

Mastering ASP.NET Web API

Mithun Pattankar
Malendra Hurbuns

BIRMINGHAM - MUMBAI

Mastering ASP.NET Web API
Copyright © 2017 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be caused
directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2017

Production reference: 1110817

ISBN 978-1-78646-395-1

Credits

Authors

Mithun Pattankar
Malendra Hurbuns

Copy Editors

Zainab Bootwala
Safis Editing

Reviewer

Vidya Vrat Agarwal

Project Coordinator

Prajakta Naik

Commissioning Editor

Edward Gordon

Proofreader

Safis Editing

Acquisition Editor

Nitin Dasan

Indexer

Aishwarya Gangawane

Content Development Editor

Siddhi Chavan

Production Coordinator

Nilesh Mohite

Technical Editor

Dhiraj Chandanshive

About the Authors
Mithun Pattankar, who hails from Kalaburgi and lives in Bangalore, India, works with the
leading MNC as a consultant. He has been developing .NET-based applications for over 12
years now. He has an industry-wide experience in building Desktop Apps (WPF), Web
Apps (ASP.NET and client-side frameworks), and Hybrid Mobile apps (Ionic). He is
involved in all aspects of application development, and mentors his junior team members.
He has been actively working on building ASP.NET Web APIs for different frontends and
conducts technical training as well.

Mithun believes in eating sattvic food for healthy living and loves spending time doing
socio-spiritual activities. He occasionally blogs on mithunvp.com and can be reached on
Twitter at .

I would like to thank the team at Packt for giving me a wonderful opportunity to write this
book. It was truly a great learning experience. Also, thanks to the technical reviewer for
providing valuable feedback.

Immense respect and love to my parents for their unconditional love, incredible support,
and prayers. Thanks to my sisters with whom I enjoyed growing up.

For her unconditional love, looking after me during late nights while writing this book, and
supporting me through thick and thin, I would like to thank my wife from the bottom of my
heart.

Lots of love to my cute, adorable son; you're such a blessing for us. Thanks to my best
friends for being there every time.

Finally, and most importantly, I would like to dedicate this book to my guru, HDH
Pramukh Swami Maharaj, who lived "In the joy of others, lies our own;" only by his
blessings and grace, I could accomplish everything in my life.

Malendra Hurbuns is from South Africa, and lives in New Zealand, working for an
Australian Company as a senior software developer. He has been developing in .NET for
over 15 years. He mentors other developers and is involved in all aspects of development.
He loves writing simple code that has a high quality. He is one of the pioneers in web API
in his role, and he has implemented many live systems using ASP.NET Web APIs. TDD is
also a topic close to his heart. He has worked in the accounting, banking, and simulation
industries, which has provided him with a wealth of experience. He is a keen cyclist and
swimmer.

Thank you to my mum and dad who have always supported me in my career, and their
endurance while I was writing this book, which means a lot to me. Thank you to the team
at Packt for guiding me along my first book.

About the Reviewer
Vidya Vrat Agarwal is a .NET passionate, Microsoft MVP, C# Corner MVP, TOGAF
Certified Architect, Certified Scrum Master (CSM), author, speaker, Certified MCT, MCPD,
MCTS, MCSD.NET, MCAD.NET, and MCSD. He is currently working as a .NET Enterprise
architect/consultant in USA. He is passionate about the .NET technology and loves to
contribute to the .NET community. He blogs at and can be
followed on Twitter at . He lives with his wife, Rupali, and two daughters
Pearly and Arshika, in Redmond WA.

www.PacktPub.com
For support files and downloads related to your book, please visit .

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at for more details.

At , you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and
eBooks.

Get the most in-demand software skills with Mapt. Mapt gives you full access to all Packt
books and video courses, as well as industry-leading tools to help you plan your personal
development and advance your career.

Why subscribe?
Fully searchable across every book published by Packt
Copy and paste, print, and bookmark content
On demand and accessible via a web browser

Customer Feedback
Thanks for purchasing this Packt book. At Packt, quality is at the heart of our editorial
process. To help us improve, please leave us an honest review on this book's Amazon page
at .

If you'd like to join our team of regular reviewers, you can e-mail us at
. We award our regular reviewers with free eBooks and

videos in exchange for their valuable feedback. Help us be relentless in improving our
products!

Table of Contents
Preface 1

Chapter 1: Introduction to Microservices and Service-Oriented
Architecture 7

Services in SOA 8
Service implementation 9

Monolithic architecture 9
Overheads of Monolithic architecture 10

Introducing Microservices 11
Lightweight yet scalable 12
Technology agnostic 12
Independently changeable 12

Benefits of Microservices 14
Summary 15

Chapter 2: Understanding HTTP and REST 16

Software architecture 17
REST principles 18

Client - server 18
Stateless 19
Cache 19
The uniform interface 19
Layered system 20
Code-on-demand 20

REST architectural elements 20
Data elements 21
Resources and resource identifiers 21
Representations 22
Connectors 22
Components 23

HTTP 23
HTTP/1.1 status codes 23
An API example 24
HTTP POST example 24
HTTP GET example 26

[ii]

HTTP PUT example 27
HTTP DELETE example 28

Version 2 of HTTP 28
Single connection 30
Server push 30
Multiplexing and streams 30
Stream prioritization 30

Binary messages 31
Header compression 31
Media types 31

Richardson maturity model 32
Level 0 32
Level 1 32
Level 2 32
Level 3 33

Summary 34

Chapter 3: Anatomy of ASP.NET Core Web API 35

A quick recap of the MVC framework 35
Inception of Web APIs and their evolution 36

Introducing web API 38
ASP.NET into Open Source world 39

Introduction to .NET Core 40
Install .NET Core SDK 42

Creating and running a basic .NET Core application 43
Introducing ASP.NET Core 45

An overview of ASP.NET Core 46
Creating ASP.NET Core Project using Visual Studio IDE 47

Choosing the application type 49
Selecting authentication type 50

Creating ASP.NET Core web applications on Linux/macOS 51
Creating ASP.NET Core web apps with Yeoman 51

Creating ASP.NET Core Web API using Yeoman 52
ASP.NET Core Web API Application structure 53

Program.cs 54
Startup.cs 56
The Configure method 56
The ConfigureServices method 58
*.csproj 58

ASP.NET Core request processing 60
Unified MVC and Web API in ASP.NET Core 61

[iii]

Running the ASP.NET Core Web API project 63
Running the application in Visual Studio IDE 64
Running ASP.NET Core Web API on Linux/macOS 65

Further reading 66
Summary 66

Chapter 4: Controllers, Actions, and Models 67

Introduction to controllers 68
Actions 68

Post 68
Get 69
Put 69
Patch 69
Delete 70

Controllers 70
Models 72

Business 74
Dependency Injection 76

GET by ID 77
Mapping 80

Post 82
Put 84
Delete 86
GetAll 87

Summary 87

Chapter 5: Implementing Routing 89

Introducing Routing 90
Routing middleware 90
The RouteBuilder class 92
MapRoute 93

ASP.NET Core Web API and Routing 94
Convention-based Routing 95
Template-based Routing 96
Attribute-based Routing 98

Attribute routes for RESTful applications 100
Multiple Routes 103
Routing constraints 103

Types of route constraints 107
Writing custom route constraints 109

Link generation 111
Routing best practices 113

[iv]

Summary 114

Chapter 6: Middleware and Filters 115

Introducing middleware 116
HTTP request pipeline and middleware 117

Middleware in action 118
Use() 119
Run() 121
Map() 121
MapWhen() 123

Order of middleware 124
Built-in middleware 126

Using StaticFiles middleware 127
Writing custom middleware 128
Migrating HTTP modules to middleware 131
Introducing filters 133

Filter pipeline 134
Filter scoping 135
Action filters 135
Authorization filter 137
Exception filter 138

Summary 141

Chapter 7: Perform Unit and Integration Testing 142

Uncle Bob's three rules of test-driven development 143
Red-Green-Refactor 143

Running the API test 150
The Post Created test 152
Setting the base URI 152
The Post Conflict test 152
The Put tests 153
The Delete tests 154

The xUnit tests 154
The Models tests 155

The validator class 157
API Test 158

Summary 161

Chapter 8: Web API Security 162

Understanding Threat Model and OWASP 162
Threat Model 163
OWASP 164

Applying SSL 165

[v]

CORS 166
Data Protection API 168
Protecting web API 172
Implementing JWT 173

Generating JWTs 174
Validating JWT 177
OAuth 179

Claims-based Authorizations 179
Authorization using the claims policy 180

Identity management in web API 183
Adding the Identity package 184
Configuring the Startup class 184
Creating identity-related database 185
Cookie-based authentication 185
Two-factor authentication 187

Summary 190

Chapter 9: Integration with Database 191

Brief introduction to Object Relational Mapper 191
Integrating ASP.NET Core Web API and an existing database using
Entity Framework 6.x 192

Restoring the AdventureWorks2014 database 193
EF6 data access library 193
Creating an ASP.NET Core app for the full .NET Framework 195

Using IProductRepository to access the database 195
Connection strings and IProductRepository in startup 197
Using AutoMapper 197
Writing ProductController to access the database 199

Integrating using Dapper 201
Creating AdvWrksDapper Web API and adding Dapper library 202

Using IDepartmentRepository and department model to access the database 202
Connection string and IOptions in ASP.NET Core 204
Adding the DeparmentController Web API 205

Integrating with EF Core 208
Creating PacktContactsCore ASP.NET Core project 209
Adding the EF Core package and tooling 209
Contacts model class and DbContext 209
Configuring services to use the SQL Server database 210
EF tools for database migrations and updates 211
ContactsController for CRUD operations 212

Summary 215

[vi]

Chapter 10: Error Handling, Tracing, and Logging 216

Basics of Logging in ASP.NET Core 217
Logging level 217
Logging in action 218
Logging category 219
ILoggerFactory in dependency injection 220

MyWallet - Demo ASP.NET Core project 221
Logging errors to a file using NLog 223
Logging errors to a database using Serilog 225
Exception management in a MyWallet project 226

Links to log management services 231
Summary 232

Chapter 11: Optimization and Performance 233

Measuring application performance 234
Asynchronous controller action methods 236
HTTP compression 238

Adding response compression middleware 239
Implementing in-memory caching 240
Working with distributed caching 242

Using an SQL Server distributed cache 243
Response caching 245
Summary 247

Chapter 12: Hosting and Deployment 248

Creating a demo ASP.NET Core Web API project 249
Publishing ASP.NET Core Web API project 251

Publishing by CLI 251
Publishing by Visual Studio Tooling 253

Standalone web API 254
Deployment strategy 256
Deploying web API to IIS 257

Configuring a website on IIS 258
Deploying a web API to Azure App Service 259
Publishing a web API to Windows virtual machine on Azure 261
Publishing a web API to Docker 261
Publishing a web API to EC2 on AWS 263
Publishing a web API to Linux 266
Testing PacktContacts web API 266

Test case - Accessing a web API without the header 267

[vii]

Test case - Accessing a web API with the header 268
Test case - Adding a contact to web API 268
Test case - Getting a contact from the web API 269
Test case - Getting all contacts from the web API 270
Test case - Editing a contact to the web API 270
Test case - Deleting a contact from the web API 271

Summary 271

Chapter 13: Modern Web Frontends 272

PacktContacts - Recap of the demo web API project 273
Dealing with a cross-origin issue 273

Software pre-requisites for web frameworks 274
Consuming web APIs using Angular 4 275

Angular CLI 276
PacktServices - Angular Service Provider 277
AppComponent - Angular Component 279
The AppComponent template - HTML for Angular component 281

Building hybrid mobile apps using Ionic 3 284
Home page - Ionic 3 page 285
Home page - Ionic 3 HTML page 286

Building web apps using ReactJS 289
ReactJS in ASP.NET web application 289

Consuming web APIs using JavaScript 292
Consuming web APIs using JQuery 295
Summary 298

Index 299

Preface
Writing web APIs is one of most sought-after programming skills as it provides lightweight
HTTP services that reach a broad range of clients. A well-designed web API can be used by
various clients such as Desktop, web, and mobile apps; as its HTTP services, it can be used
across cross-platform.
ASP.NET Web API 2 is an ideal platform to build REST-based APIs, and it's widely adopted
and has been very successful. Microsoft entered the world of open source by introducing
cross-platform.NET Core and cross-platform ASP.NET Core technologies.
ASP.NET Core opened a new world of exciting, feature-rich, and lightweight way of
developing web applications. With this new technology, we are not confined to the world of
Windows OS to build applications. It's truly cross-platform because we don't have to use
Visual Studio IDE to develop applications anymore.
ASP.NET Core provides a very innovating approach to build web APIs. In this book, you
will learn about the ASP.NET Core anatomy, creating web APIs by exploring the concept of
middleware, integrating with databases, applying various security mechanisms, and
consuming them in popular web UI frameworks.
This book is written considering both experienced and new developers. A prior knowledge
of developing web APIs will be an added advantage, but it’s not a prerequisite. It will help
you build a truly cross-platform ASP.NET Core Web API and master it. We are using .NET
Core 2.0 Preview 2 and ASP.NET Core 2.0 Preview 2, along with Visual Studio 2017
Preview 3 at the time of writing this book, and we do plan to update this book for the final
release of ASP.NET Core 2.0.

What this book covers
, Introduction to Microservices and Service-Oriented Architecture, discusses the state

of service-oriented architecture trends in the industry, as well as what microservices
architecture brings to the table.

, Understanding HTTP and REST, refreshes the concept of web architecture and
describes the core technology and concept behind HTTP and its methods, and you will be
introduced to the REST architecture style.

, Anatomy of ASP.NET Core Web API, takes you on a journey to understand why
web API was incepted, as well as gets you started on creating ASP.NET Core Web API and
understanding its anatomy.

Preface

[2]

, Controllers, Actions, and Models, covers the core concept of how a request
interacts with a controller, works with the controller dispatch process, customizes the
controller dispatch process, and works with the action method results.

, Implementing Routing, helps you in understanding how routing maps incoming
HTTP requests to its corresponding controller's action methods.

, Middleware and Filters, delves deep into one of ASP.NET Core's prominent
feature--Middleware and Filters.

, Perform Unit and Integration Testing, explains how to write unit tests and perform
integration testing for the web API.

, Web API Security, explores concepts on identification, authentication, and
authorization for the web API.

, Integration with Database, integrates with various database using ORM such as
EF 6, EF Core, and Dapper.

, Error Handling, Tracing, and Logging, explores the ASP.NET Core's in-built
logging feature, and shows you how to write efficient error handling code.

, Optimization and Performance, explains the asynchronous ways of writing web
API, and how to apply the caching technique for a better web API performance.

, Hosting and Deployment, deploys the ASP.NET Core Web API on various
platforms such as IIS, Stand-alone, Docker, Azure, Linux, and so on. It showcases its true
cross-platforms nature.

, Modern Web Frontends, consumes the web API developed from previous
chapters in UI frameworks such as Angular, Ionic, React, and so on.

What you need for this book
The following software is required to complete the practice exercises given in this book:

Windows 7 or higher, any Linux-flavor machines, or macOS
.NET Core 2.0 Preview 2 SDK
Visual Studio 2017 Preview 3 (any edition)
Visual Studio Code for non-Windows machines
OmniSharp for Visual Studio Code
NodeJS to build modern UI frameworks

Preface

[3]

The SQL Server Express edition
Docker Toolbox
Postman: Cross-platform REST client
Your favorite browser

Who this book is for
This book is for .NET developers who want to master ASP.NET Core (Web API) and have
played around with previous ASP.NET Web API a little, but don't have an in-depth
knowledge of it. You need to know Visual Studio and C#, and have some HTML, CSS, and
JavaScript knowledge.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds
of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Running
the command will perform the routine build and generate the and
folders."

A block of code is set as follows:

Any command-line input or output is written as follows:

docker run -it -d -p 85:80 packtcontantsAPI

Preface

[4]

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Open Visual Studio 2017
IDE, click New Project to open project templates dialog."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book-what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of. To send us general feedback, simply e-mail

, and mention the book's title in the subject of your message. If
there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at .

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at

. If you purchased this book elsewhere, you can visit
and register to have the files e-mailed directly to you. You can download the

code files by following these steps:

Log in or register to our website using your e-mail address and password.1.
Hover the mouse pointer on the SUPPORT tab at the top.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box.4.
Select the book for which you're looking to download the code files.5.

Preface

[5]

Choose from the drop-down menu where you purchased this book from.6.
Click on Code Download.7.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR / 7-Zip for Windows
Zipeg / iZip / UnRarX for Mac
7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at
. We also have other code bundles from our rich

catalog of books and videos available at . Check
them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books-maybe a mistake in the text or the code-
we would be grateful if you could report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any
errata, please report them by visiting , selecting
your book, clicking on the Errata Submission Form link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata will
be uploaded to our website or added to any list of existing errata under the Errata section of
that title. To view the previously submitted errata, go to

and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy. Please
contact us at with a link to the suspected pirated material. We
appreciate your help in protecting our authors and our ability to bring you valuable
content.

Preface

[6]

Questions
If you have a problem with any aspect of this book, you can contact us at

, and we will do our best to address the problem.

11
Introduction to Microservices

and Service-Oriented
Architecture

With the increase in internet availability, there is an ongoing evolution in data
communication techniques. The architectural improvements have been very innovative,
scalable, and adoptable across environments. There was a need for software components to
be available across the internet with a common interface for communication across different
platforms and programming languages.

This led to the concept of creating services easily deployable with scalability, and exposing
them over the internet.

Designing functionalities in terms of service was widely adopted; it was a great idea to
provide features in the form of services to heterogeneous clients. This concept of using
services led to SOA (Service-Oriented Architecture).

In this chapter, we will be looking at the following topics:

Service in SOA
Monolithic architecture
Introduction to Microservices

Introduction to Microservices and Service-Oriented Architecture

[8]

Services in SOA
A service is a piece of software which provides a functionality to other pieces of software
within your system or outside the system.

The other pieces of software (clients) could be anything from a web application (website) to
a mobile app (native or hybrid), or a desktop app, or even another service which uses
another service in order to carry out a particular type of functionality.

In an e-commerce website context, when a user places an order, the web application
communicates with the service to carry out the create, read, update, and delete (CRUD)
operations on the database.

The communication between the software components (clients) and the service normally
happens over a network with some kind of a communication protocol, for example, a
mobile app communicating to a service via internet.

A system which uses a service or multiple services in this fashion, is known to have a
Service-Oriented Architecture.

The main idea behind this architecture is that, instead of using modules within each client
application, it lets us use a service(s) to provide functionality to them. This allows us to
have many client applications using the same functionality.

SOA was successful, because of its following characteristics:

It allows us to scale our software when the demand increases by enabling it to
have a copy of the service on multiple servers, so when the traffic comes in, a
load balancer redirects that request to a specific instance of the service, and we
can have multiple instances of the service. Thus, when the demand increases,
increasing the number of instances on the servers helps us scale it.
SOA boasts of having standardized contracts or interfaces. When a client
application calls the service, it calls the service by calling a method. The signature
of that method normally doesn't change when the service changes, so we can
upgrade our service without having to upgrade our clients as long as the contract
and the interface do not change.
Services are, in fact, stateless, so when a request comes in from a website to our
service, that instance of the service does not have to remember the previous
request from that specific customer. It, basically, has all the information from the
request that it needs in order to retrieve all the data associated with the previous
requests within the service, so, the service does not have to remember the
previous calls a client has made to that particular instance of the service.

Introduction to Microservices and Service-Oriented Architecture

[9]

Service implementation
SOA gained popularity due to its implementation of services, which are accessible over
standard internet protocols that are independent of OS platforms and programming
languages.

Services from a developer POV are nothing but web services hosted on a web server, and
which use SOAP (Simple Object Access Protocol) or JSON for communication. It's
interesting to know that a web service can be used as a wrapper for legacy systems for
making them network-enabled.

Some of the popular technologies implementing services (SOA) are as follows:

Web services based on WSDL (Web Service Description Language) and SOAP
Messaging, for example, with ActiveMQ, JMS, and RabbitMQ
WCF (Microsoft's implementation of Web services)
Apache Thrift
SORCER
RESTful HTTP

Service-Oriented Architecture started gaining momentum when the Monolithic
architectural approach experience proved to be more painful than thought earlier. Let's
briefly understand what Monolithic systems are and their drawbacks that led to adoption of
SOA.

Monolithic architecture
Monolithic architecture-based systems existed before the SOA or Microservices movement.
These types of systems are exactly the opposite of what SOA tries to achieve.

A typical Monolithic system is an enterprise-based application, and this application might
be in the form of a large website with all the working modules packaged in together into
one single package, or it might be in the form of a service which talks to a website. It might
be packaged as a large executable that is deployed on a machine.

In these systems, we added different components to an application to keep growing; there's
no restriction in size, and there's no division. There's always one package which contains
everything, and therefore, we end up with a large code base.

Introduction to Microservices and Service-Oriented Architecture

[10]

The high-level architecture diagram of a Monolithic system would look as follows:

Overheads of Monolithic architecture
In the long run, enterprises faced these shortcomings when they applied Monolithic
architecture to their systems:

Due to the code base being so large, it took the teams longer to develop a new
functionality within the application.
Deployment of a large system can also be challenging, because even for a small
bug fix, we have to deploy a new version of the entire system, and therefore, that
creates greater risk.
It's one large code base, so, we're also stuck with one technology stack.
It makes the overall system less competitive, because we can't easily adopt new
technologies which might give us a competitive edge.
Since the code is in one large package, we might also have high levels of
coupling, which means that if a change is made in one part of the system, it might
affect another part of the system, because the code is intertwined. This kind of
coupling might be present between modules, and also between different services.

Introduction to Microservices and Service-Oriented Architecture

[11]

Scaling up this service to meet the demand is quite inefficient. For example, if the
Orders module of the system is in demand, we would have to create a copy of the
whole package, of the whole service, in order to scale up just the Orders section.
More powerful servers need to be bought to work efficiently for a large footprint
of monolithic apps.
Unit testing for such a large code base takes time, and regression testing by QA is
also a time-consuming process.

The only one advantage that a Monolithic system has is the fact that we
can run the entire code base on one machine, so, when developing and
testing, we could probably replicate the entire environment on a machine.

An example of a Monolithic system could be an ASP.NET MVC site where the website itself
is the UI layer, and then in the Business layer, you have business logic along with the data
access layer. Over the years, if we continue with the same approach, then it will become a
Monolithic system.

Introducing Microservices
The Microservices architecture is, basically, service-oriented architecture done well. After
years of working with Service-Oriented Architecture, software developers have realized
what Service-Oriented Architecture should be like, and this is basically what Microservices
architecture is--it's an evolution of the Service-Oriented Architecture.

Microservices are small, autonomous services that perform one function well while working
with other services as well.

Microservices introduces a new set of additional design principles, which teach us how to
size a service correctly. Previously, there was no guidance on how to size a service, and
what to include in a service. The traditional Service-Oriented Architecture resulted in
monolithic large services, and because of the size of the service, these services became
inefficient to scale up.

Let's look into the advantages of using Microservices.

Introduction to Microservices and Service-Oriented Architecture

[12]

Lightweight yet scalable
Microservices provide services which are more efficiently scalable, flexible, and which can
provide high performance in the areas where performance is required.

An application which is based on the Microservices architecture is, normally, an application
which is powered by multiple Microservices, and each one of these provide a set of
functions, or a set of related functions, to a specific part of the application. A Microservices
architecture normally provides a set of related functions to applications, to client
applications, and client services.

Microservices architecture also uses a lightweight communication mechanism between
clients and services or between two or more services. The communication mechanism has to
be lightweight and quick, because when a Microservices-architected system carries out a
transaction, it is a distributed transaction which is completed by multiple services.
Therefore, the services need to communicate to each other in a quick and efficient way over
the network.

Technology agnostic
The application interface for a Microservice, or the way we communicate to a Microservice,
also needs to be technology agnostic. It means the service needs to use an open
communication protocol so that it does not dictate the technology that the client application
needs to use. And by using open communication protocols, for example, like HTTP REST
(JSON based), we could easily have a .NET client application which talks to a Java-based
Microservice.

Independently changeable
Another key characteristic of a Microservice is that it is independently changeable. We can
upgrade, enhance, or fix a specific Microservice without changing any of the clients or any
of the other services within the system.

In the Microservices architecture, each microservice has its own data storage. By modifying
one Microservice, we should then be able to deploy that change within the system
independently without deploying anything else.

Introduction to Microservices and Service-Oriented Architecture

[13]

The preceding image depicts a high-level architecture diagram for a Microservices system.
This is an example of a typical e-commerce system, and as you can see on the left-hand side,
there's a shopping website running in the customer's browser, or it could be a mobile app
using the API gateway.

The browser connects to the demo shopping website via the internet--the demo shopping
website might be an ASP.NET MVC website running on IIS. All the processing required for
all the interactions with the website is actually carried out by a number of Microservices
which are running in the background.

Each Microservice has a single focus, or a single set of related functions, has its own data
storage, and it's also independently changeable and deployable. So, for example, we could
upgrade the Orders service without upgrading any other part of this system.

There might also be multiple instances for each type of Microservice. For example, if the
Orders service is in demand, we might have several instances of the Orders service in order
to satisfy the demand. And in order to direct a request from the shopping website to the
correct instance of an order service, we have an API Gateway which manages and routes a
request to the correct Microservice within the system.

Introduction to Microservices and Service-Oriented Architecture

[14]

So, in this example, when a customer places an order, the shopping website might use
multiple services and multiple functions within those services in order to satisfy that
transaction. And this is why, in the Microservices architecture, a transaction is normally a
distributed transaction, because the transaction is actually satisfied by multiple pieces of
software, that is, Microservices.

Benefits of Microservices
The following are the benefits of Microservices:

Microservices architecture satisfies the need to respond to change quickly. The
software market is really competitive nowadays. If your product can't provide a
feature that's in demand, it will lose its market share very quickly.
It fulfills the need for a business-domain-driven design. The architecture of an
application needs to match the organization structure, or the structure of the
business functions within the organization.
The Microservices architecture makes use of automated test tools. We've already
seen that in a Microservices architecture, transactions are distributed, and
therefore, a transaction will be processed by several services before it's complete.
The integration between those services needs to be tested, and testing these
Microservices together manually might be quite a complex task. Automated test
tools help us to perform this integration testing, reducing the manual burden.
Cloud-compliant Microservices can reduce the burden of deployment and release
management.
The Microservices architecture provides a platform to adopt new technology.
Because the systems are made of several moving parts, we can easily change one
part, that is, a Microservice from one technology stack to another technology
stack in order to get a competitive edge.
By using asynchronous communication, the distributed transaction does not have
to wait for individual services to complete their tasks before it's complete.
Microservices have shorter development times. Because the system is split up
into smaller moving parts, we can work on a moving part individually, can have
teams working on different parts concurrently, and because Microservices are
small in size and they have a single focus, the teams have less to worry about in
terms of scope.
The Microservices architecture also offers us increased uptime, because when it
comes to upgrading the system, we will probably deploy one Microservice at a
time without affecting the rest of the system.

Introduction to Microservices and Service-Oriented Architecture

[15]

Netflix adopted the Microservices architecture; the lessons learnt on
architectural designs are summarized in this link along with a video:

.

Summary
The evolution of building services has seen many changes in the past decade with
improvements in the internet bandwidth, machine processing power, better frameworks,
and so on.

From a developer's point of view, Microservices are REST-based Web APIs either using
ASP.NET, Java, PHP, or others. In the upcoming chapters, we will learn the various aspects
of developing an ASP.NET Core-based Web API application.

22
Understanding HTTP and

REST
REST means Representational State Transfer. The REST architecture style was a PhD
dissertation by Roy T. Fielding titled Architectural Styles and the Design of Network-based
Software. This paper was first published in 2000 after a 6 year study. We can be thankful to
Mr. Fielding for the research work and findings.

The modern-day API is modeled around REST, and you will hear people mentioning, it's
not RESTful or questioned, is your API RESTful?

To create and model a well-defined API, you need to have sound knowledge of REST. For
this reason, we will delve a bit deeper into Roy T. Fielding's study.

Roy T. Fielding set out to fix a few problems that showed their head in 1993. Many authors
were publishing their work on the web, and they wanted to collaborate. The web became a
great place to share and discuss research work. However, no sooner had it got popular did
it become troublesome.

There seem to be missing standards in terms of how documents were published and how
they could be edited. There were also problems related to infrastructure and speed, and
editing and accessing documents was slow.

Understanding HTTP and REST

[17]

In this chapter, we will look into the following topics:

Software architecture
REST principles
REST architectural elements
HTTP
HTTP/2
The Richardson maturity model

Software architecture
Software architecture is an abstraction of the runtime elements of a software system during
a phase of its operation. A system may be composed of many levels of abstraction and
many phases of operation, each with its own software architecture.

Software architecture is defined by a configuration of architectural elements-components,
connectors, and data-constrained in their relationships in order to achieve a desired set of
architectural properties:

Component: This is is an abstract unit of software instructions and the internal
state that provides a transformation of data via its interface
Connector : This is an abstract mechanism that mediates communication,
coordination, or cooperation among components
Data: This is an element of information that is transferred from a component, or
received by a component, via its connector

The REST architectural style is a combination of several network architectures:

Data-flow styles:
Pipe and filter
Uniform pipe and filter

Replication styles:
Replicated repository
Cache

Understanding HTTP and REST

[18]

Hierarchical styles:
Client-server
Layered systems and layered-client-server
Client-stateless-server
Client-cache-stateless-server
Layered-client-cache-stateless-server
Remote session
Remote data access

Mobile code styles:
Virtual machine
Remote evaluation
Code-on-demand
Layered-code-on-demand-client-cache-stateless-server
Mobile agent

Peer-to-peer styles:
Event-based integration
C2
Distributed objects
Brokered distributed objects

REST principles
REST is modeled around starting with nothing and then adding constraints. We will apply
constraints to a software architecture, and your architecture will become RESTful.

Client - server
Note that throughout Roy T. Fielding's work, he does not mention that REST has to be
applied to the HTTP protocol. In our case, a client server will be the browser as the client
and IIS as the server.

Note that the separation of the client and server allows abstraction. These two components
can be built independently as well as deployed independently.

Understanding HTTP and REST

[19]

Stateless
The next constraint to add is stateless. The server should not contain any state of workflow.
In this way, the client is the driver of the information that it wants. When the client asks the
server for data, the client needs to pass all the relevant information to the server. This
method of designing software creates an abstraction, where the server is unaware of the
client; it creates a loose couple design, which is conducive to changes. Later on in the
chapter, we will look further into stateless by expanding the idempotent concept.

The client has to keep track of its state. The downside is that the client will have to send
more data to the server on each request.

Having the stateless server allows you to scale out, since the server does not store any
client-specific data.

Cache
Caching is the next constraint. Whenever the server transmits data that will not change, we
refer to the data as static data. The server can cache the data.

When the very first request is made, the server will make a trip to the database in order to
fetch the data. This data should then be cached as an application layer. Every subsequent
request for that data will be fetched from the cache, saving the server a request to the
database, resulting in the response being returned to the client faster.

The uniform interface
This is the constraint that makes REST different from other network architecture patterns.
The interfaces exposed by the components are generalized. The server does not have
intimate knowledge of its consumers. It serves all requests from clients in the same way.
What you get is coarse grained data, as not all consumers would want this amount of data.

To get a uniform interface, four constraints will have to be applied:

Identifying resources
Manipulating resources
Self-descriptive messages
Hypermedia as the engine of the application state

We will look into these later on.

Understanding HTTP and REST

[20]

Layered system
By layering the components, we ensure that each component does not know about the
layers that its neighbors connect to. This promotes good security in order to have good
boundary walls. It also allows legacy systems to be protected if they are consumed in your
architecture, and it allows you to protect new systems:

With the layered approach, it leads to many hops between systems, but you have the
security boundaries, and components can be updated individually.

Code-on-demand
This is probably the least popular characteristic of REST. It allows the server to provide
code to the client by an applet or script that can be executed by the client. This allows the
server to provide more functionality to the client post the deployment. The constraint is
optional, and we will not explore it in detail.

REST architectural elements
As discussed earlier, REST is not a protocol, and it can be discussed without
implementation. The key element of REST is the ability to add constraints to components,
connectors, and data.

Understanding HTTP and REST

[21]

Data elements
When you select a hyperlink where data needs to be transferred from the server to the
client, the client needs to interpret the data and render it into a format to the user. How
does the REST principle do this? The REST components transfer the data as well as the
metadata to the client, with instructions to help the client compose the resource that it has
requested:

Data element Modern web examples

Resource The intended conceptual target of a hypertext reference

Resource identifier URL, URN

Representation HTML document, JPEG image

Representation metadata Media type, last modified time

Resource metadata Source link, alternates, vary

Control data If-modified-since, cache control

Resources and resource identifiers
A resource is a reference to any information that you wish to share. It could be a picture or a
document that you wish to share with your friends. Roy T. Fielding sums up a resource
quite precisely. A resource is a conceptual mapping to a set of entities, not the entity that
corresponds to the mapping at any particular point in time. More precisely, a resource R is a
temporally varied membership function , which for time t maps to a set of entities, or
values, which are equivalent. The values in the set may be resource representations and/or
resource identifiers.

When a resource is used between components, a resource identifier is used by REST to
know which resource it is.

Your resource should have a resource identifier when it is used between components,
which is used by REST to identify your resource.

Understanding HTTP and REST

[22]

Representations
A representation is a combination of the data you want to share and the metadata
associated with it. The format of a representation is known as a media type. Media will be
discussed in more detail later on in this chapter with some concrete examples. Media types
are important when the server sends some data for the client to render; ideally, the server
will send the media type first, which will describe to the client how the data should be
rendered. As the client receives the data, it can start rendering the representation, which
results in a better user experience. This is compared to the client receiving all the data and
then receiving instructions on how to render the representation.

Connectors
The types of connectors are client, server, cache, resolver, and tunnel. You can think of
connectors as interfaces. They abstract how components communicate. A connector's job in
the REST architecture is to enable the retrieving of resource representations as well as
exposing resources. REST is stateless; every request will have to carry all the information
that is required for the server to process the request from the client.

Let's look at the model that REST uses to process a request. The request can be compared to
a stored procedure:

Understanding HTTP and REST

[23]

Control Data defines the purpose of a message between components, such as the action
being requested or the meaning of a response.

-Architectural Styles and the Design of
Network-based Software
Architectures by Roy T. Fielding,
section 5.2.1.2, page 109

Components
A component in REST architecture would be a web browser on the client and IIS on the
server.

HTTP
HTTP stands for Hypertext Transfer Protocol. The very first version was 0.9; then came
version 1.0.

The key difference between 1.0 and 1.1 is that the client makes a connection with the server
and that connection is reused, whereas in HTTP 1.0, the connection is thrown away and for
each request, a new connection is created. HTTP 1.1 is also derived by applying the REST
constraints to 1.0.

A basic HTTP message is composed of a header and body.

When the client communicates with the server, it communicates via HTTP. The server
responds to the client with messages and code.

HTTP/1.1 status codes
There is a broad range of status codes, which indicate to the client what has occurred with
the request that has been processed by the server:

: Success
: OK
: Created
: Redirection
: Client error

Understanding HTTP and REST

[24]

: Bad Request
: Unauthorized
: Forbidden
: Not found
: Conflict
: Server error
: Internal server error

We will concentrate on the most common codes and the codes that we will use later on in
the book when we implement an API.

An API example
I have used the GitHub API to show the basic HTTP methods. You can sign up to GitHub
and get an authentication token if you wish to explore the API. In the next chapter, we will
create our own API. In these examples, we act as a consumer of an API. In these examples, I
am using Fiddler to make the request. You can use any tool you like; other commonly used
tools are Postman, which is built into the Chrome browser or Advanced Rest Client.
Idempotent is a term used for REST APIs; simply put, when you call a method, it will return
the same data no matter how many times you call it. In the following examples, I will list
which methods are idempotent.

HTTP POST example
Our HTTP method is POST, and is our resource. We have
a header value in the request as well. is the header key, with a value of

. This is what the documentation has specified.

Understanding HTTP and REST

[25]

You can take note of the request body in the following screenshot:

This is our request for a method.

Our response from this request is depicted here. The server has responded with , which
means that our request was valid, and the server has carried out the operation successfully:

The server also sends back a resource to us. A new resource has been born and we can fetch
data from this.

 is not idempotent. Idempotent in the REST world implies that as a client when I call
an endpoint more than once, I expect to receive the same behavior or I expect to get back the
same data. Consider the example where you have to create a contact with a unique email
address. The first time you call with this email address and other contact details, the
server will respond with , which means that contact has been created and a unique
resource has been published, where you can fetch that data.

Understanding HTTP and REST

[26]

If you call a method with the same email address, what will happen? The server
should return a conflict, . The email exists in the data store. So is not idempotent:

HTTP GET example
Using the resource from the server, we perform on the resource:

The server responds with a status, which is OK:

Understanding HTTP and REST

[27]

The server returns the data that we have requested:

 is idempotent, when we make the very first time request, we get a response. Making
the same request will return the same response. This also ties into the REST principle of
stateless. In order for this request to return the same data, the server should be
stateless.

HTTP PUT example
We can perform an update to our representation with the following URL. Take note of the
HTTP verb .

The documentation has said that we can call a method at the following resource and
also note the as part of the URI. is used to modify our representation. Generally,

 will have a body. In the gist API for GitHub, they have made it simpler. Generally, the
notion is for to look similar to , except that the URI contains the identifier that was
received when the method was called:

Understanding HTTP and REST

[28]

 behaves similar to when a resource does not exist. In our example from , if
you had to call the very first time with the request to create a contact instead, then
you would receive , informing you that the resource was created. Then, if you had to
call the request on again, you will get back with the same data. In this way, is
idempotent.

HTTP DELETE example
 is very similar to . Our HTTP method is , and we want to undo the star

put we created with . usually has no body:

 is idempotent; when you call , you will get back, indicating that the
resource has been deleted. Making this request again will result in , resource not found,
as the data has been deleted. Making this call again will result in . Although the
response has changed from to , you are still getting back the same behavior and the
server is not doing anything different.

Version 2 of HTTP
HTTP/2 is an optimization of HTTP 1.1. Many browsers already support HTTP/2; your
Chrome browser does that already.

HTTP/2 is a combination of two specifications: Hypertext Transfer Protocol version 2
(RFC7540) and HPACK- Header Compression for HTTP2 (RFC7541).

When using HTTP/2 over Transport Layer Security (TLS), "h2" is used to indicate the
protocol.

The "h2c" string is used when HTTP/2 is used over clear text TCP or when HTTP.1.1
upgrades.

Understanding HTTP and REST

[29]

An example of a request is as follows:

GET / HTTP/1.1
Host: server.example.com
Connection: Upgrade, HTTP2-Settings
Upgrade: h2c
HTTP2-Settings: <base64url encoding of HTTP/2 SETTINGS payload>

-RCF 7540 Section 3.2

This request is from a client that does not know whether HTTP/2 is supported. It makes a
HTTP 1.1 request, but includes an upgrade field in the header, "h2c", and at least one
HTTP2-Settings header field:

A server that does not support HTTP/2 will respond as follows:

HTTP/1.1 200 OK
Content-Length: 243
Content-Type: text/html

-RCF 7540 Section 3.2

This looks like a regular HTTP/1.1 response:

A server that does support HTTP/2 will respond as follows:

HTTP/1.1 101 Switching Protocols
Connection: Upgrade
Upgrade: h2c
[HTTP/2 connection ...

-RCF 7540 Section 3.2

A frame is introduced as basis unit in HTTP2. You can think of a frame as a packet that is
transferred over the wire. For requests and responses, the and frames are
used as the building blocks, and for HTTP/2 features, the frames are ,

, and .

Understanding HTTP and REST

[30]

Single connection
A single connection between the server and client can be used by both the server and the
client to transport multiple requests. Suppose you have a page that has several components
in it, which all fire independent requests to the server-say, one that will get the weather for
today, one that will get the latest stock prices, and one that will get the latest headlines.
They can all be made with one connection, not three separate connections. This exists for the
server as well. What you end with is less connections getting created.

Server push
The server can push data to the client. When the client requests data from the server, the
server can figure out that the client will need some other data as well. The server can push
this data to the client. The client can always reject the data by signaling to the server that
push data should be disabled. This data sent by the server to the client is called a

 frame. The data is stored in the client's cache if it implements an HTTP
cache.

Multiplexing and streams
A stream is like a tunnel that has many cars passing through it in both directions, with the
cars being substituted with frames, and a stream is standalone between a client and a
server. In HTTP/2, a connection can have many streams, with frames from one request
spread over many streams, though the order of the frames is important.

This is a significant improvement from HTTP 1.1, which uses multiple connections to
render a single page.

Stream prioritization
Having multiple streams is great, but sometimes, you want a stream to be addressed ahead
of another stream. In HTPP/2, a client can specify the priority of a stream in the
frame. This priority of the stream can be changed by the client using the frame.
In this way, the client can indicate to its peer how it prefers its request to be processed.

Understanding HTTP and REST

[31]

Binary messages
Messages are processed faster as they are in a binary format compared to text. Since they
are in the native binary format over the wire, they don't need to translate from text to binary
by the TCP protocol.

Header compression
As the web has evolved, more data is sent from the server to the client and from the client to
the server. HTTP 1.1 does not compress header fields. HTTP works over TCP and a request
is sent over this connection, where the headers are large and contain redundant data. TCP
works on Slow Start implemented by a network congestion-avoidance algorithm, which
places packets over the network. If the headers are compressed, more packets can be sent
over the wire. HTTP/2 fixed this problem with header compression, which takes advantage
of TCP, resulting in a faster transfer speed of data.

Media types
Commonly referred to as MIME (Multipurpose Internet Mail Extensions) types, media
types are used to identify the format of an HTTP message body. A media type is of the

 format; examples are as follows:

text/html
image/png
audio/mpeg
video/avi

A request can be as follows:

The client is specifying which format it can receive data in.

Understanding HTTP and REST

[32]

Richardson maturity model
The Richardson maturity model (RMM) was developed by Leonard Richardson.
Commonly referred to as RMM, it is used to upgrade the standard of your API.

Level 0
This is your traditional soap-based web service or the XML-RPC service. It uses HTTP, but
it has one method and one URI. This method is usually and will return a heavy
dataset. I am sure all of us have worked with this type of web service or might encounter it
at some point. The entire database as a dataset is wrapped in this output.

Level 1
Resources are exposed, but you still have an HTTP method. If you are at Level 0, then
changing your web service to return a resource will take you from level 0 to level 1. You still
have one HTTP method, but when your method is invoked, your service will pass back a
resource:

There is one endpoint still, it returns many resources.

Level 2
Level 2 is for the use of HTTP verbs. So in level 1, we introduced resources, and level 2
introduces verbs.

Understanding HTTP and REST

[33]

Using the preceding example, when you post what you ate at 10 a.m., the server will give
you back a resource. Using this resource, you can perform on that resource and see the
details of what you ate at 10 a.m.:

You can then update these details using ; note that we are acting on the same resource.

The request is as follows:

You can also delete this resource if you realize later on that you didn't eat at 10 a.m.:

We used the same resource with a different verb.

When we created the resource in level 1, we changed to return 201 when the resource
is created and a conflict if the resource exists.

Part of level 2 uses response codes and does not return for every operation.

Level 3
In level 3, hypermedia is introduced into our responses, commonly referred to as
HATEOAS (Hypertext As The Engine of Application State).

Let's go back to the example:

Understanding HTTP and REST

[34]

The point of the link is that it lets the consumer know what actions it can carry out.

Although both endpoints look the same, the consumer will figure out that one is
and the other is .

The last link is the resource to rate the meal you added.

Summary
We looked at the definition of REST and how REST is derived. When you look at the REST
architecture, you should be able to depict it in three categories, as explained by Roy T.
Fielding. One, the process view, describes how data flows from the client to the several
components. Two, the connector view is specific to the exchanging of messages between
components specific to resources and resource identification. Three, the data view of how
the data that we referred to as representations is transmitted from the server to the client. It
is very important to have a good understanding of the REST principles and that REST was
applied to HTTP 1.0 in order to derive HTTP 1.1.

HTTP is a living example of the REST principles. Actions such as and are
stateless, which is a principle of REST. The examples show how to construct an HTTP
request and what the server sends back as a response. With HTTP/2, we have new features
coming through, which makes our transfer speed much faster and our applications more
responsive.

The Richardson maturity model explains how APIs are classified; as a developer, you
should aim for a level 3 model. If you are a consumer of an API, perhaps you need to
choose between several options. RMM will help you make this informed decision.

In this chapter, we did not focus on specific technologies; in the next chapter, we will delve
deeper into the ASP.NET Core and what it offers as a framework in order to build web
APIs.

33
Anatomy of ASP.NET Core

Web API
This chapter starts with a quick recap of MVC. You might be surprised why we need MVC
when we are working with web APIs. It's because the ASP.NET Web API is designed based
on the MVC principles of Controllers, Models, and Views (the response returned can be
treated as a faceless view in the case of a Web API).

Our focus in this chapter is to know why we need a lightweight HTTP-based service
technology in the form of a Web API, its evolution to meet the constantly changing industry
demands, the entry of Microsoft into the world of Open Source in the form of .NET Core
and ASP.NET Core apps, and not limiting ourselves to the world of Windows OS for
developing ASP.NET web applications.

In this chapter, we will be looking at the following topics:

A quick recap of the MVC framework
Inception of web APIs and their evolution
Introduction to .NET Core
An overview of the ASP.NET Core Architecture
Creating an ASP.NET Core Project using Visual Studio IDE
Creating an ASP.NET Core Project in Linux/macOS
Examining the ASP.NET Core project files and structures
Understanding Request processing
MVC and web API unification
Running the ASP.NET Core Web API

Anatomy of ASP.NET Core Web API

[36]

A quick recap of the MVC framework
A Model-View-Controller (MVC) is a powerful and elegant way of separating concerns
within an application, and applies itself extremely well to web applications.

With ASP.NET MVC, MVC stands for the following:

Models (M): These are classes that represent the domain model. Most of them
represent the data stored in a database, for example, Employee, Customer, and so
on.
View (V): This is a dynamically generated HTML page as template.
Controller (C): This is a class that manages the interaction between the View and
the Model. Any operation on a View should have a corresponding handling in
the Controller like user inputs, render appropriate UI, Authentication, Logging,
and so on.

Inception of Web APIs and their evolution
Looking back to the days when the ASP.NET ASMX-based XML web service was widely
used for building service-oriented applications, it was the easiest way to create a SOAP
(Simple Object Access Protocol)-based service that could be used by both .NET
applications and non-.NET applications. It was available only over HTTP.

In the late 2007, Microsoft released Windows Communication Foundation (WCF). WCF
was and is, even now, a powerful technology for building SOA-based applications. It was a
giant leap in the world of the Microsoft .NET world.

WCF was flexible enough to be configured as an HTTP service, remoting service, TCP
service, and so on. Using the contracts of WCF, we would keep the entire business logic
code base the same, and expose the service as HTTP-based or non-HTTP-based via
SOAP/non SOAP.

Until 2010, the ASMX-based XML web service, or WCF service, was widely used in client-
server-based applications; in fact, everything was running smoothly.

Anatomy of ASP.NET Core Web API

[37]

But the developers of the .NET and non-.NET community started to feel the need for a
completely new SOA technology for client-server applications. Some of the reasons behind
this were as follows:

With applications in production, the amount of data used while communicating
started to explode, and transferring them over the network was bandwidth
consuming.
SOAP, being lightweight to some extent, started to show signs of payload
increase. A few KB SOAP packets would become a few MB of data transfer.
Consuming the SOAP service in applications led to huge application sizes
because of WSDL and proxy generation. This was even worse when it was used
in web applications.
Any changes to the SOAP services led to updating the service proxy to reflect
changes. This wasn't an easy task for any developer.
JavaScript-based web frameworks were released, and gained ground for a much
simpler way of web development. Consuming SOAP-based services was not that
optimal.
Hand-held devices, like tablets and smartphones, became popular. They had
more focused applications, and needed a very lightweight service-oriented
approach.
Browser-based Single Page Applications (SPA) gained ground very rapidly.
Using SOAP-based services was quite heavy for these SPA.
Microsoft released REST-based WCF components, which can be configured to
respond in JSON or XML, but still it was built on top of heavy technology of
WCF.
Applications where no longer just large enterprise services, and there was a need
for a more focused, lightweight, and easy-to-use service, which could be up and
running in a few days.

Any developer who has seen the evolving nature of SOA-based technologies such as ASMX,
WCF, or any SOAP-based technology, felt the need to have much lighter, HTTP-based
services.

HTTP-only, JSON-compatible POCO (Plain Old CLR Object)-based lightweight services
was the need of the hour, and the concept of Web APIs started gaining momentum.

Anatomy of ASP.NET Core Web API

[38]

Introducing web API
Any method(s) that is accessible over the web using HTTP verbs is called a web API. It is a
lightweight way of transmitting data over HTTP, easily consumed by various clients like
browsers, desktop apps, handheld devices, or even other SOA applications.

For a web API to be a successful HTTP-based service, it needed a strong web infrastructure
like hosting, caching, concurrency, logging, security, and so on. One of the best web
infrastructures was none other than ASP.NET.

ASP.NET, either in the form of a Web Form or an MVC, was widely adopted, so the solid
base for web infrastructure was mature enough to be extended as a Web API.

Microsoft responded to the community needs by creating ASP.NET Web API--a super-
simple yet very powerful framework for building HTTP-only, JSON-by-default web
services without all the fuss of WCF.

The ASP.NET Web API can be used to build REST-based services in a matter of minutes,
and can be easily consumed with any of the frontend technologies.

It was launched in 2012 with the most basic needs for HTTP-based services like convention-
based Routing, HTTP Request, and Response messages.

Later, Microsoft released the much bigger and better ASP.NET Web API 2 along with
ASP.NET MVC 5 in Visual Studio 2013.

ASP.NET Web API 2 evolved at a much faster pace with these features:

Installing of the web API 2 was made simpler by using NuGet; you can create
either an empty ASP.NET or MVC project, and then run the following command
on the NuGet Package Manager Console:

Install-Package Microsoft.AspNet.WebApi

The initial release of the web API was based on convention-based routing, which
means that we define one or more route templates, and work around it. It's
simple without much fuss, as the routing logic is in a single place, and it's applied
across all controllers.
The real-world applications are more complicated with resources (controllers/
actions) having child resources, for example, customers having orders, books
having authors, and so on. In such cases, convention-based routing is not
scalable.

Anatomy of ASP.NET Core Web API

[39]

Web API 2 introduced a new concept of Attribute Routing, which uses attributes
in programming languages to define routes. One straightforward advantage is
that the developer has full control over how URIs for the web API are formed.
Here a is quick snippet of Attribute Routing:

For more details on this, read Attribute Routing in ASP.NET Web API
2 at

An ASP.NET Web API lives on the ASP.NET framework, which may lead you to
think that it can be hosted on IIS only. However, using OWIN self-host, it can be
hosted without IIS also.
If any web API is developed using either the .NET or non-.NET technologies, and
is meant to be used across different web frameworks, then enabling CORS is a
must.

A must read on CORS and ASP.NET Web API 2 can be found at this
link:

.

IHTTPActionResult and web API OData improvements are other few notable
features which helped web API 2 evolve as a strong technology for developing
HTTP-based services.
ASP.NET Web API 2 has become more powerful over the years with C# language
improvements like asynchronous programming using Async/Await, LINQ,
Entity Framework Integration, Dependency Injection with DI frameworks, and so
on.

ASP.NET into Open Source world
Every technology has to evolve with growing needs and advancements in the hardware,
network, and software industry, and the ASP.NET Web API is no exception to that.

Anatomy of ASP.NET Core Web API

[40]

Some of the changes that ASP.NET Web API should undergo from the perspectives of the
developer community, enterprises, and end users are as follows:

Although ASP.NET MVC and web API are part of the ASP.NET stack, but their
implementation and code base is different. A unified code base reduces the
burden of maintaining them.
It's known that web APIs are consumed by various clients such as web
applications, native apps, hybrid apps, and desktop applications using different
technologies (.NET or non .NET). But how about developing a web API in a
cross-platform way, where the developer need not always rely on Windows
OS/Visual Studio IDE.
The ASP.NET stack should be made open source so that it's adopted on a much
bigger scale.
End users are benefitted with open source innovations.

We saw why web APIs were incepted, how they evolved into a powerful HTTP-based
service, and some evolutions that are required. With these thoughts, Microsoft made an
entry into the world of Open Source by launching .NET Core and ASP.NET Core.

Introduction to .NET Core
.NET Core is a cross-platform open-source managed software framework. It is built on top
of CoreCLR, a complete cross-platform runtime implementation of CLR.

.NET Core applications can be developed, tested, and deployed on cross platforms such as
Windows, Linux flavors, and macOS systems.

.NET Core has the following important components:

CoreCLR: This is the .NET Core execution engine which performs the essential
tasks of GC, compilation to machine code.
CoreFX: This contains class libraries for collections, filesystem, XML, async, and
so on for .NET Core.
SDK Tools: This is a set of SDK tools for day-to-day development experience.
Creating projects, build, run, and tests are common developer needs that are part
of these SDK tools.

.NET Core shares a subset of the original .NET Framework, plus it comes with its own set of
APIs that is not part of the .NET Framework. This results in some shared APIs that can be
used by both .NET Core and the .NET Framework.

Anatomy of ASP.NET Core Web API

[41]

A .Net Core application can easily work on the existing .NET Framework, but not vice
versa.

.NET Core provides a CLI (Command Line Interface) for an execution entry point for
operating systems, and provides developer services such as compilation and package
management.

The following are some interesting points to know about .NET Core:

.NET Core can be installed on cross platforms like Windows, Linux, and macOS.
It can be used in device, cloud, and embedded/IoT scenarios.
Visual Studio IDE is not mandatory to work with .NET Core, but when working
on the Windows OS, we can leverage the existing IDE knowledge.
.NET Core is modular, which means that, instead of assemblies, developers deal
with NuGet packages.
.NET Core relies on its package manager to receive updates, because cross-
platform technology can't rely on Windows updates.
To learn .NET Core, we just need a shell, text editor, and it's runtime installed.
.NET Core comes with flexible deployment. It can be included in your app or
installed side-by-side user- or machine-wide.
.NET Core apps can also be self-hosted/run as standalone apps.

.NET Core supports four cross-platform scenarios: ASP.NET Core web apps, command-line
apps, libraries, and Universal Windows Platform apps.

It does not support Windows Forms or WPF which render the standard GUI for desktop
software on Windows.

At present,only the C# programming language can be used to write .NET Core apps. F# and
VB support are on the way.

We will, primarily, focus on the ASP.NET Core web apps, which include MVC and web
API. CLI apps and libraries will be covered briefly. As its cross platform, having to install
Visual Studio IDE to create applications is not mandatory. In this section, we will install
.NET Core, build very a basic .NET Core application, and learn about the different
commands for .NET Core.

Anatomy of ASP.NET Core Web API

[42]

Install .NET Core SDK
Open the .NET Core () website to
download the SDK as per your platform of choice. At the time of writing, .NET Core 2
Preview 2 was available.

For the Windows environment, .NET Core 2.0 SDK can be installed in two ways:

.NET Core 2.0 and Visual Studio Tooling: During Visual Studio 2017
installation, an option is provided to install required tooling or .NET Core SDK
can also install them. CLI gets installed along with this.
.NET Core 2.0 SDK for Windows: This is the CLI mode of working with .NET
Core applications.

If you're using Windows OS, and prefer Visual Studio 2017 IDE, then it's
better to leverage your IDE experience..

To work with code, you can also install a text editor like Visual Studio Code. It's a
lightweight code editor developed by Microsoft for Windows, Linux, and macOS. It can be
downloaded from . Other text editors like Vim, Atom,
and Sublime can also be used.

For a non-Windows machine, an appropriate .NET Core SDK (refer to this link for your OS
of choice:) and Visual Studio Code
(recommended) for working with code should be installed.

Visual Studio for Mac is an exclusive IDE for macOS users, and can be
used for .NET Core and ASP.NET Core apps. Download it from

Anatomy of ASP.NET Core Web API

[43]

Creating and running a basic .NET Core application
We will focus on learning a few basic concepts of .NET Core, and how to work through the
command line. The following steps are cross platform to learn .NET Core. Refer the
documentation link for further details at

First, let's ensure that everything was installed properly. Open the Console/ Shell (as per
your OS of choice), enter the following command to view the CLI commands and tool
version, product information, and the runtime environment:

> dotnet -info

The .NET Core CLI provides the following commands to work with:

Initializes a basic .NET project

Restores dependencies specified in the .NET project (Runs automatically in
most cases)

Builds a .NET project

Publishes a .NET project for deployment (including the runtime)

Compiles and immediately executes a .NET project

Runs unit tests using the test runner specified in the project

Creates a NuGet package

There are a few more commands as well, go look for them too.

Anatomy of ASP.NET Core Web API

[44]

In the command line, type the following command:

> dotnet new console --name DemoCoreApp

Let's understand what's happening here in the preceding screenshot:

 creates a .NET Core C# console project in the context of directory. It
has two files: containing the C# code, and its project file, .

 is a usual .NET project file containing all the details about
the project in an XML format. However, in .NET Core, the projects are highly
trimmed due to the use of netcoreapp2.0 as the target framework.
From .NET Core 2.0, whenever we create, build, or publish a project,

 runs automatically.

As seen in the preceding screenshot, the demo project is open in VS Code; view
 to see the C# code for outputting the text on the console.

Anatomy of ASP.NET Core Web API

[45]

Just as in traditional .NET projects, we build a C# project, the same way, running the
 command, will perform the routine build and generate the and

folders.

Now will run the C# console application, and display the result
on the console.

This C# project can be published and used for deployment by running .
This will create the folder under the directory. This folder can then
be ported to any machine which has .NET Core SDK installed.

We saw a console application built; we can use the same command to create
libraries, web, and xunittest projects, as follows:

dotnet new [--type]

The option specifies the template type of the project to be created, that is, console,
web, lib, and xunittest.

Using the .NET CLI command , you can create a web application that
uses .NET Core, and that is called ASP.NET Core.

Introducing ASP.NET Core
ASP.NET Core is a new open-source and cross-platform framework for building modern
cloud-based web applications using .NET.

ASP.NET Core is completely open source, you can download it from GitHub (
). It's cross platform, which means that you can develop ASP.NET

Core apps on Linux/macOS, and, of course, on Windows OS.

ASP.NET was first released almost 15 years back with the .NET framework. Since then, it's
been adopted by millions of developers for large and small applications.

With .NET Core being cross platform, ASP.NET took a huge leap beyond the boundaries of
the Windows OS environment for development and deployment of web applications. Let's
look into more details of the cross-platform ASP.NET.

Anatomy of ASP.NET Core Web API

[46]

An overview of ASP.NET Core

A high-level overview of ASP.NET Core provides following insights:

ASP.NET Core runs both on Full .NET framework and .NET Core.
ASP.NET Core applications with full .NET framework can only be developed and
deployed on Windows machines.
When using .NET core, it can be developed and deployed on a platform of choice.
The logos of Windows, Linux, and macOS indicate that you can work with
ASP.NET Core on those.
ASP.NET Core, when on a non-Windows machine, uses the .NET Core libraries
to run the applications. It's obvious you won't have all the .NET libraries, but
most of them are available.
Developers working on ASP.NET Core can easily switch working on any
machine not confined to Visual Studio IDE.
ASP.NET Core can run with different versions of .NET Core.

Anatomy of ASP.NET Core Web API

[47]

ASP.NET Core has many other foundational improvements apart from being cross-
platform. The following are the advantages of using ASP.NET Core:

ASP.NET Core takes a totally modular approach for application development--
every component needed to build an application is well factored into NuGet
packages. We only need to add the required packages through NuGet to keep the
overall application lightweight.
ASP.NET Core is no longer based on .
Visual Studio IDE was used to develop ASP.NET applications on Windows OS
box. Now, since we have moved beyond the Windows world, we will require
IDE/editors/ Tools required for developing ASP.NET applications on
Linux/macOS. Microsoft developed powerful lightweight code editors for almost
any type of web applications called as Visual Studio Code.
ASP.NET Core is such a framework that we don't need Visual Studio IDE/ code
to develop applications. We can use code editors like Sublime and Vim also. To
work with the C# code in editors, install the OmniSharp plugin.
ASP.NET Core has powerful, seamless integration with modern web frameworks
like Angular, Ember, NodeJS, and Bootstrap.
Using bower and NPM, we can work with modern web frameworks.
ASP.NET Core apps are cloud ready with the configuration system--it just
seamlessly gets transitioned from on-premises to cloud.
Built-in dependency injection.
Can be hosted on IIS, or self-hosted in your own process or on Nginx (It is a free,
open-source, high-performance HTTP server and reverse proxy for LINUX
environment.).
New lightweight and modular HTTP request pipeline.
Unified code base for web UI and web APIs. We will see more on this when we
explore the anatomy of an ASP.NET Core application.

Creating ASP.NET Core Project using Visual
Studio IDE
We will now create an ASP.NET Core Web API application using Visual Studio 2017 IDE.
Ensure this prerequisite before starting:

Install Visual Studio 2017 (do select the .NET Core SDK options while
installation). We will be using the community edition all the way. ASP.NET Core
2.0 Preview 2 is used throughout this book

Anatomy of ASP.NET Core Web API

[48]

Let's get started with building the ASP.NET Core Web API step by step:

Open Visual Studio 2017 IDE, click on New Project to open the project templates1.
dialog.
Under Visual C# Templates, click on .NET Core, and select ASP.NET Core Web2.
Application as shown in the following screenshot:

We can also create an ASP.NET Core web application targeting the full
.NET framework by web template under the Visual C# section

Provide an appropriate project name like , click on OK.3.

Anatomy of ASP.NET Core Web API

[49]

Choosing the application type
ASP.NET Core provides us different application templates to start developing applications.
These templates give us an optimal project structure to keep everything organized. We have
the following types:

Empty: This is simplest form of a project template containing only
and the class. Due to the complete modular nature of ASP.NET
Core, we can upgrade this empty project to any type of web application.
Web API: This creates the Web API project with controllers, , and so
on. Our focus will be on this application template.
Web Application: This creates an ASP.NET Core MVC type of project with
Controllers, Views, client configurations, , and .
Web Application (Razor pages): This creates an ASP.NET Core web app using
the Razor pages.
Angular, React.js, and React.js with Redux: This creates JavaScript-framework-
based ASP.NET Core web applications.

Anatomy of ASP.NET Core Web API

[50]

It's not mandatory to follow the template project structure provided by ASP.NET Core.
When working on large projects, it's best practice to split them into separate projects for
maintainability. The default project structure is good enough to understand the interaction
between various components.

Selecting authentication type
Every application needs some type of authentication to prevent unauthorized access to the
application. In the preceding screenshot, Change Authentication will provide the following
authentication options:

No Authentication: Choosing this option will not add any authentication
packages to the application. However, we can add such packages to completely
safeguard our application data when required.
Individual User Accounts: Connecting to an Azure AD B2C application will
provide us with all the authentication and authorization data.
Work or School Accounts: Enterprises, organizations, and schools that
authenticate users with Office 365, Active Directory, or Azure Directory services
can use this option.
Windows Authentication: Applications used in the Intranet environment can use
this option.

In the Change Authentication option, select No Authentication, as shown in this
screenshot:

Anatomy of ASP.NET Core Web API

[51]

Click on OK to create an ASP.NET Core Web API project; Visual Studio tooling will
immediately start restoring the packages needed.

The command is executed to restore all the NuGet packages.

We saw how the Visual Studio IDE tooling helps us to create ASP.NET Core applications on
Windows OS. This is similar to that when creating ASP.NET (MVC 4/5 and ASPX)
applications.

Creating ASP.NET Core web applications on
Linux/macOS
ASP.NET Core, being a cross-platform technology, we would need a similar user experience
for creating web applications on Linux/macOS. It's well understood that Visual Studio IDE
cannot be installed on Linux/macOS, so, there is a different approach for working with
ASP.NET Core applications on non-Windows OS.

The following are the software requirements for Linux/macOS machines:

Install the latest NodeJS version ().
Install Visual Studio Code-- a cross-platform lightweight code editor. Sublime,
Vim, Atom can also be used ().
Install .NET Core SDK for Linux/macOS
().

On Windows machines too, we can use NodeJS, Visual Studio Code, and
.NET Core SDK for working with ASP.NET Core and avoid Visual Studio
IDE.

Creating ASP.NET Core web apps with
Yeoman
Yeoman is web-scaffolding tool for modern web apps. It is an open source tool that works
like Visual Studio templates using the command-line option. The Yeoman command-line
tool, yo, works alongside a Yeoman generator.

Anatomy of ASP.NET Core Web API

[52]

Yeoman generates a complete project with all the necessary files to run the application, just
like VS IDE. Read through the link to know more.

For installing Yeoman, ensure that NodeJS and NPM are installed from the link in the
software prerequisites given earlier.

Open the command line to run the command to install Yeoman (yo). The option installs
the npm packages globally so that it can be used from any path.

npm install -g yo

Once Yeoman is installed successfully, we need to install the ASP.NET Core generator for
yo. It will help in project creation and the scaffolding of the different components of web
applications. In the command line, run the following command:

npm install -g generator-aspnet

Yeoman scaffolding can only be used with ASP.NET Core web applications for .NET Core.

Creating ASP.NET Core Web API using Yeoman
Ensuring that everything is installed properly, open the command line, type to
view the different project templates similar to Visual Studio IDE. We will create a web API
application, provide an appropriate name like , and hit Enter to create the
project.

Anatomy of ASP.NET Core Web API

[53]

Once the Yeoman generates the web API project, it displays the list of project files created
and the instructions to perform.

We can even use the .NET Core CLI commands to create an ASP.NET
Core Web API project by referring to the link

.

ASP.NET Core Web API Application structure
We have created a web API project using either Visual Studio IDE on Windows, Yeoman
generator, or the .NET Core CLI on Linux/macOS--the application structure will be the
same including files, folder, and configuration settings. Let's understand the application
structure in detail:

Files and folder Purpose

The folder This is where we put the classes that handle
the requests

The file This is the entry point for application execution using the
 method.

The file This is needed to set up the configuration and for wiring up
the services that the application will use

The file This is a C# project file (), which is more
lightweight, robust, and easy to use.

The file This is the Key/ value-based configurations settings file

The file This is used strictly for IIS configuration, and invokes the
app when running on IIS

Anatomy of ASP.NET Core Web API

[54]

What about Model classes?
Domain models or POCO classes can be added in the Models folder, or we
can create a separate class library for models. The preceding project
structure is a good starting point; on larger projects, we can split the
controllers, repositories, and domain models into separate class libraries
for maintainability.

Let's understand in detail the contents of each of these files.

Program.cs
ASP.NET Core web apps are, fundamentally, console applications--isn't it surprising to
know that? Just like every console app needs to get executed, the .NET Core apps
have the file that contains the method.

ASP.NET Core is built on top of .NET Core, which is the reason why we have
in the application structure which we just created. Check out this file:

Anatomy of ASP.NET Core Web API

[55]

You can break down the preceding code as follows:

Just like any .NET console application needs the method to start
executing, in the same way, .NET Core runtime will start the application by
calling the method.
The interface is needed to run these console applications as web apps
(either as MVC or Web API).
The class has , which has preconfigured
defaults to run the application. This means that the web app would need a web
server (Kestrel), an IIS integration setup, configuration files to read various
values, and the folder. All these requirements are preconfigured
in this method.
Although we can implement a custom method, but the default implementation
provided is good enough to start. Read through this link to know the

 code from the ASP.NET Core GitHub repo at

. Let's look into these methods from the GitHub
repo:

 is an extension method and acts like a web server
to run ASP.NET core apps. It's based on libuv. Kestrel is often
called an internal web server responsible for running applications.
It's lightweight, fast, and cross-platform. There's more on this at

 is an extension method for specifying the
content root directory to be used by the web host. This is, usually,
the current working directory; it can be configured to point to the
other folder which contains all the files needed to run applications.
When using ASP.NET Core apps, IIS is considered as an external
web server exposed to the internet for receiving requests.

 configures the port and the base path the
server should listen on when running behind .

Anatomy of ASP.NET Core Web API

[56]

 reads the configuration files, and
adds and environment variables.

 sets up the logging to the console as well as
the debug window.

 sets up the class to configure various
services such as hitting the request-response pipeline, and so on.
Startup is a simple class without any base class, and having two
methods, and .

 builds and prepares for running the
web application.

 runs the ASP.NET Core web apps under the Kestrel web
server.

Startup.cs
In ASP.NET Core, the Startup class gets called when runs from ,
and is required for all applications.

It's the first line of execution when any request comes, or a response is returned. It performs
a bunch of operations, like providing the dependency injection, adding and using various
middleware components, and so on.

The class must define the and methods;
they will be called when the host starts running.

The Configure method
ASP.NET Core is totally modular, that is, you can add components if you really need them.
With this approach, web apps become lightweight in terms of deployment and
performance.

The main objective of the method of the class is to configure the
HTTP request pipeline. In the following code example of , you can see that

 uses an extension method to configure the pipeline.

The extension method adds the routing middleware to the request pipeline, and
configures MVC as the default handler, as follows:

Anatomy of ASP.NET Core Web API

[57]

We have created a simple web API, and for that, we are using MVC. You might wonder
why MVC when we are working with web APIs? The reason for this is that ASP.NET Core
has a unified MVC and web API.

 defines a class that provides the mechanisms to configure an
application's request pipeline. You can build custom pipeline configurations as middleware,
and add them using an extension method to . ,
Middleware and Filters, is dedicated to this.

By default, , and are
injected by server in a web API or MVC project:

In the next section, we will discuss in detail about ASP.NET Core request pipeline
processing, and the roles of middleware.

Anatomy of ASP.NET Core Web API

[58]

The ConfigureServices method
The method sets all the services to be available for the application to
run using the dependency injection (DI). It adds the services list to the

 instance, and is called before .

The reason why this method gets called first by runtime is because some features such as
MVC, Identity, Entity Framework, and so on, need to be added before they are ready for the
request pipeline processing. For this reason, in the preceding code, we saw

.

The method helps achieve the dependency injection pattern in
ASP.NET Core apps. Let's see a simple example, assuming that we wrote the
class by implementing the interface. I want to use the DI pattern so that any
other class can easily inject this interface to get the quote of the day.

ASP.NET Core supports dependency injection by default; we don't need to use any third-
party DI containers such as Unity, StructureMap, Autofac, and so on. However, if the
developer feels the need to use other DI containers, they can override the default
implementation.

*.csproj
Any .Net developer would be familiar with the file in the .NET project; in
ASP.NET Core applications, we do find this file. It's a very trimmed-down version when
compared with the traditional .NET applications.

In the initial version of ASP.NET Core, JSON-based file was used for
package management, but it was removed to keep in sync with other .NET applications,
and to work well with the MSBUILD system.

The file can be now edited in Visual Studio 2017 IDE without
reloading the entire project. Right-click on the project file, click on Edit to
make changes.

Anatomy of ASP.NET Core Web API

[59]

Let's see the contents of the ASP.NET Core project's file:

You can break down the file as follows:

The tag points to . This is the ASP.NET Core
name for .NET Standard 2.0. I recommend you to go to this link to know more
about .NET Standard 2.0:

.
 is instructed to include the directory in the build process.

 are the NuGet packages or any custom libraries that will be
included in the project. The meta-package
references all of the ASP.NET Core packages with a single version number. Any
new version can be updated only by changing this version. Even though you can
add them as individual packages, but it's recommended to use

.

Why Microsoft.AspNetCore.All meta-package?

.NET Core 2.0 brings a new feature called the Runtime Store. This, essentially, lets us pre-
install packages on a machine in a central location so that we don't have to include them in
the published output of individual apps.

Anatomy of ASP.NET Core Web API

[60]

ASP.NET Core request processing
ASP.NET (MVC and ASPX) were dependent on for all of its request
processing. It used to do all the heavy work of browser-server communication, and was
tightly coupled with IIS.

ASP.NET Core is designed by completely removing to make it cross-
platform; this led to a different request processing technique in a completely pluggable
way. This removal has also helped in the unification of MVC and the web API stack in
ASP.NET.

ASP.NET Core doesn't differentiate between MVC and web API, so the request processing
will be common now. In the next section, we will learn more on unification.

The following image shows an overview of the ASP.NET Core request processing:

Let's understand the ASP.NET Core request processing step by step.

Various clients like web applications (browsers), native apps, and desktop apps hit the web
APIs hosted on external web servers such as IIS/ Nginx. It is interesting to that know that
IIS is now part of the external web server, because it does not run the ASP.NET Core
application. It only acts as the hosting web server exposed over internet. Nginx is the
counterpart of IIS on Linux machines.

Anatomy of ASP.NET Core Web API

[61]

IIS/ Nginx calls the dotnet runtime installed on the machine to start the processing request.
It's now that the processing comes under .NET core. The file is still present in
the ASP.NET Core apps for this purpose.

The Dotnet runtime invokes the Kestrel web server (internal web server) to run the
application. Kestrel is an open source lightweight cross-platform web server based on libuv;
this is one of important steps for making ASP.NET Core apps truly cross-platform.

Kestrel then starts the application through the method present in the application.
Remember, the ASP.NET core apps are console applications. The method present
in is the starting point in .NET Core apps.

The method then builds and runs . The request, then, is pushed
to the method of the class; the HTTP request pipeline is
configured here. The default web API template project we created earlier has only

 added in the pipeline. We can customize the HTTP request pipeline
processing logic in the form of middleware (refer , Middleware and Filters, for
more details):

The MVC middleware is built on top of generic Routing middleware for handling1.
requests. At this point, the request is processed, and sent to the appropriate
controller for processing.
When request processing is completed, the response is sent through the same2.
pipeline in the reverse order. Custom middleware can help us return a response
if the request is invalid.

ASP.NET Core request pipeline processing is completely pluggable; the method
should include only the required middleware instead of the heavy that is
present in the ASP.NET web stack.

Unified MVC and Web API in ASP.NET Core
One of the major architectural evolutions was the unification of MVC and web API in
ASP.NET Core. There is no difference between the MVC and web API controllers in
ASP.NET Core.

In the prior ASP.NET stack, the controllers from MVC and web API derived from their
respective base controllers as follows:

Anatomy of ASP.NET Core Web API

[62]

Both, ASP.NET MVC 4/5 and web API 2, have Controllers, Actions, Filters, Model binding,
Routings, and Attributes, but they had different codebases because of following reasons:

ASP.NET MVC (4/5) depends on , which is tied to IIS for
hosting. Without IIS, you host an MVC application.
The ASP.NET Web API was designed to be self-hosted; it wasn't dependent on
IIS for hosting.

One of ASP.NET Core's design thoughts was to make it self-hosted and independent of IIS
for hosting. In this way, was removed so that it can be hosted without
IIS. This led to the merging of MVC and web API together to form a single codebase.

In ASP.NET Core, MVC and web API share the same base controller, and so, there is no
implementation difference between MVC and web API.

Anatomy of ASP.NET Core Web API

[63]

Running the ASP.NET Core Web API project
Our ASP.NET Core Web API was created by Visual Studio 2017 IDE for the Windows
environment and Yeoman generator for Linux/ macOS. We will run the application using
either IIS Express or the Kestrel server.

Before running the application, let's understand more about the controller (created
by default). Under the folder it has a C# class file named

:

Anatomy of ASP.NET Core Web API

[64]

You can break down the preceding code as follows:

Web APIs are based on the Model, Values, and Controller concept.
 is a C# class accessed by clients over HTTP.

It's derived from the Controller base class, which makes any class an MVC or web
API controller

 defines the routing strategy. Controllers are
accessible based on this configuration

 provides the following methods that are accessible over
HTTP:

Method name HTTP verb Remarks

HttpGet Returns IEnumerable of strings

HttpGet Returns a string based on value

HttpPost Inserts a string using POST

HttpPut Updates a string based on Id
using PUT

HttpDelete Deletes a string record using
DELETE

Running the application in Visual Studio IDE
While working with Visual Studio 2017 IDE, we have two ways for running ASP.NET Core
apps:

Using IIS Express: If you want to use IIS Express. Press F5 to start running the
application; it opens the selected web browser.
Using Kestrel server: If you want to run through the Kestrel server, select

 from run options. Press F5 to start running the application; it
opens the selected web browser, and also the console window.

Anatomy of ASP.NET Core Web API

[65]

In these environments, we will use the command-line options to run the application. They
use the Kestrel server to run the application.

Running ASP.NET Core Web API on Linux/macOS
Open the console/shell from the project root in your Linux/macOS machine, as follows:

dotnet run

This preceding command compiles, builds, and runs the application; it also starts listening
for requests on . Open any browser, and paste the URL

 to see the web API returning a response from the
values controller.

You would see the application running, and displaying the response in the browser, as seen
in the following screenshot:

We can use Postman to send requests and receive responses from the web API shown. The
ports are auto generated and will differ according to machine.

Postman is a tool for using various activities of the API--we will be using this for API
testing. You can download it from .

The response formatters are set as JSON, by default, in ASP.NET Core Web API projects.
However, we can customize as per our needs.

Anatomy of ASP.NET Core Web API

[66]

How about debugging using Visual Studio Code?

If you need a similar experience for debugging .NET Core (C#) in Visual
Studio Code,
Omnisharp--C# extension for .NET core--should be installed. Refer to this
link to set up debugging:

Further reading
Refer to the following link for detailed information on. NET Core:

For more on ASP.NET Core, refer to the following:

ASP.NET Monsters series on Channel 9 MSDN
ASP.NET Community Stand-ups on

Summary
We've covered a lot of ground in this chapter. We began with an introduction to MVC, and
looked at how ASP.NET Web API has matured through in the last decade. With the
background established, we learnt how to use .NET Core and the power of a cross-platform
framework.

We understood ASP.NET Core and its architecture, and we set up our systems with .NET
Core SDK. We also created a web API using Visual Studio tooling and Yeoman generators.
We learned, in detail, about ASP.NET Core request processing and the unification of web
API and MVC into a single code base.

In the next chapter, you'll learn more about Model, Views, and Controllers.

44
Controllers, Actions, and

Models
The entry point and the flesh of a service are controllers. While handlers are one of the
initial classes in the ASP.NET Core pipeline, once the request has passed through ASP.NET
and has found an appropriate route, it will be directed to your controller.

Now you are in control of what data you want to send as your response. A controller can
contain many methods. Although these may be public methods, not all of them will be
available. Enabling HTTP actions on these methods will turn these methods into actions.

In the course of this chapter, you will get a better understanding of controllers and how
they tie in with the ASP.NET pipeline. We will create some controllers as well as the actions
for these controllers.

In this chapter, we will cover the following topics:

Introduction to Controllers
Actions
Creating Controllers with models

Controllers, Actions, and Models

[68]

Introduction to controllers
When you add a new controller to your project, ASP.NET automatically loads that
controller for you and makes it ready for use. Here are some pointers that you may want to
know so that you don't get stuck, or if you want to create a new project and have all your
controllers in there:

Your controller needs to end with the word .
Make sure your class is ; needless to say, interfaces and abstract classes
will not work. Inherit them from the Microsoft controller class.
You cannot have the same controller name in different namespaces. ASP.NET
allows multiple namespaces for the same controller but both controllers will not
be resolved. Best practice is to have unique names for your controllers.

Actions
The web API has many actions, some of which were covered in , Understanding
HTTP and REST, with examples. As a refresher, we will go over them again as we will want
to use these actions when we create our controller. The attributes will be used to
decorate a method.

Every action should be thought about from a consumer's point of view; for example, for
, the client is posting something.

If we had created , the route for this would be as follows:

Post
This action is used when we want to create something. The body of the message will
contain the data that needs to be saved to a data store:

The first line is the route, routes should always be declared. They give someone who is
reading the code or debugging the code a better understanding of what is happening and
how the flow is.

Controllers, Actions, and Models

[69]

In the second line, we state the attribute; in this case, it is , and you don't need
to set it all the time. It is a good practice to declare the action.

Get
 is used to retrieve data. In most cases, is not explicitly stated:

This can be declared as follows:

Note the omission of the action.

Put
 is used to update data or create some data if it does not exist:

You will notice the ID as part of the route, it implies that the caller knows which entity they
want to update. All we have done is create the method named ; the name can be
what you want it to be.

Patch
 is similar to , with the difference that you send just the data that has changed the

delta and not the whole model:

Controllers, Actions, and Models

[70]

Delete
 is used to delete data. All you need is the ID:

These are the actions that we will use in our controllers. I have looked at the
attribute separately from the controllers, so we can give it some attention without worrying
about the implementation.

Controllers
I fired up VS 2017 community edition and created a new web project. Note that you get to
choose which template you want to target. I have selected ASP.NET Core Web Application.
Create a new project called , which is a small town in New Zealand, which makes
some diary products. I aim to create a controller for some of their products. It's good to
create an example that is tangible and is a real work example. I tend to stay away from
something like a book's controller or product's controller.

After creating the project, you will be prompted with a template to choose; select the
template highlighted in the following screenshot by selecting ASP.NET Core 2.0:

Controllers, Actions, and Models

[71]

I have created a new Controller, which gets saved in the folder:

Also, note the route for the controller; it does not contain the name of the controller:

Let's talk about what we want to create and a little bit about Puhoi Cheese. They have a few
products, such as milk, cheese, and yoghurt.

Like any company, you would want to list all your products, add new products, and
remove products. So if there were a frontend for this, a website, or an app, then they would
hook themselves into this API to get the relevant information. Let's go about and build
some of this logic. We will not create the backend for this, as it is out of the scope of this
chapter.

Let's build the stores controller, which will list some of the top products, such as a
department store. Then let's drill down and create a subproduct controller, such as
something to list all kinds of cheese. If you don't like cheese, you not going to like this
chapter; I apologize beforehand.

Controllers, Actions, and Models

[72]

Models
We create the models in a separate project, as we want don't want to pollute the API project
with everything, it's not a dumping ground. When we create classes, one class has one
responsibility and, as soon as they have more than one responsibility, we create this into a
new class. Projects should contain classes that have, and share, the same responsibility. We
also create a class that has some common attributes that we want all our models
to have and which they should have, because they are related.

After creating the models project, we have a folder with the model class and our
 class:

The class inherits from the class and the properties represent the
model attributes:

Controllers, Actions, and Models

[73]

Now that we have our model, let's add it to our controller and get going. Don't forget to
add a reference from your web API to the project.

Later on, you will also see how we add the models separately. I have refactored our
controller to use store model, and this is what it looks like now:

To summarize, we are returning one or many on , and the and
methods have our model as an input parameter.

Now that we have this in place, what remains is how we should return data for and
transmit data to be stored for and .

We can create an in-memory data store and use it as our persistent store. But that's a bit
hacky, and you don't really do that in a production system. Maybe we should create a
database and pass the data all the way from the API to the database. That's a lot of effort,
and the chapter is about controllers. So maybe we create an interface to our data store and
pass the data from our API to our interface, and that should be a nice pattern to follow
when you are ready to implement you API.

Controllers, Actions, and Models

[74]

To create a nicely layered architecture and hide some of this code that will hook the API to
the data layer, we will create a new Class Library project and add some classes to that
library. And these classes will direct data to and from the datastore interface.

I have made the diagram generic with a minimal number of components. If you want to,
you can create more components. It's important to think about boundary points in your
application. Your API project should never reference the data project, and the data project
should never reference the API project.

Business
Create a new Class Library project with the name of your application, and then create

, as follows:

Controllers, Actions, and Models

[75]

Have the folder structure for it as well.

This is the interface for :

You need a reference to the models projects and add a reference to .

Note that we are returning . One might argue why business references
, and in the older days, these might be a valid argument. As with our design

diagram, is the layer between web API and the data layer. It will have to know
about both, it is a business layer, but it is a web API Business layer.

The class looks like the following:

We now create a concrete class that implements . However, we need this to
be registered. Many of you would use dependency injection for object creation and use a
library like Autofac.

With ASP.NET Core, this is now built in.

Controllers, Actions, and Models

[76]

This is how I have registered our class:

I have navigated back to our PuhoiAPI project and added the following code in the
 class:

The options that are available are as follows:

If you are new to dependency injection (DI), the following should give you a better
understanding:

Transient: A new object is created each time it is needed. This is best for stateless
objects.
Scope: A new object is created for each request.
Singleton: This is similar to the singleton pattern. The very first time the object is
needed, a new object is created and every subsequent dependency of this object
will use this one.
Instance: The best way to describe this is that it behaves like a singleton, except
that a singleton is lazy loaded.

Now that the manager has been included in our DI, let's incorporate it in the controller.

Controllers, Actions, and Models

[77]

GET by ID
The class is injected with the interface as a
dependency in its constructor:

Now for on our controller, we are going to refactor it, so don't be too concerned about
the implementation:

Take note of the route; we are using ID, and our ID is , which is our unique identifier.
Then, we have , and we pass the ID to our store manager and get back a
model, which is returned from the controller.

Pretty easy; what does this look like in an actual call, and how do we call it?

I have created a simple implementation that will return a model with what was requested.

The Fiddler request is as follows:

Controllers, Actions, and Models

[78]

The Fiddler response is as follows:

We get a Status Code of 200, which is a success. The result is great as we have data flowing.
Consider the scenario where the result is not found. Returning an empty model is not ideal,
as we will be returning an empty model with 200. We would want to return something
more intuitive.

If we change our implementation to the following, where we check the model from the
manager and return null, our response is 204, which doesn't tell the consumer that a
particular resource does not exist:

Using an result type is more flexible and gives the desired result:

Controllers, Actions, and Models

[79]

We can test our model coming back from the manager and notice our returns. There are
three different returns. One is with the model. The second is ; if the manager
did not find the ID that we queried against, we can return a not found status. This is more
intuitive to a consumer, and inspecting a result code is far cheaper than parsing data.

At the end, we assume that the request we received was bad and return a bad request.

It is important to note that this is just an example and a pattern of how you can structure
your controller; you can add more cases in the switch statement.

You can also change to be a bit more intelligent rather than just returning
; the point here was to show the use of and how it gels from a

consumer point of view.

Now you can see the desired result in Fiddler:

This is how the logic is implemented in the method of the class:

We ask for the object by the ID. If the result is null, we return . If we
have an object coming back from our data store, then we use a mapper to map between the
object from the database and our object that is exposed by the API. Essentially, we map
between and . Then, we set our status to and wait for our result.

Controllers, Actions, and Models

[80]

Mapping
We use AutoMapper to map between Model and Dto and vice versa. The following
diagram shows you how AutoMapper fits into our solution:

Add a NuGet reference to for the API project and the project that will do the
mapping.

In the API project, I created a new class to set up the maps. This class inherits from the
 profile class.

This is the simplest set up:

It says that you should create a map between as the source and as the target.
However, we know it's not that simple. This is what it ends up being like:

Controllers, Actions, and Models

[81]

For , we ignore and , and for , we ignore . Then, after the
mapping is done, map from to from .

The set up in the pipe is done with the following in :

Create a member variable for the mapper configuration. Then, in the constructor,
we set up a new variable and add the profile that contains our
maps.

We're almost done hooking this up. In , we need to add this to the
service:

 is created as a singleton as the mapping done will not change, and they contain no
state.

Controllers, Actions, and Models

[82]

Start off with the controller, implementing Post and returning 201 if the object is created, or
if it returns what our internal manager sends to us.

We have no special routing, but we declare the default route to be clear. Decorate the
method with . As with , we return . The model is retrieved
from the request body. If you look at the code in this method, we delegate all the work to
the manager. Then, we get back a result; if the manager sends us , we
know that the object has been created and we return 201, created with the location of the
newly created resource. Any other result is translated back as .
This is my result on Fiddler:

The request body JSON is as follows:

Controllers, Actions, and Models

[83]

The response from the server is as follows:

The manager's work is to get the model from the controller and pass it to this data store:

However it has a bit more responsibility than that. It needs to tell the manager if the object
was created, and if not, then it needs to specify what the problem was. Before the data store
can insert the object, the manager checks whether the store has this object. Note that the
responsibility to check whether the existing object lies with the manager, not the data store.
As the name says, it's a store. If the object exists, then the manager returns a conflict to the
controller. This is the else block in the manager:

Controllers, Actions, and Models

[84]

We make use of to flip between and and back to a model. You will
have to make changes in for this to work:

We use to update a store or create a new store. The signature of is different from
:

Controllers, Actions, and Models

[85]

We have the ID and model in the signature of the controller class. The route has the ID, and
the model is in the body of the request. You will notice that the has no ID. We ask the
store manager to update our model; if we get back a created one from the store manager,
then we publish this location of the new resource. Any other state, including , is returned
as .

I have done some refactoring to our store manager, as one would normally do. If we don't
find the ID that we were supplied with, then we add the model to our data store. In the
normal flow, the model is updated and 200 is returned.

Controllers, Actions, and Models

[86]

I ran this through Fiddler; note the action, , and the model in the body.

The steps prior to this were to create a model using , update the model with , and
then call get on the resource in order to check whether the update has been performed.

 is pretty straight forward. We are going ahead with the principle we set in
, Introduction to Microservices and Service-Oriented Architecture, around the REST principles

for Delete. When we delete a representation for the first time, we can return 200, but when
we make the same request, the representation does not exist any more, so we should return
404. Let's take a look at this code:

Ask the store manager to delete the object with a certain ID, and we return whatever we get
back from our manager. Let's look at the manager:

This is simple as well; based on what we get back from the data store, we return 200 or Not
found.

Controllers, Actions, and Models

[87]

I will not display the Fiddler request and the response for the different flows, as I feel it's
very basic for what we have covered in the chapter until now. This is just the request for
delete:

Note that our action is .

Our operation looks simpler than :

We ask our manager for all the stores and return this with 200:

All we do in the manager is, ask our data store for all the dtos and then map them to a
model and return them as . Just before that, we set our status to 200.

What's the route looking like? It's looking similar to , except that you don't need to
set an ID.

Controllers, Actions, and Models

[88]

Summary
In this chapter, we developed a full CRUD endpoint and looked at some of the new features
with ASP.Net core 2.0, like the built-in dependency injection.

We explored the , , , and actions, along with some
basic routing.

We established a clean pattern to break up the responsibility of the classes and make it
easier to extend the given functionality.

The objects are loosely coupled, which makes them easier to test; this was promoted with
the inbuilt dependency injection. We also used Fiddler to demonstrate how our API works.

In the next chapter, we will discuss in depth about route mechanism, route builder,
attribute routes, constraints, and much more.

55
Implementing Routing

We use URLs (Uniform Resource Locators) to access code resources on the web. For
example, when you see a request for , it's
very easy to infer that physically exists in the pages folder on the website,
dummysite.com.

Notice that the URL and the physical file in our example have a direct relationship--when a
request is received by the web server for this file, the code gets executed, and the response
is returned to be displayed on the browser.

When working with MVC-based frameworks like ASP.NET Core, the URL maps to
controller classes and its action methods using an approach known as Routing.

In this chapter, we will look at the following topics:

Introducing Routing
Routing middleware
Route Builder
Convention-based and template-based Routing
Attribute-based routes
Route constraints
Link generation
Best practices for Routing

Implementing Routing

[90]

Introducing Routing
In Chapter 4, Controller, Actions and Models, we learnt a lot about Controllers and Actions.
Any ASP.NET Web API project will have one or more controllers with many action
methods based on HTTP Verbs like GET, POST, PUT, and DELETE.

When we created a basic ASP.NET Core Web API in , Anatomy of ASP.NET Core
Web API, and run the application, we saw the URL in the browser as

--it displayed the JSON response from the Values
Controllers.

A few questions like the following arise here:

How does the project know it should load a particular controller and action
method?
What if I have many controllers and action methods in a real-world scenario?
How do we point to a particular controller?
What is the mechanism to properly serve the HTTP request?

The mechanism to map incoming HTTP requests to its corresponding controller's action
methods is known as Routing. It is one of the key components of the ASP.NET Core MVC/
Web API. Without the Routing mechanism, ASP.NET (MVC/ Web API) will fail to run
applications and serve requests. Routing solves all the aforementioned questions.

Routing middleware
In the world of ASP.NET Core, every HTTP request and response has to pass through
various middleware. The method of the class configures the pipeline
which processes requests and takes appropriate action on them.

ASP.NET Core provides Routing middleware to perform the tasks of mapping a request to
the corresponding controllers and action methods. Let's learn about this middleware.

Create an Empty ASP.NET Core project, add to it by
manually editing either or NuGet. Add the following package details in the
dependencies so that it gets restored and is ready to be used:

Implementing Routing

[91]

Open the class to add the following code to see the Router middleware in action:

You can break down the preceding code as follows:

 adds the Routing middleware to be used.
 handles routing for HTTP requests. It takes in to

process the request. Here we are just writing the response with a string.

For any request that comes in, the pipeline needs someone to process it. This is done by
; every route should have a handler.

Implementing Routing

[92]

When you run the application (press F5), the browser displays the string Mastering Web
API, as seen in this screenshot:

This is most basic example of routing in ASP.NET Core. As the pipeline is only routing it,
accessing the application with any URL will give the same response.

The RouteBuilder class
The class helps us to build custom routes and handle them on request
arrival. The MVC also uses this class to build its default routing mechanism of the
controller, actions.

In the last example, we created a basic route that serves on any route. Now we will create
custom routes with different HTTP verbs like GET and POST.

Copy the following code in the method of for custom route
builder:

Implementing Routing

[93]

You can break down the preceding code as follows:

Instantiate a new class.
Using , we set the greeting path to handle client requests with the HTTP
verb GET.
Using , we set the review path to handle client requests with
or . The Request handler delegate reads the message.
Using , we get the path to handle the client POST requests.

MapRoute
 is an extension method to add a route to with a specified name

and template. A needs to be added for route handling.

The following code shows how to define to be used with :

Implementing Routing

[94]

ASP.NET Core Web API and Routing
Until now, we saw the basics of Routing without MVC or web API involved in the form of
Middleware Router, RouteBuilder, and MapRoute. It was essential to understand how these
concepts work together.

When we create an ASP.NET Core app as a web API, there are certain routing-related
functionalities which are essential to know about.

In , Anatomy of ASP.NET Core Web API, we created a simple web API project;
looking at the and methods of the class, only
the MVC middleware and service got added. There is no reference to the Routing
middleware.

The question that now arises is how does the web API project do all the Routing that is
required. The answer lies in the MVC middleware, , added in the

 method.

 is a middleware for both MVC and web API projects written by Microsoft's
ASP.NET Core team. This middleware confirms MVC and web API work through the same
codebase.

The following code is part of the ASP.NET MVC open source project on GitHub
():

Implementing Routing

[95]

You can break down the preceding code as follows:

The method creates an instance of RouteBuilder.
 requires for processing the routes; this is

provided by the class.
The class implements , which does the work of URL
pattern matching and generating the URL.

 is the action method to get the routes configured. We did this
same task in the previous examples.

 is added as the first entry to the collection of .
The method scans through all the controller
actions and builds routes automatically. This is one of significant lines of .
At the end routes are build and added to the Router middleware using

. This is similar to tasks performed at the beginning of this chapter.

 in provides Attribute Routing
by default in both ASP.NET Core MVC and web API applications.

Convention-based Routing
In the first release of the ASP.NET Web API, the routing mechanism was convention-based.
This type of routing has definition for one or more route templates in terms of
parameterized strings.

Implementing Routing

[96]

This style of routing is still supported in ASP.NET Core; the following code snippet shows
how to achieve this:

The convention-based style of routing is not popular, because of the following reasons:

It does not support certain types of URL patterns common to the web API world
Resources having child resources are very difficult to create. For example,

It's not scalable when web APIs have many controllers and actions

Template-based Routing
When working with web APIs, you would have come across many varieties of URIs such as

, , , , and so on.

In the web API world, they are known as Route--a string describing a URI template. For
example, a sample route can be formed on this URI pattern: .

There are few points to observe here:

A URI template consists of literals and parameters
Products and orders are literals in the preceding sample example

Implementing Routing

[97]

Anything in curly braces { } is known as parameters-- is one such example
A path separator () has to be a part of a route template--The URIs understand
as path separators
The combination of literals, path separator, and parameters should match the URI
pattern

When working with a web API, literals will either be controllers or methods. The route
parameters play a significant role in making a route template multipurpose. Parameters in
curly braces can play multipurpose roles as follows:

Even though route templates have parameters, they can be made optional by
placing '?' in the template. For example, --here, if
we don't provide , then it loads all the chapters, and if we provide numb,
then the relevant chapter is loaded.
A route template can have more than one route parameters.
A route parameter can have as a prefix so that it binds to the rest of the URI.
This kind of parameter is called as a parameter.
A default value can be provided to a route parameter. This default value will
come into effect when the route parameter is not supplied for it. For example,

 will load the action method in
the controller.
Route parameters can have constraints to ensure the routes are generated in the
proper way. For example, . The
parameter indicates that has to be an integer, otherwise, the web API responds
with a 404 response type.

The following are a few sample route templates defined in the method of the
:

Implementing Routing

[98]

Attribute-based Routing
In the world of .NET programming, the tag that adds the declaration information of the
various elements such as classes, methods, and enum to programs are called as attributes.

ASP.NET Web API 2 introduced the concept of Attribute-based Routing, giving more
control over the URIs in a web API. This helps us to easily build URIs that have hierarchies
of resources.

In ASP.NET Core apps, Attribute-based Routing is provided by default. In the
method of the class, the line indicates to include the MVC
middleware in the request processing pipeline.

In the section ASP.NET Core Web API and Routing, we explained how Attribute-based
Routing is implemented by default unlike ASP.NET Web API 2, where it had to be
explicitly enabled in the configuration.

 does this heavy work of iterating
through all the MVC Controller actions and build routes automatically.

When we created the demo project in , Anatomy of ASP.NET Core Web API, it was
created using the web API template that comes with the ASP.NET Core tooling.

Let's understand attribute routes from in the demo project:

Implementing Routing

[99]

The class is decorated with the attribute as
.

Implementing Routing

[100]

On running the application, you can see the results when we navigate to
, as seen in the following screenshot:

Attribute Routes are defined on the controller; we need to access the URL, as shown in the
preceding screenshot. is the controller name, the actions and
are executed based on the verb while testing.

Attribute routes for RESTful applications
Syntactically, attribute routes are defined as follows:

Based on HttpVerbs, ASP.NET Core provides these HttpMethods to be used for
attribute routes-- , ,

, , ,
, and .

 is string that describes routes.

Implementing Routing

[101]

--it's the optional name given to the attribute route. It is usually used when
actions seem to be overloaded methods.
Orders help to take precedence in the execution of overloaded HTTP methods in
the controller. Orders depend on literals, parameters, constraints, and also Order.
This is an optional parameter.

With these syntax in mind, let's create a new web API controller, , add
action methods, and attribute routes to them:

Implementing Routing

[102]

You can break down the preceding code as follows:

The class has the following seven action methods:

: Gets invoked using the request on route .
: Gets invoked using the request on route .

: Gets invoked using the request on route
. The route name is provided here.

: Gets invoked using the request on route .
: Gets invoked using the

request on route .
: Gets invoked using the request on route . The

route parameter ID is provided, because corresponds to updating functions,
and updates are performed on existing records.

: Gets invoked using the request on route .
To delete any record, we need to pass its unique identity; so, the ID route
parameter needs to be passed.

Implementing Routing

[103]

Multiple Routes
Sometimes, we might get routing requirements like different routes applied to the same
controller or action methods. At first, it seems to be very surprising, but in large projects, we
might need this kind of routing.

Multiple Routes can be achieved by putting multiple route attributes on the controller as
shown in this code snippet:

Run the application to see the multiple routes in action. You would verify the multiple
routes are working by accessing the endpoints on the browser as

.

Routing constraints
ASP.NET Core, either as an MVC or a web API application, supports both attribute and
centralized routing mechanism. The routes can either be directly set on the controller and
actions using the Route attribute, or by creating and mapping all the routes in one place.

We have seen that different route templates can be created with or without route
parameters. When route templates have parameters in them, it helps to build excellent
routing patterns. But the presence of route parameters can cause issues too; let's see an
example for this:

Implementing Routing

[104]

You can break down the preceding code as follows:

A basic route with the template , where is the route
parameter, is supplied
The routes template is designed to GET the employees list by passing the ID

 reads the parameter, and returns a response

Implementing Routing

[105]

Run the application to see the different ways the route parameters are supplied. It seems
everything is working--in fact, it is working perfectly, but an issue still exists.

Here, we are assuming that the employees are storing their ID as an integer, as most
organisations use integers for employee IDs, like John's employee ID is 23, or Sarah has the
employee ID 45. When the route parameter ID is passed as an integer, everything works
well, but what if is passed as a string, as shown in the preceding image?

The application does accept a parameter, and responds back well. But when working on a
real project dealing with a database source, the ID provided as a string will break the
application, and result in an exception or error.

An obvious question is how can we restrict request processing on such kind of a route
parameter if wrong data is passed in the route parameters. The answer is Route constraints.

Route constraints help us restrict request processing if the parameters fail the constraint
conditions applied to them.

Parameter constraints can be added by using on the parameter. For example,

When a request with route parameter constraints sends an invalid type, the HTTP response
returned is 404 (Not Found). Yes, ASP.NET Core responds the failing HTTP request because
of route constraints as 404 (Not Found). The request processing doesn't hit the controller
processing the request.

Let's apply Integer constraint on the parameter from the preceding code, and run the
application, as follows:

Implementing Routing

[106]

You can break down the preceding code as follows:

Route template takes parameter ID as integer only
Route template takes only length of 8 as
parameter

Run the application to see that the routes are now disciplined in the request processing.
Route constraints are the first line of defence.

The following figure shows that when the length of the route parameter name was 8, it
returned the response properly. But when name length is not 8, it responded back with a
404 error:

Implementing Routing

[107]

Route constraints can be applied on Attribute routes as well. Here is an example of it:

Types of route constraints
The ASP.NET Core team has created a bunch of widely used route constraint scenarios
based on different data types. The following table lists different route constraints:

Constraint Name Usage Remark

Int The parameter should be an
integer

Bool The parameter should be either
TRUE or FALSE

Datetime Accepts only date time as a
parameter

Decimal Accepts only decimal as a
parameter

Double Accepts only double as a
parameter

Float Matches only float as a
parameter

Guid Accepts only GUID as a
parameter

Implementing Routing

[108]

Long The parameter should be long
type

Minlength The minimum length of the
parameter should be 8

Maxlength The maximum length of the
parameter should be 5

Length(min, max) The minimum length of the
parameter can be 4 and
maximum length 16

Min(value) The minimum value of the
parameter age should be 18

Max(value) The maximum value of the
parameter weight should be 90

Range(min, max) The age parameter should be
between 18 - 100

Alpha Only alphabets allowed as
parameters

Regex(expression) Uses regular expression to match
the parameter; e-mail is one such
example

Required Parameter must be provided

We can combine different route constraints to parameters based on the requirements. For
example, if is an integer, and is available between 18 and 30, then we can define
routes as follows:

Implementing Routing

[109]

Writing custom route constraints
Till now, we used the inbuilt route constraints; they serve a large number of use cases, but
different business requirements could lead to the need to write custom constraints. Writing
custom Route constraints is achieved using the interface present in the

 namespace.

The interface has a method, which takes in , , ,
, and . When the method is implemented, if the condition

for the constraint matches with the parameter value, it returns , else .

For example, let's take a business use case for custom route constraints which specifies that
the parameter should contain the domain name as , else it should respond with
404 error.

Create a C# class by copying the following code. We1.
implement the interface and the method in this code:

Open , add this constraint as in the2.
 method.

In , use the DomainConstraint domain in the route template in the3.
 method, as follows:

Implementing Routing

[110]

Running the preceding application will show responses as follows.

Since the route parameter contains the domain, as per the custom constraint,
this works well, as shown in this screenshot:

Implementing Routing

[111]

Now let's pass the parameter without ; this would throw the
error as follows:

Link generation
The routing mechanism provides enough to link to the routes in the application, however,
at times, generating links pointing to specific routes becomes essential. We can achieve
custom links using the link generation concept.

ASP.NET Core provides the class, an implementation of the
interface to build URLs for an ASP.NET Core application (MVC or web API). The methods

 and are two inbuilt methods for link generation. Let's
use them in an example:

Implementing Routing

[112]

You can break down the preceding code as follows:

The class is the basic C# class having and for Todo tasks
 defines two action methods, and , with

appropriate attribute routing.
The method generates a link, and adds it to the header of the
response with link generated so that clients can access it.

A similar can be written to have a more focused link generation. When
we run the application using the Postman client, the Location Header is added explicitly
with the URL pointing to the method with , as shown in the following
screenshot:

Implementing Routing

[113]

Routing best practices
ASP.NET Core provides a lightweight, completely configurable Routing mechanism in the
form of middleware, Convention-based routing, direct or Attribute Routing, constraints,
and so on. Proper usage of these routing features is necessary for optimal performance of
the application.

Implementing Routing

[114]

Some of the best practices that need to be considered are summarized next; these practices
will evolve as more applications are built with various use cases. These lists may or may not
apply to your application depending on your application's needs:

Use the inbuilt middleware which sits on top of the Routing middleware
for achieving Routing strategy.
Conventional routing is sufficient a CRUD style of web API is being developed. It
reduces the overhead of writing direct routes for all the actions in various
controllers.
Try avoiding the catch-all route parameters, that is, . When used in
conventional (centralised) routing, there are chances that unwanted routes may
match this catch-all resulting in unexpected behaviors.
When working with an ASP.NET Core Web API, it's better to use HTTP-verb-
based routing, that is, attribute routing with HTTP verbs like GET, POST, PUT,
and DELETE. The clients can consume these web APIs with ease.
Order on the attributes routes should be avoided, instead, use Route Names for
different API methods.
Multiple routes can point to the same controllers/ actions, but using this on a
large scale might result in combining actions' implementation with many
conditional cases.
Route parameter constraints are a powerful feature, but they should not be used
for model validation.
Designing web APIs with both conventional and attribute routing should be
minimized.

Summary
The ASP.NET Core routing functionality is powerful, and highly configurable. In this
chapter, you learned how the routing middleware works with the HTTP pipeline. We used
RouteBuilder to create route tables and navigated between them. You also learned about the

 middleware implementing routing middleware internally.

Routing can be either conventional or Attribute-based, we discussed and implemented
route parameters using custom constraints. The Link generation feature can be used for
generating links to specific routes. You also learnt some best practices for web API routing.

The upcoming chapter focuses on the middleware concept of ASP.NET Core--you will learn
the basics of middleware, writing some custom middleware, and about Filters in ASP.NET
Core applications.

66
Middleware and Filters

Any web application development framework's success depends on its abilities to handle
HTTP request and response efficiently. Any HTTP request has to undergo a series of
verification and validation before it can access the requested resource.

When numerous simultaneous requests hit the web server, serving them quickly without
breaking down under load is a key factor for well-designed web applications. This involves
designing framework based on a modular approach, where we can use features only if
required.

ASP.NET Core is a completely modular way of developing modern web applications; it's
designed on the concept of including what you need instead of including all features, which
makes it heavy to process requests.

Middleware and filters are such features of ASP.NET Core, and they play an important role
in the processing of HTTP requests. You will learn about these two features in depth in this
chapter.

In this chapter, we will cover the following topics:

Introducing middleware
HTTP request pipeline and middleware
Order of middleware
Built-in middleware
Creating custom middleware
Migrating HTTP modules to middleware
Introducing filters
Action filters
Authentication and authorization filters
Exception filters

Middleware and Filters

[116]

Introducing middleware
Let's assume that you created the ASP.NET Core application (MVC or web API),
controllers, and action methods connected to the database to fetch records and then added
authentication; everything runs smoothly.

Just for fun, comment on the code inside the method of class and run
the application. Surprisingly, there won't be any build errors and a blank browser window
shows up.

Navigating to any route, pages, or assets always returns a blank screen. Taking a deep dive
into this, we can infer the following:

The method is one of the starting points when an HTTP request
arrives
When a request arrives, someone has to process the request and return a response
An HTTP request has to undergo various operations, such as authentication,
CORS, and so on, before they access the resource

The method of the class is the centre of an HTTP request pipeline; any
software-component part of this pipeline is called middleware in ASP.NET Core. They are
responsible for request and response processing, based on their placement order in the
pipeline.

Each middleware can be designed to pass the request onto the next middleware or end the
request processing pipeline. The request pipeline is built using request delegates. The
request delegates handle each HTTP request.

Without middleware components, ASP.NET Core does nothing.

The method takes in one of the parameters as . This
interface provides the mechanism to configure an application's request pipeline. The
request delegates are configured using these four extension methods of the

 interface:

The method adds the middleware request delegate to the application
pipeline. The request delegate handler can be in-line as an anonymous method or
a reusable class.

Middleware and Filters

[117]

The method is also known as the terminal middleware delegate in the
application pipeline. Nothing is processed after this.
The method branches the request pipeline based on the matches of request
path.
The method branches the request pipeline based on the result of the
given predicate or condition.

Let's understand how various middleware components work together with
.

HTTP request pipeline and middleware
The ASP.NET Core request pipeline processing is completely rewritten from the traditional
ASP.NET request processing. Every request is processed through a sequence of request
delegates to return a response.

ASP.NET Core documentation depicts HTTP request processing, as shown in the following
screenshot:

Middleware and Filters

[118]

The blue bars indicate that the middleware components (either built-in or custom built),
once an HTTP request arrives on pipeline (the method), encounters
Middleware 1 component. The processing of request takes place in //logic, then request is
passed on the next middleware in the sequence using .

The request processing reaches Middleware 2 components, does the processing, and passes
onto the next Middleware 3 using . Here, after the request is processed, it does not
encounter , indicating that the sequence ends here and starts returning a response.

The response is processed in a reverse order--Middleware 3, Middleware 2, and
Middleware 1, as the end response is returned back to client.

 keeps track of the request processing pipeline in sequence; this
way, it's easy for processing request and response smoothly.

The request delegates should be designed with a specific focus instead of combining several
delegates to make them a single component. Middleware should be as lean as possible to
make them reusable.

Middleware can either pass the request for further processing or stop passing to process
request on its own. Some examples are authentication, CORS, Developer Exception page,
and so on.

Middleware in action
In the previous section, we looked into a pictorial representation of the middleware request
pipeline processing. In this section, you will learn the role of middleware in the request
pipeline by writing a code.

Create an Empty ASP.NET Core application and comment out/remove the default code in
the method of the class.

We will write a code to understand the four extension methods from the previous section:
, , , and of .

The middleware components accept the method. They are the functions
that process the HTTP request with a signature as follows:

It takes in one parameter of and returns , working asynchronously.

Middleware and Filters

[119]

Use()
When middleware is written as , a middleware delegate is added to the
application's request pipeline. It can be written as an inline delegate or in a class.

It can pass the processing onto next middleware or end pipeline processing it. The
extension method has delegates taking two parameters, the first parameter being

 and the second, a .

A very basic middleware can be written as shown in the following code snippet:

Running this code will show on the browser.

This middleware component does have some logic of writing content on response, but it
won't call any other middleware because the second parameter of the request delegate is
missing.

To call the next middleware, we will need to call the method of the request
delegate , as shown in the following piece of code:

Middleware and Filters

[120]

We can break down the preceding code as follows:

, , , and are the
simple inline middleware examples.

 and have request delegates invoking the
middleware in pipeline.

 does not have the invoking code, and the pipeline will infer
that this is last request delegate and stops further processing. It's known as short
circuiting.
Even though is written with the invoke, it doesn't get called
as , which has not passed request processing.

Run the application to see the middleware response in the browser. The response from
 is not written because the pipeline has treated that is last

and ends processing further, that is, end of pipeline processing:

Middleware and Filters

[121]

Run()
The method adds a that is terminal to the pipeline. Any
middleware components written after will not be processed as ASP.NET Core treats it
as an end of the pipeline processing.

Copy the following code snippet in the beginning of the method before the
middleware written using :

Running the application, you will only see the middleware executed with the rest of
the middleware (1,2,3,4) not executed at all.

Some of the middleware do expose this method for treated as terminal middleware. It
shouldn't be used in code to terminate the request processing.

Adopt the method for request processing because it can either pass
or short circuit requests.

Map()
The method provides the ability to branch the middleware pipeline processing based
on the matches of request path. The method takes two parameters: and
the delegated named .

The following code snippet shows in action; copy this in the method and
run the application:

Middleware and Filters

[122]

Run the application to see it in action. Navigate to
 and .

The port number 60966 will be different when it is run on your machine.

We can break down the code as follows:

The and middleware get executed only when they are
branched out.

 gets executed, irrespective of map branching.
 will not get executed when any of the preceding

branching is applied. It's obvious because the pipeline processing has changed
course.

Branched middleware can contain as many middleware components as it likes. The
following screenshot shows in action:

Middleware and Filters

[123]

MapWhen()
Works similarly to the method, but with more control over URL, request headers,
query strings, and so on. The method returns Boolean after checking any
condition from the as parameter.

Copy the following code snippet in the method of the class:

Middleware and Filters

[124]

Running this example will show the following result:

When the URL maps the query string to , the request pipeline processing gets
branched and execute based middleware.

Order of middleware
The ASP.NET Core request pipeline processing works by running middleware components
as per the sequence they are placed in the method of the class.

The pictorial representation of request processing describes the execution order of
middleware. The sequence order is created by placement of the , , , and

 extension method code placements. Invoking of next middleware decides the
order of the middleware execution.

The following are some of the real-world scenarios where middleware order plays an
important role:

Authentication middleware should handle requests initially. Only authenticated
requests are allowed to access application.

Middleware and Filters

[125]

In case of web API projects, CORS middleware fits well as initial middleware and
then authentication middleware.
Custom middleware can perform some custom processing before accessing
resources, even though the request is authenticated.
A web API response needs to be modified before it is returned to the client.

The following code snippet shows the importance of the middleware order:

Middleware and Filters

[126]

Run the application to see the result in the browser, as shown in the following screenshot:

We can break down the code as follows:

Middleware written using does processing before passing onto the
next middleware using the method

 gets executed and the response is returned
Middleware written using gets processed and starts reverse execution of
middleware because is terminal (end)

 never gets called because of the presence of before it
 gets executed only when the path

string is valid

Built-in middleware
The ASP.NET Core team has written a number of built-in middleware to work for wide
variety of requirements. Some of the built-in middleware are as follows:

Authentication: This is used for authentication support, such as login, logout,
and so on.

Middleware and Filters

[127]

CORS: This configures Cross-Origin Resource Sharing that is used for web API
projects.
Routing: This defines and constrains request routes. , Implementing
Routing, is dedicated to routing.
Session: This provides support for managing user sessions.
Static Files: This supports to serve static files and directory browsing as part of

.

Using StaticFiles middleware
Static files (HTML, CSS, images, JS files) are served from the folder in ASP.NET
Core applications. In this section, let's add a built-in static file serving middleware loading
all the assets from the folder.

Create an empty ASP.NET Core project, or you can continue from the preceding
middleware code examples. The NuGet package of

 used for serving static contents is already part of
.

Open the class and add the following code in the method to use this
 middleware:

Create an HTML file, , in ; this is the static file that will be served
when the application runs:

Middleware and Filters

[128]

Running the application, you will see being served on browser, as shown in
the following screenshot:

Writing custom middleware
Every project has its own business or domain-specific requirements for the request pipeline
processing. The built-in middleware is good enough, but writing custom middleware gives
us more control over the request processing strategy.

In this section, we will write the custom middleware component with respect to web API
projects. A custom middleware can be written by considering these points:

A C# class with a middleware name
A variable-- --to invoke the next middleware in the
pipeline
The class constructor taking in a request delegate object that is injected using DI
An method accepting as parameter and returning
asynchronously

We will write a custom middleware with a business scenario, as every request should
contain the header, whose value should be . If the
header value is missing or incorrect, then HTTP response should be a bad request, and if it
matches properly, then web API should return the request resource.

Create a C# class with the name and copy the following code in
it:

Middleware and Filters

[129]

Middleware and Filters

[130]

Use this newly created custom middleware in the method of the class
as follows:

We can break down the code as follows:

The class looks for the header value.
If values match, the pipeline process continues. It returns the web
API controller data.
If values do not match, the pipeline processing ends.
Middleware is added to the method. The

 middleware action executes only if the header values match.

To test this code example, we will use the Postman tool for testing. We can pass header
values, view status codes, and also API responses:

Run (F5) the web API projected where custom middleware is written
Open the Postman tool and access the URL,

, using
Test with valid and invalid header values to see the result, as shown in the
following screenshot:

Middleware and Filters

[131]

Migrating HTTP modules to middleware
Prior to ASP.NET Core, the ASP.NET world had concepts of HTTP Handlers and HTTP
Modules. They were part for request pipeline, having access to life cycle events throughout
the request.

They are similar to the concept of Middleware in ASP.NET Core. In this section, we will
migrate the HTTP module to ASP.NET Core middleware.

Writing HTTP modules and registering them in is out of the scope of this
book; we will refer to this MSDN article, Walkthrough: Creating and Registering a Custom
HTTP Module (), and migrate
to ASP.NET Core middleware.

To summarize the article--the HTTP module appends a string to the start and end of
response when request of file extension is .

Middleware and Filters

[132]

Create C# class that does look for the request that contains the PATH
which contains . If present, then it responds with appropriate text as part of the code.
An extension method is also written to use in the method in the class,
as follows:

Middleware and Filters

[133]

Call the middleware in the method of the class as follows:

Running the application to view the middleware response, we have converted
 and of the HTTP module into the middleware class, as shown

in the following screenshot:

Introducing filters
Middleware is a powerful concept in ASP.NET Core; properly designed middleware can
reduce the burden of request processing in the application. ASP.NET Core applications,
either in the form of MVC or web API, work on MVC middleware, dealing with
Authentication, Authorization, Routing, Localization, Model binding, and so on.

ASP.NET MVC apps contain Controllers and Actions, and controlling their execution
would be great if required.

Middleware and Filters

[134]

Filters help us to run code before or after a particular stage in the execution pipeline. They
can be configured to run globally, per-controller, or per-action.

Filter pipeline
Filters run within the MVC context; it runs along with the MVC Action Invocation pipeline,
which is also known as the Filter pipeline.

Filter pipeline gets executed in the following way:

Starts only when MVC middleware takes over. This is the reason filters are not
part of other middleware.
Authorization filters are the first to run; if it's not authorized, then it short-circuits
the pipeline immediately.
Resource filters come into action for authorized request. They can run at the very
beginning of the request as well as at the end, before leaving the MVC pipeline.
Actions are an essential part of MVC. The Action filters run just before or after
the actions of controllers get executed. They have access to model-bound
parameters.
Every Action returns results; the Result filter comes into play with results (before
or after).
Uncaught exceptions are bound to happen in an application, and handling them
is crucial. For these kinds of Exceptions, custom written filters can be applied
globally to keep track of them.

Middleware and Filters

[135]

Filter scoping
A filter's ability to scope it into three levels makes it a powerful feature in ASP.NET MVC
applications.

Filters can be applied globally or per-controller or per-action level:

A filter's written attributes can be applied at any level. A global filter gets applied
on every controller or every action if it's not really necessary.
Controller attribute filters get applied to controller and all its action methods.
Action attribute filters get applied to particular actions only. This gives more
flexibility to apply filters.
Multiple filters on action execution are determined by the order property. If the
same orders arise, execution starts at global level, then controller, and finally at
action level.
When action runs, the order of filters is reversed, that is, from action to controller
to global filter.

Action filters
An Action filter is an attribute that can be applied to a controller or a particular action
method.

Action filters implement either the or interface.
They can view and directly modify the result of an action method.

Let's create a simple action filter using the interface. It checks for Header
entry ; if its value does not match , then it returns an action result as

.

Add the class in ASP.NET Core Web API project. Copy
the following code snippet:

Middleware and Filters

[136]

Open and add the filter created in the preceding code to the
 method, as shown in the following code:

We can break down the code as follows:

The class implements and checks the
header value in the method.
In the class, the method is added with the action filter

. This method returns data only when a valid header is
passed.

Run the application with valid header to see response.

Middleware and Filters

[137]

In this example, we can see the difference between middleware and filter,
as filter can be applied to the method or .

Authorization filter
These filters control the access to action methods or controllers. They are the first to get
executed in the filter pipeline. Once the filter is authorized, other filters get
executed.

Create in the web API project, the following code snippet added the
 attribute at controller level. It indicates that any action methods cannot be

accessed unless authorized.

The method is decorated with the attribute; it allows to access the
action method:

Middleware and Filters

[138]

Run the application and access the products API using Postman.

Exception filter
In ASP.NET Core, exceptions can be handled in two ways: by
middleware or writing our own exception handler using the interface.

We will write a custom exception handler using the interface, register
it globally in MVC services, and test it.

Create the class and implement the interface
and the method. This filter reads the exception and prepares to send it to the
client, as follows:

Middleware and Filters

[139]

Create the class as the class:

Open the class and modify the method to include MVC
service with exception filter options:

Middleware and Filters

[140]

Create the web API controller. The following code snippet shows
that the method throws an exception if is :

Running the application, access API by passing id as zero (0). The application
responds to us with an exception message:

Middleware and Filters

[141]

Summary
In this chapter, you learned a great deal about middleware, the request pipeline, and
understood the middleware and its order. We wrote custom middleware and migrated
HttpModule to middleware. The concept of middleware is the heart of request processing.

You learned about filters, its pipeline, ordering, and created Action filters and Exception
filters in depth, and also learned about Authorization filter.

In the next chapter, we will focus on writing unit tests and integration tests.

77
Perform Unit and Integration

Testing
There is no system that is 100% correct. Every system or procedure has bugs. Know that
everything you write is not correct--it is subject to change, and will need correction. Some of
the best systems in the world are modelled around this fact.

One, in particular, is the airline industry, and we know there have been very few accidents,
except of late. Their risk is modelled around systemic failure or the Swiss cheese model,
represented in this diagram:

Each component of your system can have bugs, which is expected. The problem comes into
being when the holes line up and a flaw is exposed. Having an adequate set of tests along
the way can help with this problem.

Perform Unit and Integration Testing

[143]

In this chapter, we will cover the following topics:

Test-driven development
Integration API testing
xUnit

Uncle Bob's three rules of test-driven
development
Here are some guidelines to Test-Driven development (TDD):

Only write code to make a test pass
When writing a test, write the minimal to make a test fail; this includes your code
not compiling
Write the minimal amount of code to make a test pass

With that said, the other rule of thumb is Red-Green-Refactor.

Red-Green-Refactor
Write a test; if that doesn't compile, this is red. Make it pass, that is your green. Then
refactor the code, not the unit test, to your heart's content, that is your refactor.

So red, green, refactor, that should be your mantra.

I know I have already started the production code in the preceding chapters. If this was a
book about TDD, then I would have started with the test. Our aim has been to introduce
ASP.NET Core 2.0.

We will go back to our example that we started off with, Puhoi cheese, and I will recap that
we are storing and can retrieve a few stores that we have. A store has a description and the
number of products that it has, among other data.

Let's say we want to expand on that, and provide some information about the products.

A product will have a name, some description, price, the number in stock, and the size (for
now, we will keep the size simple). Let's get cracking.

Perform Unit and Integration Testing

[144]

First create a test project--we will start with our models, and work our way up:

I create a new class for our test, as follows:

Let us write the first test thinking about Red-Green-Refactor and the three rules of TDD.

Perform Unit and Integration Testing

[145]

By creating a new class which does not exist, we have compilation errors,
which is our red as shown next:

To make this test pass thus far, we need to create a class:

Add a reference to the test project, and we can now build our test project. Let us complete
the test:

I use for a more behavior-driven syntax; add a NuGet reference to
.

Fix the class as follows:

Perform Unit and Integration Testing

[146]

Flick back to the test class, and give it a run. It should pass; we have green:

There is nothing to refactor, so we will continue to our next test. Hope you enjoyed the first
test unit.

Let's start adding tests for our model attributes; I will begin with , as follows:

We have red.

Add to the class, like this:

Then I complete the test for by adding the assertion as follows:

Perform Unit and Integration Testing

[147]

This is the pattern that can be applied to be our model to a full set of requirements that we
need to use TDD.

The following screenshot shows the complete set of passing tests:

The resulting model is as follows:

Next, we move on to the validators; as before, we will use Fluent Validation to assist our
validation cases.

I created a model, and called this a model, as follows:

Perform Unit and Integration Testing

[148]

Then we'll create a test to say that when we have a Green model, I expect the validation
count to be zero:

Nice, we have red. Now let us get our model to have a validator:

My test result is red, as seen in the following screenshot:

Perform Unit and Integration Testing

[149]

Now we have to make this test pass.

I used our implementation of validate from the class on the
class, which led me to create a validator for the class, as follows:

With no real validators, which is fine, this was the least amount of code I needed to get my
test to pass:

Now I will take the Green model, make some changes to get it to a Red model, and then test
the validation to get a validation result. In this case, we want something which is not equal
to zero, and we know that we are testing our model:

This preceding code is our red test. I have used the Green model and set the property
to an empty string. Calling validate, I expect the validator to return one invalidation.

Now the code to make the test pass is as follows:

Perform Unit and Integration Testing

[150]

This will make our test pass, and establish the pattern for the rest of the validation for the
attributes.

I encourage you to complete the rest of the validation.

After writing the test code, I ended up with these validators:

All the tests pass this time, as seen in this screenshot:

Running the API test
Open a command line to the API project, and using the tools for .NET core, run the
following command:

dotnet run

Perform Unit and Integration Testing

[151]

So we have our API running on port , or you can get the API to run on IIS--I choose
this, as it's simpler, and allows me to quickly have the server running the API, and to run
some tests against it. The first test is as follows:

In the preceding test code, we call the endpoint on the controller, and check
that it is not null, and then that we can get back a (200) response.

Nothing fancy, but there's at least some test in place to start off with.

To set up the base address, I set this in , and get this value at the test initialize:

Lastly, the value is set in the file, as follows:

Perform Unit and Integration Testing

[152]

The Post Created test

We use the standard wrapping this in a using statement, so the client can be
cleaned up when we exit the test. The common pattern here is used with the other actions as
well.

Setting the base URI
We use our Green model, and then use the client's notice that we don't
need to do anything with our model, just point to the client to request the URI, which we
build up in the test.

We assert that the response should not be empty. Also, we expect that the status code
should be created.

The Post Conflict test
With this test, we check if our service responds with a status of . How can we do
this?

Send the same data twice, and this is what we do.

Perform Unit and Integration Testing

[153]

We get our Green model as before. Call using our , and although this is
an act, in this context of this particular test, it is part of our setup. Now call again,
which is where we act. We then assert that we get back a conflict:

The Put tests
In the tests, we execute a post request to have our resource created. Then use the same
model, which is our green model, and change the name for the model. This is where we do
this:

Now we are ready to call the method using our , thereafter asserting that
our response is an okay:

Perform Unit and Integration Testing

[154]

The Delete tests
In the tests , we use the same pattern as the preceding test. We create our resource
as we did before. Then use to call , and assert that the response we get
back is an okay:

The xUnit tests
An alternative to MS-Test is xUnit, an open source unit testing framework. Those of you
familiar with nUnit and xUnit will love having this in .NET Core and Visual Studio.

Perform Unit and Integration Testing

[155]

Microsoft has packed xUnit with .NET core SDK, so you don't have to install xUnit as a
separate package.

The Models tests
Create a new project; this will be the class library for .NET Core.

I named this . I will be writing the same test that we created
earlier on in the chapter for the models, but as a xUnit test, and then we'll look at the
differences:

Perform Unit and Integration Testing

[156]

I copied into the project; you can do this, or add the file as a shortcut.

To be able to use the models project and common library, which are .NET assemblies, I had
to recreate them as .NET Core assemblies. You will find copies of these in the repository.

You should now see this in your solution explorer:

So, add a reference to .

Now that we have our internal core assemblies, we now need our external assemblies. If
you recall, we have used for our assertions in the test.

 is prerelease, so you have to remember to tick the prerelease box:

Create a new class, , and add the following test:

Perform Unit and Integration Testing

[157]

Notice the attribute above our test method. Also, the class is not decorated with
.

Open a command window, go to where the test project is, that is,
, and run the following commands:

We restore the packages in , compiling the test project, and lastly, running
the test, all from the command line. You can see the benefit of having this, which can be a
batch take on your environment, and ultimately, running on your continuous build and
deploy.

The results of the test will be outputted to console:

If we compare the test that we had written in our MS test, it is the same except that the
 attribute is substituted with .

This is not to say that you can take your MS test and swap the attributes, and you have a
xUnit test. Let's explore some more of the tests that we have written, and what it takes to
convert them to xUnit as well as demonstrate that xUnit can be used with .NET Core
assemblies.

This class validates the object we are using in project:

Perform Unit and Integration Testing

[158]

This preceding test looks very similar to our MS test, nothing too exciting.

API Test
Let's try and replicate our API test. Create a new .Net Core project named

, and change the file as follows.

Add an file with the following entry:

Add a class named as done previously. Copy
and as previously set out.

This the constructor:

We use the class to read our file, which is in a
JSON format.

This is different from what we have in the MS test. As we write our first test, it will become
apparent why we need the method.

Perform Unit and Integration Testing

[159]

Our test is as follows:

Open the command line to the API project, and type . This will start up the
web server hosting our API. Either run the test from within Visual Studio, or from the
command line with the following commands:

The test will pass. Next, let us write a test to post some data to our API:

Perform Unit and Integration Testing

[160]

So there are a few things that are different in this preceding test as compared to our MS test.
We get the model, which is what we need, but then we have to serialize the model to

. Why ? Our in .NET Core is different from the plain .NET
library. The method takes a URI and . After this, our assertions are
the same:

We use to serialize the object to a string. This is an example of the
conversion:

This is the only difference compared to the MS test, and the same is done with .

Get remains the same, as we do not send any data as part of the payload.

Perform Unit and Integration Testing

[161]

Summary
In this chapter, we covered Test-driven development using Uncle Bob's three laws along
with saying Red-Green-Refactor to help us along the way.

We created some assertions using more of behavior-driven assertions. We then applied all
of this to testing our API as if we were running integration tests. All of this is in the context
if you have set up an automatic deployment, and you need some certainty that your API is
fully functional.

Then we introduced the xUnit test for when we need to create some of our assemblies as
pure .NET Core assemblies. We validated the theory that what we created with our MS test
could be created with xUnit as well.

In the next chapter we will focus on implementing different security mechanisms for web
API.

88
Web API Security

Web APIs serve requests with data and respond with processed data over the HTTP, that is,
the internet. Web API does the necessary work of dealing with data, either confidential,
personal, or business related, in the form of CRUD operations. Any layman would
understand that CRUD operations on data shouldn't be performed by everyone.

With positive or negative intentions, web API designs will be exposed to the outside world
to sneak in without permission. The security of web API should be our foremost priority,
and the focus should be on who will access it, what they will access, and how safe is the
data that is communicated.

In this heterogeneous world of web applications, mobile apps, server-server
communication, desktop apps, and so on, the security of web API should be seamless across
them to avoid hassles in switching the clients. It should be designed on the lines of
authentication and authorization concepts.

In this chapter, we will cover the following topics:

Understanding Threat Model and OWASP
Applying SSL
CORS
Data Protection API
Protecting web API
Implementing JWT
Claims-based authorizations
Identity management in web API

Web API Security

[163]

Understanding Threat Model and OWASP
Right from the start, until the application is being used in production, it's exposed to
different kinds of threats. These different kinds of threats can break the application from
being successfully used. Therefore, it is important to address the threats.

Threat Model
The approach to identify and classify, and the process of addressing the threats is called
Threat Modelling. The outcome of this process is a Threat Model. This process is not
merely related to code review, following coding standards, or deployment processes.

Threat Modelling comprises more of analyzing the security of an application, and it's more
result-oriented when it starts in the early stages of SDLC. The threats rise from written code,
deployment strategy, environment, other applications, and hardware failure.

Broadly, the threats can be grouped in three categories based on their nature: decomposing
the application, ranking the threats, and strategies counter measures and mitigation.

Decomposing the application is the most essential part as it helps in better understanding
the application. This involves creating the use cases in which application is used, its
interaction with external entities, such as software, patches, other applications, services, and
so on.

The extensive documentation helps us stay updated and help any new joiners learn about
the application soon. Various kind of information can be documented, such as the
application name, version, owner, list of external dependencies, entry points of user data
inputs, various assets used, and different levels of trusts given to various dependencies that
directly affect the application.

Ranking of threats will provide us with a list of prioritized threats. The list will ensure the
constant focus on the top categories of threats, which may reduce the chances of threats
being affecting again and again.

A DREAD (Damage + Reproducibility + Exploitability + Affected Users + Discoverability) score
can be calculated for a threat to determine its priority, and the Microsoft DREAD threat-risk
ranking model is one of best ways to categorize the threats.

When threats strike, we can't sit idle and ponder over what to do. For that, counter
measures and mitigations need to build up so that, in minimum downtime, the application
is up and running.

Web API Security

[164]

Some of the counter measures that comprise of general basis are authentication,
authorization, configuration management, backup of application data, error handling,
validation of data, and logging. Denial of service and elevated privilege can also be
considered based on application sensitivity.

More about threat modelling can be read at
.

OWASP
Over the years of the internet growing rapidly, it's usage has been positive as well as
negative. The negative aspect is more challenging as web applications are used in almost all
types of industries.

Web applications are constantly being targeted for vulnerability, providing too much
information to explore, and no secure connection.

OWASP, also known as the Open Web Application Security Project foundation, has
collated a number of steps to maintain healthy, secured, and efficient web applications
without being exposed to threats.

As we are exploring web API (REST-based services), we will briefly explore few of those
threats here:

Passwords, session tokens, and API keys (any sensitive information) should not
appear in URL. As the URLs can be captured in server logs, it's like willingly
giving information.
Using OAuth 2.0 or OpenID Connect as protocols for authentication and
authorization.
Protect HTTP methods for appropriate methods. Sometimes, protecting every
HTTP (, , , and) is not advisable. RESTful APIs need
endpoints such as products to be fetched without authentication; however, to
add, update, or delete, we need to protect those methods.
Use Authorization properly. In any given application, just being an authenticated
user should not have liberty to delete a resource. Check if the user has an
appropriate role, or else respond back with 403 Forbidden.

Web API Security

[165]

Input validation plays an important role since web API doesn't have a UI of its
own. The request model validation should be strict, to ensure that proper data is
stored.

API rate limits should be set to restrict the number of requests. This is especially
important during a brute force attack to take the service down.
Response data should be as appropriate as necessary. A Product class may have
30 properties, but it does not return all of them to clients.
Validating the content type should be done so that unwanted requests are not
processed.
Parameterized values should be passed to a data access layer to avoid SQL
injection. Use of ORMs can solve this problem.

There are many other factors that can be considered while designing web API. Read
through for more
information.

Applying SSL
When the web API requests and responses are transmitted over the internet (HTTP), we
may encrypt the password, but the rest of the application data is exposed to the internet.
The man in the middle can place an in-between client application and web API application
to read those values.

It is very likely to see data being transmitted when the connection is unsecured; to
overcome this, we can encrypt the connection using SSL (Secured Sockets Layer) using
HTTPS. When this is applied, the communication with web API should take place using
HTTPS instead of HTTP.

In ASP.NET Core, SSL can be enforced using the attribute, or enabled
globally by applying a filter to . As our intention is to make an entire
application secured, we should be applying the global filter to use HTTPS.

Open the class and configure the services to use HTTPS if the non-
development environment is used. We can enable HTTPS in non-development environment
as shown in the following code snippet:

Web API Security

[166]

You can change the ASP.NET Core Environment Variable to
production or staging to see the HTTPS in action.

First-time users need to at least enable a self-signed certificate to work
with HTTPS. Creating, procuring, and enabling SSL on ASP.NET Core on
IIS or Nginx is beyond the scope of this book, but plenty of resources exist
on internet. Check out the following links for your reference:

 and

CORS
Cross Origin Resource Sharing (CORS) allows cross origin apps to access the application.
In case of web API, it's a faceless application that receives a request and returns a response;
however, when this web API is consumed in another web application (using AJAX in
JavaScript to call APIs), the client would be on a different domain.

Consider an example, the web API is hosted as and the web
application is hosted as . When the web app calls, the API responds
with No Access-Control-Allow-Origin header is present on the requested resource. This means
your domain is not allowed to access API resources.

This CORS concept can also be used to limit any unwanted web applications to access the
web API. The idea behind this is to add the CORS policy in ASP.NET Core Startup
processing and apply them either globally or as per controller.

In this chapter, we will build a demo ASP.NET Core Web API project, , to
keep a track of personal expenditure. Add the web API controller with

 as its name.

Web API Security

[167]

Create two simple web apps with an index.html page, and use to call the
preceding web API controller, , using the method. You
will see a similar error in the browser console, as shown in the following screenshot:

Now, let's add the CORS policy to a web API project. Open the class and update it
with the following code:

You can break down the preceding code as follows:

Adding a CORS policy with its name as
This policy will only allow requests with the origin
The policy is then placed in an HTTP pipeline processing in the
method

Web API Security

[168]

To allow every web application to access web API, use instead of the domain
name

Run the web API and web applications; the demo web API 1 could successfully receive a
response and the demo web API 2 will receive an error, as shown in the preceding code
related to CORS.

The CORS policy can include varieties of combinations, such as Origins,
Methods, Headers, and so on, making them more flexible.

Data Protection API
ASP.NET Core uses to handle the encryption
keys used to protect state values that get posted between the app and the client.

The keys are no longer used for data protection in ASP.NET Core. Data
Protection is quite an extensive topic; you can refer to the Microsoft documentation
() to know
more about this.

The Cookie generation takes places using Data Protection APIs.

We will take a simple example of encrypting the ID values for a given entity.

Consider the class having various properties that are uniquely identified
by the ID. When we retrieve a list of budget categories or single objects, the ID passed
should also be included. As this ID will be sensitive information to the business, we don't
have to pass the real ID that is saved in the database.

For these kinds of requirement, we can encrypt while responding, and decrypt while
receiving the request. We can achieve this behavior with the Data Protection API.

Continuing with the preceding project, create two classes and
, the later class having as a string, which is the encrypted

version of ID. is used for request and response operations and object
mapping is done using .

Web API Security

[169]

The Data Protection APIs are added to services using
in the class in the method. Create a
class with a property to hold the key used for encryption and decryption; this is called the
purpose key:

As we are using for object mapping, we need to convert the integer ID to
String ID with the help of the Data Protection API, the
interface, and the purpose key.

A custom type converter is used to map from integer ID to String
ID. This needs to be configured in the HTTP pipeline processing in the method,
as shown in the following piece of code:

The custom type converter, , is used by , and it is
written as follows:

Web API Security

[170]

You can break down the preceding code as follows:

 is the source, and is the destination that
is passed to a client calling the web API

 and are DI into the constructor
to create
In the method, the encryption of the ID value takes place using

Now that the client receives an encrypted ID, they will send this ID to fetch a particular
record. At this point of time, we need to decrypt this ID to pass on data source to fetch the
record.

We need to call the method of to convert it back to the
integer ID; the following piece of code snippet performs this task:

Web API Security

[171]

Run the application to add few element and retrieve its list using
Postman . The following screenshot shows the encrypted ID:

Web API Security

[172]

Protecting web API
APIs Controller classes are the heart of web API applications performing the most essential
work of fulfilling business requirements. We need to protect them from unauthorized
access.

The web APIs (controllers) are protected using the attribute that is applied on
controller. Until and unless the client calling is identified, the access to the controller action
methods are not given.

The following code snippet shows that the attribute applied to
 accesses this API endpoint and will result in an

unauthorized response (HTTP 401 Status code):

Trying to access this endpoint on the browser or Postman will result in an unauthorized
access, as shown in the following screenshot:

Web API Security

[173]

Implementing JWT
JWT are also called JSON Web Tokens; they are industry standards for security token used
in securely transmitting information between client and server as JSON objects.

They are widely used for being self-contained, small, and complete. Being small in size,
they can be sent through URL, POST parameters, or inside HTTP Headers.

JSON Web tokens contain credentials, claims, and other information. To know more about
JWT, I recommend reading .

One of the reasons for JWT to be so popular is that, when it is used with web API, the
clients consuming them can work with ease, be they mobile app, hybrid app, web app, or
any programming language based on Desktop apps or services too.

A sample JWT is an encrypted string containing information for secure communication, as
shown in the following screenshot:

The workflow for secured communication using JWT on web API can be illustrated in the
following diagram taken from the jwt.io website. The steps are self-explanatory.

Web API Security

[174]

Generating JWTs
The first step is to generate JSON web tokens in the ASP.NET Core Web API project. For
this, let's create a web API Controller-- .

In this , we will use containing a username and
password to check against . If the users exist, then we generate a JWT token that
is passed as a response.

We will use the Entity Framework Core In-Memory provider to generate database context
and tables and seed data to it. Refer to , Integration with Database, on working with
different databases using EF 6, EF Core, and Dapper ORMs.

Web API Security

[175]

The code will use , which is the EF Core
database context, and , which reads the file and
contains the entries for the JWT generation:

Web API Security

[176]

You can break down the preceding code as follows:

The constructor takes database context and configuration entries using DI. The
context and configuration should be registered in a class--

.
 is the HTTP POST Action method that generates the JWT token,

taking .
It checks if the username and password exists in the table; if so, then it
returns the object.
A JWT token has to have these details before generating issuer, audience, claims,
expires, and signingCredentials.
Issuer is one who generates JWT; in our case, it's the web API. Best practice is to
keep these entries in a configuration file.
Claims will help us generate JWT with proper claims, that is, username, unique
keys, or any other information included.
Expires is the time validity of the generated JWT.
SigningCredentials are most important aspects as they contain a strong key (place
them in configuration files) and have security algorithms used. It's recommend to
use a pretty strong key for a better JWT.
At the end, it uses the preceding information to generate JWT and returns it as a
response.

Web API Security

[177]

Running the application and calling the API endpoint with proper credentials will result in
a response as shown here:

Validating JWT
From the figure, JSON web token sample, we achieved the generation of JSON Web Token
and returned it as a response. Now, when any client (web, mobile, or desktop) calls the web
API endpoint with the preceding generated token, we need to validate if this valid JWT is
generated by our application.

If it validates successfully, then allow it to access the requested resource, that is, the user is
authenticated now. If we don't validate it, then we are bound to get an unauthorized
response.

Since this will be the first step when the API request reaches the HTTP pipeline, we need to
add validation functionality in the method of the class using the

 middleware.

Web API Security

[178]

Add the following piece of code in the HTTP pipeline processing so that validation of JWT
takes place:

You can break down the preceding code as follows:

 service takes in the options parameter
 to validate JWT.

While generating the JWT token, we used some parameters; now, the same
parameters are needed to check the validity of a token in request.
The parameters data is read from the configuration files. Some of the parameters
are , , and .
Any changes in the preceding parameters will fail in validating the JWT, that is, a
tampered token will not be validated.
Once this succeeds, the request resource is accessible.

Web API Security

[179]

Run the application and use Postman to call the API endpoint with a token in the header, as
shown in the following screenshot:

OAuth
OAuth is an industry-standard protocol for authorization; it focuses on client development
by providing specific authorization flows for web applications, desktop, mobiles, and so no.

The usage of OAuth needs a UI for flow-based authentication. The steps to integrate it with
ASP.NET Core Web API are much simpler than thought. Refer to

, and follow the steps shown there.

Claims-based Authorizations
In the previous sections, we saw how to achieve authentication using JWT, that is, identify a
user against the data stored and allow them access to the web API resources.

In most of the applications, we need to allow only certain authenticated users to perform
tasks. This also known as authorization.

In ASP.NET Core, the authorization technique can be used to achieve claims. Instead of
traditional roles used for authorization, we use claims with JWT to perform authorization.

Web API Security

[180]

Modify to include the property. This property will indicate if the
login user is a super user or not. The class now includes the
property:

Modify the action method to include as
claim. This will get added to the generating token:

Now, run the application and call the token generation endpoint as shown in the preceding
code. The new token with the claims will be added. You can verify the token
contents on the jwt.io website.

Authorization using the claims policy
We were successfully able to generate a token with claims; now, it's time to add the claim
policy.

The claim policy model consists of three main concepts: policy name, requirements, and
handlers.

A policy name is used to identify the claims requirements
A requirement contains a list of data parameters used by the policy name to
evaluate the user identity
A handler evaluates the properties of the requirements to check if the user is
authorized to access an API resource or not

Web API Security

[181]

The first step is to register the policy in the method of the
 class using . For that, the requirement is to check if the

 policy is set to or not:

The claim policy should be used with the attribute on either controller level or
action method level. Here, we want only the authenticated user with the claim
in their JWT to access the method to create :

Web API Security

[182]

Run the application and use Postman or Fiddler to call the token generation API endpoint,
as shown in the preceding code.

Use a non-super user credentials, then use the generated token to call the method of

This will be bound to fail; however, interestingly, it doesn't give a
response, but it gives a much more clear response.

The response says that you're authenticated but not
allowed to perform this operation; that is, you're authenticated but not
authorized.

Now, try the same scenario with as and call the method with a
newly generated token. Everything works well and it adds the record with an response.
The following screenshots show the claim-based authorization in action:

Web API Security

[183]

A super user with a valid authentication and authorization token was able to access the
resource, as shown here:

Identity management in web API
ASP.NET Core Identity is a membership system to add the login functionality along with
creation, updating, and deleting application users. The identity system also provides the
role management to assign specific roles to the users to provide authorization.

Identity management is one of the primary tasks in web security. The ASP.NET Core
Identity package provides all the features for complete working.

It also provides external authentication with Google, Facebook, Twitter,
and so on. It's highly recommended that you refer to the following link for
a better understanding of Identity:

We will add the Identity framework for the ASP.NET Core Web API project, authenticate it
using application users, and also look into 2FA (Two Factor Authentication).

Web API Security

[184]

Adding the Identity package
Create a new ASP.NET Core application with a web API template, or use any existing
application. The following packages will be a part of the .NET Core SDK:

Microsoft.AspNetCore.Identity
Microsoft.AspNetCore.Identity.EntityFrameworkCore

Configuring the Startup class
Once the packages are restored, include Identity in the and

 methods of the class, as shown in the following piece of code:

ASP.NET Core Identity is undergoing breaking changes, and with the final
changes of ASP.NET Core 2.0, most of this becomes obsolete. However, a
modified code, post release, will be available in the code bundles. Watch
out!!

You can break down the preceding code as follows:

 is a default database context used for Identity to use EF
Core to work with databases. Setting up a connection string, it's read from

.

Web API Security

[185]

The method gets added to services. The and
 methods are added to services as well. They are the actual users

and their roles.
The method in the HTTP pipeline indicates that processing
should pass through Identity.
The class helps create a sample user when the application
runs. In a real-world scenario, we would have a separate API endpoint to add
users.

Creating identity-related database
Using the EF command tools, we will run migration and create an identity database, and
then we are ready with the identity-related classes and database. To create database using
the EF command tools, refer to the EF Core section in , Integration with Database.

Cookie-based authentication
Once the Identity tables are created in the database, run the application once to seed a
default user. (This is an optional step, for demo purpose we seed the database).

Create , copy the following piece of code to read the username and
password, validate against the identity database, and return cookie:

Web API Security

[186]

You can break down the preceding code as follows:

 contains the necessary methods for login, so its DI into
AuthController

The action method takes in (username and password)
for authenticating against the database
The method, using the credentials model properties, verifies
the account and returns an response, but, in turn, it sets the cookie in the
browser to be used for further API calls

Run the application and use Postman to make an endpoint call once the credentials match.
An response is returned with the cookie, as shown in the following screenshot:

Web API Security

[187]

Now, keep the Postman window as it is and make another call to
 (refer to the code samples), even though it has the

 attribute. The cookie does get validated to return a response, as shown in the
following screenshot:

Two-factor authentication
The usual way of authentication, that is, username with password, works in most cases, but
when the need for additional security arises, such as a phone number or email verification,
then we need to use the two-factor authentication (2FA).

We will still use the good old username and password authentication; however, along with
that, if 2FA is enabled for users, then we will send a security code via SMS or email, and
only when the code is entered, the actual sign in takes place.

Note that either the SMS or email needs to be confirmed along with 2FA
enabled.

We will create with the following piece of code:

Web API Security

[188]

Web API Security

[189]

You can break down the preceding code as follows:

The , , and classes are needed
for login, fetching user details, and password matching respectively. They are DI
into the controller.
The action method checks if the user exists, 2FA is enabled, and phone
number is confirmed.
If so, then an SMS is sent through a third-party SMS provider such as Twilio or
Clickatell.

 checks if the SMS code matches. If it does, then the actual login
takes place, returning a cookie.

This example involves multiple endpoints; the clients consuming this endpoint can refer to
ASP.NET Core (MVC apps) with Individual User Accounts to check how the UI flow is
done.

ASP.NET Core with Identity and JWT can work.

Web API Security

[190]

Summary
Web API security should be a priority right from the beginning. Even though the business
needs it or not, the developer should focus on providing the right kind of security to the
web API in the form of SSL and CORS, and the authentication using a token.

Authorization also plays an important role in API usage, as application users may have
different levels of credentials; we looked into this with a claims-based authorization.
ASP.NET Core security can be extended with Identity management using Identity Server 4,
OpenId Connect mechanism, and so on.

In the next chapter, we will learn about integration with database using popular ORMs in
the market.

99
Integration with Database

Data is king in the world of software applications, either in the form of databases, files,
streams, and so on. It's very hard to find applications that don't interact with the database.
In the previous chapter, you learnt a great deal about the ASP.NET Core handling requests
in the form of routes, middleware, and filters, and its security mechanism; they form the
faceless frontend of the application.

Until now, we haven't talked about ASP.NET Core dealing with the backend (a popular
term for storage of data), that is, with databases. Any ASP.NET Core (Web API) will
definitely have to integrate with databases at some point of time during application
development or right from the beginning.

Microsoft SQL Server was often considered the go-to database for ASP.NET apps. Now
with ASP.NET Core, integration with different kinds of database is more interesting than
ever. In different database systems, such as Oracle, MySQL, PostgreSQL, SQLite, and so on,
integration is more cross-platform in nature now.

With the help of ORMs, integration with database is quick, scalable, and efficient as well.
We will explore ORMs by Microsoft, known as Entity Framework (EF 6.x and EF Core) and
Dapper (Micro ORM) for the existing and new database.

In this chapter, we will cover the following topics:

A brief introduction to Object Relational Mapper
Integrating using Entity Framework 6.x
Integrating using Dapper
Integrating using EF Core

Integration with Database

[192]

Brief introduction to Object Relational
Mapper
Integrating with the database deals with lots of groundwork to perform simple CRUD
(create, read, update, and delete operations. Some of the ground work is connecting to the
database, releasing the connection, pooling, querying the database, dealing with single or
multiple records, connection resiliency, bulk update, and so on.

Writing up the code for this ground work is a huge task, often ending with lots of
handwritten code, duplication of code, erroneous results, and maintenance issues.

Object Relational Mapper (ORM) offers a better way to integrate with the database in the
form of class-object mapping to a relational database table.

ORM provides the necessary ground work as mentioned above and also uses object orient
concepts to map class objects to a relational database table.

For example, the widely used learning database for Microsoft SQL Server is Adventure
Works. The relational table, maps to the class in .NET-
based applications. ORM is not confined to the tables; they deal with stored procedures,
views, schema migration, and so on.

Some of the popular ORMs are Entity Framework (6.x and core), NHibernate, Dapper, and
so on.

In this chapter, we will focus on using the Entity Framework and Dapper ORM for
integration of database with ASP.NET Core Web API.

Integrating ASP.NET Core Web API and an
existing database using Entity Framework
6.x
Entity Framework (EF) is ORM for .NET world. EF, just like other ORM, can be used to
create new databases and tables or use it against an existing database.

We will be building ASP.NET Core Web API integrating against existing database using
Entity Framework 6.1. We will use the Microsoft SQL Server learning database
AdventureWorks2014.

Integration with Database

[193]

EF 6.1 is an ORM built with full .NET framework, meaning it works with full .NET apps
only. To achieve this, we will need to create ASP.NET Core for full .NET Framework
instead of .NET Core.

We will create (ASP.NET Core Web API) integrated with the
AdventureWorks2014 database using EF 6.1, by following these steps.

Restoring the AdventureWorks2014 database
Download and restore the AdventureWorks2014 database backup
(). Microsoft SQL
Server 2014 is used in this example.

This will act as an existing database for us to use EF 6.1. You can use any existing database.

EF6 data access library
As mentioned in the preceding section, EF6 works only on full .NET Framework; so, we
can't directly use them in an ASP.NET Core application. For this, we will need a class
library and we will perform reverse engineering on the existing database,
AdventureWorks2014 is our example.

Reverse engineering is a process in the Entity Framework (ORM) to generate the
classes/models (they correspond to tables) and build a database context to work with the
database.

Create a blank Visual Studio solution, , and add class library
 to it. This will act as data access layer and will be referenced in

ASP.NET Core app.

To generate classes/models using reverse engineering, right-click on the project name to
add a new ADO.NET Entity Data Model and follow the steps to connect to a database,
select the appropriate tables, stored procedure, and other database items using the Entity
Data Model wizard.

For more visual steps, please refer to .

During this process, we have selected the table only; this will result
in the class, class containing of to work with.
In EF terms, we performed the reverse engineer code, the first process of the
AdventureWorks2014 database.

Integration with Database

[194]

In the real world, existing database schema will surely contain many
tables, SPs, and so on. Web API's are usually built targeting only relevant
tables. By reverse engineering only the relevant tables, we are reducing the
in-memory database snapshot generated when EF runs in the application.

It's one of the recommended approaches to use required tables when
working with the existing database for EF.

Integration with Database

[195]

Creating an ASP.NET Core app for the full .NET
Framework
As mentioned earlier in this chapter, EF6 is built on a full .NET Framework, so we can't
create an ASP.NET Core app under .NET Core, instead, we should be creating it targeting
the full .NET Framework.

Every ASP.NET Core feature can be used, but it cannot be deployed on a non-Windows
machine. Most of the existing enterprise still use a full .NET Framework on deployed
machines, so leveraging it won't be an issue.

In the blank solution, create , an ASP.NET Core Web Application (.NET
Framework) with web API template. This will be our ASP.NET Core Web API for
integration with the AdventureWorks2014 database.

As we have the data access class library ready, include it in the web API project using Add
Reference. Ensure that the EntityFramework (6.1.3) library you add is either using NuGet
or Package Manager Console.

On the target project, right-click the project name and click Add Reference
to open a folder dialog window, navigate to the folder and select
AdvWorksAPI.DataAccess to add it web API project.

Using IProductRepository to access the database
Generally, when accessing databases using ORM, a repository pattern is used to access EF
DataContext. There are many purposes of using it, the prominent ones among them being
are:

It separates the logic to retrieve data
The mapping of entities to the business model irrespective of data source
It helps in unit testing as well as integration tests

Create an interface and its implementation in
the folder as follows:

Integration with Database

[196]

You can break down the preceding code as follows:

It's an implementation of the interface.
 is dependency injected from the class, which helps

in the unit test.
 takes in the object and adds it to . It's

not saved in the database yet.
 takes in the object and gets removed from

. It's not saved in the database yet.
 takes in to retrieve the product details.

 returns the first 10 products stored in the database. As the table
has many records, it takes the first 10 records.

Integration with Database

[197]

 returns a Boolean based on the existing product.
The method persists all changes done.

Connection strings and IProductRepository in startup
A connection string is a must when working with database; it contains the location of the
database server, database name, credentials to access the database, and other information.

ASP.NET Core stores all configuration/connection data in JSON files known as
. Copy the following connection string in the file:

Now that we have provided the connection string () and wrote
 to access the database, we will need to configure (participate in

dependency injection) them to be across the application.

For this, we will need to add them in services in the method, as
shown in the following code:

Using AutoMapper
Any existing database would have many columns in tables. Sometimes, the web API
response or request object does not need all properties in line with table columns.

Integration with Database

[198]

We can write a trimmed down version of the class in the data access layer as the
 class in the folder. With many columns, manual mapping becomes

difficult to maintain. The class should be transformed to and vice
versa; this transformation can be eased using .

 is a convention-based object-object mapper for .NET. Install this using NuGet.

First, let's create , a trimmed version of the class in the folder,
as follows:

Using is optional, using it would help keep objects lean.

We will need to initialize in the pipeline processing so that request and response
are mapped accordingly:

Integration with Database

[199]

Now that we have an interface to talk to the database using , an initialized
mapper to object transformation, it's time to write the web API controller.

Writing ProductController to access the database
Right-click on the folder to add the class, and name it
as . Copy the following piece of code to perform CRUD operations on
the table:

Integration with Database

[200]

Complete source code is available in the code bundle.

We can break down the preceding code as follows:

 is dependency injected in the constructor; we registered
this in the class.
The method returns a list of products from the database via the

 interface. comes into action for object
transformation, to .
The method returns the matching product based on ,
else returns the HTTP response. also does
transforms to .
The method receives (an object similar to

) using of request. It checks for null and model validation,
and, if any, returns . It also maps back to the object and
adds it to of EF6. The method is called to persist the entry in the

 table of the database.
The method also performs a similar operation as post, the only difference
being is update, not create.
The method checks if the products exists, then deletes it from the
database by calling the method.

Build and run the project; use to perform CRUD operations on
, as shown in the following screenshot:

Integration with Database

[201]

Integrating using Dapper
Dapper is an open source simple object mapper for .NET-based applications. It's also
referred to as Micro ORM when compared with Entity Framework or NHibernate.

It extends the interface and does not depend on any specific DB
implementation; this makes it work with almost all relational databases, such as SQLite,
SQL CE, Firebird, Oracle, MySQL, PostgreSQL, and SQL Server.

It's considered as the king of ORM for being lightweight, high performance among other
ORM. I recommend reading their GitHub repo at

.

As Dapper is used with an existing database, we will use the same AdventureWorks2014
database for it. In this section, we will work with the table.

Let's create an ASP.NET Core Web API application integrating with the
AdventureWorks2014 database using Dapper ORM.

Integration with Database

[202]

Creating AdvWrksDapper Web API and adding
Dapper library
Dapper can be used with the full .NET Framework as well as .NET Core Framework, so let's
create the ASP.NET Core (.NET Core) application with web API and name it as

. Use the NuGet manager to add Dapper library.

Using IDepartmentRepository and department model to
access the database
Create the class in the folder to participate in accessing the database.
Remember, property names should be in accordance with table column names:

Just like we did in the previous example, we will create for
performing CRUD operations, which are as follows:

Integration with Database

[203]

Integration with Database

[204]

We can break down the preceding code as follows:

Reading the connection string configured in the
class using ASP.NET Core options pattern.
The property is used to access the SQL database using the
connection string.
The method adds the department by opening the connection
and executing the statement and returns on success. This is
quite different from the EF6 example seen in the previous section.
The method deletes the record from the database table
based on and returns on success.
The method checks the record exists.
The method returns the department record based on

.
The method returns a list of the departments present in the
table.
The method performs an update SQL operation and returns

 on success.

Connection string and IOptions in ASP.NET Core
Any database can be accessed by the connection string containing its location, database
name, access credentials, and so on. This information can be placed in ,
as shown in the following piece of code:

Integration with Database

[205]

We can access this configuration or the connection string details in the application and use
it as a strongly typed configuration class across application eliminating magic strings.

To do this, let's create the class in the folder, as shown in the
following lines of code:

In the class, the method modifies the code to read the
configuration section and also registers to be a dependency
injected in the application:

Adding the DeparmentController Web API
Add a new web API controller class in the folder, naming it as

 and add the following code to perform CRUD operations using
HTTP verbs:

Integration with Database

[206]

Integration with Database

[207]

You can break down the preceding code as follows:

Dependency injecting in the constructor.
The method fetches all departments and returns as a list.
The method fetches the department record based on the ID.
The method checks if the request is not null and is valid, else it returns a

 response. If everything is fine, it saves the record into the database.
The method updates the records of an individual department.
The method checks if the department exists, deletes if it exists, or
returns a response.

Build and run the application; use Postman (or Fiddler) to test the web API. We will test the
 method in this scenario by passing the object corresponding to the

object:

Pass this JSON in the body of the HTTP request and set content type as application/JSON.

Upon sending the request, it goes through the method, then to
, and performs the operation to add the new

department.

Integration with Database

[208]

Similarly, perform other operations such as , , and using Postman.

Note that we didn't use here; you can use it by referring to
the EF6 demo.

Integrating with EF Core
Entity Framework Core (EF Core) is the latest ORM from Microsoft for the .NET Core
framework in line with the ASP.NET Core roadmap. Now, ASP.NET Core and EF Core
provide a great platform to build cross-platform web applications.

EF Core is a complete rewrite of EF 6 into more focused packages to make it leaner. The EF
team plans to support both relational and non-relational databases. At the time of writing
this book, EF 1.1 was released and will take a while to develop as a mature ORM. To learn
more about EF Core, visit .

In this section, we will create the web API project to integrate with
the database using EF Core. We will use the MS SQL Server 2014 Express Edition as the
database server; however, at present, you can also work with SQLite, MySQL, and
PostgreSQL.

Integration with Database

[209]

Creating PacktContactsCore ASP.NET Core
project
We are completely dealing with .NET Core framework for ASP.NET and EF ORM, so let's
create an ASP.NET Core project with a web API template with its name as

.

You can either use the Yeoman generators or .NET CLI to create a project.

Adding the EF Core package and tooling
This step is very important because we are adding EF Core using NuGet packages and EF
Core Tooling. The EF tooling provides CLI support to work with EF migrations and
perform database updates.

Use the NuGet Package Manager or PMC (CLI) to the add EF Core SQL Server package:

"Microsoft.EntityFrameworkCore.SqlServer": "2.0.0-preview2-final"
"Microsoft.EntityFrameworkCore.Tools": "2.0.0-preview2-final",

To work with other databases, install appropriate NuGet packages by
referring to the provider list in this link:

.

Contacts model class and DbContext
Create a class in the folder that corresponds to the table in the
database, as follows:

Integration with Database

[210]

With EF, we will need -a class-acting as a bridge between
the database and the application to perform database-related operations:

Configuring services to use the SQL Server
database
To connect to a database application, one needs a connection string; just like the preceding
examples of EF6 and Dapper, add connection string details in the file
as follows:

The method needs to be added to the services collection in the
class by reading the database connection string:

Integration with Database

[211]

EF tools for database migrations and updates
Now that we are ready with the and () class and
have registered the SQL Server to services collection with the connection string, it's time to
add EF migrations and update the database. (In EF terms, it means creating or updating the
database schema.)

While using EF (either 6.x or Core), the first step is to generate a class based on
data model. This step generates a replica of SQL script in code-like table creations,
adding column constraints, seeding, and more.

Run the following command from the folder of the project to create the EF migrations
class:

dotnet ef migrations add init

Once successfully done with migration command execution, a folder is created
in the project containing the first SQL scripts (in code format) and contacts the context
snapshot (its replica of schema in code).

In the preceding command, is the step of adding migrations, that is, this is
initialization (first step). Suppose any changes are made, then we will need to provide an
appropriate name. For example, a new table address gets added, so, make the
class unique by adding instead of .

Now, run the following command to generate the database along with its schema in the
database location provided in the connection string:

dotnet ef database update

Integration with Database

[212]

This command will connect to the SQL server database server and create (updates, if it
already exists) the database. The database name is present in the connection string, as
shown in the following screenshot:

ContactsController for CRUD operations
Add a new web API Controller class, ; it will perform CRUD
operations on . Copy the following code:

Integration with Database

[213]

Controller code does not use repository pattern and , reader
can explore EF 6 example to implement repository pattern and

.

Integration with Database

[214]

We can break down the preceding code as follows:

The constructor takes via DI.
The method retrieves a list of contacts from the database.
The method gets contact details to match the ID passed, else
returns .
The method inserts the object into the database after a null
check and model validation.

 updates the object based on ID and updates all properties.
 can be used here for object mapping.

The method deletes from the database based on ID.

Build and run the application and use Postman to test web API. The following screenshot
shows a request in action with an appropriate response:

Exercise for reader to perform other operations either using Postman or
Fiddler.

Integration with Database

[215]

Summary
In this chapter, you learned a great deal about integrating the ASP.NET Core applications
with databases using ORMs, such as EF 6.x, Dapper, and EF Core. With many options to
use database providers, it certainly gives great flexibility.

Without using ORMs, we can still use classic ADO.NET to communicate with the database.

In the next chapter, our focus will be to handle errors and exceptions, gracefully inform
clients about it, and design tracing and logging mechanisms.

110
Error Handling, Tracing, and

Logging
Errors, or exceptions, are bound to occur in any software application, even after extensive
testing on various environments. Once the application is in production, the software is
exposed to a higher load, proper or erroneous user inputs, system or network crashes, and
other occurrences that would lead to an application crash if not handled properly.

The concept of exception management says that the system should continue working in the
case of a catastrophic failure, and should log detailed information of the failure in the form
of errors or an unhandled exception for further investigation.

As we are building an ASP.NET Core Web API application in this book, which will be
mainly consumed by web or mobile clients, any exception should be gracefully handled by
the web API so that the clients can continue to work.

In this chapter, we will learn the basics of logging in ASP.NET Core, writing errors or
exceptions to various logging providers, and building an exception handler to gracefully
return the appropriate response to clients.

In this chapter, we will be looking at the following topics:

Basics of Logging in ASP.NET Core
MyWallet--Demo ASP.NET Core project
Logging errors to a file using NLog
Logging errors to a database using Serilog
Exception management in a MyWallet project

Error Handling, Tracing, and Logging

[217]

Basics of Logging in ASP.NET Core
One of ASP.NET Core's features is its in-built logging using . Right away,
when you create an ASP.NET Core application (empty-, MVC-, or web API-based), you will
see that the method of the program class does the
ground-level work for the Logging functionality to work-it reads the
file for the logging section to provide all the necessary infrastructure to log information to
debug or console window.

The use of Logging is greatly simplified by in two parts--
and .

The method takes in to write/store the logging
information generated by the application. The provider can either be a console, debug
window, file, database, cloud-based storage, or third-party log analysis service (Splunk,
Raygun, Loggly, and so on).

The method takes the name of the class or method that will write the log
information through the aforementioned possible providers.

In short, to log all the logging information to a file, we need to use the file provider (NLog,
Serilog, or any other provider) and create an instance of to send the log
information to be stored in the file.

Logging level
The log information that is written will have a different level based on the severity of the
information being written. The following table depicts the log level in ASP.NET Core in
ascending order:

Log level Written as Remarks

Trace = 0 Part of developer debugging. Can
include sensitive information.

Debug = 1 Part of developer debugging. Used
most of the time.

Information = 2 Flow of application can be logged
here. Not meant for debugging.

Error Handling, Tracing, and Logging

[218]

Warning = 3 For unexpected events. For example,
data doesn't match business rules.

Error = 4 Unhandled events of application; can
be errors.

Critical = 5 Events that need immediate action
for resolution.

Logging in action
Here, we will look at how to create an ASP.NET Core application with a web API template.
The extension along with the and
extensions are already added.

Open the class and make the following changes to view the in-built action:

You can break down the preceding code as follows:

The logging level and category are read from the file's
logging section
The logger factory adds both the console and debug window provider
We create an instance of the class logger as
This logger factory instance logs to the console and debug window according to
the log levels

Error Handling, Tracing, and Logging

[219]

Run the application as a console app (using Kestrel and displaying console window). The
console window shows the logs as follows (this is part of the console window):

Looking at the preceding figure, we can see that it provides information of the origin of the
log, namely the class, and the different log levels.

Even though we wrote the log level in the class, it's not written in the
console window. This is because of the log category present in .

Logging category
In the class code snippet, you can see that the log provider is reading
the Logging section of . This section contains logging category details
such as Default, System, and Microsoft.

The Log Category helps in writing logs that are specific to the application, the framework,
or the entire system. Ideally, during development or in production, application level-
specific logging is sufficient.

Let's add application level-specific logging instead of the default settings that are currently
present. Open , remove the existing details, and make the
changes as shown here:

Error Handling, Tracing, and Logging

[220]

 is the project name (this can be any string), and we are setting the
log level as . Any logs below the warning level (refer to the log level table) will not
be displayed on the console. Run the application again to view only the , ,
and logs displayed on console window.

ILoggerFactory in dependency injection
The dependency injection is baked into ASP.NET Core by default, and we can leverage this
by injecting into the controller, middleware, filter, or any other class too.

Open the web API class (created by default with the web API
template), edit the code as follows, and run the application to view the logs on the console
window:

Error Handling, Tracing, and Logging

[221]

You can break down the preceding code as follows:

In the same way that we used in the previous example, we have
another way to create and inject it. Here we are creating a
instance of , and are using constructor to inject it.
The method logs a warning and the method logs the information and
error to the console when we hit these API endpoints.

Inject the instance in the same way for middleware, filter, or
any other classes to log information.

MyWallet - Demo ASP.NET Core project
To learn more about logging using different providers, we will be creating a demo
ASP.NET Core application MyWallet that has the following functionalities:

It should be able to list all the daily expenses.
It should be able to get a particular expense by passing the ID.
It should be able to add/post a single expense to the list. If the movie expense
exceeds $300, then it is invalid request data.
It should be able to edit and delete a particular expense.

In this demo application, we will be using a EF Core InMemory provider. This EF Core
package runs the application in memory instead of persisting onto a database. It's ideal for
unit testing the data access layer, but is used here to make the example simpler.

You can use any database provider (Sql Server, MySQL, SQLite) by
reading , Integration with Databases.

Error Handling, Tracing, and Logging

[222]

Using the NuGet package manager, add
to the latest package. Create the web API controller as

 as the model class, and as the data context.

Don't forget to inject the data context in the class and the
 method.

The web API controller code is shown here, based on the scenarios
chosen:

Error Handling, Tracing, and Logging

[223]

You can break down the preceding code as follows:

Use DI to inject and (EF Core
requires this).

 finds the item by searching for and returning it. If
not found, we log the information, stating that it's not found.

 checks whether the request is NULL. If so, it returns and
logs the error. The method looks at whether the movie
expense is not more than $300 and returns a error. If
everything works well, it saves the daily expense.
The and methods check for the expense item. If it is not found,
they log the information. If found, then it either updates or deletes it, depending
on what it finds.

Run the application as a console app to view the various log information on the console
window by hitting it using Postman or Fiddler.

Until now, we have been using the console window to view the log information in the code
because ASP.NET Core provides the Console or Debug Window as the default log provider.
In real-world apps, we need to log the information to a file, database, or cloud, and for this
we need to use third-party log providers.

Logging errors to a file using NLog
NLog is one of the third-party providers that we can use for logging information in
ASP.NET Core. We will be logging to a file in this case. However, we can use NLog to log to
a database or cloud as well.

To know more about NLog, refer to
.

Error Handling, Tracing, and Logging

[224]

Using the NuGet package manager, add NLog-related packages:

"NLog.Extensions.Logging": "1.0.0-rtm-beta5"
"NLog.Web.AspNetCore": "4.4.1"

At the time of writing this book, NLog is still in beta. Refer to the
preceding link for updates.

In the method of the class, modify the method to include NLog for
logging information to the file:

For NLog, there is a configuration file to work with the different configuration settings,
such as the log level, file name, log file location, and so on. Create the file in
the root directory and copy the following code for the most basic configuration:

Error Handling, Tracing, and Logging

[225]

Once everything is up and running, accessing (either through Postman
or Fiddler) results in the creation of a log file with at the location
provided in the configuration file.

Logging errors to a database using Serilog
Serilog is a third-party logging package for .NET applications. It focuses on fully structured
events. It's known for simple APIs, easy setup, and lots of packages to log to various
sources, such as files, databases, ElasticSearch, Raygun, and so on.

We will write log information to a database (an MS SQL Server database, that is) using
. We will add the following packages using the NuGet

package manager:

Serilog: 2.5.1-dev-00873
Serilog.Sinks.MSSqlServerCore: 1.1.0

For database logging, we need a database server location, name, and table. Open
 to add these configuration settings:

Run the SQL script found at this URL on to create a logs table. Refer to
 for more information.

In the method of the class, add Serilog to the DI to be used
across the application:

Error Handling, Tracing, and Logging

[226]

Open the web API to include the to the DI and
write the logs:

The source code attached contains the entire controller class. Now run the application and
hit using Postman or Fiddler. Open the SQL Server to view the logs in
a table. The result would look similar to this:

Exception management in a MyWallet
project
Any web API project is not an application in itself. It is built so that popular frontends,
either web or desktop, can consume it. It becomes essential for web APIs to handle any
unexpected events (unhandled exceptions) or any business exception gracefully.

If unexpected events (unhandled or business-related) occur, then they should be logged and
the appropriate response should be sent back so that clients can be made aware of it.

To achieve this, we require the following classes:

: It acts as a response object to be used by clients.
: It is a custom exception class for business or unhandled

exceptions. It contains exception details, along with the status code.
: It contains an exception attribute to be used as an

attribute on the controller or actions.

Error Handling, Tracing, and Logging

[227]

Create a folder and create class files with the preceding names. Copy the
following contents for each class:

: It is used as a response object:

: It is a custom exception class to carry exception details and
status code:

Error Handling, Tracing, and Logging

[228]

: It is used as a filter to handle exceptions:

Error Handling, Tracing, and Logging

[229]

You can break down the preceding code as follows:

 is taken in to write the logs.
The method checks whether this is a custom
type. If so, it prepares a response with a status code. If it is an
unauthorized access, it responds appropriately.
With unhandled exceptions, it gets the stack trace details and responds with

, with full details of the release mode.
The instance writes the log at the required place.

Our exception handling is ready in our web API project. Let's incorporate the
filter into our controller. You can either use an existing controller or create a new controller.

Firstly, decorate the controller with that we created:

Error Handling, Tracing, and Logging

[230]

We are using to use filter because we are using dependency injection to
include in the filter so that it writes logs.

The method can be written as follows to handle business logic failure, for example, if
a requested record doesn't exist:

Here is another example that illustrates that when the unhandled exceptions occur, the filter
will handle them gracefully, and the error will be logged:

You can either log information to a file or a database. Once configured, run the application
and use Postman or Fiddler to send a request and receive a response.

Error Handling, Tracing, and Logging

[231]

Here is a sample log written to a file using NLog, followed by a screenshot of Postman's
response:

Custom middleware can be written for gracefully handling the web API
errors or exception.

Links to log management services
We can even move these logs to third-party log management services (trial and paid
versions exist) to gather metrics about web API exceptions:

Seq: Structured logging for .NET apps. It's an excellent tool for structured logs
and log management services. Refer to

 to integrate it with the
ASP.NET Core application.
Raygun: One of the best tools for .NET apps for monitoring, reporting, and log
analysis. Refer to for
integration.
Elmah: Used for writing logs to their website, and for analyzing them later. To
integrate, refer to

.

Error Handling, Tracing, and Logging

[232]

Summary
ASP.NET Core has greatly improved logging capabilities to any persistence source. The use
of third-party tools for writing logs has been made simple. NLog or Serilog are the most
widely used tools to manage writing logs.

We also learned how to gracefully handle web API errors, as well as how to log them to a
log store in order to analyze them.

In the next chapter, we will learn about optimizing and improving ASP.NET Core
performance using cache, asynchronous programming, and other methods.

111
Optimization and Performance

The real test of any web API begins when it's consumed by various clients (majority are
frontend applications), increasing HTTP traffic with varying load. This is when we start to
realize the web API performance has taken a hit, then the need for optimization and
performance improvement comes into the picture.

The concerns for performance are mostly application-specific, but it's recommended to
follow the best practices and techniques while building web API applications. Performance
and optimization is a continuous process, and it needs regular monitoring to keep a check
on bottlenecks.

As web APIs are exposed and consumed over HTTP, exploring various best practices to
keep an application performing well, in case of light or heavy load, should be a top priority.

In this chapter, we will learn how to measure application performance, write controller
action methods in an asynchronous way, compress HTTP response, and implement caching
strategy for optimal usage of resources.

In this chapter, we will be looking at the following topics:

Measuring application performance
Asynchronous controller action methods
HTTP compression
Implementing in-memory caching
Working with distributed caching
Response caching

Optimization and Performance

[234]

Measuring application performance
The web API application performance can be measured by using various techniques. One of
the most important measuring parameters is running load test on Web API.

We will use Apache HTTP Server Benchmarking Tool, also known as ab.exe. It's a tool for
sending hundreds of concurrent requests on endpoints.

The end point we will be targeting is , the action methods are
 and .

Both the action methods call stored procedures from the database using Dapper ORM using
synchronous and asynchronous ways. In the next section, we will learn in more detail about
asynchronous web API using the keywords.

Refer to the link, , for usage of
the ab.exe tool, and then run the application and perform the load test. Upon running the
command, we should see similar test results (they differ based on system configuration):

Optimization and Performance

[235]

On examining the parameter, we can see that does show
improved performance in load testing:

Other ways of measuring applications:

Performance testing of REST Api using JMeter:

Visual Studio 2015/17:

Application Insights:

Optimization and Performance

[236]

Asynchronous controller action methods
ASP.NET supports asynchronous actions using TAP (Task-based Asynchronous Pattern),
this was first released in the .NET 4.0 framework and was greatly improved in .NET 4.5 and
above using the and keywords.

In general, asynchronous programming in .NET helps to achieve a responsive application,
improve scalability, and handles high number of requests in case of web applications.

.NET Core also supports asynchronous programming in the form of the and
pattern. This pattern should be used when working with I/O or CPU bound or for database
access.

As asynchronous means not occurring at the same time, any method called in an
asynchronous way will return results later. To co-ordinate with a returned result, we use

 (no return value, that is,) or (returns a value). The keyword
allows us to perform other useful work until returns results.

To understand more about the pattern, read through this link,
.

In ASP.NET Web API (Core or Web API 2), the methods perform the asynchronous
work, returning the result. The web API controller should not be assigned with an
keyword.

From the previous chapter's example of web API demo application (,
Error Handling, Tracing, and Logging), we will refactor the action
methods to work asynchronously.

The demo application was using EF Core In-Memory provider, we will extend it
to work with Microsoft SQL Server database by following the Integrating with EF Core
section of , Integration with Database.

Either create a new web API Controller or modify an existing one. The
action methods are now refactored to work in an asynchronous way. Check the following
controller code:

Optimization and Performance

[237]

Optimization and Performance

[238]

Now let us understand the code by breaking it down:

All the action (, , ,) methods now have an keyword
indicating they are a part of the asynchronous call.
All the methods return containing return values
from method operations, typically values will be status code and response data.
The keyword is used for methods with the implemented. We used
EF Core as it provides almost all functions for asynchronous operations.

Best practice is to make methods asynchronous from top to bottom, that is,
don't mix synchronous and asynchronous code.

Run the application and use Postman to test it. We won't feel the advantage of
asynchronous methods for simple testing. It performs well when we have a good amount of
load, but still writing the methods will make the application load ready.

HTTP compression
Web API request and response are transmitted over the internet (HTTP-based data
transfer). Network bandwidth is precious, it varies across regions. Web API responses are
mostly in JSON form (a lightweight collection of strings). In these cases, even if we are
sending a huge amount of data, it does matter a lot.

For quick transfer of response data over HTTP, it's good to compress the response before
returning to clients. ASP.NET Core provides Response Compression Middleware, which
compresses the response before sending it to clients.

Let's see it action, create with returns list of over the
request (you can still continue using any Web API project from the book). I am using
GenFu--the NuGet package to generate realistic prototype data, install this package or we
can even connect to the database and return response of any table.

GenFu will give me a collection of the class, which I return when
 is called. Here is the code for :

Optimization and Performance

[239]

Run the application, browse the controller in Google Chrome (preferred), and you
will see the response size of 200 objects in JSON format over HTTP (size might
differ on your machine).

Adding response compression middleware
ASP.NET Core provides a middleware to compress the response before sending it back.
This middleware provider compresses different MIME types, for this example we are
interested in JSON data.

This package is included as part of
.NET SDK, interestingly we need not work at controller or action level, just include this
middleware in HTTP pipeline processing.

Be default, a GZIP compression provider is used; we can use other compression providers
or write our own.

Optimization and Performance

[240]

Open the class and make changes as follows in the and
 method:

Run the application to view the size of response after compression. Refer to the following
screenshot (it might vary on your system):

Implementing in-memory caching
Accessing resources is an expensive operation, it's even more expensive when the resource
is requested frequently, and when it gets hardly updated. For a better performing Web API,
it's essential to reduce the burden of accessing the least-updated resource by implementing
a caching mechanism.

Optimization and Performance

[241]

The caching concept helps in improving the performance and scalability of an app by
reducing the work required to generate content.

ASP.NET Core provides a web server based memory caching technique called in-memory
caching. The cache of content takes place on web server memory by using the

 interface.

The in-memory caching is a good choice for limited use; applications that are not hosted on
a web farm. It's fast, yet simple to use. Just dependency inject the interface
into the class. The following code snippet illustrates this.

In this example, the Dapper (Micro ORM) is used to fetch the values from the database, and
sends it as a response. To use Dapper in ASP.NET Core, refer to , Integration with
Database:

Optimization and Performance

[242]

Now let's understand the entire code by breaking it down:

Using DI, we are injecting to working cache-related methods
such as and .
We are using the property to connect to the database using Dapper
ORM. We are using the AdventureWorks2014 database. You can use any
example or real world databases too.
In the method, first we are checking if a cache KEY entry exists, if so it
returns the response from it.
If the cache KEY does not exist, then we fetch the records using the

 method, and then add to memory cache using the
 method using .

Run the application. When is accessed for the first time, data is
fetched from the database and on any subsequent access, web API returns the data from the
cache.

Working with distributed caching
Most real-world enterprise apps fetch data from various data sources such as third-party
DB, web services, and most importantly the web APIs are deployed either on cloud or
server farm environment.

In the preceding cases, in-memory won't serve the purpose of caching as it's web server
memory-based. To provide a more robust cache strategy across a deployed environment,
it's recommended to use a distributed cache.

The distributed cache stores the data on a persistent store instead of web server memory, in
this way cache data is available across the deployed environment.

The actual data store gets fewer requests than in-memory, therefore distributed cache
survives the web server restarts, deployments, or even failure.

Optimization and Performance

[243]

Distributed cache can either be implemented with or using the
 interface.

Using an SQL Server distributed cache
We will be using SQL Server for distributed cache; even Redis can also be used. To use SQL
Server, use NuGet install the following packages:

Microsoft.Extensions.Caching.SqlServer: 2.0.0-preview2-final

To use the sql-cache tool, add to the element of the
 file and run (optional):

<DotNetCliToolReference
Include="Microsoft.Extensions.Caching.SqlConfig.Tools"
 Version=" 2.0.0-preview2-final" />

Once this is done, verify that SQL tools for cache works fine by running the following
command from the root folder of the project:

dotnet sql-cache create -help

After that, run the following command to create a table in the
 database, this table stores all the cache entries.

Ensure that a database is created before running the following command:

dotnet sql-cache create "Data Source=..\SQLEXPRESS;Initial
Catalog=PacktDistCache;Integrated Security=True;" dbo DemoCache

You can verify the table is created using SQL Server Management Studio.

Now that we are ready with Distributed Cache store in MS SQL Server, update the
 class to inform it to use this location for distributed cache:

Optimization and Performance

[244]

We will create , which fetches the daily currency
exchange rates from public web API and stores it in the cache database. For any further
access to , the data is returned from the cache instead of a
public web API. This reduces the burden on the server to fetch rates for every request:

Optimization and Performance

[245]

This is how the code works:

 is DI into web API controller class for and values.1.
The method calls , and2.
then sets them to cache using the key.
The method reads the cache database to fetch3.
the values from the key.
The method fetches the data and returns response if exists or else, it sets4.
the data first and returns the cached value.

Running the application, accessing will set values into
cache database and any subsequent access will return the data from the database. The cache
data is stored in the database as shown:

Response caching
In ASP.NET Core, response caching middleware allows response caching. It adds cache-
related headers to responses. These headers specify how you want client, proxy, and
middleware to cache responses.

To use this, we need to include its package using NuGet, as per .NET Core 2.0 latest version
relevant packages are pre-installed:

"Microsoft.AspNetCore.ResponseCaching": "2.0.0-preview2-final "

Optimization and Performance

[246]

After the package is installed, update the class to add to a
services collection:

Also include the middleware in HTTP pipeline processing:

Now the middleware, the class is updated to use response caching, it's time to add
them to the controller action method.

Response caching should be avoided for authenticated clients or data, due to this reason we
are updating the controller action method with a attribute:

This attribute will set the cache-control header and set max-age to 30 seconds. Upon
running the application, response header shows a cache-control header (either in Fiddler or
Chrome tools).

Optimization and Performance

[247]

Summary
In this chapter, we learned a great deal about how to write asynchronous Web API
controllers, response compression, and improve response times by wiring caching
mechanism.

We also learned about measuring the performance of web API application.

In the next chapter, we will look into different ways of publishing and deploying the
application onto different environments and hosting providers.

112
Hosting and Deployment

We are nearing the end of this book. Over the course of this book, we have learned a lot of
concepts about web APIs by creating ASP.NET Core Web API project, wrote controllers and
actions, added routing, wrote custom middleware, unit tested the code, and handling
exception, and performing some optimization. Now it's time for hosting and deploying the
web API application.

With ASP.NET Core being cross-platform, hosting and deployment is not confined to the
Windows environment (IIS and Azure) itself; environments such as AWS, Docker, Linux,
and so on can be good alternatives.

In this chapter, we will focus on hosting and deploying a sample ASP.NET Core Web API
project in a truly cross-platform way.

In this chapter, we will be looking at the following topics:

Creating a demo ASP.NET Core Web API project
Publishing a web API project
Standalone web API
Deployment strategy
Deploying a web API to IIS
Deploying a web API to Azure App Service
Publishing a web API to a Windows virtual machine on Azure
Publishing a web API to Docker
Publishing a web API to EC2 on AWS
Publishing a web API to Linux

Hosting and Deployment

[249]

Creating a demo ASP.NET Core Web API
project

 will be the demo project to be hosted and deployed on our various
environments. This project is built using some of the features learned in this book, such as
attribute routing, custom middleware, link generation, and route constraints.

Create an ASP.NET Core Web API project with the name , create a web
API controller class in the controller folder, and copy the following
code:

Hosting and Deployment

[250]

The complete source code is available in the code bundle.

Create a class file in a folder and copy the following code. It acts as a
complex object, but is used as model:

You can break down the preceding code as follows:

 is a web API controller performing CRUD operations on
the class.
A static list property holds the records of . In this example, it acts like a
database.
The , , and HTTP methods use for returning a
response. We can use HTTP code for various results.
The method responds with . This generates a link in the
response header.
The and methods work only when contact exists; otherwise, they
respond with the appropriate response.

 is a POCO class that contains basic details.

Hosting and Deployment

[251]

--a custom middleware, mentioned in
, Middleware and Filters, can be used to check whether the request contains

a custom header entry for the web API to respond to.

Publishing ASP.NET Core Web API project
We have created a demo web API project , tested it, and then run it in a
local development environment. For production, the application should be published.

.NET Core or ASP.NET Core projects (either MVC or Web API) can be published using
either CLI or Visual Studio tooling. We will learn both the ways to publish it.

Publishing by CLI
In , Anatomy of ASP .NET Core Web API, we learned various .NET Core
commands. To publish an application, the .NET Core CLI provides us with the

 command. It generates the necessary artifacts for running the application.

Open the Command Prompt from the project folder and run the following command to
publish:

dotnet publish --output "<output-path>" --configuration release

Breaking down the publish command:

The command compiles the application by referring
. It collects all the dependencies and publishes them to a directory.

The option specifies the directory path to publish the project.
The option specifies which application should be published in
the mode. By default, it's always in the mode.

Navigate to the output folder in File Explorer to view the published application containing
the compiled DLL, , , and other necessary libraries to run
the application. The folder screenshot shows some of these files.

This command is sufficient for most cases, but .NET CLI provides many
more options to use with the publish command.

Hosting and Deployment

[252]

Read through this excellent documentation on :

.

The output folder containing the portable application can
run on any OS with the .NET Core runtime already installed.

To run the published application, navigate to the output folder from the command line and
run the following command, as shown in the following screenshot:

dotnet PacktContacts.dll

Hosting and Deployment

[253]

The application runs the . This can be
configured to any port. Use either the Fiddler or Postman tool to test the APIs.

Publishing by Visual Studio Tooling
Visual Studio IDE provides excellent tooling support for publishing applications. Just as
older versions of ASP.NET perform the publishing step in Visual Studio, it's no different in
ASP.NET Core.

Open the application in Visual Studio 2017, right-click on the project
name, and click Publish to open the dialog window for publishing the project.

It provides us with three options to select the publishing target:

Microsoft Azure App Service: Publish on Azure
Import: Import an existing profile for publishing
Custom: Publish either using web deploy, packages, FTP, or the filesystem

In this section, we will use the Custom option to publish the project to the filesystem,
similar to the CLI approach. Click on Custom and give it the profile name .

Under Connection, select the Publish method as filesystem and select the Target Location
as the filesystem, as shown here:

Hosting and Deployment

[254]

Under Settings, select the Configuration option as Release and the Target Framework
option as .NETCoreApp. The Target Framework field might show more options if different
versions of .NET Core are installed.

We are not targeting any specific runtime here. In the next section, we will explore runtimes
when we build standalone applications.

Click on the Publish button to start the publishing process. On completion, the target
location provided will have all the files needed to run the application. A profile folder is
created in the solution structure containing all the settings provided while using the publish
wizard.

To run the application, just follow the commands as shown in the CLI section.

Standalone web API
In the preceding section, we published the ASP.NET Core application as a portable .NET
Core application. On any OS (Windows, macOS, or Linux), the preceding portable
application will run if the .NET Core runtime is installed.

Hosting and Deployment

[255]

The portable .NET Core apps run natively even if they are published on any OS. It's
achieved by running libuv (a web server for ASP.NET Core apps) natively.

ASP.NET Core can be built as a standalone (self-hosted) application-that is, a published
application with a runtime (.NET Core runtime) included with it. As .NET Core (ASP.NET
Core) applications are inherently console apps, an executable file is generated when they
are published as standalone, and running this file starts the application.

Let's publish as a standalone application and edit the file to add
 in the section, as shown here:

Runtimes are also known as RIDs, that is, .NET Core Runtime Identifier (RID). We need to
mention the target OS against which the .NET Core application will be built as a standalone
app.

I have used a Windows 7 x64 machine for building the ASP.NET Core Web API as a
standalone app. Multiple RIDs can be targeted at once. The command
should be run to restore all packages (you should explicitly call it if you are editing the

 file in the editor).

For a different OS runtime identifier, read through the documentation of
the .NET Core runtime identifier at

.

Run the following command from the folder to create a standalone
application:

dotnet publish --output "<output-path>" --configuration release

Provide the appropriate output path to save the published application. On successful
completion, you will notice that many files are copied, and that a file
is also created.

It contains the published web API, as well as the .NET Core runtime to run the application.

Now the application can be run as an EXE, as
shown here:

Hosting and Deployment

[256]

It's recommended that you use the appropriate runtime identifier. As it's
built for Windows 7 x64, it might work on a higher version of the
Windows OS, but it won't work on Linux or macOS.

Deployment strategy
ASP.NET Core runs on a brand new web server called Kestrel, based on libuv.

Microsoft recommends that Kestrel should be treated as an internal web
server-excellent for development, it but shouldn't be exposed to the
internet.

Then the obvious question would be how to host ASP.NET Core apps to expose them to the
internet. The following diagram briefly illustrates the deployment strategy:

Hosting and Deployment

[257]

The figure depicts the deployment strategy of having a proxy (aka a reverse proxy) in the
form of IIS, Nginx, and so on.

These reverse proxies allow us to offload work by serving static content, caching requests,
compressing requests, and SSL termination from the HTTP server.

Any requests coming from the internet will go through the reverse proxy (IIS or Nginx).
The request is passed, and then the ASP.NET Core apps invoke the Kestrel server to take
action on this.

In the next sections, we will deploy the web API using this strategy.

Deploying web API to IIS
Deploying an ASP.NET Core application to IIS is the preferred choice when hosting on
different Windows OSes (machines or servers).

It's important to understand how IIS will work with ASP.NET Core apps. In the preceding
section, we published the application to the output folder containing all the artefacts for
running it.

The famous web.config also exists in the published folder. Examine the content to
understand how IIS and ASP.NET Core work together:

Hosting and Deployment

[258]

Breaking down the file:

 needs to be installed to transfer the request to Kestrel.
 tells as , to be

. Logging is disabled as of now. This is same as the
 CLI command but via .

The file is included in ASP.NET Core so that IIS can invoke the application
and let Kestrel process the request. Note that IIS acts as a reverse proxy.

To know more about ASP.NET Core module configuration, read

.

Configuring a website on IIS
Assuming that IIS is already enabled on your machine, open IIS Manager and perform the
following steps:

Under Application Pools, add a new application pool exclusively for ASP.NET1.
Core apps. We are setting the .NET Framework version as No Managed Code.
Under Sites, right-click Add Web Site, provide the appropriate Site Name,2.
assign Application pool created previously, and assign Physical path of the
published folder (refer to the output path while executing the
step)

Hosting and Deployment

[259]

At the end of this chapter, we will look at how to test the app:

At the end of this chapter, we will look at how to test the web API.

Deploying a web API to Azure App Service
In this section, we will deploy the application using the Azure App Service. This example
uses a free trial account. If you have access to any other subscription, you can use that here.

Follow these steps to deploy:

Right-click on the project in Solution Explorer and select Publish1.
In the Publish dialog, click Microsoft Azure App Service.2.

Hosting and Deployment

[260]

Click New to create a new resource group from Visual Studio. You could also use3.
an existing one. In this example, an already existing Azure app under resource
group is used.
Click Ok to web deploy the application to the Azure app.4.
Web Deploy will perform the operation of installing dotnet runtime, restoring5.
packages, and copying the published web API application onto the Azure apps.
Once done, the browser automatically opens up with the link. You are ready to6.
test it now:

Hosting and Deployment

[261]

Publishing a web API to Windows virtual
machine on Azure
In this section, we will deploy the published web API to the virtual
machine created on Windows Azure. We will be creating a Windows Server 2012 R2 Data
Center as the virtual machine.

An Azure free trial account is sufficient. Go through the following steps to deploy the
 web API:

To create an Azure virtual machine, follow the steps mentioned at1.

 to create a Windows Server 2012 R2 Datacenter.
After creating the VM, establish a remote desktop connection to deploy the2.
application.
As it is a Windows server, we will be deploying the web API on3.
IIS on this VM. Since it's a newly created machine, IIS won't be configured; to
configure it, read through

.
After IIS is configured, install the 4.
() bundle on the server. This
will install the .NET Core runtime, the .NET Core library, and the ASP.NET Core
module.
Copy the published web API project to the Windows VM either manually or5.
through FTP and follow the steps described in the section Configuring a website on
IIS.

Ensure that the deployed application on the VM is configured for access
using a public IP address.

Publishing a web API to Docker
Docker is a tool used to create, deploy, and run applications by using containers. They work
like VMs, but are more lightweight and use the host machine to provide better performance.

Hosting and Deployment

[262]

To understand more about Docker, read the article What is Docker? found
at . Docker can be installed on your
machine by following the appropriate steps for your machine, found at

.
To use Docker, your machine should support hardware virtualization.

Once Docker is installed on the machine, go through the following steps to build a
 Docker image and run it on a Docker container:

Right-click on the project name and go to Add | Docker Support to create the1.
Docker file.
In the project, create and copy the following code:2.

It runs FROM the ASP.NET Core 2 with of
(the same as if it were running under CLI) with no arguments. Copy the current
directory content to the image.

Run the command once again; this will publish the folder with3.
the Docker file that we created.
Now build the Docker image by running the following command from the4.
Docker Terminal:

 docker build D:\publishOutput -t packtcontantsAPI

The is the output directory referred to in the
 command:

 will be the Docker image name.

Run the following command to run the image on the Docker container:5.

 docker run -it -d -p 85:80 packtcontantsAPI

Once everything is running properly, use the Docker machine default IP to access the
 web API.

Hosting and Deployment

[263]

Publishing a web API to EC2 on AWS
In the previous section, we build the Docker image for our ASP.NET
Core Web API project. In this section, we will run this Docker image on the AWS EC2
container service.

Docker images are prebuilt with all required runtimes, which reduces the efforts of the
published application to set up the environment.

Create an AWS account and move to the EC2 Container Service section. Follow the steps
(they are quiet easy) and you will be presented with commands to push the Docker image
to AWS EC2. The commands are shown in the following screenshot:

Hosting and Deployment

[264]

For more in-depth explanation of the steps involved in running Docker
images on AWS EC2, refer to

.

Create a Task Definition. Here, you will specify the Docker image to be used. The
underlined text in the following screenshot indicates the push image that is used:

Hosting and Deployment

[265]

Configure a service to launch and maintain the task definition created previously:

Configure the AWS EC2 cluster so that the services and tasks run on them. Clicking on the
highlighted line shown in the figure will display the public DNS name needed to access the

 web API:

Hosting and Deployment

[266]

Publishing a web API to Linux
ASP.NET Core can be hosted on Linux OS. There are number of low-cost hosting providers
using Linux OS. In this section, we will deploy the web API on a Linux
machine run as a virtual machine.

We will be using Ubuntu Server 14.04 LTS Linux. There are numerous articles on how to
run Ubuntu on a virtual box.

To install .NET Core for Linux, go to .
Installing Visual Studio Code will help you to write your code, if needed.

There are two ways to deploy the demo web API project on this Linux machine: either
transfer the published file or run the publish command from the source code.

I find that running publish from the source code is much easier. With the source code, you
can work on the Linux machine as well. Push the source code onto the Git repository and
clone the Linux (Git needs to be installed).

Once the source code is cloned, run the command, as shown at the
beginning of the chapter. Run the application; it will start listening on port 5000.

Testing PacktContacts web API
ASP.NET Core applications can be hosted and deployed in numerous ways, with options
such as Local IIS, Windows Azure, Docker, standalone, cheap Linux hosting providers,
virtual machines, AWS, and many more.

Until now, we have only seen the hosting and deploying of a web API application, but we
have never tested one. In this section, we will test all the CRUD scenario and custom
middleware functionality. We will be using the Postman tool, however, Fiddler can also be
used.

The following table shows the deployed location and the URL needed to access the
application:

Deployed location Access URL

Local IIS

Standalone

Azure App Services

Hosting and Deployment

[267]

Docker

EC2 on AWS

Linux Host

These URLs will vary according to your setup.

Test case - Accessing a web API without the
header
The custom middleware example from , Middleware and Filters, expects every
request to have a custom header called with the value as

.

If there is no header, or the header is invalid, the web API responds with Bad Request error;
otherwise, it responds accordingly:

Hosting and Deployment

[268]

Test case - Accessing a web API with the header
In this case, we will be passing with the value as . The
web API responds with OK:

Test case - Adding a contact to web API
In this case, we are passing the JSON request body to the method of

. It' must pass the custom header , as shown in the
previous screenshot, to ensure that the request is processed. This example illustrates
the middleware concept.

Here is the JSON request:

Once the request is processed, the web API responds with a status in the
response body. On observing the response headers, we can see the location header with the
URL to access the created resource (contact, in our case).

Hosting and Deployment

[269]

The location header is an example of the link generation concept learned in ,
Implementing Routing.

Test case - Getting a contact from the web API
We will use the generated link to get the contact details:

Hosting and Deployment

[270]

Test case - Getting all contacts from the web API
This will get all the contacts that are present in the contact list, plus one more contact. The
web API will return two contact details:

Test case - Editing a contact to the web API
In this case, we are passing the JSON request body with the method of

.

Here is the JSON request:

Hosting and Deployment

[271]

Test case - Deleting a contact from the web API
In this case, we will be deleting the contact by passing the ID with the method.
Then we can call to check that it's removed. If the ID doesn't exist then
the response is returned:

Summary
In this chapter, we learned the various hosting and deployment options for ASP.NET Core,
right from the traditional approach to deploying published applications on IIS, to hosting
them as standalone applications. The transition is really encouraging.

We learned that ASP.NET Core and Azure can be integrated so seamlessly by publishing
using Azure App Services. There are plenty of low-cost Linux hosting options, and we
explored those options as well. Truly, ASP.NET Core has emerged as a cross-platform
technology from start to finish.

In the next chapter, we will consume these web APIs in modern frontends, such as
JavaScript, JQuery, Angular, React, and Hybrid mobile apps.

113
Modern Web Frontends

We are in the last chapter of this book. We learned a lot of concepts in the previous
chapters, such as how to create an ASP.NET Core Web API, write controllers and actions,
adding routing, middleware, unit testing, and handling errors to optimization, and
deploying and hosting on various environments.

The hosted web API was tested either using Postman or Fiddler tools, and it works fine. But
the real use of ASP.NET Core Web API (and, in general, a web API built with any
framework) lies in its ability to be consumed by front end applications such as web, mobile,
or desktop apps.

Just as ASP.NET Core is cross platform, we have various web frontends that can be
developed cross platform with open source technologies.

In this chapter, we will focus on building a web application with a modern web framework,
such as Angular 4 (aka Angular), ReactJS, TypeScript (a superset of JavaScript), JQuery and
JavaScript, Bootstrap, and Ionic 3 framework (a hybrid mobile apps framework). We will
also look at how they consume the web API we developed in previous chapters.

In this chapter, we will be looking at the following topics:

 - Recap of the demo ASP.NET Core Web API
Software prerequisites for web frameworks
Consuming web APIs using Angular 4
Consuming web APIs using Ionic 3
Consuming web APIs using ReactJS
Consuming web APIs using JavaScript
Consuming web APIs using JQuery

Modern Web Frontends

[273]

PacktContacts - Recap of the demo web API
project
In , Hosting and Deployment, we read about the demo ASP.NET Core Web API
project known as , and hosted and deployed it on various environments.

The web API does a basic CRUD operation on the model. We will be using this
web API hosted on IIS as an end point for accessing it.

The class file in the model folder acts as a complex object that is used as a model
for data transfer over a network:

Dealing with a cross-origin issue
When we tested the web API, either using Postman or Fiddler, they
responded by calling with the appropriate response. When they hosted the endpoint URL
of the web API that is used in modern web frameworks, it failed to work, resulting in a
cross-origin issue.

Any web framework that uses AJAX requests to call the web API is prevented from making
a call to another domain by the browser's security. It's popularly known as the same-origin
policy in the web application world.

To elaborate in simpler terms, web API applications are hosted on the web server with an
access URL of , and web applications are hosted
on a separate domain (). For example, a weather API exposes URLs
and we consume those URLs in our application, yet it's obvious that they are hosted on
different domains.

When we try to access the web API URL, a cross-origin error occurs. To avoid this, we need
to enable the CORS feature in the project.

Modern Web Frontends

[274]

The CORS middleware comes into action here. It should be added to the and
 methods of the class:

Now let's go through the code to understand it in a better way:

In the method, we are adding CORS to the web API using
.

We are creating , which allows any origin call, any method, and any
header to access the web API.
The preceding policy is quite liberal for this demo project, but in a real-world
example we can have a more strict policy. It acts at a global level.
In the method, we are using CORS middleware and passing in

 that we created.

The rest of the code is the same as in the previous chapter (, Hosting and
Deployment), as are the steps for testing the web API.

 - a custom middleware, mentioned in
, Middleware and Filters, can be used to check that the request contains the

custom header entry for the web API to respond to.

Modern Web Frontends

[275]

Software pre-requisites for web frameworks
We have been working on open source technologies right from the beginning, so we will
end with building modern web frontends using open source technologies.

The following software needs to be installed as per the OS used- that is, according to
Windows, Linux or macOS:

Visual Studio Code: This is a lightweight cross-platform code editor. You might
have already installed it if you're building an ASP.NET Core Web API on a non-
Windows machine. If you haven't, then you can install it from

.
NodeJS: This is a package ecosystem for using open source libraries. We are
using it to install packages. Install it from .

You're free to work with the code editor of your choice, such as Sublime, Atom, or even
Visual Studio IDE. We will be using Visual Studio Code (VS Code) as the code editor in
this chapter.

Consuming web APIs using Angular 4
Angular (aka Angular 4) is an open source web framework built by Google to develop high
performance single page applications (SPA). Google officially announced the latest Angular
version, known as Angular 4, in 2016. It's completely rewritten, and doesn't resemble its
previous version.

The Angular 4 documentation is extensive and in depth; you can read through it at
.

The Angular 4 framework is written with TypeScript, its recommended language for
writing web components for Angular. So what is TypeScript, then?

TypeScript is strongly typed, object-oriented script that generates JavaScript. TypeScript is
designed to write enterprise-level web apps that use JavaScript. It's just like any other
programming language, such as C#, or Java.

Some of the benefits of the TypeScript language are:

Compilation to JavaScript
Strong or static typing-you will see red underlines in the code editor if it's loosely
typed code

Modern Web Frontends

[276]

Popular JavaScript libraries are part of the type definitions that provide code
completion
Encapsulation

TypeScript alone can be used to develop web applications, as, in the case of JavaScript, it
can be installed either using npm (node package manager) or the MSI installer. It can be
used with any code editor or IDE, such as VS Code, Sublime, Atom, or Visual Studio IDE.
To learn more about the language, refer to .

It's recommended that you learn the basics of Angular 4 and TypeScript
before moving ahead in this chapter.

Angular CLI
The Angular CLI is a command-line interface (CLI) tool for creating Angular 4
applications, right from creating apps to creating services, components, routes, targeting
builds, and running unit tests.

There are two different ways to create Angular 4 applications: through starter packs on
GitHub or running the app from CDN. Frankly, the Angular CLI is the best tool available
for creating Angular 4 apps, and I recommend that you use it in this chapter.

Install the latest NodeJS and npm to work with the Angular CLI. Install the CLI tool from
NPM, and open Command Prompt to run following:

npm install -g angular-cli

After installing it, run the following command to create an Angular app with the name
 for creating a web frontend for our API:

ng new ngPacktContacts

This command creates an end-to-end Angular 4 application. There are numerous options to
scaffold different application components. Use the information found at

 to generate these options appropriately.

Modern Web Frontends

[277]

When building an Angular 4 application, we need the following elements for working with
the web API:

An Angular service provider for calling the web API using HTTP verbs
An Angular component for calling the preceding service provider and interacting
with HTML
An Angular component template for displaying the UI, such as HTML

We are dealing with a data model in our ASP.NET Core project. It would be
great to have a similar data model in our Angular 4 application. Because we are using
TypeScript, we can create a class called using CLI scaffolding options
and copying the following code:

Note that TypeScript allows you to define the class and types to its
properties, just like an object-oriented language.

PacktServices - Angular Service Provider
Let's create an Angular service provider by scaffolding the service from the CLI tool, and
running the following command from the project folder:

This will create a service class with the name in the folder. Copy the
following code to call the web API using different HTTP verbs:

Modern Web Frontends

[278]

Now let's understand the code that we just developed:

Import the class model that we created and the Angular HTTP module
to call the REST-based API (web API in our scenario).
The parameter points to the ASP.NET Core Web API endpoint. This
will be a hosted URL either from IIS, Azure App Services, AWS, or Docker, or
even an application running on localhost .
The object is created to set the content as JSON, and the custom header

 is created to work with the custom middleware created. The
authorization header is also added to pass the JWT token.
The method calls the web API using the HTTP GET verb to fetch all the
records. We pass the object or else we get Bad Request as the response.
The method receives the object from the UI to pass to
the web API using the HTTP method.
The method receives the object and
from the UI to pass to the web API using the HTTP method.
The method receives the object from the UI to
pass to the web API using the HTTP method.

Modern Web Frontends

[279]

AppComponent - Angular Component
Components are the main way to build and specify elements and logic on the page. They
create custom HTML elements (tags) to be used in the HTML page and start using the
Angular features in them.

From the Angular-CLI-generated application, open the index.html page to see the
 HTML element. This isn't a regular HTML element-it's an

Angular component with the selector name of .

On examining the file, we would see the component declaration
mentioning the selector name, template file (HTML file), and style sheet file path too:

The Angular docs will explain the concept in depth; read through these to
understand more at

.

We will be using this file instead of creating new components, to keep it simple. Copy the
following code in :

Modern Web Frontends

[280]

You can break down the preceding code as follows:

The class and are imported.
 is declared for , , and . There

are a bunch of other options as well.
The class is defined, which inherits from the page cycle
event. Other new properties are also declared.
The constructor takes in and via
dependency injection.

Modern Web Frontends

[281]

The method gets called on the component initialization and calls the
 method.

The method calls the which in turn calls the
web API and loads all contacts on the UI. The contact list is displayed only if the
records exist.
The method sets up the contact form on the UI using the
reactive forms technique in Angular 2.
The method saves the contact details entered on the UI by calling

 for both (add) and (update).

The AppComponent template - HTML for Angular
component
Every Angular component accompanies the UI template with its selector. In our example,
the file is the template for displaying the UI.

To open the file, copy the following code:

Modern Web Frontends

[282]

Modern Web Frontends

[283]

Let's dive deep into our code to get a better understanding:

The button shows the form for entering the contacts.
The table showing the list of contacts is saved with the Angular For statement
().
Each record has an and button for its respective operation.
There is a form to enter/update records for the contacts. This form falls
under the category of Angular Reactive Forms.

Now run the application using the command line and open the browser to view
the application in action.

The demo project implements JWT-based authentication, leading us to include the login
screen to perform authentication. When the login credentials are successfully validated, a
JSON web token is generated. This token is saved in local storage to be passed along with
subsequent HTTP calls as the header:

Note that Angular CLI runs the application on port.
This can also be changed.

Modern Web Frontends

[284]

The form helps to enter the contact details and save them, as shown here:

The Save button is enabled when all valid entries are filled in on the form, thus enabling
you to save the valid data to the web API.

Once a contact is added, we can see the list on the UI with its action for the Edit and Delete
button for each row.

Building hybrid mobile apps using Ionic 3
Ionic 3 is an open source framework for building hybrid mobile applications that can be
built into mobile apps for Android, iOS, and Windows phones.

Ionic 3 is built on top of Angular and Apache Cordova with HTML5, CSS, and SASS. In this
section, we will build a hybrid native app that consumes our web API.

Modern Web Frontends

[285]

Follow the steps found at to
install Ionic 3. Be sure that the latest versions of NodeJS and NPM are installed.

Create a blank app for Ionic 3 with TypeScript by running the following command:

ionic start packtcontactapp blank

This creates an Ionic 3 project built on top of an Angular framework, so we can leverage the
code that we wrote in the previous section.

 is a service provider that talks to the web API using HTTP, and can be
created by running the Ionic CLI command shown here:

ionic g provider PacktService

The Ionic CLI command can be found at .

Since the provider is the same as the Angular 4 service provider, we can reuse the same
 web API we created in the previous section.

Home page - Ionic 3 page
Ionic 3 works by creating pages similar to Angular components and the template URL
concept, but, in this case, they are navigated by the Push and Pop concept.

We can reuse most of the code from the previous section; copy the
following code in :

Modern Web Frontends

[286]

This is how our code will function:

It will import the provider and the Contacts class
 is similar to , and this we will call the

 method
The rest of the code is similar to

Home page - Ionic 3 HTML page
The Ionic 3 pages have a component and HTML to complete the page. We created the
component for the home page; now let's make changes to the file.

Open and copy the following code from it:

Modern Web Frontends

[287]

The complete source code is available in the code bundle.

Modern Web Frontends

[288]

Now, let's understand how exactly this code will work:

The tag displays the header information as either static or dynamic
The contact form section will be displayed only on adding or editing using
The tag displays the saved contacts that are fetched from the web API
The tag can perform the edit and delete contact tasks
The button is displayed in the bottom for creating a new contact

From the command line, run the command to see the application in action. It
can be further built to create a native app for Android or iOS as well, by following the steps
found at .

Just as with Angular apps, don't forget to include as
Providers in the file of the Ionic app.

Modern Web Frontends

[289]

Building web apps using ReactJS
ReactJs, or React, is a JavaScript library for building user interfaces (UIs). It was built by
Facebook and later released as an open source library.

Its focus is more on a declarative, component-based way of UI development. It's equally as
popular as the Angular framework for building modern web frontends.

A great starting place for learning about React is to go through the documentation, tutorials,
and blogs at .

ReactJS in ASP.NET web application
You can find a number of ways for getting started or creating a basic application flow that
uses React on the internet, and choosing one is quite difficult. In the previous sections, we
created web apps using non-ASP.NET technologies; however, we will use an ASP.NET web
application with React in this section to build a modern web frontend.

Using Visual Studio IDE, create either an ASP.NET empty website or an MVC 5 web
application, and in that, install the ReactJS NuGet package. It creates a folder in the

 folder section.

In the folder, go to Add | New File | .

Open and copy the following code:

Modern Web Frontends

[290]

Create the HTML file to be used with ReactJS to render the grid, namel
:

Modern Web Frontends

[291]

Now, let us dive deep into the functioning of the preceding code:

React's renders a dynamic table
 calls the web API using an

The web API is called using fetch by passing the custom header
required to return the proper response
The contacts list is rendered on the UI on the grid tag

Start the application by pressing F5; you will see the list:

Modern Web Frontends

[292]

Consuming web APIs using JavaScript
JavaScript is the programming language of HTML and the web. Every UI framework works
with JavaScript. We won't be focusing on learning JavaScript, but if you're new to this, then
I recommend learning it from the W3Schools website at .

In this section, we will consume (call) the (ASP.NET Core Web API) using
JavaScript and perform authentication and CRUD operations.

Create any web application (ASP.NET, MVC5, or any non-.NET web applications); the code
bundle will use an ASP.NET empty application.

Create an HTML file to copy the following code to display the contact list, and add the
contacts:

Modern Web Frontends

[293]

On running the application, we will see UI with the login page as shown here:

Enter your credentials (username, and password, as per the code
bundle; you can change them too).

Using , we will call the web API methods to perform login and CRUD
operations on the model. The JavaScript code looks like the following:

Modern Web Frontends

[294]

Modern Web Frontends

[295]

You can break down the preceding code as follows:

The function uses to call the web API using
. On successfully authentication, we save the token in local

storage to be used with the authorization header.
The method takes the username and password. It then
passes it on to the web API.
The function gets all the contacts from the web API, and uses
the token to pass it so that the web API authenticates it as a proper request.

Run the application, log in, and add the contacts to view the list:

Consuming web APIs using JQuery
JQuery is a JavaScript library that greatly simplifies JavaScript programming.

To learn JQuery, read through the documentation at
.

Modern Web Frontends

[296]

We will be using the same project that we were working on in the previous section. Add
HTML and JavaScript file to it.

The JavaScript file that JQuery uses to consume the web API looks as follows:

Modern Web Frontends

[297]

You can break down the preceding code as follows:

The function uses the JQuery method to call the web API
by passing the username and password, and saving the JWT token in local
storage
The function uses the same JQuery method to get a list
of contacts

After running the application and adding the contacts, we will see a similar UI, but built
with JQuery:

Modern Web Frontends

[298]

Summary
In this chapter, we focused on building modern web frontends in the form of Angular 4,
Ionic 3, ReactJS, JavaScript, and Jquery consuming the web API built during the previous
chapters. An in-depth explanation of each of the web frontend frameworks is a book itself.
We have focused more on consuming the web API; however, the source code will help you
understand all the concepts better.

It's been a wonderful journey, from understanding the concepts of HTTP and REST, to
getting started with the ASP.NET Core Web API and its anatomy, and learning in detail
about controllers and actions, unit testing web API applications, building routes, and
middleware.

We learned how ASP.NET Core integrates with the various databases using ORM, and then
we performed optimization of our web API. We also looked at exception handling. We
applied various security measures for our web API application in the form of JWT, identity,
and cookie authentication.

With the ASP.NET Core cross-platform concept, we looked into deploying web APIs on
various heterogeneous environments, such as IIS, Azure App Service, NGINX, Linux, and
even standalone applications.

Finally, in this chapter, we consumed these web APIs in popular web frontends (UI
frameworks). It's been an amazing journey, writing this book, and I hope everyone benefits
from it.

Index

.

.NET Core Runtime Identifier (RID)
 about
 URL
.NET Core SDK
 URL
.NET Core Windows Server Hosting
 URL
.NET Core
 .NET Core application, creating
 .NET Core application, executing
 about
 SDK, installing
 URL
 URL, for Linux
.NET Standard 2.0
 URL

A
ab.exe
actions
 about
 Delete
 Get
 Patch
 Post
 Put
AdventureWorks2014 database
 about
 restoring
 URL
Angular 4
 Angular CLI
 Angular Service Provider
 AppComponent template
 component

 URL
 used, for consuming web APIs
Angular Reactive Forms
Apache HTTP Server Benchmarking Tool
application performance
 measuring
ASP.NET Core Project
 application type, selecting
 authentication type, selecting
ASP.NET Core Web API project
 ASP.NET Core Web API, executing on Linux
 executing
 executing, in Visual Studio IDE
 publishing
 publishing, by CLI
 publishing, by Visual Studio Tooling
ASP.NET Core Web API
 and existing database, integrating with Entity

Framework 6.x
 and Routing
 ASP.NET Core app, creating for .NET

Framework
 AutoMapper, using
 connection strings
 IProductRepository, using to access database

 ProductController, writing to access database

ASP.NET Core web applications
 creating, on Linux
 creating, on macOS
ASP.NET Core
 *.csproj
 about
 ASP.NET Core Web API, creating with Yeoman

 Configure method

[300]

 ConfigureServices method
 deployment strategy
 logging in
 MVC, unification with Web API
 overview
 Program.cs
 project, creating with Visual Studio IDE
 request, processing
 Startup.cs
 URL , ,
 Web API Application structure
 web apps, creating with Yeoman
async await pattern
 URL
asynchronous controller action methods
Attribute Routing
 URL
attribute-based Routing
 about ,
 routes, for RESTful applications ,
AutoMapper
 about
 using
AWS EC2
 URL
 web API, publishing
Azure App Service
 web API, deploying
Azure virtual machine
 URL

B
binary messages
 about
 header compression
 media types
built-in middleware
 authentication
 CORS
 routing
 session
 static files

C
claims-based authorizations
 about
 claims policy
 claims policy, using
Command Line Interface (CLI)
 about ,
 URL
Component, Angular
 URL
controllers
 about
 Delete, using
 GET by ID ,
 GetAll, using
 models, creating , ,
 Post
 prerequisites
 Put, using
 using ,
convention-based Routing
 about
cookie-based authentication
create, read, update, and delete (CRUD) ,
Cross Origin Resource Sharing (CORS)
Cross-Origin Requests
 URL
custom middleware
 writing ,
custom route constraints
 writing ,

D
Dapper
 about ,
 AdvWrksDapper Web API, creating
 connection string
 DeparmentController Web API, adding
 department model, using to access database

 IDepartmentRepository, using to access
database

 IOptions
 library, adding

[301]

 used, for integration
Data Protection API ,
demo ASP.NET Core project
demo ASP.NET Core Web API project
 creating
dependency injection (DI)
 about
 ILoggerFactory
 instance
 scope
 singleton
 transient
distributed caching
 SQL Server distributed cache, using
 working with
Docker
 references
 web API, publishing
dotnet publish
 URL

E
Entity Framework (EF) ,
Entity Framework 6.x
 AdventureWorks2014 database, restoring
 EF6 data access library
Entity Framework Core (EF Core)
 contacts model class
 ContactsController, for CRUD operations
 database migration
 DbContext
 integrating with
 package, adding
 PacktContactsCore ASP.NET Core project,

creating
 service, configuring to use SQL Server database

 tooling
 updates
 URL
extension methods, IApplicationBuilder interface
 Map() method
 Mapwhen() method
 Run() method
 Use() method

F
filter pipeline
filters
 about
 action filters
 authorization filter
 exception filter ,
 scoping

G
GenFu
GET by ID
 mapping ,

H
HTTP compression
 about
 response compression middleware, adding
HTTP modules
 migrating, to middleware
HTTP request pipeline
 and middleware ,
HTTP/2
 about
 multiplexing
 server push
 single connection
 streams
 streams prioritization
hybrid mobile apps
 building, with Ionic 3
Hypertext As The Engine of Application State

(HATEOAS)
Hypertext Transfer Protocol (HTTP)
 1.1 status codes
 about
 API example
 DELETE
 GET
 POST
 PUT

[302]

I
identity management
 in Web API
Identity package
 adding
identity-related database
 creating
IIS
 reference
 web API, deploying
 website, configuring
in-memory caching
 implementing
Ionic 3
 home page
 HTML page
 URL
 used, for building hybrid mobile apps
Ionic CLI
 URL

J
JavaScript
 URL
 used, for consuming web APIs
JQuery
 URL
 used, for consuming web API
JSON Web Tokens (JWT)
 implementing
JSON Web Tokens
 generating ,
 validating

K
Kestrel

L
libuv
link generation
 about ,
Linux
 ASP.NET Core web applications, creating
logging in, ASP.NET Core

 ILoggerFactory, in dependency injection
 logging action
 logging category
 logging level

M
macOS
 ASP.NET Core web applications, creating
MapRoute
 using
Micro ORM
Microservices
 about
 benefits
 independently changeable
 scalability
 technology agnostic
 URL
middleware
 about
 HTTP modules, migrating
 Map() method
 MapWhen() method
 order ,
 Run() method
 scenarios
 Use() method
 using
models
 business
 business, dependency injection
 creating ,
Monolithic architecture
 about
 shortcomings
multiple Routes
Multipurpose Internet Mail Extensions (MIME)
MVC
 unification, with ASP.NET Core
MyWallet project
 exception management
 log management services

[303]

N
NLog
 URL
 used, for logging errors to file
NodeJS
 about
 URL ,
NuGet package
 URL

O
OAuth
 about
 reference
Object Relational Mapper (ORM)
Open Web Application Security Project (OWASP)

,

P
PacktContacts web API
 accessing, with header
 accessing, without header
 contact, deleting
 contact, editing
 contacts, adding
 contacts, obtaining ,
 cross-origin issue, dealing with
 demo web API project, recapping
 testing
Plain Old CLR Object (POCO)
POST
 URL
Push and Pop concept

R
ranking of threats
Raygun
 URL
ReactJS
 used, for building web apps
 used, in ASP.NET web application
Red-Green-Refactor
 about , , ,
 API test, running

 base URI, setting
 Delete tests
 Post Conflict test
 Post Created test
 Put tests
response caching
response compression middleware
 about
 adding
REST architectural elements
 about
 component
 connectors
 data elements
 representation
 resource identifiers
 resources
REST principles
 about
 cache
 client server
 code-on-demand
 layered system
 stateless
 uniform interface
Reverse engineering
Richardson maturity model (RMM)
 about
 level 0
 level 1
 level 2
 level 3
route constraints
 Alpha
 Bool
 Datetime
 Decimal
 Double
 Float
 Guid
 Int
 Length(min, max)
 Long
 Max(value)
 Maxlength

[304]

 Min(value)
 MinLength
 Range(min, max)
 Regex(expression)
 Requires
RouteBuilder class
 using
Routing middleware
 using ,
Routing
 and ASP.NET Core Web API
 best practices
 constraints ,
 constraints, types
 implementing

S
Secured Sockets Layer (SSL)
 applying
Seq
 URL
Serilog
 URL
 used, for logging errors to database
Service-Oriented Architecture (SOA)
 about
 services
 services, implementation
short circuiting
Simple Object Access Protocol (SOAP) ,
Single Page Applications (SPA)
software architecture
 about
 component
 connector
 data
SQL Server distributed cache
 using
standalone web API
 about
Startup class
 configuring
StaticFiles middleware
 using

T
Task-based Asynchronous Pattern (TAP)
template-based Routing ,
test-driven development (TDD)
 about
 guidelines
 Red-Green-Refactor
threat model
threat modelling
 about
 reference
Transport Layer Security (TLS)
two-factor authentication (2FA) ,
TypeScript
 URL

U
Uniform Resource Locators (URLs)
user interfaces (UIs)

V
Visual Studio Code (VS Code)
 about
 URL
Visual Studio Code, debugging
 URL
Visual Studio IDE
 used, for creating ASP.NET Core Project
Visual Studio Tooling
 used, for publishing
Visual Studio
 references

W
web API
 about
 ASP.NET
 beginning
 consuming, with Angular 4
 consuming, with JavaScript
 consuming, with JQuery
 deploying, to Azure App Service
 deploying, to IIS
 design, reference

 evolution
 identity management
 protecting
 publishing, to Docker
 publishing, to EC2 on AWS
 publishing, to Linux
 publishing, to Windows virtual machine on Azure

web apps
 building, with ReactJS
web frameworks
 software prerequisites
Web Service Description Language (WSDL)
Windows Communication Foundation (WCF)

X
xUnit tests
 about
 API Test ,
 Models tests ,
 validator class

Y
Yeoman (yo)
 ASP.NET Core web apps, creating
 URL
 used, for creating ASP.NET Core Web API

	Cover
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Customer Feedback
	Table of Contents
	Preface
	Chapter 1: Introduction to Microservices and Service-Oriented Architecture
	Services in SOA
	Service implementation

	Monolithic architecture
	Overheads of Monolithic architecture

	Introducing Microservices
	Lightweight yet scalable
	Technology agnostic
	Independently changeable

	Benefits of Microservices
	Summary

	Chapter 2: Understanding HTTP and REST
	Software architecture
	REST principles
	Client - server
	Stateless
	Cache
	The uniform interface
	Layered system
	Code-on-demand

	REST architectural elements
	Data elements
	Resources and resource identifiers
	Representations
	Connectors
	Components

	HTTP
	HTTP/1.1 status codes
	An API example
	HTTP POST example
	HTTP GET example
	HTTP PUT example
	HTTP DELETE example

	Version 2 of HTTP
	Single connection
	Server push
	Multiplexing and streams
	Stream prioritization

	Binary messages
	Header compression
	Media types

	Richardson maturity model
	Level 0
	Level 1
	Level 2
	Level 3

	Summary

	Chapter 3: Anatomy of ASP.NET Core Web API
	A quick recap of the MVC framework
	Inception of Web APIs and their evolution
	Introducing web API
	ASP.NET into Open Source world

	Introduction to .NET Core
	Install .NET Core SDK
	Creating and running a basic .NET Core application

	Introducing ASP.NET Core
	An overview of ASP.NET Core

	Creating ASP.NET Core Project using Visual Studio IDE
	Choosing the application type
	Selecting authentication type

	Creating ASP.NET Core web applications on Linux/macOS
	Creating ASP.NET Core web apps with Yeoman
	Creating ASP.NET Core Web API using Yeoman
	ASP.NET Core Web API Application structure
	Program.cs
	Startup.cs
	The Configure method
	The ConfigureServices method
	*.csproj

	ASP.NET Core request processing
	Unified MVC and Web API in ASP.NET Core

	Running the ASP.NET Core Web API project
	Running the application in Visual Studio IDE
	Running ASP.NET Core Web API on Linux/macOS

	Further reading
	Summary

	Chapter 4: Controllers, Actions, and Models
	Introduction to controllers
	Actions
	Post
	Get
	Put
	Patch
	Delete

	Controllers
	Models
	Business
	Dependency Injection

	GET by ID
	Mapping
	Post
	Put
	Delete
	GetAll

	Summary

	Chapter 5: Implementing Routing
	Introducing Routing
	Routing middleware
	The RouteBuilder class
	MapRoute

	ASP.NET Core Web API and Routing
	Convention-based Routing
	Template-based Routing
	Attribute-based Routing
	Attribute routes for RESTful applications

	Multiple Routes
	Routing constraints
	Types of route constraints
	Writing custom route constraints

	Link generation
	Routing best practices
	Summary

	Chapter 6: Middleware and Filters
	Introducing middleware
	HTTP request pipeline and middleware
	Middleware in action
	Use()
	Run()
	Map()
	MapWhen()

	Order of middleware
	Built-in middleware
	Using StaticFiles middleware

	Writing custom middleware
	Migrating HTTP modules to middleware
	Introducing filters
	Filter pipeline
	Filter scoping
	Action filters
	Authorization filter
	Exception filter

	Summary

	Chapter 7: Perform Unit and Integration Testing
	Uncle Bob's three rules of test-driven development
	Red-Green-Refactor
	Running the API test
	The Post Created test
	Setting the base URI
	The Post Conflict test
	The Put tests
	The Delete tests

	The xUnit tests
	The Models tests
	The validator class

	API Test

	Summary

	Chapter 8: Web API Security
	Understanding Threat Model and OWASP
	Threat Model
	OWASP

	Applying SSL
	CORS
	Data Protection API
	Protecting web API
	Implementing JWT
	Generating JWTs
	Validating JWT
	OAuth

	Claims-based Authorizations
	Authorization using the claims policy

	Identity management in web API
	Adding the Identity package
	Configuring the Startup class
	Creating identity-related database
	Cookie-based authentication
	Two-factor authentication

	Summary

	Chapter 9: Integration with Database
	Brief introduction to Object Relational Mapper
	Integrating ASP.NET Core Web API and an existing database using Entity Framework 6.x
	Restoring the AdventureWorks2014 database
	EF6 data access library
	Creating an ASP.NET Core app for the full .NET Framework
	Using IProductRepository to access the database
	Connection strings and IProductRepository in startup
	Using AutoMapper
	Writing ProductController to access the database

	Integrating using Dapper
	Creating AdvWrksDapper Web API and adding Dapper library
	Using IDepartmentRepository and department model to access the database
	Connection string and IOptions in ASP.NET Core
	Adding the DeparmentController Web API

	Integrating with EF Core
	Creating PacktContactsCore ASP.NET Core project
	Adding the EF Core package and tooling
	Contacts model class and DbContext
	Configuring services to use the SQL Server database
	EF tools for database migrations and updates
	ContactsController for CRUD operations

	Summary

	Chapter 10: Error Handling, Tracing, and Logging
	Basics of Logging in ASP.NET Core
	Logging level
	Logging in action
	Logging category
	ILoggerFactory in dependency injection

	MyWallet - Demo ASP.NET Core project
	Logging errors to a file using NLog
	Logging errors to a database using Serilog
	Exception management in a MyWallet project
	Links to log management services

	Summary

	Chapter 11: Optimization and Performance
	Measuring application performance
	Asynchronous controller action methods
	HTTP compression
	Adding response compression middleware

	Implementing in-memory caching
	Working with distributed caching
	Using an SQL Server distributed cache

	Response caching
	Summary

	Chapter 12: Hosting and Deployment
	Creating a demo ASP.NET Core Web API project
	Publishing ASP.NET Core Web API project
	Publishing by CLI
	Publishing by Visual Studio Tooling

	Standalone web API
	Deployment strategy
	Deploying web API to IIS
	Configuring a website on IIS

	Deploying a web API to Azure App Service
	Publishing a web API to Windows virtual machine on Azure
	Publishing a web API to Docker
	Publishing a web API to EC2 on AWS
	Publishing a web API to Linux
	Testing PacktContacts web API
	Test case - Accessing a web API without the header
	Test case - Accessing a web API with the header
	Test case - Adding a contact to web API
	Test case - Getting a contact from the web API
	Test case - Getting all contacts from the web API
	Test case - Editing a contact to the web API
	Test case - Deleting a contact from the web API

	Summary

	Chapter 13: Modern Web Frontends
	PacktContacts - Recap of the demo web API project
	Dealing with a cross-origin issue

	Software pre-requisites for web frameworks
	Consuming web APIs using Angular 4
	Angular CLI
	PacktServices - Angular Service Provider
	AppComponent - Angular Component
	The AppComponent template - HTML for Angular component

	Building hybrid mobile apps using Ionic 3
	Home page - Ionic 3 page
	Home page - Ionic 3 HTML page

	Building web apps using ReactJS
	ReactJS in ASP.NET web application

	Consuming web APIs using JavaScript
	Consuming web APIs using JQuery
	Summary

	Index

