-
ing the high-level tests pass as well.

 A great book that demonstrates this approach is Growing Object-Oriented Software,
Guided by Tests by Steve Freeman and Nat Pryce (Addison-Wesley Professional, 2009).

 If you align this top-down approach to software development with your approach to
testing, you can define automatable acceptance criteria that will tell you when you’re
ready, and that will help you prove that what you have built is what was actually needed.

 To find out more about this fascinating topic, take a look at Specification by Example:
How Successful Teams Deliver the Right Software (Manning, 2011) and Bridging the Commu-
nication Gap: Specification by Example and Agile Acceptance Testing (Neuri, 2009), both by
Gojko Adzic; and Discovery: Explore Behaviour Using Examples (BDD Books, 2018) by
Gáspár Nagy and Seb Rose (which is part of a series in the making).

11.3 Domain-driven design
If you’re looking for more clues about what types of objects you should have in your
application, I find domain-driven design (DDD) an excellent area to examine. The
idea behind it is to learn about your problem domain and then reflect this knowledge
in your application’s domain model. A domain-first approach leads to a focus on design,
taking it away from infrastructural details, like database tables and columns.

 Although the strategic aspect of DDD is quite fascinating, you’ll find the most use-
ful suggestions, in terms of object design, come from its tactical advice. Take a look at
the books Domain-Driven Design: Tackling Complexity in the Heart of Software by Eric Evans
(Addison-Wesley Professional, 2003) and Implementing Domain-Driven Design by Vaughn
Vernon (Addison-Wesley Professional, 2013). They contain many practical suggestions
for designing entities and value objects, as well as other related types of objects.

11.4 Conclusion
Of course, there’s much more to discover about object design and about software
development and architecture in general. When it comes to object design, I hope this
book has been able to provide you with a good foundation and some useful pointers
for learning more. You’ll find that there’s more to learn every day, so keep experi-
menting. Best of luck with that!

appendix
Coding standard

 for the code samples

The programming language used for the code samples in this book is a generalized
object-oriented programming language. Its syntax is a mix of PHP and Java. It has
the following properties:

 It’s strictly typed. Parameters and return values need explicit return types:

public function foo(Bar bar): Baz
{

// returns an instance of `Baz`
}

 Parameters, properties, and return types can allow for null as a value by add-
ing a question mark at the end:

public function foo(Bar? bar): Baz?
{

// allow in instance of `Bar`, or `null`

// returns an instance of `Baz`, or `null`
}

 If you don’t add a question mark after a parameter or return value’s type,
null will not be an accepted value for it:

public function foo(Bar bar): Baz
{

// `bar` will be an instance of `Bar`, and never `null`

// we have to return an instance of `Baz`
}

254

255APPENDIX Coding standard for the code samples

 void is a special return type that can be used when a function returns nothing:

public function bar(): void
{

// can't return anything
}

 Supported types are class names, primitives (string, int, float, bool), arrays
(array), callables (callable), and generic objects (object):

public function foo(Bar bar, string baz): callable
{

// return a callable
}

 Callables are functions that can be passed to another function:

// this executes the callable returned by `foo()`:
this.foo()();

 A public object method can be passed as a callable:

eventDispatcher.addListener([object, 'methodName']);

 An object’s constructor method is always called __construct(). Classes can be
marked as final to make it impossible to extend them. In object methods, this
will be a reference to the object on which the method is called:

final class Foo
{

private string foo;

public function __construct(string foo)
{

this.foo = foo;
}

}

 The constructor will be called during object instantiation, not afterward, mean-
ing that throwing an exception inside the constructor will interrupt instantia-
tion and result in a null value being returned:

try {
// When the constructor throws an exception...
foo = new Foo();

} catch (Exception exception) {
// `foo` will be `null`

}

256 APPENDIX Coding standard for the code samples

 Methods and properties can have private, protected, or public scope. The
scope relates to the class, not the object, so any object has access to private
properties and methods of any other object of the same type:

final class Foo
{

private string foo;

public function equals(Foo other): bool
{

return this.foo == other.foo;
}

}

 An interface defines a set of public methods without providing an implemen-
tation for them:

interface Foo
{

public function bar(Baz baz): string;
}

final class FooBar implements Foo
{

public function bar(Baz baz): string
{

return 'Hello, world!';
}

}

 The language supports type inference, meaning that the type of a variable is
optional if it can be derived from the value that gets assigned to it:

final class Foo
{

private foo;

public function __construct(string foo)
{

/*
* `foo` is known to be a `string`, so the
* `foo` property doesn't need to be marked
* as a `string` too.
*/

this.foo = foo;

/**
* `foo` is known to be a `string`, so when
* assigning it to the variable `bar`, you
* don't need to provide a type for it.
*/

bar = foo;
}

}

257APPENDIX Coding standard for the code samples

 The array type will behave as a list or a map, depending on how you use it:

list = [
'foo',
'bar'

];
// add another item to `list`:
list[] = 'baz';

map = [
'foo' => 20,
'bar' => 30

];
// add another item to `map`:
map['baz'] = 40;

 Classes have a namespace, and you can import classes from other namespaces
with use statements:

namespace Namespace\Subnamespace\Etc;

use From\Other\Namespace\Bar;

final class Foo
{

public function __construct(Bar bar)
{
}

}

 Objects have a magic constant that represents the full class name of the object
as a string:

// This will be `foo`
foo.className

 The language has a standard library that offers functions like strpos(),
file_get_contents(), and json_encode(), and global constants for influenc-
ing the behavior of these functions:

originalJsonData = file_get_contents('/path/to/file.json');
decodedData = json_decode(originalJsonData);

jsonDataEncodedAgain = json_encode(
 decodedData,
 JSON_THROW_ON_ERROR | JSON_FORCE_OBJECT?);

 You can compare values using ==, which takes the type of the values you’re com-
paring into account. If you’re comparing objects, == will only be true if the val-
ues refer to the exact same object:

258 APPENDIX Coding standard for the code samples

'a' == 'a'; // true
'a' == 1; // error
new Foo() == new Foo(); // false

foo = new Foo();
bar = foo;
foo == bar; // true

 You can throw any exception, which will stop execution of the code. You can
recover from exceptions by catching them. Built-in exception classes can be
extended:

try {
// ...

throw new RuntimeException('Message');

// this won't be executed
} catch (Exception exception) {

// do something with the exception if you like
}

final class CustomException extends RuntimeException
{

// ...
}

 You can create a copy of an object by using the clone operator:

foo = new Foo();
copy = clone foo;

index

A

abstract protected method 222
abstractions 247–248

composing for complicated behaviors 210–212
defining

for commands 182–184
for queries 159–162

add() method 107, 123, 238
addController() method 58
addLine() method 104
addListener() method 49–50
allIsInstanceOf() method 82
ambiguous naming 153
application services 233

character traits of 247
example of 236
general discussion 235–237
passing a DTO when calling 237

Appointment class 111
architectural patterns 251
argument exceptions

custom exception classes for 74–75
invalid 75–77

arguments. See constructor arguments, invalid
arguments

array type 82, 138
array_keys() method 41
arrays, dynamic 23–24
asArray() method 197
assertContains() method 130
assertEquals() method 120–122
AssertionFailedException 82
assertions 81–83
assertSame() method 121

B

baseUrl parameter 207
beberlei/assert package 81
behaviors 7–9

complicated 210–212
configurable 206–207
decorating 212–215
of objects 223–224
of services, changing 48–50
replaceable 207–210

black box tests 251

C

Cache.get() method 38
CachedFileLoader class 214
calculateNetAmount() method 154
CanBePublished interface 183
changePassword() method 172, 181
ChangePasswordService class 184
ChangeUserPassword class 215
changeUserPassword() method 173, 180
changeUserPasswordAndSendAnEmailAboutIt()

method 173
Checker Framework 150
class testing 251–252
classes 251

custom exception classes 141–142
LogicException 143
marking as final by default 224
objects and 2–4
RuntimeException 143

Clock interface 42–43
clone operator 115, 123

259

INDEX260

ColorPalette class 113
colors() method 114
command handlers 236
command methods 118, 168

limiting scope of 172–176
mutable objects and 117–118
verifying calls to 184–186
with names in imperative form 172

command object 233, 237
command-line controller 235
commands

collecting information with 180–181
defining abstractions for 182–184

composite values 79–81
composition 14–15
concretions 247–248
Configuration class 37–38, 207
configuration values

injecting as constructor arguments 27–30
keeping values together 28–30

configuring behaviors 206–207
ConnectionConfiguration 55
console command 235
constants 5
constraints 89–91
constructor arguments

for configuring behavior 206–207
for replaceable behaviors 207–210
injecting configuration values as 27–30
injecting dependencies as 27–30
requiring 34–36
validating with assertions 81–83

constructor injections 36–37
constructors

named 88–91
adding to String() 89
adding to toInt() 89
from primitive type values 88–89
indicating reasons for failures 143
introducing domain-specific concepts 89
private constructors enforcing

constraints 89–91
testing 93–95

ContactRepository class 45–46
controllers 233–235, 247
controllers array, validating 57–58
convert() method 158, 164
cookies 233
Coordinates class 69, 75–76, 93–95
copies 114–117
CouldNotConnect class 143
CouldNotDeliverOrder class 142
CouldNotFindProduct class 142–144
CouldNotFindStreetName class 143

CouldNotLoadFile exception 211–212
CouldNotPersistObject class 142
CouldNotStoreFile 143
Counter class 146, 148
countItems() method 153
CQS (command/query separation) principle

147, 168
createFromFormat() method 88
CreateSalesInvoice class 108
CreateUser class 110
Credentials class 29
CsvFileImporter class 215
CsvImporter class 38
CurlHttpClient class 159–160
Currency class 79, 84, 86
CurrencyConverter class 157, 162
currentCount() method 147
custom exception classes 141–142
custom exceptions, defining 17

D

data
meaningful 68–74
minimal for consistent behavior 67–68
passing as method arguments 45–47
read models from sources of 197–198

data transfer objects 96–98, 108–110
collecting validation errors 97–98
using property fillers 98
using public properties 96–97

DatabaseTablePreferences 226
Date class 88, 91
date parameter 91
date property 89
DateTime class 41–42, 91, 135
DDD (domain-driven design) 251, 253
Deal class 71–72
DecimalValue class 90
declarative names 118–120
decoration of behaviors 212–215
dependencies 9–10, 247–248

explicit 38–44
making system calls explicit 41–44
turning complicated functions into object

dependencies 39–41
injecting as constructor arguments 27–30
object

turning complicated functions into 39–41
turning static dependencies into 38

optional 37–38
passing as method arguments 84–88
static 38

dependency inversion principle 162

INDEX 261

DiscountPercentage class 116
discountPercentage() method 155
dispatch() method 175, 217, 219
DispatcherServlet 233
distanceTo() method 67
domain events 131, 198–203
domain invariants 68, 77–79
domain layer 248
domain-driven design 253
domain-specific concepts 89
DTO (data transfer object) 83, 92, 96–98,

237, 244
dummies 37, 165
dynamic arrays 23–24

E

EmailAddress class 78, 139
ensureLogFileExists() method 52
entities 66, 103–105, 189, 239, 247
EntityManager class 33, 45–46
EntityRepository class 168
equality of immutable objects 121–122
equals() method 122
errors. See validation errors
event listeners 215–220, 243–244
event sourcing 203
EventDispatcher class 48–49, 59, 82, 174, 185, 219
EventDispatcher interface 38
events

performing secondary tasks with 172–176
recorded events 127–132

exception classes
custom 74–75, 141–142
LogicException 143
RuntimeException 143

exception messages 75–77
exceptions 141–145

adding detailed messages 144–145
custom, defining 17
named constructors 143
naming invalid arguments 143
throwing 16, 179–180
throwing when argument is invalid 55–59
See also argument exceptions, exception classes

ExchangeRate class 84–85, 157–158
exchangeRateFor() method 157–158, 161–162,

164
ExchangeRateProvider 84–85, 160, 246
ExchangeRates interface 160–162
ExchangeRatesFake class 163
ExchangeRatesStub class 164
ExchangeService class 86
expectException() function 69

explicit dependencies 38–44
making system calls explicit 41–44
turning complicated functions into object

dependencies 39–41
turning static dependencies into object

dependencies 38
explicit system calls 41–44
extracting new objects

to prevent verifying domain invariants in
multiple places 77–79

to represent composite values 79–81

F

failures
named constructors indicating reasons for 143
scenarios 139–140
testing for 19

fakes 164–165
features, development of 252–253
file_get_contents() method 41
FileCache 28
FileLoader interface 208, 211–212
FileLoader.loadFile() method 209
FileLogger class 27, 35–36, 50–52, 206
FileLogger() method 26
fillers. See property fillers
final keyword 108
finalize() method 104, 132
findById() method 151
findOneByType() method 151
findUpcomingMeetups() method 43
FixedClock class 43
FixerApi class 157, 159, 161, 165
FixerApi.exchangeRateFor() method 157
float type 157
fluent interfaces 132–134
flush() method 34
Foo interface 10
forStockReport() method 196
Fraction class 123–124
fromArray() method 91
fromInt() method 88
fromString() method 88–89
front controllers 233–234

G

generalization 183
get() method 30, 160
getAllContacts() method 46
getById() method 150–151, 168, 186, 237
getItemCount() method 153
getItems() method 152

INDEX262

getOneByType() method 151
getRowById() method 140
getters 152–153, 155

H

happy path 140
hexagonal architecture 251
hidden dependencies 38
HomepageController class 31–33, 61
HttpClient interface 160

I

ignoreErrors() method 48
immutable objects

declarative names for modifier methods
118–120

equality when comparing 121–122
modifiers on 114–117
preferring 110–114

immutable services 179
imperative names 172
Importer class 48, 217, 219
ImportNotifications interface 218–219
increment() method 147
incremented() method 148
information

collecting with commands 180–181
collecting with queries 180–181
retrieving with query methods 146–149

infrastructure layer 247–248
inheritance 10–13

to change object behaviors 220–224
when to use 223–224

injecting
configuration values as constructor

arguments 27–30
dependencies as constructor arguments 27–30

injections, constructor 36–37
int argument 55–56, 74
integration tests 166
interfaces, fluent 132–134
internal state 152–156
internally recorded events 127–132
invalid arguments

naming 143
throwing exceptions 55–59

InvalidArgumentException class 56, 74–76, 140,
144, 180

InvalidArgumentExceptions class 179
InvalidEmailAddress 143
InvalidStateTransition 143
InvalidTargetPosition class 143

invariants. See domain invariants
isValid() method 149
itConvertsAnAmountUsingTheExchangeRate()

method 164
itemCount() method 153

J

java.util.Date class 135
json_decode() method 208
json_encode() method 39–40
JsonFileLoader 208, 214

L

layers 247–248
Line class 73, 156
listeners 243
loadFile() method 222
log() method 35, 214
logFilePath 27, 35
Logger class 34–36, 210
LoggerFactory class 52–53
LogicException 126, 140, 143, 179

M

Mailer class 53–54, 176–177
maps 23
markAsReceived() method 190, 200
match() method 57
Meetup entity 236, 240, 243
MeetupController class 96
MeetupRepository class 41, 43, 238
messages

detailed 144–145
exception messages 75–77

MetadataFactory class 37
method arguments

passing dependencies as 84–88
passing relevant data as 45–47

methods 137–141
calling on instances 3
contructor methods, defining 3
defining 157–158
failure scenarios 139–140
happy path 140
marking as private by default 225–226
postcondition checks 140–141
precondition checks 138–139
return values 141
static factor methods, defining 4
static, defining 3
See also modifier methods, query methods

INDEX 263

mocking frameworks 165
mocks 184–186
models 66
models. See read models, write models
modified copies 114–117
modifier methods 115, 148

calling 123–125
declarative names for 118–120
verifying validity of requested state change

with 125–126
modifiers 114–117
Money class 68, 80, 84–85, 116
moveLeft() method 117–118, 120–121, 127,

129–130
MultipleLoaders class 211
mutable objects

command methods and 117–118
implementing fluent interfaces on 132–134
verifying changes on 127–132
vs. immutable 6

MySQLTableGateway class 30, 55

N

name property 153
name() method 153
named constructors 74, 88–91

adding to String() 89
adding to toInt() 89
from primitive type values 88–89
indicating reasons for failures 143
introducing domain-specific concepts 89
private constructors enforcing constraints

89–91
names

declarative 118–120
imperative 172

naming
invalid arguments 143
LogicException 143
RuntimeException 143

new keyword 26
next() method 112, 114
nextIdentity() method 168
notification objects 215–220
NotifyGroupMembers listener 243
null arguments 9, 139
null objects 37, 150
NullLogger class 37
numberOfAdults function 71
numberOfRooms function 71

O

Object class 122
object dependencies

turning complicated functions into 39–41
turning static dependencies into 38

object testing 251–252
objects

behavior 7–9
class organization 15
classes and 2–4
comparing 120
composition 14–15
dependencies 9–10
dynamic arrays 23–24
inheritance 10–13
new, extracting

to prevent verifying domain invariants in
multiple places 77–79

to represent composite values 79–81
polymorphism 13–14
return statements and exceptions 16–17
state 4–7
types of 25–26
unit testing 18–22
when calling modifier methods 123–125
See also immutable objects, mutable objects,

value objects
Order class 156
orderedQuantity() method 190, 193

P

Page object 149
ParameterLoader class 207, 209, 211, 220–222
parent classes 221
PasswordHasher interface 86
patterns, architectural 251
PHPStan tool 150
place() method 190
Player class 117, 121, 127–129
PlayerMoved events 128
PlayerTookInitialPosition class 130
plus() method 114
polymorphism 13–14
ports and adapters 251
Position class 67, 91, 115–119, 121–122
position property 118, 128, 131
postcondition checks 140–141
precondition checks 138–139
Preferences class 225
PriceRange class 74, 83
primitive-type values 79, 88–89, 236, 245
private constructors 89–91
private methods 60

INDEX264

private properties 225–226
marking properties as 225–226
of another instance, accesing 6

private scope 6
Product class 95, 134, 154, 179, 225
ProductCreated class 92
productId() method 193
properties

assigning 50–55
marking as private by default 225–226
public 96–97

property fillers 91–92, 98
protected methods 221
protected properties 225
Psalm tool 150
public methods 60, 221–223
public properties 5, 96–97, 108
public static fromString() method 89
public static methods 88
publish() method 182
purchase_orders table 198
PurchaseOrder class 189, 192–194, 196, 199
PurchaseOrderForStock class 197
PurchaseOrderForStockReport class 192, 196
PurchaseOrderReceived class 199–200
PurchaseOrderRepository interface 189

Q

Quantity class 106–107
queries

collecting information with 180–181
defining abstractions for 159–162

query methods 166, 168, 172, 180, 195
exposing internal state with 152–156
for information retrieval 146–149
stubs as test doubles with 163–166
with single-type return values 149–152

query objects 239, 244
QueryBuilder class 132–135
QueryBuilder.where() method 133
Queue class 182

R

Range class 124
read model repository 233
read models 244–246

building from domain events 198–203
for use cases 196–197
from data sources 197–198
repositories for 244–246
separating from write models 189–195

received column 198

ReceiveItems class 191, 194, 200
Recipients class 177–178
recorded events 127–132
recordedEvents() method 104, 128
RecordsEvents interface 223
register() method 168
RegisterUser class 167, 175
RegisterUserController class 167
removeListener() method 49–50
ReplaceParametersWithEnvironmentVariables

class 212
replacing values 111–114
repositories 247

for read models 244–246
for write models 237–238

Repository pattern 34
Request object 45, 233
ReservationRequest class 70
ResponseFactory 41
return statements and exceptions 16–17
return types 157–158
return values 141, 149–152, 245
Router class 56–57
Run class 81
RuntimeException 75, 140, 143–144, 179–180

S

SalesInvoice class 103–105, 132
SalesInvoiceId class 106
SalesOrder class 89, 125
save() method 34, 46, 179, 238
ScheduleMeetup class 96–98
scoping 89
secondary tasks 172–176
sendConfirmationEmail() method 177
SendMessageToRabbitMQ class 182
sendPasswordChangedEmail() method 173
sendRequest() method 207
SendUserPasswordChangedNotification

listener 217
service containers 179
service locators 30–34
ServiceContainer class 60
ServiceLocator class 30–33
ServiceRegistry.get() method 38
services

assigning properties 50–55
changing behavior of 48–50
defining as immutable object graphs 59–61

Session object 45
set() method 180
setLogger() method 36
setPasswordHasher 87
setPrice() method 134

INDEX 265

ShoppingBasket class 152
simplexml_load_file() method 39
single-type return values 149–152
someVeryComplicatedCalculation() method 140
SpecificException class 75
spies 185
startWith() method 114
state 4–7

changes 125–126
internal 152–156

state transition 125
static dependencies 38
StockReport class 197
StockReportController class 191, 196
StockReportRepository class 197
StockReportSqlRepository class 197, 202
string date parameter 91
String() method 89
strpos() method 41
stubs 163–166
subclasses 221
subscribers 243
SUM query 199
system calls 41–44

T

targetCurrency function 80
tasks, secondary 172–176
template method 221–222
TemplateRenderer 61
test doubles 163–166, 185
test methods 164
testing 251–253

class testing versus object testing 251–252
constructors 93–95
for invalid argument exceptions by analyzing

exception messages 75–77
top-down feature development 252–253

throwing exceptions 55–59, 179–180
time() method 41
toInt() method 89
TotalDistanceTraveled class 123
toTheLeft() method 116, 118–120
traits 223
translate() method 47, 54
Translator class 47

U

uniqueEmailAddresses() method 178
unit testing 18–22

unit tests 82, 94
UpcomingMeetup 244
UpcomingMeetupRepository 245
update() method 238
UpdateStockReport class 200
User class 77, 86, 109
UserId class 109
UserPasswordChanged class 173, 216
UserRepository class 33–34
Uuid object 44
Uuid.create() method 44

V

validate() method 97
validating constructor arguments 81–83
validation errors 97–98
value objects 66, 78, 105–108, 240–242, 247
values, replacing 111–114
verifying

calls to command methods 184–186
domain invariants in multiple places 77–79

void type 118, 128, 146, 166, 172

W

wasReceived() method 190, 193
web controller 234, 236
webmozart/assert package 81
where() method 134
white box tests 251
withColorAdded() method 114
withDenominator() method 124
withDiscountApplied() method 117
withMaximum() method 125
withMinimum() method 125
withX() method 115
withXDecreasedBy() method 119
wrapper class 39
write models

repositories for 237–238
separating from read models 189–195

X

XmlFileLoader class 209
XmlFileParameterLoader class 221

Style guide cheat sheet

 Continued from inside front cover

public function commandMethod(input, context): void
{

// ...
}

public function queryMethod(): returnType
{

// ...
}

public function releaseEvents(): array
{

// ...
}

}

final class ValueObject
{

private properties;

private function __construct()
{
}

public static function namedConstructor(values)
{

// ...
}

public function modifier(input): ValueObject
{

// ...
}

public function queryMethod(): returnType
{

// ...
}

}

Pass data relevant to
the job, plus contextual
information (current
time, current user, etc.).

Validate input arguments. Validate state
transitions. Record domain events.

Limit the number
of query methods
exposing state.

Return recorded domain events.

Not meant to be
extended from.

All properties are immutable.

Named constructors
as meaningful ways
of instantiating the
object.

Validate arguments. Instantiate a new copy. Assign
arguments to properties. Record domain event(s).

Use declarative names for
modifiers (e.g. with…())

Return a modified copy of the original.

Limit the number
of query methods.

Matthias Noback

ISBN-13: 978-1-61729-685-7
ISBN-10: 1-61729-685-6

W
ell-written OO code is a pleasure to read, modify, and
debug. Elevate your coding style by mastering the uni-
versal best practices for object design presented in this

book. These clearly presented rules, which apply to any OO
language, maximize the clarity and durability of your codebase
and increase productivity for you and your team.

Object Design Style Guide presents dozens of professional tech-
niques for writing OO code. In it, veteran developer Matthias
Noback lays out design rules for constructing objects, defi n-
ing methods, changing and exposing state, and much more.
All examples use instantly familiar pseudocode, so you can
follow along in the language you prefer. You’ll go case by case
as you explore important scenarios and challenges for object
design and then walk through a simple web application that
demonstrates how different types of objects can work together
effectively.

What’s Inside
● Universal design rules for a wide range of objects
● Best practices for testing objects
● A catalog of common object types
● Exercises for each chapter to test your object design skills

For readers familiar with an object-oriented language and
basic application architecture.

Matthias Noback is a professional web developer with nearly
two decades of experience. He runs his own web development,
training, and consultancy company called “Noback’s Offi ce.”

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/object-design-style-guide

$39.99 / Can $52.99 [INCLUDING eBOOK]

Object Design Style Guide

SOFTWARE DEVELOPMENT

M A N N I N G

“Offers both guidelines
and guidance on how to
achieve a clear, consistent

 tone across a larger team.”
—From the Foreword by Ross Tuck

“Demystifi es OOP and
describes how to use it to
design truly secure and

 performant applications.”—Charles Soetan, Plum.io

“Extremely well-written
content for all skill levels

 in the industry.”—Shayn Cornwell
XeroOne Systems

“An objective go-to
reference for programmers

wanting to standardize their
OOP procedures.”—Joseph T. Lyons
SYSCON International

See first page

	Object Design Style Guide
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A roadmap
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	Chapter 1: Programming with objects: A primer
	1.1 Classes and objects
	1.2 State
	1.3 Behavior
	1.4 Dependencies
	1.5 Inheritance
	1.6 Polymorphism
	1.7 Composition
	1.8 Class organization
	1.9 Return statements and exceptions
	1.10 Unit testing
	1.11 Dynamic arrays

	Chapter 2: Creating services
	2.1 Two types of objects
	2.2 Inject dependencies and configuration values as constructor arguments
	2.2.1 Keeping together configuration values that belong together

	2.3 Inject what you need, not where you can get it from
	2.4 All constructor arguments should be required
	2.5 Only use constructor injection
	2.6 There’s no such thing as an optional dependency
	2.7 Make all dependencies explicit
	2.7.1 Turn static dependencies into object dependencies
	2.7.2 Turn complicated functions into object dependencies
	2.7.3 Make system calls explicit

	2.8 Task-relevant data should be passed as method arguments instead of constructor arguments
	2.9 Don’t allow the behavior of a service to change after it has been instantiated
	2.10 Do nothing inside a constructor, only assign properties
	2.11 Throw an exception when an argument is invalid
	2.12 Define services as an immutable object graph with only a few entry points

	Chapter 3: Creating other objects
	3.1 Require the minimum amount of data needed to behave consistently
	3.2 Require data that is meaningful
	3.3 Don’t use custom exception classes for invalid argument exceptions
	3.4 Test for specific invalid argument exceptions by analyzing the exception’s message
	3.5 Extract new objects to prevent domain invariants from being verified in multiple places
	3.6 Extract new objects to represent composite values
	3.7 Use assertions to validate constructor arguments
	3.8 Don’t inject dependencies; optionally pass them as method arguments
	3.9 Use named constructors
	3.9.1 Create from primitive-type values
	3.9.2 Don’t immediately add toString(), toInt(), etc.
	3.9.3 Introduce a domain-specific concept
	3.9.4 Optionally use the private constructor to enforce constraints

	3.10 Don’t use property fillers
	3.11 Don’t put anything more into an object than it needs
	3.12 Don’t test constructors
	3.13 The exception to the rule: Data transfer objects
	3.13.1 Use public properties
	3.13.2 Don’t throw exceptions, collect validation errors
	3.13.3 Use property fillers when needed

	Chapter 4: Manipulating objects
	4.1 Entities: Identifiable objects that track changes and record events
	4.2 Value objects: Replaceable, anonymous, and immutable values
	4.3 Data transfer objects: Simple objects with fewer design rules
	4.4 Prefer immutable objects
	4.4.1 Replace values instead of modifying them

	4.5 A modifier on an immutable object should return a modified copy
	4.6 On a mutable object, modifier methods should be command methods
	4.7 On an immutable object, modifier methods should have declarative names
	4.8 Compare whole objects
	4.9 When comparing immutable objects, assert equality, not sameness
	4.10 Calling a modifier method should always result in a valid object
	4.11 A modifier method should verify that the requested state change is valid
	4.12 Use internally recorded events to verify changes on mutable objects
	4.13 Don’t implement fluent interfaces on mutable objects

	Chapter 5: Using objects
	5.1 A template for implementing methods
	5.1.1 Precondition checks
	5.1.2 Failure scenarios
	5.1.3 Happy path
	5.1.4 Postcondition checks
	5.1.5 Return value

	5.2 Some rules for exceptions
	5.2.1 Use custom exception classes only if needed
	5.2.2 Naming invalid argument or logic exception classes
	5.2.3 Naming runtime exception classes
	5.2.4 Use named constructors to indicate reasons for failure
	5.2.5 Add detailed messages

	Chapter 6: Retrieving information
	6.1 Use query methods for information retrieval
	6.2 Query methods should have single-type return values
	6.3 Avoid query methods that expose internal state
	6.4 Define specific methods and return types for the queries you want to make
	6.5 Define an abstraction for queries that cross system boundaries
	6.6 Use stubs for test doubles with query methods
	6.7 Query methods should use other query methods, not command methods

	Chapter 7: Performing tasks
	7.1 Use command methods with a name in the imperative form
	7.2 Limit the scope of a command method, and use events to perform secondary tasks
	7.3 Make services immutable from the outside as well as on the inside
	7.4 When something goes wrong, throw an exception
	7.5 Use queries to collect information and commands to take the next steps
	7.6 Define abstractions for commands that cross system boundaries
	7.7 Only verify calls to command methods with a mock

	Chapter 8: Dividing responsibilities
	8.1 Separate write models from read models
	8.2 Create read models that are specific for their use cases
	8.3 Create read models directly from their data source
	8.4 Build read models from domain events

	Chapter 9: Changing the behavior of services
	9.1 Introduce constructor arguments to make behavior configurable
	9.2 Introduce constructor arguments to make behavior replaceable
	9.3 Compose abstractions to achieve more complicated behavior
	9.4 Decorate existing behavior
	9.5 Use notification objects or event listeners for additional behavior
	9.6 Don’t use inheritance to change an object’s behavior
	9.6.1 When is it okay to use inheritance?

	9.7 Mark classes as final by default
	9.8 Mark methods and properties private by default

	Chapter 10: A field guide to objects
	10.1 Controllers
	10.2 Application services
	10.3 Write model repositories
	10.4 Entities
	10.5 Value objects
	10.6 Event listeners
	10.7 Read models and read model repositories
	10.8 Abstractions, concretions, layers, and dependencies

	Chapter 11: Epilogue
	11.1 Architectural patterns
	11.2 Testing
	11.2.1 Class testing versus object testing
	11.2.2 Top-down feature development

	11.3 Domain-driven design
	11.4 Conclusion

	Appendix: Coding standard for the code samples
	index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

