

OCP
Oracle Certified Professional

Java SE 11 Programmer I

Study Guide
Exam 1Z0-815

Jeanne Boyarsky
Scott Selikoff

Copyright © 2020 by John Wiley & Sons, Inc.

Published simultaneously in Canada

ISBN: 978-1-119-58470-4

ISBN: 978-1-119-58472-8 (ebk.)

ISBN: 978-1-119-58456-8 (ebk.)

Manufactured in the United States of America

No part of this publication may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, electronic, mechanical, photocopying, recording, scanning or
otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright
Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher
for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no
representations or warranties with respect to the accuracy or completeness of the contents of
this work and specifically disclaim all warranties, including without limitation warranties of
fitness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for
every situation. This work is sold with the understanding that the publisher is not engaged in
rendering legal, accounting, or other professional services. If professional assistance is
required, the services of a competent professional person should be sought. Neither the
publisher nor the author shall be liable for damages arising herefrom. The fact that an
organization or Web site is referred to in this work as a citation and/or a potential source of
further information does not mean that the author or the publisher endorses the information
the organization or Web site may provide or recommendations it may make. Further, readers
should be aware that Internet Web sites listed in this work may have changed or disappeared
between when this work was written and when it is read.

For general information on our other products and services or to obtain technical support,
please contact our Customer Care Department within the U.S. at (877) 762-2974, outside the
U.S. at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some
material included with standard print versions of this book may not be included in e-books or
in print-on-demand. If this book refers to media such as a CD or DVD that is not included in
the version you purchased, you may download this material at http://booksupport.wiley.com.
For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2019950141

TRADEMARKS: Wiley, the Wiley logo, and the Sybex logo are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other
countries, and may not be used without written permission. LPIC-1 is a registered trademark
of Linux Professional Institute, Inc. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc. is not associated with any product or vendor mentioned in
this book.

http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com

In memory of nine amazing years at World Maker Faire and in
honor of the new FIRST robotics lab at Stuyvesant. May we have
many human and robotic guests.
—Jeanne

For my youngest daughter, Elysia, you make me smile and laugh
every day.
—Scott

Acknowledgments
Scott and Jeanne would like to thank numerous individuals for their
contribution to this book. Thank you to Kathryn Duggan for guiding us
through the process and making the book better in so many ways.
Thank you to Janeice DelVecchio for being our technical editor as we
wrote this book. Janeice pointed out many subtle errors in addition to
the big ones. And thank you to Elena Felder for being our technical
proofreader and finding the errors that we managed to sneak by
Janeice. This book also wouldn’t be possible without many people at
Wiley, including Kenyon Brown, Pete Gaughan, Kathleen Wisor, Kim
Wimpsett, Nancy Carrasco, and so many others.

Jeanne would personally like to thank Chris Kreussling for knowing
almost a decade ago that she would someday write a book. He was a
great mentor for many years and definitely shaped her career. Jeanne
would also like to thank Cathy Sung for all the support and coaching as
Jeanne grew as a tech lead. Nicolai Parlog and Juan Moreno were
helpful when looking for module information. Scott was a great co-
author improving everything Jeanne wrote while writing his own
chapters. A big thank-you to everyone at CodeRanch.com who asked and
responded to questions and comments about our Java 8 books.
Finally, Jeanne would like to thank all of the new programmers at
CodeRanch.com and FIRST robotics teams FRC 694, FTC 310, and FTC
479 for the constant reminders of how new programmers think.

Scott could not have reached this point without his wife Patti and
family, whose love and support makes this book possible. He would
like to thank his twin daughters, Olivia and Sophia, and youngest
daughter, Elysia, for their patience and understanding especially when
it was “time for Daddy to work in his office!” Scott would like to extend
his gratitude to his wonderfully patient co-author, Jeanne, on this,
their fourth book. He doesn’t know how she puts up with him, but he’s
glad she does and thrilled at the quality of books we produce. A big
thanks to Matt Dalen, who has been a great friend, sounding board,
and caring father to Olivia and Adeline. Joel McNary introduced Scott

http://CodeRanch.com
http://CodeRanch.com

to CodeRanch.com and encouraged him to post regularly, a step that
changed his life. Finally, Scott would like to thank his mother and
retired teacher, Barbara Selikoff, for teaching him the value of
education, and his father, Mark Selikoff, for instilling in him the
benefits of working hard.

Last but not least, both Scott and Jeanne would like to give a big
thank-you to the readers of our Java 8 certification books. Hearing
from all of you who enjoyed the book and passed the exam is a great
feeling. A special thank-you to Campbell Ritchie, who fielded an
almost uncountable number of the questions on CodeRanch.com,
helping readers understand the material better. We’d also like to thank
those who pointed out errors and made suggestions for improvements
in our practice exams book. As of August 2019, the top two were Juerg
Bauman and Tamas Szekeres. We would also like to thank Noorul
Hameed and Nurettin Armucutu for running a tight race for third-
place errata reporter.

http://CodeRanch.com
http://CodeRanch.com

About the Authors
Jeanne Boyarsky was selected as a Java Champion in 2019. She has
worked as a Java developer for more than 17 years at a bank in New
York City where she develops, mentors, and conducts training. Besides
being a senior moderator at CodeRanch.com in her free time, she works
on the forum code base. Jeanne also mentors the programming
division of a FIRST robotics team where she works with students just
getting started with Java. She also speaks at several conferences each
year.

Jeanne got her Bachelor of Arts degree in 2002 and her Master in
Computer Information Technology degree in 2005. She enjoyed
getting her Master’s degree in an online program while working full-
time. This was before online education was cool! Jeanne is also a
Distinguished Toastmasters and a Scrum Master. You can find out
more about Jeanne at www.jeanneboyarsky.com.

Scott Selikoff is a professional software consultant, author, and
owner of Selikoff Solutions, LLC, which provides software
development solutions to businesses in the tri-state New York City
area. Skilled in a plethora of software languages and platforms, Scott
specializes in full-stack database-driven systems, cloud-based
applications, microservice architectures, and service-oriented
architectures.

A native of Toms River, New Jersey, Scott achieved his Bachelor of
Arts degree from Cornell University in Mathematics and Computer
Science in 2002, after three years of study. In 2003, he received his
Master of Engineering degree in Computer Science, also from Cornell
University.

As someone with a deep love of education, Scott has always enjoyed
teaching others new concepts. He’s given lectures at Cornell University
and Rutgers University, as well as conferences including Oracle Code
One and The Server Side Java Symposium. Scott lives in New Jersey
with his loving wife, Patti, three amazing daughters, twins Olivia and

http://CodeRanch.com
http://www.jeanneboyarsky.com

Sophia and little Elysia, along with two very playful dogs, Webby and
Georgette. You can find out more about Scott at
www.linkedin.com/in/selikoff.

Jeanne and Scott are both moderators on the CodeRanch.com forums
and can be reached there for question and comments. They also co-
author a technical blog called Down Home Country Coding at
www.selikoff.net.

In addition to this book, Scott and Jeanne are also authors of the
following best-selling Java 8 certification books: OCA Oracle Certified
Associate Java SE 8 Programmer I Study Guide (Sybex, 2015) and
OCP Oracle Certified Professional Java SE 8 Programmer II Study
Guide (Sybex, 2016). These two books have been combined into the
single release: OCA/OCP Java SE 8 Programmer Certification Kit:
Exam 1Z0-808 and Exam 1Z0-809 (Sybex 2016). They have also
written a book of practice test questions for the Java 8 certification
exams: OCA/OCP Java SE 8 Programmer Practice Tests (Sybex,
2017).

http://www.linkedin.com/in/selikoff
http://CodeRanch.com
http://www.selikoff.net

CONTENTS
Cover
Acknowledgments
About the Authors
Introduction
Taking the Assessment Test
Answers to Assessment Test
Chapter 1 Welcome to Java

Learning About the Java Environment
Identifying Benefits of Java
Understanding the Java Class Structure
Writing a main() Method
Understanding Package Declarations and Imports
Ordering Elements in a Class
Code Formatting on the Exam
Summary
Exam Essentials
Review Questions

Chapter 2 Java Building Blocks
Creating Objects
Understanding Data Types
Declaring Variables
Initializing Variables
Managing Variable Scope
Destroying Objects
Summary
Exam Essentials
Review Questions

kindle:embed:0003?mime=image/jpg

Chapter 3 Operators
Understanding Java Operators
Applying Unary Operators
Working with Binary Arithmetic Operators
Assigning Values
Comparing Values
Making Decisions with the Ternary Operator
Summary
Exam Essentials
Review Questions

Chapter 4 Making Decisions
Creating Decision-Making Statements
Writing while Loops
Constructing for Loops
Controlling Flow with Branching
Summary
Exam Essentials
Review Questions

Chapter 5 Core Java APIs
Creating and Manipulating Strings
Using the StringBuilder Class
Understanding Equality
Understanding Java Arrays
Understanding an ArrayList
Creating Sets and Maps
Calculating with Math APIs
Summary
Exam Essentials
Review Questions

Chapter 6 Lambdas and Functional Interfaces
Writing Simple Lambdas
Introducing Functional Interfaces
Working with Variables in Lambdas
Calling APIs with Lambdas
Summary
Exam Essentials
Review Questions

Chapter 7 Methods and Encapsulation
Designing Methods
Working with Varargs
Applying Access Modifiers
Applying the static Keyword
Passing Data among Methods
Overloading Methods
Encapsulating Data
Summary
Exam Essentials
Review Questions

Chapter 8 Class Design
Understanding Inheritance
Creating Classes
Declaring Constructors
Inheriting Members
Understanding Polymorphism
Summary
Exam Essentials
Review Questions

Chapter 9 Advanced Class Design

Creating Abstract Classes
Implementing Interfaces
Introducing Inner Classes
Summary
Exam Essentials
Review Questions

Chapter 10 Exceptions
Understanding Exceptions
Recognizing Exception Classes
Handling Exceptions
Calling Methods That Throw Exceptions
Summary
Exam Essentials
Review Questions

Chapter 11 Modules
Introducing Modules
Creating and Running a Modular Program
Updating Our Example for Multiple Modules
Diving into the module-info File
Discovering Modules
Reviewing Command-Line Options
Summary
Exam Essentials
Review Questions

Appendix Answers to Review Questions
Chapter 1: Welcome to Java
Chapter 2: Java Building Blocks
Chapter 3: Operators
Chapter 4: Making Decisions

Chapter 5: Core Java APIs
Chapter 6: Lambdas and Functional Interfaces
Chapter 7: Methods and Encapsulation
Chapter 8: Class Design
Chapter 9: Advanced Class Design
Chapter 10: Exceptions
Chapter 11: Modules

Index
Advert
End User License Agreement

List of Tables
Chapter 1

Table 1.1

Table 1.2

Table 1.3

Table 1.4

Table 1.5

Table 1.6

Chapter 2

Table 2.1

Table 2.2

Table 2.3

Table 2.4

Chapter 3

Table 3.1

Table 3.2

Table 3.3

Table 3.4

Table 3.5

Table 3.6

Table 3.7

Table 3.8

Table 3.9

Chapter 4

Table 4.1

Chapter 5

Table 5.1

Table 5.2

Table 5.3

Table 5.4

Table 5.5

Table 5.6

Table 5.7

Chapter 6

Table 6.1

Table 6.2

Table 6.3

Table 6.4

Chapter 7

Table 7.1

Table 7.2

Table 7.3

Table 7.4

Table 7.5

Chapter 10

Table 10.1

Table 10.2

Table 10.3

Chapter 11

Table 11.1

Table 11.2

Table 11.3

Table 11.4

Table 11.5

Table 11.6

Table 11.7

Table 11.8

Table 11.9

List of Illustrations
Introduction

Figure I.1 Past and current Java certifications

Figure I.2 Latest Java certification exams

Chapter 1

Figure 1.1 Compiling with packages

Figure 1.2 Compiling with packages and directories

Chapter 2

Figure 2.1 An object in memory can be accessed only via a
reference.

Figure 2.2 Your drawing after line 5

Figure 2.3 Your drawing after line 7

Chapter 3

Figure 3.1 The logical truth tables for &, |, and ^

Chapter 4

Figure 4.1 The structure of an if statement

Figure 4.2 The structure of an else statement

Figure 4.3 The structure of a switch statement

Figure 4.4 The structure of a while statement

Figure 4.5 The structure of a do/while statement

Figure 4.6 The structure of a basic for loop

Figure 4.7 The structure of an enhanced for-each loop

Figure 4.8 The structure of a break statement

Figure 4.9 The structure of a continue statement

Chapter 5

Figure 5.1 Indexing for a string

Figure 5.2 Indexes for a substring

Figure 5.3 The basic structure of an array

Figure 5.4 An empty array

Figure 5.5 An initialized array

Figure 5.6 An array pointing to strings

Figure 5.7 A sparsely populated multidimensional array

Figure 5.8 An asymmetric multidimensional array

Figure 5.9 Example of a Set

Figure 5.10 Example of a Map

Chapter 6

Figure 6.1 Lambda syntax omitting optional parts

Figure 6.2 Lambda syntax, including optional parts

Chapter 7

Figure 7.1 Method declaration

Figure 7.2 Classes used to show private and default access

Figure 7.3 Classes used to show protected access

Figure 7.4 Copying a reference with pass-by-value

Chapter 8

Figure 8.1 Types of inheritance

Figure 8.2 Java object inheritance

Figure 8.3 Defining and extending a class

Figure 8.4 Object vs. reference

Chapter 9

Figure 9.1 Defining an interface

Figure 9.2 Implementing an interface

Figure 9.3 Interface Inheritance

Chapter 10

Figure 10.1 Categories of exception

Figure 10.2 The syntax of a try statement

Figure 10.3 The syntax of a multi-catch block

Figure 10.4 The syntax of a try statement with finally

Figure 10.5 The syntax of a basic try-with-resources

Figure 10.6 The syntax of try-with-resources including
catch/finally

Figure 10.7 A method stack

Chapter 11

Figure 11.1 Design of a modular system

Figure 11.2 Looking inside a module

Figure 11.3 Contents of zoo.animal.feeding

Figure 11.4 Module zoo.animal.feeding directory structure

Figure 11.5 Running a module using java

Figure 11.6 Module zoo.animal.feeding directory structure
with class and jar files

Figure 11.7 Modules depending on zoo.animal.feeding

Figure 11.8 Contents of zoo.animal.care

Figure 11.9 Module zoo.animal.care directory structure

Figure 11.10 Dependencies for zoo.animal.talks

Figure 11.11 Contents of zoo.animal.talks

Figure 11.12 Contents of zoo.staff

Figure 11.13 Dependencies for zoo.staff

Figure 11.14 Transitive dependency version of our modules

kindle:embed:0003?mime=image/jpg

Introduction
This book is for those studying for the IZ0-815 (Java SE Programmer
I) or IZ0-811 (Java Foundations) exam along with those looking to
learn Java more deeply.

If you’ve taken the OCA 7 or OCA 8 exam, note that the IZ0-815 exam
is a lot tougher. While covering more basic topics, the exam is at the
same level of difficulty as the OCP 7 and OCP 8 exams.

In this introduction, we will cover important information about the
exam before moving on to information about this book. Finally, this
introduction ends with an assessment test so that you can see how
much studying lays ahead of you.

Understanding the Exam
At the end of the day, the exam is a list of questions. The more you
know about the structure of the exam, the better you are likely to do.
For example, knowing how many questions the exam contains allows
you to manage your progress and time remaining better. In this
section, we discuss the details of the exam, along with some history of
previous certification exams.

Choosing Which Exam to Take
Java is about 25 years old, celebrating being “born” in 1995. As with
anything 25 years old, there is a good amount of history and variation
between different versions of Java. Over the years, the certification
exams have changed to cover different topics. The names of the exams
have even changed.

Oracle released two exams each for Java 7 and Java 8. The first exam
tended to be easier and completing it granted you the title of Oracle
Certified Associate (OCA). The second exam was a lot more difficult,
with much longer questions, and completing it granted you the title of
Oracle Certified Professional (OCP).

Oracle did not release an exam for Java 9 or Java 10, probably because
neither of these are Long Term Support (LTS) releases (more on that
in Chapter 1, “Welcome to Java”). With Java 11, Oracle decided to
discontinue both the OCA certification and its associated exam. You
still have to take two exams to earn an OCP title. There’s also a basic
Java Foundations exam that we will describe shortly.

Figure I.1 shows these past and current Java certifications. This image
is helpful if you run into material online that references older exams. It
is also helpful if you have an older certification and are trying to
determine where it fits in.

Figure

Figure I.1 Past and current Java certifications

The first exam, and the one this book is designed to prepare you for, is
the 1Z0-815 Programmer I exam. It covers a lot of basic Java
properties including class structure, methods, inheritance, and
modules. It is somewhat similar, but significantly more difficult, than
the previous OCA 7/8 exams. If you’ve taken a previous OCA exam, it
might help to think of the 1Z0-815 exam as containing much of the
same OCA content, but with the level of difficulty of the original OCP
exam. This means questions are longer, answers often have multiple
parts, and the level of depth of the material is significantly more
difficult.

The second exam is the 1Z0-816 Programmer II exam. It is quite
similar to the previous OCP 7/8 exams, with a number of new topics
such as annotations, modules, and security added in. We’ve included
notes throughout this book on some topics that aren’t in scope for the
1Z0-815 exam but will be when you study for the 1Z0-816 exam.

Oracle has also released a 1Z0-817 OCP Upgrade Exam for

those who hold an existing Sun Certified Programmer 6 (SCJP 6),
OCP 6, OCP 7, or OCP 8 title. The objectives for the upgrade exam

are quite similar to the 1Z0-816 Programmer II exam.

Oracle also offers a 1Z0-811 Java Foundations exam. This is often for a
novice programmer or nonprogrammers. If you are planning to take
the Java Foundations exam, this book prepares you as well. You will
get to skip some parts of the book, so be sure to read the
objectives/chapter mapping later in this introduction. The Java
Foundations exam is an easier exam but does not serve as a
prerequisite for the OCP certification. If you are considering taking the
Java Foundations exam, please see the linked blog post from our book
page to weigh the pros and cons of each exam:

http://www.selikoff.net/ocp11-1

Figure I.2 reviews the exams you need to take in order to earn the
latest Java certifications. This book will prepare you for your choice of
the 1Z0-815 and the 1Z0-811 exams.

Figure

Figure I.2 Latest Java certification exams

Broad Objectives
In previous certification exams, the list of exam objectives tended
to include specific topics, classes, and APIs that you needed to
know for the exam. For example, take a look at a previous objective
for the 1Z0-808 (OCA 8) exam:

Compare and contrast the features and components of Java

http://www.selikoff.net/ocp11-1

such as: platform independence, object orientation,
encapsulation, etc.

Now compare it with the equivalent objective for the 1Z0-815
exam:

Identify key features of the Java language

Notice the difference? The older version is more detailed and
describes specific topics you will need to understand. The newer
version is a lot vaguer. It also gives the exam writers a lot more
freedom to, say, insert a new feature without having to update the
list of objectives.

So, how do you know what to study? By reading this study guide, of
course! We’ve spent years studying the certification exams, in all of
their forms, and have carefully cultivated topics, material, and
practice questions that we are confident can lead to successfully
passing the exam.

Changes to the Exam
At the time of this book being published, all three OCP 11 certification
exams contain 80 questions and have a duration of 3 hours. The 1Z0-
815 and 1Z0-816 exams require a passing score of 63%, while the 1Z0-
817 exam requires a passing score of 61%. The 1Z0-811 Java
Foundation exam is a little different than the OCP exams. It contains
75 questions and has a duration of 2.5 hours, and it requires a score of
65% to pass.

Oracle has a tendency to fiddle with the length of the exam and the
passing score once it comes out. Oracle also likes to “tweak” the exam
topics over time. It wouldn’t be a surprise for Oracle to make minor
changes to the exam objectives, the number of questions, or the
passing score after this book goes to print.

If there are any changes to the exam after this book is published, we
will note them on the book page of our blog:

http://www.selikoff.net/ocp11-1

http://www.selikoff.net/ocp11-1

Exam Questions
The 1Z0-815 exam consists of multiple-choice questions. There are
between four and seven possible answers. If a question has more than
one answer, the question specifically states exactly how many correct
answers there are. This book does not do that. We say “Choose all that
apply” to make the questions harder. This means the questions in this
book are generally harder than those on the exam. The idea is to give
you more practice so you can spot the correct answer more easily on
the real exam.

If you read about older versions of the exam online, you might see
references to drag-and-drop questions. These questions had you do a
puzzle on how to complete a piece of code. Luckily, these are no longer
on the exam.

Many of the questions on the exam are code snippets rather than full
classes. Saving space by not including imports leaves room for lots of
other code. In Chapter 1, we provide advice on reading code in various
formats.

Out-of-Scope Material
When you take the exam, you may see some questions that appear to
be out of scope. Don’t panic! Oftentimes, these questions do not
require knowing anything about the topic to answer the question. For
example, after reading this book you should be able to spot that the
following does not compile, even if you have no idea what LocalDate
and ChronoUnit are:

final LocalDate holiday = LocalDate.now();

holiday = LocalDate.now().plus(5,ChronoUnit.HOURS);

While the classes and enums used in this question are not in scope for
the exam, the reason it does not compile is. In particular, you should
know that you cannot reassign a variable marked final.

See, not so scary is it? Expect to see at least a few structures on the
exam that you are not familiar with. If they aren’t part of your exam
preparation material, then you don’t need to understand them to
answer the question.

Question Topic Tips
The following list of topics is meant to give you an idea of the types of
questions and oddities that you might come across on the exam. Being
aware of these categories of such questions will help you get a higher
score on the exam.

Questions with Extra Information Provided Imagine the
question includes a statement that XMLParseException is a checked
exception. It’s fine if you don’t know what an XMLParseException is or
what XML is for that matter. (If you are wondering, it is a format for
data.) This question is a gift. You know the question is about checked
and unchecked exceptions.

Questions with Embedded Questions To answer some questions
on the exam, you may have to actually answer two or three
subquestions. For example, the question may contain two blank lines,
and the question may ask you to choose the two answers that fill in
each blank. In some cases, the two answer choices are not related,
which means you’re really answering multiple questions, not just one!
Another place this is seen is in a question that includes a print()
statement that outputs multiple variables. Each question has to be
tracked independently. These questions are among the most difficult
and time-consuming on the exam because they contain multiple, often
independent, questions to answer. Unfortunately, the exam does not
give partial credit, so take care when answering questions like these.

Questions with Unfamiliar APIs Suppose a question shows a
method with a Path parameter. If you see a class or method that wasn’t
covered in this book, assume it works as you would expect. Some of
these APIs you might come across, such as LocalDate, were on the Java
8 exam and are not part of the Java 11 exams. Assume that the part of
the code using that API is correct and look very hard for other errors.

Questions with Unfamiliar Concepts You might see some more
advanced Java concepts like an enum or inner classes that use aspects
not covered in this book. While you need to know more for the 1Z0-
816 exam, the 1Z0-815 only tests the basics of these features. Again,
you can assume the unfamiliar provided code is correct and the
question is testing something else.

Questions with Made Up or Incorrect Concepts In the context
of a word problem, the exam may bring up a term or concept that does
not make any sense such as saying an interface inherits from a class,
which is not a correct statement. In other case, they may use a
keyword that does not exist in Java, like struct. For these, you just
have to read them carefully and recognize when the exam is using
invalid terminology.

Questions That Are Really Out of Scope When introducing new
questions, Oracle includes them as unscored questions at first. This
allows them to see how real exam takers do without impacting your
score. You will still receive the number of questions as the exam lists.
However, a few of them may not count. These unscored questions may
contain out-of-scope material or even errors. They will not be marked
as unscored, so you still have to do your best to answer them. Follow
the previous advice to assume that anything you haven’t seen before is
correct. That will cover you if the question is being counted!

Reading This Book
It might help to have some idea about how this book has been written.
This section contains details about some of the common structures
and features you will find in this book, where to go for additional help,
and how to obtain bonus material for this book.

Who Should Buy This Book
If you want to become certified as a Java programmer, this book is
definitely for you. If you want to acquire a solid foundation in Java and
your goal is to prepare for the exam, this book is also for you. You’ll
find clear explanations of the concepts you need to grasp and plenty of
help to achieve the high level of professional competency you need in
order to succeed in your chosen field.

This book is intended to be understandable to anyone who has a tiny
bit of Java knowledge. If you’ve never read a Java book before, we
recommend starting with a book that teaches programming from the
beginning and then returning to this study guide.

This book is for anyone from high school students to those beginning
their programming journey to experienced professionals who need a
review for the certification.

How This Book Is Organized
This book consists of 11 chapters plus supplementary information: an
Appendix, a glossary (online), this introduction, and the bonus exam.
You might have noticed that there are more than 11 exam objectives.
We organized what you need to know to make it easy to learn and
remember. Each chapter begins with a list of the objectives that are
covered in that chapter.

The chapters are organized as follows:

Chapter 1: Welcome to Java describes the basics of Java such
as how to run a program. It also includes the benefits of Java and
key terminology.

Chapter 2: Java Building Blocks focuses on variables such as
primitives and object data types and scoping variables. It also
discusses garbage collection.

Chapter 3: Operators explains operations with variables. It
also talks about casting and the precedence of operators.

Chapter 4: Making Decisions covers on core logical
constructs such as conditionals and loops.

Chapter 5: Core Java APIs introduces you to String,
StringBuilder, array, and various types.

Chapter 6: Lambdas and Functional Interfaces shows how
use lambdas and four key functional interfaces. The focus is
implementing and calling Predicate, Consumer, Supplier, and
Comparator.

Chapter 7: Methods and Encapsulation explains how to
write methods. It also shows the four access modifiers.

Chapter 8: Class Design covers constructors and superclasses.
It also includes method overriding.

Chapter 9: Advanced Class Design adds interfaces and
abstract classes. It also introduces inner classes.

Chapter 10: Exceptions shows the different types of exception
classes and how to use them. It also includes different uses of try
statements.

Chapter 11: Modules details the benefits of the new module
feature. It shows how to compile and run module programs from
the command line.

At the end of each chapter, you’ll find a few elements you can use to
prepare for the exam.

Summary This section reviews the most important topics that were
covered in the chapter and serves as a good review.

Exam Essentials This section summarizes highlights that were
covered in the chapter. You should be able to convey the information
requested.

Review Questions Each chapter concludes with at least 20 review
questions. You should answer these questions and check your answers
against the ones provided in the Appendix. If you can’t answer at least
80% of these questions correctly, go back and review the chapter, or at
least those sections that seem to be giving you difficulty.

The review questions, assessment test, and other testing

elements included in this book are not derived from the real exam
questions, so don’t memorize the answers to these questions and
assume that doing so will enable you to pass the exam. You should
learn the underlying topic, as described in the text of the book.
This will let you answer the questions provided with this book and
pass the exam. Learning the underlying topic is also the approach
that will serve you best in the workplace—the ultimate goal of a
certification.

To get the most out of this book, you should read each chapter from
start to finish before going to the chapter-end elements. They are most
useful for checking and reinforcing your understanding. Even if you’re
already familiar with a topic, you should skim the chapter. There are a
number of subtleties to Java that you could easily not encounter even
when working with Java for years.

Conventions Used in This Book
This book uses certain typographic styles to help you quickly identify
important information and to avoid confusion over the meaning of
words such as on-screen prompts. In particular, look for the following
styles:

Italicized text indicates key terms that are described at length for
the first time in a chapter. (Italics are also used for emphasis.)

A monospaced font indicates code or command-line text.

Italicized monospaced text indicates a variable.

In addition to these text conventions, which can apply to individual
words or entire paragraphs, a few conventions highlight segments of

text.

A note indicates information that’s useful or interesting. It

is often something to pay special attention to for the exam.

Sidebars
A sidebar is like a note but longer. The information in a sidebar is
useful, but it doesn’t fit into the main flow of the text.

Real-World Scenario
A real-world scenario is a type of sidebar that describes a task or an
example that’s particularly grounded in the real world. This is
something that is useful in the real world but is not going to show
up on the exam.

Getting Help
Both of the authors are moderators at CodeRanch.com. This site is a
quite large and active programming forum that is very friendly toward
Java beginners. It has a forum just for this exam called Programmer
Certification. It also has a forum called Beginning Java for non-exam-
specific questions. As you read the book, feel free to ask your questions
in either of those forums. It could be you are having trouble compiling
a class or that you are just plain confused about something. You’ll get
an answer from a knowledgeable Java programmer. It might even be
one of us.

Interactive Online Learning Environment and Test Bank
We’ve put together some really great online tools to help you pass the
IZ0-815 exam. The interactive online learning environment that
accompanies this study guide provides a test bank and study tools to

http://CodeRanch.com

help you prepare for the exam. By using these tools you can
dramatically increase your chances of passing the exam on your first
try.

The online test bank includes the following:

Sample Tests Many sample tests are provided throughout this book
and online, including the assessment test, which you’ll find at the end
of this introduction, and the chapter tests that include the review
questions at the end of each chapter. In addition, there are two bonus
practice exams. Use these questions to test your knowledge of the
study guide material. The online test bank runs on multiple devices.

Flashcards The online text bank includes two sets of flashcards
specifically written to hit you hard, so don’t get discouraged if you
don’t ace your way through them at first! They’re there to ensure that
you’re really ready for the exam. And no worries—armed with the
review questions, practice exams, and flashcards, you’ll be more than
prepared when exam day comes! Questions are provided in digital
flashcard format (a question followed by a single correct answer). You
can use the flashcards to reinforce your learning and provide last-
minute test prep before the exam.

Resources A glossary of key terms from this book and their
definitions is available as a fully searchable PDF.

Go to www.wiley.com/go/Sybextestprep to register and

gain access to this interactive online learning environment and test
bank with study tools.

http://www.wiley.com/go/Sybextestprep

Studying for the Exam
This section includes suggestions and recommendations for how you
should prepare for the certification exam. If you’re an experienced test
taker or you’ve taken a certification test before, most of this should be
common knowledge. For those who are taking the exam for the first
time, don’t worry! We’ll present a number of tips and strategies to help
you prepare for the exam.

Creating a Study Plan
Rome wasn’t built in a day, so you shouldn’t attempt to study for the
exam in only one day. Even if you have been certified with a previous
version of Java, the new test includes features and components unique
to the Java 9, 10, and 11 that are covered in this text.

Once you have decided to take the test, you should construct a study
plan that fits with your schedule. We recommend that you set aside
some amount of time each day, even if it’s just a few minutes during
lunch, to read or practice for the exam. The idea is to keep your
momentum going throughout the exam preparation process. The more
consistent you are in how you study, the better prepared you will be
for the exam. Try to avoid taking a few days or weeks off from studying
or you’re likely to spend a lot of time relearning existing material
instead of moving on to new material.

Creating and Running the Code
Although some people can learn Java just by reading a textbook, that’s
not how we recommend that you study for a certification exam. We
want you to be writing your own Java sample applications throughout
this book so that you don’t just learn the material, but that you
understand the material as well. For example, it may not be obvious
why the following line of code does not compile, but if you try to
compile it yourself, the Java compiler will tell you the problem:

float value = 102.0; // DOES NOT COMPILE

A lot of people post the question “Why does this code not

compile?” on the CodeRanch.com forum. If you’re stuck or just
curious about a behavior in Java, we encourage you to post to the
forum. There are a large number of members of the Java
community standing by to help you.

Sample Test Class
Throughout this book, we present numerous code snippets and ask
you whether they’ll compile or not and what their output will be. You
will place these snippets inside a simple Java application that starts,
executes the code, and terminates. You can accomplish this by
compiling and running a public class containing a public static void
main(String[] args) method and adding the necessary import
statements, such as the following:

// Add any necessary import statements here

public class TestClass {

 public static void main(String[] args) {

 // Add test code here

 // Add any print statements here

 System.out.println("Hello World!");

 }

}

This application isn’t particularly interesting—it just outputs "Hello
World!" and exits. That said, you could insert many of the code
snippets presented in this book in the main() method to determine
whether the code compiles, as well as what the code outputs when it
does compile.

IDE Software
While studying for the exam, you should develop code using a text

http://CodeRanch.com

editor and command-line Java compiler. Some of you may have
prior experience with Integrated Development Environments
(IDEs), such as Eclipse or IntelliJ. An IDE is a software application
that facilitates software development for computer programmers.
Although such tools are extremely valuable in developing software,
they can interfere with your ability to spot problems readily on the
exam.

Identifying Your Weakest Link
The review questions in each chapter are designed to help you hone in
on those features of the Java language where you may be weak and
that are required knowledge for the exam. For each chapter, you
should note which questions you got wrong, understand why you got
them wrong, and study those areas even more. After you’ve reread the
chapter and written lots of code, you can do the review questions
again. In fact, you can take the review questions over and over to
reinforce your learning as long as you explain to yourself why it is
correct.

“Overstudying” the Online Practice Exam
Although we recommend reading this book and writing your own
sample applications multiple times, redoing the online practice
exam over and over can have a negative impact in the long run. For
example, some individuals study the practice exam so much that
they end up memorizing the answers. In this scenario, they can
easily become overconfident; that is, they can achieve perfect
scores on the practice exams but may fail the actual exam.

Understanding the Question
The majority of questions on the exam will contain code snippets and
ask you to answer questions about them. For those items containing
code snippets, the number-one question we recommend that you
answer before attempting to solve the question is this:

Does the code compile?

It sounds simple, but many people dive into answering the question
without checking whether the code actually compiles. If you can
determine whether or not a particular set of code compiles and what
line or lines cause it to not compile, answering the question often
becomes easy.

Applying the Process of Elimination
Although you might not immediately know the correct answer to a
question, if you can reduce the question from five answers to three,
your odds of guessing the correct answer will be markedly improved.
Moreover, if you can reduce a question from four answers to two,
you’ll double your chances of guessing the correct answer!

The exam software allows you to eliminate answer choices by right-
clicking an answer choice, which causes the text to be struck through,
as shown in the following example:

A. 123

B. Elephant

C. Vulture

D. The code does not compile due to line n1.

Even better, the exam software remembers which answer choices you
have eliminated anytime you go back to the question. You can undo
the crossed-out answer simply by right-clicking the choice again.

Sometimes you can eliminate answer choices quickly without reading
the entire question. In some cases, you may even be able to solve the
question based solely on the answer choices. If you come across such
questions on the exam, consider it a gift. Can you correctly answer the
following question in which the application code has been left out?

5. Which line, when inserted independently at line m1, allows the
code to compile?

- Code Omitted -

A. public abstract final int swim();

B. public abstract void swim();

C. public abstract swim();

D. public abstract void swim() {}

E. public void swim() {}

Without reading the code or knowing what line m1 is, we can actually
eliminate 3 of the 5 answer choices. Options A, C, and D contain
invalid declarations, which you’ll learn about in Chapter 9, leaving us
with options B and E as the only possible correct answers.

Skipping Difficult Questions
The exam software also includes an option to “mark” a question and
review all marked questions at the end of the exam. If you are pressed
for time, answer a question as best you can and then mark it to come
back to later.

All questions are weighted equally, so spending 10 minutes answering
5 questions correctly is a lot better use of your time than spending 10
minutes on a single question. If you finish the exam early, you have the
option of reviewing the marked questions, as well as all of the
questions on the exam if you so choose.

Being Suspicious of Strong Words
Many questions on the exam include answer choices with descriptive
sentences rather than lines of code. When you see such questions, be
wary of any answer choice that includes strong words such as “must,”
“all,” or “cannot.” If you think about the complexities of programming
languages, it is rare for a rule to have no exceptions or special cases.
Therefore, if you are stuck between two answers and one of them uses
“must” while the other uses “can” or “may,” you are better off picking
the one with the weaker word since it is a more ambiguous statement.

Using the Provided Writing Material
Depending on your particular testing center, you will be provided with

a sheet of blank paper or a whiteboard to use to help you answer
questions. In our experience, a whiteboard with marker and eraser is
more commonly handed out. If you sit down and you are not provided
with anything, make sure to ask for such materials.

After you have determined that the program does compile, it is time to
understand what the program does! One of the most useful
applications of writing material is tracking the state of primitive and
reference variables. For example, let’s say you encountered the
following code snippet on a question about garbage collection:

Object o = new Turtle();

Mammal m = new Monkey();

Animal a = new Rabbit();

o = m;

In a situation like this, it can be helpful to draw a diagram of the
current state of the variable references. As each reference variable
changes which object it points to, you would erase or cross out the
arrow between them and draw a new one to a different object.

Using the writing material to track state is also useful for complex
questions that involve a loop, especially questions with embedded
loops. For example, the value of a variable might change five or more
times during a loop execution. You should make use of the provided
writing material to improve your score.

While you cannot bring any outside material into the

exam, you can write down material at the start of the exam. For
example, if you have trouble remembering which functional
interfaces take which generic arguments, then it might be helpful
to draw a table at the start of the exam on the provided writing
material. You can then use this information to answer multiple
questions.

Choosing the Best Answer
Sometimes you read a question and immediately spot a compiler error

that tells you exactly what the question is asking. Other times, though,
you may stare at a method declaration for a couple of minutes and
have no idea what the question is asking. While you might not know
for sure which answer is correct in these situations, there are some
test-taking tips that can improve the probability that you will pick the
correct answer.

Unlike some other standardized tests, there’s no penalty for answering
a question incorrectly versus leaving it blank. If you’re nearly out of
time or you just can’t decide on an answer, select a random answer
and move on. If you’ve been able to eliminate even one answer, then
your guess will be better than blind luck.

Answer All Questions!
You should set a hard stop at five minutes of time remaining on the
exam to ensure that you’ve answered each and every question.
Remember, if you fail to answer a question, you’ll definitely get it
wrong and lose points, but if you guess, there’s at least a chance
that you’ll be correct. There’s no harm in guessing!

When in doubt, we generally recommend picking a random answer
that includes “Does not compile” if available, although which
choice you select is not nearly as important as making sure that
you do not leave any questions unanswered on the exam!

Getting a Good Night’s Rest
Although a lot of people are inclined to cram as much material as they
can in the hours leading up to the exam, most studies have shown that
this is a poor test-taking strategy. The best thing we can recommend
that you do before the exam is to get a good night’s rest!

Given the length of the exam and number of questions, the exam can
be quite draining, especially if this is your first time taking a
certification exam. You might come in expecting to be done 30
minutes early, only to discover that you are only a quarter of the way
through the exam with half the time remaining. At some point, you
may begin to panic, and it is in these moments that these test-taking

skills are most important. Just remember to take a deep breath, stay
calm, eliminate as many wrong answers as you can, and make sure to
answer each and every question. It is for stressful moments like these
that being well rested with a good night’s sleep will be most beneficial!

Taking the Exam
So you’ve decided to take the exam? We hope so if you’ve bought this
book! In this section, we discuss the process of scheduling and taking
the exam, along with various options for each.

Scheduling the Exam
The exam is administered by Pearson VUE and can be taken at any
Pearson VUE testing center. To find a testing center or register for the
exam, go to:

http://pearsonvue.com

Next, search for Oracle as the exam provider. If you haven’t been to
the test center before, we recommend visiting in advance. Some
testing centers are nice and professionally run. Others stick you in a
closet with lots of people talking around you. You don’t want to be
taking the test with people complaining about their broken laptops
nearby!

At this time, you can reschedule the exam without penalty until up to
24 hours before. This means you can register for a convenient time slot
well in advance knowing that you can delay if you aren’t ready by that
time. Rescheduling is easy and can be done completely on the Pearson
VUE website. This may change, so check the rules before paying.

The At-Home Online Option
Oracle now offers online-proctored exams that can be taken in the
comfort of your own home. You choose a specific date and time,
like a proctored exam, and take it at your computer.

While this option may be appealing for a lot of people, especially if
you live far away from a testing center, there are number of
restrictions:

Your session will be closely monitored by another individual
from a remote location.

http://pearsonvue.com

You must set up a camera and microphone, and they must be
on for the entire exam. At the start, you will also need to turn
the camera around the room to show your workspace to prove
you are not in reach of exam material.

You must be alone in a completely isolated space for the
duration of the test. If someone comes in during your test,
your test will be invalidated.

You cannot have any papers, material, or items in your
immediate vicinity.

Unlike exam centers that provide writing material, writing
down any notes or use of scratch paper is prohibited. You do
get to make notes on an digital whiteboard within the exam
software.

Stopping for any reason, including a restroom break, is
prohibited.

With so many rules, you want to think carefully before taking the
test at home. If you do plan to go this route, please visit Oracle’s
website for additional restrictions or changes to these
requirements.

The Day of the Exam
When you go to take the exam, remember to bring two forms of ID
including one that is government issued. See Pearson’s list of
acceptable IDs here:

http://www.pearsonvue.com/policies/1S.pdf

Try not to bring too much extra with you as it will not be allowed into
the exam room. While you will be allowed to check your belongings, it
is better to leave extra items at home or in the car.

You will not be allowed to bring paper, your phone, and the like into
the exam room with you. Some centers are stricter than others. At one
center, tissues were even taken away from us! Most centers allow
keeping your ID and money. They watch you taking the exam, though,

http://www.pearsonvue.com/policies/1S.pdf

so don’t even think about writing notes on money.

As we mentioned earlier, the exam center will give you writing
materials to use during the exam, either scratch paper or a
whiteboard. If you aren’t given these materials, remember to ask.
These items will be collected at the end of the exam.

Finding Out Your Score
In the past, you would find out right after finishing the exam if you
passed. Now you have to wait nervously until you can check your score
online. Many test takers check their score from a mobile device as they
are walking out of the test center.

If you go onto the Pearson VUE website, it will just have a status of
“Taken” rather than your result. Oracle uses a separate system for
scores. You’ll need to go to Oracle’s CertView website to find out
whether you passed and your score:

http://certview.oracle.com

It usually updates shortly after you finish your exam but can take up to
an hour in some cases. In addition to your score, you’ll also see
objectives for which you got a question wrong.

http://certview.oracle.com

Reviewing Exam Objectives
This book has been written to cover every objective on the Java SE 11
Programmer I exam along with most of the Java Foundations exam
objectives.

Java SE 11 Programmer I (1Z0-815)
The following table provides a breakdown of this book’s exam coverage
for the Java SE 11 Programmer I (1Z0-815) exam, showing you the
chapter where each objective or subobjective is covered:

Exam Objective Chapter
Understanding Java Technology and environment
Describe Java Technology and the Java development 1
Identify key features of the Java language 1
Creating a Simple Java Program
Create an executable Java program with a main class 1
Compile and run a Java program from the command line 1
Create and import packages 1
Working with Java Primitive Data Types and
String APIs
Declare and initialize variables (including casting and
promoting primitive data types)

2, 3

Identify the scope of variables 2
Use local variable type inference 2
Create and manipulate Strings 5
Manipulate data using the StringBuilder class and its
methods

5

Using Operators and Decision Constructs
Use Java operators including the use of parentheses to
override operator precedence

3

Use Java control statements including if, if/else, switch 4
Create and use do/while, while, for and for each loops,
including nested loops, use break and continue statements

4

Working with Java Arrays
Declare, instantiate, initialize and use a one-dimensional
array

5

Declare, instantiate, initialize and use a two-dimensional
array

5

Describing and using Objects and Classes
Declare and instantiate Java objects, and explain objects’
lifecycles (including creation, dereferencing by
reassignment, and garbage collection)

2

Define the structure of a Java class 1
Read or write to object fields 2
Creating and Using Methods
Create methods and constructors with arguments and
return values

7, 8

Create and invoke overloaded methods 7
Apply the static keyword to methods and fields 7
Applying Encapsulation
Apply access modifiers 7
Apply encapsulation principles to a class 7
Reusing Implementations Through Inheritance
Create and use subclasses and superclasses 8
Create and extend abstract classes 9
Enable polymorphism by overriding methods 8
Utilize polymorphism to cast and call methods,
differentiating object type versus reference type

8

Distinguish overloading, overriding, and hiding 8
Programming Abstractly Through Interfaces

Create and implement interfaces 9
Distinguish class inheritance from interface inheritance
including abstract classes

9

Declare and use List and ArrayList instances 5, 6
Understanding Lambda Expressions 6
Handling Exceptions
Describe the advantages of Exception handling and
differentiate among checked, unchecked exceptions, and
Errors

10

Create try-catch blocks and determine how exceptions alter
program flow

10

Create and invoke a method that throws an exception 10
Understanding Modules
Describe the Modular JDK 11
Declare modules and enable access between modules 11
Describe how a modular project is compiled and run 11

Java Foundations (1Z0-811)
The following table provides a breakdown of this book’s exam coverage
for the Java Foundations (1Z0-811) exam, showing you the chapter
where each objective or sub-objective is covered.

A few topics are on the Java Foundations exam, but not

the 1Z0-815. Those are covered here:

http://www.selikoff.net/java-foundations

Additionally, the objectives for the Java Foundations exam may be
updated when Oracle updates the Java Foundations exam for Java
11. Check our website for those updates as well.

http://www.selikoff.net/java-foundations

Exam Objective Chapter
What is Java?
Describe the features of Java 1
Describe the real-world applications of Java 1 +

online
Java Basics
Describe the Java Development Kit (JDK) and the Java
Runtime Environment (JRE)

1

Describe the components of object-oriented programming 1
Describe the components of a basic Java program 1
Compile and execute a Java program 1
Basic Java Elements
Identify the conventions to be followed in a Java program 1
Use Java reserved words 2
Use single-line and multi-line comments in java programs 2
Import other Java packages to make them accessible in
your code

1

Describe the java.lang package 1
Working with Java Data Types
Declare and initialize variables including a variable using
final

2

Cast a value from one data type to another including
automatic and manual promotion

2

Declare and initialize a String variable 2
Working with Java Operators
Use basic arithmetic operators to manipulate data
including +, -, *, /, and %

2

Use the increment and decrement operators 2
Use relational operators including ==, !=, >, >=, <, and <= 2
Use arithmetic assignment operators 2

Use conditional operators including &&, ||, and ? 2
Describe the operator precedence and use of parentheses 2
Working with the String Class
Develop code that uses methods from the String class 5
Format Strings using escape sequences including %d, %n,
and %s

Online

Working with Random and Math Classes
Use the Random class Online
Use the Math class 5
Using Decision Statements
Use the decision making statement (if-then and if-then-
else)

4

Use the switch statement 4
Compare how == differs between primitives and objects 3
Compare two String objects by using the compareTo and
equals methods

5

Using Looping Statements
Describe looping statements 4
Use a for loop including an enhanced for loop 4
Use a while loop 4
Use a do- while loop 4
Compare and contrast the for, while, and do-while loops 4
Develop code that uses break and continue statements 4
Debugging and Exception Handling
Identify syntax and logic errors 1, 2, 3, 4,

5
Use exception handling 10
Handle common exceptions thrown 10
Use try and catch blocks 10

Arrays and ArrayLists
Use a one-dimensional array 5
Create and manipulate an ArrayList 5
Traverse the elements of an ArrayList by using iterators
and loops including the enhanced for loop

5 +
online

Compare an array and an ArrayList 5
Classes and Constructors
Create a new class including a main method 1
Use the private modifier 7
Describe the relationship between an object and its
members

8

Describe the difference between a class variable, an
instance variable, and a local variable

2, 8

Develop code that creates an object’s default constructor
and modifies the object’s fields

8

Use constructors with and without parameters 8
Develop code that overloads constructors 8
Java Methods
Describe and create a method 7
Create and use accessor and mutator methods 7
Create overloaded methods 7
Describe a static method and demonstrate its use within a
program

7

Taking the Assessment Test
Use the following assessment test to gauge your current level of skill in
Java. This test is designed to highlight some topics for your strengths
and weaknesses so that you know which chapters you might want to
read multiple times. Even if you do well on the assessment test, you
should still read the book from cover to cover, as the real exam is quite
challenging.

The Assessment Test
1. What is the result of the following program?

1: public class MathFunctions {

2: public static void addToInt(int x, int amountToAdd) {

3: x = x + amountToAdd;

4: }

5: public static void main(String[] args) {

6: var a = 15;

7: var b = 10;

8: MathFunctions.addToInt(a, b);

9: System.out.println(a); } }

A. 10

B. 15

C. 25

D. Compiler error on line 3

E. Compiler error on line 8

F. None of the above

2. What is the output of the following program? (Choose all that
apply.)

1: interface HasTail { int getTailLength(); }

2: abstract class Puma implements HasTail {

3: protected int getTailLength() { return 4; }

4: }

5: public class Cougar implements HasTail {

6: public static void main(String[] args) {

7: var puma = new Puma();

8: System.out.println(puma.getTailLength());

9: }

10: public int getTailLength(int length) { return 2; }

11: }

A. 2

B. 4

C. The code will not compile because of line 3.

D. The code will not compile because of line 5.

E. The code will not compile because of line 7.

F. The code will not compile because of line 10.

G. The output cannot be determined from the code provided.

3. What is the output of the following code snippet?

int moon = 9, star = 2 + 2 * 3;

float sun = star>10 ? 1 : 3;

double jupiter = (sun + moon) - 1.0f;

int mars = --moon <= 8 ? 2 : 3;

System.out.println(sun+"-"+jupiter+"-"+mars);

A. 1-11-2

B. 3.0-11.0-2

C. 1.0-11.0-3

D. 3.0-13.0-3

E. 3.0f-12-2

F. The code does not compile because one of assignments
requires an explicit numeric cast.

4. How many times is the word true printed?

var s1 = "Java";

var s2 = "Java";

var s3 = "Ja".concat("va");

var s4 = s3.intern();

var sb1 = new StringBuilder();

sb1.append("Ja").append("va");

System.out.println(s1 == s2);

System.out.println(s1.equals(s2));

System.out.println(s1 == s3);

System.out.println(s1 == s4);

System.out.println(sb1.toString() == s1);

System.out.println(sb1.toString().equals(s1));

A. Once

B. Twice

C. Three times

D. Four times

E. Five times

F. Six times

G. The code does not compile.

5. The following code appears in a file named Flight.java. What is
the result of compiling this source file?

1: public class Flight {

2: private FlightNumber number;

3:

4: public Flight(FlightNumber number) {

5: this.number = number;

6: } }

7: public class FlightNumber {

8: public int value;

9: public String code; }

A. The code compiles successfully and two bytecode files are
generated: Flight.class and FlightNumber.class.

B. The code compiles successfully and one bytecode file is
generated: Flight.class.

C. A compiler error occurs on line 2.

D. A compiler error occurs on line 4.

E. A compiler error occurs on line 7.

6. Which of the following will run a modular program?

A. java -cp modules mod/class

B. java -cp modules -m mod/class

C. java -cp modules -p mod/class

D. java -m modules mod/class

E. java -m modules -p mod/class

F. java -p modules mod/class

G. java -p modules -m mod/class

7. What is the result of executing the following code snippet?

final int score1 = 8, score2 = 3;

char myScore = 7;

switch (myScore) {

default:

score1:

2: 6: System.out.print("great-");

4: System.out.print("good-"); break;

score2:

1: System.out.print("not good-");

}

A. great-good-

B. good-

C. not good-

D. great-good-not-good-

E. The code does not compile because default is not a keyword
in Java.

F. The code does not compile for a different reason.

8. Which of the following lines can fill in the blank to print true?
(Choose all that apply.)

10: public static void main(String[] args) {

11: System.out.println(____________________);

12: }

13: private static boolean test(Predicate<Integer> p) {

14: return p.test(5);

15: }

A. test(i -> i == 5)

B. test(i -> {i == 5;})

C. test((i) -> i == 5)

D. test((int i) -> i == 5)

E. test((int i) -> {return i == 5;})

F. test((i) -> {return i == 5;})

9. Which of the following are valid instance members of a class?
(Choose all that apply.)

A. var var = 3;

B. Var case = new Var();

C. void var() {}

D. int Var() { var _ = 7; return _;}

E. String new = "var";

F. var var() { return null; }

10. Which of the following types can be inserted into the blank that
allows the program to compile successfully? (Choose all that
apply.)

1: import java.util.*;

2: interface CanSwim {}

3: class Amphibian implements CanSwim {}

4: abstract class Tadpole extends Amphibian {}

5: public class FindAllTadPole {

6: public static void main(String[] args) {

7: var tadpoles = new ArrayList<Tadpole>();

8: for (Amphibian amphibian : tadpoles) {

9: ____________ tadpole = amphibian;

10: } } }

A. CanSwim

B. Boolean

C. Amphibian

D. Tadpole

E. Object

F. None of the above; the program contains a compilation error.

11. Which of the following expressions compile without error?
(Choose all that apply.)

A. int monday = 3 + 2.0;

B. double tuesday = 5_6L;

C. boolean wednesday = 1 > 2 ? !true;

D. short thursday = (short)Integer.MAX_VALUE;

E. long friday = 8.0L;

F. var saturday = 2_.0;

G. None of the above

12. Suppose you have a module named com.vet. Where could you
place the following module-info.java file to create a valid module?

public module com.vet {

exports com.vet;

}

A. At the same level as the com folder

B. At the same level as the vet folder

C. Inside the vet folder

D. None of the above

13. What is the result of compiling and executing the following
program?

1: public class FeedingSchedule {

2: public static void main(String[] args) {

3: var x = 5;

4: var j = 0;

5: OUTER: for (var i = 0; i < 3;)

6: INNER: do {

7: i++;

8: x++;

9: if (x > 10) break INNER;

10: x += 4;

11: j++;

12: } while (j <= 2);

13: System.out.println(x);

14: } }

A. 10

B. 11

C. 12

D. 17

E. The code will not compile because of line 5.

F. The code will not compile because of line 6.

14. Which statement about the following method is true?

5: public static void main(String... unused) {

6: System.out.print("a");

7: try (StringBuilder reader = new StringBuilder()) {

8: System.out.print("b");

9: throw new IllegalArgumentException();

10: } catch (Exception e || RuntimeException e) {

11: System.out.print("c");

12: throw new FileNotFoundException();

13: } finally {

14: System.out.print("d");

15: } }

A. It compiles and prints abc.

B. It compiles and prints abd.

C. It compiles and prints abcd.

D. One line contains a compiler error.

E. Two lines contain a compiler error.

F. Three lines contain a compiler error.

G. It compiles but prints an exception at runtime.

15. Which of the following are true statements? (Choose all that
apply.)

A. The JDK contains a compiler.

B. The JVM contains a compiler.

C. The javac command creates a file containing bytecode.

D. The java command creates a file containing bytecode.

E. The JDK is contained in the JVM.

F. The JVM is contained in the JDK.

16. Which lines in Tadpole give a compiler error? (Choose all that
apply.)

1: package animal;

2: public class Frog {

3: protected void ribbit() { }

4: void jump() { }

5: }

1: package other;

2: import animal.*;

3: public class Tadpole extends Frog {

4: public static void main(String[] args) {

5: Tadpole t = new Tadpole();

6: t.ribbit();

7: t.jump();

8: Frog f = new Tadpole();

9: f.ribbit();

10: f.jump();

11: } }

A. 5

B. 6

C. 7

D. 8

E. 9

F. 10

17. What is the output of the following program?

1: class Deer {

2: public Deer() {System.out.print("Deer");}

3: public Deer(int age) {System.out.print("DeerAge");}

4: protected boolean hasHorns() { return false; }

5: }

6: public class Reindeer extends Deer {

7: public Reindeer(int age)

{System.out.print("Reindeer");}

8: public boolean hasHorns() { return true; }

9: public static void main(String[] args) {

10: Deer deer = new Reindeer(5);

11: System.out.println("," + deer.hasHorns());

12: } }

A. ReindeerDeer,false

B. DeerAgeReindeer,true

C. DeerReindeer,true

D. DeerReindeer,false

E. ReindeerDeer,true

F. DeerAgeReindeer,false

G. The code will not compile because of line 4.

H. The code will not compile because of line 12.

18. What is printed by the following code? (Choose all that apply.)

int[] array = {6,9,8};

List<Integer> list = new ArrayList<>();

list.add(array[0]);

list.add(array[2]);

list.set(1, array[1]);

list.remove(0);

System.out.println(list);

System.out.println("C" + Arrays.compare(array,

new int[] {6, 9, 8}));

System.out.println("M" + Arrays.mismatch(array,

new int[] {6, 9, 8}));

A. [8]

B. [9]

C. [Ljava.lang.String;@160bc7c0

D. C-1

E. C0

F. M-1

G. M0

H. The code does not compile.

19. Which statements about the following program are true? (Choose
all that apply.)

1: public class Grasshopper {

2: public Grasshopper(String n) {

3: name = n;

4: }

5: public static void main(String[] args) {

6: Grasshopper one = new Grasshopper("g1");

7: Grasshopper two = new Grasshopper("g2");

8: one = two;

9: two = null;

10: one = null;

11: }

12: private String name;

13: }

A. Immediately after line 8, no Grasshopper objects are eligible
for garbage collection.

B. Immediately after line 9, no Grasshopper objects are eligible
for garbage collection.

C. Immediately after line 8, only one Grasshopper object is
eligible for garbage collection.

D. Immediately after line 9, only one Grasshopper object is
eligible for garbage collection.

E. Immediately after line 10, only one Grasshopper object is
eligible for garbage collection.

F. The code does not compile.

20. Which of the following statements about error handling in Java
are correct? (Choose all that apply.)

A. Checked exceptions are intended to be thrown by the JVM
(and not the programmer).

B. Checked exceptions are required to be handled or declared.

C. Errors are intended to be thrown by the JVM (and not the
programmer).

D. Errors are required to be caught or declared.

E. Runtime exceptions are intended to be thrown by the JVM
(and not the programmer).

F. Runtime exceptions are required to be handled or declared.

21. Which of the following are valid method modifiers that cannot be
used together in a method declaration? (Choose all that apply.)

A. null and final

B. abstract and private

C. public and private

D. nonstatic and abstract

E. private and final

F. abstract and static

G. protected and abstract

22. Which of the following are true to sort the list? (Choose all that
apply.)

13: int multiplier = 1;

14: multiplier *= -1;

15: List<Integer> list = List.of(99, 66, 77, 88);

16: list.sort(_____________);

A. Line 14 must be removed for any of the following lambdas to
compile.

B. Line 14 may remain for any of the following lambdas to
compile.

C. (x, y) -> multiplier * y.compareTo(x)

D. x, y -> multiplier * y.compareTo(x)

E. (x, y) -> return multiplier * y.compareTo(x)

F. x, y -> return multiplier * y.compareTo(x)

Answers to Assessment Test
1. B. The code compiles successfully, so options D and E are

incorrect. The value of a cannot be changed by the addToInt()
method, no matter what the method does, because only a copy of
the variable is passed into the parameter x. Therefore, a does not
change, and the output on line 9 is 15. For more information, see
Chapter 7.

2. C, D, E. The program contains three compiler errors. First, the
method getTailLength() in the interface HasTail is implicitly to be
public, since it is an abstract interface method. Therefore, line 3
does not compile since it is an invalid override, reducing the
visibility of the method, making option C correct. Next, the class
Cougar implements an overloaded version of getTailLength() with
a different signature than the abstract interface method it
inherits. For this reason, the declaration of Cougar is invalid, and
option D is correct. Finally, option E is correct, since Puma is
marked abstract and cannot be instantiated. For more
information, see Chapter 9.

3. B. Initially, moon is assigned a value of 9, while star is assigned a
value of 8. The multiplication operator (*) has a higher order of
precedence than the addition operator (+), so it gets evaluated
first. Since star is not greater than 10, sun is assigned a value of 3,
which is promoted to 3.0f as part of the assignment. The value of
jupiter is (3.0f + 9) - 1.0, which is 11.0f. This value is
implicitly promoted to double when it is assigned. In the last
assignment, moon is predecremented from 9 to 8, with the value of
the expression returned as 8. Since 8 is less than or equal to 8 is
true, mars is set to a value of 2. The final output is 3.0-11.0-2,
making option B the correct answer. Note that while Java outputs
the decimal for both float and double values, it does not output
the f for float values. For more information, see Chapter 3.

4. D. String literals are used from the string pool. This means that s1
and s2 refer to the same object and are equal. Therefore, the first

two print statements print true. The concat() method forces a
new String to be created making the third print statement print
false. The intern() method reverts the String to the one from the
string pool. Therefore, the fourth print statement prints true. The
fifth statement print statement prints false because toString()
uses a method to compute the value, and it is not from the string
pool. The final print statement again prints true because equals()
looks at the values of String objects. For more information, see
Chapter 5.

5. E. The code does not compile because Java allows at most one
public class in the same file. Either the FlightNumber class must
not be declared public or it should be moved to its own source file
named FlightNumber.java. The compiler error occurs on line 7, so
the answer is option E. For more information, see Chapter 1.

6. G. This exam requires knowing how to run at the command line.
The new -p option specifies the module path. The new -m option
precedes the program to be run in the format
moduleName/fullyQualifiedClassName. Option G is the only one
that matches these requirements. For more information, see
Chapter 11.

7. F. The code does not compile because switch statements require
case statements before the colon (:). For example, case score1:
would compile. For this reason, option F is the correct answer. If
the six missing case statements were added throughout this
snippet, then the default branch would be executed as 7 is not
matched in any of the case statements, resulting in an output of
great-good- and making option A correct. For more information,
see Chapter 4.

8. A, C, F. The Predicate interface takes a single parameter and
returns a boolean. Lambda expressions with one parameter are
allowed to omit the parentheses around the parameter list,
making options A and C equivalent and both correct. The return
statement is optional when a single statement is in the body,
making option F correct. Option B is incorrect because a return
statement must be used if braces are included around the body.

Options D and E are incorrect because the type is Integer in the
predicate and int in the lambda. Autoboxing works for collections
not inferring predicates. If these two were changed to Integer,
they would be correct. For more information, see Chapter 6.

9. C. Option A is incorrect because var is only allowed as a type for
local variables, not instance members. Options B and E are
incorrect because new and case are reserved words and cannot be
used as identifiers. Option C is correct, as var can be used as a
method name. Option D is incorrect because a single underscore
(_) cannot be used as an identifier starting with Java 9. Finally,
option F is incorrect because var cannot be specified as the return
type of a method. For more information, see Chapter 2.

10. A, C, E. The for-each loop implicitly casts each Tadpole object to
an Amphibian reference, which is permitted because Tadpole is a
subclass of Amphibian. From there, any supertype of Amphibian is
permitted without an explicit cast. This includes CanSwim, which
Amphibian implements, and Object, which all classes extend from,
making options A and E correct. Option C is also correct since the
reference is being cast to the same type. Option B is incorrect,
since Boolean is not a supertype of Amphibian. Option D is also
incorrect. Even though the underlying object is a Tadpole instance,
it requires an explicit cast on line 9 since the reference type is
Amphibian. Option F is incorrect because there are options that
allow the code to compile. For more information, see Chapter 8.

11. B, D. Option A does not compile, as the expression 3 + 2.0 is
evaluated as a double, and a double requires an explicit cast to be
assigned to an int. Option B compiles without issue, as a long
value can be implicitly cast to a double. Option C does not compile
because the ternary operator (? :) is missing a colon (:), followed
by a second expression. Option D is correct. Even though the int
value is larger than a short, it is implicitly cast to a short, which
means the value will wrap around to fit in a short. Option E is
incorrect, as you cannot use a decimal (.) with the long (L) postfix.
Finally, option F is incorrect, as an underscore cannot be used
next to a decimal point. For more information, see Chapter 3.

12. D. If this were a valid module-info.java file, it would need to be
placed at the root directory of the module, which is option A.
However, a module is not allowed to use the public access
modifier. Option D is correct because the provided file does not
compile regardless of placement in the project. For more
information, see Chapter 11.

13. C. The code compiles and runs without issue; therefore, options E
and F are incorrect. This type of problem is best examined one
loop iteration at a time:

On the first iteration of the outer loop i is 0, so the loop
continues.

On the first iteration of the inner loop, i is updated to 1 and x
to 6. The if statement branch is not executed, and x is
increased to 10 and j to 1.

On the second iteration of the inner loop (since j = 1 and 1
<= 2), i is updated to 2 and x to 11. At this point, the if
branch will evaluate to true for the remainder of the program
run, which causes the flow to break out of the inner loop each
time it is reached.

On the second iteration of the outer loop (since i = 2), i is
updated to 3 and x to 12. As before, the inner loop is broken
since x is still greater than 10.

On the third iteration of the outer loop, the outer loop is
broken, as i is already not less than 3. The most recent value
of x, 12, is output, so the answer is option C.

For more information, see Chapter 4.

14. F. Line 5 does not compile as the FileNotFoundException thrown
on line 12 is not handled or declared by the method. Line 7 does
not compile because StringBuilder does not implement
AutoCloseable and is therefore not compatible with a try-with-
resource statement. Finally, line 10 does not compile as
RuntimeException is a subclass of Exception in the multi-catch
block, making it redundant. Since this method contains three
compiler errors, option F is the correct answer. For more

information, see Chapter 10.

15. A, C, F. The Java Development Kit (JDK) is used when creating
Java programs. It contains a compiler since it is a development
tool making option A correct and option B incorrect. The JDK
contains a Java Virtual Machine (JVM) making option F correct
and option E incorrect. The compiler creates bytecode making
option C correct and option D incorrect. For more information,
see Chapter 1.

16. C, E, F. The jump() method has default (package-private) access,
which means it can be accessed only from the same package.
Tadpole is not in the same package as Frog, causing lines 7 and 10
to give a compiler error, making options C and F correct. The
ribbit() method has protected access, which means it can only be
accessed from a subclass reference or in the same package. Line 6
is fine because Tadpole is a subclass. Line 9 does not compile
because the variable reference is to a Frog, making option E
correct. This is the trickiest question you can get on this topic on
the exam. For more information, see Chapter 7.

17. C. The code compiles and runs without issue, so options G and H
are incorrect. First, the Reindeer object is instantiated using the
constructor that takes an int value. Since there is no explicit call
to the parent constructor, the compiler inserts super()as the first
line of the constructor on line 7. The parent constructor is called,
and Deer is printed on line 2. The flow returns to the constructor
on line 7, which prints Reindeer. Next, the method hasHorns() is
called. The reference type is Deer, and the underlying object type
is Reindeer. Since Reindeer correctly overrides the hasHorns()
method, the version in Reindeer is called, printing true. For these
reasons, option C is the correct answer. For more information, see
Chapter 8.

18. B, E, F. The array is allowed to use an anonymous initializer
because it is in the same line as the declaration. The ArrayList
uses the diamond operator. This specifies the type matches the
one on the left without having to retype it. After adding the two
elements, list contains [6, 8]. We then replace the element at

index 1 with 9, resulting in [6, 9]. Finally, we remove the element
at index 0, leaving [9]and making option B correct. Option C is
incorrect because arrays output something that looks like a
reference rather than a nicely printed list of values.

Option E is correct because the compare() method returns 0 when
the arrays are the same length and have the same elements.
Option F is correct because the mismatch() method returns a -1
when the arrays are equivalent. For more information, see
Chapter 5.

19. C, D. Immediately after line 8, only Grasshopper g1, created on
line 6, is eligible for garbage collection since both one and two
point to Grasshopper g2, making option C correct and option A
incorrect. Immediately after line 9, we still only have Grasshopper
g1 eligible for garbage collection, since one points to it. For this
reason, option B is incorrect and option D is correct. Reference
two now points to null. Immediately after line 10, both
Grasshopper objects are eligible for garbage collection since both
one and two point to null, making option E incorrect. The code
does compile, so option F is incorrect. Although it is traditional to
declare instance variables early in the class, you don’t have to. For
more information, see Chapter 2.

20. B, C. Only checked exceptions are required to be handled or
declared, making option B correct and option F incorrect. An
Error is intended to be thrown by the JVM and never caught by
the programmer, making option C correct and options A, D, and E
incorrect. While a programmer could throw or catch an Error, this
would be a horrible practice. For more information, see Chapter
10.

21. B, C, F. First, null and nonstatic are not valid method modifiers,
making options A and D incorrect. Options B and F are correct, as
abstract methods cannot be marked private or static, since they
then would not be able to be overridden. Option C is also correct,
as you cannot declare two access modifiers on the same method.
Finally, options E and G are two sets of valid modifiers that can be
used together in a method declaration. Using private with final

is allowed, albeit redundant. For more information, see Chapter 9.

22. A. This is a great example to practice the process of elimination.
The first thing to notice is that multiplier is not effectively final
since it is reassigned. None of the lambdas will compile, making
option A correct. The next step is to look at the lambda syntax.
Options D and F are invalid because lambdas with more than one
parameter must have parentheses. Options E and F are invalid
because a return statement may not be used in a lambda without
a block present. While option C at least compiles, the code fails at
runtime because List.of() creates an immutable list. This is
tricky as none of the lambdas will work successfully. Therefore,
option A is the only correct answer. For more information, see
Chapter 6.

Chapter 1
Welcome to Java
OCP exam objectives covered in this chapter:

 Understanding Java Technology and Environment

Describe Java Technology and the Java development
environment

Identify key features of the Java language

 Creating a Simple Java Program

Create an executable Java program with a main class

Compile and run a Java program from the command line

Create and import packages

 Describing and Using Objects and Classes

Define the structure of a Java class

Welcome to the beginning of your journey to achieve
a Java 11 certification. We assume this isn’t the first Java
programming book you’ve read. Although we do talk about the basics,
we do so only because we want to make sure you have all the
terminology and detail you’ll need for the 1Z0-815 exam. If you’ve
never written a Java program before, we recommend you pick up an
introductory book on any version of Java. Examples include Head
First Java, 2nd Edition (O’Reilly Media, 2009); Java for Dummies
(For Dummies, 2017), Murach’s Java Programming (Murach, 2017),
or Thinking in Java, 4th Edition (Prentice Hall, 2006). It’s okay if the
book covers an older version of Java—even Java 1.3 is fine. Then come

back to this certification study guide.

This chapter covers the fundamentals of Java. You’ll better understand
the Java environments and benefits of Java. You’ll also see how to
define and run a Java class and learn about packages.

Learning About the Java Environment
The Java environment consists of understanding a number of
technologies. In the following sections, we will go over the key terms
and acronyms you need to know for the exam and then discuss what
software you need to study for the exam.

Major Components of Java
The Java Development Kit (JDK) contains the minimum software you
need to do Java development. Key pieces include the compiler (javac),
which converts .java files to .class files, and the launcher java, which
creates the virtual machine and executes the program. We will use
both later in this chapter when running programs at the command
line. The JDK also contains other tools including the archiver (jar)
command, which can package files together, and the API
documentation (javadoc) command for generating documentation.

The javac program generates instructions in a special format that the
java command can run called bytecode. Then java launches the Java
Virtual Machine (JVM) before running the code. The JVM knows how
to run bytecode on the actual machine it is on. You can think of the
JVM as a special magic box on your machine that knows how to run
your .class file.

Where Did the JRE Go?
In previous versions of Java, you could download a Java Runtime
Environment (JRE) instead of the full JDK. The JRE was a subset
of the JDK that was used for running a program but could not
compile one. It was literally a subset. In fact, if you looked inside
the directory structure of a JDK in older versions of Java, you
would see a folder named jre.

In Java 11, the JRE is no longer available as a stand-alone
download or a subdirectory of the JDK. People can use the full JDK
when running a Java program. Alternatively, developers can
supply an executable that contains the required pieces that would

have been in the JRE. The jlink command creates this executable.

While the JRE is not in scope for the exam, knowing what changed
may help you eliminate wrong answers.

When writing a program, there are common pieces of functionality
and algorithms that developers need. Luckily, we do not have to write
each of these ourselves. Java comes with a large suite of application
programming interfaces (APIs) that you can use. For example, there
is a StringBuilder class to create a large String and a method in
Collections to sort a list. When writing a program, it is helpful to look
what pieces of your assignment can be accomplished by existing APIs.

You might have noticed that we said the JDK contains the minimum
software you need. Many developers use an integrated development
environment (IDE) to make writing and running code easier. While we
do not recommend using one while studying for the exam, it is still
good to know that they exist. Common Java IDEs include Eclipse,
IntelliJ IDEA, and NetBeans.

Downloading a JDK
Every six months, the version number of Java gets incremented. Java
11 came out in September 2018. This means that Java 11 will not be the
latest version when you download the JDK to study for the exam.
However, you should still use Java 11 to study with since this is a Java
11 exam. The rules and behavior can change with later versions of
Java. You wouldn’t want to get a question wrong because you studied
with a different version of Java!

Every three years, Oracle has a long-term support (LTS) release.
Unlike non-LTS versions that are supported for only six months, LTS
releases have patches and upgrades available for at least three years.
Even after the next LTS, Java 17, comes out, be sure to use Java 11 to
study for the Java 11 certification exam.

Oracle changed the licensing model for its JDK. While this

isn’t on the exam, you can read more about the licensing changes

and other JDKs from the links on our book’s website:

http://www.selikoff.net/ocp11-1/

We recommend using the Oracle distribution of Java 11 to study for
this exam. Note that Oracle’s JDK is free for personal use as well as
other scenarios. Alternatively, you can use OpenJDK, which is based
on the same source code.

The Oracle distribution requires you to register for an

Oracle account if you don’t already have one. This is the same
Oracle account you will use to get your exam scores, so you will
have to do this at some point anyway.

http://www.selikoff.net/ocp11-1/

Identifying Benefits of Java
Java has some key benefits that you’ll need to know for the exam.

Object Oriented Java is an object-oriented language, which means
all code is defined in classes, and most of those classes can be
instantiated into objects. We’ll discuss this more throughout the book.
Many languages before Java were procedural, which meant there were
routines or methods but no classes. Another common approach is
functional programming. Java allows for functional programming
within a class, but object-oriented is still the main organization of
code.

Encapsulation Java supports access modifiers to protect data from
unintended access and modification. Most people consider
encapsulation to be an aspect of object-oriented languages. Since the
exam objectives call attention to it specifically, so do we. In fact,
Chapter 7, “Methods and Encapsulation,” covers it extensively.

Platform Independent Java is an interpreted language that gets
compiled to bytecode. A key benefit is that Java code gets compiled
once rather than needing to be recompiled for different operating
systems. This is known as “write once, run everywhere.” The
portability allows you to easily share pre-compiled pieces of software.
When studying for the 1Z0-816 exam, you’ll learn that it is possible to
write code that throws an exception in some environments, but not
others. For example, you might refer to a file in a specific directory. If
you get asked about running Java on different operating systems on
the 1Z0-815 exam, the answer is that the same class files run
everywhere.

Robust One of the major advantages of Java over C++ is that it
prevents memory leaks. Java manages memory on its own and does
garbage collection automatically. Bad memory management in C++ is
a big source of errors in programs.

Simple Java was intended to be simpler to understand than C++. In
addition to eliminating pointers, it got rid of operator overloading. In
C++, you could write a + b and have it mean almost anything.

Secure Java code runs inside the JVM. This creates a sandbox that
makes it hard for Java code to do evil things to the computer it is
running on. On the 1Z0-816 exam, there is even an exam objective for
security.

Multithreaded Java is designed to allow multiple pieces of code to
run at the same time. There are also many APIs to facilitate this task.
You’ll learn about some of them when studying for the 1Z0-816 exam.

Backward Compatibility The Java language architects pay careful
attention to making sure old programs will work with later versions of
Java. While this doesn’t always occur, changes that will break
backward compatibility occur slowly and with notice. Deprecation is a
technique to accomplish this where code is flagged to indicate it
shouldn’t be used. This lets developers know a different approach is
preferred so they can start changing the code.

Understanding the Java Class Structure
In Java programs, classes are the basic building blocks. When defining
a class, you describe all the parts and characteristics of one of those
building blocks. To use most classes, you have to create objects. An
object is a runtime instance of a class in memory. An object is often
referred to as an instance since it represents a single representation of
the class. All the various objects of all the different classes represent
the state of your program. A reference is a variable that points to an
object.

In the following sections, we’ll look at fields, methods, and comments.
We’ll also explore the relationship between classes and files.

Fields and Methods
Java classes have two primary elements: methods, often called
functions or procedures in other languages, and fields, more generally
known as variables. Together these are called the members of the
class. Variables hold the state of the program, and methods operate on
that state. If the change is important to remember, a variable stores
that change. That’s all classes really do. It’s the programmer who
creates and arranges these elements in such a way that the resulting
code is useful and, ideally, easy for other programmers to understand.

Other building blocks include interfaces, which you’ll learn about in
Chapter 9, “Advanced Class Design,” and enums, which you’ll learn
about in detail when you study for the 1Z0-816 exam.

The simplest Java class you can write looks like this:

1: public class Animal {

2: }

Java calls a word with special meaning a keyword. Other classes can
use this class since there is a public keyword on line 1. The class
keyword indicates you’re defining a class. Animal gives the name of the
class. Granted, this isn’t an interesting class, so let’s add your first
field.

1: public class Animal {

2: String name;

3: }

The line numbers aren’t part of the program; they’re just

there to make the code easier to talk about.

On line 2, we define a variable named name. We also define the type of
that variable to be a String. A String is a value that we can put text
into, such as "this is a string". String is also a class supplied with
Java. Next you can add methods.

1: public class Animal {

2: String name;

3: public String getName() {

4: return name;

5: }

6: public void setName(String newName) {

7: name = newName;

8: }

9: }

On lines 3–5, you’ve defined your first method. A method is an
operation that can be called. Again, public is used to signify that this
method may be called from other classes. Next comes the return type
—in this case, the method returns a String. On lines 6–8 is another
method. This one has a special return type called void. The void
keyword means that no value at all is returned. This method requires
information be supplied to it from the calling method; this
information is called a parameter. The setName() method has one
parameter named newName, and it is of type String. This means the
caller should pass in one String parameter and expect nothing to be
returned.

Two pieces of the method are special. The method name and
parameter types are called the method signature. In this example, can
you identify the method name and parameters?

public int numberVisitors(int month)

The method name is numberVisitors. There’s one parameter named
month, which is of type int, which is a numeric type.

The method declaration consists of additional information such as the
return type. In this example, the return type is int.

Comments
Another common part of the code is called a comment. Because
comments aren’t executable code, you can place them in many places.
Comments can make your code easier to read. You won’t see many
comments on the exam since the exam creators are trying to make the
code harder to read. You will see them in this book as we explain the
code. And we hope you use them in your own code. There are three
types of comments in Java. The first is called a single-line comment:

// comment until end of line

A single-line comment begins with two slashes. The compiler ignores
anything you type after that on the same line. Next comes the
multiple-line comment:

/* Multiple

 * line comment

 */

A multiple-line comment (also known as a multiline comment)
includes anything starting from the symbol /* until the symbol */.
People often type an asterisk (*) at the beginning of each line of a
multiline comment to make it easier to read, but you don’t have to.
Finally, we have a Javadoc comment:

/**

 * Javadoc multiple-line comment

 * @author Jeanne and Scott

 */

This comment is similar to a multiline comment except it starts with
/**. This special syntax tells the Javadoc tool to pay attention to the
comment. Javadoc comments have a specific structure that the
Javadoc tool knows how to read. You probably won’t see a Javadoc
comment on the exam. Just remember it exists so you can read up on

it online when you start writing programs for others to use.

As a bit of practice, can you identify which type of comment each of
the following six words is in? Is it a single-line or a multiline
comment?

/*

 * // anteater

 */

// bear

// // cat

// /* dog */

/* elephant */

/*

 * /* ferret */

 */

Did you look closely? Some of these are tricky. Even though comments
technically aren’t on the exam, it is good to practice to look at code
carefully.

OK, on to the answers. The comment containing anteater is in a
multiline comment. Everything between /* and */ is part of a multiline
comment—even if it includes a single-line comment within it! The
comment containing bear is your basic single-line comment. The
comments containing cat and dog are also single-line comments.
Everything from // to the end of the line is part of the comment, even
if it is another type of comment. The comment containing elephant is
your basic multiline comment.

The line with ferret is interesting in that it doesn’t compile.
Everything from the first /* to the first */ is part of the comment,
which means the compiler sees something like this:

/* */ */

We have a problem. There is an extra */. That’s not valid syntax—a
fact the compiler is happy to inform you about.

Classes vs. Files
Most of the time, each Java class is defined in its own .java file. It is
usually public, which means any code can call it. Interestingly, Java

does not require that the class be public. For example, this class is just
fine:

1: class Animal {

2: String name;

3: }

You can even put two classes in the same file. When you do so, at most
one of the classes in the file is allowed to be public. That means a file
containing the following is also fine:

1: public class Animal {

2: private String name;

3: }

4: class Animal2 {

5: }

If you do have a public class, it needs to match the filename. The
declaration public class Animal2 would not compile in a file named
Animal.java. In Chapter 7, we will discuss what access options are
available other than public.

Writing a main() Method
A Java program begins execution with its main() method. A main()
method is the gateway between the startup of a Java process, which is
managed by the Java Virtual Machine (JVM), and the beginning of the
programmer’s code. The JVM calls on the underlying system to
allocate memory and CPU time, access files, and so on. In this section,
you will learn how to create a main() method, pass a parameter, and
run a program both with and without the javac step.

Checking Your Version of Java
Before we go any further, please take this opportunity to ensure
you have the right version of Java on your path.

javac -version

java -version

Both of these commands should include a version number that
begins with the number 11.

Creating a main() Method
The main() method lets the JVM call our code. The simplest possible
class with a main() method looks like this:

1: public class Zoo {

2: public static void main(String[] args) {

3:

4: }

5: }

This code doesn’t do anything useful (or harmful). It has no
instructions other than to declare the entry point. It does illustrate, in
a sense, that what you can put in a main() method is arbitrary. Any
legal Java code will do. In fact, the only reason we even need a class
structure to start a Java program is because the language requires it.
To compile and execute this code, type it into a file called Zoo.java and
execute the following:

javac Zoo.java

java Zoo

If you don’t get any error messages, you were successful. If you do get
error messages, check that you’ve installed the Java 11 JDK, that you
have added it to the PATH, and that you didn’t make any typos in the
example. If you have any of these problems and don’t know what to
do, post a question with the error message you received in the
Beginning Java forum at CodeRanch (www.coderanch.com/forums/f-
33/java).

To compile Java code, the file must have the extension .java. The
name of the file must match the name of the class. The result is a file of
bytecode by the same name, but with a .class filename extension.
Remember that bytecode consists of instructions that the JVM knows
how to execute. Notice that we must omit the .class extension to run
Zoo.java.

The rules for what a Java code file contains, and in what order, are
more detailed than what we have explained so far (there is more on
this topic later in the chapter). To keep things simple for now, we’ll
follow this subset of the rules:

Each file can contain only one public class.

The filename must match the class name, including case, and
have a .java extension.

Suppose we replace line 3 in Zoo.java with the following:

3: System.out.println("Welcome!");

When we compile and run the code again, we’ll get the line of output
that matches what’s between the quotes. In other words, the program
will output Welcome!.

Let’s first review the words in the main() method’s signature, one at a
time. The keyword public is what’s called an access modifier. It
declares this method’s level of exposure to potential callers in the
program. Naturally, public means anyplace in the program. You’ll
learn more about access modifiers in Chapter 7.

The keyword static binds a method to its class so it can be called by

http://www.coderanch.com/forums/f-33/java

just the class name, as in, for example, Zoo.main(). Java doesn’t need
to create an object to call the main() method—which is good since you
haven’t learned about creating objects yet! In fact, the JVM does this,
more or less, when loading the class name given to it. If a main()
method isn’t present in the class we name with the .java executable,
the process will throw an error and terminate. Even if a main() method
is present, Java will throw an exception if it isn’t static. A nonstatic
main() method might as well be invisible from the point of view of the
JVM. You’ll see static again in Chapter 7.

The keyword void represents the return type. A method that returns
no data returns control to the caller silently. In general, it’s good
practice to use void for methods that change an object’s state. In that
sense, the main() method changes the program state from started to
finished. We will explore return types in Chapter 7 as well. (Are you
excited for Chapter 7 yet?)

Finally, we arrive at the main() method’s parameter list, represented as
an array of java.lang.String objects. In practice, you can write any of
the following:

String[] args

String args[]

String... args;

The compiler accepts any of these. The variable name args hints that
this list contains values that were read in (arguments) when the JVM
started. The characters [] are brackets and represent an array. An
array is a fixed-size list of items that are all of the same type. The
characters ... are called varargs (variable argument lists). You will
learn about String in Chapter 2, “Java Building Blocks.” Arrays and
varargs will follow in Chapter 5, “Core Java APIs.”

While the previous example used the common args parameter name,
you can use any valid variable name you like. The following three are
also allowed:

String[] options

String options []

String... options;

Passing Parameters to a Java Program
Let’s see how to send data to our program’s main() method. First we
modify the Zoo program to print out the first two arguments passed in:

public class Zoo {

 public static void main(String[] args) {

 System.out.println(args[0]);

 System.out.println(args[1]);

 }

}

The code args[0] accesses the first element of the array. That’s right:
array indexes begin with 0 in Java. To run it, type this:

javac Zoo.java

java Zoo Bronx Zoo

The output is what you might expect:

Bronx

Zoo

The program correctly identifies the first two “words” as the
arguments. Spaces are used to separate the arguments. If you want
spaces inside an argument, you need to use quotes as in this example:

javac Zoo.java

java Zoo "San Diego" Zoo

Now we have a space in the output:

San Diego

Zoo

To see if you follow that, what do you think this outputs?

javac Zoo.java

java Zoo San Diego Zoo

The answer is two lines. The first one is San, and the second is Diego.
Since the program doesn’t read from args[2], the third element (Zoo)
is ignored.

All command-line arguments are treated as String objects, even if they

represent another data type like a number:

javac Zoo.java

java Zoo Zoo 2

No matter. You still get the values output as String values. In Chapter
2, you’ll learn how to convert String values to numbers.

Zoo

2

Finally, what happens if you don’t pass in enough arguments?

javac Zoo.java

java Zoo Zoo

Reading args[0] goes fine, and Zoo is printed out. Then Java panics.
There’s no second argument! What to do? Java prints out an exception
telling you it has no idea what to do with this argument at position 1.
(You’ll learn about exceptions in Chapter 10, “Exceptions.”)

Zoo

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: Index 1 out of bounds

for length 1

 at Zoo.main(Zoo.java:4)

To review, the JDK contains a compiler. Java class files run on the
JVM and therefore run on any machine with Java rather than just the
machine or operating system they happened to have been compiled
on.

Running a Program in One Line
Starting in Java 11, you can run a program without compiling it first—
well, without typing the javac command that is. Let’s create a new
class:

public class SingleFileZoo {

 public static void main(String[] args) {

 System.out.println("Single file: " + args[0]);

 }

}

We can run our SingleFileZoo example without actually having to
compile it.

java SingleFileZoo.java Cleveland

Notice how this command passes the name of the Java file. When we
compiled earlier, we wrote java Zoo. When running it as a one-liner,
we write java SingleFileZoo.java. This is a key difference. After you
first compiled with javac, you then passed the java command the
name of the class. When running it directly, you pass the java
command the name of the file. This feature is called launching single-
file source-code programs. The name cleverly tells you that it can be
used only if your program is one file. This means if your program has
two .java files, you still need to use javac. By contrast, you cannot use
this new feature for a single-file program with two classes in it. In fact,
you can’t refer to any .class files that didn’t come with the JDK.

Now, suppose you have a class with invalid syntax in it. What do you
think happens when we run java Learning.java?

public class Learning {

 public static void main(String[] args) {

 UhOh; // DOES NOT COMPILE

 System.out.println("This works!");

 }

}

Java is still a compiled language, which means the code is being
compiled in memory and the java command can give you a compiler
error.

Learning.java:3: error: not a statement

 UhOh; // DOES NOT COMPILE

 ^

1 error

error: compilation failed

Notice how we said “in memory.” Even if the code compiles properly,
no .class file is created. This faster way of launching single-file
source-code programs will save you time as you study for the exam.
You’ll be writing a lot of tiny programs. Having to write one line to run
them instead of two will be a relief! However, compiling your code in

advance using javac will result in the program running faster, and you
will definitely want to do that for real programs.

Table 1.1 highlights the differences between this new feature and the
traditional way of compiling. You’ll learn about imports in the next
section, but for now, just know they are a way of using code written by
others.

Table 1.1 Running programs

Full command Single-file source-code
command

javac HelloWorld.java

java HelloWorld

java HelloWorld.java

Produces a class file Fully in memory
For any program For programs with one class
Can import code in any available
Java library

Can only import code that came
with the JDK

Understanding Package Declarations and
Imports
Java comes with thousands of built-in classes, and there are countless
more from developers like you. With all those classes, Java needs a
way to organize them. It handles this in a way similar to a file cabinet.
You put all your pieces of paper in folders. Java puts classes in
packages. These are logical groupings for classes.

We wouldn’t put you in front of a file cabinet and tell you to find a
specific paper. Instead, we’d tell you which folder to look in. Java
works the same way. It needs you to tell it which packages to look in to
find code.

Suppose you try to compile this code:

public class ImportExample {

 public static void main(String[] args) {

 Random r = new Random(); // DOES NOT COMPILE

 System.out.println(r.nextInt(10));

 }

}

The Java compiler helpfully gives you an error that looks like this:

Random cannot be resolved to a type

This error could mean you made a typo in the name of the class. You
double-check and discover that you didn’t. The other cause of this
error is omitting a needed import statement. Import statements tell
Java which packages to look in for classes. Since you didn’t tell Java
where to look for Random, it has no clue.

Trying this again with the import allows you to compile.

import java.util.Random; // import tells us where to find Random

public class ImportExample {

 public static void main(String[] args) {

 Random r = new Random();

 System.out.println(r.nextInt(10)); // print a number 0-9

 }

}

Now the code runs; it prints out a random number between 0 and 9.
Just like arrays, Java likes to begin counting with 0.

As you can see in the previous example, Java classes are grouped into
packages. The import statement tells the compiler which package to
look in to find a class. This is similar to how mailing a letter works.
Imagine you are mailing a letter to 123 Main St., Apartment 9. The
mail carrier first brings the letter to 123 Main St. Then she looks for
the mailbox for apartment number 9. The address is like the package
name in Java. The apartment number is like the class name in Java.
Just as the mail carrier only looks at apartment numbers in the
building, Java only looks for class names in the package.

Package names are hierarchical like the mail as well. The postal service
starts with the top level, looking at your country first. You start
reading a package name at the beginning too. If it begins with java or
javax, this means it came with the JDK. If it starts with something
else, it likely shows where it came from using the website name in
reverse. For example, com.amazon.javabook tells us the code came from
Amazon.com. After the website name, you can add whatever you want.
For example, com.amazon.java.my.name also came from Amazon.com.
Java calls more detailed packages child packages. The package
com.amazon.javabook is a child package of com.amazon. You can tell
because it’s longer and thus more specific.

You’ll see package names on the exam that don’t follow this
convention. Don’t be surprised to see package names like a.b.c. The
rule for package names is that they are mostly letters or numbers
separated by periods (.). Technically, you’re allowed a couple of other
characters between the periods (.). The rules are the same as for
variable names, which you’ll see in Chapter 2. The exam may try to
trick you with invalid variable names. Luckily, it doesn’t try to trick
you by giving invalid package names.

In the following sections, we’ll look at imports with wildcards, naming
conflicts with imports, how to create a package of your own, and how
the exam formats code.

Wildcards

http://Amazon.com

Classes in the same package are often imported together. You can use
a shortcut to import all the classes in a package.

import java.util.*; // imports java.util.Random among other

things

public class ImportExample {

 public static void main(String[] args) {

 Random r = new Random();

 System.out.println(r.nextInt(10));

 }

}

In this example, we imported java.util.Random and a pile of other
classes. The * is a wildcard that matches all classes in the package.
Every class in the java.util package is available to this program when
Java compiles it. It doesn’t import child packages, fields, or methods; it
imports only classes. (There is a special type of import called the static
import that imports other types, which you’ll learn more about in
Chapter 7.)

You might think that including so many classes slows down your
program execution, but it doesn’t. The compiler figures out what’s
actually needed. Which approach you choose is personal preference—
or team preference if you are working with others on a team. Listing
the classes used makes the code easier to read, especially for new
programmers. Using the wildcard can shorten the import list. You’ll
see both approaches on the exam.

Redundant Imports
Wait a minute! We’ve been referring to System without an import, and
Java found it just fine. There’s one special package in the Java world
called java.lang. This package is special in that it is automatically
imported. You can type this package in an import statement, but you
don’t have to. In the following code, how many of the imports do you
think are redundant?

1: import java.lang.System;

2: import java.lang.*;

3: import java.util.Random;

4: import java.util.*;

5: public class ImportExample {

6: public static void main(String[] args) {

7: Random r = new Random();

8: System.out.println(r.nextInt(10));

9: }

10: }

The answer is that three of the imports are redundant. Lines 1 and 2
are redundant because everything in java.lang is automatically
considered to be imported. Line 4 is also redundant in this example
because Random is already imported from java.util.Random. If line 3
wasn’t present, java.util.* wouldn’t be redundant, though, since it
would cover importing Random.

Another case of redundancy involves importing a class that is in the
same package as the class importing it. Java automatically looks in the
current package for other classes.

Let’s take a look at one more example to make sure you understand
the edge cases for imports. For this example, Files and Paths are both
in the package java.nio.file. You don’t need to memorize this
package for the 1Z0-815 exam (but you should know it for the 1Z0-816
exam). When testing your understanding of packages and imports, the
1Z0-815 exam may use packages you may never have seen before. The
question will let you know which package the class is in if you need to
know that in order to answer the question.

What imports do you think would work to get this code to compile?

public class InputImports {

 public void read(Files files) {

 Paths.get("name");

 }

}

There are two possible answers. The shorter one is to use a wildcard to
import both at the same time.

import java.nio.file.*;

The other answer is to import both classes explicitly.

import java.nio.file.Files;

import java.nio.file.Paths;

Now let’s consider some imports that don’t work.

import java.nio.*; // NO GOOD - a wildcard only matches

 // class names, not "file.Files"

import java.nio.*.*; // NO GOOD - you can only have one

wildcard

 // and it must be at the end

import java.nio.file.Paths.*; // NO GOOD - you cannot import

methods

 // only class names

Naming Conflicts
One of the reasons for using packages is so that class names don’t have
to be unique across all of Java. This means you’ll sometimes want to
import a class that can be found in multiple places. A common
example of this is the Date class. Java provides implementations of
java.util.Date and java.sql.Date. This is another example where you
don’t need to know the package names for the 1Z0-815 exam—they will
be provided to you. What import could we use if we want the
java.util.Date version?

public class Conflicts {

 Date date;

 // some more code

}

The answer should be easy by now. You can write either import
java.util.*; or import java.util.Date;. The tricky cases come about
when other imports are present.

import java.util.*;

import java.sql.*; // causes Date declaration to not compile

When the class is found in multiple packages, Java gives you a
compiler error.

error: reference to Date is ambiguous

 Date date;

 ^

 both class java.sql.Date in java.sql and class java.util.Date

in java.util match

In our example, the solution is easy—remove the import
java.sql.Date that we don’t need. But what do we do if we need a
whole pile of other classes in the java.sql package?

import java.util.Date;

import java.sql.*;

Ah, now it works. If you explicitly import a class name, it takes
precedence over any wildcards present. Java thinks, “The programmer
really wants me to assume use of the java.util.Date class.”

One more example. What does Java do with “ties” for precedence?

import java.util.Date;

import java.sql.Date;

Java is smart enough to detect that this code is no good. As a
programmer, you’ve claimed to explicitly want the default to be both
the java.util.Date and java.sql.Date implementations. Because there
can’t be two defaults, the compiler tells you the following:

error: reference to Date is ambiguous

 Date date;

 ^

 both class java.util.Date in java.util and class java.sql.Date

in java.sql match

If You Really Need to Use Two Classes with the Same Name
Sometimes you really do want to use Date from two different
packages. When this happens, you can pick one to use in the import
and use the other’s fully qualified class name [the package name, a
period (.), and the class name] to specify that it’s special. Here’s an
example:

import java.util.Date;

public class Conflicts {

 Date date;

 java.sql.Date sqlDate;

}

Or you could have neither with an import and always use the fully
qualified class name.

public class Conflicts {

 java.util.Date date;

 java.sql.Date sqlDate;

}

Creating a New Package
Up to now, all the code we’ve written in this chapter has been in the
default package. This is a special unnamed package that you should
use only for throwaway code. You can tell the code is in the default
package, because there’s no package name. On the exam, you’ll see the
default package used a lot to save space in code listings. In real life,
always name your packages to avoid naming conflicts and to allow
others to reuse your code.

Now it’s time to create a new package. The directory structure on your
computer is related to the package name. In this section, just read
along. We will cover how to compile and run the code in the next
section.

Suppose we have these two classes in the C:\temp directory:

package packagea;

public class ClassA {

}

package packageb;

import packagea.ClassA;

public class ClassB {

 public static void main(String[] args) {

 ClassA a;

 System.out.println("Got it");

 }

}

When you run a Java program, Java knows where to look for those
package names. In this case, running from C:\temp works because both
packagea and packageb are underneath it.

What do you think happens if you run java packageb/ClassB.java?
This does not work. Remember that you can use the java command to
run a file directly only when that program is contained within a single
file. Here, ClassB.java relies on ClassA.

Compiling and Running Code with Packages
You’ll learn Java much more easily by using the command line to
compile and test your examples. Once you know the Java syntax well,
you can switch to an IDE. But for the exam, your goal is to know
details about the language and not have the IDE hide them for you.

Follow this example to make sure you know how to use the command
line. If you have any problems following this procedure, post a
question in the Beginning Java forum at CodeRanch
(www.coderanch.com/forums/f-33/java). Describe what you tried and
what the error said.

The first step is to create the two files from the previous section. Table
1.2 shows the expected fully qualified filenames and the command to
get into the directory for the next steps.

Table 1.2 Setup procedure by operating system

Step Windows Mac/Linux

1. Create
first
class.

C:\temp\packagea\ClassA.java /tmp/packagea/ClassA.java

2. Create
second
class.

C:\temp\packageb\ClassB.java /tmp/packageb/ClassB.java

3. Go to
directory.

cd C:\temp cd /tmp

Now it is time to compile the code. Luckily, this is the same regardless
of the operating system. To compile, type the following command:

javac packagea/ClassA.java packageb/ClassB.java

http://www.coderanch.com/forums/f-33/java

If this command doesn’t work, you’ll get an error message. Check your
files carefully for typos against the provided files. If the command does
work, two new files will be created: packagea/ClassA.class and
packageb/ClassB.class.

Compiling with Wildcards
You can use an asterisk to specify that you’d like to include all Java
files in a directory. This is convenient when you have a lot of files
in a package. We can rewrite the previous javac command like this:

javac packagea/*.java packageb/*.java

However, you cannot use a wildcard to include subdirectories. If
you were to write javac *.java, the code in the packages would not
be picked up.

Now that your code has compiled, you can run it by typing the
following command:

java packageb.ClassB

If it works, you’ll see Got it printed. You might have noticed that we
typed ClassB rather than ClassB.class. As discussed earlier, you don’t
pass the extension when running a program.

Figure 1.1 shows where the .class files were created in the directory
structure.

Figure 1.1 Compiling with packages

Using an Alternate Directory
By default, the javac command places the compiled classes in the
same directory as the source code. It also provides an option to place
the class files into a different directory. The -d option specifies this
target directory.

Java options are case sensitive. This means you cannot

pass -D instead of -d.

If you are following along, delete the ClassA.class and ClassB.class
files that were created in the previous section.

Where do you think this command will create the file ClassA.class?

javac -d classes packagea/ClassA.java packageb/ClassB.java

The correct answer is classes/packagea/ClassA.class. The package
structure is preserved under the requested target directory. Figure 1.2
shows this new structure.

Figure 1.2 Compiling with packages and directories

To run the program, you specify the classpath so Java knows where to
find the classes. There are three options you can use. All three of these
do the same thing:

java -cp classes packageb.ClassB

java -classpath classes packageb.ClassB

java --class-path classes packageb.ClassB

Notice that the last one requires two dashes (--), while the first two

require one dash (-). If you have the wrong number of dashes, the
program will not run.

Three Classpath Options
You might wonder why there are three options for the classpath.
The -cp option is the short form. Developers frequently choose the
short form because we are lazy typists. The -classpath and --
class-path versions can be clearer to read but require more typing.
The exam can use any of these, so be sure to learn all three.

Table 1.3 and Table 1.4 review the options you need to know for the
exam. In Chapter 11, “Modules,” you will learn additional options
specific to modules.

Table 1.3 Options you need to know for the exam: javac

Option Description

-cp <classpath>

-classpath

<classpath>

--class-path

<classpath>

Location of classes needed to compile the
program

-d <dir> Directory to place generated class files

Table 1.4 Options you need to know for the exam: java

Option Description

-cp <classpath>

-classpath <classpath>

--class-path

<classpath>

Location of classes needed to run the
program

Compiling with JAR Files
Just like the classes directory in the previous example, you can also

specify the location of the other files explicitly using a classpath. This
technique is useful when the class files are located elsewhere or in
special JAR files. A Java archive (JAR) file is like a zip file of mainly
Java class files.

On Windows, you type the following:

java -cp ".;C:\temp\someOtherLocation;c:\temp\myJar.jar"

myPackage.MyClass

And on macOS/Linux, you type this:

java -cp ".:/tmp/someOtherLocation:/tmp/myJar.jar"

myPackage.MyClass

The period (.) indicates you want to include the current directory in
the classpath. The rest of the command says to look for loose class files
(or packages) in someOtherLocation and within myJar.jar. Windows
uses semicolons (;) to separate parts of the classpath; other operating
systems use colons.

Just like when you’re compiling, you can use a wildcard (*) to match
all the JARs in a directory. Here’s an example:

java -cp "C:\temp\directoryWithJars*" myPackage.MyClass

This command will add all the JARs to the classpath that are in
directoryWithJars. It won’t include any JARs in the classpath that are
in a subdirectory of directoryWithJars.

Creating a JAR File
Some JARs are created by others, such as those downloaded from the
Internet or created by a teammate. Alternatively, you can create a JAR
file yourself. To do so, you use the jar command. The simplest
commands create a jar containing the files in the current directory.
You can use the short or long form for each option.

jar -cvf myNewFile.jar .

jar --create --verbose --file myNewFile.jar .

Alternatively, you can specify a directory instead of using the current
directory.

jar -cvf myNewFile.jar -C dir .

There is no long form of the -C option. Table 1.5 lists the options you
need to use the jar command to create a jar file. In Chapter 11, you
will learn another option specific to modules.

Table 1.5 Options you need to know for the exam: jar

Option Description

-c

--create

Creates a new JAR file

-v

--verbose

Prints details when working with JAR files

-f <fileName>

--file

<fileName>

JAR filename

-C <directory> Directory containing files to be used to create the
JAR

Running a Program in One Line with Packages
You can use single-file source-code programs from within a package as
long as they rely only on classes supplied by the JDK. This code meets
the criteria.

package singleFile;

import java.util.*;

public class Learning {

 private ArrayList list;

 public static void main(String[] args) {

 System.out.println("This works!");

 }

}

You can run either of these commands:

java Learning.java // from within the singleFile

directory

java singleFile/Learning.java // from the directory above

singleFile

Ordering Elements in a Class
Now that you’ve seen the most common parts of a class, let’s take a
look at the correct order to type them into a file. Comments can go
anywhere in the code. Beyond that, you need to memorize the rules in
Table 1.6.

Table 1.6 Order for declaring a class

Element Example Required? Where does it go?
Package
declaration

package abc; No First line in the file

Import
statements

import

java.util.*;

No Immediately after the
package (if present)

Class
declaration

public class

C

Yes Immediately after the
import (if any)

Field
declarations

int value; No Any top-level element in a
class

Method
declarations

void method() No Any top-level element in a
class

Let’s look at a few examples to help you remember this. The first
example contains one of each element:

package structure; // package must be first non-comment

import java.util.*; // import must come after package

public class Meerkat { // then comes the class

 double weight; // fields and methods can go in either

order

 public double getWeight() {

 return weight; }

 double height; // another field - they don't need to be

together

}

So far, so good. This is a common pattern that you should be familiar
with. How about this one?

/* header */

package structure;

// class Meerkat

public class Meerkat { }

Still good. We can put comments anywhere, and imports are optional.
In the next example, we have a problem:

import java.util.*;

package structure; // DOES NOT COMPILE

String name; // DOES NOT COMPILE

public class Meerkat { } // DOES NOT COMPILE

There are two problems here. One is that the package and import
statements are reversed. Though both are optional, package must come
before import if present. The other issue is that a field attempts a
declaration outside a class. This is not allowed. Fields and methods
must be within a class.

Got all that? Think of the acronym PIC (picture): package, import, and
class. Fields and methods are easier to remember because they merely
have to be inside a class.

You need to know one more thing about class structure for the 1Z0-815
exam: multiple classes can be defined in the same file, but only one of
them is allowed to be public. The public class matches the name of the
file. For example, these two classes must be in a file named
Meerkat.java:

1: public class Meerkat { }

2: class Paw { }

A file is also allowed to have neither class be public. As long as there
isn’t more than one public class in a file, it is okay.

Now you know how to create and arrange a class. Later chapters will
show you how to create classes with more powerful operations.

Code Formatting on the Exam
Not all questions will include package declarations and imports. Don’t
worry about missing package statements or imports unless you are
asked about them. The following are common cases where you don’t
need to check the imports:

Code that begins with a class name

Code that begins with a method declaration

Code that begins with a code snippet that would normally be
inside a class or method

Code that has line numbers that don’t begin with 1

This point is so important that we are going to reinforce it with an
example. Does this code compile?

public class MissingImports {

 Date date;

 public void today() {}

}

Yes! The question was not about imports, so you have to assume that
import java.util is present.

On the other hand, a question that asks you about packages, imports,
or the correct order of elements in a class is giving you clues that the
question is virtually guaranteed to be testing you on these topics! Also
note that imports will be not removed to save space if the package
statement is present. This is because imports go after the package
statement.

You’ll see code that doesn’t have a main() method. When this happens,
assume any necessary plumbing code like the main() method and class
definition were written correctly. You’re just being asked if the part of
the code you’re shown compiles when dropped into valid surrounding
code.

Another thing the exam does to save space is to merge code on the
same line. You should expect to see code like the following and to be

asked whether it compiles. (You’ll learn about ArrayList in Chapter 5
—assume that part is good for now.)

6: public void getLetter(ArrayList list) {

7: if (list.isEmpty()) { System.out.println("e");

8: } else { System.out.println("n");

9: } }

The answer here is that it does compile because the line break between
the if statement and println() is not necessary. Additionally, you still
get to assume the necessary class definition and imports are present.
Now, what about this one? Does it compile?

1: public class LineNumbers {

2: public void getLetter(ArrayList list) {

3: if (list.isEmpty()) { System.out.println("e");

4: } else { System.out.println("n");

5: } } }

For this one, you would answer “Does not compile.” Since the code
begins with line 1, you don’t get to assume that valid imports were
provided earlier. The exam will let you know what package classes are
in unless they’re covered in the objectives. You’ll be expected to know
that ArrayList is in java.util—at least you will once you get to
Chapter 5 of this book!

Remember that extra whitespace doesn’t matter in Java

syntax. The exam may use varying amounts of whitespace to trick
you.

Summary
The Java Development Kit (JDK) is used to do software development.
It contains the compiler (javac), which turns source code into
bytecode. It also contains the Java Virtual Machine (JVM) launcher
(java), which launches the JVM and then calls the code. Application
programming interfaces (APIs) are available to call reusable pieces of
code.

Java code is object-oriented, meaning all code is defined in classes.
Access modifiers allow classes to encapsulate data. Java is platform
independent, compiling to bytecode. It is robust and simple by not
providing pointers or operator overloading. Java is secure because it
runs inside a virtual machine. Finally, the language facilitates
multithreaded programming and strives for backward compatibility.

Java classes consist of members called fields and methods. An object is
an instance of a Java class. There are three styles of comments: a
single-line comment (//), a multiline comment (/* */), and a Javadoc
comment (/** */).

Java begins program execution with a main() method. The most
common signature for this method run from the command line is
public static void main(String[] args). Arguments are passed in
after the class name, as in java NameOfClass firstArgument.
Arguments are indexed starting with 0.

Java code is organized into folders called packages. To reference
classes in other packages, you use an import statement. A wildcard
ending an import statement means you want to import all classes in
that package. It does not include packages that are inside that one. The
package java.lang is special in that it does not need to be imported.

For some class elements, order matters within the file. The package
statement comes first if present. Then come the import statements if
present. Then comes the class declaration. Fields and methods are
allowed to be in any order within the class.

Exam Essentials
Identify benefits of Java. Benefits of Java include object-oriented
design, encapsulation, platform independence, robustness, simplicity,
security, multithreading, and backward compatibility.

Define common acronyms. The JDK stands for Java Development
Kit and contains the compiler and JVM launcher. The JVM stands for
Java Virtual Machine, and it runs bytecode. API is an application
programming interface, which is code that you can call.

Be able to write code using a main() method. A main() method
is usually written as public static void main(String[] args).
Arguments are referenced starting with args[0]. Accessing an
argument that wasn’t passed in will cause the code to throw an
exception.

Understand the effect of using packages and imports.
Packages contain Java classes. Classes can be imported by class name
or wildcard. Wildcards do not look at subdirectories. In the event of a
conflict, class name imports take precedence.

Be able to recognize misplaced statements in a class. Package
and import statements are optional. If present, both go before the class
declaration in that order. Fields and methods are also optional and are
allowed in any order within the class declaration.

Review Questions
1. Which of the following are true statements? (Choose all that

apply.)

A. Java allows operator overloading.

B. Java code compiled on Windows can run on Linux.

C. Java has pointers to specific locations in memory.

D. Java is a procedural language.

E. Java is an object-oriented language.

F. Java is a functional programming language.

2. Which of the following are true? (Choose all that apply.)

A. javac compiles a .class file into a .java file.

B. javac compiles a .java file into a .bytecode file.

C. javac compiles a .java file into a .class file.

D. java accepts the name of the class as a parameter.

E. java accepts the filename of the .bytecode file as a parameter.

F. java accepts the filename of the .class file as a parameter.

3. Which of the following are true if this command completes
successfully? (Choose all that apply.)

java MyProgram.java

A. A .class file is created.

B. MyProgram can reference classes in the package
com.sybex.book.

C. MyProgram can reference classes in the package java.lang.

D. MyProgram can reference classes in the package java.util.

E. None of the above. The program needs to be run as java
MyProgram.

4. Given the following classes, which of the following can
independently replace INSERT IMPORTS HERE to make the code
compile? (Choose all that apply.)

package aquarium;

public class Tank { }

package aquarium.jellies;

public class Jelly { }

package visitor;

INSERT IMPORTS HERE

public class AquariumVisitor {

  public void admire(Jelly jelly) { } }

A. import aquarium.*;

B. import aquarium.*.Jelly;

C. import aquarium.jellies.Jelly;

D. import aquarium.jellies.*;

E. import aquarium.jellies.Jelly.*;

F. None of these can make the code compile.

5. Which are included in the JDK? (Choose all that apply.)

A. javac

B. Eclipse

C. JVM

D. javadoc

E. jar

F. None of the above

6. Given the following classes, what is the maximum number of

imports that can be removed and have the code still compile?

package aquarium;

public class Water { }

package aquarium;

import java.lang.*;

import java.lang.System;

import aquarium.Water;

import aquarium.*;

public class Tank {

public void print(Water water) {

System.out.println(water); } }

A. 0

B. 1

C. 2

D. 3

E. 4

F. Does not compile

7. Given the following classes, which of the following snippets can
independently be inserted in place of INSERT IMPORTS HERE and
have the code compile? (Choose all that apply.)

package aquarium;

public class Water {

boolean salty = false;

}

package aquarium.jellies;

public class Water {

boolean salty = true;

}

package employee;

INSERT IMPORTS HERE

public class WaterFiller {

Water water;

}

A. import aquarium.*;

B. import aquarium.Water;

import aquarium.jellies.*;

A. import aquarium.*;

import aquarium.jellies.Water;

A. import aquarium.*;

import aquarium.jellies.*;

A. import aquarium.Water;

import aquarium.jellies.Water;

A. None of these imports can make the code compile.

8. Given the following command, which of the following classes
would be included for compilation? (Choose all that apply.)

javac *.java

A. Hyena.java

B. Warthog.java

C. land/Hyena.java

D. land/Warthog.java

E. Hyena.groovy

F. Warthog.groovy

9. Given the following class, which of the following calls print out
Blue Jay? (Choose all that apply.)

public class BirdDisplay {

public static void main(String[] name) {

System.out.println(name[1]);

} }

A. java BirdDisplay Sparrow Blue Jay

B. java BirdDisplay Sparrow "Blue Jay"

C. java BirdDisplay Blue Jay Sparrow

D. java BirdDisplay "Blue Jay" Sparrow

E. java BirdDisplay.class Sparrow "Blue Jay"

F. java BirdDisplay.class "Blue Jay" Sparrow

10. Which of the following are legal entry point methods that can be
run from the command line? (Choose all that apply.)

A. private static void main(String[] args)

B. public static final main(String[] args)

C. public void main(String[] args)

D. public static void test(String[] args)

E. public static void main(String[] args)

F. public static main(String[] args)

11. Which of the following are true statements about Java? (Choose
all that apply.)

A. Bug-free code is guaranteed.

B. Deprecated features are never removed.

C. Multithreaded code is allowed.

D. Security is a design goal.

E. Sideways compatibility is a design goal.

12. Which options are valid on the javac command without
considering module options? (Choose all that apply.)

A. -c

B. -C

C. -cp

D. -CP

E. -d

F. -f

G. -p

13. Which options are valid on the java command without
considering module options? (Choose all that apply.)

A. -c

B. -C

C. -cp

D. -d

E. -f

F. -p

14. Which options are valid on the jar command without considering
module options? (Choose all that apply.)

A. -c

B. -C

C. -cp

D. -d

E. -f

F. -p

15. What does the following code output when run as java Duck Duck
Goose?

public class Duck {

public void main(String[] args) {

for (int i = 1; i <= args.length; i++)

System.out.println(args[i]);

} }

A. Duck Goose

B. Duck ArrayIndexOutOfBoundsException

C. Goose

D. Goose ArrayIndexOutOfBoundsException

E. None of the above

16. Suppose we have the following class in the file
/my/directory/named/A/Bird.java. Which of the answer options
replaces INSERT CODE HERE when added independently if we
compile from /my/directory? (Choose all that apply.)

INSERT CODE HERE

public class Bird { }

A. package my.directory.named.a;

B. package my.directory.named.A;

C. package named.a;

D. package named.A;

E. package a;

F. package A;

17. Which of the following are true? (Choose all that apply.)

public class Bunny {

public static void main(String[] x) {

Bunny bun = new Bunny();

} }

A. Bunny is a class.

B. bun is a class.

C. main is a class.

D. Bunny is a reference to an object.

E. bun is a reference to an object.

F. main is a reference to an object.

G. The main() method doesn’t run because the parameter name
is incorrect.

18. Which answer options represent the order in which the following
statements can be assembled into a program that will compile
successfully? (Choose all that apply.)

X: class Rabbit {}

Y: import java.util.*;

Z: package animals;

A. X, Y, Z

B. Y, Z, X

C. Z, Y, X

D. Y, X

E. Z, X

F. X, Z

19. Which are not available for download from Oracle for Java 11?
(Choose all that apply.)

A. JDK

B. JRE

C. Eclipse

D. All of these are available from Oracle.

20. Which are valid ways to specify the classpath when compiling?
(Choose all that apply.)

A. -cp

B. -classpath

C. --classpath

D. -class-path

E. --class-path

Chapter 2
Java Building Blocks
OCP exam objectives covered in this chapter:

 Working With Java Primitive Data Types and String
APIs

Declare and initialize variables (including casting and
promoting primitive data types)

Identify the scope of variables

Use local variable type inference

 Describing and Using Objects and Classes

Declare and instantiate Java objects, and explain objects’
lifecycles (including creation, dereferencing by reassignment,
and garbage collection)

Read or write to object fields

As the old saying goes, you have to learn how to walk
before you can run. Likewise, you have to learn the basics of Java
before you can build complex programs. In this chapter, we’ll be
presenting the basic structure of Java classes, variables, and data
types, along with the aspects of each that you need to know for the
exam. For example, you might use Java every day but be unaware you
cannot create a variable called 3dMap or this. The exam expects you to
know and understand the rules behind these principles. While most of
this chapter should be review, there may be aspects of the Java
language that are new to you since they don’t come up in practical use
often.

Creating Objects
Our programs wouldn’t be able to do anything useful if we didn’t have
the ability to create new objects. Remember from Chapter 1, “Welcome
to Java,” that an object is an instance of a class. In the following
sections, we’ll look at constructors, object fields, instance initializers,
and the order in which values are initialized.

Calling Constructors
To create an instance of a class, all you have to do is write new before
the class name and add parentheses after it. Here’s an example:

Park p = new Park();

First you declare the type that you’ll be creating (Park) and give the
variable a name (p). This gives Java a place to store a reference to the
object. Then you write new Park() to actually create the object.

Park() looks like a method since it is followed by parentheses. It’s
called a constructor, which is a special type of method that creates a
new object. Now it’s time to define a constructor of your own:

public class Chick {

 public Chick() {

 System.out.println("in constructor");

 }

}

There are two key points to note about the constructor: the name of
the constructor matches the name of the class, and there’s no return
type. You’ll likely see a method like this on the exam:

public class Chick {

 public void Chick() { } // NOT A CONSTRUCTOR

}

When you see a method name beginning with a capital letter and
having a return type, pay special attention to it. It is not a constructor
since there’s a return type. It’s a regular method that does compile but
will not be called when you write new Chick().

The purpose of a constructor is to initialize fields, although you can
put any code in there. Another way to initialize fields is to do so
directly on the line on which they’re declared. This example shows
both approaches:

public class Chicken {

 int numEggs = 12; // initialize on line

 String name;

 public Chicken() {

 name = "Duke"; // initialize in constructor

 }

}

For most classes, you don’t have to code a constructor—the compiler
will supply a “do nothing” default constructor for you. There are some
scenarios that do require you declare a constructor. You’ll learn all
about them in Chapter 8, “Class Design.”

Some classes provide built-in methods that allow you to

create new instances without using a constructor or the new
keyword. For example, in Chapter 5, “Core Java APIs,” you’ll create
instances of Integer using the valueOf() method. Methods like this
will often use new with a constructor in their method definition. For
the exam, remember that anytime a constructor is used, the new
keyword is required.

Reading and Writing Member Fields
It’s possible to read and write instance variables directly from the
caller. In this example, a mother swan lays eggs:

public class Swan {

 int numberEggs; // instance

variable

 public static void main(String[] args) {

 Swan mother = new Swan();

 mother.numberEggs = 1; // set variable

 System.out.println(mother.numberEggs); // read variable

 }

}

The “caller” in this case is the main() method, which could be in the
same class or in another class. Reading a variable is known as getting
it. The class gets numberEggs directly to print it out. Writing to a
variable is known as setting it. This class sets numberEggs to 1.

In Chapter 7, “Methods and Encapsulation,” you’ll learn how to use
encapsulation to protect the Swan class from having someone set a
negative number of eggs.

You can even read values of already initialized fields on a line
initializing a new field:

1: public class Name {

2: String first = "Theodore";

3: String last = "Moose";

4: String full = first + last;

5: }

Lines 2 and 3 both write to fields. Line 4 both reads and writes data. It
reads the fields first and last. It then writes the field full.

Executing Instance Initializer Blocks
When you learned about methods, you saw braces ({}). The code
between the braces (sometimes called “inside the braces”) is called a
code block. Anywhere you see braces is a code block.

Sometimes code blocks are inside a method. These are run when the
method is called. Other times, code blocks appear outside a method.
These are called instance initializers. In Chapter 7, you’ll learn how to
use a static initializer.

How many blocks do you see in the following example? How many
instance initializers do you see?

1: public class Bird {

2: public static void main(String[] args) {

3: { System.out.println("Feathers"); }

4: }

5: { System.out.println("Snowy"); }

6: }

There are four code blocks in this example: a class definition, a
method declaration, an inner block, and an instance initializer.
Counting code blocks is easy: you just count the number of pairs of
braces. If there aren’t the same number of open ({) and close (})
braces or they aren’t defined in the proper order, the code doesn’t
compile. For example, you cannot use a closed brace (}) if there’s no
corresponding open brace ({) that it matches written earlier in the
code. In programming, this is referred to as the balanced parentheses
problem, and it often comes up in job interview questions.

When you’re counting instance initializers, keep in mind that they
cannot exist inside of a method. Line 5 is an instance initializer, with
its braces outside a method. On the other hand, line 3 is not an
instance initializer, as only called when the main() method is executed.
There is one additional set of braces on lines 1 and 6 that constitute
the class declaration.

Following Order of Initialization
When writing code that initializes fields in multiple places, you have to
keep track of the order of initialization. This is simply the order in
which different methods, constructors, or blocks are called when an
instance of the class is created. We’ll add some more rules to the order
of initialization in Chapter 8. In the meantime, you need to remember:

Fields and instance initializer blocks are run in the order in which
they appear in the file.

The constructor runs after all fields and instance initializer blocks
have run.

Let’s look at an example:

1: public class Chick {

2: private String name = "Fluffy";

3: { System.out.println("setting field"); }

4: public Chick() {

5: name = "Tiny";

6: System.out.println("setting constructor");

7: }

8: public static void main(String[] args) {

9: Chick chick = new Chick();

10: System.out.println(chick.name); } }

Running this example prints this:

setting field

setting constructor

Tiny

Let’s look at what’s happening here. We start with the main() method
because that’s where Java starts execution. On line 9, we call the
constructor of Chick. Java creates a new object. First it initializes name
to "Fluffy" on line 2. Next it executes the println() statement in the
instance initializer on line 3. Once all the fields and instance
initializers have run, Java returns to the constructor. Line 5 changes
the value of name to "Tiny", and line 6 prints another statement. At this
point, the constructor is done, and then the execution goes back to the
println() statement on line 10.

Order matters for the fields and blocks of code. You can’t refer to a
variable before it has been defined:

{ System.out.println(name); } // DOES NOT COMPILE

private String name = "Fluffy";

You should expect to see a question about initialization on the exam.
Let’s try one more. What do you think this code prints out?

public class Egg {

 public Egg() {

 number = 5;

 }

 public static void main(String[] args) {

 Egg egg = new Egg();

 System.out.println(egg.number);

 }

 private int number = 3;

 { number = 4; } }

If you answered 5, you got it right. Fields and blocks are run first in
order, setting number to 3 and then 4. Then the constructor runs,
setting number to 5. You will see a lot more of rules and examples
covering order of initialization in Chapter 8.

Understanding Data Types
Java applications contain two types of data: primitive types and
reference types. In this section, we’ll discuss the differences between a
primitive type and a reference type.

Using Primitive Types
Java has eight built-in data types, referred to as the Java primitive
types. These eight data types represent the building blocks for Java
objects, because all Java objects are just a complex collection of these
primitive data types. That said, a primitive is not an object in Java nor
does it represent an object. A primitive is just a single value in
memory, such as a number or character.

The Primitive Types
The exam assumes you are well versed in the eight primitive data
types, their relative sizes, and what can be stored in them. Table 2.1
shows the Java primitive types together with their size in bits and the
range of values that each holds.

Table 2.1 Primitive types

Keyword Type Example
boolean true or false true

byte 8-bit integral value 123

short 16-bit integral value 123

int 32-bit integral value 123

long 64-bit integral value 123L

float 32-bit floating-point value 123.45f

double 64-bit floating-point value 123.456

char 16-bit Unicode value 'a'

Is String a Primitive?

No, it is not. That said, String is often mistaken for a ninth
primitive because Java includes built-in support for String literals
and operators. You’ll learn more about String in Chapter 5, but for
now just remember they are objects, not primitives.

There’s a lot of information in Table 2.1. Let’s look at some key points:

The float and double types are used for floating-point (decimal)
values.

A float requires the letter f following the number so Java knows
it is a float.

The byte, short, int, and long types are used for numbers without
decimal points. In mathematics, these are all referred to as
integral values, but in Java, int and Integer refer to specific types.

Each numeric type uses twice as many bits as the smaller similar
type. For example, short uses twice as many bits as byte does.

All of the numeric types are signed in Java. This means that they
reserve one of their bits to cover a negative range. For example,
byte ranges from -128 to 127. You might be surprised that the
range is not -128 to 128. Don’t forget, 0 needs to be accounted for
too in the range.

You won’t be asked about the exact sizes of most of these types,
although you should know that a byte can hold a value from –128 to
127.

Signed and Unsigned: short and char
For the exam, you should be aware that short and char are closely
related, as both are stored as integral types with the same 16-bit
length. The primary difference is that short is signed, which means
it splits its range across the positive and negative integers.
Alternatively, char is unsigned, which means range is strictly
positive including 0. Therefore, char can hold a higher positive
numeric value than short, but cannot hold any negative numbers.

The compiler allows them to be used interchangeably in some
cases, as shown here:

short bird = 'd';

char mammal = (short)83;

Printing each variable displays the value associated with their type.

System.out.println(bird); // Prints 100

System.out.println(mammal); // Prints S

This usage is not without restriction, though. If you try to set a
value outside the range of short or char, the compiler will report an
error.

short reptile = 65535; // DOES NOT COMPILE

char fish = (short)-1; // DOES NOT COMPILE

Both of these examples would compile if their data types were
swapped because the values would then be within range for their
type. You’ll learn more about casting in Chapter 3, “Operators.”

So you aren’t stuck memorizing data type ranges, let’s look at how
Java derives it from the number of bits. A byte is 8 bits. A bit has two
possible values. (These are basic computer science definitions that you
should memorize.) 28 is 2 × 2 = 4 × 2 = 8 × 2 = 16 × 2 = 32 × 2 = 64 ×
2 = 128 × 2 = 256. Since 0 needs to be included in the range, Java takes
it away from the positive side. Or if you don’t like math, you can just
memorize it.

Floating-Point Numbers and Scientific Notation
While integer values like short and int are relatively easy to
calculate the range for, floating-point values like double and float
are decidedly not. In most computer systems, floating-point
numbers are stored in scientific notation. This means the numbers
are stored as two numbers, a and b, of the form a x 10b.

This notation allows much larger values to be stored, at the cost of
accuracy. For example, you can store a value of 3 x 10200 in a

double, which would require a lot more than 8 bytes if every digit
were stored without scientific notation (84 bytes in case you were
wondering). To accomplish this, you only store the first dozen or so
digits of the number. The name scientific notation comes from
science, where often only the first few significant digits are
required for a calculation.

Don’t worry, for the exam you are not required to know scientific
notation or how floating-point values are stored.

The number of bits is used by Java when it figures out how much
memory to reserve for your variable. For example, Java allocates 32
bits if you write this:

int num;

Writing Literals
There are a few more things you should know about numeric
primitives. When a number is present in the code, it is called a literal.
By default, Java assumes you are defining an int value with a numeric
literal. In the following example, the number listed is bigger than what
fits in an int. Remember, you aren’t expected to memorize the
maximum value for an int. The exam will include it in the question if
it comes up.

long max = 3123456789; // DOES NOT COMPILE

Java complains the number is out of range. And it is—for an int.
However, we don’t have an int. The solution is to add the character L
to the number:

long max = 3123456789L; // now Java knows it is a long

Alternatively, you could add a lowercase l to the number. But please
use the uppercase L. The lowercase l looks like the number 1.

Another way to specify numbers is to change the “base.” When you
learned how to count, you studied the digits 0–9. This numbering
system is called base 10 since there are 10 numbers. It is also known as
the decimal number system. Java allows you to specify digits in

several other formats:

Octal (digits 0–7), which uses the number 0 as a prefix—for
example, 017

Hexadecimal (digits 0–9 and letters A–F/a–f), which uses 0x or 0X
as a prefix—for example, 0xFF, 0xff, 0XFf. Hexadecimal is case
insensitive so all of these examples mean the same value.

Binary (digits 0–1), which uses the number 0 followed by b or B as
a prefix—for example, 0b10, 0B10

You won’t need to convert between number systems on the exam.
You’ll have to recognize valid literal values that can be assigned to
numbers.

Literals and the Underscore Character
The last thing you need to know about numeric literals is that you can
have underscores in numbers to make them easier to read:

int million1 = 1000000;

int million2 = 1_000_000;

We’d rather be reading the latter one because the zeros don’t run
together. You can add underscores anywhere except at the beginning
of a literal, the end of a literal, right before a decimal point, or right
after a decimal point. You can even place multiple underscore
characters next to each other, although we don’t recommend it.

Let’s look at a few examples:

double notAtStart = _1000.00; // DOES NOT COMPILE

double notAtEnd = 1000.00_; // DOES NOT COMPILE

double notByDecimal = 1000_.00; // DOES NOT COMPILE

double annoyingButLegal = 1_00_0.0_0; // Ugly, but compiles

double reallyUgly = 1__________2; // Also compiles

Using Reference Types
A reference type refers to an object (an instance of a class). Unlike
primitive types that hold their values in the memory where the
variable is allocated, references do not hold the value of the object they
refer to. Instead, a reference “points” to an object by storing the

memory address where the object is located, a concept referred to as a
pointer. Unlike other languages, Java does not allow you to learn what
the physical memory address is. You can only use the reference to refer
to the object.

Let’s take a look at some examples that declare and initialize reference
types. Suppose we declare a reference of type java.util.Date and a
reference of type String:

java.util.Date today;

String greeting;

The today variable is a reference of type Date and can only point to a
Date object. The greeting variable is a reference that can only point to
a String object. A value is assigned to a reference in one of two ways:

A reference can be assigned to another object of the same or
compatible type.

A reference can be assigned to a new object using the new
keyword.

For example, the following statements assign these references to new
objects:

today = new java.util.Date();

greeting = new String("How are you?");

The today reference now points to a new Date object in memory, and
today can be used to access the various fields and methods of this Date
object. Similarly, the greeting reference points to a new String object,
"How are you?". The String and Date objects do not have names and
can be accessed only via their corresponding reference. Figure 2.1
shows how the reference types appear in memory.

Figure 2.1 An object in memory can be accessed only via a reference.

Distinguishing between Primitives and Reference Types
There are a few important differences you should know between
primitives and reference types. First, reference types can be assigned
null, which means they do not currently refer to an object. Primitive
types will give you a compiler error if you attempt to assign them null.
In this example, value cannot point to null because it is of type int:

int value = null; // DOES NOT COMPILE

String s = null;

But what if you don’t know the value of an int and want to assign it to
null? In that case, you should use a numeric wrapper class, such as
Integer, instead of int. Wrapper classes will be covered in Chapter 5.

Next, reference types can be used to call methods, assuming the
reference is not null. Primitives do not have methods declared on
them. In this example, we can call a method on reference since it is of

a reference type. You can tell length is a method because it has () after
it. See if you can understand why the following snippet does not
compile:

4: String reference = "hello";

5: int len = reference.length();

6: int bad = len.length(); // DOES NOT COMPILE

Line 6 is gibberish. No methods exist on len because it is an int
primitive. Primitives do not have methods. Remember, a String is not
a primitive, so you can call methods like length() on a String
reference, as we did on line 5.

Finally, notice that all the primitive types have lowercase type names.
All classes that come with Java begin with uppercase. Although not
required, it is a standard practice, and you should follow this
convention for classes you create as well.

Declaring Variables
You’ve seen some variables already. A variable is a name for a piece of
memory that stores data. When you declare a variable, you need to
state the variable type along with giving it a name. For example, the
following code declares two variables. One is named zooName and is of
type String. The other is named numberAnimals and is of type int.

String zooName;

int numberAnimals;

Now that we’ve declared a variable, we can give it a value. This is
called initializing a variable. To initialize a variable, you just type the
variable name followed by an equal sign, followed by the desired value:

zooName = "The Best Zoo";

numberAnimals = 100;

Since you often want to initialize a variable right away, you can do so
in the same statement as the declaration. For example, here we merge
the previous declarations and initializations into more concise code:

String zooName = "The Best Zoo";

int numberAnimals = 100;

In the following sections, we’ll look at how to properly define variables
in one or multiple lines.

Identifying Identifiers
It probably comes as no surprise to you that Java has precise rules
about identifier names. An identifier is the name of a variable,
method, class, interface, or package. Luckily, the rules for identifiers
for variables apply to all of the other types that you are free to name.

There are only four rules to remember for legal identifiers:

Identifiers must begin with a letter, a $ symbol, or a _ symbol.

Identifiers can include numbers but not start with them.

Since Java 9, a single underscore _ is not allowed as an identifier.

You cannot use the same name as a Java reserved word. A
reserved word is special word that Java has held aside so that you
are not allowed to use it. Remember that Java is case sensitive, so
you can use versions of the keywords that only differ in case.
Please don’t, though.

Don’t worry—you won’t need to memorize the full list of reserved
words. The exam will only ask you about ones that are commonly
used, such as class and for. Table 2.2 lists all of the reserved words in
Java.

Table 2.2 Reserved words
abstract assert boolean break byte

case catch char class const*

continue default do double else

enum extends false** final finally

float for goto* if implements

import instanceof int interface long

native new null** package private

protected public return Short static

strictfp super switch synchronized this

throw throws transient true** try

void volatile while _ (underscore)

* The reserved words const and goto aren’t actually used in Java. They are reserved so that
people coming from other programming languages don’t use them by accident—and in theory,
in case Java wants to use them one day.

** true/false/null are not actually reserved words, but literal values. Since they cannot be
used as identifier names, we include them in this table.

Prepare to be tested on these rules. The following examples are legal:

long okidentifier;

float $OK2Identifier;

boolean _alsoOK1d3ntifi3r;

char __SStillOkbutKnotsonice$;

These examples are not legal:

int 3DPointClass; // identifiers cannot begin with a number

byte hollywood@vine; // @ is not a letter, digit, $ or _

String *$coffee; // * is not a letter, digit, $ or _

double public; // public is a reserved word

short _; // a single underscore is not allowed

Style: camelCase
Although you can do crazy things with identifier names, please don’t.
Java has conventions so that code is readable and consistent. This
consistency includes camel case, often written as camelCase for
emphasis. In camelCase, the first letter of each word is capitalized.

The camelCase format makes identifiers easier to read. Which would
you rather read: Thisismyclass name or ThisIsMyClass name? The exam
will mostly use common conventions for identifiers, but not always.
When you see a nonstandard identifier, be sure to check if it is legal. If
it’s not, you get to mark the answer “does not compile” and skip
analyzing everything else in the question.

Identifiers in the Real World
Most Java developers follow these conventions for identifier
names:

Method and variable names are written in camelCase with the
first letter being lowercase.

Class and interface names are written in camelCase with the
first letter being uppercase. Also, don’t start any class name
with $, as the compiler uses this symbol for some files.

Also, know that valid letters in Java are not just characters in the
English alphabet. Java supports the Unicode character set, so there
are thousands of characters that can start a legal Java identifier.
Some are non-Arabic numerals that may appear after the first
character in a legal identifier. Luckily, you don’t have to worry
about memorizing those for the exam. If you are in a country that
doesn’t use the English alphabet, this is useful to know for a job.

Style: snake_case

Another style you might see both on the exam and in the real world or
in other languages is called snake case, often written as snake_case for
emphasis. It simply uses an underscore (_) to separate words, often
entirely in lowercase. The previous example would be written as
this_is_my_class name in snake_case.

While both camelCase and snake_case are perfectly valid

syntax in Java, the development community functions better when
everyone adopts the same style convention. With that in mind,
Oracle (and Sun before it) recommends everyone use camelCase
for class and variable names. There are some exceptions, though.
Constant static final values are often written in snake_case, such
as THIS_IS_A_CONSTANT. In addition, enum values tend to be written
with snake_case, as in Color.RED, Color.DARK_GRAY, and so on.

Declaring Multiple Variables
You can also declare and initialize multiple variables in the same
statement. How many variables do you think are declared and
initialized in the following example?

void sandFence() {

 String s1, s2;

 String s3 = "yes", s4 = "no";

}

Four String variables were declared: s1, s2, s3, and s4. You can declare
many variables in the same declaration as long as they are all of the
same type. You can also initialize any or all of those values inline. In
the previous example, we have two initialized variables: s3 and s4. The
other two variables remain declared but not yet initialized.

This is where it gets tricky. Pay attention to tricky things! The exam
will attempt to trick you. Again, how many variables do you think are
declared and initialized in the following code?

void paintFence() {

 int i1, i2, i3 = 0;

}

As you should expect, three variables were declared: i1, i2, and i3.
However, only one of those values was initialized: i3. The other two
remain declared but not yet initialized. That’s the trick. Each snippet
separated by a comma is a little declaration of its own. The
initialization of i3 only applies to i3. It doesn’t have anything to do
with i1 or i2 despite being in the same statement. As you will see in
the next section, you can’t actually use i1 or i2 until they have been
initialized.

Another way the exam could try to trick you is to show you code like
this line:

int num, String value; // DOES NOT COMPILE

This code doesn’t compile because it tries to declare multiple variables
of different types in the same statement. The shortcut to declare
multiple variables in the same statement is legal only when they share
a type.

Legal, valid, and compiles are all synonyms in the Java

exam world. We try to use all the terminology you could encounter
on the exam.

To make sure you understand this, see if you can figure out which of
the following are legal declarations:

4: boolean b1, b2;

5: String s1 = "1", s2;

6: double d1, double d2;

7: int i1; int i2;

8: int i3; i4;

The first statement on line 4 is legal. It declares two variables without
initializing them. The second statement on line 5 is also legal. It
declares two variables and initializes only one of them.

The third statement on line 6 is not legal. Java does not allow you to
declare two different types in the same statement. Wait a minute!
Variables d1 and d2 are the same type. They are both of type double.

Although that’s true, it still isn’t allowed. If you want to declare
multiple variables in the same statement, they must share the same
type declaration and not repeat it. double d1, d2; would have been
legal.

The fourth statement on line 7 is legal. Although int does appear
twice, each one is in a separate statement. A semicolon (;) separates
statements in Java. It just so happens there are two completely
different statements on the same line. The fifth statement on line 8 is
not legal. Again, we have two completely different statements on the
same line. The second one on line 8 is not a valid declaration because
it omits the type. When you see an oddly placed semicolon on the
exam, pretend the code is on separate lines and think about whether
the code compiles that way. In this case, the last two lines of code
could be rewritten as follows:

int i1;

int i2;

int i3;

i4;

Looking at the last line on its own, you can easily see that the
declaration is invalid. And yes, the exam really does cram multiple
statements onto the same line—partly to try to trick you and partly to
fit more code on the screen. In the real world, please limit yourself to
one declaration per statement and line. Your teammates will thank
you for the readable code.

Initializing Variables
Before you can use a variable, it needs a value. Some types of variables
get this value set automatically, and others require the programmer to
specify it. In the following sections, we’ll look at the differences
between the defaults for local, instance, and class variables.

Creating Local Variables
A local variable is a variable defined within a constructor, method, or
initializer block. For simplicity, we will focus primarily on local
variables within methods in this section, although the rules for the
others are the same.

Local variables do not have a default value and must be initialized
before use. Furthermore, the compiler will report an error if you try to
read an uninitialized value. For example, the following code generates
a compiler error:

4: public int notValid() {

5: int y = 10;

6: int x;

7: int reply = x + y; // DOES NOT COMPILE

8: return reply;

9: }

The y variable is initialized to 10. However, because x is not initialized
before it is used in the expression on line 7, the compiler generates the
following error:

Test.java:7: variable x might not have been initialized

 int reply = x + y; // DOES NOT COMPILE

 ^

Until x is assigned a value, it cannot appear within an expression, and
the compiler will gladly remind you of this rule. The compiler knows
your code has control of what happens inside the method and can be
expected to initialize values.

The compiler is smart enough to recognize variables that have been
initialized after their declaration but before they are used. Here’s an

example:

public int valid() {

 int y = 10;

 int x; // x is declared here

 x = 3; // and initialized here

 int reply = x + y;

 return reply;

}

The compiler is also smart enough to recognize initializations that are
more complex. In this example, there are two branches of code:

public void findAnswer(boolean check) {

 int answer;

 int otherAnswer;

 int onlyOneBranch;

 if (check) {

 onlyOneBranch = 1;

 answer = 1;

 } else {

 answer = 2;

 }

 System.out.println(answer);

 System.out.println(onlyOneBranch); // DOES NOT COMPILE

}

The answer variable is initialized in both branches of the if statement,
so the compiler is perfectly happy. It knows that regardless of whether
check is true or false, the value answer will be set to something before
it is used. The otherAnswer variable is initialized but never used, but
the compiler is equally as happy. Remember, the compiler is only
concerned if you try to use uninitialized local variables; it doesn’t mind
the ones you never use.

The onlyOneBranch variable is initialized only if check happens to be
true. The compiler knows there is the possibility for check to be false,
resulting in uninitialized code, and gives a compiler error. You’ll learn
more about the if statement in Chapter 4, “Making Decisions.”

On the exam, be wary of any local variable that is declared

but not initialized in a single line. This is a common place on the

exam that could result in a “Does not compile” answer. As you saw
in the previous examples, you are not required to initialize the
variable on the same line it is defined, but be sure to check to make
sure it’s initialized before it’s used on the exam.

Passing Constructor and Method Parameters
Variables passed to a constructor or method are called constructor
parameters or method parameters, respectively. These parameters
are local variables that have been pre-initialized. In other words, they
are local variables that have been initialized before the method is
called, by the caller. The rules for initializing constructor and method
parameters are the same, so we’ll focus primarily on method
parameters.

In the previous example, check is a method parameter.

public void findAnswer(boolean check) {}

Take a look at the following method checkAnswer() in the same class:

public void checkAnswer() {

 boolean value;

 findAnswer(value); // DOES NOT COMPILE

}

The call to findAnswer() does not compile because it tries to use a
variable that is not initialized. While the caller of a method
checkAnswer() needs to be concerned about the variable being
initialized, once inside the method findAnswer(), we can assume the
local variable has been initialized to some value.

Defining Instance and Class Variables
Variables that are not local variables are defined either as instance
variables or as class variables. An instance variable, often called a
field, is a value defined within a specific instance of an object. Let’s say
we have a Person class with an instance variable name of type String.
Each instance of the class would have its own value for name, such as
Elysia or Sarah. Two instances could have the same value for name, but

changing the value for one does not modify the other.

On the other hand, a class variable is one that is defined on the class
level and shared among all instances of the class. It can even be
publicly accessible to classes outside the class without requiring an
instance to use. In our previous Person example, a shared class
variable could be used to represent the list of people at the zoo today.
You can tell a variable is a class variable because it has the keyword
static before it. You’ll learn about this in Chapter 7. For now, just
know that a variable is a class variable if it has the static keyword in
its declaration.

Instance and class variables do not require you to initialize them. As
soon as you declare these variables, they are given a default value.
You’ll need to memorize everything in Table 2.3 except the default
value of char. To make this easier, remember that the compiler doesn’t
know what value to use and so wants the simplest value it can give the
type: null for an object and 0/false for a primitive.

Table 2.3 Default initialization values by type

Variable type Default initialization value
boolean false

byte, short, int, long 0

float, double 0.0

char '\u0000' (NUL)
All object references (everything else) null

Introducing var
Starting in Java 10, you have the option of using the keyword var
instead of the type for local variables under certain conditions. To use
this feature, you just type var instead of the primitive or reference
type. Here’s an example:

public void whatTypeAmI() {

 var name = "Hello";

 var size = 7;

}

The formal name of this feature is local variable type inference. Let’s
take that apart. First comes local variable. This means just what it
sounds like. You can only use this feature for local variables. The exam
may try to trick you with code like this:

public class VarKeyword {

 var tricky = "Hello"; // DOES NOT COMPILE

}

Wait a minute! We just learned the difference between instance and
local variables. The variable tricky is an instance variable. Local
variable type inference works with local variables and not instance
variables.

In Chapter 4, you’ll learn that var can be used in for loops,

and as you’ll see in Chapter 6, “Lambdas and Functional
Interfaces,” with some lambdas as well. In Chapter 10,
“Exceptions,” you’ll also learn that var can be used with try-with-
resources. All of these cases are still internal to a method and
therefore consistent with what you learn in this chapter.

Type Inference of var
Now that you understand the local variable part, it is time to go on to
what type inference means. The good news is that this also means
what it sounds like. When you type var, you are instructing the
compiler to determine the type for you. The compiler looks at the code
on the line of the declaration and uses it to infer the type. Take a look
at this example:

7: public void reassignment() {

8: var number = 7;

9: number = 4;

10: number = "five"; // DOES NOT COMPILE

11: }

On line 8, the compiler determines that we want an int variable. On
line 9, we have no trouble assigning a different int to it. On line 10,
Java has a problem. We’ve asked it to assign a String to an int

variable. This is not allowed. It is equivalent to typing this:

int number = "five";

If you know a language like JavaScript, you might be

expecting var to mean a variable that can take on any type at
runtime. In Java, var is still a specific type defined at compile time.
It does not change type at runtime.

So, the type of var can’t change at runtime, but what about the value?
Take a look at the following code snippet:

var apples = (short)10;

apples = (byte)5;

apples = 1_000_000; // DOES NOT COMPILE

The first line creates a var named apples with a type of short. It then
assigns a byte of 5 to it, but did that change the data type of apples to
byte? Nope! As you will learn in Chapter 3, the byte can be
automatically promoted to a short, because a byte is small enough that
it can fit inside of short. Therefore, the value stored on the second line
is a short. In fact, let’s rewrite the example showing what the compiler
is really doing when it sees the var:

short apples = (short)10;

apples = (byte)5;

apples = 1_000_000; // DOES NOT COMPILE

The last line does not compile, as one million is well beyond the limits
of short. The compiler treats the value as an int and reports an error
indicating it cannot be assigned to apples.

If you didn’t follow that last example, don’t worry, we’ll be covering
numeric promotion and casting in the next chapter. For now, you just
need to know that the value for a var can change after it is declared but
the type never does.

For simplicity when discussing var in the following sections, we are
going to assume a variable declaration statement is completed in a
single line. For example, you could insert a line break between the

variable name and its initialization value, as in the following example:

7: public void breakingDeclaration() {

8: var silly

9: = 1;

10: }

This example is valid and does compile, but we consider the
declaration and initialization of silly to be happening on the same
line.

Examples with var
Let’s go through some more scenarios so the exam doesn’t trick you on
this topic! Do you think the following compiles?

3: public void doesThisCompile(boolean check) {

4: var question;

5: question = 1;

6: var answer;

7: if (check) {

8: answer = 2;

9: } else {

10: answer = 3;

11: }

12: System.out.println(answer);

13: }

The code does not compile. Remember that for local variable type
inference, the compiler looks only at the line with the declaration.
Since question and answer are not assigned values on the lines where
they are defined, the compiler does not know what to make of them.
For this reason, both lines 4 and 6 do not compile.

You might find that strange since both branches of the if/else do
assign a value. Alas, it is not on the same line as the declaration, so it
does not count for var. Contrast this behavior with what we saw a
short while ago when we discussed branching and initializing a local
variable in our findAnswer() method.

Now we know the initial value used to determine the type needs to be
part of the same statement. Can you figure out why these two
statements don’t compile?

4: public void twoTypes() {

5: int a, var b = 3; // DOES NOT COMPILE

6: var n = null; // DOES NOT COMPILE

7: }

Line 5 wouldn’t work even if you replaced var with a real type. All the
types declared on a single line must be the same type and share the
same declaration. We couldn’t write int a, int v = 3; either.
Likewise, this is not allowed:

5: var a = 2, b = 3; // DOES NOT COMPILE

In other words, Java does not allow var in multiple variable
declarations.

Line 6 is a single line. The compiler is being asked to infer the type of
null. This could be any reference type. The only choice the compiler
could make is Object. However, that is almost certainly not what the
author of the code intended. The designers of Java decided it would be
better not to allow var for null than to have to guess at intent.

var and null
While a var cannot be initialized with a null value without a type, it
can be assigned a null value after it is declared, provided that the
underlying data type of the var is an object. Take a look at the
following code snippet:

13: var n = "myData";

14: n = null;

15: var m = 4;

16: m = null; // DOES NOT COMPILE

Line 14 compiles without issue because n is of type String, which is
an object. On the other hand, line 16 does not compile since the
type of m is a primitive int, which cannot be assigned a null value.

It might surprise you to learn that a var can be initialized to a null
value if the type is specified. You’ll learn about casting in Chapter
3, but the following does compile:

17: var o = (String)null;

Since the type is provided, the compiler can apply type inference
and set the type of the var to be String.

Let’s try another example. Do you see why this does not compile?

public int addition(var a, var b) { // DOES NOT COMPILE

 return a + b;

}

In this example, a and b are method parameters. These are not local
variables. Be on the lookout for var used with constructors, method
parameters, or instance variables. Using var in one of these places is a
good exam trick to see if you are paying attention. Remember that var
is only used for local variable type inference!

Time for two more examples. Do you think this is legal?

package var;

public class Var {

 public void var() {

 var var = "var";

 }

 public void Var() {

 Var var = new Var();

 }

}

Believe it or not, this code does compile. Java is not case sensitive, so
Var doesn’t introduce any conflicts as a class name. Naming a local
variable var is legal. Please don’t write code that looks like this at your
job! But understanding why it works will help get you ready for any
tricky exam questions Oracle could throw at you!

There’s one last rule you should be aware of. While var is not a
reserved word and allowed to be used as an identifier, it is considered
a reserved type name. A reserved type name means it cannot be used
to define a type, such as a class, interface, or enum. For example, the
following code snippet does not compile because of the class name:

public class var { // DOES NOT COMPILE

 public var() {

 }

}

We’re sure if the writers of Java had a time machine, they

would likely go back and make var a reserved word in Java 1.0.
They could have made var a reserved word starting in Java 10 or
11, but this would have broken older code where var was used as a
variable name. For a large enough project, making var a reserved
word could involve checking and recompiling millions of lines of
code! On the other hand, since having a class or interface start with
a lowercase letter is considered a bad practice prior to Java 11, they
felt pretty safe marking it as a reserved type name.

It is often inappropriate to use var as the type for every local variable
in your code. That just makes the code difficult to understand. If you
are ever unsure of whether it is appropriate to use var, there are
numerous style guides out there that can help. We recommend the one
titled “Style Guidelines for Local Variable Type Inference in Java,”
which is available at the following location. This resource includes
great style suggestions.

https://openjdk.java.net/projects/amber/LVTIstyle.html

Review of var Rules
We complete this section by summarizing all of the various rules for
using var in your code. Here’s a quick review of the var rules:

1. A var is used as a local variable in a constructor, method, or
initializer block.

2. A var cannot be used in constructor parameters, method
parameters, instance variables, or class variables.

3. A var is always initialized on the same line (or statement) where it
is declared.

4. The value of a var can change, but the type cannot.

5. A var cannot be initialized with a null value without a type.

https://openjdk.java.net/projects/amber/LVTIstyle.html

6. A var is not permitted in a multiple-variable declaration.

7. A var is a reserved type name but not a reserved word, meaning it
can be used as an identifier except as a class, interface, or enum
name.

That’s a lot of rules, but we hope most are pretty straightforward.
Since var is new to Java since the last exam, expect to see it used
frequently on the exam. You’ll also be seeing numerous ways var can
be used throughout this book.

var in the Real World
The var keyword is great for exam authors because it makes it
easier to write tricky code. When you work on a real project, you
want the code to be easy to read.

Once you start having code that looks like the following, it is time
to consider using var:

PileOfPapersToFileInFilingCabinet pileOfPapersToFile =

new PileOfPapersToFileInFilingCabinet();

You can see how shortening this would be an improvement without
losing any information:

var pileOfPapersToFile = new

PileOfPapersToFileInFilingCabinet();

Managing Variable Scope
You’ve learned that local variables are declared within a method. How
many local variables do you see in this example?

public void eat(int piecesOfCheese) {

 int bitesOfCheese = 1;

}

There are two local variables in this method. The bitesOfCheese
variable is declared inside the method. The piecesOfCheese variable is
a method parameter and, as discussed earlier, it is also a local variable.
Both of these variables are said to have a scope local to the method.
This means they cannot be used outside of where they are defined.

Limiting Scope
Local variables can never have a scope larger than the method they are
defined in. However, they can have a smaller scope. Consider this
example:

3: public void eatIfHungry(boolean hungry) {

4: if (hungry) {

5: int bitesOfCheese = 1;

6: } // bitesOfCheese goes out of scope here

7: System.out.println(bitesOfCheese); // DOES NOT COMPILE

8: }

The variable hungry has a scope of the entire method, while variable
bitesOfCheese has a smaller scope. It is only available for use in the if
statement because it is declared inside of it. When you see a set of
braces ({}) in the code, it means you have entered a new block of code.
Each block of code has its own scope. When there are multiple blocks,
you match them from the inside out. In our case, the if statement
block begins at line 4 and ends at line 6. The method’s block begins at
line 3 and ends at line 8.

Since bitesOfCheese is declared in an if statement block, the scope is
limited to that block. When the compiler gets to line 7, it complains
that it doesn’t know anything about this bitesOfCheese thing and gives

an error:

error: cannot find symbol

 System.out.println(bitesOfCheese); // DOES NOT COMPILE

 ^

 symbol: variable bitesOfCheese

Nesting Scope
Remember that blocks can contain other blocks. These smaller
contained blocks can reference variables defined in the larger scoped
blocks, but not vice versa. Here’s an example:

16: public void eatIfHungry(boolean hungry) {

17: if (hungry) {

18: int bitesOfCheese = 1;

19: {

20: var teenyBit = true;

21: System.out.println(bitesOfCheese);

22: }

23: }

24: System.out.println(teenyBit); // DOES NOT COMPILE

25: }

The variable defined on line 18 is in scope until the block ends on line
23. Using it in the smaller block from lines 19 to 22 is fine. The
variable defined on line 20 goes out of scope on line 22. Using it on
line 24 is not allowed.

Tracing Scope
The exam will attempt to trick you with various questions on scope.
You’ll probably see a question that appears to be about something
complex and fails to compile because one of the variables is out of
scope.

Let’s try one. Don’t worry if you aren’t familiar with if statements or
while loops yet. It doesn’t matter what the code does since we are
talking about scope. See if you can figure out on which line each of the
five local variables goes into and out of scope:

11: public void eatMore(boolean hungry, int amountOfFood) {

12: int roomInBelly = 5;

13: if (hungry) {

14: var timeToEat = true;

15: while (amountOfFood > 0) {

16: int amountEaten = 2;

17: roomInBelly = roomInBelly - amountEaten;

18: amountOfFood = amountOfFood - amountEaten;

19: }

20: }

21: System.out.println(amountOfFood);

22: }

The first step in figuring out the scope is to identify the blocks of code.
In this case, there are three blocks. You can tell this because there are
three sets of braces. Starting from the innermost set, we can see where
the while loop’s block starts and ends. Repeat this as we go out for the
if statement block and method block. Table 2.4 shows the line
numbers that each block starts and ends on.

Table 2.4 Tracking scope by block

Line First line in block Last line in block
while 15 19
if 13 20
Method 11 22

Now that we know where the blocks are, we can look at the scope of
each variable. hungry and amountOfFood are method parameters, so
they are available for the entire method. This means their scope is
lines 11 to 22. The variable roomInBelly goes into scope on line 12
because that is where it is declared. It stays in scope for the rest of the
method and so goes out of scope on line 22. The variable timeToEat
goes into scope on line 14 where it is declared. It goes out of scope on
line 20 where the if block ends. Finally, the variable amountEaten goes
into scope on line 16 where it is declared. It goes out of scope on line
19 where the while block ends.

You’ll want to practice this skill a lot! Identifying blocks and variable
scope needs to be second nature for the exam. The good news is that
there are lots of code examples to practice on. You can look at any code
example on any topic in this book and match up braces.

Applying Scope to Classes
All of that was for local variables. Luckily the rule for instance
variables is easier: they are available as soon as they are defined and
last for the entire lifetime of the object itself. The rule for class, aka
static, variables is even easier: they go into scope when declared like
the other variable types. However, they stay in scope for the entire life
of the program.

Let’s do one more example to make sure you have a handle on this.
Again, try to figure out the type of the four variables and when they go
into and out of scope.

1: public class Mouse {

2: final static int MAX_LENGTH = 5;

3: int length;

4: public void grow(int inches) {

5: if (length < MAX_LENGTH) {

6: int newSize = length + inches;

7: length = newSize;

8: }

9: }

10: }

In this class, we have one class variable, MAX_LENGTH; one instance
variable, length; and two local variables, inches and newSize. The
MAX_LENGTH variable is a class variable because it has the static
keyword in its declaration. In this case, MAX_LENGTH goes into scope on
line 2 where it is declared. It stays in scope until the program ends.

Next, length goes into scope on line 3 where it is declared. It stays in
scope as long as this Mouse object exists. inches goes into scope where
it is declared on line 4. It goes out of scope at the end of the method on
line 9. newSize goes into scope where it is declared on line 6. Since it is
defined inside the if statement block, it goes out of scope when that
block ends on line 8.

Reviewing Scope
Got all that? Let’s review the rules on scope:

Local variables: In scope from declaration to end of block

Instance variables: In scope from declaration until object eligible
for garbage collection

Class variables: In scope from declaration until program ends

Not sure what garbage collection is? Relax, that’s our next and final
section for this chapter.

Destroying Objects
Now that we’ve played with our objects, it is time to put them away.
Luckily, the JVM automatically takes care of that for you. Java
provides a garbage collector to automatically look for objects that
aren’t needed anymore.

Remember from Chapter 1, your code isn’t the only process running in
your Java program. Java code exists inside of a Java Virtual Machine
(JVM), which includes numerous processes independent from your
application code. One of the most important of those is a built-in
garbage collector.

All Java objects are stored in your program memory’s heap. The heap,
which is also referred to as the free store, represents a large pool of
unused memory allocated to your Java application. The heap may be
quite large, depending on your environment, but there is always a
limit to its size. After all, there’s no such thing as a computer with
infinite memory. If your program keeps instantiating objects and
leaving them on the heap, eventually it will run out of memory and
crash.

In the following sections, we’ll look at garbage collection.

Garbage Collection in Other Languages
One of the distinguishing characteristics of Java since its very first
version is that it automates performs garbage collection for you. In
fact, other than removing references to an object, there’s very little
you can do to control garbage collection directly in Java.

While garbage collection is pretty standard in most programming
languages now, some languages, such as C, do not have automatic
garbage collection. When a developer finishes using an object in
memory, they have to manually deallocate it so the memory can be
reclaimed and reused.

Failure to properly handle garbage collection can lead to
catastrophic performance and security problems, the most
common of which is for an application to run out of memory.
Another similar problem, though, is if secure data like a credit card
number stays in memory long after it is used and is able to be read
by other programs. Luckily, Java handles a lot of these complex
issues for you.

Understanding Garbage Collection
Garbage collection refers to the process of automatically freeing
memory on the heap by deleting objects that are no longer reachable
in your program. There are many different algorithms for garbage
collection, but you don’t need to know any of them for the exam. If you
are curious, though, one algorithm is to keep a counter on the number
of places an object is accessible at any given time and mark it eligible
for garbage collection if the counter ever reaches zero.

Eligible for Garbage Collection
As a developer, the most interesting part of garbage collection is
determining when the memory belonging to an object can be
reclaimed. In Java and other languages, eligible for garbage collection
refers to an object’s state of no longer being accessible in a program
and therefore able to be garbage collected.

Does this mean an object that’s eligible for garbage collection will be
immediately garbage collected? Definitely not. When the object
actually is discarded is not under your control, but for the exam, you
will need to know at any given moment which objects are eligible for
garbage collection.

Think of garbage-collection eligibility like shipping a package. You can
take an item, seal it in a labeled box, and put it in your mailbox. This is
analogous to making an item eligible for garbage collection. When the
mail carrier comes by to pick it up, though, is not in your control. For
example, it may be a postal holiday or there could be a severe weather
event. You can even call the post office and ask them to come pick it up
right away, but there’s no way to guarantee when and if this will

actually happen. Hopefully, they come by before your mailbox fills
with packages!

As a programmer, the most important thing you can do to limit out-of-
memory problems is to make sure objects are eligible for garbage
collection once they are no longer needed. It is the JVM’s
responsibility to actually perform the garbage collection.

Calling System.gc()
Java includes a built-in method to help support garbage collection that
can be called at any time.

public static void main(String[] args) {

 System.gc();

}

What is the System.gc() command guaranteed to do? Nothing,
actually. It merely suggests that the JVM kick off garbage collection.
The JVM may perform garbage collection at that moment, or it might
be busy and choose not to. The JVM is free to ignore the request.

When is System.gc() guaranteed to be called by the JVM? Never,
actually. While the JVM will likely run it over time as available
memory decreases, it is not guaranteed to ever actually run. In fact,
shortly before a program runs out of memory and throws an
OutOfMemoryError, the JVM will try to perform garbage collection, but
it’s not guaranteed to succeed.

For the exam, you need to know that System.gc() is not guaranteed to
run or do anything, and you should be able to recognize when objects
become eligible for garbage collection.

Tracing Eligibility
How does the JVM know when an object is eligible for garbage
collection? The JVM waits patiently and monitors each object until it
determines that the code no longer needs that memory. An object will
remain on the heap until it is no longer reachable. An object is no
longer reachable when one of two situations occurs:

The object no longer has any references pointing to it.

All references to the object have gone out of scope.

Objects vs. References
Do not confuse a reference with the object that it refers to; they are
two different entities. The reference is a variable that has a name
and can be used to access the contents of an object. A reference can
be assigned to another reference, passed to a method, or returned
from a method. All references are the same size, no matter what
their type is.

An object sits on the heap and does not have a name. Therefore,
you have no way to access an object except through a reference.
Objects come in all different shapes and sizes and consume varying
amounts of memory. An object cannot be assigned to another
object, and an object cannot be passed to a method or returned
from a method. It is the object that gets garbage collected, not its
reference.

Realizing the difference between a reference and an object goes a long
way toward understanding garbage collection, the new operator, and
many other facets of the Java language. Look at this code and see

whether you can figure out when each object first becomes eligible for
garbage collection:

1: public class Scope {

2: public static void main(String[] args) {

3: String one, two;

4: one = new String("a");

5: two = new String("b");

6: one = two;

7: String three = one;

8: one = null;

9: } }

When you get asked a question about garbage collection on the exam,
we recommend you draw what’s going on. There’s a lot to keep track of
in your head, and it’s easy to make a silly mistake trying to keep it all
in your memory. Let’s try it together now. Really. Get a pencil and
paper. We’ll wait.

Got that paper? Okay, let’s get started. On line 3, write one and two
(just the words—no need for boxes or arrows yet since no objects have
gone on the heap yet). On line 4, we have our first object. Draw a box
with the string "a" in it and draw an arrow from the word one to that
box. Line 5 is similar. Draw another box with the string "b" in it this
time and an arrow from the word two. At this point, your work should
look like Figure 2.2.

Figure 2.2 Your drawing after line 5

On line 6, the variable one changes to point to "b". Either erase or
cross out the arrow from one and draw a new arrow from one to "b".
On line 7, we have a new variable, so write the word three and draw an

arrow from three to "b". Notice that three points to what one is
pointing to right now and not what it was pointing to at the beginning.
This is why you are drawing pictures. It’s easy to forget something like
that. At this point, your work should look like Figure 2.3.

Figure 2.3 Your drawing after line 7

Finally, cross out the line between one and "b" since line 8 sets this
variable to null. Now, we were trying to find out when the objects were
first eligible for garbage collection. On line 6, we got rid of the only
arrow pointing to "a", making that object eligible for garbage
collection. "b" has arrows pointing to it until it goes out of scope. This
means "b" doesn’t go out of scope until the end of the method on line
9.

finalize()
Java allows objects to implement a method called finalize(). This
feature can be confusing and hard to use properly. In a nutshell,
the garbage collector would call the finalize() method once. If the
garbage collector didn’t run, there was no call to finalize(). If the
garbage collector failed to collect the object and tried again later,
there was no second call to finalize().

This topic is no longer on the exam. In fact, it is deprecated in
Object as of Java 9, with the official documentation stating, “The
finalization mechanism is inherently problematic.” We mention
the finalize() method in case Oracle happens to borrow from an
old exam question. Just remember that finalize() can run zero or
one times. It cannot run twice.

Summary
In this chapter, we described the building blocks of Java—most
important, what a Java object is, how it is referenced and used, and
how it is destroyed. This chapter lays the foundation for many topics
that we will revisit throughout this book.

For example, we will go into a lot more detail on primitive types and
how to use them in Chapter 3. Creating methods will be covered in
Chapter 7. And in Chapter 8, we will discuss numerous rules for
creating and managing objects. In other words, learn the basics, but
don’t worry if you didn’t follow everything in this chapter. We will go a
lot deeper into many of these topics in the rest of the book.

To begin with, constructors create Java objects. A constructor is a
method matching the class name and omitting the return type. When
an object is instantiated, fields and blocks of code are initialized first.
Then the constructor is run.

Next, primitive types are the basic building blocks of Java types. They
are assembled into reference types. Reference types can have methods
and be assigned to null. Numeric literals are allowed to contain
underscores (_) as long as they do not start or end the literal and are
not next to a decimal point (.).

Declaring a variable involves stating the data type and giving the
variable a name. Variables that represent fields in a class are
automatically initialized to their corresponding 0, null, or false values
during object instantiation. Local variables must be specifically
initialized before they can be used. Identifiers may contain letters,
numbers, $, or _. Identifiers may not begin with numbers. Local
variables may use the var keyword instead of the actual type. When
using var, the type is set once at compile time and does not change.

Moving on, scope refers to that portion of code where a variable can be
accessed. There are three kinds of variables in Java, depending on
their scope: instance variables, class variables, and local variables.
Instance variables are the non-static fields of your class. Class
variables are the static fields within a class. Local variables are

declared within a constructor, method, or initializer block.

Finally, garbage collection is responsible for removing objects from
memory when they can never be used again. An object becomes
eligible for garbage collection when there are no more references to it
or its references have all gone out of scope.

Exam Essentials
Be able to recognize a constructor. A constructor has the same
name as the class. It looks like a method without a return type.

Be able to identify legal and illegal declarations and
initialization. Multiple variables can be declared and initialized in
the same statement when they share a type. Local variables require an
explicit initialization; others use the default value for that type.
Identifiers may contain letters, numbers, $, or _, although they may
not begin with numbers. Also, you cannot define an identifier that is
just a single underscore character _. Numeric literals may contain
underscores between two digits, such as 1_000, but not in other places,
such as _100_.0_. Numeric literals can begin with 1–9, 0, 0x, 0X, 0b, and
0B, with the latter four indicating a change of numeric base.

Be able to use var correctly. A var is used for a local variable inside
a constructor, a method, or an initializer block. It cannot be used for
constructor parameters, method parameters, instance variables, or
class variables. A var is initialized on the same line where it is
declared, and while it can change value, it cannot change type. A var
cannot be initialized with a null value without a type, nor can it be
used in multiple variable declarations. Finally, var is not a reserved
word in Java and can be used as a variable name.

Be able to determine where variables go into and out of
scope. All variables go into scope when they are declared. Local
variables go out of scope when the block they are declared in ends.
Instance variables go out of scope when the object is eligible for
garbage collection. Class variables remain in scope as long as the
program is running.

Know how to identify when an object is eligible for garbage
collection. Draw a diagram to keep track of references and objects as
you trace the code. When no arrows point to a box (object), it is
eligible for garbage collection.

Review Questions
1. Which of the following are valid Java identifiers? (Choose all that

apply.)

A. _

B. _helloWorld$

C. true

D. java.lang

E. Public

F. 1980_s

G. _Q2_

2. What lines are printed by the following program? (Choose all that
apply.)

1: public class WaterBottle {

2: private String brand;

3: private boolean empty;

4: public static float code;

5: public static void main(String[] args) {

6: WaterBottle wb = new WaterBottle();

7: System.out.println("Empty = " + wb.empty);

8: System.out.println("Brand = " + wb.brand);

9: System.out.println("Code = " + code);

10: } }

A. Line 8 generates a compiler error.

B. Line 9 generates a compiler error.

C. Empty =

D. Empty = false

E. Brand =

F. Brand = null

G. Code = 0.0

H. Code = 0f

3. Which of the following code snippets about var compile without
issue when used in a method? (Choose all that apply.)

A. var spring = null;

B. var fall = "leaves";

C. var evening = 2; evening = null;

D. var night = new Object();

E. var day = 1/0;

F. var winter = 12, cold;

G. var fall = 2, autumn = 2;

H. var morning = ""; morning = null;

4. Which of the following statements about the code snippet are
true? (Choose all that apply.)

4: short numPets = 5L;

5: int numGrains = 2.0;

6: String name = "Scruffy";

7: int d = numPets.length();

8: int e = numGrains.length;

9: int f = name.length();

A. Line 4 generates a compiler error.

B. Line 5 generates a compiler error.

C. Line 6 generates a compiler error.

D. Line 7 generates a compiler error.

E. Line 8 generates a compiler error.

F. Line 9 generates a compiler error.

5. Which statements about the following class are true? (Choose all
that apply.)

1: public class River {

2: int Depth = 1;

3: float temp = 50.0;

4: public void flow() {

5: for (int i = 0; i < 1; i++) {

6: int depth = 2;

7: depth++;

8: temp--;

9: }

10: System.out.println(depth);

11: System.out.println(temp); }

12: public static void main(String... s) {

13: new River().flow();

14: } }

A. Line 3 generates a compiler error.

B. Line 6 generates a compiler error.

C. Line 7 generates a compiler error.

D. Line 10 generates a compiler error.

E. The program prints 3 on line 10.

F. The program prints 4 on line 10.

G. The program prints 50.0 on line 11.

H. The program prints 49.0 on line 11.

6. Which of the following are correct? (Choose all that apply.)

A. An instance variable of type float defaults to 0.

B. An instance variable of type char defaults to null.

C. An instance variable of type double defaults to 0.0.

D. An instance variable of type int defaults to null.

E. An instance variable of type String defaults to null.

F. An instance variable of type String defaults to the empty
string "".

G. None of the above

7. Which of the following are correct? (Choose all that apply.)

A. A local variable of type boolean defaults to null.

B. A local variable of type float defaults to 0.0f.

C. A local variable of type double defaults to 0.

D. A local variable of type Object defaults to null.

E. A local variable of type boolean defaults to false.

F. A local variable of type float defaults to 0.0.

G. None of the above

8. Which of the following are true? (Choose all that apply.)

A. A class variable of type boolean defaults to 0.

B. A class variable of type boolean defaults to false.

C. A class variable of type boolean defaults to null.

D. A class variable of type long defaults to null.

E. A class variable of type long defaults to 0L.

F. A class variable of type long defaults to 0.

G. None of the above

9. Which of the following statements about garbage collection are
correct? (Choose all that apply.)

A. Calling System.gc() is guaranteed to free up memory by
destroying objects eligible for garbage collection.

B. Garbage collection runs on a set schedule.

C. Garbage collection allows the JVM to reclaim memory for
other objects.

D. Garbage collection runs when your program has used up half
the available memory.

E. An object may be eligible for garbage collection but never
removed from the heap.

F. An object is eligible for garbage collection once no references
to it are accessible in the program.

G. Marking a variable final means its associated object will
never be garbage collected.

10. Which statements about the following class are correct? (Choose
all that apply.)

1: public class PoliceBox {

2: String color;

3: long age;

4: public void PoliceBox() {

5: color = "blue";

6: age = 1200;

7: }

8: public static void main(String []time) {

9: var p = new PoliceBox();

10: var q = new PoliceBox();

11: p.color = "green";

12: p.age = 1400;

13: p = q;

14: System.out.println("Q1="+q.color);

15: System.out.println("Q2="+q.age);

16: System.out.println("P1="+p.color);

17: System.out.println("P2="+p.age);

18: } }

A. It prints Q1=blue.

B. It prints Q2=1200.

C. It prints P1=null.

D. It prints P2=1400.

E. Line 4 does not compile.

F. Line 12 does not compile.

G. Line 13 does not compile.

H. None of the above

11. Which of the following legally fill in the blank so you can run the
main() method from the command line? (Choose all that apply.)

public static void main(_______________) {}

A. String... var

B. String My.Names[]

C. String[] 123

D. String[] _names

E. String... $n

F. var names

G. String myArgs

12. Which of the following expressions, when inserted independently
into the blank line, allow the code to compile? (Choose all that
apply.)

public void printMagicData() {

double magic = ;

System.out.println(magic);

}

A. 3_1

B. 1_329_.0

C. 3_13.0_

D. 5_291._2

E. 2_234.0_0

F. 9___6

G. _1_3_5_0

H. None of the above

13. Suppose we have a class named Rabbit. Which of the following
statements are true? (Choose all that apply.)

1: public class Rabbit {

2: public static void main(String[] args) {

3: Rabbit one = new Rabbit();

4: Rabbit two = new Rabbit();

5: Rabbit three = one;

6: one = null;

7: Rabbit four = one;

8: three = null;

9: two = null;

10: two = new Rabbit();

11: System.gc();

12: } }

A. The Rabbit object created on line 3 is first eligible for garbage
collection immediately following line 6.

B. The Rabbit object created on line 3 is first eligible for garbage
collection immediately following line 8.

C. The Rabbit object created on line 3 is first eligible for garbage
collection immediately following line 12.

D. The Rabbit object created on line 4 is first eligible for garbage
collection immediately following line 9.

E. The Rabbit object created on line 4 is first eligible for garbage
collection immediately following line 11.

F. The Rabbit object created on line 4 is first eligible for garbage
collection immediately following line 12.

G. The Rabbit object created on line 10 is first eligible for
garbage collection immediately following line 11.

H. The Rabbit object created on line 10 is first eligible for
garbage collection immediately following line 12.

14. Which of the following statements about var are true? (Choose all
that apply.)

A. A var can be used as a constructor parameter.

B. The type of var is known at compile time.

C. A var cannot be used as an instance variable.

D. A var can be used in a multiple variable assignment
statement.

E. The value of var cannot change at runtime.

F. The type of var cannot change at runtime.

G. The word var is a reserved word in Java.

15. Given the following class, which of the following lines of code can
independently replace INSERT CODE HERE to make the code
compile? (Choose all that apply.)

public class Price {

public void admission() {

INSERT CODE HERE

System.out.print(amount);

} }

A. int Amount = 0b11;

B. int amount = 9L;

C. int amount = 0xE;

D. int amount = 1_2.0;

E. double amount = 1_0_.0;

F. int amount = 0b101;

G. double amount = 9_2.1_2;

H. double amount = 1_2_.0_0;

16. Which statements about the following class are correct? (Choose
all that apply.)

1: public class ClownFish {

2: int gills = 0, double weight=2;

3: { int fins = gills; }

4: void print(int length = 3) {

5: System.out.println(gills);

6: System.out.println(weight);

7: System.out.println(fins);

8: System.out.println(length);

9: } }

A. Line 2 contains a compiler error.

B. Line 3 contains a compiler error.

C. Line 4 contains a compiler error.

D. Line 7 contains a compiler error.

E. The code prints 0.

F. The code prints 2.0.

G. The code prints 2.

H. The code prints 3.

17. Which statements about classes and its members are correct?
(Choose all that apply.)

A. A variable declared in a loop cannot be referenced outside the
loop.

B. A variable cannot be declared in an instance initializer block.

C. A constructor argument is in scope for the life of the instance
of the class for which it is defined.

D. An instance method can only access instance variables
declared before the instance method declaration.

E. A variable can be declared in an instance initializer block but
cannot be referenced outside the block.

F. A constructor can access all instance variables.

G. An instance method can access all instance variables.

18. Which statements about the following code snippet are correct?
(Choose all that apply.)

3: var squirrel = new Object();

4: int capybara = 2, mouse, beaver = -1;

5: char chipmunk = -1;

6: squirrel = "";

7: beaver = capybara;

8: System.out.println(capybara);

9: System.out.println(mouse);

10: System.out.println(beaver);

11: System.out.println(chipmunk);

A. The code prints 2.

B. The code prints -1.

C. The code prints the empty String.

D. The code prints: null.

E. Line 4 contains a compiler error.

F. Line 5 contains a compiler error.

G. Line 9 contains a compiler error.

H. Line 10 contains a compiler error.

19. Assuming the following class compiles, how many variables
defined in the class or method are in scope on the line marked //
SCOPE on line 14?

1: public class Camel {

2: { int hairs = 3_000_0; }

3: long water, air=2;

4: boolean twoHumps = true;

5: public void spit(float distance) {

6: var path = "";

7: { double teeth = 32 + distance++; }

8: while(water > 0) {

9: int age = twoHumps ? 1 : 2;

10: short i=-1;

11: for(i=0; i<10; i++) {

12: var Private = 2;

13: }

14: // SCOPE

15: }

16: }

17: }

A. 2

B. 3

C. 4

D. 5

E. 6

F. 7

G. None of the above

20. What is the output of executing the following class?

1: public class Salmon {

2: int count;

3: { System.out.print(count+"-"); }

4: { count++; }

5: public Salmon() {

6: count = 4;

7: System.out.print(2+"-");

8: }

9: public static void main(String[] args) {

10: System.out.print(7+"-");

11: var s = new Salmon();

12: System.out.print(s.count+"-"); } }

A. 7-0-2-1-

B. 7-0-1-

C. 0-7-2-1-

D. 7-0-2-4-

E. 0-7-1-

F. The class does not compile because of line 3.

G. The class does not compile because of line 4.

H. None of the above.

21. Which statements about the following program are correct?
(Choose all that apply.)

1: public class Bear {

2: private Bear pandaBear;

3: protected void finalize() {}

4: private void roar(Bear b) {

5: System.out.println("Roar!");

6: pandaBear = b;

7: }

8: public static void main(String[] args) {

9: Bear brownBear = new Bear();

10: Bear polarBear = new Bear();

11: brownBear.roar(polarBear);

12: polarBear = null;

13: brownBear = null;

14: System.gc(); } }

A. The object created on line 9 is eligible for garbage collection
after line 13.

B. The object created on line 9 is eligible for garbage collection
after line 14.

C. The object created on line 10 is eligible for garbage collection
after line 12.

D. The object created on line 10 is eligible for garbage collection
after line 13.

E. Garbage collection is guaranteed to run.

F. Garbage collection might or might not run.

G. Garbage collection is guaranteed not to run.

H. The code does not compile.

22. Which of the following are valid instance variable declarations?
(Choose all that apply.)

A. var _ = 6000_.0;

B. var null = 6_000;

C. var $_ = 6_000;

D. var $2 = 6_000f;

E. var var = 3_0_00.0;

F. var #CONS = 2_000.0;

G. var %C = 6_000_L;

H. None of the above

Chapter 3
Operators
OCP exam objectives covered in this chapter:

 Using Operators and Decision Constructs

Use Java operators including the use of parentheses to
override operator precedence

 Working With Java Primitive Data Types and String
APIs

Declare and initialize variables (including casting and
promoting primitive data types)

In the previous chapter, we talked a lot about
defining variables, but what can you do with a variable once it is
created? This chapter introduces operators and shows how you can
use them to combine existing values and create new values. We’ll show
you how to apply operators to various primitive data types, including
introducing you to operators that can be applied to objects.

Understanding Java Operators
Before we get into the fun stuff, let’s cover a bit of terminology. A Java
operator is a special symbol that can be applied to a set of variables,
values, or literals—referred to as operands—and that returns a result.
The term operand, which we’ll use throughout this chapter, refers to
the value or variable the operator is being applied to. The output of the
operation is simply referred to as the result. For example, in a + b, the
operator is the addition operator (+), and values a and b are the
operands. If we then store the result in a variable c, such as c = a + b,
then the variable c and the result of a + b become the new operands
for our assignment operator (=).

We’re sure you have been using the addition (+) and subtraction (-)
operators since you were a little kid. Java supports many other
operators that you need to know for the exam. While many should be
review for you, some (such as the compound assignment operators)
may be new to you.

Types of Operators
In general, three flavors of operators are available in Java: unary,
binary, and ternary. These types of operators can be applied to one,
two, or three operands, respectively. For the exam, you’ll need to know
a specific subset of Java operators, how to apply them, and the order
in which they should be applied.

Java operators are not necessarily evaluated from left-to-right order.
For example, the second expression of the following Java code is
actually evaluated from right to left given the specific operators
involved:

int cookies = 4;

double reward = 3 + 2 * --cookies;

System.out.print("Zoo animal receives: "+reward+" reward

points");

In this example, you would first decrement cookies to 3, then multiply
the resulting value by 2, and finally add 3. The value would then be

automatically promoted from 9 to 9.0 and assigned to reward. The final
values of cookies and reward would be 9.0 and 3, respectively, with the
following printed:

Zoo animal receives: 9.0 reward points

If you didn’t follow that evaluation, don’t worry. By the end of this
chapter, solving problems like this should be second nature.

Operator Precedence
When reading a book or a newspaper, some written languages are
evaluated from left to right, while some are evaluated from right to
left. In mathematics, certain operators can override other operators
and be evaluated first. Determining which operators are evaluated in
what order is referred to as operator precedence. In this manner, Java
more closely follows the rules for mathematics. Consider the following
expression:

var perimeter = 2 * height + 2 * length;

The multiplication operator (*) has a higher precedence than the
addition operator (+), so the height and length are both multiplied by 2
before being added together. The assignment operator (=) has the
lowest order of precedence, so the assignment to the perimeter
variable is performed last.

Unless overridden with parentheses, Java operators follow order of
operation, listed in Table 3.1, by decreasing order of operator
precedence. If two operators have the same level of precedence, then
Java guarantees left-to-right evaluation. For the exam, you only need
to know the operators shown in bold in Table 3.1.

Table 3.1 Order of operator precedence

Operator Symbols and examples
Post-unary operators expression++, expression--
Pre-unary operators ++expression, --expression
Other unary operators -, !, ~, +, (type)

Multiplication/division/modulus *, /, %
Addition/subtraction +, -
Shift operators <<, >>, >>>
Relational operators <, >, <=, >=, instanceof
Equal to/not equal to ==, !=
Logical operators &, ^, |
Short-circuit logical operators &&, ||
Ternary operators boolean expression ? expression1 :

expression2

Assignment operators =, +=, -=, *=, /=, %=, &=, ^=, |=, <<=,
>>=, >>>=

We recommend that you keep Table 3.1 handy throughout this
chapter. For the exam, you need to memorize the order of precedence
in this table. Note that you won’t be tested on some operators, like the
shift operators, although we recommend that you be aware of their
existence.

Applying Unary Operators
By definition, a unary operator is one that requires exactly one
operand, or variable, to function. As shown in Table 3.2, they often
perform simple tasks, such as increasing a numeric variable by one or
negating a boolean value.

Table 3.2 Unary operators

Operator Description
! Inverts a boolean’s logical value
+ Indicates a number is positive, although numbers are

assumed to be positive in Java unless accompanied by a
negative unary operator

- Indicates a literal number is negative or negates an
expression

++ Increments a value by 1
-- Decrements a value by 1
(type) Casts a value to a specific type.

Even though Table 3.2 includes the casting operator, we’ll postpone
discussing casting until the “Assigning Values” section later in this
chapter, since that is where it is commonly used.

Logical Complement and Negation Operators
Since we’re going to be working with a lot of numeric operators in this
chapter, let’s get the boolean one out of the way first. The logical
complement operator (!) flips the value of a boolean expression. For
example, if the value is true, it will be converted to false, and vice
versa. To illustrate this, compare the outputs of the following
statements:

boolean isAnimalAsleep = false;

System.out.println(isAnimalAsleep); // false

isAnimalAsleep = !isAnimalAsleep;

System.out.println(isAnimalAsleep); // true

Likewise, the negation operator, -, reverses the sign of a numeric
expression, as shown in these statements:

double zooTemperature = 1.21;

System.out.println(zooTemperature); // 1.21

zooTemperature = -zooTemperature;

System.out.println(zooTemperature); // -1.21

zooTemperature = -(-zooTemperature);

System.out.println(zooTemperature); // -1.21

Notice that in the last example we used parentheses, (), for the
negation operator, -, to apply the negation twice. If we had instead
written --, then it would have been interpreted as the decrement
operator and printed -2.21. You will see more of that decrement
operator shortly.

Based on the description, it might be obvious that some operators
require the variable or expression they’re acting upon to be of a
specific type. For example, you cannot apply a negation operator (-) to
a boolean expression, nor can you apply a logical complement operator
(!) to a numeric expression. Be wary of questions on the exam that try
to do this, as they’ll cause the code to fail to compile. For example,
none of the following lines of code will compile:

int pelican = !5; // DOES NOT COMPILE

boolean penguin = -true; // DOES NOT COMPILE

boolean peacock = !0; // DOES NOT COMPILE

The first statement will not compile because in Java you cannot
perform a logical inversion of a numeric value. The second statement
does not compile because you cannot numerically negate a boolean
value; you need to use the logical inverse operator. Finally, the last
statement does not compile because you cannot take the logical
complement of a numeric value, nor can you assign an integer to a
boolean variable.

Keep an eye out for questions on the exam that use the

logical complement operator or numeric values with boolean
expressions or variables. Unlike some other programming
languages, in Java, 1 and true are not related in any way, just as 0

and false are not related.

Increment and Decrement Operators
Increment and decrement operators, ++ and --, respectively, can be
applied to numeric variables and have a high order of precedence, as
compared to binary operators. In other words, they often get applied
first in an expression.

Increment and decrement operators require special care because the
order in which they are attached to their associated variable can make
a difference in how an expression is processed. If the operator is
placed before the operand, referred to as the pre-increment operator
and the pre-decrement operator, then the operator is applied first and
the value returned is the new value of the expression. Alternatively, if
the operator is placed after the operand, referred to as the post-
increment operator and the post-decrement operator, then the
original value of the expression is returned, with operator applied
after the value is returned.

The following code snippet illustrates this distinction:

int parkAttendance = 0;

System.out.println(parkAttendance); // 0

System.out.println(++parkAttendance); // 1

System.out.println(parkAttendance); // 1

System.out.println(parkAttendance--); // 1

System.out.println(parkAttendance); // 0

The first pre-increment operator updates the value for parkAttendance
and outputs the new value of 1. The next post-decrement operator also
updates the value of parkAttendance but outputs the value before the
decrement occurs.

For the exam, it is critical that you know the difference

between expressions like parkAttendance++ and ++parkAttendance.
The increment and decrement operators will be in multiple
questions, and confusion about which value is returned could
cause you to lose a lot of points on the exam.

One common practice in a certification exam, albeit less common in
the real world, is to apply multiple increment or decrement operators
to a single variable on the same line:

int lion = 3;

int tiger = ++lion * 5 / lion--;

System.out.println("lion is " + lion);

System.out.println("tiger is " + tiger);

This one is more complicated than the previous example because lion
is modified two times on the same line. Each time it is modified, as the
expression moves from left to right, the value of lion changes, with
different values being assigned to the variable. As you’ll recall from
our discussion on operator precedence, order of operation plays an
important part in evaluating this example.

So how do you read this code? First, lion is incremented and returned
to the expression, which is multiplied by 5. We can simplify this:

int tiger = 4 * 5 / lion--; // lion assigned value of 4

Next, lion is decremented, but the original value of 4 is used in the
expression, leading to this:

int tiger = 4 * 5 / 4; // lion assigned value of 3

Finally, we evaluate multiplication and division from left to right. The
product of the first two numbers is 20. The divisor 4 divides 20 evenly,
resulting in an assignment of 5 to tiger. The result is then printed:

lion is 3

tiger is 5

Working with Binary Arithmetic Operators
Next, we move on to operators that take two arguments, called binary
operators. Binary operators are by far the most common operators in
the Java language. They can be used to perform mathematical
operations on variables, create logical expressions, and perform basic
variable assignments. Binary operators are often combined in complex
expressions with other binary operators; therefore, operator
precedence is very important in evaluating expressions containing
binary operators.

In this section, we’ll start with binary arithmetic operators, shown in
Table 3.3. In the following sections, we’ll expand to other binary
operators that you need to know for the exam.

Table 3.3 Binary arithmetic operators

Operator Description
+ Adds two numeric values
- Subtracts two numeric values
* Multiplies two numeric values
/ Divides one numeric value by another
% Modulus operator returns the remainder after division of

one numeric value by another

Arithmetic Operators
Arithmetic operators are often encountered in early mathematics and
include addition (+), subtraction (-), multiplication (*), division (/),
and modulus (%). If you don’t know what modulus is, don’t worry—
we’ll cover that shortly. Arithmetic operators also include the unary
operators, ++ and --, which we covered already. As you may have
noticed in Table 3.1, the multiplicative operators (*, /, %) have a higher
order of precedence than the additive operators (+, -). Take a look at
the following expression:

int price = 2 * 5 + 3 * 4 - 8;

First, you evaluate the 2 * 5 and 3 * 4, which reduces the expression
to this:

int price = 10 + 12 - 8;

Then, you evaluate the remaining terms in left-to-right order, resulting
in a value of price of 14. Make sure you understand why the result is 14
because you’ll likely see this kind of operator precedence question on
the exam.

All of the arithmetic operators may be applied to any Java

primitives, with the exception of boolean. Furthermore, only the
addition operators + and += may be applied to String values, which
results in String concatenation. You will learn more about these
operators and how they apply to String values in Chapter 5, “Core
Java APIs.”

Adding Parentheses
You might have noticed we said “Unless overridden with parentheses”
prior to presenting Table 3.1 on operator precedence. That’s because
you can change the order of operation explicitly by wrapping
parentheses around the sections you want evaluated first.

Changing the Order of Operation
Let’s return to the previous price example. The following code snippet
contains the same values and operators, in the same order, but with
two sets of parentheses added:

int price = 2 * ((5 + 3) * 4 - 8);

This time you would evaluate the addition operator 5 + 3, which
reduces the expression to the following:

int price = 2 * (8 * 4 - 8);

You can further reduce this expression by multiplying the first two
values within the parentheses:

int price = 2 * (32 - 8);

Next, you subtract the values within the parentheses before applying
terms outside the parentheses:

int price = 2 * 24;

Finally, you would multiply the result by 2, resulting in a value of 48
for price.

Parentheses can appear in nearly any question on the exam involving
numeric values, so make sure you understand how they are changing
the order of operation when you see them.

Verifying Parentheses Syntax
When working with parentheses, you need to make sure they are
always valid and balanced. Consider the following examples:

long pigeon = 1 + ((3 * 5) / 3; // DOES NOT COMPILE

int blueJay = (9 + 2) + 3) / (2 * 4; // DOES NOT COMPILE

short robin = 3 + [(4 * 2) + 4]; // DOES NOT COMPILE

The first example does not compile because the parentheses are not
balanced. There is a left-parenthesis with no matching right-
parenthesis. The second example has an equal number of left and right
parentheses, but they are not balanced properly. When reading from
left to right, a new right-parenthesis must match a previous left-
parenthesis. Likewise, all left-parentheses must be closed by right-
parentheses before the end of the expression. The last example does
not compile because Java, unlike some other programming languages,
does not allow brackets, [], to be used in place of parentheses. If you
replace the brackets with parentheses, the last example will compile
just fine.

Division and Modulus Operators
Although we are sure you have seen most of the arithmetic operators
before, the modulus operator, %, may be new to you. The modulus
operator, often called the remainder operator, is simply the
remainder when two numbers are divided. For example, 9 divided by 3
divides evenly and has no remainder; therefore, the result of 9 % 3 is 0.

On the other hand, 11 divided by 3 does not divide evenly; therefore,
the result of 11 % 3, is 2.

The following examples illustrate this distinction:

System.out.println(9 / 3); // 3

System.out.println(9 % 3); // 0

System.out.println(10 / 3); // 3

System.out.println(10 % 3); // 1

System.out.println(11 / 3); // 3

System.out.println(11 % 3); // 2

System.out.println(12 / 3); // 4

System.out.println(12 % 3); // 0

As you can see, the division results increase only when the value on the
left side goes from 11 to 12, whereas the modulus remainder value
increases by 1 each time the left side is increased until it wraps around
to zero. For a given divisor y, which is 3 in these examples, the
modulus operation results in a value between 0 and (y - 1) for
positive dividends. This means that the result of this modulus
operation is always 0, 1, or 2.

Be sure to understand the difference between arithmetic division and
modulus. For integer values, division results in the floor value of the
nearest integer that fulfills the operation, whereas modulus is the
remainder value. If you hear the phrase floor value, it just means the
value without anything after the decimal point. For example, the floor
value is 4 for each of the values 4.0, 4.5, and 4.9999999. Unlike
rounding, which we’ll cover in Chapter 5, you just take the value before
the decimal point, regardless of what is after the decimal point.

The modulus operation is not limited to positive integer

values in Java; it may also be applied to negative integers and
floating-point numbers. For example, if the divisor is 5, then the
modulus value of a negative number is between -4 and 0. For the
exam, though, you are not required to be able to take the modulus
of a negative integer or a floating-point number.

Numeric Promotion
Now that you understand the basics of arithmetic operators, it is vital
to talk about primitive numeric promotion, as Java may do things that
seem unusual to you at first. As we showed in Chapter 2, “Java
Building Blocks,” each primitive numeric type has a bit-length. You
don’t need to know the exact size of these types for the exam, but you
should know which are bigger than others. For example, you should
know that a long takes up more space than an int, which in turn takes
up more space than a short, and so on.

You need to memorize certain rules Java will follow when applying
operators to data types:

1. Numeric Promotion Rules If two values have different data
types, Java will automatically promote one of the values to the
larger of the two data types.

2. If one of the values is integral and the other is floating-point, Java
will automatically promote the integral value to the floating-point
value’s data type.

3. Smaller data types, namely, byte, short, and char, are first
promoted to int any time they’re used with a Java binary
arithmetic operator, even if neither of the operands is int.

4. After all promotion has occurred and the operands have the same
data type, the resulting value will have the same data type as its
promoted operands.

The last two rules are the ones most people have trouble with and the
ones likely to trip you up on the exam. For the third rule, note that
unary operators are excluded from this rule. For example, applying ++
to a short value results in a short value.

Let’s tackle some examples for illustrative purposes:

What is the data type of x * y?

int x = 1;

long y = 33;

var z = x * y;

If we follow the first rule, since one of the values is long and the
other is int and since long is larger than int, then the int value is
promoted to a long, and the resulting value is long.

What is the data type of x + y?

double x = 39.21;

float y = 2.1;

var z = x + y;

This is actually a trick question, as this code will not compile! As
you may remember from Chapter 2, floating-point literals are
assumed to be double, unless postfixed with an f, as in 2.1f. If the
value of y was set properly to 2.1f, then the promotion would be
similar to the previous example, with both operands being
promoted to a double, and the result would be a double value.

What is the data type of x * y?

short x = 10;

short y = 3;

var z = x * y;

On the last line, we must apply the third rule, namely, that x and y
will both be promoted to int before the binary multiplication
operation, resulting in an output of type int. If you were to try to
assign the value to a short variable without casting, the code
would not compile. Pay close attention to the fact that the
resulting output is not a short, as we’ll come back to this example
in the upcoming “Assigning Values” section.

What is the data type of w * x / y?

short w = 14;

float x = 13;

double y = 30;

var z = w * x / y;

In this case, we must apply all of the rules. First, w will
automatically be promoted to int solely because it is a short and it
is being used in an arithmetic binary operation. The promoted w
value will then be automatically promoted to a float so that it can
be multiplied with x. The result of w * x will then be automatically
promoted to a double so that it can be divided by y, resulting in a
double value.

When working arithmetic operators in Java, you should always be
aware of the data type of variables, intermediate values, and resulting
values. You should apply operator precedence and parentheses and
work outward, promoting data types along the way. In the next
section, we’ll discuss the intricacies of assigning these values to
variables of a particular type.

Assigning Values
Compilation errors from assignment operators are often overlooked
on the exam, in part because of how subtle these errors can be. To
master the assignment operators, you should be fluent in
understanding how the compiler handles numeric promotion and
when casting is required. Being able to spot these issues is critical to
passing the exam, as assignment operators appear in nearly every
question with a code snippet.

Assignment Operator
An assignment operator is a binary operator that modifies, or assigns,
the variable on the left side of the operator, with the result of the value
on the right side of the equation. The simplest assignment operator is
the = assignment, which you have seen already:

int herd = 1;

This statement assigns the herd variable the value of 1.

Java will automatically promote from smaller to larger data types, as
you saw in the previous section on arithmetic operators, but it will
throw a compiler exception if it detects that you are trying to convert
from larger to smaller data types without casting. Table 3.4 lists the
first assignment operator that you need to know for the exam. We will
present additional assignment operators later in this section.

Table 3.4 Simple assignment operator

Operator Description
= Assigns the value on the right to the variable on the left

Casting Values
Seems easy so far, right? Well, we can’t really talk about the
assignment operator in detail until we’ve covered casting. Casting is a
unary operation where one data type is explicitly interpreted as
another data type. Casting is optional and unnecessary when

converting to a larger or widening data type, but it is required when
converting to a smaller or narrowing data type. Without casting, the
compiler will generate an error when trying to put a larger data type
inside a smaller one.

Casting is performed by placing the data type, enclosed in parentheses,
to the left of the value you want to cast. Here are some examples of
casting:

int fur = (int)5;

int hair = (short) 2;

String type = (String) "Bird";

short tail = (short)(4 + 10);

long feathers = 10(long); // DOES NOT COMPILE

Spaces between the cast and the value are optional. As shown in the
second-to-last example, it is common for the right side to also be in
parentheses. Since casting is a unary operation, it would only be
applied to the 4 if we didn’t enclose 4 + 10 in parentheses. The last
example does not compile because the type is on the wrong side of the
value.

On the one hand, it is convenient that the compiler automatically casts
smaller data types to larger ones. On the other hand, it makes for great
exam questions when they do the opposite to see whether you are
paying attention. See if you can figure out why none of the following
lines of code compile:

float egg = 2.0 / 9; // DOES NOT COMPILE

int tadpole = (int)5 * 2L; // DOES NOT COMPILE

short frog = 3 - 2.0; // DOES NOT COMPILE

All of these examples involve putting a larger value into a smaller data
type. Don’t worry if you don’t follow this yet; we will be covering many
examples like these in this part of the chapter.

In this chapter, casting is primarily concerned with converting
numeric data types into other data types. As you will see in later
chapters, casting can also be applied to objects and references. In
those cases, though, no conversion is performed, as casting is allowed
only if the underlying object is already a member of the class or
interface.

And during the exam, remember to keep track of parentheses and
return types any time casting is involved!

Reviewing Primitive Assignments
Let’s return to some examples similar to what you saw in Chapter 2 to
show how casting can resolve these issues:

int fish = 1.0; // DOES NOT COMPILE

short bird = 1921222; // DOES NOT COMPILE

int mammal = 9f; // DOES NOT COMPILE

long reptile = 192301398193810323; // DOES NOT COMPILE

The first statement does not compile because you are trying to assign a
double 1.0 to an integer value. Even though the value is a mathematic
integer, by adding .0, you’re instructing the compiler to treat it as a
double. The second statement does not compile because the literal
value 1921222 is outside the range of short and the compiler detects
this. The third statement does not compile because of the f added to
the end of the number that instructs the compiler to treat the number
as a floating-point value, but the assignment is to an int. Finally, the
last statement does not compile because Java interprets the literal as
an int and notices that the value is larger than int allows. The literal
would need a postfix L or l to be considered a long.

Applying Casting
We can fix the previous set of examples by casting the results to a
smaller data type. Remember, casting primitives is required any time
you are going from a larger numerical data type to a smaller numerical
data type, or converting from a floating-point number to an integral
value.

int trainer = (int)1.0;

short ticketTaker = (short)1921222; // Stored as 20678

int usher = (int)9f;

long manager = 192301398193810323L;

Overflow and Underflow

The expressions in the previous example now compile, although
there’s a cost. The second value, 1,921,222, is too large to be stored
as a short, so numeric overflow occurs and it becomes 20,678.
Overflow is when a number is so large that it will no longer fit
within the data type, so the system “wraps around” to the lowest
negative value and counts up from there, similar to how modulus
arithmetic works. There’s also an analogous underflow, when the
number is too low to fit in the data type, such as storing -200 in a
byte field.

This is beyond the scope of the exam, but something to be careful
of in your own code. For example, the following statement outputs
a negative number:

System.out.print(2147483647+1); // -2147483648

Since 2147483647 is the maximum int value, adding any strictly
positive value to it will cause it to wrap to the smallest negative
number.

Let’s return to a similar example from the “Numeric Promotion”
section earlier in the chapter.

short mouse = 10;

short hamster = 3;

short capybara = mouse * hamster; // DOES NOT COMPILE

Based on everything you have learned up until now about numeric
promotion and casting, do you understand why the last line of this
statement will not compile? As you may remember, short values are
automatically promoted to int when applying any arithmetic operator,
with the resulting value being of type int. Trying to assign a short
variable with an int value results in a compiler error, as Java thinks
you are trying to implicitly convert from a larger data type to a smaller
one.

We can fix this expression by casting, as there are times that you may
want to override the compiler’s default behavior. In this example, we
know the result of 10 * 3 is 30, which can easily fit into a short
variable, so we can apply casting to convert the result back to a short.

short mouse = 10;

short hamster = 3;

short capybara = (short)(mouse * hamster);

By casting a larger value into a smaller data type, you are instructing
the compiler to ignore its default behavior. In other words, you are
telling the compiler that you have taken additional steps to prevent
overflow or underflow. It is also possible that in your particular
application and scenario, overflow or underflow would result in
acceptable values.

Last but not least, casting can appear anywhere in an expression, not
just on the assignment. For example, let’s take a look at a modified
form of the previous example:

short mouse = 10;

short hamster = 3;

short capybara = (short)mouse * hamster; // DOES NOT COMPILE

short gerbil = 1 + (short)(mouse * hamster); // DOES NOT COMPILE

So, what’s going on in the last two lines? Well, remember when we
said casting was a unary operation? That means the cast in the first
line is applied to mouse, and mouse alone. After the cast is complete,
both operands are promoted to int since they are used with the binary
multiplication operator (*), making the result an int and causing a
compiler error.

In the second example, casting is performed successfully, but the
resulting value is automatically promoted to int because it is used with
the binary arithmetic operator (+).

Compound Assignment Operators
Besides the simple assignment operator (=) Java supports numerous
compound assignment operators. For the exam, you should be
familiar with the compound operators in Table 3.5.

Table 3.5 Compound assignment operators

Operator Description
+= Adds the value on the right to the variable on the left and

assigns the sum to the variable

-= Subtracts the value on the right from the variable on the
left and assigns the difference to the variable

*= Multiplies the value on the right with the variable on the
left and assigns the product to the variable

/= Divides the variable on the left by the value on the right
and assigns the quotient to the variable

Complex operators are really just glorified forms of the simple
assignment operator, with a built-in arithmetic or logical operation
that applies the left and right sides of the statement and stores the
resulting value in the variable on the left side of the statement. For
example, the following two statements after the declaration of camel
and giraffe are equivalent when run independently:

int camel = 2, giraffe = 3;

camel = camel * giraffe; // Simple assignment operator

camel *= giraffe; // Compound assignment operator

The left side of the compound operator can be applied only to a
variable that is already defined and cannot be used to declare a new
variable. In this example, if camel were not already defined, then the
expression camel *= giraffe would not compile.

Compound operators are useful for more than just shorthand—they
can also save us from having to explicitly cast a value. For example,
consider the following example. Can you figure out why the last line
does not compile?

long goat = 10;

int sheep = 5;

sheep = sheep * goat; // DOES NOT COMPILE

From the previous section, you should be able to spot the problem in
the last line. We are trying to assign a long value to an int variable.
This last line could be fixed with an explicit cast to (int), but there’s a
better way using the compound assignment operator:

long goat = 10;

int sheep = 5;

sheep *= goat;

The compound operator will first cast sheep to a long, apply the
multiplication of two long values, and then cast the result to an int.
Unlike the previous example, in which the compiler reported an error,
in this example we see that the compiler will automatically cast the
resulting value to the data type of the value on the left side of the
compound operator.

Assignment Operator Return Value
One final thing to know about assignment operators is that the result
of an assignment is an expression in and of itself, equal to the value of
the assignment. For example, the following snippet of code is perfectly
valid, if not a little odd-looking:

long wolf = 5;

long coyote = (wolf=3);

System.out.println(wolf); // 3

System.out.println(coyote); // 3

The key here is that (wolf=3) does two things. First, it sets the value of
the variable wolf to be 3. Second, it returns a value of the assignment,
which is also 3.

The exam creators are fond of inserting the assignment operator (=) in
the middle of an expression and using the value of the assignment as
part of a more complex expression. For example, don’t be surprised if
you see an if statement on the exam similar to the following:

boolean healthy = false;

if(healthy = true)

 System.out.print("Good!");

While this may look like a test if healthy is true, it’s actually assigning
healthy a value of true. The result of the assignment is the value of the
assignment, which is true, resulting in this snippet printing Good!.
We’ll cover this in more detail in the upcoming “Equality Operators”
section.

Comparing Values
The last set of binary operators revolves around comparing values.
They can be used to check if two values are the same, check if one
numeric value is less than or greater than another, and perform
boolean arithmetic. Chances are you have used many of the operators
in this section in your development experience.

Equality Operators
Determining equality in Java can be a nontrivial endeavor as there’s a
semantic difference between “two objects are the same” and “two
objects are equivalent.” It is further complicated by the fact that for
numeric and boolean primitives, there is no such distinction.

Table 3.6 lists the equality operators. The equals operator (==) and not
equals operator (!=) compare two operands and return a boolean value
determining whether the expressions or values are equal or not equal,
respectively.

Table 3.6 Equality operators

Operator Apply to primitives Apply to objects
== Returns true if the two

values represent the same
value

Returns true if the two values
reference the same object

!= Returns true if the two
values represent different
values

Returns true if the two values
do not reference the same
object

The equality operators are used in one of three scenarios:

Comparing two numeric or character primitive types. If the
numeric values are of different data types, the values are
automatically promoted. For example, 5 == 5.00 returns true
since the left side is promoted to a double.

Comparing two boolean values

Comparing two objects, including null and String values

The comparisons for equality are limited to these three cases, so you
cannot mix and match types. For example, each of the following would
result in a compiler error:

boolean monkey = true == 3; // DOES NOT COMPILE

boolean ape = false != "Grape"; // DOES NOT COMPILE

boolean gorilla = 10.2 == "Koko"; // DOES NOT COMPILE

Pay close attention to the data types when you see an equality operator
on the exam. As we mentioned in the previous section, the exam
creators also have a habit of mixing assignment operators and equality
operators.

boolean bear = false;

boolean polar = (bear = true);

System.out.println(polar); // true

At first glance, you might think the output should be false, and if the
expression were (bear == true), then you would be correct. In this
example, though, the expression is assigning the value of true to bear,
and as you saw in the section on assignment operators, the assignment
itself has the value of the assignment. Therefore, polar is also assigned
a value of true, and the output is true.

For object comparison, the equality operator is applied to the
references to the objects, not the objects they point to. Two references
are equal if and only if they point to the same object or both point to
null. Let’s take a look at some examples:

File monday = new File("schedule.txt");

File tuesday = new File("schedule.txt");

File wednesday = tuesday;

System.out.println(monday == tuesday); // false

System.out.println(tuesday == wednesday); // true

Even though all of the variables point to the same file information,
only two references, tuesday and wednesday, are equal in terms of ==
since they point to the same object.

Wait, what’s the File class? In this example, as well as

during the exam, you may be presented with class names that are
unfamiliar, such as File. Many times you can answer questions
about these classes without knowing the specific details of these
classes. In the previous example, you should be able to answer
questions that indicate monday and tuesday are two separate and
distinct objects because the new keyword is used, even if you are not
familiar with the data types of these objects.

In some languages, comparing null with any other value is always
false, although this is not the case in Java.

System.out.print(null == null); // true

In Chapter 5, we’ll continue the discussion of object equality by
introducing what it means for two different objects to be equivalent.
We’ll also cover String equality and show how this can be a nontrivial
topic.

Relational Operators
We now move on to relational operators, which compare two
expressions and return a boolean value. Table 3.7 describes the
relational operators you need to know for the exam.

Table 3.7 Relational operators

Operator Description
< Returns true if the value on the left is strictly less than the

value on the right
<= Returns true if the value on the left is less than or equal to

the value on the right
> Returns true if the value on the left is strictly greater than

the value on the right
>= Returns true if the value on the left is greater than or

equal to the value on the right

a
instanceof

b

Returns true if the reference that a points to is an
instance of a class, subclass, or class that implements a
particular interface, as named in b

Numeric Comparison Operators
The first four relational operators in Table 3.7 apply only to numeric
values. If the two numeric operands are not of the same data type, the
smaller one is promoted as previously discussed.

Let’s look at examples of these operators in action:

int gibbonNumFeet = 2, wolfNumFeet = 4, ostrichNumFeet = 2;

System.out.println(gibbonNumFeet < wolfNumFeet); // true

System.out.println(gibbonNumFeet <= wolfNumFeet); // true

System.out.println(gibbonNumFeet >= ostrichNumFeet); // true

System.out.println(gibbonNumFeet > ostrichNumFeet); // false

Notice that the last example outputs false, because although
gibbonNumFeet and ostrichNumFeet have the same value, gibbonNumFeet
is not strictly greater than ostrichNumFeet.

instanceof Operator
The final relational operator you need to know for the exam is the
instanceof operator, shown in Table 3.7. It is useful for determining
whether an arbitrary object is a member of a particular class or
interface at runtime.

Why wouldn’t you know what class or interface an object is? As we will
get into in Chapter 8, “Class Design,” Java supports polymorphism.
For now, that just means some objects can be passed around using a
variety of references. For example, all classes inherit from
java.lang.Object. This means that any instance can be assigned to an
Object reference. For example, how many objects are created and used
in the following code snippet?

Integer zooTime = Integer.valueOf(9);

Number num = zooTime;

Object obj = zooTime;

In this example, there is only one object created in memory but three

different references to it because Integer inherits both Number and
Object. This means that you can call instanceof on any of these
references with three different data types and it would return true for
each of them.

Where polymorphism often comes into play is when you create a
method that takes a data type with many possible subclasses. For
example, imagine we have a function that opens the zoo and prints the
time. As input, it takes a Number as an input parameter.

public void openZoo(Number time) {}

Now, we want the function to add O'clock to the end of output if the
value is a whole number type, such as an Integer; otherwise, it just
prints the value.

public static void openZoo(Number time) {

 if(time instanceof Integer)

 System.out.print((Integer)time + " O'clock");

 else

 System.out.print(time);

}

We now have a method that can intelligently handle both Integer and
other values. A good exercise left for the reader is to add checks for
other numeric data types.

Notice that we cast the Integer value in this example. It is common to
use casting and instanceof together when working with objects that
can be various different types, since it can give you access to fields
available only in the more specific classes. It is considered a good
coding practice to use the instanceof operator prior to casting from
one object to a narrower type.

Invalid instanceof
One area the exam might try to trip you up on is using instanceof with
incompatible types. For example, Number cannot possibly hold a String
value, so the following would cause a compilation error:

public static void openZoo(Number time) {

 if(time instanceof String) // DOES NOT COMPILE

 ...

It gets even more complicated as the previous rule applies to classes,
but not interfaces. Don’t worry if this is all new to you; we will go into
more detail when we discuss polymorphism in Chapter 9, “Advanced
Class Design.”

null and the instanceof operator
What happens if you call instanceof on a null variable? For the exam,
you should know that calling instanceof on the null literal or a null
reference always returns false.

System.out.print(null instanceof Object);

Object noObjectHere = null;

System.out.print(noObjectHere instanceof String);

The preceding examples both print false. It almost doesn’t matter
what the right side of the expression is. We say “almost” because there
are exceptions. The last example does not compile, since null is used
on the right side of the instanceof operator:

System.out.print(null instanceof null); // DOES NOT COMPILE

Logical Operators
If you have studied computer science, you may have already come
across logical operators before. If not, no need to panic—we’ll be
covering them in detail in this section.

The logical operators, (&), (|), and (^), may be applied to both numeric
and boolean data types; they are listed in Table 3.8. When they’re
applied to boolean data types, they’re referred to as logical operators.
Alternatively, when they’re applied to numeric data types, they’re
referred to as bitwise operators, as they perform bitwise comparisons
of the bits that compose the number. For the exam, though, you don’t
need to know anything about numeric bitwise comparisons, so we’ll
leave that educational aspect to other books.

Table 3.8 Logical operators

Operator Description

& Logical AND is true only if both values are true.
| Inclusive OR is true if at least one of the values is true.
^ Exclusive XOR is true only if one value is true and the

other is false.

You should familiarize yourself with the truth tables in Figure 3.1,
where x and y are assumed to be boolean data types.

Figure 3.1 The logical truth tables for &, |, and ^

Here are some tips to help you remember this table:

AND is only true if both operands are true.

Inclusive OR is only false if both operands are false.

Exclusive OR is only true if the operands are different.

Let’s take a look at some examples:

boolean eyesClosed = true;

boolean breathingSlowly = true;

boolean resting = eyesClosed | breathingSlowly;

boolean asleep = eyesClosed & breathingSlowly;

boolean awake = eyesClosed ^ breathingSlowly;

System.out.println(resting); // true

System.out.println(asleep); // true

System.out.println(awake); // false

You should try these out yourself, changing the values of eyesClosed
and breathingSlowly and studying the results.

Short-Circuit Operators

Next, we present the conditional operators, && and ||, which are often
referred to as short-circuit operators and are shown in Table 3.9.

Table 3.9 Short-circuit operators

Operator Description
&& Short-circuit AND is true only if both values are true. If

the left side is false, then the right side will not be
evaluated.

|| Short-circuit OR is true if at least one of the values is true.
If the left side is true, then the right side will not be
evaluated.

The short-circuit operators are nearly identical to the logical
operators, & and |, except that the right side of the expression may
never be evaluated if the final result can be determined by the left side
of the expression. For example, consider the following statement:

int hour = 10;

boolean zooOpen = true || (hour < 4);

System.out.println(zooOpen); // true

Referring to the truth tables, the value zooOpen can be false only if
both sides of the expression are false. Since we know the left side is
true, there’s no need to evaluate the right side, since no value of hour
will ever make this code print false. In other words, hour could have
been -10 or 892; the output would have been the same. Try it yourself
with different values for hour!

Avoiding a NullPointerException
A more common example of where short-circuit operators are used is
checking for null objects before performing an operation. In the
following example, if duck is null, then the program will throw a
NullPointerException at runtime:

if(duck!=null & duck.getAge()<5) { // Could throw a

NullPointerException

 // Do something

}

The issue is that the logical AND (&) operator evaluates both sides of
the expression. We could add a second if statement, but this could get
unwieldy if we have a lot of variables to check. An easy-to-read
solution is to use the short-circuit AND operator (&&):

if(duck!=null && duck.getAge()<5) {

 // Do something

}

In this example, if duck was null, then the short-circuit prevents a
NullPointerException from ever being thrown, since the evaluation of
duck.getAge() < 5 is never reached.

Checking for Unperformed Side Effects
Be wary of short-circuit behavior on the exam, as questions are known
to alter a variable on the right side of the expression that may never be
reached. This is referred to as an unperformed side effect. For
example, what is the output of the following code?

int rabbit = 6;

boolean bunny = (rabbit >= 6) || (++rabbit <= 7);

System.out.println(rabbit);

Because rabbit >= 6 is true, the increment operator on the right side
of the expression is never evaluated, so the output is 6.

Making Decisions with the Ternary Operator
The final operator you should be familiar with for the exam is the
conditional operator, ? :, otherwise known as the ternary operator. It
is notable in that it is the only operator that takes three operands. The
ternary operator has the following form:

booleanExpression ? expression1 : expression2

The first operand must be a boolean expression, and the second and
third operands can be any expression that returns a value. The ternary
operation is really a condensed form of a combined if and else
statement that returns a value. We will be covering if/else statements
in a lot more detail in Chapter 4, “Making Decisions,” so for now we
will just use simple examples.

For example, consider the following code snippet that calculates the
food amount for an owl:

int owl = 5;

int food;

if(owl < 2) {

 food = 3;

} else {

 food = 4;

}

System.out.println(food); // 4

Compare the previous code snippet with the following ternary
operator code snippet:

int owl = 5;

int food = owl < 2 ? 3 : 4;

System.out.println(food); // 4

These two code snippets are equivalent to each other. Note that it is
often helpful for readability to add parentheses around the expressions
in ternary operations, although it is certainly not required.

int food = (owl < 2) ? 3 : 4;

For the exam, you should know that there is no requirement that

second and third expressions in ternary operations have the same data
types, although it does come into play when combined with the
assignment operator. Compare the two statements following the
variable declaration:

int stripes = 7;

System.out.print((stripes > 5) ? 21 : "Zebra");

int animal = (stripes < 9) ? 3 : "Horse"; // DOES NOT COMPILE

Both expressions evaluate similar boolean values and return an int
and a String, although only the first one will compile.
System.out.print() does not care that the expressions are completely
different types, because it can convert both to Object values and call
toString() on them. On the other hand, the compiler does know that
"Horse" is of the wrong data type and cannot be assigned to an int;
therefore, it will not allow the code to be compiled.

Ternary Expression and Unperformed Side Effects
Like we saw with the short-circuit operator, a ternary expression
can contain an unperformed side effect, as only one of the
expressions on the right side will be evaluated at runtime. Let’s
illustrate this principle with the following example:

int sheep = 1;

int zzz = 1;

int sleep = zzz<10 ? sheep++ : zzz++;

System.out.print(sheep+","+zzz); // 2,1

Notice that since the left-hand boolean expression was true, only
sheep was incremented. Contrast the preceding example with the
following modification:

int sheep = 1;

int zzz = 1;

int sleep = sheep>=10 ? sheep++ : zzz++;

System.out.print(sheep+","+zzz); // 1,2

Now that the left-hand boolean expression evaluates to false, only
zzz was incremented. In this manner, we see how the expressions

in a ternary operator may not be applied if the particular
expression is not used.

For the exam, be wary of any question that includes a ternary
expression in which a variable is modified in one of the right-hand
side expressions.

Summary
This chapter covered a wide variety of Java operator topics for unary,
binary, and ternary operators. Hopefully, most of these operators were
review for you. If not, you’ll need to study them in detail. It is
important that you understand how to use all of the required Java
operators covered in this chapter and know how operator precedence
and parentheses influence the way a particular expression is
interpreted.

There will likely be numerous questions on the exam that appear to
test one thing, such as StringBuilder or exception handling, when in
fact the answer is related to the misuse of a particular operator that
causes the application to fail to compile. When you see an operator
involving numbers on the exam, always check that the appropriate
data types are used and that they match each other where applicable.

Operators are used throughout the exam, in nearly every code sample,
so the better you understand this chapter, the more prepared you will
be for the exam.

Exam Essentials
Be able to write code that uses Java operators. This chapter
covered a wide variety of operator symbols. Go back and review them
several times so that you are familiar with them throughout the rest of
the book.

Be able to recognize which operators are associated with
which data types. Some operators may be applied only to numeric
primitives, some only to boolean values, and some only to objects. It is
important that you notice when an operator and operand(s) are
mismatched, as this issue is likely to come up in a couple of exam
questions.

Understand when casting is required or numeric promotion
occurs. Whenever you mix operands of two different data types, the
compiler needs to decide how to handle the resulting data type. When
you’re converting from a smaller to a larger data type, numeric
promotion is automatically applied. When you’re converting from a
larger to a smaller data type, casting is required.

Understand Java operator precedence. Most Java operators
you’ll work with are binary, but the number of expressions is often
greater than two. Therefore, you must understand the order in which
Java will evaluate each operator symbol.

Be able to write code that uses parentheses to override
operator precedence. You can use parentheses in your code to
manually change the order of precedence.

Review Questions
1. Which of the following Java operators can be used with boolean

variables? (Choose all that apply.)

A. ==

B. +

C. --

D. !

E. %

F. <=

G. Cast with (boolean)

2. What data type (or types) will allow the following code snippet to
compile? (Choose all that apply.)

byte apples = 5;

short oranges = 10;

_______ bananas = apples + oranges;

A. int

B. long

C. boolean

D. double

E. short

F. byte

3. What change, when applied independently, would allow the
following code snippet to compile? (Choose all that apply.)

3: long ear = 10;

4: int hearing = 2 * ear;

A. No change; it compiles as is.

B. Cast ear on line 4 to int.

C. Change the data type of ear on line 3 to short.

D. Cast 2 * ear on line 4 to int.

E. Change the data type of hearing on line 4 to short.

F. Change the data type of hearing on line 4 to long.

4. What is the output of the following code snippet?

3: boolean canine = true, wolf = true;

4: int teeth = 20;

5: canine = (teeth != 10) ^ (wolf=false);

6: System.out.println(canine+", "+teeth+", "+wolf);

A. true, 20, true

B. true, 20, false

C. false, 10, true

D. false, 20, false

E. The code will not compile because of line 5.

F. None of the above

5. Which of the following operators are ranked in increasing or the
same order of precedence? Assume the + operator is binary
addition, not the unary form. (Choose all that apply.)

A. +, *, %, --

B. ++, (int), *

C. =, ==, !

D. (short), =, !, *

E. *, /, %, +, ==

F. !, ||, &

G. ^, +, =, +=

6. What is the output of the following program?

1: public class CandyCounter {

2: static long addCandy(double fruit, float vegetables)

{

3: return (int)fruit+vegetables;

4: }

5:

6: public static void main(String[] args) {

7: System.out.print(addCandy(1.4, 2.4f) + "-");

8: System.out.print(addCandy(1.9, (float)4) + "-");

9: System.out.print(addCandy((long)(int)(short)2,

(float)4)); } }

A. 4-6-6.0

B. 3-5-6

C. 3-6-6

D. 4-5-6

E. The code does not compile because of line 9.

F. None of the above

7. What is the output of the following code snippet?

int ph = 7, vis = 2;

boolean clear = vis > 1 & (vis < 9 || ph < 2);

boolean safe = (vis > 2) && (ph++ > 1);

boolean tasty = 7 <= --ph;

System.out.println(clear+"-"+safe+"-"+tasty);

A. true-true-true

B. true-true-false

C. true-false-true

D. true-false-false

E. false-true-true

F. false-true-false

G. false-false-true

H. false-false-false

8. What is the output of the following code snippet?

4: int pig = (short)4;

5: pig = pig++;

6: long goat = (int)2;

7: goat -= 1.0;

8: System.out.print(pig + " - " + goat);

A. 4 - 1

B. 4 - 2

C. 5 - 1

D. 5 - 2

E. The code does not compile due to line 7.

F. None of the above

9. What are the unique outputs of the following code snippet?
(Choose all that apply.)

int a = 2, b = 4, c = 2;

System.out.println(a > 2 ? --c : b++);

System.out.println(b = (a!=c ? a : b++));

System.out.println(a > b ? b < c ? b : 2 : 1);

A. 1

B. 2

C. 3

D. 4

E. 5

F. 6

G. The code does not compile.

10. What are the unique outputs of the following code snippet?
(Choose all that apply.)

short height = 1, weight = 3;

short zebra = (byte) weight * (byte) height;

double ox = 1 + height * 2 + weight;

long giraffe = 1 + 9 % height + 1;

System.out.println(zebra);

System.out.println(ox);

System.out.println(giraffe);

A. 1

B. 2

C. 3

D. 4

E. 5

F. 6

G. The code does not compile.

11. What is the output of the following code?

1: public class ArithmeticSample {

2: public static void main(String[] args) {

3: int sample1 = (2 * 4) % 3;

4: int sample2 = 3 * 2 % 3;

5: int sample3 = 5 * (1 % 2);

6: System.out.println(sample1+"-"+sample2+"-"+sample3);

7: }}

A. 0-0-5

B. 1-2-10

C. 2-1-5

D. 2-0-5

E. 3-1-10

F. 3-2-6

G. The code does not compile.

12. The ________ operator increases a value and returns the
original value, while the ________ operator decreases a value
and returns the new value.

A. post-increment, post-increment

B. pre-decrement, post-decrement

C. post-increment, post-increment

D. post-increment, pre-decrement

E. pre-increment, pre-decrement

F. pre-increment, post-decrement

13. What is the output of the following code snippet?

boolean sunny = true, raining = false, sunday = true;

boolean goingToTheStore = sunny & raining ^ sunday;

boolean goingToTheZoo = sunday && !raining;

boolean stayingHome = !(goingToTheStore &&

goingToTheZoo);

System.out.println(goingToTheStore + "-" + goingToTheZoo

+ "-" +stayingHome);

A. true-false-false

B. false-true-false

C. true-true-true

D. false-true-true

E. false-false-false

F. true-true-false

G. None of the above

14. Which of the following statements are correct? (Choose all that
apply.)

A. The return value of an assignment operation expression can
be void.

B. The inequality operator (!=) can be used to compare objects.

C. The equality operator (==) can be used to compare a boolean
value with a numeric value.

D. During runtime, the && and | operators may cause only the
left side of the expression to be evaluated.

E. The return value of an assignment operation expression is the
value of the newly assigned variable.

F. In Java, 0 and false may be used interchangeably.

G. The logical complement operator (!) cannot be used to flip
numeric values.

15. Which operators take three operands or values? (Choose all that
apply.)

A. =

B. &&

C. *=

D. ? :

E. &

F. ++

G. /

16. How many lines of the following code contain compiler errors?

int note = 1 * 2 + (long)3;

short melody = (byte)(double)(note *= 2);

double song = melody;

float symphony = (float)((song == 1_000f) ? song * 2L :

song);

A. 0

B. 1

C. 2

D. 3

E. 4

17. Given the following code snippet, what is the value of the
variables after it is executed? (Choose all that apply.)

int ticketsTaken = 1;

int ticketsSold = 3;

ticketsSold += 1 + ticketsTaken++;

ticketsTaken *= 2;

ticketsSold += (long)1;

A. ticketsSold is 8

B. ticketsTaken is 2

C. ticketsSold is 6

D. ticketsTaken is 6

E. ticketsSold is 7

F. ticketsTaken is 4

G. The code does not compile.

18. Which of the following can be used to change the order of

operation in an expression? (Choose all that apply.)

A. []

B. < >

C. ()

D. \ /

E. { }

F. " "

19. What is the result of executing the following code snippet?
(Choose all that apply.)

3: int start = 7;

4: int end = 4;

5: end += ++start;

6: start = (byte)(Byte.MAX_VALUE + 1);

A. start is 0

B. start is -128

C. start is 127

D. end is 8

E. end is 11

F. end is 12

G. The code does not compile.

H. The code compiles but throws an exception at runtime.

20. Which of the following statements about unary operators are
true? (Choose all that apply.)

A. Unary operators are always executed before any surrounding
binary or ternary operators.

B. The - operator can be used to flip a boolean value.

C. The pre-increment operator (++) returns the value of the

variable before the increment is applied.

D. The post-decrement operator (--) returns the value of the
variable before the decrement is applied.

E. The ! operator cannot be used on numeric values.

F. None of the above

Chapter 4
Making Decisions
OCP exam objectives covered in this chapter:

 Using Operators and Decision Constructs

Use Java control statements including if, if/else, switch

Create and use do/while, while, for and for each loops,
including nested loops, use break and continue statements

Like many programming languages, Java is
composed primarily of variables, operators, and statements put
together in some logical order. Previously, we covered how to create
and manipulate variables. Writing software is about more than
managing variables, though; it is about creating applications that can
make intelligent decisions. In this chapter, we present the various
decision-making statements available to you within the language. This
knowledge will allow you to build complex functions and class
structures that you’ll see throughout this book.

Creating Decision-Making Statements
Java operators allow you to create a lot of complex expressions, but
they’re limited in the manner in which they can control program flow.
Imagine you want a method to be executed only under certain
conditions that cannot be evaluated until runtime. For example, on
rainy days, a zoo should remind patrons to bring an umbrella, or on a
snowy day, the zoo might need to close. The software doesn’t change,
but the behavior of the software should, depending on the inputs
supplied in the moment. In this section, we will discuss decision-
making statements including if, else, and switch statements.

Statements and Blocks
As you may recall from Chapter 2, “Java Building Blocks,” a Java
statement is a complete unit of execution in Java, terminated with a
semicolon (;). For the remainder of the chapter, we’ll be introducing
you to various Java control flow statements. Control flow statements
break up the flow of execution by using decision-making, looping, and
branching, allowing the application to selectively execute particular
segments of code.

These statements can be applied to single expressions as well as a
block of Java code. As described in Chapter 2, a block of code in Java
is a group of zero or more statements between balanced braces ({})
and can be used anywhere a single statement is allowed. For example,
the following two snippets are equivalent, with the first being a single
expression and the second being a block of statements:

// Single statement

patrons++;

// Statement inside a block

{

 patrons++;

}

A statement or block often functions as the target of a decision-making
statement. For example, we can prepend the decision-making if

statement to these two examples:

// Single statement

if(ticketsTaken > 1)

 patrons++;

// Statement inside a block

if(ticketsTaken > 1)

{

 patrons++;

}

Again, both of these code snippets are equivalent. Just remember that
the target of a decision-making statement can be a single statement or
block of statements. For the rest of the chapter, we will use both forms
to better prepare you for what you will see on the exam.

While both of the previous examples are equivalent,

stylistically the second form is often preferred, even if the block has
only one statement. The second form has the advantage that you
can quickly insert new lines of code into the block, without
modifying the surrounding structure. While either of these forms is
correct, it might explain why you often see developers who always
use blocks with all decision- making statements.

The if Statement
Oftentimes, we want to execute a block of code only under certain
circumstances. The if statement, as shown in Figure 4.1, accomplishes
this by allowing our application to execute a particular block of code if
and only if a boolean expression evaluates to true at runtime.

Figure 4.1 The structure of an if statement

For example, imagine we had a function that used the hour of day, an
integer value from 0 to 23, to display a message to the user:

if(hourOfDay < 11)

 System.out.println("Good Morning");

If the hour of the day is less than 11, then the message will be
displayed. Now let’s say we also wanted to increment some value,
morningGreetingCount, every time the greeting is printed. We could
write the if statement twice, but luckily Java offers us a more natural
approach using a block:

if(hourOfDay < 11) {

 System.out.println("Good Morning");

 morningGreetingCount++;

}

The block allows multiple statements to be executed based on the if
evaluation. Notice that the first statement didn’t contain a block
around the print section, but it easily could have. As discussed in the
previous section, it is often considered good coding practice to put
blocks around the execution component of if statements, as well as
many other control flow statements, although it is certainly not
required.

Watch Indentation and Braces
One area where the exam writers will try to trip you up is on if

statements without braces ({}). For example, take a look at this
slightly modified form of our example:

if(hourOfDay < 11)

 System.out.println("Good Morning");

 morningGreetingCount++;

Based on the indentation, you might be inclined to think the
variable morningGreetingCount is only going to be incremented if
the hourOfDay is less than 11, but that’s not what this code does. It
will execute the print statement only if the condition is met, but it
will always execute the increment operation.

Remember that in Java, unlike some other programming
languages, tabs are just whitespace and are not evaluated as part of
the execution. When you see a control flow statement in a
question, be sure to trace the open and close braces of the block,
ignoring any indentation you may come across.

The else Statement
Let’s expand our example a little. What if we want to display a
different message if it is 11 a.m. or later? Could we do it using only the
tools we have? Of course we can!

if(hourOfDay < 11) {

 System.out.println("Good Morning");

}

if(hourOfDay >= 11) {

 System.out.println("Good Afternoon");

}

This seems a bit redundant, though, since we’re performing an
evaluation on hourOfDay twice. It’s also wasteful because in some
circumstances the cost of the boolean expression we’re evaluating
could be computationally expensive. Luckily, Java offers us a more
useful approach in the form of an else statement, as shown in Figure
4.2.

Figure 4.2 The structure of an else statement

Let’s return to this example:

if(hourOfDay < 11) {

 System.out.println("Good Morning");

} else {

 System.out.println("Good Afternoon");

}

Now our code is truly branching between one of the two possible
options, with the boolean evaluation happening only once. The else
operator takes a statement or block of statements, in the same manner
as the if statement does. Similarly, we can append additional if
statements to an else block to arrive at a more refined example:

if(hourOfDay < 11) {

 System.out.println("Good Morning");

} else if(hourOfDay < 15) {

 System.out.println("Good Afternoon");

} else {

 System.out.println("Good Evening");

}

In this example, the Java process will continue execution until it
encounters an if statement that evaluates to true. If neither of the first
two expressions is true, it will execute the final code of the else block.

One thing to keep in mind in creating complex if and else statements
is that order is important. For example, see what happens if we
reorder the previous snippet of code as follows:

if(hourOfDay < 15) {

 System.out.println("Good Afternoon");

} else if(hourOfDay < 11) {

 System.out.println("Good Morning"); // COMPILES BUT IS

UNREACHABLE

} else {

 System.out.println("Good Evening");

}

For hours of the day less than 11, this code behaves very differently
than the previous set of code. Do you see why the second block can
never be executed regardless of the value of hourOfDay?

If a value is less than 11, then it must be also less than 15 by definition.
Therefore, if the second branch in the example can be reached, the
first branch can also be reached. Since execution of each branch is
mutually exclusive in this example (that is, only one branch can be
executed), then if the first branch is executed, the second cannot be
executed. Therefore, there is no way the second branch will ever be
executed, and the code is deemed unreachable.

Verifying That the if Statement Evaluates to a Boolean
Expression
Another common place the exam may try to lead you astray is by
providing code where the boolean expression inside the if
statement is not actually a boolean expression. For example, take a
look at the following lines of code:

int hourOfDay = 1;

if(hourOfDay) { // DOES NOT COMPILE

 ...

}

This statement may be valid in some other programming and
scripting languages, but not in Java, where 0 and 1 are not
considered boolean values.

Also, like you saw in Chapter 3, “Operators,” be wary of assignment
operators being used as if they were equals (==) operators in if
statements:

int hourOfDay = 1;

if(hourOfDay = 5) { // DOES NOT COMPILE

 ...

}

The switch Statement
What if we have a lot of possible branches for a single value? For
example, we might want to print a different message based on the day
of the week. We could certainly accomplish this with a combination of
seven if or else statements, but that tends to create code that is long,
difficult to read, and often not fun to maintain. For example, the
following code prints a different value based on the day of the week
using various different styles for each decision statement:

int dayOfWeek = 5;

if(dayOfWeek == 0) System.out.print("Sunday");

else if(dayOfWeek == 1)

{

 System.out.print("Monday");

}

else if(dayOfWeek == 2) {

 System.out.print("Tuesday");

} else if(dayOfWeek == 3)

 System.out.print("Wednesday");

...

Luckily, Java, along with many other languages, provides a cleaner
approach. A switch statement, as shown in Figure 4.3, is a complex
decision-making structure in which a single value is evaluated and
flow is redirected to the first matching branch, known as a case
statement. If no such case statement is found that matches the value,
an optional default statement will be called. If no such default option
is available, the entire switch statement will be skipped.

Figure 4.3 The structure of a switch statement

Proper Switch Syntax
Because switch statements can be longer than most decision-making
statements, the exam may present invalid switch syntax to see whether
you are paying attention. See if you can figure out why each of the
following switch statements does not compile:

int month = 5;

switch month { // DOES NOT COMPILE

 case 1: System.out.print("January");

}

switch (month) // DOES NOT COMPILE

 case 1: System.out.print("January");

switch (month) {

 case 1: 2: System.out.print("January"); // DOES NOT COMPILE

}

switch (month) {

 case 1 || 2: System.out.print("January"); // DOES NOT COMPILE

}

The first switch statement does not compile because it is missing
parentheses around the switch variable. The second statement does
not compile because it is missing braces around the switch body. The
third statement does not compile because the case keyword is missing
before the 2: label. Each case statement requires the keyword case,
followed by a value and a colon (:).

Finally, the last switch statement does not compile because 1 || 2
uses the short-circuit boolean operator, which cannot be applied to
numeric values. A single bitwise operator (|) would have allowed the
code to compile, although the interpretation of this might not be what
you expect. It would then only match a value of month that is the
bitwise result of 1 | 2, which is 3, and would not match month having a
value 1 or 2. You don’t need to know bitwise arithmetic for the exam,
but you do need to know proper syntax for case statements.

Notice that these last two statements both try to combine case
statements in ways that are not valid. One last note you should be
aware of for the exam: a switch statement is not required to contain
any case statements. For example, this statement is perfectly valid:

switch (month) {}

For the exam, make sure you memorize the syntax used in Figure 4.3.
As you will see in the next section, while some aspects of switch
statements have changed over the years, many things have not
changed.

Switch Data Types
As shown in Figure 4.3, a switch statement has a target variable that is
not evaluated until runtime. Prior to Java 5.0, this variable could only
be int values or those values that could be promoted to int,
specifically byte, short, char, or int, which we refer to as primitive
numeric types.

The switch statement also supports any of the wrapper class versions
of these primitive numeric types, such as Byte, Short, Character, or
Integer. Don’t worry if you haven’t seen numeric wrapper classes—

we’ll be covering them in Chapter 5, “Core Java APIs.” For now, you
just need to know that they are objects that can store primitive values.

Notice that boolean, long, float, and double are excluded

from switch statements, as are their associated Boolean, Long,
Float, and Double classes. The reasons are varied, such as boolean
having too small a range of values and floating-point numbers
having quite a wide range of values. For the exam, though, you just
need to know that they are not permitted in switch statements.

When enumeration, denoted enum, was added in Java 5.0, support was
added to switch statements to support enum values. An enumeration is
a fixed set of constant values, which can also include methods and
class variables, similar to a class definition. For the exam, you do not
need to know how to create enums, but you should be aware they can
be used as the target of switch statements.

In Java 7, switch statements were further updated to allow matching
on String values. In Java 10, if the type a var resolves to is one of the
types supported by a switch statement, then var can be used in a
switch statement too.

Switch History and Changes
As you can see, switch statements have been modified in numerous
versions of Java. You don’t have to worry about remembering the
history—just know what types are now allowed. The history lesson
is for experienced Java developers who have been using an older
version of Java and may not be aware of the numerous changes to
switch statements over the years.

But wait, there’s more. Java 12 launched with a Preview release of a
powerful new feature called Switch Expressions, a construct that
combines switch statements with lambda expressions and allows
switch statements to return a value. You won’t need to know
Switch Expressions for the exam, but it’s just a sign that the writers
of Java are far from done making enhancements to switch

statements.

The following is a list of all data types supported by switch statements:

int and Integer

byte and Byte

short and Short

char and Character

String

enum values

var (if the type resolves to one of the preceding types)

For the exam, we recommend you memorize this list. Remember,
boolean, long, float, double, and each of their associated wrapper
classes are not supported by switch statements.

Switch Control Flow
Let’s look at a simple switch example using the day of the week, with 0
for Sunday, 1 for Monday, and so on:

int dayOfWeek = 5;

switch(dayOfWeek) {

 default:

 System.out.println("Weekday");

 break;

 case 0:

 System.out.println("Sunday");

 break;

 case 6:

 System.out.println("Saturday");

 break;

}

With a value of dayOfWeek of 5, this code will output the following:

Weekday

The first thing you may notice is that there is a break statement at the
end of each case and default section. We’ll discuss break statements in

more detail when we discuss branching, but for now all you need to
know is that they terminate the switch statement and return flow
control to the enclosing statement. As you’ll soon see, if you leave out
the break statement, flow will continue to the next proceeding case or
default block automatically.

Another thing you might notice is that the default block is not at the
end of the switch statement. There is no requirement that the case or
default statement be in a particular order, unless you are going to
have pathways that reach multiple sections of the switch block in a
single execution.

To illustrate both of the preceding points, consider the following
variation:

var dayOfWeek = 5;

switch(dayOfWeek) {

 case 0:

 System.out.println("Sunday");

 default:

 System.out.println("Weekday");

 case 6:

 System.out.println("Saturday");

 break;

}

This code looks a lot like the previous example. Notice that we used a
var for the switch variable, which is allowed because it resolves to an
int by the compiler. Next, two of the break statements have been
removed, and the order has been changed. This means that for the
given value of dayOfWeek, 5, the code will jump to the default block and
then execute all of the proceeding case statements in order until it
finds a break statement or finishes the switch statement:

Weekday

Saturday

The order of the case and default statements is now important since
placing the default statement at the end of the switch statement
would cause only one word to be output.

What if the value of dayOfWeek was 6 in this example? Would the
default block still be executed? The output of this example with

dayOfWeek set to 6 would be as follows:

Saturday

Even though the default block was before the case block, only the case
block was executed. If you recall the definition of the default block, it
is branched to only if there is no matching case value for the switch
statement, regardless of its position within the switch statement.

Finally, if the value of dayOfWeek was 0, all three statements would be
output:

Sunday

Weekday

Saturday

Notice that in this last example, the default statement is executed
since there was no break statement at the end of the preceding case
block. While the code will not branch to the default statement if there
is a matching case value within the switch statement, it will execute
the default statement if it encounters it after a case statement for
which there is no terminating break statement.

The exam creators are fond of switch examples that are missing break
statements! When evaluating switch statements on the exam, always
consider that multiple branches may be visited in a single execution.

Acceptable Case Values
We conclude our discussion of switch statements by talking about
acceptable values for case statements, given a particular switch
variable. Not just any variable or value can be used in a case
statement!

First off, the values in each case statement must be compile-time
constant values of the same data type as the switch value. This means
you can use only literals, enum constants, or final constant variables of
the same data type. By final constant, we mean that the variable must
be marked with the final modifier and initialized with a literal value
in the same expression in which it is declared. For example, you can’t
have a case statement value that requires executing a method at
runtime, even if that method always returns the same value. For these

reasons, only the first and last case statements in the following
example compiles:

final int getCookies() { return 4; }

void feedAnimals() {

 final int bananas = 1;

 int apples = 2;

 int numberOfAnimals = 3;

 final int cookies = getCookies();

 switch (numberOfAnimals) {

 case bananas:

 case apples: // DOES NOT COMPILES

 case getCookies(): // DOES NOT COMPILE

 case cookies : // DOES NOT COMPILE

 case 3 * 5 :

 }

}

The bananas variable is marked final, and its value is known at
compile-time, so it is valid. The apples variable is not marked final,
even though its value is known, so it is not permitted. The next two
case statements, with values getCookies() and cookies, do not compile
because methods are not evaluated until runtime, so they cannot be
used as the value of a case statement, even if one of the values is stored
in a final variable. The last case statement, with value 3 * 5, does
compile, as expressions are allowed as case values, provided the value
can be resolved at compile-time. They also must be able to fit in the
switch data type without an explicit cast. We’ll go into that in more
detail shortly.

Next, the data type for case statements must all match the data type of
the switch variable. For example, you can’t have a case statement of
type String, if the switch statement variable is of type int, since the
types are incomparable.

A More Complex Example
We now present a large switch statement, not unlike what you could
see on the exam, with numerous broken case statements. See if you
can figure out why certain case statements compile and others do not.

private int getSortOrder(String firstName, final String lastName)

{

 String middleName = "Patricia";

 final String suffix = "JR";

 int id = 0;

 switch(firstName) {

 case "Test":

 return 52;

 case middleName: // DOES NOT COMPILE

 id = 5;

 break;

 case suffix:

 id = 0;

 break;

 case lastName: // DOES NOT COMPILE

 id = 8;

 break;

 case 5: // DOES NOT COMPILE

 id = 7;

 break;

 case 'J': // DOES NOT COMPILE

 id = 10;

 break;

 case java.time.DayOfWeek.SUNDAY: // DOES NOT COMPILE

 id=15;

 break;

 }

 return id;

}

The first case statement, "Test", compiles without issue since it is a
String literal and is a good example of how a return statement, like a
break statement, can be used to exit the switch statement early. The
second case statement does not compile because middleName is not a
constant value, despite having a known value at this particular line of
execution. If a final modifier was added to the declaration of
middleName, this case statement would have compiled. The third case
statement compiles without issue because suffix is a final constant
variable.

In the fourth case statement, despite lastName being final, it is not
constant as it is passed to the function; therefore, this line does not
compile as well. Finally, the last three case statements do not compile
because none of them has a matching type of String, the last one being
an enum value.

Numeric Promotion and Casting
Last but not least, switch statements support numeric promotion that
does not require an explicit cast. For example, see if you can
understand why only one of these case statements compiles:

short size = 4;

final int small = 15;

final int big = 1_000_000;

switch(size) {

 case small:

 case 1+2 :

 case big: // DOES NOT COMPILE

}

As you may recall from our discussion of numeric promotion and
casting in Chapter 3, the compiler can easily cast small from int to
short at compile-time because the value 15 is small enough to fit inside
a short. This would not be permitted if small was not a compile-time
constant. Likewise, it can convert the expression 1+2 from int to short
at compile-time. On the other hand, 1_000_000 is too large to fit inside
of short without an explicit cast, so the last case statement does not
compile.

Writing while Loops
A common practice when writing software is the need to do the same
task some number of times. You could use the decision structures we
have presented so far to accomplish this, but that’s going to be a pretty
long chain of if or else statements, especially if you have to execute
the same thing 100 times or more.

Enter loops! A loop is a repetitive control structure that can execute a
statement of code multiple times in succession. By making use of
variables being able to be assigned new values, each repetition of the
statement may be different. In the following example, the loop
increments a counter variable that causes the value of price to
increase by 10 on each execution of the loop. The loop continues for a
total of 10 times.

int counter = 0;

while (counter < 10) {

 double price = counter * 10;

 System.out.println(price);

 counter++;

}

If you don’t follow this code, don’t panic—we’ll be covering it shortly.
In this section, we’re going to discuss the while loop and its two forms.
In the next section, we’ll move onto for loops, which have their roots
in while loops.

The while Statement
The simplest repetitive control structure in Java is the while
statement, described in Figure 4.4. Like all repetition control
structures, it has a termination condition, implemented as a boolean
expression, that will continue as long as the expression evaluates
to true.

Figure 4.4 The structure of a while statement

As shown in Figure 4.4, a while loop is similar to an if statement in
that it is composed of a boolean expression and a statement, or a block
of statements. During execution, the boolean expression is evaluated
before each iteration of the loop and exits if the evaluation returns
false.

Let’s return to our mouse example from Chapter 2 and show how a
loop can be used to model a mouse eating a meal.

int roomInBelly = 5;

public void eatCheese(int bitesOfCheese) {

 while (bitesOfCheese > 0 && roomInBelly > 0) {

 bitesOfCheese--;

 roomInBelly--;

 }

 System.out.println(bitesOfCheese+" pieces of cheese left");

}

This method takes an amount of food, in this case cheese, and
continues until the mouse has no room in its belly or there is no food
left to eat. With each iteration of the loop, the mouse “eats” one bite of
food and loses one spot in its belly. By using a compound boolean
statement, you ensure that the while loop can end for either of the
conditions.

One thing to remember is that a while loop may terminate after its
first evaluation of the boolean expression. For example, how many
times is Not full! printed in the following example?

int full = 5;

while(full < 5) {

 System.out.println("Not full!");

 full++;

}

The answer? Zero! On the first iteration of the loop, the condition is
reached, and the loop exits. This is why while loops are often used in
places where you expect zero or more executions of the loop. Simply
put, the body of the loop may not execute at all or may execute many
times.

The do/while Statement
The second form a while loop can take is called a do/while loop, which
like a while loop is a repetition control structure with a termination
condition and statement, or a block of statements, as shown in Figure
4.5. Unlike a while loop, though, a do/while loop guarantees that the
statement or block will be executed at least once. Whereas a while loop
is executed zero or more times, a do/while loop is executed one or
more times.

Figure 4.5 The structure of a do/while statement

The primary difference between the syntactic structure of a do/while
loop and a while loop is that a do/while loop purposely orders the body

before the conditional expression so that the body will be executed at
least once. For example, what is the output of the following
statements?

int lizard = 0;

do {

 lizard++;

} while(false);

System.out.println(lizard); // 1

Java will execute the statement block first and then check the loop
condition. Even though the loop exits right away, the statement block
is still executed once, and the program prints 1.

Comparing while and do/while Loops
In practice, it might be difficult to determine when you should use a
while loop and when you should use a do/while loop. The short answer
is that it does not actually matter. Any while loop can be converted to a
do/while loop, and vice versa. For example, compare this while loop:

while(llama > 10) {

 System.out.println("Llama!");

 llama--;

}

and this do/while loop:

if(llama > 10) {

 do {

 System.out.println("Llama!");

 llama--;

 } while(llama > 10);

}

Although one of the loops is certainly easier to read, they are
functionally equivalent. Think about it. If llama is less than or equal to
10 at the start, then both code snippets will exit without printing
anything. If llama is greater than 10, say 15, then both loops will print
Llama! exactly five times.

We recommend you use a while loop when the code will execute zero
or more times and a do/while loop when the code will execute one or

more times. To put it another way, you should use a do/while loop
when you want your loop to execute at least once.

That said, determining whether you should use a while loop or a
do/while loop in practice is sometimes about personal preference and
about code readability.

For example, although the first statement in our previous example is
shorter, the do/while statement has the advantage that you could
leverage the existing if statement and perform some other operation
in a new else branch, as shown in the following example:

if(llama > 10) {

 do {

 System.out.println("Llama!");

 llama--;

 } while(llama > 10);

} else {

 llama++;

}

For fun, try taking a do/while loop you’ve written in the past and
convert it to a while loop, or vice versa.

Infinite Loops
The single most important thing you should be aware of when you are
using any repetition control structure is to make sure they always
terminate! Failure to terminate a loop can lead to numerous problems
in practice including overflow exceptions, memory leaks, slow
performance, and even bad data. Let’s take a look at an example:

int pen = 2;

int pigs = 5;

while(pen < 10)

 pigs++;

You may notice one glaring problem with this statement: it will never
end. The variable pen is never modified, so the expression (pen < 10)
will always evaluate to true. The result is that the loop will never end,
creating what is commonly referred to as an infinite loop. An infinite
loop is a loop whose termination condition is never reached during
runtime.

Anytime you write a loop, you should examine it to determine whether
the termination condition is always eventually met under some
condition. For example, a loop in which no variables are changing
between two executions suggests that the termination condition may
not be met. The loop variables should always be moving in a particular
direction.

In other words, make sure the loop condition, or the variables the
condition is dependent on, are changing between executions. Then,
ensure that the termination condition will be eventually reached in all
circumstances. As you’ll see in the last section of this chapter, a loop
may also exit under other conditions, such as a break statement.

A Practical Use of an Infinite Loop
In practice, infinite loops can be used to monitor processes that
exist for the life of the program—for example, a process that wakes
up every 30 seconds to look for work to be done and then goes back
to sleep afterward.

When creating an infinite loop like this, you need to make sure
there are only a fixed number of them created by the application,
or you could run out of memory. You also have to make sure that
there is a way to stop them, often as part of the application
shutting down. Finally, there are modern alternatives to creating
infinite loops, such as using a scheduled thread executor, that are
well beyond the scope of the exam.

If you’re not familiar with how to create and execute multiple
processes at once, don’t worry, you don’t need to be for this exam.
When you continue on to exam 1Z0-816, you will study these topics
as part of concurrency.

Constructing for Loops
Even though while and do/while statements are quite powerful, some
tasks are so common in writing software that special types of loops
were created—for example, iterating over a statement exactly 10 times
or iterating over a list of names. You could easily accomplish these
tasks with various while loops that you’ve seen so far, but they usually
require writing multiple lines of code and managing variables
manually. Wouldn’t it be great if there was a looping structure that
could do the same thing in a single line of code?

With that, we present the most convenient repetition control
structure, for loops. There are two types of for loops, although both
use the same for keyword. The first is referred to as the basic for loop,
and the second is often called the enhanced for loop. For clarity, we’ll
refer to them as the for loop and the for-each loop, respectively,
throughout the book.

The for Loop
A basic for loop has the same conditional boolean expression and
statement, or block of statements, as the while loops, as well as two
new sections: an initialization block and an update statement. Figure
4.6 shows how these components are laid out.

Figure 4.6 The structure of a basic for loop

Although Figure 4.6 might seem a little confusing and almost arbitrary
at first, the organization of the components and flow allow us to create
extremely powerful statements in a single line that otherwise would
take multiple lines with a while loop. Note that each section is
separated by a semicolon. Also, the initialization and update sections
may contain multiple statements, separated by commas.

Variables declared in the initialization block of a for loop have limited
scope and are accessible only within the for loop. Be wary of any exam
questions in which a variable is declared within the initialization block
of a for loop and then read outside the loop. For example, this code
does not compile because the loop variable i is referenced outside the
loop:

for(int i=0; i < 10; i++)

 System.out.print("Value is: "+i);

System.out.println(i); // DOES NOT COMPILE

Alternatively, variables declared before the for loop and assigned a
value in the initialization block may be used outside the for loop
because their scope precedes the creation of the for loop.

Let’s take a look at an example that prints the first five numbers,
starting with zero:

for(int i = 0; i < 5; i++) {

 System.out.print(i + " ");

}

The local variable i is initialized first to 0. The variable i is only in
scope for the duration of the loop and is not available outside the loop
once the loop has completed. Like a while loop, the boolean condition
is evaluated on every iteration of the loop before the loop executes.
Since it returns true, the loop executes and outputs the 0 followed by a
space. Next, the loop executes the update section, which in this case
increases the value of i to 1. The loop then evaluates the boolean
expression a second time, and the process repeats multiple times,
printing the following:

0 1 2 3 4

On the fifth iteration of the loop, the value of i reaches 4 and is
incremented by 1 to reach 5. On the sixth iteration of the loop, the
boolean expression is evaluated, and since (5 < 5) returns false, the
loop terminates without executing the statement loop body.

Why i in for Loops?
You may notice it is common practice to name a for loop variable
i. Long before Java existed, programmers started using i as short
for increment variable, and the practice exists today, even though
many of those programming languages no longer do!

For double or triple loops, where i is already used, the next letters
in the alphabet, j and k, are often used, respectively. One
advantage of using a single-letter variable name in a for loop is
that it doesn’t take up a lot of space, allowing the for loop
declaration to fit on a single line.

For the exam, and for your own coding experience, you should
know that using a single-letter variable name is not required. That

said, you are likely to encounter i in for loops throughout your
professional software development experience.

Printing Elements in Reverse
Let’s say you wanted to print the same first five numbers from zero as
we did in the previous section, but this time in reverse order. The goal
then is to print 4 3 2 1 0.

How would you do that? Starting with Java 10, you may now see var
used in a for loop, so let’s use that for this example. An initial
implementation might look like the following:

for (var counter = 5; counter > 0; counter--) {

 System.out.print(counter + " ");

}

First, how is var interpreted? Since it is assigned a value of 5, the
compiler treats it as having a type of int. Next, what does the example
output? While this snippet does output five distinct values and it
resembles our first for loop example, it does not output the same five
values. Instead, this is the output:

5 4 3 2 1

Wait, that’s not what we wanted! We wanted 4 3 2 1 0. It starts with
5, because that is the first value assigned to it. Let’s fix that by starting
with 4 instead:

for (var counter = 4; counter > 0; counter--) {

 System.out.print(counter + " ");

}

What does this print now? This prints the following:

4 3 2 1

So close! The problem is it ends with 1, not 0, because we told it to exit
as soon as the value was not strictly greater than 0. If we want to print
the same 0 through 4 as our first example, we need to update the
termination condition, like this:

for (var counter = 4; counter >= 0; counter--) {

 System.out.print(counter + " ");

}

Finally! We have code that now prints 4 3 2 1 0 and matches the
reverse of our for loop example in the previous section. We could have
instead used counter > -1 as the loop termination condition in this
example, although counter >= 0 tends to be more readable.

For the exam, you are going to have to know how to read

forward and backward for loops. When you see a for loop on the
exam, pay close attention to the loop variable and operations if the
decrement operator, --, is used. While incrementing from 0 in a
for loop is often straightforward, decrementing tends to be less
intuitive. In fact, if you do see a for loop with a decrement operator
on the exam, you should assume they are trying to test your
knowledge of loop operations.

Working with for Loops
Although most for loops you are likely to encounter in your
professional development experience will be well defined and similar
to the previous examples, there are a number of variations and edge
cases you could see on the exam. You should familiarize yourself with
the following five examples; variations of these are likely to be seen on
the exam.

Let’s tackle some examples for illustrative purposes:

1. Creating an Infinite Loop

for(; ;)

 System.out.println("Hello World");

Although this for loop may look like it does not compile, it will in fact
compile and run without issue. It is actually an infinite loop that will
print the same statement repeatedly. This example reinforces the fact
that the components of the for loop are each optional. Note that the
semicolons separating the three sections are required, as for()

without any semicolons will not compile.

2. Adding Multiple Terms to the for Statement

int x = 0;

for(long y = 0, z = 4; x < 5 && y < 10; x++, y++) {

 System.out.print(y + " "); }

System.out.print(x + " ");

This code demonstrates three variations of the for loop you may not
have seen. First, you can declare a variable, such as x in this example,
before the loop begins and use it after it completes. Second, your
initialization block, boolean expression, and update statements can
include extra variables that may or may not reference each other. For
example, z is defined in the initialization block and is never used.
Finally, the update statement can modify multiple variables. This code
will print the following when executed:

0 1 2 3 4 5

3. Redeclaring a Variable in the Initialization Block

int x = 0;

for(int x = 4; x < 5; x++) { // DOES NOT COMPILE

 System.out.print(x + " ");

}

This example looks similar to the previous one, but it does not compile
because of the initialization block. The difference is that x is repeated
in the initialization block after already being declared before the loop,
resulting in the compiler stopping because of a duplicate variable
declaration. We can fix this loop by removing the declaration of x from
the for loop as follows:

int x = 0;

for(x = 0; x < 5; x++) {

 System.out.print(x + " ");

}

Note that this variation will now compile because the initialization
block simply assigns a value to x and does not declare it.

4. Using Incompatible Data Types in the Initialization Block

int x = 0;

for(long y = 0, int z = 4; x < 5; x++) { // DOES NOT COMPILE

 System.out.print(y + " ");

}

Like the third example, this code will not compile, although this time
for a different reason. The variables in the initialization block must all
be of the same type. In the multiple terms example, y and z were both
long, so the code compiled without issue, but in this example they have
differing types, so the code will not compile.

5. Using Loop Variables Outside the Loop

for(long y = 0, x = 4; x < 5 && y < 10; x++, y++) {

 System.out.print(y + " ");

}

System.out.print(x); // DOES NOT COMPILE

We covered this already at the start of this section, but this is so
important for passing the exam that we discuss it again here. If you
notice, x is defined in the initialization block of the loop and then used
after the loop terminates. Since x was only scoped for the loop, using it
outside the loop will cause a compiler error.

Modifying Loop Variables
What happens if you modify a variable in a for loop, or any other loop
for that matter? Does Java even let you modify these variables? Take a
look at the following three examples, and see whether you can
determine what will happen if they are each run independently:

for(int i=0; i<10; i++)

 i = 0;

for(int j=1; j<10; j++)

 j--;

for(int k=0; k<10;)

 k++;

All three of these examples compile, as Java does let you modify loop
variables, whether they be in for, while, or do/while loops. The first
two examples create infinite loops, as loop conditions i<10 and j<10

are never reached, independently. In the first example, i is reset
during every loop to 0, then incremented to 1, then reset to 0, and so
on. In the second example, j is decremented to 0, then incremented to
1, then decremented to 0, and so on. The last example executes the
loop exactly 10 times, so it is valid, albeit a little unusual.

Java does allow modification of loop variables, but you should be wary
if you see questions on the exam that do this. While it is normally
straightforward to look at a for loop and get an idea of how many
times the loop will execute, once we start modifying loop variables, the
behavior can be extremely erratic. This is especially true when nested
loops are involved, which we cover later in this chapter.

There are also some special considerations when modifying a
Collection object within a loop. For example, if you delete an element
from a List while iterating over it, you could run into a
ConcurrentModificationException. This topic is out of scope for the
exam, though. You’ll revisit this when studying for the 1Z0-816 exam.

As a general rule, it is considered a poor coding practice to

modify loop variables due to the unpredictability of the result. It
also tends to make code difficult for other people to read. If you
need to exit a loop early or change the flow, you can use break,
continue, or return, which we’ll discuss later in this chapter.

The for-each Loop
Let’s say you want to iterate over a set of values, such as a list of
names, and print each of them. Using a for loop, this can be
accomplished with a counter variable:

public void printNames(String[] names) {

 for(int counter=0; counter<names.length; counter++)

 System.out.println(names[counter]);

}

This works, although it’s a bit verbose. We’re creating a counter
variable, but we really don’t care about its value—just that it loops

through the array in order.

After almost 20 years of programming for loops like this, the writers
of Java took a page from some other programming languages and
added the enhanced for loop, or for-each loop as we like to call it. The
for-each loop is a specialized structure designed to iterate over arrays
and various Collection Framework classes, as presented in Figure 4.7.

Figure 4.7 The structure of an enhanced for-each loop

The for-each loop declaration is composed of an initialization section
and an object to be iterated over. The right side of the for-each loop
must be one of the following:

A built-in Java array

An object whose type implements java.lang.Iterable

We’ll cover what implements means in Chapter 9, “Advanced Class
Design,” but for now you just need to know the right side must be an
array or collection of items, such as a List or a Set. For the exam, you
should know that this does not include all of the Collections
Framework classes or interfaces, but only those that implement or
extend that Collection interface. For example, Map is not supported in
a for-each loop, although Map does include methods that return
Collection instances.

In Chapter 5, we’ll go into detail about how to create List objects and
how they differ from traditional Java arrays. Likewise, String and
StringBuilder, which you will also see in the next chapter, do not
implement Iterable and cannot be used as the right side of a for-each

statement.

The left side of the for-each loop must include a declaration for an
instance of a variable whose type is compatible with the type of the
array or collection on the right side of the statement. A var may also be
used for the variable type declaration, with the specific type
determined by the right side of the for-each statement. On each
iteration of the loop, the named variable on the left side of the
statement is assigned a new value from the array or collection on the
right side of the statement.

Let’s return to our previous example and see how we can apply a for-
each loop to it.

public void printNames(String[] names) {

 for(String name : names)

 System.out.println(name);

}

A lot shorter, isn’t it? We no longer have a counter loop variable that
we need to create, increment, and monitor. Like using a for loop in
place of a while loop, for-each loops are meant to make code easier to
read/write, freeing you to focus on the parts of your code that really
matter.

Tackling the for-each Statement
Let’s work with some examples:

What will this code output?

final String[] names = new String[3];

names[0] = "Lisa";

names[1] = "Kevin";

names[2] = "Roger";

for(String name : names) {

 System.out.print(name + ", ");

}

This is a simple one, with no tricks. The code will compile and
print the following:

Lisa, Kevin, Roger,

What will this code output?

List<String> values = new ArrayList<String>();

values.add("Lisa");

values.add("Kevin");

values.add("Roger");

for(var value : values) {

 System.out.print(value + ", ");

}

This code will compile and print the same values:

Lisa, Kevin, Roger,

Like the regular for loop, the for-each loop also accepts var for the
loop variable, with the type implied by the data type being iterated
over.

When you see a for-each loop on the exam, make sure the right
side is an array or Iterable object and the left side has a matching
type.

Why does this fail to compile?

String names = "Lisa";

for(String name : names) { // DOES NOT COMPILE

 System.out.print(name + " ");

}

In this example, the String names is not an array, nor does it
define a list of items, so the compiler will throw an exception since
it does not know how to iterate over the String. As a developer,
you could iterate over each character of a String, but this would
require using the charAt() method, which is not compatible with a
for-each loop. The charAt() method, along with other String

methods, will be covered in Chapter 5.

Why does this fail to compile?

String[] names = new String[3];

for(int name : names) { // DOES NOT COMPILE

 System.out.print(name + " ");

}

This code will fail to compile because the left side of the for-each
statement does not define an instance of String. Notice that in
this last example, the array is initialized with three null pointer
values. In and of itself, that will not cause the code to not compile,
as a corrected loop would just output null three times.

Switching Between for and for-each Loops
You may have noticed that in the previous for-each examples, there
was an extra comma printed at the end of the list:

Lisa, Kevin, Roger,

While the for-each statement is convenient for working with lists in
many cases, it does hide access to the loop iterator variable. If we
wanted to print only the comma between names, we could convert the
example into a standard for loop, as in the following example:

List<String> names = new ArrayList<String>();

names.add("Lisa");

names.add("Kevin");

names.add("Roger");

for(int i=0; i<names.size(); i++) {

 String name = names.get(i);

 if(i > 0) {

 System.out.print(", ");

 }

 System.out.print(name);

}

This sample code would output the following:

Lisa, Kevin, Roger

This is not as short as our for-each example, but it does create the
output we wanted, without the extra comma.

It is also common to use a standard for loop over a for-each loop if
comparing multiple elements in a loop within a single iteration, as in
the following example:

int[] values = new int[3];

values[0] = 1;

values[1] = Integer.valueOf(3);

values[2] = 6;

for(int i=1; i<values.length; i++) {

 System.out.print((values[i]-values[i-1]) + ", ");

}

This sample code would output the following:

2, 3,

Notice that we skip the first index of the array, since value[-1] is not
defined and would throw an IndexOutOfBoundsException error if called
with i=0. When comparing n elements of a list with each other, our
loop should be executed n-1 times.

Despite these examples, enhanced for-each loops are extremely
convenient in a variety of circumstances. As a developer, though, you
can always revert to a standard for loop if you need fine-grained
control.

Comparing for and for-each Loops
Since for and for-each both use the same keyword, you might be
wondering how they are related. While this discussion is out of
scope for the exam, let’s take a moment to explore how for-each
loops are converted to for loops by the compiler.

When for-each was introduced in Java 5, it was added as a
compile-time enhancement. This means that Java actually converts
the for-each loop into a standard for loop during compilation. For
example, assuming names is an array of String as we saw in the first

example, the following two loops are equivalent:

for(String name : names) {

 System.out.print(name + ", ");

}

for(int i=0; i < names.length; i++) {

 String name = names[i];

 System.out.print(name + ", ");

}

For objects that inherit Iterable, there is a different, but similar,
conversion. For example, assuming values is an instance of
List<Integer>, the following two loops are equivalent:

for(int value : values) {

 System.out.print(value + ", ");

}

for(Iterator<Integer> i = values.iterator(); i.hasNext();) {

 int value = i.next();

 System.out.print(value + ", ");

}

Notice that in the second version, there is no update statement in
the for loop as next() both retrieves the next available value and
moves the iterator forward.

Controlling Flow with Branching
The final type of control flow structures we will cover in this chapter
are branching statements. Up to now, we have been dealing with single
loops that ended only when their boolean expression evaluated to
false. We’ll now show you other ways loops could end, or branch, and
you’ll see that the path taken during runtime may not be as
straightforward as in the previous examples.

Nested Loops
Before we move into branching statements, we need to introduce the
concept of nested loops. A nested loop is a loop that contains another
loop including while, do/while, for, and for-each loops. For example,
consider the following code that iterates over a two-dimensional array,
which is an array that contains other arrays as its members. We’ll
cover multidimensional arrays in detail in Chapter 5, but for now
assume the following is how you would declare a two-dimensional
array:

int[][] myComplexArray = {{5,2,1,3},{3,9,8,9},{5,7,12,7}};

for(int[] mySimpleArray : myComplexArray) {

 for(int i=0; i<mySimpleArray.length; i++) {

 System.out.print(mySimpleArray[i]+"\t");

 }

 System.out.println();

}

Notice that we intentionally mix a for and for-each loop in this
example. The outer loop will execute a total of three times. Each time
the outer loop executes, the inner loop is executed four times. When
we execute this code, we see the following output:

5 2 1 3

3 9 8 9

5 7 12 7

Nested loops can include while and do/while, as shown in this
example. See whether you can determine what this code will output:

int hungryHippopotamus = 8;

while(hungryHippopotamus>0) {

 do {

 hungryHippopotamus -= 2;

 } while (hungryHippopotamus>5);

 hungryHippopotamus--;

 System.out.print(hungryHippopotamus+", ");

}

The first time this loop executes, the inner loop repeats until the value
of hungryHippopotamus is 4. The value will then be decremented to 3,
and that will be the output at the end of the first iteration of the outer
loop.

On the second iteration of the outer loop, the inner do/while will be
executed once, even though hungryHippopotamus is already not greater
than 5. As you may recall, do/while statements always execute the
body at least once. This will reduce the value to 1, which will be further
lowered by the decrement operator in the outer loop to 0. Once the
value reaches 0, the outer loop will terminate. The result is that the
code will output the following:

3, 0,

The examples in the rest of this section will include many nested loops.
You will also encounter nested loops on the exam, so the more practice
you have with them, the more prepared you will be.

Some of the most time-consuming questions you may see

on the exam could involve nested loops with lots of branching. We
recommend you try to answer the question right away, but if you
start to think it is going to take too long, you should mark it and
come back to it later. Remember, all questions on the exam are
weighted evenly!

Adding Optional Labels
One thing we intentionally skipped when we presented if statements,
switch statements, and loops is that they can all have optional labels. A

label is an optional pointer to the head of a statement that allows the
application flow to jump to it or break from it. It is a single identifier
that is proceeded by a colon (:). For example, we can add optional
labels to one of the previous examples:

int[][] myComplexArray = {{5,2,1,3},{3,9,8,9},{5,7,12,7}};

OUTER_LOOP: for(int[] mySimpleArray : myComplexArray) {

 INNER_LOOP: for(int i=0; i<mySimpleArray.length; i++) {

 System.out.print(mySimpleArray[i]+"\t");

 }

 System.out.println();

}

Labels follow the same rules for formatting as identifiers. For
readability, they are commonly expressed using uppercase letters, with
underscores between words, to distinguish them from regular
variables. When dealing with only one loop, labels do not add any
value, but as we’ll see in the next section, they are extremely useful in
nested structures.

While this topic is not on the exam, it is possible to add

optional labels to control and block statements. For example, the
following is permitted by the compiler, albeit extremely
uncommon:

int frog = 15;

BAD_IDEA: if(frog>10)

EVEN_WORSE_IDEA: {

 frog++;

}

The break Statement
As you saw when working with switch statements, a break statement
transfers the flow of control out to the enclosing statement. The same
holds true for a break statement that appears inside of a while,
do/while, or for loop, as it will end the loop early, as shown in Figure
4.8.

Figure 4.8 The structure of a break statement

Notice in Figure 4.8 that the break statement can take an optional
label parameter. Without a label parameter, the break statement will
terminate the nearest inner loop it is currently in the process of
executing. The optional label parameter allows us to break out of a
higher-level outer loop. In the following example, we search for the
first (x,y) array index position of a number within an unsorted two-
dimensional array:

public class FindInMatrix {

 public static void main(String[] args) {

 int[][] list = {{1,13},{5,2},{2,2}};

 int searchValue = 2;

 int positionX = -1;

 int positionY = -1;

 PARENT_LOOP: for(int i=0; i<list.length; i++) {

 for(int j=0; j<list[i].length; j++) {

 if(list[i][j]==searchValue) {

 positionX = i;

 positionY = j;

 break PARENT_LOOP;

 }

 }

 }

 if(positionX==-1 || positionY==-1) {

 System.out.println("Value "+searchValue+" not found");

 } else {

 System.out.println("Value "+searchValue+" found at: " +

 "("+positionX+","+positionY+")");

 }

 }

}

When executed, this code will output the following:

Value 2 found at: (1,1)

In particular, take a look at the statement break PARENT_LOOP. This
statement will break out of the entire loop structure as soon as the first
matching value is found. Now, imagine what would happen if we
replaced the body of the inner loop with the following:

 if(list[i][j]==searchValue) {

 positionX = i;

 positionY = j;

 break;

 }

How would this change our flow, and would the output change?
Instead of exiting when the first matching value is found, the program
will now only exit the inner loop when the condition is met. In other
words, the structure will now find the first matching value of the last
inner loop to contain the value, resulting in the following output:

Value 2 found at: (2,0)

Finally, what if we removed the break altogether?

 if(list[i][j]==searchValue) {

 positionX = i;

 positionY = j;

 }

In this case, the code will search for the last value in the entire
structure that has the matching value. The output will look like this:

Value 2 found at: (2,1)

You can see from this example that using a label on a break statement
in a nested loop, or not using the break statement at all, can cause the
loop structure to behave quite differently.

The continue Statement
Let’s now extend our discussion of advanced loop control with the
continue statement, a statement that causes flow to finish the
execution of the current loop, as shown in Figure 4.9.

Figure 4.9 The structure of a continue statement

You may notice the syntax of the continue statement mirrors that of
the break statement. In fact, the statements are identical in how they
are used, but with different results. While the break statement
transfers control to the enclosing statement, the continue statement
transfers control to the boolean expression that determines if the loop
should continue. In other words, it ends the current iteration of the
loop. Also, like the break statement, the continue statement is applied
to the nearest inner loop under execution using optional label
statements to override this behavior.

Let’s take a look at an example. Imagine we have a zookeeper who is
supposed to clean the first leopard in each of four stables but skip

stable b entirely.

1: public class CleaningSchedule {

2: public static void main(String[] args) {

3: CLEANING: for(char stables = 'a'; stables<='d';

stables++) {

4: for(int leopard = 1; leopard<4; leopard++) {

5: if(stables=='b' || leopard==2) {

6: continue CLEANING;

7: }

8: System.out.println("Cleaning:

"+stables+","+leopard);

9: } } } }

With the structure as defined, the loop will return control to the parent
loop any time the first value is b or the second value is 2. On the first,
third, and fourth executions of the outer loop, the inner loop prints a
statement exactly once and then exits on the next inner loop when
leopard is 2. On the second execution of the outer loop, the inner loop
immediately exits without printing anything since b is encountered
right away. The following is printed:

Cleaning: a,1

Cleaning: c,1

Cleaning: d,1

Now, imagine we removed the CLEANING label in the continue
statement so that control is returned to the inner loop instead of the
outer. Line 6 becomes the following:

6: continue;

This corresponds to the zookeeper skipping all leopards except those
labeled 2 or in stable b. The output would then be the following:

Cleaning: a,1

Cleaning: a,3

Cleaning: c,1

Cleaning: c,3

Cleaning: d,1

Cleaning: d,3

Finally, if we remove the continue statement and associated if
statement altogether by removing lines 5–7, we arrive at a structure

that outputs all the values, such as this:

Cleaning: a,1

Cleaning: a,2

Cleaning: a,3

Cleaning: b,1

Cleaning: b,2

Cleaning: b,3

Cleaning: c,1

Cleaning: c,2

Cleaning: c,3

Cleaning: d,1

Cleaning: d,2

Cleaning: d,3

The return Statement
Given that this book shouldn’t be your first foray into programming,
we hope you’ve come across methods that contain return statements.
Regardless, we’ll be covering how to design and create methods that
use them in detail in Chapter 7, “Methods and Encapsulation.”

For now, though, you should be familiar with the idea that creating
methods and using return statements can be used as an alternative to
using labels and break statements. For example, take a look at this
rewrite of our earlier FindInMatrix class:

public class FindInMatrixUsingReturn {

 private static int[] searchForValue(int[][] list, int v) {

 for (int i = 0; i < list.length; i++) {

 for (int j = 0; j < list[i].length; j++) {

 if (list[i][j] == v) {

 return new int[] {i,j};

 }

 }

 }

 return null;

 }

 public static void main(String[] args) {

 int[][] list = { { 1, 13 }, { 5, 2 }, { 2, 2 } };

 int searchValue = 2;

 int[] results = searchForValue(list,searchValue);

 if (results == null) {

 System.out.println("Value " + searchValue + " not

found");

 } else {

 System.out.println("Value " + searchValue + " found at:

" +

 "(" + results[0] + "," + results[1] + ")");

 }

 }

}

This class is functionally the same as the first FindInMatrix class we
saw earlier using break. If you need finer-grained control of the loop
with multiple break and continue statements, the first class is probably
better. That said, we find code without labels and break statements a
lot easier to read and debug. Also, making the search logic an
independent function makes the code more reusable and the calling
main() method a lot easier to read.

For the exam, you will need to know both forms. Just remember that
return statements can be used to exit loops quickly and can lead to
more readable code in practice, especially when used with nested
loops.

Unreachable Code
One facet of break, continue, and return that you should be aware of is
that any code placed immediately after them in the same block is
considered unreachable and will not compile. For example, the
following code snippet does not compile:

int checkDate = 0;

while(checkDate<10) {

 checkDate++;

 if(checkDate>100) {

 break;

 checkDate++; // DOES NOT COMPILE

 }

}

Even though it is not logically possible for the if statement to evaluate
to true in this code sample, the compiler notices that you have
statements immediately following the break and will fail to compile
with “unreachable code” as the reason. The same is true for continue

and return statements too, as shown in the following two examples:

int minute = 1;

WATCH: while(minute>2) {

 if(minute++>2) {

 continue WATCH;

 System.out.print(minute); // DOES NOT COMPILE

 }

}

int hour = 2;

switch(hour) {

 case 1: return; hour++; // DOES NOT COMPILE

 case 2:

}

One thing to remember is that it does not matter if loop or decision
structure actually visits the line of code. For example, the loop could
execute zero or infinite times at runtime. Regardless of execution, the
compiler will report an error if it finds any code it deems unreachable,
in this case any statements immediately following a break, continue, or
return statement.

Reviewing Branching
We conclude this section with Table 4.1, which will help remind you
when labels, break, and continue statements are permitted in Java.
Although for illustrative purposes our examples have included using
these statements in nested loops, they can be used inside single loops
as well.

Table 4.1 Advanced flow control usage

Allows optional
labels

Allows break
statement

Allows continue
statement

while Yes Yes Yes
do

while

Yes Yes Yes

for Yes Yes Yes
switch Yes Yes No

Last but not least, all testing centers should offer some form of scrap
paper or dry-erase board to use during the exam. We strongly
recommend you make use of these testing aids should you encounter
complex questions involving nested loops and branching statements.

Summary
This chapter presented how to make intelligent decisions in Java. We
covered basic decision-making constructs such as if, else, and switch
statements and showed how to use them to change the path of process
at runtime. Remember that the switch statement allows a lot of data
types it did not in the past, such as String, enum, and in certain cases
var.

We then moved our discussion to repetition control structures,
starting with while and do/while loops. We showed how to use them to
create processes that looped multiple times and also showed how it is
important to make sure they eventually terminate. Remember that
most of these structures require the evaluation of a particular boolean
expression to complete.

Next, we covered the extremely convenient repetition control
structures, for and for-each loops. While their syntax is more complex
than the traditional while or do/while loops, they are extremely useful
in everyday coding and allow you to create complex expressions in a
single line of code. With a for-each loop you don’t need to explicitly
write a boolean expression, since the compiler builds one for you. For
clarity, we referred to an enhanced for loop as a for-each loop, but
syntactically both are written using the for keyword.

We concluded this chapter by discussing advanced control options and
how flow can be enhanced through nested loops, coupled with break,
continue, and return statements. Be wary of questions on the exam
that use nested loops, especially ones with labels, and verify they are
being used correctly.

This chapter is especially important because at least one component of
this chapter will likely appear in every exam question with sample
code. Many of the questions on the exam focus on proper syntactic use
of the structures, as they will be a large source of questions that end in
“Does not compile.” You should be able to answer all of the review
questions correctly or fully understand those that you answered
incorrectly before moving on to later chapters.

Exam Essentials
Understand if and else decision control statements. The if
and else statements come up frequently throughout the exam in
questions unrelated to decision control, so make sure you fully
understand these basic building blocks of Java.

Understand switch statements and their proper usage. You
should be able to spot a poorly formed switch statement on the exam.
The switch value and data type should be compatible with the case
statements, and the values for the case statements must evaluate to
compile-time constants. Finally, at runtime a switch statement
branches to the first matching case, or default if there is no match, or
exits entirely if there is no match and no default branch. The process
then continues into any proceeding case or default statements until a
break or return statement is reached.

Understand while loops. Know the syntactical structure of all while
and do/while loops. In particular, know when to use one versus the
other.

Be able to use for loops. You should be familiar with for and for-
each loops and know how to write and evaluate them. Each loop has
its own special properties and structures. You should know how to use
for-each loops to iterate over lists and arrays.

Understand how break, continue, and return can change flow
control. Know how to change the flow control within a statement by
applying a break, continue, or return statement. Also know which
control statements can accept break statements and which can accept
continue statements. Finally, you should understand how these
statements work inside embedded loops or switch statements.

Review Questions
1. Which of the following data types can be used in a switch

statement? (Choose all that apply.)

A. enum

B. int

C. Byte

D. long

E. String

F. char

G. var

H. double

2. What is the output of the following code snippet? (Choose all that
apply.)

3: int temperature = 4;

4: long humidity = -temperature + temperature * 3;

5: if (temperature>=4)

6: if (humidity < 6) System.out.println("Too Low");

7: else System.out.println("Just Right");

8: else System.out.println("Too High");

A. Too Low

B. Just Right

C. Too High

D. A NullPointerException is thrown at runtime.

E. The code will not compile because of line 7.

F. The code will not compile because of line 8.

3. What is the output of the following code snippet?

List<Integer> myFavoriteNumbers = new ArrayList<>();

myFavoriteNumbers.add(10);

myFavoriteNumbers.add(14);

for (var a : myFavoriteNumbers) {

System.out.print(a + ", ");

break;

}

for (int b : myFavoriteNumbers) {

continue;

System.out.print(b + ", ");

}

for (Object c : myFavoriteNumbers)

System.out.print(c + ", ");

A. It compiles and runs without issue but does not produce any
output.

B. 10, 14,

C. 10, 10, 14,

D. 10, 10, 14, 10, 14,

E. Exactly one line of code does not compile.

F. Exactly two lines of code do not compile.

G. Three or more lines of code do not compile.

H. The code contains an infinite loop and does not terminate.

4. Which statements about decision structures are true? (Choose all
that apply.)

A. A for-each loop can be executed on any Collections
Framework object.

B. The body of a while loop is guaranteed to be executed at least
once.

C. The conditional expression of a for loop is evaluated before
the first execution of the loop body.

D. A switch statement with no matching case statement requires
a default statement.

E. The body of a do/while loop is guaranteed to be executed at
least once.

F. An if statement can have multiple corresponding else
statements.

5. Assuming weather is a well-formed nonempty array, which code
snippet, when inserted independently into the blank in the
following code, prints all of the elements of weather? (Choose all
that apply.)

private void print(int[] weather) {

for(____________) {

System.out.println(weather[i]);

}

}

A. int i=weather.length; i>0; i--

B. int i=0; i<=weather.length-1; ++i

C. var w : weather

D. int i=weather.length-1; i>=0; i--

E. int i=0, int j=3; i<weather.length; ++i

F. int i=0; ++i<10 && i<weather.length;

G. None of the above

6. Which statements, when inserted independently into the

following blank, will cause the code to print 2 at runtime? (Choose
all that apply.)

int count = 0;

BUNNY: for(int row = 1; row <=3; row++)

RABBIT: for(int col = 0; col <3 ; col++) {

if((col + row) % 2 == 0)

;

count++;

}

System.out.println(count);

A. break BUNNY

B. break RABBIT

C. continue BUNNY

D. continue RABBIT

E. break

F. continue

G. None of the above, as the code contains a compiler error

7. Given the following method, how many lines contain compilation
errors? (Choose all that apply.)

private DayOfWeek getWeekDay(int day, final int

thursday) {

int otherDay = day;

int Sunday = 0;

switch(otherDay) {

default:

case 1: continue;

case thursday: return DayOfWeek.THURSDAY;

case 2: break;

case Sunday: return DayOfWeek.SUNDAY;

case DayOfWeek.MONDAY: return DayOfWeek.MONDAY;

}

return DayOfWeek.FRIDAY;

}

A. None, the code compiles without issue.

B. 1

C. 2

D. 3

E. 4

F. 5

G. 6

H. The code compiles but may produce an error at runtime.

8. What is the result of the following code snippet?

3: int sing = 8, squawk = 2, notes = 0;

4: while(sing > squawk) {

5: sing--;

6: squawk += 2;

7: notes += sing + squawk;

8: }

9: System.out.println(notes);

A. 11

B. 13

C. 23

D. 33

E. 50

F. The code will not compile because of line 7.

9. What is the output of the following code snippet?

2: boolean keepGoing = true;

3: int result = 15, meters = 10;

4: do {

5: meters--;

6: if(meters==8) keepGoing = false;

7: result -= 2;

8: } while keepGoing;

9: System.out.println(result);

A. 7

B. 9

C. 10

D. 11

E. 15

F. The code will not compile because of line 6.

G. The code does not compile for a different reason.

10. Which statements about the following code snippet are correct?
(Choose all that apply.)

for(var penguin : new int[2])

System.out.println(penguin);

var ostrich = new Character[3];

for(var emu : ostrich)

System.out.println(emu);

List parrots = new ArrayList();

for(var macaw : parrots)

System.out.println(macaw);

A. The data type of penguin is Integer.

B. The data type of penguin is int.

C. The data type of emu is undefined.

D. The data type of emu is Character.

E. The data type of macaw is undefined.

F. The data type of macaw is Object.

G. None of the above, as the code does not compile

11. What is the result of the following code snippet?

final char a = 'A', e = 'E';

char grade = 'B';

switch (grade) {

default:

case a:

case 'B': 'C': System.out.print("great ");

case 'D': System.out.print("good "); break;

case e:

case 'F': System.out.print("not good ");

}

A. great

B. great good

C. good

D. not good

E. The code does not compile because the data type of one or
more case statements does not match the data type of the
switch variable.

F. None of the above

12. Given the following array, which code snippets print the elements
in reverse order from how they are declared? (Choose all that
apply.)

char[] wolf = {'W', 'e', 'b', 'b', 'y'};

A.

int q = wolf.length;

for(; ;) {

System.out.print(wolf[--q]);

if(q==0) break;

}

B.

for(int m=wolf.length-1; m>=0; --m)

System.out.print(wolf[m]);

C.

for(int z=0; z<wolf.length; z++)

System.out.print(wolf[wolf.length-z]);

D.

int x = wolf.length-1;

for(int j=0; x>=0 && j==0; x--)

System.out.print(wolf[x]);

E.

final int r = wolf.length;

for(int w = r-1; r>-1; w = r-1)

System.out.print(wolf[w]);

F.

for(int i=wolf.length; i>0; --i)

System.out.print(wolf[i]);

G. None of the above

13. What distinct numbers are printed when the following method is
executed? (Choose all that apply.)

private void countAttendees() {

int participants = 4, animals = 2, performers = -1;

while((participants = participants+1) < 10) {}

do {} while (animals++ <= 1);

for(; performers<2; performers+=2) {}

System.out.println(participants);

System.out.println(animals);

System.out.println(performers);

}

A. 6

B. 3

C. 4

D. 5

E. 10

F. 9

G. The code does not compile.

H. None of the above

14. What is the output of the following code snippet?

2: double iguana = 0;

3: do {

4: int snake = 1;

5: System.out.print(snake++ + " ");

6: iguana--;

7: } while (snake <= 5);

8: System.out.println(iguana);

A. 1 2 3 4 -4.0

B. 1 2 3 4 -5.0

C. 1 2 3 4 5 -4.0

D. 0 1 2 3 4 5 -5.0

E. The code does not compile.

F. The code compiles but produces an infinite loop at runtime.

G. None of the above

15. Which statements, when inserted into the following blanks, allow
the code to compile and run without entering an infinite loop?
(Choose all that apply.)

4: int height = 1;

5: L1: while(height++ <10) {

6: long humidity = 12;

7: L2: do {

8: if(humidity-- % 12 == 0) ____________;

9: int temperature = 30;

10: L3: for(; ;) {

11: temperature++;

12: if(temperature>50) ____________;

13: }

14: } while (humidity > 4);

15: }

A. break L2 on line 8; continue L2 on line 12

B. continue on line 8; continue on line 12

C. break L3 on line 8; break L1 on line 12

D. continue L2 on line 8; continue L3 on line 12

E. continue L2 on line 8; continue L2 on line 12

F. None of the above, as the code contains a compiler error.

16. What is the output of the following code snippet? (Choose all that
apply.)

2: var tailFeathers = 3;

3: final var one = 1;

4: switch (tailFeathers) {

5: case one: System.out.print(3 + " ");

6: default: case 3: System.out.print(5 + " ");

7: }

8: while (tailFeathers > 1) {

9: System.out.print(--tailFeathers + " "); }

A. 3

B. 5 1

C. 5 2

D. 3 5 1

E. 5 2 1

F. The code will not compile because of lines 3–5.

G. The code will not compile because of line 6.

17. What is the output of the following code snippet?

15: int penguin = 50, turtle = 75;

16: boolean older = penguin >= turtle;

17: if (older = true) System.out.println("Success");

18: else System.out.println("Failure");

19: else if(penguin != 50) System.out.println("Other");

A. Success

B. Failure

C. Other

D. The code will not compile because of line 17.

E. The code compiles but throws an exception at runtime.

F. None of the above

18. Which of the following are possible data types for olivia that
would allow the code to compile? (Choose all that apply.)

for(var sophia : olivia) {

System.out.println(sophia);

}

A. Set

B. Map

C. String

D. int[]

E. Collection

F. StringBuilder

G. None of the above

19. What is the output of the following code snippet?

6: String instrument = "violin";

7: final String CELLO = "cello";

8: String viola = "viola";

9: int p = -1;

10: switch(instrument) {

11: case "bass" : break;

12: case CELLO : p++;

13: default: p++;

14: case "VIOLIN": p++;

15: case "viola" : ++p; break;

16: }

17: System.out.print(p);

A. -1

B. 0

C. 1

D. 2

E. 3

F. The code does not compile.

20. What is the output of the following code snippet? (Choose all that
apply.)

9: int w = 0, r = 1;

10: String name = "";

11: while(w < 2) {

12: name += "A";

13: do {

14: name += "B";

15: if(name.length()>0) name += "C";

16: else break;

17: } while (r <=1);

18: r++; w++; }

19: System.out.println(name);

A. ABC

B. ABCABC

C. ABCABCABC

D. Line 15 contains a compilation error.

E. Line 18 contains a compilation error.

F. The code compiles but never terminates at runtime.

G. The code compiles but throws a NullPointerException at
runtime.

Chapter 5
Core Java APIs
OCP exam objectives covered in this chapter:

 Working with Java Primitive Data Types and String
APIs

Create and manipulate Strings

Manipulate data using the StringBuilder class and its methods

 Working with Java Arrays

Declare, instantiate, initialize and use a one-dimensional array

Declare, instantiate, initialize and use a two-dimensional array

 Programming Abstractly Through Interfaces

Declare and use List and ArrayList instances

In the context of an Application Programming
Interface (API), an interface refers to a group of classes or Java
interface definitions giving you access to a service or functionality.

In this chapter, you will learn about many core data structures in Java,
along with the most common APIs to access them. For example,
String and StringBuilder, along with their associated APIs, are used
to create and manipulate text data. An array, List, Set, or Map are used
to manage often large groups of data. You’ll also learn how to
determine whether two objects are equivalent.

This chapter is long, so we recommend reading it in multiple sittings.
On the bright side, it contains most of the APIs you need to know for

the exam.

Creating and Manipulating Strings
The String class is such a fundamental class that you’d be hard-
pressed to write code without it. After all, you can’t even write a main()
method without using the String class. A string is basically a sequence
of characters; here’s an example:

String name = "Fluffy";

As you learned in Chapter 2, “Java Building Blocks,” this is an example
of a reference type. You also learned that reference types are created
using the new keyword. Wait a minute. Something is missing from the
previous example: It doesn’t have new in it! In Java, these two snippets
both create a String:

String name = "Fluffy";

String name = new String("Fluffy");

Both give you a reference variable named name pointing to the String
object "Fluffy". They are subtly different, as you’ll see in the section
“The String Pool” later in this chapter. For now, just remember that
the String class is special and doesn’t need to be instantiated with new.

Since a String is a sequence of characters, you probably won’t be
surprised to hear that it implements the interface CharSequence. This
interface is a general way of representing several classes, including
String and StringBuilder. You’ll learn more about interfaces later in
the book.

In this section, we’ll look at concatenation, immutability, common
methods, and method chaining.

Concatenation
In Chapter 3, “Operators,” you learned how to add numbers. 1 + 2 is
clearly 3. But what is "1" + "2"? It’s actually "12" because Java
combines the two String objects. Placing one String before the other
String and combining them is called string concatenation. The exam
creators like string concatenation because the + operator can be used

in two ways within the same line of code. There aren’t a lot of rules to
know for this, but you have to know them well:

1. If both operands are numeric, + means numeric addition.

2. If either operand is a String, + means concatenation.

3. The expression is evaluated left to right.

Now let’s look at some examples:

System.out.println(1 + 2); // 3

System.out.println("a" + "b"); // ab

System.out.println("a" + "b" + 3); // ab3

System.out.println(1 + 2 + "c"); // 3c

System.out.println("c" + 1 + 2); // c12

The first example uses the first rule. Both operands are numbers, so
we use normal addition. The second example is simple string
concatenation, described in the second rule. The quotes for the String
are only used in code—they don’t get output.

The third example combines both the second and third rules. Since we
start on the left, Java figures out what "a" + "b" evaluates to. You
already know that one: It’s "ab". Then Java looks at the remaining
expression of "ab" + 3. The second rule tells us to concatenate since
one of the operands is a String.

In the fourth example, we start with the third rule, which tells us to
consider 1 + 2. Both operands are numeric, so the first rule tells us the
answer is 3. Then we have 3 + "c", which uses the second rule to give
us "3c". Notice all three rules get used in one line?

Finally, the fifth example shows the importance of the third rule. First
we have "c" + 1, which uses the second rule to give us "c1". Then we
have "c1" + 2, which uses the second rule again to give us "c12".

The exam takes this a step further and will try to trick you with
something like this:

int three = 3;

String four = "4";

System.out.println(1 + 2 + three + four);

When you see this, just take it slow and remember the three rules—

and be sure to check the variable types. In this example, we start with
the third rule, which tells us to consider 1 + 2. The first rule gives us 3.
Next we have 3 + three. Since three is of type int, we still use the first
rule, giving us 6. Next we have 6 + four. Since four is of type String,
we switch to the second rule and get a final answer of "64". When you
see questions like this, just take your time and check the types. Being
methodical pays off.

There is only one more thing to know about concatenation, but it is an
easy one. In this example, you just have to remember what += does. s
+= "2" means the same thing as s = s + "2".

4: String s = "1"; // s currently holds "1"

5: s += "2"; // s currently holds "12"

6: s += 3; // s currently holds "123"

7: System.out.println(s); // 123

On line 5, we are “adding” two strings, which means we concatenate
them. Line 6 tries to trick you by adding a number, but it’s just like we
wrote s = s + 3. We know that a string “plus” anything else means to
use concatenation.

To review the rules one more time: Use numeric addition if two
numbers are involved, use concatenation otherwise, and evaluate from
left to right. Have you memorized these three rules yet? Be sure to do
so before the exam!

Immutability
Once a String object is created, it is not allowed to change. It cannot
be made larger or smaller, and you cannot change one of the
characters inside it.

You can think of a String as a storage box you have perfectly full and
whose sides can’t bulge. There’s no way to add objects, nor can you
replace objects without disturbing the entire arrangement. The trade-
off for the optimal packing is zero flexibility.

Mutable is another word for changeable. Immutable is the opposite—
an object that can’t be changed once it’s created. On the exam, you
need to know that String is immutable.

More on Immutability
You won’t be asked to identify whether custom classes are
immutable on the OCP part 1 exam, but it’s helpful to see an
example. Consider the following code:

class Mutable {

 private String s;

 public void setS(String newS){ s = newS; } // Setter

makes it mutable

 public String getS() { return s; }

}

final class Immutable {

 private String s = "name";

 public String getS() { return s; }

}

Immutable has only a getter. There’s no way to change the value of s
once it’s set. Mutable has a setter. This allows the reference s to
change to point to a different String later. Note that even though
the String class is immutable, it can still be used in a mutable
class. You can even make the instance variable final so the
compiler reminds you if you accidentally change s.

Also, immutable classes in Java are final, which prevents
subclasses creation. You wouldn’t want a subclass adding mutable
behavior.

You learned that + is used to do String concatenation in Java.
There’s another way, which isn’t used much on real projects but is
great for tricking people on the exam. What does this print out?

String s1 = "1";

String s2 = s1.concat("2");

s2.concat("3");

System.out.println(s2);

Did you say "12"? Good. The trick is to see if you forget that the
String class is immutable by throwing a method call at you.

Important String Methods

The String class has dozens of methods. Luckily, you need to know
only a handful for the exam. The exam creators pick most of the
methods developers use in the real world.

For all these methods, you need to remember that a string is a
sequence of characters and Java counts from 0 when indexed. Figure
5.1 shows how each character in the string "animals" is indexed.

Figure 5.1 Indexing for a string

Let’s look at a number of methods from the String class. Many of them
are straightforward, so we won’t discuss them at length. You need to
know how to use these methods. We left out public from the
signatures in the following sections so you can focus on the important
parts.

length()
The method length() returns the number of characters in the String.
The method signature is as follows:

int length()

The following code shows how to use length():

String string = "animals";

System.out.println(string.length()); // 7

Wait. It outputs 7? Didn’t we just tell you that Java counts from 0? The
difference is that zero counting happens only when you’re using
indexes or positions within a list. When determining the total size or
length, Java uses normal counting again.

charAt()
The method charAt() lets you query the string to find out what
character is at a specific index. The method signature is as follows:

char charAt(int index)

The following code shows how to use charAt():

String string = "animals";

System.out.println(string.charAt(0)); // a

System.out.println(string.charAt(6)); // s

System.out.println(string.charAt(7)); // throws exception

Since indexes start counting with 0, charAt(0) returns the “first”
character in the sequence. Similarly, charAt(6) returns the “seventh”
character in the sequence. charAt(7) is a problem. It asks for the
“eighth” character in the sequence, but there are only seven characters
present. When something goes wrong that Java doesn’t know how to
deal with, it throws an exception, as shown here. You’ll learn more
about exceptions in Chapter 10, “Exceptions.”

java.lang.StringIndexOutOfBoundsException: String index out of

range: 7

indexOf()
The method indexOf() looks at the characters in the string and finds
the first index that matches the desired value. indexOf can work with
an individual character or a whole String as input. It can also start
from a requested position. Remember that a char can be passed to an
int parameter type. On the exam, you’ll only see a char passed to the
parameters named ch. The method signatures are as follows:

int indexOf(int ch)

int indexOf(int ch, int fromIndex)

int indexOf(String str)

int indexOf(String str, int fromIndex)

The following code shows how to use indexOf():

String string = "animals";

System.out.println(string.indexOf('a')); // 0

System.out.println(string.indexOf("al")); // 4

System.out.println(string.indexOf('a', 4)); // 4

System.out.println(string.indexOf("al", 5)); // -1

Since indexes begin with 0, the first 'a' matches at that position. The

second statement looks for a more specific string, so it matches later.
The third statement says Java shouldn’t even look at the characters
until it gets to index 4. The final statement doesn’t find anything
because it starts looking after the match occurred. Unlike charAt(), the
indexOf() method doesn’t throw an exception if it can’t find a match.
indexOf() returns –1 when no match is found. Because indexes start
with 0, the caller knows that –1 couldn’t be a valid index. This makes it
a common value for a method to signify to the caller that no match is
found.

substring()
The method substring() also looks for characters in a string. It returns
parts of the string. The first parameter is the index to start with for the
returned string. As usual, this is a zero-based index. There is an
optional second parameter, which is the end index you want to stop at.

Notice we said “stop at” rather than “include.” This means the
endIndex parameter is allowed to be 1 past the end of the sequence if
you want to stop at the end of the sequence. That would be redundant,
though, since you could omit the second parameter entirely in that
case. In your own code, you want to avoid this redundancy. Don’t be
surprised if the exam uses it, though. The method signatures are as
follows:

String substring(int beginIndex)

String substring(int beginIndex, int endIndex)

It helps to think of indexes a bit differently for the substring methods.
Pretend the indexes are right before the character they would point to.
Figure 5.2 helps visualize this. Notice how the arrow with the 0 points
to the character that would have index 0. The arrow with the 1 points
between characters with indexes 0 and 1. There are seven characters in
the String. Since Java uses zero-based indexes, this means the last
character has an index of 6. The arrow with the 7 points immediately
after this last character. This will help you remember that endIndex
doesn’t give an out-of-bounds exception when it is one past the end of
the String.

Figure 5.2 Indexes for a substring

The following code shows how to use substring():

String string = "animals";

System.out.println(string.substring(3)); //

mals

System.out.println(string.substring(string.indexOf('m'))); //

mals

System.out.println(string.substring(3, 4)); // m

System.out.println(string.substring(3, 7)); //

mals

The substring() method is the trickiest String method on the exam.
The first example says to take the characters starting with index 3
through the end, which gives us "mals". The second example does the
same thing, but it calls indexOf() to get the index rather than hard-
coding it. This is a common practice when coding because you may not
know the index in advance.

The third example says to take the characters starting with index 3
until, but not including, the character at index 4—which is a
complicated way of saying we want a String with one character: the
one at index 3. This results in "m". The final example says to take the
characters starting with index 3 until we get to index 7. Since index 7 is
the same as the end of the string, it is equivalent to the first example.

We hope that wasn’t too confusing. The next examples are less
obvious:

System.out.println(string.substring(3, 3)); // empty string

System.out.println(string.substring(3, 2)); // throws exception

System.out.println(string.substring(3, 8)); // throws exception

The first example in this set prints an empty string. The request is for

the characters starting with index 3 until you get to index 3. Since we
start and end with the same index, there are no characters in between.
The second example in this set throws an exception because the
indexes can’t be backward. Java knows perfectly well that it will never
get to index 2 if it starts with index 3. The third example says to
continue until the eighth character. There is no eighth position, so
Java throws an exception. Granted, there is no seventh character
either, but at least there is the “end of string” invisible position.

Let’s review this one more time since substring() is so tricky. The
method returns the string starting from the requested index. If an end
index is requested, it stops right before that index. Otherwise, it goes
to the end of the string.

toLowerCase() and toUpperCase()
Whew. After that mental exercise, it is nice to have methods that do
exactly what they sound like! These methods make it easy to convert
your data. The method signatures are as follows:

String toLowerCase()

String toUpperCase()

The following code shows how to use these methods:

String string = "animals";

System.out.println(string.toUpperCase()); // ANIMALS

System.out.println("Abc123".toLowerCase()); // abc123

These methods do what they say. toUpperCase() converts any
lowercase characters to uppercase in the returned string.
toLowerCase() converts any uppercase characters to lowercase in the
returned string. These methods leave alone any characters other than
letters. Also, remember that strings are immutable, so the original
string stays the same.

equals() and equalsIgnoreCase()
The equals() method checks whether two String objects contain
exactly the same characters in the same order. The equalsIgnoreCase()
method checks whether two String objects contain the same

characters with the exception that it will convert the characters’ case if
needed. The method signatures are as follows:

boolean equals(Object obj)

boolean equalsIgnoreCase(String str)

You might have noticed that equals() takes an Object rather than a
String. This is because the method is the same for all objects. If you
pass in something that isn’t a String, it will just return false. By
contrast, the equalsIgnoreCase method only applies to String objects
so it can take the more specific type as the parameter.

The following code shows how to use these methods:

System.out.println("abc".equals("ABC")); // false

System.out.println("ABC".equals("ABC")); // true

System.out.println("abc".equalsIgnoreCase("ABC")); // true

This example should be fairly intuitive. In the first example, the values
aren’t exactly the same. In the second, they are exactly the same. In the
third, they differ only by case, but it is okay because we called the
method that ignores differences in case.

startsWith() and endsWith()
The startsWith() and endsWith() methods look at whether the
provided value matches part of the String. The method signatures are
as follows:

boolean startsWith(String prefix)

boolean endsWith(String suffix)

The following code shows how to use these methods:

System.out.println("abc".startsWith("a")); // true

System.out.println("abc".startsWith("A")); // false

System.out.println("abc".endsWith("c")); // true

System.out.println("abc".endsWith("a")); // false

Again, nothing surprising here. Java is doing a case-sensitive check on
the values provided.

replace()

The replace() method does a simple search and replace on the string.
There’s a version that takes char parameters as well as a version that
takes CharSequence parameters. The method signatures are as follows:

String replace(char oldChar, char newChar)

String replace(CharSequence target, CharSequence replacement)

The following code shows how to use these methods:

System.out.println("abcabc".replace('a', 'A')); // AbcAbc

System.out.println("abcabc".replace("a", "A")); // AbcAbc

The first example uses the first method signature, passing in char
parameters. The second example uses the second method signature,
passing in String parameters.

contains()
The contains() method looks for matches in the String. It isn’t as
particular as startsWith() and endsWith()—the match can be
anywhere in the String. The method signature is as follows:

boolean contains(CharSequence charSeq)

The following code shows how to use these methods:

System.out.println("abc".contains("b")); // true

System.out.println("abc".contains("B")); // false

Again, we have a case-sensitive search in the String. The contains()
method is a convenience method so you don’t have to write
str.indexOf(otherString) != -1.

trim(), strip(), stripLeading(), and stripTrailing()
You’ve made it through almost all the String methods you need to
know. Next up is removing blank space from the beginning and/or end
of a String. The strip() and trim() methods remove whitespace from
the beginning and end of a String. In terms of the exam, whitespace
consists of spaces along with the \t (tab) and \n (newline) characters.
Other characters, such as \r (carriage return), are also included in
what gets trimmed. The strip() method is new in Java 11. It does

everything that trim() does, but it supports Unicode.

You don’t need to know about Unicode for the exam. But if

you want to test the difference, one of Unicode whitespace
characters is as follows:

char ch = '\u2000';

Additionally, the stripLeading() and stripTrailing() methods were
added in Java 11. The stripLeading() method removes whitespace
from the beginning of the String and leaves it at the end. The
stripTrailing() method does the opposite. It removes whitespace
from the end of the String and leaves it at the beginning.

The method signatures are as follows:

String strip()

String stripLeading()

String stripTrailing()

String trim()

The following code shows how to use these methods:

System.out.println("abc".strip()); // abc

System.out.println("\t a b c\n".strip()); // a b c

String text = " abc\t ";

System.out.println(text.trim().length()); // 3

System.out.println(text.strip().length()); // 3

System.out.println(text.stripLeading().length()); // 5

System.out.println(text.stripTrailing().length());// 4

First, remember that \t is a single character. The backslash escapes
the t to represent a tab. The first example prints the original string
because there are no whitespace characters at the beginning or end.
The second example gets rid of the leading tab, subsequent spaces, and
the trailing newline. It leaves the spaces that are in the middle of the
string.

The remaining examples just print the number of characters
remaining. You can see that both trim() and strip() leave the same

three characters "abc" because they remove both the leading and
trailing whitespace. The stripLeading() method only removes the one
whitespace character at the beginning of the String. It leaves the tab
and space at the end. The stripTrailing() method removes these two
characters at the end but leaves the character at the beginning of the
String.

intern()
The intern() method returns the value from the string pool if it is
there. Otherwise, it adds the value to the string pool. We will explain
about the string pool and give examples for intern() later in the
chapter. The method signature is as follows:

String intern()

Method Chaining
It is common to call multiple methods as shown here:

String start = "AniMaL ";

String trimmed = start.trim(); // "AniMaL"

String lowercase = trimmed.toLowerCase(); // "animal"

String result = lowercase.replace('a', 'A'); // "AnimAl"

System.out.println(result);

This is just a series of String methods. Each time one is called, the
returned value is put in a new variable. There are four String values
along the way, and AnimAl is output.

However, on the exam there is a tendency to cram as much code as
possible into a small space. You’ll see code using a technique called
method chaining. Here’s an example:

String result = "AniMaL ".trim().toLowerCase().replace('a',

'A');

System.out.println(result);

This code is equivalent to the previous example. It also creates four
String objects and outputs AnimAl. To read code that uses method
chaining, start at the left and evaluate the first method. Then call the
next method on the returned value of the first method. Keep going

until you get to the semicolon.

Remember that String is immutable. What do you think the result of
this code is?

5: String a = "abc";

6: String b = a.toUpperCase();

7: b = b.replace("B", "2").replace('C', '3');

8: System.out.println("a=" + a);

9: System.out.println("b=" + b);

On line 5, we set a to point to "abc" and never pointed a to anything
else. Since we are dealing with an immutable object, none of the code
on lines 6 and 7 changes a, and the value remains "abc".

b is a little trickier. Line 6 has b pointing to "ABC", which is
straightforward. On line 7, we have method chaining. First,
"ABC".replace("B", "2") is called. This returns "A2C". Next,
"A2C".replace('C', '3') is called. This returns "A23". Finally, b
changes to point to this returned String. When line 9 executes, b is
"A23".

Using the StringBuilder Class
A small program can create a lot of String objects very quickly. For
example, how many do you think this piece of code creates?

10: String alpha = "";

11: for(char current = 'a'; current <= 'z'; current++)

12: alpha += current;

13: System.out.println(alpha);

The empty String on line 10 is instantiated, and then line 12 appends
an "a". However, because the String object is immutable, a new String
object is assigned to alpha, and the "" object becomes eligible for
garbage collection. The next time through the loop, alpha is assigned a
new String object, "ab", and the "a" object becomes eligible for
garbage collection. The next iteration assigns alpha to "abc", and the
"ab" object becomes eligible for garbage collection, and so on.

This sequence of events continues, and after 26 iterations through the
loop, a total of 27 objects are instantiated, most of which are
immediately eligible for garbage collection.

This is very inefficient. Luckily, Java has a solution. The StringBuilder
class creates a String without storing all those interim String values.
Unlike the String class, StringBuilder is not immutable.

15: StringBuilder alpha = new StringBuilder();

16: for(char current = 'a'; current <= 'z'; current++)

17: alpha.append(current);

18: System.out.println(alpha);

On line 15, a new StringBuilder object is instantiated. The call to
append() on line 17 adds a character to the StringBuilder object each
time through the for loop appending the value of current to the end of
alpha. This code reuses the same StringBuilder without creating an
interim String each time.

In old code, you might see references to StringBuffer. It works the
same way except it supports threads, which you’ll learn about when
preparing for the 1Z0-816 exam. StringBuffer is no longer on either

exam. It performs slower than StringBuilder, so just use
StringBuilder.

In this section, we’ll look at creating a StringBuilder and using its
common methods.

Mutability and Chaining
We’re sure you noticed this from the previous example, but
StringBuilder is not immutable. In fact, we gave it 27 different values
in the example (blank plus adding each letter in the alphabet). The
exam will likely try to trick you with respect to String and
StringBuilder being mutable.

Chaining makes this even more interesting. When we chained String
method calls, the result was a new String with the answer. Chaining
StringBuilder methods doesn’t work this way. Instead, the
StringBuilder changes its own state and returns a reference to itself.
Let’s look at an example to make this clearer:

4: StringBuilder sb = new StringBuilder("start");

5: sb.append("+middle"); // sb =

"start+middle"

6: StringBuilder same = sb.append("+end"); //

"start+middle+end"

Line 5 adds text to the end of sb. It also returns a reference to sb,
which is ignored. Line 6 also adds text to the end of sb and returns a
reference to sb. This time the reference is stored in same—which means
sb and same point to the same object and would print out the same
value.

The exam won’t always make the code easy to read by having only one
method per line. What do you think this example prints?

4: StringBuilder a = new StringBuilder("abc");

5: StringBuilder b = a.append("de");

6: b = b.append("f").append("g");

7: System.out.println("a=" + a);

8: System.out.println("b=" + b);

Did you say both print "abcdefg"? Good. There’s only one
StringBuilder object here. We know that because new StringBuilder()

was called only once. On line 5, there are two variables referring to
that object, which has a value of "abcde". On line 6, those two variables
are still referring to that same object, which now has a value of
"abcdefg". Incidentally, the assignment back to b does absolutely
nothing. b is already pointing to that StringBuilder.

Creating a StringBuilder
There are three ways to construct a StringBuilder:

StringBuilder sb1 = new StringBuilder();

StringBuilder sb2 = new StringBuilder("animal");

StringBuilder sb3 = new StringBuilder(10);

The first says to create a StringBuilder containing an empty sequence
of characters and assign sb1 to point to it. The second says to create a
StringBuilder containing a specific value and assign sb2 to point to it.
For the first two, it tells Java to manage the implementation details.
The final example tells Java that we have some idea of how big the
eventual value will be and would like the StringBuilder to reserve a
certain capacity, or number of slots, for characters.

Important StringBuilder Methods
As with String, we aren’t going to cover every single method in the
StringBuilder class. These are the ones you might see on the exam.

charAt(), indexOf(), length(), and substring()
These four methods work exactly the same as in the String class. Be
sure you can identify the output of this example:

StringBuilder sb = new StringBuilder("animals");

String sub = sb.substring(sb.indexOf("a"), sb.indexOf("al"));

int len = sb.length();

char ch = sb.charAt(6);

System.out.println(sub + " " + len + " " + ch);

The correct answer is anim 7 s. The indexOf()method calls return 0
and 4, respectively. substring() returns the String starting with index
0 and ending right before index 4.

length() returns 7 because it is the number of characters in the
StringBuilder rather than an index. Finally, charAt() returns the
character at index 6. Here we do start with 0 because we are referring
to indexes. If any of this doesn’t sound familiar, go back and read the
section on String again.

Notice that substring() returns a String rather than a StringBuilder.
That is why sb is not changed. substring() is really just a method that
inquires about what the state of the StringBuilder happens to be.

append()
The append() method is by far the most frequently used method in
StringBuilder. In fact, it is so frequently used that we just started
using it without comment. Luckily, this method does just what it
sounds like: It adds the parameter to the StringBuilder and returns a
reference to the current StringBuilder. One of the method signatures
is as follows:

StringBuilder append(String str)

Notice that we said one of the method signatures. There are more than
10 method signatures that look similar but that take different data
types as parameters. All those methods are provided so you can write
code like this:

StringBuilder sb = new StringBuilder().append(1).append('c');

sb.append("-").append(true);

System.out.println(sb); // 1c-true

Nice method chaining, isn’t it? append() is called directly after the
constructor. By having all these method signatures, you can just call
append() without having to convert your parameter to a String first.

insert()
The insert() method adds characters to the StringBuilder at the
requested index and returns a reference to the current StringBuilder.
Just like append(), there are lots of method signatures for different
types. Here’s one:

StringBuilder insert(int offset, String str)

Pay attention to the offset in these examples. It is the index where we
want to insert the requested parameter.

3: StringBuilder sb = new StringBuilder("animals");

4: sb.insert(7, "-"); // sb = animals-

5: sb.insert(0, "-"); // sb = -animals-

6: sb.insert(4, "-"); // sb = -ani-mals-

7: System.out.println(sb);

Line 4 says to insert a dash at index 7, which happens to be the end of
the sequence of characters. Line 5 says to insert a dash at index 0,
which happens to be the very beginning. Finally, line 6 says to insert a
dash right before index 4. The exam creators will try to trip you up on
this. As we add and remove characters, their indexes change. When
you see a question dealing with such operations, draw what is going on
so you won’t be confused.

delete() and deleteCharAt()
The delete() method is the opposite of the insert() method. It
removes characters from the sequence and returns a reference to the
current StringBuilder. The deleteCharAt() method is convenient
when you want to delete only one character. The method signatures
are as follows:

StringBuilder delete(int startIndex, int endIndex)

StringBuilder deleteCharAt(int index)

The following code shows how to use these methods:

StringBuilder sb = new StringBuilder("abcdef");

sb.delete(1, 3); // sb = adef

sb.deleteCharAt(5); // throws an exception

First, we delete the characters starting with index 1 and ending right
before index 3. This gives us adef. Next, we ask Java to delete the
character at position 5. However, the remaining value is only four
characters long, so it throws a StringIndexOutOfBoundsException.

The delete() method is more flexible than some others when it comes
to array indexes. If you specify a second parameter that is past the end
of the StringBuilder, Java will just assume you meant the end. That

means this code is legal:

StringBuilder sb = new StringBuilder("abcdef");

sb.delete(1, 100); // sb = a

replace()
The replace() method works differently for StringBuilder than it did
for String. The method signature is as follows:

StringBuilder replace(int startIndex, int endIndex, String

newString)

The following code shows how to use this method:

StringBuilder builder = new StringBuilder("pigeon dirty");

builder.replace(3, 6, "sty");

System.out.println(builder); // pigsty dirty

First, Java deletes the characters starting with index 3 and ending
right before index 6. This gives us pig dirty. Then Java inserts to the
value "sty" in that position.

In this example, the number of characters removed and inserted is the
same. However, there is no reason that it has to be. What do you think
this does?

StringBuilder builder = new StringBuilder("pigeon dirty");

builder.replace(3, 100, "");

System.out.println(builder);

It actually prints "pig". Remember the method is first doing a logical
delete. The replace() method allows specifying a second parameter
that is past the end of the StringBuilder. That means only the first
three characters remain.

reverse()
After all that, it’s time for a nice, easy method. The reverse() method
does just what it sounds like: it reverses the characters in the
sequences and returns a reference to the current StringBuilder. The
method signature is as follows:

StringBuilder reverse()

The following code shows how to use this method:

StringBuilder sb = new StringBuilder("ABC");

sb.reverse();

System.out.println(sb);

As expected, this prints CBA. This method isn’t that interesting. Maybe
the exam creators like to include it to encourage you to write down the
value rather than relying on memory for indexes.

toString()
The last method converts a StringBuilder into a String. The method
signature is as follows:

String toString()

The following code shows how to use this method:

StringBuilder sb = new StringBuilder("ABC");

String s = sb.toString();

Often StringBuilder is used internally for performance purposes, but
the end result needs to be a String. For example, maybe it needs to be
passed to another method that is expecting a String.

Understanding Equality
In Chapter 3, you learned how to use == to compare numbers and that
object references refer to the same object. In this section, we will look
at what it means for two objects to be equivalent or the same. We will
also look at the impact of the String pool on equality.

Comparing equals() and ==
Consider the following code that uses == with objects:

StringBuilder one = new StringBuilder();

StringBuilder two = new StringBuilder();

StringBuilder three = one.append("a");

System.out.println(one == two); // false

System.out.println(one == three); // true

Since this example isn’t dealing with primitives, we know to look for
whether the references are referring to the same object. one and two
are both completely separate StringBuilder objects, giving us two
objects. Therefore, the first print statement gives us false. three is
more interesting. Remember how StringBuilder methods like to
return the current reference for chaining? This means one and three
both point to the same object, and the second print statement gives us
true.

You saw earlier that you can say you want logical equality rather than
object equality for String objects:

String x = "Hello World";

String z = " Hello World".trim();

System.out.println(x.equals(z)); // true

This works because the authors of the String class implemented a
standard method called equals to check the values inside the String
rather than the string reference itself. If a class doesn’t have an equals
method, Java determines whether the references point to the same
object—which is exactly what == does.

In case you are wondering, the authors of StringBuilder did not

implement equals(). If you call equals() on two StringBuilder
instances, it will check reference equality. You can call toString() on
StringBuilder to get a String to check for equality instead.

The exam will test you on your understanding of equality with objects
they define too. For example, the following Tiger class works just like
StringBuilder but is easier to understand:

1: public class Tiger {

2: String name;

3: public static void main(String[] args) {

4: Tiger t1 = new Tiger();

5: Tiger t2 = new Tiger();

6: Tiger t3 = t1;

7: System.out.println(t1 == t3); // true

8: System.out.println(t1 == t2); // false

9: System.out.println(t1.equals(t2)); // false

10: } }

The first two statements check object reference equality. Line 7 prints
true because we are comparing references to the same object. Line 8
prints false because the two object references are different. Line 9
prints false since Tiger does not implement equals(). Don’t worry—
you aren’t expected to know how to implement equals() for this exam.

Finally, the exam might try to trick you with a question like this. Can
you guess why the code doesn’t compile?

String string = "a";

StringBuilder builder = new StringBuilder("a");

System.out.println(string == builder); //DOES NOT COMPILE

Remember that == is checking for object reference equality. The
compiler is smart enough to know that two references can’t possibly
point to the same object when they are completely different types.

The String Pool
Since strings are everywhere in Java, they use up a lot of memory. In
some production applications, they can use a large amount of memory
in the entire program. Java realizes that many strings repeat in the
program and solves this issue by reusing common ones. The string
pool, also known as the intern pool, is a location in the Java virtual

machine (JVM) that collects all these strings.

The string pool contains literal values and constants that appear in
your program. For example, "name" is a literal and therefore goes into
the string pool. myObject.toString() is a string but not a literal, so it
does not go into the string pool.

Let’s now visit the more complex and confusing scenario, String
equality, made so in part because of the way the JVM reuses String
literals.

String x = "Hello World";

String y = "Hello World";

System.out.println(x == y); // true

Remember that Strings are immutable and literals are pooled. The
JVM created only one literal in memory. x and y both point to the
same location in memory; therefore, the statement outputs true. It
gets even trickier. Consider this code:

String x = "Hello World";

String z = " Hello World".trim();

System.out.println(x == z); // false

In this example, we don’t have two of the same String literal. Although
x and z happen to evaluate to the same string, one is computed at
runtime. Since it isn’t the same at compile-time, a new String object is
created. Let’s try another one. What do you think is output here?

String singleString = "hello world";

String oneLine = "hello " + "world";

String concat = " hello";

concat += "world";

System.out.println(singleString == oneLine);

System.out.println(singleString == concat);

Both print false. Concatenation is just like calling a method and
results in a new String. You can even force the issue by creating a new
String:

String x = "Hello World";

String y = new String("Hello World");

System.out.println(x == y); // false

The former says to use the string pool normally. The second says “No,
JVM, I really don’t want you to use the string pool. Please create a new
object for me even though it is less efficient.”

You can also do the opposite and tell Java to use the string pool. The
intern() method will use an object in the string pool if one is present.
If the literal is not yet in the string pool, Java will add it at this time.

String name = "Hello World";

String name2 = new String("Hello World").intern();

System.out.println(name == name2); // true

First we tell Java to use the string pool normally for name. Then for
name2, we tell Java to create a new object using the constructor but to
intern it and use the string pool anyway. Since both variables point to
the same reference in the string pool, we can use the == operator.

Let’s try another one. What do you think this prints out? Be careful. It
is tricky.

15: String first = "rat" + 1;

16: String second = "r" + "a" + "t" + "1";

17: String third = "r" + "a" + "t" + new String("1");

18: System.out.println(first == second);

19: System.out.println(first == second.intern());

20: System.out.println(first == third);

21: System.out.println(first == third.intern());

On line 15, we have a compile-time constant that automatically gets
placed in the string pool as "rat1". On line 16, we have a more
complicated expression that is also a compile-time constant.
Therefore, first and second share the same string pool reference. This
makes line 18 and 19 print true.

On line 17, we have a String constructor. This means we no longer
have a compile-time constant, and third does not point to a reference
in the string pool. Therefore, line 20 prints false. On line 21, the
intern() call looks in the string pool. Java notices that first points to
the same String and prints true.

When you write programs, you wouldn’t want to create a String of a
String or use the intern() method. For the exam, you need to know
that both are allowed and how they behave.

Remember to never use intern() or == to compare String

objects in your code. The only time you should have to deal with
these is on the exam.

Understanding Java Arrays
Up to now, we’ve been referring to the String and StringBuilder
classes as a “sequence of characters.” This is true. They are
implemented using an array of characters. An array is an area of
memory on the heap with space for a designated number of elements.
A String is implemented as an array with some methods that you
might want to use when dealing with characters specifically. A
StringBuilder is implemented as an array where the array object is
replaced with a new bigger array object when it runs out of space to
store all the characters. A big difference is that an array can be of any
other Java type. If we didn’t want to use a String for some reason, we
could use an array of char primitives directly:

char[] letters;

This wouldn’t be very convenient because we’d lose all the special
properties String gives us, such as writing "Java". Keep in mind that
letters is a reference variable and not a primitive. char is a primitive.
But char is what goes into the array and not the type of the array itself.
The array itself is of type char[]. You can mentally read the brackets
([]) as “array.”

In other words, an array is an ordered list. It can contain duplicates. In
this section, we’ll look at creating an array of primitives and objects,
sorting, searching, varargs, and multidimensional arrays.

Creating an Array of Primitives
The most common way to create an array looks like this:

int[] numbers1 = new int[3];

The basic parts are shown in Figure 5.3. It specifies the type of the
array (int) and the size (3). The brackets tell you this is an array.

Figure 5.3 The basic structure of an array

When you use this form to instantiate an array, all elements are set to
the default value for that type. As you learned in Chapter 2, the default
value of an int is 0. Since numbers1 is a reference variable, it points to
the array object, as shown in Figure 5.4. As you can see, the default
value for all the elements is 0. Also, the indexes start with 0 and count
up, just as they did for a String.

Figure 5.4 An empty array

Another way to create an array is to specify all the elements it should
start out with:

int[] numbers2 = new int[] {42, 55, 99};

In this example, we also create an int array of size 3. This time, we
specify the initial values of those three elements instead of using the
defaults. Figure 5.5 shows what this array looks like.

Figure 5.5 An initialized array

Java recognizes that this expression is redundant. Since you are
specifying the type of the array on the left side of the equal sign, Java
already knows the type. And since you are specifying the initial values,
it already knows the size. As a shortcut, Java lets you write this:

int[] numbers2 = {42, 55, 99};

This approach is called an anonymous array. It is anonymous because
you don’t specify the type and size.

Finally, you can type the [] before or after the name, and adding a
space is optional. This means that all five of these statements do the
exact same thing:

int[] numAnimals;

int [] numAnimals2;

int []numAnimals3;

int numAnimals4[];

int numAnimals5 [];

Most people use the first one. You could see any of these on the exam,
though, so get used to seeing the brackets in odd places.

Multiple “Arrays” in Declarations
What types of reference variables do you think the following code
creates?

int[] ids, types;

The correct answer is two variables of type int[]. This seems
logical enough. After all, int a, b; created two int variables. What
about this example?

int ids[], types;

All we did was move the brackets, but it changed the behavior. This
time we get one variable of type int[] and one variable of type int.
Java sees this line of code and thinks something like this: “They
want two variables of type int. The first one is called ids[]. This
one is an int[] called ids. The second one is just called types. No
brackets, so it is a regular integer.”

Needless to say, you shouldn’t write code that looks like this. But
you do need to understand it for the exam.

Creating an Array with Reference Variables
You can choose any Java type to be the type of the array. This includes
classes you create yourself. Let’s take a look at a built-in type with
String:

public class ArrayType {

 public static void main(String args[]) {

 String [] bugs = { "cricket", "beetle", "ladybug" };

 String [] alias = bugs;

 System.out.println(bugs.equals(alias)); // true

 System.out.println(

 bugs.toString()); //[Ljava.lang.String;@160bc7c0

} }

We can call equals() because an array is an object. It returns true
because of reference equality. The equals() method on arrays does not
look at the elements of the array. Remember, this would work even on
an int[] too. int is a primitive; int[] is an object.

The second print statement is even more interesting. What on earth is
[Ljava.lang .String;@160bc7c0? You don’t have to know this for the
exam, but [L means it is an array, java.lang.String is the reference
type, and 160bc7c0 is the hash code. You’ll get different numbers and
letters each time you run it since this is a reference.

Since Java 5, Java has provided a method that prints an

array nicely: Arrays.toString(bugs) would print [cricket, beetle,
ladybug].

Make sure you understand Figure 5.6. The array does not allocate
space for the String objects. Instead, it allocates space for a reference
to where the objects are really stored.

Figure 5.6 An array pointing to strings

As a quick review, what do you think this array points to?

class Names {

 String names[];

}

You got us. It was a review of Chapter 2 and not our discussion on
arrays. The answer is null. The code never instantiated the array, so it
is just a reference variable to null. Let’s try that again—what do you
think this array points to?

class Names {

 String names[] = new String[2];

}

It is an array because it has brackets. It is an array of type String since

that is the type mentioned in the declaration. It has two elements
because the length is 2. Each of those two slots currently is null but
has the potential to point to a String object.

Remember casting from the previous chapter when you wanted to
force a bigger type into a smaller type? You can do that with arrays
too:

3: String[] strings = { "stringValue" };

4: Object[] objects = strings;

5: String[] againStrings = (String[]) objects;

6: againStrings[0] = new StringBuilder(); // DOES NOT COMPILE

7: objects[0] = new StringBuilder(); // careful!

Line 3 creates an array of type String. Line 4 doesn’t require a cast
because Object is a broader type than String. On line 5, a cast is
needed because we are moving to a more specific type. Line 6 doesn’t
compile because a String[] only allows String objects and
StringBuilder is not a String.

Line 7 is where this gets interesting. From the point of view of the
compiler, this is just fine. A StringBuilder object can clearly go in an
Object[]. The problem is that we don’t actually have an Object[]. We
have a String[] referred to from an Object[] variable. At runtime, the
code throws an ArrayStoreException. You don’t need to memorize the
name of this exception, but you do need to know that the code will
throw an exception.

Using an Array
Now that you know how to create an array, let’s try accessing one:

4: String[] mammals = {"monkey", "chimp", "donkey"};

5: System.out.println(mammals.length); // 3

6: System.out.println(mammals[0]); // monkey

7: System.out.println(mammals[1]); // chimp

8: System.out.println(mammals[2]); // donkey

Line 4 declares and initializes the array. Line 5 tells us how many
elements the array can hold. The rest of the code prints the array.
Notice elements are indexed starting with 0. This should be familiar
from String and StringBuilder, which also start counting with 0.

Those classes also counted length as the number of elements. Note
that there are no parentheses after length since it is not a method.

To make sure you understand how length works, what do you think
this prints?

String[] birds = new String[6];

System.out.println(birds.length);

The answer is 6. Even though all six elements of the array are null,
there are still six of them. length does not consider what is in the
array; it only considers how many slots have been allocated.

It is very common to use a loop when reading from or writing to an
array. This loop sets each element of numbers to five higher than the
current index:

5: int[] numbers = new int[10];

6: for (int i = 0; i < numbers.length; i++)

7: numbers[i] = i + 5;

Line 5 simply instantiates an array with 10 slots. Line 6 is a for loop
that uses an extremely common pattern. It starts at index 0, which is
where an array begins as well. It keeps going, one at a time, until it hits
the end of the array. Line 7 sets the current element of numbers.

The exam will test whether you are being observant by trying to access
elements that are not in the array. Can you tell why each of these
throws an ArrayIndexOutOfBoundsException for our array of size 10?

numbers[10] = 3;

numbers[numbers.length] = 5;

for (int i = 0; i <= numbers.length; i++) numbers[i] = i + 5;

The first one is trying to see whether you know that indexes start with
0. Since we have 10 elements in our array, this means only numbers[0]
through numbers[9] are valid. The second example assumes you are
clever enough to know 10 is invalid and disguises it by using the length
field. However, the length is always one more than the maximum valid
index. Finally, the for loop incorrectly uses <= instead of <, which is
also a way of referring to that 10th element.

Sorting
Java makes it easy to sort an array by providing a sort method—or
rather, a bunch of sort methods. Just like StringBuilder allowed you
to pass almost anything to append(), you can pass almost any array to
Arrays.sort().

Arrays is the first class provided by Java we have used that requires an
import. To use it, you must have either of the following two statements
in your class:

import java.util.*; // import whole package including

Arrays

import java.util.Arrays; // import just Arrays

There is one exception, although it doesn’t come up often on the exam.
You can write java.util.Arrays every time it is used in the class
instead of specifying it as an import.

Remember that if you are shown a code snippet with a line number
that doesn’t begin with 1, you can assume the necessary imports are
there. Similarly, you can assume the imports are present if you are
shown a snippet of a method.

This simple example sorts three numbers:

int[] numbers = { 6, 9, 1 };

Arrays.sort(numbers);

for (int i = 0; i < numbers.length; i++)

 System.out.print(numbers[i] + " ");

The result is 1 6 9, as you should expect it to be. Notice that we looped
through the output to print the values in the array. Just printing the
array variable directly would give the annoying hash of [I@2bd9c3e7.
Alternatively, we could have printed Arrays .toString(numbers)
instead of using the loop. That would have output [1, 6, 9].

Try this again with String types:

String[] strings = { "10", "9", "100" };

Arrays.sort(strings);

for (String string : strings)

 System.out.print(string + " ");

This time the result might not be what you expect. This code outputs
10 100 9. The problem is that String sorts in alphabetic order, and 1
sorts before 9. (Numbers sort before letters, and uppercase sorts
before lowercase, in case you were wondering.) For the 1Z0-816 exam,
you’ll learn how to create custom sort orders using something called a
comparator.

Did you notice we snuck in the enhanced for loop in this example?
Since we aren’t using the index, we don’t need the traditional for loop.
That won’t stop the exam creators from using it, though, so we’ll be
sure to use both to keep you sharp!

Searching
Java also provides a convenient way to search—but only if the array is
already sorted. Table 5.1 covers the rules for binary search.

Table 5.1 Binary search rules

Scenario Result
Target element
found in sorted
array

Index of match

Target element
not found in
sorted array

Negative value showing one smaller than the
negative of the index, where a match needs to be
inserted to preserve sorted order

Unsorted array A surprise—this result isn’t predictable

Let’s try these rules with an example:

3: int[] numbers = {2,4,6,8};

4: System.out.println(Arrays.binarySearch(numbers, 2)); // 0

5: System.out.println(Arrays.binarySearch(numbers, 4)); // 1

6: System.out.println(Arrays.binarySearch(numbers, 1)); // -1

7: System.out.println(Arrays.binarySearch(numbers, 3)); // -2

8: System.out.println(Arrays.binarySearch(numbers, 9)); // -5

Take note of the fact that line 3 is a sorted array. If it wasn’t, we
couldn’t apply either of the other rules. Line 4 searches for the index of
2. The answer is index 0. Line 5 searches for the index of 4, which is 1.

Line 6 searches for the index of 1. Although 1 isn’t in the list, the
search can determine that it should be inserted at element 0 to
preserve the sorted order. Since 0 already means something for array
indexes, Java needs to subtract 1 to give us the answer of –1. Line 7 is
similar. Although 3 isn’t in the list, it would need to be inserted at
element 1 to preserve the sorted order. We negate and subtract 1 for
consistency, getting –1 –1, also known as –2. Finally, line 8 wants to
tell us that 9 should be inserted at index 4. We again negate and
subtract 1, getting –4 –1, also known as –5.

What do you think happens in this example?

5: int[] numbers = new int[] {3,2,1};

6: System.out.println(Arrays.binarySearch(numbers, 2));

7: System.out.println(Arrays.binarySearch(numbers, 3));

Note that on line 5, the array isn’t sorted. This means the output will
not be predictable. When testing this example, line 6 correctly gave 1
as the output. However, line 7 gave the wrong answer. The exam
creators will not expect you to know what incorrect values come out.
As soon as you see the array isn’t sorted, look for an answer choice
about unpredictable output.

On the exam, you need to know what a binary search returns in
various scenarios. Oddly, you don’t need to know why “binary” is in
the name. In case you are curious, a binary search splits the array into
two equal pieces (remember 2 is binary) and determines which half
the target is in. It repeats this process until only one element is left.

Comparing
Java also provides methods to compare two arrays to determine which
is “smaller.” First we will cover the compare() method and then go on
to mismatch().

compare()
There are a bunch of rules you need to know before calling compare().
Luckily, these are the same rules you’ll need to know for the 1Z0-816
exam when writing a Comparator.

First you need to learn what the return value means. You do not need
to know the exact return values, but you do need to know the
following:

A negative number means the first array is smaller than the
second.

A zero means the arrays are equal.

A positive number means the first array is larger than the second.

Here’s an example:

System.out.println(Arrays.compare(new int[] {1}, new int[] {2}));

This code prints a negative number. It should be pretty intuitive that 1
is smaller than 2, making the first array smaller.

Now that you know how to compare a single value, let’s look at how to
compare arrays of different lengths:

If both arrays are the same length and have the same values in
each spot in the same order, return zero.

If all the elements are the same but the second array has extra
elements at the end, return a negative number.

If all the elements are the same but the first array has extra
elements at the end, return a positive number.

If the first element that differs is smaller in the first array, return
a negative number.

If the first element that differs is larger in the first array, return a
positive number.

Finally, what does smaller mean? Here are some more rules that apply
here and to compareTo(), which you’ll see in Chapter 6, “Lambdas and
Functional Interfaces”:

null is smaller than any other value.

For numbers, normal numeric order applies.

For strings, one is smaller if it is a prefix of another.

For strings/characters, numbers are smaller than letters.

For strings/characters, uppercase is smaller than lowercase.

Table 5.2 shows examples of these rules in action.

Table 5.2 Arrays.compare() examples

First
array

Second
array

Result Reason

new int[]

{1, 2}

new int[]

{1}

Positive
number

The first element is the same, but
the first array is longer.

new int[]

{1, 2}

new int[]

{1, 2}

Zero Exact match

new

String[]

{"a"}

new

String[]

{"aa"}

Negative
number

The first element is a substring of
the second.

new

String[]

{"a"}

new

String[]

{"A"}

Positive
number

Uppercase is smaller than
lowercase.

new

String[]

{"a"}

new

String[]

{null}

Positive
number

null is smaller than a letter.

Finally, this code does not compile because the types are different.
When comparing two arrays, they must be the same array type.

System.out.println(Arrays.compare(

 new int[] {1}, new String[] {"a"})); // DOES NOT COMPILE

mismatch()
Now that you are familiar with compare(), it is time to learn about
mismatch(). If the arrays are equal, mismatch() returns -1. Otherwise, it
returns the first index where they differ. Can you figure out what these
print?

System.out.println(Arrays.mismatch(new int[] {1}, new int[]

{1}));

System.out.println(Arrays.mismatch(new String[] {"a"},

 new String[] {"A"}));

System.out.println(Arrays.mismatch(new int[] {1, 2}, new int[]

{1}));

In the first example, the arrays are the same, so the result is -1. In the
second example, the entries at element 0 are not equal, so the result is
0. In the third example, the entries at element 0 are equal, so we keep
looking. The element at index 1 is not equal. Or more specifically, one
array has an element at index 1, and the other does not. Therefore, the
result is 1.

To make sure you understand the compare() and mismatch() methods,
study Table 5.3. If you don’t understand why all of the values are there,
please go back and study this section again.

Table 5.3 Equality vs. comparison vs. mismatch

Method When arrays are the
same

When arrays are
different

equals() true false

compare() 0 Positive or negative number
mismatch() -1 Zero or positive index

Varargs
When you’re creating an array yourself, it looks like what we’ve seen
thus far. When one is passed to your method, there is another way it
can look. Here are three examples with a main() method:

public static void main(String[] args)

public static void main(String args[])

public static void main(String... args) // varargs

The third example uses a syntax called varargs (variable arguments),
which you saw in Chapter 1, “Welcome to Java.” You’ll learn how to
call a method using varargs in Chapter 7, “Methods and
Encapsulation.” For now, all you need to know is that you can use a
variable defined using varargs as if it were a normal array. For
example, args.length and args[0] are legal.

Multidimensional Arrays

Arrays are objects, and of course array components can be objects. It
doesn’t take much time, rubbing those two facts together, to wonder
whether arrays can hold other arrays, and of course they can.

Creating a Multidimensional Array
Multiple array separators are all it takes to declare arrays with
multiple dimensions. You can locate them with the type or variable
name in the declaration, just as before:

int[][] vars1; // 2D array

int vars2 [][]; // 2D array

int[] vars3[]; // 2D array

int[] vars4 [], space [][]; // a 2D AND a 3D array

The first two examples are nothing surprising and declare a two-
dimensional (2D) array. The third example also declares a 2D array.
There’s no good reason to use this style other than to confuse readers
with your code. The final example declares two arrays on the same
line. Adding up the brackets, we see that the vars4 is a 2D array and
space is a 3D array. Again, there’s no reason to use this style other
than to confuse readers of your code. The exam creators like to try to
confuse you, though. Luckily, you are on to them and won’t let this
happen to you!

You can specify the size of your multidimensional array in the
declaration if you like:

String [][] rectangle = new String[3][2];

The result of this statement is an array rectangle with three elements,
each of which refers to an array of two elements. You can think of the
addressable range as [0][0] through [2][1], but don’t think of it as a
structure of addresses like [0,0] or [2,1].

Now suppose we set one of these values:

rectangle[0][1] = "set";

You can visualize the result as shown in Figure 5.7. This array is
sparsely populated because it has a lot of null values. You can see that
rectangle still points to an array of three elements and that we have

three arrays of two elements. You can also follow the trail from
reference to the one value pointing to a String. First you start at index
0 in the top array. Then you go to index 1 in the next array.

Figure 5.7 A sparsely populated multidimensional array

While that array happens to be rectangular in shape, an array doesn’t
need to be. Consider this one:

int[][] differentSizes = {{1, 4}, {3}, {9,8,7}};

We still start with an array of three elements. However, this time the
elements in the next level are all different sizes. One is of length 2, the
next length 1, and the last length 3 (see Figure 5.8). This time the array
is of primitives, so they are shown as if they are in the array
themselves.

Figure 5.8 An asymmetric multidimensional array

Another way to create an asymmetric array is to initialize just an
array’s first dimension and define the size of each array component in
a separate statement:

int [][] args = new int[4][];

args[0] = new int[5];

args[1] = new int[3];

This technique reveals what you really get with Java: arrays of arrays
that, properly managed, offer a multidimensional effect.

Using a Multidimensional Array
The most common operation on a multidimensional array is to loop
through it. This example prints out a 2D array:

int[][] twoD = new int[3][2];

for (int i = 0; i < twoD.length; i++) {

 for (int j = 0; j < twoD[i].length; j++)

 System.out.print(twoD[i][j] + " "); // print element

 System.out.println(); // time for a new row

}

We have two loops here. The first uses index i and goes through the
first subarray for twoD. The second uses a different loop variable j. It is
important that these be different variable names so the loops don’t get
mixed up. The inner loop looks at how many elements are in the
second-level array. The inner loop prints the element and leaves a
space for readability. When the inner loop completes, the outer loop
goes to a new line and repeats the process for the next element.

This entire exercise would be easier to read with the enhanced for
loop.

for (int[] inner : twoD) {

 for (int num : inner)

 System.out.print(num + " ");

 System.out.println();

}

We’ll grant you that it isn’t fewer lines, but each line is less complex,
and there aren’t any loop variables or terminating conditions to mix
up.

Understanding an ArrayList
An array has one glaring shortcoming: You have to know how many
elements will be in the array when you create it, and then you are
stuck with that choice. Just like a StringBuilder, an ArrayList can
change capacity at runtime as needed. Like an array, an ArrayList is
an ordered sequence that allows duplicates.

As when we used Arrays.sort, ArrayList requires an import. To use it,
you must have either of the following two statements in your class:

import java.util.*; // import whole package

import java.util.ArrayList; // import just ArrayList

In this section, we’ll look at creating an ArrayList, common methods,
autoboxing, conversion, and sorting.

Experienced programmers, take note: This section is simplified and
doesn’t cover a number of topics that are out of scope for this exam.

Creating an ArrayList
As with StringBuilder, there are three ways to create an ArrayList:

ArrayList list1 = new ArrayList();

ArrayList list2 = new ArrayList(10);

ArrayList list3 = new ArrayList(list2);

The first says to create an ArrayList containing space for the default
number of elements but not to fill any slots yet. The second says to
create an ArrayList containing a specific number of slots, but again
not to assign any. The final example tells Java that we want to make a
copy of another ArrayList. We copy both the size and contents of that
ArrayList. Granted, list2 is empty in this example, so it isn’t
particularly interesting.

Although these are the only three constructors you need to know, you
do need to learn some variants of it. The previous examples were the
old pre–Java 5 way of creating an ArrayList. They still work, and you
still need to know they work. You also need to know the new and

improved way. Java 5 introduced generics, which allow you to specify
the type of class that the ArrayList will contain.

ArrayList<String> list4 = new ArrayList<String>();

ArrayList<String> list5 = new ArrayList<>();

Java 5 allows you to tell the compiler what the type would be by
specifying it between < and >. Starting in Java 7, you can even omit
that type from the right side. The < and > are still required, though.
This is called the diamond operator because <> looks like a diamond.

Using var with ArrayList
Now that var can be used to obscure data types, there is a whole
new group of questions that can be asked with generics. Consider
this code mixing the two:

var strings = new ArrayList<String>();

strings.add("a");

for (String s: strings) { }

The type of var is ArrayList<String>. This means you can add a
String or loop through the String objects. What if we use the
diamond operator with var?

var list = new ArrayList<>();

Believe it or not, this does compile. The type of the var is
ArrayList<Object>. Since there isn’t a type specified for the generic,
Java has to assume the ultimate superclass. This is a bit silly and
unexpected, so please don’t write this. But if you see it on the
exam, you’ll know what to expect. Now can you figure out why this
doesn’t compile?

var list = new ArrayList<>();

list.add("a");

for (String s: list) { } // DOES NOT COMPILE

The type of var is ArrayList<Object>. Since there isn’t a type in the
diamond operator, Java has to assume the most generic option it
can. Therefore, it picks Object, the ultimate superclass. Adding a
String to the list is fine. You can add any subclass of Object.

However, in the loop, we need to use the Object type rather than
String.

Just when you thought you knew everything about creating an
ArrayList, there is one more thing you need to know. ArrayList
implements an interface called List. In other words, an ArrayList is a
List. You will learn about interfaces later in the book. In the
meantime, just know that you can store an ArrayList in a List
reference variable but not vice versa. The reason is that List is an
interface and interfaces can’t be instantiated.

List<String> list6 = new ArrayList<>();

ArrayList<String> list7 = new List<>(); // DOES NOT COMPILE

Using an ArrayList
ArrayList has many methods, but you only need to know a handful of
them—even fewer than you did for String and StringBuilder.

Before reading any further, you are going to see something new in the
method signatures: a “class” named E. Don’t worry—it isn’t really a
class. E is used by convention in generics to mean “any class that this
array can hold.” If you didn’t specify a type when creating the
ArrayList, E means Object. Otherwise, it means the class you put
between < and >.

You should also know that ArrayList implements toString(), so you
can easily see the contents just by printing it. Arrays do not produce
such pretty output by default.

add()
The add() methods insert a new value in the ArrayList. The method
signatures are as follows:

boolean add(E element)

void add(int index, E element)

Don’t worry about the boolean return value. It always returns true. As
we’ll see later in the chapter, it is there because other classes in the
Collections family need a return value in the signature when adding

an element.

Since add() is the most critical ArrayList method you need to know for
the exam, we are going to show a few examples for it. Let’s start with
the most straightforward case:

ArrayList list = new ArrayList();

list.add("hawk"); // [hawk]

list.add(Boolean.TRUE); // [hawk, true]

System.out.println(list); // [hawk, true]

add() does exactly what we expect: It stores the String in the no longer
empty ArrayList. It then does the same thing for the Boolean. This is
okay because we didn’t specify a type for ArrayList; therefore, the type
is Object, which includes everything except primitives. It may not have
been what we intended, but the compiler doesn’t know that. Now, let’s
use generics to tell the compiler we only want to allow String objects
in our ArrayList:

ArrayList<String> safer = new ArrayList<>();

safer.add("sparrow");

safer.add(Boolean.TRUE); // DOES NOT COMPILE

This time the compiler knows that only String objects are allowed in
and prevents the attempt to add a Boolean. Now let’s try adding
multiple values to different positions.

4: List<String> birds = new ArrayList<>();

5: birds.add("hawk"); // [hawk]

6: birds.add(1, "robin"); // [hawk, robin]

7: birds.add(0, "blue jay"); // [blue jay, hawk, robin]

8: birds.add(1, "cardinal"); // [blue jay, cardinal, hawk,

robin]

9: System.out.println(birds); // [blue jay, cardinal, hawk,

robin]

When a question has code that adds objects at indexed positions, draw
it so that you won’t lose track of which value is at which index. In this
example, line 5 adds "hawk" to the end of birds. Then line 6 adds
"robin" to index 1 of birds, which happens to be the end. Line 7 adds
"blue jay" to index 0, which happens to be the beginning of birds.
Finally, line 8 adds "cardinal" to index 1, which is now near the
middle of birds.

remove()
The remove() methods remove the first matching value in the
ArrayList or remove the element at a specified index. The method
signatures are as follows:

boolean remove(Object object)

E remove(int index)

This time the boolean return value tells us whether a match was
removed. The E return type is the element that actually got removed.
The following shows how to use these methods:

3: List<String> birds = new ArrayList<>();

4: birds.add("hawk"); // [hawk]

5: birds.add("hawk"); // [hawk, hawk]

6: System.out.println(birds.remove("cardinal")); // prints false

7: System.out.println(birds.remove("hawk")); // prints true

8: System.out.println(birds.remove(0)); // prints hawk

9: System.out.println(birds); // []

Line 6 tries to remove an element that is not in birds. It returns false
because no such element is found. Line 7 tries to remove an element
that is in birds and so returns true. Notice that it removes only one
match. Line 8 removes the element at index 0, which is the last
remaining element in the ArrayList.

Since calling remove() with an int uses the index, an index that doesn’t
exist will throw an exception. For example, birds.remove(100) throws
an IndexOutOfBoundsException.

There is also a removeIf() method. We’ll cover it in the next chapter
because it uses lambda expressions (a topic in that chapter).

set()
The set() method changes one of the elements of the ArrayList
without changing the size. The method signature is as follows:

E set(int index, E newElement)

The E return type is the element that got replaced. The following shows
how to use this method:

15: List<String> birds = new ArrayList<>();

16: birds.add("hawk"); // [hawk]

17: System.out.println(birds.size()); // 1

18: birds.set(0, "robin"); // [robin]

19: System.out.println(birds.size()); // 1

20: birds.set(1, "robin"); //

IndexOutOfBoundsException

Line 16 adds one element to the array, making the size 1. Line 18
replaces that one element, and the size stays at 1. Line 20 tries to
replace an element that isn’t in the ArrayList. Since the size is 1, the
only valid index is 0. Java throws an exception because this isn’t
allowed.

isEmpty() and size()
The isEmpty() and size() methods look at how many of the slots are in
use. The method signatures are as follows:

boolean isEmpty()

int size()

The following shows how to use these methods:

List<String> birds = new ArrayList<>();

System.out.println(birds.isEmpty()); // true

System.out.println(birds.size()); // 0

birds.add("hawk"); // [hawk]

birds.add("hawk"); // [hawk, hawk]

System.out.println(birds.isEmpty()); // false

System.out.println(birds.size()); // 2

At the beginning, birds has a size of 0 and is empty. It has a capacity
that is greater than 0. However, as with StringBuilder, we don’t use
the capacity in determining size or length. After adding elements, the
size becomes positive, and it is no longer empty. Notice how isEmpty()
is a convenience method for size() == 0.

clear()
The clear() method provides an easy way to discard all elements of
the ArrayList. The method signature is as follows:

void clear()

The following shows how to use this method:

List<String> birds = new ArrayList<>();

birds.add("hawk"); // [hawk]

birds.add("hawk"); // [hawk, hawk]

System.out.println(birds.isEmpty()); // false

System.out.println(birds.size()); // 2

birds.clear(); // []

System.out.println(birds.isEmpty()); // true

System.out.println(birds.size()); // 0

After we call clear(), birds is back to being an empty ArrayList of size
0.

contains()
The contains() method checks whether a certain value is in the
ArrayList. The method signature is as follows:

boolean contains(Object object)

The following shows how to use this method:

List<String> birds = new ArrayList<>();

birds.add("hawk"); // [hawk]

System.out.println(birds.contains("hawk")); // true

System.out.println(birds.contains("robin")); // false

This method calls equals() on each element of the ArrayList to see
whether there are any matches. Since String implements equals(),
this works out well.

equals()
Finally, ArrayList has a custom implementation of equals(),so you
can compare two lists to see whether they contain the same elements
in the same order.

boolean equals(Object object)

The following shows an example:

31: List<String> one = new ArrayList<>();

32: List<String> two = new ArrayList<>();

33: System.out.println(one.equals(two)); // true

34: one.add("a"); // [a]

35: System.out.println(one.equals(two)); // false

36: two.add("a"); // [a]

37: System.out.println(one.equals(two)); // true

38: one.add("b"); // [a,b]

39: two.add(0, "b"); // [b,a]

40: System.out.println(one.equals(two)); // false

On line 33, the two ArrayList objects are equal. An empty list is
certainly the same elements in the same order. On line 35, the
ArrayList objects are not equal because the size is different. On line
37, they are equal again because the same one element is in each. On
line 40, they are not equal. The size is the same and the values are the
same, but they are not in the same order.

Wrapper Classes
Up to now, we’ve only put String objects in the ArrayList. What
happens if we want to put primitives in? Each primitive type has a
wrapper class, which is an object type that corresponds to the
primitive. Table 5.4 lists all the wrapper classes along with how to
create them.

Table 5.4 Wrapper classes

Primitive type Wrapper class Example of creating
boolean Boolean Boolean.valueOf(true)

byte Byte Byte.valueOf((byte) 1)

short Short Short.valueOf((short) 1)

int Integer Integer.valueOf(1)

long Long Long.valueOf(1)

float Float Float.valueOf((float) 1.0)

double Double Double.valueOf(1.0)

char Character Character.valueOf('c')

Each wrapper class also has a constructor. It works the same way as
valueOf() but isn’t recommended for new code. The valueOf() allows
object caching. Remember how a String could be shared when the
value is the same? The wrapper classes are immutable and take
advantage of some caching as well.

The wrapper classes also have a method that converts back to a
primitive. You don’t need to know much about the valueOf() or
intValue() type methods for the exam because autoboxing has
removed the need for them (see the next section). You just need to be
able to read the code and not look for tricks in it.

There are also methods for converting a String to a primitive or
wrapper class. You do need to know these methods. The parse
methods, such as parseInt(), return a primitive, and the valueOf()
method returns a wrapper class. This is easy to remember because the
name of the returned primitive is in the method name. Here’s an
example:

int primitive = Integer.parseInt("123");

Integer wrapper = Integer.valueOf("123");

The first line converts a String to an int primitive. The second
converts a String to an Integer wrapper class. If the String passed in
is not valid for the given type, Java throws an exception. In these
examples, letters and dots are not valid for an integer value:

int bad1 = Integer.parseInt("a"); // throws

NumberFormatException

Integer bad2 = Integer.valueOf("123.45"); // throws

NumberFormatException

Before you worry, the exam won’t make you recognize that the method
parseInt() is used rather than parseInteger(). You simply need to be
able to recognize the methods when put in front of you. Also, the
Character class doesn’t participate in the parse/valueOf methods.
Since a String consists of characters, you can just call charAt()
normally.

Table 5.5 lists the methods you need to recognize for creating a
primitive or wrapper class object from a String. In real coding, you
won’t be so concerned about which is returned from each method due
to autoboxing.

Table 5.5 Converting from a String

Wrapper
class

Converting String to a
primitive

Converting String to a
wrapper class

Boolean Boolean.parseBoolean("true") Boolean.valueOf("TRUE")

Byte Byte.parseByte("1") Byte.valueOf("2")

Short Short.parseShort("1") Short.valueOf("2")

Integer Integer.parseInt("1") Integer.valueOf("2")

Long Long.parseLong("1") Long.valueOf("2")

Float Float.parseFloat("1") Float.valueOf("2.2")

Double Double.parseDouble("1") Double.valueOf("2.2")

Character None None

Wrapper Classes and Null
When we presented numeric primitives in Chapter 2, we
mentioned they could not be used to store null values. One
advantage of a wrapper class over a primitive is that because it’s an
object, it can be used to store a null value. While null values aren’t
particularly useful for numeric calculations, they are quite useful in
data-based services. For example, if you are storing a user’s
location data using (latitude,longitude), it would be a bad idea to
store a missing point as (0,0) since that refers to an actual location
off the coast of Africa where the user could theoretically be.

Autoboxing and Unboxing
Why won’t you need to be concerned with whether a primitive or
wrapper class is returned, you ask? Since Java 5, you can just type the
primitive value, and Java will convert it to the relevant wrapper class
for you. This is called autoboxing. The reverse conversion of wrapper
class to primitive value is called unboxing. Let’s look at an example:

3: List<Integer> weights = new ArrayList<>();

4: Integer w = 50;

5: weights.add(w); // [50]

6: weights.add(Integer.valueOf(60)); // [50, 60]

7: weights.remove(50); // [60]

8: double first = weights.get(0); // 60.0

Line 4 autoboxes the int primitive into an Integer object, and line 5
adds that to the List. Line 6 shows that you can still write code the

long way and pass in a wrapper object. Line 7 again autoboxes into the
wrapper object and passes it to remove(). Line 8 retrieves the first
Integer in the list, unboxes it as a primitive and implicitly casts it to
double.

What do you think happens if you try to unbox a null?

3: List<Integer> heights = new ArrayList<>();

4: heights.add(null);

5: int h = heights.get(0); // NullPointerException

On line 4, we add a null to the list. This is legal because a null
reference can be assigned to any reference variable. On line 5, we try to
unbox that null to an int primitive. This is a problem. Java tries to get
the int value of null. Since calling any method on null gives a
NullPointerException, that is just what we get. Be careful when you
see null in relation to autoboxing.

Also be careful when autoboxing into Integer. What do you think this
code outputs?

List<Integer> numbers = new ArrayList<>();

numbers.add(1);

numbers.add(2);

numbers.remove(1);

System.out.println(numbers);

It actually outputs [1]. After adding the two values, the List contains
[1, 2]. We then request the element with index 1 be removed. That’s
right: index 1. Because there’s already a remove() method that takes an
int parameter, Java calls that method rather than autoboxing. If you
want to remove the 1, you can write numbers.remove(new Integer(1))
to force wrapper class use.

Converting Between array and List
You should know how to convert between an array and a List. Let’s
start with turning an ArrayList into an array:

13: List<String> list = new ArrayList<>();

14: list.add("hawk");

15: list.add("robin");

16: Object[] objectArray = list.toArray();

17: String[] stringArray = list.toArray(new String[0]);

18: list.clear();

19: System.out.println(objectArray.length); // 2

20: System.out.println(stringArray.length); // 2

Line 16 shows that an ArrayList knows how to convert itself to an
array. The only problem is that it defaults to an array of class Object.
This isn’t usually what you want. Line 17 specifies the type of the array
and does what we actually want. The advantage of specifying a size of
0 for the parameter is that Java will create a new array of the proper
size for the return value. If you like, you can suggest a larger array to
be used instead. If the ArrayList fits in that array, it will be returned.
Otherwise, a new one will be created.

Also, notice that line 18 clears the original List. This does not affect
either array. The array is a newly created object with no relationship to
the original List. It is simply a copy.

Converting from an array to a List is more interesting. We will show
you two methods to do this conversion. Note that you aren’t
guaranteed to get a java.util.ArrayList from either. This means each
has special behavior to learn about.

One option is to create a List that is linked to the original array. When
a change is made to one, it is available in the other. It is a fixed-size list
and is also known as a backed List because the array changes with it.
Pay careful attention to the values here:

20: String[] array = { "hawk", "robin" }; // [hawk, robin]

21: List<String> list = Arrays.asList(array); // returns fixed

size list

22: System.out.println(list.size()); // 2

23: list.set(1, "test"); // [hawk, test]

24: array[0] = "new"; // [new, test]

25: System.out.print(Arrays.toString(array));// [new, test]

26: list.remove(1); // throws UnsupportedOperationException

Line 21 converts the array to a List. Note that it isn’t the
java.util.ArrayList we’ve grown used to. It is a fixed-size, backed
version of a List. Line 23 is okay because set() merely replaces an
existing value. It updates both array and list because they point to
the same data store. Line 24 also changes both array and list. Line 25

shows the array has changed to [new, test]. Line 26 throws an
exception because we are not allowed to change the size of the list.

Another option is to create an immutable List. That means you cannot
change the values or the size of the List. You can change the original
array, but changes will not be reflected in the immutable List. Again,
pay careful attention to the values:

32: String[] array = { "hawk", "robin" }; // [hawk, robin]

33: List<String> list = List.of(array); // returns immutable

list

34: System.out.println(list.size()); // 2

35: array[0] = "new";

36: System.out.println(Arrays.toString(array)); // [new, robin]

37: System.out.println(list); // [hawk, robin]

38: list.set(1, "test"); // throws

UnsupportedOperationException

Line 33 creates the immutable List. It contains the two values that
array happened to contain at the time the List was created. On line
35, there is a change to the array. Line 36 shows that array has
changed. Line 37 shows that list still has the original values. This is
because it is an immutable copy of the original array. Line 38 shows
that changing a list value in an immutable list is not allowed.

Using Varargs to Create a List
Using varargs allows you to create a List in a cool way:

List<String> list1 = Arrays.asList("one", "two");

List<String> list2 = List.of("one", "two");

Both of these methods take varargs, which let you pass in an array or
just type out the String values. This is handy when testing because you
can easily create and populate a List on one line. Both methods create
fixed-size arrays. If you will need to later add or remove elements,
you’ll still need to create an ArrayList using the constructor. There’s a
lot going on here, so let’s study Table 5.6.

Table 5.6 Array and list conversions
toArray() Arrays.asList() List.of()

Type converting from List Array (or
varargs)

Array (or
varargs)

Type created Array List List

Allowed to remove values from
created object

No No No

Allowed to change values in
the created object

Yes Yes No

Changing values in the created
object affects the original or
vice versa.

No Yes N/A

Notice that none of the options allows you to change the number of
elements. If you want to do that, you’ll need to actually write logic to
create the new object. Here’s an example:

List<String> fixedSizeList = Arrays.asList("a", "b", "c");

List<String> expandableList = new ArrayList<>(fixedSizeList);

Sorting
Sorting an ArrayList is similar to sorting an array. You just use a
different helper class:

List<Integer> numbers = new ArrayList<>();

numbers.add(99);

numbers.add(5);

numbers.add(81);

Collections.sort(numbers);

System.out.println(numbers); // [5, 81, 99]

As you can see, the numbers got sorted, just like you’d expect. Isn’t it
nice to have something that works just like you think it will?

Creating Sets and Maps
Although advanced collections topics are not covered until the 1Z0-816
exam, you should still know the basics of Set and Map now.

Introducing Sets
A Set is a collection of objects that cannot contain duplicates. If you try
to add a duplicate to a set, the API will not fulfill the request. You can
imagine a set as shown in Figure 5.9.

Figure 5.9 Example of a Set

All the methods you learned for ArrayList apply to a Set with the
exception of those taking an index as a parameter. Why is this? Well, a
Set isn’t ordered, so it wouldn’t make sense to talk about the first
element. This means you cannot call set(index, value) or
remove(index). You can call other methods like add(value) or
remove(value).

Do you remember that boolean return value on add() that always
returned true for an ArrayList? Set is a reason it needs to exist. When
trying to add a duplicate value, the method returns false and does not
add the value.

There are two common classes that implement Set that you might see
on the exam. HashSet is the most common. TreeSet is used when
sorting is important.

To make sure you understand a Set, follow along with this code:

3: Set<Integer> set = new HashSet<>();

4: System.out.println(set.add(66)); // true

5: System.out.println(set.add(66)); // false

6: System.out.println(set.size()); // 1

7: set.remove(66);

8: System.out.println(set.isEmpty()); // true

Line 3 creates a new set that declares only unique elements are
allowed. Both lines 4 and 5 attempt to add the same value. Only the
first one is allowed, making line 4 print true and line 5 false. Line 6
confirms there is only one value in the set. Removing an element on
line 7 works normally, and the set is empty on line 8.

Introducing Maps
A Map uses a key to identify values. For example, when you use the
contact list on your phone, you look up “George” rather than looking
through each phone number in turn. Figure 5.10 shows how to
visualize a Map.

Figure 5.10 Example of a Map

The most common implementation of Map is HashMap. Some of the
methods are the same as those in ArrayList like clear(), isEmpty(),
and size().

There are also methods specific to dealing with key and value pairs.
Table 5.7 shows these minimal methods you need to know.

Table 5.7 Common Map methods

Method Description

V get(Object key) Returns the value mapped by key or null if
none is mapped

V getOrDeafult(Object

key, V other)

Returns the value mapped by key or other
if none is mapped

V put(K key, V value) Adds or replaces key/value pair. Returns
previous value or null

V remove(Object key) Removes and returns value mapped to key.
Returns null if none

boolean

containsKey(Object key)

Returns whether key is in map

boolean

containsValue(Object

key)

Returns whether value is in map

Set<K> keySet() Returns set of all keys
Collection<V> values() Returns Collection of all values

Now let’s look at an example to confirm this is clear:

8: Map<String, String> map = new HashMap<>();

9: map.put("koala", "bamboo");

10: String food = map.get("koala"); // bamboo

11: String other = map.getOrDefault("ant", "leaf"); // leaf

12: for (String key: map.keySet())

13: System.out.println(key + " " + map.get(key)); // koala

bamboo

In this example, we create a new map and store one key/value pair
inside. Line 10 gets this value by key. Line 11 looks for a key that isn’t
there, so it returns the second parameter leaf as the default value.
Lines 12 and 13 list all the key and value pairs.

Calculating with Math APIs
It should come as no surprise that computers are good at computing
numbers. Java comes with a powerful Math class with many methods
to make your life easier. We will just cover a few common ones here
that are most likely to appear on the exam. When doing your own
projects, look at the Math Javadoc to see what other methods can help
you.

Pay special attention to return types in math questions. They are an
excellent opportunity for trickery!

min() and max()
The min() and max() methods compare two values and return one of
them.

The method signatures for min() are as follows:

double min(double a, double b)

float min(float a, float b)

int min(int a, int b)

long min(long a, long b)

There are four overloaded methods, so you always have an API
available with the same type. Each method returns whichever of a or b
is smaller. The max() method works the same way except it returns the
larger value.

The following shows how to use these methods:

int first = Math.max(3, 7); // 7

int second = Math.min(7, -9); // -9

The first line returns 7 because it is larger. The second line returns -9
because it is smaller. Remember from school that negative values are
smaller than positive ones.

round()
The round() method gets rid of the decimal portion of the value,

choosing the next higher number if appropriate. If the fractional part
is .5 or higher, we round up.

The method signatures for round() are as follows:

long round(double num)

int round(float num)

There are two overloaded methods to ensure there is enough room to
store a rounded double if needed. The following shows how to use this
method:

long low = Math.round(123.45); // 123

long high = Math.round(123.50); // 124

int fromFloat = Math.round(123.45f); // 123

The first line returns 123 because .45 is smaller than a half. The second
line returns 124 because the fractional part is just barely a half. The
final line shows that an explicit float triggers the method signature
that returns an int.

pow()
The pow() method handles exponents. As you may recall from your
elementary school math class, 32 means three squared. This is 3 * 3 or
9. Fractional exponents are allowed as well. Sixteen to the .5 power
means the square root of 16, which is 4. (Don’t worry, you won’t have
to do square roots on the exam.)

The method signature is as follows:

double pow(double number, double exponent)

The following shows how to use this method:

double squared = Math.pow(5, 2); // 25.0

Notice that the result is 25.0 rather than 25 since it is a double. (Again,
don’t worry, the exam won’t ask you to do any complicated math.)

random()
The random() method returns a value greater than or equal to 0 and

less than 1. The method signature is as follows:

double random()

The following shows how to use this method:

double num = Math.random();

Since it is a random number, we can’t know the result in advance.
However, we can rule out certain numbers. For example, it can’t be
negative because that’s less than 0. It can’t be 1.0 because that’s not
less than 1.

Summary
In this chapter, you learned that Strings are immutable sequences of
characters. The new operator is optional. The concatenation operator
(+) creates a new String with the content of the first String followed by
the content of the second String. If either operand involved in the +
expression is a String, concatenation is used; otherwise, addition is
used. String literals are stored in the string pool. The String class has
many methods.

StringBuilders are mutable sequences of characters. Most of the
methods return a reference to the current object to allow method
chaining. The StringBuilder class has many methods.

Calling == on String objects will check whether they point to the same
object in the pool. Calling == on StringBuilder references will check
whether they are pointing to the same StringBuilder object. Calling
equals() on String objects will check whether the sequence of
characters is the same. Calling equals() on StringBuilder objects will
check whether they are pointing to the same object rather than looking
at the values inside.

An array is a fixed-size area of memory on the heap that has space for
primitives or pointers to objects. You specify the size when creating it
—for example, int[] a = new int[6];. Indexes begin with 0, and
elements are referred to using a[0]. The Arrays.sort() method sorts
an array. Arrays.binarySearch() searches a sorted array and returns
the index of a match. If no match is found, it negates the position
where the element would need to be inserted and subtracts 1.
Arrays.compare() and Arrays .mismatch() check whether two arrays
are the equivalent. Methods that are passed varargs (…) can be used as
if a normal array was passed in. In a multidimensional array, the
second-level arrays and beyond can be different sizes.

An ArrayList can change size over its life. It can be stored in an
ArrayList or List reference. Generics can specify the type that goes in
the ArrayList. Although an ArrayList is not allowed to contain
primitives, Java will autobox parameters passed in to the proper

wrapper type. Collections.sort() sorts an ArrayList.

A Set is a collection with unique values. A Map consists of key/value
pairs. The Math class provides many static methods to facilitate
programming.

Exam Essentials
Be able to determine the output of code using String. Know the
rules for concatenating Strings and how to use common String
methods. Know that Strings are immutable. Pay special attention to
the fact that indexes are zero-based and that substring() gets the
string up until right before the index of the second parameter.

Be able to determine the output of code using StringBuilder.
Know that StringBuilder is mutable and how to use common
StringBuilder methods. Know that substring() does not change the
value of a StringBuilder, whereas append(), delete(), and insert() do
change it. Also note that most StringBuilder methods return a
reference to the current instance of StringBuilder.

Understand the difference between == and equals(). == checks
object equality. equals() depends on the implementation of the object
it is being called on. For Strings, equals() checks the characters inside
of it.

Be able to determine the output of code using arrays. Know
how to declare and instantiate one-dimensional and multidimensional
arrays. Be able to access each element and know when an index is out
of bounds. Recognize correct and incorrect output when searching and
sorting.

Be able to determine the output of code using ArrayList. Know
that ArrayList can increase in size. Be able to identify the different
ways of declaring and instantiating an ArrayList. Identify correct
output from ArrayList methods, including the impact of autoboxing.

Review Questions
1. What is output by the following code? (Choose all that apply.)

1: public class Fish {

2: public static void main(String[] args) {

3: int numFish = 4;

4: String fishType = "tuna";

5: String anotherFish = numFish + 1;

6: System.out.println(anotherFish + " " + fishType);

7: System.out.println(numFish + " " + 1);

8: } }

A. 4 1

B. 5

C. 5 tuna

D. 5tuna

E. 51tuna

F. The code does not compile.

2. Which of the following are output by this code? (Choose all that
apply.)

3: var s = "Hello";

4: var t = new String(s);

5: if ("Hello".equals(s)) System.out.println("one");

6: if (t == s) System.out.println("two");

7: if (t.intern() == s) System.out.println("three");

8: if ("Hello" == s) System.out.println("four");

9: if ("Hello".intern() == t)

System.out.println("five");

A. one

B. two

C. three

D. four

E. five

F. The code does not compile.

G. None of the above

3. Which statements about the following code snippet are correct?
(Choose all that apply.)

List<String> gorillas = new ArrayList<>();

for(var koko : gorillas)

System.out.println(koko);

var monkeys = new ArrayList<>();

for(var albert : monkeys)

System.out.println(albert);

List chimpanzees = new ArrayList<Integer>();

for(var ham : chimpanzees)

System.out.println(ham);

A. The data type of koko is String.

B. The data type of koko is Object.

C. The data type of albert is Object.

D. The data type of albert is undefined.

E. The data type of ham is Integer.

F. The data type of ham is Object.

G. None of the above, as the code does not compile

4. What is the result of the following code?

7: StringBuilder sb = new StringBuilder();

8: sb.append("aaa").insert(1, "bb").insert(4, "ccc");

9: System.out.println(sb);

A. abbaaccc

B. abbaccca

C. bbaaaccc

D. bbaaccca

E. An empty line

F. The code does not compile.

5. What is the result of the following code?

12: int count = 0;

13: String s1 = "java";

14: String s2 = "java";

15: StringBuilder s3 = new StringBuilder("java");

16: if (s1 == s2) count++;

17: if (s1.equals(s2)) count++;

18: if (s1 == s3) count++;

19: if (s1.equals(s3)) count++;

20: System.out.println(count);

A. 0

B. 1

C. 2

D. 3

E. 4

F. An exception is thrown.

G. The code does not compile.

6. What is the result of the following code?

public class Lion {

public void roar(String roar1, StringBuilder roar2) {

roar1.concat("!!!");

roar2.append("!!!");

}

public static void main(String[] args) {

String roar1 = "roar";

StringBuilder roar2 = new StringBuilder("roar");

new Lion().roar(roar1, roar2);

System.out.println(roar1 + " " + roar2);

} }

A. roar roar

B. roar roar!!!

C. roar!!! roar

D. roar!!! roar!!!

E. An exception is thrown.

F. The code does not compile.

7. Which of the following return the number 5 when run
independently? (Choose all that apply.)

var string = "12345";

var builder = new StringBuilder("12345");

A. builder.charAt(4)

B. builder.replace(2, 4, "6").charAt(3)

C. builder.replace(2, 5, "6").charAt(2)

D. string.charAt(5)

E. string.length

F. string.replace("123", "1").charAt(2)

G. None of the above

8. What is output by the following code? (Choose all that apply.)

String numbers = "012345678";

System.out.println(numbers.substring(1, 3));

System.out.println(numbers.substring(7, 7));

System.out.println(numbers.substring(7));

A. 12

B. 123

C. 7

D. 78

E. A blank line

F. The code does not compile.

G. An exception is thrown.

9. What is the result of the following code? (Choose all that apply.)

14: String s1 = "purr";

15: String s2 = "";

16:

17: s1.toUpperCase();

18: s1.trim();

19: s1.substring(1, 3);

20: s1 += "two";

21:

22: s2 += 2;

23: s2 += 'c';

24: s2 += false;

25:

26: if (s2 == "2cfalse") System.out.println("==");

27: if (s2.equals("2cfalse"))

System.out.println("equals");

28: System.out.println(s1.length());

A. 2

B. 4

C. 7

D. 10

E. ==

F. equals

G. An exception is thrown.

H. The code does not compile.

10. Which of these statements are true? (Choose all that apply.)

var letters = new StringBuilder("abcdefg");

A. letters.substring(1, 2) returns a single character String.

B. letters.substring(2, 2) returns a single character String.

C. letters.substring(6, 5) returns a single character String.

D. letters.substring(6, 6) returns a single character String.

E. letters.substring(1, 2) throws an exception.

F. letters.substring(2, 2) throws an exception.

G. letters.substring(6, 5) throws an exception.

H. letters.substring(6, 6) throws an exception.

11. What is the result of the following code?

StringBuilder numbers = new StringBuilder("0123456789");

numbers.delete(2, 8);

numbers.append("-").insert(2, "+");

System.out.println(numbers);

A. 01+89–

B. 012+9–

C. 012+–9

D. 0123456789

E. An exception is thrown.

F. The code does not compile.

12. What is the result of the following code?

StringBuilder b = "rumble";

b.append(4).deleteCharAt(3).delete(3, b.length() - 1);

System.out.println(b);

A. rum

B. rum4

C. rumb4

D. rumble4

E. An exception is thrown.

F. The code does not compile.

13. Which of the following can replace line 4 to print "avaJ"? (Choose
all that apply.)

3: var puzzle = new StringBuilder("Java");

4: // INSERT CODE HERE

5: System.out.println(puzzle);

A. puzzle.reverse();

B. puzzle.append("vaJ$").substring(0, 4);

C. puzzle.append("vaJ$").delete(0,
3).deleteCharAt(puzzle.length() - 1);

D. puzzle.append("vaJ$").delete(0,
3).deleteCharAt(puzzle.length());

E. None of the above

14. Which of these array declarations is not legal? (Choose all that
apply.)

A. int[][] scores = new int[5][];

B. Object[][][] cubbies = new Object[3][0][5];

C. String beans[] = new beans[6];

D. java.util.Date[] dates[] = new java.util.Date[2][];

E. int[][] types = new int[];

F. int[][] java = new int[][];

15. Which of the following can fill in the blanks so the code compiles?
(Choose two.)

6: char[]c = new char[2];

7: ArrayList l = new ArrayList();

8: int length = __________ + ______________;

A. c.length

B. c.length()

C. c.size

D. c.size()

E. l.length

F. l.length()

G. l.size

H. l.size()

16. Which of the following are true? (Choose all that apply.)

A. An array has a fixed size.

B. An ArrayList has a fixed size.

C. An array is immutable.

D. An ArrayList is immutable.

E. Calling equals() on two arrays returns true.

F. Calling equals() on two ArrayList objects returns true.

G. If you call remove(0) using an empty ArrayList object, it will
compile successfully.

H. If you call remove(0) using an empty ArrayList object, it will
run successfully.

17. What is the result of the following statements?

6: var list = new ArrayList<String>();

7: list.add("one");

8: list.add("two");

9: list.add(7);

10: for(var s : list) System.out.print(s);

A. onetwo

B. onetwo7

C. onetwo followed by an exception

D. Compiler error on line 6

E. Compiler error on line 7

F. Compiler error on line 9

G. Compiler error on line 10

18. Which of the following pairs fill in the blanks to output 6?

3: var values = new ___________<Integer>();

4: values.add(4);

5: values.add(4);

6: values. ___________;

7: values.remove(0);

8: for (var v : values) System.out.print(v);

A. ArrayList and put(1, 6)

B. ArrayList and replace(1, 6)

C. ArrayList and set(1, 6)

D. HashSet and put(1, 6)

E. HashSet and replace(1, 6)

F. HashSet and set(1, 6)

G. The code does not compile with any of these options.

19. What is output by the following? (Choose all that apply.)

8: List<Integer> list = Arrays.asList(10, 4, -1, 5);

9: int[] array = { 6, -4, 12, 0, -10 };

10: Collections.sort(list);

11:

12: Integer converted[] = list.toArray(new Integer[4]);

13: System.out.println(converted[0]);

14: System.out.println(Arrays.binarySearch(array, 12));

A. -1

B. 2

C. 4

D. 6

E. 10

F. One of the outputs is undefined.

G. An exception is thrown.

H. The code does not compile.

20. Which of the lines contain a compiler error? (Choose all that
apply.)

23: double one = Math.pow(1, 2);

24: int two = Math.round(1.0);

25: float three = Math.random();

26: var doubles = new double[] { one, two, three};

27:

28: String [] names = {"Tom", "Dick", "Harry"};

29: List<String> list = names.asList();

30: var other = Arrays.asList(names);

31: other.set(0, "Sue");

A. Line 23

B. Line 24

C. Line 25

D. Line 26

E. Line 29

F. Line 30

G. Line 31

21. What is the result of the following?

List<String> hex = Arrays.asList("30", "8", "3A", "FF");

Collections.sort(hex);

int x = Collections.binarySearch(hex, "8");

int y = Collections.binarySearch(hex, "3A");

int z = Collections.binarySearch(hex, "4F");

System.out.println(x + " " + y + " " + z);

A. 0 1 –2

B. 0 1 –3

C. 2 1 –2

D. 2 1 –3

E. None of the above

F. The code doesn’t compile.

22. Which of the following are true statements about the following
code? (Choose all that apply.)

4: List<Integer> ages = new ArrayList<>();

5: ages.add(Integer.parseInt("5"));

6: ages.add(Integer.valueOf("6"));

7: ages.add(7);

8: ages.add(null);

9: for (int age : ages) System.out.print(age);

A. The code compiles.

B. The code throws a runtime exception.

C. Exactly one of the add statements uses autoboxing.

D. Exactly two of the add statements use autoboxing.

E. Exactly three of the add statements use autoboxing.

23. What is the result of the following?

List<String> one = new ArrayList<String>();

one.add("abc");

List<String> two = new ArrayList<>();

two.add("abc");

if (one == two)

System.out.println("A");

else if (one.equals(two))

System.out.println("B");

else

System.out.println("C");

A. A

B. B

C. C

D. An exception is thrown.

E. The code does not compile.

24. Which statements are true about the following code? (Choose all
that apply.)

public void run(Integer[] ints, Double[] doubles) {

List<Integer> intList = Arrays.asList(ints);

List<Double> doubleList = List.of(doubles);

// more code

}

A. Adding an element to doubleList is allowed.

B. Adding an element to intList is allowed.

C. Changing the first element in doubleList changes the first
element in doubles.

D. Changing the first element in intList changes the first
element in ints.

E. doubleList is immutable.

F. intList is immutable.

25. Which of the following statements are true of the following code?

(Choose all that apply.)

String[] s1 = { "Camel", "Peacock", "Llama"};

String[] s2 = { "Camel", "Llama", "Peacock"};

String[] s3 = { "Camel"};

String[] s4 = { "Camel", null};

A. Arrays.compare(s1, s2) returns a positive integer.

B. Arrays.mismatch(s1, s2) returns a positive integer.

C. Arrays.compare(s3, s4) returns a positive integer.

D. Arrays.mismatch(s3, s4) returns a positive integer.

E. Arrays.compare(s4, s4) returns a positive integer.

F. Arrays.mismatch(s4, s4) returns a positive integer.

Chapter 6
Lambdas and Functional Interfaces
OCP exam objectives covered in this chapter:

 Programming Abstractly Through Interfaces

Declare and use List and ArrayList instances

Understanding Lambda Expressions

When we covered the Java APIs in the previous
chapter, we didn’t cover the ones that use lambda syntax. This chapter
remedies that! You’ll learn what a lambda is used for, about common
functional interfaces, how to write a lambda with variables, and the
APIs on the exam that rely on lambdas.

Writing Simple Lambdas
Java is an object-oriented language at heart. You’ve seen plenty of
objects by now. In Java 8, the language added the ability to write code
using another style.

Functional programming is a way of writing code more declaratively.
You specify what you want to do rather than dealing with the state of
objects. You focus more on expressions than loops.

Functional programming uses lambda expressions to write code. A
lambda expression is a block of code that gets passed around. You can
think of a lambda expression as an unnamed method. It has
parameters and a body just like full-fledged methods do, but it doesn’t
have a name like a real method. Lambda expressions are often referred
to as lambdas for short. You might also know them as closures if Java
isn’t your first language. If you had a bad experience with closures in
the past, don’t worry. They are far simpler in Java.

In other words, a lambda expression is like a method that you can pass
as if it were a variable. For example, there are different ways to
calculate age. One human year is equivalent to seven dog years. You
want to write a method that takes an age() method as input. To do this
in an object-oriented program, you’d need to define a Human subclass
and a Dog subclass. With lambdas, you can just pass in the relevant
expression to calculate age.

Lambdas allow you to write powerful code in Java. Only the simplest
lambda expressions are on this exam. The goal is to get you
comfortable with the syntax and the concepts. You’ll see lambdas
again on the 1Z0-816 exam.

In this section, we’ll cover an example of why lambdas are helpful and
the syntax of lambdas.

Lambda Example
Our goal is to print out all the animals in a list according to some
criteria. We’ll show you how to do this without lambdas to illustrate

how lambdas are useful. We start out with the Animal class:

public class Animal {

 private String species;

 private boolean canHop;

 private boolean canSwim;

 public Animal(String speciesName, boolean hopper, boolean

swimmer){

 species = speciesName;

 canHop = hopper;

 canSwim = swimmer;

 }

 public boolean canHop() { return canHop; }

 public boolean canSwim() { return canSwim; }

 public String toString() { return species; }

}

The Animal class has three instance variables, which are set in the
constructor. It has two methods that get the state of whether the
animal can hop or swim. It also has a toString() method so we can
easily identify the Animal in programs.

We plan to write a lot of different checks, so we want an interface.
You’ll learn more about interfaces in Chapter 9, “Advanced Class
Design.” For now, it is enough to remember that an interface specifies
the methods that our class needs to implement:

public interface CheckTrait {

 boolean test(Animal a);

}

The first thing we want to check is whether the Animal can hop. We
provide a class that can check this:

public class CheckIfHopper implements CheckTrait {

 public boolean test(Animal a) {

 return a.canHop();

 }

}

This class may seem simple—and it is. This is actually part of the
problem that lambdas solve. Just bear with us for a bit. Now we have
everything that we need to write our code to find the Animals that hop:

1: import java.util.*;

2: public class TraditionalSearch {

3: public static void main(String[] args) {

4:

5: // list of animals

6: List<Animal> animals = new ArrayList<Animal>();

7: animals.add(new Animal("fish", false, true));

8: animals.add(new Animal("kangaroo", true, false));

9: animals.add(new Animal("rabbit", true, false));

10: animals.add(new Animal("turtle", false, true));

11:

12: // pass class that does check

13: print(animals, new CheckIfHopper());

14: }

15: private static void print(List<Animal> animals,

16: CheckTrait checker) {

17: for (Animal animal : animals) {

18:

19: // the general check

20: if (checker.test(animal))

21: System.out.print(animal + " ");

22: }

23: System.out.println();

24: }

25: }

The print() method on line 13 method is very general—it can check for
any trait. This is good design. It shouldn’t need to know what
specifically we are searching for in order to print a list of animals.

Now what happens if we want to print the Animals that swim? Sigh. We
need to write another class, CheckIfSwims. Granted, it is only a few
lines. Then we need to add a new line under line 13 that instantiates
that class. That’s two things just to do another check.

Why can’t we just specify the logic we care about right here? Turns out
that we can with lambda expressions. We could repeat that whole class
here and make you find the one line that changed. Instead, we’ll just
show you. We could replace line 13 with the following, which uses a
lambda:

13: print(animals, a -> a.canHop());

Don’t worry that the syntax looks a little funky. You’ll get used to it,

and we’ll describe it in the next section. We’ll also explain the bits that
look like magic. For now, just focus on how easy it is to read. We are
telling Java that we only care about Animals that can hop.

It doesn’t take much imagination to figure out how we would add logic
to get the Animals that can swim. We only have to add one line of code
—no need for an extra class to do something simple. Here’s that other
line:

print(animals, a -> a.canSwim());

How about Animals that cannot swim?

print(animals, a -> ! a.canSwim());

The point here is that it is really easy to write code that uses lambdas
once you get the basics in place. This code uses a concept called
deferred execution. Deferred execution means that code is specified
now but will run later. In this case, later is when the print() method
calls it.

Lambda Syntax
One of the simplest lambda expressions you can write is the one you
just saw:

a -> a.canHop()

Lambdas work with interfaces that have only one abstract method. In
this case, Java looks at the CheckTrait interface that has one method.
The lambda indicates that Java should call a method with an Animal
parameter that returns a boolean value that’s the result of a.canHop().
We know all this because we wrote the code. But how does Java know?

Java relies on context when figuring out what lambda expressions
mean. We are passing this lambda as the second parameter of the
print() method. That method expects a CheckTrait as the second
parameter. Since we are passing a lambda instead, Java tries to map
our lambda to that interface:

boolean test(Animal a);

Since that interface’s method takes an Animal, that means the lambda
parameter has to be an Animal. And since that interface’s method
returns a boolean, we know the lambda returns a boolean.

The syntax of lambdas is tricky because many parts are optional.
These two lines do the exact same thing:

a -> a.canHop()

(Animal a) -> { return a.canHop(); }

Let’s look at what is going on here. The first example, shown in Figure
6.1, has three parts:

A single parameter specified with the name a

The arrow operator to separate the parameter and body

A body that calls a single method and returns the result of that
method

Figure 6.1 Lambda syntax omitting optional parts

The second example shows the most verbose form of a lambda that
returns a boolean (see Figure 6.2):

A single parameter specified with the name a and stating the type
is Animal

The arrow operator to separate the parameter and body

A body that has one or more lines of code, including a semicolon
and a return statement

Figure 6.2 Lambda syntax, including optional parts

The parentheses can be omitted only if there is a single parameter and
its type is not explicitly stated. Java does this because developers
commonly use lambda expressions this way and they can do as little
typing as possible.

It shouldn’t be news to you that we can omit braces when we have only
a single statement. We did this with if statements and loops already.
What is different here is that the rules change when you omit the
braces. Java doesn’t require you to type return or use a semicolon
when no braces are used. This special shortcut doesn’t work when we
have two or more statements. At least this is consistent with using {}
to create blocks of code elsewhere.

Here’s a fun fact: s -> {} is a valid lambda. If there is no

code on the right side of the expression, you don’t need the
semicolon or return statement.

Table 6.1 shows examples of valid lambdas that return a boolean.

Table 6.1 Valid lambdas

Lambda # parameters

() -> true 0
a -> a.startsWith("test") 1
(String a) -> a.startsWith("test") 1
(a, b) -> a.startsWith("test") 2
(String a, String b) -> a.startsWith("test") 2

Notice that all of these examples have parentheses around the
parameter list except the one that takes only one parameter and
doesn’t specify the type. The first row takes zero parameters and
always returns the boolean value true. The second row takes one
parameter and calls a method on it, returning the result. The third row
does the same except that it explicitly defines the type of the variable.
The final two rows take two parameters and ignore one of them—there
isn’t a rule that says you must use all defined parameters.

Now let’s make sure you can identify invalid syntax for each row in
Table 6.2 where each is supposed to return a boolean. Make sure you
understand what’s wrong with each of these.

Table 6.2 Invalid lambdas that return boolean

Invalid lambda Reason
a, b -> a.startsWith("test") Missing parentheses
a -> { a.startsWith("test"); } Missing return
a -> { return a.startsWith("test") } Missing semicolon

Remember that the parentheses are optional only when there is one
parameter and it doesn’t have a type declared.

Introducing Functional Interfaces
In our earlier example, we created an interface with one method:

boolean test(Animal a);

Lambdas work with interfaces that have only one abstract method.
These are called functional interfaces. (It’s actually more complicated
than this, but for this exam the simplified definition is fine. On the
1Z0-816 exam, you’ll get to deal with the full definition of a functional
interface.)

We mentioned that a functional interface has only one abstract
method. Your friend Sam can help you remember this because it is
officially known as a Single Abstract Method (SAM) rule.

Java provides an annotation @FunctionalInterface on

some, but not all, functional interfaces. This annotation means the
authors of the interface promise it will be safe to use in a lambda in
the future. However, just because you don’t see the annotation
doesn’t mean it’s not a functional interface. Remember that having
exactly one abstract method is what makes it a functional interface,
not the annotation.

There are four functional interfaces you are likely to see on the exam.
The next sections take a look at Predicate, Consumer, Supplier, and
Comparator.

Predicate
You can imagine that we’d have to create lots of interfaces like this to
use lambdas. We want to test Animals and Strings and Plants and
anything else that we come across.

Luckily, Java recognizes that this is a common problem and provides
such an interface for us. It’s in the package java.util.function and the
gist of it is as follows:

public interface Predicate<T> {

 boolean test(T t);

}

That looks a lot like our test(Animal) method. The only difference is
that it uses the type T instead of Animal. That’s the syntax for generics.
It’s like when we created an ArrayList and got to specify any type that
goes in it.

This means we don’t need our own interface anymore and can put
everything related to our search in one class:

1: import java.util.*;

2: import java.util.function.*;

3: public class PredicateSearch {

4: public static void main(String[] args) {

5: List<Animal> animals = new ArrayList<Animal>();

6: animals.add(new Animal("fish", false, true));

7:

8: print(animals, a -> a.canHop());

9: }

10: private static void print(List<Animal> animals,

11: Predicate<Animal> checker) {

12: for (Animal animal : animals) {

13: if (checker.test(animal))

14: System.out.print(animal + " ");

15: }

16: System.out.println();

17: }

18: }

This time, line 11 is the only one that changed. We expect to have a
Predicate passed in that uses type Animal. Pretty cool. We can just use
it without having to write extra code.

Consumer
The Consumer functional interface has one method you need to know:

void accept(T t)

Why might you want to receive a value and not return it? A common
reason is when printing a message:

Consumer<String> consumer = x -> System.out.println(x);

We’ve declared functionality to print out the value we were given. It’s
okay that we don’t have a value yet. When the consumer is called, the
value will be provided and printed then. Let’s take a look at code that
uses a Consumer:

public static void main(String[] args) {

 Consumer<String> consumer = x -> System.out.println(x);

 print(consumer, "Hello World");

}

private static void print(Consumer<String> consumer, String

value) {

 consumer.accept(value);

}

This code prints Hello World. It’s a more complicated version than the
one you learned as your first program. The print() method accepts a
Consumer that knows how to print a value. When the accept() method
is called, the lambda actually runs, printing the value.

Supplier
The Supplier functional interface has only one method:

T get()

A good use case for a Supplier is when generating values. Here are two
examples:

Supplier<Integer> number = () -> 42;

Supplier<Integer> random = () -> new Random().nextInt();

The first example returns 42 each time the lambda is called. The
second generates a random number each time it is called. It could be
the same number but is likely to be a different one. After all, it’s
random. Let’s take a look at code that uses a Supplier:

public static void main(String[] args) {

 Supplier<Integer> number = () -> 42;

 System.out.println(returnNumber(number));

}

private static int returnNumber(Supplier<Integer> supplier) {

 return supplier.get();

}

When the returnNumber() method is called, it invokes the lambda to
get the desired value. In this case, the method returns 2.

Comparator
In Chapter 5, “Core Java APIs,” we compared numbers. We didn’t
supply a Comparator because we were using the default sort order. We
did learn the rules. A negative number means the first value is smaller,
zero means they are equal, and a positive number means the first value
is bigger. The method signature is as follows:

int compare(T o1, T o2)

This interface is a functional interface since it has only one
unimplemented method. It has many static and default methods to
facilitate writing complex comparators.

The Comparator interface existed prior to lambdas being

added to Java. As a result, it is in a different package. You can find
Comparator in java.util.

You only have to know compare() for the exam. Can you figure out
whether this sorts in ascending or descending order?

Comparator<Integer> ints = (i1, i2) -> i1 - i2;

The ints comparator uses natural sort order. If the first number is
bigger, it will return a positive number. Try it. Suppose we are
comparing 5 and 3. The comparator subtracts 5-3 and gets 2. This is a
positive number that means the first number is bigger and we are
sorting in ascending order.

Let’s try another one. Do you think these two statements would sort in
ascending or descending order?

Comparator<String> strings = (s1, s2) -> s2.compareTo(s1);

Comparator<String> moreStrings = (s1, s2) -> - s1.compareTo(s2);

Both of these comparators actually do the same thing: sort in

descending order. In the first example, the call to compareTo() is
“backwards,” making it descending. In the second example, the call
uses the default order; however, it applies a negative sign to the result,
which reverses it.

Be sure you understand Table 6.3 to identify what type of lambda you
are looking at.

Table 6.3 Basic functional interfaces

Functional interface # parameters Return type
Comparator Two int

Consumer One void

Predicate One boolean

Supplier None One

(type varies)

Working with Variables in Lambdas
Variables can appear in three places with respect to lambdas: the
parameter list, local variables declared inside the lambda body, and
variables referenced from the lambda body. All three of these are
opportunities for the exam to trick you. We will explore each one so
you’ll be alert when tricks show up!

Parameter List
Earlier in this chapter, you learned that specifying the type of
parameters is optional. Additionally, var can be used in place of the
specific type. That means that all three of these statements are
interchangeable:

Predicate<String> p = x -> true;

Predicate<String> p = (var x) -> true;

Predicate<String> p = (String x) -> true;

The exam might ask you to identify the type of the lambda parameter.
In our example, the answer is String. How did we figure that out? A
lambda infers the types from the surrounding context. That means you
get to do the same.

In this case, the lambda is being assigned to a Predicate that takes a
String. Another place to look for the type is in a method signature.
Let’s try another example. Can you figure out the type of x?

public void whatAmI() {

 consume((var x) -> System.out.print(x), 123);

}

public void consume(Consumer<Integer> c, int num) {

 c.accept(num);

}

If you guessed Integer, you were right. The whatAmI() method creates
a lambda to be passed to the consume() method. Since the consume()
method expects an Integer as the generic, we know that is what the
inferred type of x will be.

But wait; there’s more. In some cases, you can determine the type

without even seeing the method signature. What do you think the type
of x is here?

 public void counts(List<Integer> list) {

 list.sort((var x, var y) -> x.compareTo(y));

 }

The answer is again Integer. Since we are sorting a list, we can use the
type of the list to determine the type of the lambda parameter.

Local Variables inside the Lambda Body
While it is most common for a lambda body to be a single expression,
it is legal to define a block. That block can have anything that is valid
in a normal Java block, including local variable declarations.

The following code does just that. It creates a local variable named c
that is scoped to the lambda block.

(a, b) -> { int c = 0; return 5;}

When writing your own code, a lambda block with a local

variable is a good hint that you should extract that code into a
method.

Now let’s try another one. Do you see what’s wrong here?

(a, b) -> { int a = 0; return 5;} // DOES NOT COMPILE

We tried to redeclare a, which is not allowed. Java doesn’t let you
create a local variable with the same name as one already declared in
that scope. Now let’s try a hard one. How many syntax errors do you
see in this method?

11: public void variables(int a) {

12: int b = 1;

13: Predicate<Integer> p1 = a -> {

14: int b = 0;

15: int c = 0;

16: return b == c;}

17: }

There are three syntax errors. The first is on line 13. The variable a was
already used in this scope as a method parameter, so it cannot be
reused. The next syntax error comes on line 14 where the code
attempts to redeclare local variable b. The third syntax error is quite
subtle and on line 16. See it? Look really closely.

The variable p1 is missing a semicolon at the end. There is a semicolon
before the }, but that is inside the block. While you don’t normally
have to look for missing semicolons, lambdas are tricky in this space,
so beware!

Variables Referenced from the Lambda Body
Lambda bodies are allowed to reference some variables from the
surrounding code. The following code is legal:

public class Crow {

 private String color;

 public void caw(String name) {

 String volume = "loudly";

 Consumer<String> consumer = s ->

 System.out.println(name + " says "

 + volume + " that she is " + color);

 }

}

This shows that lambda can access an instance variable, method
parameter, or local variable under certain conditions. Instance
variables (and class variables) are always allowed.

Method parameters and local variables are allowed to be referenced if
they are effectively final. This means that the value of a variable
doesn’t change after it is set, regardless of whether it is explicitly
marked as final. If you aren’t sure whether a variable is effectively
final, add the final keyword. If the code would still compile, the
variable is effectively final. You can think of it as if we had written this:

public class Crow {

 private String color;

 public void caw(final String name) {

 final String volume = "loudly";

 Consumer<String> consumer = s ->

 System.out.println(name + " says "

 + volume + " that she is " + color);

 }

}

It gets even more interesting when you look at where the compiler
errors occur when the variables are not effectively final.

2: public class Crow {

3: private String color;

4: public void caw(String name) {

5: String volume = "loudly";

6: name = "Caty";

7: color = "black";

8:

9: Consumer<String> consumer = s ->

10: System.out.println(name + " says "

11: + volume + " that she is " + color);

12: volume = "softly";

13: }

14: }

In this example, name is not effectively final because it is set on line 6.
However, the compiler error occurs on line 10. It’s not a problem to
assign a value to a nonfinal variable. However, once the lambda tries
to use it, we do have a problem. The variable is no longer effectively
final, so the lambda is not allowed to use the variable.

The variable volume is not effectively final either since it is updated on
line 12. In this case, the compiler error is on line 11. That’s before the
assignment! Again, the act of assigning a value is only a problem from
the point of view of the lambda. Therefore, the lambda has to be the
one to generate the compiler error.

To review, make sure you’ve memorized Table 6.4.

Table 6.4 Rules for accessing a variable from a lambda body
inside a method

Variable type Rule
Instance variable Allowed

Static variable Allowed
Local variable Allowed if effectively final
Method parameter Allowed if effectively final
Lambda parameter Allowed

Calling APIs with Lambdas
Now that you are familiar with lambdas and functional interfaces, we
can look at the most common methods that use them on the exam. The
1Z0-816 will cover streams and many more APIs that use lambdas.

removeIf()
List and Set declare a removeIf() method that takes a Predicate.
Imagine we have a list of names for pet bunnies. We decide we want to
remove all of the bunny names that don’t begin with the letter h
because our little cousin really wants us to choose an h name. We
could solve this problem by writing a loop. Or we could solve it in one
line:

3: List<String> bunnies = new ArrayList<>();

4: bunnies.add("long ear");

5: bunnies.add("floppy");

6: bunnies.add("hoppy");

7: System.out.println(bunnies); // [long ear, floppy, hoppy]

8: bunnies.removeIf(s -> s.charAt(0) != 'h');

9: System.out.println(bunnies); // [hoppy]

Line 8 takes care of everything for us. It defines a predicate that takes
a String and returns a boolean. The removeIf() method does the rest.

The removeIf() method works the same way on a Set. It removes any
values in the set that match the Predicate. There isn’t a removeIf()
method on a Map. Remember that maps have both keys and values. It
wouldn’t be clear what one was removing!

sort()
While you can call Collections.sort(list), you can now sort directly
on the list object.

3: List<String> bunnies = new ArrayList<>();

4: bunnies.add("long ear");

5: bunnies.add("floppy");

6: bunnies.add("hoppy");

7: System.out.println(bunnies); // [long ear, floppy, hoppy]

8: bunnies.sort((b1, b2) -> b1.compareTo(b2));

9: System.out.println(bunnies); // [floppy, hoppy, long ear]

On line 8, we sort the list alphabetically. The sort() method takes
Comparator that provides the sort order. Remember that Comparator
takes two parameters and returns an int. If you need a review of what
the return value of a compare() operation means, check the Comparator
section in this chapter or the Comparing section in Chapter 5. This is
really important to memorize!

There is not a sort method on Set or Map. Neither of those types has
indexing, so it wouldn’t make sense to sort them.

forEach()
Our final method is forEach(). It takes a Consumer and calls that
lambda for each element encountered.

3: List<String> bunnies = new ArrayList<>();

4: bunnies.add("long ear");

5: bunnies.add("floppy");

6: bunnies.add("hoppy");

7:

8: bunnies.forEach(b -> System.out.println(b));

9: System.out.println(bunnies);

This code prints the following:

long ear

floppy

hoppy

[long ear, floppy, hoppy]

The method on line 8 prints one entry per line. The method on line 9
prints the entire list on one line.

We can use forEach() with a Set or Map. For a Set, it works the same
way as a List.

Set<String> bunnies = Set.of("long ear", "floppy", "hoppy");

bunnies.forEach(b -> System.out.println(b));

For a Map, you have to choose whether you want to go through the keys
or values:

Map<String, Integer> bunnies = new HashMap<>();

bunnies.put("long ear", 3);

bunnies.put("floppy", 8);

bunnies.put("hoppy", 1);

bunnies.keySet().forEach(b -> System.out.println(b));

bunnies.values().forEach(b -> System.out.println(b));

It turns out the keySet() and values() methods each return a Set.
Since we know how to use forEach() with a Set, this is easy!

Using forEach() with a Map Directly
You don’t need to know this for the exam, but Java has a functional
interface called BiConsumer. It works just like Consumer except it can
take two parameters. This functional interface allows you to use
forEach() with key/value pairs from Map.

Map<String, Integer> bunnies = new HashMap<>();

bunnies.put("long ear", 3);

bunnies.put("floppy", 8);

bunnies.put("hoppy", 1);

bunnies.forEach((k, v) -> System.out.println(k + " " + v));

Summary
Lambda expressions, or lambdas, allow passing around blocks of code.
The full syntax looks like this:

(String a, String b) -> { return a.equals(b); }

The parameter types can be omitted. When only one parameter is
specified without a type the parentheses can also be omitted. The
braces and return statement can be omitted for a single statement,
making the short form as follows:

a -> a.equals(b)

Lambdas are passed to a method expecting an instance of a functional
interface.

A functional interface is one with a single abstract method. Predicate
is a common interface that returns a boolean and takes any type.
Consumer takes any type and doesn’t return a value. Supplier returns a
value and does not take any parameters. Comparator takes two
parameters and returns an int.

A lambda can define parameters or variables in the body as long as
their names are different from existing local variables. The body of a
lambda is allowed to use any instance or class variables. Additionally,
it can use any local variables or method parameters that are effectively
final.

We covered three common APIs that use lambdas. The removeIf()
method on a List and a Set takes a Predicate. The sort() method on a
List interface takes a Comparator. The forEach() methods on a List
and a Set interface both take a Consumer.

Exam Essentials
Write simple lambda expressions. Look for the presence or
absence of optional elements in lambda code. Parameter types are
optional. Braces and the return keyword are optional when the body is
a single statement. Parentheses are optional when only one parameter
is specified and the type is implicit.

Identify common functional interfaces. From a code snippet,
identify whether the lambda is a Comparator, Consumer, Predicate, or
Supplier. You can use the number of parameters and return type to
tell them apart.

Determine whether a variable can be used in a lambda body.
Local variables and method parameters must be effectively final to be
referenced. This means the code must compile if you were to add the
final keyword to these variables. Instance and class variables are
always allowed.

Use common APIs with lambdas. Be able to read and write code
using forEach(), removeIf(), and sort().

Review Questions
1. What is the result of the following class?

1: import java.util.function.*;

2:

3: public class Panda {

4: int age;

5: public static void main(String[] args) {

6: Panda p1 = new Panda();

7: p1.age = 1;

8: check(p1, p -> p.age < 5);

9: }

10: private static void check(Panda panda,

11: Predicate<Panda> pred) {

12: String result =

13: pred.test(panda) ? "match" : "not match";

14: System.out.print(result);

15: } }

A. match

B. not match

C. Compiler error on line 8.

D. Compiler error on lines 10 and 11.

E. Compiler error on lines 12 and 13.

F. A runtime exception is thrown.

2. What is the result of the following code?

1: interface Climb {

2: boolean isTooHigh(int height, int limit);

3: }

4:

5: public class Climber {

6: public static void main(String[] args) {

7: check((h, m) -> h.append(m).isEmpty(), 5);

8: }

9: private static void check(Climb climb, int height) {

10: if (climb.isTooHigh(height, 10))

11: System.out.println("too high");

12: else

13: System.out.println("ok");

14: }

15: }

A. ok

B. too high

C. Compiler error on line 7.

D. Compiler error on line 10.

E. Compiler error on a different line.

F. A runtime exception is thrown.

3. Which of the following lambda expressions can fill in the blank?
(Choose all that apply.)

List<String> list = new ArrayList<>();

list.removeIf(___________________);

A. s -> s.isEmpty()

B. s -> {s.isEmpty()}

C. s -> {s.isEmpty();}

D. s -> {return s.isEmpty();}

E. String s -> s.isEmpty()

F. (String s) -> s.isEmpty()

4. Which lambda can replace the MySecret class to return the same
value? (Choose all that apply.)

interface Secret {

String magic(double d);

}

class MySecret implements Secret {

public String magic(double d) {

return "Poof";

}

}

A. (e) -> "Poof"

B. (e) -> {"Poof"}

C. (e) -> { String e = ""; "Poof" }

D. (e) -> { String e = ""; return "Poof"; }

E. (e) -> { String e = ""; return "Poof" }

F. (e) -> { String f = ""; return "Poof"; }

5. Which of the following lambda expressions can be passed to a
function of Predicate<String> type? (Choose all that apply.)

A. () -> s.isEmpty()

B. s -> s.isEmpty()

C. String s -> s.isEmpty()

D. (String s) -> s.isEmpty()

E. (s1) -> s.isEmpty()

F. (s1, s2) -> s1.isEmpty()

6. Which of these statements is true about the following code?

public void method() {

x((var x) -> {}, (var x, var y) -> 0);

}

public void x(Consumer<String> x, Comparator<Boolean> y)

{

}

A. The code does not compile because of one of the
variables named x.

B. The code does not compile because of one of the
variables named y.

C. The code does not compile for another reason.

D. The code compiles, and the var in each lambda refers to the
same type.

E. The code compiles, and the var in each lambda refers to a
different type.

7. Which of the following will compile when filling in the blank?
(Choose all that apply.)

List list = List.of(1, 2, 3);

Set set = Set.of(1, 2, 3);

Map map = Map.of(1, 2, 3, 4);

__________.forEach(x -> System.out.println(x));

A. list

B. set

C. map

D. map.keys()

E. map.keySet()

F. map.values()

G. map.valueSet()

8. Which statements are true?

A. The Consumer interface is best for printing out an existing
value.

B. The Supplier interface is best for printing out an existing
value.

C. The Comparator interface returns an int.

D. The Predicate interface returns an int.

E. The Comparator interface has a method named test().

F. The Predicate interface has a method named test().

9. Which of the following can be inserted without causing a
compilation error? (Choose all that apply.)

public void remove(List<Character> chars) {

char end = 'z';

chars.removeIf(c -> {

char start = 'a'; return start <= c && c <= end; });

// INSERT LINE HERE

}

A. char start = 'a';

B. char c = 'x';

C. chars = null;

D. end = '1';

E. None of the above

10. How many lines does this code output?

Set<String> set = Set.of("mickey", "minnie");

List<String> list = new ArrayList<>(set);

set.forEach(s -> System.out.println(s));

list.forEach(s -> System.out.println(s));

A. 0

B. 2

C. 4

D. The code does not compile.

E. A runtime exception is thrown.

11. What is the output of the following code?

List<String> cats = new ArrayList<>();

cats.add("leo");

cats.add("Olivia");

cats.sort((c1, c2) -> -c1.compareTo(c2)); // line X

System.out.println(cats);

A. [leo, Olivia]

B. [Olivia, leo]

C. The code does not compile because of line X.

D. The code does not compile for another reason.

E. A runtime exception is thrown.

12. Which pieces of code can fill in the blanks? (Choose all that
apply.)

______________ first = () -> Set.of(1.23);

______________ second = x -> true;

A. Consumer<Set<Double>>

B. Consumer<Set<Float>>

C. Predicate<Set<Double>>

D. Predicate<Set<Float>>

E. Supplier<Set<Double>>

F. Supplier<Set<Float>>

13. Which is true of the following code?

int length = 3;

for (int i = 0; i<3; i++) {

if (i%2 == 0) {

Supplier<Integer> supplier = () -> length; // A

System.out.println(supplier.get()); // B

} else {

int j = i;

Supplier<Integer> supplier = () -> j; // C

System.out.println(supplier.get()); // D

}

}

A. The first compiler error is on line A.

B. The first compiler error is on line B.

C. The first compiler error is on line C.

D. The first compiler error is on line D.

E. The code compiles successfully.

14. Which of the following can be inserted without causing a
compilation error? (Choose all that apply.)

public void remove(List<Character> chars) {

char end = 'z';

// INSERT LINE HERE

chars.removeIf(c -> {

char start = 'a'; return start <= c && c <= end; });

}

A. char start = 'a';

B. char c = 'x';

C. chars = null;

D. end = '1';

E. None of the above

15. What is the output of the following code?

Set<String> cats = new HashSet<>();

cats.add("leo");

cats.add("Olivia");

cats.sort((c1, c2) -> -c1.compareTo(c2)); // line X

System.out.println(cats);

A. [leo, Olivia]

B. [Olivia, leo]

C. The code does not compile because of line X.

D. The code does not compile for another reason.

E. A runtime exception is thrown.

16. Which variables are effectively final? (Choose all that apply.)

public void isIt(String param1, String param2) {

String local1 = param1 + param2;

String local2 = param1 + param2;

param1 = null;

local2 = null;

}

A. local1

B. local2

C. param1

D. param2

E. None of the above

17. What is the result of the following class?

1: import java.util.function.*;

2:

3: public class Panda {

4: int age;

5: public static void main(String[] args) {

6: Panda p1 = new Panda();

7: p1.age = 1;

8: check(p1, p -> {p.age < 5});

9: }

10: private static void check(Panda panda,

11: Predicate<Panda> pred) {

12: String result = pred.test(panda)

13: ? "match" : "not match";

14: System.out.print(result);

15: } }

A. match

B. not match

C. Compiler error on line 8.

D. Compiler error on line 10.

E. Compile error on line 12.

F. A runtime exception is thrown.

18. How many lines does this code output?

Set<String> s = Set.of("mickey", "minnie");

List<String> x = new ArrayList<>(s);

s.forEach(s -> System.out.println(s));

x.forEach(x -> System.out.println(x));

A. 0

B. 2

C. 4

D. The code does not compile.

E. A runtime exception is thrown.

19. Which lambda can replace the MySecret class? (Choose all that
apply.)

interface Secret {

String concat(String a, String b);

}

class MySecret implements Secret {

public String concat(String a, String b) {

return a + b;

}

}

A. (a, b) -> a + b

B. (String a, b) -> a + b

C. (String a, String b) -> a + b

D. (a, b) , a + b

E. (String a, b) , a + b

F. (String a, String b) , a + b

20. Which of the following lambda expressions can be passed to a
function of Predicate<String> type? (Choose all that apply.)

A. s -> s.isEmpty()

B. s --> s.isEmpty()

C. (String s) -> s.isEmpty()

D. (String s) --> s.isEmpty()

E. (StringBuilder s) -> s.isEmpty()

F. (StringBuilder s) --> s.isEmpty()

Chapter 7
Methods and Encapsulation
OCP exam objectives covered in this chapter:

 Creating and Using Methods

Create methods and constructors with arguments and
return values

Create and invoke overloaded methods

Apply the static keyword to methods and fields

 Applying Encapsulation

Apply access modifiers

Apply encapsulation principles to a class

In previous chapters, you learned how to use
methods without examining them in detail. In this chapter, you’ll
explore methods in depth, including overloading. This chapter
discusses instance variables, access modifiers, and encapsulation.

Designing Methods
Every interesting Java program we’ve seen has had a main() method.
You can write other methods, too. For example, you can write a basic
method to take a nap, as shown in Figure 7.1.

Figure 7.1 Method declaration

This is called a method declaration, which specifies all the information
needed to call the method. There are a lot of parts, and we’ll cover each
one in more detail. Two of the parts—the method name and parameter
list—are called the method signature.

Table 7.1 is a brief reference to the elements of a method declaration.
Don’t worry if it seems like a lot of information—by the time you finish
this chapter, it will all fit together.

Table 7.1 Parts of a method declaration

Element Value in nap()
example

Required?

Access modifier public No
Optional
specifier

final No

Return type void Yes
Method name nap Yes
Parameter list (int minutes) Yes, but can be empty

parentheses
Optional
exception list

throws

InterruptedException

No

Method body* {

// take a nap

}

Yes, but can be empty
braces

* Body omitted for abstract methods, which we will cover in the later in the book.

To call this method, just type its name, followed by a single int value
in parentheses:

nap(10);

Let’s start by taking a look at each of these parts of a basic method.

Access Modifiers
Java offers four choices of access modifier:

private The private modifier means the method can be called only
from within the same class.

Default (Package-Private) Access With default access, the
method can be called only from classes in the same package. This one
is tricky because there is no keyword for default access. You simply
omit the access modifier.

protected The protected modifier means the method can be called
only from classes in the same package or subclasses. You’ll learn about
subclasses in Chapter 8, “Class Design.”

public The public modifier means the method can be called from any
class.

There’s a default keyword in Java. You saw it in the

switch statement in Chapter 4, “Making Decisions,” and you’ll see
it again in the Chapter 9, “Advanced Class Design,” when I discuss
interfaces. It’s not used for access control.

We’ll explore the impact of the various access modifiers later in this
chapter. For now, just master identifying valid syntax of methods. The
exam creators like to trick you by putting method elements in the
wrong order or using incorrect values.

We’ll see practice examples as we go through each of the method
elements in this section. Make sure you understand why each of these
is a valid or invalid method declaration. Pay attention to the access
modifiers as you figure out what is wrong with the ones that don’t
compile when inserted into a class:

public void walk1() {}

default void walk2() {} // DOES NOT COMPILE

void public walk3() {} // DOES NOT COMPILE

void walk4() {}

The walk1() method is a valid declaration with public access. The
walk4() method is a valid declaration with default access. The walk2()
method doesn’t compile because default is not a valid access modifier.
The walk3() method doesn’t compile because the access modifier is
specified after the return type.

Optional Specifiers
There are a number of optional specifiers, but most of them aren’t on
the exam. Optional specifiers come from the following list. Unlike with
access modifiers, you can have multiple specifiers in the same method
(although not all combinations are legal). When this happens, you can
specify them in any order. And since these specifiers are optional, you
are allowed to not have any of them at all. This means you can have
zero or more specifiers in a method declaration.

static The static modifier is used for class methods and will be
covered later in this chapter.

abstract The abstract modifier is used when a method body is not
provided. It will be covered in Chapter 9.

final The final modifier is used when a method is not allowed to be
overridden by a subclass. It will also be covered in Chapter 8.

synchronized The synchronized modifier is used with multithreaded
code. It is on the 1Z0-816 exam, but not the 1Z0-815 exam.

native The native modifier is used when interacting with code
written in another language such as C++. It is not on either OCP 11
exam.

strictfp The strictfp modifier is used for making floating-point
calculations portable. It is not on either OCP 11 exam.

Again, just focus on syntax for now. Do you see why these compile or
don’t compile?

public void walk1() {}

public final void walk2() {}

public static final void walk3() {}

public final static void walk4() {}

public modifier void walk5() {} // DOES NOT COMPILE

public void final walk6() {} // DOES NOT COMPILE

final public void walk7() {}

The walk1() method is a valid declaration with no optional specifier.
This is okay—it is optional after all. The walk2() method is a valid
declaration, with final as the optional specifier. The walk3() and
walk4() methods are valid declarations with both final and static as
optional specifiers. The order of these two keywords doesn’t matter.
The walk5() method doesn’t compile because modifier is not a valid
optional specifier. The walk6() method doesn’t compile because the
optional specifier is after the return type.

The walk7() method does compile. Java allows the optional specifiers
to appear before the access modifier. This is a weird case and not one
you need to know for the exam. We are mentioning it so you don’t get
confused when practicing.

Return Type
The next item in a method declaration is the return type. The return
type might be an actual Java type such as String or int. If there is no
return type, the void keyword is used. This special return type comes
from the English language: void means without contents. In Java,
there is no type there.

Remember that a method must have a return type. If no

value is returned, the return type is void. You cannot omit the
return type.

When checking return types, you also have to look inside the method
body. Methods with a return type other than void are required to have
a return statement inside the method body. This return statement
must include the primitive or object to be returned. Methods that have
a return type of void are permitted to have a return statement with no
value returned or omit the return statement entirely.

Ready for some examples? Can you explain why these methods
compile or don’t?

public void walk1() {}

public void walk2() { return; }

public String walk3() { return ""; }

public String walk4() {} // DOES NOT

COMPILE

public walk5() {} // DOES NOT

COMPILE

public String int walk6() { } // DOES NOT

COMPILE

String walk7(int a) { if (a == 4) return ""; } // DOES NOT

COMPILE

Since the return type of the walk1() method is void, the return
statement is optional. The walk2() method shows the optional return
statement that correctly doesn’t return anything. The walk3() method
is a valid declaration with a String return type and a return statement
that returns a String. The walk4() method doesn’t compile because the
return statement is missing. The walk5() method doesn’t compile
because the return type is missing. The walk6() method doesn’t
compile because it attempts to use two return types. You get only one
return type.

The walk7() method is a little tricky. There is a return statement, but it
doesn’t always get run. If a is 6, the return statement doesn’t get
executed. Since the String always needs to be returned, the compiler

complains.

When returning a value, it needs to be assignable to the return type.
Imagine there is a local variable of that type to which it is assigned
before being returned. Can you think of how to add a line of code with
a local variable in these two methods?

int integer() {

 return 9;

}

int longMethod() {

 return 9L; // DOES NOT COMPILE

}

It is a fairly mechanical exercise. You just add a line with a local
variable. The type of the local variable matches the return type of the
method. Then you return that local variable instead of the value
directly:

int integerExpanded() {

 int temp = 9;

 return temp;

}

int longExpanded() {

 int temp = 9L; // DOES NOT COMPILE

 return temp;

}

This shows more clearly why you can’t return a long primitive in a
method that returns an int. You can’t stuff that long into an int
variable, so you can’t return it directly either.

Method Name
Method names follow the same rules as we practiced with variable
names in Chapter 2, “Java Building Blocks.” To review, an identifier
may only contain letters, numbers, $, or _. Also, the first character is
not allowed to be a number, and reserved words are not allowed.
Finally, the single underscore character is not allowed. By convention,
methods begin with a lowercase letter but are not required to. Since
this is a review of Chapter 2, we can jump right into practicing with
some examples:

public void walk1() {}

public void 2walk() {} // DOES NOT COMPILE

public walk3 void() {} // DOES NOT COMPILE

public void Walk_$() {}

public _() {} // DOES NOT COMPILE

public void() {} // DOES NOT COMPILE

The walk1() method is a valid declaration with a traditional name. The
2walk() method doesn’t compile because identifiers are not allowed to
begin with numbers. The walk3() method doesn’t compile because the
method name is before the return type. The Walk_$() method is a valid
declaration. While it certainly isn’t good practice to start a method
name with a capital letter and end with punctuation, it is legal. The _
method is not allowed since it consists of a single underscore. The final
line of code doesn’t compile because the method name is missing.

Parameter List
Although the parameter list is required, it doesn’t have to contain any
parameters. This means you can just have an empty pair of
parentheses after the method name, as follows:

void nap(){}

If you do have multiple parameters, you separate them with a comma.
There are a couple more rules for the parameter list that you’ll see
when we cover varargs shortly. For now, let’s practice looking at
method declaration with “regular” parameters:

public void walk1() {}

public void walk2 {} // DOES NOT COMPILE

public void walk3(int a) {}

public void walk4(int a; int b) {} // DOES NOT COMPILE

public void walk5(int a, int b) {}

The walk1() method is a valid declaration without any parameters. The
walk2() method doesn’t compile because it is missing the parentheses
around the parameter list. The walk3() method is a valid declaration
with one parameter. The walk4() method doesn’t compile because the
parameters are separated by a semicolon rather than a comma.
Semicolons are for separating statements, not for parameter lists. The
walk5() method is a valid declaration with two parameters.

Optional Exception List
In Java, code can indicate that something went wrong by throwing an
exception. We’ll cover this in Chapter 10, “Exceptions.” For now, you
just need to know that it is optional and where in the method
declaration it goes if present. For example, InterruptedException is a
type of Exception. You can list as many types of exceptions as you want
in this clause separated by commas. Here’s an example:

public void zeroExceptions() {}

public void oneException() throws IllegalArgumentException {}

public void twoExceptions() throws

 IllegalArgumentException, InterruptedException {}

You might be wondering what methods do with these exceptions. The
calling method can throw the same exceptions or handle them. You’ll
learn more about this in Chapter 10.

Method Body
The final part of a method declaration is the method body (except for
abstract methods and interfaces, but you don’t need to know about
either of those yet). A method body is simply a code block. It has
braces that contain zero or more Java statements. We’ve spent several
chapters looking at Java statements by now, so you should find it easy
to figure out why these compile or don’t:

public void walk1() {}

public void walk2() // DOES NOT COMPILE

public void walk3(int a) { int name = 5; }

The walk1() method is a valid declaration with an empty method body.
The walk2() method doesn’t compile because it is missing the braces
around the empty method body. The walk3() method is a valid
declaration with one statement in the method body.

You’ve made it through the basics of identifying correct and incorrect
method declarations. Now you can delve into more detail.

Working with Varargs
As you saw in Chapter 5, “Core Java APIs,” a method may use a
varargs parameter (variable argument) as if it is an array. It is a little
different than an array, though. A varargs parameter must be the last
element in a method’s parameter list. This means you are allowed to
have only one varargs parameter per method.

Can you identify why each of these does or doesn’t compile? (Yes,
there is a lot of practice in this chapter. You have to be really good at
identifying valid and invalid methods for the exam.)

public void walk1(int... nums) {}

public void walk2(int start, int... nums) {}

public void walk3(int... nums, int start) {} // DOES NOT

COMPILE

public void walk4(int... start, int... nums) {} // DOES NOT

COMPILE

The walk1() method is a valid declaration with one varargs parameter.
The walk2() method is a valid declaration with one int parameter and
one varargs parameter. The walk3() and walk4() methods do not
compile because they have a varargs parameter in a position that is not
the last one.

When calling a method with a varargs parameter, you have a choice.
You can pass in an array, or you can list the elements of the array and
let Java create it for you. You can even omit the varargs values in the
method call and Java will create an array of length zero for you.

Finally! You get to do something other than identify whether method
declarations are valid. Instead, you get to look at method calls. Can
you figure out why each method call outputs what it does?

15: public static void walk(int start, int... nums) {

16: System.out.println(nums.length);

17: }

18: public static void main(String[] args) {

19: walk(1); // 0

20: walk(1, 2); // 1

21: walk(1, 2, 3); // 2

22: walk(1, new int[] {4, 5}); // 2

23: }

Line 19 passes 1 as start but nothing else. This means Java creates an
array of length 0 for nums. Line 20 passes 1 as start and one more
value. Java converts this one value to an array of length 1. Line 21
passes 1 as start and two more values. Java converts these two values
to an array of length 2. Line 22 passes 1 as start and an array of length
2 directly as nums.

You’ve seen that Java will create an empty array if no parameters are
passed for a vararg. However, it is still possible to pass null explicitly:

walk(1, null); // throws a NullPointerException in walk()

Since null isn’t an int, Java treats it as an array reference that
happens to be null. It just passes on the null array object to walk.
Then the walk() method throws an exception because it tries to
determine the length of null.

Accessing a varargs parameter is just like accessing an array. It uses
array indexing. Here’s an example:

16: public static void run(int... nums) {

17: System.out.println(nums[1]);

18: }

19: public static void main(String[] args) {

20: run(11, 22); // 22

21: }

Line 20 calls a varargs method with two parameters. When the
method gets called, it sees an array of size 2. Since indexes are 0 based,
22 is printed.

Applying Access Modifiers
You already saw that there are four access modifiers: public, private,
protected, and default access. We are going to discuss them in order
from most restrictive to least restrictive:

private: Only accessible within the same class

Default (package-private) access: private plus other classes in the
same package

protected: Default access plus child classes

public: protected plus classes in the other packages

We will explore the impact of these four levels of access on members of
a class. As you learned in Chapter 1, “Welcome to Java,” a member is
an instance variable or instance method.

Private Access
Private access is easy. Only code in the same class can call private
methods or access private fields.

First, take a look at Figure 7.2. It shows the classes you’ll use to
explore private and default access. The big boxes are the names of the
packages. The smaller boxes inside them are the classes in each
package. You can refer back to this figure if you want to quickly see
how the classes relate.

Figure 7.2 Classes used to show private and default access

This is perfectly legal code because everything is one class:

1: package pond.duck;

2: public class FatherDuck {

3: private String noise = "quack";

4: private void quack() {

5: System.out.println(noise); // private access is ok

6: }

7: private void makeNoise() {

8: quack(); // private access is ok

9: } }

So far, so good. FatherDuck makes a call to private method quack() on
line 8 and uses private instance variable noise on line 5.

Now we add another class:

1: package pond.duck;

2: public class BadDuckling {

3: public void makeNoise() {

4: FatherDuck duck = new FatherDuck();

5: duck.quack(); // DOES NOT COMPILE

6: System.out.println(duck.noise); // DOES NOT COMPILE

7: } }

BadDuckling is trying to access an instance variable and a method it
has no business touching. On line 5, it tries to access a private method
in another class. On line 6, it tries to access a private instance variable
in another class. Both generate compiler errors. Bad duckling!

Our bad duckling is only a few days old and doesn’t know better yet.
Luckily, you know that accessing private members of other classes is
not allowed and you need to use a different type of access.

Default (Package-Private) Access
Luckily, MotherDuck is more accommodating about what her ducklings
can do. She allows classes in the same package to access her members.
When there is no access modifier, Java uses the default, which is
package-private access. This means that the member is “private” to
classes in the same package. In other words, only classes in the
package may access it.

package pond.duck;

public class MotherDuck {

 String noise = "quack";

 void quack() {

 System.out.println(noise); // default access is ok

 }

 private void makeNoise() {

 quack(); // default access is ok

 }

}

MotherDuck can refer to noise and call quack(). After all, members in
the same class are certainly in the same package. The big difference is
MotherDuck lets other classes in the same package access members (due
to being package-private), whereas FatherDuck doesn’t (due to being
private). GoodDuckling has a much better experience than BadDuckling:

package pond.duck;

public class GoodDuckling {

 public void makeNoise() {

 MotherDuck duck = new MotherDuck();

 duck.quack(); // default access

 System.out.println(duck.noise); // default access

 }

}

GoodDuckling succeeds in learning to quack() and make noise by
copying its mother. Notice that all the classes covered so far are in the
same package pond.duck. This allows default (package-private) access
to work.

In this same pond, a swan just gave birth to a baby swan. A baby swan
is called a cygnet. The cygnet sees the ducklings learning to quack and
decides to learn from MotherDuck as well.

package pond.swan;

import pond.duck.MotherDuck; // import another

package

public class BadCygnet {

 public void makeNoise() {

 MotherDuck duck = new MotherDuck();

 duck.quack(); // DOES NOT COMPILE

 System.out.println(duck.noise); // DOES NOT COMPILE

 }

}

Oh no! MotherDuck only allows lessons to other ducks by restricting
access to the pond.duck package. Poor little BadCygnet is in the
pond.swan package, and the code doesn’t compile.

Remember that when there is no access modifier on a member, only
classes in the same package can access the member.

Protected Access
Protected access allows everything that default (package-private)
access allows and more. The protected access modifier adds the ability
to access members of a parent class. We’ll cover creating subclasses in
depth in Chapter 8. For now, we’ll cover the simplest possible use of a
child class.

Figure 7.3 shows the many classes we will create in this section. There
are a number of classes and packages, so don’t worry about keeping
them all in your head. Just check back with this figure as you go.

Figure 7.3 Classes used to show protected access

First, create a Bird class and give protected access to its members:

package pond.shore;

public class Bird {

 protected String text = "floating"; // protected

access

 protected void floatInWater() { // protected

access

 System.out.println(text);

 }

}

Next, we create a subclass:

package pond.goose;

import pond.shore.Bird; // in a different package

public class Gosling extends Bird { // extends means create

subclass

 public void swim() {

 floatInWater(); // calling protected member

 System.out.println(text); // accessing protected

member

 }

}

This is a simple subclass. It extends the Bird class. Extending means
creating a subclass that has access to any protected or public
members of the parent class. Running this code prints floating twice:
once from calling floatInWater(), and once from the print statement
in swim(). Since Gosling is a subclass of Bird, it can access these
members even though it is in a different package.

Remember that protected also gives us access to everything that
default access does. This means that a class in the same package as
Bird can access its protected members.

package pond.shore; // same package as Bird

public class BirdWatcher {

 public void watchBird() {

 Bird bird = new Bird();

 bird.floatInWater(); // calling protected

member

 System.out.println(bird.text); // accessing protected

member

 }

}

Since Bird and BirdWatcher are in the same package, BirdWatcher can
access members of the bird variable. The definition of protected
allows access to subclasses and classes in the same package. This
example uses the same package part of that definition.

Now let’s try the same thing from a different package:

package pond.inland;

import pond.shore.Bird; // different package than

Bird

public class BirdWatcherFromAfar {

 public void watchBird() {

 Bird bird = new Bird();

 bird.floatInWater(); // DOES NOT COMPILE

 System.out.println(bird.text); // DOES NOT COMPILE

 }

}

BirdWatcherFromAfar is not in the same package as Bird, and it doesn’t
inherit from Bird. This means that it is not allowed to access protected
members of Bird.

Got that? Subclasses and classes in the same package are the only ones
allowed to access protected members.

There is one gotcha for protected access. Consider this class:

1: package pond.swan;

2: import pond.shore.Bird; // in different package than Bird

3: public class Swan extends Bird { // but subclass of Bird

4: public void swim() {

5: floatInWater(); // subclass access to

superclass

6: System.out.println(text); // subclass access to

superclass

7: }

8: public void helpOtherSwanSwim() {

9: Swan other = new Swan();

10: other.floatInWater(); // subclass access to

superclass

11: System.out.println(other.text); // subclass access

12: // to superclass

13: }

14: public void helpOtherBirdSwim() {

15: Bird other = new Bird();

16: other.floatInWater(); // DOES NOT COMPILE

17: System.out.println(other.text); // DOES NOT COMPILE

18: }

19: }

Take a deep breath. This is interesting. Swan is not in the same package
as Bird but does extend it—which implies it has access to the protected
members of Bird since it is a subclass. And it does. Lines 5 and 6 refer
to protected members via inheriting them.

Lines 10 and 11 also successfully use protected members of Bird. This
is allowed because these lines refer to a Swan object. Swan inherits from
Bird, so this is okay. It is sort of a two-phase check. The Swan class is

allowed to use protected members of Bird, and we are referring to a
Swan object. Granted, it is a Swan object created on line 9 rather than an
inherited one, but it is still a Swan object.

Lines 16 and 17 do not compile. Wait a minute. They are almost exactly
the same as lines 10 and 11! There’s one key difference. This time a
Bird reference is used rather than inheritance. It is created on line 15.
Bird is in a different package, and this code isn’t inheriting from Bird,
so it doesn’t get to use protected members. Say what now? We just got
through saying repeatedly that Swan inherits from Bird. And it does.
However, the variable reference isn’t a Swan. The code just happens to
be in the Swan class.

It’s okay to be confused. This is arguably one of the most confusing
points on the exam. Looking at it a different way, the protected rules
apply under two scenarios:

A member is used without referring to a variable. This is the case
on lines 5 and 6. In this case, we are taking advantage of
inheritance and protected access is allowed.

A member is used through a variable. This is the case on lines 10,
11, 16, and 17. In this case, the rules for the reference type of the
variable are what matter. If it is a subclass, protected access is
allowed. This works for references to the same class or a subclass.

We’re going to try this again to make sure you understand what is
going on. Can you figure out why these examples don’t compile?

package pond.goose;

import pond.shore.Bird;

public class Goose extends Bird {

 public void helpGooseSwim() {

 Goose other = new Goose();

 other.floatInWater();

 System.out.println(other.text);

 }

 public void helpOtherGooseSwim() {

 Bird other = new Goose();

 other.floatInWater(); // DOES NOT COMPILE

 System.out.println(other.text); // DOES NOT COMPILE

 }

}

The first method is fine. In fact, it is equivalent to the Swan example.
Goose extends Bird. Since we are in the Goose subclass and referring to
a Goose reference, it can access protected members. The second
method is a problem. Although the object happens to be a Goose, it is
stored in a Bird reference. We are not allowed to refer to members of
the Bird class since we are not in the same package and the reference
type of other is not a subclass of Goose.

What about this one?

package pond.duck;

import pond.goose.Goose;

public class GooseWatcher {

 public void watch() {

 Goose goose = new Goose();

 goose.floatInWater(); // DOES NOT COMPILE

 }

}

This code doesn’t compile because we are not in the goose object. The
floatInWater() method is declared in Bird. GooseWatcher is not in the
same package as Bird, nor does it extend Bird. Goose extends Bird.
That only lets Goose refer to floatInWater() and not callers of Goose.

If this is still puzzling, try it. Type in the code and try to make it
compile. Then reread this section. Don’t worry—it wasn’t obvious to us
the first time either!

Public Access
Protected access was a tough concept. Luckily, the last type of access
modifier is easy: public means anyone can access the member from
anywhere.

The Java module system redefines “anywhere,” and it

becomes possible to restrict access to public code. When given a
code sample, you can assume it isn’t in a module unless explicitly
stated otherwise.

Let’s create a class that has public members:

package pond.duck;

public class DuckTeacher {

 public String name = "helpful"; // public access

 public void swim() { // public access

 System.out.println("swim");

 }

}

DuckTeacher allows access to any class that wants it. Now we can try it:

package pond.goose;

import pond.duck.DuckTeacher;

public class LostDuckling {

 public void swim() {

 DuckTeacher teacher = new DuckTeacher();

 teacher.swim(); // allowed

 System.out.println("Thanks" + teacher.name); // allowed

 }

}

LostDuckling is able to refer to swim() and name on DuckTeacher because
they are public. The story has a happy ending. LostDuckling has
learned to swim and can find its parents—all because DuckTeacher
made members public.

To review access modifiers, make sure you know why everything in
Table 7.2 is true. Remember that a member is a method or field.

Table 7.2 Access modifiers

A method in _________
can access a _________
member

private Default
(package-
private)

protected public

the same class Yes Yes Yes Yes
another class in the same
package

No Yes Yes Yes

in a subclass in a different
package

No No Yes Yes

an unrelated class in a
different package

No No No Yes

Applying the static Keyword
When the static keyword is applied to a variable, method, or class, it
applies to the class rather than a specific instance of the class. In this
section, you will see that the static keyword can also be applied to
import statements.

Designing static Methods and Fields
Except for the main() method, we’ve been looking at instance methods.
static methods don’t require an instance of the class. They are shared
among all users of the class. You can think of a static variable as
being a member of the single class object that exists independently of
any instances of that class.

You have seen one static method since Chapter 1. The main() method
is a static method. That means you can call it using the class name:

public class Koala {

 public static int count = 0; // static variable

 public static void main(String[] args) { // static method

 System.out.println(count);

 }

}

Here the JVM basically calls Koala.main() to get the program started.
You can do this too. We can have a KoalaTester that does nothing but
call the main() method:

public class KoalaTester {

 public static void main(String[] args) {

 Koala.main(new String[0]); // call static method

 }

}

Quite a complicated way to print 0, isn’t it? When we run KoalaTester,
it makes a call to the main() method of Koala, which prints the value of
count. The purpose of all these examples is to show that main() can be
called just like any other static method.

In addition to main() methods, static methods have two main

purposes:

For utility or helper methods that don’t require any object state.
Since there is no need to access instance variables, having static
methods eliminates the need for the caller to instantiate an object
just to call the method.

For state that is shared by all instances of a class, like a counter.
All instances must share the same state. Methods that merely use
that state should be static as well.

In the following sections, we will look at some examples covering other
static concepts.

Accessing a static Variable or Method
Usually, accessing a static member like count is easy. You just put the
class name before the method or variable and you are done. Here’s an
example:

System.out.println(Koala.count);

Koala.main(new String[0]);

Both of these are nice and easy. There is one rule that is trickier. You
can use an instance of the object to call a static method. The compiler
checks for the type of the reference and uses that instead of the object
—which is sneaky of Java. This code is perfectly legal:

5: Koala k = new Koala();

6: System.out.println(k.count); // k is a Koala

7: k = null;

8: System.out.println(k.count); // k is still a Koala

Believe it or not, this code outputs 0 twice. Line 6 sees that k is a Koala
and count is a static variable, so it reads that static variable. Line 8
does the same thing. Java doesn’t care that k happens to be null. Since
we are looking for a static, it doesn’t matter.

Remember to look at the reference type for a variable

when you see a static method or variable. The exam creators will
try to trick you into thinking a NullPointerException is thrown

because the variable happens to be null. Don’t be fooled!

One more time because this is really important: what does the
following output?

Koala.count = 4;

Koala koala1 = new Koala();

Koala koala2 = new Koala();

koala1.count = 6;

koala2.count = 5;

System.out.println(Koala.count);

We hope you answered 5. There is only one count variable since it is
static. It is set to 4, then 6, and finally winds up as 5. All the Koala
variables are just distractions.

Static vs. Instance
There’s another way the exam creators will try to trick you regarding
static and instance members. A static member cannot call an
instance member without referencing an instance of the class. This
shouldn’t be a surprise since static doesn’t require any instances of
the class to even exist.

The following is a common mistake for rookie programmers to make:

public class Static {

 private String name = "Static class";

 public static void first() { }

 public static void second() { }

 public void third() { System.out.println(name); }

 public static void main(String args[]) {

 first();

 second();

 third(); // DOES NOT COMPILE

 }

}

The compiler will give you an error about making a static reference to
a nonstatic method. If we fix this by adding static to third(), we
create a new problem. Can you figure out what it is?

All this does is move the problem. Now, third() is referring to

nonstatic name. Adding static to name as well would solve the problem.
Another solution would have been to call third as an instance method
—for example, new Static().third();.

The exam creators like this topic. A static method or instance method
can call a static method because static methods don’t require an
object to use. Only an instance method can call another instance
method on the same class without using a reference variable, because
instance methods do require an object. Similar logic applies for the
instance and static variables.

Suppose we have a Giraffe class:

public class Giraffe {

 public void eat(Giraffe g) {}

 public void drink() {};

 public static void allGiraffeGoHome(Giraffe g) {}

 public static void allGiraffeComeOut() {}

}

Make sure you understand Table 7.3 before continuing.

Table 7.3 Static vs. instance calls

Type Calling Legal?
allGiraffeGoHome() allGiraffeComeOut() Yes
allGiraffeGoHome() drink() No
allGiraffeGoHome() g.eat() Yes
eat() allGiraffeComeOut() Yes
eat() drink() Yes
eat() g.eat() Yes

Let’s try one more example so you have more practice at recognizing
this scenario. Do you understand why the following lines fail to
compile?

1: public class Gorilla {

2: public static int count;

3: public static void addGorilla() { count++; }

4: public void babyGorilla() { count++; }

5: public void announceBabies() {

6: addGorilla();

7: babyGorilla();

8: }

9: public static void announceBabiesToEveryone() {

10: addGorilla();

11: babyGorilla(); // DOES NOT COMPILE

12: }

13: public int total;

14: public static double average

15: = total / count; // DOES NOT COMPILE

16: }

Lines 3 and 4 are fine because both static and instance methods can
refer to a static variable. Lines 5–8 are fine because an instance
method can call a static method. Line 11 doesn’t compile because a
static method cannot call an instance method. Similarly, line 15
doesn’t compile because a static variable is trying to use an instance
variable.

A common use for static variables is counting the number of
instances:

public class Counter {

 private static int count;

 public Counter() { count++; }

 public static void main(String[] args) {

 Counter c1 = new Counter();

 Counter c2 = new Counter();

 Counter c3 = new Counter();

 System.out.println(count); // 3

 }

}

Each time the constructor gets called, it increments count by 1. This
example relies on the fact that static (and instance) variables are
automatically initialized to the default value for that type, which is 0
for int. See Chapter 2 to review the default values.

Also notice that we didn’t write Counter.count. We could have. It isn’t
necessary because we are already in that class so the compiler can
infer it.

Does Each Instance Have Its Own Copy of the Code?

Each object has a copy of the instance variables. There is only one
copy of the code for the instance methods. Each instance of the
class can call it as many times as it would like. However, each call
of an instance method (or any method) gets space on the stack for
method parameters and local variables.

The same thing happens for static methods. There is one copy of
the code. Parameters and local variables go on the stack.

Just remember that only data gets its “own copy.” There is no need
to duplicate copies of the code itself.

static Variables
Some static variables are meant to change as the program runs.
Counters are a common example of this. We want the count to
increase over time. Just as with instance variables, you can initialize a
static variable on the line it is declared:

public class Initializers {

 private static int counter = 0; // initialization

}

Other static variables are meant to never change during the program.
This type of variable is known as a constant. It uses the final modifier
to ensure the variable never changes. Constants use the modifier
static final and a different naming convention than other variables.
They use all uppercase letters with underscores between “words.”
Here’s an example:

public class Initializers {

 private static final int NUM_BUCKETS = 45;

 public static void main(String[] args) {

 NUM_BUCKETS = 5; // DOES NOT COMPILE

 }

}

The compiler will make sure that you do not accidentally try to update
a final variable. This can get interesting. Do you think the following
compiles?

private static final ArrayList<String> values = new ArrayList<>

();

public static void main(String[] args) {

 values.add("changed");

}

It actually does compile since values is a reference variable. We are
allowed to call methods on reference variables. All the compiler can do
is check that we don’t try to reassign the final values to point to a
different object.

Static Initialization
In Chapter 2, we covered instance initializers that looked like
unnamed methods—just code inside braces. Static initializers look
similar. They add the static keyword to specify they should be run
when the class is first loaded. Here’s an example:

private static final int NUM_SECONDS_PER_MINUTE;

private static final int NUM_MINUTES_PER_HOUR;

private static final int NUM_SECONDS_PER_HOUR;

static {

 NUM_SECONDS_PER_MINUTE = 60;

 NUM_MINUTES_PER_HOUR = 60;

}

static {

 NUM_SECONDS_PER_HOUR

 = NUM_SECONDS_PER_MINUTE * NUM_MINUTES_PER_HOUR;

}

All static initializers run when the class is first used in the order they
are defined. The statements in them run and assign any static
variables as needed. There is something interesting about this
example. We just got through saying that final variables aren’t
allowed to be reassigned. The key here is that the static initializer is
the first assignment. And since it occurs up front, it is okay.

Let’s try another example to make sure you understand the
distinction:

14: private static int one;

15: private static final int two;

16: private static final int three = 3;

17: private static final int four; // DOES NOT COMPILE

18: static {

19: one = 1;

20: two = 2;

21: three = 3; // DOES NOT COMPILE

22: two = 4; // DOES NOT COMPILE

23: }

Line 14 declares a static variable that is not final. It can be assigned
as many times as we like. Line 15 declares a final variable without
initializing it. This means we can initialize it exactly once in a static
block. Line 22 doesn’t compile because this is the second attempt. Line
16 declares a final variable and initializes it at the same time. We are
not allowed to assign it again, so line 21 doesn’t compile. Line 17
declares a final variable that never gets initialized. The compiler gives
a compiler error because it knows that the static blocks are the only
place the variable could possibly get initialized. Since the programmer
forgot, this is clearly an error.

Try to Avoid Static and Instance Initializers
Using static and instance initializers can make your code much
harder to read. Everything that could be done in an instance
initializer could be done in a constructor instead. Many people find
the constructor approach is easier to read.

There is a common case to use a static initializer: when you need
to initialize a static field and the code to do so requires more than
one line. This often occurs when you want to initialize a collection
like an ArrayList. When you do need to use a static initializer, put
all the static initialization in the same block. That way, the order
is obvious.

Static Imports
In Chapter 1, you saw that we could import a specific class or all the
classes in a package:

import java.util.ArrayList;

import java.util.*;

We could use this technique to import two classes:

import java.util.List;

import java.util.Arrays;

public class Imports {

 public static void main(String[] args) {

 List<String> list = Arrays.asList("one", "two");

 }

}

Imports are convenient because you don’t need to specify where each
class comes from each time you use it. There is another type of import
called a static import. Regular imports are for importing classes. Static
imports are for importing static members of classes. Just like regular
imports, you can use a wildcard or import a specific member. The idea
is that you shouldn’t have to specify where each static method or
variable comes from each time you use it. An example of when static
imports shine is when you are referring to a lot of constants in another
class.

In a large program, static imports can be overused. When

importing from too many places, it can be hard to remember where
each static member comes from.

The previous method has one static method call: Arrays.asList.
Rewriting the code to use a static import yields the following:

import java.util.List;

import static java.util.Arrays.asList; // static import

public class StaticImports {

 public static void main(String[] args) {

 List<String> list = asList("one", "two"); // no Arrays.

 }

}

In this example, we are specifically importing the asList method. This
means that any time we refer to asList in the class, it will call
Arrays.asList().

An interesting case is what would happen if we created an asList
method in our StaticImports class. Java would give it preference over
the imported one, and the method we coded would be used.

The exam will try to trick you with misusing static imports. This
example shows almost everything you can do wrong. Can you figure
out what is wrong with each one?

1: import static java.util.Arrays; // DOES NOT COMPILE

2: import static java.util.Arrays.asList;

3: static import java.util.Arrays.*; // DOES NOT COMPILE

4: public class BadStaticImports {

5: public static void main(String[] args) {

6: Arrays.asList("one"); // DOES NOT COMPILE

7: } }

Line 1 tries to use a static import to import a class. Remember that
static imports are only for importing static members. Regular
imports are for importing a class. Line 3 tries to see whether you are
paying attention to the order of keywords. The syntax is import static
and not vice versa. Line 6 is sneaky. The asList method is imported on
line 2. However, the Arrays class is not imported anywhere. This
makes it okay to write asList("one") but not Arrays.asList("one").

There’s only one more scenario with static imports. In Chapter 1, you
learned that importing two classes with the same name gives a
compiler error. This is true of static imports as well. The compiler will
complain if you try to explicitly do a static import of two methods with
the same name or two static variables with the same name. Here’s an
example:

import static statics.A.TYPE;

import static statics.B.TYPE; // DOES NOT COMPILE

Luckily, when this happens, we can just refer to the static members
via their class name in the code instead of trying to use a static import.

Passing Data among Methods
Java is a “pass-by-value” language. This means that a copy of the
variable is made and the method receives that copy. Assignments
made in the method do not affect the caller. Let’s look at an example:

2: public static void main(String[] args) {

3: int num = 4;

4: newNumber(num);

5: System.out.println(num); // 4

6: }

7: public static void newNumber(int num) {

8: num = 8;

9: }

On line 3, num is assigned the value of 4. On line 4, we call a method.
On line 8, the num parameter in the method gets set to 8. Although this
parameter has the same name as the variable on line 3, this is a
coincidence. The name could be anything. The exam will often use the
same name to try to confuse you. The variable on line 3 never changes
because no assignments are made to it.

Now that you’ve seen primitives, let’s try an example with a reference
type. What do you think is output by the following code?

public static void main(String[] args) {

 String name = "Webby";

 speak(name);

 System.out.println(name);

}

public static void speak(String name) {

 name = "Sparky";

}

The correct answer is Webby. Just as in the primitive example, the
variable assignment is only to the method parameter and doesn’t
affect the caller.

Notice how we keep talking about variable assignments. This is
because we can call methods on the parameters. As an example, here is
code that calls a method on the StringBuilder passed into the method:

public static void main(String[] args) {

 StringBuilder name = new StringBuilder();

 speak(name);

 System.out.println(name); // Webby

}

public static void speak(StringBuilder s) {

 s.append("Webby");

}

In this case, the output is Webby because the method merely calls a
method on the parameter. It doesn’t reassign name to a different object.
In Figure 7.4, you can see how pass-by-value is still used. The variable
s is a copy of the variable name. Both point to the same StringBuilder,
which means that changes made to the StringBuilder are available to
both references.

Figure 7.4 Copying a reference with pass-by-value

Pass-by-Value vs. Pass-by-Reference
Different languages handle parameters in different ways. Pass-by-
value is used by many languages, including Java. In this example,
the swap method does not change the original values. It only
changes a and b within the method.

public static void main(String[] args) {

 int original1 = 1;

 int original2 = 2;

 swap(original1, original2);

 System.out.println(original1); // 1

 System.out.println(original2); // 2

}

public static void swap(int a, int b) {

 int temp = a;

 a = b;

 b = temp;

}

The other approach is pass-by-reference. It is used by default in a
few languages, such as Perl. We aren’t going to show you Perl code
here because you are studying for the Java exam and we don’t want
to confuse you. The following example is in a made-up language
that shows pass-by-reference:

original1 = 1;

original2 = 2;

swapByReference(original1, original2);

print(original1); // 2 (not in Java)

print(original2); // 1 (not in Java)

swapByReference(a, b) {

 temp = a;

 a = b;

 b = temp;

}

See the difference? In our made-up language, the caller is affected
by variable assignments made in the method.

To review, Java uses pass-by-value to get data into a method.
Assigning a new primitive or reference to a parameter doesn’t change
the caller. Calling methods on a reference to an object can affect the
caller.

Getting data back from a method is easier. A copy is made of the
primitive or reference and returned from the method. Most of the
time, this returned value is used. For example, it might be stored in a
variable. If the returned value is not used, the result is ignored. Watch
for this on the exam. Ignored returned values are tricky.

Let’s try an example. Pay attention to the return types.

1: public class ReturningValues {

2: public static void main(String[] args) {

3: int number = 1; // number=1

4: String letters = "abc"; //

letters=abc

5: number(number); // number=1

6: letters = letters(letters); //

letters=abcd

7: System.out.println(number + letters); // 1abcd

8: }

9: public static int number(int number) {

10: number++;

11: return number;

12: }

13: public static String letters(String letters) {

14: letters += "d";

15: return letters;

16: }

17: }

This is a tricky one because there is a lot to keep track of. When you
see such questions on the exam, write down the values of each
variable. Lines 3 and 4 are straightforward assignments. Line 5 calls a
method. Line 10 increments the method parameter to 2 but leaves the
number variable in the main() method as 1. While line 11 returns the
value, the caller ignores it. The method call on line 6 doesn’t ignore the
result, so letters becomes "abcd". Remember that this is happening
because of the returned value and not the method parameter.

Overloading Methods
Now that you are familiar with the rules for declaring methods, it is
time to look at creating methods with the same name in the same
class. Method overloading occurs when methods have the same name
but different method signatures, which means they differ by method
parameters. (Overloading differs from overriding, which you’ll learn
about in Chapter 8.)

We’ve been showing how to call overloaded methods for a while.
System.out.println and StringBuilder’s append methods provide many
overloaded versions, so you can pass just about anything to them
without having to think about it. In both of these examples, the only
change was the type of the parameter. Overloading also allows
different numbers of parameters.

Everything other than the method name can vary for overloading
methods. This means there can be different access modifiers,
specifiers (like static), return types, and exception lists.

These are all valid overloaded methods:

public void fly(int numMiles) {}

public void fly(short numFeet) {}

public boolean fly() { return false; }

void fly(int numMiles, short numFeet) {}

public void fly(short numFeet, int numMiles) throws Exception {}

As you can see, we can overload by changing anything in the
parameter list. We can have a different type, more types, or the same
types in a different order. Also notice that the return type, access
modifier, and exception list are irrelevant to overloading.

Now let’s look at an example that is not valid overloading:

public void fly(int numMiles) {}

public int fly(int numMiles) {} // DOES NOT COMPILE

This method doesn’t compile because it differs from the original only
by return type. The parameter lists are the same, so they are duplicate
methods as far as Java is concerned.

What about these two? Why does the second not compile?

public void fly(int numMiles) {}

public static void fly(int numMiles) {} // DOES NOT COMPILE

Again, the parameter list is the same. You cannot have methods where
the only difference is that one is an instance method and one is a
static method.

Calling overloaded methods is easy. You just write code and Java calls
the right one. For example, look at these two methods:

public void fly(int numMiles) {

 System.out.println("int");

}

public void fly(short numFeet) {

 System.out.println("short");

}

The call fly((short) 1) prints short. It looks for matching types and
calls the appropriate method. Of course, it can be more complicated
than this.

Now that you know the basics of overloading, let’s look at some more
complex scenarios that you may encounter on the exam.

Varargs
Which method do you think is called if we pass an int[]?

public void fly(int[] lengths) {}

public void fly(int... lengths) {} // DOES NOT COMPILE

Trick question! Remember that Java treats varargs as if they were an
array. This means that the method signature is the same for both
methods. Since we are not allowed to overload methods with the same
parameter list, this code doesn’t compile. Even though the code
doesn’t look the same, it compiles to the same parameter list.

Now that we’ve just gotten through explaining that they are the same,
it is time to mention how they are not the same. It shouldn’t be a
surprise that you can call either method by passing an array:

fly(new int[] { 1, 2, 3 });

However, you can only call the varargs version with stand-alone
parameters:

fly(1, 2, 3);

Obviously, this means they don’t compile exactly the same. The
parameter list is the same, though, and that is what you need to know
with respect to overloading for the exam.

Autoboxing
In Chapter 5, you saw how Java will convert a primitive int to an
object Integer to add it to an ArrayList through the wonders of
autoboxing. This works for code you write too.

public void fly(Integer numMiles) {}

This means calling fly(3) will call the previous method as expected.
However, what happens if you have both a primitive and an integer
version?

public void fly(int numMiles) {}

public void fly(Integer numMiles) {}

Java will match the int numMiles version. Java tries to use the most
specific parameter list it can find. When the primitive int version isn’t
present, it will autobox. However, when the primitive int version is
provided, there is no reason for Java to do the extra work of
autoboxing.

Reference Types
Given the rule about Java picking the most specific version of a
method that it can, what do you think this code outputs?

public class ReferenceTypes {

 public void fly(String s) {

 System.out.print("string");

 }

 public void fly(Object o) {

 System.out.print("object");

 }

 public static void main(String[] args) {

 ReferenceTypes r = new ReferenceTypes();

 r.fly("test");

 System.out.print("-");

 r.fly(56);

 }

}

The answer is string-object. The first call is a String and finds a
direct match. There’s no reason to use the Object version when there is
a nice String parameter list just waiting to be called. The second call
looks for an int parameter list. When it doesn’t find one, it autoboxes
to Integer. Since it still doesn’t find a match, it goes to the Object one.

Let’s try another one. What does this print?

public static void print(Iterable i) {

 System.out.print("I");

}

public static void print(CharSequence c) {

 System.out.print("C");

}

public static void print(Object o) {

 System.out.print("O");

}

public static void main(String[] args){

 print("abc");

 print(new ArrayList<>());

 print(LocalDate.of(2019, Month.JULY, 4));

}

The answer is CIO. The code is due for a promotion! The first call to
print() passes a String. As you learned in Chapter 5, String and
StringBuilder implement the CharSequence interface.

The second call to print() passes an ArrayList. Remember that you
get to assume unknown APIs do what they sound like. In this case,
Iterable is an interface for classes you can iterate over.

The final call to print() passes a LocalDate. This is another class you
might not know, but that’s okay. It clearly isn’t a sequence of
characters or something to loop through. That means the Object
method signature is used.

Primitives
Primitives work in a way that’s similar to reference variables. Java
tries to find the most specific matching overloaded method. What do
you think happens here?

public class Plane {

 public void fly(int i) {

 System.out.print("int");

 }

 public void fly(long l) {

 System.out.print("long");

 }

 public static void main(String[] args) {

 Plane p = new Plane();

 p.fly(123);

 System.out.print("-");

 p.fly(123L);

 }

}

The answer is int-long. The first call passes an int and sees an exact
match. The second call passes a long and also sees an exact match. If
we comment out the overloaded method with the int parameter list,
the output becomes long-long. Java has no problem calling a larger
primitive. However, it will not do so unless a better match is not
found.

Note that Java can only accept wider types. An int can be passed to a
method taking a long parameter. Java will not automatically convert to
a narrower type. If you want to pass a long to a method taking an int
parameter, you have to add a cast to explicitly say narrowing is okay.

Generics
You might be surprised to learn that these are not valid overloads:

public void walk(List<String> strings) {}

public void walk(List<Integer> integers) {} // DOES NOT

COMPILE

Java has a concept called type erasure where generics are used only at
compile time. That means the compiled code looks like this:

public void walk(List strings) {}

public void walk(List integers) {} // DOES NOT COMPILE

We clearly can’t have two methods with the same method signature, so
this doesn’t compile. Remember that method overloads must differ in
at least one of the method parameters.

Arrays
Unlike the previous example, this code is just fine:

public static void walk(int[] ints) {}

public static void walk(Integer[] integers) {}

Arrays have been around since the beginning of Java. They specify
their actual types and don’t participate in type erasure.

Putting It All Together
So far, all the rules for when an overloaded method is called should be
logical. Java calls the most specific method it can. When some of the
types interact, the Java rules focus on backward compatibility. A long
time ago, autoboxing and varargs didn’t exist. Since old code still
needs to work, this means autoboxing and varargs come last when
Java looks at overloaded methods. Ready for the official order? Table
7.4 lays it out for you.

Table 7.4 The order that Java uses to choose the right
overloaded method

Rule Example of what will be chosen for
glide(1,2)

Exact match by
type

String glide(int i, int j)

Larger primitive
type

String glide(long i, long j)

Autoboxed type String glide(Integer i, Integer j)

Varargs String glide(int... nums)

Let’s give this a practice run using the rules in Table 7.4. What do you

think this outputs?

public class Glider2 {

 public static String glide(String s) {

 return "1";

 }

 public static String glide(String... s) {

 return "2";

 }

 public static String glide(Object o) {

 return "3";

 }

 public static String glide(String s, String t) {

 return "4";

 }

 public static void main(String[] args) {

 System.out.print(glide("a"));

 System.out.print(glide("a", "b"));

 System.out.print(glide("a", "b", "c"));

 }

}

It prints out 142. The first call matches the signature taking a single
String because that is the most specific match. The second call
matches the signature, taking two String parameters since that is an
exact match. It isn’t until the third call that the varargs version is used
since there are no better matches.

As accommodating as Java is with trying to find a match, it will do
only one conversion:

public class TooManyConversions {

 public static void play(Long l) {}

 public static void play(Long... l) {}

 public static void main(String[] args) {

 play(4); // DOES NOT COMPILE

 play(4L); // calls the Long version

 }

}

Here we have a problem. Java is happy to convert the int 4 to a long 4
or an Integer 4. It cannot handle converting to a long and then to a
Long. If we had public static void play(Object o) {}, it would match
because only one conversion would be necessary: from int to Integer.

Remember, if a variable is not a primitive, it is an Object, as you’ll see
in Chapter 8.

Encapsulating Data
In Chapter 2, you saw an example of a class with a field that wasn’t
private:

public class Swan {

 int numberEggs; // instance variable

}

Why do we care? Since there is default (package-private) access, that
means any class in the package can set numberEggs. We no longer have
control of what gets set in your own class. A caller could even write
this:

mother.numberEggs = -1;

This is clearly no good. We do not want the mother Swan to have a
negative number of eggs!

Encapsulation to the rescue. Encapsulation means only methods in
the class with the variables can refer to the instance variables. Callers
are required to use these methods. Let’s take a look at the newly
encapsulated Swan class:

1: public class Swan {

2: private int numberEggs; // private

3: public int getNumberEggs() { // getter

4: return numberEggs;

5: }

6: public void setNumberEggs(int newNumber) { // setter

7: if (newNumber >= 0) // guard

condition

8: numberEggs = newNumber;

9: } }

Note that numberEggs is now private on line 2. This means only code
within the class can read or write the value of numberEggs. Since we
wrote the class, we know better than to set a negative number of eggs.
We added a method on lines 3–5 to read the value, which is called an
accessor method or a getter. We also added a method on lines 6–9 to

update the value, which is called a mutator method or a setter. The
setter has an if statement in this example to prevent setting the
instance variable to an invalid value. This guard condition protects the
instance variable.

For encapsulation, remember that data (an instance variable) is
private and getters/setters are public. Java defines a naming
convention for getters and setters listed in Table 7.5.

Table 7.5 Naming conventions for getters and setters

Rule Example

Getter methods most frequently begin with
is if the property is a boolean.

public boolean

isHappy() {

return happy;

}

Getter methods begin with get if the
property is not a boolean.

public int

getNumberEggs() {

return numberEggs;

}

Setter methods begin with set. public void

setHappy(boolean

_happy) {

happy = _happy;

}

In the last example in Table 7.5, you probably noticed that you can
name the method parameter to anything you want. Only the method
name and property name have naming conventions here.

It’s time for some practice. See whether you can figure out which lines
follow these naming conventions:

12: private boolean playing;

13: private String name;

14: public boolean isPlaying() { return playing; }

15: public String name() { return name; }

16: public void updateName(String n) { name = n; }

17: public void setName(String n) { name = n; }

Lines 12 and 13 are good. They are private instance variables. Line 14
is correct. Since playing is a boolean, line 14 is a correct getter. Line 15
doesn’t follow the naming conventions because it should be called
getName(). Line 16 does not follow the naming convention for a setter,
but line 17 does.

For data to be encapsulated, you don’t have to provide getters and
setters. As long as the instance variables are private, you are good. For
example, this is a well-encapsulated class:

public class Swan {

 private int numEggs;

 public void layEgg() {

 numEggs++;

 }

 public void printEggCount() {

 System.out.println(numEggs);

 }

}

To review, you can tell it is a well-encapsulated class because the
numEggs instance variable is private. Only methods can retrieve and
update the value.

Summary
As you learned in this chapter, Java methods start with an access
modifier of public, private, protected, or blank (default access). This
is followed by an optional specifier such as static, final, or abstract.
Next comes the return type, which is void or a Java type. The method
name follows, using standard Java identifier rules. Zero or more
parameters go in parentheses as the parameter list. Next come any
optional exception types. Finally, zero or more statements go in braces
to make up the method body.

Using the private keyword means the code is only available from
within the same class. Default (package-private) access means the
code is available only from within the same package. Using the
protected keyword means the code is available from the same package
or subclasses. Using the public keyword means the code is available
from anywhere. Both static methods and static variables are shared
by all instances of the class. When referenced from outside the class,
they are called using the classname—for example,
StaticClass.method(). Instance members are allowed to call static
members, but static members are not allowed to call instance
members. Static imports are used to import static members.

Java uses pass-by-value, which means that calls to methods create a
copy of the parameters. Assigning new values to those parameters in
the method doesn’t affect the caller’s variables. Calling methods on
objects that are method parameters changes the state of those objects
and is reflected in the caller.

Overloaded methods are methods with the same name but a different
parameter list. Java calls the most specific method it can find. Exact
matches are preferred, followed by wider primitives. After that comes
autoboxing and finally varargs.

Encapsulation refers to preventing callers from changing the instance
variables directly. This is done by making instance variables private
and getters/setters public.

Exam Essentials
Be able to identify correct and incorrect method
declarations. A sample method declaration is public static void
method(String... args) throws Exception {}.

Identify when a method or field is accessible. Recognize when a
method or field is accessed when the access modifier (private,
protected, public, or default access) does not allow it.

Recognize valid and invalid uses of static imports. Static
imports import static members. They are written as import static,
not static import. Make sure they are importing static methods or
variables rather than class names.

State the output of code involving methods. Identify when to
call static rather than instance methods based on whether the class
name or object comes before the method. Recognize that instance
methods can call static methods and that static methods need an
instance of the object in order to call an instance method.

Recognize the correct overloaded method. Exact matches are
used first, followed by wider primitives, followed by autoboxing,
followed by varargs. Assigning new values to method parameters does
not change the caller, but calling methods on them does.

Identify properly encapsulated classes. Instance variables in
encapsulated classes are private. All code that retrieves the value or
updates it uses methods. These methods are allowed to be public.

Review Questions
1. Which of the following can fill in the blank in this code to make it

compile? (Choose all that apply.)

public class Ant {

______ void method() {}

}

A. default

B. final

C. private

D. Public

E. String

F. zzz:

2. Which of the following methods compile? (Choose all that apply.)

A. final static void method4() {}

B. public final int void method() {}

C. private void int method() {}

D. static final void method3() {}

E. void final method() {}

F. void public method() {}

3. Which of the following methods compile? (Choose all that apply.)

A. public void methodA() { return;}

B. public int methodB() { return null;}

C. public void methodC() {}

D. public int methodD() { return 9;}

E. public int methodE() { return 9.0;}

F. public int methodF() { return;}

4. Which of the following methods compile? (Choose all that apply.)

A. public void moreA(int... nums) {}

B. public void moreB(String values, int... nums) {}

C. public void moreC(int... nums, String values) {}

D. public void moreD(String... values, int... nums) {}

E. public void moreE(String[] values, ...int nums) {}

F. public void moreG(String[] values, int[] nums) {}

5. Given the following method, which of the method calls return 2?
(Choose all that apply.)

public int howMany(boolean b, boolean... b2) {

return b2.length;

}

A. howMany();

B. howMany(true);

C. howMany(true, true);

D. howMany(true, true, true);

E. howMany(true, {true, true});

F. howMany(true, new boolean[2]);

6. Which of the following statements is true?

A. Package-private access is more lenient than protected access.

B. A public class that has private fields and package-private
methods is not visible to classes outside the package.

C. You can use access modifiers so only some of the classes in a
package see a particular package-private class.

D. You can use access modifiers to allow access to all methods
and not any instance variables.

E. You can use access modifiers to restrict access to all classes
that begin with the word Test.

7. Given the following my.school.Classroom and my.city.School
class definitions, which line numbers in main() generate a
compiler error? (Choose all that apply.)

1: package my.school;

2: public class Classroom {

3: private int roomNumber;

4: protected static String teacherName;

5: static int globalKey = 54321;

6: public static int floor = 3;

7: Classroom(int r, String t) {

8: roomNumber = r;

9: teacherName = t; } }

1: package my.city;

2: import my.school.*;

3: public class School {

4: public static void main(String[] args) {

5: System.out.println(Classroom.globalKey);

6: Classroom room = new Classroom(101, "Mrs. Anderson");

7: System.out.println(room.roomNumber);

8: System.out.println(Classroom.floor);

9: System.out.println(Classroom.teacherName); } }

A. None, the code compiles fine.

B. Line 5

C. Line 6

D. Line 7

E. Line 8

F. Line 9

8. Which of the following are true about encapsulation? (Choose all
that apply.)

A. It allows getters.

B. It allows setters.

C. It requires specific naming conventions.

D. It uses package-private instance variables.

E. It uses private instance variables.

9. Which pairs of methods are valid overloaded pairs? (Choose all
that apply.)

A.

public void hiss(Iterable i) {}

and

public int hiss(Iterable i) { return 0; }

B.

public void baa(CharSequence c) {}

and

public void baa(String s) {}

C.

public var meow(List<String> l) {}

and

public var meow(String s) {}

D.

public void moo(Object o) {}

and

public void moo(String s) {}

E.

public void roar(List<Boolean> b) {}

and

public void roar(List<Character> c) {}

F.

public void woof(boolean[] b1) {}

and

public void woof(Boolean[] b) {}

10. What is the output of the following code?

1: package rope;

2: public class Rope {

3: public static int LENGTH = 5;

4: static {

5: LENGTH = 10;

6: }

7: public static void swing() {

8: System.out.print("swing ");

9: } }

1: import rope.*;

2: import static rope.Rope.*;

3: public class Chimp {

4: public static void main(String[] args) {

5: Rope.swing();

6: new Rope().swing();

7: System.out.println(LENGTH);

8: } }

A. swing swing 5

B. swing swing 10

C. Compiler error on line 2 of Chimp

D. Compiler error on line 5 of Chimp

E. Compiler error on line 6 of Chimp

F. Compiler error on line 7 of Chimp

11. Which statements are true of the following code? (Choose all that
apply.)

1: public class Rope {

2: public static void swing() {

3: System.out.print("swing");

4: }

5: public void climb() {

6: System.out.println("climb");

7: }

8: public static void play() {

9: swing();

10: climb();

11: }

12: public static void main(String[] args) {

13: Rope rope = new Rope();

14: rope.play();

15: Rope rope2 = null;

16: System.out.println("-");

17: rope2.play();

18: } }

A. The code compiles as is.

B. There is exactly one compiler error in the code.

C. There are exactly two compiler errors in the code.

D. If the line(s) with compiler errors are removed, the output is
swing-climb.

E. If the line(s) with compiler errors are removed, the output is
swing-swing.

F. If the line(s) with compile errors are removed, the code
throws a NullPointerException.

12. What is the output of the following code?

import rope.*;

import static rope.Rope.*;

public class RopeSwing {

private static Rope rope1 = new Rope();

private static Rope rope2 = new Rope();

{

System.out.println(rope1.length);

}

public static void main(String[] args) {

rope1.length = 2;

rope2.length = 8;

System.out.println(rope1.length);

}

}

package rope;

public class Rope {

public static int length = 0;

}

A. 02

B. 08

C. 2

D. 8

E. The code does not compile.

F. An exception is thrown.

13. How many lines in the following code have compiler errors?

1: public class RopeSwing {

2: private static final String leftRope;

3: private static final String rightRope;

4: private static final String bench;

5: private static final String name = "name";

6: static {

7: leftRope = "left";

8: rightRope = "right";

9: }

10: static {

11: name = "name";

12: rightRope = "right";

13: }

14: public static void main(String[] args) {

15: bench = "bench";

16: }

17: }

A. 0

B. 1

C. 2

D. 3

E. 4

F. 5

14. Which of the following can replace line 2 to make this code
compile? (Choose all that apply.)

1: import java.util.*;

2: // INSERT CODE HERE

3: public class Imports {

4: public void method(ArrayList<String> list) {

5: sort(list);

6: }

7: }

A. import static java.util.Collections;

B. import static java.util.Collections.*;

C. import static
java.util.Collections.sort(ArrayList<String>);

D. static import java.util.Collections;

E. static import java.util.Collections.*;

F. static import
java.util.Collections.sort(ArrayList<String>);

15. What is the result of the following statements?

1: public class Test {

2: public void print(byte x) {

3: System.out.print("byte-");

4: }

5: public void print(int x) {

6: System.out.print("int-");

7: }

8: public void print(float x) {

9: System.out.print("float-");

10: }

11: public void print(Object x) {

12: System.out.print("Object-");

13: }

14: public static void main(String[] args) {

15: Test t = new Test();

16: short s = 123;

17: t.print(s);

18: t.print(true);

19: t.print(6.789);

20: }

21: }

A. byte-float-Object-

B. int-float-Object-

C. byte-Object-float-

D. int-Object-float-

E. int-Object-Object-

F. byte-Object-Object-

16. What is the result of the following program?

1: public class Squares {

2: public static long square(int x) {

3: var y = x * (long) x;

4: x = -1;

5: return y;

6: }

7: public static void main(String[] args) {

8: var value = 9;

9: var result = square(value);

10: System.out.println(value);

11: } }

A. -1

B. 9

C. 81

D. Compiler error on line 9

E. Compiler error on a different line

17. Which of the following are output by the following code? (Choose
all that apply.)

public class StringBuilders {

public static StringBuilder work(StringBuilder a,

StringBuilder b) {

a = new StringBuilder("a");

b.append("b");

return a;

}

public static void main(String[] args) {

var s1 = new StringBuilder("s1");

var s2 = new StringBuilder("s2");

var s3 = work(s1, s2);

System.out.println("s1 = " + s1);

System.out.println("s2 = " + s2);

System.out.println("s3 = " + s3);

}

}

A. s1 = a

B. s1 = s1

C. s2 = s2

D. s2 = s2b

E. s3 = a

F. The code does not compile.

18. Which of the following will compile when independently inserted
in the following code? (Choose all that apply.)

1: public class Order3 {

2: final String value1 = "red";

3: static String value2 = "blue";

4: String value3 = "yellow";

5: {

6: // CODE SNIPPET 1

7: }

8: static {

9: // CODE SNIPPET 2

10: } }

A. Insert at line 6: value1 = "green";

B. Insert at line 6: value2 = "purple";

C. Insert at line 6: value3 = "orange";

D. Insert at line 9: value1 = "magenta";

E. Insert at line 9: value2 = "cyan";

F. Insert at line 9: value3 = "turquoise";

19. Which of the following are true about the following code? (Choose
all that apply.)

public class Run {

static void execute() {

System.out.print("1-");

}

static void execute(int num) {

System.out.print("2-");

}

static void execute(Integer num) {

System.out.print("3-");

}

static void execute(Object num) {

System.out.print("4-");

}

static void execute(int... nums) {

System.out.print("5-");

}

public static void main(String[] args) {

Run.execute(100);

Run.execute(100L);

}

}

A. The code prints out 2-4-.

B. The code prints out 3-4-.

C. The code prints out 4-2-.

D. The code prints out 4-4-.

E. The code prints 3-4- if you remove the method static void
execute(int num).

F. The code prints 4-4- if you remove the constructor static
void execute(int num).

20. Which pairs of methods are valid overloaded pairs? (Choose all
that apply.)

A.

public void hiss(Set<String> s) {}

and

public void hiss(List<String> l) {}

B.

public void baa(var c) {}

and

public void baa(String s) {}

C.

public void meow(char ch) {}

and

public void meow(String s) {}

D.

public void moo(char ch) {}

and

public void moo(char ch) {}

E.

public void roar(long... longs){}

and

public void roar(long long) {}

F.

public void woof(char... chars) {}

and

public void woof(Character c) {}

21. Which can fill in the blank to create a properly encapsulated
class? (Choose all that apply.)

public class Rabbits {

______ int numRabbits = 0;

______ void multiply() {

numRabbits *= 6;

}

______ int getNumberOfRabbits() {

return numRabbits;

}

}

A. private, public, and public

B. private, protected, and private

C. private, private, and protected

D. public, public, and public

E. None of the above since multiply() does not begin with set

F. None of the above for a reason other than the multiply()
method

Chapter 8
Class Design
OCP exam objectives covered in this chapter:

 Creating and Using Methods

Create methods and constructors with arguments and return
values

 Reusing Implementations Through Inheritance

Create and use subclasses and superclasses

Enable polymorphism by overriding methods

Utilize polymorphism to cast and call methods, differentiating
object type versus reference type

Distinguish overloading, overriding, and hiding

In Chapter 2, “Java Building Blocks,” we introduced
the basic definition for a class in Java. In Chapter 7, “Methods and
Encapsulation,” we delved into methods and modifiers and showed
how you can use them to build more structured classes. In this
chapter, we’ll take things one step further and show how class
structure and inheritance is one of the most powerful features in the
Java language.

At its core, proper Java class design is about code reusability,
increased functionality, and standardization. For example, by creating
a new class that extends an existing class, you may gain access to a
slew of inherited primitives, objects, and methods, which increases
code reuse. Through polymorphism, you may also gain access to a

dynamic hierarchy that supports replacing method implementations
in subclasses at runtime.

This chapter is the culmination of some of the most important topics
in Java including class design, constructor overloading and
inheritance, order of initialization, overriding/hiding methods, and
polymorphism. Read this chapter carefully and make sure you
understand all of the topics well. This chapter forms the basis of
Chapter 9, “Advanced Class Design,” in which we will expand our
discussion of types to include abstract classes and interfaces.

Understanding Inheritance
When creating a new class in Java, you can define the class as
inheriting from an existing class. Inheritance is the process by which a
subclass automatically includes any public or protected members of
the class, including primitives, objects, or methods, defined in the
parent class.

For illustrative purposes, we refer to any class that inherits from
another class as a subclass or child class, as it is considered a
descendant of that class. Alternatively, we refer to the class that the
child inherits from as the superclass or parent class, as it is
considered an ancestor of the class. And inheritance is transitive. If
child class X inherits from parent class Y, which in turn inherits from a
parent class Z, then class X would be considered a subclass, or
descendant, of class Z. By comparison, X is a direct descendant only of
class Y, and Y is a direct descendant only of class Z.

In the last chapter, you learned that there are four access levels:
public, protected, package-private, and private. When one class
inherits from a parent class, all public and protected members are
automatically available as part of the child class. Package-private
members are available if the child class is in the same package as the
parent class. Last but not least, private members are restricted to the
class they are defined in and are never available via inheritance. This
doesn’t mean the parent class doesn’t have private members that can
hold data or modify an object; it just means the child class has no
direct reference to them.

Let’s take a look at a simple example with the BigCat and Jaguar
classes. In this example, Jaguar is a subclass or child of BigCat, making
BigCat a superclass or parent of Jaguar.

public class BigCat {

 public double size;

}

public class Jaguar extends BigCat {

 public Jaguar() {

 size = 10.2;

 }

 public void printDetails() {

 System.out.println(size);

 }

}

In the Jaguar class, size is accessible because it is marked public. Via
inheritance, the Jaguar subclass can read or write size as if it were its
own member.

Single vs. Multiple Inheritance
Java supports single inheritance, by which a class may inherit from
only one direct parent class. Java also supports multiple levels of
inheritance, by which one class may extend another class, which in
turn extends another class. You can have any number of levels of
inheritance, allowing each descendant to gain access to its ancestor’s
members.

To truly understand single inheritance, it may helpful to contrast it
with multiple inheritance, by which a class may have multiple direct
parents. By design, Java doesn’t support multiple inheritance in the
language because multiple inheritance can lead to complex, often
difficult-to-maintain data models. Java does allow one exception to
the single inheritance rule that you’ll see in Chapter 9—a class may
implement multiple interfaces.

Figure 8.1 illustrates the various types of inheritance models. The
items on the left are considered single inheritance because each child
has exactly one parent. You may notice that single inheritance doesn’t
preclude parents from having multiple children. The right side shows
items that have multiple inheritance. As you can see, a Dog object has
multiple parent designations. Part of what makes multiple inheritance
complicated is determining which parent to inherit values from in case
of a conflict. For example, if you have an object or method defined in
all of the parents, which one does the child inherit? There is no natural
ordering for parents in this example, which is why Java avoids these
issues by disallowing multiple inheritance altogether.

Figure 8.1 Types of inheritance

It is possible in Java to prevent a class from being extended by
marking the class with the final modifier. If you try to define a class
that inherits from a final class, then the class will fail to compile.
Unless otherwise specified, throughout this chapter you can assume
the classes we work with are not marked final.

Inheriting Object
Throughout our discussion of Java in this book, we have thrown
around the word object numerous times—and with good reason. In
Java, all classes inherit from a single class: java.lang.Object, or
Object for short. Furthermore, Object is the only class that doesn’t
have a parent class.

You might be wondering, “None of the classes I’ve written so far
extend Object, so how do all classes inherit from it?” The answer is
that the compiler has been automatically inserting code into any class
you write that doesn’t extend a specific class. For example, consider
the following two equivalent class definitions:

public class Zoo { }

public class Zoo extends java.lang.Object { }

The key is that when Java sees you define a class that doesn’t extend
another class, it automatically adds the syntax extends
java.lang.Object to the class definition. The result is that every class
gains access to any accessible methods in the Object class. For

example, the toString() and equals() methods are available in Object;
therefore, they are accessible in all classes. Without being overridden
in a subclass, though, they may not be particularly useful. We will
cover overriding methods later in this chapter.

On the other hand, when you define a new class that extends an
existing class, Java does not automatically extend the Object class.
Since all classes inherit from Object, extending an existing class means
the child already inherits from Object by definition. If you look at the
inheritance structure of any class, it will always end with Object on the
top of the tree, as shown in Figure 8.2.

Figure 8.2 Java object inheritance

Primitive types such as int and boolean do not inherit from Object,
since they are not classes. As you learned in Chapter 5, “Core Java
APIs,” through autoboxing they can be assigned or passed as an

instance of an associated wrapper class, which does inherit Object.

Creating Classes
Now that we’ve established how inheritance works in Java, we can use
it to define and create complex class relationships. In this section, we
will review the basics for creating and working with classes.

Extending a Class
The full syntax of defining and extending a class using the extends
keyword is shown in Figure 8.3.

Figure 8.3 Defining and extending a class

Remember that final means a class cannot be extended. We’ll discuss
what it means for a class to be abstract in Chapter 9.

Let’s create two files, Animal.java and Lion.java, in which the Lion
class extends the Animal class. Assuming they are in the same package,
an import statement is not required in Lion.java to access the Animal
class.

Here are the contents of Animal.java:

public class Animal {

 private int age;

 protected String name;

 public int getAge() {

 return age;

 }

 public void setAge(int newAge) {

 age = newAge;

 }

}

And here are the contents of Lion.java:

public class Lion extends Animal {

 public void setProperties(int age, String n) {

 setAge(age);

 name = n;

 }

 public void roar() {

 System.out.print(name + ", age " + getAge() + ", says:

Roar!");

 }

 public static void main(String[] args) {

 var lion = new Lion();

 lion.setProperties(3, "kion");

 lion.roar();

 }

}

The extends keyword is used to express that the Lion class inherits the
Animal class. When executed, the Lion program prints the following:

kion, age 3, says: Roar!

Let’s take a look at the members of the Lion class. The instance
variable age is marked as private and is not directly accessible from
the subclass Lion. Therefore, the following would not compile:

public class Lion extends Animal {

 ...

 public void roar() {

 System.out.print("Lions age: "+age); // DOES NOT COMPILE

 }

 ...

}

The age variable can be accessed indirectly through the getAge() and
setAge() methods, which are marked as public in the Animal class. The
name variable can be accessed directly in the Lion class since it is
marked protected in the Animal class.

Applying Class Access Modifiers

You already know that you can apply access modifiers to both methods
and variables. It probably comes as little surprise that you can also
apply access modifiers to class definitions, since we have been adding
the public access modifier to most classes up to now.

In Java, a top-level class is a class that is not defined inside another
class. Most of the classes in this book are top-level classes. They can
only have public or package-private access. Applying public access to
a class indicates that it can be referenced and used in any class.
Applying default (package-private) access, which you’ll remember is
the lack of any access modifier, indicates the class can be accessed only
by a class within the same package.

An inner class is a class defined inside of another class

and is the opposite of a top-level class. In addition to public and
package-private access, inner classes can also have protected and
private access. We will discuss inner classes in Chapter 9.

As you might recall, a Java file can have many top-level classes but at
most one public top-level class. In fact, it may have no public class at
all. There’s also no requirement that the single public class be the first
class in the file. One benefit of using the package-private access is that
you can define many classes within the same Java file. For example,
the following definition could appear in a single Java file named
Groundhog.java, since it contains only one public class:

class Rodent {}

public class Groundhog extends Rodent {}

If we were to update the Rodent class with the public access modifier,
the Groundhog.java file would not compile unless the Rodent class was
moved to its own Rodent.java file.

For simplicity, any time you see multiple public classes or

interfaces defined in the same code sample in this book, assume

each class is defined in its own Java file.

Accessing the this Reference
What happens when a method parameter has the same name as an
existing instance variable? Let’s take a look at an example. What do
you think the following program prints?

public class Flamingo {

 private String color;

 public void setColor(String color) {

 color = color;

 }

 public static void main(String... unused) {

 Flamingo f = new Flamingo();

 f.setColor("PINK");

 System.out.println(f.color);

 }

}

If you said null, then you’d be correct. Java uses the most granular
scope, so when it sees color = color, it thinks you are assigning the
method parameter value to itself. The assignment completes
successfully within the method, but the value of the instance variable
color is never modified and is null when printed in the main()
method.

The fix when you have a local variable with the same name as an
instance variable is to use the this reference or keyword. The this
reference refers to the current instance of the class and can be used to
access any member of the class, including inherited members. It can
be used in any instance method, constructor, and instance initializer
block. It cannot be used when there is no implicit instance of the class,
such as in a static method or static initializer block. We apply this to
our previous method implementation as follows:

 public void setColor(String color) {

 this.color = color;

 }

The corrected code will now print PINK as expected. In many cases, the
this reference is optional. If Java encounters a variable or method it

cannot find, it will check the class hierarchy to see if it is available.

Now let’s look at some examples that aren’t common but that you
might see on the exam.

1: public class Duck {

2: private String color;

3: private int height;

4: private int length;

5:

6: public void setData(int length, int theHeight) {

7: length = this.length; // Backwards – no good!

8: height = theHeight; // Fine because a different name

9: this.color = "white"; // Fine, but this. not necessary

10: }

11:

12: public static void main(String[] args) {

13: Duck b = new Duck();

14: b.setData(1,2);

15: System.out.print(b.length + " " + b.height + " " +

b.color);

16: } }

This code compiles and prints the following:

0 2 white

This might not be what you expected, though. Line 7 is incorrect, and
you should watch for it on the exam. The instance variable length
starts out with a 0 value. That 0 is assigned to the method parameter
length. The instance variable stays at 0. Line 8 is more
straightforward. The parameter theHeight and instance variable
height have different names. Since there is no naming collision, this is
not required. Finally, line 9 shows that a variable assignment is
allowed to use this even when there is no duplication of variable
names.

Calling the super Reference
In Java, a variable or method can be defined in both a parent class and
a child class. When this happens, how do we reference the version in
the parent class instead of the current class?

To achieve this, you can use the super reference or keyword. The super
reference is similar to the this reference, except that it excludes any
members found in the current class. In other words, the member must
be accessible via inheritance. The following class shows how to apply
super to use two variables with the same name in a method:

class Mammal {

 String type = "mammal";

}

public class Bat extends Mammal {

 String type = "bat";

 public String getType() {

 return super.type + ":" + this.type;

 }

 public static void main(String... zoo) {

 System.out.print(new Bat().getType());

 }

}

The program prints mammal:bat. What do you think would happen if
the super reference was dropped? The program would then print
bat:bat. Java uses the narrowest scope it can—in this case, the type
variable defined in the Bat class. Note that the this reference in the
previous example was optional, with the program printing the same
output as it would if this was dropped.

Let’s see if you’ve gotten the hang of this and super. What does the
following program output?

1: class Insect {

2: protected int numberOfLegs = 4;

3: String label = "buggy";

4: }

5:

6: public class Beetle extends Insect {

7: protected int numberOfLegs = 6;

8: short age = 3;

9: public void printData() {

10: System.out.print(this.label);

11: System.out.print(super.label);

12: System.out.print(this.age);

13: System.out.print(super.age);

14: System.out.print(numberOfLegs);

15: }

16: public static void main(String []n) {

17: new Beetle().printData();

18: }

19: }

That was a trick question—this program code would not compile! Let’s
review each line of the printData() method. Since label is defined in
the parent class, it is accessible via both this and super references. For
this reason, lines 10 and 11 compile and would both print buggy if the
class compiled. On the other hand, the variable age is defined only in
the current class, making it accessible via this but not super. For this
reason, line 12 compiles, but line 13 does not. Remember, while this
includes current and inherited members, super only includes inherited
members. In this example, line 12 would print 3 if the code compiled.

Last but least, what would line 14 print if line 13 was commented out?
Even though both numberOfLegs variables are accessible in Beetle, Java
checks outward starting with the narrowest scope. For this reason, the
value of numberOfLegs in the Beetle class is used and 6 would be
printed. In this example, this.numberOfLegs and super.numberOfLegs
refer to different variables with distinct values.

Since this includes inherited members, you often only use super when
you have a naming conflict via inheritance. For example, you have a
method or variable defined in the current class that matches a method
or variable in a parent class. This commonly comes up in method
overriding and variable hiding, which will be discussed later in this
chapter.

Declaring Constructors
As you learned in Chapter 2, a constructor is a special method that
matches the name of the class and has no return type. It is called when
a new instance of the class is created. For the exam, you’ll need to
know a lot of rules about constructors. In this section, we’ll show how
to create a constructor. Then, we’ll look at default constructors,
overloading constructors, calling parent constructors, final fields, and
the order of initialization in a class.

Creating a Constructor
Let’s start with a simple constructor:

public class Bunny {

 public Bunny() {

 System.out.println("constructor");

 }

}

The name of the constructor, Bunny, matches the name of the class,
Bunny, and there is no return type, not even void. That makes this a
constructor. Can you tell why these two are not valid constructors for
the Bunny class?

public class Bunny {

 public bunny() { } // DOES NOT COMPILE

 public void Bunny() { }

}

The first one doesn’t match the class name because Java is case
sensitive. Since it doesn’t match, Java knows it can’t be a constructor
and is supposed to be a regular method. However, it is missing the
return type and doesn’t compile. The second method is a perfectly
good method but is not a constructor because it has a return type.

Like method parameters, constructor parameters can be any valid
class, array, or primitive type, including generics, but may not include
var. The following does not compile:

class Bonobo {

 public Bonobo(var food) { // DOES NOT COMPILE

 }

}

A class can have multiple constructors, so long as each constructor has
a unique signature. In this case, that means the constructor
parameters must be distinct. Like methods with the same name but
different signatures, declaring multiple constructors with different
signatures is referred to as constructor overloading. The following
Turtle class has four distinct overloaded constructors:

public class Turtle {

 private String name;

 public Turtle() {

 name = "John Doe";

 }

 public Turtle(int age) {}

 public Turtle(long age) {}

 public Turtle(String newName, String... favoriteFoods) {

 name = newName;

 }

}

Constructors are used when creating a new object. This process is
called instantiation because it creates a new instance of the class. A
constructor is called when we write new followed by the name of the
class we want to instantiate. Here’s an example:

new Turtle()

When Java sees the new keyword, it allocates memory for the new
object. It then looks for a constructor with a matching signature and
calls it.

Default Constructor
Every class in Java has a constructor whether you code one or not. If
you don’t include any constructors in the class, Java will create one for
you without any parameters. This Java-created constructor is called
the default constructor and is added anytime a class is declared
without any constructors. We often refer to it as the default no-
argument constructor for clarity. Here’s an example:

public class Rabbit {

 public static void main(String[] args) {

 Rabbit rabbit = new Rabbit(); // Calls default

constructor

 }

}

In the Rabbit class, Java sees no constructor was coded and creates
one. This default constructor is equivalent to typing this:

 public Rabbit() {}

The default constructor has an empty parameter list and an empty
body. It is fine for you to type this in yourself. However, since it
doesn’t do anything, Java is happy to generate it for you and save you
some typing.

We keep saying generated. This happens during the compile step. If
you look at the file with the .java extension, the constructor will still
be missing. It is only in the compiled file with the .class extension
that it makes an appearance.

Remember that a default constructor is only supplied if there are no
constructors present. Which of these classes do you think has a default
constructor?

public class Rabbit1 {}

public class Rabbit2 {

 public Rabbit2() {}

}

public class Rabbit3 {

 public Rabbit3(boolean b) {}

}

public class Rabbit4 {

 private Rabbit4() {}

}

Only Rabbit1 gets a default no-argument constructor. It doesn’t have a
constructor coded, so Java generates a default no-argument
constructor. Rabbit2 and Rabbit3 both have public constructors

already. Rabbit4 has a private constructor. Since these three classes
have a constructor defined, the default no-argument constructor is not
inserted for you.

Let’s take a quick look at how to call these constructors:

1: public class RabbitsMultiply {

2: public static void main(String[] args) {

3: Rabbit1 r1 = new Rabbit1();

4: Rabbit2 r2 = new Rabbit2();

5: Rabbit3 r3 = new Rabbit3(true);

6: Rabbit4 r4 = new Rabbit4(); // DOES NOT COMPILE

7: } }

Line 3 calls the generated default no-argument constructor. Lines 4
and 5 call the user-provided constructors. Line 6 does not compile.
Rabbit4 made the constructor private so that other classes could not
call it.

Having only private constructors in a class tells the

compiler not to provide a default no-argument constructor. It also
prevents other classes from instantiating the class. This is useful
when a class has only static methods or the developer wants to
have full control of all calls to create new instances of the class.
Remember, static methods in the class, including a main()
method, may access private members, including private
constructors.

Calling Overloaded Constructors with this()
Remember, a single class can have multiple constructors. This is
referred to as constructor overloading because all constructors have
the same inherent name but a different signature. Let’s take a look at
this in more detail using a Hamster class.

public class Hamster {

 private String color;

 private int weight;

 public Hamster(int weight) { // First

constructor

 this.weight = weight;

 color = "brown";

 }

 public Hamster(int weight, String color) { // Second

constructor

 this.weight = weight;

 this.color = color;

 }

}

One of the constructors takes a single int parameter. The other takes
an int and a String. These parameter lists are different, so the
constructors are successfully overloaded. There is a problem here,
though.

There is a bit of duplication, as this.weight is assigned twice in the
same way in both constructors. In programming, even a bit of
duplication tends to turn into a lot of duplication as we keep adding
“just one more thing.” For example, imagine we had 20 variables being
set like this.weight, rather than just one. What we really want is for
the first constructor to call the second constructor with two
parameters. So, how can you have a constructor call another
constructor? You might be tempted to write this:

 public Hamster(int weight) {

 Hamster(weight, "brown"); // DOES NOT COMPILE

 }

This will not work. Constructors can be called only by writing new
before the name of the constructor. They are not like normal methods
that you can just call. What happens if we stick new before the
constructor name?

 public Hamster(int weight) {

 new Hamster(weight, "brown"); // Compiles, but incorrect

 }

This attempt does compile. It doesn’t do what we want, though. When
this constructor is called, it creates a new object with the default
weight and color. It then constructs a different object with the desired
weight and color and ignores the new object. In this manner, we end
up with two objects, with one being discarded after it is created. That’s

not what we want. We want weight and color set on the object we are
trying to instantiate in the first place.

Java provides a solution: this()—yes, the same keyword we used to
refer to instance members. When this() is used with parentheses,
Java calls another constructor on the same instance of the class.

 public Hamster(int weight) {

 this(weight, "brown");

 }

Success! Now Java calls the constructor that takes two parameters,
with weight and color set as expected.

Calling this() has one special rule you need to know. If you choose to
call it, the this() call must be the first statement in the constructor.
The side effect of this is that there can be only one call to this() in any
constructor.

3: public Hamster(int weight) {

4: System.out.println("in constructor");

5: // Set weight and default color

6: this(weight, "brown"); // DOES NOT COMPILE

7: }

Even though a print statement on line 4 doesn’t change any variables,
it is still a Java statement and is not allowed to be inserted before the
call to this(). The comment on line 5 is just fine. Comments aren’t
considered statements and are allowed anywhere.

There’s one last rule for overloaded constructors you should be aware
of. Consider the following definition of the Gopher class:

public class Gopher {

 public Gopher(int dugHoles) {

 this(5); // DOES NOT COMPILE

 }

}

The compiler is capable of detecting that this constructor is calling
itself infinitely. Since this code can never terminate, the compiler stops
and reports this as an error. Likewise, this also does not compile:

public class Gopher {

 public Gopher() {

 this(5); // DOES NOT COMPILE

 }

 public Gopher(int dugHoles) {

 this(); // DOES NOT COMPILE

 }

}

In this example, the constructors call each other, and the process
continues infinitely. Since the compiler can detect this, it reports this
as an error.

this vs. this()
Despite using the same keyword, this and this() are very
different. The first, this, refers to an instance of the class, while the
second, this(), refers to a constructor call within the class. The
exam may try to trick you by using both together, so make sure you
know which one to use and why.

Calling Parent Constructors with super()
In Java, the first statement of every constructor is either a call to
another constructor within the class, using this(), or a call to a
constructor in the direct parent class, using super(). If a parent
constructor takes arguments, then the super() call also takes
arguments. For simplicity in this section, we refer to the super()
command as any parent constructor, even those that take arguments.
Let’s take a look at the Animal class and its subclass Zebra and see how
their constructors can be properly written to call one another:

public class Animal {

 private int age;

 public Animal(int age) {

 super(); // Refers to constructor in java.lang.Object

 this.age = age;

 }

}

public class Zebra extends Animal {

 public Zebra(int age) {

 super(age); // Refers to constructor in Animal

 }

 public Zebra() {

 this(4); // Refers to constructor in Zebra with int

argument

 }

}

In the first class, Animal, the first statement of the constructor is a call
to the parent constructor defined in java.lang.Object, which takes no
arguments. In the second class, Zebra, the first statement of the first
constructor is a call to Animal’s constructor, which takes a single
argument. The class Zebra also includes a second no-argument
constructor that doesn’t call super() but instead calls the other
constructor within the Zebra class using this(4).

Like calling this(), calling super() can only be used as the first
statement of the constructor. For example, the following two class
definitions will not compile:

public class Zoo {

 public Zoo() {

 System.out.println("Zoo created");

 super(); // DOES NOT COMPILE

 }

}

public class Zoo {

 public Zoo() {

 super();

 System.out.println("Zoo created");

 super(); // DOES NOT COMPILE

 }

}

The first class will not compile because the call to the parent
constructor must be the first statement of the constructor. In the
second code snippet, super() is the first statement of the constructor,
but it is also used as the third statement. Since super() can only be
called once as the first statement of the constructor, the code will not
compile.

If the parent class has more than one constructor, the child class may
use any valid parent constructor in its definition, as shown in the

following example:

public class Animal {

 private int age;

 private String name;

 public Animal(int age, String name) {

 super();

 this.age = age;

 this.name = name;

 }

 public Animal(int age) {

 super();

 this.age = age;

 this.name = null;

 }

}

public class Gorilla extends Animal {

 public Gorilla(int age) {

 super(age,"Gorilla");

 }

 public Gorilla() {

 super(5);

 }

}

In this example, the first child constructor takes one argument, age,
and calls the parent constructor, which takes two arguments, age and
name. The second child constructor takes no arguments, and it calls the
parent constructor, which takes one argument, age. In this example,
notice that the child constructors are not required to call matching
parent constructors. Any valid parent constructor is acceptable as long
as the appropriate input parameters to the parent constructor are
provided.

super vs. super()
Like this and this(), super and super() are unrelated in Java. The
first, super, is used to reference members of the parent class, while
the second, super(), calls a parent constructor. Anytime you see
the super keyword on the exam, make sure it is being used
properly.

Understanding Compiler Enhancements
Wait a second, we said the first line of every constructor is a call to
either this() or super(), but we’ve been creating classes and
constructors throughout this book, and we’ve rarely done either. How
did these classes compile? The answer is that the Java compiler
automatically inserts a call to the no-argument constructor super() if
you do not explicitly call this() or super() as the first line of a
constructor. For example, the following three class and constructor
definitions are equivalent, because the compiler will automatically
convert them all to the last example:

public class Donkey {}

public class Donkey {

 public Donkey() {}

}

public class Donkey {

 public Donkey() {

 super();

 }

}

Make sure you understand the differences between these three Donkey
class definitions and why Java will automatically convert them all to
the last definition. Keep the process that the Java compiler performs
in mind while reading the next section.

Are Classes with Only private Constructors Considered final?
Remember, a final class cannot be extended. What happens if you
have a class that is not marked final but only contains private
constructors—can you extend the class? The answer is “yes,” but
only an inner class defined in the class itself can extend it. An inner
class is the only one that would have access to a private
constructor and be able to call super(). Other top-level classes
cannot extend such a class. Don’t worry—knowing this fact is not
required for the exam. We include it here for those who were
curious about declaring only private constructors.

Missing a Default No-Argument Constructor
What happens if the parent class doesn’t have a no-argument
constructor? Recall that the default no-argument constructor is not
required and is inserted by the compiler only if there is no constructor
defined in the class. For example, do you see why the following
Elephant class declaration does not compile?

public class Mammal {

 public Mammal(int age) {}

}

public class Elephant extends Mammal { // DOES NOT COMPILE

}

Since Elephant does not define any constructors, the Java compiler
will attempt to insert a default no-argument constructor. As a second
compile-time enhancement, it will also auto-insert a call to super() as
the first line of the default no-argument constructor. Our previous
Elephant declaration is then converted by the compiler to the following
declaration:

public class Elephant extends Mammal {

 public Elephant() {

 super(); // DOES NOT COMPILE

 }

}

Since the Mammal class has at least one constructor declared, the
compiler does not insert a default no-argument constructor.
Therefore, the super() call in the Elephant class declaration does not
compile. In this case, the Java compiler will not help, and you must
create at least one constructor in your child class that explicitly calls a
parent constructor via the super() command. We can fix this by
adding a call to a parent constructor that takes a fixed argument.

public class Elephant extends Mammal {

 public Elephant() {

 super(10);

 }

}

This code will compile because we have added a constructor with an

explicit call to a parent constructor. Notice that the class Elephant now
has a no-argument constructor even though its parent class Mammal
doesn’t. Subclasses may define explicit no-argument constructors even
if their parent classes do not, provided the constructor of the child
maps to a parent constructor via an explicit call of the super()
command. This means that subclasses of the Elephant can rely on
compiler enhancements. For example, the following class compiles
because Elephant now has a no-argument constructor, albeit one
defined explicitly:

public class AfricanElephant extends Elephant {}

You should be wary of any exam question in which a class defines a
constructor that takes arguments and doesn’t define a no-argument
constructor. Be sure to check that the code compiles before answering
a question about it, especially if any classes inherit it. For the exam,
you should be able to spot right away why classes such as our first
Elephant implementation did not compile.

super() Always Refers to the Most Direct Parent
A class may have multiple ancestors via inheritance. In our
previous example, AfricanElephant is a subclass of Elephant, which
in turn is a subclass of Mammal. For constructors, though, super()
always refers to the most direct parent. In this example, calling
super() inside the AfricanElephant class always refers to the
Elephant class, and never the Mammal class.

Constructors and final Fields
As you might recall from Chapter 7, final static variables must be
assigned a value exactly once. You saw this happen in the line of the
declaration and in a static initializer. Instance variables marked final
follow similar rules. They can be assigned values in the line in which
they are declared or in an instance initializer.

public class MouseHouse {

 private final int volume;

 private final String name = "The Mouse House";

 {

 volume = 10;

 }

}

Like other final variables, once the value is assigned, it cannot be
changed. There is one more place they can be assigned a value—the
constructor. The constructor is part of the initialization process, so it is
allowed to assign final instance variables in it. For the exam, you need
to know one important rule. By the time the constructor completes, all
final instance variables must be assigned a value. Let’s try this out in
an example:

public class MouseHouse {

 private final int volume;

 private final String type;

 public MouseHouse() {

 this.volume = 10;

 type = "happy";

 }

}

In our MouseHouse implementation, the values for volume and type are
assigned in the constructor. Remember that the this keyword is
optional since the instance variables are part of the class declaration,
and there are no constructor parameters with the same name.

Unlike local final variables, which are not required to have a value
unless they are actually used, final instance variables must be
assigned a value. Default values are not used for these variables. If
they are not assigned a value in the line where they are declared or in
an instance initializer, then they must be assigned a value in the
constructor declaration. Failure to do so will result in a compiler error
on the line that declares the constructor.

public class MouseHouse {

 private final int volume;

 private final String type;

 {

 this.volume = 10;

 }

 public MouseHouse(String type) {

 this.type = type;

 }

 public MouseHouse() { // DOES NOT COMPILE

 this.volume = 2; // DOES NOT COMPILE

 }

}

In this example, the first constructor that takes a String argument
compiles. Although a final instance variable can be assigned a value
only once, each constructor is considered independently in terms of
assignment. The second constructor does not compile for two reasons.
First, the constructor fails to set a value for the type variable. The
compiler detects that a value is never set for type and reports an error
on the line where the constructor is declared. Second, the constructor
sets a value for the volume variable, even though it was already
assigned a value by the instance initializer. The compiler reports this
error on the line where volume is set.

On the exam, be wary of any instance variables marked

final. Make sure they are assigned a value in the line where they
are declared, in an instance initializer, or in a constructor. They
should be assigned a value only once, and failure to assign a value
is considered a compiler error in the constructor.

What about final instance variables when a constructor calls another
constructor in the same class? In that case, you have to follow the
constructor logic pathway carefully, making sure every final instance
variable is assigned a value exactly once. We can replace our previous
bad constructor with the following one that does compile:

 public MouseHouse() {

 this(null);

 }

This constructor does not perform any assignments to any final
instance variables, but it calls the MouseHouse(String) constructor,
which we observed compiles without issue. We use null here to
demonstrate that the variable does not need to be an object value. We
can assign a null value to final instance variables, so long as they are

explicitly set.

Order of Initialization
In Chapter 2, we presented the order of initialization. With
inheritance, though, the order of initialization for an instance gets a bit
more complicated. We’ll start with how to initialize the class and then
expand to initializing the instance.

Class Initialization
First, you need to initialize the class, which involves invoking all
static members in the class hierarchy, starting with the highest
superclass and working downward. This is often referred to as loading
the class. The JVM controls when the class is initialized, although you
can assume the class is loaded before it is used. The class may be
initialized when the program first starts, when a static member of the
class is referenced, or shortly before an instance of the class is created.

The most important rule with class initialization is that it happens at
most once for each class. The class may also never be loaded if it is not
used in the program. We summarize the order of initialization for a
class as follows:

Initialize Class X

1. If there is a superclass Y of X, then initialize class Y first.

2. Process all static variable declarations in the order they appear
in the class.

3. Process all static initializers in the order they appear in the class.

Taking a look at an example, what does the following program print?

public class Animal {

 static { System.out.print("A"); }

}

public class Hippo extends Animal {

 static { System.out.print("B"); }

 public static void main(String[] grass) {

 System.out.print("C");

 new Hippo();

 new Hippo();

 new Hippo();

 }

}

It prints ABC exactly once. Since the main() method is inside the Hippo
class, the class will be initialized first, starting with the superclass and
printing AB. Afterward, the main() method is executed, printing C. Even
though the main() method creates three instances, the class is loaded
only once.

Why the Hippo Program Printed C After AB
In the previous example, the Hippo class was initialized before the
main() method was executed. This happened because our main()
method was inside the class being executed, so it had to be loaded
on startup. What if you instead called Hippo inside another
program?

public class HippoFriend {

 public static void main(String[] grass) {

 System.out.print("C");

 new Hippo();

 }

}

Assuming the class isn’t referenced anywhere else, this program
will likely print CAB, with the Hippo class not being loaded until it is
needed inside the main() method. We say likely, because the rules
for when classes are loaded are determined by the JVM at runtime.
For the exam, you just need to know that a class must be initialized
before it is referenced or used. Also, the class containing the
program entry point, aka the main() method, is loaded before the
main() method is executed.

Instance Initialization
An instance is initialized anytime the new keyword is used. In our
previous example, there were three new Hippo() calls, resulting in
three Hippo instances being initialized. Instance initialization is a bit

more complicated than class initialization, because a class or
superclass may have many constructors declared but only a handful
used as part of instance initialization.

First, start at the lowest-level constructor where the new keyword is
used. Remember, the first line of every constructor is a call to this()
or super(), and if omitted, the compiler will automatically insert a call
to the parent no-argument constructor super(). Then, progress
upward and note the order of constructors. Finally, initialize each class
starting with the superclass, processing each instance initializer and
constructor in the reverse order in which it was called. We summarize
the order of initialization for an instance as follows:

Initialize Instance of X

1. If there is a superclass Y of X, then initialize the instance of Y first.

2. Process all instance variable declarations in the order they appear
in the class.

3. Process all instance initializers in the order they appear in the
class.

4. Initialize the constructor including any overloaded constructors
referenced with this().

Let’s try a simple example with no inheritance. See if you can figure
out what the following application outputs:

1: public class ZooTickets {

2: private String name = "BestZoo";

3: { System.out.print(name+"-"); }

4: private static int COUNT = 0;

5: static { System.out.print(COUNT+"-"); }

6: static { COUNT += 10; System.out.print(COUNT+"-"); }

7:

8: public ZooTickets() {

9: System.out.print("z-");

10: }

11:

12: public static void main(String... patrons) {

13: new ZooTickets();

14: }

15: }

The output is as follows:

0-10-BestZoo-z-

First, we have to initialize the class. Since there is no superclass
declared, which means the superclass is Object, we can start with the
static components of ZooTickets. In this case, lines 4, 5, and 6 are
executed, printing 0- and 10-. Next, we initialize the instance. Again,
since there is no superclass declared, we start with the instance
components. Lines 2 and 3 are executed, which prints BestZoo-.
Finally, we run the constructor on lines 8–10, which outputs z-.

Next, let’s try a simple example with inheritance.

class Primate {

 public Primate() {

 System.out.print("Primate-");

 }

}

class Ape extends Primate {

 public Ape(int fur) {

 System.out.print("Ape1-");

 }

 public Ape() {

 System.out.print("Ape2-");

 }

}

public class Chimpanzee extends Ape {

 public Chimpanzee() {

 super(2);

 System.out.print("Chimpanzee-");

 }

 public static void main(String[] args) {

 new Chimpanzee();

 }

}

The compiler inserts the super() command as the first statement of
both the Primate and Ape constructors. The code will execute with the
parent constructors called first and yields the following output:

Primate-Ape1-Chimpanzee-

Notice that only one of the two Ape() constructors is called. You need
to start with the call to new Chimpanzee() to determine which
constructors will be executed. Remember, constructors are executed
from the bottom up, but since the first line of every constructor is a
call to another constructor, the flow actually ends up with the parent
constructor executed before the child constructor.

The next example is a little harder. What do you think happens here?

1: public class Cuttlefish {

2: private String name = "swimmy";

3: { System.out.println(name); }

4: private static int COUNT = 0;

5: static { System.out.println(COUNT); }

6: { COUNT++; System.out.println(COUNT); }

7:

8: public Cuttlefish() {

9: System.out.println("Constructor");

10: }

11:

12: public static void main(String[] args) {

13: System.out.println("Ready");

14: new Cuttlefish();

15: }

16: }

The output looks like this:

0

Ready

swimmy

1

Constructor

There is no superclass declared, so we can skip any steps that relate to
inheritance. We first process the static variables and static
initializers—lines 4 and 5, with line 5 printing 0. Now that the static
initializers are out of the way, the main() method can run, which prints
Ready. Lines 2, 3, and 6 are processed, with line 3 printing swimmy and
line 6 printing 1. Finally, the constructor is run on lines 8–10, which
print Constructor.

Ready for a more difficult example? What does the following output?

1: class GiraffeFamily {

2: static { System.out.print("A"); }

3: { System.out.print("B"); }

4:

5: public GiraffeFamily(String name) {

6: this(1);

7: System.out.print("C");

8: }

9:

10: public GiraffeFamily() {

11: System.out.print("D");

12: }

13:

14: public GiraffeFamily(int stripes) {

15: System.out.print("E");

16: }

17: }

18: public class Okapi extends GiraffeFamily {

19: static { System.out.print("F"); }

20:

21: public Okapi(int stripes) {

22: super("sugar");

23: System.out.print("G");

24: }

25: { System.out.print("H"); }

26:

27: public static void main(String[] grass) {

28: new Okapi(1);

29: System.out.println();

30: new Okapi(2);

31: }

32: }

The program prints the following:

AFBECHG

BECHG

Let’s walk through it. Start with initializing the Okapi class. Since it has
a superclass GiraffeFamily, initialize it first, printing A on line 2. Next,
initialize the Okapi class, printing F on line 19.

After the classes are initialized, execute the main() method on line 27.
The first line of the main() method creates a new Okapi object,
triggering the instance initialization process. Per the first rule, the
superclass instance of GiraffeFamily is initialized first. Per our third

rule, the instance initializer in the superclass GiraffeFamily is called,
and B is printed on line 3. Per the fourth rule, we initialize the
constructors. In this case, this involves calling the constructor on line
5, which in turn calls the overloaded constructor on line 14. The result
is that EC is printed, as the constructor bodies are unwound in the
reverse order that they were called.

The process then continues with the initialization of the Okapi instance
itself. Per the third and fourth rules, H is printed on line 25, and G is
printed on line 23, respectively. The process is a lot simpler when you
don’t have to call any overloaded constructors. Line 29 then inserts a
line break in the output. Finally, line 30 initializes a new Okapi object.
The order and initialization are the same as line 28, sans the class
initialization, so BECHG is printed again. Notice that D is never printed,
as only two of the three constructors in the superclass GiraffeFamily
are called.

This example is tricky for a few reasons. There are multiple overloaded
constructors, lots of initializers, and a complex constructor pathway to
keep track of. Luckily, questions like this are rare on the exam. If you
see one, just write down what is going on as you read the code.

Reviewing Constructor Rules
Let’s review some of the most important constructor rules that we
covered in this part of the chapter.

1. The first statement of every constructor is a call to an overloaded
constructor via this(), or a direct parent constructor via super().

2. If the first statement of a constructor is not a call to this() or
super(), then the compiler will insert a no-argument super() as
the first statement of the constructor.

3. Calling this() and super() after the first statement of a
constructor results in a compiler error.

4. If the parent class doesn’t have a no-argument constructor, then
every constructor in the child class must start with an explicit
this() or super() constructor call.

5. If the parent class doesn’t have a no-argument constructor and

the child doesn’t define any constructors, then the child class will
not compile.

6. If a class only defines private constructors, then it cannot be
extended by a top-level class.

7. All final instance variables must be assigned a value exactly once
by the end of the constructor. Any final instance variables not
assigned a value will be reported as a compiler error on the line
the constructor is declared.

Make sure you understand these rules. The exam will often provide
code that breaks one or many of these rules and therefore doesn’t
compile.

When taking the exam, pay close attention to any question

involving two or more classes related by inheritance. Before even
attempting to answer the question, you should check that the
constructors are properly defined using the previous set of rules.
You should also verify the classes include valid access modifiers for
members. Once those are verified, you can continue answering the
question.

Inheriting Members
Now that we’ve created a class, what can we do with it? One of Java’s
biggest strengths is leveraging its inheritance model to simplify code.
For example, let’s say you have five animal classes that each extend
from the Animal class. Furthermore, each class defines an eat()
method with identical implementations. In this scenario, it’s a lot
better to define eat() once in the Animal class with the proper access
modifiers than to have to maintain the same method in five separate
classes. As you’ll also see in this section, Java allows any of the five
subclasses to replace, or override, the parent method implementation
at runtime.

Calling Inherited Members
Java classes may use any public or protected member of the parent
class, including methods, primitives, or object references. If the parent
class and child class are part of the same package, then the child class
may also use any package-private members defined in the parent class.
Finally, a child class may never access a private member of the parent
class, at least not through any direct reference. As you saw earlier in
this chapter, a private member age was accessed indirectly via a
public or protected method.

To reference a member in a parent class, you can just call it directly, as
in the following example with the output function
displaySharkDetails():

class Fish {

 protected int size;

 private int age;

 public Fish(int age) {

 this.age = age;

 }

 public int getAge() {

 return age;

 }

}

public class Shark extends Fish {

 private int numberOfFins = 8;

 public Shark(int age) {

 super(age);

 this.size = 4;

 }

 public void displaySharkDetails() {

 System.out.print("Shark with age: "+getAge());

 System.out.print(" and "+size+" meters long");

 System.out.print(" with "+numberOfFins+" fins");

 }

}

In the child class, we use the public method getAge() and protected
member size to access values in the parent class. Remember, you can
use this to access visible members of the current or a parent class, and
you can use super to access visible members of a parent class.

 public void displaySharkDetails() {

 System.out.print("Shark with age: "+super.getAge());

 System.out.print(" and "+super.size+" meters long");

 System.out.print(" with "+this.numberOfFins+" fins");

 }

In this example, getAge() and size can be accessed with this or super
since they are defined in the parent class, while numberOfFins can only
be accessed with this and not super since it is not an inherited
property.

Inheriting Methods
Inheriting a class not only grants access to inherited methods in the
parent class but also sets the stage for collisions between methods
defined in both the parent class and the subclass. In this section, we’ll
review the rules for method inheritance and how Java handles such
scenarios.

Overriding a Method
What if there is a method defined in both the parent and child classes
with the same signature? For example, you may want to define a new

version of the method and have it behave differently for that subclass.
The solution is to override the method in the child class. In Java,
overriding a method occurs when a subclass declares a new
implementation for an inherited method with the same signature and
compatible return type. Remember that a method signature includes
the name of the method and method parameters.

When you override a method, you may reference the parent version of
the method using the super keyword. In this manner, the keywords
this and super allow you to select between the current and parent
versions of a method, respectively. We illustrate this with the following
example:

public class Canine {

 public double getAverageWeight() {

 return 50;

 }

}

public class Wolf extends Canine {

 public double getAverageWeight() {

 return super.getAverageWeight()+20;

 }

 public static void main(String[] args) {

 System.out.println(new Canine().getAverageWeight());

 System.out.println(new Wolf().getAverageWeight());

 }

}

In this example, in which the child class Wolf overrides the parent class
Canine, the method getAverageWeight() runs, and the program
displays the following:

50.0

70.0

Method Overriding and Recursive Calls
You might be wondering whether the use of super in the previous
example was required. For example, what would the following code
output if we removed the super keyword?

public double getAverageWeight() {

 return getAverageWeight()+20; // StackOverflowError

}

In this example, the compiler would not call the parent Canine
method; it would call the current Wolf method since it would think
you were executing a recursive method call. A recursive method is
one that calls itself as part of execution. It is common in
programming but must have a termination condition that triggers
the end to recursion at some point or depth. In this example, there
is no termination condition; therefore, the application will attempt
to call itself infinitely and produce a StackOverflowError at
runtime.

To override a method, you must follow a number of rules. The
compiler performs the following checks when you override a method:

1. The method in the child class must have the same signature as the
method in the parent class.

2. The method in the child class must be at least as accessible as the
method in the parent class.

3. The method in the child class may not declare a checked exception
that is new or broader than the class of any exception declared in
the parent class method.

4. If the method returns a value, it must be the same or a subtype of
the method in the parent class, known as covariant return types.

Defining Subtype and Supertype
When discussing inheritance and polymorphism, we often use the
word subtype rather than subclass, since Java includes interfaces.
A subtype is the relationship between two types where one type
inherits the other. If we define X to be a subtype of Y, then one of
the following is true:

X and Y are classes, and X is a subclass of Y.

X and Y are interfaces, and X is a subinterface of Y.

X is a class and Y is an interface, and X implements Y (either

directly or through an inherited class).

Likewise, a supertype is the reciprocal relationship between two
types where one type is the ancestor of the other. Remember, a
subclass is a subtype, but not all subtypes are subclasses.

The first rule of overriding a method is somewhat self-explanatory. If
two methods have the same name but different signatures, the
methods are overloaded, not overridden. Overloaded methods are
considered independent and do not share the same polymorphic
properties as overridden methods.

Overloading vs. Overriding
Overloading and overriding a method are similar in that they both
involve redefining a method using the same name. They differ in
that an overloaded method will use a different list of method
parameters. This distinction allows overloaded methods a great
deal more freedom in syntax than an overridden method would
have. For example, compare the overloaded fly() with the
overridden eat() in the Eagle class.

public class Bird {

 public void fly() {

 System.out.println("Bird is flying");

 }

 public void eat(int food) {

 System.out.println("Bird is eating "+food+" units of

food");

 }

}

public class Eagle extends Bird {

 public int fly(int height) {

 System.out.println("Bird is flying at "+height+"

meters");

 return height;

 }

 public int eat(int food) { // DOES NOT COMPILE

 System.out.println("Bird is eating "+food+" units of

food");

 return food;

 }

}

The fly() method is overloaded in the subclass Eagle, since the
signature changes from a no-argument method to a method with
one int argument. Because the method is being overloaded and not
overridden, the return type can be changed from void to int.

The eat() method is overridden in the subclass Eagle, since the
signature is the same as it is in the parent class Bird—they both
take a single argument int. Because the method is being
overridden, the return type of the method in the Eagle class must
be compatible with the return type for the method in the Bird class.
In this example, the return type int is not a subtype of void;
therefore, the compiler will throw an exception on this method
definition.

Any time you see a method on the exam with the same name as a
method in the parent class, determine whether the method is being
overloaded or overridden first; doing so will help you with
questions about whether the code will compile.

What’s the purpose of the second rule about access modifiers? Let’s try
an illustrative example:

public class Camel {

 public int getNumberOfHumps() {

 return 1;

 }

}

public class BactrianCamel extends Camel {

 private int getNumberOfHumps() { // DOES NOT COMPILE

 return 2;

 }

}

public class Rider {

 public static void main(String[] args) {

 Camel c = new BactrianCamel();

 System.out.print(c.getNumberOfHumps());

 }

}

In this example, BactrianCamel attempts to override the
getNumberOfHumps() method defined in the parent class but fails
because the access modifier private is more restrictive than the one
defined in the parent version of the method. Let’s say BactrianCamel
was allowed to compile, though. Would the call to getNumberOfHumps()
in Rider.main() succeed or fail? As you will see when we get into
polymorphism later in this chapter, the answer is quite ambiguous.
The reference type for the object is Camel, where the method is
declared public, but the object is actually an instance of type
BactrianCamel, which is declared private. Java avoids these types of
ambiguity problems by limiting overriding a method to access
modifiers that are as accessible or more accessible than the version in
the inherited method.

The third rule says that overriding a method cannot declare new
checked exceptions or checked exceptions broader than the inherited
method. This is done for similar polymorphic reasons as limiting
access modifiers. In other words, you could end up with an object that
is more restrictive than the reference type it is assigned to, resulting in
a checked exception that is not handled or declared. We will discuss
what it means for an exception to be checked in Chapter 10,
“Exceptions.” For now, you should just recognize that if a broader
checked exception is declared in the overriding method, the code will
not compile. Let’s try an example:

public class Reptile {

 protected void sleepInShell() throws IOException {}

 protected void hideInShell() throws NumberFormatException {}

 protected void exitShell() throws FileNotFoundException {}

}

public class GalapagosTortoise extends Reptile {

 public void sleepInShell() throws FileNotFoundException {}

 public void hideInShell() throws IllegalArgumentException {}

 public void exitShell() throws IOException {} // DOES NOT

COMPILE

}

In this example, we have three overridden methods. These overridden
methods use the more accessible public modifier, which is allowed per
our second rule over overridden methods. The overridden
sleepInShell() method declares FileNotFoundException, which is a
subclass of the exception declared in the inherited method,
IOException. Per our third rule of overridden methods, this is a
successful override since the exception is narrower in the overridden
method.

The overridden hideInShell() method declares an
IllegalArgumentException, which is a superclass of the exception
declared in the inherited method, NumberFormatException. While this
seems like an invalid override since the overridden method uses a
broader exception, both of these exceptions are unchecked, so the
third rule does not apply.

The third overridden exitShell() method declares IOException, which
is a superclass of the exception declared in the inherited method,
FileNotFoundException. Since these are checked exceptions and
IOException is broader, the overridden exitShell() method does not
compile in the GalapagosTortoise class. We’ll revisit these exception
classes, including memorizing which ones are subclasses of each other,
in Chapter 10.

The fourth and final rule around overriding a method is probably the
most complicated, as it requires knowing the relationships between
the return types. The overriding method must use a return type that is
covariant with the return type of the inherited method.

Let’s try an example for illustrative purposes:

public class Rhino {

 protected CharSequence getName() {

 return "rhino";

 }

 protected String getColor() {

 return "grey, black, or white";

 }

}

class JavanRhino extends Rhino {

 public String getName() {

 return "javan rhino";

 }

 public CharSequence getColor() { // DOES NOT COMPILE

 return "grey";

 }

}

The subclass JavanRhino attempts to override two methods from Rhino:
getName() and getColor(). Both overridden methods have the same
name and signature as the inherited methods. The overridden
methods also have a broader access modifier, public, than the
inherited methods. Per the second rule, a broader access modifier is
acceptable.

From Chapter 5, you should already know that String implements the
CharSequence interface, making String a subtype of CharSequence.
Therefore, the return type of getName() in JavanRhino is covariant with
the return type of getName() in Rhino.

On the other hand, the overridden getColor() method does not
compile because CharSequence is not a subtype of String. To put it
another way, all String values are CharSequence values, but not all
CharSequence values are String values. For example, a StringBuilder is
a CharSequence but not a String. For the exam, you need to know if the
return type of the overriding method is the same or a subtype of the
return type of the inherited method.

A simple test for covariance is the following: Given an

inherited return type A and an overriding return type B, can you
assign an instance of B to a reference variable for A without a cast?
If so, then they are covariant. This rule applies to primitive types
and object types alike. If one of the return types is void, then they
both must be void, as nothing is covariant with void except itself.

The last three rules of overriding a method may seem arbitrary or
confusing at first, but as you’ll see later in this chapter when we
discuss polymorphism, they are needed for consistency. Without these
rules in place, it is possible to create contradictions within the Java

language.

Overriding a Generic Method
Overriding methods is complicated enough, but add generics to it and
things only get more challenging. In this section, we’ll provide a
discussion of the aspects of overriding generic methods that you’ll
need to know for the exam.

Review of Overloading a Generic Method
In Chapter 7, you learned that you cannot overload methods by
changing the generic type due to type erasure. To review, only one of
the two methods is allowed in a class because type erasure will reduce
both sets of arguments to (List input).

public class LongTailAnimal {

 protected void chew(List<Object> input) {}

 protected void chew(List<Double> input) {} // DOES NOT

COMPILE

}

For the same reason, you also can’t overload a generic method in a
parent class.

public class LongTailAnimal {

 protected void chew(List<Object> input) {}

}

public class Anteater extends LongTailAnimal {

 protected void chew(List<Double> input) {} // DOES NOT

COMPILE

}

Both of these examples fail to compile because of type erasure. In the
compiled form, the generic type is dropped, and it appears as an
invalid overloaded method.

Generic Method Parameters
On the other hand, you can override a method with generic
parameters, but you must match the signature including the generic
type exactly. For example, this version of the Anteater class does

compile because it uses the same generic type in the overridden
method as the one defined in the parent class:

public class LongTailAnimal {

 protected void chew(List<String> input) {}

}

public class Anteater extends LongTailAnimal {

 protected void chew(List<String> input) {}

}

The generic type parameters have to match, but what about the
generic class or interface? Take a look at the following example. From
what you know so far, do you think these classes will compile?

public class LongTailAnimal {

 protected void chew(List<Object> input) {}

}

public class Anteater extends LongTailAnimal {

 protected void chew(ArrayList<Double> input) {}

}

Yes, these classes do compile. However, they are considered
overloaded methods, not overridden methods, because the signature is
not the same. Type erasure does not change the fact that one of the
method arguments is a List and the other is an ArrayList.

Generics and Wildcards
Java includes support for generic wildcards using the question
mark (?) character. It even supports bounded wildcards.

void sing1(List<?> v) {} // unbounded

wildcard

void sing2(List<? super String> v) {} // lower bounded

wildcard

void sing3(List<? extends String> v) {} // upper bounded

wildcard

Using generics with wildcards, overloaded methods, and
overridden methods can get quite complicated. Luckily, wildcards
are out of scope for the 1Z0-815 exam. They are required
knowledge, though, when you take the 1Z0-816 exam.

Generic Return Types
When you’re working with overridden methods that return generics,
the return values must be covariant. In terms of generics, this means
that the return type of the class or interface declared in the overriding
method must be a subtype of the class defined in the parent class. The
generic parameter type must match its parent’s type exactly.

Given the following declaration for the Mammal class, which of the two
subclasses, Monkey and Goat, compile?

public class Mammal {

 public List<CharSequence> play() { ... }

 public CharSequence sleep() { ... }

}

public class Monkey extends Mammal {

 public ArrayList<CharSequence> play() { ... }

}

public class Goat extends Mammal {

 public List<String> play() { ... } // DOES NOT COMPILE

 public String sleep() { ... }

}

The Monkey class compiles because ArrayList is a subtype of List. The
play() method in the Goat class does not compile, though. For the
return types to be covariant, the generic type parameter must match.
Even though String is a subtype of CharSequence, it does not exactly
match the generic type defined in the Mammal class. Therefore, this is
considered an invalid override.

Notice that the sleep() method in the Goat class does compile since
String is a subtype of CharSequence. This example shows that
covariance applies to the return type, just not the generic parameter
type.

For the exam, it might be helpful for you to apply type erasure to
questions involving generics to ensure that they compile properly.
Once you’ve determined which methods are overridden and which are
being overloaded, work backward, making sure the generic types

match for overridden methods. And remember, generic methods
cannot be overloaded by changing the generic parameter type only.

Redeclaring private Methods
What happens if you try to override a private method? In Java, you
can’t override private methods since they are not inherited. Just
because a child class doesn’t have access to the parent method doesn’t
mean the child class can’t define its own version of the method. It just
means, strictly speaking, that the new method is not an overridden
version of the parent class’s method.

Java permits you to redeclare a new method in the child class with the
same or modified signature as the method in the parent class. This
method in the child class is a separate and independent method,
unrelated to the parent version’s method, so none of the rules for
overriding methods is invoked. Let’s return to the Camel example we
used in the previous section and show two related classes that define
the same method:

public class Camel {

 private String getNumberOfHumps() {

 return "Undefined";

 }

}

public class DromedaryCamel extends Camel {

 private int getNumberOfHumps() {

 return 1;

 }

}

This code compiles without issue. Notice that the return type differs in
the child method from String to int. In this example, the method
getNumberOfHumps() in the parent class is redeclared, so the method in
the child class is a new method and not an override of the method in
the parent class. As you saw in the previous section, if the method in
the parent class were public or protected, the method in the child
class would not compile because it would violate two rules of
overriding methods. The parent method in this example is private, so
there are no such issues.

Hiding Static Methods
A hidden method occurs when a child class defines a static method
with the same name and signature as an inherited static method
defined in a parent class. Method hiding is similar but not exactly the
same as method overriding. The previous four rules for overriding a
method must be followed when a method is hidden. In addition, a new
rule is added for hiding a method:

5. The method defined in the child class must be marked as static if
it is marked as static in a parent class.

Put simply, it is method hiding if the two methods are marked static,
and method overriding if they are not marked static. If one is marked
static and the other is not, the class will not compile.

Let’s review some examples of the new rule:

public class Bear {

 public static void eat() {

 System.out.println("Bear is eating");

 }

}

public class Panda extends Bear {

 public static void eat() {

 System.out.println("Panda is chewing");

 }

 public static void main(String[] args) {

 eat();

 }

}

In this example, the code compiles and runs. The eat() method in the
Panda class hides the eat() method in the Bear class, printing "Panda
is chewing" at runtime. Because they are both marked as static, this
is not considered an overridden method. That said, there is still some
inheritance going on. If you remove the eat() method in the Panda
class, then the program prints "Bear is eating" at runtime.

Let’s contrast this with an example that violates the fifth rule:

public class Bear {

 public static void sneeze() {

 System.out.println("Bear is sneezing");

 }

 public void hibernate() {

 System.out.println("Bear is hibernating");

 }

 public static void laugh() {

 System.out.println("Bear is laughing");

 }

}

public class Panda extends Bear {

 public void sneeze() { // DOES NOT COMPILE

 System.out.println("Panda sneezes quietly");

 }

 public static void hibernate() { // DOES NOT COMPILE

 System.out.println("Panda is going to sleep");

 }

 protected static void laugh() { // DOES NOT COMPILE

 System.out.println("Panda is laughing");

 }

}

In this example, sneeze() is marked static in the parent class but not
in the child class. The compiler detects that you’re trying to override
using an instance method. However, sneeze() is a static method that
should be hidden, causing the compiler to generate an error. In the
second method, hibernate() is an instance member in the parent class
but a static method in the child class. In this scenario, the compiler
thinks that you’re trying to hide a static method. Because hibernate()
is an instance method that should be overridden, the compiler
generates an error. Finally, the laugh() method does not compile.
Even though both versions of method are marked static, the version
in Panda has a more restrictive access modifier than the one it inherits,
and it breaks the second rule for overriding methods. Remember, the
four rules for overriding methods must be followed when hiding
static methods.

Creating final Methods
We conclude our discussion of method inheritance with a somewhat
self-explanatory rule—final methods cannot be replaced.

By marking a method final, you forbid a child class from replacing

this method. This rule is in place both when you override a method
and when you hide a method. In other words, you cannot hide a static
method in a child class if it is marked final in the parent class.

Let’s take a look at an example:

public class Bird {

 public final boolean hasFeathers() {

 return true;

 }

 public final static void flyAway() {}

}

public class Penguin extends Bird {

 public final boolean hasFeathers() { // DOES NOT COMPILE

 return false;

 }

 public final static void flyAway() {} // DOES NOT COMPILE

}

In this example, the instance method hasFeathers() is marked as
final in the parent class Bird, so the child class Penguin cannot
override the parent method, resulting in a compiler error. The static
method flyAway() is also marked final, so it cannot be hidden in the
subclass. In this example, whether or not the child method used the
final keyword is irrelevant—the code will not compile either way.

This rule applies only to inherited methods. For example, if the two
methods were marked private in the parent Bird class, then the
Penguin class, as defined, would compile. In that case, the private
methods would be redeclared, not overridden or hidden.

Why Mark a Method as final?
Although marking methods as final prevents them from being
overridden, it does have advantages in practice. For example, you’d
mark a method as final when you’re defining a parent class and
want to guarantee certain behavior of a method in the parent class,
regardless of which child is invoking the method.

In the previous example with Bird, the author of the parent class

may want to ensure the method hasFeathers() always returns true,
regardless of the child class instance on which it is invoked. The
author is confident that there is no example of a Bird in which
feathers are not present.

The reason methods are not commonly marked as final in
practice, though, is that it may be difficult for the author of a
parent class method to consider all of the possible ways her child
class may be used. For example, although all adult birds have
feathers, a baby chick doesn’t; therefore, if you have an instance of
a Bird that is a chick, it would not have feathers. For this reason,
the final modifier is often used when the author of the parent class
wants to guarantee certain behavior at the cost of limiting
polymorphism.

Hiding Variables
As you saw with method overriding, there are a lot of rules when two
methods have the same signature and are defined in both the parent
and child classes. Luckily, the rules for variables with the same name
in the parent and child classes are a lot simpler. In fact, Java doesn’t
allow variables to be overridden. Variables can be hidden, though.

A hidden variable occurs when a child class defines a variable with the
same name as an inherited variable defined in the parent class. This
creates two distinct copies of the variable within an instance of the
child class: one instance defined in the parent class and one defined in
the child class.

As when hiding a static method, you can’t override a variable; you can
only hide it. Let’s take a look at a hidden variable. What do you think
the following application prints?

class Carnivore {

 protected boolean hasFur = false;

}

public class Meerkat extends Carnivore {

 protected boolean hasFur = true;

 public static void main(String[] args) {

 Meerkat m = new Meerkat();

 Carnivore c = m;

 System.out.println(m.hasFur);

 System.out.println(c.hasFur);

 }

}

It prints true followed by false. Confused? Both of these classes define
a hasFur variable, but with different values. Even though there is only
one object created by the main() method, both variables exist
independently of each other. The output changes depending on the
reference variable used.

If you didn’t understand the last example, don’t worry. The next
section on polymorphism will expand on how overriding and hiding
differ. For now, you just need to know that overriding a method
replaces the parent method on all reference variables (other than
super), whereas hiding a method or variable replaces the member only
if a child reference type is used.

Understanding Polymorphism
Java supports polymorphism, the property of an object to take on
many different forms. To put this more precisely, a Java object may be
accessed using a reference with the same type as the object, a reference
that is a superclass of the object, or a reference that defines an
interface the object implements, either directly or through a
superclass. Furthermore, a cast is not required if the object is being
reassigned to a super type or interface of the object.

Interface Primer
We’ll be discussing interfaces in detail in the next chapter. For this
chapter, you need to know the following:

An interface can define abstract methods.

A class can implement any number of interfaces.

A class implements an interface by overriding the inherited
abstract methods.

An object that implements an interface can be assigned to a
reference for that interface.

As you’ll see in the next chapter, the same rules for overriding
methods and polymorphism apply.

Let’s illustrate this polymorphism property with the following
example:

public class Primate {

 public boolean hasHair() {

 return true;

 }

}

public interface HasTail {

 public abstract boolean isTailStriped();

}

public class Lemur extends Primate implements HasTail {

 public boolean isTailStriped() {

 return false;

 }

 public int age = 10;

 public static void main(String[] args) {

 Lemur lemur = new Lemur();

 System.out.println(lemur.age);

 HasTail hasTail = lemur;

 System.out.println(hasTail.isTailStriped());

 Primate primate = lemur;

 System.out.println(primate.hasHair());

 }

}

This code compiles and prints the following output:

10

false

true

The most important thing to note about this example is that only one
object, Lemur, is created and referenced. Polymorphism enables an
instance of Lemur to be reassigned or passed to a method using one of
its supertypes, such as Primate or HasTail.

Once the object has been assigned to a new reference type, only the
methods and variables available to that reference type are callable on
the object without an explicit cast. For example, the following snippets
of code will not compile:

 HasTail hasTail = lemur;

 System.out.println(hasTail.age); // DOES NOT

COMPILE

 Primate primate = lemur;

 System.out.println(primate.isTailStriped()); // DOES NOT

COMPILE

In this example, the reference hasTail has direct access only to
methods defined with the HasTail interface; therefore, it doesn’t know
the variable age is part of the object. Likewise, the reference primate

has access only to methods defined in the Primate class, and it doesn’t
have direct access to the isTailStriped() method.

Object vs. Reference
In Java, all objects are accessed by reference, so as a developer you
never have direct access to the object itself. Conceptually, though, you
should consider the object as the entity that exists in memory,
allocated by the Java runtime environment. Regardless of the type of
the reference you have for the object in memory, the object itself
doesn’t change. For example, since all objects inherit
java.lang.Object, they can all be reassigned to java.lang.Object, as
shown in the following example:

 Lemur lemur = new Lemur();

 Object lemurAsObject = lemur;

Even though the Lemur object has been assigned to a reference with a
different type, the object itself has not changed and still exists as a
Lemur object in memory. What has changed, then, is our ability to
access methods within the Lemur class with the lemurAsObject
reference. Without an explicit cast back to Lemur, as you’ll see in the
next section, we no longer have access to the Lemur properties of the
object.

We can summarize this principle with the following two rules:

1. The type of the object determines which properties exist within
the object in memory.

2. The type of the reference to the object determines which methods
and variables are accessible to the Java program.

It therefore follows that successfully changing a reference of an object
to a new reference type may give you access to new properties of the
object, but remember, those properties existed before the reference
change occurred.

Let’s illustrate this property using the previous example in Figure 8.4.

Figure 8.4 Object vs. reference

As you can see in the figure, the same object exists in memory
regardless of which reference is pointing to it. Depending on the type
of the reference, we may only have access to certain methods. For
example, the hasTail reference has access to the method
isTailStriped() but doesn’t have access to the variable age defined in
the Lemur class. As you’ll learn in the next section, it is possible to
reclaim access to the variable age by explicitly casting the hasTail
reference to a reference of type Lemur.

Casting Objects
In the previous example, we created a single instance of a Lemur object
and accessed it via superclass and interface references. Once we
changed the reference type, though, we lost access to more specific
members defined in the subclass that still exist within the object. We
can reclaim those references by casting the object back to the specific
subclass it came from:

 Primate primate = new Lemur(); // Implicit Cast

 Lemur lemur2 = primate; // DOES NOT COMPILE

 System.out.println(lemur2.age);

 Lemur lemur3 = (Lemur)primate; // Explicit Cast

 System.out.println(lemur3.age);

In this example, we first create a Lemur object and implicitly cast it to a
Primate reference. Since Lemur is a subclass of Primate, this can be
done without a cast operator. Next, we try to convert the primate
reference back to a lemur reference, lemur2, without an explicit cast.
The result is that the code will not compile. In the second example,
though, we explicitly cast the object to a subclass of the object Primate,
and we gain access to all the methods and fields available to the Lemur
class.

Casting objects is similar to casting primitives, as you saw in Chapter
3, “Operators.” When casting objects, you do not need a cast operator
if the current reference is a subtype of the target type. This is referred
to as an implicit cast or type conversion. Alternatively, if the current
reference is not a subtype of the target type, then you need to perform
an explicit cast with a compatible type. If the underlying object is not
compatible with the type, then a ClassCastException will be thrown at
runtime.

We summarize these concepts into a set of rules for you to memorize
for the exam:

1. Casting a reference from a subtype to a supertype doesn’t require
an explicit cast.

2. Casting a reference from a supertype to a subtype requires an
explicit cast.

3. The compiler disallows casts to an unrelated class.

4. At runtime, an invalid cast of a reference to an unrelated type
results in a ClassCastException being thrown.

The third rule is important; the exam may try to trick you with a cast
that the compiler doesn’t allow. In our previous example, we were able
to cast a Primate reference to a Lemur reference, because Lemur is a
subclass of Primate and therefore related. Consider this example
instead:

public class Bird {}

public class Fish {

 public static void main(String[] args) {

 Fish fish = new Fish();

 Bird bird = (Bird)fish; // DOES NOT COMPILE

 }

}

In this example, the classes Fish and Bird are not related through any
class hierarchy that the compiler is aware of; therefore, the code will
not compile. While they both extend Object implicitly, they are
considered unrelated types since one cannot be a subtype of the other.

While the compiler can enforce rules about casting to

unrelated types for classes, it cannot do the same for interfaces,
since a subclass may implement the interface. We’ll revisit this
topic in the next chapter. For now, you just need to know the third
rule on casting applies to class types only, not interfaces.

Casting is not without its limitations. Even though two classes share a
related hierarchy, that doesn’t mean an instance of one can
automatically be cast to another. Here’s an example:

public class Rodent {}

public class Capybara extends Rodent {

 public static void main(String[] args) {

 Rodent rodent = new Rodent();

 Capybara capybara = (Capybara)rodent; //

ClassCastException

 }

}

This code creates an instance of Rodent and then tries to cast it to a
subclass of Rodent, Capybara. Although this code will compile, it will
throw a ClassCastException at runtime since the object being
referenced is not an instance of the Capybara class. The thing to keep in
mind in this example is the Rodent object created does not inherit the

Capybara class in any way.

When reviewing a question on the exam that involves casting and
polymorphism, be sure to remember what the instance of the object
actually is. Then, focus on whether the compiler will allow the object to
be referenced with or without explicit casts.

The instanceof Operator
In Chapter 3, we presented the instanceof operator, which can be used
to check whether an object belongs to a particular class or interface
and to prevent ClassCastExceptions at runtime. Unlike the previous
example, the following code snippet doesn’t throw an exception at
runtime and performs the cast only if the instanceof operator returns
true:

 if(rodent instanceof Capybara) {

 Capybara capybara = (Capybara)rodent;

 }

Just as the compiler does not allow casting an object to unrelated
types, it also does not allow instanceof to be used with unrelated
types. We can demonstrate this with our unrelated Bird and Fish
classes:

 public static void main(String[] args) {

 Fish fish = new Fish();

 if (fish instanceof Bird) { // DOES NOT COMPILE

 Bird bird = (Bird) fish; // DOES NOT COMPILE

 }

 }

In this snippet, neither the instanceof operator nor the explicit cast
operation compile.

Polymorphism and Method Overriding
In Java, polymorphism states that when you override a method, you
replace all calls to it, even those defined in the parent class. As an
example, what do you think the following code snippet outputs?

class Penguin {

 public int getHeight() { return 3; }

 public void printInfo() {

 System.out.print(this.getHeight());

 }

}

public class EmperorPenguin extends Penguin {

 public int getHeight() { return 8; }

 public static void main(String []fish) {

 new EmperorPenguin().printInfo();

 }

}

If you said 8, then you are well on your way to understanding
polymorphism. In this example, the object being operated on in
memory is an EmperorPenguin. The getHeight() method is overridden
in the subclass, meaning all calls to it are replaced at runtime. Despite
printInfo() being defined in the Penguin class, calling getHeight() on
the object calls the method associated with the precise object in
memory, not the current reference type where it is called. Even using
the this reference, which is optional in this example, does not call the
parent version because the method has been replaced.

The facet of polymorphism that replaces methods via overriding is one
of the most important properties in all of Java. It allows you to create
complex inheritance models, with subclasses that have their own
custom implementation of overridden methods. It also means the
parent class does not need to be updated to use the custom or
overridden method. If the method is properly overridden, then the
overridden version will be used in all places that it is called.

Remember, you can choose to limit polymorphic behavior by marking
methods final, which prevents them from being overridden by a
subclass.

Calling the Parent Version of an Overridden Method
As you saw earlier in the chapter, there is one exception to
overriding a method where the parent method can still be called,
and that is when the super reference is used. How can you modify
our EmperorPenguin example to print 3, as defined in the Penguin
getHeight() method? You could try calling super.getHeight() in

the printInfo() method of the Penguin class.

class Penguin {

 ...

 public void printInfo() {

 System.out.print(super.getHeight()); // DOES NOT

COMPILE

 }

}

Unfortunately, this does not compile, as super refers to the
superclass of Penguin, in this case Object. The solution is to
override printInfo() in the EmperorPenguin class and use super
there.

public class EmperorPenguin extends Penguin {

 ...

 public void printInfo() {

 System.out.print(super.getHeight());

 }

 ...

}

This new version of EmperorPenguin uses the getHeight() method
declared in the parent class and prints 3.

Overriding vs. Hiding Members
While method overriding replaces the method everywhere it is called,
static method and variable hiding does not. Strictly speaking, hiding
members is not a form of polymorphism since the methods and
variables maintain their individual properties. Unlike method
overriding, hiding members is very sensitive to the reference type and
location where the member is being used.

Let’s take a look at an example:

class Penguin {

 public static int getHeight() { return 3; }

 public void printInfo() {

 System.out.println(this.getHeight());

 }

}

public class CrestedPenguin extends Penguin {

 public static int getHeight() { return 8; }

 public static void main(String... fish) {

 new CrestedPenguin().printInfo();

 }

}

The CrestedPenguin example is nearly identical to our previous
EmporerPenguin example, although as you probably already guessed, it
prints 3 instead of 8. The getHeight() method is static and is
therefore hidden, not overridden. The result is that calling getHeight()
in CrestedPenguin returns a different value than calling it in the
Penguin, even if the underlying object is the same. Contrast this with
overriding a method, where it returns the same value for an object
regardless of which class it is called in.

What about the fact that we used this to access a static method in
this.getHeight()? As discussed in Chapter 7, while you are permitted
to use an instance reference to access a static variable or method, it is
often discouraged. In fact, the compiler will warn you when you access
static members in a non-static way. In this case, the this reference
had no impact on the program output.

Besides the location, the reference type can also determine the value
you get when you are working with hidden members. Ready? Let’s try
a more complex example:

class Marsupial {

 protected int age = 2;

 public static boolean isBiped() {

 return false;

 }

}

public class Kangaroo extends Marsupial {

 protected int age = 6;

 public static boolean isBiped() {

 return true;

 }

 public static void main(String[] args) {

 Kangaroo joey = new Kangaroo();

 Marsupial moey = joey;

 System.out.println(joey.isBiped());

 System.out.println(moey.isBiped());

 System.out.println(joey.age);

 System.out.println(moey.age);

 }

}

The program prints the following:

true

false

6

2

Remember, in this example, only one object, of type Kangaroo, is
created and stored in memory. Since static methods can only be
hidden, not overridden, Java uses the reference type to determine
which version of isBiped() should be called, resulting in
joey.isBiped() printing true and moey.isBiped() printing false.

Likewise, the age variable is hidden, not overridden, so the reference
type is used to determine which value to output. This results in
joey.age returning 6 and moey.age returning 2.

Don’t Hide Members in Practice
Although Java allows you to hide variables and static methods, it
is considered an extremely poor coding practice. As you saw in the
previous example, the value of the variable or method can change
depending on what reference is used, making your code very
confusing, difficult to follow, and challenging for others to
maintain. This is further compounded when you start modifying
the value of the variable in both the parent and child methods,
since it may not be clear which variable you’re updating.

When you’re defining a new variable or static method in a child
class, it is considered good coding practice to select a name that is
not already used by an inherited member. Redeclaring private
methods and variables is considered less problematic, though,
because the child class does not have access to the variable in the

parent class to begin with.

For the exam, make sure you understand these examples as they show
how hidden and overridden methods are fundamentally different. In
practice, overriding methods is the cornerstone of polymorphism and
is an extremely powerful feature.

Summary
This chapter took the basic class structures we’ve presented
throughout the book and expanded them by introducing the notion of
inheritance. Java classes follow a multilevel single-inheritance pattern
in which every class has exactly one direct parent class, with all classes
eventually inheriting from java.lang.Object.

Inheriting a class gives you access to all of the public and protected
members of the class. It also gives you access to package-private
members of the class if the classes are in the same package. All
instance methods, constructors, and instance initializers have access
to two special reference variables: this and super. Both this and super
provide access to all inherited members, with only this providing
access to all members in the current class declaration.

Constructors are special methods that use the class name and do not
have a return type. They are used to instantiate new objects. Declaring
constructors requires following a number of important rules. If no
constructor is provided, the compiler will automatically insert a
default no-argument constructor in the class. The first line of every
constructor is a call to an overloaded constructor, this(), or a parent
constructor, super(); otherwise, the compiler will insert a call to
super() as the first line of the constructor. In some cases, such as if the
parent class does not define a no-argument constructor, this can lead
to compilation errors. Pay close attention on the exam to any class that
defines a constructor with arguments and doesn’t define a no-
argument constructor.

Classes are initialized in a predetermined order: superclass
initialization; static variables and static initializers in the order that
they appear; instance variables and instance initializers in the order
they appear; and finally, the constructor. All final instance variables
must be assigned a value exactly once. If by the time a constructor
finishes, a final instance variable is not assigned a value, then the
constructor will not compile.

We reviewed overloaded, overridden, hidden, and redeclared methods

and showed how they differ, especially in terms of polymorphism. A
method is overloaded if it has the same name but a different signature
as another accessible method. A method is overridden if it has the
same signature as an inherited method, with access modifiers,
exceptions, and a return type that are compatible. A static method is
hidden if it has the same signature as an inherited static method.
Finally, a method is redeclared if it has the same name and possibly
the same signature as an uninherited method.

We also introduced the notion of hiding variables, although we
strongly discourage this in practice as it often leads to confusing,
difficult-to-maintain code.

Finally, this chapter introduced the concept of polymorphism, central
to the Java language, and showed how objects can be accessed in a
variety of forms. Make sure you understand when casts are needed for
accessing objects, and be able to spot the difference between compile-
time and runtime cast problems.

Exam Essentials
Be able to write code that extends other classes. A Java class
that extends another class inherits all of its public and protected
methods and variables. If the class is in the same package, it also
inherits all package-private members of the class. Classes that are
marked final cannot be extended. Finally, all classes in Java extend
java.lang.Object either directly or from a superclass.

Be able to distinguish and make use of this, this(), super,
and super(). To access a current or inherited member of a class, the
this reference can be used. To access an inherited member, the super
reference can be used. The super reference is often used to reduce
ambiguity, such as when a class reuses the name of an inherited
method or variable. The calls to this() and super() are used to access
constructors in the same class and parent class, respectively.

Evaluate code involving constructors. The first line of every
constructor is a call to another constructor within the class using
this() or a call to a constructor of the parent class using the super()
call. The compiler will insert a call to super() if no constructor call is
declared. If the parent class doesn’t contain a no-argument
constructor, an explicit call to the parent constructor must be
provided. Be able to recognize when the default constructor is
provided. Remember that the order of initialization is to initialize all
classes in the class hierarchy, starting with the superclass. Then, the
instances are initialized, again starting with the superclass. All final
variables must be assigned a value exactly once by the time the
constructor is finished.

Understand the rules for method overriding. Java allows
methods to be overridden, or replaced, by a subclass if certain rules
are followed: a method must have the same signature, be at least as
accessible as the parent method, must not declare any new or broader
exceptions, and must use covariant return types. The generic
parameter types must exactly match in any of the generic method
arguments or a generic return type. Methods marked final may not be
overridden or hidden.

Understand the rules for hiding methods and variables.
When a static method is overridden in a subclass, it is referred to as
method hiding. Likewise, variable hiding is when an inherited variable
name is reused in a subclass. In both situations, the original method or
variable still exists and is accessible depending on where it is accessed
and the reference type used. For method hiding, the use of static in
the method declaration must be the same between the parent and
child class. Finally, variable and method hiding should generally be
avoided since it leads to confusing and difficult-to-follow code.

Recognize the difference between method overriding and
method overloading. Both method overloading and overriding
involve creating a new method with the same name as an existing
method. When the method signature is the same, it is referred to as
method overriding and must follow a specific set of override rules to
compile. When the method signature is different, with the method
taking different inputs, it is referred to as method overloading, and
none of the override rules are required. Method overriding is
important to polymorphism because it replaces all calls to the method,
even those made in a superclass.

Understand polymorphism. An object may take on a variety of
forms, referred to as polymorphism. The object is viewed as existing in
memory in one concrete form but is accessible in many forms through
reference variables. Changing the reference type of an object may
grant access to new members, but the members always exist in
memory.

Recognize valid reference casting. An instance can be
automatically cast to a superclass or interface reference without an
explicit cast. Alternatively, an explicit cast is required if the reference
is being narrowed to a subclass of the object. The Java compiler
doesn’t permit casting to unrelated class types. Be able to discern
between compiler-time casting errors and those that will not occur
until runtime and that throw a ClassCastException.

Review Questions
1. Which code can be inserted to have the code print 2?

public class BirdSeed {

private int numberBags;

boolean call;

public BirdSeed() {

// LINE 1

call = false;

// LINE 2

}

public BirdSeed(int numberBags) {

this.numberBags = numberBags;

}

public static void main(String[] args) {

BirdSeed seed = new BirdSeed();

System.out.print(seed.numberBags);

} }

A. Replace line 1 with BirdSeed(2);

B. Replace line 2 with BirdSeed(2);

C. Replace line 1 with new BirdSeed(2);

D. Replace line 2 with new BirdSeed(2);

E. Replace line 1 with this(2);

F. Replace line 2 with this(2);

G. The code prints 2 without any changes.

2. Which of the following statements about methods are true?
(Choose all that apply.)

A. Overloaded methods must have the same signature.

B. Overridden methods must have the same signature.

C. Hidden methods must have the same signature.

D. Overloaded methods must have the same return type.

E. Overridden methods must have the same return type.

F. Hidden methods must have the same return type.

3. What is the output of the following program?

1: class Mammal {

2: private void sneeze() {}

3: public Mammal(int age) {

4: System.out.print("Mammal");

5: } }

6: public class Platypus extends Mammal {

7: int sneeze() { return 1; }

8: public Platypus() {

9: System.out.print("Platypus");

10: }

11: public static void main(String[] args) {

12: new Mammal(5);

13: } }

A. Platypus

B. Mammal

C. PlatypusMammal

D. MammalPlatypus

E. The code will compile if line 7 is changed.

F. The code will compile if line 9 is changed.

4. Which of the following complete the constructor so that this code
prints out 50? (Choose all that apply.)

class Speedster {

int numSpots;

}

public class Cheetah extends Speedster {

int numSpots;

public Cheetah(int numSpots) {

// INSERT CODE HERE

}

public static void main(String[] args) {

Speedster s = new Cheetah(50);

System.out.print(s.numSpots);

}

}

A. numSpots = numSpots;

B. numSpots = this.numSpots;

C. this.numSpots = numSpots;

D. numSpots = super.numSpots;

E. super.numSpots = numSpots;

F. The code does not compile, regardless of the code inserted
into the constructor.

G. None of the above

5. What is the output of the following code?

1: class Arthropod {

2: protected void printName(long input) {

3: System.out.print("Arthropod");

4: }

5: void printName(int input) {

6: System.out.print("Spooky");

7: } }

8: public class Spider extends Arthropod {

9: protected void printName(int input) {

10: System.out.print("Spider");

11: }

12: public static void main(String[] args) {

13: Arthropod a = new Spider();

14: a.printName((short)4);

15: a.printName(4);

16: a.printName(5L);

17: } }

A. SpiderSpiderArthropod

B. SpiderSpiderSpider

C. SpiderSpookyArthropod

D. SpookySpiderArthropod

E. The code will not compile because of line 5.

F. The code will not compile because of line 9.

G. None of the above

6. Which of the following statements about overridden methods are
true? (Choose all that apply.)

A. An overridden method must contain method parameters that
are the same or covariant with the method parameters in the
inherited method.

B. An overridden method may declare a new exception,
provided it is not checked.

C. An overridden method must be more accessible than the
method in the parent class.

D. An overridden method may declare a broader checked
exception than the method in the parent class.

E. If an inherited method returns void, then the overridden
version of the method must return void.

F. None of the above

7. Which of the following pairs, when inserted into the blanks, allow
the code to compile? (Choose all that apply.)

1: public class Howler {

2: public Howler(long shadow) {

3: _____________;

4: }

5: private Howler(int moon) {

6: super();

7: }

8: }

9: class Wolf extends Howler {

10: protected Wolf(String stars) {

11: super(2L);

12: }

13: public Wolf() {

14: _____________;

15: }

16: }

A. this(3) at line 3, this("") at line 14

B. this() at line 3, super(1) at line 14

C. this((short)1) at line 3, this(null) at line 14

D. super() at line 3, super() at line 14

E. this(2L) at line 3, super((short)2) at line 14

F. this(5) at line 3, super(null) at line 14

G. Remove lines 3 and 14.

8. What is the result of the following?

1: public class PolarBear {

2: StringBuilder value = new StringBuilder("t");

3: { value.append("a"); }

4: { value.append("c"); }

5: private PolarBear() {

6: value.append("b");

7: }

8: public PolarBear(String s) {

9: this();

10: value.append(s);

11: }

12: public PolarBear(CharSequence p) {

13: value.append(p);

14: }

15: public static void main(String[] args) {

16: Object bear = new PolarBear();

17: bear = new PolarBear("f");

18: System.out.println(((PolarBear)bear).value);

19: } }

A. tacb

B. tacf

C. tacbf

D. tcafb

E. taftacb

F. The code does not compile.

G. An exception is thrown.

9. Which of the following method signatures are valid overrides of
the hairy() method in the Alpaca class? (Choose all that apply.)

import java.util.*;

public class Alpaca {

protected List<String> hairy(int p) { return null; }

}

A. List<String> hairy(int p) { return null; }

B. public List<String> hairy(int p) { return null; }

C. public List<CharSequence> hairy(int p) { return null; }

D. private List<String> hairy(int p) { return null; }

E. public Object hairy(int p) { return null; }

F. public ArrayList<String> hairy(int p) { return null; }

G. None of the above

10. How many lines of the following program contain a compilation
error?

1: public class Rodent {

2: public Rodent(var x) {}

3: protected static Integer chew() throws Exception {

4: System.out.println("Rodent is chewing");

5: return 1;

6: }

7: }

8: class Beaver extends Rodent {

9: public Number chew() throws RuntimeException {

10: System.out.println("Beaver is chewing on wood");

11: return 2;

12: } }

A. None

B. 1

C. 2

D. 3

E. 4

F. 5

11. Which of the following statements about polymorphism are true?
(Choose all that apply.)

A. An object may be cast to a subtype without an explicit cast.

B. If the type of a method argument is an interface, then a
reference variable that implements the interface may be

passed to the method.

C. A method that takes a parameter with type java.lang.Object
can be passed any variable.

D. All cast exceptions can be detected at compile-time.

E. By defining a final instance method in the superclass, you
guarantee that the specific method will be called in the parent
class at runtime.

F. Polymorphism applies only to classes, not interfaces.

12. Which of the following statements can be inserted in the blank so
that the code will compile successfully? (Choose all that apply.)

public class Snake {}

public class Cobra extends Snake {}

public class GardenSnake extends Cobra {}

public class SnakeHandler {

private Snake snake;

public void setSnake(Snake snake) { this.snake = snake;

}

public static void main(String[] args) {

new SnakeHandler().setSnake(___________);

}

}

A. new Cobra()

B. new Snake()

C. new Object()

D. new String("Snake")

E. new GardenSnake()

F. null

G. None of the above. The class does not compile, regardless of

the value inserted in the blank.

13. Which of these classes compile and will include a default
constructor created by the compiler? (Choose all that apply.)

A.

public class Bird {}

B.

public class Bird {

public bird() {}

}

C.

public class Bird {

public bird(String name) {}

}

D.

public class Bird {

public Bird() {}

}

E.

public class Bird {

Bird(String name) {}

}

F.

public class Bird {

private Bird(int age) {}

}

G.

public class Bird {

public Bird bird() {return null;}

}

14. Which of the following statements about inheritance are correct?
(Choose all that apply.)

A. A class can directly extend any number of classes.

B. A class can implement any number of interfaces.

C. All variables inherit java.lang.Object.

D. If class A is extended by B, then B is a superclass of A.

E. If class C implements interface D, then C is subtype of D.

F. Multiple inheritance is the property of a class to have
multiple direct superclasses.

15. What is the result of the following?

1: class Arachnid {

2: static StringBuilder sb = new StringBuilder();

3: { sb.append("c"); }

4: static

5: { sb.append("u"); }

6: { sb.append("r"); }

7: }

8: public class Scorpion extends Arachnid {

9: static

10: { sb.append("q"); }

11: { sb.append("m"); }

12: public static void main(String[] args) {

13: System.out.print(Scorpion.sb + " ");

14: System.out.print(Scorpion.sb + " ");

15: new Arachnid();

16: new Scorpion();

17: System.out.print(Scorpion.sb);

18: } }

A. qu qu qumrcrc

B. u u ucrcrm

C. uq uq uqmcrcr

D. uq uq uqcrcrm

E. qu qu qumcrcr

F. qu qu qucrcrm

G. The code does not compile.

16. Which of the following methods are valid overrides of the
friendly() method in the Llama class? (Choose all that apply.)

import java.util.*;

public class Llama {

void friendly(List<String> laugh, Iterable<Short> s) {}

}

A. void friendly(List<CharSequence> laugh, Iterable<Short>
s) {}

B. void friendly(List<String> laugh, Iterable<Short> s) {}

C. void friendly(ArrayList<String> laugh, Iterable<Short>
s) {}

D. void friendly(List<String> laugh, Iterable<Integer> s)
{}

E. void friendly(ArrayList<CharSequence> laugh, Object s)
{}

F. void friendly(ArrayList<String> laugh, Iterable... s) {}

G. None of the above

17. Which of the following statements about inheritance and
variables are true? (Choose all that apply.)

A. Instance variables can be overridden in a subclass.

B. If an instance variable is declared with the same name as an
inherited variable, then the type of the variable must be
covariant.

C. If an instance variable is declared with the same name as an
inherited variable, then the access modifier must be at least
as accessible as the variable in the parent class.

D. If a variable is declared with the same name as an inherited
static variable, then it must also be marked static.

E. The variable in the child class may not throw a checked
exception that is new or broader than the class of any
exception thrown in the parent class variable.

F. None of the above

18. Which of the following are true? (Choose all that apply.)

A. this() can be called from anywhere in a constructor.

B. this() can be called from anywhere in an instance method.

C. this.variableName can be called from any instance method in
the class.

D. this.variableName can be called from any static method in
the class.

E. You can call the default constructor written by the compiler
using this().

F. You can access a private constructor with the main() method
in the same class.

19. Which statements about the following classes are correct?
(Choose all that apply.)

1: public class Mammal {

2: private void eat() {}

3: protected static void drink() {}

4: public Integer dance(String p) { return null; }

5: }

6: class Primate extends Mammal {

7: public void eat(String p) {}

8: }

9: class Monkey extends Primate {

10: public static void drink() throws RuntimeException

{}

11: public Number dance(CharSequence p) { return null; }

12: public int eat(String p) {}

13: }

A. The eat() method in Mammal is correctly overridden on line 7.

B. The eat() method in Mammal is correctly overloaded on line 7.

C. The drink() method in Mammal is correctly hidden on line 10.

D. The drink() method in Mammal is correctly overridden on line
10.

E. The dance() method in Mammal is correctly overridden on line
11.

F. The dance() method in Mammal is correctly overloaded on line
11.

G. The eat() method in Primate is correctly hidden on line 12.

H. The eat() method in Primate is correctly overloaded on line
12.

20. What is the output of the following code?

1: class Reptile {

2: {System.out.print("A");}

3: public Reptile(int hatch) {}

4: void layEggs() {

5: System.out.print("Reptile");

6: } }

7: public class Lizard extends Reptile {

8: static {System.out.print("B");}

9: public Lizard(int hatch) {}

10: public final void layEggs() {

11: System.out.print("Lizard");

12: }

13: public static void main(String[] args) {

14: Reptile reptile = new Lizard(1);

15: reptile.layEggs();

16: } }

A. AALizard

B. BALizard

C. BLizardA

D. ALizard

E. The code will not compile because of line 10.

F. None of the above

21. Which statement about the following program is correct?

1: class Bird {

2: int feathers = 0;

3: Bird(int x) { this.feathers = x; }

4: Bird fly() {

5: return new Bird(1);

6: } }

7: class Parrot extends Bird {

8: protected Parrot(int y) { super(y); }

9: protected Parrot fly() {

10: return new Parrot(2);

11: } }

12: public class Macaw extends Parrot {

13: public Macaw(int z) { super(z); }

14: public Macaw fly() {

15: return new Macaw(3);

16: }

17: public static void main(String... sing) {

18: Bird p = new Macaw(4);

19: System.out.print(((Parrot)p.fly()).feathers);

20: } }

A. One line contains a compiler error.

B. Two lines contain compiler errors.

C. Three lines contain compiler errors.

D. The code compiles but throws a ClassCastException at
runtime.

E. The program compiles and prints 3.

F. The program compiles and prints 0.

22. What does the following program print?

1: class Person {

2: static String name;

3: void setName(String q) { name = q; } }

4: public class Child extends Person {

5: static String name;

6: void setName(String w) { name = w; }

7: public static void main(String[] p) {

8: final Child m = new Child();

9: final Person t = m;

10: m.name = "Elysia";

11: t.name = "Sophia";

12: m.setName("Webby");

13: t.setName("Olivia");

14: System.out.println(m.name + " " + t.name);

15: } }

A. Elysia Sophia

B. Webby Olivia

C. Olivia Olivia

D. Olivia Sophia

E. The code does not compile.

F. None of the above

23. What is the output of the following program?

1: class Canine {

2: public Canine(boolean t) { logger.append("a"); }

3: public Canine() { logger.append("q"); }

4:

5: private StringBuilder logger = new StringBuilder();

6: protected void print(String v) { logger.append(v); }

7: protected String view() { return logger.toString(); }

8: }

9:

10: class Fox extends Canine {

11: public Fox(long x) { print("p"); }

12: public Fox(String name) {

13: this(2);

14: print("z");

15: }

16: }

17:

18: public class Fennec extends Fox {

19: public Fennec(int e) {

20: super("tails");

21: print("j");

22: }

23: public Fennec(short f) {

24: super("eevee");

25: print("m");

26: }

27:

28: public static void main(String... unused) {

29: System.out.println(new Fennec(1).view());

30: } }

A. qpz

B. qpzj

C. jzpa

D. apj

E. apjm

F. The code does not compile.

G. None of the above

24. Which statements about polymorphism and method inheritance
are correct? (Choose all that apply.)

A. It cannot be determined until runtime which overridden
method will be executed in a parent class.

B. It cannot be determined until runtime which hidden method
will be executed in a parent class.

C. Marking a method static prevents it from being overridden
or hidden.

D. Marking a method final prevents it from being overridden or
hidden.

E. The reference type of the variable determines which
overridden method will be called at runtime.

F. The reference type of the variable determines which hidden
method will be called at runtime.

25. What is printed by the following program?

1: class Antelope {

2: public Antelope(int p) {

3: System.out.print("4");

4: }

5: { System.out.print("2"); }

6: static { System.out.print("1"); }

7: }

8: public class Gazelle extends Antelope {

9: public Gazelle(int p) {

10: super(6);

11: System.out.print("3");

12: }

13: public static void main(String hopping[]) {

14: new Gazelle(0);

15: }

16: static { System.out.print("8"); }

17: { System.out.print("9"); }

18: }

A. 182640

B. 182943

C. 182493

D. 421389

E. The code does not compile.

F. The output cannot be determined until runtime.

26. How many lines of the following program contain a compilation
error?

1: class Primate {

2: protected int age = 2;

3: { age = 1; }

4: public Primate() {

5: this().age = 3;

6: }

7: }

8: public class Orangutan {

9: protected int age = 4;

10: { age = 5; }

11: public Orangutan() {

12: this().age = 6;

13: }

14: public static void main(String[] bananas) {

15: final Primate x = (Primate)new Orangutan();

16: System.out.println(x.age);

17: }

18: }

A. None, and the program prints 1 at runtime.

B. None, and the program prints 3 at runtime.

C. None, but it causes a ClassCastException at runtime.

D. 1

E. 2

F. 3

G. 4

Chapter 9
Advanced Class Design
OCP exam objectives covered in this chapter:

 Reusing Implementations Through Inheritance

Create and extend abstract classes

 Programming Abstractly Through Interfaces

Create and implement interfaces

Distinguish class inheritance from interface inheritance
including abstract classes

In Chapter 8, “Class Design,” we showed you how to
create classes utilizing inheritance and polymorphism. In this chapter,
we will continue our discussion of class design starting with abstract
classes. By creating abstract class definitions, you’re defining a
platform that other developers can extend and build on top of. We’ll
then move on to interfaces and show how to use them to design a
standard set of methods across classes with varying implementations.
Finally, we’ll conclude this chapter with a brief presentation of inner
classes.

Creating Abstract Classes
We start our discussion of advanced class design with abstract classes.
As you will see, abstract classes have important uses in defining a
framework that other developers can use.

Introducing Abstract Classes
In Chapter 8, you learned that a subclass can override an inherited
method defined in a parent class. Overriding a method potentially
changes the behavior of a method in the parent class. For example,
take a look at the following Bird class and its Stork subclass:

class Bird {

 public String getName() { return null; }

 public void printName() {

 System.out.print(getName());

 }

}

public class Stork extends Bird {

 public String getName() { return "Stork!"; }

 public static void main(String[] args) {

 new Stork().printName();

 }

}

This program prints Stork! at runtime. Notice that the getName()
method is overridden in the subclass. Even though the
implementation of printName() is defined in the Bird class, the fact
that getName() is overridden in the subclass means it is replaced
everywhere, even in the parent class.

Let’s take this one step further. Suppose you want to define a Bird
class that other developers can extend and use, but you want the
developers to specify the particular type of Bird. Also, rather than
having the Bird version of getName() return null (or throw an
exception), you want to ensure every class that extends Bird is
required to provide its own overridden version of the getName()
method.

Enter abstract classes. An abstract class is a class that cannot be
instantiated and may contain abstract methods. An abstract method is
a method that does not define an implementation when it is declared.
Both abstract classes and abstract methods are denoted with the
abstract modifier. Compare our previous implementation with this
new one using an abstract Bird class:

abstract class Bird {

 public abstract String getName();

 public void printName() {

 System.out.print(getName());

 }

}

public class Stork extends Bird {

 public String getName() { return "Stork!"; }

 public static void main(String[] args) {

 new Stork().printName();

 }

}

What’s different? First, the Bird class is marked abstract. Next, the
getName() method in Bird is also marked abstract. Finally, the
implementation of getName(), including the braces ({}), have been
replaced with a single semicolon (;).

What about the Stork class? It’s exactly the same as before. While it
may look the same, though, the rules around how the class must be
implemented have changed. In particular, the Stork class must now
override the abstract getName() method. For example, the following
implementation does not compile because Stork does not override the
required abstract getName() method:

public class Stork extends Bird {} // DOES NOT COMPILE

While these differences may seem small, imagine the Bird and Stork
class are each written by different people. By one person marking
getName() as abstract in the Bird class, they are sending a message to
the other developer writing the Stork class: “Hey, to use this class, you
need to write a getName() method!”

An abstract class is most commonly used when you want another class

to inherit properties of a particular class, but you want the subclass to
fill in some of the implementation details. In our example, the author
of the Bird class wrote the printName() method but did not know what
it was going to do at runtime, since the getName() implementation had
yet to be provided.

Override vs. Implement
Oftentimes, when an abstract method is overridden in a subclass, it
is referred to as implementing the method. It is described this way
because the subclass is providing an implementation for a method
that does not yet have one. While we tend to use the terms
implement and override interchangeably for abstract methods, the
term override is more accurate.

When overriding an abstract method, all of the rules you learned
about overriding methods in Chapter 8 are applicable. For
example, you can override an abstract method with a covariant
return type. Likewise, you can declare new unchecked exceptions
but not checked exceptions in the overridden method.
Furthermore, you can override an abstract method in one class and
then override it again in a subclass of that class.

The method override rules apply whether the abstract method is
declared in an abstract class or, as we shall see later in this chapter,
an interface. We will continue to use override and implement
interchangeably in this chapter, as this is common in software
development. Just remember that providing an implementation
for an abstract method is considered a method override and all of
the associated rules for overriding methods apply.

Earlier, we said that an abstract class is one that cannot be
instantiated. This means that if you attempt to instantiate it, the
compiler will report an exception, as in this example:

abstract class Alligator {

 public static void main(String... food) {

 var a = new Alligator(); // DOES NOT COMPILE

 }

}

An abstract class can be initialized, but only as part of the instantiation
of a nonabstract subclass.

Defining Abstract Methods
As you saw in the previous example, an abstract class may include
nonabstract methods, in this case with the printName() method. In
fact, an abstract class can include all of the same members as a
nonabstract class, including variables, static and instance methods,
and inner classes. As you will see in the next section, abstract classes
can also include constructors.

One of the most important features of an abstract class is that it is not
actually required to include any abstract methods. For example, the
following code compiles even though it doesn’t define any abstract
methods:

public abstract class Llama {

 public void chew() {}

}

Although an abstract class doesn’t have to declare any abstract
methods, an abstract method can only be defined in an abstract class
(or an interface, as you will see shortly). For example, the following
code won’t compile because the class is not marked abstract:

public class Egret { // DOES NOT COMPILE

 public abstract void peck();

}

The exam creators like to include invalid class declarations like the
Egret class, which mixes nonabstract classes with abstract methods. If
you see a class that contains an abstract method, make sure the class is
marked abstract.

Like the final modifier, the abstract modifier can be placed before or
after the access modifier in class and method declarations, as shown in
this Tiger class:

abstract public class Tiger {

 abstract public int claw();

}

There are some restrictions on the placement of the abstract modifier.
The abstract modifier cannot be placed after the class keyword in a
class declaration, nor after the return type in a method declaration.
The following Jackal and howl() declarations do not compile for these
reasons:

public class abstract Jackal { // DOES NOT COMPILE

 public int abstract howl(); // DOES NOT COMPILE

}

It is not possible to define an abstract method that has a

body, or default implementation. You can still define a method
with a body—you just can’t mark it as abstract. As long as you do
not mark the method as final, the subclass has the option to
override an inherited method.

Constructors in Abstract Classes
Even though abstract classes cannot be instantiated, they are still
initialized through constructors by their subclasses. For example, does
the following program compile?

abstract class Bear {

 abstract CharSequence chew();

 public Bear() {

 System.out.println(chew()); // Does this compile?

 }

}

public class Panda extends Bear {

 String chew() { return "yummy!"; }

 public static void main(String[] args) {

 new Panda();

 }

}

Using the constructor rules you learned in Chapter 8, the compiler
inserts a default no-argument constructor into the Panda class, which
first calls super() in the Bear class. The Bear constructor is only called
when the abstract class is being initialized through a subclass;

therefore, there is an implementation of chew() at the time the
constructor is called. This code compiles and prints yummy! at runtime.

For the exam, remember that abstract classes are initialized with
constructors in the same way as nonabstract classes. For example, if
an abstract class does not provide a constructor, the compiler will
automatically insert a default no-argument constructor.

The primary difference between a constructor in an abstract class and
a nonabstract class is that a constructor in abstract class can be called
only when it is being initialized by a nonabstract subclass. This makes
sense, as abstract classes cannot be instantiated.

Invalid Abstract Method Declarations
The exam writers are also fond of questions with methods marked as
abstract for which an implementation is also defined. For example,
can you see why each of the following methods does not compile?

public abstract class Turtle {

 public abstract long eat() // DOES NOT COMPILE

 public abstract void swim() {}; // DOES NOT COMPILE

 public abstract int getAge() { // DOES NOT COMPILE

 return 10;

 }

 public void sleep; // DOES NOT COMPILE

 public void goInShell(); // DOES NOT COMPILE

}

The first method, eat(), does not compile because it is marked
abstract but does not end with as semicolon (;). The next two
methods, swim() and getAge(), do not compile because they are
marked abstract, but they provide an implementation block enclosed
in braces ({}). For the exam, remember that an abstract method
declaration must end in a semicolon without any braces. The next
method, sleep, does not compile because it is missing parentheses, (),
for method arguments. The last method, goInShell(), does not
compile because it is not marked abstract and therefore must provide
a body enclosed in braces.

Make sure you understand why each of the previous methods does not
compile and that you can spot errors like these on the exam. If you

come across a question on the exam in which a class or method is
marked abstract, make sure the class is properly implemented before
attempting to solve the problem.

Invalid Modifiers
In Chapter 7, “Methods and Encapsulation,” you learned about various
modifiers for methods and classes. In this section, we review the
abstract modifier and which modifiers it is not compatible with.

abstract and final Modifiers
What would happen if you marked a class or method both abstract
and final? If you mark something abstract, you are intending for
someone else to extend or implement it. But, if you mark something
final, you are preventing anyone from extending or implementing it.
These concepts are in direct conflict with each other.

Due to this incompatibility, Java does not permit a class or method to
be marked both abstract and final. For example, the following code
snippet will not compile:

public abstract final class Tortoise { // DOES NOT COMPILE

 public abstract final void walk(); // DOES NOT COMPILE

}

In this example, neither the class or method declarations will compile
because they are marked both abstract and final. The exam doesn’t
tend to use final modifiers on classes or methods often, so if you see
them, make sure they aren’t used with the abstract modifier.

abstract and private Modifiers
A method cannot be marked as both abstract and private. This rule
makes sense if you think about it. How would you define a subclass
that implements a required method if the method is not inherited by
the subclass? The answer is you can’t, which is why the compiler will
complain if you try to do the following:

public abstract class Whale {

 private abstract void sing(); // DOES NOT COMPILE

}

public class HumpbackWhale extends Whale {

 private void sing() {

 System.out.println("Humpback whale is singing");

 }

}

In this example, the abstract method sing() defined in the parent class
Whale is not visible to the subclass HumpbackWhale. Even though
HumpbackWhale does provide an implementation, it is not considered an
override of the abstract method since the abstract method is not
inherited. The compiler recognizes this in the parent class and reports
an error as soon as private and abstract are applied to the same
method.

While it is not possible to declare a method abstract and

private, it is possible (albeit redundant) to declare a method final
and private.

If we changed the access modifier from private to protected in the
parent class Whale, would the code compile? Let’s take a look:

public abstract class Whale {

 protected abstract void sing();

}

public class HumpbackWhale extends Whale {

 private void sing() { // DOES NOT COMPILE

 System.out.println("Humpback whale is singing");

 }

}

In this modified example, the code will still not compile, but for a
completely different reason. If you remember the rules for overriding a
method, the subclass cannot reduce the visibility of the parent
method, sing(). Because the method is declared protected in the
parent class, it must be marked as protected or public in the child
class. Even with abstract methods, the rules for overriding methods
must be followed.

abstract and static Modifiers
As you saw in Chapter 8, a static method cannot be overridden. It is
defined as belonging to the class, not an instance of the class. If a
static method cannot be overridden, then it follows that it also cannot
be marked abstract since it can never be implemented. For example,
the following class does not compile:

abstract class Hippopotamus {

 abstract static void swim(); // DOES NOT COMPILE

}

For the exam, make sure you know which modifiers can and cannot be
used with one another, especially for abstract classes and interfaces.

Creating a Concrete Class
An abstract class becomes usable when it is extended by a concrete
subclass. A concrete class is a nonabstract class. The first concrete
subclass that extends an abstract class is required to implement all
inherited abstract methods. This includes implementing any inherited
abstract methods from inherited interfaces, as we will see later in this
chapter.

When you see a concrete class extending an abstract class on the exam,
check to make sure that it implements all of the required abstract
methods. Can you see why the following Walrus class does not
compile?

public abstract class Animal {

 public abstract String getName();

}

public class Walrus extends Animal { // DOES NOT COMPILE

}

In this example, we see that Animal is marked as abstract and Walrus is
not, making Walrus a concrete subclass of Animal. Since Walrus is the
first concrete subclass, it must implement all inherited abstract
methods—getName() in this example. Because it doesn’t, the compiler
reports an error with the declaration of Walrus.

We highlight the first concrete subclass for a reason. An abstract class
can extend a nonabstract class, and vice versa. Any time a concrete
class is extending an abstract class, it must implement all of the
methods that are inherited as abstract. Let’s illustrate this with a set of
inherited classes:

abstract class Mammal {

 abstract void showHorn();

 abstract void eatLeaf();

}

abstract class Rhino extends Mammal {

 void showHorn() {}

}

public class BlackRhino extends Rhino {

 void eatLeaf() {}

}

In this example, the BlackRhino class is the first concrete subclass,
while the Mammal and Rhino classes are abstract. The BlackRhino class
inherits the eatLeaf() method as abstract and is therefore required to
provide an implementation, which it does.

What about the showHorn() method? Since the parent class, Rhino,
provides an implementation of showHorn(), the method is inherited in
the BlackRhino as a nonabstract method. For this reason, the
BlackRhino class is permitted but not required to override the
showHorn() method. The three classes in this example are correctly
defined and compile.

What if we changed the Rhino declaration to remove the abstract
modifier?

class Rhino extends Mammal { // DOES NOT COMPILE

 void showHorn() {}

}

By changing Rhino to a concrete class, it becomes the first nonabstract
class to extend the abstract Mammal class. Therefore, it must provide an
implementation of both the showHorn() and eatLeaf() methods. Since
it only provides one of these methods, the modified Rhino declaration
does not compile.

Let’s try one more example. The following concrete class Lion inherits
two abstract methods, getName() and roar():

public abstract class Animal {

 abstract String getName();

}

public abstract class BigCat extends Animal {

 protected abstract void roar();

}

public class Lion extends BigCat {

 public String getName() {

 return "Lion";

 }

 public void roar() {

 System.out.println("The Lion lets out a loud ROAR!");

 }

}

In this sample code, BigCat extends Animal but is marked as abstract;
therefore, it is not required to provide an implementation for the
getName() method. The class Lion is not marked as abstract, and as
the first concrete subclass, it must implement all of the inherited
abstract methods not defined in a parent class. All three of these
classes compile successfully.

Reviewing Abstract Class Rules
For the exam, you should know the following rules about abstract
classes and abstract methods. While it may seem like a lot to
remember, most of these rules are pretty straightforward. For
example, marking a class or method abstract and final makes it
unusable. Be sure you can spot contradictions such as these if you
come across them on the exam.

Abstract Class Definition Rules

1. Abstract classes cannot be instantiated.

2. All top-level types, including abstract classes, cannot be marked
protected or private.

3. Abstract classes cannot be marked final.

4. Abstract classes may include zero or more abstract and
nonabstract methods.

5. An abstract class that extends another abstract class inherits all of
its abstract methods.

6. The first concrete class that extends an abstract class must
provide an implementation for all of the inherited abstract
methods.

7. Abstract class constructors follow the same rules for initialization
as regular constructors, except they can be called only as part of
the initialization of a subclass.

These rules for abstract methods apply regardless of whether the
abstract method is defined in an abstract class or interface.

Abstract Method Definition Rules

1. Abstract methods can be defined only in abstract classes or
interfaces.

2. Abstract methods cannot be declared private or final.

3. Abstract methods must not provide a method
body/implementation in the abstract class in which they are
declared.

4. Implementing an abstract method in a subclass follows the same
rules for overriding a method, including covariant return types,
exception declarations, etc.

Implementing Interfaces
Although Java doesn’t allow multiple inheritance of state, it does allow
a class to implement any number of interfaces. An interface is an
abstract data type are that declares a list of abstract methods that any
class implementing the interface must provide. An interface can also
include constant variables. Both abstract methods and constant
variables included with an interface are implicitly assumed to be
public.

Interfaces and Nonabstract Methods
For the 1Z0-815 exam, you only need to know about two members
for interfaces: abstract methods and constant variables. With Java
8, interfaces were updated to include static and default methods.
A default method is one in which the interface method has a body
and is not marked abstract. It was added for backward
compatibility, allowing an older class to use a new version of an
interface that contains a new method, without having to modify the
existing class.

In Java 9, interfaces were updated to support private and private
static methods. Both of these types were added for code
reusability within an interface declaration and cannot be called
outside the interface definition.

When you study for the 1Z0-816 exam, you will need to know about
other kinds of interface members. For the 1Z0-815 exam, you only
need to know about abstract methods and constant variables.

Defining an Interface
In Java, an interface is defined with the interface keyword, analogous
to the class keyword used when defining a class. Refer to Figure 9.1
for a proper interface declaration.

Figure 9.1 Defining an interface

In Figure 9.1, our interface declaration includes a constant variable
and an abstract method. Interface variables are referred to as
constants because they are assumed to be public, static, and final.
They are initialized with a constant value when they are declared.
Since they are public and static, they can be used outside the
interface declaration without requiring an instance of the interface.
Figure 9.1 also includes an abstract method that, like an interface
variable, is assumed to be public.

For brevity, we sometimes say “an instance of an

interface” to mean an instance of a class that implements the
interface.

What does it mean for a variable or method to be assumed to be
something? One aspect of an interface declaration that differs from an
abstract class is that it contains implicit modifiers. An implicit
modifier is a modifier that the compiler automatically adds to a class,
interface, method, or variable declaration. For example, an interface is
always considered to be abstract, even if it is not marked so. We’ll
cover rules and examples for implicit modifiers in more detail later in
the chapter.

Let’s start with an example. Imagine we have an interface

WalksOnTwoLegs, defined as follows:

public abstract interface WalksOnTwoLegs {}

It compiles because interfaces are not required to define any methods.
The abstract modifier in this example is optional for interfaces, with
the compiler inserting it if it is not provided. Now, consider the
following two examples, which do not compile:

public class Biped {

 public static void main(String[] args) {

 var e = new WalksOnTwoLegs(); // DOES NOT COMPILE

 }

}

public final interface WalksOnEightLegs {} // DOES NOT COMPILE

The first example doesn’t compile, as WalksOnTwoLegs is an interface
and cannot be instantiated. The second example, WalksOnEightLegs,
doesn’t compile because interfaces cannot be marked as final for the
same reason that abstract classes cannot be marked as final. In other
words, marking an interface final implies no class could ever
implement it.

How do you use an interface? Let’s say we have an interface Climb,
defined as follows:

interface Climb {

 Number getSpeed(int age);

}

Next, we have a concrete class FieldMouse that invokes the Climb
interface by using the implements keyword in its class declaration, as
shown in Figure 9.2.

Figure 9.2 Implementing an interface

The FieldMouse class declares that it implements the Climb interface
and includes an overridden version of getSpeed() inherited from the
Climb interface. The method signature of getSpeed() matches exactly,
and the return type is covariant. The access modifier of the interface
method is assumed to be public in Climb, although the concrete class
FieldMouse must explicitly declare it.

As shown in Figure 9.2, a class can implement multiple interfaces,
each separated by a comma (,). If any of the interfaces define abstract
methods, then the concrete class is required to override them. In this
case, FieldMouse also implements the CanBurrow interface that we saw
in Figure 9.1. In this manner, the class overrides two abstract methods
at the same time with one method declaration. You’ll learn more about
duplicate and compatible interface methods shortly.

Like a class, an interface can extend another interface using the
extends keyword.

interface Nocturnal {}

public interface HasBigEyes extends Nocturnal {}

Unlike a class, which can extend only one class, an interface can
extend multiple interfaces.

interface Nocturnal {

 public int hunt();

}

interface CanFly {

 public void flap();

}

interface HasBigEyes extends Nocturnal, CanFly {}

public class Owl implements Nocturnal, CanFly {

 public int hunt() { return 5; }

 public void flap() { System.out.println("Flap!"); }

}

In this example, the Owl class implements the HasBigEyes interface and
must implement the hunt() and flap() methods. Extending two
interfaces is permitted because interfaces are not initialized as part of
a class hierarchy. Unlike abstract classes, they do not contain
constructors and are not part of instance initialization. Interfaces
simply define a set of rules that a class implementing them must
follow. They also include various static members, including constants
that do not require an instance of the class to use.

Many of the rules for class declarations also apply to interfaces
including the following:

A Java file may have at most one public top-level class or
interface, and it must match the name of the file.

A top-level class or interface can only be declared with public or
package-private access.

It may help to think of an interface as a specialized abstract class, as
many of the rules carry over. Just remember that an interface does not
follow the same rules for single inheritance and instance initialization
with constructors, as a class does.

What About Enums?
In this section, we described how a Java class can have at most one
public top-level element, a class or interface. This public top-level
element could also be an enumeration, or enum for short. An enum
is a specialized type that defines a set of fixed values. It is declared
with the enum keyword. The following demonstrates a simple

example of an enum for Color:

public enum Color {

 RED, YELOW, BLUE, GREEN, ORANGE, PURPLE

}

Like classes and interfaces, enums can have more complex
formations including methods, private constructors, and instance
variables.

Luckily for you, enums are out of scope for the 1Z0-815 exam. Like
some of the more advanced interface members we described
earlier, you will need to study enums when preparing for the 1Z0-
816 exam.

Inserting Implicit Modifiers
As mentioned earlier, an implicit modifier is one that the compiler will
automatically insert. It’s reminiscent of the compiler inserting a
default no-argument constructor if you do not define a constructor,
which you learned about in Chapter 8. You can choose to insert these
implicit modifiers yourself or let the compiler insert them for you.

The following list includes the implicit modifiers for interfaces that
you need to know for the exam:

Interfaces are assumed to be abstract.

Interface variables are assumed to be public, static, and final.

Interface methods without a body are assumed to be abstract and
public.

For example, the following two interface definitions are equivalent, as
the compiler will convert them both to the second declaration:

public interface Soar {

 int MAX_HEIGHT = 10;

 final static boolean UNDERWATER = true;

 void fly(int speed);

 abstract void takeoff();

 public abstract double dive();

}

public abstract interface Soar {

 public static final int MAX_HEIGHT = 10;

 public final static boolean UNDERWATER = true;

 public abstract void fly(int speed);

 public abstract void takeoff();

 public abstract double dive();

}

In this example, we’ve marked in bold the implicit modifiers that the
compiler automatically inserts. First, the abstract keyword is added to
the interface declaration. Next, the public, static, and final keywords
are added to the interface variables if they do not exist. Finally, each
abstract method is prepended with the abstract and public keywords
if they do not contain them already.

Conflicting Modifiers
What happens if a developer marks a method or variable with a
modifier that conflicts with an implicit modifier? For example, if an
abstract method is assumed to be public, then can it be explicitly
marked protected or private?

public interface Dance {

 private int count = 4; // DOES NOT COMPILE

 protected void step(); // DOES NOT COMPILE

}

Neither of these interface member declarations compiles, as the
compiler will apply the public modifier to both, resulting in a conflict.

While issues with private and protected access modifiers in interfaces
are easy to spot, what about the package-private access? For example,
what is the access level of the following two elements volume and
start()?

public interface Sing {

 float volume = 10;

 abstract void start();

}

If you said public, then you are correct! When working with class
members, omitting the access modifier indicates default (package-

private) access. When working with interface members, though, the
lack of access modifier always indicates public access.

Let’s try another one. Which line or lines of this top-level interface
declaration do not compile?

1: private final interface Crawl {

2: String distance;

3: private int MAXIMUM_DEPTH = 100;

4: protected abstract boolean UNDERWATER = false;

5: private void dig(int depth);

6: protected abstract double depth();

7: public final void surface(); }

Every single line of this example, including the interface declaration,
does not compile! Line 1 does not compile for two reasons. First, it is
marked as final, which cannot be applied to an interface since it
conflicts with the implicit abstract keyword. Next, it is marked as
private, which conflicts with the public or package-private access for
top-level interfaces.

Line 2 does not compile because the distance variable is not
initialized. Remember that interface variables are assumed to be
static final constants and initialized when they are declared. Lines 3
and 4 do not compile because interface variables are also assumed to
be public, and the access modifiers on these lines conflict with this.
Line 4 also does not compile because variables cannot be marked
abstract.

Next, lines 5 and 6 do not compile because all interface abstract
methods are assumed to be public and marking them as private or
protected is not permitted. Finally, the last line doesn’t compile
because the method is marked as final, and since interface methods
without a body are assumed to be abstract, the compiler throws an
exception for using both abstract and final keywords on a method.

Study these examples with conflicting modifiers carefully and make
sure you know why they fail to compile. On the exam, you are likely to
get at least one question in which an interface includes a member that
contains an invalid modifier.

Differences between Interfaces and Abstract Classes

Even though abstract classes and interfaces are both considered
abstract types, only interfaces make use of implicit modifiers. This
means that an abstract class and interface with similar declarations
may have very different properties. For example, how do the play()
methods differ in the following two definitions?

abstract class Husky {

 abstract void play();

}

interface Poodle {

 void play();

}

Both of these method definitions are considered abstract. That said,
the Husky class will not compile if the play() method is not marked
abstract, whereas the method in the Poodle interface will compile with
or without the abstract modifier.

What about the access level of the play() method? Even though
neither has an access modifier, they do not have the same access level.
The play() method in Husky class is considered default (package-
private), whereas the method in the Poodle interface is assumed to be
public. This is especially important when you create classes that
inherit these definitions. For example, can you spot anything wrong
with the following class definitions that use our abstract types?

class Webby extends Husky {

 void play() {}

}

class Georgette implements Poodle {

 void play() {}

}

The Webby class compiles, but the Georgette class does not. Even
though the two method implementations are identical, the method in
the Georgette class breaks the rules of method overriding. From the
Poodle interface, the inherited abstract method is assumed to be
public. The definition of play() in the Georgette class therefore
reduces the visibility of a method from public to package-private,
resulting in a compiler error. The following is the correct

implementation of the Georgette class:

class Georgette implements Poodle {

 public void play() {}

}

Inheriting an Interface
An interface can be inherited in one of three ways.

An interface can extend another interface.

A class can implement an interface.

A class can extend another class whose ancestor implements an
interface.

When an interface is inherited, all of the abstract methods are
inherited. Like we saw with abstract classes, if the type inheriting the
interface is also abstract, such as an interface or abstract class, it is not
required to implement the interface methods. On the other hand, the
first concrete subclass that inherits the interface must implement all of
the inherited abstract methods.

We illustrate this principle in Figure 9.3. How many abstract methods
does the concrete Swan class inherit?

Figure 9.3 Interface Inheritance

The Swan class inherits four methods: the public fly() and swim()
methods, along with the package-private getType() and canSwoop()
methods.

Let’s take a look at another example involving an abstract class that
implements an interface:

public interface HasTail {

 public int getTailLength();

}

public interface HasWhiskers {

 public int getNumberOfWhiskers();

}

public abstract class HarborSeal implements HasTail, HasWhiskers

{

}

public class CommonSeal extends HarborSeal { // DOES NOT COMPILE

}

The HarborSeal class is not required to implement any of the abstract
methods it inherits from the HasTail and HasWhiskers because it is
marked abstract. The concrete class CommonSeal, which extends
HarborSeal, is required to implement all inherited abstract methods.
In this example, CommonSeal doesn’t provide an implementation for the
inherited abstract interface methods, so CommonSeal doesn’t compile.

Mixing Class and Interface Keywords
The exam creators are fond of questions that mix class and interface
terminology. Although a class can implement an interface, a class
cannot extend an interface. Likewise, while an interface can extend
another interface, an interface cannot implement another interface.
The following examples illustrate these principles:

public interface CanRun {}

public class Cheetah extends CanRun {} // DOES NOT COMPILE

public class Hyena {}

public interface HasFur extends Hyena {} // DOES NOT COMPILE

The first example shows a class trying to extend an interface that
doesn’t compile. The second example shows an interface trying to
extend a class, which also doesn’t compile. Be wary of examples on the
exam that mix class and interface definitions. The following is the only
valid syntax for relating classes and interfaces in their declarations:

class1 extends class2

interface1 extends interface2, interface3, ... class1 implements

interface2, interface3, ...

Duplicate Interface Method Declarations
Since Java allows for multiple inheritance via interfaces, you might be
wondering what will happen if you define a class that inherits from
two interfaces that contain the same abstract method.

public interface Herbivore {

 public void eatPlants();

}

public interface Omnivore {

 public void eatPlants();

 public void eatMeat();

}

In this scenario, the signatures for the two interface methods
eatPlants() are duplicates. As they have identical method
declarations, they are also considered compatible. By compatibility,
we mean that the compiler can resolve the differences between the two
declarations without finding any conflicts. You can define a class that
fulfills both interfaces simultaneously.

public class Bear implements Herbivore, Omnivore {

 public void eatMeat() {

 System.out.println("Eating meat");

 }

 public void eatPlants() {

 System.out.println("Eating plants");

 }

}

As we said earlier, interfaces simply define a set of rules that a class
implementing them must follow. If two abstract interface methods

have identical behaviors—or in this case the same method declaration
—you just need to be able to create a single method that overrides both
inherited abstract methods at the same time.

What if the duplicate methods have different signatures? If the
method name is the same but the input parameters are different, there
is no conflict because this is considered a method overload. We
demonstrate this principle in the following example:

public interface Herbivore {

 public int eatPlants(int quantity);

}

public interface Omnivore {

 public void eatPlants();

}

public class Bear implements Herbivore, Omnivore {

 public int eatPlants(int quantity) {

 System.out.println("Eating plants: "+quantity);

 return quantity;

 }

 public void eatPlants() {

 System.out.println("Eating plants");

 }

}

In this example, we see that the class that implements both interfaces
must provide implementations of both versions of eatPlants(), since
they are considered separate methods.

What if the duplicate methods have the same signature but different
return types? In that case, you need to review the rules for overriding
methods. Let’s try an example:

interface Dances {

 String swingArms();

}

interface EatsFish {

 CharSequence swingArms();

}

public class Penguin implements Dances, EatsFish {

 public String swingArms() {

 return "swing!";

 }

}

In this example, the Penguin class compiles. The Dances version of the
swingArms() method is trivially overridden in the Penguin class, as the
declaration in Dances and Penguin have the same method declarations.
The EatsFish version of swingArms() is also overridden as String and
CharSequence are covariant return types.

Let’s take a look at a sample where the return types are not covariant:

interface Dances {

 int countMoves();

}

interface EatsFish {

 boolean countMoves();

}

public class Penguin implements Dances, EatsFish { // DOES NOT

COMPILE

 ...

}

Since it is not possible to define a version of countMoves() that returns
both int and boolean, there is no implementation of the Penguin that
will allow this declaration to compile. It is the equivalent of trying to
define two methods in the same class with the same signature and
different return types.

The compiler would also throw an exception if you define an abstract
class or interface that inherits from two conflicting abstract types, as
shown here:

interface LongEars {

 int softSkin();

}

interface LongNose {

 void softSkin();

}

interface Donkey extends LongEars, LongNose {} // DOES NOT

COMPILE

abstract class Aardvark implements LongEars, LongNose {}

 // DOES NOT

COMPILE

All of the types in this example are abstract, with none being concrete.
Despite the fact they are all abstract, the compiler detects that Donkey
and Aardvark contain incompatible methods and prevents them from
compiling.

Polymorphism and Interfaces
In Chapter 8, we introduced polymorphism and showed how an object
in Java can take on many forms through references. While many of the
same rules apply, the fact that a class can inherit multiple interfaces
limits some of the checks the compiler can perform.

Abstract Reference Types
When working with abstract types, you may prefer to work with the
abstract reference types, rather than the concrete class. This is
especially common when defining method parameters. Consider the
following implementation:

import java.util.*;

public class Zoo {

 public void sortAndPrintZooAnimals(List<String> animals) {

 Collections.sort(animals);

 for(String a : animals) {

 System.out.println(a);

 }

 }

}

This class defines a method that sorts and prints animals in
alphabetical order. At no point is this class interested in what the
actual underlying object for animals is. It might be an ArrayList, which
you have seen before, but it may also be a LinkedList or a Vector
(neither of which you need to know for the exam).

Casting Interfaces
Let’s say you have an abstract reference type variable, which has been
instantiated by a concrete subclass. If you need access to a method

that is only declared in the concrete subclass, then you will need to
cast the interface reference to that type, assuming the cast is supported
at runtime. That brings us back to a rule we discussed in Chapter 8,
namely, that the compiler does not allow casts to unrelated types. For
example, the following is not permitted as the compiler detects that
the String and Long class cannot be related:

String lion = "Bert";

Long tiger = (Long)lion;

With interfaces, there are limitations to what the compiler can
validate. For example, does the following program compile?

1: interface Canine {}

2: class Dog implements Canine {}

3: class Wolf implements Canine {}

4:

5: public class BadCasts {

6: public static void main(String[] args) {

7: Canine canine = new Wolf();

8: Canine badDog = (Dog)canine;

9: } }

In this program, a Wolf object is created and then assigned to a Canine
reference type on line 7. Because of polymorphism, Java cannot be
sure which specific class type the canine instance on line 8 is.
Therefore, it allows the invalid cast to the Dog reference type, even
though Dog and Wolf are not related. The code compiles but throws a
ClassCastException at runtime.

This limitation aside, the compiler can enforce one rule around
interface casting. The compiler does not allow a cast from an interface
reference to an object reference if the object type does not implement
the interface. For example, the following change to line 8 causes the
program to fail to compile:

8: Object badDog = (String)canine; // DOES NOT COMPILE

Since String does implement Canine, the compiler recognizes that this
cast is not possible.

Interfaces and the instanceof Operator

In Chapter 3, “Operators,” we showed that the compiler will report an
error if you attempt to use the instanceof operator with two unrelated
classes, as follows:

Number tickets = 4;

if(tickets instanceof String) {} // DOES NOT COMPILE

With interfaces, the compiler has limited ability to enforce this rule
because even though a reference type may not implement an interface,
one of its subclasses could. For example, the following does compile:

Number tickets = 5;

if(tickets instanceof List) {}

Even though Number does not inherit List, it’s possible the tickets
variable may be a reference to a subclass of Number that does inherit
List. As an example, the tickets variable could be assigned to an
instance of the following MyNumber class (assuming all inherited
methods were implemented):

public class MyNumber extends Number implements List

That said, the compiler can check for unrelated interfaces if the
reference is a class that is marked final.

Integer tickets = 6;

if(tickets instanceof List) {} // DOES NOT COMPILE

The compiler rejects this code because the Integer class is marked
final and does not inherit List. Therefore, it is not possible to create a
subclass of Integer that inherits the List interface.

Reviewing Interface Rules
We summarize the interface rules in this part of the chapter in the
following list. If you compare the list to our list of rules for an abstract
class definition, the first four rules are similar.

1. Interface Definition Rules Interfaces cannot be instantiated.

2. All top-level types, including interfaces, cannot be marked
protected or private.

3. Interfaces are assumed to be abstract and cannot be marked
final.

4. Interfaces may include zero or more abstract methods.

5. An interface can extend any number of interfaces.

6. An interface reference may be cast to any reference that inherits
the interface, although this may produce an exception at runtime
if the classes aren’t related.

7. The compiler will only report an unrelated type error for an
instanceof operation with an interface on the right side if the
reference on the left side is a final class that does not inherit the
interface.

8. An interface method with a body must be marked default,
private, static, or private static (covered when studying for the
1Z0-816 exam).

The following are the five rules for abstract methods defined in
interfaces.

Abstract Interface Method Rules

1. Abstract methods can be defined only in abstract classes or
interfaces.

2. Abstract methods cannot be declared private or final.

3. Abstract methods must not provide a method
body/implementation in the abstract class in which is it declared.

4. Implementing an abstract method in a subclass follows the same
rules for overriding a method, including covariant return types,
exception declarations, etc.

5. Interface methods without a body are assumed to be abstract and
public.

Notice anything? The first four rules for abstract methods, whether
they be defined in abstract classes or interfaces, are exactly the same!
The only new rule you need to learn for interfaces is the last one.

Finally, there are two rules to remember for interface variables.

Interface Variables Rules

1. Interface variables are assumed to be public, static, and final.

2. Because interface variables are marked final, they must be
initialized with a value when they are declared.

It may be helpful to think of an interface as a specialized kind of
abstract class, since it shares many of the same properties and rules as
an abstract class. The primary differences between the two are that
interfaces include implicit modifiers, do not contain constructors, do
not participate in the instance initialization process, and support
multiple inheritance.

Using an Interface vs. Implementing an Interface
An interface provides a way for one individual to develop code that
uses another individual’s code, without having access to the other
individual’s underlying implementation. Interfaces can facilitate
rapid application development by enabling development teams to
create applications in parallel, rather than being directly
dependent on each other.

For example, two teams can work together to develop a one-page
standard interface at the start of a project. One team then develops
code that uses the interface, while the other team develops code
that implements the interface. The development teams can then
combine their implementations toward the end of the project, and
as long as both teams developed with the same interface, they will
be compatible. Of course, testing will still be required to make sure
that the class implementing the interface behaves as expected.

Introducing Inner Classes
We conclude this chapter with a brief discussion of inner classes. For
the 1Z0-815 exam, you only need to know the basics of inner classes.
In particular, you should know the difference between a top-level class
and an inner class, permitted access modifiers for an inner class, and
how to define a member inner class.

For simplicity, we will often refer to inner or nested

interfaces as inner classes, as the rules described in this chapter for
inner classes apply to both class and interface types.

Defining a Member Inner Class
A member inner class is a class defined at the member level of a class
(the same level as the methods, instance variables, and constructors).
It is the opposite of a top-level class, in that it cannot be declared
unless it is inside another class.

Developers often define a member inner class inside another class if
the relationship between the two classes is very close. For example, a
Zoo sells tickets for its patrons; therefore, it may want to manage the
lifecycle of the Ticket object.

For the 1Z0-816 exam, there are four types of nested

classes you will need to know about: member inner classes, local
classes, anonymous classes, and static nested classes. You’ll also
need to know more detail about member inner classes. For this
chapter, we limit our discussion to just the basics of member inner
classes, as this is all you need to know on the 1Z0-815 exam.

The following is an example of an outer class Zoo with an inner class
Ticket:

public class Zoo {

 public class Ticket {}

}

We can expand this to include an interface.

public class Zoo {

 private interface Paper {}

 public class Ticket implements Paper {}

}

While top-level classes and interfaces can only be set with public or
package-private access, member inner classes do not have the same
restriction. A member inner class can be declared with all of the same
access modifiers as a class member, such as public, protected, default
(package-private), or private.

A member inner class can contain many of the same methods and
variables as a top-level class. Some members are disallowed in
member inner classes, such as static members, although you don’t
need to know that for the 1Z0-815 exam. Let’s update our example
with some instance members.

public class Zoo {

 private interface Paper {

 public String getId();

 }

 public class Ticket implements Paper {

 private String serialNumber;

 public String getId() { return serialNumber;}

 }

}

Our Zoo and Ticket examples are starting to become more interesting.
In the next section, we will show you how to use them.

Using a Member Inner Class
One of the ways a member inner class can be used is by calling it in the
outer class. Continuing with our previous example, let’s define a
method in Zoo that makes use of the member inner class with a new
sellTicket() method.

public class Zoo {

 private interface Paper {

 public String getId();

 }

 public class Ticket implements Paper {

 private String serialNumber;

 public String getId() { return serialNumber; }

 }

 public Ticket sellTicket(String serialNumber) {

 var t = new Ticket();

 t.serialNumber = serialNumber;

 return t;

 }

}

The advantage of using a member inner class in this example is that
the Zoo class completely manages the lifecycle of the Ticket class.

Let’s add an entry point to this example.

public class Zoo {

 ...

 public static void main(String... unused) {

 var z = new Zoo();

 var t = z.sellTicket("12345");

 System.out.println(t.getId()+" Ticket sold!");

 }

}

This compiles and prints 12345 Ticket sold! at runtime.

For the 1Z0-815 exam, this is the extent of what you need to know
about inner classes. As discussed, when you study for the 1Z0-816
exam, there is a lot more you will need to know.

Summary
In this chapter, we presented advanced topics in class design, starting
with abstract classes. An abstract class is just like a regular class except
that it cannot be instantiated and may contain abstract methods. An
abstract class can extend a nonabstract class, and vice versa. Abstract
classes can be used to define a framework that other developers write
subclasses against.

An abstract method is one that does not include a body when it is
declared. An abstract method may be placed inside an abstract class or
interface. Next, an abstract method can be overridden with another
abstract declaration or a concrete implementation, provided the rules
for overriding methods are followed. The first concrete class must
implement all of the inherited abstract methods, whether they are
inherited from an abstract class or interface.

An interface is a special type of abstract structure that primarily
contains abstract methods and constant variables. Interfaces include
implicit modifiers, which are modifiers that the compiler will
automatically apply to the interface declaration. For the 1Z0-815 exam,
you should know which modifiers are assumed in interfaces and be
able to spot potential conflicts. When you prepare for the 1Z0-816
exam, you will study the four additional nonabstract methods that
interfaces now support. Finally, while the compiler can often prevent
casting to unrelated types, it has limited ability to prevent invalid casts
when working with interfaces.

We concluded this chapter with a brief presentation of member inner
classes. For the exam, you should be able to recognize member inner
classes and know which access modifiers are allowed. Member inner
classes, along with the other types of nested classes, will be covered in
much more detail when you study for the 1Z0-816 exam.

Exam Essentials
Be able to write code that creates and extends abstract
classes. In Java, classes and methods can be declared as abstract. An
abstract class cannot be instantiated. An instance of an abstract class
can be obtained only through a concrete subclass. Abstract classes can
include any number, including zero, of abstract and nonabstract
methods. Abstract methods follow all the method override rules and
may be defined only within abstract classes. The first concrete subclass
of an abstract class must implement all the inherited methods.
Abstract classes and methods may not be marked as final.

Be able to write code that creates, extends, and implements
interfaces. Interfaces are specialized abstract types that focus on
abstract methods and constant variables. An interface may extend any
number of interfaces and, in doing so, inherits their abstract methods.
An interface cannot extend a class, nor can a class extend an interface.
A class may implement any number of interfaces.

Know the implicit modifiers that the compiler will
automatically apply to an interface. All interfaces are assumed to
be abstract. An interface method without a body is assumed to be
public and abstract. An interface variable is assumed to be public,
static, and final and initialized with a value when it is declared.
Using a modifier that conflicts with one of these implicit modifiers will
result in a compiler error.

Distinguish between top-level and inner classes/interfaces
and know which access modifiers are allowed. A top-level class
or interface is one that is not defined within another class declaration,
while an inner class or interface is one defined within another class.
Inner classes can be marked public, protected, package-private, or
private.

Review Questions
1. What modifiers are implicitly applied to all interface methods that

do not declare a body? (Choose all that apply.)

A. protected

B. public

C. static

D. void

E. abstract

F. default

2. Which of the following statements can be inserted in the blank
line so that the code will compile successfully? (Choose all that
apply.)

interface CanHop {}

public class Frog implements CanHop {

public static void main(String[] args) {

____________ frog = new TurtleFrog();

}

}

class BrazilianHornedFrog extends Frog {}

class TurtleFrog extends Frog {}

A. Frog

B. TurtleFrog

C. BrazilianHornedFrog

D. CanHop

E. Object

F. Long

G. None of the above; the code contains a compilation error.

3. Which of the following is true about a concrete class? (Choose all
that apply.)

A. A concrete class can be declared as abstract.

B. A concrete class must implement all inherited abstract
methods.

C. A concrete class can be marked as final.

D. If a concrete class inherits an interface from one of its
superclasses, then it must declare an implementation for all
methods defined in that interface.

E. A concrete method that implements an abstract method must
match the method declaration of the abstract method exactly.

4. Which statements about the following program are correct?
(Choose all that apply.)

1: interface HasExoskeleton {

2: double size = 2.0f;

3: abstract int getNumberOfSections();

4: }

5: abstract class Insect implements HasExoskeleton {

6: abstract int getNumberOfLegs();

7: }

8: public class Beetle extends Insect {

9: int getNumberOfLegs() { return 6; }

10: int getNumberOfSections(int count) { return 1; }

11: }

A. It compiles without issue.

B. The code will produce a ClassCastException if called at

runtime.

C. The code will not compile because of line 2.

D. The code will not compile because of line 5.

E. The code will not compile because of line 8.

F. The code will not compile because of line 10.

5. What modifiers are implicitly applied to all interface variables?
(Choose all that apply.)

A. private

B. nonstatic

C. final

D. const

E. abstract

F. public

G. default (package-private)

6. Which statements about the following program are correct?
(Choose all that apply.)

1: public abstract interface Herbivore {

2: int amount = 10;

3: public void eatGrass();

4: public abstract int chew() { return 13; }

5: }

6:

7: abstract class IsAPlant extends Herbivore {

8: Object eatGrass(int season) { return null; }

9: }

A. It compiles and runs without issue.

B. The code will not compile because of line 1.

C. The code will not compile because of line 2.

D. The code will not compile because of line 4.

E. The code will not compile because of line 7.

F. The code will not compile because line 8 contains an invalid
method override.

7. Which statements about the following program are correct?
(Choose all that apply.)

1: abstract class Nocturnal {

2: boolean isBlind();

3: }

4: public class Owl extends Nocturnal {

5: public boolean isBlind() { return false; }

6: public static void main(String[] args) {

7: var nocturnal = (Nocturnal)new Owl();

8: System.out.println(nocturnal.isBlind());

9: } }

A. It compiles and prints true.

B. It compiles and prints false.

C. The code will not compile because of line 2.

D. The code will not compile because of line 5.

E. The code will not compile because of line 7.

F. The code will not compile because of line 8.

G. None of the above

8. Which statements are true about the following code? (Choose all
that apply.)

interface Dog extends CanBark, HasVocalCords {

abstract int chew();

}

public interface CanBark extends HasVocalCords {

public void bark();

}

interface HasVocalCords {

public abstract void makeSound();

}

A. The CanBark declaration doesn’t compile.

B. A class that implements HasVocalCords must override the
makeSound() method.

C. A class that implements CanBark inherits both the
makeSound() and bark() methods.

D. A class that implements Dog must be marked final.

E. The Dog declaration does not compile because an interface
cannot extend two interfaces.

9. Which access modifiers can be applied to member inner classes?
(Choose all that apply.)

A. static

B. public

C. default (package-private)

D. final

E. protected

F. private

10. Which statements are true about the following code? (Choose all
that apply.)

5: public interface CanFly {

6: int fly()

7: String fly(int distance);

8: }

9: interface HasWings {

10: abstract String fly();

11: public abstract Object getWingSpan();

12: }

13: abstract class Falcon implements CanFly, HasWings {}

A. It compiles without issue.

B. The code will not compile because of line 5.

C. The code will not compile because of line 6.

D. The code will not compile because of line 7.

E. The code will not compile because of line 9.

F. The code will not compile because of line 10.

G. The code will not compile because of line 13.

11. Which modifier pairs can be used together in a method
declaration? (Choose all that apply.)

A. static and final

B. private and static

C. static and abstract

D. private and abstract

E. abstract and final

F. private and final

12. Which of the following statements about the FruitStand program
are correct? (Choose all that apply.)

1: interface Apple {}

2: interface Orange {}

3: class Gala implements Apple {}

4: class Tangerine implements Orange {}

5: final class Citrus extends Tangerine {}

6: public class FruitStand {

7: public static void main(String... farm) {

8: Gala g = new Gala();

9: Tangerine t = new Tangerine();

10: Citrus c = new Citrus();

11: System.out.print(t instanceof Gala);

12: System.out.print(c instanceof Tangerine);

13: System.out.print(g instanceof Apple);

14: System.out.print(t instanceof Apple);

15: System.out.print(c instanceof Apple);

16: } }

A. Line 11 contains a compiler error.

B. Line 12 contains a compiler error.

C. Line 13 contains a compiler error.

D. Line 14 contains a compiler error.

E. Line 15 contains a compiler error.

F. None of the above

13. What is the output of the following code?

1: interface Jump {

2: static public int MAX = 3;

3: }

4: public abstract class Whale implements Jump {

5: public abstract void dive();

6: public static void main(String[] args) {

7: Whale whale = new Orca();

8: whale.dive(3);

9: }

10: }

11: class Orca extends Whale {

12: public void dive() {

13: System.out.println("Orca diving");

14: }

15: public void dive(int... depth) {

16: System.out.println("Orca diving deeper "+MAX);

17: } }

A. Orca diving

B. Orca diving deeper 3

C. The code will not compile because of line 2.

D. The code will not compile because of line 4.

E. The code will not compile because of line 11.

F. The code will not compile because of line 16.

G. None of the above

14. Which statements are true for both abstract classes and
interfaces? (Choose all that apply.)

A. Both can be extended using the extends keyword.

B. All methods within them are assumed to be abstract.

C. Both can contain public static final variables.

D. The compiler will insert the implicit abstract modifier
automatically on methods declared without a body, if they are

not marked as such.

E. Both interfaces and abstract classes can be declared with the
abstract modifier.

F. Both inherit java.lang.Object.

15. What is the result of the following code?

1: abstract class Bird {

2: private final void fly() {

System.out.println("Bird"); }

3: protected Bird() { System.out.print("Wow-"); }

4: }

5: public class Pelican extends Bird {

6: public Pelican() { System.out.print("Oh-"); }

7: protected void fly() { System.out.println("Pelican");

}

8: public static void main(String[] args) {

9: var chirp = new Pelican();

10: chirp.fly();

11: } }

A. Oh-Bird

B. Oh-Pelican

C. Wow-Oh-Bird

D. Wow-Oh-Pelican

E. The code contains a compilation error.

F. None of the above

16. Which of the following statements about this program is correct?

1: interface Aquatic {

2: int getNumOfGills(int p);

3: }

4: public class ClownFish implements Aquatic {

5: String getNumOfGills() { return "14"; }

6: int getNumOfGills(int input) { return 15; }

7: public static void main(String[] args) {

8: System.out.println(new

ClownFish().getNumOfGills(-1));

9: } }

A. It compiles and prints 14.

B. It compiles and prints 15.

C. The code will not compile because of line 4.

D. The code will not compile because of line 5.

E. The code will not compile because of line 6.

F. None of the above

17. Which statements about top-level types and member inner classes
are correct? (Choose all that apply.)

A. A member inner class can be marked final.

B. A top-level type can be marked protected.

C. A member inner class cannot be marked public since that
would make it a top-level class.

D. A top-level type must be stored in a .java file with a name
that matches the class name.

E. If a member inner class is marked private, then it can be
referenced only in the outer class for which it is defined.

18. What types can be inserted in the blanks on the lines marked X
and Z that allow the code to compile? (Choose all that apply.)

interface Walk { public List move(); }

interface Run extends Walk { public ArrayList move(); }

public class Leopard {

public ______ move() { // X

return null;

}

}

public class Panther implements Run {

public ______ move() { // Z

return null;

}

}

A. Integer on the line marked X

B. ArrayList on the line marked X

C. List on the line marked Z

D. ArrayList on the line marked Z

E. None of the above, since the Run interface does not compile.

F. The code does not compile for a different reason.

19. Which statements about interfaces are correct? (Choose all that
apply.)

A. A class cannot extend multiple interfaces.

B. Java enables true multiple inheritance via interfaces.

C. Interfaces cannot be declared abstract.

D. If an interface does not contain a constructor, the compiler
will insert one automatically.

E. An interface can extend multiple interfaces.

F. An interface cannot be instantiated.

20. Which of the following classes and interfaces are correct and
compile? (Choose all that apply.)

abstract class Camel {

void travel();

}

interface EatsGrass {

protected int chew();

}

abstract class Elephant {

abstract private class SleepsAlot {

abstract int sleep();

}

}

class Eagle {

abstract soar();

}

A. SleepsAlot

B. Eagle

C. Camel

D. Elephant

E. EatsGrass

F. None of the classes or interfaces compile.

Chapter 10
Exceptions
OCP exam objectives covered in this chapter:

 Handling Exceptions

Describe the advantages of Exception handling and
differentiate among checked, unchecked exceptions,
and Errors

Create try-catch blocks and determine how exceptions alter
program flow

Create and invoke a method that throws an exception

Many things can go wrong in a program. Java uses
exceptions to deal with some of these scenarios. This chapter focuses
on how exceptions are created, how to handle them, and how to
distinguish between various types of exceptions and errors.

Understanding Exceptions
A program can fail for just about any reason. Here are just a few
possibilities:

The code tries to connect to a website, but the Internet connection
is down.

You made a coding mistake and tried to access an invalid index in
an array.

One method calls another with a value that the method doesn’t
support.

As you can see, some of these are coding mistakes. Others are
completely beyond your control. Your program can’t help it if the
Internet connection goes down. What it can do is deal with the
situation.

First, we’ll look at the role of exceptions. Then we’ll cover the various
types of exceptions, followed by an explanation of how to throw an
exception in Java.

The Role of Exceptions
An exception is Java’s way of saying, “I give up. I don’t know what to
do right now. You deal with it.” When you write a method, you can
either deal with the exception or make it the calling code’s problem.

As an example, think of Java as a child who visits the zoo. The happy
path is when nothing goes wrong. The child continues to look at the
animals until the program nicely ends. Nothing went wrong, and there
were no exceptions to deal with.

This child’s younger sister doesn’t experience the happy path. In all
the excitement she trips and falls. Luckily, it isn’t a bad fall. The little
girl gets up and proceeds to look at more animals. She has handled the
issue all by herself. Unfortunately, she falls again later in the day and
starts crying. This time, she has declared she needs help by crying. The
story ends well. Her daddy rubs her knee and gives her a hug. Then

they go back to seeing more animals and enjoy the rest of the day.

These are the two approaches Java uses when dealing with exceptions.
A method can handle the exception case itself or make it the caller’s
responsibility. You saw both in the trip to the zoo.

You saw an exception in Chapter 1, “Welcome to Java,” with a simple
Zoo example. You wrote a class that printed out the name of the zoo:

1: public class Zoo {

2: public static void main(String[] args) {

3: System.out.println(args[0]);

4: System.out.println(args[1]);

5: } }

Then you tried to call it without enough arguments:

$ javac Zoo.java

$ java Zoo Zoo

On line 4, Java realized there’s only one element in the array and
index 1 is not allowed. Java threw up its hands in defeat and threw an
exception. It didn’t try to handle the exception. It just said, “I can’t
deal with it,” and the exception was displayed:

Zoo

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException: Index 1 out of bounds

for length 1

 at Zoo.main(Zoo.java:4)

Exceptions can and do occur all the time, even in solid program code.
In our example, toddlers falling are a fact of life. When you write more
advanced programs, you’ll need to deal with failures in accessing files,
networks, and outside services. On the exam, exceptions deal largely
with mistakes in programs. For example, a program might try to
access an invalid position in an array. The key point to remember is
that exceptions alter the program flow.

Return Codes vs. Exceptions

Exceptions are used when “something goes wrong.” However, the
word wrong is subjective. The following code returns –1 instead of
throwing an exception if no match is found:

public int indexOf(String[] names, String name) {

 for (int i = 0; i < names.length; i++) {

 if (names[i].equals(name)) { return i; }

 }

 return -1;

}

This approach is common when writing a method that does a
search. For example, imagine being asked to find the name Joe in
the array. It is perfectly reasonable that Joe might not appear in the
array. When this happens, a special value is returned. An exception
should be reserved for exceptional conditions like names being null.

In general, try to avoid return codes. Return codes are commonly
used in searches, so programmers are expecting them. In other
methods, you will take your callers by surprise by returning a
special value. An exception forces the program to deal with the
problem or end with the exception if left unhandled, whereas a
return code could be accidentally ignored and cause problems later
in the program. Even worse, a return value could be confused with
real data. In the context of a school, does -1 mean an error or the
number of students removed from a class? An exception is like
shouting, “Deal with me!” and avoids possible ambiguity.

Understanding Exception Types
As we’ve explained, an exception is an event that alters program flow.
Java has a Throwable superclass for all objects that represent these
events. Not all of them have the word exception in their class name,
which can be confusing. Figure 10.1 shows the key subclasses of
Throwable.

Figure 10.1 Categories of exception

Error means something went so horribly wrong that your program
should not attempt to recover from it. For example, the disk drive
“disappeared” or the program ran out of memory. These are abnormal
conditions that you aren’t likely to encounter and cannot recover from.

For the exam, the only thing you need to know about Throwable is that
it’s the parent class of all exceptions, including the Error class. While
you can handle Throwable and Error exceptions, it is not recommended
you do so in your application code. In this chapter, when we refer to
exceptions, we generally mean any class that inherits Throwable,
although we are almost always working with the Exception class or
subclasses of it.

Checked Exceptions

A checked exception is an exception that must be declared or handled
by the application code where it is thrown. In Java, checked exceptions
all inherit Exception but not RuntimeException. Checked exceptions
tend to be more anticipated—for example, trying to read a file that
doesn’t exist.

Checked exceptions also include any class that inherits

Throwable, but not Error or RuntimeException. For example, a class
that directly extends Throwable would be a checked exception. For
the exam, though, you just need to know about checked exceptions
that extend Exception.

Checked exceptions? What are we checking? Java has a rule called the
handle or declare rule. The handle or declare rule means that all
checked exceptions that could be thrown within a method are either
wrapped in compatible try and catch blocks or declared in the method
signature.

Because checked exceptions tend to be anticipated, Java enforces the
rule that the programmer must do something to show the exception
was thought about. Maybe it was handled in the method. Or maybe the
method declares that it can’t handle the exception and someone else
should.

While only checked exceptions must be handled or

declared in Java, unchecked exceptions (which we will present in
the next section) may also be handled or declared. The distinction
is that checked exceptions must be handled or declared, while
unchecked exceptions can be optionally handled or declared.

Let’s take a look at an example. The following fall() method declares
that it might throw an IOException, which is a checked exception:

void fall(int distance) throws IOException {

 if(distance > 10) {

 throw new IOException();

 }

}

Notice that you’re using two different keywords here. The throw
keyword tells Java that you want to throw an Exception, while the
throws keyword simply declares that the method might throw an
Exception. It also might not. You will see the throws keyword again
later in the chapter.

Now that you know how to declare an exception, how do you instead
handle it? The following alternate version of the fall() method
handles the exception:

void fall(int distance) {

 try {

 if(distance > 10) {

 throw new IOException();

 }

 } catch (Exception e) {

 e.printStackTrace();

 }

}

Notice that the catch statement uses Exception, not IOException. Since
IOException is a subclass of Exception, the catch block is allowed to
catch it. We’ll cover try and catch blocks in more detail later in this
chapter.

Unchecked Exceptions
An unchecked exception is any exception that does not need to be
declared or handled by the application code where it is thrown.
Unchecked exceptions are often referred to as runtime exceptions,
although in Java, unchecked exceptions include any class that inherits
RuntimeException or Error.

A runtime exception is defined as the RuntimeException class and its
subclasses. Runtime exceptions tend to be unexpected but not
necessarily fatal. For example, accessing an invalid array index is
unexpected. Even though they do inherit the Exception class, they are
not checked exceptions.

Runtime vs. at the Time the Program Is Run
A runtime (unchecked) exception is a specific type of exception. All
exceptions occur at the time that the program is run. (The
alternative is compile time, which would be a compiler error.)
People don’t refer to them as “run time” exceptions because that
would be too easy to confuse with runtime! When you see runtime,
it means unchecked.

An unchecked exception can often occur on nearly any line of code, as
it is not required to be handled or declared. For example, a
NullPointerException can be thrown in the body of the following
method if the input reference is null:

void fall(String input) {

 System.out.println(input.toLowerCase());

}

We work with objects in Java so frequently, a NullPointerException
can happen almost anywhere. If you had to declare unchecked
exceptions everywhere, every single method would have that clutter!
The code will compile if you declare an unchecked exception.
However, it is redundant.

Checked vs. Unchecked (Runtime) Exceptions
In the past, developers used checked exceptions more often than
they do now. According to Oracle, they are intended for issues a
programmer “might reasonably be expected to recover from.” Then
developers started writing code where a chain of methods kept
declaring the same exception and nobody actually handled it. Some
libraries started using unchecked exceptions for issues a
programmer might reasonably be expected to recover from. Many
programmers can hold a debate with you on which approach is
better. For the exam, you need to know the rules for how checked
versus unchecked exceptions function. You don’t have to decide
philosophically whether an exception should be checked or
unchecked.

Throwing an Exception
Any Java code can throw an exception; this includes code you write.
The exam is limited to exceptions that someone else has created. Most
likely, they will be exceptions that are provided with Java. You might
encounter an exception that was made up for the exam. This is fine.
The question will make it obvious that these are exceptions by having
the class name end with Exception. For example, MyMadeUpException is
clearly an exception.

On the exam, you will see two types of code that result in an exception.
The first is code that’s wrong. Here’s an example:

String[] animals = new String[0];

System.out.println(animals[0]);

This code throws an ArrayIndexOutOfBoundsException since the array
has no elements. That means questions about exceptions can be
hidden in questions that appear to be about something else.

On the exam, many questions have a choice about not

compiling and about throwing an exception. Pay special attention
to code that calls a method on a null reference or that references
an invalid array or List index. If you spot this, you know the
correct answer is that the code throws an exception at runtime.

The second way for code to result in an exception is to explicitly
request Java to throw one. Java lets you write statements like these:

throw new Exception();

throw new Exception("Ow! I fell.");

throw new RuntimeException();

throw new RuntimeException("Ow! I fell.");

The throw keyword tells Java you want some other part of the code to
deal with the exception. This is the same as the young girl crying for
her daddy. Someone else needs to figure out what to do about the
exception.

throw vs. throws
Anytime you see throw or throws on the exam, make sure the
correct one is being used. The throw keyword is used as a statement
inside a code block to throw a new exception or rethrow an existing
exception, while the throws keyword is used only at the end of a
method declaration to indicate what exceptions it supports. On the
exam, you might start reading a long class definition only to realize
the entire thing does not compile due to the wrong keyword being
used.

When creating an exception, you can usually pass a String parameter
with a message, or you can pass no parameters and use the defaults.
We say usually because this is a convention. Someone could create an
exception class that does not have a constructor that takes a message.
The first two examples create a new object of type Exception and throw
it. The last two show that the code looks the same regardless of which
type of exception you throw.

Additionally, you should know that an Exception is an Object. This
means you can store in a variable, and this is legal:

Exception e = new RuntimeException();

throw e;

The code instantiates an exception on one line and then throws on the
next. The exception can come from anywhere, even passed into a
method. As long as it is a valid exception, it can be thrown.

The exam might also try to trick you. Do you see why this code doesn’t
compile?

throw RuntimeException(); // DOES NOT COMPILE

If your answer is that there is a missing keyword, you’re absolutely
right. The exception is never instantiated with the new keyword.

Let’s take a look at another place the exam might try to trick you. Can
you see why the following does not compile?

3: try {

4: throw new RuntimeException();

5: throw new ArrayIndexOutOfBoundsException(); // DOES NOT

COMPILE

6: } catch (Exception e) {

7: }

Since line 4 throws an exception, line 5 can never be reached during
runtime. The compiler recognizes this and reports an unreachable
code error.

The types of exceptions are important. Be sure to closely study
everything in Table 10.1. Remember that a Throwable is either an
Exception or an Error. You should not catch Throwable directly in your
code.

Table 10.1 Types of exceptions and errors

Type How to recognize Okay for
program
to catch?

Is program
required
to handle or
declare?

Runtime
exception

Subclass of
RuntimeException

Yes No

Checked
exception

Subclass of Exception
but not subclass of
RuntimeException

Yes Yes

Error Subclass of Error No No

Recognizing Exception Classes
You need to recognize three groups of exception classes for the exam:
RuntimeException, checked Exception, and Error. We’ll look at
common examples of each type. For the exam, you’ll need to recognize
which type of an exception it is and whether it’s thrown by the Java
virtual machine (JVM) or a programmer. So that you can recognize
them, we’ll show you some code examples for those exceptions. For
some exceptions, you also need to know which are inherited from one
another.

RuntimeException Classes
RuntimeException and its subclasses are unchecked exceptions that
don’t have to be handled or declared. They can be thrown by the
programmer or by the JVM. Common RuntimeException classes
include the following:

ArithmeticException Thrown when code attempts to divide by zero

ArrayIndexOutOfBoundsException Thrown when code uses an illegal
index to access an array

ClassCastException Thrown when an attempt is made to cast an
object to a class of which it is not an instance

NullPointerException Thrown when there is a null reference where
an object is required

IllegalArgumentException Thrown by the programmer to indicate that
a method has been passed an illegal or inappropriate argument

NumberFormatException Subclass of IllegalArgumentException thrown
when an attempt is made to convert a string to a numeric type but the
string doesn’t have an appropriate format

ArithmeticException
Trying to divide an int by zero gives an undefined result. When this
occurs, the JVM will throw an ArithmeticException:

int answer = 11 / 0;

Running this code results in the following output:

Exception in thread "main" java.lang.ArithmeticException: / by

zero

Java doesn’t spell out the word divide. That’s okay, though, because
we know that / is the division operator and that Java is trying to tell
you division by zero occurred.

The thread "main" is telling you the code was called directly or
indirectly from a program with a main method. On the exam, this is all
the output you will see. Next comes the name of the exception,
followed by extra information (if any) that goes with the exception.

ArrayIndexOutOfBoundsException
You know by now that array indexes start with 0 and go up to 1 less
than the length of the array—which means this code will throw an
ArrayIndexOutOfBoundsException:

int[] countsOfMoose = new int[3];

System.out.println(countsOfMoose[-1]);

This is a problem because there’s no such thing as a negative array
index. Running this code yields the following output:

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException:

Index -1 out of bounds for length 3

At least Java tells us what index was invalid. Can you see what’s wrong
with this one?

int total = 0;

int[] countsOfMoose = new int[3];

for (int i = 0; i <= countsOfMoose.length; i++)

 total += countsOfMoose[i];

The problem is that the for loop should have < instead of <=. On the
final iteration of the loop, Java tries to call countsOfMoose[3], which is
invalid. The array includes only three elements, making 2 the largest
possible index. The output looks like this:

Exception in thread "main"

java.lang.ArrayIndexOutOfBoundsException:

Index 3 out of bounds for length 3

ClassCastException
Java tries to protect you from impossible casts. This code doesn’t
compile because Integer is not a subclass of String:

String type = "moose";

Integer number = (Integer) type; // DOES NOT COMPILE

More complicated code thwarts Java’s attempts to protect you. When
the cast fails at runtime, Java will throw a ClassCastException:

String type = "moose";

Object obj = type;

Integer number = (Integer) obj;

The compiler sees a cast from Object to Integer. This could be okay.
The compiler doesn’t realize there’s a String in that Object. When the
code runs, it yields the following output:

Exception in thread "main" java.lang.ClassCastException:

java.base/java.lang.String

cannot be cast to java.lang.base/java.lang.Integer

Java tells you both types that were involved in the problem, making it
apparent what’s wrong.

NullPointerException
Instance variables and methods must be called on a non-null
reference. If the reference is null, the JVM will throw a
NullPointerException. It’s usually subtle, such as in the following
example, which checks whether you remember instance variable
references default to null:

String name;

public void printLength() {

 System.out.println(name.length());

}

Running this code results in this output:

Exception in thread "main" java.lang.NullPointerException

IllegalArgumentException
IllegalArgumentException is a way for your program to protect itself.
You first saw the following setter method in the Swan class in Chapter
7, “Methods and Encapsulation.”

6: public void setNumberEggs(int numberEggs) { // setter

7: if (numberEggs >= 0) // guard condition

8: this.numberEggs = numberEggs;

9: }

This code works, but you don’t really want to ignore the caller’s
request when they tell you a Swan has –2 eggs. You want to tell the
caller that something is wrong—preferably in an obvious way that the
caller can’t ignore so that the programmer will fix the problem.
Exceptions are an efficient way to do this. Seeing the code end with an
exception is a great reminder that something is wrong:

public void setNumberEggs(int numberEggs) {

 if (numberEggs < 0)

 throw new IllegalArgumentException(

 "# eggs must not be negative");

 this.numberEggs = numberEggs;

}

The program throws an exception when it’s not happy with the
parameter values. The output looks like this:

Exception in thread "main"

java.lang.IllegalArgumentException: # eggs must not be negative

Clearly this is a problem that must be fixed if the programmer wants
the program to do anything useful.

NumberFormatException
Java provides methods to convert strings to numbers. When these are
passed an invalid value, they throw a NumberFormatException. The idea
is similar to IllegalArgumentException. Since this is a common
problem, Java gives it a separate class. In fact, NumberFormatException
is a subclass of IllegalArgumentException. Here’s an example of trying

to convert something non-numeric into an int:

Integer.parseInt("abc");

The output looks like this:

Exception in thread "main"

java.lang.NumberFormatException: For input string: "abc"

For the exam, you need to know that NumberFormatException is a
subclass of IllegalArgumentException. We’ll cover more about why
that is important later in the chapter.

Checked Exception Classes
Checked exceptions have Exception in their hierarchy but not
RuntimeException. They must be handled or declared. Common
checked exceptions include the following:

IOException Thrown programmatically when there’s a problem
reading or writing a file

FileNotFoundException Subclass of IOException thrown
programmatically when code tries to reference a file that does not exist

For the exam, you need to know that these are both checked
exceptions. You also need to know that FileNotFoundException is a
subclass of IOException. You’ll see shortly why that matters.

Error Classes
Errors are unchecked exceptions that extend the Error class. They are
thrown by the JVM and should not be handled or declared. Errors are
rare, but you might see these:

ExceptionInInitializerError Thrown when a static initializer throws
an exception and doesn’t handle it

StackOverflowError Thrown when a method calls itself too many
times (This is called infinite recursion because the method typically
calls itself without end.)

NoClassDefFoundError Thrown when a class that the code uses is

available at compile time but not runtime

ExceptionInInitializerError
Java runs static initializers the first time a class is used. If one of the
static initializers throws an exception, Java can’t start using the class.
It declares defeat by throwing an ExceptionInInitializerError. This
code throws an ArrayIndexOutOfBounds in a static initializer:

static {

 int[] countsOfMoose = new int[3];

 int num = countsOfMoose[-1];

}

public static void main(String... args) { }

This code yields information about the error and the underlying
exception:

Exception in thread "main" java.lang.ExceptionInInitializerError

Caused by: java.lang.ArrayIndexOutOfBoundsException: -1 out of

bounds for length 3

When executed, you get an ExceptionInInitializerError because the
error happened in a static initializer. That information alone wouldn’t
be particularly useful in fixing the problem. Therefore, Java also tells
you the original cause of the problem: the
ArrayIndexOutOfBoundsException that you need to fix.

The ExceptionInInitializerError is an error because Java failed to
load the whole class. This failure prevents Java from continuing.

StackOverflowError
When Java calls methods, it puts parameters and local variables on the
stack. After doing this a very large number of times, the stack runs out
of room and overflows. This is called a StackOverflowError. Most of
the time, this error occurs when a method calls itself.

public static void doNotCodeThis(int num) {

 doNotCodeThis(1);

}

The output contains this line:

Exception in thread "main" java.lang.StackOverflowError

Since the method calls itself, it will never end. Eventually, Java runs
out of room on the stack and throws the error. This is called infinite
recursion. It is better than an infinite loop because at least Java will
catch it and throw the error. With an infinite loop, Java just uses all
your CPU until you can kill the program.

NoClassDefFoundError
A NoClassDefFoundError occurs when Java can’t find the class at
runtime. Generally, this means a library available when the code was
compiled is not available when the code is executed.

Handling Exceptions
What do you do when you encounter an exception? How do you
handle or recover from the exception? In this section, we will show the
various statements in Java that support handling exceptions and
ensuring certain code, like closing a resource, is always executed.

Using try and catch Statements
Now that you know what exceptions are, let’s explore how to handle
them. Java uses a try statement to separate the logic that might throw
an exception from the logic to handle that exception. Figure 10.2
shows the syntax of a try statement.

Figure 10.2 The syntax of a try statement

The code in the try block is run normally. If any of the statements
throws an exception that can be caught by the exception type listed in
the catch block, the try block stops running and execution goes to the
catch statement. If none of the statements in the try block throws an
exception that can be caught, the catch clause is not run.

You probably noticed the words block and clause used
interchangeably. The exam does this as well, so get used to it. Both are
correct. Block is correct because there are braces present. Clause is
correct because they are part of a try statement.

There aren’t a ton of syntax rules here. The curly braces are required
for the try and catch blocks.

In our example, the little girl gets up by herself the first time she falls.
Here’s what this looks like:

3: void explore() {

4: try {

5: fall();

6: System.out.println("never get here");

7: } catch (RuntimeException e) {

8: getUp();

9: }

10: seeAnimals();

11: }

12: void fall() { throw new RuntimeException(); }

First, line 5 calls the fall() method. Line 12 throws an exception. This
means Java jumps straight to the catch block, skipping line 6. The girl
gets up on line 8. Now the try statement is over, and execution
proceeds normally with line 10.

Now let’s look at some invalid try statements that the exam might try
to trick you with. Do you see what’s wrong with this one?

try // DOES NOT COMPILE

 fall();

catch (Exception e)

 System.out.println("get up");

The problem is that the braces {} are missing. It needs to look like
this:

try {

 fall();

} catch (Exception e) {

 System.out.println("get up");

}

The try statements are like methods in that the curly braces are
required even if there is only one statement inside the code blocks,
while if statements and loops are special and allow you to omit the
curly braces.

What about this one?

try { // DOES NOT COMPILE

 fall();

}

This code doesn’t compile because the try block doesn’t have anything
after it. Remember, the point of a try statement is for something to
happen if an exception is thrown. Without another clause, the try
statement is lonely. As you will see shortly, there is a special type of
try statement that includes an implicit finally block, although the
syntax for this is quite different from this example.

Chaining catch Blocks
So far, you have been catching only one type of exception. Now let’s
see what happens when different types of exceptions can be thrown
from the same try/catch block.

For the exam, you won’t be asked to create your own exception, but
you may be given exception classes and need to understand how they
function. Here’s how to tackle them. First, you must be able to
recognize if the exception is a checked or an unchecked exception.
Second, you need to determine whether any of the exceptions are
subclasses of the others.

class AnimalsOutForAWalk extends RuntimeException { }

class ExhibitClosed extends RuntimeException { }

class ExhibitClosedForLunch extends ExhibitClosed { }

In this example, there are three custom exceptions. All are unchecked
exceptions because they directly or indirectly extend RuntimeException.
Now we chain both types of exceptions with two catch blocks and
handle them by printing out the appropriate message:

public void visitPorcupine() {

 try {

 seeAnimal();

 } catch (AnimalsOutForAWalk e) { // first catch block

 System.out.print("try back later");

 } catch (ExhibitClosed e) { // second catch block

 System.out.print("not today");

 }

}

There are three possibilities for when this code is run. If seeAnimal()
doesn’t throw an exception, nothing is printed out. If the animal is out
for a walk, only the first catch block runs. If the exhibit is closed, only
the second catch block runs. It is not possible for both catch blocks to
be executed when chained together like this.

A rule exists for the order of the catch blocks. Java looks at them in the
order they appear. If it is impossible for one of the catch blocks to be
executed, a compiler error about unreachable code occurs. For
example, this happens when a superclass catch block appears before a
subclass catch block. Remember, we warned you to pay attention to
any subclass exceptions.

In the porcupine example, the order of the catch blocks could be
reversed because the exceptions don’t inherit from each other. And
yes, we have seen a porcupine be taken for a walk on a leash.

The following example shows exception types that do inherit from
each other:

public void visitMonkeys() {

 try {

 seeAnimal();

 } catch (ExhibitClosedForLunch e) { // subclass exception

 System.out.print("try back later");

 } catch (ExhibitClosed e) { // superclass exception

 System.out.print("not today");

 }

}

If the more specific ExhibitClosedForLunch exception is thrown, the
first catch block runs. If not, Java checks whether the superclass
ExhibitClosed exception is thrown and catches it. This time, the order
of the catch blocks does matter. The reverse does not work.

public void visitMonkeys() {

 try {

 seeAnimal();

 } catch (ExhibitClosed e) {

 System.out.print("not today");

 } catch (ExhibitClosedForLunch e) { // DOES NOT COMPILE

 System.out.print("try back later");

 }

}

This time, if the more specific ExhibitClosedForLunch exception is
thrown, the catch block for ExhibitClosed runs—which means there is
no way for the second catch block to ever run. Java correctly tells you
there is an unreachable catch block.

Let’s try this one more time. Do you see why this code doesn’t
compile?

public void visitSnakes() {

 try {

 } catch (IllegalArgumentException e) {

 } catch (NumberFormatException e) { // DOES NOT COMPILE

 }

}

Remember we said earlier you needed to know that
NumberFormatException is a subclass of IllegalArgumentException? This
example is the reason why. Since NumberFormatException is a subclass,
it will always be caught by the first catch block, making the second
catch block unreachable code that does not compile. Likewise, for the
exam you need to know that FileNotFoundException is subclass of
IOException and cannot be used in a similar manner.

To review multiple catch blocks, remember that at most one catch
block will run, and it will be the first catch block that can handle it.
Also, remember that an exception defined by the catch statement is
only in scope for that catch block. For example, the following causes a
compiler error since it tries to use the exception class outside the block
for which it was defined:

public void visitManatees() {

 try {

 } catch (NumberFormatException e1) {

 System.out.println(e1);

 } catch (IllegalArgumentException e2) {

 System.out.println(e1); // DOES NOT COMPILE

 }

}

Applying a Multi-catch Block
Oftentimes, we want the result of an exception being thrown to be the
same, regardless of which particular exception is thrown. For example,

take a look at this method:

public static void main(String args[]) {

 try {

 System.out.println(Integer.parseInt(args[1]));

 } catch (ArrayIndexOutOfBoundsException e) {

 System.out.println("Missing or invalid input");

 } catch (NumberFormatException e) {

 System.out.println("Missing or invalid input");

 }

}

Notice that we have the same println() statement for two different
catch blocks. How can you reduce the duplicate code? One way is to
have the related exception classes all inherit the same interface or
extend the same class. For example, you can have a single catch block
that just catches Exception. This will catch everything and anything.
Another way is to move the println() statements into a separate
method and have every related catch block call that method.

While these solutions are valid, Java provides another structure to
handle this more gracefully called a multi-catch block. A multi-catch
block allows multiple exception types to be caught by the same catch
block. Let’s rewrite the previous example using a multi-catch block:

public static void main(String[] args) {

 try {

 System.out.println(Integer.parseInt(args[1])); } catch

(ArrayIndexOutOfBoundsException | NumberFormatException e) {

 System.out.println("Missing or invalid input");

 }

}

This is much better. There’s no duplicate code, the common logic is all
in one place, and the logic is exactly where you would expect to find it.
If you wanted, you could still have a second catch block for Exception
in case you want to handle other types of exceptions differently.

Figure 10.3 shows the syntax of multi-catch. It’s like a regular catch
clause, except two or more exception types are specified separated by a
pipe. The pipe (|) is also used as the “or” operator, making it easy to
remember that you can use either/or of the exception types. Notice

how there is only one variable name in the catch clause. Java is saying
that the variable named e can be of type Exception1 or Exception2.

Figure 10.3 The syntax of a multi-catch block

The exam might try to trick you with invalid syntax. Remember that
the exceptions can be listed in any order within the catch clause.
However, the variable name must appear only once and at the end. Do
you see why these are valid or invalid?

catch(Exception1 e | Exception2 e | Exception3 e) // DOES NOT

COMPILE

catch(Exception1 e1 | Exception2 e2 | Exception3 e3) // DOES NOT

COMPILE

catch(Exception1 | Exception2 | Exception3 e)

The first line is incorrect because the variable name appears three
times. Just because it happens to be the same variable name doesn’t
make it okay. The second line is incorrect because the variable name
again appears three times. Using different variable names doesn’t
make it any better. The third line does compile. It shows the correct
syntax for specifying three exceptions.

Java intends multi-catch to be used for exceptions that aren’t related,
and it prevents you from specifying redundant types in a multi-catch.
Do you see what is wrong here?

try {

 throw new IOException();

} catch (FileNotFoundException | IOException p) {} // DOES NOT

COMPILE

Specifying it in the multi-catch is redundant, and the compiler gives a
message such as this:

The exception FileNotFoundException is already caught by the

alternative IOException

Since FileNotFoundException is a subclass of IOException, this code
will not compile. A multi-catch block follows similar rules as chaining
catch blocks together that you saw in the previous section. For
example, both trigger compiler errors when they encounter
unreachable code or duplicate exceptions being caught. The one
difference between multi-catch blocks and chaining catch blocks is
that order does not matter for a multi-catch block within a single catch
expression.

Getting back to the example, the correct code is just to drop the
extraneous subclass reference, as shown here:

try {

 throw new IOException();

} catch (IOException e) { }

To review multi-catch, see how many errors you can find in this try
statement:

11: public void doesNotCompile() { // METHOD DOES NOT COMPILE

12: try {

13: mightThrow();

14: } catch (FileNotFoundException | IllegalStateException e)

{

15: } catch (InputMismatchException e |

MissingResourceException e) {

16: } catch (FileNotFoundException | IllegalArgumentException

e) {

17: } catch (Exception e) {

18: } catch (IOException e) {

19: }

20: }

21: private void mightThrow() throws DateTimeParseException,

IOException { }

This code is just swimming with errors. In fact, some errors hide

others, so you might not see them all in the compiler. Once you start
fixing some errors, you’ll see the others. Here’s what’s wrong:

Line 15 has an extra variable name. Remember that there can be
only one exception variable per catch block.

Line 16 cannot catch FileNotFoundException because that
exception was already caught on line 14. You can’t list the same
exception type more than once in the same try statement, just like
with “regular” catch blocks.

Lines 17 and 18 are reversed. The more general superclasses must
be caught after their subclasses. While this doesn’t have anything
to do with multi-catch, you’ll see “regular” catch block problems
mixed in with multi-catch.

Don’t worry—you won’t see this many problems in the same example
on the exam!

Adding a finally Block
The try statement also lets you run code at the end with a finally
clause regardless of whether an exception is thrown. Figure 10.4
shows the syntax of a try statement with this extra functionality.

Figure 10.4 The syntax of a try statement with finally

There are two paths through code with both a catch and a finally. If
an exception is thrown, the finally block is run after the catch block.
If no exception is thrown, the finally block is run after the try block
completes.

Let’s go back to our young girl example, this time with finally:

12: void explore() {

13: try {

14: seeAnimals();

15: fall();

16: } catch (Exception e) {

17: getHugFromDaddy();

18: } finally {

19: seeMoreAnimals();

20: }

21: goHome();

22: }

The girl falls on line 15. If she gets up by herself, the code goes on to
the finally block and runs line 19. Then the try statement is over, and

the code proceeds on line 21. If the girl doesn’t get up by herself, she
throws an exception. The catch block runs, and she gets a hug on line
17. With that hug she is ready to see more animals on line 19. Then the
try statement is over, and the code proceeds on line 21. Either way, the
ending is the same. The finally block is executed, and execution
continues after the try statement.

The exam will try to trick you with missing clauses or clauses in the
wrong order. Do you see why the following do or do not compile?

25: try { // DOES NOT COMPILE

26: fall();

27: } finally {

28: System.out.println("all better");

29: } catch (Exception e) {

30: System.out.println("get up");

31: }

32:

33: try { // DOES NOT COMPILE

34: fall();

35: }

36:

37: try {

38: fall();

39: } finally {

40: System.out.println("all better");

41: }

The first example (lines 25–31) does not compile because the catch
and finally blocks are in the wrong order. The second example (lines
33–35) does not compile because there must be a catch or finally
block. The third example (lines 37–41) is just fine. The catch block is
not required if finally is present.

One problem with finally is that any realistic uses for it are out of the
scope of the exam. A finally block is typically used to close resources
such as files or databases—neither of which is a topic on this exam.
This means most of the examples you encounter on the exam with
finally are going to look contrived. For example, you’ll get asked
questions such as what this code outputs:

public static void main(String[] unused) {

 StringBuilder sb = new StringBuilder();

 try {

 sb.append("t");

 } catch (Exception e) {

 sb.append("c");

 } finally {

 sb.append("f");

 }

 sb.append("a");

 System.out.print(sb.toString());

}

The answer is tfa. The try block is executed. Since no exception is
thrown, Java goes straight to the finally block. Then the code after
the try statement is run. We know that this is a silly example, but you
can expect to see examples like this on the exam.

There is one additional rule you should know for finally blocks. If a
try statement with a finally block is entered, then the finally block
will always be executed, regardless of whether the code completes
successfully. Take a look at the following goHome() method. Assuming
an exception may or may not be thrown on line 14, what are the
possible values that this method could print? Also, what would the
return value be in each case?

12: int goHome() {

13: try {

14: // Optionally throw an exception here

15: System.out.print("1");

16: return -1;

17: } catch (Exception e) {

18: System.out.print("2");

19: return -2;

20: } finally {

21: System.out.print("3");

22: return -3;

23: }

24: }

If an exception is not thrown on line 14, then the line 15 will be
executed, printing 1. Before the method returns, though, the finally
block is executed, printing 3. If an exception is thrown, then lines 15–
16 will be skipped, and lines 17–19 will be executed, printing 2,
followed by 3 from the finally block. While the first value printed may
differ, the method always prints 3 last since it’s in the finally block.

What is the return value of the goHome() method? In this case, it’s
always -3. Because the finally block is executed shortly before the
method completes, it interrupts the return statement from inside both
the try and catch blocks.

For the exam, you need to remember that a finally block will always
be executed. That said, it may not complete successfully. Take a look at
the following code snippet. What would happen if info was null on
line 32?

31: } finally {

32: info.printDetails();

33: System.out.print("Exiting");

34: return "zoo";

35: }

If info is null, then the finally block would be executed, but it would
stop on line 32 and throw a NullPointerException. Lines 33–34 would
not be executed. In this example, you see that while a finally block
will always be executed, it may not finish.

System.exit()
There is one exception to “the finally block always be executed”
rule: Java defines a method that you call as System.exit(). It takes
an integer parameter that represents the error code that gets
returned.

try {

 System.exit(0);

} finally {

 System.out.print("Never going to get here"); // Not

printed

}

System.exit() tells Java, “Stop. End the program right now. Do not
pass go. Do not collect $200.” When System.exit() is called in the
try or catch block, the finally block does not run.

Finally Closing Resources

Oftentimes, your application works with files, databases, and various
connection objects. Commonly, these external data sources are
referred to as resources. In many cases, you open a connection to the
resource, whether it’s over the network or within a file system. You
then read/write the data you want. Finally, you close the resource to
indicate you are done with it.

What happens if you don’t close a resource when you are done with it?
In short, a lot of bad things could happen. If you are connecting to a
database, you could use up all available connections, meaning no one
can talk to the database until you release your connections. Although
you commonly hear about memory leaks as causing programs to fail, a
resource leak is just as bad and occurs when a program fails to release
its connections to a resource, resulting in the resource becoming
inaccessible.

Writing code that simplifies closing resources is what this section is
about. Let’s take a look at a method that opens a file, reads the data,
and closes it:

4: public void readFile(String file) {

5: FileInputStream is = null;

6: try {

7: is = new FileInputStream("myfile.txt");

8: // Read file data

9: } catch (IOException e) {

10: e.printStackTrace();

11: } finally {

12: if(is != null) {

13: try {

14: is.close();

15: } catch (IOException e2) {

16: e2.printStackTrace();

17: }

18: }

19: }

20: }

Wow, that’s a long method! Why do we have two try and catch blocks?
Well, the code on lines 7 and 14 both include checked IOException
calls, so they both need to be caught in the method or rethrown by the
method. Half the lines of code in this method are just closing a

resource. And the more resources you have, the longer code like this
becomes. For example, you may have multiple resources and they
need to be closed in a particular order. You also don’t want an
exception from closing one resource to prevent the closing of another
resource.

To solve this, Java includes the try-with-resources statement to
automatically close all resources opened in a try clause. This feature is
also known as automatic resource management, because Java
automatically takes care of the closing.

For the 1Z0-815 exam, you are not required to know any

File IO, network, or database classes, although you are required to
know try-with-resources. If you see a question on the exam or in
this chapter that uses these types of resources, assume that part of
the code compiles without issue. In other words, these questions
are actually a gift, since you know the problem must be about basic
Java syntax or exception handling. That said, for the 1Z0-816
exam, you will need to know numerous resources classes.

Let’s take a look at our same example using a try-with-resources
statement:

4: public void readFile(String file) {

5: try (FileInputStream is = new

FileInputStream("myfile.txt")) {

6: // Read file data

7: } catch (IOException e) {

8: e.printStackTrace();

9: }

10: }

Functionally, they are both quite similar, but our new version has half
as many lines. More importantly, though, by using a try-with-
resources statement, we guarantee that as soon as a connection passes
out of scope, Java will attempt to close it within the same method.

In the following sections, we will look at the try-with-resources syntax
and how to indicate a resource can be automatically closed.

Implicit finally Blocks
Behind the scenes, the compiler replaces a try-with-resources
block with a try and finally block. We refer to this “hidden”
finally block as an implicit finally block since it is created and
used by the compiler automatically. You can still create a
programmer-defined finally block when using a try-with-
resources statement; just be aware that the implicit one will be
called first.

Basics of Try-with-Resources
Figure 10.5 shows what a try-with-resources statement looks like.
Notice that one or more resources can be opened in the try clause.
When there are multiple resources opened, they are closed in the
reverse order from which they were created. Also, notice that
parentheses are used to list those resources, and semicolons are used
to separate the declarations. This works just like declaring multiple
indexes in a for loop.

Figure 10.5 The syntax of a basic try-with-resources

What happened to the catch block in Figure 10.5? Well, it turns out a
catch block is optional with a try-with-resources statement. For
example, we can rewrite the previous readFile() example so that the
method rethrows the exception to make it even shorter:

4: public void readFile(String file) throws IOException {

5: try (FileInputStream is = new

FileInputStream("myfile.txt")) {

6: // Read file data

7: }

8: }

Earlier in the chapter, you learned that a try statement must have one
or more catch blocks or a finally block. This is still true. The finally
clause exists implicitly. You just don’t have to type it.

Remember that only a try-with-resources statement is

permitted to omit both the catch and finally blocks. A traditional
try statement must have either or both. You can easily distinguish
between the two by the presence of parentheses, (), after the try
keyword.

Figure 10.6 shows that a try-with-resources statement is still allowed
to have catch and/or finally blocks. In fact, if the code within the try
block throws a checked exception not declared by the method in which
it is defined or handled by another try/catch block, then it will need to
be handled by the catch block. Also, the catch and finally blocks are
run in addition to the implicit one that closes the resources. For the
exam, you need to know that the implicit finally block runs before
any programmer-coded ones.

Figure 10.6 The syntax of try-with-resources including
catch/finally

To make sure that you’ve wrapped your head around the differences,
you should be able to fill in Table 10.2 and Table 10.3 with whichever
combinations of catch and finally blocks are legal configurations.

Table 10.2 Legal vs. illegal configurations with a traditional
try statement

 0 finally
blocks

1 finally
block

2 or more finally
blocks

0 catch blocks Not legal Legal Not legal
1 or more catch
blocks

Legal Legal Not legal

Table 10.3 Legal vs. illegal configurations with a try-with-
resources statement

 0 finally
blocks

1 finally
block

2 or more finally
blocks

0 catch blocks Legal Legal Not legal
1 or more catch
blocks

Legal Legal Not legal

You can see that for both of these try statements, two or more
programmer-defined finally blocks are not allowed. Remember that
the implicit finally block defined by the compiler is not counted here.

AutoCloseable
You can’t just put any random class in a try-with-resources
statement. Java requires classes used in a try-with-resources
implement the AutoCloseable interface, which includes a void
close() method. You’ll learn more about resources that implement
this method when you study for the 1Z0-816 exam.

Declaring Resources
While try-with-resources does support declaring multiple variables,
each variable must be declared in a separate statement. For example,

the following do not compile:

try (MyFileClass is = new MyFileClass(1), // DOES NOT COMPILE

 os = new MyFileClass(2)) {

}

try (MyFileClass ab = new MyFileClass(1), // DOES NOT COMPILE

 MyFileClass cd = new MyFileClass(2)) {

}

A try-with-resources statement does not support multiple variable
declarations. The first example does not compile because it is missing
the data type and it uses a comma (,) instead of a semicolon (;). The
second example does not compile because it also uses a comma (,)
instead of a semicolon (;). Each resource must include the data type
and be separated by a semicolon (;).

You can declare a resource using var as the data type in a try-with-
resources statement, since resources are local variables.

try (var f = new BufferedInputStream(new

FileInputStream("it.txt"))) {

 // Process file

}

Declaring resources is a common situation where using var is quite
helpful, as it shortens the already long line of code.

Scope of Try-with-Resources
The resources created in the try clause are in scope only within the try
block. This is another way to remember that the implicit finally runs
before any catch/finally blocks that you code yourself. The implicit
close has run already, and the resource is no longer available. Do you
see why lines 6 and 8 don’t compile in this example?

3: try (Scanner s = new Scanner(System.in)) {

4: s.nextLine();

5: } catch(Exception e) {

6: s.nextInt(); // DOES NOT COMPILE

7: } finally {

8: s.nextInt(); // DOES NOT COMPILE

9: }

The problem is that Scanner has gone out of scope at the end of the try
clause. Lines 6 and 8 do not have access to it. This is actually a nice
feature. You can’t accidentally use an object that has been closed. In a
traditional try statement, the variable has to be declared before the
try statement so that both the try and finally blocks can access it,
which has the unpleasant side effect of making the variable in scope
for the rest of the method, just inviting you to call it by accident.

Following Order of Operation
You’ve learned two new rules for the order in which code runs in a try-
with-resources statement:

Resources are closed after the try clause ends and before any
catch/finally clauses.

Resources are closed in the reverse order from which they were
created.

Let’s review these principles with a more complex example. First, we
define a custom class that you can use with a try-with-resources
statement, as it implements AutoCloseable.

public class MyFileClass implements AutoCloseable {

 private final int num;

 public MyFileClass(int num) { this.num = num; }

 public void close() {

 System.out.println("Closing: " + num);

 }

}

This is a pretty simple class that prints the number, set by the
constructor, when a resource is closed. Based on these rules, can you
figure out what this method prints?

public static void main(String... xyz) {

 try (MyFileClass a1 = new MyFileClass(1);

 MyFileClass a2 = new MyFileClass(2)) {

 throw new RuntimeException();

 } catch (Exception e) {

 System.out.println("ex");

 } finally {

 System.out.println("finally");

 }

}

Since the resources are closed in the reverse order from which they
were opened, we have Closing: 2 and then Closing: 1. After that, the
catch block and finally block are run—just as they are in a regular try
statement. The output is as follows:

Closing: 2

Closing: 1

ex

finally

For the exam, make sure you understand why the method prints the
statements in this order. Remember, the resources are closed in the
reverse order from which they are declared, and the implicit finally is
executed before the programmer-defined finally.

Try-with-Resources Guarantees
Does a try-with-resources statement guarantee a resource will be
closed? Although this is beyond the scope of the exam, the short
answer is “no.” The try-with-resources statement guarantees only
the close() method will be called. If the close() method
encounters an exception of its own or the method is implemented
poorly, a resource leak can still occur. For the exam, you just need
to know try-with-resources is guaranteed to call the close()
method on the resource.

Throwing Additional Exceptions
A catch or finally block can have any valid Java code in it—including
another try statement. What happens when an exception is thrown
inside of a catch or finally block?

To answer this, let’s take a look at a concrete example:

16: public static void main(String[] a) {

17: FileReader reader = null;

18: try {

19: reader = read();

20: } catch (IOException e) {

21: try {

22: if (reader != null) reader.close();

23: } catch (IOException inner) {

24: }

25: }

26: }

27: private static FileReader read() throws IOException {

28: // CODE GOES HERE

29: }

The easiest case is if line 28 doesn’t throw an exception. Then the
entire catch block on lines 20–25 is skipped. Next, consider if line 28
throws a NullPointerException. That isn’t an IOException, so the catch
block on lines 20–25 will still be skipped, resulting in the main()
method terminating early.

If line 28 does throw an IOException, the catch block on lines 20–25
gets run. Line 22 tries to close the reader. If that goes well, the code
completes, and the main() method ends normally. If the close()
method does throw an exception, Java looks for more catch blocks.
This exception is caught on line 23. Regardless, the exception on line
28 is handled. A different exception might be thrown, but the one from
line 28 is done.

Most of the examples you see with exception handling on the exam are
abstract. They use letters or numbers to make sure you understand the
flow. This one shows that only the last exception to be thrown matters:

26: try {

27: throw new RuntimeException();

28: } catch (RuntimeException e) {

29: throw new RuntimeException();

30: } finally {

31: throw new Exception();

32: }

Line 27 throws an exception, which is caught on line 28. The catch
block then throws an exception on line 29. If there were no finally
block, the exception from line 29 would be thrown. However, the
finally block runs after the catch block. Since the finally block
throws an exception of its own on line 31, this one gets thrown. The

exception from the catch block gets forgotten about. This is why you
often see another try/catch inside a finally block—to make sure it
doesn’t mask the exception from the catch block.

Next we are going to show you one of the hardest examples you can be
asked related to exceptions. What do you think this method returns?
Go slowly. It’s tricky.

30: public String exceptions() {

31: StringBuilder result = new StringBuilder();

32: String v = null;

33: try {

34: try {

35: result.append("before_");

36: v.length();

37: result.append("after_");

38: } catch (NullPointerException e) {

39: result.append("catch_");

40: throw new RuntimeException();

41: } finally {

42: result.append("finally_");

43: throw new Exception();

44: }

45: } catch (Exception e) {

46: result.append("done");

47: }

48: return result.toString();

49: }

The correct answer is before_catch_finally_done. First on line 35,
"before_" is added. Line 36 throws a NullPointerException. Line 37 is
skipped as Java goes straight to the catch block. Line 38 does catch the
exception, and "catch_" is added on line 39. Then line 40 throws a
RuntimeException. The finally block runs after the catch regardless of
whether an exception is thrown; it adds "finally_" to result. At this
point, we have completed the inner try statement that ran on lines
34–44. The outer catch block then sees an exception was thrown and
catches it on line 45; it adds "done" to result.

Did you get that right? If so, you are well on your way to acing this part
of the exam. If not, we recommend reading this section again before
moving on.

Calling Methods That Throw Exceptions
When you’re calling a method that throws an exception, the rules are
the same as within a method. Do you see why the following doesn’t
compile?

class NoMoreCarrotsException extends Exception {}

public class Bunny {

 public static void main(String[] args) {

 eatCarrot(); // DOES NOT COMPILE

 }

 private static void eatCarrot() throws NoMoreCarrotsException

{

 }

}

The problem is that NoMoreCarrotsException is a checked exception.
Checked exceptions must be handled or declared. The code would
compile if you changed the main() method to either of these:

 public static void main(String[] args)

 throws NoMoreCarrotsException { // declare exception

 eatCarrot();

 }

 public static void main(String[] args) {

 try {

 eatCarrot();

 } catch (NoMoreCarrotsException e) { // handle exception

 System.out.print("sad rabbit");

 }

 }

You might have noticed that eatCarrot() didn’t actually throw an
exception; it just declared that it could. This is enough for the compiler
to require the caller to handle or declare the exception.

The compiler is still on the lookout for unreachable code. Declaring an
unused exception isn’t considered unreachable code. It gives the
method the option to change the implementation to throw that
exception in the future. Do you see the issue here?

public void bad() {

 try {

 eatCarrot();

 } catch (NoMoreCarrotsException e) { // DOES NOT COMPILE

 System.out.print("sad rabbit");

 }

}

public void good() throws NoMoreCarrotsException {

 eatCarrot();

}

private void eatCarrot() { }

Java knows that eatCarrot() can’t throw a checked exception—which
means there’s no way for the catch block in bad() to be reached. In
comparison, good() is free to declare other exceptions.

When you see a checked exception declared inside a catch

block on the exam, check and make sure the code in the associated
try block is capable of throwing the exception or a subclass of the
exception. If not, the code is unreachable and does not compile.
Remember that this rule does not extend to unchecked exceptions
or exceptions declared in a method signature.

Declaring and Overriding Methods with Exceptions
Now that you have a deeper understanding of exceptions, let’s look at
overriding methods with exceptions in the method declaration. When
a class overrides a method from a superclass or implements a method
from an interface, it’s not allowed to add new checked exceptions to
the method signature. For example, this code isn’t allowed:

class CanNotHopException extends Exception { }

class Hopper {

 public void hop() { }

}

class Bunny extends Hopper {

 public void hop() throws CanNotHopException { } // DOES NOT

COMPILE

}

Java knows hop() isn’t allowed to throw any checked exceptions
because the hop() method in the superclass Hopper doesn’t declare any.
Imagine what would happen if the subclasses versions of the method
could add checked exceptions—you could write code that calls Hopper’s
hop() method and not handle any exceptions. Then if Bunny were used
in its place, the code wouldn’t know to handle or declare
CanNotHopException.

An overridden method in a subclass is allowed to declare fewer
exceptions than the superclass or interface. This is legal because
callers are already handling them.

class Hopper {

 public void hop() throws CanNotHopException { }

}

class Bunny extends Hopper {

 public void hop() { }

}

An overridden method not declaring one of the exceptions thrown by
the parent method is similar to the method declaring it throws an
exception that it never actually throws. This is perfectly legal.

Similarly, a class is allowed to declare a subclass of an exception type.
The idea is the same. The superclass or interface has already taken
care of a broader type. Here’s an example:

class Hopper {

 public void hop() throws Exception { }

}

class Bunny extends Hopper {

 public void hop() throws CanNotHopException { }

}

Bunny could declare that it throws Exception directly, or it could
declare that it throws a more specific type of Exception. It could even
declare that it throws nothing at all.

This rule applies only to checked exceptions. The following code is
legal because it has an unchecked exception in the subclass’s version:

class Hopper {

 public void hop() { }

}

class Bunny extends Hopper {

 public void hop() throws IllegalStateException { }

}

The reason that it’s okay to declare new unchecked exceptions in a
subclass method is that the declaration is redundant. Methods are free
to throw any unchecked exceptions they want without mentioning
them in the method declaration.

Printing an Exception
There are three ways to print an exception. You can let Java print it
out, print just the message, or print where the stack trace comes from.
This example shows all three approaches:

5: public static void main(String[] args) {

6: try {

7: hop();

8: } catch (Exception e) {

9: System.out.println(e);

10: System.out.println(e.getMessage());

11: e.printStackTrace();

12: }

13: }

14: private static void hop() {

15: throw new RuntimeException("cannot hop");

16: }

This code results in the following output:

java.lang.RuntimeException: cannot hop

cannot hop

java.lang.RuntimeException: cannot hop

 at Handling.hop(Handling.java:15)

 at Handling.main(Handling.java:7)

The first line shows what Java prints out by default: the exception type
and message. The second line shows just the message. The rest shows
a stack trace.

The stack trace is usually the most helpful one because it is a picture in
time the moment the exception is thrown. It shows the hierarchy of
method calls that were made to reach the line that threw the
exception. On the exam, you will mostly see the first approach. This is

because the exam often shows code snippets.

The stack trace shows all the methods on the stack. Figure 10.7 shows
what the stack looks like for this code. Every time you call a method,
Java adds it to the stack until it completes. When an exception is
thrown, it goes through the stack until it finds a method that can
handle it or it runs out of stack.

Figure 10.7 A method stack

Why Swallowing Exceptions Is Bad
Because checked exceptions require you to handle or declare them,
there is a temptation to catch them so they “go away.” But doing so
can cause problems. In the following code, there’s a problem
reading the file:

public static void main(String... p) {

 String textInFile = null;

 try {

 textInFile = readInFile();

 } catch (IOException e) {

 // ignore exception

 }

 // imagine many lines of code here

 System.out.println(textInFile.replace(" ", ""));

}

private static String readInFile() throws IOException {

 throw new IOException();

}

The code results in a NullPointerException. Java doesn’t tell you
anything about the original IOException because it was handled.
Granted, it was handled poorly, but it was handled.

When writing this book, we tend to swallow exceptions because
many of our examples are artificial in nature. However, when
you’re writing your own code, you should print out a stack trace or
at least a message when catching an exception. Also, consider
whether continuing is the best course of action. In our example,
the program can’t do anything after it fails to read in the file. It
might as well have just thrown the IOException.

Summary
An exception indicates something unexpected happened. A method
can handle an exception by catching it or declaring it for the caller to
deal with. Many exceptions are thrown by Java libraries. You can
throw your own exceptions with code such as throw new Exception().

All exceptions inherit Throwable. Subclasses of Error are exceptions
that a programmer should not attempt to handle. Classes that inherit
RuntimeException and Error are runtime (unchecked) exceptions.
Classes that inherit Exception, but not RuntimeException, are checked
exceptions. Java requires checked exceptions to be handled with a
catch block or declared with the throws keyword.

A try statement must include at least one catch block or a finally
block. A multi-catch block is one that catches multiple unrelated
exceptions in a single catch block. If a try statement has multiple
catch blocks chained together, at most one catch block can run. Java
looks for an exception that can be caught by each catch block in the
order they appear, and the first match is run. Then execution
continues after the try statement. If both catch and finally throw an
exception, the one from finally gets thrown.

A try-with-resources block is used to ensure a resource like a database
or a file is closed properly after it is created. A try-with-resources
statement does not require a catch or finally block but may optionally
include them. The implicit finally block is executed before any
programmer-defined catch or finally blocks.

RuntimeException classes you should know for the exam include the
following:

ArithmeticException

ArrayIndexOutOfBoundsException

ClassCastException

IllegalArgumentException

NullPointerException

NumberFormatException

IllegalArgumentException is typically thrown by the programmer,
whereas the others are typically thrown by the standard Java library.

Checked Exception classes you should know for the exam include the
following:

IOException

FileNotFoundException

Error classes you should know for the exam include the following:

ExceptionInInitializerError

StackOverflowError

NoClassDefFoundError

For the exam, remember that NumberFormatException is a subclass of
IllegalArgumentException, and FileNotFoundException is a subclass of
IOException.

When a method overrides a method in a superclass or interface, it is
not allowed to add checked exceptions. It is allowed to declare fewer
exceptions or declare a subclass of a declared exception. Methods
declare exceptions with the keyword throws.

Exam Essentials
Understand the various types of exceptions. All exceptions are
subclasses of java.lang.Throwable. Subclasses of java.lang.Error
should never be caught. Only subclasses of java.lang.Exception
should be handled in application code.

Differentiate between checked and unchecked exceptions.
Unchecked exceptions do not need to be caught or handled and are
subclasses of java.lang.RuntimeException and java.lang.Error. All
other subclasses of java.lang.Exception are checked exceptions and
must be handled or declared.

Understand the flow of a try statement. A try statement must
have a catch or a finally block. Multiple catch blocks can be chained
together, provided no superclass exception type appears in an earlier
catch block than its subclass. A multi-catch expression may be used to
handle multiple exceptions in the same catch block, provided one
exception is not a subclass of another. The finally block runs last
regardless of whether an exception is thrown.

Be able to follow the order of a try-with-resources
statement. A try-with-resources statement is a special type of try
block in which one or more resources are declared and automatically
closed in the reverse order of which they are declared. It can be used
with or without a catch or finally block, with the implicit finally
block always executed first.

Identify whether an exception is thrown by the programmer
or the JVM. IllegalArgumentException and NumberFormatException
are commonly thrown by the programmer. Most of the other
unchecked exceptions are typically thrown by the JVM or built-in Java
libraries.

Write methods that declare exceptions. The throws keyword is
used in a method declaration to indicate an exception might be
thrown. When overriding a method, the method is allowed to throw
fewer or narrower checked exceptions than the original version.

Recognize when to use throw versus throws. The throw
keyword is used when you actually want to throw an exception—for
example, throw new RuntimeException(). The throws keyword is used
in a method declaration.

Review Questions
1. Which of the following statements are true? (Choose all that

apply.)

A. Exceptions of type RuntimeException are unchecked.

B. Exceptions of type RuntimeException are checked.

C. You can declare unchecked exceptions.

D. You can declare checked exceptions.

E. You can handle only Exception subclasses.

F. All exceptions are subclasses of Throwable.

2. Which of the following pairs fill in the blanks to make this code
compile? (Choose all that apply.)

6: public void ohNo(ArithmeticException ae) _______

Exception {

7: if(ae==null) ______________ Exception();

8: else ______________ ae;

9: }

A. On line 6, fill in throw

B. On line 6, fill in throws

C. On line 7, fill in throw

D. On line 7, fill in throw new

E. On line 8, fill in throw

F. On line 8, fill in throw new

G. None of the above

3. What is printed by the following? (Choose all that apply.)

1: public class Mouse {

2: public String name;

3: public void findCheese() {

4: System.out.print("1");

5: try {

6: System.out.print("2");

7: name.toString();

8: System.out.print("3");

9: } catch (NullPointerException e | ClassCastException

e) {

10: System.out.print("4");

11: throw e;

12: }

13: System.out.print("5");

14: }

15: public static void main(String... tom) {

16: Mouse jerry = new Mouse();

17: jerry.findCheese();

18: } }

A. 1

B. 2

C. 3

D. 4

E. 5

F. The stack trace for a NullPointerException

G. None of the above

4. Which of the following statements about finally blocks are true?
(Choose all that apply.)

A. A finally block is never required with a regular try
statement.

B. A finally block is required when there are no catch blocks in
a regular try statement.

C. A finally block is required when the program code doesn’t
terminate on its own.

D. A finally block is never required with a try-with-resources
statement.

E. A finally block is required when there are no catch blocks in
a try-with-resources statement.

F. A finally block is required in order to make sure all
resources are closed in a try-with-resources statement.

G. A finally block is executed before the resources declared in a
try-with-resources statement are closed.

5. Which exception will the following method throw?

3: public static void main(String[] other) {

4: Object obj = Integer.valueOf(3);

5: String str = (String) obj;

6: obj = null;

7: System.out.println(obj.equals(null));

8: }

A. ArrayIndexOutOfBoundsException

B. IllegalArgumentException

C. ClassCastException

D. NumberFormatException

E. NullPointerException

F. None of the above

6. What does the following method print?

11: public void tryAgain(String s) {

12: try(FileReader r = null, p = new FileReader("")) {

13: System.out.print("X");

14: throw new IllegalArgumentException();

15: } catch (Exception s) {

16: System.out.print("A");

17: throw new FileNotFoundException();

18: } finally {

19: System.out.print("O");

20: }

21: }

A. XAO

B. XOA

C. One line of this method contains a compiler error.

D. Two lines of this method contain compiler errors.

E. Three lines of this method contain compiler errors.

F. The code compiles, but a NullPointerException is thrown at
runtime.

G. None of the above

7. What will happen if you add the following statement to a working
main() method?

System.out.print(4 / 0);

A. It will not compile.

B. It will not run.

C. It will run and throw an ArithmeticException.

D. It will run and throw an IllegalArgumentException.

E. None of the above

8. What is printed by the following program?

1: public class DoSomething {

2: public void go() {

3: System.out.print("A");

4: try {

5: stop();

6: } catch (ArithmeticException e) {

7: System.out.print("B");

8: } finally {

9: System.out.print("C");

10: }

11: System.out.print("D");

12: }

13: public void stop() {

14: System.out.print("E");

15: Object x = null;

16: x.toString();

17: System.out.print("F");

18: }

19: public static void main(String n[]) {

20: new DoSomething().go();

21: }

22: }

A. AE

B. AEBCD

C. AEC

D. AECD

E. AE followed by a stack trace

F. AEBCD followed by a stack trace

G. AEC followed by a stack trace

H. A stack trace with no other output

9. What is the output of the following snippet, assuming a and b are
both 0?

3: try {

4: System.out.print(a / b);

5: } catch (RuntimeException e) {

6: System.out.print(-1);

7: } catch (ArithmeticException e) {

8: System.out.print(0);

9: } finally {

10: System.out.print("done");

11: }

A. -1

B. 0

C. done-1

D. done0

E. The code does not compile.

F. An uncaught exception is thrown.

G. None of the above

10. What is the output of the following program?

1: public class Laptop {

2: public void start() {

3: try {

4: System.out.print("Starting up_");

5: throw new Exception();

6: } catch (Exception e) {

7: System.out.print("Problem_");

8: System.exit(0);

9: } finally {

10: System.out.print("Shutting down");

11: }

12: }

13: public static void main(String[] w) {

14: new Laptop().start();

15: } }

A. Starting up_

B. Starting up_Problem_

C. Starting up_Problem_Shutting down

D. Starting up_Shutting down

E. The code does not compile.

F. An uncaught exception is thrown.

11. What is the output of the following program?

1: public class Dog {

2: public String name;

3: public void runAway() {

4: System.out.print("1");

5: try {

6: System.out.print("2");

7: int x = Integer.parseInt(name);

8: System.out.print("3");

9: } catch (NumberFormatException e) {

10: System.out.print("4");

11: }

12: }

13: public static void main(String... args) {

14: Dog webby = new Dog();

15: webby.name = "Webby";

16: webby.runAway();

17: System.out.print("5");

18: } }

A. 1234

B. 1235

C. 124

D. 1245

E. The code does not compile.

F. An uncaught exception is thrown.

G. None of the above

12. What is the output of the following program?

1: public class Cat {

2: public String name;

3: public void knockStuffOver() {

4: System.out.print("1");

5: try {

6: System.out.print("2");

7: int x = Integer.parseInt(name);

8: System.out.print("3");

9: } catch (NullPointerException e) {

10: System.out.print("4");

11: }

12: System.out.print("5");

13: }

14: public static void main(String args[]) {

15: Cat loki = new Cat();

16: loki.name = "Loki";

17: loki.knockStuffOver();

18: System.out.print("6");

19: } }

A. The output is 12, followed by a stack trace for a
NumberFormatException.

B. The output is 124, followed by a stack trace for a
NumberFormatException.

C. The output is 12456.

D. The output is 1256, followed by a stack trace for a
NumberFormatException.

E. The code does not compile.

F. An uncaught exception is thrown.

G. None of the above

13. Which of the following statements are true? (Choose all that
apply.)

A. You can declare a method with Exception as the return type.

B. You can declare a method with RuntimeException as the
return type.

C. You can declare any subclass of Error in the throws part of a
method declaration.

D. You can declare any subclass of Exception in the throws part
of a method declaration.

E. You can declare any subclass of Object in the throws part of a
method declaration.

F. You can declare any subclass of RuntimeException in the
throws part of a method declaration.

14. Which of the following can be inserted on line 8 to make this code
compile? (Choose all that apply.)

7: public void whatHappensNext() throws IOException {

8: // INSERT CODE HERE

9: }

A. System.out.println("it's ok");

B. throw new Exception();

C. throw new IllegalArgumentException();

D. throw new java.io.IOException();

E. throw new RuntimeException();

F. None of the above

15. What is printed by the following program? (Choose all that apply.)

1: public class Help {

2: public void callSuperhero() {

3: try (String raspberry = new String("Olivia")) {

4: System.out.print("Q");

5: } catch (Error e) {

6: System.out.print("X");

7: } finally {

8: System.out.print("M");

9: }

10: }

11: public static void main(String[] args) {

12: new Help().callSuperhero();

13: System.out.print("S");

14: } }

A. SQM

B. QXMS

C. QSM

D. QMS

E. A stack trace

F. The code does not compile because NumberFormatException is
not declared or caught.

G. None of the above

16. Which of the following do not need to be handled or declared?
(Choose all that apply.)

A. ArrayIndexOutOfBoundsException

B. IllegalArgumentException

C. IOException

D. Error

E. NumberFormatException

F. Any exception that extends RuntimeException

G. Any exception that extends Exception

17. Which lines can fill in the blank to make the following code
compile? (Choose all that apply.)

void rollOut() throws ClassCastException {}

public void transform(String c) {

try {

rollOut();

} catch (IllegalArgumentException | __________________)

{

}

}

A. IOException a

B. Error b

C. NullPointerException c

D. RuntimeException d

E. NumberFormatException e

F. ClassCastException f

G. None of the above. The code contains a compiler error
regardless of what is inserted into the blank.

18. Which scenario is the best use of an exception?

A. An element is not found when searching a list.

B. An unexpected parameter is passed into a method.

C. The computer caught fire.

D. You want to loop through a list.

E. You don’t know how to code a method.

19. Which of the following can be inserted into Lion to make this code
compile? (Choose all that apply.)

class HasSoreThroatException extends Exception {}

class TiredException extends RuntimeException {}

interface Roar {

void roar() throws HasSoreThroatException;

}

class Lion implements Roar {

// INSERT CODE HERE

}

A. public void roar() {}

B. public int roar() throws RuntimeException {}

C. public void roar() throws Exception {}

D. public void roar() throws HasSoreThroatException {}

E. public void roar() throws IllegalArgumentException {}

F. public void roar() throws TiredException {}

20. Which of the following are true? (Choose all that apply.)

A. Checked exceptions are allowed, but not required, to be
handled or declared.

B. Checked exceptions are required to be handled or declared.

C. Errors are allowed, but not required, to be handled or
declared.

D. Errors are required to be handled or declared.

E. Unchecked exceptions are allowed, but not required, to be
handled or declared.

F. Unchecked exceptions are required to be handled or
declared.

21. Which of the following pairs fill in the blanks to make this code
compile? (Choose all that apply.)

6: public void ohNo(IOException ie) ______ Exception {

7: ________________ FileNotFoundException();

8: ________________ ie;

9: }

A. On line 6, fill in throw

B. On line 6, fill in throws

C. On line 7, fill in throw

D. On line 7, fill in throw new

E. On line 8, fill in throw

F. On line 8, fill in throw new

G. None of the above

22. Which of the following can be inserted in the blank to make the
code compile? (Choose all that apply.)

public void dontFail() {

try {

System.out.println("work real hard");

} catch (_____________ e) {

} catch (RuntimeException e) {}

}

A. var

B. Exception

C. IOException

D. IllegalArgumentException

E. RuntimeException

F. StackOverflowError

G. None of the above

23. What does the output of the following method contain? (Choose
all that apply.)

12: public static void main(String[] args) {

13: System.out.print("a");

14: try {

15: System.out.print("b");

16: throw new IllegalArgumentException();

17: } catch (IllegalArgumentException e) {

18: System.out.print("c");

19: throw new RuntimeException("1");

20: } catch (RuntimeException e) {

21: System.out.print("d");

22: throw new RuntimeException("2");

23: } finally {

24: System.out.print("e");

25: throw new RuntimeException("3");

26: }

27: }

A. abce

B. abde

C. An exception with the message set to "1"

D. An exception with the message set to "2"

E. An exception with the message set to "3"

F. Nothing; the code does not compile.

24. What does the following class output?

1: public class MoreHelp {

2: class Sidekick implements AutoCloseable {

3: protected String n;

4: public Sidekick(String n) { this.n = n; }

5: public void close() { System.out.print("L"); }

6: }

7: public void requiresAssistance() {

8: try (Sidekick is = new Sidekick("Adeline")) {

9: System.out.print("O");

10: } finally {

11: System.out.print("K");

12: }

13: }

14: public static void main(String... league) {

15: new MoreHelp().requiresAssistance();

16: System.out.print("I");

17: } }

A. LOKI

B. OKLI

C. OLKI

D. OKIL

E. The output cannot be determined until runtime.

F. Nothing; the code does not compile.

G. None of the above

25. What does the following code snippet return, assuming a and b
are both 1?

13: try {

14: return a / b;

15: } catch (ClassCastException e) {

16: return 10;

17: } catch (RuntimeException e) {

18: return 20;

19: } finally {

20: return 30;

21: }

A. 1

B. 10

C. 20

D. 30

E. The code does not compile.

F. An uncaught exception is thrown.

G. None of the above

Chapter 11
Modules
OCP exam objectives covered in this chapter:

 Understanding Modules

Describe the Modular JDK

Declare modules and enable access between modules

Describe how a modular project is compiled and run

Since Java 9, packages can be grouped into modules.
In this chapter, we will explain the purpose of modules and how to
build your own. We will also show how to run them and how to
discover existing modules. This book only covers the basics of modules
that you need to know for the 1Z0-815 exam.

We’ve made the code in this chapter available online. Since it can be
tedious to create the directory structure, this will save you some time.
Additionally, the commands need to be exactly right, so we’ve included
those online so you can copy and paste them and compare them with
what you typed. Both are available in the resources section of the
online test bank and in our GitHub repo linked to from:

http://www.selikoff.net/ocp11-1

http://www.selikoff.net/ocp11-1

Introducing Modules
When writing code for the exam, you generally see small classes. After
all, exam questions have to fit on a single screen! When you work on
real programs, they are much bigger. A real project will consist of
hundreds or thousands of classes grouped into packages. These
packages are grouped into Java archive (JAR) files. A JAR is a zip file
with some extra information, and the extension is .jar.

In addition to code written by your team, most applications also use
code written by others. Open source is software with the code supplied
and is often free to use. Java has a vibrant open-source software (OSS)
community, and those libraries are also supplied as JAR files. For
example, there are libraries to read files, connect to a database, and
much more.

Some open source projects even depend on functionality in other open
source projects. For example, Spring is a commonly used framework,
and JUnit is a commonly used testing library. To use either, you need
to make sure you had compatible versions of all the relevant JARs
available at runtime. This complex chain of dependencies and
minimum versions is often referred to by the community as JAR hell.
Hell is an excellent way of describing the wrong version of a class
being loaded or even a ClassNotFoundException at runtime.

The Java Platform Module System (JPMS) was introduced in Java 9
to group code at a higher level and tries to solve the problems that
Java has been plagued with since the beginning. The main purpose of
a module is to provide groups of related packages to offer a particular
set of functionality to developers. It’s like a JAR file except a developer
chooses which packages are accessible outside the module. Let’s look
at what modules are and what problems they are designed to solve.

The Java Platform Module System includes the following:

A format for module JAR files

Partitioning of the JDK into modules

Additional command-line options for Java tools

Exploring a Module
In Chapter 1, “Welcome to Java,” we had a small Zoo application. It
had only one class and just printed out one thing. Now imagine we had
a whole staff of programmers and were automating the operations of
the zoo. There are many things that need to be coded including the
interactions with the animals, visitors, the public website, and
outreach.

A module is a group of one or more packages plus a special file called
module-info .java. Figure 11.1 lists just a few of the modules a zoo
might need. We decided to focus on the animal interactions in our
example. The full zoo could easily have a dozen modules. In Figure
11.1, notice that there are arrows between many of the modules. These
represent dependencies where one module relies on code in another.
The staff needs to feed the animals to keep their jobs. The line from
zoo.staff to zoo.animal.feeding shows the former depends on the
latter.

Figure 11.1 Design of a modular system

Now let’s drill down into one of these modules. Figure 11.2 shows what

is inside the zoo.animals.talks module. There are three packages with
two classes each. (It’s a small zoo.) There is also a strange file called
module-info.java. This file is required to be inside all modules. We will
explain this in more detail later in the chapter.

Figure 11.2 Looking inside a module

Benefits of Modules
Modules look like another layer of things you need to know in order to
program. While using modules is optional, it is important to
understand the problems they are designed to solve. Besides, knowing
why modules are useful is required for the exam!

Better Access Control
In Chapter 7, “Methods and Encapsulation,” you saw the traditional
four levels of access control available in Java 8: private, package-
private, protected, and public access. These levels of access control
allowed you to restrict access to a certain class or package. You could
even allow access to subclasses without exposing them to the world.

However, what if we wrote some complex logic that we wanted to

restrict to just some packages? For example, we would like the
packages in the zoo.animal.talks module to just be available to the
packages in the zoo.staff module without making them available to
any other code. Our traditional access modifiers cannot handle this
scenario.

Developers would resort to hacks like naming a package
zoo.animal.internal. That didn’t work, though, because other
developers could still call the “internal” code. There was a class named
sun.misc.Unsafe, and it got used in places. And that class had Unsafe in
the name. Clearly, relying on naming conventions was insufficient at
preventing developers from calling it in the past.

Modules solve this problem by acting as a fifth level of access control.
They can expose packages within the modular JAR to specific other
packages. This stronger form of encapsulation really does create
internal packages. You’ll see how to code it when we talk about the
module-info.java file later in this chapter.

Clearer Dependency Management
It is common for libraries to depend on other libraries. For example,
the JUnit 4 testing library depends on the Hamcrest library for
matching logic. Developers would have to find this out by reading the
documentation or files in the project itself.

If you forgot to include Hamcrest in your classpath, your code would
run fine until you used a Hamcrest class. Then it would blow up at
runtime with a message about not finding a required class. (We did
mention JAR hell, right?)

In a fully modular environment, each of the open source projects
would specify their dependencies in the module-info.java file. When
launching the program, Java would complain that Hamcrest isn’t in
the module path and you’d know right away.

Custom Java Builds
The Java Development Kit (JDK) is larger than 150 MB. Even the Java
Runtime Environment (JRE) was pretty big when it was available as a
separate download. In the past, Java attempted to solve this with a

compact profile. The three compact profiles provided a subset of the
built-in Java classes so there would be a smaller package for mobile
and embedded devices.

However, the compact profiles lacked flexibility. Many packages were
included that developers were unlikely to use, such as Java Native
Interface (JNI), which is for working with OS-specific programs. At
the same time, using other packages like Image I/O required the full
JRE.

The Java Platform Module System allows developers to specify what
modules they actually need. This makes it possible to create a smaller
runtime image that is customized to what the application needs and
nothing more. Users can run that image without having Java installed
at all.

A tool called jlink is used to create this runtime image. Luckily, you
only need to know that custom smaller runtimes are possible. How to
create them is out of scope for the exam.

In addition to the smaller scale package, this approach improves
security. If you don’t use AWT and a security vulnerability is reported
for AWT, applications that packaged a runtime image without AWT
aren’t affected.

Improved Performance
Since Java now knows which modules are required, it only needs to
look at those at class loading time. This improves startup time for big
programs and requires less memory to run.

While these benefits may not seem significant for the small programs
we’ve been writing, they are far more important for big applications. A
web application can easily take a minute to start. Additionally, for
some financial applications, every millisecond of performance is
important.

Unique Package Enforcement
Another manifestation of JAR hell is when the same package is in two
JARs. There are a number of causes of this problem including

renaming JARs, clever developers using a package name that is
already taken, and having two versions of the same JAR on the
classpath.

The Java Platform Module System prevents this scenario. A package is
only allowed to be supplied by one module. No more unpleasant
surprises about a package at runtime.

Modules for Existing Code
While there are many benefits of using modules, there is also
significant work for an existing large application to switch over. In
particular, it is common for applications to be on old open source
libraries that do not have module support. The bill for all that
technical debt comes due when making the switch to modules.

While not all open source projects have switched over, more than
4000 have. There’s a list of all Java modules on GitHub at
https://github.com/sormuras/modules/blob/master/README.md.

The 1Z0-816 exam covers some strategies for migrating existing
applications to modules. For now, just beware that the 1Z0-815
exam covers just the simplest use cases for modules.

https://github.com/sormuras/modules/blob/master/README.md

Creating and Running a Modular Program
In this section, we will create, build, and run the zoo.animal.feeding
module. We chose this one to start with because all the other modules
depend on it. Figure 11.3 shows the design of this module. In addition
to the module-info.java file, it has one package with one class inside.

Figure 11.3 Contents of zoo.animal.feeding

In the next sections, we will create, compile, run, and package the
zoo.animal.feeding module.

Creating the Files
First we have a really simple class that prints one line in a main()
method. We know, that’s not much of an implementation. All those
programmers we hired can fill it in with business logic. In this book,
we will focus on what you need to know for the exam. So, let’s create a
simple class.

package zoo.animal.feeding;

public class Task {

 public static void main(String... args) {

 System.out.println("All fed!");

 }

}

Next comes the module-info.java file. This is the simplest possible

one.

module zoo.animal.feeding {

}

There are a few key differences between a module-info file and a
regular Java class:

The module-info file must be in the root directory of your module.
Regular Java classes should be in packages.

The module-info file must use the keyword module instead of
class, interface, or enum.

The module name follows the naming rules for package names. It
often includes periods (.) in its name. Regular class and package
names are not allowed to have dashes (-). Module names follow
the same rule.

That’s a lot of rules for the simplest possible file. There will be many
more rules when we flesh out this file later in the chapter.

Can a module-info.java File Be Empty?
Yes. As a bit of trivia, it was legal to compile any empty file with a
.java extension even before modules. The compiler sees there isn’t
a class in there and exits without creating a .class file.

The next step is to make sure the files are in the right directory
structure. Figure 11.4 shows the expected directory structure.

Figure 11.4 Module zoo.animal.feeding directory structure

In particular, feeding is the module directory, and the module-info file
is directly under it. Just as with a regular JAR file, we also have the
zoo.animal.feeding package with one subfolder per portion of the
name. The Task class is in the appropriate subfolder for its package.

Also, note that we created a directory called mods at the same level as
the module. We will use it for storing the module artifacts a little later
in the chapter. This directory can be named anything, but mods is a
common name. If you are following along with the online code
example, note that the mods directory is not included, because it is
empty.

Compiling Our First Module
Before we can run modular code, we need to compile it. Other than the

module-path option, this code should look familiar from Chapter 1:

javac --module-path mods

 -d feeding

 feeding/zoo/animal/feeding/*.java

 feeding/module-info.java

When you’re entering commands at the command line,

they should be typed all on one line. We use line breaks in the book
to make the commands easier to read and study. If you wanted to
use multiple lines at the command prompt, the approach varies by
operating system. Linux uses a backslash (\) as the line break.

As a review, the -d option specifies the directory to place the class files
in. The end of the command is a list of the .java files to compile. You
can list the files individually or use a wildcard for all .java files in a
subdirectory.

The new part is the module-path. This option indicates the location of
any custom module files. In this example, module-path could have been
omitted since there are no dependencies. You can think of module-path
as replacing the classpath option when you are working on a modular
program.

What Happened to the Classpath?
In the past, you would reference JAR files using the classpath
option. It had three possible forms: -cp, -class-path, and -
classpath. You can still use these options in Java 11. In fact, it is
common to do so when writing nonmodular programs.

Just like classpath, you can use an abbreviation in the command. The
syntax --module-path and -p are equivalent. That means we could have
written many other commands in place of the previous command. The
following four commands show the -p option:

javac -p mods

 -d feeding

 feeding/zoo/animal/feeding/*.java

 feeding/*.java

javac -p mods

 -d feeding

 feeding/zoo/animal/feeding/*.java

 feeding/module-info.java

javac -p mods

 -d feeding

 feeding/zoo/animal/feeding/Task.java

 feeding/module-info.java

javac -p mods

 -d feeding

 feeding/zoo/animal/feeding/Task.java

 feeding/*.java

While you can use whichever you like best, be sure that you can
recognize all valid forms for the exam. Table 11.1 lists the options you
need to know well when compiling modules. There are many more
options you can pass to the javac command, but these are the ones you
can expect to be tested on.

Table 11.1 Options you need to know for using modules with
javac

Use for Abbreviation Long form
Directory for class files -d <dir> n/a
Module path -p <path> --module-path <path>

Building Modules
Even before modules, it was rare to run javac and java commands
manually on a real project. They get long and complicated very
quickly. Most developers use a build tool such as Maven or Gradle.
These build tools suggest directories to place the class files like
target/classes.

With modules, there is even more typing to run these commands

by hand. After all, with modules, you are using more directories by
definition. This means that it is likely the only time you need to
know the syntax of these commands is when you take the exam.
The concepts themselves are useful regardless.

Do be sure to memorize the module command syntax. You will be
tested on it on the exam. We will be sure to give you lots of practice
questions on the syntax to reinforce it.

Running Our First Module
Before we package our module, we should make sure it works by
running it. To do that, we need to learn the full syntax. Suppose there
is a module named book.module. Inside that module is a package
named com.sybex, which has a class named OCP with a main() method.
Figure 11.5 shows the syntax for running a module. Pay special
attention to the book.module/com.sybex.OCP part. It is important to
remember that you specify the module name followed by a slash (/)
followed by the fully qualified class name.

Figure 11.5 Running a module using java

Now that we’ve seen the syntax, we can write the command to run the
Task class in the zoo.animal.feeding package. In the following
example, the package name and module name are the same. It is
common for the module name to match either the full package name
or the beginning of it.

java --module-path feeding

 --module zoo.animal.feeding/zoo.animal.feeding.Task

Since you already saw that --module-path uses the short form of -p, we
bet you won’t be surprised to learn there is a short form of --module as

well. The short option is -m. That means the following command is
equivalent:

java -p feeding

 -m zoo.animal.feeding/zoo.animal.feeding.Task

In these examples, we used feeding as the module path because that’s
where we compiled the code. This will change once we package the
module and run that.

Table 11.2 lists the options you need to know for the java command.

Table 11.2 Options you need to know for using modules with
java

Use for Abbreviation Long form
Module name -m <name> --module <name>

Module path -p <path> --module-path <path>

Packaging Our First Module
A module isn’t much use if we can run it only in the folder it was
created in. Our next step is to package it. Be sure to create a mods
directory before running this command:

jar -cvf mods/zoo.animal.feeding.jar -C feeding/ .

There’s nothing module-specific here. In fact, you might remember
seeing this command in Chapter 1. We are packaging everything under
the feeding directory and storing it in a JAR file named
zoo.animal.feeding.jar under the mods folder. This represents how the
module JAR will look to other code that wants to use it.

It is possible to version your module using the --module-

version option. This isn’t on the exam but is good to do when you
are ready to share your module with others.

Now let’s run the program again, but this time using the mods directory
instead of the loose classes:

java -p mods

 -m zoo.animal.feeding/zoo.animal.feeding.Task

You might notice that this command looks identical to the one in the
previous section except for the directory. In the previous example, it
was feeding. In this one, it is the module path of mods. Since the
module path is used, a module JAR is being run.

Figure 11.6 shows what the directory structure looks like now that
we’ve compiled and packaged the code.

Figure 11.6 Module zoo.animal.feeding directory structure with
class and jar files

Updating Our Example for Multiple Modules
Now that our zoo.animal.feeding module is solid, we can start
thinking about our other modules. As you can see in Figure 11.7, all
three of the other modules in our system depend on the
zoo.animal.feeding module.

Figure 11.7 Modules depending on zoo.animal.feeding

Updating the Feeding Module
Since we will be having our other modules call code in the
zoo.animal.feeding package, we need to declare this intent in the
module-info file.

The exports keyword is used to indicate that a module intends for
those packages to be used by Java code outside the module. As you
might expect, without an exports keyword, the module is only
available to be run from the command line on its own. In the following
example, we export one package:

module zoo.animal.feeding {

 exports zoo.animal.feeding;

}

Recompiling and repackaging the module will update the module-info
inside our zoo.animals.feeding.jar file. These are the same javac and
jar commands you ran previously.

javac -p mods

 -d feeding

 feeding/zoo/animal/feeding/*.java

 feeding/module-info.java

jar -cvf mods/zoo.animal.feeding.jar -C feeding/ .

Creating a Care Module
Next, let’s create the zoo.animal.care module. This time, we are going
to have two packages. The zoo.animal.care.medical package will have
the classes and methods that are intended for use by other modules.
The zoo.animal.care.details package is only going to be used by this
module. It will not be exported from the module. Think of it as
healthcare privacy for the animals.

Figure 11.8 shows the contents of this module. Remember that all
modules must have a module-info file.

Figure 11.8 Contents of zoo.animal.care

The module contains two basic packages and classes in addition to the
module-info.java file:

// HippoBirthday.java

package zoo.animal.care.details;

import zoo.animal.feeding.*;

public class HippoBirthday {

 private Task task;

}

// Diet.java

package zoo.animal.care.medical;

public class Diet { }

This time the module-info.java file specifies three things.

1: module zoo.animal.care {

2: exports zoo.animal.care.medical;

3: requires zoo.animal.feeding;

4: }

Line 1 specifies the name of the module. Line 2 lists the package we are
exporting so it can be used by other modules. So far, this is similar to
the zoo.animal.feeding module.

On line 3, we see a new keyword. The requires statement specifies that
a module is needed. The zoo.animal.care module depends on the
zoo.animal.feeding module.

Next we need to figure out the directory structure. We will create two
packages. The first is zoo.animal.care.details and contains one class
named HippoBirthday. The second is zoo.animal.care.medical and
contains one class named Diet. Try to draw the directory structure on
paper or create it on your computer. If you are trying to run these
examples without using the online code, just create classes without
variables or methods for everything except the module-info.java files.

Figure 11.9 shows the directory structure of this module. Note that
module-info.java is in the root of the module. The two packages are
underneath it.

Figure 11.9 Module zoo.animal.care directory structure

You might have noticed that the packages begin with the same prefix
as the module name. This is intentional. You can think of it as if the
module name “claims” the matching package and all subpackages.

To review, we now compile and package the module:

javac -p mods

 -d care

 care/zoo/animal/care/details/*.java

 care/zoo/animal/care/medical/*.java

 care/module-info.java

We compile both packages and the module-info file. In the real world,
you’ll use a build tool rather than doing this by hand. For the exam,
you just list all the packages and/or files you want to compile.

Order Matters!
Note that order matters when compiling a module. Suppose we list
the module-info file first when trying to compile:

javac -p mods

 -d care

 care/module-info.java

 care/zoo/animal/care/details/*.java

 care/zoo/animal/care/medical/*.java

The compiler complains that it doesn’t know anything about the
package zoo.animal.care.medical.

care/module-info.java:3: error: package is empty or does not

exist: zoo.animal.care.medical

exports zoo.animal.care.medical;

A package must have at least one class in it in order to be exported.
Since we haven’t yet compiled zoo.animal.care.medical.Diet, the
compiler acts as if it doesn’t exist. If you get this error message,
you can reorder the javac statement. Alternatively, you can
compile the packages in a separate javac command, before
compiling the module-info file.

Now that we have compiled code, it’s time to create the module JAR:

jar -cvf mods/zoo.animal.care.jar -C care/ .

Creating the Talks Module
So far, we’ve used only one exports and requires statement in a
module. Now you’ll learn how to handle exporting multiple packages
or requiring multiple modules. In Figure 11.10, observe that the
zoo.animal.talks module depends on two modules:
zoo.animal.feeding and zoo.animal.care. This means that there must
be two requires statements in the module-info.java file.

Figure 11.10 Dependencies for zoo.animal.talks

Figure 11.11 shows the contents of this module. We are going to export
all three packages in this module.

Figure 11.11 Contents of zoo.animal.talks

First let’s look at the module-info.java file for zoo.animal.talks:

1: module zoo.animal.talks {

2: exports zoo.animal.talks.content;

3: exports zoo.animal.talks.media;

4: exports zoo.animal.talks.schedule;

5:

6: requires zoo.animal.feeding;

7: requires zoo.animal.care;

8: }

Line 1 shows the module name. Lines 2–4 allow other modules to
reference all three packages. Lines 6–7 specify the two modules that
this module depends on.

Then we have the six classes, as shown here:

// ElephantScript.java

package zoo.animal.talks.content;

public class ElephantScript { }

// SeaLionScript.java

package zoo.animal.talks.content;

public class SeaLionScript { }

// Announcement.java

package zoo.animal.talks.media;

public class Announcement {

 public static void main(String[] args) {

 System.out.println("We will be having talks");

 }

}

// Signage.java

package zoo.animal.talks.media;

public class Signage { }

// Weekday.java

package zoo.animal.talks.schedule;

public class Weekday { }

// Weekend.java

package zoo.animal.talks.schedule;

public class Weekend {}

If you are still following along on your computer, create empty classes
in the packages. The following are the commands to compile and build
the module:

javac -p mods

 -d talks

 talks/zoo/animal/talks/content/*.java

 talks/zoo/animal/talks/media/*.java

 talks/zoo/animal/talks/schedule/*.java

 talks/module-info.java

jar -cvf mods/zoo.animal.talks.jar -C talks/ .

Creating the Staff Module
Our final module is zoo.staff. Figure 11.12 shows there is only one
package inside. We will not be exposing this package outside the
module.

Figure 11.12 Contents of zoo.staff

Based on this information, do you know what should go in the module-
info?

module zoo.staff {

 requires zoo.animal.feeding;

 requires zoo.animal.care;

 requires zoo.animal.talks;

}

There are three arrows in Figure 11.13 pointing from zoo.staff to
other modules. These represent the three modules that are required.
Since no packages are to be exposed from zoo.staff, there are no
exports statements.

Figure 11.13 Dependencies for zoo.staff

In this module, we have a single class in file Jobs.java:

package zoo.staff;

public class Jobs { }

For those of you following along on your computer, create an empty
class in the package. The following are the commands to compile and
build the module:

javac -p mods

 -d staff

 staff/zoo/staff/*.java

 staff/module-info.java

jar -cvf mods/zoo.staff.jar -C staff/ .

Diving into the module-info File
Now that we’ve successfully created modules, we can learn more about
the module-info file. In these sections, we will look at exports,
requires, provides, uses, and opens. Now would be a good time to
mention that these keywords can appear in any order in the module-
info file.

Are exports and requires Keywords?
In Chapter 2, “Java Building Blocks,” we provided a list of
keywords. However, exports wasn’t on that list. Nor was module or
requires or any of the other special words in a module-info file.

Java is a bit sneaky here. These “keywords” are only keywords
inside a module-info .java file. In other files, like classes and
interfaces, you are free to name your variable exports. These
special keywords are called directives.

Backward compatibility is really important to the Java language
designers so they don’t want to risk preventing existing code from
compiling just to introduce new global keywords. However, the
module file type is new. Since there are no legacy module files, it is
safe to introduce new keywords in that context.

exports
We’ve already seen how exports packageName exports a package to
other modules. It’s also possible to export a package to a specific
module. Suppose the zoo decides that only staff members should have
access to the talks. We could update the module declaration as follows:

module zoo.animal.talks { exports zoo.animal.talks.content

to zoo.animal.staff;

 exports zoo.animal.talks.media;

 exports zoo.animal.talks.schedule;

 requires zoo.animal.feeding;

 requires zoo.animal.care;

}

From the zoo.animal.staff module, nothing has changed. However,
no other modules would be allowed to access that package.

You might have noticed that none of our other modules requires
zoo.animal.talks in the first place. However, we don’t know what
other modules will exist in the future. It is important to consider
future use when designing modules. Since we want only the one
module to have access, we only allow access for that module.

Exported Types
We’ve been talking about exporting a package. But what does that
mean exactly? All public classes, interfaces, and enums are
exported. Further, any public and protected fields and methods in
those files are visible.

Fields and methods that are private are not visible because they
are not accessible outside the class. Similarly, package-private
fields and methods are not visible because they are not accessible
outside the package.

The exports keyword essentially gives us more levels of access control.
Table 11.3 lists the full access control options.

Table 11.3 Access control with modules

Level Within module code Outside module
private Available only within

class
No access

default
(package-
private)

Available only within
package

No access

protected Available only within
package or to subclasses

Accessible to subclasses
only if package is exported

public Available to all classes Accessible only if package is

exported

requires transitive
As you saw earlier in this chapter, requires moduleName specifies that
the current module depends on moduleName. There’s also a requires
transitive moduleName, which means that any module that requires
this module will also depend on moduleName.

Well, that was a mouthful. Let’s look at an example. Figure 11.14 shows
the modules with dashed lines for the redundant relationships and
solid lines for relationships specified in the module-info. This shows
how the module relationships would look if we were to only use
transitive dependencies.

Figure 11.14 Transitive dependency version of our modules

For example, zoo.animals.talks depends on zoo.animals.care, which
depends on zoo.animals.feeding. That means the arrow between
zoo.animals.talks and zoo.animals.feeding no longer appears in
Figure 11.14.

Now let’s look at the four module-info files. The first module remains
unchanged. We are exporting one package to any packages that use the
module.

module zoo.animal.feeding {

 exports zoo.animal.feeding;

}

The zoo.animal.care module is the first opportunity to improve things.
Rather than forcing all remaining modules to explicitly specify
zoo.animal.feeding, the code uses requires transitive.

module zoo.animal.care {

 exports zoo.animal.care.medical;

 requires transitive zoo.animal.feeding;

}

In the zoo.animal.talks module, we make a similar change and don’t
force other modules to specify zoo.animal.care. We also no longer
need to specify zoo.animal.feeding, so that line is commented out.

module zoo.animal.talks {

 exports zoo.animal.talks.content to zoo.animal.staff;

 exports zoo.animal.talks.media;

 exports zoo.animal.talks.schedule;

 // no longer needed requires zoo.animal.feeding;

 // no longer needed requires zoo.animal.care;

 requires transitive zoo.animal.care;

}

Finally, in the zoo.staff module, we can get rid of two requires
statements.

module zoo.staff {

 // no longer needed requires zoo.animal.feeding;

 // no longer needed requires zoo.animal.care;

 requires zoo.animal.talks;

}

The more modules you have, the more benefits of requires transitive
compound. It is also more convenient for the caller. If you were trying
to work with this zoo, you could just require zoo.staff and have the
remaining dependencies automatically inferred.

Effects of requires transitive
Given our newly updated module-info files and using Figure 11.14,
what is the effect of applying the transitive modifier to the requires
statement in our zoo.animal.care module? Applying the transitive
modifiers has the following effect:

Module zoo.animal.talks can optionally declare it requires the
zoo.animal.feeding module, but it is not required.

Module zoo.animal.care cannot be compiled or executed without
access to the zoo.animal.feeding module.

Module zoo.animal.talks cannot be compiled or executed without
access to the zoo.animal.feeding module.

These rules hold even if the zoo.animal.care and zoo.animal.talks
modules do not explicitly reference any packages in the
zoo.animal.feeding module. On the other hand, without the
transitive modifier in our module-info file of zoo.animal.care, the
other modules would have to explicitly use requires in order to
reference any packages in the zoo.animal.feeding module.

Duplicate requires Statements
One place the exam might try to trick you is mixing requires and
requires transitive together. Can you think of a reason this code
doesn’t compile?

module bad.module {

 requires zoo.animal.talks;

 requires transitive zoo.animal.talks;

}

Java doesn’t allow you to repeat the same module in a requires clause.
It is redundant and most like an error in coding. Keep in mind that
requires transitive is like requires plus some extra behavior.

provides, uses, and opens
For the remaining three keywords (provides, uses, and opens), you
only need to be aware they exist rather than understanding them in
detail for the 1Z0-815 exam.

The provides keyword specifies that a class provides an
implementation of a service. The topic of services is covered on the
1Z0-816 exam, so for now, you can just think of a service as a fancy
interface. To use it, you supply the API and class name that
implements the API:

provides zoo.staff.ZooApi with zoo.staff.ZooImpl

The uses keyword specifies that a module is relying on a service. To
code it, you supply the API you want to call:

uses zoo.staff.ZooApi

Java allows callers to inspect and call code at runtime with a technique
called reflection. This is a powerful approach that allows calling code
that might not be available at compile time. It can even be used to
subvert access control! Don’t worry—you don’t need to know how to
write code using reflection for the exam.

Since reflection can be dangerous, the module system requires
developers to explicitly allow reflection in the module-info if they want
calling modules to be allowed to use it. Here are two examples:

opens zoo.animal.talks.schedule;

opens zoo.animal.talks.media to zoo.staff;

The first example allows any module using this one to use reflection.
The second example only gives that privilege to the zoo.staff package.

Discovering Modules
So far, we’ve been working with modules that we wrote. Since Java 9,
the classes built into the JDK were modularized as well. In this
section, we will show you how to use commands to learn about
modules.

You do not need to know the output of the commands in this section.
You do, however, need to know the syntax of the commands and what
they do. We include the output where it facilitates remembering what
is going on. But you don’t need to memorize that (which frees up more
space in your head to memorize command-line options).

The java Command
The java command has three module-related options. One describes a
module, another lists the available modules, and the third shows the
module resolution logic.

It is also possible to add modules, exports, and more at the

command line. But please don’t. It’s confusing and hard to
maintain. Note these flags are available on java, but not all
commands.

Describing a Module
Suppose you are given the zoo.animal.feeding module JAR file and
want to know about its module structure. You could “unjar” it and
open the module-info file. This would show you that the module
exports one package and doesn’t require any modules.

module zoo.animal.feeding {

 exports zoo.animal.feeding;

}

However, there is an easier way. The java command now has an
option to describe a module. The following two commands are

equivalent:

java -p mods

 -d zoo.animal.feeding

java -p mods

 --describe-module zoo.animal.feeding

Each prints information about the module. For example, it might print
this:

zoo.animal.feeding

file:///absolutePath/mods/zoo.animal.feeding.jar

exports zoo.animal.feeding

requires java.base mandated

The first line is the module we asked about: zoo.animal.feeding. The
second line starts information about the module. In our case, it is the
same package exports statement we had in the module-info file.

On the third line, we see requires java.base mandated. Now wait a
minute. The module-info file very clearly does not specify any modules
that zoo.animal.feeding has as dependencies.

The java.base module is special. It is automatically added as a
dependency to all modules. This module has frequently used packages
like java.util. That’s what the mandated is about. You get java.base
whether you asked for it or not.

In classes, the java.lang package is automatically imported whether
you type it or not. The java.base module works the same way. It is
automatically available to all other modules.

More About Describing Modules
You only need to know how to run --describe-module for the exam.
However, you might encounter some surprises when
experimenting with this feature, so we describe them in a bit more
detail here.

As a reminder, the following are the contents of module-info in
zoo.animal.care:

module zoo.animal.care {

 exports zoo.animal.care.medical to zoo.staff;

 requires transitive zoo.animal.feeding;

}

Now we have the command to describe the module and the output.

java -p mods -d zoo.animal.care

zoo.animal.care file:///absolutePath/mods/zoo.animal.care.jar

requires zoo.animal.feeding transitive

requires java.base mandated

qualified exports zoo.animal.care.medical to zoo.staff

contains zoo.animal.care.details

The first line of the output is the absolute path of the module file.
The two requires lines should look familiar as well. The first is in
the module-info, and the other is added to all modules. Next comes
something new. The qualified exports is the full name of
exporting to a specific module.

Finally, the contains means that there is a package in the module
that is not exported at all. This is true. Our module has two
packages, and one is available only to code inside the module.

Listing Available Modules
In addition to describing modules, you can use the java command to
list the modules that are available. The simplest form lists the modules
that are part of the JDK:

java --list-modules

When we ran it, the output went on for 70 lines and looked like this:

java.base@11.0.2

java.compiler@11.0.2

java.datatransfer@11.0.2

This is a listing of all the modules that come with Java and their
version numbers. You can tell that we were using Java 11.0.2 when
testing this example.

More interestingly, you can use this command with custom code. Let’s
try again with the directory containing our zoo modules.

java -p mods --list-modules

How many lines do you expect to be in the output this time? There are
74 lines now: the 70 built-in modules plus the four in our zoo system.
The custom lines look like this:

zoo.animal.care file:///absolutePath/mods/zoo.animal.care.jar

zoo.animal.feeding

file:///absolutePath/mods/zoo.animal.feeding.jar

zoo.animal.talks file:///absolutePath/mods/zoo.animal.talks.jar

zoo.staff file:///absolutePath/mods/zoo.staff.jar

Since these are custom modules, we get a location on the file system. If
the project had a module version number, it would have both the
version number and the file system path.

Note that --list-modules exits as soon as it prints the

observable modules. It does not run the program.

Showing Module Resolution
In case listing the modules didn’t give you enough output, you can also
use the --show-module-resolution option. You can think of it as a way
of debugging modules. It spits out a lot of output when the program
starts up. Then it runs the program.

java --show-module-resolution

 -p feeding

 -m zoo.animal.feeding/zoo.animal.feeding.Task

Luckily you don’t need to understand this output. That said, having
seen it will make it easier to remember. Here’s a snippet of the output:

root zoo.animal.feeding file:///absolutePath/feeding/

java.base binds java.desktop jrt:/java.desktop

java.base binds jdk.jartool jrt:/jdk.jartool

...

jdk.security.auth requires java.naming jrt:/java.naming

jdk.security.auth requires java.security.jgss

jrt:/java.security.jgss

...

All fed!

It starts out by listing the root module. That’s the one we are running:
zoo.animal .feeding. Then it lists many lines of packages included by
the mandatory java.base module. After a while, it lists modules that
have dependencies. Finally, it outputs the result of the program All
fed!. The total output of this command is 66 lines.

The jar Command
Like the java command, the jar command can describe a module.
Both of these commands are equivalent:

jar -f mods/zoo.animal.feeding.jar -d

jar --file mods/zoo.animal.feeding.jar --describe-module

The output is slightly different from when we used the java command
to describe the module. With jar, it outputs the following:

zoo.animal.feeding

jar:file:///absolutePath/mods/zoo.animal.feeding.jar /!module-

info.class

exports zoo.animal.feeding

requires java.base mandated

The JAR version includes the module-info in the filename, which is not
a particularly significant difference in the scheme of things. You don’t
need to know this difference. You do need to know that both
commands can describe a module.

The jdeps Command
The jdeps command gives you information about dependencies within
a module. Unlike describing a module, it looks at the code in addition
to the module-info file. This tells you what dependencies are actually
used rather than simply declared.

Let’s start with a simple example and ask for a summary of the
dependencies in zoo.animal.feeding. Both of these commands give the
same output:

jdeps -s mods/zoo.animal.feeding.jar

jdeps -summary mods/zoo.animal.feeding.jar

Notice that there is one dash (-) before -summary rather than two.
Regardless, the output tells you that there is only one package and it
depends on the built-in java.base module.

zoo.animal.feeding -> java.base

Alternatively, you can call jdeps without the summary option and get
the long form:

jdeps mods/zoo.animal.feeding.jar

[file:///absolutePath/mods/zoo.animal.feeding.jar]

 requires mandated java.base (@11.0.2)

zoo.animal.feeding -> java.base

 zoo.animal.feeding -> java.io

 java.base

 zoo.animal.feeding -> java.lang

 java.base

The first part of the output shows the module filename and path. The
second part lists the required java.base dependency and version
number. This has the high-level summary that matches the previous
example.

Finally, the last four lines of the output list the specific packages
within the java.base modules that are used by zoo.animal.feeding.

Now, let’s look at a more complicated example. This time, we pick a
module that depends on zoo.animal.feeding. We need to specify the
module path so jdeps knows where to find information about the
dependent module. We didn’t need to do that before because all
dependent modules were built into the JDK.

Following convention, these two commands are equivalent:

jdeps -s

 --module-path mods

 mods/zoo.animal.care.jar

jdeps -summary

 --module-path mods

 mods/zoo.animal.care.jar

There is not a short form of --module-path in the jdeps command. The
output is only two lines:

zoo.animal.care -> java.base

zoo.animal.care -> zoo.animal.feeding

We can see that the zoo.animal.care module depends on our custom
zoo.animal.feeding module along with the built-in java.base.

In case you were worried the output was too short, we can run it in full
mode:

jdeps --module-path mods

 mods/zoo.animal.care.jar

This time we get lots of output:

zoo.animal.care

 [file:///absolutePath/mods/zoo.animal.care.jar]

 requires mandated java.base (@11.0.2)

 requires transitive zoo.animal.feeding

 zoo.animal.care -> java.base

 zoo.animal.care -> zoo.animal.feeding

 zoo.animal.care.details -> java.lang

 java.base

 zoo.animal.care.details -> zoo.animal.feeding

 zoo.animal.feeding

 zoo.animal.care.medical -> java.lang

 java.base

As before, there are three sections. The first section is the filename and
required dependencies. The second section is the summary showing
the two module dependencies with an arrow. The last six lines show
the package-level dependencies.

The jmod Command
The final command you need to know for the exam is jmod. You might
think a JMOD file is a Java module file. Not quite. Oracle recommends
using JAR files for most modules. JMOD files are recommended only
when you have native libraries or something that can’t go inside a JAR
file. This is unlikely to affect you in the real world.

The most important thing to remember is that jmod is only for working

with the JMOD files. Conveniently, you don’t have to memorize the
syntax for jmod. Table 11.4 lists the common modes.

Table 11.4 Modes using jmod

Operation Description
create Creates a JMOD file.
extract Extracts all files from the JMOD. Works like unzipping.
describe Prints the module details such as requires.
list Lists all files in the JMOD file.
hash Shows a long string that goes with the file

Reviewing Command-Line Options
Congratulations on reaching the last section of the book. This section
is a number of tables that cover what you need to know about running
command-line options for the 1Z0-815 exam.

Table 11.5 shows the command lines you should expect to encounter
on the exam.

Table 11.5 Comparing command-line operations

Description Syntax

Compile
nonmodular
code

javac -cp classpath -d directory classesToCompile

javac --class-path classpath -d directory
classesToCompile

javac -classpath classpath -d directory
classesToCompile

Run
nonmodular
code

java -cp classpath package.className

java -classpath classpath package.className

java --class-path classpath package.className

Compile a
module

javac -p moduleFolderName -d directory
classesToCompileIncludingModuleInfo

javac --module-path moduleFolderName -d
directory classesToCompileIncludingModuleInfo

Run a
module

java -p moduleFolderName -m
moduleName/package.className

java --module-path moduleFolderName --module
moduleName/package.className

Describe a java -p moduleFolderName -d moduleName

module java --module-path moduleFolderName --
describe-module moduleName

jar --file jarName --describe-module

jar -f jarName -d

List available
modules

java --module-path moduleFolderName --list-
modules

java -p moduleFolderName --list-modules

java --list-modules

View
dependencies

jdeps -summary --module-path
moduleFolderName jarName

jdeps -s --module-path moduleFolderName
jarName

Show module
resolution

java --show-module-resolution -p
moduleFolderName -d moduleName

java --show-module-resolution --module-path
moduleFolderName --describe-module
moduleName

Since there are so many commands you need to know, we’ve made a
number of tables to review the available options that you need to know
for the exam. There are many more options in the documentation. For
example, there is a --module option on javac that limits compilation to
that module. Luckily, you don’t need to know those.

Table 11.6 shows the options for javac, Table 11.7 shows the options
for java, Table 11.8 shows the options for jar, and Table 11.9 shows the
options for jdeps.

Table 11.6 Options you need to know for the exam: javac

Option Description

-cp <classpath> Location of JARs in a nonmodular

-classpath <classpath>

--class-path

<classpath>

program

-d <dir> Directory to place generated class files

-p <path>

--module-path <path>

Location of JARs in a modular program

Table 11.7 Options you need to know for the exam: java

Option Description

-p <path>

--module-path <path>

Location of JARs in a modular program

-m <name>

--module <name>

Module name to run

-d

--describe-module

Describes the details of a module

--list-modules Lists observable modules without running a
program

--show-module-

resolution

Shows modules when running program

Table 11.8 Options you need to know for the exam: jar

Option Description

-c

--create

Create a new JAR file

-v

--verbose

Prints details when working with JAR files

-f

--file

JAR filename

-C Directory containing files to be used to create the
JAR

-d

--describe-

module

Describes the details of a module

Table 11.9 Options you need to know for the exam: jdeps

Option Description
--module-path <path> Location of JARs in a modular program

-s

-summary

Summarizes output

Summary
The Java Platform Module System organizes code at a higher level
than packages. Each module contains one or more packages and a
module-info file. Advantages of the JPMS include better access control,
clearer dependency management, custom runtime images, improved
performance, and unique package enforcement.

The process of compiling and running modules uses the --module-
path, also known as -p. Running a module uses the --module option,
also known as -m. The class to run is specified in the format
moduleName/className.

The module-info file supports a number of keywords. The exports
keyword specifies that a package should be accessible outside the
module. It can optionally restrict that export to a specific package. The
requires keyword is used when a module depends on code in another
module. Additionally, requires transitive can be used when all
modules that require one module should always require another. The
provides and uses keywords are used when sharing and consuming an
API. Finally, the opens keyword is used for allowing access via
reflection.

Both the java and jar commands can be used to describe the contents
of a module. The java command can additionally list available
modules and show module resolution. The jdeps command prints
information about packages used in addition to module-level
information. Finally, the jmod command is used when dealing with
files that don’t meet the requirements for a JAR.

Exam Essentials
Identify benefits of the Java Platform Module System. Be able
to identify benefits of the JPMS from a list such as access control,
dependency management, custom runtime images, performance, and
unique package enforcement. Also be able to differentiate benefits of
the JPMS from benefits of Java as a whole. For example, garbage
collection is not a benefit of the JPMS.

Use command-line syntax with modules. Use the command-line
options for javac, java, and jar. In particular, understand the module
(-m) and module path (-p) options.

Create basic module-info files. Place the module-info.java file in the
root directory of the module. Know how to code using exports to
expose a package and how to export to a specific module. Also, know
how to code using requires and requires transitive to declare a
dependency on a package or to share that dependency with any
modules using the current module.

Identify advanced module-info keywords. The provides keyword
is used when exposing an API. The uses keyword is for consuming an
API. The opens keyword is for allowing the use of reflection.

Display information about modules. The java command can
describe a module, list available modules, or show the module
resolution. The jar command can describe a module similar to how
the java command does. The jdeps command prints details about a
module and packages. The jmod command provides various modes for
working with JMOD files rather than JAR files.

Review Questions
1. Which of the following is an advantage of the Java Platform

Module System?

A. A central repository of all modules

B. Encapsulating packages

C. Encapsulating objects

D. No defined types

E. Platform independence

2. Which statement is true of the following module?

zoo.staff

|---zoo

|-- staff

|-- Vet.java

A. The directory structure shown is a valid module.

B. The directory structure would be a valid module if
module.java were added directly underneath zoo.staff.

C. The directory structure would be a valid module if
module.java were added directly underneath zoo.

D. The directory structure would be a valid module if module-
info.java were added directly underneath zoo.staff.

E. The directory structure would be a valid module if module-
info.java were added directly underneath zoo.

F. None of these changes would make this directory structure a
valid module.

3. Suppose module puppy depends on module dog and module dog
depends on module animal. Fill in the blank so that code in
module dog can access the animal.behavior package in module

animal.

module animal {

___________ animal.behavior;

}

A. export

B. exports

C. require

D. requires

E. require transitive

F. requires transitive

G. None of the above

4. Fill in the blanks so this command to run the program is correct:

java

_______ zoo.animal.talks/zoo/animal/talks/Peacocks

_______ modules

A. -d and -m

B. -d and -p

C. -m and -d

D. -m and -p

E. -p and -d

F. -p and -m

G. None of the above

5. Which of the following statements are true in a module-info.java
file? (Choose all that apply.)

A. The opens keyword allows the use of reflection.

B. The opens keyword declares an API is called.

C. The use keyword allows the use of reflection.

D. The use keyword declares an API is called.

E. The uses keyword allows the use of reflection.

F. The uses keyword declares an API is called.

G. The file can be empty (zero bytes).

6. What is true of a module containing a file named module-
info.java with the following contents? (Choose all that apply.)

module com.food.supplier {}

A. All packages inside the module are automatically exported.

B. No packages inside the module are automatically exported.

C. A main method inside the module can be run.

D. A main method inside the module cannot be run since the
class is not exposed.

E. The module-info.java file contains a compiler error.

F. The module-info.java filename is incorrect.

7. Suppose module puppy depends on module dog and module dog
depends on module animal. Which two lines allow module puppy
to access the animal.behavior package in module animal? (Choose
two.)

module animal {

exports animal.behavior to dog;

}

module dog {

______ animal; // line S

}

module puppy {

______ dog; // line T

}

A. require on line S

B. require on line T

C. requires on line S

D. requires on line T

E. require transitive on line S

F. require transitive on line T

G. requires transitive on line S

H. requires transitive on line T

8. Which commands take a --module-path parameter? (Choose all
that apply.)

A. javac

B. java

C. jar

D. jdeps

E. jmod

F. None of the above

9. Which of the following are legal commands to run a modular
program? (Choose all that apply.)

A. java -p x -m x/x

B. java -p x-x -m x/x

C. java -p x -m x-x/x

D. java -p x -m x/x-x

E. java -p x -m x.x

F. java -p x.x -m x.x

G. None of the above

10. Which would best fill in the blank to complete the following code?

module ________ {

exports com.unicorn.horn;

exports com.unicorn.magic;

}

A. com

B. com.unicorn

C. com.unicorn.horn

D. com.unicorn.magic

E. The code does not compile.

F. The code compiles, but none of these would be a good choice.

11. Which are valid modes for the jmod command? (Choose all that
apply.)

A. add

B. create

C. delete

D. describe

E. extract

F. list

G. show

12. Suppose you have the commands javac, java, and jar. How many
of them support a --show-module-resolution option?

A. 0

B. 1

C. 2

D. 3

13. Which are true statements about the following module? (Choose
all that apply.)

class dragon {

exports com.dragon.fire;

exports com.dragon.scales to castle;

}

A. All modules can reference the com.dragon.fire package.

B. All modules can reference the com.dragon.scales package.

C. Only the castle module can reference the com.dragon.fire
package.

D. Only the castle module can reference the com.dragon.scales
package.

E. None of the above

14. Which would you expect to see when describing any module?

A. requires java.base mandated

B. requires java.core mandated

C. requires java.lang mandated

D. requires mandated java.base

E. requires mandated java.core

F. requires mandated java.lang

G. None of the above

15. Which of the following statements are correct? (Choose all that
apply.)

A. The jar command allows adding exports as command-line
options.

B. The java command allows adding exports as command-line
options.

C. The jdeps command allows adding exports as command-line
options.

D. Adding an export at the command line is discouraged.

E. Adding an export at the command line is recommended.

16. Which are valid calls to list a summary of the dependencies?
(Choose all that apply.)

A. jdeps flea.jar

B. jdeps -s flea.jar

C. jdeps -summary flea.jar

D. jdeps --summary flea.jar

E. None of the above

17. Which is the first line to contain a compiler error?

1: module snake {

2: exports com.snake.tail;

3: exports com.snake.fangs to bird;

4: requires skin;

5: requires transitive skin;

6: }

A. Line 1.

B. Line 2.

C. Line 3.

D. Line 4.

E. Line 5.

F. The code does not contain any compiler errors.

18. Which of the following would be a legal module name? (Choose all
that apply.)

A. com.book

B. com-book

C. com.book$

D. com-book$

E. 4com.book

F. 4com-book

19. What can be created using the Java Platform Module System that
could not be created without it? (Choose all that apply.)

A. JAR file

B. JMOD file

C. Smaller runtime images for distribution

D. Operating system specific bytecode

E. TAR file

F. None of the above

20. Which of the following options does not have a one-character
shortcut in any of the commands studied in this chapter? (Choose
all that apply.)

A. describe-module

B. list-modules

C. module

D. module-path

E. show-module-resolution

F. summary

21. Which of the following are legal commands to run a modular
program where n is the package name and c is the class name?
(Choose all that apply.)

A. java –module-path x -m n.c

B. java --module-path x -p n.c

C. java --module-path x -m n/c

D. java --module-path x -p n/c

E. java --module-path x -m n c

F. java --module-path x -p n c

G. None of the above

Appendix
Answers to Review Questions

Chapter 1: Welcome to Java
1. B, E. C++ has operator overloading and pointers. Java made a

point of not having either. Java does have references to objects,
but these are pointing to an object that can move around in
memory. Option B is correct because Java is platform
independent. Option E is correct because Java is object-oriented.
While it does support some parts of functional programming,
these occur within a class.

2. C, D. Java puts source code in .java files and bytecode in .class
files. It does not use a .bytecode file. When running a Java
program, you pass just the name of the class without the .class
extension.

3. C, D. This example is using the single-file source-code launcher. It
compiles in memory rather than creating a .class file, making
option A incorrect. To use this launcher, programs can only
reference classes built into the JDK. Therefore, option B is
incorrect, and options C and D are correct.

4. C, D. The Tank class is there to throw you off since it isn’t used by
AquariumVisitor. Option C is correct because it imports Jelly by
class name. Option D is correct because it imports all the classes
in the jellies package, which includes Jelly. Option A is
incorrect because it only imports classes in the aquarium package
—Tank in this case—and not those in lower-level packages. Option
B is incorrect because you cannot use wildcards anywhere other
than the end of an import statement. Option E is incorrect because
you cannot import parts of a class with a regular import statement.
Option F is incorrect because options C and D do make the code
compile.

5. A, C, D, E. Eclipse is an integrated development environment
(IDE). It is not included in the Java Development Kit (JDK),
making option B incorrect. The JDK comes with a number of
command-line tools including a compiler, packager, and
documentation, making options A, D, and E correct. The JDK also

includes the Java Virtual Machine (JVM), making option C
correct.

6. E. The first two imports can be removed because java.lang is
automatically imported. The following two imports can be
removed because Tank and Water are in the same package, making
the correct option E. If Tank and Water were in different packages,
exactly one of these two imports could be removed. In that case,
the answer would be option D.

7. A, B, C. Option A is correct because it imports all the classes in the
aquarium package including aquarium.Water. Options B and C are
correct because they import Water by class name. Since importing
by class name takes precedence over wildcards, these compile.
Option D is incorrect because Java doesn’t know which of the two
wildcard Water classes to use. Option E is incorrect because you
cannot specify the same class name in two imports.

8. A, B. The wildcard is configured for files ending in .java, making
options E and F incorrect. Additionally, wildcards aren’t
recursive, making options C and D incorrect. Therefore, options A
and B are correct.

9. B. Option B is correct because arrays start counting from zero and
strings with spaces must be in quotes. Option A is incorrect
because it outputs Blue. C is incorrect because it outputs Jay.
Option D is incorrect because it outputs Sparrow. Options E and F
are incorrect because they output
java.lang.ClassNotFoundException: BirdDisplay .class.

10. E. Option E is the canonical main() method signature. You need to
memorize it. Option A is incorrect because the main() method
must be public. Options B and F are incorrect because the main()
method must have a void return type. Option C is incorrect
because the main() method must be static. Option D is incorrect
because the main() method must be named main.

11. C, D. While we wish it were possible to guarantee bug-free code,
this is not something a language can ensure, making option A
incorrect. Deprecation is an indication that other code should be

preferred. It doesn’t preclude or require eventual removal,
making option B incorrect. Option E is incorrect because
backward compatibility is a design goal, not sideways
compatibility. Options C and D are correct.

12. C, E. When compiling with javac, you can specify a classpath with
-cp or a directory with -d, making options C and E correct. Since
the options are case sensitive, option D is incorrect. The other
options are not valid on the javac command.

13. C. When running a program using java, you specify the classpath
with -cp, making option C correct. Options D and F are incorrect
because -d and -p are used for modules. Options A and B are not
valid options on the java command.

14. A, B, C, E. When creating a jar file, you use the options -cf or -
cvf, making options A and E correct. The jar command allows the
use of the classpath, making option C correct. It also allows the
specification of a directory using -C, making option B correct.
Options D and F are incorrect because -d and -p are used for
modules.

15. E. The main() method isn’t static. It is a method that happens to
be named main(), but it’s not an application entry point. When the
program is run, it gives the error. If the method were static, the
answer would be option D. Arrays are zero-based, so the loop
ignores the first element and throws an exception when accessing
the element after the last one.

16. D. The package name represents any folders underneath the
current path, which is named.A in this case. Option C is incorrect
because package names are case sensitive, just like variable names
and other identifiers.

17. A, E. Bunny is a class, which can be seen from the declaration:
public class Bunny. The variable bun is a reference to an object.
The method main() is the standard entry point to a program.
Option G is incorrect because the parameter type matters, not the
parameter name.

18. C, D, E. The package and import statements are both optional. If

both are present, the order must be package, then import, and then
class. Option A is incorrect because class is before package and
import. Option B is incorrect because import is before package.
Option F is incorrect because class is before package.

19. B, C. Eclipse is an integrated development environment (IDE). It
is available from the Eclipse Foundation, not from Oracle, making
option C one of the answers. The other answer is option B because
the Java Development Kit (JDK) is what you download to get
started. The Java Runtime Environment (JRE) was an option for
older versions of Java, but it’s no longer a download option for
Java 11.

20. A, B, E. Unfortunately, this is something you have to memorize.
The code with the hyphenated word class-path uses two dashes in
front, making option E correct and option D incorrect. The
reverse is true for the unhyphenated classpath, making option B
correct and option C incorrect. Finally, the short form is option A.

Chapter 2: Java Building Blocks
1. B, E, G. Option A is invalid because a single underscore is no

longer allowed as an identifier as of Java 9. Option B is valid
because you can use an underscore within identifiers, and a dollar
sign ($) is also a valid character. Option C is not a valid identifier
because true is a Java reserved word. Option D is not valid
because a period (.) is not allowed in identifiers. Option E is valid
because Java is case sensitive. Since Public is not a reserved word,
it is allowed as an identifier, whereas public would not be
allowed. Option F is not valid because the first character is not a
letter, dollar sign ($), or underscore (_). Finally, option G is valid
as identifiers can contain underscores (_) and numbers, provided
the number does not start the identifier.

2. D, F, G. The code compiles and runs without issue, so options A
and B are incorrect. A boolean field initializes to false, making
option D correct with Empty = false being printed. Object
references initialize to null, not the empty String, so option F is
correct with Brand = null being printed. Finally, the default value
of floating-point numbers is 0.0. Although float values can be
declared with an f suffix, they are not printed with an f suffix. For
these reasons, option G is correct and Code = 0.0 is printed.

3. B, D, E, H. A var cannot be initialized with a null value without a
type, but it can be assigned a null value if the underlying type is
not a primitive. For these reasons, option H is correct, but options
A and C are incorrect. Options B and D are correct as the
underlying types are String and Object, respectively. Option E is
correct, as this is a valid numeric expression. You might know that
dividing by zero produces a runtime exception, but the question
was only about whether the code compiled. Finally, options F and
G are incorrect as var cannot be used in a multiple-variable
assignment.

4. A, B, D, E. Line 4 does not compile because the L suffix makes the
literal value a long, which cannot be stored inside a short directly,
making option A correct. Line 5 does not compile because int is

an integral type, but 2.0 is a double literal value, making option B
correct. Line 6 compiles without issue. Lines 7 and 8 do not
compile because numPets and numGrains are both primitives, and
you can call methods only on reference types, not primitive
values, making options D and E correct, respectively. Finally, line
9 compiles because there is a length() method defined on String.

5. A, D. The class does not compile, so options E, F, G, and H are
incorrect. You might notice things like loops and
increment/decrement operators in this problem, which we will
cover in the next two chapters, but understanding them is not
required to answer this question. The first compiler error is on
line 3. The variable temp is declared as a float, but the assigned
value is 50.0, which is a double without the F/f postfix. Since a
double doesn’t fit inside a float, line 3 does not compile. Next,
depth is declared inside the for loop and only has scope inside this
loop. Therefore, reading the value on line 10 triggers a compiler
error. Note that the variable Depth on line 2 is never used. Java is
case sensitive, so Depth and depth are distinct variables. For these
reasons, options A and D are the correct answers.

6. C, E. Option C is correct because float and double primitives
default to 0.0, which also makes option A incorrect. Option E is
correct because all nonprimitive values default to null, which
makes option F incorrect. Option D is incorrect because int
primitives default to 0. Option B is incorrect because char defaults
to the NUL character, '\u0000'. You don’t need to know this value
for the exam, but you should know the default value is not null
since it is a primitive.

7. G. Option G is correct because local variables do not get assigned
default values. The code fails to compile if a local variable is used
when not being explicitly initialized. If this question were about
instance variables, options B, D, and E would be correct. A
boolean primitive defaults to false, and a float primitive defaults
to 0.0f.

8. B, E. Option B is correct because boolean primitives default to
false. Option E is correct because long values default to 0L.

9. C, E, F. In Java, there are no guarantees when garbage collection
will run. The JVM is free to ignore calls to System.gc(). For this
reason, options A, B, and D are incorrect. Option C is correct, as
the purpose of garbage collection is to reclaim used memory.
Option E is also correct that an object may never be garbage
collected, such as if the program ends before garbage collection
runs. Option F is correct and is the primary means by which
garbage collection algorithms determine whether an object is
eligible for garbage collection. Finally, option G is incorrect as
marking a variable final means it is constant within its own
scope. For example, a local variable marked final will be eligible
for garbage collection after the method ends, assuming there are
no other references to the object that exist outside the method.

10. C. The class does compiles without issue, so options E, F, and G
are incorrect. The key thing to notice is line 4 does not define a
constructor, but instead a method named PoliceBox(), since it has
a return type of void. This method is never executed during the
program run, and color and age get assigned the default values
null and 0L, respectively. Lines 11 and 12 change the values for an
object associated with p, but then on line 13 the p variable is
changed to point to the object associated with q, which still has
the default values. For this reason, the program prints Q1=null,
Q2=0, P1=null, and P2=0, making option C the only correct answer.

11. A, D, E. From Chapter 1, a main() method must have a valid
identifier of type String... or String[]. For this reason, option G
can be eliminated immediately. Option A is correct because var is
not a reserved word in Java and may be used as an identifier.
Option B is incorrect as a period (.) may not be used in an
identifier. Option C is also incorrect as an identifier may include
digits but not start with one. Options D and E are correct as an
underscore (_) and dollar sign ($) may appear anywhere in an
identifier. Finally, option F is incorrect, as a var may not be used
as a method argument.

12. A, E, F. An underscore (_) can be placed in any numeric literal, so
long as it is not at the beginning, the end, or next to a decimal
point (.). Underscores can even be placed next to each other. For

these reasons, options A, E, and F are correct. Options B and D
are incorrect, as the underscore (_) is next to a decimal point (.).
Options C and G are incorrect, because an underscore (_) cannot
be placed at the beginning or end of the literal.

13. B, D, H. The Rabbit object from line 3 has two references to it: one
and three. The references are set to null on lines 6 and 8,
respectively. Option B is correct because this makes the object
eligible for garbage collection after line 8. Line 7 sets the reference
four to null, since that is the value of one, which means it has no
effect on garbage collection. The Rabbit object from line 4 has
only a single reference to it: two. Option D is correct because this
single reference becomes null on line 9. The Rabbit object
declared on line 10 becomes eligible for garbage collection at the
end of the method on line 12, making option H correct. Calling
System.gc() has no effect on eligibility for garbage collection.

14. B, C, F. A var cannot be used for a constructor or method
parameter or for an instance or class variable, making option A
incorrect and option C correct. The type of var is known at
compile-time and the type cannot be changed at runtime,
although its value can change at runtime. For these reasons,
options B and F are correct, and option E is incorrect. Option D is
incorrect, as var is not permitted in multiple-variable
declarations. Finally, option G is incorrect, as var is not a reserved
word in Java.

15. C, F, G. First off, 0b is the prefix for a binary value, and 0x is the
prefix for a hexadecimal value. These values can be assigned to
many primitive types, including int and double, making options C
and F correct. Option A is incorrect because naming the variable
Amount will cause the System.out.print(amount) call on the next
line to not compile. Option B is incorrect because 9L is a long
value. If the type was changed to long amount = 9L, then it would
compile. Option D is incorrect because 1_2.0 is a double value. If
the type was changed to double amount = 1_2.0, then it would
compile. Options E and H are incorrect because the underscore
(_) appears next to the decimal point (.), which is not allowed.
Finally, option G is correct and the underscore and assignment

usage is valid.

16. A, C, D. The code contains three compilation errors, so options E,
F, G, and H are incorrect. Line 2 does not compile, as this is
incorrect syntax for declaring multiple variables, making option A
correct. The data type is declared only once and shared among all
variables in a multiple variable declaration. Line 3 compiles
without issue, as it declares a local variable inside an instance
initializer that is never used. Line 4 does not compile because
Java, unlike some other programming languages, does not
support setting default method parameter values, making option
C correct. Finally, line 7 does not compile because fins is in scope
and accessible only inside the instance initializer on line 3,
making option D correct.

17. A, E, F, G. The question is primarily about variable scope. A
variable defined in a statement such as a loop or initializer block
is accessible only inside that statement. For this reason, options A
and E are correct. Option B is incorrect because variables can be
defined inside initializer blocks. Option C is incorrect, as a
constructor argument is accessible only in the constructor itself,
not for the life of the instance of the class. Constructors and
instance methods can access any instance variable, even ones
defined after their declaration, making option D incorrect and
options F and G correct.

18. F, G. The code does not compile, so options A, B, C, and D are all
incorrect. The first compilation error occurs on line 5. Since char
is an unsigned data type, it cannot be assigned a negative value,
making option F correct. The second compilation error is on line
9, since mouse is used without being initialized, making option G
correct. You could fix this by initializing a value on line 4, but the
compiler reports the error where the variable is used, not where it
is declared.

19. F. To solve this problem, you need to trace the braces {} and see
when variables go in and out of scope. You are not required to
understand the various data structures in the question, as this will
be covered in the next few chapters. We start with hairs, which

goes in and out of scope on line 2, as it is declared in an instance
initializer, so it is not in scope on line 14. The three variables
—water, air, twoHumps, declared on lines 3 and 4—are instance
variables, so all three are in scope in all instance methods of the
class, including spit() and on line 14. The distance method
parameter is in scope for the life of the spit() method, making it
the fourth value in scope on line 14. The path variable is in scope
on line 6 and stays in scope until the end of the method on line 16,
making it the fifth variable in scope on line 14. The teeth variable
is in scope on line 7 and immediately goes out of scope on line 7
since the statement ends. The two variables age and i defined on
lines 9 and 10, respectively, both stay in scope until the end of the
while loop on line 15, bringing the total variables in scope to seven
on line 14. Finally, Private is in scope on 12 but out of scope after
the for loop ends on line 13. Since the total in-scope variables is
seven, option F is the correct answer.

20. D. The class compiles and runs without issue, so options F and G
are incorrect. We start with the main() method, which prints 7- on
line 11. Next, a new Salmon instance is created on line 11. This calls
the two instance initializers on lines 3 and 4 to be executed in
order. The default value of an instance variable of type int is 0, so
0- is printed next and count is assigned a value of 1. Next, the
constructor is called. This assigns a value of 4 to count and prints
2-. Finally, line 12 prints 4-, since that is the value of count.
Putting it altogether, we have 7-0-2-4-, making option D the
correct answer.

21. A, D, F. The class compiles and runs without issue, so option H is
incorrect. The program creates two Bear objects, one on line 9 and
one on line 10. The first Bear object is accessible until line 13 via
the brownBear reference variable. The second Bear object is passed
to the first object’s roar() method on line 11, meaning it is
accessible via both the polarBear reference and the
brownBear.pandaBear reference. After line 12, the object is still
accessible via brownBear.pandaBear. After line 13, though, it is no
longer accessible since brownBear is no longer accessible. In other
words, both objects become eligible for garbage collection after

line 13, making options A and D correct. Finally, garbage
collection is never guaranteed to run or not run, since the JVM
decides this for you. For this reason, option F is correct, and
options E and G are incorrect. The class contains a finalize()
method, although this does not contribute to the answer. For the
exam, you may see finalize() in a question, but since it’s
deprecated as of Java 9, you will not be tested on it.

22. H. None of these declarations is a valid instance variable
declaration, as var cannot be used with instance variables, only
local variables. For this reason, option H is the only correct
answer. If the question were changed to be about local variable
declarations, though, then the correct answers would be options
C, D, and E. An identifier must start with a letter, $, or _, so
options F and G would be incorrect. As of Java 9, a single
underscore is not allowed as an identifier, so option A would be
incorrect. Options A and G would also be incorrect because their
numeric expressions use underscores incorrectly. An underscore
cannot appear at the end of literal value, nor next to a decimal
point (.). Finally, null is a reserved word, but var is not, so option
B would be incorrect, and option E would be correct.

Chapter 3: Operators
1. A, D, G. Option A is the equality operator and can be used on

primitives and object references. Options B and C are both
arithmetic operators and cannot be applied to a boolean value.
Option D is the logical complement operator and is used
exclusively with boolean values. Option E is the modulus operator,
which can be used only with numeric primitives. Option F is a
relational operator that compares the values of two numbers.
Finally, option G is correct, as you can cast a boolean variable
since boolean is a type.

2. A, B, D. The expression apples + oranges is automatically
promoted to int, so int and data types that can be promoted
automatically from int will work. Options A, B, and D are such
data types. Option C will not work because boolean is not a
numeric data type. Options E and F will not work without an
explicit cast to a smaller data type.

3. B, C, D, F. The code will not compile as is, so option A is not
correct. The value 2 * ear is automatically promoted to long and
cannot be automatically stored in hearing, which is in an int
value. Options B, C, and D solve this problem by reducing the long
value to int. Option E does not solve the problem and actually
makes it worse by attempting to place the value in a smaller data
type. Option F solves the problem by increasing the data type of
the assignment so that long is allowed.

4. B. The code compiles and runs without issue, so option E is not
correct. This example is tricky because of the second assignment
operator embedded in line 5. The expression (wolf=false) assigns
the value false to wolf and returns false for the entire
expression. Since teeth does not equal 10, the left side returns
true; therefore, the exclusive or (^) of the entire expression
assigned to canine is true. The output reflects these assignments,
with no change to teeth, so option B is the only correct answer.

5. A, C. Options A and C show operators in increasing or the same

order of precedence. Options B and E are in decreasing or the
same order of precedence. Options D, F, and G are in neither
increasing or decreasing order of precedence. In option D, the
assignment operator (=) is between two unary operators, with the
multiplication operator (*) incorrectly having the highest order or
precedence. In option F, the logical complement operator (!) has
the highest order of precedence, so it should be last. In option G,
the assignment operators have the lowest order of precedence, not
the highest, so the last two operators should be first.

6. F. The code does not compile because line 3 contains a
compilation error. The cast (int) is applied to fruit, not the
expression fruit+vegetables. Since the cast operator has a higher
operator precedence than the addition operator, it is applied to
fruit, but the expression is promoted to a float, due to
vegetables being float. The result cannot be returned as long in
the addCandy() method without a cast. For this reason, option F is
correct. If parentheses were added around fruit+vegetables, then
the output would be 3-5-6, and option B would be correct.
Remember that casting floating point numbers to integral values
results in truncation, not rounding.

7. D. In the first boolean expression, vis is 2 and ph is 7, so this
expression evaluates to true & (true || false), which reduces to
true. The second boolean expression uses the short-circuit
operator, and since (vis > 2) is false, the right side is not
evaluated, leaving ph at 7. In the last assignment, ph is 7, and the
pre-decrement operator is applied first, reducing the expression
to 7 <= 6 and resulting in an assignment of false. For these
reasons, option D is the correct answer.

8. A. The code compiles and runs without issue, so option E is
incorrect. Line 7 does not produce a compilation error since the
compound operator applies casting automatically. Line 5
increments pig by 1, but it returns the original value of 4 since it is
using the post-increment operator. The pig variable is then
assigned this value, and the increment operation is discarded.
Line 7 just reduces the value of goat by 1, resulting in an output of
4 - 1 and making option A the correct answer.

9. A, D, E. The code compiles without issue, so option G is incorrect.
In the first expression, a > 2 is false, so b is incremented to 5 but
since the post-increment operator is used, 4 is printed, making
option D correct. The --c was not applied, because only one right
side of the ternary expression was evaluated. In the second
expression, a!=c is false since c was never modified. Since b is 5
due to the previous line and the post-increment operator is used,
b++ returns 5. The result is then assigned to b using the
assignment operator, overriding the incremented value for b and
printing 5, making option E correct. In the last expression,
parentheses are not required but lack of parentheses can make
ternary expressions difficult to read. From the previous lines, a is
2, b is 5, and c is 2. We can rewrite this expression with
parentheses as (2 > 5 ? (5 < 2 ? 5 : 2) : 1). The second
ternary expression is never evaluated since 2 > 5 is false, and the
expression returns 1, making option A correct.

10. G. The code does not compile due to an error on the second line.
Even though both height and weight are cast to byte, the
multiplication operator automatically promotes them to int,
resulting in an attempt to store an int in a short variable. For this
reason, the code does not compile, and option G is the only
correct answer. This line contains the only compilation error. If
the code were corrected to add parentheses around the entire
expression and cast it to a byte or short, then the program would
print 3, 6, and 2 in that order.

11. D. First off, the * and % have the same operator precedence, so the
expression is evaluated from left to right unless parentheses are
present. The first expression evaluates to 8 % 3, which leaves a
remainder of 2. The second expression is just evaluated left to
right since * and % have the same operator precedence, and it
reduces to 6 % 3, which is 0. The last expression reduces to 5 * 1,
which is 5. Therefore, the output on line 6 is 2-0-5, making option
D the correct answer.

12. D. The pre- prefix indicates the operation is applied first, and the
new value is returned, while the post- prefix indicates the original
value is returned prior to the operation. Next, increment increases

the value, while decrement decreases the value. For these reasons,
option D is the correct answer.

13. F. The first expression is evaluated from left to right since the
operator precedence of & and ^ is the same, letting us reduce it to
false ^ sunday, which is true, because sunday is true. In the
second expression, we apply the negation operator, (!), first,
reducing the expression to sunday && true, which evaluates to
true. In the last expression, both variables are true so they reduce
to !(true && true), which further reduces to !true, aka false. For
these reasons, option F is the correct answer.

14. B, E, G. The return value of an assignment operation in the
expression is the same as the value of the newly assigned variable.
For this reason, option A is incorrect, and option E is correct.
Option B is correct, and the equality (==) and inequality (!=)
operators can both be used with objects. Option C is incorrect, as
boolean and numeric types are not comparable with each other.
For example, you can’t say true == 3 without a compilation error.
Option D is incorrect, as only the short-circuit operator (&&) may
cause only the left side of the expression to be evaluated. The (|)
operator will cause both sides to be evaluated. Option F is
incorrect, as Java does not accept numbers for boolean values.
Finally, option G is correct, as you need to use the negation
operator (-) to flip or negate numeric values, not the logical
complement operator (!).

15. D. The ternary operator is the only operator that takes three
values, making option D the only correct choice. Options A, B, C,
E, and G are all binary operators. While they can be strung
together in longer expressions, each operation uses only two
values at a time. Option F is a unary operator and takes only one
value.

16. B. The first line contains a compilation error. The value 3 is cast to
long. The 1 * 2 value is evaluated as int but promoted to long
when added to the 3. Trying to store a long value in an int
variable triggers a compiler error. The other lines do not contain
any compilation errors, as they store smaller values in larger or

same-size data types, with the third and fourth lines using casting
to do so.

17. C, F. The starting values of ticketsTaken and ticketsSold are 1
and 3, respectively. After the first compound assignment,
ticketsTaken is incremented to 2. The ticketsSold value is
increased from 3 to 5; since the post-increment operator was used
the value of ticketsTaken++ returns 1. On the next line,
ticketsTaken is doubled to 4. On the final line, ticketsSold is
increased by 1 to 6. The final values of the variables are 4 and 6,
for ticketsTaken and ticketsSold, respectively, making options C
and F the correct answers. Note the last line does not trigger a
compilation error as the compound operator automatically casts
the right-hand operand.

18. C. Only parentheses, (), can be used to change the order of
operation in an expression. The other operators, such as [], < >,
and { }, cannot be used as parentheses in Java.

19. B, F. The code compiles and runs successfully, so options G and H
are incorrect. On line 5, the pre-increment operator is executed
first, so start is incremented to 8, and the new value is returned
as the right side of the expression. The value of end is computed
by adding 8 to the original value of 4, leaving a new value of 12 for
end, and making option F a correct answer. On line 6, we are
incrementing one past the maximum byte value. Due to overflow,
this will result in a negative number, making option B the correct
answer. Even if you didn’t know the maximum value of byte, you
should have known the code compiles and runs and looked for the
answer for start with a negative number.

20. A, D, E. Unary operators have the highest order of precedence,
making option A correct. The negation operator (-) is used only
for numeric values, while the logical complement operator (!) is
used exclusively for boolean values. For these reasons, option B is
incorrect, and option E is correct. Finally, the pre-increment/pre-
decrement operators return the new value of the variable, while
the post-increment/post-decrement operators return the original
variable. For these reasons, option C is incorrect, and option D is

correct.

Chapter 4: Making Decisions
1. A, B, C, E, F, G. A switch statement supports the primitives int,

byte, short, and char, along with their associated wrapper classes
Integer, Byte, Short, and Character, respectively, making options
B, C, and F correct. It also supports enum and String, making
options A and E correct. Finally, switch supports var if the type
can be resolved to a supported switch data type, making option G
correct. Options D and H are incorrect as long, float, double, and
their associated wrapped classes Long, Float, and Double,
respectively, are not supported in switch statements.

2. B. The code compiles and runs without issue, so options D, E, and
F are incorrect. Even though the two consecutive else statements
on lines 7 and 8 look a little odd, they are associated with separate
if statements on lines 5 and 6, respectively. The value of humidity
on line 4 is equal to -4 + 12, which is 8. The first if statement
evaluates to true on line 5, so line 6 is executed and its associated
else statement on line 8 is not. The if statement on line 6
evaluates to false, causing the else statement on line 7 to
activate. The result is the code prints Just Right, making option B
the correct answer.

3. E. The second for-each loop contains a continue followed by a
print() statement. Because the continue is not conditional and
always included as part of the body of the for-each loop, the
print() statement is not reachable. For this reason, the print()
statement does not compile. As this is the only compilation error,
option E is correct. The other lines of code compile without issue.
In particular, because the data type for the elements of
myFavoriteNumbers is Integer, they can be easily unboxed to int or
referenced as Object. For this reason, the lines containing the for-
each expressions each compile.

4. C, E. A for-each loop can be executed on any Collections object
that implements java.lang.Iterable, such as List or Set, but not
all Collections classes, such as Map, so option A is incorrect. The
body of a do/while loop is executed one or more times, while the

body of a while loop is executed zero or more times, making
option E correct and option B incorrect. The conditional
expression of for loops is evaluated at the start of the loop
execution, meaning the for loop may execute zero or more times,
making option C correct. Option D is incorrect, as a default
statement is not required in a switch statement. If no case
statements match and there is no default statement, then the
application will exit the switch statement without executing any
branches. Finally, each if statement has at most one matching
else statement, making option F incorrect. You can chain
multiple if and else statements together, but each else statement
requires a new if statement.

5. B, D. Option A is incorrect because on the first iteration it
attempts to access weather[weather.length] of the nonempty
array, which causes an ArrayIndexOutOfBoundsException to be
thrown. Option B is correct and will print the elements in order. It
is only a slight modification of a common for loop, with
i<weather.length replaced with an equivalent i<=weather.length-
1. Option C is incorrect because the snippet creates a compilation
problem in the body of the for loop, as i is undefined in
weather[i]. For this to work, the body of the for-each loop would
have to be updated as well. Option D is also correct and is a
common way to print the elements of an array in reverse order.
Option E does not compile and is therefore incorrect. You can
declare multiple elements in a for loop, but the data type must be
listed only once, such as in for(int i=0, j=3; ...). Finally,
option F is incorrect because the first element of the array is
skipped. The loop update operation is optional, so that part
compiles, but the increment is applied as part of the conditional
check for the loop. Since the conditional expression is checked
before the loop is executed the first time, the first value of i used
inside the body of the loop will be 1.

6. B, C, E. The code contains a nested loop and a conditional
expression that is executed if the sum of col + row is an even
number, else count is incremented. Note that options E and F are
equivalent to options B and D, respectively, since unlabeled

statements apply to the most inner loop. Studying the loops, the
first time the condition is true is in the second iteration of the
inner loop, when row is 1 and col is 1. Option A is incorrect,
because this causes the loop to exit immediately with count only
being set to 1. Options B, C, and E follow the same pathway. First,
count is incremented to 1 on the first inner loop, and then the
inner loop is exited. On the next iteration of the outer loop, row is
2 and col is 0, so execution exits the inner loop immediately. On
the third iteration of the outer loop, row is 3 and col is 0, so count
is incremented to 2. In the next iteration of the inner loop, the
sum is even, so we exit, and our program is complete, making
options B, C, and E each correct. Options D and F are both
incorrect, as they cause the outer loops to execute multiple times,
with count having a value of 5 when done. You don’t need to trace
through all the iterations; just stop when the value of count
exceeds 2.

7. E. This code contains numerous compilation errors, making
options A and H incorrect. All of the compilation errors are
contained within the switch statement. The default statement is
fine and does not cause any issues. The first case statement does
not compile, as continue cannot be used inside a switch
statement. The second case statement also does not compile.
While the thursday variable is marked final, it is not a compile-
time constant required for a switch statement, as any int value
can be passed in at runtime. The third case statement is valid and
does compile, as break is compatible with switch statements. The
fourth case statement does not compile. Even though Sunday is
effectively final, it is not a compile-time constant. If it were
explicitly marked final, then this case statement would compile.
Finally, the last case statement does not compile because
DayOfWeek.MONDAY is not an int value. While switch statements do
support enum values, each case statement must have the same data
type as the switch variable otherDay, which is int. Since exactly
four lines do not compile, option E is the correct answer.

8. C. Prior to the first iteration, sing = 8, squawk = 2, and notes = 0.
After the iteration of the first loop, sing is updated to 7, squawk to

4, and notes to the sum of the new values for sing + squawk, 7 + 4
= 11. After the iteration of the second loop, sing is updated to 6,
squawk to 6, and notes to the sum of itself, plus the new values for
sing + squawk, 11 + 6 + 6 = 23. On the third iteration of the loop,
sing > squawk evaluates to false, as 6 > 6 is false. The loop ends
and the most recent value of sing, 23, is output, so the correct
answer is option C.

9. G. This example may look complicated, but the code does not
compile. Line 8 is missing the required parentheses around the
boolean conditional expression. Since the code does not compile
and it is not because of line 6, option G is the correct answer. If
line 8 was corrected with parentheses, then the loop would be
executed twice, and the output would be 11.

10. B, D, F. The code does compile, making option G incorrect. In the
first for-each loop, the right side of the for-each loop has a type of
int[], so each element penguin has a type of int, making option B
correct. In the second for-each loop, ostrich has a type of
Character[], so emu has a data type of Character, making option D
correct. In the last for-each loop, parrots has a data type of List.
Since no generic type is used, the default type is a List of Object
values, and macaw will have a data type of Object, making option F
correct.

11. F. The code does not compile, although not for the reason
specified in option E. The second case statement contains invalid
syntax. Each case statement must have the keyword case—in
other words, you cannot chain them with a colon (:) as shown in
case 'B' : 'C' :. For this reason, option F is the correct answer.
If this line were fixed to add the keyword case before 'C', then the
rest of the code would have compiled and printed great good at
runtime.

12. A, B, D. To print items in the wolf array in reverse order, the code
needs to start with wolf[wolf.length-1] and end with wolf[0].
Option A accomplishes this and is the first correct answer, albeit
not using any of for loop structures, and ends when the index is 0.
Option B is also correct and is one of the most common ways a

reverse loop is written. The termination condition is often m>=0 or
m>-1, and both are correct. Options C and F each cause an
ArrayIndexOutOfBoundsException at runtime since both read from
wolf[wolf.length] first, with an index that is passed the length of
the 0-based array wolf. The form of option C would be successful
if the value was changed to wolf[wolf.length-z-1]. Option D is
also correct, as the j is extraneous and can be ignored in this
example. Finally, option E is incorrect and produces an infinite
loop at runtime, as w is repeatedly set to r-1, in this case 4, on
every loop iteration. Since the update statement has no effect after
the first iteration, the condition is never met, and the loop never
terminates.

13. B, E. The code compiles without issue and prints three distinct
numbers at runtime, so options G and H are incorrect. The first
loop executes a total of five times, with the loop ending when
participants has a value of 10. For this reason, option E is correct.
In the second loop, animals already starts out not less than or
equal to 1, but since it is a do/while loop, it executes at least once.
In this manner, animals takes on a value of 3 and the loop
terminates, making option B correct. Finally, the last loop
executes a total of two times, with performers starting with -1,
going to 1 at the end of the first loop, and then ending with a value
of 3 after the second loop, which breaks the loop. This makes
option B a correct answer twice over.

14. E. The variable snake is declared within the body of the do/while
statement, so it is out of scope on line 7. For this reason, option E
is the correct answer. If snake were declared before line 3 with a
value of 1, then the output would have been 1 2 3 4 5 -5.0, and
option G would have been the correct answer choice.

15. A, E. The most important thing to notice when reading this code is
that the innermost loop is an infinite loop without a statement to
branch out of it, since there is no loop termination condition.
Therefore, you are looking for solutions that skip the innermost
loop entirely or ones that exit that loop. Option A is correct, as
break L2 on line 8 causes the second inner loop to exit every time
it is entered, skipping the innermost loop entirely. For option B,

the first continue on line 8 causes the execution to skip the
innermost loop on the first iteration of the second loop, but not
the second iteration of the second loop. The innermost loop is
executed, and with continue on line 12, it produces an infinite
loop at runtime, making option B incorrect. Option C is incorrect
because it contains a compiler error. The label L3 is not visible
outside its loop. Option D is incorrect, as it is equivalent to option
B since unlabeled break and continue apply to the nearest loop
and therefore produce an infinite loop at runtime. Like option A,
the continue L2 on line 8 allows the innermost loop to be
executed the second time the second loop is called. The continue
L2 on line 12 exits the infinite loop, though, causing control to
return to the second loop. Since the first and second loops
terminate, the code terminates, and option E is a correct answer.

16. E. The code compiles without issue, making options F and G
incorrect. Since Java 10, var is supported in both switch and while
loops, provided the type can be determined by the compiler. In
addition, the variable one is allowed in a case statement because it
is a final local variable, making it a compile-time constant. The
value of tailFeathers is 3, which matches the second case
statement, making 5 the first output. The while loop is executed
twice, with the pre-increment operator (--) modifying the value
of tailFeathers from 3 to 2, and then to 1 on the second loop. For
this reason, the final output is 5 2 1, making option E the correct
answer.

17. F. Line 19 starts with an else statement, but there is no preceding
if statement that it matches. For this reason, line 19 does not
compile, making option F the correct answer. If the else keyword
was removed from line 19, then the code snippet would print
Success.

18. A, D, E. The right side of a for-each statement must be a primitive
array or any class that implements java.lang.Iterable, which
includes the Collection interface, although not all Collections
Framework classes. For these reasons, options A, D, and E are
correct. Option B is incorrect as Map does not implement
Collection nor Iterable, since it is not a list of items, but a

mapping of items to other items. Option C and F are incorrect as
well. While you may consider them to be a list of characters,
strictly speaking they are not considered Iterable in Java, since
they do not implement Iterable. That said, you can iterate over
them using a traditional for loop and member methods, such as
charAt() and length().

19. D. The code does compile without issue, so option F is incorrect.
The viola variable created on line 8 is never used and can be
ignored. If it had been used as the case value on line 15, it would
have caused a compilation error since it is not marked final.
Since "violin" and "VIOLIN" are not an exact match, the default
branch of the switch statement is executed at runtime. This
execution path increments p a total of three times, bringing the
final value of p to 2 and making option D the correct answer.

20. F. The code snippet does not contain any compilation errors, so
options D and E are incorrect. There is a problem with this code
snippet, though. While it may seem complicated, the key is to
notice that the variable r is updated outside of the do/while loop.
This is allowed from a compilation standpoint, since it is defined
before the loop, but it means the innermost loop never breaks the
termination condition r <= 1. At runtime, this will produce an
infinite loop the first time the innermost loop is entered, making
option F the correct answer.

Chapter 5: Core Java APIs
1. F. Line 5 does not compile. This question is checking to see

whether you are paying attention to the types. numFish is an int,
and 1 is an int. Therefore, we use numeric addition and get 5. The
problem is that we can’t store an int in a String variable.
Supposing line 5 said String anotherFish = numFish + 1 + "";.
In that case, the answer would be option A and option C. The
variable defined on line 5 would be the string "5", and both output
statements would use concatenation.

2. A, C, D. The code compiles fine. Line 3 points to the String in the
string pool. Line 4 calls the String constructor explicitly and is
therefore a different object than s. Lines 5 checks for object
equality, which is true, and so prints one. Line 6 uses object
reference equality, which is not true since we have different
objects. Line 7 calls intern(), which returns the value from the
string pool and is therefore the same reference as s. Line 8 also
compares references but is true since both references point to the
object from the string pool. Finally, line 9 is a trick. The string
Hello is already in the string pool, so calling intern() does not
change anything. The reference t is a different object, so the result
is still false.

3. A, C, F. The code does compile, making option G incorrect. In the
first for-each loop, gorillas has a type of List<String>, so each
element koko has a type of String, making option A correct. In the
second for-each loop, you might think that the diamond operator
<> cannot be used with var without a compilation error, but it
absolutely can. This result is monkeys having a type of
ArrayList<Object> with albert having a data type of Object,
making option C correct. While var might indicate an ambiguous
data type, there is no such thing as an undefined data type in
Java, so option D is incorrect. In the last for-each loop, chimpanzee
has a data type of List. Since the left side does not define a
generic type, the compiler will treat this as List<Object>, and ham
will have a data type of Object, making option F correct. Even

though the elements of chimpanzees might be Integer as defined,
ham would require an explicit cast to call an Integer method, such
as ham.intValue().

4. B. This example uses method chaining. After the call to append(),
sb contains "aaa". That result is passed to the first insert() call,
which inserts at index 1. At this point sb contains abbaa. That
result is passed to the final insert(), which inserts at index 4,
resulting in abbaccca.

5. G. The question is trying to distract you into paying attention to
logical equality versus object reference equality. The exam
creators are hoping you will miss the fact that line 18 does not
compile. Java does not allow you to compare String and
StringBuilder using ==.

6. B. A String is immutable. Calling concat() returns a new String
but does not change the original. A StringBuilder is mutable.
Calling append() adds characters to the existing character
sequence along with returning a reference to the same object.

7. A, B, F. Remember that indexes are zero-based, which means that
index 4 corresponds to 5 and option A is correct. For option B, the
replace() method starts the replacement at index 2 and ends
before index 4. This means two characters are replaced, and
charAt(3) is called on the intermediate value of 1265. The
character at index 3 is 5, making option B correct. Option C is
similar, making the intermediate value 126 and returning 6.
Option D results in an exception since there is no character at
index 5. Option E is incorrect. It does not compile because the
parentheses for the length() method are missing. Finally, option
F’s replace results in the intermediate value 145. The character at
index 2 is 5, so option F is correct.

8. A, D, E. substring() has two forms. The first takes the index to
start with and the index to stop immediately before. The second
takes just the index to start with and goes to the end of the String.
Remember that indexes are zero-based. The first call starts at
index 1 and ends with index 2 since it needs to stop before index
3. The second call starts at index 7 and ends in the same place,

resulting in an empty String. This prints out a blank line. The
final call starts at index 7 and goes to the end of the String.

9. C, F. This question is tricky because it has two parts. The first is
trying to see if you know that String objects are immutable. Line
17 returns "PURR", but the result is ignored and not stored in s1.
Line 18 returns "purr" since there is no whitespace present, but
the result is again ignored. Line 19 returns "ur" because it starts
with index 1 and ends before index 3 using zero-based indexes.
The result is ignored again. Finally, on line 20 something
happens. We concatenate three new characters to s1 and now
have a String of length 7, making option C correct. For the second
part, a += 2 expands to a = a + 2. A String concatenated with
any other type gives a String. Lines 22, 23, and 24 all append to a,
giving a result of "2cfalse". The if statement on line 27 returns
true because the values of the two String objects are the same
using object equality. The if statement on line 26 returns false
because the two String objects are not the same in memory. One
comes directly from the string pool, and the other comes from
building using String operations.

10. A, G. The substring() method includes the starting index but not
the ending index. When called with 1 and 2, it returns a single
character String, making option A correct and option E incorrect.
Calling substring() with 2 as both parameters is legal. It returns
an empty String, making options B and F incorrect. Java does not
allow the indexes to be specified in reverse order. Option G is
correct because it throws a StringIndexOutOfBoundsException.
Finally, option H is incorrect because it returns an empty String.

11. A. First, we delete the characters at index 2 until the character one
before index 8. At this point, 0189 is in numbers. The following line
uses method chaining. It appends a dash to the end of the
characters sequence, resulting in 0189–, and then inserts a plus
sign at index 2, resulting in 01+89–.

12. F. This is a trick question. The first line does not compile because
you cannot assign a String to a StringBuilder. If that line were
StringBuilder b = new StringBuilder("rumble"), the code would

compile and print rum4. Watch out for this sort of trick on the
exam. You could easily spend a minute working out the character
positions for no reason at all.

13. A, C. The reverse() method is the easiest way of reversing the
characters in a StringBuilder; therefore, option A is correct. In
option B, substring() returns a String, which is not stored
anywhere. Option C uses method chaining. First, it creates the
value "JavavaJ$". Then, it removes the first three characters,
resulting in "avaJ$". Finally, it removes the last character,
resulting in "avaJ". Option D throws an exception because you
cannot delete the character after the last index. Remember that
deleteCharAt() uses indexes that are zero-based, and length()
counts starting with 1.

14. C, E, F. Option C uses the variable name as if it were a type, which
is clearly illegal. Options E and F don’t specify any size. Although
it is legal to leave out the size for later dimensions of a
multidimensional array, the first one is required. Option A
declares a legal 2D array. Option B declares a legal 3D array.
Option D declares a legal 2D array. Remember that it is normal to
see on the exam types you might not have learned. You aren’t
expected to know anything about them.

15. A, H. Arrays define a property called length. It is not a method, so
parentheses are not allowed, making option A correct. The
ArrayList class defines a method called size(), making option H
the other correct answer.

16. A, F, G. An array is not able to change size, making option A
correct and option B incorrect. Neither is immutable, making
options C and D incorrect. The elements can change in value. An
array does not override equals(), so it uses object equality,
making option E incorrect. ArrayList does override equals() and
defines it as the same elements in the same order, making option
F correct. The compiler does not know when an index is out of
bounds and thus can’t give you a compiler error, making option G
correct. The code will throw an exception at runtime, though,
making option H the final incorrect answer.

17. F. The code does not compile because list is instantiated using
generics. Only String objects can be added to list, and 7 is an
int.

18. C. The put() method is used on a Map rather than a List or Set,
making options A and D incorrect. The replace() method does
not exist on either of these interfaces. Finally, the set method is
valid on a List rather than a Set because a List has an index.
Therefore, option C is correct.

19. A, F. The code compiles and runs fine. However, an array must be
sorted for binarySearch() to return a meaningful result. Option F
is correct because line 14 prints a number, but the behavior is
undefined. Line 8 creates a list backed by a fixed-size array of 4.
Line 10 sorts it. Line 12 converts it back to an array. The brackets
aren’t in the traditional place, but they are still legal. Line 13
prints the first element, which is now –1, making option A the
other correct answer.

20. B, C, E. Remember to watch return types on math operations. One
of the tricks is option B on line 24. The round() method returns an
int when called with a float. However, we are calling it with a
double so it returns a long. The other trick is option C on line 25.
The random() method returns a double. Converting from an array
to an ArrayList uses Arrays.asList(names). There is no asList()
method on an array instance, and option E is correct.

21. D. After sorting, hex contains [30, 3A, 8, FF]. Remember that
numbers sort before letters, and strings sort alphabetically. This
makes 30 come before 8. A binary search correctly finds 8 at index
2 and 3A at index 1. It cannot find 4F but notices it should be at
index 2. The rule when an item isn’t found is to negate that index
and subtract 1. Therefore, we get –2–1, which is –3.

22. A, B, D. Lines 5 and 7 use autoboxing to convert an int to an
Integer. Line 6 does not because valueOf() returns an Integer.
Line 8 does not because null is not an int. The code does compile.
However, when the for loop tries to unbox null into an int, it fails
and throws a NullPointerException.

23. B. The first if statement is false because the variables do not
point to the same object. The second if statement is true because
ArrayList implements equality to mean the same elements in the
same order.

24. D, E. The first line of code in the method creates a fixed size List
backed by an array. This means option D is correct, making
options B and F incorrect. The second line of code in the method
creates an immutable list, which means no changes are allowed.
Therefore, option E is correct, making options A and C incorrect.

25. A, B, D. The compare() method returns a positive integer when the
arrays are different and s1 is larger. This is the case for option A
since the element at index 1 comes first alphabetically. It is not the
case for option C because the s4 is longer or option E because the
arrays are the same. The mismatch() method returns a positive
integer when the arrays are different in a position index 1 or
greater. This is the case for option B since the difference is at
index 1. It is not the case for option D because the s3 is shorter
than the s4 or option F because there is no difference.

Chapter 6: Lambdas and Functional Interfaces
1. A. This code is correct. Line 8 creates a lambda expression that

checks whether the age is less than 5. Since there is only one
parameter and it does not specify a type, the parentheses around
the type parameter are optional. Lines 11 and 13 use the Predicate
interface, which declares a test() method.

2. C. The interface takes two int parameters. The code on line 7
attempts to use them as if one is a String. It is tricky to use types
in a lambda when they are implicitly specified. Remember to
check the interface for the real type.

3. A, D, F. The removeIf() method expects a Predicate, which takes a
parameter list of one parameter using the specified type. Options
B and C are incorrect because they do not use the return keyword.
This keyword is required to be inside the braces of a lambda body.
Option E is incorrect because it is missing the parentheses around
the parameter list. This is only optional for a single parameter
with an inferred type.

4. A, F. Option B is incorrect because it does not use the return
keyword. Options C, D, and E are incorrect because the variable e
is already in use from the lambda and cannot be redefined.
Additionally, option C is missing the return keyword, and option
E is missing the semicolon.

5. B, D. Predicate<String> takes a parameter list of one parameter
using the specified type. Options A and F are incorrect because
they specify the wrong number of parameters. Option C is
incorrect because parentheses are required around the parameter
list when the type is specified. Option E is incorrect because the
name used in the parameter list does not match the name used in
the body.

6. E. While there appears to have been a variable name shortage
when this code was written, it does compile. Lambda variables
and method names are allowed to be the same. The x lambda
parameter is scoped to within each lambda, so it is allowed to be

reused. The type is inferred by the method it calls. The first
lambda maps x to a String and the second to a Boolean. Therefore,
option E is correct.

7. A, B, E, F. The forEach() method with one lambda parameter
works with a List or a Set. Therefore, options A and B are correct.
Additionally, options E and F return a Set and can be used as well.
Options D and G refer to methods that do not exist. Option C is
tricky because a Map does have a forEach() method. However, it
uses two lambda parameters rather than one.

8. A, C, F. Option A is correct because a Supplier returns a value
while a Consumer takes one and acts on it. Option C is correct
because a Comparator returns a negative number, zero, or a
positive number depending on the values passed. A Predicate
always returns a boolean. It does have a method named test(),
making option F correct.

9. A, B, C. Since the scope of start and c is within the lambda, the
variables can be declared after it without issue, making options A,
B, and C correct. Option D is incorrect because setting end
prevents it from being effectively final. Lambdas are only allowed
to reference effectively final variables.

10. C. Since the new ArrayList<>(set) constructor makes a copy of
set, there are two elements in each of set and list. The forEach()
methods print each element on a separate line. Therefore, four
lines are printed, and option C is the answer.

11. A. The code correctly sorts in descending order. Since uppercase
normally sorts before lowercase, the order is reversed here, and
option A is correct.

12. C, D, E. The first line takes no parameters, making it a Supplier.
Option E is correct because Java can autobox from a primitive
double to a Double object. Option F is incorrect because it is a
float rather than a double. The second line takes one parameter
and returns a boolean, making it a Predicate. Since the lambda
parameter is unused, any generic type is acceptable, and options C
and D are both correct.

13. E. Lambdas are only allowed to reference effectively final
variables. You can tell the variable j is effectively final because
adding a final keyword before it wouldn’t introduce a compile
error. Each time the else statement is executed, the variable is
redeclared and goes out of scope. Therefore, it is not re-assigned.
Similarly, length is effectively final. There are no compile errors,
and option E is correct.

14. C. Lambdas are not allowed to redeclare local variables, making
options A and B incorrect. Option D is incorrect because setting
end prevents it from being effectively final. Lambdas are only
allowed to reference effectively final variables. Option C is tricky
because it does compile but throws an exception at runtime. Since
the question only asks about compilation, option C is correct.

15. C. Set is not an ordered Collection. Since it does not have a
sort() method, the code does not compile, making option C
correct.

16. A, D. Method parameters and local variables are effectively final if
they aren’t changed after initialization. Options A and D meet this
criterion.

17. C. Line 8 uses braces around the body. This means the return
keyword and semicolon are required.

18. D. Lambda parameters are not allowed to use the same name as
another variable in the same scope. The variable names s and x
are taken from the object declarations and therefore not available
to be used inside the lambda.

19. A, C. This interface specifies two String parameters. We can
provide the parameter list with or without parameter types.
However, it needs to be consistent, making option B incorrect.
Options D, E, and F are incorrect because they do not use the
arrow operator.

20. A, C. Predicate<String> takes a parameter list of one parameter
using the specified type. Options E and F are incorrect because it
specifies the wrong type. Options B and D are incorrect because
they use the wrong syntax for the arrow operator.

Chapter 7: Methods and Encapsulation
1. B, C. The keyword void is a return type. Only the access modifier

or optional specifiers are allowed before the return type. Option C
is correct, creating a method with private access. Option B is also
correct, creating a method with default access and the optional
specifier final. Since default access does not require a modifier,
we get to jump right to final. Option A is incorrect because
default access omits the access modifier rather than specifying
default. Option D is incorrect because Java is case sensitive. It
would have been correct if public were the choice. Option E is
incorrect because the method already has a void return type.
Option F is incorrect because labels are not allowed for methods.

2. A, D. Options A and D are correct because the optional specifiers
are allowed in any order. Options B and C are incorrect because
they each have two return types. Options E and F are incorrect
because the return type is before the optional specifier and access
modifier, respectively.

3. A, C, D. Options A and C are correct because a void method is
optionally allowed to have a return statement as long as it doesn’t
try to return a value. Option B does not compile because null
requires a reference object as the return type. Since int is
primitive, it is not a reference object. Option D is correct because
it returns an int value. Option E does not compile because it tries
to return a double when the return type is int. Since a double
cannot be assigned to an int, it cannot be returned as one either.
Option F does not compile because no value is actually returned.

4. A, B, F. Options A and B are correct because the single varargs
parameter is the last parameter declared. Option F is correct
because it doesn’t use any varargs parameters. Option C is
incorrect because the varargs parameter is not last. Option D is
incorrect because two varargs parameters are not allowed in the
same method. Option E is incorrect because the ... for a varargs
must be after the type, not before it.

5. D, F. Option D passes the initial parameter plus two more to turn
into a varargs array of size 2. Option F passes the initial
parameter plus an array of size 2. Option A does not compile
because it does not pass the initial parameter. Option E does not
compile because it does not declare an array properly. It should be
new boolean[] {true, true}. Option B creates a varargs array of
size 0, and option C creates a varargs array of size 1.

6. D. Option D is correct. This is the common implementation for
encapsulation by setting all fields to be private and all methods to
be public. Option A is incorrect because protected access allows
everything that package-private access allows and additionally
allows subclasses access. Option B is incorrect because the class is
public. This means that other classes can see the class. However,
they cannot call any of the methods or read any of the fields. It is
essentially a useless class. Option C is incorrect because package-
private access applies to the whole package. Option E is incorrect
because Java has no such wildcard access capability.

7. B, C, D, F. The two classes are in different packages, which means
private access and default (package-private) access will not
compile. This causes compile errors in lines 5, 6, and 7, making
options B, C, and D correct answers. Additionally, protected
access will not compile since School does not inherit from
Classroom. This causes the compiler error on line 9, making option
F a correct answer as well.

8. A, B, E. Encapsulation allows using methods to get and set
instance variables so other classes are not directly using them,
making options A and B correct. Instance variables must be
private for this to work, making option E correct and option D
incorrect. While there are common naming conventions, they are
not required, making option C incorrect.

9. B, D, F. Option A is incorrect because the methods differ only in
return type. Option C is tricky. It is incorrect because var is not a
valid return type. Remember that var can be used only for local
variables. Option E is incorrect because the method signature is
identical once the generic types are erased. Options B and D are

correct because they represent interface and superclass
relationships. Option F is correct because the arrays are of
different types.

10. B. Rope runs line 3, setting LENGTH to 5, and then immediately after
runs the static initializer, which sets it to 10. Line 5 in the Chimp
class calls the static method normally and prints swing and a
space. Line 6 also calls the static method. Java allows calling a
static method through an instance variable although it is not
recommended. Line 7 uses the static import on line 2 to reference
LENGTH.

11. B, E. Line 10 does not compile because static methods are not
allowed to call instance methods. Even though we are calling
play() as if it were an instance method and an instance exists,
Java knows play() is really a static method and treats it as such.
If line 10 is removed, the code works. It does not throw a
NullPointerException on line 17 because play() is a static
method. Java looks at the type of the reference for rope2 and
translates the call to Rope.play().

12. D. There are two details to notice in this code. First, note that
RopeSwing has an instance initializer and not a static initializer.
Since RopeSwing is never constructed, the instance initializer does
not run. The other detail is that length is static. Changes from
one object update this common static variable.

13. E. If a variable is static final, it must be set exactly once, and it
must be in the declaration line or in a static initialization block.
Line 4 doesn’t compile because bench is not set in either of these
locations. Line 15 doesn’t compile because final variables are not
allowed to be set after that point. Line 11 doesn’t compile because
name is set twice: once in the declaration and again in the static
block. Line 12 doesn’t compile because rightRope is set twice as
well. Both are in static initialization blocks.

14. B. The two valid ways to do this are import static
java.util.Collections.*; and import static
java.util.Collections.sort;. Option A is incorrect because you
can do a static import only on static members. Classes such as

Collections require a regular import. Option C is nonsense as
method parameters have no business in an import. Options D, E,
and F try to trick you into reversing the syntax of import static.

15. E. The argument on line 17 is a short. It can be promoted to an
int, so print() on line 5 is invoked. The argument on line 18 is a
boolean. It can be autoboxed to a Boolean, so print() on line 11 is
invoked. The argument on line 19 is a double. It can be autoboxed
to a Double, so print() on line 11 is invoked. Therefore, the output
is int-Object-Object-, and the correct answer is option E.

16. B. Since Java is pass-by-value and the variable on line 8 never
gets reassigned, it stays as 9. In the method square, x starts as 9.
The y value becomes 81, and then x gets set to –1. Line 9 does set
result to 81. However, we are printing out value and that is still 9.

17. B, D, E. Since Java is pass-by-value, assigning a new object to a
does not change the caller. Calling append() does affect the caller
because both the method parameter and the caller have a
reference to the same object. Finally, returning a value does pass
the reference to the caller for assignment to s3.

18. B, C, E. The variable value1 is a final instance variable. It can be
set only once: in the variable declaration, an instance initializer,
or a constructor. Option A does not compile because the final
variable was already set in the declaration. The variable value2 is
a static variable. Both instance and static initializers are able to
access static variables, making options B and E correct. The
variable value3 is an instance variable. Options D and F do not
compile because a static initializer does not have access to
instance variables.

19. A, E. The 100 parameter is an int and so calls the matching int
method. When this method is removed, Java looks for the next
most specific constructor. Java prefers autoboxing to varargs, so it
chooses the Integer constructor. The 100L parameter is a long.
Since it can’t be converted into a smaller type, it is autoboxed into
a Long, and then the method for Object is called.

20. A, C, F. Option B is incorrect because var cannot be a method

parameter. It must be a local variable or lambda parameter.
Option D is incorrect because the method declarations are
identical. Option E is tricky. The variable long is illegal because
long is a reserved word. Options A, C, and F are correct because
they represent different types.

21. A, B, C. Instance variables must include the private access
modifier, making option D incorrect. While it is common for
methods to be public, this is not required. Options A, B, and C are
all correct, although some are more useful than others. Since the
class can be written to be encapsulated, options E and F are
incorrect.

Chapter 8: Class Design
1. E. Options A and B will not compile because constructors cannot

be called without new. Options C and D will compile but will create
a new object rather than setting the fields in this one. The result is
the program will print 0, not 2, at runtime. Calling an overloaded
constructor, using this(), or a parent constructor, using super(),
is only allowed on the first line of the constructor, making option
E correct and option F incorrect. Finally, option G is incorrect
because the program prints 0 without any changes, not 2.

2. B, C. Overloaded methods have the method name but a different
signature (the method parameters differ), making option A
incorrect. Overridden instance methods and hidden static
methods must have the same signature (the name and method
parameters must match), making options B and C correct.
Overloaded methods can have different return types, while
overridden and hidden methods can have covariant return types.
None of these methods are required to use the same return type,
making options D, E, and F incorrect.

3. F. The code will not compile as is, because the parent class Mammal
does not define a no-argument constructor. For this reason, the
first line of a Platypus constructor should be an explicit call to
super(int), making option F the correct answer. Option E is
incorrect, as line 7 compiles without issue. The sneeze() method
in the Mammal class is marked private, meaning it is not inherited
and therefore is not overridden in the Platypus class. For this
reason, the sneeze() method in the Platypus class is free to define
the same method with any return type.

4. E. The code compiles, making option F incorrect. An instance
variable with the same name as an inherited instance variable is
hidden, not overridden. This means that both variables exist, and
the one that is used depends on the location and reference type.
Because the main() method uses a reference type of Speedster to
access the numSpots variable, the variable in the Speedster class,
not the Cheetah class, must be set to 50. Option A is incorrect, as it

reassigns the method parameter to itself. Option B is incorrect, as
it assigns the method parameter the value of the instance variable
in Cheetah, which is 0. Option C is incorrect, as it assigns the value
to the instance variable in Cheetah, not Speedster. Option D is
incorrect, as it assigns the method parameter the value of the
instance variable in Speedster, which is 0. Options A, B, C, and D
all print 0 at runtime. Option E is the only correct answer, as it
assigns the instance variable numSpots in the Speedster class a
value of 50. The numSpots variable in the Speedster class is then
correctly referenced in the main() method, printing 50 at runtime.

5. A. The code compiles and runs without issue, so options E and F
are incorrect. The Arthropod class defines two overloaded versions
of the printName() method. The printName() method that takes an
int value on line 5 is correctly overridden in the Spider class on
line 9. Remember, an overridden method can have a broader
access modifier, and protected access is broader than package-
private access. Because of polymorphism, the overridden method
replaces the method on all calls, even if an Arthropod reference
variable is used, as is done in the main() method. For these
reasons, the overridden method is called on lines 15 and 16,
printing Spider twice. Note that the short value is automatically
cast to the larger type of int, which then uses the overridden
method. Line 17 calls the overloaded method in the Arthropod
class, as the long value 5L does not match the overridden method,
resulting in Arthropod being printed. Therefore, option A is the
correct answer.

6. B, E. The signature must match exactly, making option A
incorrect. There is no such thing as a covariant signature. An
overridden method must not declare any new checked exceptions
or a checked exception that is broader than the inherited method.
For this reason, option B is correct, and option D is incorrect.
Option C is incorrect because an overridden method may have the
same access modifier as the version in the parent class. Finally,
overridden methods must have covariant return types, and only
void is covariant with void, making option E correct.

7. A, C. Option A is correct, as this(3) calls the constructor declared

on line 5, while this("") calls the constructor declared on line 10.
Option B does not compile, as inserting this() at line 3 results in
a compiler error, since there is no matching constructor. Option C
is correct, as short can be implicitly cast to int, resulting in
this((short)1) calling the constructor declared on line 5. In
addition, this(null) calls the String constructor declared on line
10. Option D does not compile because inserting super() on line
14 results in an invalid constructor call. The Howler class does not
contain a no-argument constructor. Option E is also incorrect.
Inserting this(2L) at line 3 results in a recursive constructor
definition. The compiler detects this and reports an error. Option
F is incorrect, as using super(null) on line 14 does not match any
parent constructors. If an explicit cast was used, such as
super((Integer)null), then the code would have compiled but
would throw an exception at runtime during unboxing. Finally,
option G is incorrect because the superclass Howler does not
contain a no-argument constructor. Therefore, the constructor
declared on line 13 will not compile without an explicit call to an
overloaded or parent constructor.

8. C. The code compiles and runs without issue, making options F
and G incorrect. Line 16 initializes a PolarBear instance and
assigns it to the bear reference. The variable declaration and
instance initializers are run first, setting value to tac. The
constructor declared on line 5 is called, resulting in value being
set to tacb. Remember, a static main() method can access
private constructors declared in the same class. Line 17 creates
another PolarBear instance, replacing the bear reference declared
on line 16. First, value is initialized to tac as before. Line 17 calls
the constructor declared on line 8, since String is the narrowest
match of a String literal. This constructor then calls the
overloaded constructor declared on line 5, resulting in value being
updated to tacb. Control returns to the previous constructor, with
line 10 updating value to tacbf, and making option C the correct
answer. Note that if the constructor declared on line 8 did not
exist, then the constructor on line 12 would match. Finally, the
bear reference is properly cast to PolarBear on line 18, making the
value parameter accessible.

9. B, F. A valid override of a method with generic arguments must
have a return type that is covariant, with matching generic type
parameters. Option B is correct, as it is just restating the original
return type. Option F is also correct, as ArrayList is a subtype of
List. The rest of the method declarations do not compile. Options
A and D are invalid because the access levels, package-private and
private, are more restrictive than the inherited access modifier,
protected. Option C is incorrect because while CharSquence is a
subtype of String, the generic type parameters must match
exactly. Finally, option E is incorrect as Object is a supertype of
List and therefore not covariant.

10. D. The code doesn’t compile, so option A is incorrect. The first
compilation error is on line 2, as var cannot be used as a
constructor argument type. The second compilation error is on
line 8. Since Rodent declares at least one constructor and it is not a
no-argument constructor, Beaver must declare a constructor with
an explicit call to a super() constructor. Line 9 contains two
compilation errors. First, the return types are not covariant since
Number is a supertype, not a subtype, of Integer. Second, the
inherited method is static, but the overridden method is not,
making this an invalid override. The code contains four
compilation errors, although they are limited to three lines,
making option D the correct answer.

11. B, C, E. An object may be cast to a supertype without an explicit
cast but requires an explicit cast to be cast to a subtype, making
option A incorrect. Option B is correct, as an interface method
argument may take any reference type that implements the
interface. Option C is also correct, as a method that accepts
java.lang.Object can accept any variable since all objects inherit
java.lang.Object. This also includes primitives, which can be
autoboxed to their wrapper classes. Some cast exceptions can be
detected as errors at compile-time, but others can only be
detected at runtime, so option D is incorrect. Due to the nature of
polymorphism, a final instance method cannot be overridden in
a subclass, so calls in the parent class will not be replaced, making
option E correct. Finally, polymorphism applies to classes and

interfaces alike, making option F incorrect.

12. A, B, E, F. The code compiles if the correct type is inserted in the
blank, so option G is incorrect. The setSnake() method requires
an instance of Snake or any subtype of Snake. The Cobra class is a
subclass of Snake, so it is a subtype. The GardenSnake class is a
subclass of Cobra, which, in turn, is a subclass of Snake, also
making GardenSnake a subtype of Snake. For these reasons, options
A, B, and E are correct. Option C is incorrect because Object is a
supertype of Snake, not a subtype, as all instances inherit Object.
Option D is incorrect as String is an unrelated class and does not
inherit Snake. Finally, a null value can always be passed as an
object value, regardless of type, so option F is correct.

13. A, G. The compiler will insert a default no-argument constructor if
the class compiles and does not define any constructors. Options
A and G fulfill this requirement, making them the correct
answers. The bird() declaration in option G is a method
declaration, not a constructor. Options B and C do not compile.
Since the constructor name does not match the class name, the
compiler treats these as methods with missing return types.
Options D, E, and F all compile, but since they declare at least one
constructor, the compiler does not supply one.

14. B, E, F. A class can only directly extend a single class, making
option A incorrect. A class can implement any number of
interfaces, though, making option B correct. Option C is incorrect
because primitive types do not inherit java.lang.Object. If a class
extends another class, then it is a subclass, not a superclass,
making option D incorrect. A class that implements an interface is
a subtype of that interface, making option E correct. Finally,
option F is correct as it is an accurate description of multiple
inheritance, which is not permitted in Java.

15. D. The code compiles, so option G is incorrect. Based on order of
initialization, the static components are initialized first, starting
with the Arachnid class, since it is the parent of the Scorpion class,
which initializes the StringBuilder to u. The static initializer in
Scorpion then updates sb to contain uq, which is printed twice by

lines 13 and 14 along with spaces separating the values. Next, an
instance of Arachnid is initialized on line 15. There are two
instance initializers in Arachnid, and they run in order, appending
cr to the StringBuilder, resulting in a value of uqcr. An instance of
Scorpion is then initialized on line 16. The instance initializers in
the superclass Arachnid run first, appending cr again and
updating the value of sb to uqcrcr. Finally, the instance initializer
in Scorpion runs and appends m. The program completes with the
final value printed being uq uq uqcrcrm, making option D the
correct answer.

16. B. A valid override of a method with generic arguments must have
the same signature with the same generic types. For this reason,
only option B is correct. Because of type erasure, the generic type
parameter will be removed when the code is compiled. Therefore,
the compiler requires that the types match. Options A and D do
not compile for this reason. Options C, E, and F do compile, but
since the generic class changed, they are overloads, not overrides.
Remember, covariant types only apply to return values of
overridden methods, not method parameters.

17. F. Options A–E are incorrect statements about inheritance and
variables, making option F the correct answer. Option A is
incorrect because variables can only be hidden, not overridden via
inheritance. This means that they are still accessible in the parent
class and do not replace the variable everywhere, as overriding
does. Options B, C, and E are also incorrect as they more closely
match rules for overriding methods. Also, option E is invalid as
variables do not throw exceptions. Finally, option D is incorrect as
this is a rule for hiding static methods.

18. C, F. Calling an overloaded constructor with this() may be used
only as the first line of a constructor, making options A and B
incorrect. Accessing this.variableName can be performed from
any instance method, constructor, or instance initializer, but not
from a static method or static initializer. For this reason, option
C is correct, and option D is incorrect. Option E is tricky. The
default constructor is written by the compiler only if no user-
defined constructors were provided. And this() can only be called

from a constructor in the same class. Since there can be no user-
defined constructors in the class if a default constructor was
created, it is impossible for option E to be true. Since the main()
method is in the same class, it can call private methods in the
class, making option F correct.

19. C, F. The eat() method is private in the Mammal class. Since it is
not inherited in the Primate class, it is neither overridden nor
overloaded, making options A and B incorrect. The drink()
method in Mammal is correctly hidden in the Monkey class, as the
signature is the same, making option C correct and option D
incorrect. The version in the Monkey class throws a new exception,
but it is unchecked; therefore, it is allowed. The dance() method
in Mammal is correctly overloaded in the Monkey class because the
signatures are not the same, making option E incorrect and option
F correct. For methods to be overridden, the signatures must
match exactly. Finally, line 12 is an invalid override and does not
compile, as int is not covariant with void, making options G and
H both incorrect.

20. F. The Reptile class defines a constructor, but it is not a no-
argument constructor. Therefore, the Lizard constructor must
explicitly call super(), passing in an int value. For this reason,
line 9 does not compile, and option F is the correct answer. If the
Lizard class were corrected to call the appropriate super()
constructor, then the program would print BALizard at runtime,
with the static initializer running first, followed by the instance
initializer, and finally the method call using the overridden
method.

21. E. The program compiles and runs without issue, making options
A through D incorrect. The fly() method is correctly overridden
in each subclass since the signature is the same, the access
modifier is less restrictive, and the return types are covariant. For
covariance, Macaw is a subtype of Parrot, which is a subtype of
Bird, so overridden return types are valid. Likewise, the
constructors are all implemented properly, with explicit calls to
the parent constructors as needed. Line 19 calls the overridden
version of fly() defined in the Macaw class, as overriding replaces

the method regardless of the reference type. This results in
feathers being assigned a value of 3. The Macaw object is then cast
to Parrot, which is allowed because Macaw inherits Parrot. The
feathers variable is visible since it is defined in the Bird class, and
line 19 prints 3, making option E the correct answer.

22. D. The code compiles and runs without issue, making option E
incorrect. The Child class overrides the setName() method and
hides the static name variable defined in the inherited Person
class. Since variables are only hidden, not overridden, there are
two distinct name variables accessible, depending on the location
and reference type. Line 8 creates a Child instance, which is
implicitly cast to a Person reference type on line 9. Line 10 uses
the Child reference type, updating Child.name to Elysia. Line 11
uses the Person reference type, updating Person.name to Sophia.
Lines 12 and 13 both call the overridden setName() instance
method declared on line 6. This sets Child.name to Webby on line 12
and then to Olivia on line 13. The final values of Child.name and
Person.name are Olivia and Sophia, respectively, making option D
the correct answer.

23. B. The program compiles, making option F incorrect. The
constructors are called from the child class upward, but since each
line of a constructor is a call to another constructor, via this() or
super(), they are ultimately executed in top-down manner. On
line 29, the main() method calls the Fennec() constructor declared
on line 19. Remember, integer literals in Java are considered int
by default. This constructor calls the Fox() constructor defined on
line 12, which in turn calls the overloaded Fox() constructor
declared on line 11. Since the constructor on line 11 does not
explicitly call a parent constructor, the compiler inserts a call to
the no-argument super() constructor, which exists on line 3 of the
Canine class. Since Canine does not extend any classes, the
compiler will also insert a call to the no-argument super()
constructor defined in java.lang.Object, although this has little
impact on the output. Line 3 is then executed, adding q to the
output, and the compiler chain is unwound. Line 11 then executes,
adding p, followed by line 14, adding z. Finally, line 21 is executed,

and j is added, resulting in a final value for logger of qpzj, and
making option B correct. For the exam, remember to follow
constructors from the lowest level upward to determine the
correct pathway, but then execute them from the top down using
the established order.

24. A, D, F. Polymorphism is the property of an object to take on
many forms. Part of polymorphism is that methods are replaced
through overriding wherever they are called, regardless of
whether they’re in a parent or child class. For this reason, option
A is correct, and option E incorrect. With hidden static methods,
Java relies on the location and reference type to determine which
method is called, making option B incorrect and F correct. Finally,
making a method final, not static, prevents it from being
overridden, making option D correct and option C incorrect.

25. C. The code compiles and runs without issue, making options E
and F incorrect. First, the class is initialized, starting with the
superclass Antelope and then the subclass Gazelle. This involves
invoking the static variable declarations and static initializers.
The program first prints 1, followed by 8. Then, we follow the
constructor pathway from the object created on line 14 upward,
initializing each class instance using a top-down approach. Within
each class, the instance initializers are run, followed by the
referenced constructors. The Antelope instance is initialized,
printing 24, followed by the Gazelle instance, printing 93. The
final output is 182493, making option C the correct answer.

26. F. The code does not compile, so options A through C are
incorrect. Both lines 5 and 12 do not compile, as this() is used
instead of this. Remember, this() refers to calling a constructor,
whereas this is a reference to the current instance. Next, the
compiler does not allow casting to an unrelated class type. Since
Orangutan is not a subclass of Primate, the cast on line 15 is
invalid, and the code does not compile. Due to these three lines
containing compilation errors, option F is the correct answer.
Note that if Orangutan was made a subclass of Primate and the
this() references were changed to this, then the code would
compile and print 3 at runtime.

Chapter 9: Advanced Class Design
1. B, E. A method that does not declare a body is by definition

abstract, making option E correct. All abstract interface methods
are assumed to be public, making option B correct. Interface
methods cannot be marked protected, so option A is incorrect.
Interface methods can be marked static or default, although if
they are, they must provide a body, making options C and F
incorrect. Finally, void is a return type, not a modifier, so option
D is incorrect.

2. A, B, D, E. The code compiles without issue, so option G is
incorrect. The blank can be filled with any class or interface that is
a supertype of TurtleFrog. Option A is the direct superclass of
TurtleFrog, and option B is the same class, so both are correct.
BrazilianHornedFrog is not a superclass of TurtleFrog, so option C
is incorrect. TurtleFrog inherits the CanHop interface, so option D
is correct. All classes inherit Object, so option E is also correct.
Finally, Long is an unrelated class that is not a superclass of
TurtleFrog and is therefore incorrect.

3. B, C. Concrete classes are, by definition, not abstract, so option A
is incorrect. A concrete class must implement all inherited
abstract methods, so option B is correct. Concrete classes can be
optionally marked final, so option C is correct. Option D is
incorrect; a superclass may have already implemented an
inherited interface method. The concrete class only needs to
implement the inherited abstract methods. Finally, a method in a
concrete class that implements an inherited abstract method
overrides the method. While the method signature must match,
the method declaration does not need to match, such as using a
covariant return type or changing the throws declaration. For
these reasons, option E is incorrect.

4. E. First, the declarations of HasExoskeleton and Insect are correct
and do not contain any errors, making options C and D incorrect.
The concrete class Beetle extends Insect and inherits two abstract
methods, getNumberOfSections() and getNumberOfLegs(). The

Beetle class includes an overloaded version of
getNumberOfSections() that takes an int value. The method
declaration is valid, making option F incorrect, although it does
not satisfy the abstract method requirement. For this reason, only
one of the two abstract methods is properly overridden. The
Beetle class therefore does not compile, and option E is correct.
Since the code fails to compile, options A and B are incorrect.

5. C, F. All interface variables are implicitly assumed to be public,
static, and final, making options C and F correct. Option A and
G, private and default (package-private), are incorrect since they
conflict with the implicit public access modifier. Options B and D
are incorrect, as nonstatic and const are not modifiers. Finally,
option E is incorrect because a variable cannot be marked
abstract.

6. D, E. Lines 1 and 2 are declared correctly, with the implicit
modifier abstract being applied to the interface and the implicit
modifiers public, static, and final being applied to the interface
variable, making options B and C incorrect. Option D is correct, as
an abstract method cannot include a body. Option E is also
correct because the wrong keyword is used. A class implements an
interface; it does extend it. Option F is incorrect as the
implementation of eatGrass() in IsAPlant does not have the same
signature; therefore, it is an overload, not an override.

7. C. The code does not compile because the isBlind() method in
Nocturnal is not marked abstract and does not contain a method
body. The rest of the lines compile without issue, making option C
the only correct answer. If the abstract modifier was added to line
2, then the code would compile and print false at runtime,
making option B the correct answer.

8. C. The code compiles without issue, so option A is incorrect.
Option B is incorrect, as an abstract class could implement
HasVocalCords without the need to override the makeSound()
method. Option C is correct; a class that implements CanBark
automatically inherits its abstract methods, in this case
makeSound() and bark(). Option D is incorrect, as a concrete class

that implements Dog may be optionally marked final. Finally, an
interface can extend multiple interfaces, so option E is incorrect.

9. B, C, E, F. Member inner classes, including both classes and
interfaces, can be marked with any of the four access modifiers:
public, protected, default (package-private), or private. For this
reason, options B, C, E, and F are correct. Options A and D are
incorrect as static and final are not access modifiers.

10. C, G. The implicitly abstract interface method on line 6 does not
compile because it is missing a semicolon (;), making option C
correct. Line 7 compiles, as it provides an overloaded version of
the fly() method. Lines 5, 9, and 10 do not contain any
compilation errors, making options A, E, and F incorrect. Line 13
does not compile because the two inherited fly() methods,
declared on line 6 and 10, conflict with each other. The compiler
recognizes that it is impossible to create a class that overrides
fly() to return both String and int, since they are not covariant
return types, and therefore blocks the Falcon class from
compiling. For this reason, option G is correct.

11. A, B, F. The final modifier can be used with private and static,
making options A and F correct. Marking a private method final
is redundant but allowed. A private method may also be marked
static, making option B correct. Options C, D, and E are incorrect
because methods marked static, private, or final cannot be
overridden; therefore, they cannot be marked abstract.

12. A, E. Line 11 does not compile because a Tangerine and Gala are
unrelated types, which the compiler can enforce for classes,
making option A correct. Line 12 is valid since Citrus extends
Tangerine and would print true at runtime if the rest of the class
compiled. Likewise, Gala implements Apple, so line 13 would also
print true at runtime if the rest of the code compiled. Line 14 does
compile, even though Apple and Tangerine are unrelated types.
While the compiler can enforce unrelated type rules for classes, it
has limited ability to do so for interfaces, since there may be a
subclass of Tangerine that implements the Apple interface.
Therefore, this line would print false if the rest of the code

compiled. Line 15 does not compile. Since Citrus is marked final,
the compiler knows that there cannot be a subclass of Citrus that
implements Apple, so it can enforce the unrelated type rule. For
this reason, option E is correct.

13. G. The interface and classes are structured correctly, but the body
of the main() method contains a compiler error. The Orca object is
implicitly cast to a Whale reference on line 7. This is permitted
because Orca is a subclass of Whale. By performing the cast, the
whale reference on line 8 does not have access to the dive(int...
depth) method. For this reason, line 8 does not compile. Since this
is the only compilation error, option G is the correct answer. If the
reference type of whale was changed to Orca, then the main()
would compile and print Orca diving deeper 3 at runtime,
making option B the correct answer. Note that line 16 compiles
because the interface variable MAX is inherited as part of the class
structure.

14. A, C, E. A class may extend another class, and an interface may
extend another interface, making option A correct. Option B is
incorrect. An abstract class can contain concrete instance and
static methods. Interfaces can also contain nonabstract methods,
although knowing this is not required for the 1Z0-815 exam.
Option C is correct, as both can contain static constants. Option
D is incorrect. The compiler only inserts implicit modifiers for
interfaces. For abstract classes, the abstract keyword must be
used on any method that does not define a body. An abstract class
must be declared with the abstract keyword, while the abstract
keyword is optional for interfaces. Since both can be declared with
the abstract keyword, option E is correct. Finally, interfaces do
not extend java.lang.Object. If they did, then Java would support
true multiple inheritance, with multiple possible parent
constructors being called as part of initialization. Therefore,
option F is incorrect.

15. D. The code compiles without issue. The question is making sure
you know that superclass constructors are called in the same
manner in abstract classes as they are in nonabstract classes. Line
9 calls the constructor on line 6. The compiler automatically

inserts super() as the first line of the constructor defined on line
6. The program then calls the constructor on line 3 and prints
Wow-. Control then returns to line 6, and Oh- is printed. Finally, the
method call on line 10 uses the version of fly() in the Pelican
class, since it is marked private and the reference type of var is
resolved as Pelican. The final output is Wow-Oh-Pelican, making
option D the correct answer. Remember that private methods
cannot be overridden. If the reference type of chirp was Bird, then
the code would not compile as it would not be accessible outside
the class.

16. E. The inherited interface method getNumOfGills(int) is implicitly
public; therefore, it must be declared public in any concrete class
that implements the interface. Since the method uses the default
(package-private) modifier in the ClownFish class, line 6 does not
compile, making option E the correct answer. If the method
declaration was corrected to include public on line 6, then the
program would compile and print 15 at runtime, and option B
would be the correct answer.

17. A, E. An inner class can be marked abstract or final, just like a
regular class, making option A correct. A top-level type, such as a
class, interface, or enum, can only be marked public or default
(package-private), making option B incorrect. Option C is
incorrect, as a member inner class can be marked public, and this
would not make it a top-level class. A .java file may contain
multiple top-level classes, making option D incorrect. The precise
rule is that there is at most one public top-level type, and that
type is used in the filename. Finally, option E is correct. When a
member inner class is marked private, it behaves like any other
private members and can be referenced only in the class in which
it is defined.

18. A, B, D. The Run interface correctly overrides the inherited method
move() from the Walk interface using a covariant return type.
Options A and B are both correct. Notice that the Leopard class
does not implement or inherit either interface, so the return type
of move() can be any valid reference type that is compatible with
the body returning null. Because the Panther class inherits both

interfaces, it must override a version of move() that is covariant
with both interfaces. Option C is incorrect, as List is not a subtype
of ArrayList, and using it here conflicts with the Run interface
declaration. Option D is correct, as ArrayList is compatible with
both List and ArrayList return types. Since the code is capable of
compiling, options E and F are incorrect.

19. A, E, F. A class cannot extend any interface, as a class can only
extend other classes and interfaces can only extend other
interfaces, making option A correct. Java enables only limited
multiple inheritance with interfaces, making option B incorrect.
True multiple inheritance would be if a class could extend
multiple classes directly. Option C is incorrect, as interfaces are
implicitly marked abstract. Option D is also incorrect, as
interfaces do not contain constructors and do not participate in
object initialization. Option E is correct, an interface can extend
multiple interfaces. Option F is also correct, as abstract types
cannot be instantiated.

20. A, D. The implementation of Elephant and its member inner class
SleepsAlot are valid, making options A and D correct. Option B is
incorrect, as Eagle must be marked abstract to contain an
abstract method. Option C is also incorrect. Since the travel()
method does not declare a body, it must be marked abstract in an
abstract class. Finally, option E is incorrect, as interface methods
are implicitly public. Marking them protected results in a
compiler error.

Chapter 10: Exceptions
1. A, C, D, F. Runtime exceptions are unchecked, making option A

correct and option B incorrect. Both runtime and checked
exceptions can be declared, although only checked exceptions
must be handled or declared, making options C and D correct.
Legally, you can handle java.lang.Error subclasses, which are not
subclasses of Exception, but it’s not a good idea, so option E is
incorrect. Finally, it is true that all exceptions are subclasses of
Throwable, making option F correct.

2. B, D, E. In a method declaration, the keyword throws is used,
making option B correct and option A incorrect. To actually throw
an exception, the keyword throw is used. The new keyword must be
used if the exception is being created. The new keyword is not used
when throwing an existing exception. For these reasons, options
D and E are correct, while options C and F are incorrect. Since the
code compiles with options B, D, and E, option G is incorrect.

3. G. When using a multi-catch block, only one variable can be
declared. For this reason, line 9 does not compile and option G
correct.

4. B, D. A regular try statement is required to have a catch clause
and/or finally clause. If a regular try statement does not have
any catch clauses, then it must have a finally block, making
option B correct and option A incorrect. Alternatively, a try-with-
resources block is not required to have a catch or finally block,
making option D correct and option E incorrect. Option C is
incorrect, as there is no requirement a program must terminate.
Option F is also incorrect. A try-with-resources statement
automatically closes all declared resources. While additional
resources can be created or declared in a try-with-resources
statement, none are required to be closed by a finally block.
Option G is also incorrect. The implicit or hidden finally block
created by the JVM when a try-with-resources statement is
declared is executed first, followed by any programmer-defined
finally block.

5. C. Line 5 tries to cast an Integer to a String. Since String does not
extend Integer, this is not allowed, and a ClassCastException is
thrown, making option C correct. If line 5 were removed, then the
code would instead produce a NullPointerException on line 7.
Since the program stops after line 5, though, line 7 is never
reached.

6. E. The code does not compile, so options A, B, and F are incorrect.
The first compiler error is on line 12. Each resource in a try-with-
resources statement must have its own data type and be separated
by a semicolon (;). The fact that one of the references is declared
null does not prevent compilation. Line 15 does not compile
because the variable s is already declared in the method. Line 17
also does not compile. The FileNotFoundException, which inherits
from IOException and Exception, is a checked exception, so it
must be handled in a try/catch block or declared by the method.
Because these three lines of code do not compile, option E is the
correct answer. Line 14 does compile; since it is an unchecked
exception, it does not need to be caught, although in this case it is
caught by the catch block on line 15.

7. C. The compiler tests the operation for a valid type but not a valid
result, so the code will still compile and run. At runtime,
evaluation of the parameter takes place before passing it to the
print() method, so an ArithmeticException object is raised, and
option C is correct.

8. G. The main() method invokes go(), and A is printed on line 3. The
stop() method is invoked, and E is printed on line 14. Line 16
throws a NullPointerException, so stop() immediately ends, and
line 17 doesn’t execute. The exception isn’t caught in go(), so the
go() method ends as well, but not before its finally block
executes and C is printed on line 9. Because main() doesn’t catch
the exception, the stack trace displays, and no further output
occurs. For these reasons, AEC is printed followed by a stack trace
for a NullPointerException, making option G correct.

9. E. The order of catch blocks is important because they’re checked
in the order they appear after the try block. Because

ArithmeticException is a child class of RuntimeException, the catch
block on line 7 is unreachable (if an ArithmeticException is
thrown in the try block, it will be caught on line 5). Line 7
generates a compiler error because it is unreachable code, making
option E correct.

10. B. The main() method invokes start on a new Laptop object. Line
4 prints Starting up_, and then line 5 throws an Exception. Line 6
catches the exception. Line 7 then prints Problem_, and line 8 calls
System.exit(0), which terminates the JVM. The finally block
does not execute because the JVM is no longer running. For these
reasons, option B is correct.

11. D. The runAway() method is invoked within main() on a new Dog
object. Line 4 prints 1. The try block executes, and 2 is printed.
Line 7 throws a NumberFormatException, so line 8 doesn’t execute.
The exception is caught on line 9, and line 10 prints 4. Because the
exception is handled, execution resumes normally. The runAway()
method runs to completion, and line 17 executes, printing 5.
That’s the end of the program, so the output is 1245, and option D
is correct.

12. A. The knockStuffOver() method is invoked on a new Cat object.
Line 4 prints 1. The try block is entered, and line 6 prints 2. Line 7
throws a NumberFormatException. It isn’t caught, so
knockStuffOver() ends. The main() method doesn’t catch the
exception either, so the program terminates, and the stack trace
for the NumberFormatException is printed. For these reasons,
option A is correct.

13. A, B, C, D, F. Any Java type, including Exception and
RuntimeException, can be declared as the return type. However,
this will simply return the object rather than throw an exception.
For this reason, options A and B are correct. Classes listed in the
throws part of a method declaration must extend
java.lang.Throwable. This includes Error, Exception, and
RuntimeException, making options C, D, and F correct. Arbitrary
classes such as String can’t be declared in a throws clause, making
option E incorrect.

14. A, C, D, E. A method that declares an exception isn’t required to
throw one, making option A correct. Unchecked exceptions can be
thrown in any method, making options C and E correct. Option D
matches the exception type declared, so it’s also correct. Option B
is incorrect because a broader exception is not allowed.

15. G. The class does not compile because String does not implement
AutoCloseable, making option G the only correct answer.

16. A, B, D, E, F. Any class that extends RuntimeException or Error,
including the classes themselves, is an unchecked exception,
making options D and F correct. The classes
ArrayIndexOutOfBoundsException, IllegalArgumentException, and
NumberFormatException all extend RuntimeException, making them
unchecked exceptions and options A, B, and E correct. (Sorry, you
have to memorize them.) Classes that extend Exception but not
RuntimeException are checked exceptions, making options C and G
incorrect.

17. B, F. The try block is not capable of throwing an IOException. For
this reason, declaring it in the catch block is considered
unreachable code, making option A incorrect. Options B and F are
correct, as both are unchecked exceptions that do not extend or
inherit from IllegalArgumentException. Remember, it is not a
good idea to catch Error in practice, although because it is
possible, it may come up on the exam. Option C is incorrect, but
not because of the data type. The variable c is declared already in
the method declaration, so it cannot be used again as a local
variable in the catch block. If the variable name was changed,
option C would be correct. Option D is incorrect because the
IllegalArgumentException inherits from RuntimeException,
making the first declaration unnecessary. Similarly, option E is
incorrect because NumberFormatException inherits from
IllegalArgumentException, making the second declaration
unnecessary. Since options B and F are correct, option G is
incorrect.

18. B. An IllegalArgumentException is used when an unexpected
parameter is passed into a method. Option A is incorrect because

returning null or -1 is a common return value for searching for
data. Option D is incorrect because a for loop is typically used for
this scenario. Option E is incorrect because you should find out
how to code the method and not leave it for the unsuspecting
programmer who calls your method. Option C is incorrect because
you should run!

19. A, D, E, F. An overridden method is allowed to throw no
exceptions at all, making option A correct. It is also allowed to
throw new unchecked exceptions, making options E and F correct.
Option D is also correct since it matches the signature in the
interface. Option B is incorrect because it has the wrong return
type for the method signature. Option C is incorrect because an
overridden method cannot throw new or broader checked
exceptions.

20. B, C, E. Checked exceptions are required to be handled or
declared, making option B correct. Unchecked exceptions include
both runtime exceptions and errors, both of which may be
handled or declared but are not required to be making options C
and E correct. Note that handling or declaring Error is a bad
practice.

21. G. The code does not compile, regardless of what is inserted into
the blanks. You cannot add a statement after a line that throws an
exception. For this reason, line 8 is unreachable after the
exception is thrown on line 7, making option G correct.

22. D, F. A var is not allowed in a catch block since it doesn’t indicate
the exception being caught, making option A incorrect. With
multiple catch blocks, the exceptions must be ordered from more
specific to broader, or be in an unrelated inheritance tree. For
these reasons, options D and F are correct, respectively.
Alternatively, if a broad exception is listed before a specific
exception or the same exception is listed twice, it becomes
unreachable. For these reasons, options B and E are incorrect,
respectively. Finally, option C is incorrect because the method
called inside the try block doesn’t declare an IOException to be
thrown. The compiler realizes that IOException would be an

unreachable catch block.

23. A, E. The code begins normally and prints a on line 13, followed
by b on line 15. On line 16, it throws an exception that’s caught on
line 17. Remember, only the most specific matching catch is run.
Line 18 prints c, and then line 19 throws another exception.
Regardless, the finally block runs, printing e. Since the finally
block also throws an exception, that’s the one printed.

24. C. The code compiles and runs without issue, so options E and F
are incorrect. Since Sidekick correctly implements AutoCloseable,
it can be used in a try-with-resources statement. The first value
printed is O on line 9. For this question, you need to remember
that a try-with-resources statement executes the resource’s
close() method before a programmer-defined finally block. For
this reason, L is printed on line 5. Next, the finally block is
expected, and K is printed. The requiresAssistance() method
ends, and the main() method prints I on line 16. The combined
output is OLKI, making option C the correct answer.

25. D. The code compiles without issue since ClassCastException is a
subclass of RuntimeException and it is properly listed first, so
option E is incorrect. Line 14 executes dividing 1 by itself,
resulting in a value of 1. Since no exception is thrown, options B
and C are incorrect. The value returned is on track to be 1, but the
finally block interrupts the flow, causing the method to return 30
instead and making option D correct. Remember, barring use of
System.exit(), a finally block is always executed if the try
statement is entered, even if no exception is thrown or a return
statement is used.

Chapter 11: Modules
1. B. Option B is correct since modules allow you to specify which

packages can be called by external code. Options C and E are
incorrect because they are provided by Java without the module
system. Option A is incorrect because there is not a central
repository of modules. Option D is incorrect because Java defines
types.

2. D. Modules are required to have a module-info.java file at the
root directory of the module. Option D matches this requirement.

3. B. Options A, C, and E are incorrect because they refer to
keywords that don’t exist. The exports keyword is used when
allowing a package to be called by code outside of the module,
making option B the correct answer. Notice that options D and F
are incorrect because requires uses module names and not
package names.

4. G. The -m or --module option is used to specify the module and
class name. The -p or -module-path option is used to specify the
location of the modules. Option D would be correct if the rest of
the command were correct. However, running a program requires
specifying the package name with periods (.) instead of slashes.
Since the command is incorrect, option G is correct.

5. A, F, G. Options C and D are incorrect because there is no use
keyword. Options A and F are correct because opens is for
reflection and uses declares an API that consumes a service.
Option G is also correct as the file can be completely empty. This
is just something you have to memorize.

6. B, C. Packages inside a module are not exported by default,
making option B correct and option A incorrect. Exporting is
necessary for other code to use the packages; it is not necessary to
call the main() method at the command line, making option C
correct and option D incorrect. The module-info.java file has the
correct name and compiles, making options E and F incorrect.

7. D, G. Options A, B, E, and F are incorrect because they refer to
keywords that don’t exist. The requires transitive keyword is
used when specifying a module to be used by the requesting
module and any other modules that use the requesting module.
Therefore, dog needs to specify the transitive relationship, and
option G is correct. The module puppy just needs to require dog,
and it gets the transitive dependencies, making option D correct.

8. A, B, D. Options A and B are correct because the -p (--module-
path) option can be passed when compiling or running a program.
Option D is also correct because jdeps can use the --module-path
option when listing dependency information.

9. A, B. The -p specifies the module path. This is just a directory, so
all of the options have a legal module path. The -m specifies the
module, which has two parts separated by a slash. Options E and
F are incorrect since there is no slash. The first part is the module
name. It is separated by periods (.) rather than dashes (-),
making option C incorrect. The second part is the package and
class name, again separated by periods. The package and class
names must be legal Java identifiers. Dashes (-) are not allowed,
ruling out option D. This leaves options A and B as the correct
answers.

10. B. A module claims the packages underneath it. Therefore,
options C and D are not good module names. Either would
exclude the other package name. Options A and B both meet the
criteria of being a higher-level package. However, option A would
claim many other packages including com.sybex. This is not a good
choice, making option B the correct answer.

11. B, D, E, F. This is another question you just have to memorize.
The jmod command has five modes you need to be able to list:
create, extract, describe, list, and hash. The hash operation is
not an answer choice. The other four are making options B, D, E,
and F correct.

12. B. The java command uses this option to print information when
the program loads. You might think jar does the same thing since
it runs a program too. Alas, this parameter does not exist on jar.

13. E. There is a trick here. A module definition uses the keyword
module rather than class. Since the code does not compile, option
E is correct. If the code did compile, options A and D would be
correct.

14. A. When running java with the -d option, all the required
modules are listed. Additionally, the java.base module is listed
since it is included automatically. The line ends with mandated,
making option A correct. The java.lang is a trick since that is a
package that is imported by default in a class rather than a
module.

15. B, D. The java command has an --add-exports option that allows
exporting a package at runtime. However, it is not encouraged to
use it, making options B and D the answer.

16. B, C. Option A will run, but it will print details rather than a
summary. Options B and C are both valid options for the jdeps
command. Remember that -summary uses a single dash (-).

17. E. The module name is valid as are the exports statements. Lines
4 and 5 are tricky because each is valid independently. However,
the same module name is not allowed to be used in two requires
statements. The second one fails to compile on line 5, making
option E the answer.

18. A, C. Module names look a lot like package names. Each segment
is separated by a period (.) and uses characters valid in Java
identifiers. Since identifiers are not allowed to begin with
numbers, options E and F are incorrect. Dashes (-) are not
allowed either, ruling out options B and D. That leaves options A
and C as the correct answers.

19. B, C. Option A is incorrect because JAR files have always been
available regardless of the JPMS. Option D is incorrect because
bytecode runs on the JVM and is not operating system specific by
definition. While it is possible to run the tar command, this has
nothing to do with Java, making option E incorrect. Option B is
one of the correct answers as the jmod command creates a JMOD
file. Option C is the other correct answer because specifying

dependencies is one of the benefits of the JPMS.

20. B, E. Option A is incorrect because describe-module has the d
equivalent. Option C is incorrect because module has the m
equivalent. Option D is incorrect because module-path has the p
equivalent. Option F is incorrect because summary has the s
equivalent. Options B and E are the correct answers because they
do not have equivalents.

21. C. The -p option is a shorter form of --module-path. Since the
same option cannot be specified twice, options B, D, and F are
incorrect. The --module-path option is an alternate form of -p. The
module name and class name are separated with a slash, making
option C the answer.

Index

Numbers and Symbols
- (negation) operator, 83

-- (decrement) operator, 83

! (logical complement) operator, 83

{ } (braces), if statements, 117

++ (increment) operator, 83

2D (two-dimensional) arrays, 193

A
abstract classes, 364–366

interface comparison, 379–380

method constructors, 367–368

rules, 372

abstract method, 252

abstract methods, 365

declarations, invalid, 368

modifiers

abstract, 369–370

final, 369

private, 369–370

static, 370

rules, 373

abstract reference types, 384–385

access control, modules and, 454

access modifiers, 9

classes, 301

super reference, 303–305

this reference, 302–303

default (package-private) access, 251, 258, 259–260

private, 251, 258–259

protected, 251, 258, 261–265

public, 251, 258, 265–266

accessor methods, 284

add() method, 197–198

alternate directories, 20–22

anonymous array, 184

answers to review questions

APIs (application programming interface), 505–508

class design, 513–518

advanced, 518–522

decision making, 501–505

encapsulation, 511–513

exceptions, 522–525

functional interfaces, 509–510

Java, 492–494

Java building blocks, 494–498

lambdas, 509–510

methods, 511–513

modules, 526–528

operators, 498–501

APIs (application programming interfaces), 3, 164

answers to review questions, 505–508

lambdas and

forEach() method, 237–238

removeIf() method, 236

sort() method, 237

append() method, 176–177

arithmethic operators, 85–86

division, 87–88

modulus, 87–88

parentheses, 86–87

ArithmeticException, 409, 410

ArrayIndexOutOfBoundsException, 409, 410

ArrayList

converting to array, 203–205

creating, 195–197

methods

add(), 197–198

clear(), 199–200

contains(), 200

equals(), 200–201

isEmpty(), 199

remove(), 198

set(), 198–199

size(), 199

sorting, 206

arrays, 182–183

anonymous, 184

autoboxing, 203

comparisons

compare() method, 190–191

mismatch() method, 191–192

converting to List, 203–205

indexes, 10–11

method overloading, 282

multidimensional

creating, 192–194

using, 194–195

multiple, 184–185

primitives, 183–185

reference variables, 185–186

searches, 189–190

sorting, 188

unboxing, 203

using, 187–188

varargs, 192

wrapper classes, 201–202

assignment operator, 90

casting and, 90–91

application, 92–93

primitive assignments, 91

compound, 93–94

return value, 94–95

autoboxing, 203

method overloading, 279

AutoClosable interface, 428

automatic resource management, 425–428

B
backward compatibility, 5

base 10 numbers, 43

binary operators

arithmetic, 85–86

division, 87–88

modulus, 87–88

parentheses, 86–87

assignment operator, 90

compound, 93–94

return value, 94–95

bitwise operators, 99–100

logical operators, 99–100

numeric promotion, 88–89

short-circuit operators, 100–101

binary search rules, 189–190

bitwise operators, 99–100

blocks, 415

catch

chaining, 416–418

multi-catch blocks, 418–421

code, 115

finally, 421–424

implicit, 426

body, methods, 256

boolean expressions

if statements, 119

lambdas, 229

branching

break statement, 144–146

continue statement, 146–147

labels, 143–144

nested loops, 142–143

return statement, 148

unreachable code, 149

break statement, branching, 144–146

bytecode, 2

C
casting, 90–91

application, 92–93

interfaces, 385

objects, 340–341

primitive assignments, 91

switch statement, 126

catch blocks

chaining, 416–418

multi-catch blocks, 418–421

catch statements, 414–416

chaining, catch blocks, 416–418

charAt() method, 168, 176

CharSequence interface, 164

checked exceptions, 405–406

classes

FileNotFoundException, 412

IOException, 412

versus runtime, 407

child classes, 296

child packages, 14

class variables, 53

ClassCastException, 409, 411

classes, 5, 8

abstract, 364–366

method constructors, 367–368

rules, 372

access modifiers, 301

super reference, 303–305

this reference, 302–303

child classes, 296

concrete, 370–372

constructors, 305–307

default, 306–307

overloading, 306

declaration, 24

element order, 24–25

Error classes

ExceptionInInitializerError, 413

NoClassDefFoundError, 413, 414

StackOverflowError, 413–414

exception classes, RuntimeException, 409–412

extending, 299–301

fields, 5

inheritance, 296

initialization, 316–318

inner classes, 301

member inner classes, 388–390

members, 5

methods, 5

String, 164

subclasses, 296

overriding methods with exceptions, 434–435

top-level, 301

classpath, 21–22

classpath, 459

clauses, 415

clear() method, 199–200

code

compiling, 9

packages and, 19–20

formatting, 26–27

unreachable, 149

code blocks, 115

{ } (braces), 38–39

balanced parenthesis problem, 39

command-line operations

jar options, 483

java options, 482

javac options, 482

jdeps options, 483

modules, 481

comments, 6–8

compact profiles, 455

Comparator functional interface, 232

comparators, 188

compare() method, 190–191

comparisons, arrays, 190–192

compiles, 50

compiling, 9

compiler enhancements, 312–313

generating, 307

JAR files, 22–23

modules, 458–460

packages and, 19–20

wildcards and, 20

concatenation, strings, 165–166

concrete classes, 370–372

constructor parameters, 52

constructors

compiler enhancements, 312–313

creating, 305–306

default, 306–307

final static variables, 314–316

no-argument, 313–314

overloading, 306

calling, 308–310

parent, super(), 310–312

rules, 322

Consumer functional interface, 230–231

contains() method, 172, 200

continue statement, branching, 146–147

control-flow statements, 115

controlling flow, branching

break statement, 144–146

continue statement, 146–147

labels, 143–144

nested loops, 142–143

return statement, 148

unreachable code, 149

covariance, 330

D
data types

literals, 43–44

base 10, 43

decimal number system, 43

underscore character, 44

primitive, 40–43

byte, 41

char, 42

double, 41

float, 41

int, 41

long, 41

short, 41, 42

reference types, 44–45

reserved type names, 57

decimal number system, 43

decision-making statements, control-flow statements, 115

default (package-private) access, 258, 259–260

default package, 18–19

deferred execution, 227

delete() method, 177–178

deleteCharAt() method, 177–178

dependencies, modules, 453

managing, 454–455

transitive dependencies, 472–473

deprecation, 5

directories, alternate, 20–22

do/while loop, 128–129

while comparison, 129–130

E
else statement, 117–119

encapsulation, 4, 283–284

accessor methods, 284

getters, 284–285

mutator methods, 284

setters, 284–285

endsWith() string method, 171

enum, 376–377

equality, 179–180

equality operators, 95–97

equals() method, 171, 179–180, 200–201, 298–299

equalsIgnoreCase() string method, 171

Error classes

ExceptionInInitializerError, 413

NoClassDefFoundError, 413, 414

StackOverflowError, 413–414

errors, 409

exception classes

RuntimeException

ArithmeticException, 409, 410

ArrayIndexOutOfBoundsException, 409, 410

ClassCastException, 409, 411

IllegalArgumentException, 409, 411–412

NullPointerException, 409, 411

NumberFormatException, 410, 412

exception handling

catch blocks

chaining, 416–418

multi-catch blocks, 418–421

catch statements, 414–416

finally block, 421–424

implicit, 426

try statements, 414–416

exceptions, 402–403

categories, 404

checked, 405–406, 409

FileNotFoundException class, 412

IOException class, 412

error, 409

printing, 435–437

versus return codes, 403–404

runtime, 406, 409

throwing, 407–409, 432–437

additional, 430–432

unchecked, 406–407

Error classes, 413

execution, deferred, 227

exports keyword, 463

expressions, boolean, if statements, 119

extending classes, 299–301

extends keyword, 299–301

F
fields, 5

declaration, 24

static keyword, 266–267

files, 8

modular programs, 457–458

single-file source-code programs, 12

final method, 252, 335–336

final static variables, 314–316

finalize() method, 66

finally block, 421–424

implicit, 426

floating-point values, 42–43

flow control, branching

break statement, 144–146

continue statement, 146–147

labels, 143–144

nested loops, 142–143

return statement, 148

unreachable code, 149

for loops, 131–133

for-each loop, switching, 140–141

reverse printing, 133–134

variables, 136–137

for-each loops, 137–139

for loop, switching, 140–141

forEach() method, 237–238

formatting code, 26–27

free store, 62

functional interfaces

Comparator, 232

Consumer, 230–231

Predicate, 230

Supplier, 231

functional programming, 224

G
garbage collection, 62

eligibility, 63

tracing, 64–66

System.gc() command, 64

generics, method overloading, 281

H
handle or declare rule, 405

heap, 62

hidden methods, 333–334, 344–346

hidden variables, 336–337

I
IDE (integrated development environment), 3

identifiers, 46–48

camel case, 48

snake case, 48–49

if statement, 116–117

{ } (braces), 117

boolean expressions, 119

IllegalArgumentException, 409, 411–412

immutability, strings, 166–167

implicit modifiers, interfaces, 374

conflicts, 378–379

inserting, 377–378

import statement, 13–14, 24, 25

wildcards, 16

imports, 13–14

classes with same name, 18

naming conflicts, 16–18

redundant, 15–16

static, 15, 272–274

indexOf() method, 168–169, 176

infinite loops, 130–131

inheritance, 296

interfaces, 380–381

classes, 381

duplicate method declarations, 382–384

keywords, 381

members, calling, 323–324

methods

final, 335–336

generic, overriding, 330–332

hidden, 333–335

overriding, 324–330

private, redeclaring, 332–333

multiple, 297–298

Object class, 298–299

single, 297–298

subtypes, 326

variables, 336–337

initialization

order of, 39–40

classes, 316–318

instances, 318–322

static, 271–272

inner classes, 301

member inner class, 388–389

using, 389–390

insert() method, 177

instance variables, 53

instanceof operator, 341–342, 386

instances, 5

interface keyword, 373–374

interfaces

abstract class comparison, 379–380

abstract methods, rules, 387

AutoClosable, 428

CharSequence, 164

defining, 373–377

rules, 386–387

implicit modifiers, 374

conflicts, 378–379

inserting, 377–378

inheritance, 380–381

classes, 381

duplicate method declarations, 382–384

keywords, 381

nonabstract methods, 373

polymorphism

abstract reference types, 384–385

casting, 385

instanceof operator, 386

variables, rules, 387

intern() string method, 173

isEmpty() method, 199

J
jar, 2

jar command, 478

JAR files

compiling and, 22–23

creating, 23

JAR hell, 452

Java archive (JAR) files. See JAR files

java launcher, 2

javac, 2, 460

javadoc, 2

jdeps, 478–480

JDK (Java Development Kit), 2, 455

downloading, 3–4

jlink, 455

jmod, 480

JNI (Java Native Interface), 455

JPMS (Java Platform Module System), 452, 455

JRE (Java Runtime Environment), 3, 455

JVM (Java Virtual Machine), 2

K
keywords, 5

exports, 463

extends, 299–301

interface, 373–374

interfaces, 381–382

opens, 474

provides, 474

static, 9

throw, 408

uses, 474

var, 53–54

void, 6, 10

L
labels, branching, 143–144

lambdas, 224

boolean, 229

example, 224–227

functional interfaces, 229–230

Comparator, 232

Consumer, 230–231

Predicate, 230

Supplier, 231

methods

forEach(), 237–238

removeIf(), 236

sort(), 237

syntax, 227–229

variables

effectively final, 235

local, 233–234

parameter list, 233

referenced from lambda body, 234–236

legal, 50

length() method, 167–168, 176

List

converting from array, 203–205

varargs, 205

literal data types

base 10, 43

decimal number system, 43

local variable type inference, 53–59

local variables, creating, 51–52

logical operators, 99–100

loops

for, 131–137

for-each, 137–139

infinite, 130–131

nested, 142–143

while, 127

LTS (long-term support), 3–4

M
main() method, 8–10

parameter passing, 10–12

running on one line, 12–13

Maps, 207–208

Math class, methods

max(), 208–209

min(), 208–209

pow(), 209

random(), 210

round(), 209

max() method, 208–209

member inner class, 388–390

members, 5

inherited, calling, 323–324

method overloading, 277–283

arrays, 282

autoboxing, 279

generics, 281

primitives, 281

reference types, 279–280

varargs, 279

methods, 5

abstract, 365, 366–369

invalid declarations, 368

rules, 373

access modifiers, 9, 250

ArrayList

add(), 197–198

clear(), 199–200

contains(), 200

equals(), 200–201

isEmpty(), 199

remove(), 198

set(), 198–199

size(), 199

body, 251, 256

compare(), 190–191

constructors, abstract classes, 367–368

declaration, 6, 24, 250–251

equals(), 179–180, 298–299

exception throwing, 432–437

final, 335–336

finalize(), 66

hidden, 333–334

inherited

generic, overriding, 330–332

overriding methods, 324–330

private, redeclaring, 332–333

lambdas

forEach(), 237–238

removeIf(), 236

sort(), 237

main(), 8–13

Math class

max(), 208–209

min(), 208–209

pow(), 209

random(), 210

round(), 209

method name, 251, 254–255

method signature, 6, 250–251

mismatch(), 191–192

optional exception list, 251, 255–256

optional specifiers, 250, 252–253

overriding

generic, return types, 332

generic parameters, 330–331

versus hiding, 344–346

parent version, calling, 343

polymorphism and, 342–343

parameter list, 251, 255

parameters, 52

passing data, 274–275

print(), 226

recursive, 325

return type, 251, 253–254

setName(), 6

static, 266–267

StringBuilder class

append(), 176–177

charAt(), 176

delete(), 177–178

deleteCharAt(), 177–178

indexOf(), 176

insert(), 177

length(), 176

replace(), 178

reverse(), 178–179

substring(), 176

toString(), 179

strings

chaining, 173–174

charAt(), 168

contains(), 172

endsWith(), 171

equals(), 171

equalsIgnoreCase(), 171

indexOf(), 168–169

intern(), 173

length(), 167–168

replace(), 171–172

startsWith(), 171

stripLeading(), 172–173

stripTrailing(), 172–173

substring(), 169–170

toLowerCase(), 170

toUpperCase(), 170

trim(), 172–173

toString(), 298–299

min() method, 208–209

mismatch() method, 191–192

modular programs, 456–457

compiling module, 458–460

creating modules, 464–470

files, creating, 457–458

javac, 460

module building, 460

module-info file, 457

packaging module, 461–462

running module, 460–461

module-info file, 457

exports, 470–471

keywords

opens, 474

provides, 474

uses, 474

requires statement, 474

requires transitive, 472–473

modules, 452, 453

access control, 454, 471

building, 460

command-line operations, 481

jar options, 483

java options, 482

javac options, 482

jdeps options, 483

creating, 464–470

dependencies, 453

managing, 454–455

transivity, 472–473

describing, 475–476

existing code, 456

jar command, 478

java command, 475

javac, 460

jdeps command, 478–480

jmod command, 480

listing, 477

options, 461

packages, 455–456

performance improvement, 455

resolution, 477–478

transitive dependencies, 472–473

updating, 463

multidimensional arrays, 192–195

multiple inheritance, 297–298

multiple variables, 49–50

multithreading, 5

mutator methods, 284

N
naming, packages, 16–18

native method, 252

nested loops, branching, 142–143

no-argument constructors, 313–314

null, var and, 56

NullPointerException, 101, 409, 411

NumberFormatException, 410, 412

numeric promotion, 88–89

switch statement, 126

O
Object class, inheritance, 298–299

object-oriented language, 4

objects, 5

casting, 340–341

code blocks, 38–39

constructors, calling, 36–37

initialization order, 39–40

instance initializers, 38–39

member fields, reading/writing, 37–38

versus references, 64

polymorphism and, 339–340

open source, 452

opening connections, 424

opens keyword, 474

operand, 80

operator precedence, 81–82

order of operation, 81

operators, 80

binary, 80

arithmetic, 85–88

assignment, 90–95

bitwise operators, 99–100

logical operators, 99–100

numeric promotion, 88–89

short-circuit operators, 100–101

equality, 95–97

instanceof, 341–342, 386

relational, 97

numeric comparison, 97–99

ternary, 80, 102–103

unary, 80, 82–83

- (negation operator), 83

-- (decrement), 83

! (logical complement operator), 83

++ (increment), 83

post-decrement, 83

post-increment, 83

pre-decrement, 83

pre-increment, 83

optional exception list, 255–256

optional specifiers

abstract, 252

final, 252

native, 252

static, 252

strictftp, 252

synchronized, 252

Oracle

licensing model, 3

LTS (long-term support), 3

order of initialization, 39–40

classes, 316–318

instances, 318–322

OSS (open-source software), 452

overflow, 92

overloading constructors, 306

calling overloaded, this(), 308–310

overloading methods, 277–283

overloading versus overriding, 326–327

overriding methods

generic, 330–332

parameters, 330–331

return types, 332

versus hiding, 344–346

parent version, calling, 343

polymorphism and, 342–343

overriding versus implementing, 366

P
package statement, 25

packages

child, 14

compiling code, 19–20

creating, 18–19

declarations, 13–14, 24

default, 18–19

modules and, 455–456, 461–462

names, 14

conflicts, 16–18

same, 18

running code, 19–20

single-file source-code programs, 24

parameters, 6

list, 255

method parameters, 52

passing, 10–12

varargs, 256–257

parent constructors, super() and, 310–312

pass-by-reference, versus pass-by-value, 276

pass-by-value, 274–277

versus pass-by-reference, 276

performance, modules and, 455

PIC (package, import, class), 25

platform independence, 4

pointers, 44

polymorphism, 337–338

instanceof operator, 341–342

interfaces

abstract reference types, 384–385

casting, 385

instanceof operator, 386

objects

casting, 340–341

versus references, 339–340

overriding methods, 342–343

calling parent version, 343

versus hiding, 344–346

pow() method, 209

Predicate functional interface, 230

primitive types

arrays, 183–185

autoboxing, 203

byte, 41

char, 42

double, 41

float, 41

int, 41

long, 41

versus reference types, 45–46

short, 41, 42

unboxing, 203

primitives

casting, 340

method overloading, 281

print() method, 226

printing, exceptions, 435–437

private access modifier, 258–259

programming, functional programming, 224

programs, running, one line, 12–13

protected access modifier, 258, 261–265

provides keyword, 474

public access modifier, 258, 265–266

R
random() method, 210

read/write data, 424

recursive methods, 325

redundant imports, 15–16

reference types, 44–45

method overloading, 279–280

reference variables, arrays, 185–186

references, 5

versus objects, 64

polymorphism, 339–340

this, 302–303

relational operators, 97

instanceof, 98–99

numeric comparisons, 97–98

remove() method, 198

removeIf() method, 236

replace() method, 171–172, 178

reserved type names, 57

reserved words, 47

resources

automatic resource management, 425–428

closing, 424–426

declaring, 428–429

leaks, 424

read/write data, 424

try-with-resources statement, 425–428

order of operation, 429–430

scope, 429

return codes versus exceptions, 403–404

return statement, branching, 148

return types, 10

method design, 253–254

reverse() method, 178–179

robustness, 4

round() method, 209

running code, packages, 19–20

runtime exceptions, 406

checked versus unchecked, 407

RuntimeException classes

ArithmeticException, 409, 410

ArrayIndexOutOfBoundsException, 409, 410

ClassCastException, 409, 411

IllegalArgumentException, 409, 411–412

NullPointerException, 409, 411

NumberFormatException, 410, 412

S
SAM (Single Abstract Method), 229

scientific notation, floating-point numbers, 42–43

scope

classes, 61–62

limiting, 59

nesting, 60

tracing, 60–61

searches

arrays, 189–190

binary search rules, 189–190

security, 4

set() method, 198–199

setName() method, 6

Sets, 206–207

short-circuit operators, 100–101

simplicity, 4

single inheritance, 297–298

single-file source-code programs, 12

packages and, 24

size() method, 199

sort() method, 237

sorting

ArrayList, 206

arrays and, 188

source code, single-file source-code programs, 12

packages and, 24

startsWith() string method, 171

statements

blocks, 415

break, 144–146

clauses, 415

continue, 146–147

decision-making, control-flow statements, 115

else, 117–119

if, 116–117

import, 13–14, 25

package, 25

return, 148

switch, 120

case values, 124–127

control flow, 123–124

data types, 121–123

syntax, 121

try-with-resources, 425–428

static import, 15, 272–274

static keyword, 9

fields, 266–267

initialization, 271–272

instances, 268–270

methods, 266–267, 267–268

variables, 267–268, 270–271

static method, 252

strictftp method, 252

String, 41, 164

string pool, 179–180, 181

equals() method, 179–180

intern pool, 181

StringBuilder class, 174–175

chaining, 175–176

creating, 176

methods

append(), 176–177

charAt(), 176

delete(), 177–178

deleteCharAt(), 177–178

indexOf(), 176

insert(), 177

length(), 176

replace(), 178

reverse(), 178–179

substring(), 176

toString(), 179

mutability, 175–176

strings, 164

case, 170

characters

location, 168

number of, 167–168

substrings, 169–170

concatenation, 165–166

immutability, 166–167

index, 168–169

matches, 172

methods

chaining, 173–174

charAt(), 168

contains(), 172

endsWith(), 171

equals(), 171

equalsIgnoreCase(), 171

indexOf(), 168–169

intern(), 173

length(), 167–168

replace(), 171–172

startsWith(), 171

stripLeading(), 172–173

stripTrailing(), 172–173

substring(), 169–170

toLowerCase(), 170

toUpperCase(), 170

trim(), 172–173

whitespace, 172–173

stripLeading() string method, 172–173

stripTrailing() string method, 172–173

subclasses, overriding methods with exceptions, 434–435

substring() method, 169–170, 176

subtypes, 326

super reference, 303–305, 310–314

Supplier functional interface, 231

switch statement, 120

case values, 124–127

control flow, 123–124

data types, 121–123

primitive numeric, 121–122

syntax, 121

synchronized method, 252

syntax

lambdas, 227–229

switch statement, 121

System.exit() method, 424

System.gc() command, 64

T
ternary operators, 102–103

this reference, 302–303

overloaded constructors, 308–310

throw keyword, 408

throwing exceptions, 407–409, 430–432

toLowerCase() string method, 170

top-level classes, 301

toString() method, 179, 298–299

toUpperCase() string method, 170

transitive dependencies

modules, 472–473

opens keyword, 474

provides keyword, 474

requires statement, 474

requires transitive, 472–473

uses keyword, 474

trim() string method, 172–173

try statements, 414–416

configurations, 427–428

try-with-resources statement, 425–428

order of operation, 429–430

scope, 429

type inference, 54–55

reserved type names, 57

U
unary operators, 82–83

- (negation operator), 83

-- (decrement), 83

! (logical complement operator), 83

++ (increment), 83

post-decrement, 83

post-increment, 83

pre-decrement, 83

pre-increment, 83

unboxing, 203

unchecked exceptions, 406–407

Error classes, 413

versus runtime, 407

underflow, 92

unperformed side effects, 101

unreachable code, branching, 149

uses keyword, 474

V
valid, 50

values, passing by, 274–277

var keyword, 53–54, 54–59

varargs, 192

List creation, 205

method overloading, 279

parameters, 256–257

variables

class, 53

defining, 6

final static, 314–316

hidden, 336–337

identifiers, 46–48

camel case, 48

snake case, 48–49

inheritance, 336–337

initializing, 46, 50–58

instance, 53

lambdas

effectively final, 235

local, 233–234

parameter list, 233

referenced from lambda body, 234–236

local, creating, 51–52

local variable type inference, 53–59

for loops, 136–137

multiple, 49–50

reference, arrays, 185–186

scope

classes, 61–62

limiting, 59

nesting, 60

tracing, 60–61

static, 267–268, 270–271

types, 49–50

void keyword, 6, 10

W–Z
while loops, 127–128

do/while comparison, 129–130

whitespace, strings, 172–173

wildcards

compiling and, 20

imports, 16

wrapper classes, 201–202

converting from string, 202

Online Test Bank

Register to gain one year of FREE access to the online interactive test
bank to help you study for your OCP Java SE 11 Programmer I

certification—included with your purchase of this book! All of the
chapter review questions and the practice tests in this book are

included in the online test bank so you can practice in a timed and
graded setting.

Register and Access the Online Test Bank
To register your book and get access to the online test bank, follow
these steps:

1. Go to bit.ly/SybexTest (this address is case sensitive)!

2. Select your book from the list.

3. Complete the required registration information, including
answering the security verification to prove book ownership. You
will be emailed a pin code.

4. Follow the directions in the email or go to
www.wiley.com/go/sybextestprep.

5. Find your book on that page and click the “Register or Login” link
with it. Then enter the pin code you received and click the
“Activate PIN” button.

6. On the Create an Account or Login page, enter your username and
password, and click Login or, if you don’t have an account already,
create a new account.

7. At this point, you should be in the test bank site with your new
test bank listed at the top of the page. If you do not see it there,
please refresh the page or log out and log back in.

http://www.wiley.com/go/sybextestprep

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Acknowledgments
	About the Authors
	Introduction
	Taking the Assessment Test
	Answers to Assessment Test
	Chapter 1 Welcome to Java
	Learning About the Java Environment
	Identifying Benefits of Java
	Understanding the Java Class Structure
	Writing a main() Method
	Understanding Package Declarations and Imports
	Ordering Elements in a Class
	Code Formatting on the Exam
	Summary
	Exam Essentials
	Review Questions

	Chapter 2 Java Building Blocks
	Creating Objects
	Understanding Data Types
	Declaring Variables
	Initializing Variables
	Managing Variable Scope
	Destroying Objects
	Summary
	Exam Essentials
	Review Questions

	Chapter 3 Operators
	Understanding Java Operators
	Applying Unary Operators
	Working with Binary Arithmetic Operators
	Assigning Values
	Comparing Values
	Making Decisions with the Ternary Operator
	Summary
	Exam Essentials
	Review Questions

	Chapter 4 Making Decisions
	Creating Decision-Making Statements
	Writing while Loops
	Constructing for Loops
	Controlling Flow with Branching
	Summary
	Exam Essentials
	Review Questions

	Chapter 5 Core Java APIs
	Creating and Manipulating Strings
	Using the StringBuilder Class
	Understanding Equality
	Understanding Java Arrays
	Understanding an ArrayList
	Creating Sets and Maps
	Calculating with Math APIs
	Summary
	Exam Essentials
	Review Questions

	Chapter 6 Lambdas and Functional Interfaces
	Writing Simple Lambdas
	Introducing Functional Interfaces
	Working with Variables in Lambdas
	Calling APIs with Lambdas
	Summary
	Exam Essentials
	Review Questions

	Chapter 7 Methods and Encapsulation
	Designing Methods
	Working with Varargs
	Applying Access Modifiers
	Applying the static Keyword
	Passing Data among Methods
	Overloading Methods
	Encapsulating Data
	Summary
	Exam Essentials
	Review Questions

	Chapter 8 Class Design
	Understanding Inheritance
	Creating Classes
	Declaring Constructors
	Inheriting Members
	Understanding Polymorphism
	Summary
	Exam Essentials
	Review Questions

	Chapter 9 Advanced Class Design
	Creating Abstract Classes
	Implementing Interfaces
	Introducing Inner Classes
	Summary
	Exam Essentials
	Review Questions

	Chapter 10 Exceptions
	Understanding Exceptions
	Recognizing Exception Classes
	Handling Exceptions
	Calling Methods That Throw Exceptions
	Summary
	Exam Essentials
	Review Questions

	Chapter 11 Modules
	Introducing Modules
	Creating and Running a Modular Program
	Updating Our Example for Multiple Modules
	Diving into the module-info File
	Discovering Modules
	Reviewing Command-Line Options
	Summary
	Exam Essentials
	Review Questions

	Appendix Answers to Review Questions
	Chapter 1: Welcome to Java
	Chapter 2: Java Building Blocks
	Chapter 3: Operators
	Chapter 4: Making Decisions
	Chapter 5: Core Java APIs
	Chapter 6: Lambdas and Functional Interfaces
	Chapter 7: Methods and Encapsulation
	Chapter 8: Class Design
	Chapter 9: Advanced Class Design
	Chapter 10: Exceptions
	Chapter 11: Modules

	Index
	Advert
	End User License Agreement

