
Beginning Database 
Programming Using 
ASP.NET Core 3 

With MVC, Razor Pages, Web API, jQuery, 
Angular, SQL Server, and NoSQL
—
Bipin Joshi



Beginning Database 
Programming Using  

ASP.NET Core 3
With MVC, Razor Pages, Web API, 

jQuery, Angular, SQL Server, 
and NoSQL

Bipin Joshi



Beginning Database Programming Using ASP.NET Core 3: With MVC, Razor Pages, 
Web API, jQuery, Angular, SQL Server, and NoSQL

ISBN-13 (pbk): 978-1-4842-5508-7  ISBN-13 (electronic): 978-1-4842-5509-4 
https://doi.org/10.1007/978-1-4842-5509-4

Copyright © 2019 by Bipin Joshi 

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with 
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an 
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the 
trademark. 

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not 
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to 
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street, 
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member 
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a 
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and 
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales 
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to 
readers on GitHub via the book’s product page, located at www.apress.com/9781484255087. For more 
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Bipin Joshi

Thane, India

https://doi.org/10.1007/978-1-4842-5509-4


At the holy feet of Lord Shiva, Goddess Parvati,  
and Gurudev Dattatreya.

—Bipin Joshi



v

Chapter 1: Introduction to ASP.NET Core .................................................................. 1

Overview of ASP.NET Core ............................................................................................................. 1

ASP.NET Core MVC ................................................................................................................... 3

ASP.NET Core Razor Pages ...................................................................................................... 4

ASP.NET Core Web API ............................................................................................................. 5

Creating an ASP.NET Core MVC Project ......................................................................................... 7

Creating an ASP.NET Core Razor Pages Project .......................................................................... 20

Creating an ASP.NET Core Web API Project ................................................................................. 25

Installing the Northwind Database .............................................................................................. 29

Summary..................................................................................................................................... 32

Chapter 2: Sample Application ............................................................................... 33

Features of Employee Manager .................................................................................................. 33

Understanding the Employees Table ........................................................................................... 35

Adding a Countries Table ....................................................................................................... 41

Signing In to Employee Manager ................................................................................................ 42

Creating a New User Account ..................................................................................................... 43

Listing All the Employees ............................................................................................................ 45

Inserting a New Employee .......................................................................................................... 46

Updating Existing Employee ........................................................................................................ 48

Deleting Existing Employee ......................................................................................................... 50

Signing Out of Employee Manager .............................................................................................. 52

Table of Contents

About the Author ................................................................................................... xiii

About the Technical Reviewer .................................................................................xv

Introduction ...........................................................................................................xvii



vi

Technology Options Used to Develop Employee Manager .......................................................... 52

Rendering HTML Forms ......................................................................................................... 52

Performing CRUD Operations ................................................................................................ 53

Using JavaScript Libraries and Frameworks ......................................................................... 54

User Authentication ............................................................................................................... 55

Deployment ........................................................................................................................... 56

ASP.NET Core MVC ................................................................................................................. 56

ASP.NET Core Razor Pages .................................................................................................... 56

ASP.NET Core Web API ........................................................................................................... 57

jQuery .................................................................................................................................... 57

Angular .................................................................................................................................. 57

Blazor .................................................................................................................................... 58

Azure SQL Database .............................................................................................................. 58

Azure Cosmos DB .................................................................................................................. 58

MongoDB ............................................................................................................................... 58

Hosting Code in a Private GitHub Repository .............................................................................. 59

Summary..................................................................................................................................... 66

Chapter 3: ASP.NET Core MVC ................................................................................. 67

Create an ASP.NET Core Web Application .................................................................................... 67

Create an Entity Framework Core Model .................................................................................... 68

Create an EmployeeManager Controller ..................................................................................... 75

Add a _ViewImports File ............................................................................................................. 77

Displaying a List of Employees ................................................................................................... 79

Insert a New Employee ............................................................................................................... 84

Update an Existing Employee ...................................................................................................... 90

Delete an Existing Employee ....................................................................................................... 93

Add Razor Layout and View Start ................................................................................................ 97

Enable Client-Side Validations .................................................................................................. 100

Store the Database Connection String in appsettings.json ....................................................... 101

Configure Application Startup ................................................................................................... 103

Table of ConTenTs



vii

Add ASP.NET Core Identity Support ........................................................................................... 107

Add AppIdentityUser, AppIdentityRole, and AppIdentityDbContext Classes.......................... 107

Add ASP.NET Core Identity Configuration to Startup ............................................................ 109

Add Database Tables to Store User and Role Details ........................................................... 111

Add SecurityController to the Controllers Folder ................................................................. 113

Create a User Registration Page .......................................................................................... 115

Create a Sign-In Page .......................................................................................................... 122

Add a Sign Out Button ......................................................................................................... 126

Authenticate and Authorize Users ....................................................................................... 128

Protect the Application Against Cross-Site Request Forgery ............................................... 129

Run the Application ................................................................................................................... 131

Summary................................................................................................................................... 132

Chapter 4: ASP.NET Core Razor Pages .................................................................. 133

Create a ASP.NET Core Web Application .................................................................................... 133

Reverse Engineering the Entity Framework Core Model ........................................................... 135

Create Pages and EmployeeManager Folders .......................................................................... 141

Add a _ViewImports File ........................................................................................................... 141

Displaying a List of Employees ................................................................................................. 142

Inserting a New Employee ........................................................................................................ 146

Updating an Existing Employee ................................................................................................. 151

Deleting an Existing Employee .................................................................................................. 156

Add Razor Layout and View Start .............................................................................................. 159

Client-Side Validations, Style Sheet, and appsettings.json ....................................................... 160

Configure Application Startup and Error Handling .................................................................... 160

Add ASP.NET Core Identity Support ........................................................................................... 163

Add AppIdentityUser, AppIdentityRole, and AppIdentityDbContext Classes.......................... 164

Add ASP.NET Core Identity Configuration and Database Tables ........................................... 165

Add the Security Subfolder to the Pages folder .................................................................. 165

Create a User Registration Page .......................................................................................... 166

Create a Sign-In Page .......................................................................................................... 170

Table of ConTenTs



viii

Signing the User Out of the Application ............................................................................... 172

Authenticating and Authorizing Users ................................................................................. 173

Run the Application ................................................................................................................... 174

Summary................................................................................................................................... 174

Chapter 5: ASP.NET Core Web API ......................................................................... 175

Application Architecture ............................................................................................................ 175

ASP.NET Core and REST Services ........................................................................................ 176

Understanding the JSON Format ......................................................................................... 177

Role of the Repository ......................................................................................................... 178

Creating an EmployeeManager.Api Project ............................................................................... 179

Creating the EF Core Model and Repositories ........................................................................... 181

Creating EmployeeSqlRepository and CountrySqlRepository .............................................. 181

Creating EmployeeStProcRepository and CountryStProcRepository ................................... 186

Registering Repositories with the DI Container ................................................................... 190

Creating Employees Web API and Countries Web API ............................................................... 191

Running the Employees Web API ......................................................................................... 197

Creating a Client for Web API .................................................................................................... 199

Creating View Models .......................................................................................................... 201

Adding the EmployeeManagerController ............................................................................. 202

Setting Up the HttpClient ..................................................................................................... 204

Displaying a List of Employees ............................................................................................ 207

Inserting a New Employee ................................................................................................... 211

Updating an Existing Employee ........................................................................................... 216

Deleting an Existing Employee ............................................................................................ 220

FillCountriesAsync() Helper Method .................................................................................... 223

Integrating ASP.NET Core Identity ........................................................................................ 224

Running the Application ............................................................................................................ 224

Summary................................................................................................................................... 225

Table of ConTenTs



ix

Chapter 6: jQuery .................................................................................................. 227

Overview of Ajax ....................................................................................................................... 227

Create an ASP.NET Core Web Application .................................................................................. 229

Employees Web API and Countries Web API .............................................................................. 231

EmployeeManager Controller .................................................................................................... 235

Add a jQuery Library to the Project ........................................................................................... 236

Display a List of Employees ...................................................................................................... 237

Insert a New Employee ............................................................................................................. 243

Update an Existing Employee .................................................................................................... 250

Delete an Existing Employee ..................................................................................................... 254

Overview of the JSON Web Token (JWT)-Based Authentication ................................................ 259

What Is JWT? ....................................................................................................................... 259

Add Support for JWT Authentication ......................................................................................... 262

Storing User Details ............................................................................................................. 262

Enable and Configure JWT Authentication .......................................................................... 264

Create a New User Account ................................................................................................. 267

Signing In to the Application ................................................................................................ 270

Signing Out of the Application ............................................................................................. 275

Enforce Authentication on All Pages .................................................................................... 276

Summary................................................................................................................................... 278

Chapter 7: Angular................................................................................................ 279

Overview of the Project Structure ............................................................................................. 280

Create ASP.NET Core Web API Application ................................................................................. 284

Enabling CORS in Web API Project ....................................................................................... 285

Running Web API Application ............................................................................................... 286

Create Angular Application ........................................................................................................ 288

Angular Application Architecture ......................................................................................... 289

Editing Angular Project Files in Visual Studio ...................................................................... 290

Add Employee, Country, and User Classes ................................................................................ 292

Add Service to Invoke Employees Web API ............................................................................... 294

Table of ConTenTs



x

Add Service to Invoke Security Web API ................................................................................... 299

Display a List of Employees ...................................................................................................... 301

Insert a New Employee ............................................................................................................. 309

Update an Existing Employee .................................................................................................... 317

Delete an Existing Employee ..................................................................................................... 321

Sign-In Component ................................................................................................................... 324

Sign-Out Component ................................................................................................................. 326

Understanding app.module.ts ................................................................................................... 327

Routing ...................................................................................................................................... 330

Running the Angular Application ............................................................................................... 333

Integrating Angular Application with ASP.NET Core Application .......................................... 334

Summary................................................................................................................................... 335

Chapter 8: Blazor .................................................................................................. 337

Blazor Hosting Models .............................................................................................................. 337

Client Side (Blazor WebAssembly) ....................................................................................... 338

Server Side (Blazor Server) ................................................................................................. 339

Overview of Razor Components ................................................................................................ 341

Component Lifecycle Methods ............................................................................................ 343

Employee Manager Project Structure ....................................................................................... 343

Entity Framework Core Model and Repositories ....................................................................... 345

Display a List of Employees ...................................................................................................... 349

Insert a New Employee ............................................................................................................. 354

Update an Existing Employee .................................................................................................... 360

Delete an Existing Employee ..................................................................................................... 363

Apply CSS and Layout to Razor Components ............................................................................ 367

Integrating ASP.NET Core Identity ............................................................................................. 368

Add IdentityDbContext and Associated Classes .................................................................. 369

Add Register and SignIn View Models ................................................................................. 369

Table of ConTenTs



xi

Add Register, SignIn, and SignOut Razor Pages .................................................................. 370

Add _Layout, _ViewStart, and _ViewImports Files .............................................................. 371

Register and Configure ASP.NET Core Identity ..................................................................... 372

Secure CRUD Razor Components ........................................................................................ 373

Display the User Name and Sign Out Button ....................................................................... 375

Configure Initial Sign-In Prompt .......................................................................................... 376

Use Policy-Based Authorization ........................................................................................... 377

Summary................................................................................................................................... 380

Chapter 9: Azure SQL Database, Azure Cosmos DB, and MongoDB ...................... 381

Creating Azure SQL Database ................................................................................................... 382

Connecting to Azure SQL Database Using SQL Server Management Studio ....................... 385

Employee Manager Using Azure SQL Database ........................................................................ 386

Employee and Country Model Classes ................................................................................ 387

Creating EmployeeRepository and CountryRepository ........................................................ 388

EmployeeManagerController Class ........................................................................................... 396

Database Connection String ................................................................................................ 398

Overview of NoSQL Databases .................................................................................................. 399

Cosmos DB .......................................................................................................................... 400

MongoDB ............................................................................................................................. 401

Creating a Cosmos DB Account ................................................................................................. 401

Employee Manager Using Cosmos DB ...................................................................................... 404

Cosmos DB Connection Details ........................................................................................... 405

Microsoft.Azure.DocumentDB.Core Client Library ............................................................... 406

Employee and Country Model Classes ................................................................................ 406

Creating the EmployeeManagerController ........................................................................... 408

Adding Support for Authentication and Authorization ............................................................... 418

Storing User Details ............................................................................................................. 419

Creating the SecurityController ........................................................................................... 421

Table of ConTenTs



xii

Using the EF Core Provider for Cosmos DB ............................................................................... 425

Creating the AppDbContext.................................................................................................. 426

Performing CRUD Operations .............................................................................................. 428

Installing and Running MongoDB .............................................................................................. 433

Performing CRUD Operations .............................................................................................. 434

Summary................................................................................................................................... 442

Chapter 10: Deployment ....................................................................................... 443

Deploy Employee Manager to IIS .............................................................................................. 444

Create a Target SQL Server Database .................................................................................. 446

Create an IIS Site ................................................................................................................. 447

Publish Employee Manager from Visual Studio ................................................................... 451

Redeploying the Application ................................................................................................ 458

Deploy Employee Manager to Azure App Service ..................................................................... 459

Storing Connection String in App Service ............................................................................ 466

Redeploying the Application ................................................................................................ 467

Summary................................................................................................................................... 469

Index ..................................................................................................................... 471

Table of ConTenTs



xiii

About the Author

Bipin Joshi is an independent software consultant, trainer, author, yoga mentor, and 

meditation teacher who writes about seemingly unrelated topics: software development 

and yoga! He conducts online training courses to help developers learn the .NET family 

of technologies better and faster. Currently, his focus is ASP.NET, C#, Azure, data access 

technologies, design patterns, and architectural patterns. More details about his online 

training courses are available at www.binaryintellect.com. 

Bipin has been programming since 1995 and has worked with the .NET framework 

since its inception. He is a published author and has authored or co-authored more than 

12 books and numerous articles on .NET technologies. He regularly writes about ASP.NET 

and other cutting-edge web technologies on his web site – www.binaryintellect.net. 

Bipin is a Microsoft Most Valuable Professional (MVP) and a former Microsoft Certified 

Trainer (MCT).

Having embraced the yoga way of life, he enjoys the intoxicating presence of God 

and writes about yoga on his web site – www.bipinjoshi.org. Bipin has also penned a 

few books on yoga and teaches meditation to selected individuals. He can be reached 

through his web sites.

http://www.binaryintellect.com/
http://www.binaryintellect.net/
http://www.bipinjoshi.org/


xv

About the Technical Reviewer

Alex Thissen has been involved in application development 

since the late 1990s and worked as a lead developer, trainer, 

coach, and architect at large enterprises and small companies. 

He spends his time teaching other developers the details of 

the Microsoft development platform and frameworks and 

coaches architects to design and build modern distributed 

applications at cloud scale. He has received the Microsoft 

Most Valuable Professional award for Visual Studio and 

Development Technologies since 2006. In his spare time, Alex 

likes to participate in all kinds of sport and loves playing and 

programming new and retro video games.  



xvii

Introduction

Welcome to Beginning Database Programming Using ASP.NET Core 3! Modern web 

application development is dominated by open source frameworks that evolve at a 

rapid pace. At times, it becomes challenging and overwhelming even for experienced 

developers to keep themselves updated with the latest happenings in the technologies 

and frameworks of their interest. It goes without saying that beginners aiming to grasp 

the fundamentals of such technologies and frameworks often look for resources that can 

introduce them to the subject quickly and efficiently.

This book is about Microsoft’s latest web development framework – ASP.NET Core 

3.0. While developing real-world web applications using ASP.NET Core, you have many 

options to choose from: MVC, Razor Pages, Web API, Blazor, jQuery, Angular, Entity 

Framework (EF) Core, SQL Server data provider, Azure SQL Databases, Cosmos DB, 

MongoDB, and more. The book attempts to address the difficulties faced by beginners 

when they decide to jump to the ASP.NET Core family of technologies. It discusses topics 

that are most frequently needed by beginners. To that end, this book teaches you to

• Work with data entry forms and form validations

• Perform CRUD (Create, Read, Update, and Delete) database 

operations

• Use jQuery Ajax and Angular with ASP.NET Core applications

• Implement user authentication and authorization

• Store data in NoSQL databases such as Cosmos DB and MongoDB

• Deploy ASP.NET Core web applications to Internet Information 

Services (IIS) and Azure App Service

What makes this book special is the approach it takes while introducing these 

technical features. Rather than presenting these features and available options in 

isolation, this book utilizes them in an integrated manner by building a small CRUD- 

focused sample application – Employee Manager.



xviii

Throughout this book, you build multiple versions of Employee Manager, each 

version using a particular set of technologies, features, and options. For example, 

in one of the chapters, you build Employee Manager using ASP.NET Core MVC. In 

another chapter, you build the same application using ASP.NET Core Razor Pages. In yet 

another chapter, you build Employee Manager using Blazor, and so on. I hope that this 

approach will help you to get introduced to various aspects of ASP.NET Core quickly and 

efficiently.

 Who Is This Book For?
This book is intended for beginner-level software developers wanting to get introduced 

to web development using ASP.NET Core and related technologies. This book doesn’t 

aim at taking a deep dive into the subject; rather, it attempts to quickly familiarize you 

with an array of technologies, features, and options that can be used while building 

modern web applications using ASP.NET Core. I make the following assumptions  

about you:

• You are familiar with C# programming language.

• You possess a basic understanding of ASP.NET and how web 

applications work.

• You are familiar with Visual Studio IDE. Although the book explains 

some features of Visual Studio as and when they are required, you 

should know the basics such as creating/opening project files, 

compiling and debugging source code, and running an application 

from within the Visual Studio.

• You know how to work with Microsoft SQL Server tables and stored 

procedures.

Additionally, in some chapters, familiarity with JavaScript would be a plus.

InTroduCTIon



xix

 Software Required
In order to work through the examples discussed in this book, you need the following 

software:

• Visual Studio 2019 for Windows (make sure to apply the latest updates)

• .NET Core 3.0 and ASP.NET Core 3.0

• SQL Server 2012 or later with the Northwind database

• Access to the Azure portal, Azure SQL Databases, and Azure Cosmos 

DB in the examples that use these technologies

• MongoDB database server in the example that uses it as a data store

• jQuery 3.x and Angular 8 in the chapters where these are used

• Any modern web browser

I have used Visual Studio 2019 Enterprise edition to create all the example projects. 

However, you can use any edition of Visual Studio 2019 for Windows such as Community 

or Professional edition. IIS Express has been used as the development web server. 

Most of the examples presented in this book use the Northwind sample database, and I 

strongly suggest that you install it in your SQL Server. I have used the Firefox browser in 

my illustrations and screenshots, but you can use any other modern browser.

 Structure of This Book
As mentioned earlier, this book teaches you about the ASP.NET Core family of 

technologies by building the Employee Manager sample application. In all, there are ten 

chapters, out of which the first two are introductory chapters. Chapters 3–9 guide you 

to build various versions of Employee Manager, each version making use of a particular 

set of technologies, features, and options. Chapter 10 covers deployment. These ten 

chapters are briefly outlined as follows:

• Chapter 1: This chapter gives you a quick introduction to ASP.NET 

Core in terms of its prominent features and primary development 

options. You also build a “Hello World” example using ASP.NET Core 

MVC, Razor Pages, and Web API.

InTroduCTIon



xx

• Chapter 2: This chapter explains the Employee Manager application. 

It takes a quick look at the Employees table of the Northwind 

database and also discusses its columns that are used for the sake of 

CRUD operations. Various pages of the application such as employee 

listing page, Insert New Employee page, user registration page, and 

sign-in page are discussed in terms of their functionality. It then 

proceeds to summarize various technology features and options 

available to you for building this application. The chapter also guides 

you to host your source code into GitHub repositories.

• Chapter 3: This chapter teaches you to develop Employee Manager 

using ASP.NET Core MVC. It illustrates various features such 

as using Tag Helpers to build user interfaces (UIs), creating an 

Entity Framework Core model, and model validation using data 

annotations. You also learn to use ASP.NET Core Identity for user 

authentication and authorization.

• Chapter 4: In this chapter, you develop Employee Manager using 

ASP.NET Core Razor Pages. This chapter also teaches how an EF Core 

model can be created using reverse engineering techniques. This 

example also illustrates asynchronous operations (async/await) in 

Razor Pages and ASP.NET Core Identity.

• Chapter 5: In this chapter, you develop Employee Manager using 

ASP.NET Core Web API. The application consists of two parts – 

Web API and client. Web API performs the CRUD operations using 

repositories, raw SQL queries, and stored procedures. The client 

application is developed using ASP.NET Core MVC and uses HTML 

Helpers to build the user interface. The client application uses 

HttpClient to invoke Web API. The client also demonstrates how to 

write asynchronous actions (async/await) in the MVC controller.

• Chapter 6: This chapter teaches you to develop Employee Manager 

using jQuery and Web API. Data entry forms are designed using 

HTML5 markup. Data validations are performed using jQuery 

validation plugin. Communication between the client and the server 

is facilitated using jQuery Ajax. The CRUD operations are wrapped 

InTroduCTIon



xxi

inside an asynchronous Web API and use asynchronous methods of 

Entity Framework Core. User authentication is implemented using 

JSON Web Tokens (JWTs).

• Chapter 7: In this chapter, you develop Employee Manager using 

Angular and Web API. Data entry forms are designed using Angular 

reactive forms. Form validations are performed using Angular’s 

built-in validation techniques. Angular invokes Web API to perform 

CRUD operations. Communication between the client and the 

server is facilitated using Angular’s HttpClient. User authentication is 

implemented using the JWT authentication scheme.

• Chapter 8: This chapter teaches you to develop Employee Manager 

using Blazor. The application uses Blazor’s server-side hosting model. 

You learn to develop Razor Components. Data entry forms complete 

with validations are developed using Blazor’s input components. 

The CRUD operations are encapsulated in a repository injected 

into Razor Components. User authentication and authorization 

are implemented using ASP.NET Core Identity and policy-based 

authorization.

• Chapter 9: In this chapter, you develop Employee Manager using 

three different data stores: Azure SQL Database, Azure Cosmos 

DB, and MongoDB. First, you learn to perform CRUD operations 

on Azure SQL Databases using the Microsoft.Data.SqlClient data 

provider. Then you learn two ways to access data residing in Azure 

Cosmos DB, namely, Cosmos DB client library and EF Core provider 

for Cosmos DB. Finally, you also learn to access data from MongoDB 

using MongoDB driver for .NET Core.

• Chapter 10: This chapter is about deploying Employee Manager you 

developed in earlier chapters. As an example it illustrates how the 

ASP.NET Core MVC version of Employee Manager can be deployed 

to Internet Information Services (IIS) followed by deploying to Azure 

App Service.

InTroduCTIon



xxii

 Downloading the Source Code
The complete source code for the book is available for download at the book’s 

companion web site. Visit www.apress.com, and go to this book’s information page. Then 

click the Download source code option to go to the book’s source code available on 

GitHub.

 Contacting the Author
You can reach me via my web site – www.binaryintellect.net. You can also follow me 

on Facebook, Twitter, and LinkedIn (visit my web site for the links).

InTroduCTIon

http://www.apress.com/
http://www.binaryintellect.net/


1
© Bipin Joshi 2019 
B. Joshi, Beginning Database Programming Using ASP.NET Core 3,  
https://doi.org/10.1007/978-1-4842-5509-4_1

CHAPTER 1

Introduction to ASP.NET 
Core
This chapter introduces you to the basics of ASP.NET Core. It discusses the main 

development options available in ASP.NET Core, namely, MVC, Razor Pages, and Web 

API. Since you are going to work extensively with ASP.NET Core projects in the later 

chapters, it is worthwhile to learn how to create an ASP.NET Core web application using 

the Visual Studio IDE. To that end, this chapter helps you to

• Understand main development options available in ASP.NET Core.

• Create an ASP.NET Core MVC application.

• Create an ASP.NET Core Razor Pages application.

• Create an ASP.NET Core Web API application.

• Install the Northwind sample database.

 Overview of ASP.NET Core
ASP.NET Core is a framework for building modern web applications and services. It’s 

part of .NET Core and is a cross-platform and open source framework. This means 

you can develop and deploy your web applications targeting all the popular operating 

systems such as Windows, Linux, and macOS.

ASP.NET Core is a redesigned and rewritten framework for building modern web 

applications. Although we won’t discuss each and every feature of the framework here, 

some of its important technical features are listed as follows:

• Cross-platform framework. You can develop and run web 

applications on Windows, Linux, and macOS.



2

• Open source with a lot of community involvement.

• Built-in dependency injection (DI) framework.

• ASP.NET Core includes a built-in web server called Kestrel. You can 

use Kestrel by itself or host your web applications under IIS, Nginx, 

or Apache.

• Multiple development options for UI including MVC, Razor Pages, 

and Blazor. (Of course, you can also use client-side JavaScript 

frameworks to develop the front-end.)

• Unified programming model for MVC web applications and Web APIs.

• High-performance modular request pipeline suitable for modern, 

cloud-optimized applications.

Figure 1-1 shows the layers of ASP.NET Core.

As you can see from Figure 1-1, the bottommost layer is the operating system. 

Because .NET Core is a cross-platform framework, this could be Windows, Linux, or 

macOS. Your web application code is going to be the same regardless of the underlying 

operating system.

To develop and run .NET Core applications, you must have language compilers and 

other necessary runtime components. They are installed when you install .NET Core on 

the machine.

Figure 1-1. Layers of .NET Core and ASP.NET Core

Chapter 1  IntroduCtIon to aSp.net Core



3

The next layer primarily consists of the .NET Core libraries and framework-level 

services. These libraries provide you several features including data types and file 

IO. ASP.NET Core makes use of the .NET Core libraries and hence is shown sitting on top 

of this layer.

ASP.NET Core offers three main development options, namely, ASP.NET Core MVC, 

ASP.NET Core Razor Pages, and ASP.NET Core Web APIs. These options make the top 

layer of the diagram.

ASP.NET Core is built considering modularity. Most of the ASP.NET Core applications 

(MVC/Razor Pages/Web APIs) make use of functionality that resides in NuGet packages.

From the preceding discussion, you know that there are three primary development 

options – MVC, Razor Pages, and Web APIs. Let’s discuss each of them briefly before we 

go into the code-level details.

Note You can also use Blazor to build interactive rich client-side uI using C#, 
htML, and CSS. however, Blazor is a relatively new addition to the aSp.net Core 
family and hence is not discussed in this chapter. You learn more about Blazor in 
Chapter 8.

 ASP.NET Core MVC
ASP.NET Core MVC allows you to build web applications using the Model-View- 

Controller (MVC) pattern. Although detailed discussion of the MVC pattern is beyond 

the scope of this book, a brief discussion of MVC as applicable to ASP.NET Core follows.

The responsibility of a web application built using ASP.NET Core MVC is divided 

into three components: model, view, and controller. Model represents the application’s 

data and could be anything from a primitive type to a complex object. View houses the 

application’s user interface (UI) and usually displays data held by the model. View also 

accepts user input and commands. Controller mediates between a model and a view. Its 

job is to prepare the model required for a view and also to act upon the user input and 

commands as captured by the view. It also decides the program flow by deciding which 

model and view to send next to the user. Thus, a controller might need to deal with many 

models and many views. An end user never deals with a model and a view directly; 

rather, it invokes the controller.

Figure 1-2 shows the model, view, and controller relationship.

Chapter 1  IntroduCtIon to aSp.net Core



4

As far as ASP.NET Core MVC is concerned, a model typically takes the form of a 

C# object(s) and often holds data from some data store such as SQL Server. A view 

physically exists as a .cshtml file and primarily contains markup and Razor code. A 

controller is a C# class and typically contains one or more methods called actions. The 

job of a controller as discussed earlier is accomplished by its actions. The end user 

invokes the controller to get some job done.

ASP.NET Core MVC is a good development choice when your program flow is 

complex and involves multiple models and views. It’s also a preferred development 

option for Ajax-based scenarios and Single Page Applications (SPAs).

 ASP.NET Core Razor Pages
ASP.NET Core Razor Pages allows you to build web applications that use a Model- 

View- ViewModel (MVVM)-like pattern. The Model-View-ViewModel pattern splits the 

application functionality into three components: model, view, and ViewModel. The 

striking difference between MVC and MVVM is the absence of a separate controller class.

In MVVM, the model and the view have the same responsibilities as in the MVC 

pattern. The ViewModel is closely related to a view and is responsible for view-specific 

things such as data binding, UI event handling, and UI notifications. It encapsulates 

view-specific data and behavior. It also updates the underlying data model whenever 

necessary.

Figure 1-3 shows MVVM as applicable to Razor Pages.

Figure 1-2. MVC pattern as applied to ASP.NET Core MVC

Chapter 1  IntroduCtIon to aSp.net Core



5

As far as ASP.NET Core Razor Pages is concerned, the view resides in a .cshtml file 

just like that of an MVC application. For each view, there is a PageModel (ViewModel 

from MVVM) C# class that houses bindable properties and form processing actions 

called handlers. The PageModel class also deals with the data model to update or fetch 

application data.

Razor Pages is the preferred development option for page-focused scenarios with a 

simple program flow. The lack of a controller class also makes their code organization 

simpler.

 ASP.NET Core Web API
ASP.NET Core Web APIs make use of the same controller-based programming model as 

used by MVC applications. However, they don’t have any views. Web APIs expose certain 

functionality using REST (REpresentational State Transfer) guidelines. Typically, a Web 

API consists of a controller that houses five actions. These actions deal with HTTP verbs, 

namely, GET, POST, PUT, and DELETE. The Web API actions contain processing that you 

want to execute when the Web API is invoked using a particular HTTP verb.

Once a Web API is ready, it’s hosted on a server so that client applications can 

consume it. The clients could be any type of application such as a JavaScript application, 

a server-side web application, or even a desktop application.

Figure 1-4 shows the arrangement of a Web API.

Figure 1-3. MVVM pattern as applied to ASP.NET Core Razor Pages

Chapter 1  IntroduCtIon to aSp.net Core



6

As you can see from Figure 1-4, a Web API is a controller named 

CustomerApiController that contains five actions – Select(), SelectByID(), Insert(), 

Update(), and Delete(). The action names could be anything, but they are mapped to 

an HTTP verb. For example, the Select() action is mapped to deal with GET verb, the 

Insert() action is mapped to deal with POST verb, and so on.

Also notice the parameters of these actions. Two variations of Select() are possible – 

one that accepts no parameters and the other that accepts an ID of a resource as its 

parameter. The former variation is intended to retrieve information about multiple 

resources, whereas the latter is intended to retrieve information about a particular 

resource matching the specified ID. The Insert() action accepts an object that indicates 

a new resource to be created on the server. The Update() action accepts an ID of a 

resource to be updated and an object containing modified values of that resource. The 

Delete() action accepts an ID of a resource to be deleted.

The Web API is made available at a well-known URL (http://localhost/api/

customer in this example). The client application then makes HTTP requests to the Web 

API in an attempt to invoke the desired functionality.

Web APIs are quite common wherever functionality is to be exposed through a 

service. This includes Ajax-based scenarios, Single Page Applications (SPA), and also the 

service layer.

Now that you know the main development options in ASP.NET Core, let’s build a 

simple “Hello World” application using each of them.

Figure 1-4. Web API implementing REST guidelines

Chapter 1  IntroduCtIon to aSp.net Core



7

Note If you are already comfortable working with Visual Studio Ide and aSp.
net Core projects, you may skip to Chapter 2. If you are new to aSp.net Core 
development or have recently started playing with it, you might want to go 
through the following sections to get an idea of overall project structure and code 
organization.

 Creating an ASP.NET Core MVC Project
In this section, you will create a “Hello World” project using ASP.NET Core MVC. The 

application you develop will output a message – Hello World! – in the browser and 

will also allow you to specify a custom message. Figure 1-5 shows the main page of the 

application.

As you can see, the page displays a Hello World! message in the heading, but also 

allows you to enter a different message in a textbox. Upon clicking the “Submit” button, 

the Hello World! will be replaced by the new message you specify. This is shown in 

Figure 1-6 where the message is changed to Hello Universe!.

Figure 1-5. Main page of the “Hello World” application

Chapter 1  IntroduCtIon to aSp.net Core



8

To begin developing this application, open Visual Studio and click the Create a new 

project option from the start window (Figure 1-7).

Figure 1-6. Message changed to “Hello Universe!”

Figure 1-7. Creating a new project

Chapter 1  IntroduCtIon to aSp.net Core



9

Doing so will open another dialog wherein you can select a project template for your 

new project. This dialog is shown in Figure 1-8.

Select ASP.NET Core Web Application in this dialog and click the Next button. You 

will be asked to enter a project name and its location (Figure 1-9).

Figure 1-8. Selecting a project template

Chapter 1  IntroduCtIon to aSp.net Core



10

Specify those details and click the Create button. As the final step, you need to pick 

an ASP.NET Core project template (Figure 1-10).

Figure 1-9. Specifying a project name and location

Chapter 1  IntroduCtIon to aSp.net Core



11

Here, you will have many project templates such as Empty, API, Web Application, 

and Web Application (Model-View-Controller). You can also select the .NET framework 

type – .NET Core or .NET Framework – and the ASP.NET Core version from the 

dropdown lists at the top. By default, .NET Core and ASP.NET Core 3.0 will be selected 

in these dropdowns. Keep that selection unchanged. Select the Empty project template 

from the list.

The Configure for HTTPS checkbox under the Advanced section is checked by 

default. If this checkbox is checked, the project is configured to use an HTTPS self-signed 

certificate. Since the certificate is self-signed, your browser might show you a security 

warning when you run such application. And you will need to configure your browser 

to trust this certificate (simply follow the browser’s instructions). If you uncheck this 

checkbox, the project uses HTTP. Projects that you create in this book can work with any 

scheme (HTTP or HTTPS), but in most of the real-world cases, you would prefer HTTPS 

for security reasons. Now click “Create” to create the project.

Figure 1-10. Picking an ASP.NET Core project template

Chapter 1  IntroduCtIon to aSp.net Core



12

Note While we could have selected the “Web application (Model-View- 
Controller)” template for our project, we chose not to, instead selecting the 
“empty” project template. this selection will give you the opportunity to learn how 
to add all the pieces that go in an application yourself, rather than relying on pieces 
added by the project template.

Once the empty project gets created, add three folders under the project root – 

Models, Views, and Controllers – by right-clicking the project and then selecting the 

Add ➤ New Folder shortcut menu option. Also, add a subfolder named Home under the 

Views folder.

Then right-click the Models folder and select Add ➤ Class from the shortcut menu. 

This will open a dialog as shown in Figure 1-11.

Name the class as AppMessage and click the “Add” button. Once the class gets added, 

write the code shown in Listing 1-1 into it.

Figure 1-11. Adding a new class to the Models folder

Chapter 1  IntroduCtIon to aSp.net Core



13

Listing 1-1. AppMessage class

public class AppMessage

{

    public string Message { get; set; }

}

The AppMessage class has just one public property called Message that represents a 

message to be displayed in the browser.

Next, right-click the Controllers folder and select Add ➤ “New Item” from the 

shortcut menu. This will open the Add New Item dialog as shown in Figure 1-12.

Select “Controller Class” from the list, name the controller HomeController, and 

click the Add button. Once the HomeController gets added, remove the default Index() 

action from it, and add two new actions as shown in Listing 1-2.

Listing 1-2. HomeController contains two actions

public IActionResult Index()

{

    AppMessage obj = new AppMessage() {

Figure 1-12. Adding a new controller to the project

Chapter 1  IntroduCtIon to aSp.net Core



14

        Message = "Hello World!"

    };

    return View(obj);

}

[HttpPost]

public IActionResult Index(AppMessage obj)

{

    ViewBag.Message = "Message changed.";

    return View(obj);

}

The first Index() action gets called when the first request to the application is made. 

Inside, you create a new object of AppMessage and set its Message property to Hello 

World!. This object is passed to the view using the View() method. The View() method 

exists in the base class of HomeController – Controller.

Note You will observe that the homeController class inherits from the Controller 
class. the Controller base class resides in the Microsoft.aspnetCore.Mvc 
namespace. While working with aSp.net Core MVC projects, you will need to use 
this namespace in many places. You also need to use the helloWorldMVC.Models 
namespace in order to be able to use the appMessage class.

The second Index() action is called when the HTML form is POSTed to the server. 

This HTML form is part of the view file, and you will create it later in this section. This 

Index() action receives the message entered by the user wrapped in the object of 

AppMessage. This mapping of textbox value to the Message property of AppMessage is 

accomplished by the framework through a process called model binding. Inside, you 

pass the object to the View() method as before. Additionally, you also set the Message 

property on the ViewBag object. ViewBag is a built-in object provided by ASP.NET Core 

and is used to pass data from the controller to the view. This Message value will be 

outputted on the view.

Note that the second Index() action is decorated with the [HttpPost] attribute. The 

[HttpPost] attribute indicates that the underlying action will be invoked only for POST 

requests.

Chapter 1  IntroduCtIon to aSp.net Core



15

Note In the preceding code, you created two overloads of the Index() action. 
however, keep in mind that this overloading works as expected because they are 
dealing with different types of requests. For example, the first Index() handles the 
initial request to the action, whereas the second Index() handles form submission 
poSt request. If you comment out the [httppost] attribute added to the second 
Index(), you will get ambiguousMatchexception indicating that the framework can’t 
decide which action to use. You can use the [actionname] attribute to overcome 
this problem. You will use [actionname] in later chapters of this book.

So far, you have completed the model and the controller required by the application. 

Let’s add the final piece – view – that houses the user interface of the application.

To add a view, right-click the Views ➤ Home folder and select the Add New Item 

menu option. This time, select Razor View and specify the name to be Index.cshtml 

(Figure 1-13).

Note that the name of the action matches with the name of the view. This way, the 

View() method assumes that the model is to be supplied to the Index view.

Figure 1-13. Adding Index view to the project

Chapter 1  IntroduCtIon to aSp.net Core



16

The Index view will use what are known as Tag Helpers to render the user interface. 

By default, Tag Helpers are not available to a view. To add support for Tag Helpers, open 

the Add New Item dialog again and select Razor View Imports (Figure 1-14).

Once the view imports file (_ViewImports.cshtml) is added, write this line of code 

into it:

@addTagHelper *,Microsoft.AspNetCore.Mvc.TagHelpers

Using the @addTagHelper directive adds Tag Helpers to the project from the assembly 

that follows. In this case, built-in Tag Helpers reside in the Microsoft.AspNetCore.Mvc.

TagHelpers assembly. The ∗ indicates that all Tag Helpers from the specified assembly 

are to be added.

Note In subsequent chapters, you will learn about tag helpers in more detail. For 
now, keep in mind that they allow you to render the user interface elements of an 
aSp.net Core web application.

Next, open the Index.cshtml file and write the markup and code shown in Listing 1-3 

into it.

Figure 1-14. Adding a view imports file

Chapter 1  IntroduCtIon to aSp.net Core



17

Listing 1-3. Markup and code from Index view

@model HelloWorldMVC.Models.AppMessage

<html>

    <head>

        <title>Hello World App</title>

    </head>

    <body>

        <h1>@Model.Message</h1>

        <hr />

        <h2>@ViewBag.Message</h2>

        <form asp-controller="Home" asp-action="Index" method="post">

            <label asp-for="Message">Enter Message :</label>

            <br /><br />

            <input type="text" asp-for="Message" />

            <br /><br />

            <button type="submit">Submit</button>

        </form>

    </body>

</html>

The view markup begins with the @model directive that specifies the type of 

model class being supplied to this view. Recollect that you are supplying an object of 

AppMessage class to the View() method. Therefore, @model specifies AppMessage as the 

view’s model type.

The actual model object passed through the View() method can be accessed inside 

a view file using the Model property. In this example, you output the model’s Message 

property on the response using @ razor expression syntax. Similarly, the code also 

renders ViewBag’s Message property on the response.

The Form Tag Helper (<form> tag) renders an HTML form with three fields – a 

label, a textbox, and a button. Notice that the Form Tag Helper looks quite similar to 

the standard HTML <form> tag. However, it has some special attributes such as asp- 

controller and asp-action. The asp-controller and asp-action attributes decide 

which controller and action will be used to process the form upon submission. In this 

case, the form will be submitted to the Index() action of HomeController. The method 

attribute configures the form to use the POST method to submit its content.

Chapter 1  IntroduCtIon to aSp.net Core



18

The Label and Input Tag Helpers use the asp-for attribute to bind the underlying 

form field to the model’s Message property. This way, the textbox displays the value of 

the Message property. A user can edit the textbox value and hit the Submit button.

This completes the Index view. Before you run the application, you need to 

configure the application’s startup. To do so, open the Startup.cs file and go to its 

ConfigureServices() method. Modify ConfigureServices() as shown in Listing 1-4.

Listing 1-4. ConfigureServices() method

public void ConfigureServices(IServiceCollection services)

{

    services.AddControllersWithViews();

}

The code shown in Listing 1-4 calls the services.AddControllersWithViews() 

extension method of IServiceCollection. Doing so registers several built-in types 

related to MVC applications with ASP.NET Core’s dependency injection framework.

Now modify the Configure() method inside Startup.cs as shown in Listing 1-5.

Listing 1-5. Configure() method

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

    if (env.IsDevelopment())

    {

        app.UseDeveloperExceptionPage();

    }

    app.UseRouting();

    app.UseEndpoints(endpoints =>

    {

      endpoints.MapControllerRoute(

       name: "default",

       pattern: "{controller=Home}/{action=Index}/{id?}");

    });

}

Chapter 1  IntroduCtIon to aSp.net Core



19

The Configure() method is used to configure your application’s HTTP pipeline. 

It adds the required middleware to the HTTP pipeline. In this example, the code 

checks whether the application is running in development environment or production 

environment. This is done using the IsDevelopment() method of IWebHostEnvironment. 

Accordingly, UseDeveloperExceptionPage() is called to add developer exception page 

middleware to the pipeline. This middleware is responsible for displaying the actual 

exception details in the browser whenever an error occurs.

Finally, the code adds routing capabilities to the application. The UseRouting() 

call adds what is known as the endpoint routing middleware to the HTTP pipeline. The 

UseEndpoints() call wires the endpoint middleware in the application. The pattern 

mentioned inside the UseEndpoints() handles the request URLs of the form https://

localhost:1234/<controller_name>/<action_name>. For example, the Index() can be 

invoked using this URL: https://localhost:1234/Home/Index. The UseEndpoints() 

method also configures the HomeController to be the default controller and Index() 

action to be the default action for the routes.

This completes the application. At this time, your Solution Explorer should resemble 

Figure 1-15.

Figure 1-15. View of Solution Explorer with various files

Chapter 1  IntroduCtIon to aSp.net Core



20

Confirm whether you have added various files to the correct folders as shown in 

Solution Explorer and run the application by pressing F5.

Note While working with aSp.net Core MVC projects, you can store models 
and controllers in any folder though many developers store them in Models 
and Controllers folders, respectively (like you did in the preceding example). 
For example, you can store models inside a folder named appModels. the 
recommended location for view files is the Views folder (or its subfolders) because 
by default the framework searches for views in that folder.

If all goes well, Visual Studio will start IIS Express and you will see the application’s 

Index view loaded in the browser. By default, the application will show the Hello World! 

message. Enter some different message in the textbox and click the Submit button. The 

heading should now reflect the newly entered message.

 Creating an ASP.NET Core Razor Pages Project
In this section, you will create the same “Hello World” application using ASP.NET 

Core Razor Pages. To begin developing this application, create a new ASP.NET Core 

project using the Empty project template. This task is exactly the same as before with an 

exception that the project name this time is HelloWorldRazorPages.

Once the new project gets created, add two folders to it, namely, Models and Pages. 

The purpose of the Models folder is to store model classes, whereas the Pages folder is 

used to store Razor Pages and associated page models.

Then add the AppMessage class to the Models folder as in the preceding example. 

Also place the view imports file (_ViewImports.cshtml) to the Pages folder. Now right- 

click the Pages folder and select Add New Item from the shortcut menu. This time, add a 

new Razor Page named Index.cshtml to the Pages folder (Figure 1-16).

Chapter 1  IntroduCtIon to aSp.net Core



21

When you add an Index Razor Page, actually two files get added – Index.cshtml and 

Index.cshtm.cs. The Index.cshtml file houses the Razor code and markup that makes the 

user interface, whereas the Index.cshtml.cs file represents the page model class.

To get started, your Solution Explorer should resemble Figure 1-17.

Figure 1-16. Adding a new Razor Page

Chapter 1  IntroduCtIon to aSp.net Core



22

Now open the Index.cshtml.cs file. This file contains a page model class named 

IndexModel. Modify the IndexModel class as shown in Listing 1-6.

Listing 1-6. Index page model class

public class IndexModel : PageModel

{

    [BindProperty]

    public AppMessage Heading { get; set; }

    public string SubHeading { get; set; }

    public void OnGet()

    {

        this.Heading = new AppMessage();

        this.Heading.Message = "Hello World!";

    }

    public void OnPost()

    {

Figure 1-17. HelloWorldRazorPages project in Solution Explorer

Chapter 1  IntroduCtIon to aSp.net Core



23

        this.SubHeading = "Message changed.";

    }

}

The IndexModel class inherits from the PageModel class residing in the Microsoft.

AspNetCore.Mvc.RazorPages namespace. The IndexModel class consists of two public 

properties and two public methods.

The Heading public property is of type AppMessage and is decorated with the 

[BindProperty] attribute. The [BindProperty] attribute indicates that this property will 

participate in the model binding.

The SubHeading string property is used to display a message to a user whenever 

textbox value is changed.

The OnGet() method is called a page handler and handles GET requests to the page. 

Similar to OnGet(), you can have OnPost(), OnPut(), and OnDelete() page handlers to 

deal with POST, PUT, and DELETE verbs.

The OnGet() page handler initializes the Heading property to a new AppMessage 

instance and also sets its Message property to Hello World!. The OnPost() page handler 

is invoked when a user hits the Submit button and POSTs the form to the server. Inside, 

the code sets the SubHeading property to a message. The Heading and SubHeading values 

are displayed on the Index.cshtml file. The markup and code of Index.cshtml is shown in 

Listing 1-7.

Listing 1-7. Displaying Heading and SubHeading

@page

@model HelloWorldRazorPages.Pages.IndexModel

<html>

    <head>

        <title>Hello World App</title>

    </head>

    <body>

        <h1>@Model.Heading.Message</h1>

        <hr />

        <h2>@Model.SubHeading</h2>

        <form method="post">

            <label asp-for="Heading.Message">Enter Message :</label>

Chapter 1  IntroduCtIon to aSp.net Core



24

            <br /><br />

            <input type="text" asp-for="Heading.Message" />

            <br /><br />

            <button type="submit">Submit</button>

        </form>

    </body>

</html>

Notice that Index.cshtml begins with the @page directive. The @page directive marks 

the .cshtml file as a Razor Page. The @model directive points to the type of page model 

class (IndexModel in this case).

The heading of the page displays AppMessage’s Message property. Notice how the 

Heading object from the page model class is accessed using the Model property. This 

way, all the public properties of the page model class can be accessed using the Model 

object. The SubHeading is also rendered in a similar way.

The form tag has a method attribute set to post indicating that the form will use 

the POST method during submission. Inside, the form houses a label, a textbox, and a 

button as in the preceding example.

This completes the Index Razor Page. Before you run the application, you need to 

configure the startup using the Startup.cs file. So open the Startup.cs file and modify the 

ConfigureServices() and Configure() methods as shown in Listing 1-8.

Listing 1-8. Configuring application startup

public void ConfigureServices(IServiceCollection services)

{

    services.AddRazorPages();

}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

    if (env.IsDevelopment())

    {

        app.UseDeveloperExceptionPage();

    }

    app.UseRouting();

Chapter 1  IntroduCtIon to aSp.net Core



25

    app.UseEndpoints(endpoints =>

    {

      endpoints.MapRazorPages();

    });

}

The code from Listing 1-9 should look familiar to you. This time, we used 

AddRazorPages() to register Razor Pages–related services with the dependency 

injection framework. Razor Pages uses a slightly different routing mechanism than 

MVC applications. The routing and URL handling is defined in the individual page 

using the @page directive. By default, Razor Pages URLs follow this pattern: https://

localhost:1234/<razor_page_name>. For example, to access the Index page, the 

URL will be https://localhost:1234/Index. This configuration is done using the 

MapRazorPages() method inside the UseEndpoints() call.

Now run the application by pressing F5 and test the functionality by specifying a new 

message.

Note When you run the MVC and razor pages applications, the browser’s address bar 
may show only this urL – https://localhost:1234 (port number will be different 
for you). that’s because /home/Index is the default for MVC applications and /Index is 
the default for razor pages applications. You can manually enter the full urL to confirm 
that they are indeed handled by the appropriate action and page handler, respectively.

 Creating an ASP.NET Core Web API Project
Now that you have some idea about ASP.NET Core MVC and Razor Pages applications, 

let’s create a Web API that returns messages when called.

To begin creating a Web API, create a new project named HelloWorldWebApi based 

on the Empty project template. Web API uses a controller-centric approach to build 

RESTful services.

Once a project is created, add the Models and Controllers folders to it. Also, add the 

AppMessage class to the Models folder. Since Web API is about services, there won’t be 

any user interface elements in the project.

Then open the “Add New Item” dialog and add a new API controller class to the 

Controllers folder (Figure 1-18).

Chapter 1  IntroduCtIon to aSp.net Core



26

The default API controller name is ValuesController; keep that unchanged. You 

will observe that ValuesController is decorated with the [Route] attribute. This is 

how routing is configured in Web API applications. The [Route("api/[controller]")] 

attribute indicates that the API will be available at https://localhost:1234/api/

Values (the port number will vary as per your setup).

Now remove all the actions from within the ValuesController except the first Get() 

action. In this example, you will handle only GET requests, and hence other actions are 

not necessary. Modify the Get() action as shown in Listing 1-9.

Listing 1-9. Returning messages from the Get() action

[HttpGet]

public List<AppMessage> Get()

{

    List<AppMessage> messages = new List<AppMessage>();

    messages.Add(new AppMessage() { Message = "Hello World!" });

    messages.Add(new AppMessage() { Message = "Hello Galaxy!" });

    messages.Add(new AppMessage() { Message = "Hello Universe!" });

    return messages;

}

Figure 1-18. Adding a new API controller class

Chapter 1  IntroduCtIon to aSp.net Core



27

The Get() action is decorated with the [HttpGet] attribute indicating that it will 

handle GET requests to the API. Note that the Get() action returns List of AppMessage 

objects. Inside, the code creates a new List of AppMessage and adds three AppMessage 

objects to it. These objects have their Message property set to Hello World!, Hello Galaxy!, 

and Hello Universe!, respectively. Finally, the List of AppMessage objects is returned 

from the Get() action.

Although the API is ready, you need to configure the startup similar to how you 

did for MVC and Razor Pages projects. So modify the ConfigureServices() and 

Configure() methods of the Startup class as shown in Listing 1-10.

Listing 1-10. Configuring Web API startup

public void ConfigureServices(IServiceCollection services)

{

    services.AddControllers();

}

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

    if (env.IsDevelopment())

    {

        app.UseDeveloperExceptionPage();

    }

    app.UseRouting();

    app.UseEndpoints(endpoints =>

    {

      endpoints.MapControllers();

    });

}

Notice that the code inside ConfigureServices() calls the AddControllers() 

method to register API-specific services with the dependency injection framework. 

The Configure() method now uses the MapControllers() method inside the 

UseEndpoints() to set up the routing for the API.

Chapter 1  IntroduCtIon to aSp.net Core



28

This completes the Web API. Run the application by pressing F5. When a browser 

window is opened, go to the browser’s address bar and manually enter the API URL – 

https://localhost:1234/api/Values (change the port number as per your setup). 

This will cause a GET request to be sent to the API, and the Get() action will be invoked 

returning messages as shown in Figure 1-19.

If you observe the raw data of the response, it will be in JSON format. While 

working with Web APIs, it’s very common to serialize and de-serialize data in JSON 

format. ASP.NET Core has its own classes to accomplish this task. Additionally, ASP.

NET Core supports a popular JSON processing library – Json.NET. Since Json.NET is a 

quite popular library, you might need to use it instead of ASP.NET Core’s default JSON 

processing mechanism. Luckily, there is an easy way to switch to Json.NET in your ASP.

NET Core applications (although you don’t need that in this example). You need to add a 

NuGet package Microsoft.AspNetCore.Mvc.NewtonsoftJson. You can do that by right- 

clicking the Dependencies folder and selecting the Manage NuGet Packages shortcut 

menu option (Figure 1-20).

Figure 1-19. Messages are returned in JavaScript Object Notation (JSON) format

Chapter 1  IntroduCtIon to aSp.net Core



29

Once you add this NuGet package, you need to change the code from 

ConfigureServices() like this:

public void ConfigureServices(IServiceCollection services)

{

    services.AddControllers()

            .AddNewtonsoftJson();

}

The AddNewtonsoftJson() method adds support for JSON-related features and uses 

Json.NET for its functioning.

 Installing the Northwind Database
In many examples discussed throughout this book, you use the Northwind sample 

database. So you need to install it in your SQL Server instance. You can download 

the Northwind database scripts from its GitHub repository at https://github.com/

Microsoft/sql-server-samples/tree/master/samples/databases/northwind-pubs. 

Specifically, the instnwnd.sql file contains scripts necessary for creating the Northwind 

database. Figure 1-21 shows this file in the GitHub repository.

Figure 1-20. Adding Microsoft.AspNetCore.Mvc.NewtonsoftJson NuGet 
package

Chapter 1  IntroduCtIon to aSp.net Core

https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/northwind-pubs
https://github.com/Microsoft/sql-server-samples/tree/master/samples/databases/northwind-pubs


30

Once you have the database script, you can run it using SQL Server Management 

Studio. Figure 1-22 shows the Northwind database created after successful run of the script.

Figure 1-21. Downloading script for the Northwind sample database

Chapter 1  IntroduCtIon to aSp.net Core



31

We mainly need access to the Employees table of the Northwind database. You will 

observe the Employees table of the Northwind database in the next chapter.

Figure 1-22. Installing the Northwind sample database

Chapter 1  IntroduCtIon to aSp.net Core



32

 Summary
This chapter introduced you to ASP.NET Core. You learned the basics of MVC and 

MVVM patterns. You also learned about the main development options offered by ASP.

NET Core, namely, MVC, Razor Pages, and Web API. You got acquainted with these three 

flavors by creating a simple “Hello World” application using Visual Studio. You used the 

Empty project template and various code files to build the example applications. You 

also got a glimpse of the application’s Startup class, ConfigureServices() method, and 

Configure() method. Finally, you installed the Northwind sample database for use in 

the subsequent chapters.

Chapter 1  IntroduCtIon to aSp.net Core



33
© Bipin Joshi 2019 
B. Joshi, Beginning Database Programming Using ASP.NET Core 3,  
https://doi.org/10.1007/978-1-4842-5509-4_2

CHAPTER 2

Sample Application
In this chapter, you will be introduced to the Employee Manager application, specifically 

its functionality and user interface. Nowadays, many projects use GitHub repositories for 

collaboration and version control. So it is worthwhile to learn how to host your source code 

in a private GitHub repository. Learning objectives for this chapter include the following:

• Get familiar with the user interface of the Employee Manager 

application.

• Understand how the Employee Manager application works.

• Learn about the database structure (column names, data types, 

sample data, and such details) of the Employees table.

• Explore various technology options used to build the sample 

application.

• Create a private GitHub repository and work with it from within the 

Visual Studio IDE.

 Features of Employee Manager
As you build and work with the Employee Manager application, it’s essential to have some 

context and insight as to how it functions. This discussion will help you to envision the 

application functionality as you use various technology features and options to build it.

Modern web application development using frameworks such as ASP.NET Core 

involves a lot of technology options. For learning purposes, our focus will encompass the 

following frequently needed features:

• HTML form processing: Modern web applications do far more than 

show pages of information. They accept input from the end user. 

They also perform data validations and business processing. HTML 

form processing is, therefore, a common need in such applications.



34

• CRUD operations: Modern web applications use data stores such 

as SQL Server for persisting application data. Performing CRUD 

operations on a database is a common task in such applications. 

You accept user input through HTML forms and then based on the 

application’s requirement perform either of the CRUD operations. 

You will use SQL Server as well as a few NoSQL databases as data 

stores for your application.

• User authentication: Securing web applications using some sort of 

user authentication scheme is another frequently needed feature. 

User authentication and authorization helps you restrict access to 

your web application and also allows you to control what a user can 

do with your system. To that end, user name and password–based 

authentication is a widely used approach.

• JavaScript libraries and frameworks: Modern web applications 

heavily utilize client-side scripting. There are many JavaScript 

libraries and frameworks available today that you can integrate with 

ASP.NET Core to accomplish your tasks. We will use jQuery and 

Angular to understand how CRUD operations can be performed 

using Ajax techniques.

• Deployment: Once an ASP.NET Core web application is built, you 

will need to deploy it on a server. Two common deployment targets 

for ASP.NET Core are IIS and Azure App Service.

Developing a simple yet fully functional application like Employee Manager 

introduces you to many different technologies and technology options.

Employee Manager is a web application built using ASP.NET Core. Its main 

functional and technical aspects are summarized as follows:

• CRUD (Create, Read, Update, and Delete) operations can be 

implemented on the Employees table of the Northwind database. 

These CRUD operations are the central theme of Employee Manager. 

The other features are built around this CRUD functionality.

• Options to add a new employee, modify an existing employee, and 

delete an existing employee.

Chapter 2  Sample appliCation



35

• Data entry pages include data validation and basic error handling 

logic.

• User authentication is included. Features such as user registration, 

signing in, and signing out are provided to ensure that only 

authenticated users can use the application.

• Server-side and client-side techniques can be used to build the same 

application. This will allow you to learn CRUD operations in light of a 

particular set of technology features and options.

• While the application uses basic CSS styling, user interface 

technologies such as CSS frameworks, animations, and graphics are 

downplayed.

• Covers basic exception handling and error checking. Note it does not 

cover every possible unexpected behavior. This way, you can keep the 

code base simple and easy to understand.

Now that you know about the functionality of Employee Manager, let’s look at the 

Employees table containing the application’s data.

 Understanding the Employees Table
In Chapter 1, you installed the Northwind database in SQL Server and glanced at the list 

of tables. In this section, we’ll dive into the Employees table – the main table used in the 

application – in greater detail.

You can either use SQL Server Management Studio or Visual Studio to work with the 

Northwind database. In the following scenario, I am going to use Visual Studio to look at 

the Employees table data as well as schema. So let’s get going.

Open Visual Studio and click the Tools ➤ Connect to database menu option. If you 

are connecting to any database for the first time, Visual Studio asks you to choose a data 

source (Figure 2-1).

Chapter 2  Sample appliCation



36

Pick Microsoft SQL Server from the list and keep other settings unchanged, and 

click the Continue button. You are now required to specify database connection details 

such as database server name or IP, database name, and security mode. This is shown in 

Figure 2-2.

Figure 2-1. Choosing a data source

Chapter 2  Sample appliCation



37

Specify the server name per your installation. I have specified “.” to indicate that SQL 

Server is installed locally on the same machine and is using the default instance of SQL 

Server. Security mode is set to “Windows Authentication.” You can select the Northwind 

database from the Select dropdown menu or enter a database name in the combo box. 

You can quickly confirm whether your connection details are accurate by clicking the 

“Test Connection” button available at the bottom. If all the details are correct, you will be 

told that the test connection was successful (Figure 2-3).

Figure 2-2. Specifying database connection details

Chapter 2  Sample appliCation



38

Finally, click the OK button to open the Server Explorer window with connection to 

the Northwind database added (Figure 2-4).

You can now look at the various tables of the Northwind database. Expand the 

Tables folder to reveal the list of tables and then locate the Employees table from the 

list. Right- click the Employees table and select Show Table Data from the shortcut menu 

(Figure 2- 5).

Figure 2-3. Connection details are correct

Figure 2-4. Data connection added for the Northwind database

Chapter 2  Sample appliCation



39

This will open the Employees table in editor mode where you can view and modify 

employee details. Figure 2-6 shows the Employees table opened in the editor.

Now that you have an understanding of Employees table sample data, let’s take a 

look at the schema to learn more about columns and their data types.

Right-click the Employees table again, but this time select “Open Table Definition” 

from the shortcut menu. This will open the table definition in editor mode, as shown in 

Figure 2-7.

Figure 2-5. Viewing table data

Figure 2-6. Employees table opened in the editor

Chapter 2  Sample appliCation



40

The table definition editor allows you to look at the table schema, and you can also 

modify the table structure if necessary. Although the Employees table contains many 

columns, you won’t use all of them as a part of Employee Manager. You use eight of 

them, namely, EmployeeID, FirstName, LastName, Title, BirthDate, HireDate, Country, 

and Notes. These columns, their data types, and their purpose are discussed as follows:

• EmployeeID: It’s an identity column and acts as the primary key of 

the table. For example, the first employee record has EmployeeID of 1.

• FirstName: Represents an employee’s first name. Its data type is 

nvarchar and length can be up to ten characters. For example, the 

first employee record has FirstName as Nancy.

• LastName: Represents an employee’s last name. Its data type is 

nvarchar and length can be up to 20 characters. For example, the first 

employee record has LastName value of Davolio.

Figure 2-7. Employees table definition opened in the editor

Chapter 2  Sample appliCation



41

• Title: Represents the designation of an employee. Its data type is 

nvarchar and length can be up to 30 characters. For example, the first 

employee record has Title of Sales Representative.

• BirthDate: Represents the date of birth of an employee. Its data 

type is datetime although the time part is not used by the Employee 

Manager application. For example, the first employee record has 

BirthDate of 12/8/1948 12:00:00 AM.

• HireDate: Represents the date on which an employee was hired by 

the organization. Its data type is datetime although the time part is 

not used by the Employee Manager application. For example, the first 

employee record has HireDate of 5/1/1992 12:00:00 AM.

• Country: Represents the country of an employee. Its data type is 

nvarchar with length of 15 characters. For example, the first employee 

record has Country set to USA.

• Notes: Represents additional information of an employee such 

as educational background. Its data type is ntext and can contain 

free-form text such as the following: Education includes a BA 

in psychology from Colorado State University in 1970. She also 

completed “The Art of the Cold Call.” Nancy is a member of 

Toastmasters International.

Now that you are aware of the Employees table schema, let’s add a supporting table 

that’s required for the working of Employee Manager.

 Adding a Countries Table
The Employees table contains a Country column that stores an employee’s country. 

Therefore, on the data entry pages, you need to accept a country from the end user. 

Instead of accepting the user input in a textbox, it would be nice to display a list of 

countries to choose from. This requires another table, Countries, that contains a list of 

countries. The default installation of Northwind doesn’t contain such a table, and hence 

you need to add one.

To add the Countries table, right-click the Tables folder and select Add New Table 

from the shortcut menu. This will open a table designer that allows you to define the 

Countries table. Figure 2-8 shows the Countries table definition in Visual Studio.

Chapter 2  Sample appliCation



42

The Countries table contains just two columns: CountryID and Name. The 

CountryID is an integer identity column, whereas Name is a varchar column with length 

of 80 characters.

Make sure to add a few countries in the Countries table so that you can use it in 

Employee Manager.

 Signing In to Employee Manager
The Employee Manager application requires users to sign in before they can perform the 

CRUD operations on the Employees table. Therefore, when you start the application, you 

are presented with a sign-in page as shown in Figure 2-9 (page header and footer have 

been removed for the sake of clarity).

Figure 2-8. Countries table structure

Figure 2-9. The sign-in page

Chapter 2  Sample appliCation



43

The sign-in page consists of input controls for entering user name and password. 

There is also a Remember Me checkbox that decides whether a user’s signed-in status is 

remembered even after the browser is closed. There is a link at the bottom that takes you 

to the user registration page (discussed in the next section).

The Sign In button triggers the sign-in operation. If there is any error during the 

signing-in process such as invalid or incomplete credentials, an error message is displayed 

to the user (Figure 2-10); otherwise, the user is taken to the employee listing page.

 Creating a New User Account
You can create a new user account by navigating to the registration page. To go to the 

user registration page, you need to click the Create New User Account link present at the 

bottom of the sign-in page. Figure 2-11 shows how the registration page looks like.

Figure 2-10. Error message being shown for incomplete user input

Chapter 2  Sample appliCation



44

The user registration page consists of a series of input controls that accept user 

name, password, confirm password, email, full name, and birth date from a user. You 

can enter these details and click the Create button to create the user account. After 

successfully creating an account, you will be automatically taken to the sign-in page. If 

there are any errors while creating an account, those will be displayed on the registration 

page, and you can correct them as needed (Figure 2-12).

Figure 2-11. The user registration page

Chapter 2  Sample appliCation



45

The registration page also has a Go To Sign-In Page link at the bottom that takes you 

to the sign-in page in case you want to skip creating a new account and decide to sign in 

with an existing account.

 Listing All the Employees
After a successful sign-in, the user is presented with a list of all the employees from the 

Employees table as shown in Figure 2-13.

Figure 2-12. Showing errors for invalid or incomplete user details

Chapter 2  Sample appliCation



46

The employee listing shows EmployeeID, FirstName, LastName, and Title of an 

employee. Notice that just above the employee listing there is an Insert button. Clicking 

the Insert button takes the user to another page where a new employee can be added.

Each employee row from the listing also has Update and Delete buttons. Clicking 

the Update button takes you to another page where details of that employee can be 

modified. Clicking the Delete button takes you to a confirmation page where details 

of that employee are shown and a confirmation is sought from the user to delete that 

employee from the database.

 Inserting a New Employee
In order to add a new employee into the Employees table, you need to click the Insert 

button at the top of the employee listing page. This takes you to the Insert New Employee 

page as shown in Figure 2-14.

Figure 2-13. Displaying a list of employees

Chapter 2  Sample appliCation



47

The Insert New Employee page displays a blank data entry page where employee 

details such as FirstName, LastName, Title, BirthDate, HireDate, Country, and Notes can 

be entered. The EmployeeID is an automatically generated value (identity column), and 

therefore it’s not accepted from a user.

BirthDate and HireDate values can be picked from the browser’s built-in date picker. 

Most of the modern browsers allow you to pick an input of type date/datetime using a 

built-in date picker. This simplifies the date entry for the end user.

The Country dropdown list displays a list of countries to choose from. This data 

comes from the Countries table you added to the Northwind database earlier in this 

chapter.

The Notes textbox is a multiline textbox (HTML <textarea> element) and allows 

free-form text entry of employee information such as educational background and skills. 

Specifying notes is optional.

The Insert New Employee page also validates data so that only acceptable values 

can go into the database. In case one or more form controls contain invalid data, error 

messages are displayed as shown in Figure 2-15.

Figure 2-14. Adding a new employee

Chapter 2  Sample appliCation



48

Upon clicking the Save button, the new employee gets added to the database, and a 

success message is displayed as shown in Figure 2-16.

You can insert multiple employee records while you are on the Insert New Employee 

page. At the bottom of the Insert New Employee page, there is a Back to Employee Listing 

link. Clicking this link takes you to the employee listing page.

 Updating Existing Employee
In order to update details of an existing employee, you need to click the Update button 

for that employee row in the employee listing page. This takes you to the Update Existing 

Employee page as shown in Figure 2-17.

Figure 2-15. Showing validation errors to a user

Figure 1-16. Successful insert operation

Chapter 2  Sample appliCation



49

The Update Existing Employee page displays existing details of an employee from the 

database. This way, you can edit only those pieces that need to be changed. EmployeeID 

being the primary key of the table can’t be modified. Once done, you click the Save 

button to persist the changes back to the database.

If there are any validation errors, they are displayed beside the control containing 

erroneous value (Figure 2-18).

Figure 2-17. Edit existing employee details

Chapter 2  Sample appliCation



50

If there are no validation errors and the update operation is successful, a message is 

displayed to the user accordingly (Figure 2-19).

The Update Existing Employee page has a link at the bottom: Back to Employee 

Listing. Clicking this link takes you to the employee listing page.

 Deleting Existing Employee
In order to delete an existing employee, you need to click the Delete button for that 

record on the employee listing page. Doing so takes you to a confirmation page where 

the user is warned about the deletion of employee data (Figure 2-20).

Figure 2-18. Validation errors while modifying employee details

Figure 2-19. Update operation was successful

Chapter 2  Sample appliCation



51

The Delete Existing Employee page displays existing employee details from the 

database along with a warning message. You can review the employee details and 

confirm the deletion by clicking the Delete button. Once the employee record is deleted 

from the database, the control is automatically taken to the employee listing page, and 

you are shown a success message (Figure 2-21).

While on the confirmation page, if you decide not to delete an employee record, you 

can click the Back to Employee Listing link at the bottom of the page. This will cancel the 

delete operation and will take you to the employee listing page.

Figure 2-20. Seeking confirmation before deleting an employee record

Figure 2-21. Employee deletion was successful

Chapter 2  Sample appliCation



52

 Signing Out of Employee Manager
Once you sign in to Employee Manager, all the pages display the signed-in user’s user 

name and the Sign Out button in the footer of the pages. Figure 2-22 shows how this 

footer looks like.

Upon clicking the Sign Out button, the user is signed out of the system, and control is 

taken to the sign-in page.

 Technology Options Used to Develop Employee 
Manager
Now that you know how Employee Manager works, it’s time to discuss the technical 

aspects of the application. Earlier in this chapter, it was mentioned that our focus is going 

to be on these areas: HTML form processing, CRUD operations, user authentication, 

incorporating JavaScript libraries/frameworks, and deployment. ASP.NET Core offers 

more than one options to deal with them. In this section, you will learn about these 

options and also how you are going to utilize them.

 Rendering HTML Forms
ASP.NET Core offers three main development options: MVC, Razor Pages, and Web 

API. Out of these three, MVC and Razor Pages allow you to build web-based user 

interfaces. HTML forms can be rendered using any of the following approaches no 

matter whether you use MVC or Razor Pages:

• You can use the standard HTML <form> element and other 

associated elements such as <input> and <select>.

Figure 2-22. Page footer showing user name and the Sign Out button

Chapter 2  Sample appliCation



53

• You can use HTML Helpers to render HTML elements including 

form and form fields. This approach allows you to generate a form 

in a programmatic way rather than using standard HTML tags 

directly. For example, TextBoxFor() HTML Helper allows you to 

render an input textbox for a form.

• You can use Tag Helpers to render HTML elements including form and 

form fields. Tag Helpers are enhancements to standard HTML tags that 

add functionality to existing elements. For example, Input Tag Helper 

can be bound to a model’s property using the asp-for attribute.

The approaches discussed in the preceding text allow you to render an HTML form. 

You would also want to process the form input made by the user. Depending on the type 

of application (MVC or Razor Pages), the form submission is handled either by an action 

or page handler, respectively.

 Performing CRUD Operations
In order to perform database CRUD operations, .NET Core has two main options:

• Entity Framework Core (EF Core)

• Data provider for SQL Server

EF Core is an object relational mapper (O/RM) that also provides many additional 

services such as change tracking. While working with EF Core, you create entity classes 

(POCOs) and what is known as a DbContext. The entity classes are mapped to the 

database tables. The data is exposed through one or more DbSet objects. To perform 

CRUD operations, you can use LINQ to Entities and methods of DbSet and DbContext. 

EF Core relies on EF Core providers to communicate with the underlying database.

Although EF Core is a preferred way to working with databases in .NET Core,  

you can also use the data provider for SQL Server directly. If you ever programmed  

in .NET Framework before, this approach should be familiar to you. The data provider 

for SQL Server includes connection, command, and data reader classes that you can  

use to perform the CRUD operations. There is also a new data provider for SQL  

Server – Microsoft.Data.SqlClient. The classes from the Microsoft.Data.SqlClient 

namespace resemble the classes from the System.Data.SqlClient namespace, so their 

usage is quite similar.

Chapter 2  Sample appliCation



54

The abovementioned options work great for relational databases. Nowadays 

NoSQL databases such as MongoDB and Cosmos DB are also becoming popular. These 

databases typically come with their own drivers or providers that you can use to perform 

CRUD operations on the respective data stores.

It should be noted that there could be some variations in the way EF Core is used 

to accomplish the task. For example, EF Core can be used in a synchronous as well 

as asynchronous manner. You can also use stored procedures or raw SQL queries to 

perform the CRUD operations instead of using LINQ queries.

 Using JavaScript Libraries and Frameworks
Modern web applications heavily rely on client-side JavaScript code for their functionality. 

Ajax communication between client and server plays a vital role in such applications. For 

example, you might want to invoke a Web API developed in ASP.NET Core using a client-

side library (such as jQuery) or a client-side framework (such as Angular).

There are plenty of JavaScript libraries and frameworks available today. In this book, 

you use two of them: jQuery and Angular. They are discussed briefly as follows:

• jQuery is a popular JavaScript library that has ruled the client-side 

development for many years. jQuery is being used by thousands of 

web sites for a variety of tasks ranging from simple hover effects to 

Document Object Model (DOM) manipulation to validation to Ajax. 

No wonder that ASP.NET Core client-side validations use jQuery for 

its functioning. jQuery is a DOM-centric library and also provides 

Ajax features. jQuery has plenty of third-party plugins that speed up 

and simplify the client-side development with jQuery.

• Angular is a popular JavaScript framework that allows you to build 

rich client-side applications and SPAs (Single Page Applications). It 

provides a lot of built-in features such as modular component-based 

architecture, Ajaxification using HttpClient, testing, animations, and 

routing. Considering the popularity of Angular, Visual Studio provides 

a project template for creating Angular projects. In this book, you won’t 

use that template; you rather build an Angular app using Angular CLI 

(Command Line Interface) and then integrate it with the ASP.NET Core 

project. This way you can work with the latest version of Angular and 

can also learn to use Angular CLI (Command Line Interface).

Chapter 2  Sample appliCation



55

Note You use jQuery and angular primarily for the sake of performing CrUD 
operations. this book doesn't teach you the basics of using these technologies. 
to learn more, visit https://jquery.com and https://angular.io, 
respectively.

 User Authentication
Many web applications prohibit anonymous users to access and use the application 

resources. In such cases, securing the application by means of user authentication 

becomes essential. ASP.NET Core provides three main options for user authentication:

• ASP.NET Core Identity is a framework for providing authentication 

and authorization services for your web application. It supports 

many features such as local accounts, external logins, and two-factor 

authentication. For local user accounts, ASP.NET Core Identity uses a 

set of tables that store user details such as user name, password, and 

roles.

• In case you are looking to develop a custom authentication system 

for you web applications, you might want to skip using ASP.NET 

Core Identity (which is a complete and full-featured framework). In 

such cases, you can use the custom cookie authentication scheme. 

Here, you get the chance to define a custom data store and data store 

schema for persisting user details.

• Cookie-based authentication works well for traditional web-based 

applications such as the ones developed using ASP.NET Core 

MVC and Razor Pages. However, using cookies for modern web 

applications (such as Single Page Applications) is not recommended. 

In such cases, the preferred way is to use what is known as JWT 
(JSON Web Token)-based authentication. JWT is a standard that 

defines a way to securely transmit data between two parties as a 

JSON object. This data is trustworthy because it is digitally signed.

Chapter 2  Sample appliCation

https://jquery.com
https://angular.io


56

 Deployment
Once you build an application, you would like to host it under some production web 

server. ASP.NET Core is a cross-platform framework; and you can host ASP.NET Core 

web applications under various popular options such as IIS, Nginx, and Apache. 

Additionally, you might want to host your apps in a cloud environment such as Azure. 

You learn to deploy Employee Manager under these two options:

• Internet Information Services (IIS)

• Azure App Service

As you can see from the preceding discussion, ASP.NET Core provides many options 

to accomplish a task. You learn these options by building more than one version of the 

Employee Manager application as discussed in the following.

 ASP.NET Core MVC
In this version of Employee Manager, you use ASP.NET Core MVC. The user interface is 

built using Tag Helpers. The model validations are performed using data annotations 

(validation attributes). The database CRUD operations are performed using Entity 

Framework Core. The EF Core model is built manually by creating POCOs and mapping 

them to the table schema. The mapping is done using data annotations (schema 

attributes). User authentication and authorization is provided using ASP.NET Core 

Identity.

 ASP.NET Core Razor Pages
In this version of Employee Manager, you use ASP.NET Core Razor Pages. The user 

interface is built using Tag Helpers. The model validations are also performed using 

data annotations (validation attributes). The database CRUD operations are performed 

using Entity Framework Core. The EF Core model is built using reverse engineering 

techniques. Mapping with the table schema is done using data annotations. User 

authentication and authorization is provided using ASP.NET Core Identity. This example 

also illustrates asynchronous operations (async/await) with ASP.NET Core Identity.

Chapter 2  Sample appliCation



57

 ASP.NET Core Web API
In this version of Employee Manager, you use ASP.NET Core Web API. The application 

consists of two parts – Web API and client. The Web API performs the CRUD operations 

using repositories. The repositories use raw SQL queries and stored procedures to get 

their job done.

The client application is developed using ASP.NET Core MVC and uses HTML 

Helpers to build the user interface. The form validations are performed using 

data annotations (validation attributes). User authentication and authorization 

is implemented in the client application using ASP.NET Core Identity. The client 

application uses HttpClient to invoke the Web API. The client also demonstrates how to 

write asynchronous actions (async/await) in an MVC controller.

 jQuery
jQuery is a feature-rich JavaScript library that offers API for DOM manipulation, event 

handling, Ajax, and more. This version of Employee Manager uses jQuery and HTML5 

to build the front-end. The data entry forms are designed using HTML5 markup. The 

data validations are performed using jQuery validation plugin. The communication 

between the client and the server is facilitated using jQuery Ajax. The CRUD operations 

are wrapped inside an asynchronous Web API. The data access is performed using 

asynchronous methods of EF Core. The user authentication and authorization is 

implemented using JWT authentication.

 Angular
Angular is a JavaScript framework that allows you to build rich client applications 

including SPAs (Single Page Application). This version of Employee Manager uses 

Angular to build the front-end. The data entry forms are designed using Angular 

reactive forms. The form validations are performed using Angular’s built-in validation 

techniques. The communication between the client and the server is facilitated using 

Angular’s HttpClient. The CRUD operations are encapsulated in an asynchronous Web 

API. The data access is performed using EF Core asynchronous methods. The user 

authentication and authorization is implemented using JWT authentication.

Chapter 2  Sample appliCation



58

 Blazor
This version of Employee Manager is built using ASP.NET Core Blazor. It uses Blazor’s 

server-side hosting model. The application’s user interface is built using Razor 

Components. CRUD operations are encapsulated in a repository. This repository is 

injected into Razor Components and invoked from various event handlers. The user 

authentication and authorization is implemented using ASP.NET Core Identity and 

Blazor components. This version also illustrates how policy-based authorization can be 

used in ASP.NET Core applications.

 Azure SQL Database
Azure SQL Database offers cloud-based data storage for your applications. This 

version of Employee Manager uses ASP.NET Core MVC to build the user interface. 

The application data is persisted in an Azure SQL Database. The CRUD operations are 

performed using classes from the Microsoft.Data.SqlClient data provider. The data 

validations are wired using data annotations (validation attributes). The application uses 

ASP.NET Core Identity to implement user authentication and authorization.

 Azure Cosmos DB
Azure Cosmos DB is a cloud-based managed NoSQL database. This version of 

Employee Manager uses ASP.NET Core MVC to build the user interface. Azure Cosmos 

DB is used as a data store. The CRUD operations are performed using Microsoft.

Azure.DocumentDB.Core classes and the EF Core provider for Cosmos DB. The data 

validations are wired using data annotations (validation attributes). The application uses 

custom cookie authentication without ASP.NET Core Identity for user authentication.

 MongoDB
MongoDB is a document-based NoSQL database intended for modern applications 

and cloud environment. This version of Employee Manager uses ASP.NET Core MVC to 

build the user interface. A local MongoDB installation is used as a data store. The CRUD 

operations are performed using MongoDB driver for .NET Core. The data validations 

are wired using data annotations (validation attributes). It uses custom cookie 

authentication sans ASP.NET Core Identity for user authentication.

Chapter 2  Sample appliCation



59

 Hosting Code in a Private GitHub Repository
Throughout this book, you develop many Visual Studio projects consisting of several 

code files. I would encourage you to create a private GitHub repository for each version 

of Employee Manager and house your code in the repository. Although you might not be 

working with team environment while building Employee Manager, it will give you the 

chance to familiarize with the GitHub source control model.

Note hosting your code in Github is optional. Various versions of employee 
manager that you are going to build throughout this book aren’t dependent on 
Git or Github. if you do not want to store your code in Github, you might skip this 
section and continue to the next chapter.

GitHub is a popular source code hosting platform. It allows teams to work in 

collaboration and to implement version control for their code. If you ever used open 

source software, chances are it is hosted on GitHub. Although I am not going into too 

much detail of GitHub and working with GitHub here, it’s worthwhile to understand how 

a private GitHub repository can be created from within Visual Studio IDE and how your 

project’s source code can be put into it.

To host your Visual Studio project in a GitHub repository, you need to follow these steps:

• Create a new ASP.NET Core project in Visual Studio.

• Build the application based on your requirements.

• Create a new private GitHub repository.

• Host your project files into the repository just created.

• Continue your work with the project and keep pushing the changes 

to the repository.

Let’s implement these steps by creating a private GitHub repository named 

HelloWorldMVC that houses the HelloWorldMVC project you created in Chapter 1.

First of all, visit GitHub’s web site (https://GitHub.com) and create a new account 

if you don’t have one. Keep the account credentials ready because you will need them 

in a minute.

Next, open Visual Studio and open the Extensions menu. Select Extensions and 

Updates from the Extensions menu to open a dialog shown in Figure 2-23.

Chapter 2  Sample appliCation

https://github.com


60

Search for GitHub to reveal GitHub Extension for Visual Studio. This extension 

allows you to work with GitHub repositories from within Visual Studio IDE. Install this 

extension by following the on-screen instructions.

Then create a new folder named GitHubExample and copy the entire 

HelloWorldMVC project folder into it. Now open the HelloWorldMVC project from the 

GitHubExample folder using Visual Studio. At this point, your Solution Explorer should 

resemble Figure 2-24.

Figure 2-23. Extensions and Updates dialog

Chapter 2  Sample appliCation



61

Currently, the HelloWorldMVC project is not under any source control. You first 

need to add it to source control. To do so, select the File ➤ Add to Source Control menu 

option (Figure 2-25).

This will create a local Git repository for the project. You can now publish it to 

GitHub.

Note i don’t go into much detail about Git and Github, but for learning purposes, 
think of Git as a version control system and Github as a hosting platform for 
repositories managed using Git.

Figure 2-24. HelloWorldMVC opened in Visual Studio

Figure 2-25. Adding a project to source control

Chapter 2  Sample appliCation



62

Next, open Team Explorer by selecting the Team Explorer menu option from the 

Views menu. Then click the “Home” icon in the toolbar. At this point, your Team 

Explorer should look like Figure 2-26.

Click the Sync option so that Team Explorer changes its view as shown in Figure 2-27.

Figure 2-26. Team Explorer window

Chapter 2  Sample appliCation



63

As you can see, there is a Publish to GitHub section that allows you to publish the 

code to a GitHub repository. Click the Publish to GitHub button (if you are not already 

signed in to GitHub, you will be required to do so). Figure 2-28 shows how Team Explorer 

looks like after clicking the Publish to GitHub button.

Figure 2-27. Publish to GitHub option in Team Explorer

Figure 2-28. Creating a new GitHub repository

Chapter 2  Sample appliCation



64

Here, you can specify the details for a new GitHub repository such as repository 

name, description, and whether the repository is a private repository. Keep the 

repository name the same as the project name – HelloWorldMVC. Specifying the 

description is optional. Check the Private Repository checkbox to indicate that you want 

to create a new private repository. Private repositories cannot be accessed by others.

Finally, click the Publish button. This will create the specified GitHub repository 

and publish your project files there. Once the synchronization is done, sign in to the 

GitHub web site just to confirm that the HelloWorldMVC private repository has been 

created for you. Figure 2-29 shows how the HelloWorldMVC repository looks like on 

the GitHub web site.

Try navigating to various folders and files just to confirm that all your source code is 

now in the GitHub repository.

Now add a new text file named Readme.txt to the project using the Add New Item 

dialog. Enter some text into it and save the file. Also, open the Index.cshtml file and 

change the page title to My Hello World App.

Now our code has an additional file that didn’t exist at the time of publishing to 

GitHub and also has a modification in the Index.cshtml file. Now you want to propagate 

these changes to the GitHub repository.

Click the Home icon of Team Explorer and click the Changes option. You need to first 

commit the changes to the local repository, and then you can synchronize them to the 

GitHub repository.

Figure 2-29. HelloWorldMVC private repository on the GitHub web site

Chapter 2  Sample appliCation



65

On the Changes screen, specify a commit message – a message that is supposed to 

indicate why the changes were made – and click the Commit All button (Figure 2-30).

Notice that the changed files are also listed under the Changes section. Once you 

commit the changes to the local repository, go to the Home screen again and click the 

Sync option.

Your Team Explorer will now look like Figure 2-31.

Figure 2-30. Specifying a commit message and committing changes

Chapter 2  Sample appliCation



66

Notice the Push button under the Outgoing Commits section. Click the Push button 

to publish the changes to the GitHub repository. After successfully pushing the changes, 

you can confirm with the GitHub repository whether the new changes have been 

propagated or not.

Note the complete source code of all the examples developed in this book is 
available in the book’s Github repository. Visit this book’s page on the apress web 
site to know more.

 Summary
In this chapter, you were introduced to the Employee Manager application, a project 

that you are going to work on throughout the book. You learned about various technical 

options available under ASP.NET Core. You were also introduced to various versions of 

the application that are developed in the subsequent chapters. Finally, you learned to 

put a Visual Studio project into a private GitHub repository.

In the next chapter, you will learn how to build Employee Manager using ASP.NET 

Core MVC.

Figure 2-31. Synchronizing changes with the GitHub repository

Chapter 2  Sample appliCation



67
© Bipin Joshi 2019 
B. Joshi, Beginning Database Programming Using ASP.NET Core 3,  
https://doi.org/10.1007/978-1-4842-5509-4_3

CHAPTER 3

ASP.NET Core MVC
In this chapter, you develop Employee Manager using ASP.NET Core MVC. The 

application’s user interface is built using Tag Helpers. The database CRUD operations are 

performed using Entity Framework Core. The EF Core model is built manually by creating 

POCOs and mapping them to the table schema. To perform the mapping and model 

validations, data annotation attributes are used. The user authentication and authorization 

is provided using ASP.NET Core Identity. Specifically, this chapter teaches you to

• Use the Model-View-Controller pattern to build an ASP.NET Core 

web application

• Utilize Tag Helpers to render HTML form and form fields

• Perform CRUD operations using Entity Framework Core

• Perform data validations using data annotation attributes

• Implement user registration and sign-in using ASP.NET Core Identity

Let’s get going.

 Create an ASP.NET Core Web Application
Begin by creating a new ASP.NET Core web application based on the Empty project template. 

Name the application as EmployeeManager.Mvc to indicate that it’s the MVC version of the 

application. This also sets the default namespace for classes you add to the project.

Note You learned how to create a new ASP.NET Core project in Chapter 1. To 
avoid repetition, those steps are not explained again. Read Chapter 1 in case you 
need any help on creating a new ASP.NET Core web application based on the 
Empty project template.



68

Figure 3-1 shows the EmployeeManager.Mvc project loaded in Solution Explorer 

once it is complete.

At this point, you may not understand all the pieces shown in Solution Explorer, and 

that’s alright. Just take a look at the overall project structure and organization. In the 

sections that follow, you build this application step-by-step.

 Create an Entity Framework Core Model
Employee Manager performs database CRUD operations using Entity Framework Core. 

To work with EF Core, you need to build an EF Core model. In this section, you are going 

to do just that.

Figure 3-1. EmployeeManager.Mvc loaded in Solution Explorer

ChAPTER 3  ASP.NET CoRE MVC



69

An EF Core model is a set of entity classes and a custom DbContext class. The entity 

classes represent the application’s business objects. For example, an order processing 

system might have Order entity that represents an order as applicable to the application 

domain. On the same lines, a contact management software might have Contact entity 

that represents a contact for that application.

The DbContext class represents a session with the underlying database. It provides 

various features such as connection management, change tracking, mapping, support 

for database operations, and more. DbContext houses one or more DbSet objects. A 

DbSet is a collection of entities. For example, NorthwindDbContext might house a DbSet 

for exposing Employee entities. Figure 3-2 shows a sample EF Core model.

The figure shows an EF Core model consisting of two entity classes (Employee 

and Customer), two DbSet objects (Employees and Customers), and a DbContext class 

housing them.

Now that you have some idea about an EF Core model, let’s create the model 

required for the Employee Manager application. Open the Manage NuGet Packages 

page from the shortcut menu of the Dependencies folder and add these packages to 

your project:

• Microsoft.EntityFrameworkCore.SqlServer

• Microsoft.EntityFrameworkCore

• Microsoft.EntityFrameworkCore.Relational

The Microsoft.EntityFrameworkCore.SqlServer NuGet package is the SQL  

Server database provider for Entity Framework Core. Actually, when you install the 

Figure 3-2. Entity classes, DbSet, and DbContext

ChAPTER 3  ASP.NET CoRE MVC



70

Microsoft.EntityFrameworkCore.SqlServer NuGet package, the other two dependent 

packages are automatically installed for you. These NuGet packages contain classes 

needed to perform database operations.

Now add a folder named Models in the project. Then using the Add New Item dialog, 

add three classes to the Models folder, namely, Employee, Country, and AppDbContext.

Then open the Employee entity class and use these namespaces at the top:

using System.ComponentModel.DataAnnotations;

using System.ComponentModel.DataAnnotations.Schema;

The System.ComponentModel.DataAnnotations namespace includes a 

set of attributes that allow you to validate data. The System.ComponentModel.

DataAnnotations.Schema contains certain attributes that allow you to map entity classes 

to database tables.

Now add the code shown in Listing 3-1 to the Employee class.

Listing 3-1. Employee entity class

[Table("Employees")]

public class Employee

{

    [Column("EmployeeID")]

    [Key]

    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]

    [Required(ErrorMessage = "Employee ID is required")]

    [Display(Name = "Employee ID")]

    public int EmployeeID { get; set; }

    [Column("FirstName")]

    [Display(Name = "First Name")]

    [Required(ErrorMessage = "First Name is required")]

     [StringLength(10,ErrorMessage ="First Name must be less than 10 

characters")]

    public string FirstName { get; set; }

    [Column("LastName")]

    [Display(Name = "Last Name")]

    [Required(ErrorMessage ="Last Name is required")]

ChAPTER 3  ASP.NET CoRE MVC



71

     [StringLength(20,ErrorMessage ="Last Name must be less than 20 

characters")]

    public string LastName { get; set; }

    [Column("Title")]

    [Display(Name = "Title")]

    [Required(ErrorMessage ="Title is required")]

     [StringLength(30,ErrorMessage ="Title must be less than 30 characters")]

    public string Title { get; set; }

    [Column("BirthDate")]

    [Display(Name = "Birth Date")]

    [Required(ErrorMessage ="Birth Date is required")]

    public DateTime BirthDate { get; set; }

    [Column("HireDate")]

    [Display(Name = "Hire Date")]

    [Required(ErrorMessage ="Hire Date is required")]

    public DateTime HireDate { get; set; }

    [Column("Country")]

    [Display(Name = "Country")]

    [Required(ErrorMessage ="Country is required")]

     [StringLength(15,ErrorMessage ="Country must be less than 15 characters")]

    public string Country { get; set; }

    [Column("Notes")]

    [Display(Name = "Notes")]

     [StringLength(500,ErrorMessage ="Notes must be less than 500 characters")]

    public string Notes { get; set; }

}

Let’s analyze the code before moving ahead. The Employee class contains eight public 

properties, namely, EmployeeID, FirstName, LastName, Title, BirthDate, HireDate, 

Country, and Notes. You need to map the Employee entity class to the underlying 

Employees table of the Northwind database. There are three ways to perform this mapping:

• You can follow certain conventions, and the framework will 

automatically do the mapping for you.

ChAPTER 3  ASP.NET CoRE MVC



72

• You can use certain data annotations to explicitly specify the 

mapping.

• You can use Fluent API to explicitly specify the mapping.

If you observe the Employee class, you will find that its name matches with the 

table name (Employees) and its property names map to the column names of the 

Employees table. If you follow these conventions, the framework will automatically 

do the mapping for you. So strictly speaking, the Employee class doesn’t need explicit 

mapping. However, for the sake of learning data annotations, Employee uses the second 

approach – explicitly specify mapping using data annotations. You get a glimpse of 

Fluent API in the subsequent chapters. For this example, you use data annotations for 

mapping and data validation.

Note The Employee Manager application uses an existing database and table for 
its working. If you wish, EF Core can also create a database and table(s) for you 
based on the entity classes you create. In such cases, metadata specified by the 
data annotations is also used for creating the tables. In this book, we don't need 
this approach since we have already installed the Northwind database.

The Employee class is decorated with the [Table] attribute. The [Table] attribute 

is used to map a class to a table. In this case, the Employee class is mapped to the 

Employees table.

The EmployeeID property represents an employee’s numeric ID. It is decorated with 

[Column], [Key], [DatabaseGenerated], [Required], and [Display] attributes. The 

[Column] attribute is used to map the underlying property to a table’s column. In this 

case, the EmployeeID property is mapped to the EmployeeID column of the Employees 

table. If you observe the schema of the Employees table, you will find that EmployeeID 

is an identity column and is a primary key of the table. The [DatabaseGenerated] 

attribute indicates that the property value is being generated by the database engine. 

The enumerated value of DatabaseGeneratedOption.Identity indicates that the value 

will be generated by the database when an entity is added to the database. The [Key] 

attribute is used to mark a primary key. The [Required] attribute indicates that the 

EmployeeID property must be assigned some value. The ErrorMessage property of the 

[Required] attribute specifies the error message to be displayed on the user interface in 

case EmployeeID is not assigned any value. The [Display] attribute specifies the name 

ChAPTER 3  ASP.NET CoRE MVC



73

of the underlying property used by the user interface. It’s useful to display some friendly 

name instead of the actual property name. For example, you might have a property 

called CustomerID but would like to show it on a web page as Customer Code.

The FirstName property is decorated with [Column], [Required], [StringLength], 

and [Display] attributes. The [StringLength] attribute validates the underlying 

property for certain string length. In this case, you set the maximum length parameter 

of [StringLength] to 10 indicating that the FirstName can be a string with maximum 

of ten characters.

The LastName property is decorated with [Column], [Required], [StringLength], 

and [Display] attributes. This time, [StringLength] sets the maximum length to 20.

The Title property is decorated with [Column], [Required], [StringLength], and 

[Display] attributes. This time, [StringLength] sets the maximum length to 30.

The BirthDate and HireDate properties hold a DateTime value and are decorated 

with [Column], [Required], and [Display] attributes.

The Country property is decorated with [Column], [Required], [StringLength], and 

[Display] attributes. This time, [StringLength] sets the maximum length to 15.

The Notes property is decorated with [Column], [StringLength], and [Display] 

attributes. This time, [StringLength] sets the maximum length to 500. The Notes 

column in the Employees table allows NULL values, and hence there is no mention 

of the [Required] attribute. Although Notes is of type ntext, [StringLength] sets the 

maximum length to 500 to prohibit users from entering a huge amount of text data.

This completes the Employee entity class. Now, open the Country class and write the 

code shown in Listing 3-2 in it.

Listing 3-2. Country entity class

public class Country

{

    public int CountryID { get; set; }

    public string Name { get; set; }

}

For creating the Country entity class, the code relies on the built-in conventions 

rather than using data annotations for mapping. This way, the Country class is 

automatically mapped to the Countries table in the database. Moreover, the CountryID 

and Name properties will be mapped to the respective columns of the Countries table.

ChAPTER 3  ASP.NET CoRE MVC



74

The Country class is primarily used to let users pick a country on employee data 

entry pages. The application doesn’t allow the users to add or edit countries. Therefore, 

the code doesn’t use validation attributes such as [Required] and [StringLength].

Now that you completed the Employee and Country entity classes, let’s complete the 

AppDbContext class. Listing 3-3 shows the code of AppDbContext.

Listing 3-3. AppDbContext houses DbSet objects

public class AppDbContext:DbContext

{

     public AppDbContext(DbContextOptions<AppDbContext> options) : 

base(options)

    {

    }

    public DbSet<Employee> Employees { get; set; }

    public DbSet<Country> Countries { get; set; }

}

The AppDbContext class inherits from the DbContext class that resides in the 

Microsoft.EntityFrameworkCore namespace. So use that namespace at the top of the 

class file:

using Microsoft.EntityFrameworkCore;

Then add two public properties of type DbSet<TEntity> – Employees and Countries. 

These properties hold entities of type Employee and Country, respectively.

The AppDbContext class also has a public constructor with the specified signature. 

Although we haven’t added any code in it, this constructor is required so that the 

dependency injection (DI) framework can inject AppDbContext instances when required 

(more on this in later sections).

This completes the EF Core model required for this example.

ChAPTER 3  ASP.NET CoRE MVC



75

 Create an EmployeeManager Controller
The Employee Manager application’s CRUD functionality occurs inside a controller 

class – EmployeeManagerController. To add this class, create the Controllers folder 

under the project root and add a controller class named EmployeeManagerController 

using the Add New Item dialog (Figure 3-3).

The EmployeeManagerController class inherits from the Controller class. The 

Controller base class is available in the Microsoft.AspNetCore.Mvc namespace.

Since the EmployeeManagerController needs to perform CRUD operations on 

the Employees table, it needs an instance of AppDbContext created earlier. Although 

you can instantiate AppDbContext just like any other C# object, there is a better way to 

accomplish the task. You can inject an object of AppDbContext into the constructor of 

EmployeeManagerController with the help of dependency injection (DI) features of ASP.

NET Core. To inject such an instance, you need to write a public constructor as shown in 

Listing 3-4.

Figure 3-3. Adding the EmployeeManagerController class to the Controllers folder

ChAPTER 3  ASP.NET CoRE MVC



76

Listing 3-4. Injecting AppDbContext into EmployeeManagerController

public class EmployeeManagerController : Controller

{

    private AppDbContext db = null;

    public EmployeeManagerController(AppDbContext db)

    {

        this.db = db;

    }

}

The code declares a member variable of type AppDbContext named db. This variable 

is used to store the injected AppDbContext object for use within the controller class. The 

public constructor receives the injected AppDbContext through the db parameter. Inside, 

the injected instance is stored in the local reference.

Note You need to use the EmployeeManager.Mvc.Models namespace so that 
you access the AppDbContext. The same step of using a namespace is required at 
all the places where you use a type outside the scope of the current namespace. 
To avoid repeating the same instructions and for the sake of brevity, the following 
sections don't explicitly ask you to use namespaces.

Next, you need a private helper method that supplies a list of countries to the 

Country dropdown list of the insert and update pages. This method – FillCountries()– 

is shown in Listing 3-5.

Listing 3-5. FillCountries() helper method

private void FillCountries()

{

    List<SelectListItem> countries =

    (from c in db.Countries

     orderby c.Name ascending

ChAPTER 3  ASP.NET CoRE MVC



77

  select new SelectListItem()

  { Text = c.Name,

    Value = c.Name }).ToList();

    ViewBag.Countries = countries;

}

The FillCountries() helper method declares a List of SelectListItem objects. 

The SelectListItem from the Microsoft.AspNetCore.Mvc.Rendering namespace 

represents an item of a dropdown list (<select> element of HTML). Since you want to 

display a list of countries to pick from, a List has been created.

A LINQ to Entities query selects all the entities from the Countries DbSet and 

projects them into the new SelectListItem object. Notice how the Text and Value 

properties of SelectListItem are assigned to the Name property of the Country entity. 

A LINQ to Entities query returns IQueryable<T>. The ToList() method converts this 

IQueryable into a List of SelectListItem objects.

The list of countries is to be passed to the view so that it can be populated in the 

<select> element. To facilitate this data transfer, the code uses a ViewBag object. The 

ViewBag is a dynamic type and allows you to dynamically set or get values using object.

property syntax. Here, the code stores countries in the Countries property of ViewBag.

 Add a _ViewImports File
In the following sections, you use ASP.NET Core Tag Helpers to render the user interface 

elements such as form, form fields, and hyperlinks. In order to use Tag Helpers, you need 

to enable them in your project.

Add the Views folder under the project root folder. Then add a _ViewImports.cshtml 

to the Views folder. You can do that by opening the Add New Item dialog and selecting 

Razor View Imports from the list (Figure 3-4).

ChAPTER 3  ASP.NET CoRE MVC



78

The _ViewImports file is a special file in that it contains namespace imports and 

directives to enable Tag Helpers. These settings are then applied to all the view files. 

Then write this to the _ViewImports.cshtml file:

@using EmployeeManager.Mvc

@using EmployeeManager.Mvc.Models

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

The code uses the @using directive to use a few namespaces such as 

EmployeeManager.Mvc and EmployeeManager.Mvc.Models. Here, the @using directive 

serves the same purpose as the using directive in C#. Once you import namespaces here, 

you can use classes from these namespaces in any of the view files.

Notice the @addTagHelper directive that enables Tag Helpers for the views. The first 

parameter to @addTagHelper is * indicating that all the Tag Helpers available from the 

assembly that follows are to be added to the project. The second parameter is the name 

of the assembly that contains the Tag Helpers: Microsoft.AspNetCore.Mvc.TagHelpers 

in this case.

Figure 3-4. Adding a _ViewImports.cshtml file

ChAPTER 3  ASP.NET CoRE MVC



79

Note You can also place the @using and @addTaghelper directives in individual 
view files. But in that case, they are applied to the view under consideration. If you 
want to use the namespaces and Tag helpers in multiple views, _ViewImports.
cshtml is a better place.

 Displaying a List of Employees
Once a user successfully signs in, you need to display a list of employees. The user can 

modify existing employees, add new employees, or delete existing employees. Although 

you learned about the employee listing page in Chapter 2, Figure 3-5 shows it here again 

for the sake of clarity.

In order to display a list of employees, you need an action named List() and a view 

named List.cshtml. To add the List() action, open the EmployeeManagerController 

class and write the code shown in Listing 3-6.

Figure 3-5. Displaying a list of employees

ChAPTER 3  ASP.NET CoRE MVC



80

Listing 3-6. List() action

public IActionResult List()

{

    List<Employee> model = (from e in db.Employees

                            orderby e.EmployeeID

                            select e).ToList();

    return View(model);

}

The List() action returns IActionResult. The code retrieves a List of Employee 

objects using a LINQ to Entities query. The List is then passed to the List view using 

the View() method. The View() method is provided by the Controller base class and 

accepts a model object to be sent to a view. If no view name is specified, a view with 

a name the same as the action is assumed. The View() method returns a ViewResult 

object (ViewResult implements IActionResult) that represents a view to be rendered in 

the browser.

Now, let’s add the List view that uses this employee data and renders it in a table. 

Add the Views folder under the project root and also add the EmployeeManager folder 

under the Views folder. The Views folder is intended to store MVC view files. All the 

views related to a particular controller are grouped inside a folder having a name the 

same as the controller’s name sans the Controller suffix. For example, for storing views 

of EmployeeManagerController, you create an EmployeeManager subfolder under the 

Views folder.

Then right-click the EmployeeManager folder and open the Add New Item dialog. 

Add a Razor View file named List.cshtml (Figure 3-6).

ChAPTER 3  ASP.NET CoRE MVC



81

Once the List view is added, write the code and markup shown in Listing 3-7 into it.

Listing 3-7. List view renders a list of employees

@model List<Employee>

<h2>List of Employees</h2>

<h2 class="message">@TempData["Message"]</h2>

<a asp-controller="EmployeeManager"

   asp-action="Insert"

   class="linkbutton">Insert</a>

<br /><br />

<table border="1">

    <tr>

        <th>Employee ID</th>

        <th>First Name</th>

        <th>Last Name</th>

        <th>Title</th>

Figure 3-6. Adding the List view

ChAPTER 3  ASP.NET CoRE MVC



82

        <th colspan="2">Actions</th>

    </tr>

    @foreach(var item in Model)

    {

        <tr>

            <td>@item.EmployeeID</td>

            <td>@item.FirstName</td>

            <td>@item.LastName</td>

            <td>@item.Title</td>

            <td>

                <a asp-controller="EmployeeManager"

                   asp-action="Update"

                   asp-route-id="@item.EmployeeID"

                   class="linkbutton">Update</a>

            </td>

            <td>

                <a asp-controller="EmployeeManager"

                   asp-action="Delete"

                   asp-route-id="@item.EmployeeID"

                   class="linkbutton">Delete</a>

            </td>

        </tr>

    }

</table>

Let’s analyze the List view in more detail. The List.cshtml begins with the @model 

directive. The @model directive specifies the model type used by the view. The List view 

needs a List of Employee objects to render an employee table. Therefore, the @model 

directive specifies List<Employee> as the model type. Also recollect that the List() 

action passes a List of Employee objects to the View() method. A view with the @model 

directive specifying the model type is called a strongly typed view.

Below the view heading, the code outputs TempData["Message"] on the response 

stream. This is done using @ syntax of Razor. TempData is a dictionary object and 

stores data until it’s read. You need to use TempData here to display employee deletion 

messages. The delete employee page sets the Message key of TempData to a success 

ChAPTER 3  ASP.NET CoRE MVC



83

message and redirects the user to the listing page. The List view then displays the 

Message to the user. The use of TempData will be clear when we discuss the delete 

employee page in later sections.

The markup then displays the Insert link. This is done using the Anchor Tag Helper. 

Tag Helpers allow server-side code to render HTML elements in Razor files. There 

are many built-in Tag Helpers such as Form, Select, and Input Tag Helpers. As you 

develop this application, you will be introduced to more Tag Helpers. For now, you use 

the Anchor Tag Helper to display a hyperlink that points to the Insert New Employee 

page. Notice that the asp-controller attribute of the anchor Tag Helper is set to the 

EmployeeManager controller and the asp-action attribute is set to the Insert action. You 

will create the Insert action in later sections.

Then a <table> displays a list of all employees on the page. Although the Employee 

object has many properties, the table displays only four of them – EmployeeID, 

FirstName, LastName, and Title. In order to render a list of employees, the foreach 

loop is used. Notice the use of Model property of the view that represents the model 

object passed to the view (List<Employee> in this case). Each iteration adds a table row 

consisting of the four property values mentioned in the preceding text.

Note that each row also has Update and Delete links. They take the user to the 

corresponding pages. These links are rendered using the Anchor Tag Helper. The 

asp- controller, asp-action, and asp-route-id attributes on the Update link are 

set to EmployeeManager, Update, and EmployeeID, respectively. For EmployeeID of 

1, the resultant link will point to /EmployeeManager/Update/1. This means clicking 

this link will take a user to the Update() action of the EmployeeManager controller and 

EmployeeID is also passed to the Update() action. The id route parameter is needed so 

that the Update() action can know which employee is to be edited.

Note The id parameter used in the Update and Delete links is a part of the 
routing configuration of ASP.NET Core MVC. You will learn about the routing 
configuration when you configure the application's startup later in this chapter.

On the same lines, the Delete link points to the Delete() action of EmployeeManager 

and passes EmployeeID as a route parameter.

The List view makes use of certain CSS classes such as linkbutton and message. 

These CSS classes come from the application’s style sheet – site.css. The content of site.

css is not discussed here. You can grab the style sheet from the book’s source code.

ChAPTER 3  ASP.NET CoRE MVC



84

 Insert a New Employee
Clicking the Insert link on the employee listing page takes you to another page where 

you can insert a new employee. This page is shown in Figure 3-7.

The page has form fields to accept FirstName, LastName, Title, BirthDate, 

HireDate, Country, and Notes. EmployeeID being an identity value is not accepted from 

the end user. Clicking the Save button inserts the employee details into the database. The 

Back to Employee Listing link takes you to the employee listing page.

To build the insert page, you need two actions and a view. So open the 

EmployeeManagerController class and add the two actions as shown in Listing 3-8.

Listing 3-8. Insert() actions insert a new employee

public IActionResult Insert()

{

    FillCountries();

    return View();

}

Figure 3-7. Inserting a new employee

ChAPTER 3  ASP.NET CoRE MVC



85

[HttpPost]

public IActionResult Insert(Employee model)

{

    FillCountries();

    if (ModelState.IsValid)

    {

        db.Employees.Add(model);

        db.SaveChanges();

        ViewBag.Message = "Employee inserted successfully";

    }

    return View(model);

}

The first Insert() action gets called when you click the Insert link on the employee 

listing page. Inside, the code calls the FillCountries() helper method to store a list of 

countries into ViewBag. It then displays the Insert view in the browser. The Insert view is 

discussed shortly.

The second Insert() is called when you submit the form by clicking the Save 

button. The form is submitted using the POST method, and hence Insert() is decorated 

with the [HttpPost] attribute. Adding [HttpPost] ensures that the underlying action is 

invoked only for POST requests. Note that this version of Insert() accepts a parameter 

of type Employee. Upon submitting the form, ASP.NET Core automatically fills the form 

field values into an Employee object for you. This is called model binding. While filling 

the values, ASP.NET Core matches the form field names with the property names. For 

example, the Employee object’s FirstName property will be assigned the value entered in 

the textbox with name FirstName.

Inside, the Insert() action calls the FillCountries() helper method. Before 

inserting a new employee into the database, the code checks whether the Employee 

object holds valid values. Recollect that while creating the Employee entity class, you 

used data annotations such as [Required] and [StringLength] to specify validation 

criteria. To check whether Employee contains valid values or not, the code uses 

ModelState’s IsValid property. The IsValid property returns true if all the validations 

are successful; otherwise, it returns false.

In the former case, the code adds the Employee object to Employees DbSet. This 

is done using the Add() method of Employees DbSet. The Add() method adds a new 

employee into the DbSet and marks it as newly added entity. To persist the values into 

ChAPTER 3  ASP.NET CoRE MVC



86

the database, the SaveChanges() method of the AppDbContext is called. A success 

message is stored into the ViewBag for displaying to the user. The Insert view is rendered 

again in the browser so that you can insert another employee if you so wish.

This completes the two Insert() actions. Now let’s proceed to the Insert view. 

Open the Add New Item dialog by right-clicking the Views ➤ EmployeeManager folder 

and add another Razor View named Insert.cshtml. Then write the markup shown in 

Listing 3-9 in it.

Listing 3-9. Skeleton markup of Insert.cshtml

@model Employee

<h2>Insert New Employee</h2>

<h3 class="message">@ViewBag.Message</h3>

<form asp-controller="EmployeeManager" asp-action="Insert" method="post">

    <table border="0">

    </table>

</form>

Here, the @model directive sets the view’s model type to be Employee. Below the 

heading, the success message stored in the ViewBag is outputted. Initially when the 

first Insert() is called, Message property will be empty, and hence no message will be 

displayed. The subsequent insert operations will display the success message to the user.

Then the markup uses a Form Tag Helper to render an HTML <form> element. The 

asp-controller attribute of the Form Tag Helper specifies the name of the controller 

(EmployeeManager), and the asp-action attribute specifies the name of the action 

(Insert) that processes the form upon submission. The method attribute specifies the 

method of form submission, POST in this case.

Inside, a table is placed to house various form fields (discussed in the following). 

Now, add the markup shown in Listing 3-10 inside the <table> element.

Listing 3-10. Input Tag Helpers for FirstName, LastName, and Title

<tr>

    <td class="right">

        <label asp-for="FirstName"></label> :

    </td>

ChAPTER 3  ASP.NET CoRE MVC



87

    <td>

        <input type="text" asp-for="FirstName" />

        <span asp-validation-for="FirstName" class="message"></span>

    </td>

</tr>

<tr>

    <td class="right">

        <label asp-for="LastName"></label> :

    </td>

    <td>

        <input type="text" asp-for="LastName" />

        <span asp-validation-for="LastName" class="message"></span>

    </td>

</tr>

<tr>

    <td class="right">

        <label asp-for="Title"></label> :

    </td>

    <td>

        <input type="text" asp-for="Title" />

        <span asp-validation-for="Title" class="message"></span>

    </td>

</tr>

Notice the code marked in bold letters. The Label Tag Helper displays a label for 

the FirstName textbox. The asp-for attribute is set to FirstName indicating that <label> 

is being rendered for the FirstName textbox. Recollect that the FirstName property is 

decorated with the [Display] attribute, and the Label Tag Helper will automatically use 

that as the label. If the model property doesn’t have [Display], the actual property name 

is used for the label.

The Input Tag Helper binds the <input> element to a model property. This is done 

using the asp-for attribute. So when you add an <input> element with the asp-for 

attribute set to FirstName, it will generate an input element whose name is FirstName 

and value is the same as the property’s value.

The <span> element followed by the input element represents a Validation Message 

Tag Helper and is used to display the validation error message for that property. The 

ChAPTER 3  ASP.NET CoRE MVC



88

asp-validation-for attribute specifies the property name whose validation error 

message is to be displayed (FirstName in this case). The validation error messages are 

picked from the data annotations used while creating the model class.

The markup that follows sets up the Tag Helpers for LastName and Title properties.

Next, add the markup shown in Listing 3-11 that displays BirthDate and HireDate 

fields.

Listing 3-11. Displaying BirthDate and HireDate form fields

<tr>

    <td class="right">

        <label asp-for="BirthDate"></label> :

    </td>

    <td>

        <input type="date" asp-for="BirthDate" />

        <span asp-validation-for="BirthDate" class="message"></span>

    </td>

</tr>

<tr>

    <td class="right">

        <label asp-for="HireDate"></label> :

    </td>

    <td>

        <input type="date" asp-for="HireDate" />

        <span asp-validation-for="HireDate" class="message"></span>

    </td>

</tr>

This markup is quite similar to the one discussed earlier. However, notice that the 

input fields have their type attribute set to date. Modern browsers such as Firefox and 

Chrome can display a date picker for entering the date.

Now, add the markup shown in Listing 3-12 in the Insert view.

ChAPTER 3  ASP.NET CoRE MVC



89

Listing 3-12. Displaying the Country dropdown list and Notes text area

<tr>

    <td class="right">

        <label asp-for="Country"></label> :

    </td>

    <td>

        <select asp-for="Country" asp-items="@ViewBag.Countries">

        <option value="">Please select</option>

        </select>

        <span asp-validation-for="Country" class="message"></span>

    </td>

</tr>

<tr>

    <td class="right">

        <label asp-for="Notes"></label> :

    </td>

    <td>

        <textarea asp-for="Notes" rows="5" cols="40"></textarea>

        <span asp-validation-for="Notes" class="message"></span>

    </td>

</tr>

This markup should look familiar to you since it’s quite similar to the previous one. 

However, there are a few differences. Firstly, for displaying a list of countries to pick 

from, the markup uses the Select Tag Helper. The asp-for attribute of the <select> 

element is set to the Country property indicating that the control value is bound to 

the Country property of the Employee model object. The asp-items attribute is set to 

ViewBag’s Countries property. Recollect that the FillCountries() method stores a List 

of SelectListItem objects into the Countries ViewBag property. Setting it to asp-items 

will generate <option> elements for each country in the ViewBag. Notice that the <select> 

also has an empty <option> element that displays a “Please select” item in the dropdown 

list. The countries from the ViewBag are appended to this <option> element.

Secondly, Notes are entered using the Textarea Tag Helper. Since Notes can be free- 

form text, the markup renders a <textarea> element with 5 rows and 40 columns.

Finally, add the markup shown in Listing 3-13 in the Insert view.

ChAPTER 3  ASP.NET CoRE MVC



90

Listing 3-13. Displaying the Save button and Back to Employee Listing link

       <tr>

            <td colspan="2">

                <button type="submit">Save</button>

            </td>

        </tr>

    </table>

</form>

<br /><br />

<a asp-controller="EmployeeManager" asp-action="List">Back to Employee 

Listing</a>

This markup displays the Save button using a <button> element. Clicking the 

Save button submits the form. At the bottom of the page, the Anchor Tag Helper 

is used to render a hyperlink that takes the user back to the employee listing page. 

The asp-controller and asp-action attributes of the Anchor Tag Helper are set to 

EmployeeManager and List, respectively. Clicking the link will take the control to the 

List() action.

 Update an Existing Employee
On the employee listing page, each employee row has Update and Delete links. Clicking 

the Update link takes you to the update employee page where the existing details of that 

employee are presented for editing (Figure 3-8).

ChAPTER 3  ASP.NET CoRE MVC



91

The Update Existing Employee page looks similar to the Insert New Employee page 

except that various control values are now filled with the details of the employee being 

modified. The EmployeeID being the primary key can’t be modified.

In order to complete this page, you need two actions and a view. So open the 

EmployeeManagerController and add the first action as shown in Listing 3-14.

Listing 3-14. First Update() action

public IActionResult Update(int id)

{

    FillCountries();

    Employee model = db.Employees.Find(id);

    return View(model);

}

The first Update() action is invoked when the user clicks the Update link on the 

employee listing page. It has one parameter – id – that indicates the EmployeeID of the 

employee being modified. Recollect that the EmployeeID is supplied via the id route 

parameter of the Update link.

Figure 3-8. Updating an existing employee

ChAPTER 3  ASP.NET CoRE MVC



92

Inside, the FillCountries() helper method is called so that a list of countries is 

available in the ViewBag. The code then finds the Employee entity whose EmployeeID 

is passed to the Update() action. This is done using the Find() method of Employees 

DbSet. The Find() method accepts a primary key value(s) and returns an entity 

matching that primary key. Find() returns null if no match is found. The returned 

Employee object is passed to the Update view via the View() method.

Then add the second Update() action as shown in Listing 3-15.

Listing 3-15. Second Update() action

[HttpPost]

public IActionResult Update(Employee model)

{

    FillCountries();

    if(ModelState.IsValid)

    {

        db.Employees.Update(model);

        db.SaveChanges();

        ViewBag.Message = "Employee updated successfully";

    }

    return View(model);

}

The second Update() is called when the user clicks the Save button. Since this 

version of Update() handles the form submission via the POST method, it’s decorated 

with the [HttpPost] attribute. The Update() method receives the modified values 

through an Employee object parameter.

Inside, the code calls FillCountries() as before. It then proceeds to check 

ModelState’s IsValid property. To update an employee, the Update() method of 

Employees DbSet is used and modified Employee object is passed to it. This way, 

the Employee object gets marked as modified. Then SaveChanges() is called on the 

AppDbContext to propagate the changes to the database. A success message is stored in 

the ViewBag, and the Update view is shown in the browser.

Now, add Update.cshtml to the Views ➤ EmployeeManager folder. Add the markup 

shown in Listing 3-16 into the Update view.

ChAPTER 3  ASP.NET CoRE MVC



93

Listing 3-16. Form Tag Helper in the Update view

@model Employee

<h2>Update Existing Employee</h2>

<h3 class="message">@ViewBag.Message</h3>

<form asp-controller="EmployeeManager"

      asp-action="Update"

      method="post">

    <table border="0">

        <tr>

            <td class="right">

                <label asp-for="EmployeeID"></label> :

            </td>

            <td>

                <input type="hidden" asp-for="EmployeeID" />

                <span>@Model.EmployeeID</span>

            </td>

        </tr>

The @model directive sets the model for the Update view to Employee. Notice the 

code marked in bold letters. The Form Tag Helper submits the form to the Update() 

action of EmployeeManagerController using the POST method. Also notice that the 

EmployeeID is stored in a hidden form field and is also displayed in a <span> element. 

Storing EmployeeID in the hidden form field ensures that it is filled in the Employee 

object during model binding.

The rest of the page markup is the same as the Insert view, and hence it’s not 

discussed again. You can either copy-paste it from the Insert view or grab from the 

book’s source code.

 Delete an Existing Employee
Deleting an existing employee from the database is a two-step process. First, when you 

click the Delete link for an employee record in the employee listing page, a confirmation 

page is shown that warns the user about the employee deletion. Once the user confirms 

the deletion, the employee gets deleted from the database. Figure 3-9 shows the 

confirmation page displayed for an employee.

ChAPTER 3  ASP.NET CoRE MVC



94

In order to implement this piece of functionality, you need two actions and a view. 

Listing 3-17 shows one of the actions.

Listing 3-17. Action for confirming the delete operation

[ActionName("Delete")]

public IActionResult ConfirmDelete(int id)

{

    Employee model = db.Employees.Find(id);

    return View(model);

}

The ConfirmDelete() action accepts an EmployeeID of an Employee object that is to 

be deleted. Recollect that the Delete link from the employee listing page supplies this id 

as a route parameter. The ConfirmDelete() is decorated with the [ActionName] attribute. 

Usually, an action name exposed to the external world is the same as the action method 

name. However, at times you might want to expose an action method with a different 

name. In this case, the code exposes the ConfirmDelete() method as Delete. This allows 

us to map the URL /EmployeeManager/Delete to the ConfirmDelete() action.

Figure 3-9. Confirming employee deletion

ChAPTER 3  ASP.NET CoRE MVC



95

Inside, the code finds an Employee matching the supplied EmployeeID and passes it 

to the Delete view.

The second action is shown in Listing 3-18.

Listing 3-18. Delete() action deletes an employee

[HttpPost]

public IActionResult Delete(int employeeID)

{

    Employee model = db.Employees.Find(employeeID);

    db.Employees.Remove(model);

    db.SaveChanges();

    TempData["Message"] = "Employee deleted successfully";

    return RedirectToAction("List");

}

The Delete() action accepts a single parameter – employeeID. Note that the 

ConfirmDelete() parameter was named id because it was supplied as a route parameter. 

On the other hand, Delete() receives the EmployeeID from the confirmation page 

through model binding. Therefore, it is named employeeID – the same as the property 

name being model bound. The Delete() action is decorated with the [HttpPost] 

because we want to invoke it only through POST requests.

Inside, the code finds the employee to be deleted based on the EmployeeID passed 

in the action. It then calls the Remove() method of DbSet to delete the employee. 

The Remove() method marks the entity for removal. To delete the employee from the 

database, the SaveChanges() method is called on the DbContext.

Once an employee is deleted, we want to redirect to the employee listing page. The 

ViewBag object has a scope of current request. That means whatever you store in ViewBag 

is available only during the current request. In this case, taking the user to the employee 

listing page is another request, and hence ViewBag values of earlier requests won’t be 

available. As an alternative, the code uses the TempData object. TempData is a dictionary, 

and you can store key-value pairs in it. Data stored in TempData remains available until it’s 

read by another request. Here, the code stores a success message in TempData. This success 

message is outputted on the List view (read the discussion of the employee listing page).

To redirect the user to the employee listing page, the RedirectToAction() method is 

used. The RedirectToAction() method accepts the name of an action and redirects the 

control to that action.

ChAPTER 3  ASP.NET CoRE MVC



96

Note EF Core has a ChangeTracker that keeps track of the state of entities 
managed by a DbContext. Calling Add(), Update(), and Remove() methods sets the 
state of an entity to Added, Modified, and Deleted, respectively.

Now, add Delete.cshtml in the Views ➤ EmployeeManager folder. Write the markup 

shown in Listing 3-19 in it.

Listing 3-19. Delete view displays a warning message along with employee 

details

@model Employee

<h2>Delete Existing Employee</h2>

<h3 class="message">

    Warning : You are about to delete an employee record.

</h3>

<form asp-controller="EmployeeManager" asp-action="Delete" method="post">

    <input type="hidden" asp-for="EmployeeID" />

    <table border="0">

        <tr>

            <td class="right">

                <label asp-for="EmployeeID"></label> :

            </td>

            <td>

                @Model.EmployeeID

            </td>

        </tr>

        <tr>

            <td class="right">

                <label asp-for="FirstName"></label> :

            </td>

            <td>

                @Model.FirstName

            </td>

        </tr>

        ...

ChAPTER 3  ASP.NET CoRE MVC



97

        <tr>

            <td colspan="2">

                <button type="submit">Delete</button>

            </td>

        </tr>

    </table>

</form>

<br /><br />

<a asp-controller="EmployeeManager" asp-action="List">Back to Employee 

Listing</a>

The Delete view displays a warning message at the top. Below the warning message 

is a <form> that POSTs to the Delete() action of EmployeeManagerController. Note that 

EmployeeID is stored in a hidden form field. This is required because when you submit 

the form by clicking the Delete button, the Delete() action (discussed earlier) should 

know the EmployeeID for deleting that record.

The table housed inside the form displays existing employee details (for the sake of 

reducing clutter, only EmployeeID and FirstName properties are shown). You can review 

these details and click the Delete button at the bottom of the table.

 Add Razor Layout and View Start
At this stage, you have completed the functionality related to the CRUD operations. 

Let’s add a few more things before you can run the application. Firstly, you add a Razor 

Layout for your views. A layout is used to give consistent page layout for various pages of 

your application. Most of the web sites provide a consistent site layout in terms of logo, 

header, footer, and navigation structures such as menus. Since these pieces appear on 

more than one page, they are better kept at a single place. Layout is such a place. If you 

are familiar with ASP.NET master pages, you will find layouts analogous to them.

Secondly, you will attach this layout to various views of your application. You do this 

using a View Start file.

Add a subfolder named Shared under Views. The Shared folder is used to store items 

that are to be shared between multiple controllers or views. For example, a view file 

might be required by multiple controllers. Rather than keeping two copies of the same 

ChAPTER 3  ASP.NET CoRE MVC



98

view in two controller-specific folders, you can put it in the Shared folder. Since a layout 

is usually attached with more than one view, it’s stored in the Shared folder.

Then right-click the Shared folder and open the Add New Item dialog. Add a layout 

named _Layout.cshtml to the Views folder (Figure 3-10).

Next, write the markup shown in Listing 3-20 inside the _Layout file.

Listing 3-20. Markup from _Layout.cshtml

<!DOCTYPE html>

<html>

<head>

    <meta name="viewport" content="width=device-width" />

    <title>Employee Manager</title>

    <link href="~/Styles/site.css" rel="stylesheet" />

</head>

<body>

    <h1>Employee Manager</h1>

    <hr />

    <div>

Figure 3-10. Adding a Razor Layout to the Shared folder

ChAPTER 3  ASP.NET CoRE MVC



99

        @RenderBody()

    </div>

    <hr />

</body>

</html>

As you can see, the layout contains HTML elements such as <html>, <head>, <title>, 

<link>, and <body>. These elements define the skeleton of the page.

Notice the use of the @RenderBody() method. A view’s content will be outputted at a 

place where the @RenderBody() call is placed. This way, the content of the layout and the 

content of the view are combined to form the final page.

To attach _Layout.cshtml to all the views of the application, add a Razor View Start 

file in the Views folder (Figure 3-11).

The View Start file is named _ViewStart.cshtml and contains this code:

@{

    Layout = "_Layout";

}

Figure 3-11. Adding a Razor View Start file

ChAPTER 3  ASP.NET CoRE MVC



100

This is a Razor code block and sets the Layout property of the views to the name of 

the layout page (without file extension) to be attached.

 Enable Client-Side Validations
The Employee class located in the Models folder is decorated with data annotation 

attributes such as [Required] and [StringLength] that are capable of performing 

the validation on the server side as well as on the client side. However, the client-side 

validations are dependent on jQuery validation. So you need to add certain jQuery files 

to all the views. These files are as follows:

• jquery.js

• jquery.validate.js

• jquery.validate.unobtrusive.js

The first file is the core jQuery library file. The second file is jQuery validation plugin, 

and the third file is an add-on to jQuery validation to enable unobtrusive validation. You 

can grab these files from the source code download of this book.

Once you have these files, create the wwwroot/Scripts folder under the project root 

folder and place them inside it. Your Solution Explorer should resemble Figure 3-12.

Figure 3-12. jQuery files added to the wwwroot folder

ChAPTER 3  ASP.NET CoRE MVC



101

Open the _Layout.cshtml file and add <script> elements for these files as shown in 

Listing 3-21.

Listing 3-21. Enabling client-side validations

<html>

<head>

    <meta name="viewport" content="width=device-width" />

    <title>Employee Manager</title>

    <link href="~/Styles/site.css" rel="stylesheet" />

    <script src="~/Scripts/jquery.js"></script>

    <script src="~/Scripts/jquery.validate.js"></script>

    <script src="~/Scripts/jquery.validate.unobtrusive.js"></script>

</head>

Notice the use of ~ to represent the web application’s root. In ASP.NET Core, all the 

static files such as images, scripts, and style sheets are placed inside the wwwroot folder; 

and wwwroot is considered as the web application’s root.

Also notice that the markup also uses a CSS style sheet named site.css. This file 

contains various CSS classes used by the views. You can download this file from the 

book’s source code.

Note You can download the latest versions of these jQuery files by visiting 
https://jquery.com, https://jqueryvalidation.org, and https://
github.com/aspnet/jquery-validation-unobtrusive, respectively.

 Store the Database Connection String in 
appsettings.json
The Employee Manager application uses data from the Northwind database you installed 

earlier. Although you have created an EF Core data model and data entry pages, the 

database connection information is not mentioned anywhere. It’s time to do that now.

The database connection string is a part of the application’s configuration, and ASP.

NET Core has a special file to store it: appsettings.json. The appsettings.json file stores the 

application configuration in JSON format. Typically, the configuration is stored as key-value 

ChAPTER 3  ASP.NET CoRE MVC

https://jquery.com
https://jqueryvalidation.org
https://github.com/aspnet/jquery-validation-unobtrusive
https://github.com/aspnet/jquery-validation-unobtrusive


102

pairs. To add the appsettings.json file, right-click the project in Solution Explorer and open 

the Add New Item dialog. Then locate the App Settings File entry (Figure 3-13).

Once the appsettings.json is added, write the JSON fragment as shown in Listing 3-22 

into it.

Listing 3-22. Storing the database connection string in appsettings.json

{

  "ConnectionStrings": {

    "AppDb": "data source=.;

              initial catalog=Northwind;

              integrated security=true"

  }

}

The ConnectionStrings section is meant for storing database connection strings. An 

application can have more than one database involved, and all the connection strings 

can be placed under the ConnectionStrings section. In this case, a key named AppDb 

stores the Northwind database’s connection string.

Figure 3-13. Adding the appsettings.json file

ChAPTER 3  ASP.NET CoRE MVC



103

The data source specifies the name or IP address of the SQL Server installation. Here, 

dot (.) means local host. The initial catalog specifies the name of the database you want 

to connect with, Northwind in this case. Integrated security indicates that Windows 

integrated security is to be used for database-level authentication.

Make sure to change this connection string as per your setup. Storing the connection 

string inside a configuration file makes it possible to change it at a later stage without 

needing any change to the source code.

 Configure Application Startup
Before running an ASP.NET Core application, you need to specify the application’s 

startup. The application’s startup includes three main tasks:

• Read and load the application’s configuration so that it can be 

accessed from the other parts of the application.

• Register services needed by the application. A service is a reusable 

component that is registered with the dependency injection (DI) 

framework and can then be used in the other parts of the application.

• Define the application’s request processing pipeline.

The startup information mentioned in the preceding text is stored in the Startup 

class by default. The Startup class usually resides in the project root. Let’s see how the 

Employee Manager’s Startup class looks like. Listing 3-23 shows the skeleton of the 

Startup.cs file.

Listing 3-23. Skeleton of Startup.cs

public class Startup

{

    public Startup(IConfiguration config)

    {

    }

    public void ConfigureServices(IServiceCollection services)

    {

    }

ChAPTER 3  ASP.NET CoRE MVC



104

    public void Configure(IApplicationBuilder app,

                          IWebHostEnvironment env)

    {

    }

}

The startup code consists of three parts – startup class constructor, 

ConfigureServices() method, and Configure() method.

The startup class constructor receives an object implementing IConfiguration that 

represents the application’s configuration from the appsettings.json file.

The ConfigureServices() method is used to register services with the DI 

framework. It receives an object of IServiceCollection and allows you to add services 

required by your application.

The Configure() method is used to define the application’s request pipeline. 

The request pipeline consists of a series of middleware that process the request in 

some way. The Configure() method has two parameters – IApplicationBuilder and 

IWebHostEnvironment. The former allows you to build the request pipeline, and the 

latter allows reading host environment details.

These three – constructor, ConfigureServices(), and Configure() – are executed in 

the same sequence when the application is run for the first time. For subsequent requests, 

the startup information is already available from the previous run. Of course, if the 

application gets restarted for some reason, these three methods will be executed again.

Now that you know the basics of application startup, let’s fill this skeleton with the 

core required for Employee Manager.

Open Startup.cs and write the code shown in Listing 3-24.

Listing 3-24. Reading application’s configuration

private IConfiguration config = null;

public Startup(IConfiguration config)

{

    this.config = config;

}

The code declares a private variable of type IConfiguration. The startup class 

constructor receives the configuration from appsettings.json in the form of a config 

object. The config object is stored in the variable just declared for later use.

ChAPTER 3  ASP.NET CoRE MVC



105

Now complete ConfigureServices() as shown in Listing 3-25.

Listing 3-25. Registering MVC in ConfigureServices()

public void ConfigureServices(IServiceCollection services)

{

    services.AddControllersWithViews();

    services.AddDbContext<AppDbContext>(

             options => options.UseSqlServer

             (this.config.GetConnectionString("AppDb")));

}

The code calls the AddControllersWithViews() method to register MVC-specific 

services with the DI container.

You created the AppDbContext class earlier and also used it in the 

EmployeeManagerController. That time, it was mentioned that AppDbContext would be 

injected into the controller. Here, you are registering AppDbContext with the ASP.NET 

Core’s DI container. The AddDbContext<T>() method registers the specified custom 

DbContext type (AppDbContext in this case) with the DI container. While registering 

AppDbContext, the code specifies the database connection string. This is done using the 

UseSqlServer() method. Notice how the database connection string is retrieved using 

the GetConnectionString() method of IConfiguration. The connection string’s key 

in the configuration is AppDb, and GetConnectionString() returns its value. This way, 

AppDbContext is made aware of the underlying database.

Next, complete the Configure() method as shown in Listing 3-26.

Listing 3-26. Configuring request pipeline

public void Configure(IApplicationBuilder app,

                      IWebHostEnvironment env)

{

   if (env.IsDevelopment())

   {

      app.UseDeveloperExceptionPage();

   }

   app.UseStaticFiles();

ChAPTER 3  ASP.NET CoRE MVC



106

   app.UseRouting();

   app.UseEndpoints(endpoints => {

endpoints.MapControllerRoute(

 name: "default",

 pattern: "{controller=EmployeeManager}/{action=List}/{id?}");

 });}

}

The Configure() method checks the IsDevelopment() method of 

IWebHostEnvironment. This method returns true if ASPNETCORE_ENVIRONMENT 

environment variable is set to Development. During development, it will be 

Development. You can change its value from the project’s property page.

If IsDevelopment() returns true, the code wires developer exception page 

middleware using the UseDeveloperExceptionPage() method. This middleware 

displays detailed error messages when any error occurs.

The code then wires static files middleware using the UseStaticFiles() method. 

Calling this method ensures that static files such as images, JavaScript files, and CSS style 

sheet files can be accessed by the browser.

Then the code calls the UseRouting() method to wire the endpoint routing 

middleware. This middleware enables endpoint routing for your application.

Finally, the code wires endpoint middleware using the UseEndpoints() method. The 

UseEndpoints() method configures routing endpoints for the application. Routing maps 

an incoming request to some controller and action. The MapControllerRoute() method 

defines the default mapping for our application.

The MapControllerRoute() has two parameters – the name parameter indicates 

a unique name given to a route definition under consideration and the pattern 

parameter specifies a URL pattern. In this case, the pattern consists of three parameters 

as enclosed in { and }: controller, action, and id. The controller and action parameters 

indicate that the name of a controller and action will appear in place of the parameters 

in the URL. They have default values of EmployeeManager and List, respectively. This 

indicates that if no controller or action is specified in the URL, EmployeeManager and 

List are assumed. The id parameter is optional as indicated by ? and is used during 

update and delete operations.

Recollect how you specified the URLs of the Insert, Update, and Delete links on the 

employee listing page. The insert URL followed this pattern: /controller/action since id 

parameter wasn’t necessary. On the other hand, the update and delete URLs followed 

ChAPTER 3  ASP.NET CoRE MVC



107

this pattern: /controller/action/id since id parameter was required to perform the 

respective operations. As you can see, the configuration behind those URLs is specified 

in the MapControllerRoute().

At this stage, your application can perform CRUD operations. If you run the application, 

the employee listing page is displayed; and you can test the insert, update, and delete 

functionality. It is recommended that you do so before going ahead to the next sections.

 Add ASP.NET Core Identity Support
Although the Employee Manager application is able to list, insert, update, and delete 

employees, the application doesn’t have any security. In the following sections, you will 

wire ASP.NET Core Identity into the application to perform user authentication and 

authorization.

ASP.NET Core Identity is a membership framework that provides authentication and 

authorization services to your application. You can perform various tasks such as creating 

a new user account and signing in and signing out of the application. The user data is 

typically stored in an SQL Server database. ASP.NET Core Identity also supports external 

login providers such as Facebook, Twitter, and Microsoft account. As far as the Employee 

Manager application is concerned, you store user data in an SQL Server database.

The first step in adding support to ASP.NET Core Identity is to add the NuGet 

package for Microsoft.AspNetCore.Identity.EntityFrameworkCore. Now proceed to 

the following sections to build various pieces required to enable ASP.NET Core Identity 

for Employee Manager.

 Add AppIdentityUser, AppIdentityRole, and 
AppIdentityDbContext Classes
In order to implement authentication and authorization, the system needs to deal with 

users and roles. Therefore, the Employee Manager application needs to have classes that 

represent the application’s user and role, respectively. These classes allow you to capture 

user and role details.

Add a folder named Security under the project root and then add three classes 

into it: AppIdentityUser, AppIdentityRole, and AppIdentityDbContext. The 

AppIdentityUser class represents the application’s user, and the AppIdentityRole 

class represents a user role. The AppIdentityDbContext class represents a custom 

ChAPTER 3  ASP.NET CoRE MVC



108

DbContext that is used to communicate with the underlying user and role data store. 

The AppIdentityUser class is shown in Listing 3-27.

Listing 3-27. AppIdentityUser class represents the application user

public class AppIdentityUser : IdentityUser

{

    public string FullName { get; set; }

    public DateTime BirthDate { get; set; }

}

The AppIdentityUser class inherits from the IdentityUser class residing in the 

Microsoft.AspNetCore.Identity namespace. It provides properties such as UserName 

and Email. In addition to these basic properties, you might want to capture more details 

about a user such as user’s first name, last name, address, and any such details. These 

details can be captured by adding properties to the custom user class. In this case, 

AppIdentityUser adds two properties: FullName and BirthDate.

The AppIdentityRole class represents an application role and is shown in Listing 3-28.

Listing 3-28. AppIdentityRole represents an application role

public class AppIdentityRole : IdentityRole

{

    public string Description { get; set; }

}

The AppIdentityRole class inherits from the IdentityRole class residing in the 

Microsoft.AspNetCore.Identity namespace. Properties such as Name are available in 

the IdentityRole base class. If you wish to capture any additional information about the 

role, you can add properties in the derived class. In this case, the Description property is 

added to capture the description of a role.

Now open the AppIdentityDbContext class and write the code shown in Listing 3-29 

in it.

ChAPTER 3  ASP.NET CoRE MVC



109

Listing 3-29. AppIdentityDbContext for dealing with the data store

public class AppIdentityDbContext : IdentityDbContext<AppIdentityUser,App 

IdentityRole,string>

{

    public AppIdentityDbContext

        (DbContextOptions<AppIdentityDbContext> options)

        : base(options)

    {

    }

}

The AppIdentityDbContext is quite similar to the AppDbContext class you created 

earlier. The user and role details need to be stored in and retrieved from some data store 

such as an SQL Server database. The AppIdentityDbContext class communicates to the 

underlying user and role data store. In this example, you store user and role details in the 

Northwind database itself. However, if you want, you can store these details in a separate 

database.

Notice that the AppIdentityDbContext class inherits from the IdentityDbCon

text<TUser,TRole,TKey> class residing in the Microsoft.AspNetCore.Identity.

EntityFrameworkCore namespace. The TUser parameter indicates the type of 

application’s user (AppIdentityUser in this case). The TRole parameter indicates the 

type of application’s role (AppIdentityRole in this case), and the TKey parameter 

indicates the type of the primary key for users and roles (string in this case).

The constructor of the AppIdentityDbContext class is designed for DI support.

 Add ASP.NET Core Identity Configuration to Startup
Now that you created AppIdentityUser, AppIdentityRole, and AppIdentityDbContext 

classes, it’s time to add a few details in the application’s startup.

Open the Startup class and add the lines shown in Listing 3-30 to 

ConfigureServices().

Listing 3-30. Adding ASP.NET Core Identity in ConfigureServices()

public void ConfigureServices(IServiceCollection services)

{

ChAPTER 3  ASP.NET CoRE MVC



110

    services.AddControllersWithViews();

    ...

    ...

services.AddDbContext<AppIdentityDbContext>(options =>

        options.UseSqlServer(this.config.GetConnectionString("AppDb")));

services.AddIdentity<AppIdentityUser, AppIdentityRole>()

            .AddEntityFrameworkStores<AppIdentityDbContext>();

    services.ConfigureApplicationCookie(opt =>

    {

        opt.LoginPath = "/Security/SignIn";

        opt.AccessDeniedPath = "/Security/AccessDenied";

    });

}

Notice the code marked in bold letters. The AddDbContext() method registers 

AppIdentityDbContext with the DI container. In this example, you use the Northwind 

database as the identity data store, and hence its connection string from the 

configuration is passed to the UseSqlServer().

The AddIdentity() method is used to register ASP.NET Core Identity–related 

services with the DI container. The TUser and TRole parameters accept the user and role 

types, respectively. The code also calls the AddEntityFrameworkStores() method which 

adds an EF Core implementation of identity data stores.

By default, ASP.NET Core Identity issues a cookie to an authenticated user. This 

cookie acts like a ticket and is used to decide whether to allow the user to access 

the application or not. You can configure various settings of this cookie using the 

ConfigureApplicationCookie() method. In this example, the code sets the LoginPath 

property to /Security/SignIn. The LoginPath property informs the framework about the 

sign-in page of the application. If an unauthenticated user tries to access the application, 

the user will be automatically redirected to this page. You create SecurityController 

and the SignIn() action in the following sections.

The AccessDeniedPath property sets an error page that is displayed in case access 

can’t be granted to a user. For example, a user might sign in with valid credentials but 

might not belong to the Manager role.

Now, go to the Configure() method and add the authentication and authorization 

middleware as shown in Listing 3-31.

ChAPTER 3  ASP.NET CoRE MVC



111

Listing 3-31. Adding authentication middleware

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

    if (env.IsDevelopment())

    {

        app.UseDeveloperExceptionPage();

    }

    app.UseStaticFiles();

    app.UseRouting();

    app.UseAuthentication();

    app.UseAuthorization();

    app.UseEndpoints(endpoints=> {

        endpoints.MapControllerRoute(

        name: "default",

        pattern: "{controller=EmployeeManager}/{action=List}/{id?}");

            });

}

The UseAuthentication() method adds authentication middleware to the request 

pipeline. Since Employee Manager uses role-based security (as you will see in later 

sections), you also need to call the UseAuthorization() method. This way, requests are 

now authenticated and authorized using ASP.NET Core Identity.

 Add Database Tables to Store User and Role Details
The Employee Manager application needs to store user and role details in some 

persistent data store. You use the Northwind database for this purpose. In order to 

store these details into a database, you need to create certain tables that ASP.NET Core 

Identity understands. Luckily, there is a command line tool that helps you accomplish 

this task. To use this command line tool, you need to first install it. To do so, open Visual 

Studio Developer Command Prompt and issue the following command:

> dotnet tool install --global dotnet-ef

This command installs the dotnet-ef tool on your machine.

ChAPTER 3  ASP.NET CoRE MVC



112

Then add a NuGet package for Microsoft.EntityFrameworkCore.Design using the 

Manage NuGet Packages dialog. After successfully installing the tool and adding the 

NuGet package, navigate to the Employee Manager project root folder. Then issue this 

command:

> dotnet ef migrations

         add IdentityMigration

         --context AppIdentityDbContext

The preceding command generates an EF Core migration named 

IdentityMigration and uses AppIdentityDbContext.

Note The EF Core migrations provide a way to keep the data model and database 
schema in sync. The existing data is preserved when a migration is executed.

After executing this command, you will notice the Migrations folder under the project 

root folder. This folder contains certain files used by EF Core migrations (Figure 3-14).

Figure 3-14. Migrations folder with EF Core migration–related files

ChAPTER 3  ASP.NET CoRE MVC



113

You don’t need to tamper with these files. They are used by EF Core migrations. Next, 

issue this command on the developer command prompt:

> dotnet ef database update --context AppIdentityDbContext

This command updates the underlying database by adding ASP.NET Core Identity-

specific tables. After invoking this command, if you see the Northwind database, you will 

find that a few new tables have been added to the database. Figure 3-15 shows these tables.

Notice the tables that begin with “AspNet” such as AspNetUsers and AspNetRoles. 

These tables are used by ASP.NET Core Identity to store user and role information.

 Add SecurityController to the Controllers Folder
Now that you have wired and configured ASP.NET Core Identity into Employee 

Manager, you can proceed to create the registration page and sign-in page. However, 

before you do that, you need to add a controller – SecurityController – that contains 

necessary actions.

Right-click the Controllers folder and add a new controller class named 

SecurityController using the Add New Item dialog. Listing 3-32 shows the skeleton of 

the SecurityController.

Figure 3-15. ASP.NET Core Identity–related tables

ChAPTER 3  ASP.NET CoRE MVC



114

Listing 3-32. Skeleton of SecurityController

public class SecurityController : Controller

{

    private readonly UserManager<AppIdentityUser> userManager;

    private readonly RoleManager<AppIdentityRole> roleManager;

    private readonly SignInManager<AppIdentityUser> signinManager;

     public SecurityController(UserManager<AppIdentityUser> userManager, 

RoleManager<AppIdentityRole> roleManager,

    SignInManager<AppIdentityUser> signinManager)

    {

        this.userManager = userManager;

        this.roleManager = roleManager;

        this.signinManager = signinManager;

    }

    public IActionResult Register()

    {

    }

    [HttpPost]

    public IActionResult Register(Register obj)

    {

    }

    public IActionResult SignIn()

    {

    }

    [HttpPost]

    public IActionResult SignIn(SignIn obj)

    {

    }

ChAPTER 3  ASP.NET CoRE MVC



115

    [HttpPost]

    public IActionResult SignOut()

    {

    }

}

The SecurityController contains five actions and a constructor. The class declares 

three member variables of type UserManager<TUser>, RoleManager<TRole> and 

SignInManager<TUser>, respectively. The UserManager class allows you to perform 

user-centric operations such as creating a user account and modifying user details. The 

RoleManager class allows you to manage application roles and allows you to create or 

remove roles from the system. The SignInManager class allows you to validate a user and 

issue the authentication cookie discussed earlier.

The UserManager, RoleManager, and SignInManager objects are injected into the 

constructor of SecurityController and are stored locally into the variables declared 

earlier.

The user registration is handled by two Register() actions, whereas user 

authentication and signing in are handled by two SignIn() actions. The SignOut() 

action signs the user out of the system.

The Register(), SignIn(), and SignOut() actions are discussed in the following 

sections.

 Create a User Registration Page
The user registration page allows you to create a user account. You can then sign in to 

the system using the account created (Figure 3-16).

ChAPTER 3  ASP.NET CoRE MVC



116

To create a user registration page, you need a view model class named Register, two 

Register() actions, and the Register view.

Right-click the Models folder and using the Add New Item dialog add a new class 

named Register to the folder. Listing 3-33 shows the Register class.

Listing 3-33. Register class

public class Register

{

    [Required]

    [Display(Name = "User Name")]

    public string UserName { get; set; }

    [Required]

    [Display(Name = "Password")]

    public string Password { get; set; }

    [Required]

    [Compare("Password")]

    [Display(Name = "Confirm Password")]

    public string ConfirmPassword { get; set; }

Figure 3-16. User registration page

ChAPTER 3  ASP.NET CoRE MVC



117

    [Required]

    [Display(Name = "Email")]

    [EmailAddress]

    public string Email { get; set; }

    [Required]

    [Display(Name = "Full Name")]

    public string FullName { get; set; }

    [Required]

    [Display(Name = "Birth Date")]

    public DateTime BirthDate { get; set; }

}

The Register class contains six properties, namely, UserName, Password, 

ConfirmPassword, Email, FullName, and BirthDate. These properties are also decorated 

with data annotations. Notice the [Compare] attribute added to the ConfirmPassword 

property. The [Compare] attribute specifies a property (Password) that is compared with 

the underlying property (ConfirmPassword). If they don’t match, a validation error is 

generated. Also notice the [EmailAddress] attribute added on top of the Email property 

to ensure that only a valid email address can be assigned to it.

Now, go to the SecurityController and add two Register() actions as shown in 

Listing 3-34.

Listing 3-34. Register() action creates a new user account

public IActionResult Register()

{

    return View();

}

[HttpPost]

public IActionResult Register(Register obj)

{

    if (ModelState.IsValid)

    {

        if (!roleManager.RoleExistsAsync("Manager").Result)

        {

ChAPTER 3  ASP.NET CoRE MVC



118

           AppIdentityRole role = new AppIdentityRole();

           role.Name = "Manager";

           role.Description = "Can perform CRUD operations.";

           IdentityResult roleResult =

           roleManager.CreateAsync(role).Result;

        }

        AppIdentityUser user = new AppIdentityUser();

        user.UserName = obj.UserName;

        user.Email = obj.Email;

        user.FullName = obj.FullName;

        user.BirthDate = obj.BirthDate;

        IdentityResult result = userManager.CreateAsync

        (user, obj.Password).Result;

        if (result.Succeeded)

        {

            userManager.AddToRoleAsync(user, "Manager").Wait();

            return RedirectToAction("SignIn", "Security");

        }

        else

        {

            ModelState.AddModelError("", "Invalid user details!");

        }

    }

    return View(obj);

}

The first Register()gets called when you click the Create New User Account link 

from the sign-in page (discussed later). It simply displays a blank user registration page 

ready to accept new user details.

The second Register() is invoked when you submit the user registration page by 

entering user details and clicking the Create button. The Register() action receives a 

Register object through model binding.

Inside, the code checks whether the model contains valid data or not using the 

IsValid property of ModelState. If the model contains valid values, the code proceeds to 

create a new user account.

ChAPTER 3  ASP.NET CoRE MVC



119

Before proceeding to create a new user account, the code needs to create a 

system role named Manager. So the RoleManager class checks whether the Manager 

role exists in the system using the RoleExistsAsync() method. The UserManager, 

RoleManager, and SignInManager classes are designed for asynchronous operations. So 

RoleExistsAsync() is an asynchronous call. Accessing the Result property waits for the 

async call to finish and allows you to check its Boolean return value.

When you run the application for the first time, the Manager role won’t be present 

in the system, and hence RoleExistsAsync() will return false. The code then proceeds 

to create a new AppIdentityRole object and sets its Name property to Manager. The 

Description property is also assigned a brief description about that role. Then the 

CreateAsync() method of RoleManager is called to create the role in the system.

Note here, you create the Manager role at the time of user registration. You 
could have also created it at the time of application initialization. In a more realistic 
case, you will have separate user management and role management pages that 
allow you to create roles, remove roles, and assign roles to users.

To create a new user account, the code creates a new object of AppIdentityUser. The 

AppIdentityUser represents a system user which holds various details such as UserName, 

Email, FullName, and BirthDate.

To create a new user account, the CreateAsync() method of UserManager is called. 

The CreateAsync() accepts two parameters. The first parameter is the AppIdentityUser 

object representing a new system user, and the second parameter is the password. The 

CreateAsync() method is an asynchronous call. However, since the Register() action isn’t 

asynchronous, the code calls the Result property to wait for the result of the operation.

When complete, the CreateAsync() returns an IdentityResult object, an object that 

represents the result of an Identity operation. The Succeeded property of IdentityResult 

returns true if user account creation is successful; otherwise, it returns false.

If the account creation is successful, the code adds the newly created user to the 

Manager role. This is done using the AddToRoleAsync() method of the UserManager. The 

AddToRoleAsync() accepts the AppIdentityUser object and a role name (Manager in 

this case). Users belonging to the Manager role can perform the CRUD operations on the 

Employees table. The Wait() method waits for the asynchronous operation to complete.

The user is then redirected to the sign-in page wherein he can sign in to the system 

with the newly created account.

ChAPTER 3  ASP.NET CoRE MVC



120

If, for some reasons, the user account creation fails, then an error is added to the 

ModelState object using the AddModelError() method. This error will be displayed on 

the registration page.

Now that Register() actions are complete, you can proceed to add the Register 

view. To do so, add a subfolder named Security under the Views folder and add a new 

Razor View named Register.cshtml to it. Then write the markup shown in Listing 3-35 to 

the Register.cshtml file.

Listing 3-35. Markup of Register.cshtml

@model Register

<h1>Create New User Account</h1>

<form asp-controller="Security" asp-action="Register" method="post">

    <table>

    </table>

    <div asp-validation-summary="All" class="message"></div>

    <h3>

       <a asp-controller="Security" asp-action="SignIn">

         Go To Sign-In Page

       </a>

    </h3>

</form>

The Register class acts as the model for the Register view as specified by the @model 

directive.

The Form Tag Helper sets the asp-controller and asp-action attributes to 

Security and Register, respectively. The method attribute is set to post. This indicates 

that the form will be POSTed to the Register() action of the Security controller.

The <table> housed inside the <form> contains all the form fields (discussed 

shortly). Notice the Validation Summary Tag Helper in the form of a <div> element 

below the table. The Validation Summary Tag Helper displays a list of the error messages 

that have occurred in the form. The asp-validation-summary attribute is set to All 

indicating that all the validation errors are to be displayed.

ChAPTER 3  ASP.NET CoRE MVC



121

Note The Validation Message Tag helper displays an error message for a field 
under consideration. on the other hand, the Validation Summary Tag helper 
displays a collective list of error messages occurring in that form.

The Anchor Tag Helper placed at the bottom of the page renders a link to the sign-in 

page.

Listing 3-36 shows various form fields that go inside the <table> element.

Listing 3-36. Registration form fields

<tr>

    <td class="right"><label asp-for="UserName"></label> :</td>

    <td class="left"><input type="text" asp-for="UserName" /></td>

</tr>

<tr>

    <td class="right"><label asp-for="Password"></label> :</td>

    <td class="left"><input type="password" asp-for="Password" /></td>

</tr>

<tr>

    <td class="right"><label asp-for="ConfirmPassword"></label> :</td>

    <td class="left"><input type="password" asp-for="ConfirmPassword" /> 

</td>

</tr>

<tr>

    <td class="right"><label asp-for="Email"></label> :</td>

    <td class="left"><input type="text" asp-for="Email" /></td>

</tr>

<tr>

    <td class="right"><label asp-for="FullName"></label> :</td>

    <td><input type="text" asp-for="FullName" /></td>

</tr>

<tr>

    <td class="right"><label asp-for="BirthDate"></label> :</td>

    <td class="left"><input type="date" asp-for="BirthDate" /></td>

</tr>

ChAPTER 3  ASP.NET CoRE MVC



122

<tr>

    <td colspan="2">

        <button type="submit">Create</button>

    </td>

</tr>

This markup is responsible for rendering various input textboxes for fields such as 

UserName, Email, Password, ConfirmPassword, FullName, and BirthDate. Notice that 

Password and ConfirmPassword fields have type set to password. We won’t go into the 

details of this markup since it is quite simple and straightforward.

 Create a Sign-In Page
The sign-in page allows the user to sign in to the system and is shown in Figure 3-17.

The sign-in page consists of two input textboxes for entering a UserName and 

Password. The Remember Me checkbox is used to indicate whether the signed-in status 

should be preserved even after closing the browser.

To create the sign-in page, you need a SignIn model, two SignIn() actions, and a 

SignIn view. Begin by adding the SignIn model class into the Models folder (Listing 3- 37).

Figure 3-17. Sign-in page

ChAPTER 3  ASP.NET CoRE MVC



123

Listing 3-37. SignIn model class

public class SignIn

{

    [Required]

    [Display(Name = "User Name")]

    public string UserName { get; set; }

    [Required]

    [Display(Name = "Password")]

    public string Password { get; set; }

    [Required]

    [Display(Name = "Remember Me")]

    public bool RememberMe { get; set; }

}

The SignIn model class contains three properties, namely, UserName, Password, and 

RememberMe. The properties are self-explanatory and hence are not discussed in detail.

Then open the SecurityController and write the code shown in Listing 3-38 into it.

Listing 3-38. SignIn() actions

public IActionResult SignIn()

{

    return View();

}

[HttpPost]

public IActionResult SignIn(SignIn obj)

{

    if (ModelState.IsValid)

    {

        var result = signinManager.PasswordSignInAsync

        (obj.UserName, obj.Password,

            obj.RememberMe, false).Result;

ChAPTER 3  ASP.NET CoRE MVC



124

        if (result.Succeeded)

        {

            return RedirectToAction("List", "EmployeeManager");

        }

        else

        {

            ModelState.AddModelError("", " Invalid user details!");

        }

    }

    return View(obj);

}

The first SignIn() action is called when the user navigates to the sign-in page. 

Typically, when a user starts the application, he will be navigated to the sign-in page. 

The SignIn() action simply renders the SignIn view into the browser.

The second SignIn() is called when the user clicks the Sign In button present on the 

sign-in page. This action receives the sign-in credentials entered by the user in the form 

of a SignIn object.

Inside, the code checks whether the model object contains valid values. This is 

done using the IsValid property of ModelState. If the model contains valid values, 

the code tries to sign the user into the system by calling the PasswordSignInAsync() 

asynchronous method. The PasswordSignInAsync() accepts four parameters. The 

first three parameters represent the UserName, Password, and RememberMe values. The 

fourth parameter indicates whether to lock the account if the sign-in attempt fails. We 

don’t want to lock the account, and hence false is passed. Note that the RememberMe is a 

Boolean value. Passing true indicates that the authentication cookie should be preserved 

even after closing the browser, whereas passing false indicates that the authentication 

cookie should be destroyed as soon as the browser is closed.

The return value of PasswordSignInAsync() is a SignInResult object. The 

Succeeded property of SignInResult indicates whether the sign-in operation was 

successful or not. If sign-in is successful, the code redirects the control to the List() 

action of EmployeeManagerController; otherwise, an error message is added to the 

ModelState in order to show it to the user.

Now, add the SignIn.cshtml view file in the Views ➤ Security folder and write the 

markup shown in Listing 3-39.

ChAPTER 3  ASP.NET CoRE MVC



125

Listing 3-39. Markup of the SignIn.cshtml view file

@model SignIn

<h1>Sign In</h1>

<form asp-controller="Security" asp-action="SignIn" method="post">

    <table>

        <tr>

          <td class="right"><label asp-for="UserName"></label> :</td>

          <td class="left"><input type="text" asp-for="UserName" /></td>

        </tr>

        <tr>

           <td class="right"><label asp-for="Password"></label> :</td>

           <td class="left"><input type="password"

                             asp-for="Password" /></td>

        </tr>

        <tr>

           <td class="right"><label asp-for="RememberMe"></label> :</td>

           <td class="left"><input type="checkbox"

                             asp-for="RememberMe" /></td>

        </tr>

        <tr>

            <td colspan="2">

                <button type="submit">Sign In</button>

            </td>

        </tr>

    </table>

    <div asp-validation-summary="All" class="message"></div>

     <h3><a asp-controller="Security" asp-action="Register">Create New User 

Account</a></h3>

</form>

The @model directive sets the view’s model type to SignIn. The Form Tag Helper 

submits the sign-in form to the SignIn() action of the SecurityController.

The input form fields for UserName, Password, and RememberMe are housed 

inside the <table> element. At the bottom, a Validation Summary Tag Helper is placed to 

ChAPTER 3  ASP.NET CoRE MVC



126

display all the error messages. The Anchor Tag Helper placed at the bottom of the page 

navigates the user to the user registration page.

Note The SecurityController also contains the AccessDenied() action that 
returns the AccessDenied view in case access can't be granted to a user. The 
AccessDenied action and AccessDenied view are quite straightforward and hence 
are not discussed here. You can get them from the book's source code.

 Add a Sign Out Button
Now that user registration and sign-in functionality is in place, let’s complete the sign- 

out functionality. A user can sign out of the system only if he is signed in to the system. 

To initiate the sign-out operation, all the pages (list, insert, update, and delete) show a 

Sign Out button at the bottom (Figure 3-18).

Since the Sign Out button is common to multiple pages, it’s better added to the site’s 

layout. So open the _Layout.cshtml from the Shared folder. Add the code and markup 

shown in Listing 3-40 at the bottom of the layout.

Listing 3-40. Adding the Sign Out button

<body>

    <h1>

        Employee Manager

    </h1>

    <hr />

    <div>

        @RenderBody()

    </div>

Figure 3-18. Sign Out button displayed at the bottom of the page

ChAPTER 3  ASP.NET CoRE MVC



127

    <br />

    <hr />

    @if (User.Identity.IsAuthenticated)

    {

        <h2>You are signed in as @User.Identity.Name</h2>

        <form asp-controller="Security" asp-action="SignOut" method="post">

            <button type="submit">Sign Out</button>

        </form>

    }

</body>

Notice the code marked in bold letters. The Razor if statement checks whether 

the current request is coming from an authenticated user. This is done using the 

IsAuthenticated property. The UserName and the Sign Out button are displayed only if 

the user is an authenticated user (IsAuthenticated returns true).

The User property of Razor View represents the current application user. The 

User.Identity.Name property returns the UserName of the user currently signed 

in to the system. The Sign Out button submits the form to the SignOut() action of 

SecurityController. The SignOut() action is shown in Listing 3-41.

Listing 3-41. SignOut() action

[HttpPost]

public IActionResult SignOut()

{

    signinManager.SignOutAsync().Wait();

    return RedirectToAction("SignIn", "Security");

}

The SignOut() action calls the SignOutAsync() method of the SignInManager 

class. The SignOutAsync() method signs the current user out of the application by 

removing the authentication cookie. The control is redirected to the SignIn() action of 

SecurityController so that user is shown the sign-in page again.

ChAPTER 3  ASP.NET CoRE MVC



128

 Authenticate and Authorize Users
In the preceding sections, you built the infrastructure required to implement user 

authentication and authorization. However, you haven’t applied the infrastructure yet. 

In this section, you do just that.

In ASP.NET Core MVC, authentication is done at the action level. That’s because 

action is what you invoke from a browser (read the discussion about routing). That 

means you decide whether an action requires to be protected from anonymous users 

or not. By default, actions aren’t protected, and even unauthenticated users can 

invoke them. To secure an action, you decorate it with the [Authorize] attribute. The 

[Authorize] attribute is capable of authenticating as well as authorizing users.

Note Authentication is a process of deciding whether a user is the one who 
he claims to be. Authorization is a process of deciding what operations an 
authenticated user can do with the system. Authorization is often implemented 
using what is called role-based security. It is obvious from the preceding 
discussion that authorization is done after authentication.

In the Employee Manager application, you want to secure all the actions that participate 

in the CRUD operations. These include all the actions of the EmployeeManagerController. 

So open EmployeeManagerController and decorate all the actions with the [Authorize] 

attribute. Listing 3-42 shows the List() action as an example.

Listing 3-42. List() action decorated with the [Authorize] attribute

[Authorize(Roles = "Manager")]

public IActionResult List()

{

    List<Employee> model = (from e in db.Employees

                            orderby e.EmployeeID

                            select e).ToList();

    return View(model);

}

Notice how the code uses the [Authorize] attribute from the Microsoft.AspNetCore.

Authorization namespace. It serves a twofold purpose. Firstly, adding [Authorize] 

ChAPTER 3  ASP.NET CoRE MVC



129

on top of List() secures that action. Secondly, the Roles property of the [Authorize] 

attribute is set to Manager. This means only the authenticated users belonging to the 

Manager role can invoke this action. The Roles property takes a comma-delimited string 

of roles that are granted access to the action. In this example, only the Manager role is 

involved, but you can easily specify multiple roles by separating them with a comma.

In the preceding discussion, you added [Authorize] on all the actions of 

the EmployeeManagerController. However, there is a shortcut. You can also add 

[Authorize] on top of the controller class. Doing so secures all the actions of the 

controller. Listing 3-43 shows how that can be done.

Listing 3-43. Adding [Authorize] on EmployeeManagerController

[Authorize(Roles = "Manager")]

public class EmployeeManagerController : Controller

{

  ...

}

There is also an attribute – [AllowAnonymous] – that allows anonymous access 

to the underlying action. For example, consider a hypothetical action named Help() 

that displays a help page in the browser and doesn’t need security. If the controller has 

[Authorize] attribute added, Help() will also be secured. In this case, you can add 

[AllowAnonymous] on top of the Help() action like this:

[AllowAnonymous]

public IActionResult Help()

{

  ...

}

 Protect the Application Against Cross-Site Request 
Forgery
In the preceding sections, you secured the Employee Manager application from 

unauthorized access. Although the application is working as expected, in this section, 

you protect it from cross-site request forgery (CSRF or XSRF) attacks.

ChAPTER 3  ASP.NET CoRE MVC



130

Note Cross-site request forgery attack occurs when a malicious web application 
triggers interaction between the browser and another web application that trusts 
that browser. To read more about CSRF attack, visit https://docs.microsoft.
com/en-us/aspnet/core/security/anti-request-forgery.

Consider the Employee Manager application. Suppose you signed in to the 

application by supplying a valid user name and password. The authentication cookie 

issued during the authentication process is passed between the client browser and the 

server with every request. In other words, Employee Manager now trusts the browser. 

During CSRF attack, this trust established between the application and the browser is 

exploited. For example, some malicious web application running in the same browser 

might send CRUD requests to Employee Manager without your notice and consent (it 

could be through tricky form submissions or an automated script or any such techniques). 

Such requests will be executed by Employee Manager because they contain a valid 

authentication cookie. Luckily, ASP.NET Core provides an easy way to protect your web 

application against CSRF attack. If you run the application (you might need to comment 

out the [Authorize] attribute from the EmployeeManagerController since you are yet to 

create users) and observe the browser’s HTML source for insert, update, or delete pages, 

you will find a hidden form field automatically generated for you (Figure 3- 19).

Figure 3-19. Antiforgery token generated by the Form Tag Helper

ChAPTER 3  ASP.NET CoRE MVC

https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery
https://docs.microsoft.com/en-us/aspnet/core/security/anti-request-forgery


131

The Form Tag Helper automatically generates this hidden form field when the form 

submission method is POST. This hidden form field is called antiforgery token. To be 

protected from CSRF attack, you should check in your code that all the POST requests 

to the action include this token issued by the server. To enforce this condition, you use 

the [ValidateAntiForgeryToken] attribute. Listing 3-44 shows the Register() and 

SignIn() POST actions decorated with [ValidateAntiForgeryToken].

Listing 3-44. Adding the [ValidateAntiForgeryToken] attribute

[HttpPost]

[ValidateAntiForgeryToken]

public IActionResult Register(Register obj)

{

  ...

}

[HttpPost]

[ValidateAntiForgeryToken]

public IActionResult SignIn(SignIn obj)

{

  ...

}

Go ahead and add the [ValidateAntiForgeryToken] attribute on top of all POST 

actions of EmployeeManagerController and SecurityController.

 Run the Application
The Employee Manager application is now complete. You can run the application and 

check whether user account creation, signing in, signing out, and CRUD operations 

can be performed as expected. For your convenience, a series of steps involved is 

given as follows:

• Run the application and ensure that you are taken to the sign-in page.

• Click the Create New User Account link on the sign-in page and 

navigate to the user registration page.

ChAPTER 3  ASP.NET CoRE MVC



132

• Create a new user account by entering various form fields such as 

UserName and Password.

• Upon successful account creation, you are taken to the sign-in page.

• Sign in using the user account you just created.

• If sign-in is successful, you will be taken to the employee listing page.

• Explore insert, update, and delete operations by adding new 

employees, modifying them, and deleting them.

• Click the Sign Out button present at the bottom of the page and sign 

out of the system.

• Open the Employees table of the Northwind database in the SQL 

Server Management Studio and confirm that your data is present in 

the physical database.

• Open AspNetUsers and AspNetRoles tables and take a look at the 

users and roles you created during sample runs of the application.

 Summary
In this chapter, you created the Employee Manager application using ASP.NET Core 

MVC. You learned to create an Entity Framework Core model. You were introduced to 

DbContext and DbSet classes. You then added EmployeeManagerController and several 

actions for inserting, updating, and deleting employees from the database. You used 

Razor Views and Tag Helpers to render the user interface of the application.

Once the HTML processing and CRUD functionality was ready, you proceeded to 

secure the application with ASP.NET Core Identity. ASP.NET Core Identity can be used 

to implement user authentication and authorization. You learned about UserManager, 

RoleManager, and SignInManager classes and also about the [Authorize] attribute.

In the next chapter, you build the Employee Manager application using ASP.NET 

Core Razor Pages.

ChAPTER 3  ASP.NET CoRE MVC



133
© Bipin Joshi 2019 
B. Joshi, Beginning Database Programming Using ASP.NET Core 3,  
https://doi.org/10.1007/978-1-4842-5509-4_4

CHAPTER 4

ASP.NET Core Razor 
Pages
In this version of Employee Manager, you use ASP.NET Core Razor Pages. The user 

interface is built using Tag Helpers. The model validations are performed using data 

annotations. The database CRUD operations are performed using Entity Framework 

Core. The EF Core model is built using reverse engineering techniques. Mapping with 

the table schema is illustrated using data annotations as well as Fluent API. The user 

authentication and security is provided using ASP.NET Core Identity. Specifically, you 

will learn to

• Use Razor Pages and Tag Helpers to build a web user interface

• Build the EF Core model from the existing database using reverse 

engineering

• Implement authentication using ASP.NET Core Identity 

asynchronous operations

• Use exception handling middleware to trap unhandled errors

 Create a ASP.NET Core Web Application
Begin by creating a new ASP.NET Core web application based on the Empty project 

template. Name the application as EmployeeManager.RazorPages to indicate that it's the 

Razor Pages version of the application. This also sets the default namespace for classes 

you add to the project.



134

Note You learned how to create a new ASP.NET Core project in Chapter 1. To 
avoid repetition, I am not going to explain those steps again. Read Chapter 1 in 
case you need any help on creating a new ASP.NET Core web application based on 
the Empty project template.

Since you use EF Core and ASP.NET Core Identity, add NuGet packages for these 

components as you did in the previous chapter.

Figure 4-1 shows the EmployeeManager.RazorPages project loaded in Solution 

Explorer once it is complete.

Figure 4-1. EmployeeManager.RazorPages loaded in Solution Explorer

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



135

At this point, you may not understand all the pieces shown in Solution Explorer, and 

that’s alright. Just take a look at the overall project structure and organization. In the 

sections that follow, you build this application step-by-step.

 Reverse Engineering the Entity Framework Core 
Model
In the previous chapter, you created the EF Core model by manually creating POCOs 

for entity classes (Employee and Country) and also the DbContext class (AppDbContext). 

If you are building an EF Core model for an existing database (similar to our example), 

you can automate the EF Core model creation using the reverse engineering approach. 

In this approach, the EF Core command line tool reads the database schema and 

automatically generates entity classes and DbContext for you. Of course, you can modify 

the generated classes to fine-tune them as per your application requirement.

Note In order to work with the EF Core command line tool, you need to install the 
dotnet-ef tool and add the Microsoft.EntityFrameworkCore.Design Nuget package 
in the project. You may read the previous chapter for related details.

In this section, you will create the EF Core model using the reverse engineering 

approach. Let’s see how that can be done.

Open Visual Studio Developer Command Prompt and navigate to the project root 

folder. Then issue this command at the command prompt:

> dotnet ef dbcontext scaffold

  "Server=.;Database=Northwind;Integrated Security=true;"

  Microsoft.EntityFrameworkCore.SqlServer

  -o Models

  -c AppDbContext

  -t Employees

  -t Countries

Here, you use the EF Core scaffold command to generate the DbContext class and 

entity classes. The command takes a database connection string and data provider 

name. The connection string points to the Northwind database. Make sure to change the 

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



136

connection string as per your development setup. Since you are using SQL Server, the 

provider is specified to be Microsoft.EntityFrameworkCore.SqlServer.

The -o option is used to specify the output folder where all the class files are to be 

placed. In this example, you store the output in the Models folder under the project root. If 

the folder doesn’t exist, the command creates it for you. The -c option specifies the name 

of the generated DbContext class. In this case, the DbContext class is named AppDbContext. 

The -t option is used to specify a table name whose entity class is to be reverse engineered. 

In this example, we ask the tool to reverse engineer Employees and Countries tables. If 

you don’t specify the -t switch, then entity classes for all the tables from the database are 

generated. Figure 4-2 shows classes generated after running the command.

Let’s quickly examine the content of these class files. Open the Countries class, and 

you should find it similar to Listing 4-1.

Listing 4-1. Countries entity class

public partial class Countries

{

    public int CountryId { get; set; }

    public string Name { get; set; }

}

Notice that the class name is Countries – the same as the name of the database 

table. The Countries class is marked to be partial. Also, notice that the CountryId and 

Name properties are generated based on the Countries table’s column names.

Now open the Employees class to reveal its content. Listing 4-2 shows a part of the 

Employees class.

Figure 4-2. Generating the EF Core model using reverse engineering

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



137

Listing 4-2. Employees entity class

public partial class Employees

{

    public Employees()

    {

        InverseReportsToNavigation = new HashSet<Employees>();

    }

    public int EmployeeId { get; set; }

    public string LastName { get; set; }

    public string FirstName { get; set; }

    public string Title { get; set; }

    public string TitleOfCourtesy { get; set; }

    public DateTime? BirthDate { get; set; }

    public DateTime? HireDate { get; set; }

    ...

    ...

}

The Employees class is marked to be partial and contains several properties 

depending on the Employees table columns. Notice that the BirthDate and HireDate 

columns allow NULL values, and hence their type is DateTime?.

The Countries and Employees classes don’t use data annotations to map them with 

the underlying tables and columns. This is because the tool by default uses Fluent API to 

perform the required mapping.

Note Entity Framework Core Fluent API is a technique used to configure entity 
classes. Fluent API or Fluent Interface uses method chaining to perform a series of 
operations to arrive at the result.

To see how Fluent API is used to perform the mapping, open the AppDbContext class 

and locate the OnModelCreating() overridden method. Here, you will find a series of 

method calls chained one after the other that configure the Countries and Employees 

entity classes. Listing 4-3 shows a part of the OnModelCreating() method.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



138

Listing 4-3. OnModelCreating() contains Fluent API calls

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

    ...

    modelBuilder.Entity<Countries>(entity =>

    {

        entity.HasKey(e => e.CountryId)

            .HasName("PK__country__3213E83F562F253C");

        entity.Property(e => e.CountryId).HasColumnName("CountryID");

        entity.Property(e => e.Name)

            .IsRequired()

            .HasMaxLength(80)

            .IsUnicode(false);

    });

    ...

    ...

}

We won’t go into the details of the Fluent API code in this book. It suffices to know 

that it’s a way to configure entity classes.

You just used reverse engineering to generate the EF Core model that uses Fluent 

API for mapping and configuration. What if you want to use data annotations instead of 

Fluent API? Luckily, you can specify that data annotations be used during the scaffolding 

like this:

 > dotnet ef dbcontext scaffold

  "Server=.;Database=Northwind;Integrated Security=true;"

  Microsoft.EntityFrameworkCore.SqlServer

  -o Models

  -c AppDbContext

  -t Employees

  -t Countries

  --data-annotations

This time, you added --data-annotations to the command. This instructs the tool 

to use data annotations instead of Fluent API for configuring the entity classes.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



139

Run the preceding command and generate the classes in the Models folder again. 

Let’s observe the code generated this time. Listing 4-4 shows the Countries class 

generated by the tool.

Listing 4-4. Countries class uses data annotations

public partial class Countries

{

    [Column("CountryID")]

    public int CountryId { get; set; }

    [Required]

    [StringLength(80)]

    public string Name { get; set; }

}

As you can see, the Countries class now uses data annotations such as [Column], 

[Required], and [StringLength].

Now open the Employees entity class to reveal its content (a part of it is shown in 

Listing 4-5).

Listing 4-5. Employees class using data annotations

public partial class Employees

{

    public Employees()

    {

        InverseReportsToNavigation = new HashSet<Employees>();

    }

    [Key]

    [Column("EmployeeID")]

    public int EmployeeId { get; set; }

    [Required]

    [StringLength(20)]

    public string LastName { get; set; }

    [Required]

    [StringLength(10)]

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



140

    public string FirstName { get; set; }

    ...

    ...

}

To keep the Razor Pages version closely matching with the MVC version, you will 

continue to use data annotations rather than Fluent API.

Note Data annotations such as [Required] and [StringLength] participate in 
the UI-level validations. If you use Fluent API, you need to take care of UI-level 
validations using some alternate technique such as Fluent Validation – a third-party 
validation library for .NET that uses Fluent Interface for building validation rules. You 
may read more about Fluent Validation at https://fluentvalidation.net.

However, you need to modify the generated Countries and Employees classes. So go 

ahead and perform the following changes to the generated classes:

• Change the Countries class (and file name) to Country and ensure 

that it has all the data annotations and validation error messages.

• Change the Employees class (and file name) to Employee and keep 

only these properties inside it: EmployeeID, FirstName, LastName, 

Title, BirthDate, HireDate, Country, and Notes. Also, ensure that it 

has all the data annotations and validation error messages.

• Open the AppDbContext class and change the DbSet definitions to 

use Country and Employee classes.

• Remove OnConfiguring() and OnModelCreating() methods from the 

AppDbContext class.

Once you complete these changes, your EF Core model will look identical to the 

previous version (see the previous chapter for the ASP.NET Core MVC version of 

Employee Manager). As you can see, the reverse engineering technique helps you 

to quickly generate the EF Core model. Although you often need to fine-tune the 

resultant model, it can save you significant amount of time if the model contains many 

entity classes.

This completes the EF Core model required for this example.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES

https://fluentvalidation.net


141

 Create Pages and EmployeeManager Folders
ASP.NET Core Razor Pages offers a page-focused programming model. A page (.cshtml) 

and its page model (.cs) are stored under the Pages folder. You can further organize your 

Razor Pages in different subfolders. By default, the folder structure also controls the URL 

for accessing the page. For example, a Razor Page named Page1.cshtml residing under 

the Pages folder can be accessed at /Page1, whereas a page named Page2 residing under 

the Pages ➤ MyFolder folder can be accessed at /MyFolder/Page2.

Create a folder named Pages under the project root folder. Also add the 

EmployeeManager subfolder under the Pages folder. All the files involved in the CRUD 

operations are stored under the EmployeeManager subfolder. At this stage, your Solution 

Explorer should resemble Figure 4-3.

 Add a _ViewImports File
In the following sections, you use ASP.NET Core Tag Helpers to render the user 

interface elements such as form, form fields, and hyperlinks. In order to use Tag 

Helpers, you need to enable them in your project. This is done using the _ViewImports.

cshtml file. So add a _ViewImports.cshtml file to the Pages folder. Then write this to the 

_ViewImports.cshtml file:

@using EmployeeManager.RazorPages

@using EmployeeManager.RazorPages.Pages

@using EmployeeManager.RazorPages.Models

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

Figure 4-3. Adding Pages and EmployeeManager folders

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



142

The preceding code should look familiar to you because you used it in the MVC 

version of Employee Manager. Here, the namespaces are different, and you will add a few 

more as you proceed.

 Displaying a List of Employees
To display a list of employees (Figure 4-4), you need a Razor Page named List.cshtml 

under the EmployeeManager folder.

To add this page, right-click the EmployeeManager folder and open the Add New 

Item dialog. Then pick Razor Page from the list and name the page as List.cshtml 

(Figure 4-5).

Figure 4-4. List.cshtml displays a list of employees

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



143

Once added, you will find two files associated with the Razor Page: List.cshtml and 

List.cshtml.cs (Figure 4-6).

The List.cshtml is a Razor file and contains the UI markup and code. The List.cshtml.cs 

is the page model class file and typically contains properties and page handler methods.

Open the List.cshtml.cs in the IDE and write the code shown in Listing 4-6.

Listing 4-6. Page model class contains the OnGet() page handler

public class ListModel : PageModel

{

    private readonly AppDbContext db = null;

    public List<Employee> Employees { get; set; }

Figure 4-5. Adding a Razor Page

Figure 4-6. Razor Page and page model files

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



144

    public ListModel(AppDbContext db)

    {

        this.db = db;

    }

    public void OnGet()

    {

         this.Employees = (from e in db.Employees orderby e.EmployeeID 

select e).ToList();

    }

}

The List.cshtml.cs file contains a class named ListModel, and it inherits from the 

PageModel class (Microsoft.AspNetCore.Mvc.RazorPages namespace). The ListModel 

class contains a member variable of type AppDbContext. The AppDbContext is injected 

through the constructor and is stored in this member variable.

The Employees property is intended to hold a list of all the Employee entities from 

the database. The Employees page model property can be accessed from the List.cshtml 

page while rendering the list of employees.

The Employees property is assigned from within the OnGet() method. The OnGet() is 

called a page handler and handles GET requests to the page. If you want to handle POST 

requests, you would have created the OnPost() page handler method (you will do that in 

the insert, update, and delete pages).

Inside the OnGet(), the code selects all the Employee entities and stores them into a List.

Now, open the List.cshtml file and write the code from Listing 4-7 into it.

Listing 4-7. List.cshtml renders a list of employees

@page

@model ListModel

<h2>List of Employees</h2>

<h3>@TempData["Message"]</h3>

<a asp-page="Insert" class="linkbutton">Insert</a>

<br /><br />

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



145

<table border="1">

    <tr>

        <th>Employee ID</th>

        <th>First Name</th>

        <th>Last Name</th>

        <th>Title</th>

        <th colspan="2">Actions</th>

    </tr>

    @foreach (var item in Model.Employees)

    {

        <tr>

            <td>@item.EmployeeID</td>

            <td>@item.FirstName</td>

            <td>@item.LastName</td>

            <td>@item.Title</td>

            <td>

                <a asp-page="Update"

                   asp-route-id="@item.EmployeeID"

                   class="linkbutton">Update</a>

            </td>

            <td>

                <a asp-page="Delete"

                    asp-route-id="@item.EmployeeID" 

class="linkbutton">Delete</a>

            </td>

        </tr>

    }

</table>

The List.cshtml begins with the @page directive. The @page directive marks the file as 

a Razor Page and should be the first line of the file. Following the @page directive is the  

@model directive that specifies the page model class (ListModel) of this Razor Page.

Below the heading of the page, the TempData["Message"] is outputted. The 

TempData["Message"] is set during the delete operation and will be clear when you 

create the Delete Razor Page.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



146

An Anchor Tag Helper renders a hyperlink to the Insert New Employee Razor Page. 

The asp-page attribute of the Anchor Tag Helper points to the Razor Page to navigate to.

The employee data is rendered in a <table>. A for loop iterates through the list of 

employees. Notice how the Employees page model property is accessed using the Model 

property of the Razor Page. The code then outputs EmployeeID, FirstName, LastName, 

and Title properties to generate various table rows.

At the end of each row, there are two hyperlinks: Update and Delete. They are 

rendered using the Anchor Tag Helper. The asp-page and asp-route-id attributes point 

to the target Razor Pages (Update Existing Employee and Delete Existing Employee 

pages) and EmployeeID, respectively.

This completes the List Razor Page.

 Inserting a New Employee
Clicking the Insert link on the employee listing page takes you to another page where 

you can insert a new employee (Figure 4-7).

Figure 3-7. Inserting a new employee

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



147

To create this page, add the Insert.cshtml Razor Page to the Pages ➤ 

EmployeeManager folder. Then open its page model class file – Insert.cshtml.cs – and 

write the code from Listing 4-8.

Listing 4-8. Member variables and properties of InsertModel

public class InsertModel : PageModel

{

    private readonly AppDbContext db = null;

       public string Message { get; set; }

    [BindProperty]

    public Employee Employee { get; set; }

    public List<SelectListItem> Countries { get; set; }

    public InsertModel(AppDbContext db)

    {

        this.db = db;

    }

    public void FillCountries()

    {

        List<SelectListItem> countries = (from c in db.Countries

                                                  select new 

SelectListItem()

                                                 { Text = c.Name,

                                                    Value = c.Name 

}).ToList();

        this.Countries = countries;

    }

    ...

    ...

  }

The code declares a variable – db – of type AppDbContext. The AppDbContext is 

injected through the constructor and stored into this variable. The Message string 

property indicates a success or error message to be displayed to the user upon inserting 

a new employee.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



148

Notice the Employee property. It is decorated with the [BindProperty] attribute. 

The [BindProperty] attribute indicates that the property under consideration will get 

its value from model binding. While inserting a new employee, you fill various form 

fields and click the Save button to POST the values. At that time, the form field values are 

mapped to the properties of Employee due the presence of the [BindProperty] attribute.

The Countries property holds a List<SelectListItem> for the purpose of 

displaying in the Country dropdown list. The Country property is assigned from within a 

helper method – FillCountries().

The FillCountries() method queries the Countries table and retrieves all the 

countries. The countries are filled in a List of SelectListItem objects so that they can be 

displayed in the Select Tag Helper.

Now, add the OnGet() and OnPost() page handlers to the page model class as shown 

in Listing 4-9.

Listing 4-9. OnGet() and OnPost() page handlers

public void OnGet()

{

    FillCountries();

}

public void OnPost()

{

    FillCountries();

    if (ModelState.IsValid)

    {

        try

        {

            db.Employees.Add(Employee);

            db.SaveChanges();

            Message = "Employee inserted successfully!";

        }

        catch(DbUpdateException ex1)

        {

            Message = ex1.Message;

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



149

            if(ex1.InnerException!=null)

            {

                Message += " : " + ex1.InnerException.Message;

            }

        }

        catch(Exception ex2)

        {

            Message = ex2.Message;

        }

    }

}

The OnGet() page handler gets called when the page is requested initially by clicking 

the Insert link. It simply calls the FillCountries() helper method to prepare a list of 

countries.

The OnPost() page handler is invoked for POST requests. In this example, the 

<form> is POSTed when you hit the Save button. Inside, you call FillCountries() again. 

The code checks the IsValid property of the ModelState object to check whether all 

the model validations succeeded or not. If model validations are successful, the code 

attempts to insert a new employee.

This is done by calling the Add() method of AppDbContext and supplying the 

Employee object. Recollect that the Employee property that returns this object is 

populated through model binding. The Add() adds the new Employee into the 

Employees DbSet. The SaveChanges() method persists the change to the database.  

A success message is set into the Message property and is rendered on the page.

The whole data access code is wrapped inside a try-catch block. If database 

operation fails for some reason, then EF Core raises DbUpdateException exception. The 

InnerException property gives a more specific error information. An error message is 

then stored in the Message property and displayed to the user. Here, the code displays 

the actual error message to the end user. In a more realistic case, you might want to 

display a friendly message to the user and log the actual error into a log file.

Now that you know what makes the page model, let’s see how the UI markup and 

code looks like. Listing 4-10 shows the skeleton of Insert.cshtml file.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



150

Listing 4-10. Skeleton of Insert.cshtml

@page

@model InsertModel

<h2>Insert New Employee</h2>

<h3 class="message">@Model.Message</h3>

<form method="post">

    <table border="0">

      ...

      ...

    </table>

</form>

<a asp-page="List">Back to Employee Listing</a>

The Insert.cshtml begins with the @page directive. The @page directive is followed by 

the @model directive that sets the page model to be InsertModel. The success or error 

message from the page model’s Message variable is outputted using the Model object.

Notice the Form Tag Helper. It just has the method attribute set to POST. This is 

because by default the form is submitted to the same Razor Page. In this case, upon 

clicking the Save button, the form will be submitted to the Insert Razor Page; and since 

the form’s method is POST, the OnPost() page handler will be used to process it.

The <table> element wraps all the form fields. This markup is quite similar to 

the MVC version of the application. Listing 4-11 shows a part of the form for your 

understanding.

Listing 4-11. Form fields rendered using Tag Helpers

<tr>

    <td class="right">

        <label asp-for="Employee.FirstName"></label> :

    </td>

    <td>

        <input type="text" asp-for="Employee.FirstName" />

         <span asp-validation-for="Employee.FirstName" class="message"></span>

    </td>

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



151

</tr>

...

...

<tr>

    <td class="right">

        <label asp-for="Employee.Country"></label> :

    </td>

    <td>

        <select asp-for="Employee.Country" asp-items="@Model.Countries">

           <option value="">Please select</option>

        </select>

        <span asp-validation-for="Employee.Country" class="message"></span>

    </td>

</tr>

The usage of various Tag Helpers such as Input Tag Helper and Validation Message 

Tag Helper should look familiar to you. However, notice that the asp-for attribute is 

set to the corresponding property of the Employee page model property. For example, 

the asp-for attribute of the FirstName textbox is set to Employee.Firstname. On the 

same lines, the asp-items attribute of the Country dropdown list is set to the Countries 

property of the Model object.

For the sake of brevity, the complete markup of Insert.cshtml is not given here. You 

may grab the Insert.cshtml file from the code download and complete the rest of the 

form fields.

At the bottom of the page, there is a Back to Employee Listing link. This link is 

generated using the Anchor Tag Helper.

 Updating an Existing Employee
On the employee listing page, each employee row has Update and Delete links. Clicking 

the Update link takes you to the update employee page where the existing details of that 

employee are presented for editing (Figure 4-8).

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



152

The Update Existing Employee page looks similar to the Insert New Employee page 

except that various control values are now filled with the details of the employee being 

modified. The EmployeeID being the primary key can’t be modified.

In order to complete this page, you need a Razor Page named Update.cshtml. So add 

Update.cshtml to the Pages ➤ EmployeeManager folder. Then open the UpdateModel 

class (Update.cshtml.cs) and write the code shown in Listing 4-12.

Listing 4-12. UpdateModel members

public class UpdateModel : PageModel

{

    private readonly AppDbContext db = null;

    [BindProperty]

    public Employee Employee { get; set; }

    public List<SelectListItem> Countries { get; set; }

    public string Message { get; set; }

    public bool DataFound { get; set; } = true;

Figure 4-8. Updating an existing employee

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



153

    public UpdateModel(AppDbContext db)

    {

        this.db = db;

    }

    ...

    ...

}

This code is quite similar to the InsertModel class except that a Boolean property 

DataFound is declared. This property is assigned a false value if the requested EmployeeID 

is not found in the database. Accordingly, an error message is displayed to the user.

Although not shown in the listing, the FillCountries() method fills the Countries 

property with a list of countries. You may copy the FillCountries() helper method from 

the InsertModel class.

When the update page is accessed by clicking the Update link for an employee, the 

OnGet() handler gets invoked. Listing 4-13 shows this page handler.

Listing 4-13. OnGet() page handler inside UpdateModel

public void OnGet(int id)

{

    FillCountries();

    Employee = db.Employees.Find(id);

    if (Employee == null)

    {

        this.DataFound = false;

        this.Message = "EmployeeID Not Found.";

    }

    else

    {

        this.DataFound = true;

        this.Message = "";

    }

}

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



154

The OnGet() handler has an id parameter. It’s the EmployeeID passed from the route. 

Inside, the code calls the FillCountries() to populate the Countries property with a list 

of countries. Then the Find() method of Employees DbSet is used to find the specified 

employee. If the employee couldn’t be found, then the Find() method returns null, and 

the DataFound property is set to false. An error message is also set in the Message page 

model variable.

If an employee is found, the DataFound property is set to true, and the Message is 

cleared.

When a user clicks the Save button, the OnPost() page handler gets invoked. This 

page handler is shown in Listing 4-14.

Listing 4-14. OnPost() page handler of UpdateModel

public void OnPost()

{

    FillCountries();

    if (ModelState.IsValid)

    {

        try

        {

            db.Employees.Update(Employee);

            db.SaveChanges();

            Message = "Employee updated successfully!";

        }

        catch (DbUpdateException ex1)

        {

            Message = ex1.Message;

            if (ex1.InnerException != null)

            {

                Message += " : " + ex1.InnerException.Message;

            }

        }

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



155

        catch (Exception ex2)

        {

            Message = ex2.Message;

        }

    }

}

The OnPost() handler updates an employee in the Employees DbSet and also 

persists the changes to the database. This is done using the Update() and SaveChanges() 

methods. The update operation is wrapped inside a try-catch block for the sake of error 

handling.

This completes the UpdateModel class. Now open the Update.cshtml file and write 

the skeleton code shown in Listing 4-15.

Listing 4-15. Skeleton of Update.cshtml

@page "{id:int}"

@model UpdateModel

<h2>Update Existing Employee</h2>

<h3 class="message">@Model.Message</h3>

@if (Model.DataFound)

{

<form method="post">

    <table border="0">

      ...

      ...

    </table>

</form>

}

Notice the code marked in bold letters. This time, the @page directive includes a 

route parameter named id. The parameter appears in double quotes and is enclosed in 

{ and }. The id route parameter also has a route constraint that specifies that the id must 

be an integer value.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



156

The if block checks the DataFound property. The form and form fields are rendered 

only if DataFound is true.

The content of the form is quite similar to the Insert.cshtml and hence not discussed 

here in detail. You can grab the complete Update.cshtml from the book’s code download.

 Deleting an Existing Employee
When the user clicks the Delete link for an employee record in the employee listing page, 

a confirmation page is shown that warns the user about the employee deletion. Once 

the user confirms the deletion, the employee gets deleted from the database. Figure 4-9 

shows the delete confirmation page displayed for an employee.

In order to implement the delete functionality, you need a Razor Page named Delete.

cshtml. So add it in the Pages ➤ EmployeeManager folder. The DeleteModel class is 

similar to the update page in many respects. The OnGet() handler is identical to that of 

the UpdateModel class. You can copy the members and the OnGet() handler from the 

earlier code.

The OnPost() handler deletes an employee from the database and is shown in 

Listing 4-16.

Figure 4-9. Confirming employee deletion

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



157

Listing 4-16. OnPost() page handler of DeleteModel

public IActionResult OnPost()

{

    Employee emp = db.Employees.Find(Employee.EmployeeID);

    try

    {

        db.Employees.Remove(emp);

        db.SaveChanges();

        TempData["Message"] = "Employee deleted successfully!";

        return RedirectToPage("/EmployeeManager/List");

    }

    catch (DbUpdateException ex1)

    {

        Message = ex1.Message;

        if (ex1.InnerException != null)

        {

            Message += " : " + ex1.InnerException.Message;

        }

    }

    catch (Exception ex2)

    {

        Message = ex2.Message;

    }

    return Page();

}

Inside the OnPost(), the code attempts to find an employee from the DbSet and 

removes it using the Remove() method. A call to SaveChanges() deletes the employee 

from the database. Once an employee is deleted, the code stores a success message in 

the TempData and redirects to the List page using the RedirectToPage() method. Notice 

that the return type of OnPost() is IActionResult because RedirectToPage() returns 

the RedirectToPageResult object. Also, after the last catch block, the code calls Page() 

that returns a PageResult object. This renders the current page in the browser.

Now that the DeleteModel class is complete, open the Delete.cshtml page in the IDE 

and write the skeleton code shown in Listing 4-17.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



158

Listing 4-17. Skeleton of Delete.cshtml

@page "{id}"

@model DeleteModel

<h2>Delete Existing Employee</h2>

<h3 class="message">

    Warning : You are about to delete an employee record!

</h3>

@if (Model.DataFound)

{

<form method="post">

  <input type="hidden" asp-for="Employee.EmployeeID" />

  <table border="0">

    <tr>

        <td class="right">

            <label asp-for="Employee.EmployeeID"></label> :

        </td>

        <td>

            @Model.Employee.EmployeeID

        </td>

    </tr>

  ...

  ...

</form>

}

The delete page too defines the id route parameter in the @page directive. The 

<form> is rendered only if the DataFound property is true. Since the delete page doesn’t 

have any data entry controls, the EmployeeID is outputted in a hidden form field. This 

way, the model binding will populate the EmployeeID property of the Employee page 

property when you click the Delete button. The <table> that displays the existing 

employee details is generated based on the Model.Employee properties and is not 

discussed here for the sake of brevity. You can grab the complete code of Delete.cshtml 

from the book’s code download.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



159

 Add Razor Layout and View Start
The Razor Pages version of Employee Manager also requires a layout and _ViewStart.

cshtml just like the MVC version of the application. The markup and code of both is 

quite similar to the MVC version, and hence only the differences are discussed here.

Go ahead and add the Shared folder under the Pages folder. Then add _Layout.

cshtml in the Shared folder. Also place the _ViewStart.cshtml file under the Pages folder. 

Figure 4-10 shows these files in Solution Explorer.

Listing 4-18 shows how the Sign Out button is rendered.

Listing 4-18. Rendering the Sign Out button

@if (User.Identity.IsAuthenticated)

{

    <h2>You are signed in as @User.Identity.Name</h2>

Figure 4-10. _Layout.cshtml and _ViewStart.cshtml

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



160

    <form asp-page="/Security/SignOut" method="post">

        <button type="submit">Sign Out</button>

    </form>

}

As you can see, the Form Tag Helper is configured to post the form to SignOut page 

using the asp-page attribute. The SignOut page simply handles the POST operation and 

redirects to the SignIn page. The SignOut page is discussed later in this chapter.

 Client-Side Validations, Style Sheet, 
and appsettings.json
The process of enabling the client-side validations for Razor Pages is exactly the same as 

the MVC version of Employee Manager. So just place the Scripts folder under wwwroot 

with the required jQuery files and also ensure that they are referenced using the <script> 

tags in the _Layout.cshtml.

The Site.css contains CSS classes and styling used by various pages. The appsettings.

json stores the database connection string. Just copy Site.css and appsettings.json from 

the MVC version of the application and place them under wwwroot/Styles and the 

project root folder, respectively.

 Configure Application Startup and Error Handling
The way you configure the application startup for ASP.NET Core Razor Pages application 

is quite similar to the MVC version of the application. So all the configuration steps are 

not discussed here. You can get the complete Startup.cs from the book’s code download.

Note In this section, you learn a few exception handling techniques. Although 
these techniques are discussed with respect to Razor Pages, they are applicable to 
MVC applications also. I encourage you to implement them in the MVC version of 
the application once you finish the Razor Pages version discussed in this chapter.

If you look at the ConfigureServices() method of the Startup class, you will notice 

the code shown in Listing 4-19.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



161

Listing 4-19. Setting the default page of the application

public void ConfigureServices(IServiceCollection services)

{

    services.AddRazorPages()

                          .AddRazorPagesOptions(options =>

                          {

                               options.Conventions

                                    .AddPageRoute("/EmployeeManager/List", "");

                          });

    ...

    ...

}

The AddRazorPages() method registers services related to Razor Pages with the DI 

framework.

Recollect that we have stored CRUD-related pages under the Pages/EmployeeManager 

folder. Razor Pages consider the Index.cshtml under the Pages folder to be the default 

page of the application. You want to change this and set /EmployeeManager/List page 

to be the default page. This is done using the AddRazorPagesOptions() method. The 

AddPageRoute() method of the Conventions object accepts a page name and its route. 

Empty string means the default page of the application.

Now, go to the Configure() method. There you will find two calls:

app.UseStatusCodePagesWithReExecute("/Error","?code={0}");

app.UseExceptionHandler("/Error");

These calls add exception handling middleware components to the request 

pipeline. The UseStatusCodePagesWithReExecute() method adds the status 

code pages middleware. This middleware is used to handle HTTP-related 

errors such as Page Not Found (status code 404). The first parameter of the 

UseStatusCodePagesWithReExecute() method is the error page to be displayed  

(/Error in this case), and the second parameter is used to pass the status code to the 

page via the query string. In this example, the status code will be passed to the error 

page via a query string variable named code. The {0} will be substituted by the actual 

status code (such as 404).

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



162

Next, the code also adds the exception handler middleware using the 

UseExceptionHandler() method. The exception handler middleware traps any 

unhandled exception and takes the control to the specified page (/Error) in this case.

To create the error page used by these exception handling middleware components, 

add a new Razor Page named Error.cshtml in the Pages folder. Listing 4-20 shows the 

ErrorModel class of this page.

Listing 4-20. ErrorModel page model class

public class ErrorModel : PageModel

{

    public string Code { get; set; }

    public void OnGet([FromQuery]int code)

    {

        if (code > 0)

        {

            this.Code = "Status Code : " + code;

        }

    }

}

The ErrorModel class defines the Code property to store the HTTP status code. The 

OnGet() handler receives an integer HTTP status code in the code parameter. Notice the 

[FromQuery] attribute that instructs the model binding to get the value from the query string.

The if block simply checks whether any status code has been received in the query 

string, and accordingly it is stored in the Code page model property. The Error.cshtml is 

shown in Listing 4-21.

Listing 4-21. Error.cshtml displays the error

@page

@model ErrorModel

<h2  class="message">

    Unexpected error while processing this request.

</h2>

<h3>@Model.Code</h3>

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



163

The Error.cshtml simply displays an error message to the user and also outputs the 

HTTP status code (if any) using the Model.Code property.

The routing-related configuration is done using UseRouting() and UseEndPoints() 

methods as in the case of the MVC application. However, endpoints are defined like this:

app.UseEndpoints(endpoints=> {

    endpoints.MapRazorPages();

});

The MapRazorPages() method adds endpoints for Razor Pages.

At this stage, your application is capable of performing the CRUD operations. 

You can run the application and test the CRUD functionality before you add user 

authentication to the application.

 Add ASP.NET Core Identity Support
In the previous chapter, you added ASP.NET Core Identity support for the MVC version 

of the Employee Manager application. In this chapter, you will do so for the Razor Pages 

version. Although the process of adding ASP.NET Core Identity support is quite similar, 

there are a few differences listed as follows:

• The user registration, signing in, and signing out are now handled by 

Razor Pages.

• ASP.NET Core Identity is used in an asynchronous fashion, and Razor 

Pages invoke various methods asynchronously.

Note Many modern web applications prefer the asynchronous programming 
model over the synchronous one. Detailed discussion of the benefits offered by 
the asynchronous programming model is beyond the scope of this book. It suffices 
to say that asynchronous programming can offer performance and scalability 
benefits in many situations where database access, web service calls, and other 
I/o operations are involved.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



164

For the sake of brevity, the following sections discuss only the differences in the 

implementation. The source code download of this chapter contains the complete code. 

You may also refer to the MVC version of Employee Manager to brush up the common 

implementation details.

 Add AppIdentityUser, AppIdentityRole, 
and AppIdentityDbContext Classes
The Razor Pages version of Employee Manager also requires the AppIdentityUser, 

AppIdentityRole, and AppIdentityDbContext classes for its working. These classes are 

identical to the MVC version. You may grab them from this chapter’s source code or from 

the MVC version.

These classes reside inside the Security folder under the project root (Figure 4-11). 

If you copy them from the MVC version of the application, make sure to change their 

namespace as per the Razor Pages project namespace.

Figure 4-11. AppIdentityDbContext, AppIdentityUser, and AppIdentityRole 
classes

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



165

 Add ASP.NET Core Identity Configuration and Database 
Tables
In the MVC version of Employee Manager, you added certain ASP.NET Core 

Identity-specific configuration in the Startup class. In the ConfigureServices(), 

you used methods such as AddIdentity(), AddEntityFrameworkStores(), 

and ConfigureApplicationCookie(). And in the Configure(), you added the 

authentication and authorization middleware using the UseAuthentication() and 

UseAuthorization() methods. Those method calls remain exactly the same in the Razor 

Pages version also and are not discussed here.

In addition to the preceding startup configuration, you also need to configure the 

Northwind database to store users and roles. You have already done so while developing 

the MVC version of Employee Manager. In case you have cleaned the database, make 

sure to execute the same commands as before to create the necessary database tables.

 Add the Security Subfolder to the Pages folder
For the Razor Pages version of Employee Manager, user registration, signing in, and 

signing out are taken care of by the respective Razor Pages. These Razor Pages are stored 

under a subfolder of the Pages folder. So create a subfolder named Security under the 

Pages folder. Figure 4-12 shows the Security folder containing the required Razor Pages 

after completing the following sections.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



166

As you can see, the Security folder contains three Razor Pages, namely, Register.cshtml, 

SignIn.cshtml, and SignOut.cshtml. You develop these pages in the sections that follow.

 Create a User Registration Page
The user registration page allows you to create a user account. You can then sign in to 

the system using the account created (Figure 4-13).

Figure 4-12. Security subfolder contains security-related Razor Pages

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



167

To create a user registration page, you need the Register class in the Models folder 

and a Razor Page named Register under the Pages ➤ Security folder.

You can grab the Register class from the book’s source code or the MVC version of 

the application and place it under the Models folder. Then add a new Razor Page named 

Register.cshtml in the Pages ➤ Security folder.

Then open the Register.cshtml.cs page model class in the IDE and write the code 

shown in Listing 4-22.

Listing 4-22. Injecting UserManager and RoleManager

public class RegisterModel : PageModel

{

    [BindProperty]

    public Register RegisterData { get; set; }

    private readonly UserManager<AppIdentityUser> userManager;

    private readonly RoleManager<AppIdentityRole> roleManager;

Figure 4-13. User registration page

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



168

    public RegisterModel(UserManager<AppIdentityUser> userManager,

                RoleManager<AppIdentityRole> roleManager)

    {

        this.userManager = userManager;

        this.roleManager = roleManager;

    }

}

The code begins by declaring the RegisterData property. The RegisterData 

property is of type Register and is marked with the [BindProperty] attribute. Due to 

the [BindProperty] attribute, RegisterData participates in the model binding, and the 

form data will be mapped to its properties.

The code then declares two variables of types UserManager<TUser> and 

RoleManager<TRole>. The UserManager<TUser> and RoleManager<TRole> objects are 

injected into the page model’s constructor and are stored into these variables. The 

userManager and roleManager are used in the POST page handler.

The POST page handler is invoked when a user clicks the Create button on the form 

and is shown in Listing 4-23.

Listing 4-23. OnPostAsync() page handler of the register page

public async Task<IActionResult> OnPostAsync()

{

    if (ModelState.IsValid)

    {

        if (!await roleManager.RoleExistsAsync("Manager"))

        {

            AppIdentityRole role = new AppIdentityRole();

            role.Name = "Manager";

            role.Description = "Can perform CRUD operations.";

            IdentityResult roleResult = await roleManager.

            CreateAsync(role);

        }

        AppIdentityUser user = new AppIdentityUser();

        user.UserName = RegisterData.UserName;

        user.Email = RegisterData.Email;

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



169

        user.FullName = RegisterData.FullName;

        user.BirthDate = RegisterData.BirthDate;

        IdentityResult result = await userManager.CreateAsync

        (user, RegisterData.Password);

        if (result.Succeeded)

        {

            await userManager.AddToRoleAsync(user, "Manager");

            return RedirectToPage("/Security/SignIn");

        }

        else

        {

            ModelState.AddModelError("", "Invalid user details!");

        }

    }

    return Page();

}

Observe the code carefully. Although it looks similar to what you used in the MVC 

version of the application, there are some differences.

Firstly, the POST handler name is OnPostAsync() and is marked with the async 

keyword of C#. This indicates that it’s an asynchronous method and is using the async- 

await pattern of C#.

Note Discussion of asynchronous programming and async/await keywords of 
C# is beyond the scope of this book. If you are unfamiliar with these concepts, 
consider reading https://docs.microsoft.com/en-us/dotnet/csharp/
programming-guide/concepts/async/.

The OnPostAsync() method returns a Task<TResult> object. The Task class 

represents an asynchronous operation where TResult is the type obtained as a result of 

the asynchronous operation. Here, the Task wraps an IActionResult object.

If you observe the code marked in bold letters, you will realize that all those 

statements use the await operator. The await keyword is followed by an asynchronous 

operation to be executed, such as RoleExistsAsync(), CreateAsync(), and 

AddToRoleAsync() in this example.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/concepts/async/


170

The code that creates the role and user should look familiar to you since it is similar 

to the MVC version. To summarize, the code does these things:

• The RoleExistsAsync() checks whether the Manager role already 

exists in the database. If it doesn’t exist, then the role is created using 

the CreateAsync() method.

• The UserManager’s CreateAsync() method creates a new user.

• The UserManager’s AddToRoleAsync() method adds the newly 

created user to the Manager role.

The Register.cshtml renders the user registration page in the browser using various 

Tag Helpers. Since that markup is quite straightforward and similar to what you used 

while developing earlier Razor Pages, it has not been discussed here. You can get the 

complete code of Register.cshtml from this book’s code download.

 Create a Sign-In Page
The sign-in Razor Page allows the user to sign in to the system and is shown in Figure 4- 14.

To create the sign-in page, you need the SignIn class and the SignIn Razor Page. The 

SignIn class is identical to the MVC version. You can grab it from the book’s source code 

or the MVC version and place it under the Models folder.

Then add a new Razor Page named SignIn.cshtml in the Pages ➤ Security folder. Now, 

open the SignInModel class in the IDE and write the code shown in Listing 4-24 into it.

Figure 4-14. Sign-in Razor Page

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



171

Listing 4-24. Injecting UserManager, RoleManager, and SignInManager

public class SignInModel : PageModel

{

    [BindProperty]

    public SignIn SignInData { get; set; }

    private readonly SignInManager<AppIdentityUser> signinManager;

    public SignInModel(SignInManager<AppIdentityUser> signinManager)

    {

        this.signinManager = signinManager;

    }

}

The code begins by creating the SignInData public property. This property is of type 

SignIn and is decorated with the [BindProperty] attribute.

Then a SignInManager<TUser> variable is declared. This variable gets its value when 

a SignInManager object is injected into the constructor.

The OnPostAsync() page handler uses asynchronous code to sign the user in to the 

system and is shown in Listing 4-25.

Listing 4-25. Signing the user in to the system

public async Task<IActionResult> OnPostAsync()

{

    if (ModelState.IsValid)

    {

        var result = await signinManager.PasswordSignInAsync

        (SignInData.UserName, SignInData.Password,

            SignInData.RememberMe, false);

        if (result.Succeeded)

        {

            return RedirectToPage("/EmployeeManager/List");

        }

        else

        {

            ModelState.AddModelError("", "Invalid login!");

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



172

        }

    }

    return Page();

}

Notice the code marked in bold letters. The OnPostAsync() method is marked with 

the async keyword. To sign the user in to the application, the PasswordSignInAsync() 

method of SignInManager is used. If the signing-in operation is successful, the control 

is redirected to the employee listing page. Otherwise, an error messages is added to the 

ModelState object and is displayed to the user.

The SignIn.cshtml page markup uses Tag Helpers to render the user interface and is 

not discussed here for the sake of brevity. You can grab the SignIn.cshtml from the book’s 

source code.

 Signing the User Out of the Application
Recollect that you added markup to render the Sign Out button (Figure 4-15) in the _Layout.

cshtml developed earlier. That time, it was mentioned that the signing-out functionality was 

wrapped in the SignOut Razor Page. Now it’s the time to create the SignOut Razor Page.

Add a new Razor Page to the Pages ➤ Security folder and name it SignOut.cshtml. 

Then open the page model class from the SignOut.cshtml.cs file in the IDE and write the 

code shown in Listing 4-26 in it.

Listing 4-26. Signing the user out of the application

public class SignOutModel : PageModel

{

    private readonly SignInManager<AppIdentityUser> signinManager;

    public SignOutModel(SignInManager<AppIdentityUser> signinManager)

    {

Figure 4-15. Sign Out button displayed at the bottom of the page

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



173

        this.signinManager = signinManager;

    }

    public async Task<IActionResult> OnPostAsync()

    {

        await signinManager.SignOutAsync();

        return RedirectToPage("/Security/SignIn");

    }

}

The code is similar to the SignInModel class in that an object of 

SignInManager<TUser> is injected into the constructor. However, this time the 

OnPostAsync() method calls the SignOutAsync() method of the SignInManager. Once 

the user is signed out of the application, the browser is redirected to the SignIn page by 

calling the RedirectToPage() method. The SignOut.cshtml doesn’t contain any markup 

since it is being used only for signing the user out of the system.

 Authenticating and Authorizing Users
At the time of developing the MVC version of Employee Manager, you decorated the 

actions or controller with the [Authorize] attribute. In the case of Razor Pages, you can 

use the [Authorize] attribute on a page model class. Listing 4-27 shows the ListModel 

class using this attribute.

Listing 4-27. [Authorize] added to the ListModel class

[Authorize(Roles = "Manager")]

public class ListModel : PageModel

{

  ...

  ...

}

Here the ListModel class is decorated with the [Authorize] attribute, and its 

Roles property is set to Manager. This way only the authenticated users belonging to 

the Manager role can access the List.cshtml Razor Page. You also need to decorate 

InsertModel, UpdateModel, and DeleteModel page model classes with the [Authorize] 

attribute.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



174

The [Authorize] attribute is added to the SignOutModel class also since only signed- 

in users can sign out of the system (Listing 4-28).

Listing 4-28. SignOutModel decorated with [Authorize]

[Authorize]

public class SignOutModel : PageModel

{

  ...

  ...

}

In the ASP.NET Core MVC version of Employee Manager, you used 

[ValidateAntiForgeryToken] in combination with the Form Tag Helper to prevent the 

cross-site request forgery (CSRF/XSRF) attacks. Razor Pages are automatically protected 

from these attacks, and you don’t need to explicitly write any code to accomplish the task.

 Run the Application
The Razor Pages version of the Employee Manager application is now complete. You can 

run the application and check whether user account creation, signing in, signing out, 

and CRUD operations can be performed as expected.

 Summary
In this chapter, you created the Employee Manager application using ASP.NET Core 

Razor Pages. You auto-generated the EF Core model using the reverse engineering 

techniques. Razor Pages allows a page-focused approach to build web applications. 

Each Razor Page consists of the page UI housed in a .cshtml file and page processing 

logic wrapped in a page model .cshtml.cs file. You also learned how to use ASP.NET Core 

Identity asynchronous methods in Razor Pages using the async and await keywords.

In the next chapter, you develop a Web API for performing the CRUD operations. The 

Web API is then invoked by a client application.

ChAPTER 4  ASP.NET CoRE RAzoR PAgES



175
© Bipin Joshi 2019 
B. Joshi, Beginning Database Programming Using ASP.NET Core 3,  
https://doi.org/10.1007/978-1-4842-5509-4_5

CHAPTER 5

ASP.NET Core Web API
So far in this book, you developed the Employee Manager application using ASP.NET 

Core MVC and ASP.NET Core Razor Pages. By now, you are acquainted with the overall 

development process under ASP.NET Core and EF Core. Continuing this journey further, 

this chapter shows how Employee Manager can use ASP.NET Core Web API to perform 

the CRUD operations. It also shows how to use .NET Core’s HttpClient class to invoke the 

API. Specifically, you will learn to

• Understand what are RESTful services

• Create ASP.NET Core Web API

• Execute raw T-SQL queries and stored procedures using EF Core

• Encapsulate CRUD operations in a repository

• Use .NET Core’s HttpClient to invoke Web API

 Application Architecture
The applications developed so far involved only a single project that contained 

everything needed by the application. The Web API version of Employee Manager 

involves two projects – the API project and the client application. Figure 5-1 shows the 

simplified architectural view of what you are going to develop in this chapter.



176

Let’s discuss this architecture in more detail and understand various pieces 

mentioned therein.

 ASP.NET Core and REST Services
Modern web applications often rely on RESTful services for exposing their functionality. 

Therefore, it’s worthwhile to discuss in brief what REST is.

REST stands for REpresentational State Transfer. REST is not a standard; it’s a way 

of architecting your services. Unlike ASMX web services that use complex mechanisms 

such as Simple Object Access Protocol (SOAP) and Web Services Description Language 

(WSDL), RESTful services harness the simplicity and power of HTTP. Here are some 

fundamental characteristics of RESTful services:

• REST services use the HTTP protocol.

• REST services make HTTP requests (using meaningful HTTP verbs 

such as GET, POST, PUT, and DELETE) to fetch and submit data.

• REST services are stateless in nature.

• REST exposes services as resources accessible and discoverable 

through URLs.

• REST services typically transfer data in JSON or XML format.

Figure 5-1. Architecture of Employee Manager

Chapter 5  aSp.Net Core Web apI



177

ASP.NET Core Web API is a .NET Core way of developing RESTful services and 

follows the controller-based programming model of ASP.NET Core MVC. To invoke such 

an API from the client application, developers commonly use the HttpClient component 

or Ajax techniques (if it’s a JavaScript client).

The HTTP verbs such as GET, POST, PUT, and DELETE indicate the desired action to 

be performed on a resource. If an API performs create, read, update, and delete (CRUD) 

operations on a database, you could use POST to indicate an INSERT operation, GET 

to indicate a SELECT operation, PUT to indicate an UPDATE operation, and DELETE 

to indicate a DELETE operation. However, merely using a specific verb won’t enforce 

allowing only a particular type of operation. It’s up to you to implement these verbs in an 

API depending on the application’s requirements.

Note When it comes to building reStful services using aSp.Net Core, you might 
come across different terms – aSp.Net Core Web apI, aSp.Net Core reSt apI, aSp.
Net Core apI, or aSp.Net Core reSt services. they all mean the same thing.

 Understanding the JSON Format
The client and the API often need to exchange data. Two common formats for such a 

data transfer are JSON and XML, although most of the modern web applications prefer 

JSON over XML.

JSON, which stands for JavaScript Object Notation, is a lightweight text-based format 

for data interchange. By using the JSON format, you can represent the data that needs 

to be transferred between the client and the API. JSON supports strings, numbers, 

Booleans, objects, and arrays. (If you want to represent any other data type, you must 

represent it in a supported format.)

An object in JSON format typically consists of one or more name-value pairs. The 

object begins with { and ends with }. The name-value pairs are placed in between.  

A property name and its value (if string type) are enclosed in double quotes (“…”).  

A property and its value are separated by a colon (:). Multiple name-value pairs are 

delimited by commas (,). The following code shows an object represented in JSON format:

var employee={

              "EmployeeID":1,

              "FirstName":"Nancy",

Chapter 5  aSp.Net Core Web apI



178

              "LastName":"Davolio",

              "IsContract":false;

             };

If you want to create an array of employee objects, you can write the following:

var employeeArray =[

                    {

                     "EmployeeID":1,

                     "FirstName":"Nancy",

                     "LastName":"Davolio",

                     "IsContract":false;

                    },

                    {

                     "EmployeeID":2,

                     "FirstName":"Andrew",

                     "LastName":"Fuller",

                     "IsContract":true;

                    }

                   ];

This code creates an array with two employee objects as its elements. Just like a 

JavaScript array, a JSON array also begins with [ and ends with ]. Multiple JSON objects 

that make the array elements are separated by commas (,).

While working with ASP.NET Core Web APIs, you might have to deal with JSON 

format inside your client- and server-side code. For example, you might be receiving 

data from some Web API in JSON format and want to process that JSON data in your 

client code. Or you might want to send data in JSON format to the API so that it can be 

processed on the server.

 Role of the Repository
So far in this book, you have been performing the CRUD operations from the controller 

classes or Razor Page handlers. In a more realistic situation, you might want to isolate 

the code performing the CRUD operations into a separate class. You may want that the 

controllers or page handlers use this class to get the job done.

Chapter 5  aSp.Net Core Web apI



179

In such cases, the repository pattern comes handy. The repository pattern 
mediates between the data access layer and the rest of the system. Moreover, it does 
so by providing a collection-like access to the underlying data.

Once the repository is implemented, the Web API code won’t invoke the EF Core 

code directly. Instead, it will invoke the repository to get the job done. The repository 

offers a collection interface by providing methods to add, modify, remove, and fetch 

domain objects.

It would be interesting to know that Entity Framework Core already implements the 

repository pattern. For example, you can add, modify, remove, and access entities from 

a DbSet quite similar to a collection. In this example, you use EF Core’s capabilities to 

execute raw T-SQL queries and stored procedures to perform the CRUD operations. And 

you wrap them into a repository. The Web API then calls the repository to perform the 

necessary operation. This arrangement is shown in Figure 5-2.

Note In the following sections, you develop two aSp.Net Core projects – the apI 
and its client. For the sake of brevity, I won’t explain the basics of creating and 
configuring an aSp.Net Core project again. You may read the previous chapters to 
know these basics. You may also grab the complete source code of this chapter 
from the book’s code download.

 Creating an EmployeeManager.Api Project
Now that you know the overall architecture of the application, let’s begin the development 

process by creating the API project. In order to do so, create a new ASP.NET Core project 

based on the Empty project template. Name the project as EmployeeManager.Api. 

Figure 5-3 shows how this project looks like in Solution Explorer upon completion.

Figure 5-2. ASP.NET Core API uses the repository to perform CRUD 
operations

Chapter 5  aSp.Net Core Web apI



180

As you can see, the project has three folders – Models, Controllers, and Repositories. 

These folders store the respective classes that you are going to add in the following 

sections. This project depends on EF Core for the sake of performing CRUD operations. 

Therefore, you need to set it up to use EF Core. These details are identical to the MVC 

and Razor Pages applications you developed earlier and hence are not discussed again. 

You may read the previous chapters for information on setting up EF Core in ASP.NET 

Core projects. You can also get the complete code of this example from the book’s code 

download.

Figure 5-3. EmployeeManager.Api project after completion

Chapter 5  aSp.Net Core Web apI



181

 Creating the EF Core Model and Repositories
Although the EmployeeManager.Api project is going to use repositories for the sake 

of performing the CRUD operations, you still need to create the EF Core model. The 

process of creating the EF Core model is identical to the previous versions of Employee 

Manager. You may create AppDbContext, Employee, and Country classes yourself or get 

them from this book’s code download. Make sure to place them in the Models folder.

Once you have these classes, you may proceed to creating the repositories. In this 

example, you learn to execute raw SQL queries as well as stored procedures using EF 

Core. So you create two sets of repositories – one using SQL statements and the other 

using stored procedures.

 Creating EmployeeSqlRepository 
and CountrySqlRepository
In this section, you create the first set of repositories consisting of two classes 

and two interfaces defining the structure of the repositories. So begin by adding 

the Repositories folder if you haven’t done so already. Then add a new interface 

named IEmployeeRepository in the Repositories folder. Listing 5-1 shows the 

IEmployeeRepository interface with its members.

Listing 5-1. IEmployeeRepository interface

public interface IEmployeeRepository

{

    List<Employee> SelectAll();

    Employee SelectByID(int id);

    void Insert(Employee emp);

    void Update(Employee emp);

    void Delete(int id);

}

The IEmployeeRepository interface consists of five methods, namely, SelectAll(), 

SelectByID(), Insert(), Update(), and Delete(). These methods dictate the structure 

of the EmployeeSqlRepository repository as you will see later in this section.

Chapter 5  aSp.Net Core Web apI



182

Now add another interface named ICountryRepository into the Repositories folder 

and write the code shown in Listing 5-2 in it.

Listing 5-2. ICountryRepository interface

public interface ICountryRepository

{

    List<Country> SelectAll();

}

The ICountryRepository interface contains just a single method – SelectAll(). 

Since you aren’t interested to perform insert, update, and delete operations on the 

Countries table, those methods aren’t necessary here.

Now that you have IEmployeeRepository and ICountryRepository interfaces ready, 

let’s implement them in EmployeeSqlRepository and CountrySqlRepository classes, 

respectively.

Add a new class to the Repositories folder named EmployeeSqlRepository and 

implement the IEmployeeRepository interface in it (Listing 5-3).

Listing 5-3. EmployeeSqlRepository implements IEmployeeRepository

public class EmployeeSqlRepository : IEmployeeRepository

{

    private readonly AppDbContext db = null;

    public EmployeeSqlRepository(AppDbContext db)

    {

        this.db = db;

    }

    public List<Employee> SelectAll()

    {

      ...

    }

    public Employee SelectByID(int id)

    {

      ...

    }

Chapter 5  aSp.Net Core Web apI



183

    public void Insert(Employee emp)

    {

      ...

    }

  public void Update(Employee emp)

  {

      ...

  }

  public void Delete(int id)

  {

      ...

  }

}

As you can see, the EmployeeSqlRepository declares a variable of type 

AppDbContext. The AppDbContext is injected into the constructor and is stored into this 

variable. The db variable is then used by other methods to execute the respective queries.

Now that you have the skeleton of EmployeeSqlRepository ready, let’s add 

implementation of various methods one by one. Listing 5-4 shows the implementation 

of the SelectAll() method.

Listing 5-4. Implementing SelectAll()

public List<Employee> SelectAll()

{

    List<Employee> data = db.Employees. FromSqlRaw("SELECT EmployeeID, 

FirstName, LastName, Title, BirthDate, HireDate, Country, Notes FROM 

Employees ORDER BY EmployeeID ASC").ToList();

    return data;

}

The SelectAll() method is intended to return all the employees from the database. 

Hence, its return type is List<Employee>. Inside, the code executes a SELECT statement 

that fetches EmployeeID, FirstName, LastName, Title, BirthDate, HireDate, Country, 

and Notes columns from the Employees table. To execute this SQL statement, the 

FromSqlRaw() method of the DbSet class is used. The FromSqlRaw() method accepts 

Chapter 5  aSp.Net Core Web apI



184

an SQL query and converts it into a LINQ query. The FromSqlRaw() method returns 

IQueryable<T>. To get the data as a List<Employee>, the code uses the ToList() 

method. The List<Employee> is then returned to the caller. Note that the SELECT 

statement must return columns that match with the underlying entity properties 

(Employee class in this case).

Listing 5-5 shows how the SelectByID() method looks like.

Listing 5-5. Implementing the SelectByID() method

public Employee SelectByID(int id)

{

    Employee emp = db.Employees. FromSqlRaw("SELECT EmployeeID, FirstName, 

LastName, Title, BirthDate, HireDate, Country, Notes FROM Employees WHERE 

EmployeeID={0}", id).SingleOrDefault();

    return emp;

}

The SelectByID() method is intended to return a specific Employee and hence 

accepts an EmployeeID as a parameter. Inside, the code executes an SQL statement 

that fetches that particular EmployeeID. Notice the use of {0} that indicates a query 

parameter. The second parameter of FromSqlRaw() specifies a value of this query 

parameter. This value is converted into a DbParameter object. You could have also 

supplied a DbParameter or SqlParameter yourself (you do that while using stored 

procedures later in this chapter).

Note While building SQL statements, it is always recommended to use parameters 
instead of using string concatenation. SQL statements built by concatenating strings 
can be prone to SQL injection attacks and hence should be avoided.

Since the query is going to return a single employee (or null if no match is found), 

the code uses the SingleOrDefault() method to retrieve that Employee. The retrieved 

employee is returned to the caller.

The Insert(), Update(), and Delete() methods are similar in that all of them 

execute action queries – INSERT, UPDATE, and DELETE. For the sake of brevity, only 

the Update() method is shown in Listing 5-6. You may get the other methods from the 

book’s source code.

Chapter 5  aSp.Net Core Web apI



185

Listing 5-6. Implementing the Update() method

public void Update(Employee emp)

{

    int count = db.Database.ExecuteSqlRaw("UPDATE Employees SET 

FirstName={0}, LastName={1}, Title={2}, BirthDate={3}, HireDate={4}, 

Country={5}, Notes={6} WHERE EmployeeID={7}", emp.FirstName, emp.LastName, 

emp.Title, emp.BirthDate, emp.HireDate, emp.Country, emp.Notes, emp.

EmployeeID);

}

The Update() method updates a specific employee and hence accepts an Employee 

object as a parameter. Inside, an UPDATE action query is formed and executed using 

the ExecuteSqlRaw() method. Note that ExecuteSqlRaw() is called on the Database 

property of the DbContext. The Database property provides access to database-related 

information and operations for the underlying DbContext.

The ExecuteSqlRaw() specifies a parameterized query. Notice how the parameters 

are specified: {0}…{7}. The values of these query parameters are picked from the 

Employee object and are specified in the ExecuteSqlRaw() call in the same sequence. 

The ExecuteSqlRaw() executes the action query and returns the number of records 

affected by it. This value is stored in the count variable. Although our implementation 

doesn’t use the count, you may use it for further processing if you so wish.

For the sake of reducing the clutter, the code doesn’t add any exception handling 

code. But in a more realistic case, you should add exception handling to these methods 

(see earlier chapters for more details on exception handling).

To complete the EmployeeSqlRepository, add Insert() and Delete() methods in 

the same manner (or grab them from the book’s source code).

Next, add a new class named CountrySqlRepository in the Repositories 

folder and implement the ICountryRepository interface in it. Listing 5-7 shows 

CountrySqlRepository after implementing the SelectAll() method.

Listing 5-7. CountrySqlRepository implements ICountryRepository

public class CountrySqlRepository : ICountryRepository

{

    private readonly AppDbContext db = null;

    public CountrySqlRepository(AppDbContext db)

Chapter 5  aSp.Net Core Web apI



186

    {

        this.db = db;

    }

    public List<Country> SelectAll()

    {

        List<Country> data = db.Countries. FromSqlRaw("SELECT

                             CountryID, Name FROM Countries

                             ORDER BY Name ASC").ToList();

        return data;

    }

}

The CountrySqlRepository implementation should look familiar to you because 

it uses the same FromSqlRaw() method on the Countries DbSet to retrieve a list of all 

countries from the Countries table.

 Creating EmployeeStProcRepository 
and CountryStProcRepository
In the preceding section, you created two repositories that use raw SQL statements to 

perform the CRUD operations. In many real-world applications, you might want to 

use stored procedures over SQL queries. So it would be worthwhile to see how stored 

procedures can be executed using EF Core. To that end, this section shows you how to 

create another set of repositories using stored procedures.

In order to work with this set of repositories, you first need to create certain stored 

procedures in the Northwind database. The complete script for creating these stored 

procedures can be found in the book’s source code download. Here, we discuss a few 

stored procedures so that you get some idea about them. Take a look at Listing 5-8 that 

shows the Employees_SelectAll stored procedure.

Chapter 5  aSp.Net Core Web apI



187

Listing 5-8. Stored procedure for selecting all employees

CREATE PROCEDURE [dbo].[Employees_SelectAll]

AS

SELECT EmployeeID, FirstName, LastName, Title, BirthDate, HireDate, 

Country, Notes FROM Employees ORDER BY EmployeeID ASC

RETURN 0

The Employees_SelectAll stored procedure returns all the employee records from 

the Employees table. Listing 5-9 shows the Employees_Update stored procedure.

Listing 5-9. Employees_Update stored procedure

CREATE PROCEDURE [dbo].[Employees_Update]

    @EmployeeID INT,

    @FirstName NVARCHAR(10),

    @LastName NVARCHAR(20),

    @Title NVARCHAR(30),

    @BirthDate DATETIME,

    @HireDate DATETIME,

    @Country NVARCHAR(15),

    @Notes NTEXT

AS

    UPDATE Employees SET

    FirstName=@FirstName,

    LastName=@LastName,

    Title=@Title,

    BirthDate=@BirthDate,

    HireDate=@HireDate,

    Country=@Country,

    Notes=@Notes

    WHERE EmployeeID = @EmployeeID;

RETURN 0

The Employees_Update stored procedure is intended to update an employee record 

from the Employees table. It has several parameters for passing values for the modified 

FirstName, LastName, Title, BirthDate, HireDate, Country, and Notes for a particular 

Chapter 5  aSp.Net Core Web apI



188

EmployeeID. Inside, it invokes an UPDATE action query and performs the necessary 

update operation.

Before going ahead, complete all the stored procedures: Employees_SelectAll, 

Employees_SelectByID, Employees_Insert, Employees_Update, Employees_Delete, and 

Countries_SelectAll.

Next, add the EmployeeStProcRepository class to the Repositories folder and 

implement the IEmployeeRepository interface in it. The EmployeeStProcRepository class 

uses the stored procedures you just created to perform the CRUD operations. It uses the 

same FromSqlRaw() and ExecuteSqlRaw() methods as before but with a few differences. 

Listing 5-10 shows the implementation of SelectAll() and SelectByID() methods.

Listing 5-10. Implementing SelectAll() and SelectByID() methods

public List<Employee> SelectAll()

{

     List<Employee> data = db.Employees. FromSqlRaw("EXEC Employees_

SelectAll").ToList();

    return data;

}

public Employee SelectByID(int id)

{

    SqlParameter p = new SqlParameter("@EmployeeID", id);

     Employee emp = db.Employees. FromSqlRaw("EXEC Employees_SelectByID  

@EmployeeID", p).ToList().SingleOrDefault();

    return emp;

}

This code should look familiar to you. Notice the code marked in bold letters. The 

FromSqlRaw() call from the SelectAll() method executes the Employees_SelectAll 

stored procedure using the EXEC command.

The EXEC call from the SelectByID() method is followed by the name of the stored 

procedure to execute and also a parameter list that the stored procedure takes. In this 

case, Employees_SelectByID takes only one parameter – @EmployeeID. The @EmployeeID 

parameter is represented by a SqlParameter object (Microsoft.Data.SqlClient 

namespace) that wraps the parameter name and value. The SqlParameter is passed to 

FromSqlRaw() as the second parameter.

Chapter 5  aSp.Net Core Web apI



189

Listing 5-11 shows the Update() method of EmployeeStProcRepository.

Listing 5-11. Implementing the Update() method

public void Update(Employee emp)

{

    SqlParameter[] p = new SqlParameter[8];

    p[0] = new SqlParameter("@EmployeeID", emp.EmployeeID);

    p[1] = new SqlParameter("@FirstName", emp.FirstName);

    p[2] = new SqlParameter("@LastName", emp.LastName);

    p[3] = new SqlParameter("@Title", emp.Title);

    p[4] = new SqlParameter("@BirthDate", emp.BirthDate);

    p[5] = new SqlParameter("@HireDate", emp.HireDate);

    p[6] = new SqlParameter("@Country", emp.Country);

    p[7] = new SqlParameter("@Notes", emp.Notes ?? SqlString.Null);

     int count = db.Database.ExecuteSqlRaw("EXEC Employees_Update  

@EmployeeID,@FirstName,@LastName,@Title,@BirthDate,@HireDate,@Country, 

@Notes", p);

}

This time, the EXEC command specifies Employees_Update as the stored procedure 

name followed by eight parameters. These parameters are wrapped in an array of 

SqlParameter objects. The SqlParameter array is passed in the second parameter of the 

ExecuteSqlRaw() method.

Note You will find that developers implement the repository pattern in different 
ways. For example, you might have repositories that support batch operations and 
have a separate method, such as Save(), that takes care of persisting data into 
the database. You will also observe that Unit of Work pattern often goes hand in 
hand with the repository pattern. here, you use a simplistic approach to create the 
repositories.

For the sake of brevity, we won’t discuss all the methods of EmployeeStProc 

Repository and CountryStProcRepository. You may complete these methods yourself 

or grab them from the book’s source code.

Chapter 5  aSp.Net Core Web apI



190

 Registering Repositories with the DI Container
In the previous chapters, you injected AppDbContext into the controller or page model 

classes. The controller actions and page handler methods then used the AppDbContext 

to perform the CRUD operations. In this example, the CRUD operations are being 

performed by the repositories you just created. So you need to inject the repositories 

into the controller/page model. In order to inject the repositories in the controllers/page 

models, you need to register them with the ASP.NET Core’s dependency injection (DI) 

container.

So open the Startup class and go to the ConfigureServices() method. There, add 

the code shown in Listing 5-12.

Listing 5-12. Registering the repositories with the DI container

public void ConfigureServices(IServiceCollection services)

{

  ...

  ...

    services.AddScoped<IEmployeeRepository, EmployeeSqlRepository>();

    services.AddScoped<ICountryRepository, CountrySqlRepository>();

}

Note You also need to set up your ConfigureServices() and Configure() methods 
for apI, eF Core, and routing. these details are discussed in Chapter 1 and  
Chapter 3. You may read those chapters or look into this chapter’s code download.

Notice the code marked in bold letters. It calls the AddScoped<TService, 

TImplementation>() method to register the EmployeeSqlRepository and 

CountrySqlRepository. The AddScoped() method creates an instance of a 

specified type and sets its lifetime to be the current request. That means anytime 

EmployeeSqlRepository is requested during a request, the same object instance 

will be supplied by the DI container. Note that IEmployeeRepository is passed as 

the TService, whereas EmployeeSqlRepository is passed as TImplementation. The 

CountrySqlRepository is registered in a similar manner.

Chapter 5  aSp.Net Core Web apI



191

Note In DI terms, a type being registered with the DI container is called a service. 
Just like the addScoped( ) method, there are addtransient( ) and addSingleton( ) 
methods that can be used to control the lifetime of the service being registered 
with the DI container. You may read more about them in the aSp.Net Core official 
documentation at https://docs.microsoft.com/en-us/aspnet/core/
fundamentals/dependency-injection.

To register EmployeeStProcRepository and CountryStProcRepository with the DI 

container, you would have written this code:

services.AddScoped<IEmployeeRepository, EmployeeStProcRepository>();

services.AddScoped<ICountryRepository, CountryStProcRepository>();

 Creating Employees Web API and Countries Web API
Now that you have completed the repositories, let’s proceed to create Web APIs required 

by the application. We need two Web APIs – one to perform CRUD operations on 

employees and one to return countries from the database.

Begin by adding a new API controller class named EmployeesController to the 

Controllers folder (Figure 5-4).

Chapter 5  aSp.Net Core Web apI

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection


192

The newly added EmployeesController class inherits from the Controller class. 

You need to modify the class by adding the skeleton code as shown in Listing 5-13.

Listing 5-13. Skeleton of EmployeesController

[Route("api/[controller]")]

public class EmployeesController : Controller

{

    private readonly IEmployeeRepository employeeRepository = null;

    public EmployeesController(IEmployeeRepository employeeRepository)

    {

        this.employeeRepository = employeeRepository;

    }

    [HttpGet]

    public List<Employee> Get()

    {

    }

Figure 5-4. Adding EmployeesController to the project

Chapter 5  aSp.Net Core Web apI



193

    [HttpGet("{id}")]

    public Employee Get(int id)

    {

    }

    [HttpPost]

    public void Post(Employee emp)

    {

    }

    [HttpPut("{id}")]

    public void Put(int id, Employee emp)

    {

    }

    [HttpDelete("{id}")]

    public void Delete(int id)

    {

    }

}

The EmployeesController is decorated with the [Route] attribute. In the case of 

ASP.NET Core Web APIs, routing is defined using the [Route] attribute (also called 

attribute routing). The [Route] attribute specifies the URL template used for accessing 

the underlying Web API. In this case, the template is api/[controller]. The api URL 

segment is added to indicate that you are accessing an API. It’s an optional segment, but 

adding it in the URL makes your API URL more readable.

The attribute routing supports what is known as token replacement. The 

[controller] specified in the URL template is replaced with the actual controller name 

(Employees in this case) while building the route. Just like [controller], you can also 

use [action] in case you want to substitute the action name in the URL template. The 

URL template used here exposes the API at https://localhost:12345/api/Employees 

(the port number will vary as per your setup).

The EmployeesController declares a variable of type IEmployeeRepository 

(employeeRepository). This variable is assigned in the constructor of the class 

where an implementation of IEmployeeRepository (EmployeeSqlRepository or 

EmployeeStProcRepository) will be injected by the framework. The repository thus 

Chapter 5  aSp.Net Core Web apI



194

injected is used by five actions, namely, Get(), Get(id), Post(), Put(), and Delete(),  

to perform the CRUD operations.

Now that you know the skeleton of EmployeesController, let’s add these five actions 

step-by-step.

First, add the Get() and Get(id) actions as shown in Listing 5-14.

Listing 5-14. Get() and Get(id) actions of EmployeesController

[HttpGet]

public List<Employee> Get()

{

    return employeeRepository.SelectAll();

}

[HttpGet("{id}")]

public Employee Get(int id)

{

    return employeeRepository.SelectByID(id);

}

The Get() and Get(id) actions are intended to return all the employees and a 

specific employee, respectively. The Get() action returns a List<Employee> and is 

decorated with the [HttpGet] attribute. Recollect that earlier it was mentioned that 

the HTTP verbs such as GET, POST, PUT, and DELETE control which API action is 

invoked by the framework. Adding [HttpGet] on top of the Get() action means that GET 

requests will be handled by the Get() action. Inside, the code invokes the SelectAll() 

method of the repository to fetch all the employees.

The Get(id) action is also decorated with the [HttpGet] attribute, but it also 

takes the id route parameter as indicated by {id}. The Get() action has an integer 

id parameter that represents an EmployeeID. Inside, the code calls the SelectByID() 

method of the repository to return a particular employee matching the specified 

EmployeeID.

Listing 5-15 shows the Post() action of EmployeesController.

Chapter 5  aSp.Net Core Web apI



195

Listing 5-15. Post() action inserts a new employee

[HttpPost]

public void Post([FromBody]Employee emp)

{

    if (ModelState.IsValid)

    {

        employeeRepository.Insert(emp);

    }

}

The Post() action is intended to insert a new employee into the database. It’s 

decorated with the [HttpPost] attribute to map it to the POST requests. The Post() 

action takes an Employee object as a parameter. This object represents the new 

employee to be added to the database. Note that the emp parameter has the [FromBody] 

attribute indicating that the value of the parameter is to be picked from the request body.

Inside, the code checks whether the Employee object (the model) contains valid 

values using the ModelState.IsValid property. If the model contains valid values, the 

Insert() method of the repository is called to insert a new employee to the database.

Note there is the [apiController] attribute that can simplify the apI actions by 
automatically performing the model validation and parameter binding. read the 
official documentation to know more about the [apiController] attribute and its 
usage.

Listing 5-16 shows the Put() action of the EmployeesController.

Listing 5-16. Put() action updates an employee

[HttpPut("{id}")]

public void Put(int id, [FromBody]Employee emp)

{

    if (ModelState.IsValid)

    {

        employeeRepository.Update(emp);

    }

}

Chapter 5  aSp.Net Core Web apI



196

The Put() action is indented to update an employee record from the database. It 

is decorated with the [HttpPut] attribute indicating that it’s mapped to the PUT verb. 

Since update operation requires an EmployeeID to be modified, the {id} parameter is 

added to the route. The Put() action takes two parameters: an EmployeeID to be updated 

and an Employee object containing the modified value. The id value comes from the 

route parameter, whereas the Employee object comes from the request body as indicated 

by the [FromBody] attribute.

Inside, the code calls the Update() method of the repository if the model validation 

succeeds. Note that in this example, the Employee object itself contains the EmployeeID 

property and hence the id parameter is not used during the processing. However, as 

a part of the Put() signature, it’s available to you in case you want to use it for some 

processing.

Listing 5-17 shows the Delete() action of EmployeesController.

Listing 5-17. Delete() action deletes an employee

[HttpDelete("{id}")]

public void Delete(int id)

{

    employeeRepository.Delete(id);

}

The Delete() action is intended to delete an employee from the database. It’s 

decorated with the [HttpDelete] attribute indicating that it is mapped to the DELETE 

verb. It receives an id parameter from the route that indicates an EmployeeID to be 

deleted. Inside, the code calls the Delete() method of the repository to delete the 

employee.

Note In the preceding example, you used action names such as Get( ), post( ), 
put( ), and Delete( ). this was primarily done for the sake of readability. however, 
you can name the actions as per your choice. as long as they are mapped to the 
correct http verbs using the attributes such as [httpGet], [httppost], [httpput], and 
[httpDelete], the apI will behave as expected. For example, you may have an action 
named Selectall( ) that is marked with the [httpGet] attribute.

Chapter 5  aSp.Net Core Web apI



197

You just completed the EmployeesController class. In a similar manner, 

also complete the CountriesController class. The CountriesController uses 

CountrySqlRepository or CountryStProcRepository and has only one action: 

Get() – for returning all the countries to the caller. For the sake of brevity, the 

CountriesController class is not discussed here. You can also get it from the book’s 

source code. Just for the sake of your quick reference, Listing 5-18 shows the completed 

CountriesController class.

Listing 5-18. Get() action of CountriesController

[Route("api/[controller]")]

public class CountriesController : ControllerBase

{

    private readonly ICountryRepository countryRepository = null;

    public CountriesController(ICountryRepository countryRepository)

    {

        this.countryRepository = countryRepository;

    }

    [HttpGet]

    public List<Country> Get()

    {

        return countryRepository.SelectAll();

    }

}

 Running the Employees Web API
Now that the Web APIs needed by Employee Manager are ready, let’s check whether they 

are working as expected. Since you haven’t created the client application yet, not all the 

actions can be tested using the browser. However, you can check the Get() and Get(id) 

actions easily as discussed in the following.

Run the EmployeeManager.Api project from the Visual Studio IDE by pressing F5. 

When the browser window opens, enter https://localhost:12345/api/Employees in the 

browser’s address bar (change the port number as per your setup). This will initiate a 

GET request to the EmployeesController. Recollect that GET requests are mapped to 

Chapter 5  aSp.Net Core Web apI



198

the Get() action. Therefore, the Get() action will be invoked, and a List of Employee 

objects is returned to the browser. Figure 5-5 shows a sample run of the Web API.

Notice how the API returns data in JSON format. You can invoke Get(id) by 

adding an EmployeeID in the URL. For example, specifying the URL to be https://

localhost:12345/api/Employees/1 returns just a single employee whose EmployeeID is 

1 (Figure 5-6).

Figure 5-5. Employees API returns JSON

Chapter 5  aSp.Net Core Web apI



199

Note although you may not be able to test post( ), put( ), and Delete( ) actions 
using the technique discussed in the preceding text, you can use a tool such as  
postman to test all the http verbs with your apI. Consider visiting www.getpostman.com 
for more details about the postman tool.

 Creating a Client for Web API
In the preceding sections, you created ASP.NET Core Web API that performs CRUD 

operations on the Employees table. In the sections that follow, you build a client 

application that consumes the Web API.

A client to the Web API can be any kind of application such as another web 

application, a desktop application, another service, or a JavaScript client. As long as 

the client has network connectivity and access to the Web API, it can invoke the API by 

making appropriate GET, POST, PUT, and DELETE requests.

Since your focus is ASP.NET Core, you develop an ASP.NET Core MVC application 

as a client to the Web API. In terms of project organization, the client application looks 

just like the ASP.NET Core MVC application you developed in the past. However, it 

resorts to the Web API for performing the CRUD operations rather than using the EF 

Figure 5-6. Get(id) returns a single employee

Chapter 5  aSp.Net Core Web apI

http://www.getpostman.com


200

Core code itself. So begin by adding a new ASP.NET Core web application named 

EmployeeManager.ApiClient to the same solution. Adding the client application to the 

same solution makes debugging and testing easy. Figure 5-7 shows Solution Explorer 

when the client application is complete.

Figure 5-7. EmployeeManager.ApiClient project in Solution Explorer

Chapter 5  aSp.Net Core Web apI



201

Since the client application is an ASP.NET Core MVC application, the overall 

development process and the project organization should look familiar to you. For the 

sake of brevity, I am not going to repeat the basic steps. The steps necessary to consume 

the API are discussed in the following sections. You can get the complete source code of 

the client application from this book’s source code download.

 Creating View Models
While developing the API project, you created the EF Core model required by the 

application. And the CRUD operations are encapsulated in the repositories. Therefore, 

the client application won’t have any EF Core model or database access code. However, 

since the Web API project deals with the data in terms of Employee and Country classes, 

the client needs to have these view model classes. For example, the Get() action of 

EmployeesController returns a List<Employee>. So to receive that data, the client 

application too needs a matching data structure. This calls for adding Employee and 

Country view model classes in the client’s Models folder. These classes are quite similar 

to the Employee and Country entity classes you created earlier. But they won’t use 

database schema–related data annotations such as [Table] and [Column]. Listing 5-19 

shows a part of the Employee view model class just to give you an idea.

Listing 5-19. Employee view model class

public class Employee

{

    [Required(ErrorMessage ="Employee ID is required")]

    [Display(Name = "Employee ID")]

    public int EmployeeID { get; set; }

    [Display(Name = "First Name")]

    [Required(ErrorMessage = "First Name is required")]

     [StringLength(10,ErrorMessage ="First Name must be less than 10 

characters")]

    public string FirstName { get; set; }

    [Display(Name = "Last Name")]

    [Required(ErrorMessage ="Last Name is required")]

Chapter 5  aSp.Net Core Web apI



202

     [StringLength(20,ErrorMessage ="Last Name must be less than 20 

characters")]

    public string LastName { get; set; }

    ...

    ...

}

As you can see, the Employee class properties have only those data annotations that 

are necessary for validations and UI display.

On the same lines, add the Country class as shown in the following:

public class Country

{

    public int CountryID { get; set; }

    public string Name { get; set; }

}

 Adding the EmployeeManagerController
Now that the view models are ready, add a new controller class named 

EmployeeManagerController in the Controllers folder. Just like the ASP.NET Core MVC 

version of Employee Manager, the EmployeeManagerController also has seven actions 

(one for listing, two for insert, two for update, and two for delete) and a helper method 

(to fill countries in the ViewBag). However, the differences this time are as follows:

• The actions use the HttpClient class to invoke the Web API.

• The actions use the async-await pattern.

• Since the Web API returns data in JSON format, the client code uses 

classes from the System.Text.Json namespace to deal with the JSON 

data.

Note You could have also used a third-party JSoN library such as  
Json.Net (Newtonsoft.Json NuGet package) to process the JSoN data returned by 
the Web apI.

Chapter 5  aSp.Net Core Web apI



203

You have used the async-await pattern in the previous chapters, so the skeleton of 

the EmployeeManagerController shown in Listing 5-20 should look familiar to you.

Listing 5-20. Skeleton of EmployeeManagerController

public class EmployeeManagerController : Controller

{

    public EmployeeManagerController(HttpClient client, IConfiguration config)

    {

    }

    public async Task<bool> FillCountriesAsync()

    {

    }

    public async Task<IActionResult> ListAsync()

    {

    }

    public async Task<IActionResult> InsertAsync()

    {

    }

    [HttpPost]

    [ValidateAntiForgeryToken]

    public async Task<IActionResult> InsertAsync(Employee model)

    {

    }

    public async Task<IActionResult> UpdateAsync(int id)

    {

    }

    [HttpPost]

    [ValidateAntiForgeryToken]

    public async Task<IActionResult> UpdateAsync(Employee model)

    {

    }

Chapter 5  aSp.Net Core Web apI



204

    [ActionName("Delete")]

    public async Task<IActionResult> ConfirmDeleteAsync(int id)

    {

    }

    [HttpPost]

    [ValidateAntiForgeryToken]

    public async Task<IActionResult> DeleteAsync(int employeeID)

    {

    }

}

Now that you have some idea about the EmployeeManagerController, let’s complete 

it in steps.

 Setting Up the HttpClient
The EmployeeManagerController uses the HttpClient class to invoke the Web API. The 

HttpClient class resides in the System.Net.Http namespace and is asynchronous by 

design. An object of HttpClient is created and configured in the ConfigureServices() 

of the Startup class. An instance of HttpClient is then registered with the DI container 

so that it can be injected into the controllers. Listing 5-21 shows how this is done.

Listing 5-21. Creating and configuring HttpClient

HttpClient client = new HttpClient();

string baseUrl = config.GetValue<string>("AppSettings:BaseUrl");

client.BaseAddress = new Uri(baseUrl);

var contentType = new MediaTypeWithQualityHeaderValue("application/json");

client.DefaultRequestHeaders.Accept.Add(contentType);

services.AddSingleton<HttpClient>(client);

Chapter 5  aSp.Net Core Web apI



205

The code begins by creating an object of HttpClient. A string variable (baseAddress) 

is also declared to hold the API URL. To avoid hard-coding of the API URLs in the code, 

the client application stores them in the appsettings.json file:

 "AppSettings": {

  "BaseUrl": "https://localhost:12345",

  "EmployeesApiUrl": "/api/employees",

  "CountriesApiUrl": "/api/countries"

}

Notice the use of the GetValue<T>() method for reading the configuration 

information. The GetValue<T>() method specifies the key whose value you wish 

to retrieve and the data type of the value (string in this case). Notice how the key is 

specified. For example, AppSettings:BaseUrl indicates that the BaseUrl key from 

the AppSettings section is to be retrieved. An example of BaseUrl would be https://

localhost:12345. The BaseAddress property of the HttpClient class is a Uri that 

indicates the base address of the API.

A Web API can return data either in JSON format or XML format (you can 

also customize the format). To indicate that the client needs data in JSON format, 

the code sets the Accept HTTP header of HttpClient. This is done using the 

DefaultRequestHeaders.Accept.Add() method of HttpClient. The Add() method takes 

a MediaTypeWithQualityHeaderValue object specifying the content type of the returned 

data. Note that MediaTypeWithQualityHeaderValue resides in the System.Net.Http.

Headers namespace.

Once the HttpClient object is configured, it is registered with the DI system using 

the AddSingleton<T>() method. The AddSingleton() method indicates that only one 

instance of HttpClient will serve all the requests to the object. Also notice that we 

supply the previously configured instance of HttpClient to the AddSingleton() method 

so that this configured instance is made available as a singleton.

Note You can also use IhttpClientFactory for creating instances of httpClient. 
Discussion of using IhttpClientFactory is beyond the scope of this book. 
You may read https://docs.microsoft.com/en-us/aspnet/core/
fundamentals/http-requests for more details.

Chapter 5  aSp.Net Core Web apI

https://docs.microsoft.com/en-us/aspnet/core/fundamentals/http-requests
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/http-requests


206

The HttpClient can now be injected into the EmployeeManagerController class. 

Listing 5-22 shows how that can be done.

Listing 5-22. Creating and configuring HttpClient

private readonly HttpClient client = null;

private string employeesApiUrl = "";

private string countriesApiUrl = "";

public EmployeeManagerController(HttpClient client, IConfiguration config)

{

    this.client = client;

    employeesApiUrl = config.GetValue<string>("AppSettings:EmployeesApiUrl");

    countriesApiUrl = config.GetValue<string>("AppSettings:CountriesApiUrl");

}

An object of HttpClient and IConfiguration is injected into the constructor. 

The IConfiguration object provides access to the configuration information. The 

HttpClient object injected into the constructor is stored into a local variable for using it 

in the actions.

The constructor retrieves two keys from the configuration’s AppSettings section, 

namely, EmployeesApiUrl and CountriesApiUrl. An example of EmployeesApiUrl and 

CountriesApiUrl would be /api/Employees and /api/Countries, respectively.

 Strongly Typed Configuration

In the preceding section, you injected the IConfiguration object into 

EmployeeManagerController and then used the GetValue() method to retrieve 

EmployeesApiUrl and CountriesApiUrl values. Although this works well in this simple 

example, there is a better way to access configuration information. You can fill the 

required configuration information into an object and then access it in a strongly typed 

manner. Let’s quickly see how that can be done.

Suppose you have a class called WebApiConfig that looks like this:

Chapter 5  aSp.Net Core Web apI



207

public class WebApiConfig

{

    public string BaseUrl { get; set; }

    public string EmployeesApiUrl { get; set; }

    public string CountriesApiUrl { get; set; }

}

As you can see, the WebApiConfig class has three properties, namely, BaseUrl, 

EmployeesApiUrl, and CountriesApiUrl. These properties have the same names as the 

corresponding configuration keys stored under the AppSettings section of appsettings.

json.

You can load values from AppSettings into an object of WebApiConfig in the 

ConfigureServices() method like this:

services.Configure<WebApiConfig>

(config.GetSection("AppSettings"));

The Configure<T>() method accepts a configuration section (AppSettings in this 

case) and registers an object of WebApiConfig filled with the required values. You can 

access this configuration information in the EmployeeManagerController like this:

public EmployeeManagerController(HttpClient client, IOptions<WebApiConfig> 

options)

{

   WebApiConfig config = options.Value;

}

As you can see, the constructor now accepts the IOptions<T> parameter. The actual 

WebApiConfig object can be accessed using the Value property. Once retrieved, you can 

use its EmployeesApiUrl and CountriesApiUrl properties wherever required.

 Displaying a List of Employees
In order to display a list of employees (Figure 5-8), you need to create the ListAsync() 

action and List view.

Chapter 5  aSp.Net Core Web apI



208

Note Since the actions of the employeeManagerController are marked as async 
methods, the action names are suffixed with async. For example, instead of having 
the List( ) action, the controller has the Listasync( ) action.

The ListAsync() action is responsible for fetching all the employees from the API 

and is shown in Listing 5-23.

Listing 5-23. ListAsync() action makes a GET request to the API

public async Task<IActionResult> ListAsync()

{

    HttpResponseMessage response = await client.GetAsync(employeesApiUrl);

    string stringData =await response.Content.

ReadAsStringAsync();

    var options = new JsonSerializerOptions

    {

        PropertyNameCaseInsensitive = true

    };

    List<Employee> data = JsonSerializer.Deserialize 

<List<Employee>>(stringData, options);

    return View(data);

}

Figure 5-8. Displaying a list of employees

Chapter 5  aSp.Net Core Web apI



209

The ListAsync()action is marked with the async keyword and returns a 

Task<IActionResult>. Inside, the code invokes the Get() action of the API by sending a 

GET request. This is done using the GetAsync() method of HttpClient. The GetAsync() 

method accepts the part of URL where Employees API can be located (e.g., /api/

Employees) and returns the response wrapped in the HttpResponseMessage object.

The ReadAsStringAsync() method reads the actual JSON content from the 

HttpResponseMessage object.

To render this JSON content on the List view, you need to convert it into a 

List<Employee>. This is done using the Deserialize() method of the JsonSerializer 

class (System.Text.Json namespace). The Deserialize<T>() method accepts content 

as a JSON string and converts it into a type specified by T (List<Employee> in this case). 

You can also specify settings to be used while parsing the JSON data in the second 

parameter of the Deserialize() method. In this case, the JsonSerializerOptions 

object sets the PropertyNameCaseInsensitive property to true indicating that the 

parsing operation should be case insensitive.

The List<Employee> is then passed to the List view for the sake of rendering the 

employee listing.

In the projects created so far, you used Tag Helpers to render the user interface. This 

time, you use HTML Helpers to do that. The HTML Helpers are similar to Tag Helpers in 

purpose, but they use code-oriented syntax rather than tag-oriented syntax used by Tag 

Helpers. The ASP.NET Core contains the HtmlHelper class that exposes various methods 

to render HTML elements. The Razor files have a Html property that’s an instance of the 

HtmlHelper class. Using the Html property, you can call various methods of HtmlHelper 

and render the user interface as required.

Listing 5-24 shows the content of List.cshtml that illustrates how HTML Helpers are used.

Listing 5-24. Content of List.cshtml

@model List<Employee>

<h2>List of Employees</h2>

<h3 class="message">@TempData["Message"]</h3>

@Html.ActionLink("Insert","Insert","EmployeeManager",null,new { @class= 

"linkbutton" })

<br /><br />

Chapter 5  aSp.Net Core Web apI



210

<table border="1">

    <tr>

        <th>Employee ID</th>

        <th>First Name</th>

        <th>Last Name</th>

        <th>Title</th>

        <th colspan="2">Actions</th>

    </tr>

    @foreach(var item in Model)

    {

        <tr>

            <td>@item.EmployeeID</td>

            <td>@item.FirstName</td>

            <td>@item.LastName</td>

            <td>@item.Title</td>

            <td>

                @Html.ActionLink("Update", "Update", "EmployeeManager", new 

{ id=item.EmployeeID },new { @class="linkbutton"})

            </td>

            <td>

                @Html.ActionLink("Delete", "Delete", "EmployeeManager", new 

{ id = item.EmployeeID }, new { @class = "linkbutton" })

            </td>

        </tr>

    }

</table>

This code should look familiar to you because you used similar code while 

developing the MVC version of Employee Manager. Notice the code marked in bold 

letters. It uses the ActionLink HTML Helper to generate Insert, Update, and Delete links. 

The first parameter of ActionLink() is the text of the link, whereas the second and third 

parameters indicate action name and controller name, respectively.

Chapter 5  aSp.Net Core Web apI



211

Note although the asynchronous actions are suffixed with async, while using 
these action names in the actionLink( ) htML helper (and in any UrLs in general), 
the async suffix is omitted. the framework automatically routes them to the correct 
action.

You can also specify the id route parameter and a CSS class to be applied to the link 

using the fourth and fifth parameters. These parameters are objects of anonymous types 

that specify the route id value and CSS class name, respectively.

 Inserting a New Employee
To insert a new employee, you need to add InsertAsync() actions and the Insert view 

(Figure 5-9).

The InsertAsync() actions dealing with the GET and POST requests are shown in 

Listing 5-25.

Figure 5-9. Inserting a new employee

Chapter 5  aSp.Net Core Web apI



212

Listing 5-25. InsertAsync() actions add a new employee

public async Task<IActionResult> InsertAsync()

{

    await FillCountriesAsync();

    return View();

}

[HttpPost]

[ValidateAntiForgeryToken]

public async Task<IActionResult> InsertAsync(Employee model)

{

    await FillCountriesAsync();

    if (ModelState.IsValid)

    {

        string stringData = JsonSerializer.Serialize(model);

         var contentData = new StringContent(stringData, System.Text.

Encoding.UTF8, "application/json");

        HttpResponseMessage response = await client.PostAsync

        (employeesApiUrl, contentData);

    if (response.IsSuccessStatusCode)

      {

        ViewBag.Message = "Employee inserted successfully!";

      }

      else

      {

        ViewBag.Message = "Error while calling Web API!";

      }

    }

    return View(model);

}

The first InsertAsync() is called when you click the Insert link from the employee 

listing page. Inside, it calls FillCountriesAsync() to put all the countries in the ViewBag 

for the purpose of displaying them in the dropdown list. The FillCountriesAsync() 

helper method is discussed later in this chapter. As a result of InsertAsync(), an empty 

Insert view is displayed in the browser.

Chapter 5  aSp.Net Core Web apI



213

The second InsertAsync() receives the Employee object through model binding. 

Inside, it calls FillCountries() as before. It then proceeds to checking the validity of 

the model using the ModelState.IsValid property. If the model contains valid data, the 

code inserts a new employee by calling the API. To insert an employee, first you need 

to represent the Employee object in JSON format. This is done using the Serialize() 

method of the JsonSerializer class. The Serialize() method accepts an object and 

returns a JSON-formatted string representing that object. The JSON string thus obtained 

is wrapped into a StringContent object.

To initiate the insert operation, the PostAsync() method of HttpClient is called.  

The PostAsync() method makes a POST request to the supplied URL (/api/Employees 

in this case) and also carries a StringContent object containing the JSON data to be 

sent along with the POST request. The PostAsync() call invokes the Post() action of the 

Employees API.

The PostAsync() returns the HttpResponseMessage object. The code checks its 

IsSuccessStatusCode property to determine whether the API call was successful or not. 

The IsSuccessStatusCode property returns true if the HTTP status code of the response 

is in the range of 200–299; otherwise, it returns false. Accordingly, a success or error is 

stored in the ViewBag so that it can be displayed on the Insert view.

The InsertAsync() actions return the Insert view (Insert.cshtml) to the browser. The 

Insert view is rendered using HTML Helpers. The skeleton of the Insert view is shown in 

Listing 5-26.

Listing 5-26. Skeleton of the Insert view

@model Employee

<h2>Insert New Employee</h2>

<h3 class="message">@ViewBag.Message</h3>

@using (Html.BeginForm("Insert", "EmployeeManager", FormMethod.Post))

{

  ...

  ...

}

Chapter 5  aSp.Net Core Web apI



214

Notice the code marked in bold letters. It uses the BeginForm() HTML Helper to 

render the <form> element. The first parameter to the BeginForm() is the name of the 

action that processes the form upon submission (InsertAsync() POST action in this 

case). The second parameter indicates the name of the controller that houses the action 

specified earlier (EmployeeManager in this case). The third parameter indicates the HTTP 

method of submitting the form (POST in this case). The form content is enclosed inside 

the @using statement. This ensures that the </form> tag is also outputted after the block.

The form fields such as labels, textboxes, dropdown list, and button are housed 

inside the @using block. These elements are rendered using various HTML Helpers. 

Listing 5-27 shows a part of this form for your understanding.

Listing 5-27. Form fields are rendered using HTML Helpers

<tr>

    <td class="right">

        @Html.LabelFor(m => m.FirstName) :

    </td>

    <td>

        @Html.TextBoxFor(m => m.FirstName)

         @Html.ValidationMessageFor(m => m.FirstName, null, new { @class = 

"message" })

    </td>

</tr>

...

<tr>

    <td class="right">

        @Html.LabelFor(m => m.BirthDate) :

    </td>

    <td>

        @Html.TextBoxFor(m => m.BirthDate, null, new { type = "date" })

         @Html.ValidationMessageFor(m => m.BirthDate, null, new { @class = 

"message" })

    </td>

</tr>

...

<tr>

Chapter 5  aSp.Net Core Web apI



215

    <td class="right">

        @Html.LabelFor(m => m.Country) :

    </td>

    <td>

         @Html.DropDownListFor(m => m.Country, ViewBag.Countries as 

List<SelectListItem>,"Please select")

         @Html.ValidationMessageFor(m => m.Country, null, new { @class = 

"message" })

    </td>

</tr>

<tr>

    <td class="right">

        @Html.LabelFor(m => m.Notes) :

    </td>

    <td>

        @Html.TextAreaFor(m => m.Notes, 5, 40, null)

         @Html.ValidationMessageFor(m => m.Notes, null, new { @class = 

"message" })

    </td>

</tr>

<tr>

    <td colspan="2">

        <button type="submit">Save</button>

    </td>

</tr>

Notice the code marked in bold letters. The code uses strongly typed HTML 

Helpers such as LabelFor, TextBoxFor, ValidationMessageFor, DropDownListFor, and 

TextAreaFor to render the form fields.

The LabelFor() HTML Helper accepts a model property in the form of a lambda 

expression and renders a <label> element. Similarly, the TextBoxFor() HTML 

Helper renders a textbox (<input type="text" />) for the specified model property 

(FirstName in this case).

Notice how the BirthDate date picker is displayed. The <input> element’s type 

attribute is set through an anonymous object and indicates that the type is date rather 

than text.

Chapter 5  aSp.Net Core Web apI



216

The DropDownListFor() HTML Helper (<select> and <option> HTML 

elements) displays a list of countries. The countries are picked from the ViewBag.

Countries property. Recollect that the FillCountries() helper method stores a 

List<SelectListItem> into the ViewBag. The List is being bound to the dropdown list 

here. The third parameter indicates the default empty <option> element (Please select in 

this case) to be added to the dropdown list.

The TextAreaFor() HTML Helper renders a <textarea> element with 5 rows and 40 

columns to enter Notes.

To display field-level validation errors, the ValidationMessageFor() HTML Helper 

is placed after each data entry control. It accepts the model property for which the error 

message is to be displayed (if any).

Finally, the Save button submits the form to the specified action (InsertAsync() 

POST action in this case).

For the sake of brevity, all the form fields of the form are not discussed here. You may 

get the completed Insert.cshtml from this book’s code download.

Note the client-side validation using jQuery can also be used with htML helpers. 
the process is essentially the same as that of the tag helpers and hence is not 
discussed here again. read the earlier chapters in case you need to refresh those 
steps. You can get the complete set of code files from this book’s code download.

 Updating an Existing Employee
You reach the Update Existing Employee page (Figure 5-10) when you click the Update 

link of an employee from the employee listing page.

Chapter 5  aSp.Net Core Web apI



217

In order to update an existing employee, you need two UpdateAsync() actions and 

the Update view. The UpdateAsync() action that handles the GET request is shown in 

Listing 5-28.

Listing 5-28. Fetching an existing employee to be updated

public async Task<IActionResult> UpdateAsync(int id)

{

    await FillCountriesAsync();

    HttpResponseMessage response = await client.

GetAsync($"{employeesApiUrl}/{id}");

    string stringData = await response.Content.ReadAsStringAsync();

    var options = new JsonSerializerOptions

    {

      PropertyNameCaseInsensitive = true

    };

    Employee model = JsonSerializer.Deserialize<Employee>(stringData, options);

    return View(model);

}

Figure 5-10. Update view displays employee details for editing

Chapter 5  aSp.Net Core Web apI



218

The UpdateAsync() action has the id parameter that represents the EmployeeID of 

the employee to be modified. This EmployeeID is received as a route parameter from the 

employee listing page.

Inside, the code calls the FillCountriesAsync() helper method to store a list of 

countries into the ViewBag. The code then makes a GET request to the Employees API 

using the GetAsync() method of HttpClient. This time, the EmployeeID is also passed as 

a part of the URL. This maps the request with the Get(id) action of the Employees API.

The Employee returned by the API is unpacked from the HttpResponseMessage object 

using the ReadAsStringAsync(). This data being in JSON format needs to be converted into 

an Employee object. This is done using the Deserialize<T>() method of JsonSerializer. 

The Employee object thus obtained is supplied to the Update view as its model.

Upon clicking the Save button, the form is submitted to the UpdateAsync() action 

(POST request). This UpdateAsync() action is shown in Listing 5-29.

Listing 5-29. UpdateAsync() action calls PutAsync() of HttpClient

[HttpPost]

[ValidateAntiForgeryToken]

public async Task<IActionResult> UpdateAsync(Employee model)

{

    await FillCountriesAsync();

    if (ModelState.IsValid)

    {

        string stringData = JsonSerializer.Serialize(model);

        var contentData = new StringContent(stringData,

    System.Text.Encoding.UTF8, "application/json");

        HttpResponseMessage response = await client.PutAsync

    ($"{employeesApiUrl}/{model.EmployeeID}", contentData);

        if (response.IsSuccessStatusCode)

        {

           ViewBag.Message = "Employee updated successfully!";

        }

        else

Chapter 5  aSp.Net Core Web apI



219

     {

        ViewBag.Message = "Error while calling Web API!";

     }

    }

    return View(model);

}

The UpdateAsync() action is quite similar to the InsertAsync() POST action 

discussed earlier. However, this time it makes a PUT request to the API using the 

PutAsync() method of HttpClient. The PutAsync() method accepts the API URL 

and StringContent object that wraps the modified Employee object. Notice that the 

URL also contains the EmployeeID of the Employee being modified. Depending on the 

IsSuccessStatusCode property of HttpResponseMessage, a success or error message is 

displayed on the Update view via the ViewBag.Message property.

The Update view (Update.cshtml) renders its user interface using HTML Helpers and 

is quite similar to the Insert view discussed in the previous section. Listing 5-30 shows 

the skeleton of the Update view.

Listing 5-30. Skeleton of the Update view

@model Employee

<h2>Update Existing Employee</h2>

<h3 class="message">@ViewBag.Message</h3>

@using (Html.BeginForm("Update", "EmployeeManager", FormMethod.Post))

{

  ...

}

The BeginForm() HTML Helper renders a <form> element. This time the form is 

configured to POST its content to the UpdateAsync() action of EmployeeManager. The 

<form> contains almost the same set of form fields as in the case of the Insert view. The 

only difference is that the EmployeeID is not displayed for editing. It is made available 

to the model binding via a hidden field, and its value is displayed in a <span> element. 

Listing 5-31 shows how this is done.

Chapter 5  aSp.Net Core Web apI



220

Listing 5-31. EmployeeID is stored in a hidden form field

<tr>

    <td class="right">

        @Html.LabelFor(m => m.EmployeeID) :

    </td>

    <td>

        @Html.HiddenFor(m=>m.EmployeeID)

        <span>@Model.EmployeeID</span>

    </td>

</tr>

As you can see, the HiddenFor() HTML Helper stores the EmployeeID in a hidden 

form field.

 Deleting an Existing Employee
When you click the Delete link for an employee, a confirmation page is displayed 

(Figure 5-11), and the user can delete the employee.

Figure 5-11. Seeking confirmation before deleting an employee

Chapter 5  aSp.Net Core Web apI



221

To add this functionality, you need two actions and the Delete view (Delete.

cshtml). The Delete action that displays the confirmation page is identical to the 

UpdateAsync(id) action discussed earlier and is not discussed here. For your quick 

reference, its code is shown in Listing 5-32.

Listing 5-32. Delete action that displays the confirmation page

[ActionName("Delete")]

public async Task<IActionResult> ConfirmDeleteAsync(int id)

{

    HttpResponseMessage response = await client.

GetAsync($"{employeesApiUrl}/{id}");

    string stringData = await response.Content.ReadAsStringAsync();

    var options = new JsonSerializerOptions

    {

        PropertyNameCaseInsensitive = true

    };

     Employee model = JsonSerializer.Deserialize<Employee>(stringData, 

options);

    return View(model);

}

Notice the use of the [ActionName] attribute that exposes the ConfirmDeleteAsync() 

method as the Delete action.

Upon clicking the Delete button, the form is submitted to the DeleteAsync() action. 

The DeleteAsync() action is shown in Listing 5-33.

Listing 5-33. DeleteAsync() action deletes an employee

[HttpPost]

[ValidateAntiForgeryToken]

public async Task<IActionResult> DeleteAsync(int employeeID)

{

     HttpResponseMessage response = await client.

DeleteAsync($"{employeesApiUrl}/{employeeID}");

    if (response.IsSuccessStatusCode)

    {

Chapter 5  aSp.Net Core Web apI



222

      TempData["Message"] = "Employee deleted successfully!";

    }

    else

    {

      TempData["Message"] = "Error while calling Web API!";

    }

    return RedirectToAction("List");

}

The DeleteAsync() action receives an EmployeeID as its parameter. Inside, the code 

invokes the DeleteAsync() method of HttpClient. This initiates a DELETE request 

to the API and executes its Delete() action. Notice that the DeleteAsync() method 

appends the EmployeeID of an Employee to be deleted as a part of the URL.

Depending on the value of IsSuccessStatusCode, a success or error message is 

stored in the TempData dictionary, and the control is redirected to the ListAsync() 

action of EmployeeManagerController.

The skeleton of the Delete.cshtml view that seeks confirmation from the user is 

shown in Listing 5-34.

Listing 5-34. Skeleton of Delete.cshtml

@model Employee

<h2>Delete Existing Employee</h2>

<h3 class="message">

    Warning : You are about to delete an employee record.

</h3>

@using (Html.BeginForm("Delete", "EmployeeManager", FormMethod.Post))

{

    @Html.HiddenFor(m=>m.EmployeeID)

         ...

         ...

}

Notice the code marked in bold letters. The BeginForm() HTML Helper renders 

the <form> element that houses the employee details. The form is POSTed to the 

DeleteAsync() action of EmployeeManager.

Chapter 5  aSp.Net Core Web apI



223

In addition to displaying employee details of the employee being deleted, the 

EmployeeID is also stored in a hidden form field using the HiddenFor() HTML Helper. 

This way, model binding binds the EmployeeID to the employeeID parameter of the 

DeleteAsync() action.

 FillCountriesAsync() Helper Method
In the InsertAsync() and UpdateAsync() actions you used FillCountriesAsync() 

method that puts a list of countries into the ViewBag. The FillCountriesAsync() 

method invokes the Countries API. The Listing 5-35 shows this method.

Listing 5-35. FillCountries invokes Countries API

public async Task<bool> FillCountriesAsync()

{

    HttpResponseMessage response = await client.GetAsync(countriesApiUrl);

    string stringData = await response.Content.ReadAsStringAsync();

    var options = new JsonSerializerOptions

    {

        PropertyNameCaseInsensitive = true

    };

     List<Country> listCountries = JsonSerializer.Deserialize<List<Country>>

(stringData,options);

     List<SelectListItem> countries = (from c in listCountries select new 

SelectListItem() { Text = c.Name, Value = c.Name }).ToList();

    ViewBag.Countries = countries;

    return true;

}

The FillCountriesAsync() method is an asynchronous method and makes a GET 

request to the Countries API. This is done using the GetAsync() method of HttpClient. 

The code should look familiar to you because you used similar code while invoking the 

Employees API. The difference is that the data is received using the Country view model. 

Upon converting the countries into a List<SelectListItem>, the data is stored into 

the Countries property of the ViewBag. Recollect that Insert and Update views bind the 

Country dropdown lists with the ViewBag.Countries property.

Chapter 5  aSp.Net Core Web apI



224

 Integrating ASP.NET Core Identity
In the preceding sections, you completed the EmployeeManagerController. You have 

built everything to perform the CRUD operations on the Employees table. You can also 

integrate ASP.NET Core Identity into the Employee Manager client application so that 

users are required to supply user name and password to sign in to the system.

The process of integrating ASP.NET Core Identity is the same as discussed for the 

ASP.NET Core MVC and ASP.NET Core Razor Pages versions of the application. For the 

sake of brevity, I leave it up to you to do this integration yourself. You can also get the 

client project from this book’s source code download to study how the integration can be 

done.

Note In this example, authentication and authorization are enforced in the client 
application (employeeManagerController). In the upcoming chapters, you will also 
learn to apply the security to the apI itself.

 Running the Application
Now that the Employee Manager API and the client application are ready, you can run 

the projects to check whether everything works as expected. Since the client application 

uses the API, you need to run the API project first and then run the client project. 

Luckily, Visual Studio allows you to configure this using the Solution Property Pages 

dialog. Figure 5-12 shows this dialog.

Chapter 5  aSp.Net Core Web apI



225

The Startup Project section of the dialog allows you to configure the startup of the 

solution. Here, you need to pick the Multiple startup projects option and then arrange 

the projects in the required order using the arrows on the right.

With this configuration in place, if you press F5, first the API project will be launched 

followed by the client project. You can then test the CRUD operations using the client 

project.

 Summary
In this chapter, you learned to build ASP.NET Core Web APIs. You built two APIs, 

namely, Employees and Countries. To perform CRUD operations on the Employees 

table from within the Employees API, you created repositories. In the process, you 

learned how to execute raw SQL queries and stored procedures using EF Core. The 

repositories are registered with the DI framework using the AddScoped() method. 

You then proceeded to build the client application in ASP.NET Core MVC. The client 

application uses the HttpClient class to invoke the APIs. The HttpClient class is 

asynchronous by design, and therefore you also created asynchronous actions in the 

EmployeeManagerController. The HttpClient is registered with the DI framework 

using the AddSingleton() method. The API and the client transfer data in JSON format. 

Figure 5-12. Configuring multiple startup projects

Chapter 5  aSp.Net Core Web apI



226

You used classes from the System.Text.Json namespace such as JsonSerializer and 

JsonSerializerOptions to serialize and de-serialize data to and from JSON format.

In this version of Employee Manager, the client was a separate web application. In 

the next chapter, you will create a jQuery client that invokes the Web APIs to get the job 

done. You will also learn to secure the API using JWT authentication.

Chapter 5  aSp.Net Core Web apI



227
© Bipin Joshi 2019 
B. Joshi, Beginning Database Programming Using ASP.NET Core 3,  
https://doi.org/10.1007/978-1-4842-5509-4_6

CHAPTER 6

jQuery
In the preceding chapter, you created Web APIs and consumed them using HttpClient. 

Another popular way to invoke Web APIs is to invoke them using jQuery Ajax. jQuery is 

a feature-rich JavaScript library for performing HTML-centric operations such as DOM 

manipulation, event handling, animations, and Ajax. jQuery is being used by thousands 

of web sites, and it would be worthwhile to learn how to perform CRUD operations using 

this popular client-side library. To that end, this chapter teaches you to

• Build asynchronous Web APIs

• Invoke Web APIs using Ajax capabilities of the jQuery library

• Use asynchronous methods of Entity Framework Core

• Perform user authentication using the JSON Web Token (JWT)-based 

authentication scheme

Let’s get started.

Note This chapter assumes that you have basic familiarity with the jQuery library. 
Although jQuery Ajax features used by the sample application are discussed as and 
when they are encountered, this chapter doesn’t teach you the basics of jQuery. 
You may consider reading the jQuery official documentation at https://jquery.com 
to familiarize yourself with the library.

 Overview of Ajax
Before we actually look into any code of the example discussed in this chapter, it’s 

worthwhile to understand what Ajax is and how your web application benefits by 

integrating it with ASP.NET Core.

https://jquery.com


228

Originally, Ajax was an acronym for Asynchronous JavaScript and XML. However, 

modern web applications prefer JSON over XML as a format of data transfer. Simply 

put, Ajax is a way of communication between a browser client and a server that utilizes 

existing technologies such as HTML, XML, JSON, and JavaScript.

Let’s briefly understand what an asynchronous communication is in the context of 

JavaScript. Consider a data entry page that allows you to enter certain data and then 

submit that data to the server. The data is processed by the server, and the result of the 

processing is sent back to the browser.

Without Ajax in place, this communication takes this form:

• The user makes an initial request to the data entry page.

• The server sends the requested page to the browser.

• The user fills the data entry form and then sends the data to the 

server by submitting the form.

• Once the form is submitted, the user can’t work with the form 

anymore because the browser is waiting for the server to send the 

response.

• The server processes the data and sends some response back to the 

browser.

• Once the response is rendered in the browser, the user can again 

interact with the page.

The operation outlined in the preceding text is a synchronous operation because 

data entry (client-side activity) and data processing (server-side activity) happen one 

after the other.

Now suppose that the same page is built using Ajax. The sequence of operations in 

this case would be as follows:

• The user makes an initial request to the data entry page.

• The server sends the requested page to the browser.

• The user fills the data entry form and then sends the data to the 

server by submitting the form.

• This time the form is submitted using Ajax. Ajax being an 

asynchronous operation can be performed in the background 

through JavaScript code.

ChApTer 6  jQuerY



229

• User interaction with the page isn’t interrupted even if the browser is 

awaiting response from the server.

• The server processes the data and sends some response back to the 

browser.

• The browser can notify the user about the response so that further 

action (if any) can be taken.

Thus, in Ajax communication, user interaction with the page and server processing 

can occur in parallel. It should be noted that during Ajax communication, you need to 

choose the data format such as XML or JSON. The Ajax communication outlined in the 

preceding text is triggered using JavaScript and the XMLHttpRequest object provided by 

the browser.

The jQuery library wraps its Ajax functionality into a set of methods, the most 

important being $.ajax(). Other methods depend on the $.ajax() method to get their job 

done. So you use $.ajax() in the example application built in this chapter.

Note The example developed in this chapter uses the $.ajax( ) method of jQuery 
to accomplish its tasks. To know more about other Ajax methods, consider reading 
https://api.jquery.com/category/ajax.

 Create an ASP.NET Core Web Application
The example that you develop in this chapter exists as a EmployeeManager.Jquery 

project. This project includes the required Web APIs and also the jQuery client that 

consumes those APIs. The EmployeeManager.Jquery application uses asynchrony at 

three places:

• The Web API actions now asynchronous in nature.

• The Entity Framework Core code that performs the CRUD operations 

makes use of asynchronous methods (wherever applicable).

• jQuery client code uses $.ajax() which is asynchronous 

communication.

ChApTer 6  jQuerY

https://api.jquery.com/category/ajax


230

In the previous examples, you have been using ASP.NET Core Identity to implement 

user authentication. In this example, you learn to use the JSON Web Token (JWT)-based 

authentication system. More details about JWT authentication are available in later 

sections of this chapter.

You can create and configure the EmployeeManager.Jquery project just like the 

MVC and Web API projects you created in earlier chapters. Figure 6-1 shows the 

EmployeeManager.Jquery project loaded in Solution Explorer once it is complete.

Figure 6-1. EmployeeManager.Jquery loaded in Solution Explorer

ChApTer 6  jQuerY



231

The overall project organization is quite similar to the previous examples, but there 

are some differences. For example, the Controllers folder contains API controllers as well 

as MVC controllers. In the sections that follow, you develop several pieces that make this 

application with primary focus on Ajax communication. You can get the complete code 

of this application from this book’s code download. For the sake of brevity, steps that you 

already know (such as EF Core model creation) are not discussed here again.

Note In the Web ApIs that you develop in the next section, the data access 
code is added directly to the actions. This is done for the sake of brevity and 
simplicity. Once you finish this application, you can move the data access code to 
repositories.

 Employees Web API and Countries Web API
The EmployeesController and CountriesController represent the Web API classes 

that perform the CRUD operations. The GetAsync() and GetAsync(id) actions of 

EmployeesController are shown in Listing 6-1.

Listing 6-1. GetAsync() and GetAsync(id) actions of EmployeesController

[HttpGet]

public async Task<IActionResult> GetAsync()

{

    List<Employee> data = await db.Employees.ToListAsync();

    return Ok(data);

}

[HttpGet("{id}")]

public async Task<IActionResult> GetAsync(int id)

{

    Employee emp = await db.Employees.FindAsync(id);

    return Ok(emp);

}

ChApTer 6  jQuerY



232

The GetAsync() action is marked as an asynchronous action using the async 

keyword, and it returns a Task<IActionResult>. Inside, the code retrieves all the 

employees using the ToListAsync() method of IQueryable. As you might have guessed, 

ToListAsync() is an asynchronous method. Notice that the ToListAsync() line is 

marked with the await keyword. The List<Employee> is returned to the caller using the 

Ok() method. The Ok() method returns the OkObjectResult object to the caller and sets 

the HTTP status code to 200 (Ok). In this case, List<Employee> is also returned to the 

caller.

The GetAsync(id) action is similar to the GetAsync() action just discussed. 

However, it returns a Task<Employee> since only one Employee is to be returned. Inside, 

it uses the FindAsync() asynchronous method to find an Employee with matching 

EmployeeID. The Employee object is then returned to the caller after wrapping inside the 

Ok() method.

Note An ApI action can return data to the caller in three ways. It can return 
a concrete type such as a string or employee. Or it can wrap the data in an 
implementation of IActionresult. Or it can return Actionresult<T> to the caller. 
In the previous chapter, you used the first technique. In this chapter, you use the 
second technique to return data to the jQuery client.

Listing 6-2 shows the PostAsync() action of the EmployeesController that inserts a 

new employee to the Employees table.

Listing 6-2. PostAsync() action inserts a new employee

[HttpPost]

public async Task<IActionResult> PostAsync([FromBody]Employee emp)

{

    if (ModelState.IsValid)

    {

        await db.Employees.AddAsync(emp);

        await db.SaveChangesAsync();

         return CreatedAtAction("Get", new { id = emp.EmployeeID }, emp);

    }

ChApTer 6  jQuerY



233

    else

    {

        return BadRequest();

    }

}

The PostAsync() action is an asynchronous method and returns the IActionResult 

object wrapped inside a Task. The PostAsync() action accepts an Employee object as its 

parameter that indicates a new employee to be added to the database.

Notice the code marked in bold letters. The first line uses the AddAsync() method to 

add an employee to the DbSet. Then the code calls the SaveChangesAsync() method to 

persist the changes to the database. Note that AddAsync() and SaveChangesAsync() are 

asynchronous methods and hence the respective calls use the await keyword.

The PostAsync() action returns either a success status code or error status 

code to the caller. The successful completion of the action is indicated by returning 

the CreatedAtActionResult object using the CreatedAtAction() method. The 

CreatedAtAction() method sets HTTP status code to 201 (Created) and also sets the 

Location HTTP header indicating the URI of the newly created resource. It accepts three 

parameters: name of an action to use for generating the Location URL, route data to use 

while generating the URL, and newly created resource. A sample Location URL would be  

/api/Employees/1234 where 1234 is EmployeeID of a newly created employee.

The error status is returned to the caller using the BadRequest() method. The 

BadRequest() method returns BadRequestObjectResult to the caller and sets the HTTP 

status code to 400 (Bad request) indicating that the server can’t process the request due 

to some client error.

Listing 6-3 shows the PutAsync() action of the Web API that updates an existing 

employee.

Listing 6-3. PutAsync() action updates an employee

[HttpPut("{id}")]

public async Task<IActionResult> PutAsync(int id, [FromBody]Employee emp)

{

    if (ModelState.IsValid)

    {

        db.Employees.Update(emp);

        await db.SaveChangesAsync();

ChApTer 6  jQuerY



234

        return NoContent();

    }

    else

    {

        return BadRequest();

    }

}

This code should look familiar to you since it’s quite similar to the PostAsync() 

action. This time the code uses the Update() method of Employees DbSet to update an 

employee. The SaveChangesAsync() method then saves the changes to the database.

A successful completion of the action is indicated by returning a NoContentResult 

object using the NoContent() method. The NoContent() method sets the HTTP status 

code to 204 (No Content). An error status is returned by calling the BadRequest() 

method as before.

The DeleteAsync() action of EmployeesController that deletes an employee is 

shown in Listing 6-4.

Listing 6-4. DeleteAsync() action deletes an employee

[HttpDelete("{id}")]

public async Task<IActionResult> DeleteAsync(int id)

{

    Employee emp = await db.Employees.FindAsync(id);

    db.Employees.Remove(emp);

    await db.SaveChangesAsync();

    return NoContent();

}

Notice the code marked in bold letters. The DeleteAsync() action first finds 

an employee to be deleted using the FindAsync() method of Employees DbSet. 

It then removes that employee from the DbSet using the Remove() method. The 

SaveChangesAsync() method then deletes the employee from the database. As before, a 

success status code 204 is returned to the caller by calling the NoContent() method.

This completes the EmployeesController. On the same lines, you can create 

CountriesController. The CountriesController contains only the GetAsync() action 

and is shown in Listing 6-5.

ChApTer 6  jQuerY



235

Listing 6-5. Returning countries through CountriesController

[HttpGet]

public async Task<IActionResult> GetAsync()

{

    List<Country> countries=await db.Countries.ToListAsync();

    return Ok(countries);

}

The GetAsync() action is quite straightforward and uses ToListAsync() to realize all 

the Country entities. The countries are then returned to the caller by wrapping them in 

the Ok() method.

 EmployeeManager Controller
The EmployeeManagerController is quite simple and straightforward. Since actual 

CRUD calls are initiated from jQuery code, the EmployeeManagerController doesn’t 

have much code. It contains actions that simply return the views to the client. Listing 6-6 

shows these actions for your quick reference.

Listing 6-6. EmployeeManagerController contains actions that render views in 

the browser

public IActionResult List()

{

    return View();

}

public IActionResult Insert()

{

    return View();

}

public IActionResult Update(int id)

{

    ViewBag.EmployeeID = id;

    return View();

}

ChApTer 6  jQuerY



236

public IActionResult Delete(int id)

{

    ViewBag.EmployeeID = id;

    return View();

}

As you can see, the List(), Insert(), Update(), and Delete() actions render the 

respective views. The Update() and Delete() actions have an id parameter that is stored 

in ViewBag so that EmployeeID can be accessed on the respective views. This EmployeeID 

is required during the Ajax update and delete operations.

Make sure to add views returned by these actions – List.cshtml, Insert.cshtml, 

Update.cshtml, and Delete.cshtml – into the Views/EmployeeManager folder.

 Add a jQuery Library to the Project
In the previous versions of the Employee Manager application, you included a set of 

jQuery files in the wwwroot\Scripts folder. These files were required for client-side 

validation of various data entry forms. You added the <script> reference to these files in 

the _Layout.cshtml file like this:

<script src="~/Scripts/jquery.js"></script>

<script src="~/Scripts/jquery.validate.js"></script>

In this example, also you need to include those files in the wwwroot\Scripts folder. 

Especially the core jQuery library (jquery.js) and jQuery validation plugin (jquery.

validate.js) are important for us in this chapter’s example. Figure 6-2 shows these files 

placed inside the Scripts folder.

ChApTer 6  jQuerY



237

Since EmployeeManager.Jquery uses jQuery Ajax to invoke the Web API, there will 

be changes to how the forms are rendered and processed:

• Data entry forms no longer use Tag Helpers or HTML Helpers. They 

use plain HTML markup.

• The forms are not preloaded with data when they are sent from the 

server. Instead, the data is loaded from the client-side script.

• Since forms aren’t using Tag Helpers/HTML Helpers, data annotation 

validations aren’t used for performing the validations. You need to 

set the validation rules using the jQuery validation plugin.

• Insert, update, and delete operations are initiated programmatically 

by capturing the click event of the Save/Delete button.

 Display a List of Employees
A list of employees is rendered by the List.cshtml view (Figure 6-3) using jQuery 

Ajax. jQuery code invokes the GetAsync() action of Employees API and generates the 

employee listing on the fly.

Figure 6-2. jQuery library and jQuery validation plugin files placed in the 
wwwroot\Scripts folder

ChApTer 6  jQuerY



238

In order to accomplish this functionality, open the List.cshtml file and add the HTML 

markup as shown in Listing 6-7.

Listing 6-7. Markup of List.cshtml

<h2>List of Employees</h2>

<h3 class="message"></h3>

<a asp-controller="EmployeeManager"

   asp-action="Insert"

   class="linkbutton">Insert</a>

<br /><br />

<table id="employeeList" border="1">

    <tr>

        <th>Employee ID</th>

        <th>First Name</th>

        <th>Last Name</th>

        <th>Title</th>

        <th colspan="2">Actions</th>

    </tr>

</table>

Figure 6-3. Displaying a list of employees

ChApTer 6  jQuerY



239

This markup is quite straightforward and should look familiar to you. At the top of 

the page, there is the Insert link rendered using the Anchor Tag Helper. What’s more 

important is the HTML table that follows. The <table> has an id of employeeList. This id 

is used by the jQuery code while adding various rows to the table. Since rows are added 

dynamically, even the Update and Delete links are rendered via code.

Now, at the top of List.cshtml (just above the page heading), add a script block as 

shown in Listing 6-8.

Listing 6-8. jQuery ready() method

<script>

    $(document).ready(function () {

    });

</script>

In this code, $ refers to the jQuery object. What follows in brackets is called a jQuery 

selector. Here, it’s document selector. There are various types of selectors, and you use 

some of them in later sections. A jQuery selector returns zero or more DOM elements. 

Here, the code selects the page’s document object and calls the ready() method on it.

The ready() method accepts an anonymous function that will be called once the 

HTML Document Object Model (DOM) of the page is accessible in the browser. You 

want to call the Employees API only after the List.cshtml is loaded in the browser so that 

the employeeList table is accessible. The ready() method helps you ensure this easily.

The jQuery code that actually calls the Employees API goes inside the anonymous 

function passed to the ready() method and is shown in Listing 6-9.

Listing 6-9. Making Ajax call to the GetAsync() action of Employees API

var options = {};

options.url = "/api/employees";

options.type = "GET";

options.dataType = "json";

options.beforeSend = function (request) {

  ...

};

options.success = function (data) {

  ...

};

ChApTer 6  jQuerY



240

options.error = function (xhr) {

  ...

}

$.ajax(options);

The code creates a new JavaScript object named options. Then a series of properties 

are set on this options object. These properties configure the Ajax call made to the 

Employees API and are summarized as follows (remember that jQuery, being a 

JavaScript library, is case sensitive):

• The url property indicates the API endpoint URL. An Ajax request is 

made to this target URL.

• The type property indicates the HTTP verb to be used to invoke the 

API. In this case, the GET verb is used since you want to call the 

GetAsync() action of the API.

• The dataType property indicates the type of data returned from the 

API. In this case, it’s JSON. Other possibilities include XML, HTML, 

and string.

• The beforeSend property is a callback function that gets invoked just 

before initiating the Ajax call.

• The success property is a callback function that gets invoked when 

the API call successfully completes.

• The error property is a callback function that gets called in case the 

API call fails.

Finally, the code calls the $.ajax() method of jQuery to initiate the Ajax call. The 

options object containing the configuration settings is passed to the $.ajax() call as a 

parameter.

Now, let’s discuss the three callback functions mentioned in the code – beforeSend, 

success, and error. The beforeSend callback is quite simple and is shown in  

Listing 6- 10.

ChApTer 6  jQuerY



241

Listing 6-10. beforeSend callback function

options.beforeSend = function (xhr) {

    $("h3.message").html("Wait...");

};

Here, the callback function accepts an object of type jqXHR. The jqXHR is basically 

a superset of the XMLHttpRequest object. Although the code doesn’t make use of the 

xhr parameter at the moment, you still add it to the signature because you use it while 

implementing JWT authentication.

Inside, the callback function uses a CSS selector of jQuery and grabs the <h3> 

element that has message CSS class applied to it. It then sets the HTML content of the 

<h3> element to a progress message using the html() method. This way a user can be 

notified that Ajax progress is going on in the background. You could have also used a 

fancy graphics or animation instead of a text message.

The success function that gets called upon successful completion of the Ajax call is 

shown in Listing 6-11.

Listing 6-11. Success callback function adds rows to the table

options.success = function (data) {

    data.forEach(function (element) {

        var row = "<tr>";

        row += "<td>";

        row += element.employeeID;

        row += "</td>";

        row += "<td>";

        row += element.firstName;

        row += "</td>";

        row += "<td>";

        row += element.lastName;

        row += "</td>";

        row += "<td>";

        row += element.title;

        row += "</td>";

        row += "<td>";

ChApTer 6  jQuerY



242

         row += "<a href='/EmployeeManager/Update/" + element.employeeID + 

"' class='linkbutton'>Update</a>";

        row += "</td>";

        row += "<td>";

         row += "<a href='/EmployeeManager/Delete/" + element.employeeID + 

"' class='linkbutton'>Delete</a>";

        row += "</td>";

        row += "</tr>";

        $("#employeeList").append(row);

    });

    $("h3.message").html("");

    if (sessionStorage.hasOwnProperty("message")) {

$("h3.message").html(sessionStorage.getItem("message"));

        sessionStorage.removeItem("message");

    }

};

The success function receives the value returned from the API as its parameter. 

Recollect that the GetAsync() action of the Employees API returns a List of Employee 

objects. Therefore, the success function receives an array of Employee objects as its 

parameter.

Inside, the code iterates through the array using its forEach() method. Every 

iteration forms a table row (<tr> element). Each row contains columns that output 

employeeID, firstName, lastName, and title of an employee. Notice that server-side 

property names such as EmployeeID, FirstName, and LastName automatically get 

converted to their camel-casing equivalent names. This is done because in the JavaScript 

world camel-casing is quite common and popular.

Note that a table row also contains Update and Delete links. These links point to the 

Update() and Delete() actions of EmployeeManagerController, respectively. Also note 

that employeeID is passed to these actions through a route parameter.

Once the HTML markup for a row is created, the row is added to the employeeList 

table using the append() method. To get hold of the employeeList table, the ID selector 

of jQuery (# followed by the id of an HTML element) is used. Once the table rows are 

added, the progress message is cleared by setting its value to an empty string.

ChApTer 6  jQuerY



243

Next, during delete operation, the delete page sets a success message into the 

client-side sessionStorage object. The sessionStorage object is a client-side storage 

mechanism that allows you to store arbitrary key-value pairs. The sessionStorage 

object exists as long as the current session lasts. If you close the browser tab or browser 

window, then all the data from sessionStorage is discarded. The code checks whether 

the sessionStorage object contains a key named message. This is done using the 

hasOwnProperty()method. If the message property exists, the hasOwnProperty() 

method returns true. The message is then retrieved using the getItem() method 

and is assigned to the <h3> element. The message key is then removed from the 

sessionStorage using the remove() method.

The error callback function is called in case there is any error while calling the 

Employees API and is shown in Listing 6-12.

Listing 6-12. Error callback is executed in case the API call fails

options.error = function (xhr) {

    $("h3.message").html("Error while calling the API");

}

The error callback receives a jqXHR just like the beforeSend callback. Inside, an error 

message is displayed in the <h3> element so that the user can be notified of the error.

 Insert a New Employee
Clicking the Insert link on the employee listing page takes you to another page where 

you can insert a new employee (Figure 6-4).

ChApTer 6  jQuerY



244

The Insert.cshtml uses plain HTML markup to render the data entry form. This 

markup is shown in Listing 6-13. Note that for the sake of clarity, markup not directly 

related to the insert operation is omitted from the listing.

Listing 6-13. Markup of Insert.cshtml

<h2>Insert New Employee</h2>

<h3 class="message"></h3>

<form id="insertForm">

    <table border="0">

       ...

       <label for="firstName">First Name :</label>

       ...

       <input type="text" id="firstName" name="firstName"/>

       ...

       <label for="lastName">Last Name :</label>

       ...

    <input type="text" id="lastName" name="lastName" />

    ...

Figure 6-4. Inserting a new employee

ChApTer 6  jQuerY



245

    <label for="title">Title :</label>

    ...

    <input type="text" id="title" name="title"/>

    ...

    <label for="birthDate">Birth Date :</label>

    ...

    <input type="date" id="birthDate" name="birthDate"/>

    ...

    <label for="hireDate">Hire Date :</label>

    ...

    <input type="date" id="hireDate" name="hireDate"/>

    ...

    <label for="country">Country :</label>

    ...

    <select id="country" name="country">

      <option value="">Please select</option>

    </select>

    ...

    <label for="notes">Notes :</label>

    ...

    <textarea id="notes" name="name" rows="5" cols="40">

    </textarea>

     ...

     <button id="save" type="button">Save</button>

     ...

    </table>

</form>

The <form> element’s id is insertForm. The action and method attributes for the 

form are not set because the form is not submitted through the traditional HTML way; 

rather, Ajax call is used to send the data to the server.

Inside, there is a series of form fields for entering various pieces of data. Note that id 

and name attributes of these elements are set to firstName, lastName, title, birthDate, 

hireDate, country, and notes, respectively. The id attribute is primarily used by jQuery 

code, and the name attribute is used while wiring the validation rules using the jQuery 

validation plugin.

ChApTer 6  jQuerY



246

The form validations are configured in the ready() callback of jQuery. This code 

involves setting the validation rules, validation messages, and such tasks. Here, for the 

sake of simplicity, only the essential configuration is done. You may visit the official web 

site of the jQuery validation plugin (https://jqueryvalidation.org) for more detailed 

information. The jQuery code that configures the validation is shown in Listing 6-14.

Listing 6-14. Configuring form validation rules

$("#insertForm").validate({

    rules: {

        firstName: {

            required: true,

            maxlength: 10

        },

        lastName: {

            required: true,

            maxlength: 20

        },

        title: {

            required: true,

            maxlength: 30

        },

        birthDate: "required",

        hireDate: "required",

        country:"required",

        notes: {

            maxlength: 500

        }

    },

    messages: {

        firstName: "Invalid First Name",

        lastName: "Invalid Last Name",

        title: "Invalid Title",

        birthDate: "Invalid Birth Date",

        hireDate: "Invalid Hire Date",

        country:"Invalid Country",

ChApTer 6  jQuerY

https://jqueryvalidation.org


247

        notes: "Invalid Notes"

    },

    errorClass: "message"

});

This code initializes the jQuery validation plugin on the insertForm. The insertForm 

is selected using the ID selector of jQuery (#insertForm), and then the validate() method 

is called on it passing configuration details. The configuration details are passed through 

a JavaScript object literal and are summarized as follows:

• There are three main configuration properties used here – rules, 

messages, and errorClass.

• The rules property holds a set of form fields and validation rules applied 

to them. For example, validation rules for the firstName input field include 

required and maxlength. The required property is set to true indicating 

that the field is required. The maxlength property is set to 10 indicating 

that a maximum of ten characters can be entered in that field. On the 

same lines, validation rules for the other form fields are configured.

• The messages property includes a set of validation error messages to 

be displayed for the form fields. For example, the firstName input field 

displays Invalid First Name in case any of the validation rules fails.

• The errorClass property indicates a CSS class that is applied to the 

form fields and error messages in case they contain invalid data.

Instead of specifying validation rules, you could have also specified them in the 

form of HTML5 attributes. For example, validation rules for firstName could have been 

specified like this also:

<input type="text"

id="firstName"

name="firstName"

maxlength="10" required/>

So depending on your requirement and preferred coding style, you can pick one of 

the ways of specifying the validation rules.

As soon as the Insert.cshtml loads in the browser, you need to initiate an Ajax request 

to the Countries API to get a list of all the countries. This list is then filled in the Country 

ChApTer 6  jQuerY



248

dropdown list. Listing 6-15 shows how this is done (place this code immediately after 

initializing the jQuery validation plugin).

Listing 6-15. Filling the Country dropdown list

var options = {};

options.url = "/api/countries";

options.type = "GET";

options.dataType = "json";

options.beforeSend = function (request) {

    $("h3.message").html("Wait...");

};

options.success = function (countries) {

  for (var i = 0; i < countries.length; i++) {

      $("#country").append("<option>" + countries[i].name

      + "</option>");

  }

  $("h3.message").html("");

};

options.error = function (xhr) {

    $("h3.message").html("Error while calling the API!");

};

$.ajax(options);

This code should look familiar to you since you used similar code in List.cshtml. 

Here, the code invokes the GetAsync() action of the Countries API by making a GET 

request. The url and type properties of the options object are set accordingly.

Have a look at the success callback function. It receives a countries array as its 

parameter because Countries API returns a List of Country objects. Inside, a for loop 

iterates through the countries array and one by one adds countries to the Country 

dropdown list. The append() method of jQuery accepts an HTML markup and appends 

it to the selected element. A <select> element contains <option> child elements, and 

hence various <option> elements are appended to the Country dropdown list.

The Ajax call is initiated by calling the $.ajax() method of jQuery and passing the 

options object to it.

ChApTer 6  jQuerY



249

When the user fills various form fields and clicks the Save button, you need to 

invoke the PostAsync() action of the Employees API and save the new employee to the 

database. This calls for handing click event of the Save button (Listing 6-16).

Listing 6-16. Invoking the PostAsync() action of Employees API

$("#save").click(function () {

    if ($("#insertForm").valid()) {

        var options = {};

        options.url = "/api/employees";

        options.type = "POST";

        var obj = {};

        obj.firstName = $("#firstName").val();

        obj.lastName = $("#lastName").val();

        obj.title = $("#title").val();

        obj.birthDate = $("#birthDate").val();

        obj.hireDate = $("#hireDate").val();

        obj.country = $("#country").val();

        obj.notes = $("#notes").val();

        options.data = JSON.stringify(obj);

        options.contentType = "application/json";

        options.beforeSend = function (request) {

            $("h3.message").html("Wait...");

        };

        options.success = function () {

                         $("h3.message").html("Employee inserted successfully!");

                  };

        options.error = function (xhr) {

            $("h3.message").html("Error while calling

                                  the  API!");

        };

        $.ajax(options);

    }

});

ChApTer 6  jQuerY



250

The code uses the click() method of jQuery to specify a callback function that gets 

executed when the user clicks the Save button. An Ajax request is to be made only if all 

the form fields contain valid values. This is checked using the valid() method of the 

jQuery validation plugin. If the form is valid (valid() returns true), then the options 

object is created and its various properties are set.

Since you want to invoke the PostAsync() action of the Employees API, the type is 

set to POST.

While making the POST request, you also need to send the new employee details. 

These details are filled in a JavaScript object named obj. Notice how the values from the 

form fields are retrieved using the val() method. Remember that the property names of 

obj must match the property names of Employee.

Then the obj JavaScript object is converted into its JSON equivalent using the JSON.

stringify() method. The JSON.stringify() method is available in all the modern 

browsers. It accepts a JavaScript object and converts into its JSON equivalent. The 

resultant JSON string is assigned to the data property of the options object.

The contentType property is used to indicate the content type of the data 

accompanying the request. Since employee data is being sent in JSON format, the 

contentType is set to application/json.

The beforeSend callback function displays a progress message to the user that 

indicates that an Ajax call is in progress.

The success callback function is called if the Web API call is successful, and it 

displays a success message to the user.

The error callback is invoked in case the API call fails and displays an error message 

to the user.

Finally, the Ajax call is initiated using the $.ajax() method of jQuery.

 Update an Existing Employee
On the employee listing page, each employee row has Update and Delete links. Clicking 

the Update link takes you to the update employee page where the existing details of that 

employee are presented for editing (Figure 6-5).

ChApTer 6  jQuerY



251

The Update Existing Employee page looks similar to the Insert New Employee page 

except that various control values are now filled with the details of the employee being 

modified. The EmployeeID being the primary key can’t be modified.

The Update.cshtml contains a <form> that is quite similar to the preceding section. 

This time, however, it also embeds the EmployeeID being modified in a hidden form 

field. This is shown in Listing 6-17.

Listing 6-17. Update.cshtml embeds EmployeeID as a hidden form field

<form id="updateForm">

   ...

   <label for="firstName">Employee ID :</label>

   ...

   <span>@ViewBag.EmployeeID</span>

   <input type="hidden" id="employeeID" name="employeeID"

          value="@ViewBag.EmployeeID" />

   ...

</form>

Figure 6-5. Updating an existing employee

ChApTer 6  jQuerY



252

As you can see, the updateForm displays the EmployeeID in a <span> element 

and also stores its value in a hidden form field. Recollect that the Update() action of 

EmployeeManagerController stores the EmployeeID into ViewBag. The same ViewBag 

property is being retrieved here and assigned to the hidden form field.

The other form fields of updateForm are quite similar to the earlier form and hence 

are not discussed here. The process of wiring the form validations and filling the Country 

dropdown list is exactly the same as before and hence not discussed here again.

Once the Country dropdown list is filled, you need to make an Ajax request to 

Employees API that invokes the GetAsync(id) action. This is necessary because you 

need to populate the existing employee details into various form fields so that the user 

can modify them as required. This Ajax call is shown in Listing 6-18.

Listing 6-18. Filling form fields with existing employee details

var options = {};

options.url = "/api/employees/" + $("#employeeID").val();

options.type = "GET";

options.dataType = "json";

options.beforeSend = function (request) {

    $("h3.message").html("Wait...");

};

options.success = function (data) {

 $("#firstName").val(data.firstName);

 $("#lastName").val(data.lastName);

 $("#title").val(data.title);

 $("#birthDate").val(data.birthDate.substring(0, 10));

 $("#hireDate").val(data.hireDate.substring(0, 10));

 $("#country").val(data.country);

 $("#notes").val(data.notes);

 $("h3.message").html("");

};

options.error = function () {

    $("h3.message").html("Error while calling the API!");

};

$.ajax(options);

ChApTer 6  jQuerY



253

Notice the code shown in bold letters. This time, the url property of the options 

object also includes the EmployeeID whose details are to be retrieved. The EmployeeID is 

retrieved from the hidden form field.

The success function receives the Employee object whose details are fetched from 

the server. The code then fills various form fields such as firstName, lastName, title, 

birthDate, hireDate, country, and notes with the details received from the API. Notice 

the use of the val() method to set the form field values. Also notice how the birthDate 

and hireDate values are assigned. By default, Web API returns dates in ISO date format: 

yyyy-MM-ddThh:mm:ss. Since these fields are date fields, the time portion needs to be 

trimmed before you assign the value to the input field. This is done using the JavaScript 

substring() method (you can also use some other JavaScript technique to get date 

values in yyyy-MM-dd format). Once the form field values are assigned, the progress 

message is removed.

The Ajax call is initiated using the $.ajax() method as before.

When a user makes changes to the employee details and clicks the Save button, you 

need to invoke the PutAsync() action of the Employees API so that the changes can be 

saved in the database. This calls for handling the click event of the Save button and is 

shown in Listing 6-19.

Listing 6-19. Invoking the PutAsync() action of Employees API

$("#save").click(function () {

    if ($("#updateForm").valid()) {

        var options = {};

        options.url = "/api/employees/" + $("#employeeID").val();

        options.type = "PUT";

        var obj = {};

        obj.employeeID = parseInt($("#employeeID").val());

        obj.firstName = $("#firstName").val();

        obj.lastName = $("#lastName").val();

        obj.title = $("#title").val();

        obj.birthDate = $("#birthDate").val();

        obj.hireDate = $("#hireDate").val();

        obj.country = $("#country").val();

        obj.notes = $("#notes").val();

ChApTer 6  jQuerY



254

        options.data = JSON.stringify(obj);

        options.contentType = "application/json";

     options.beforeSend = function (request) {

         $("h3.message").html("Wait...");

     };

     options.success = function () {

         $("h3.message").html("Employee updated

                               successfully!");

     };

     options.error = function (xhr) {

         $("h3.message").html("Error while calling

                               the API!");

     };

     $.ajax(options);

    }

});

This code is quite similar to the one that inserts a new employee. Notice the code 

marked in bold letters. This time the url property also includes the EmployeeID. This 

EmployeeID is supplied to the id parameter of the PutAsync() API action. Also, the HTTP 

verb specified in the type property is PUT since this is an update operation. Also notice 

the use of the parseInt() JavaScript method to convert string EmployeeID from the 

hidden input field to an integer.

Finally, $.ajax() accepts the options object with the configuration settings and 

initiates the Ajax call.

 Delete an Existing Employee
When you click the Delete link for an employee record in the List.cshtml, a confirmation 

page is shown that warns the user about the employee deletion. Once the user confirms 

the deletion, the employee gets deleted from the database (Figure 6-6).

ChApTer 6  jQuerY



255

When Delete.cshtml is rendered in the browser, you need to make an Ajax call and 

retrieve employee details for a specific EmployeeID. To display these details, you make 

use of <span> elements as shown in Listing 6-20. For the sake of clarity, only a part of the 

whole markup is shown here.

Listing 6-20. Displaying employee details in <span> elements

<h2>Delete Existing Employee</h2>

<h3 class="message">

    Warning : You are about to delete an employee record.

</h3>

<form id="deleteForm">

    <table border="0">

        <tr>

            <td class="right">Employee ID :</td>

            <td>

                <span>@ViewBag.EmployeeID</span>

                <input type="hidden"

                       id="employeeID"

Figure 6-6. Confirming employee deletion

ChApTer 6  jQuerY



256

                       name="employeeID"

                       value="@ViewBag.EmployeeID" />

            </td>

        </tr>

        <tr>

            <td class="right">First Name :</td>

            <td><span id="firstName"></span></td>

        </tr>

        <tr>

            <td class="right">Last Name :</td>

            <td><span id="lastName"></span></td>

        </tr>

        ...

        ...

        <tr>

            <td colspan="2">

                <button id="delete" type="button">

                  Delete

                </button>

            </td>

        </tr>

    </table>

</form>

Recollect that the Delete() action of EmployeeManagerController stores the 

EmployeeID in ViewBag. That EmployeeID is stored in a hidden input field so that jQuery 

Ajax code knows which employee is to be deleted. The <span> elements that display 

employee details have id attributes – firstName, lastName, title, birthDate, hireDate, 

country, and notes. These <span> elements are assigned the respective values from 

jQuery code discussed shortly. There is also a Delete button that can be used to initiate 

the delete operation.

The jQuery code that loads the employee details goes inside the ready() method as 

before. Listing 6-21 shows how this is done.

ChApTer 6  jQuerY



257

Listing 6-21. jQuery code loads employee details from the Employees API

var options = {};

options.url = "/api/employees/" + $("#employeeID").val();

options.type = "GET";

options.dataType = "json";

options.beforeSend = function (request) {

    $("h3.message").html("Wait...");

};

options.success = function (data) {

    $("#firstName").html(data.firstName);

    $("#lastName").html(data.lastName);

    $("#title").html(data.title);

    $("#birthDate").html(data.birthDate.substring(0, 10));

    $("#hireDate").html(data.hireDate.substring(0, 10));

    $("#country").html(data.country);

    $("#notes").html(data.notes);

    $("h3.message").html("");

};

options.error = function (xhr) {

    $("h3.message").html("Error while calling the API!");

};

$.ajax(options);

The code makes a GET request to the Employees API and passes EmployeeID in the 

URL. This way, the GetAsync(id) action of the Employees API is invoked and returns a 

particular employee. This Employee object is received in the success callback function. 

Inside the success callback, the code assigns values to various <span> elements using the 

html() method.

The beforeSend callback and error callback are quite straightforward and are 

identical to the previous calls.

Finally, the $.ajax() method accepts the options object with various configuration 

settings and initiates the Ajax call.

When the user clicks the Delete button, another Ajax call is made to the server to 

delete the employee. This requires handling the click event of the Delete button from 

jQuery code. Listing 6-22 shows how this is done.

ChApTer 6  jQuerY



258

Listing 6-22. Deleting an employee by invoking the DeleteAsync() action

$("#delete").click(function () {

    var options = {};

    options.url = "/api/employees/" + $("#employeeID").val();

    options.type = "DELETE";

    options.contentType = "application/json";

    options.beforeSend = function (request) {

        $("h3.message").html("Wait...");

    };

    options.success = function () {

        sessionStorage.setItem("message", "Employee deleted

                                           successfully!");

        window.location.href = "/EmployeeManager/List";

    };

    options.error = function (xhr) {

        $("h3.message").html("Error while calling the API!");

    };

    $.ajax(options);

});

The click callback function first configures the options object. Note that the type 

property of the options object is set to DELETE so that the DeleteAsync() action of the 

Employees API is invoked. Also note that EmployeeID stored in the hidden input field is 

appended to the URL specified in the url property.

Once the employee is deleted successfully, the success callback is invoked. Inside, a 

success message is stored in the sessionStorage object’s message key. The user is then 

redirected to the employee listing page. Recollect that List.cshtml shows the success 

message stored in sessionStorage to the user. Finally, the Ajax call is initiated using the 

$.ajax() method.

At this stage, your application is ready to perform CRUD operations. You can run 

the application and check whether all the jQuery Ajax calls are working as expected. In 

the sections that follow, you integrate the JSON Web Token (JWT)-based authentication 

scheme into the Employee Manager application.

ChApTer 6  jQuerY



259

 Overview of the JSON Web Token (JWT)-Based 
Authentication
In the earlier chapters, you used ASP.NET Core Identity to authenticate and authorize 

the users. You are aware that ASP.NET Core Identity uses a cookie-based authentication 

for its functionality. Although cookie-based authentication works great for many 

applications, there are situations when developers prefer to use alternatives. Consider 

the following:

• Cookies are transferred between a browser and server automatically 

as a part of a request-response cycle. This automatic cookie transfer 

can expose the web application to CSRF/XSRF attacks.

• Automatic sending of cookies by the browser works only for requests 

belonging to the same origin. That means cross-domain calls can’t 

use the cookie authentication effectively.

• Cookies work primarily for the browser-based clients. Non-browser 

clients such as mobile apps may not be able to deal with the cookies.

Considering this, an increasing number of modern web applications, especially 

Single Page Applications (SPAs) and Web APIs, prefer alternatives over the traditional 

cookie authentication. One such popular alternative is what is known as JSON Web 

Token or JWT.

 What Is JWT?
JWT is an open standard to pass user data between client and server. JWT is more secure 

and can also be used with non-browser clients. A JWT consists of three parts, namely, 

header, payload, and signature:

header.payload.signature

The header part consists of information such as algorithm used to generate the 

signature and is a JSON object.

The payload part consists of the data or claims to be stored inside the JWT. For 

example, user ID and roles can go as a part of payload in a JWT.

ChApTer 6  jQuerY



260

Based on the header and payload, a cryptographic hash is generated using some 

algorithm such as HS256 (HMAC with SHA-256). A secret key is used while generating 

this hash. The resultant hashed data is then appended as the signature part of JWT.

Note here, only a simplified version of jWT is presented just to give you a 
brief understanding of the overall jWT generation process. Discussion of all the 
encoding and hashing techniques involved is beyond the scope of this book.

Unlike cookies, which are passed automatically by the browser to the server, JWT 

needs to be explicitly passed to the server. So a simplified flow of operations would be as 

follows:

• The client sends security credentials such as user name and 

password to the server for validation.

• The server validates the user name and password.

• If found correct, the server generates and issues a JWT to the client.

• The client receives the token and stores it somewhere.

• While requesting any resource from the server, the client adds the 

JWT issued earlier in the Authorization header.

• The server reads the Authorization header to retrieve the JWT.

• If the token is valid, the server performs the action requested by the 

client.

This flow of operations is pictorially shown in Figure 6-7.

ChApTer 6  jQuerY



261

As you can see from the figure, there are three distinct parts – client, authentication 

service, and CRUD service. A user signs in to the system by sending user name and 

password to the authentication service. Here, it is assumed that the authentication 

service and CRUD service are part of the same application. However, the authentication 

service can also be a third-party service. The authentication service first authenticates 

the user by validating supplied user name and password. If the details are valid, it creates 

a JWT and issues it to that user.

The user can now invoke CRUD service (or any other application-specific service). 

While doing so, the user sends the JWT through the Authorization header. The CRUD 

service verifies the incoming JWT. If the JWT is valid, it proceeds to invoke the requested 

operation. The response of the operation is sent back to the user.

As far as Employee Manager is concerned, a JWT is created by SecurityController – 

a Web API that takes care of user registration and sign-in. The SecurityController is 

discussed in later sections.

Figure 6-7. JWT authentication flow in a nutshell

ChApTer 6  jQuerY



262

 Add Support for JWT Authentication
Now that you are familiar with JWT-based authentication, let’s add JWT authentication 

support to Employee Manager developed earlier in this chapter. In the sections that 

follow, you add this support in steps, the first step being defining a data store for the user 

information.

 Storing User Details
ASP.NET Core Identity stores user and role details such as UserName, Password, and 

Email in certain SQL Server tables; and you are familiar with those tables from the 

examples of previous chapters. Now that you want to use a different authentication 

scheme (JWT in this case), you also need to decide the data store for these details. In 

this example, you create a new table in the Northwind database for that purpose. It is a 

common practice to create three tables, namely, Users, Roles, and UserRoles, to store 

user details, role details, and user-to-role mapping. However, for the sake of simplicity 

here, you create just one table named Users with schema as shown in Figure 6-8.

Figure 6-8. Users table added to the Northwind database

As you can see, the Users table consists of these columns – UserID, UserName, 

Password, Email, FullName, BirthDate, and Role. The column names are self- 

explanatory. The Role column holds a role name assigned to a user. In this example, 

ChApTer 6  jQuerY



263

a user has only one role assigned – Manager. So this simple arrangement works for 

Employee Manager. Note that all these details are stored as plain text. In a more realistic 

scenario, you should consider some encryption strategy for storing these details.

Once you add the Users table to the Northwind database, you can create the User 

entity class that maps to this table. The User class is shown in Listing 6-23.

Listing 6-23. User class maps to the Users table

public class User

{

    [DatabaseGenerated(DatabaseGeneratedOption.Identity)]

    [Required]

    [Display(Name ="User ID")]

    public int UserID { get; set; }

    [Required]

    [StringLength(20)]

    [Display(Name = "User Name")]

    public string UserName { get; set; }

    [Required]

    [StringLength(20)]

    [Display(Name = "Password")]

    public string Password { get; set; }

    [Required]

    [Display(Name = "Email")]

    [EmailAddress]

    public string Email { get; set; }

    [Required]

    [Display(Name = "Full Name")]

    public string FullName { get; set; }

    [Required]

    [Display(Name = "Birth Date")]

    public DateTime BirthDate { get; set; }

ChApTer 6  jQuerY



264

    [Required]

    [StringLength(50)]

    [Display(Name = "Role")]

    public string Role { get; set; }

}

The User class contains several properties such as UserID, UserName, Password, 

Email, FullName, BirthDate, and Role. These properties map to the columns of the 

Users table you just created.

Make sure to add Users DbSet to the AppDbContext so that user data can be accessed 

via EF Core:

public class AppDbContext:DbContext

{

    ...

    public DbSet<User> Users { get; set; }

}

 Enable and Configure JWT Authentication
Now that you created the Users table and User entity class, you are ready to enable 

JWT authentication for your web application. You do this in the ConfigureServices() 

method of the Startup class. Before you proceed to ConfigureServices(), however, you 

need to add this NuGet package – Microsoft.AspNetCore.Authentication.JwtBearer. 

This package represents an ASP.NET Core middleware that enables JWT authentication 

features.

Now, add the configuration information shown in Listing 6-24 to appsettings.json.

Listing 6-24. Adding JWT configuration to appsettings.json

"Jwt": {

  "Key": "c65decd0-c396-4083-a71e-f8ad42cf7f7d",

  "Issuer": "Employee Manager Security API",

  "Audience": "Employee Manager Client App"

}

ChApTer 6  jQuerY



265

Here, a configuration section named Jwt is added that contains three keys – Key, 

Issuer, and Audience. The Key is a secret key that is used to sign a JWT. In this case, a 

GUID is used just as an example. The Issuer key indicates a string value that represents 

the issuer of JWT. An issuer is a party that issues JWT. In this example, SecurityController 

Web API is the issuer. Audience is a party that indicates the intended recipient of a 

JWT. In this example, the jQuery client is the recipient.

A JWT carries issuer and audience details that can be used while validating it. A JWT 

issued to one application shouldn’t be used with another application. This is ensured 

using the issuer and audience values. In a more real-world case, you should set these 

keys to more meaningful values such as URIs indicating the respective parties.

These details (Key, Issuer, and Audience) are used at two distinct places in the code. 

Firstly, they are used while creating a new JWT. This happens in SecurityController 

(discussed later). Secondly, these details are used while configuring JWT authentication 

so that a JWT supplied while calling Employees Web API and Countries Web API can 

be validated against these details. This happens in the application startup (discussed 

shortly). These values are stored in appsettings.json to avoid hard-coding them in the 

source code.

Then open the Startup class and use these namespaces:

using Microsoft.AspNetCore.Authentication.JwtBearer;

using Microsoft.IdentityModel.Tokens;

Next, go to the ConfigureServices() method and add the configuration shown in 

Listing 6-25 at the end of the method.

Listing 6-25. Configuring JWT authentication in the ConfigureServices() method

public void ConfigureServices(IServiceCollection services)

{

   ...

   ...

   services.AddAuthentication

(JwtBearerDefaults.AuthenticationScheme)

            .AddJwtBearer(options =>

            {

                options.TokenValidationParameters =

                new TokenValidationParameters

ChApTer 6  jQuerY



266

                {

                    ClockSkew = TimeSpan.Zero,

                    ValidateIssuer = true,

                    ValidateAudience = true,

                    ValidateLifetime = true,

                    ValidateIssuerSigningKey = true,

                    ValidIssuer = config["Jwt:Issuer"],

                    ValidAudience = config["Jwt:Audience"],

                     IssuerSigningKey = new SymmetricSecurityKey(Encoding.

UTF8.GetBytes(config["Jwt:Key"]))

                };

            });

}

The code uses the AddAuthentication() method to specify the authentication 

scheme to be JwtBearerDefaults.AuthenticationScheme.

Then the AddJwtBearer() method configures various parameters used while 

validating JWTs. The ValidateIssuer, ValidateAudience, ValidateLifetime, and 

ValidateIssuerSigningKey properties are set to true indicating that issuer, audience, 

lifetime, and signing key of a JWT should be validated against the specified values. 

The values for these pieces of information are supplied via properties – ValidIssuer, 

ValidAudience, and IssuerSigningKey properties. The lifetime of a JWT is specified 

at the time of generating it. The values of ValidIssuer, ValidAudience, and 

IssuerSigningKey are picked from the appsettings.json (read earlier discussion).

Notice that IssuerSigningKey is assigned a SymmetricSecurityKey object. The 

SymmetricSecurityKey object is constructed by passing the byte array of the secret key 

stored in the appsettings.json.

Once ConfigureServices() is complete, go to Configure() and call 

UseAuthentication() and UseAuthorization() methods as you normally do (Listing 6-26).

Listing 6-26. Enabling authentication and authorization

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

    ...

    app.UseStaticFiles();

ChApTer 6  jQuerY



267

    app.UseRouting();

         app.UseAuthentication();

         app.UseAuthorization();

    ...

}

These methods wire authentication and authorization middleware in the HTTP pipeline.

 Create a New User Account
Creating a new user account and signing a user in to the application is done inside 

SecurityController. The Register() action of SecurityController does this and is shown 

in Listing 6-27.

Listing 6-27. Register() action of SecurityController creates a new user account

[HttpPost]

[Route("[action]")]

public IActionResult Register([FromBody]Register userDetails)

{

    var usr = from u in db.Users

                where u.UserName == userDetails.UserName

                select u;

    if (usr.Count() <= 0)

    {

        var user = new User();

        user.UserName = userDetails.UserName;

        user.Password = userDetails.Password;

        user.Email = userDetails.Email;

        user.FullName = userDetails.FullName;

        user.BirthDate = userDetails.BirthDate;

        user.Role = "Manager";

        db.Users.Add(user);

        db.SaveChanges();

        return Ok("User created successfully.");

    }

ChApTer 6  jQuerY



268

    else

    {

        return BadRequest("UserName already exists.");

    }

}

Usually an API action getting invoked is decided by the HTTP verb. The Security 

API consists of two public actions – Register() and SignIn(). Both of these actions are 

invoked using a POST request. Therefore, to distinguish between the two requests, they 

need to be identified through routing. That’s what the [Route] attribute added to the 

Register() action does. Adding the [Route] attribute with [action] token means that 

the underlying action will be invoked using this URL – /api/Security/Register.

The Register() action receives details about the new user account via the Register 

model class. The Register model class is identical to the one used in previous chapters 

and hence not discussed here again.

Inside, the Register() action checks whether a user with the same UserName already 

exists or not. If the UserName doesn’t exist, the code proceeds to creating a new User 

object and adds it to the Users DbSet. Then SaveChanges() is called to save the user 

details to the Users database table. Note that the Role property of the User object is set to 

Manager. Once a user is added to the database, a success message is sent to the caller.

Note here, you assigned the Manager role to a user at the time of user 
registration. In a more realistic case, you will have separate user management and 
role management pages that allow you to create roles, remove roles, and assign 
roles to users.

In case the UserName already exists in the database, an error message is sent to the caller.

The Register() action is called from Register.cshtml using jQuery Ajax. For the 

sake of brevity, the HTML markup of Register.cshtml and jQuery validation plugin 

configuration are not discussed here. You can grab those pieces from the book’s source 

code. The jQuery Ajax call that invokes the Register() action is shown in Listing 6-28.

ChApTer 6  jQuerY



269

Listing 6-28. Invoking the Register() action using jQuery Ajax

$("#create").click(function () {

    if ($("#registerForm").valid()) {

        var options = {};

        options.url = "/api/security/register";

        options.type = "POST";

        var obj = {};

        obj.userName = $("#userName").val();

        obj.password = $("#password").val();

        obj.confirmPassword = $("#confirmPassword").val();

        obj.email = $("#email").val();

        obj.fullName = $("#fullName").val();

        obj.birthDate = $("#birthDate").val();

        options.data = JSON.stringify(obj);

        options.contentType = "application/json";

        options.dataType = "text";

        options.success = function (msg) {

            $("h3.message").html(msg);

            $("#userName").val("");

            $("#password").val("");

            $("#confirmPassword").val("");

            $("#email").val("");

            $("#fullName").val("");

            $("#birthDate").val("");

        };

        options.error = function () {

            $("h3.message").html("Error while calling API!");

        };

        $.ajax(options);

    }

});

ChApTer 6  jQuerY



270

This code should look familiar to you because you used similar code while writing 

the CRUD operations. The code creates the options object as before. This time the url 

property of the options object is set to /api/security/register since you want to 

invoke the Register() action. The type property is set to POST. The user account details 

such as UserName, Password, Email, FullName, and BirthDate are picked from various 

form fields and then wrapped in a JavaScript object. The JSON equivalent of that object 

is set to the data property of the options object. This data is send to the Security API 

along with the Ajax request.

The success callback receives a success message from the Security API. That 

message is displayed in the <h3> element, and various form fields are made empty.

Finally, the code initiates an Ajax call using the $.ajax() method.

 Signing In to the Application
In order to sign in to the application, a user specifies user name and password on the 

sign-in page. The sign-in page makes an Ajax request to the SignIn() action of the 

Security API. The SignIn() action is shown in Listing 6-29.

Listing 6-29. SignIn() action issues a JWT

[HttpPost]

[Route("[action]")]

public IActionResult SignIn([FromBody]SignIn loginDetails)

{

    var query = from u in db.Users

                where u.UserName == loginDetails.UserName

                && u.Password == loginDetails.Password

                select u;

    if (query.Count() > 0)

    {

        var tokenString = GenerateJWT(loginDetails.UserName);

        return Ok(new { token = tokenString });

    }

ChApTer 6  jQuerY



271

    else

    {

        return Unauthorized();

    }

}

The SignIn() action is also decorated with the [Route] attribute just like the 

Register() action. It accepts a SignIn object that contains a UserName and Password 

as a parameter. The SignIn class is quite similar to the earlier examples except that it 

doesn’t have the RememberMe property (since cookies aren’t used in this example). For 

the sake of brevity, the SignIn class is not discussed here again.

Inside the SignIn() action, the code checks whether the UserName and Password 

combination exists in the Users table. If it does exists, then query.Count() is greater than 

0; it indicates that the user’s sign-in credentials are valid. If user credentials are valid, 

the code proceeds to generate a new JWT using the GenerateJWT() helper method. The 

GenerateJWT() method is discussed shortly.

The JWT generated by the GenerateJWT() method is wrapped into a OkObjectResult 

using the Ok() method. The OkObjectResult returns HTTP status code 200 to the caller 

along with the specified content (JWT in this case). In this case, content is an anonymous 

object with token property set to the generated JWT.

If the user validation fails, then the UnauthorizedResult object is returned to the 

caller using the Unauthorized() method. The UnauthorizedResult object returns HTTP 

status code 401 to the browser indicating that the user is not authorized to access a 

resource.

The GenerateJWT() helper method used by the SignIn() action is shown in Listing 6-30.

Listing 6-30. GenerateJWT() method creates a new JWT

private string GenerateJWT(string userName)

{

    var usr = (from u in db.Users

                where u.UserName == userName

                select u).SingleOrDefault();

    var claims = new List<Claim>();

    claims.Add(new Claim(ClaimTypes.Name,usr.UserName));

    claims.Add(new Claim(ClaimTypes.Role, usr.Role));

ChApTer 6  jQuerY



272

    var securityKey = new SymmetricSecurityKey(

                   Encoding.UTF8.GetBytes(config["Jwt:Key"]));

    var credentials = new SigningCredentials(

                      securityKey,

                      SecurityAlgorithms.HmacSha256);

    var token = new JwtSecurityToken(

        issuer: config["Jwt:Issuer"],

        audience: config["Jwt:Audience"],

        expires: DateTime.Now.AddHours(12),

        signingCredentials: credentials,

        claims: claims);

    var tokenHandler = new JwtSecurityTokenHandler();

    var stringToken = tokenHandler.WriteToken(token);

    return stringToken;

}

The GenerateJWT() method accepts a user name as its parameter. Inside, it fetches a 

User object containing details of that user. It then creates a List of Claim objects (make 

sure to use the System.Security.Claims namespace). A claim is a statement about a 

user. For example, the user’s name, email, or role can be treated as a claim made by that 

user. Here, two Claim objects are added to the list – one that holds UserName and the 

other that holds Role assigned to the user. Notice that type of the claim being added is 

specified using the ClaimTypes class.

Then a SymmetricSecurityKey object (Microsoft.IdentityModel.Tokens 

namespace) is created based on the security Key specified in the configuration file. 

The SymmetricSecurityKey class represents a key used for cryptographic purposes 

generated using a symmetric algorithm. Recollect that you used this class earlier in the 

ConfigureServices() method of the Startup class.

Next, a SigningCredentials object (Microsoft.IdentityModel.Tokens 

namespace) is created by passing the security key created earlier and security algorithm 

to be used. In this case, HmacSha256 algorithm is used. Based on these details, the 

SigningCredentials object can generate a digital signature used to sign a JWT.

ChApTer 6  jQuerY



273

Then a new JwtSecurityToken object is created. The JwtSecurityToken class 

represents a JWT, and several pieces of information are supplied in its constructor.

The issuer parameter indicates an issuer of this JWT, and its value is picked from the 

configuration file. The audience parameter indicates the intended recipient or audience 

of this JWT, and its value is picked from the configuration file. The expires parameter 

indicates a DateTime at which the JWT being created is considered expired. In this case, 

the expiry is set to 12 hours, but you can change this value as per your requirement. The 

signingCredentials parameter indicates a SigningCredentials object that is used 

to digitally sign the JWT being created. The claims parameter indicates a list of claims 

belonging to this JWT.

Then an object of JwtSecurityTokenHandler class is created. The 

JwtSecurityTokenHandler class is used for creating and validating JWTs. The 

WriteToken() method of JwtSecurityTokenHandler accepts the JwtSecurityToken 

object created earlier and creates a string representing the JWT. Finally, the string token 

is returned to the caller (SignIn() action in this case).

Now that you know how a JWT is created and issued from the Security API, let’s 

discuss the jQuery Ajax code that invokes the SignIn() action of the Security API. For 

the sake of brevity, the HTML markup and configuration of the validation rules are not 

discussed here. The click event handler of the Sign In button that contains the necessary 

jQuery Ajax code is shown in Listing 6-31.

Listing 6-31. Invoking the SignIn() action and storing JWT on the client side

$("#signin").click(function () {

    if ($("#signinForm").valid()) {

        var options = {};

        options.url = "/api/security/signin";

        options.type = "POST";

        var obj = {};

        obj.userName = $("#userName").val();

        obj.password = $("#password").val();

        options.data = JSON.stringify(obj);

        options.contentType = "application/json";

        options.dataType = "json";

ChApTer 6  jQuerY



274

                 options.success = function (obj) {

                      sessionStorage.setItem("token", obj.token);

                       sessionStorage.setItem("userName", $("#userName").

val());

                      window.location.href = "/EmployeeManager/List";

                  };

        options.error = function () {

            $("h3.message").html("Unable to Sign-in");

        };

        $.ajax(options);

    }

});

This code should look familiar to you because you used similar code many times 

earlier in this chapter. Note that the url property of the options object points to the 

SignIn() action. The user name and password entered by a user are wrapped in the obj 

JavaScript object and are sent along with the POST request.

Notice the code marked in bold letters. It shows the success callback that gets executed 

upon successful API call. The success callback receives an object containing the JWT issued 

by the SignIn() action. The JWT is saved in the sessionStorage object of the browser 

with a key name of token. The user’s sign-in name is also stored in the username key of the 

sessionStorage. This way the JWT issued by the server is stored on the client machine. You 

can use this persisted JWT while making calls to the Employees API (discussed later).

Once the JWT and user name are stored in the sessionStorage, the user is 

redirected to the /EmployeeManager/List so that the employee listing page can be 

rendered. This is done using the window.location.href property.

Note here, you use the sessionStorage object to persist the jWT issued by the 
server. The sessionStorage is emptied when you close the browser window or 
tab. And you will be required to get another token the next time you access the 
application. If you want, you can also store the token in the localStorage object 
which is remembered across browser sessions.

If there is an error during the signing-in operation, error callback is invoked that 

displays an error message to the user.

ChApTer 6  jQuerY



275

 Signing Out of the Application
Signing out of the application requires you to remove the JWT stored in the 

sessionStorage object. jQuery code that does that resides in the layout file (Layout.

cshtml). Have a look at Listing 6-32 that shows a fragment of the _Layout.cshtml

Listing 6-32. Displaying user name and the Sign Out button

<h2 id="userName"></h2>

<form id="signoutForm">

    <button id="signout" type="button">Sign Out</button>

</form>

The markup shows an <h2> element with id of userName and a <form> element with 

id of signoutForm. The signoutForm contains the signout button. The userName element 

is used to display the user’s name who is currently signed in to the application, whereas 

clicking the signout button removes the JWT stored in the sessionStorage.

Listing 6-33 shows how these elements are used by the jQuery code.

Listing 6-33. jQuery code for showing user name and signing the user out of the 

application

$(document).ready(function () {

    if (sessionStorage.hasOwnProperty("userName")) {

         $("#userName").html("You are signed in as " + sessionStorage.

getItem("userName"));

    }

    else {

        $("#signoutForm").hide();

    }

    $("#signout").click(function () {

        sessionStorage.removeItem("token");

        sessionStorage.removeItem("userName");

        window.location.href = "/EmployeeManager/SignIn";

    });

});

ChApTer 6  jQuerY



276

When any page is displayed in the browser, the code from the ready() method is 

executed. The code checks whether the sessionStorage object contains the userName 

key. If it contains the userName key, it indicates that some user is currently signed in to 

the application. So the code shows the user name in the <h2> element. If the userName 

key doesn’t exist, it indicates that no user is currently signed in to the application, and 

hence the signoutForm is kept hidden.

The click event handler of the signout button removes token and userName keys 

from the sessionStorage object. The user is redirected to the sign-in page by setting the 

window.location.href property to /EmployeeManager/SignIn.

 Enforce Authentication on All Pages
Now that sign-in and sign-out operations are complete, you can proceed to secure the 

Employees API and pages doing the CRUD operations.

Open Employees API and decorate the controller class with the [Authorize] attribute:

[Route("api/[controller]")]

[Authorize(Roles = "Manager")]

public class EmployeesController : ControllerBase

{

   ...

}

As you can see, the usage of the [Authorize] attribute is identical to the previous 

examples even though this time you are using JWT authentication. The only difference 

is EmployeesController is an API controller class. When you add the [Authorize] 

attribute, the Employees API will allow only the authorized users to invoke its actions.

Since the Employees API now requires JWT authentication, you should send the JWT 

stored in the sessionStorage while making the Ajax calls. Listing 6-34 shows part of List.

cshtml illustrating how this can be done.

Listing 6-34. Sending JWT from client to the server

$(document).ready(function () {

    if (!sessionStorage.hasOwnProperty("token")) {

           window.location.href = "/EmployeeManager/SignIn";

         }

ChApTer 6  jQuerY



277

    ...

    options.beforeSend = function (xhr) {

        xhr.setRequestHeader("Authorization",

                 "Bearer " + sessionStorage.getItem("token"));

        $("h3.message").html("Wait...");

    };

...

Notice the code shown in bold letters. When a page is loaded in the browser, the 

code checks whether JWT is stored in the sessionStorage or not. This is done by 

checking the existence of the token key in the sessionStorage. If no JWT exists, then the 

user is redirected to the sign-in page.

The beforeSend callback sets the Authorization HTTP header before making 

an Ajax request. This is done using the setRequestHeader() method of the jqXHR 

object. The Authorization header contains the credentials to authenticate a user 

with the server. Here, you want to send a JWT bearer token to the server. So the value 

of the Authorization header is a string – Bearer followed by the actual JWT from the 

sessionStorage.

If a request doesn’t contain the JWT or the token has expired or the token is invalid, 

then the Employees API returns HTTP status code 401 (Unauthorized). You need to 

check this code in the error callback as shown in Listing 6-35.

Listing 6-35. Employees API returns 401 – Unauthorized status code if JWT is 

invalid

options.error = function (xhr) {

         if (xhr.status == 401) {

            window.location.href = "/EmployeeManager/SignIn";

         }

    $("h3.message").html("Error while calling the API");

}

The status property of the jqXHR object indicates the HTTP status code returned 

from the server. If it’s 401 (Unauthorized), then the user is redirected to the sign-in page.

Make sure to add the code discussed in the preceding text in all the pages 

participating in the CRUD operations.

ChApTer 6  jQuerY



278

This completes the Employee Manager application that uses jQuery Ajax. Verify 

whether user registration, sign-in, and sign-out operations are working as expected 

along with the CRUD operations.

 Summary
In this chapter, you created the Employee Manager application using ASP.NET Core 

MVC, Web API, and jQuery Ajax. You learned how a Web API can be invoked using 

jQuery’s $.ajax() method. You programmed the CRUD operations using jQuery Ajax 

and then implemented JWT-based authentication.

JWT authentication is a popular authentication scheme when it comes to securing 

APIs and SPAs. You learned to configure and generate JWT using .NET Core classes. You 

also learned to store and send a JWT issued by the server using client-side script.

Although the example discussed in this chapter makes heavy use of jQuery Ajax, 

it isn’t a Single Page Application (SPA). In the next chapter, you develop Employee 

Manager as a SPA using ASP.NET Core and Angular.

ChApTer 6  jQuerY



279
© Bipin Joshi 2019 
B. Joshi, Beginning Database Programming Using ASP.NET Core 3,  
https://doi.org/10.1007/978-1-4842-5509-4_7

CHAPTER 7

Angular
In this chapter you develop the Employee Manager application as an Angular SPA 

(Single Page Application). Angular is a JavaScript framework that allows you to build 

rich client applications and provides many features such as components, directives, data 

binding, form processing, services, and dependency injection. Angular applications 

are written using TypeScript, a superset of JavaScript. TypeScript is a typed language 

and provides many object-oriented features such as classes, interfaces, and data types. 

TypeScript code is compiled (often called Transpilation) into plain JavaScript so that it 

can be used by any browser.

Employee Manager that you develop in this chapter exposes its CRUD functionality 

using ASP.NET Core Web APIs. User authentication is also done using Web API 

and JWT. An Angular front-end utilizes those Web APIs using Angular’s HttpClient. 

Specifically, this chapter teaches you to

• Build SPA using Angular

• Utilize ASP.NET Core Web APIs using Angular’s HttpClient class

• Use Angular Command Line Interface (CLI) to create Angular 

applications, components, and services

• Validate and process forms using Angular’s reactive forms (also 

called Model Driven Forms)

• Integrate ASP.NET Core’s JWT authentication scheme with the 

Angular application

Let’s get started.



280

Note This chapter assumes that you have basic familiarity with Angular 
and TypeScript. Although Angular features used by the sample application are 
discussed as and when they are encountered, this chapter doesn’t attempt to 
teach you the basics of Angular. You may consider reading the Angular official 
documentation at https://angular.io and TypeScript official documentation 
at www.typescriptlang.org for more details. This chapter also assumes that 
you have installed Node.js and Angular CLI on your development machine. Read 
the Angular official web site for more details.

 Overview of the Project Structure
The Employee Manager application that you build in this chapter is divided into two 

applications for the sake of development. The first application is an ASP.NET Core API 

application that hosts Web APIs used by Employee Manager. That means Employees API, 

Countries API, and Security API are part of this application. These Web APIs are identical 

to the ones that you built in the previous chapter, and hence they are not discussed here 

again.

The second application is an Angular application that represents the front-end to 

the Web APIs. It contains various pieces of the Angular application such as classes, 

components, and services.

During development, the ASP.NET Core application and the Angular application 

exist as two independent projects. Therefore, communication between them is cross- 

domain communication. Since by default browsers prohibit cross-domain calls, you 

need to enable CORS (Cross Origin Resource Sharing) in the ASP.NET Core application.

Note Communication is said to be cross-domain if the origin of the two parties 
taking part in the communication is not the same. An origin consists of a scheme, 
a host, and a port. To accept requests from different origins, the web server should 
be configured to have the Access-Control-Allow-Origin HTTP header. You may read 
more about CORS at https://docs.microsoft.com/en-us/aspnet/core/
security/cors.

CHAPTeR 7  ANguLAR

https://angular.io
http://www.typescriptlang.org
https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors


281

Once the development is over, the resultant Angular application becomes a part of 

the ASP.NET Core application and hence doesn’t need CORS enabled. Figure 7-1 shows 

the overall arrangement of the ASP.NET Core project containing the Web APIs.

As you can see, most of the pieces of the EmployeeManager.Angular project are 

identical to the EmployeeManager.Jquery project you developed in the previous chapter. 

Here, there is no Views folder because the application’s user interface is provided by 

Angular. Also notice that EF Core model and associated classes are identical to the 

EmployeeManager.Jquery project. You can get the completed EmployeeManager.

Angular from this chapter’s source code download.

Figure 7-2 shows the Angular SPA that represents the front-end of Employee 

Manager.

Figure 7-1. ASP.NET Core project containing Web APIs

CHAPTeR 7  ANguLAR



282

Note Simply put, a Single Page Application or SPA generates its user interface 
on the fly by rewriting the current page instead of fetching different pages from 
the web server. Such an application can also provide additional features such as 
client-side routing. So the application appears to be “navigating” between pages, 
but in reality it is just rendering different parts of the uI on the same page.

You can see from the figure that Angular code files are organized in several 

subfolders under the app folder (the project root folder is named EmployeeManager 

AngularApp, but you could name it anything of your choice). You will know about 

Figure 7-2. Angular application provides the front-end of Employee Manager

CHAPTeR 7  ANguLAR



283

various parts that make the front-end in due course of time. For now just try to acquaint 

yourself with the overall project structure. You can also grab the complete source of this 

Angular application from the book’s source code.

Once the Angular application is complete, it is compiled to produce plain JavaScript 

code. The resultant JavaScript code is then placed inside the wwwroot folder of the 

EmployeeManager.Angular project. This is shown in Figure 7-3.

So once the development is complete, you can run and deploy Employee Manager as 

a single ASP.NET Core application. The Index.html seen inside the wwwroot folder is the 

launching page of the Angular SPA.

Figure 7-3. Angular application integrated with the ASP.NET Core application

CHAPTeR 7  ANguLAR



284

Note Visual Studio also provides a project template for creating Angular 
applications. However, you won’t use it in this book. Dealing with the Angular 
application independently of the ASP.NeT Core application allows you to clearly 
understand how an Angular application works and how it can be integrated into 
an ASP.NeT Core application. Once you know these details, you can easily use the 
Visual Studio Angular project template to build Angular applications.

 Create ASP.NET Core Web API Application
In order to work through this chapter’s example, you first need to create an ASP.NET 

Core Web API application named EmployeeManager.Angular. This application is quite 

similar to the EmployeeManager.Jquery application you developed in the previous 

chapter. So, you can utilize that code base while creating the EmployeeManager.

Angular project.

The EmployeeManager.Angular application serves three Web APIs, namely, 

EmployeesController, CountriesController, and SecurityController. Additionally it also 

contains EF Core model classes (AppDbContext, Employee, and Country classes) and 

view models required for user authentication functionality (User, Register, and SignIn 

classes). Since these classes are identical to the previous example, they are not discussed 

here again. Note, however, that

• The EmployeeManager.Angular project doesn’t have the Views folder 

because UI is rendered using an Angular application

• For the same reason, there is no EmployeeManagerController class in 

the Controllers folder

• The wwwroot folder can be made empty because jQuery files and 

style sheet files are not required in this project

• Since the Web APIs are to be made available to an independent 

Angular application, CORS must be enabled in the Web API project

If you wish, you can simply grab the EmployeeManager.Angular project from this 

chapter’s code download and run it as discussed in the following.

CHAPTeR 7  ANguLAR



285

 Enabling CORS in Web API Project
To enable CORS in the EmployeeManager.Angular application, go to the Startup class 

and add this line to the ConfigureServices() method:

public void ConfigureServices(IServiceCollection services)

{

    services.AddCors();

    ...

}

The AddCors() method adds CORS services to the IServiceCollection. Further, go 

to the Configure() method and add the code shown in Listing 7-1.

Listing 7-1. Configuring CORS midleware

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

    ...

    app.UseCors(builder => builder

            .AllowAnyOrigin()

            .AllowAnyMethod()

            .AllowAnyHeader());

    ...

}

The UseCors() method wires the CORS middleware to the HTTP pipeline. It also 

configures a CORS policy by specifying three settings:

• AllowAnyOrigin() means an external request from any origin is 

allowed to access resources of this application.

• AllowAnyMethod() means any HTTP method (GET, POST, etc.) can 

be used to make a request.

• AllowAnyHeader() means that any HTTP headers are allowed.

CHAPTeR 7  ANguLAR



286

Note Here you granted Web API access to any external request. However, in a 
more realistic case, you should ensure that only specific origins and specific HTTP 
methods are allowed to access the Web API. Detailed discussion of CORS and 
CORS policies is beyond the scope of this book. You may read more about CORS 
in ASP.NeT Core at https://docs.microsoft.com/en-us/aspnet/core/
security/cors.

The code discussed in the preceding text should be used only during development. 

Once you integrate the Angular application with the ASP.NET Core application, you 

should remove this code.

 Running Web API Application
Once the Web APIs are ready in the EmployeeManager.Angular application, they need 

to be made available to the Angular application being developed in later sections. 

Normally, you run a web application from within Visual Studio so that you can debug 

and test it. Here, you would use another approach to run the application since the Web 

APIs are already ready.

Locate the Visual Studio program group and click the Developer Command 

Prompt entry. This will open a console window. Change the working folder to the 

EmployeeManager.Angular project root folder and issue this command:

> dotnet run

Here, you are using .NET Core Command Line Interface (CLI) to run the application. 

Once you issue this command, your console window should resemble Figure 7-4.

CHAPTeR 7  ANguLAR

https://docs.microsoft.com/en-us/aspnet/core/security/cors
https://docs.microsoft.com/en-us/aspnet/core/security/cors


287

Notice that the Web API application is now available at http://localhost:5000 (this 

URL might be different depending on your project setup). If you wish to check whether 

the Web APIs are available or not, just comment out the [Authorize] attribute added 

to them, and then run the project as mentioned in the preceding text. You can then try 

accessing them using a browser. Figure 7-5 shows a browser accessing the Employees API.

Figure 7-4. Running the Web API project using .NET Core CLI

Figure 7-5. Accessing Employees Web API using browser

CHAPTeR 7  ANguLAR



288

As you can see, the Get() action of the Employees API is invoked, and list of 

employees is returned to the browser. Before going further make sure to uncomment 

the [Authorize] attribute and then run the application again. You can either keep this 

application running in the background as you begin developing the Angular application, 

or you can run it as and when needed by the Angular application. You can terminate the 

Web API application by pressing Ctrl + C.

 Create Angular Application
Now that EmployeeManager.Angular project is ready, you can proceed to create an 

Angular application. To do so, open the Node.js command prompt from the Node.

js program group. Go to a folder where you want to place the newly created Angular 

application. To create an Angular application, issue this Angular CLI command at the 

command prompt:

> ng new EmployeeManagerAngularApp

Upon issuing this command, you will be asked whether you like to add Angular 

routing or not. Enter Y because you want to implement client-side routing to 

the application and press the enter key. You will then be asked which style sheet 

format would you like to use. Select CSS (default) from the list and press the enter 

key. The project creation starts and a new Angular application gets created in the 

EmployeeManagerAngularApp folder.

Once you are notified about the project creation, go inside the EmployeeManager 

AngularApp folder and issue this command at the command prompt:

> ng serve --open

This command builds the Angular application and also starts listening at  

http://localhost:4200. The --open switch opens the default browser and launches 

the URL just mentioned. To terminate the Angular application, you can press Ctrl + C. 

Figure 7-6 shows how the newly created Angular application looks in the browser.

CHAPTeR 7  ANguLAR



289

Before beginning the Angular application development, it is worthwhile to note 

that the ASP.NET Core Web API application is available at http://localhost:5000 and 

the Angular application is available at http://localhost:4200. Thus communication 

between them is going to be a cross-domain communication and will require CORS 

enabled in the Web API application (see earlier section on enabling CORS).

 Angular Application Architecture
Now that you have created an Angular application, it would be worthwhile to briefly 

understand the overall architecture of an Angular application. Rather than discussing 

each and every piece of an Angular application, here you will focus on the parts that you 

are going to utilize in the EmployeeManagerAngularApp application.

An Angular application consists of one or more modules or NgModules. A module 

wraps related functionality together. At a minimum, an application has what is known as 

a root module. You can also have additional modules called feature modules (they are 

optional). NgModules can import functionality from other NgModules. They can also 

export their own functionality to other NgModules. The root module is responsible for 

Figure 7-6. Newly created Angular application launched in browser

CHAPTeR 7  ANguLAR



290

loading the application (often called bootstrapping). If you look at the code files created 

during the application creation, the app.module.ts contains the root module named 

AppModule.

An Angular application contains one or more components. A component deals with 

a part of the user interface. A component consists of a view and associated data and 

logic. A view is an HTML file that typically contains HTML markup and data binding 

code. The data needed by a view can be bundled into model classes. At a minimum, an 

Angular application needs to have one component. The app.component.ts file contains a 

default component named AppComponent.

An Angular application can contain many views (provided by different components 

of the application). You can “navigate” through these views using Angular’s routing 

service. The router can define client-side routes and associated navigational features.

In a typical Angular application, you would also want to isolate reusable pieces of 

code into one or more services. This way your application’s code base can be made 

modular, reusable, and maintainable. A service is injected into components through 

Angular’s dependency injection system.

At code level, the building blocks mentioned in the preceding text – NgModules, 

components, and services – exist as TypeScript classes. These classes are decorated with 

what is known as decorators that provide metadata information about the class under 

consideration. For example, NgModule classes are decorated with the @NgModule() 

decorator, component classes are decorated with the @Component() decorator, and 

service classes are decorated with the @Injectable() decorator.

 Editing Angular Project Files in Visual Studio
Angular project files can be edited using any text editor of your choice. However, here 

you use Visual Studio to do so. Some other popular applications for working with 

Angular projects include Visual Studio Code, WebStorm, Atom, and Sublime Text.

To open the Angular project that is just created in Visual Studio, click the File ➤ 

Open ➤ Folder menu option. Then select the EmployeeManagerAngularApp folder in 

the Select Folder dialog and click Select Folder button. This opens the selected folder in 

Visual Studio and your Solution Explorer looks as shown in Figure 7-7.

CHAPTeR 7  ANguLAR



291

Out of all the folders and files shown in Solution Explorer, files under the 

EmployeeManagerAngularApp ➤ src ➤ app folder are more important to you because 

they represent your application’s code. Many of the other files are used by Angular 

internally, and you don’t need to change them in any way.

Figure 7-7. EmployeeManagerAngularApp folder opened in Visual Studio

CHAPTeR 7  ANguLAR



292

During the development of the Angular application, you add various parts needed 

by the application using Angular CLI and then edit them using Visual Studio IDE. Once 

you edit the files as per your requirement, you can build and run the application using 

Angular CLI.

In the sections that follow, you add various pieces such as classes, components, and 

services that make your Angular application.

 Add Employee, Country, and User Classes
The Angular application that consumes the Web APIs deals with employees, countries, 

and users. Therefore, you need three TypeScript classes, namely, Employee, Country, 

and User, that represent the respective entities.

You add these classes to the Models folder and use Angular CLI to create them. Go to 

Node.js Command Prompt and issue these commands one after the other:

> ng generate class models/Employee

> ng generate class models/Country

> ng generate class models/User

The ng generate command is used to generate various parts of an Angular 

application such as classes, components, and services. Specifying the class option 

indicates that you want to create a class. The class option is followed by path and name 

of the class. In this case, the Employee class is created inside the Models folder. If the 

Models folder doesn’t exist, it will be created for you.

Issuing this command creates two files per class – *.ts file and *.spec.ts file. The .ts 

file is the main TypeScript class file, and the .spec.ts file contains unit tests for your code. 

You won’t use the .spec.ts files in this book, and they can even be deleted to reduce the 

clutter from the folder.

Next, open the Employee class (Employee.ts) in Visual Studio and modify it as shown 

in Listing 7-2.

Listing 7-2. Employee TypeScript class

export class Employee {

  employeeID: number;

  firstName: string;

  lastName: string;

CHAPTeR 7  ANguLAR



293

  title: string;

  birthDate: Date;

  hireDate: Date;

  country: string;

  notes: string;

}

The export keyword indicates that the class under consideration can be accessed 

from other parts of your application. The class keyword followed by a class name 

indicates the class you wish to create (Employee in this case).

The Employee class consists of several members such as employeeID, firstName, 

lastName, title, birthDate, hireDate, country, and notes. Note that these member 

names correspond to the server-side Employee class property names. That’s because you 

need to transport data between Angular application and the ASP.NET Core application 

through these properties. Also note that these members have data types such as number, 

string, and Date.

Note In a TypeScript class, members are public by default. You can explicitly use 
public or private access modifiers if you want.

On the same lines, you can create Country and User classes. These classes are shown 

in Listing 7-3.

Listing 7-3. Country and User TypeScript classes

export class Country {

  countryID: number;

  name: string;

}

export class User {

  userName: string;

  password: string;

  email: string;

  fullName: string;

  birthDate: Date;

}

CHAPTeR 7  ANguLAR



294

 Add Service to Invoke Employees Web API
To invoke the Web APIs, you use Angular’s HttpClient class. Rather than writing the 

HttpClient-related code at several places, it would be better if you isolate it in one place. 

You can then reuse that code wherever you want in the application.

You can accomplish this by creating an Angular service. Once created, an Angular 

service can be injected into other parts of your application. A service exposes certain 

reusable functionality and doesn’t contain any user interface elements.

In this section you create EmployeesApi service that helps you invoke various actions 

of the Employees Web API. To create this service, go to the Node.js command prompt 

and issue this command:

> ng generate service employees-api/EmployeesApi

The preceding command creates a service EmployeesApiService (the Service suffix 

is automatically added to the name you specify) under the employees-api folder. The 

service physically exists in the employees-api.service.ts file. If you open this file, you will 

see the code shown in Listing 7-4.

Listing 7-4. Newly created EmployeesApiService class

import { Injectable } from '@angular/core';

@Injectable({

  providedIn: 'root'

})

export class EmployeesApiService {

  constructor() { }

}

The import statement at the top indicates that you wish to use the Injectable 

symbol from the @angular/core package. The EmployeesApiService class is decorated 

with @Injectable() decorator. Using the @Injectable() decorator means that the 

underlying class can be injected by Angular’s dependency injection system.

The @Injectable() decorator accepts a metadata object. In this case, the 

providedIn property of the metadata object is set to root indicating that you want to 

provide the service under consideration at the application’s root level. This means 

Angular will create one shared instance of the service under consideration and will inject 

it into a component that requests the service.

CHAPTeR 7  ANguLAR



295

The EmployeesApiService class also has an empty constructor. The constructor can 

be used to initialize the service and is similar to C# constructor.

Now let’s modify the EmployeesApiService so that it invokes the Employees Web API 

using Angular’s HttpClient class.

Go to the top of the .ts file and add these two import statements:

import { HttpClient, HttpHeaders } from '@angular/common/http';

import { Employee } from '../models/employee';

The first import statement indicates that you want to use HttpClient class and 

HttpHeaders class from the specified Angular package. The second import statement 

indicates that you want to use Employee model class residing in the specified .ts file (you 

created this class earlier in the previous section).

Then go to the EmployeesApiService class and declare a couple of members and also 

define the constructor as shown in Listing 7-5.

Listing 7-5. HttpClient injected into the constructor

baseUrl: string = 'http://localhost:5000/api/employees';

client: HttpClient;

constructor(client: HttpClient) {

  this.client = client;

}

The code first declares baseUrl member that holds the URL where Employees Web 

API is located. Recollect that dotnet run command made the Web API available at the 

specified URL and port.

Then a member of type HttpClient is declared that holds an instance of 

HttpClient class. The HttpClient class is injected into the constructor as shown. 

The HttpClient class allows you to make HTTP requests to a web resource such as a 

Web API. You will find this constructor injection mechanism quite similar to ASP.NET 

Core’s constructor injection.

Next, add a method called selectAll() that is intended to invoke the Get() action of 

the Employees Web API (Listing 7-6).

CHAPTeR 7  ANguLAR



296

Listing 7-6. selectAll() method invokes the Get() action of Employees Web API

selectAll() {

  return this.client.get(this.baseUrl, {

    headers: new HttpHeaders({

      "Authorization": "Bearer " + sessionStorage.getItem('token')

    })

  });

}

The selectAll() method calls the get() method of the HttpClient class. The 

get() method makes a GET request to the specified resource. In this case the resource 

is the Employees Web API. Since the Employees Web API is protected with JWT 

authentication, the code also passes the JWT issued and stored in the sessionStorage 

object when the user signs in to the system. The JWT is passed to the server as a part of 

the Authorization header. The Authorization header is wrapped inside the HttpHeaders 

object and passed in the headers parameter of get() method.

The get() method of HttpClient returns what is known as an Observable. An 

observable uses publisher-subscriber pattern for sending one or more values to 

its subscribers. So the observable publishes the values, and subscribers interested 

in receiving the values subscribe to it. Here, a list of employees is published to the 

subscribers. It should be noted that an observable executes only if it has at least one 

subscriber. In this example, the Angular component displaying a list of employees acts as 

the subscriber to the observable.

Note Detailed discussion of observables is beyond the scope of this book. 
You may read more about observables at  https://angular.io/guide/
observables.

The selectByID() method is similar to the selectAll() method and is shown in 

Listing 7-7.

CHAPTeR 7  ANguLAR

https://angular.io/guide/observables
https://angular.io/guide/observables


297

Listing 7-7. selectByID() invokes the Get(id) action of Employees Web API

selectByID(id: number) {

  return this.client.get(this.baseUrl + "/" + id, {

    headers: new HttpHeaders({

      "Authorization": "Bearer " + sessionStorage.getItem('token')

    })

  });

}

The selectByID() method accepts a numeric id parameter indicating an 

EmployeeID whose data is to be retrieved. Inside, the code calls the get() method of 

HttpClient as before. But this time the id is appended in the URL so that Get(id) action 

of the Employees Web API is invoked.

To make a POST request to the Employees Web API, you need to add the insert() 

method as shown in Listing 7-8.

Listing 7-8. insert() method makes a POST request to Employees Web API

insert(emp: Employee) {

  return this.client.post(this.baseUrl, emp, {

    headers: new HttpHeaders({

      "Authorization": "Bearer " + sessionStorage.getItem('token'),

      "Content-Type": "application/json"

    })

  });

}

The insert() method accepts a parameter of type Employee that represents a 

new employee to be added to the database. Inside, the code calls post() method of 

HttpClient to make a POST request to the Employees Web API. In addition to the URL 

and HttpHeaders, the emp object is also passed as a second parameter.

Note that HttpHeaders object contains Content-Type header in addition to the 

Authorization header. This way you indicate that JSON data is being passed along with 

the request.

Just like selectAll() and selectByID() methods, post() method also returns an 

Observable to the caller.

CHAPTeR 7  ANguLAR



298

To send a PUT request to the Web API, you need to write the update() method as 

shown in Listing 7-9.

Listing 7-9. update() method makes a PUT request to the Employees Web API

update(emp: Employee) {

  return this.client.put(this.baseUrl + '/' + emp.employeeID, emp, {

    headers: new HttpHeaders({

      "Authorization": "Bearer " + sessionStorage.getItem('token'),

      "Content-Type": "application/json"

    })

  });

}

The update() method is quite similar to insert() method in that it accepts an 

Employee object to be sent along with the PUT request and returns an Observable to the 

caller. However, it calls the put() method of HttpClient (so that the Put() action of the 

Web API is invoked) and appends the employeeID to the URL.

As in the previous case, you pass the Authorization and Content-Type headers using 

the HttpHeaders object.

Finally, the delete() method sends a DELETE request to the Web API in order to 

invoke its Delete() action (Listing 7-10).

Listing 7-10. delete() method makes a DELETE request to Employees Web API

delete(id: number) {

  return this.client.delete(this.baseUrl + "/" + id, {

    headers: new HttpHeaders({

      "Authorization": "Bearer " + sessionStorage.getItem('token')

    })

  });

}

The delete() method accepts a numeric EmployeeID and returns an Observable. 

Inside, the code calls the delete() method of HttpClient by appending the id 

parameter to the URL. The Authorization HTTP header is assigned a value as before.

CHAPTeR 7  ANguLAR



299

This completes the EmployeeApiService service. On the same lines, you can create 

CountriesApiService inside the countries-api folder. The CountriesApiService class will 

have only one method – selectAll(). Since this class is quite simple, it’s not discussed 

here. You can get the complete CountriesApiService class from this chapter’s code 

download. For your quick reference, the selectAll() method is shown in Listing 7-11.

Listing 7-11. selectAll() method of the CountriesApiService class

selectAll() {

  return this._http.get(this.baseUrl, {

    headers: new HttpHeaders({

      "Authorization": "Bearer " + sessionStorage.getItem('token')

    })

  });

}

As you can see, the selectAll() method calls the get() method of HttpClient and 

returns an Observable.

 Add Service to Invoke Security Web API
Now that EmployeesApiService and CountriesApiService are ready, let’s move ahead 

and create an Angular service that invokes the Security Web API. Go to the Angular CLI 

and issue this command:

> ng generate service security-api/SecurityApi

This will create a new service class named SecurityApiService under the security- 

api folder. At the top of this class, add these two import statements:

import { HttpClient, HttpHeaders } from '@angular/common/http';

import { User } from '../models/user';

Here, you import HttpClient and HttpHeaders classes as before. Additionally you 

also import the User model class created earlier.

The SecurityApiService contains a constructor that injects HttpClient and two 

methods – one for registering a user and another for signing the user in to the system. 

The complete SecurityApiService class is shown in Listing 7-12.

CHAPTeR 7  ANguLAR



300

Listing 7-12. SecurityApiService class

@Injectable()

export class SecurityApiService {

  baseUrl: string = 'http://localhost:5000/api/security';

  client: HttpClient;

  constructor(client: HttpClient) {

    this.client = client;

  }

  signIn(usr: User) {

    return this.client.post<any>(this.baseUrl + "/signin", usr);

  }

  register(usr: User) {

    return this.client.post(this.baseUrl + "/register", usr,

                            { responseType: 'text'});

  }

}

This code should look familiar to you since it is similar to the earlier services. The 

baseURL and client members store the URL of the Security Web API and HttpClient 

object, respectively. The HttpClient is injected in the constructor.

The signIn() method accepts a parameter of User type and returns an Observable. 

Inside, it makes a POST request to SignIn() action of the Security Web API using the 

post() method of HttpClient. Notice that the post<T>() method specifies the response 

body of type any (any type indicates that the exact data type is not known at development 

time). This is because SignIn() action returns either a JSON object with token property 

(if user credentials are valid) or HTTP status code 401 (Unauthorized). Also note that 

User object containing user name and password is passed to the post() method’s 

second parameter.

The register() method accepts a User object and returns an Observable. Inside, 

the code makes a POST request to the Register() action of Security Web API. This time 

in addition to the URL and User object, you also pass the responseType to be text. This 

is because the Register() action returns a string success or error message.

CHAPTeR 7  ANguLAR



301

This completes all the Angular services needed by the application. These services are 

consumed by a set of Angular components. In the following sections, you create these 

components.

 Display a List of Employees
To display a list of employees (Figure 7-8), you need to create an Angular component 

named EmployeeListComponent.

To create a skeleton of this component, open the Angular CLI and go inside the 

project folder. Then issue this command:

> ng generate component EmployeeList

The preceding command creates a new component class named 

EmployeeListComponent (Component suffix is added automatically for you) and places 

the component files inside the employee-list folder (the folder named is derived from 

the component name and it gets created automatically for you). If you look inside the 

employee-list folder, you will find four files:

• employee-list.component.ts

• employee-list.component.html

Figure 7-8. Displaying a list of employees

CHAPTeR 7  ANguLAR



302

• employee-list.component.css

• employee-list.component.spec.ts

The first file contains a class that houses component’s data and logic. The second 

file represents component’s view and contains UI markup. The third file is optional and 

can include CSS styling used by the view. The fourth file is also optional and contains 

unit tests for the component. In this example, you don’t need the .css and .spec.ts files of 

components, and you may delete them to reduce clutter.

If you open the employee-list.component.ts file, you will see code as shown in 

Listing 7-13.

Listing 7-13. Skeleton of EmployeeListComponent

import { Component, OnInit } from '@angular/core';

@Component({

  selector: 'app-employee-list',

  templateUrl: './employee-list.component.html',

  styleUrls: ['./employee-list.component.css']

})

export class EmployeeListComponent implements OnInit {

  constructor() { }

  ngOnInit() {

  }

}

The code imports the Component symbol and OnInit interface from the specified 

package. Then the code declares a class named EmployeeListComponent. The class is 

decorated with @Component() decorator. The @Component() decorator indicates that 

the underlying class is a component. The @Component() decorator also specifies the 

following metadata information:

• selector: A component exists on a view in the form of a markup tag. 

The selector property indicates the name of that markup tag. In this 

case the EmployeeListComponent is represented by

<app-employee-list></app-employee-list>.

CHAPTeR 7  ANguLAR



303

• templateUrl: This is the path of the view file of the component.

• styleUrls: One or more paths pointing to the CSS files used by 

the component. Since CSS files are optional, you can remove this 

property.

Notice that the EmployeeListComponent class implements OnInit interface. 

Implementing OnInit interface means the class must include ngOnInit() method. 

Angular provides several lifecycle hooks that provide opportunity to developers to 

execute some code when certain lifecycle event occurs. One of the lifecycle hooks 

is ngOnInit(). The ngOnInit() method gets executed automatically once when a 

component is initialized.

Note At first glance, the ngOnInit lifecycle hook looks similar to the constructor. 
However, they are different. A constructor is called when the class is instantiated 
and is typically used for member initialization and dependency injection. The 
ngOnInit lifecycle hook, on the other hand, is executed when the framework 
initializes the component. For more information about Angular lifecycle hooks, read 
https://angular.io/guide/lifecycle-hooks.

Now that you know the basic skeleton of a component, let’s modify 

EmployeeListComponent as per application requirement.

Go to the top of the component class file and add these import statements below the 

existing ones:

import { Router } from '@angular/router';

import { EmployeesApiService } from '../employees-api/employees-api.

service';

import { Employee } from '../models/employee';

The first import statement imports Router class. This class provides routing 

and navigational capabilities to your component. Then the code imports 

EmployeesApiService service because the component needs to fetch data from the 

Employees Web API. Finally, Employee class is also imported.

Next, go to the EmployeeListComponent class and add the members and constructor 

as shown in Listing 7-14.

CHAPTeR 7  ANguLAR

https://angular.io/guide/lifecycle-hooks


304

Listing 7-14. Members and constructor of EmployeeListComponent

employees: Array<Employee> = [];

message: string;

employeesApi: EmployeesApiService;

router: Router;

constructor(employeesApi: EmployeesApiService, router: Router) {

  this.employeesApi = employeesApi;

  this.router = router;

}

The employees member is intended to hold an array of Employee objects returned 

from the Web API. So, its type is Array<Employee>. The message string variable holds 

a message that is displayed to the end user (it could be a success message or an error 

message). The employeeApi variable is of type EmployeesApiService and holds a 

reference to the injected EmployeesApiService service instance. The router variable is a 

Router object injected into the constructor.

The constructor receives EmployeesApiService object and Router object through 

dependency injection. Inside, references to the injected objects are stored in the 

respective class members.

To display a list of employees, you need to fetch employee data from the Web 

API. This is done inside the ngOnInit() method as shown in Listing 7-15.

Listing 7-15. ngOnInit() fetches employee data

ngOnInit() {

  if (!sessionStorage.hasOwnProperty("token")) {

    this.router.navigate(['/signin']);

  }

  this.employeesApi.selectAll().subscribe(

    data => this.employees = data as Array<Employee>,

    error => {

      if (error.status === 401) {

        this.router.navigate(['/signin']);

      }

CHAPTeR 7  ANguLAR



305

      this.message = error.message

    }

  );

  if (sessionStorage.hasOwnProperty("message")) {

    this.message = sessionStorage.getItem("message");

    sessionStorage.removeItem("message");

  }

}

Before making a call to the Employees Web API, the code checks whether a user 

has signed in to the system or not. This is done by checking JWT in the sessionStorage 

object. If JWT doesn’t exist, the control is taken to the sign-in page (discussed later) 

accessible at /signin (e.g., http://localhost:1234/signin). This client-side URL is 

defined by routing configuration discussed in the later sections. To navigate to this URL, 

the code uses the navigate() method of the Router object. The navigate() method 

accepts a link parameters array that specifies a target URL (/signin in this case).

Next, the code calls the selectAll() method of EmployeesApiService. Recollect 

that selectAll() returns an Observable. So, the code subscribes to it using the 

subscribe() method. The subscribe() method takes two parameters. The first 

parameter is a handler function that receives the value returned by the Observable. This 

function is written using the Arrow Function syntax. The data parameter of the arrow 

function holds the employees returned by the Web API. These employees are stored in 

the employees member after typecasting data to Array<Employee>.

The second arrow function receives an error object in case there is any error 

while executing the call. The error handler checks the HTTP status code, and if it’s 401 

(Unauthorized), then the user is navigated to the sign-in page. If there is any error other 

than 401, the error message is stored in message member. This message is displayed on 

the view.

Note An observable can send three types of notifications: next, error, and 
complete. Accordingly you can supply three callback functions to handle these 
notifications. A next handler is called (zero or more times) when a value is 
received. An error handler callback gets called in case there is any error while 

CHAPTeR 7  ANguLAR



306

executing the observable. A complete handler gets called when the execution of 
observable is complete. In this example, you use the next handler and error handler 
to handle the respective notifications. For more details about observables, consider 
reading https://angular.io/guide/observables.

The delete employee page (discussed later) sets a message in the sessionStorage 

object. If a user is coming to the employee listing page after deleting an employee, that 

message is stored in the message member, and the sessionStorage entry is removed.

The employee listing page has three buttons – Insert, Update, and Delete that takes a 

user to the respective pages. Click event handlers of these buttons are also found in the 

EmployeeListComponent and are shown in Listing 7-16.

Listing 7-16. Click event handlers of Insert, Update, and Delete buttons

insert_click() {

  this.router.navigate(['/employees/insert']);

}

update_click(id) {

  this.router.navigate(['/employees/update', id]);

}

delete_click(id) {

  this.router.navigate(['/employees/delete', id]);

}

The insert_click() method represents the click event handler of Insert button. 

It calls the navigate() method of Router object to take the user to the Insert New 

Employee page.

The update_click() method represents the click event handler of Update 

button. This event handler receives employeeID as its id parameter. Inside, it calls the 

navigate() method of the Router object to navigate the user to the Update Existing 

Employee page. Notice that the array passed to the navigate() method now has a 

second element that holds the id. This will append the id to the URL specified in the first 

parameter.

CHAPTeR 7  ANguLAR

https://angular.io/guide/observables


307

The delete_click() method represents the click event handler of the Delete button. 

This event handler is quite similar to update_click() but navigates the user to Delete 

Existing Employee page.

This completes the EmployeeListComponent’s class. Now let’s complete its view. So 

open employee-list.component.html in Visual Studio and write the markup shown in 

Listing 7-17 in it.

Listing 7-17. Markup of EmployeeListComponent’s view file

<h2>List of Employees</h2>

<button (click)="insert_click()" title="Insert">Insert</button>

<h3 class="message">{{message}}</h3>

<br />

<table border="1" cellpadding="10">

  <thead>

    <tr>

      <th>Employee ID</th>

      <th>First Name</th>

      <th>Last Name</th>

      <th>Title</th>

      <th colspan="2">Action</th>

    </tr>

  </thead>

  <tbody>

    <tr *ngFor="let emp of employees">

      <td>{{emp.employeeID}}</td>

      <td>{{emp.firstName}}</td>

      <td>{{emp.lastName}}</td>

      <td>{{emp.title}}</td>

      <td>

        <button (click)="update_click(emp.employeeID)">Update</button>

      </td>

CHAPTeR 7  ANguLAR



308

      <td>

        <button (click)="delete_click(emp.employeeID)">Delete</button>

      </td>

    </tr>

  </tbody>

</table>

<hr />

<app-signout></app-signout>

Below the heading, the Insert button is placed using the <button> tag. Note the 

Angular’s event binding syntax – (click) – where the click event is put in parenthesis 

and its event handler function (insert_click()) is also specified.

Below the Insert button, the <h3> element is placed for displaying notifications 

and messages to the user. The component class contains message member that holds 

a message to be displayed to the user. To output the message on the page, Angular’s 

interpolation syntax is used – {{expression}}.

Then a table renders a list of employees. The table consists of a static header and 

dynamically generated rows. To generate table rows dynamically, the markup uses 

Angular’s *ngFor syntax. The ngFor structural directive is like foreach loop used in C# in 

that it iterates through supplied data and renders the inner content for each data item. In 

this case, the employees member of the component class (Array<Employee>) is the data 

to be iterated upon. The value of individual data item is accessed through the emp local 

variable. First four <td> elements inside a table row use interpolation syntax and emp 

variable to display employeeID, firstName, lastName, and title values.

Note Detailed discussion of ngFor and other structural directives of Angular is 
beyond the scope of this book. You may read more about them in Angular official 
documentation available at https://angular.io/guide/structural- 
directives.

Each table row also renders an Update and a Delete button. An employeeID is passed 

to the click event handler of Update and Delete button (update_click(id) and delete_

click(id) functions).

CHAPTeR 7  ANguLAR

https://angular.io/guide/structural-directives
https://angular.io/guide/structural-directives


309

At the bottom of the view, SignOutComponent is placed using its selector – <app- 

signout>. The SignOutComponent manages the sign-out functionality and is discussed 

later in this chapter.

This completes the EmployeeListComponent.

 Insert a New Employee
Clicking the Insert link on the employee listing page takes you to another page where 

you can insert a new employee (Figure 7-9).

The Insert New Employee page is represented by a component named Employee 

InsertComponent. So add this component to the project by issuing this command:

> ng generate component EmployeeInsert

Once the component is added, open the employee-insert.component.ts file in Visual 

Studio and add import statements shown in Listing 7-18.

Figure 7-9. Inserting a new employee

CHAPTeR 7  ANguLAR



310

Listing 7-18. Importing required classes

import { Component, OnInit } from '@angular/core';

import { FormBuilder, FormGroup, Validators } from '@angular/forms';

import { Router } from '@angular/router';

import { Country } from '../models/country';

import { EmployeesApiService } from '../employees-api/employees-api.service';

import { CountriesApiService } from '../countries-api/countries-api.service';

The second import statement imports three classes, namely, FormBuilder, 

FormGroup, and Validators. The FormBuilder class is used to construct an Angular 

form based on developer-defined configuration. The FormGroup class represents a group 

of form controls and tracks their value and validations. The Validators class provides 

access to Angular’s built-in validators that can be used to validate form controls.

Note There are two ways to create forms in Angular – Template Driven Forms 
and reactive forms (also called Model Driven Forms). The former is suitable for 
simple forms, whereas the latter is suitable for complex and scalable forms. In this 
book you use reactive forms. To know more, visit https://angular.io/guide/
forms-overview.

The next import statement imports the Router class. This should look familiar too 

since you imported it in EmployeeListComponent also.

The next three import statements import Country model class, 

EmployeesApiService, and CountriesApiService services. You are already aware of 

their purpose.

Next, go to the EmployeeInsertComponent class and declare a set of members as 

shown in Listing 7-19.

Listing 7-19. Members of the EmployeeInsertComponent class

formBuilder: FormBuilder;

insertForm: FormGroup;

router: Router;

employeesApi: EmployeesApiService;

CHAPTeR 7  ANguLAR

https://angular.io/guide/forms-overview
https://angular.io/guide/forms-overview


311

countriesApi: CountriesApiService;

countries: Array<Country>;

message: string;

The class member declarations are quite straightforward. Many of these objects are 

injected into the constructor (discussed shortly) and stored in the respective member 

variable. Notice that an array of Country objects is declared so that Country dropdown 

list can be populated with a list of countries.

The constructor that injects required objects and constructs the required data entry 

form is shown in Listing 7-20.

Listing 7-20. Constructor defines an insert new employee form

constructor(formBuilder: FormBuilder,

  router: Router,

  employeeApi: EmployeesApiService,

  countriesApi:CountriesApiService) {

  this.formBuilder = formBuilder;

  this.router = router;

  this.employeesApi = employeeApi;

  this.countriesApi = countriesApi;

  this.insertForm = this.formBuilder.group({

    firstName: [", [Validators.required, Validators.maxLength(10)]],

    lastName: [", [Validators.required, Validators.maxLength(20)]],

    title: [", [Validators.required, Validators.maxLength(30)]],

    birthDate: [", [Validators.required]],

    hireDate: [", [Validators.required]],

    country: [", [Validators.required, Validators.maxLength(15)]],

    notes: [", [Validators.maxLength(500)]]

  });

}

The constructor injects objects required by the component. They include 

FormBuilder, Route, EmployeesApiService, and CountriesApiService instances.

CHAPTeR 7  ANguLAR



312

Inside, the injected objects and services are stored in class members declared 

earlier. Next, you need to construct a form consisting of form controls based on your 

requirements. A form control is represented by FormControl class. One or more 

FormControl objects make a FormGroup. To create a FormGroup required for inserting a 

new employee, the group() method of the FormBuilder class is used.

The group() method accepts an object containing configuration of form controls 

and returns a FormGroup instance. The form control configuration is specified in key- 

value format where key represents the name of a form control and value represents its 

configuration. Just to understand how a form control configuration is specified, have a 

look at this fragment:

firstName: [", [Validators.required,

                 Validators.maxLength(10)]]

Here, a form control for first name is being defined. Therefore, key is firstName. The 

value is an array – the first element of the array is a default value for the control, and the 

second element is another array containing validators to be attached to the control. In 

this case two validators are attached to the firstName control. The required validator 

indicates that some value must be entered into this control. The maxLength validator 

indicates that a maximum of ten characters can be entered into the control (although not 

used in the preceding code, if a control has just one validator attached with it, you can 

specify just that validator in the second element rather than specifying it as an array).

Note The Validators class also provides many other validators such as 
minLength, min, max, email, and pattern. As you might have guessed, many of 
these validators provide validation functionality as provided by HTML5 validation 
attributes.

Other controls, namely, lastName, title, birthDate, hireDate, country, and notes, 

are configured on similar lines.

The FormGroup returned by the group() method is assigned to insertForm member.

When this component is displayed, you need to fetch a list of countries from 

Countries Web API. This is done in the ngOnInit() method and is shown in Listing 7-21.

CHAPTeR 7  ANguLAR



313

Listing 7-21. Countries Web API is called from ngOnInit()

ngOnInit() {

  if (!sessionStorage.hasOwnProperty("token")) {

    this.router.navigate(["/signin"]);

  }

  this.countriesApi.selectAll()

  .subscribe(data => this.countries = data as Array<Country>

  , error => this.message = error.message);

}

Notice the code shown in bold letters. It subscribes to the selectAll() method of 

CountriesApiService object and retrieves an array of Country objects. The first handler 

function stores the retrieved countries into countries member. The second handler 

function stores an error message in the message member.

When a user enters data in various form controls and clicks the Save button, the 

save_click() event handler method in the component class gets executed. This method is 

shown in Listing 7-22.

Listing 7-22. save_click() invokes the insert() method EmployeesApiService

save_click() {

  if (this.insertForm.invalid) {

    this.message = "One or more values are invalid.";

    return;

  }

  this.employeesApi.insert(this.insertForm.value)

    .subscribe(() => this.message = "Employee inserted

      successfully!", error => {

      if (error.status === 401) {

        this.router.navigate(["/signin"]);

      }

      this.message = error.message

    });

}

CHAPTeR 7  ANguLAR



314

The code begins by observing the invalid property of insertForm FormGroup. 

The invalid property returns true if one or more controls from the FormGroup contain 

invalid values. It returns false if all the form controls contain valid values (just like 

the invalid property, there is also the valid property that returns true if all controls 

contain valid values; otherwise, it returns false). If the form contains one or more 

invalid values, an error message is displayed to the user through the message member. 

If all form controls contain valid values, the code proceeds to inserting a new employee 

into the database.

To insert a new employee, the code calls the insert() method of the 

EmployeesApiService class. Recollect that the insert() method expects an employee 

object containing employee details. This object is obtained through the value property 

of FormGroup. The value property returns an object containing all the form control 

values. For example, a sample object returned by value property would look like this:

{

  birthDate: "1948-12-08",

  country: "USA",

  employeeID: 1,

  firstName: "Nancy",

  hireDate: "1992-05-01",

  lastName: "Davolio",

  notes: "Education includes...",

  title: "Sales Representative"

}

As you can see, the property names are picked from control names, and property 

values hold the respective control values.

To handle the success or error while calling the Employees Web API, the code 

subscribes to the Observable returned by the insert() method. The first handler function 

is called when the Web API call is successful. Inside, a success message is assigned to the 

message member. In case there is some error, the second handler gets executed. If the 

HTTP status code indicates that a request is unauthorized (401 – Unauthorized), then 

the user is navigated to the sign-in page. Otherwise, the error message is assigned to the 

message member.

The Insert New Employee page has a link at the bottom that takes the user back to 

the employee listing page. The click event handler of this link is shown in Listing 7-23.

CHAPTeR 7  ANguLAR



315

Listing 7-23. Taking the user back to the employee listing page

cancel_click() {

  this.router.navigate(["/employees/list"]);

}

When a user clicks the link, the navigate() method of the Router class navigates the 

user to the employee listing page.

This completes the component class. Now let’s proceed to the component view. 

Listing 7-24 shows a part of the employee-update.component.html file (for the sake of 

reducing clutter, unwanted markup has been omitted).

Listing 7-24. EmployeeInsertComponent’s view file

<h2>Insert New Employee</h2>

<h3 class="message">{{message}}</h3>

<form [formGroup]="insertForm" (ngSubmit)="save_click()" novalidate>

...

<td class="right">First Name :</td>

<td><input type="text" formControlName="firstName"></td>

...

<td class="right">Last Name :</td>

<td><input type="text" formControlName="lastName"></td>

...

<td class="right">Title :</td>

<td><input type="text" formControlName="title"></td>

...

<td class="right">Birth Date :</td>

<td><input type="date" formControlName="birthDate"></td>

...

<td class="right">Hire Date :</td>

<td><input type="date" formControlName="hireDate"></td>

...

<td class="right">Country :</td>

CHAPTeR 7  ANguLAR



316

<td>

  <select formControlName="country">

    <option value="">Please select</option>

    <option *ngFor="let c of countries" [value]="c.name">

      {{c.name}}

    </option>

  </select>

</td>

...

<td class="right">Notes :</td>

<td>

<textarea rows="3" cols="50" formControlName="notes">

</textarea>

</td>

</tr>

...

<button type="submit">Save</button>

...

</form>

...

<a href="#" (click)="cancel_click()">Back to Employee Listing</a>

...

<app-signout></app-signout>

At the top, just below the page heading, the code displays the message member 

using interpolation syntax. Below there is the <form> element that needs to be bound 

to the FormGroup defined inside the class file (insertForm). To do this, Angular’s 

formGroup directive is used. A directive is a special attribute added to HTML 

elements that attaches certain behavior to the element. Notice the binding syntax: 

the formGroup directive is put inside square brackets, and the member to be bound 

(insertForm) is assigned as its value.

The FormGroup captures submit event of the <form> element and raises ngSubmit 

event. Therefore, ngSubmit is put inside parenthesis and the event handler function 

save_click() also specified.

You have configured validation rules while defining the FormGroup. So, novalidate 

HTML attribute is added to the form to suppress browser’s native validations.

CHAPTeR 7  ANguLAR



317

Inside the form element, there is a series of <input> elements for accepting inputs 

from the user. These elements use Angular’s formControlName directive to associate 

an input element with a form control from the FormGroup. For example, setting 

formControlName to firstName associates that input element to the firstName form 

control from the insertForm FormGroup.

Notice how the Country dropdown list is filled with a list of all countries. In addition 

to the first <option> element (Please select), it dynamically adds more <option> 

elements by iterating through the countries member (Array<Country>). This is done 

using the ngFor structural directive discussed earlier. Every new option element gets 

its value from the Name property of Country object. The Name property is also rendered 

within the <option> and </option> using the interpolation syntax.

The form can be submitted using the Save submit button. Below the Save button, 

there is a link that takes the user back to the employee listing page. The click event 

handler of the link (cancel_click()) is attached using the event binding syntax.

At the bottom of the view, SignOutComponent (discussed later) is placed that allows 

the user to sign out of the system.

Note In this form, you didn’t display any field-level validations. This was done 
merely to reduce the clutter. While creating the sign-in form later in this chapter, 
you learn to use field-level validation messages. Once you learn how that can be 
done, you can modify employeeInsertComponent to display field-level validation 
error messages.

This completes the EmployeeInsertComponent’s view. Save your work so far and 

proceed to the next component.

 Update an Existing Employee
Clicking the Update button on the employee listing page takes you to the Update 

Existing Employee page where existing details of an employee are presented for editing 

(Figure 7- 10).

CHAPTeR 7  ANguLAR



318

The Update Existing Employee page looks similar to the Insert New Employee 

page except that various controls are now filled with the details of the employee being 

modified. The EmployeeID being the primary key can't be modified. The following text 

discusses only the differences that you need to be aware of. You can get the complete 

source of this component from the book’s code download.

To develop the update existing page, you need to add EmployeeUpdateComponent 

using Angular CLI. Recollect that the Update link contains the EmployeeID to be 

modified. You need to grab this EmployeeID and fetch details for that employee. To get 

the EmployeeID passed in the current route URL, you use Angular’s ActivatedRoute 

interface. So import it by modifying the import statement as shown in the following:

import { Router, ActivatedRoute } from '@angular/router';

An object of ActivatedRoute is injected into the constructor and stored in a member 

variable. This is shown in Listing 7-25.

Figure 7-10. Updating an existing employee

CHAPTeR 7  ANguLAR



319

Listing 7-25. Injecting the ActivatedRoute object

formBuilder: FormBuilder;

route: ActivatedRoute;

id: number;

router: Router;

employeesApi: EmployeesApiService;

countriesApi: CountriesApiService;

updateForm: FormGroup;

message: string;

countries: Array<Country>;

constructor(formBuilder: FormBuilder,

  router: Router,

  route: ActivatedRoute,

  employeesApi: EmployeesApiService,

  countriesApi: CountriesApiService) {

  this.formBuilder = formBuilder;

  this.route = route;

  this.router = router;

  this.employeesApi = employeesApi;

  this.countriesApi = countriesApi;

  if (this.route.snapshot.params["id"]) {

      this.id = this.route.snapshot.params["id"];

    }

  ...

}

Notice the code marked in bold letters. Two additional members are declared in the 

class – route and id. They represent the ActivatedRoute object and id passed in the 

URL, respectively.

To retrieve id passed in the URL, the snapshot property (snapshot property is of type 

ActivatedRouteSnapshot) of the ActivatedRoute object is used. The id value is then 

retrieved from the params collection. The retrieved id is stored in a member variable.

CHAPTeR 7  ANguLAR



320

The remainder of the constructor defines the updateForm FormGroup similar 

to how you defined insertForm in the previous section. For the sake of brevity, that 

configuration is not repeated.

The ngOnInit() method retrieves details of the given employee by calling the 

selectByID() method of the EmployeesApiService object. This is shown in Listing 7-26.

Listing 7-26. Fetching details of an employee using selectByID()

...

this.employeesApi.selectByID(this.id)

  .subscribe((data:any) => {

    data.birthDate = data.birthDate.substring(0, 10);

    data.hireDate = data.hireDate.substring(0, 10);

    this.updateForm.setValue(data);

  }, error => {

    if (error.status === 401) {

      this.router.navigate(["/signin"]);

    }

    this.message = error.message

  });

...

The code calls the selectByID() method of EmployeesApiService by passing the id 

member to it. The subscribe() method supplies a value handler and error handler 

functions. Notice that the data parameter is marked to be of any type because you need 

to manipulate inside the value handler function. The BirthDate and HireDate values 

returned by the Web API are in ISO date format and include time zone information. 

However, while displaying these dates in the browser’s date input field, you need to trim 

the time zone part. This is done inside the value handler function using the substring() 

method of JavaScript. To display the employee details fetched from the Web API, the 

code uses setValue() method of FormGroup. The setValue() method accepts an object 

and fills the form controls with the corresponding values. The error handler function 

works as before.

The click event handler of the Save button is quite similar to the one you 

used while inserting an employee except that it invokes the update() method of 

EmployeesApiService. Hence, it’s not discussed here again.

CHAPTeR 7  ANguLAR



321

The view for EmployeeUpdateComponent is quite similar to the one you developed 

in the previous section. The only difference is that the update view also displays 

EmployeeID. This is shown in Listing 7-27.

Listing 7-27. Update view displays EmployeeID

<form [formGroup]="updateForm" (ngSubmit)="save_click()" novalidate>

  <table border="0" cellpadding="10">

    <tr>

      <td class="right">Employee ID :</td>

      <td>

        <span>{{id}}</span>

        <input type="hidden" formControlName="employeeID">

      </td>

    </tr>

...

...

The formGroup directive associates the updateForm FormGroup member with the 

form element. The EmployeeID is displayed in read-only fashion using a <span> element 

and interpolation syntax. Although a user can’t edit the EmployeeID, it must be passed 

between the component class and view because it’s used during update operation. 

Therefore, the EmployeeID is also persisted in a hidden form field. This way setValue() 

will assign the current EmployeeID to this hidden form field. And calling value property 

of updateForm will return it along with other form control values.

 Delete an Existing Employee
Upon clicking the Delete button on the employee listing page, you navigate to the Delete 

Existing Employee page (Figure 7-11).

CHAPTeR 7  ANguLAR



322

This page is represented by EmployeeDeleteComponent and is similar to update 

form discussed earlier in that it fetches a particular employee based on an id passed in 

the route. The employee details are displayed in read-only fashion. Clicking the Delete 

button invokes the delete() method of EmployeesApiService. For the sake of brevity, 

only the calls to selectByID() and delete() methods are discussed in the following. 

You can get the complete code of this component (including the view file) from this 

chapter’s code download.

The selectAll() method of EmployeesApiService fetches an employee object 

whose id is specified in the route. This is shown in Listing 7-28.

Listing 7-28. selectAll() retrieves an employee object

this.employeesApi.selectByID(this.id)

  .subscribe(data => {

    this.employee = data as Employee;

    this.deleteForm.controls['employeeID']

    .setValue(this.employee.employeeID);

  }

    , error => {

Figure 7-11. Seeking delete confirmation from user

CHAPTeR 7  ANguLAR



323

      if (error.status === 401) {

        this.router.navigate(["/signin"]);

      }

      this.message = error.message

    });

Notice the value handler function passed to the subscribe() method. The data 

object is stored in the employees member of the component class. You can use the 

employees member to display employee details on the view.

Since employee details are displayed in read-only fashion, there are no data entry 

controls on the form. The only form control you need is a hidden form field that stores 

EmploeeID. So, the code directly sets the employeeID hidden form field using the 

controls collection of deleteForm FormGroup. The setValue() method of a form 

control accepts a value to be assigned to the control.

The click event handler of the Delete button calls the delete() method of 

EmployeesApiService as shown in Listing 7-29.

Listing 7-29. Calling the delete() method to delete an employee

this.employeesApi.delete(

  this.deleteForm.controls["employeeID"].value)

  .subscribe(() => {

              sessionStorage.setItem("message", "Employee

              deleted successfully!");

              this.router.navigate(['/employees/list']);

  }, error => {

    if (error.status === 401) {

      this.router.navigate(["/signin"]);

    }

    this.message = error.message

  });

The delete() method accepts an EmployeeID to be deleted. This EmployeeID is 

retrieved from the hidden form field using the controls collection. The value property 

of a form control from the collection returns its value.

CHAPTeR 7  ANguLAR



324

The value handler function stores a success message into sessionStorage object. 

Recollect that this sessionStorage message is displayed on the employee listing page. 

The user is then navigated to the employee listing page.

 Sign-In Component
When you run the application initially, you are taken to the sign-in page represented by 

the SignInComponent (the UI rendered by this component is similar to the sign-in page 

of the jQuery example discussed in the previous chapter). This component invokes the 

Security Web API to get a JWT. The token is then stored in sessionStorage object. It is 

recommended that you get the component class file (signin.component.ts) and view file 

(signin.component.html) from the book’s code download. Although the complete code 

of SignInComponent is not discussed here, a few things are worth noting:

• How to display field-level validation errors

• How to invoke the Security API and get a JWT

The SignInComponent class configures signinForm in the constructor as shown in 

Listing 7-30.

Listing 7-30. Configuration of signinForm

this.signinForm = this.formBuilder.group({

  userName: [", [Validators.required, Validators.maxLength(20)]],

  password: [", [Validators.required, Validators.maxLength(20)]]

});

As you can see, the signinForm consists of two form controls – one for accepting 

user name and one for accepting password. Both the form controls have required and 

maxLength validators attached with them. You would like to display field-level validation 

error messages in the view so that you can know which of the form control is invalid. To 

display validation errors on the view, you can use Angular’s ngIf structural directive as 

shown in Listing 7-31.

CHAPTeR 7  ANguLAR



325

Listing 7-31. Displaying field-level validation error messages

<div *ngIf="signinForm.controls.userName.dirty && signinForm.controls.

userName.invalid">

   <div *ngIf="signinForm.controls.userName.errors.required" 

[ngClass]="'message'">

    User Name is required

  </div>

   <div *ngIf="signinForm.controls.userName.errors.maxlength" 

[ngClass]="'message'">

    User Name must be smaller than 20 characters

  </div>

</div>

This code shows how validation error messages can be displayed for user name 

input field. The ngIf structural directive applied to the outer <div> element is similar 

to the if statement of C# in that it checks for one or more Boolean expressions. Here, 

the code checks for two Boolean expressions. Firstly, it checks whether the userName 

form control has been edited or not. This is done by accessing the userName form 

control from the controls collection of signinForm FormGroup and then checking its 

dirty property. The dirty property returns true if the control value has been edited; 

otherwise it returns false.

Secondly, it checks the invalid property of the userName form control. The invalid 

property returns true if the control contains invalid value; otherwise it returns false.

Only when both the conditions evaluate to true an error message is displayed. You 

can further check the kind of validation error and accordingly display error messages. 

The userName form control has two validators attached to it – required and maxLength. 

To check their validity status, you can use the errors collection of the userName form 

control. For example, if errors.required is not null, then it indicates that the form 

control is empty. Similarly, if errors.maxlength is not null, then it indicates that the 

control contains a value more than the maximum permissible length. Accordingly the 

respective <div> elements with error messages are displayed.

Notice the use of the ngClass directive that applies the message CSS class to the 

<div> elements to heighten the error messages.

This markup displays error messages for the userName form control. You can use the 

same technique to display error messages for password form control also.

CHAPTeR 7  ANguLAR



326

Now that you know how to display field-level validation error messages, let’s proceed 

to the code that invokes the Security Web API (Listing 7-32).

Listing 7-32. Sign-in form calls Security Web API

signin_click() {

  if (this.signinForm.invalid) {

    this.message = "One or more values are invalid.";

    return;

  }

  this.securityApi.signIn(this.signinForm.value)

  .subscribe(token => {

    sessionStorage.setItem('token', token.token);

     sessionStorage.setItem('userName', this.signinForm.

controls['userName'].value);

    this.router.navigate(["/employees/list"])

  }, error => this.message = "Unable to Sign-in");

}

Notice the code marked in bold letters. It calls the signIn() method of 

SecurityApiService by passing signinForm value (an object with userName and 

password properties). If the user validation is successful, the value handler function 

receives a JWT issued by the Security Web API. This token is persisted in sessionStorage 

object so that it can be passed to server while performing CRUD operations.

The code also sets userName entry in the sessionStorage so that current user’s sign- 

in name can be displayed on other pages of the application. Current user’s sign-in name 

is retrieved from the userName form control using its value property.

Upon successfully signing in to the system, the user is navigated to the employee 

listing page. If there is any error while calling the Security Web API, the error handler sets 

an error message in the message member.

 Sign-Out Component
The sign-out component displays the user name of the currently signed-in user and also 

shows a Sign Out button so that the user can sign out of the application. This component 

is represented by SignOutComponent class and its associated view. You can get the 

CHAPTeR 7  ANguLAR



327

complete code of this component from this chapter’s code download. Here only the 

ngOnInit() method of the class and the click event handler of the Sign Out button are 

discussed (Listing 7-33).

Listing 7-33. SignOutComponent signs a user out of the application

ngOnInit() {

  this.userName = sessionStorage.getItem('userName');

}

signout_click() {

  sessionStorage.removeItem('token');

  sessionStorage.removeItem('userName');

  this.router.navigate(["/signin"]);

}

As you can see, the ngOnInit() method simply retrieves userName key stored in the 

sessionStorage object and stores it in userName member. This userName is displayed on 

the view.

Clicking the Sign Out button raises the signout_click() event handler. Inside, the 

code removes token key from the sessionStorage. This way Web API calls will no longer 

have a JWT, and a user authentication will fail. The code also removes the userName key 

from the sessionStorage and navigates the user to the sign-in page.

This completes the sign-out component. The register component that displays a user 

registration page is quite similar to the components you developed earlier in this chapter 

and hence not discussed here. You can get the complete code of RegisterComponent 

from this chapter’s code download.

 Understanding app.module.ts
So far in this chapter, you created various components and services needed by the 

application. Now it’s time to take a look at application’s root module residing in the app.

module.ts file.

If you open the app.module.ts file, you will find a series of import statements at 

the top followed by the module class – AppModule. These import statements can be 

categorized in three groups. The first group consists of import statements that import 

external modules that are necessary for the application to run. Listing 7-34 shows these 

import statements.

CHAPTeR 7  ANguLAR



328

Listing 7-34. Importing modules required by the application

import { NgModule } from '@angular/core';

import { BrowserModule } from '@angular/platform-browser';

import { ReactiveFormsModule } from '@angular/forms';

import { HttpClientModule } from '@angular/common/http';

import { RouterModule } from '@angular/router';

import { AppRoutingModule } from './app-routing.module';

These import statements import Angular modules that are dependencies of the 

Employee Manager application. Especially ReactiveFormsModule, HttpClientModule, 

and RouterModule are worth noting because they are essential for reactive forms, 

HttpClient, and routing features, respectively.

The AppRoutingModule module is a custom module that houses application’s routing 

configuration and is discussed in the next section.

The second group of import statements consists of services added during 

development and is shown in Listing 7-35.

Listing 7-35. Importing services

import { EmployeesApiService } from './employees-api/employees-api.service';

import { CountriesApiService } from './countries-api/countries-api.service';

import { SecurityApiService } from './security-api/security-api.service';

The third group of import statements imports components of your application 

(Listing 7-36).

Listing 7-36. Importing components

import { AppComponent } from './app.component';

import { EmployeeListComponent } from './employee-list/employee-list.component';

import { EmployeeInsertComponent } from './employee-insert/employee-insert.

component';

import { EmployeeUpdateComponent } from './employee-update/employee-update.

component';

import { EmployeeDeleteComponent } from './employee-delete/employee-delete.

component';

import { SignInComponent } from './signin/signin.component';

CHAPTeR 7  ANguLAR



329

import { RegisterComponent } from './register/register.component';

import { SignOutComponent } from './signout/signout.component';

Except AppComponent all the other components were added during the development 

process. The AppComponent component is the default root component and is discussed 

in later sections.

Below these import statements, there is the AppModule class decorated with the  

@NgModule() decorator. An object containing module metadata is supplied to the  

@NgModule() decorator. Listing 7-37 shows the @NgModule() decorator.

Listing 7-37. Specifying module’s metadata

@NgModule({

    declarations: [

        AppComponent,

        EmployeeListComponent,

        EmployeeInsertComponent,

        EmployeeUpdateComponent,

        EmployeeDeleteComponent,

        SignInComponent,

        RegisterComponent,

        SignOutComponent

    ],

    imports: [

        BrowserModule,

        ReactiveFormsModule,

        HttpClientModule,

        RouterModule,

        AppRoutingModule

    ],

    providers: [

      EmployeesApiService,

      CountriesApiService,

      SecurityApiService

    ],

CHAPTeR 7  ANguLAR



330

    bootstrap: [AppComponent]

})

export class AppModule { }

This object consists of four array properties – declarations, imports, providers, and 

bootstrap. Although detailed discussion of these properties is beyond the scope of this 

book, it suffices to say that

• declarations section lists all the components that are part of this 

application

• imports section lists all the external dependencies of this application

• providers section lists all the services of this application

• bootstrap section specifies the root component of the application

Note If your services contain the @Injectable( ) decorator that specifies { 
providedIn: ‘root’ } in the metadata, then you don’t need to list them again in the 
providers section. Here, they are listed just for the sake of clear understanding.

 Routing
While developing various components of the Angular application, you used routes such 

as /employees/list and /signin at several places. Now it’s time to look into the routing 

configuration.

In addition to the app.module.ts file, you will also find the app-routing.module.ts file. 

This file contains a module for setting up routing of the application. Listing 7-38 shows 

the initial content of this module.

Listing 7-38. Content of app-routing.module.ts

import { NgModule } from '@angular/core';

import { Routes, RouterModule } from '@angular/router';

const routes: Routes = [];

CHAPTeR 7  ANguLAR



331

@NgModule({

  imports: [RouterModule.forRoot(routes)],

  exports: [RouterModule]

})

export class AppRoutingModule { }

Notice the code shown in bold letters. The code declares an empty routes array. 

The routes array is supplied to the forRoute() method of RouterModule. Angular’s 

RouterModule handles the routing and navigation for your application. The forRoot() 

method prepares the module to use the specified routes.

In order to define routes for an application, you need to modify the routes array to 

contain the required routing configuration (you will also need to add import statements 

that import components mentioned in the route configuration). Listing 7-39 shows the 

routing configuration required for the application being developed.

Listing 7-39. Routing configuration for an application

const routes: Routes = [

  { path: "", redirectTo: "employees/list", pathMatch: 'full' },

  { path: "register", component: RegisterComponent },

  { path: "signin", component: SignInComponent },

  { path: "employees/list", component: EmployeeListComponent },

  { path: "employees/insert", component: EmployeeInsertComponent },

  { path: "employees/update/:id", component: EmployeeUpdateComponent },

  { path: "employees/delete/:id", component: EmployeeDeleteComponent },

  { path: '**', component: EmployeeListComponent }

];

As you can see, the router array contains objects that define various routes. Various 

properties of the route objects used in this configuration are listed as follows:

• path: Indicates a path from a URL that is typically mapped to a 

component. If no path is specified, you can redirect to another path 

as specified in the redirectTo property. If path value of wild card (**) 

indicates a path not matching with any other defined path. Notice 

how id route parameter is specified for update and delete routes 

using :id syntax.

CHAPTeR 7  ANguLAR



332

• redirectTo: Specifies a URL to redirect upon matching a path.

• pathMatch: Indicates the path-matching strategy; a value of full 

means the whole path is to be used during matching.

• component: Indicates a component that is instantiated to handle 

a path. For example, if you navigate to /employees/list URL, 

EmployeeListComponent will be invoked.

Note Detailed discussion of Angular’s routing capabilities is beyond the scope 
of this book. Consider reading https://angular.io/guide/router for more 
details.

This completes client-side routing configuration required for the application. The 

application still won’t display components as per this configuration. You need to specify 

a placeholder where these routes are loaded. This is done using Angular’s RouterOutlet 

directive. To use the RouterOutlet directive, open the root component view file – app.

component.html – and write the markup shown in Listing 7-40.

Listing 7-40. Placing the RouterOutlet directive in the root component’s view

<h1>Employee Manager</h1>

<hr />

<router-outlet></router-outlet>

As you can see, the <router-outlet> directive marks the place where routing 

configuration is expanded to show various “pages” of the application.

It should be noted that Angular routing is a client-side mechanism. Although it 

allows us to access the application in a “page-by-page” manner, client-side routing has 

its own problems. What if the user manually enters a client-side URL in the address 

bar? What if the user bookmarks a client-side URL and tries to access it sometime in the 

future? In such cases you will get 404 (Not found) error from ASP.NET Core application 

because these URLs aren’t known to the server. You need to deal with such conditions in 

your ASP.NET Core application. One possible way to deal with such situations is added 

to this chapter’s source code. It’s not discussed here for the sake of brevity, but you can 

take a look at it by downloading the source code.

CHAPTeR 7  ANguLAR

https://angular.io/guide/router


333

Note You used various CSS classes and styling in the components developed in 
this chapter. They exist in the styles.css file located under the src folder. So simply 
copy the complete CSS styling (site.css) from any previous version of employee 
Manager, say MVC version, to this file.

 Running the Angular Application
Now that you have completed the Angular application that represents Employee 

Manager’s front-end, it’s time to run the application and check whether everything 

works as expected or not.

To run the application, first you need to run the ASP.NET Core Web API project that 

contains Employees Web API, Countries Web API, and Security Web API. So open Visual 

Studio command prompt, navigate to the EmployeeManager.Angular project folder, and 

issue this .NET CLI command:

> dotnet run

This will run the application at http://localhost:5000. Now, open Node.js 

command prompt and navigate to the Angular project root folder. Then issue this 

Angular CLI command:

> ng serve --open

This command starts and serves an Angular application at http://localhost:4200. 

The --open switch indicates that a browser window will be opened and the application 

will be launched in it.

If all goes well, you will be presented with a sign-in page. Sign in using valid 

credentials (you can use a user account created while testing the jQuery app since the 

Angular application also uses the same Users table) or create a new account. Upon 

successful sign-in, you can try performing CRUD operations. Also, check whether the 

browser address bar shows URLs as per the routing configuration.

CHAPTeR 7  ANguLAR



334

 Integrating Angular Application with ASP.NET Core 
Application
In the previous section, you ran the ASP.NET Core application and Angular application 

as two independent applications. This is alright during development and testing 

stages. However, once the development is over, you would like to integrate the Angular 

application with the ASP.NET Core application.

To do so, first of all go to all the Angular services you created in this application and 

change the baseUrl member to this:

baseUrl: string = '/api/employees';

As you can see, the baseUrl no longer contains host and port information because 

the Angular application is going to be merged with the ASP.NET Core application. 

You need to make this change in EmployeesApiService, CountriesApiService, and 

SecurityApiService classes.

Then build the Angular application using the following Angular CLI command:

> ng build --prod = true

This command compiles the Angular application. The --prod switch is set to true 

indicating that the application will be compiled using production configuration. By 

default, the output of compilation is stored in the dist folder under the project root. 

Figure 7-12 shows the output of compilation.

Figure 7-12. Output of compilation is stored under the dist folder

CHAPTeR 7  ANguLAR



335

Notice the index.html file that acts as the start page of the Angular SPA application.

Next, copy all these files and place them directly under the wwwroot folder of the 

ASP.NET Core application. Open the Startup class and change the Configure() method 

as shown in Listing 7-41.

Listing 7-41. Enabling the default page for the ASP.NET Core application

...

app.UseDefaultFiles();

app.UseStaticFiles();

...

When you integrate the Angular application with the ASP.NET Core application, it 

would be great if you set the index.html file of the Angular application as the default page 

of your ASP.NET Core application. To do this, you use UseDefaultFiles() middleware. 

Once you do this, ASP.NET Core will look for standard default pages such as default.htm, 

default.html, index.htm, and index.html inside the wwwroot folder. In this case you have 

index.html and hence it will be used as the application’s default document.

You can now run the ASP.NET Core application and use the Angular SPA as before.

 Summary
In this chapter you created the Employee Manager application using ASP.NET Core 

and Angular. ASP.NET Core Web APIs provided core application functionality, and the 

Angular SPA provided a front-end that consumed those Web APIs.

You learned to use Angular CLI and created Angular components and 

services. To implement CRUD functionality, you created EmployeeListComponent, 

EmployeeInsertComponent, EmployeeUpdateComponent, and EmployeeDeleteComponent. 

User authentication was provided through JWT authentication scheme. 

SignInComponent, SignOutComponent, and RegisterComponent were used while 

implementing the authentication features of the application.

You were familiarized with the overall Angular application architecture and also 

implemented routing and navigation. Finally, you integrated the Angular application 

with the ASP.NET Core application.

CHAPTeR 7  ANguLAR



337
© Bipin Joshi 2019 
B. Joshi, Beginning Database Programming Using ASP.NET Core 3,  
https://doi.org/10.1007/978-1-4842-5509-4_8

CHAPTER 8

Blazor
In the previous chapters, you learned to use jQuery and Angular to build JavaScript 

front-ends of ASP.NET Core applications. So your application was a mix of server-side C# 

code and client-side JavaScript code. Wouldn’t it be great if you can use C# on the server 

side as well as on the client side? That’s what Blazor allows you to accomplish. Blazor is a 

framework for building rich and interactive client-side web user interfaces with ASP.NET 

Core. Using Blazor, you create UI components using C#, HTML, and CSS. This chapter 

teaches you how this is done. Specifically, you will

• Learn about Blazor hosting models

• Understand what Razor Components are

• Create Blazor UI that performs data validations and data binding

• Use lifecycle methods, dependency injection, and routing

• Integrate ASP.NET Core Identity in Blazor server-side applications

Let’s get going.

 Blazor Hosting Models
Before you go ahead and start developing a Blazor application, you need to decide 

where the application is going to be executed. That’s where Blazor hosting models 

come into picture.

By now, you are aware that Blazor is a framework for building rich client-side user 

interfaces. Before beginning your Blazor development, you need to decide on the hosting 

model you want to use for an application. A Blazor application’s code can execute inside 

a browser or on the server. Depending on where the application code runs, Blazor offers 

two hosting models: client-side (Blazor WebAssembly) and server-side (Blazor Server).



338

Selection of a hosting model is typically done before you begin your application 

development. That’s because there are certain differences between the two hosting 

models. Even the Visual Studio project templates are different for these hosting models. 

The following sections describe these hosting models in more detail.

 Client Side (Blazor WebAssembly)
In this mode, a Blazor application and its dependencies are downloaded on the client 

side by the browser, and the application runs within the browser’s boundaries. The 

client-side hosting model uses WebAssembly for its working.

WebAssembly (often abbreviated as Wasm) is a compact binary format that gives 

good performance (almost like a native execution) for web applications. WebAssembly 

is designed in such a way that any programming language can compile to WebAssembly 

format. Currently, all the major browsers support WebAssembly, so your application is 

not tied to a particular browser.

Note Detailed discussion of WebAssembly is beyond the scope of this book. 
If you want to know more, consider visiting https://webassembly.org and 
https://developer.mozilla.org/en-US/docs/WebAssembly.

Once the application is downloaded on the client side, it is executed by the browser. 

Rendering of UI and user interactions (such as clicking of a button) are handled by the 

browser just like any other web application.

While evaluating whether you would like to go for client-side hosting or not, consider 

these points:

• Since the application is downloaded on the client side, this 

model utilizes client-side resources effectively giving good overall 

performance.

• The application runs within the boundaries of a browser. So all the 

limitations of a browser apply to the application.

• For bigger applications, the download time can be longer resulting in 

longer initial load time.

• This hosting model depends on a browser that supports 

WebAssembly.

ChApter 8  BlAzor

https://webassembly.org
https://developer.mozilla.org/en-US/docs/WebAssembly


339

 Server Side (Blazor Server)
In the server-side hosting model, a Blazor application is executed on a web server inside 

an ASP.NET Core application. Changes to DOM and event handling are performed using 

a SignalR connection.

SignalR is a library that adds real-time functionality to ASP.NET Core applications. 

Using SignalR, the server can push notifications to the client. SignalR utilizes modern 

browser features such as WebSocket and HTML5 for this communication. If WebSockets 

aren’t supported, SignalR can also use other techniques to get its job done.

Note Detailed discussion of Signalr is beyond the scope of this book. If you want 
to know more, consider visiting https://dotnet.microsoft.com/apps/
aspnet/real-time.

While evaluating whether you would like to go for server-side hosting or not, 

consider these points:

• Since the browser doesn’t download the application and its 

dependencies, the initial load time is quite faster.

• Since the application runs on ASP.NET Core server, you can use 

many of the capabilities of ASP.NET Core (such as ASP.NET Core 

Identity) just like ASP.NET Core MVC or ASP.NET Core Razor Pages 

applications.

• Since the application is running on the server, every user interaction 

requires a small server communication.

• If you intend to support a very huge user base for your application, 

the server-side hosting model can be challenging.

As mentioned earlier, deciding on the hosting model to use should be done prior 

to beginning your development. Visual Studio provides distinct project templates that 

cover these hosting models. First, you need to select Blazor App in the Create a New 

Project dialog (Figure 8-1).

ChApter 8  BlAzor

https://dotnet.microsoft.com/apps/aspnet/real-time
https://dotnet.microsoft.com/apps/aspnet/real-time


340

After selecting this project type and after specifying a project name, you need to pick 

a project template as shown in Figure 8-2.

The purpose of each Blazor project template follows:

• Blazor Server App: This project template uses the server-side 

hosting model for the application. A Visual Studio project is created 

with a default set of files.

• Blazor WebAssembly App: This project template uses the  

client-side hosting model. The client code can call server-side Web 

APIs to perform server-side processing.

Figure 8-1. Creating a new Blazor application

Figure 8-2. Visual Studio Blazor project templates

ChApter 8  BlAzor



341

Note As of this writing Blazor WebAssembly is in preview. You can install the 
latest Blazor WebAssembly template using .Net Core ClI. read https://docs.
microsoft.com/en-us/aspnet/core/blazor/hosting-models for more 
details.

The remainder of this chapter uses the Blazor server-side hosting model to build a 

version of Employee Manager that uses Razor Pages (for user registration and sign-in), 

Razor Components (for CRUD pages), Entity Framework Core (for data access), and ASP.

NET Core Identity (for user authentication).

Razor Components are building blocks of a Blazor application. The next section gives 

you more details about Razor Components.

 Overview of Razor Components
A Blazor application consists of what are known as Razor Components. A Razor 

Component exists as a .razor file and contains a C# code and HTML markup. When 

compiled, these two pieces are combined to make a component class.

The C# code typically consists of members such as variables, properties, 

methods, and event handlers. You can also use C# constructs (such as a for loop or if 

statements) to dynamically generate HTML output. The former type of C# code exists 

in the @code block(s), whereas the latter type of C# code is intermingled with the 

HTML markup.

Note You might find razor Components quite similar to razor Views (.cshtml) in 
many aspects. In fact, you can also integrate razor Components into razor pages 
and razor Views. however, in this book, you will stick to .razor files for the sake of 
clear understanding and uniformity.

When a Razor Component is initially rendered in the browser, it generates its HTML 

response. If any of the events causes the HTML response to change (say, an HTML 

element gets added as a result of the click event handler), then the Razor Component 

regenerates the new HTML response. The Blazor engine then determines the differences 

between the older HTML response and the newly generated HTML response by 

ChApter 8  BlAzor

https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models
https://docs.microsoft.com/en-us/aspnet/core/blazor/hosting-models


342

comparing both the DOM (Document Object Model) trees. Any modifications found as a 

part of this comparison are reflected in the browser.

Once created, a Razor Component can be used in two ways:

• It can be placed inside another component as a markup element. 

For example, a component named HelloWorld can be placed inside 

another component using markup: <HelloWorld></HelloWorld>.

• A Razor Component can be marked to be a page using the @page 

directive and is associated with a route. In this case, the component 

can be invoked using its route. For example, the HelloWorld 

component marked as a page can be made accessible at /HelloWorld.

The non-page Razor Components can reside anywhere in the project folder, whereas 

Razor Components acting as pages are placed inside the Pages folder under the project 

root (this is similar to how Razor Pages are placed inside the Pages folder).

Note Since a razor Component can be housed inside another razor Component, 
you can also create a tree of razor Components that have parent-child 
relationship.

Razor Components also support data binding and event binding. For example, you 

might data bind the Message property of a Razor Component with a textbox. When 

the component is rendered initially, it displays the value of the Message property into 

the textbox. Any changes made to the value of the textbox are reflected in the Message 

property. You can also handle client-side events by supplying an event handler function. 

For example, you might bind the onclick (In HTML, most of the events are represented 

by corresponding attributes in the markup. For example, the click event is represented 

by an onclick attribute in the markup.) event of a button to an event handler method – 

OnButtonClick().

ChApter 8  BlAzor



343

 Component Lifecycle Methods
A Razor Component undergoes a series of events during its lifecycle. These lifecycle 

events are marked by certain methods that a component author can override while 

creating a component. These lifecycle methods are summarized as follows:

• OnInitialized: This method can be used to perform some 

initialization tasks. For example, you might set component members 

to some default values.

• OnParametersSet: A component can have parameters. A parameter 

is represented by a property and can be set from an external world 

(say, a component’s parent). The OnParametersSet() overridden 

method gets executed when a parameter property is assigned a value.

• OnAfterRender: This method is called after a component is 

rendered. Rendered content is accessible at this stage. You can use 

this method if your initialization logic involves rendered content.

All the methods mentioned in the preceding text have their asynchronous 

counterpart. For example, OnInitializedAsync() can be used to asynchronously 

handle initialization tasks.

 Employee Manager Project Structure
In the sections that follow, you build Employee Manager that utilizes Blazor’s server-side 

hosting model. Since the application uses a server-side hosting model, you can also use 

ASP.NET Core server-side features such as ASP.NET Core Identity.

In fact, the Employee Manager application built in this chapter uses ASP.NET Core 

Identity and associated Razor Pages that you developed in earlier chapters. To perform 

data access operations, the application uses Entity Framework Core. The data access 

happens through repositories. These repositories are quite similar to the ones you 

developed while working with the Web API project earlier in this book. You also need 

pages that perform CRUD operations. These pages are built using Razor Components 

and use the repositories to list, insert, update, and delete employee details from the 

database.

ChApter 8  BlAzor



344

The Employee Manager application developed in this chapter exists as the 

EmployeeManager.Blazor.ServerSide project and is shown in Figure 8-3.

You might find the project organization quite similar to a Razor Pages application. 

Take a look at the Pages folder that contains all the Razor Components you develop in 

this chapter. Notice the Razor Components that exist as .razor files. The Security folder 

contains a set of Razor Pages (Register.cshtml, SignIn.cshtml, and SignOut.cshtml) 

that are used for user registration and signing in to the application. These Razor Pages 

are essentially the same pages you built while developing the Razor Pages version of 

Employee Manager.

Figure 8-3. Blazor version of Employee Manager

ChApter 8  BlAzor



345

The Models folder contains EF Core model classes such as Employee and Country. 

The Repositories folder contains repository classes such as EmployeeRepository 

and CountryRepository. The Security folder contains identity-related classes such as 

AppIdentityUser and AppIdentityUser.

Now that you are familiar with the project organization, let’s begin developing this 

project by adding an EF Core model and repositories. Make sure you have created the 

EmployeeManager.Blazor.ServerSide project based on the Blazor Server App project 

template discussed earlier. You may also remove the default Razor Components and 

classes included in the project template to reduce the clutter.

 Entity Framework Core Model and Repositories
To perform CRUD operations, you use Entity Framework Core. So you need to have a 

custom DbContext and entity classes (Employee and Country) in the project.

Add the Models folder under the project root folder and place AppDbContext.

cs, Employee.cs, and Country.cs files there from any previous project (say, MVC 

version of Employee Manager). After adding these files to the project, make sure to 

change their namespace to EmployeeManager.Blazor.ServerSide.Models. You are 

already familiar with the EF Core model required for data access, and hence it is not 

discussed here again.

Note You can get the complete code of the employee Manager application being 
developed in this chapter from the book’s source code download.

Rather than directly using the AppDbContext class in the Razor Components, 

you create repositories to encapsulate CRUD operations. To create repositories, add 

the Repositories folder and add two interfaces to it named IEmployeeRepository 

and ICountryRepository. These interfaces should look familiar to you because you 

created them while learning Web APIs. For your quick reference, they are shown in 

Listing 8-1.

ChApter 8  BlAzor



346

Listing 8-1. IEmployeeRepository and ICountryRepository interfaces

public interface IEmployeeRepository

{

    List<Employee> SelectAll();

    Employee SelectByID(int id);

    void Insert(Employee emp);

    void Update(Employee emp);

    void Delete(int id);

}

public interface ICountryRepository

{

    List<Country> SelectAll();

}

Next, add a new class to the Repositories folder named EmployeeRepository and 

implement the IEmployeeRepository interface in it. Listing 8-2 shows the completed 

EmployeeRepository class.

Listing 8-2. EmployeeRepository encapsulates CRUD operations on the 

Employees table

public class EmployeeRepository : IEmployeeRepository

{

    private AppDbContext db = null;

    public EmployeeRepository(AppDbContext db)

    {

        this.db = db;

    }

    public List<Employee> SelectAll()

    {

        return db.Employees.ToList();

    }

ChApter 8  BlAzor



347

    public Employee SelectByID(int id)

    {

        return db.Employees.Find(id);

    }

    public void Insert(Employee emp)

    {

        db.Employees.Add(emp);

        db.SaveChanges();

    }

    public void Update(Employee emp)

    {

        db.Employees.Update(emp);

        db.SaveChanges();

    }

    public void Delete(int id)

    {

        Employee emp = db.Employees.Find(id);

        db.Employees.Remove(emp);

        db.SaveChanges();

    }

}

This code should look familiar to you since you have already used EF Core methods 

such as Add(), Update(), Remove(), and SaveChanges(). The EmployeeRepository class 

injects AppDbContext in the constructor and stores it in a class member. The db member 

variable is used by all the other methods while performing CRUD operations. The 

CountryRepository implements ICountryRepository and is shown in Listing 8-3.

ChApter 8  BlAzor



348

Listing 8-3. CountryRepository returns all the countries from the Countries table

public class CountryRepository : ICountryRepository

{

    private readonly AppDbContext db = null;

    public CountryRepository(AppDbContext db)

    {

        this.db = db;

    }

    public List<Country> SelectAll()

    {

        return db.Countries.ToList();

    }

}

You need to register the AppDbContext, EmployeeRepository, and CountryRepository 

classes with the DI framework. That’s because you want to inject the repositories into the 

Razor Components you develop in later sections. To do so, open the Startup class and add 

code to the ConfigureServices() method as shown in Listing 8-4.

Listing 8-4. Registering AppDbContext and repositories with the DI container

public void ConfigureServices(IServiceCollection services)

{

    services.AddRazorPages();

    services.AddServerSideBlazor();

     services.AddDbContext<AppDbContext>(options => options.

UseSqlServer(this.Configuration.GetConnectionString("AppDb")));

     services.AddScoped<IEmployeeRepository, EmployeeRepository>();

    services.AddScoped<ICountryRepository, CountryRepository>();

}

Notice the code shown in bold letters. The first line registers AppDbContext for DI. The 

code picks the database connection string from the appsettings.json file (you need to add 

the connection string to the appsettings.json file in case you haven’t done that already).

ChApter 8  BlAzor



349

The second and third lines register EmployeeRepository and CountryRepository 

with DI using the AddScoped() method. Recollect from earlier chapters that services 

added using the AddScoped() method are created once per request.

Note You created this application using the Blazor Server App project 
template. You will observe that ConfigureServices( ) calls Addrazorpages( ) and 
AddServerSideBlazor( ) methods to register services required by the Blazor server- 
side application. Similarly, the Useendpoints( ) call inside the Configure( ) method 
uses MapBlazorhub( ) and MapFallbacktopage( ) methods to set up Blazor’s routing.

 Display a List of Employees
To display a list of employees (Figure 8-4), you need to create a Razor Component 

named List.razor.

Figure 8-4. Displaying a list of employees

To add List.razor, right-click the Pages folder and select Add ➤ New Item to open the 

Add New Item dialog as shown in Figure 8-5.

ChApter 8  BlAzor



350

From the list, select the Razor Component entry, specify the name as List, and click 

the Add button.

Once List.razor gets added, open it in Visual Studio editor and add the code shown 

in Listing 8-5 at the top of the Razor Component.

Listing 8-5. Defining route and injecting services

@page "/"

@page "/Employees/List"

@using Microsoft.AspNetCore.WebUtilities

@inject NavigationManager UriHelper

@inject IEmployeeRepository EmpRepository

The code consists of a series of directives. You want to use the List.razor component 

as a “page” rather than housing it inside other components. So the @page directive is 

used to associate this component to route templates. Notice that the code uses two  

@page directives, each specifying a route template. The first @page directive makes this 

component available as the default page of the application, so its route template is “/.” 

The second @page directive makes the component accessible at /Employees/List. Blazor 

routing is integrated with ASP.NET Core’s endpoint routing.

Figure 8-5. Adding a new Razor Component

ChApter 8  BlAzor



351

The @using directive specifies a namespace you want to use (Microsoft.

AspNetCore.WebUtilities in this case). You could have specified this namespace 

inside the _Imports.razor file also in which case all the components would have been 

able to use it without the need of the @using directive. The QueryHelpers class from this 

namespace is used later in the code.

Then the @inject directive is used to inject an object of Microsoft.AspNetCore.

Components.NavigationManager class. The @inject directive specifies two things: a type 

to be injected followed by a property name to receive the injected type (this property is 

automatically created by the compiler). You use this property name in your C# code to 

access the injected object.

The NavigationManager object injected into the component can be used to 

handle URLs and programmatic navigation. You use this object to read query string 

values (if any) as discussed later in this section.

On the same lines, the code injects the IEmployeeRepository object that can be 

accessed using the EmpRepository property.

Next, add a @code block below the directives just discussed and write the code shown 

in Listing 8-6 into it.

Listing 8-6. @code block fetches a list of employees

@code {

    List<Employee> Employees { get; set; }

    string Message { get; set; }

    protected override void OnInitialized()

    {

        Employees = EmpRepository.SelectAll();

        var uri = new Uri(UriHelper.Uri);

        if (QueryHelpers.ParseQuery(uri.Query).Count > 0)

        {

            Message = QueryHelpers.ParseQuery(uri.Query)

                  .First().Value;

        }

    }

}

ChApter 8  BlAzor



352

The @code block declares two properties, namely, Employees and Message. The 

former property is used to store a list of employees returned by the EmpRepository, 

whereas the latter property is used to store a message to be displayed to the user (if any).

Then there is the OnInitialized() lifecycle method that is called when a 

component is initialized. Inside the OnInitialized() method, the code calls the 

SelectAll() method of the EmpRepository object to retrieve a List of Employee objects. 

The return value of SelectAll() is assigned to the Employees property.

The next piece of code checks whether the URL contains a message or not. You 

need to do this because the delete component (discussed later in this chapter) passes a 

message to the employee listing page through query string. If this message exists in the 

query string, you need to display it to the user.

First, a Uri object is created based on the current URL. The current URL is obtained 

using the Uri property of the UriHelper object. The URL returned is passed to the 

constructor of the Uri class.

The next if statement checks whether the query string contains any parameters or 

not. This is done with the help of the QueryHelpers class and its ParseQuery() method. 

The ParseQuery() method parses a query string to obtain its key-value pairs. The Count 

property returns the number of key-value pairs. Inside, the code picks the first query 

string value (in this case, there is only one key-value pair) and assigns it to the Message 

property. The message is displayed to the user.

Note In this example, you used a query string parameter to pass a message from 
the delete employee page to the employee listing page. however, you could have 
also used a route parameter instead of using query string. route parameters are 
discussed in later sections. In more real-world situations, you should also include 
some error checking and validation for query string parameters being passed.

This completes the @code block. Below the @code block, write the HTML markup and 

intermingled C# code that displays a list of employees in a table (Listing 8-7).

Listing 8-7. Displaying a list of employees in the HTML table

<h2>List of Employees</h2>

<h3 class="message">@Message</h3>

<a href='/employees/insert' class="linkbutton">Insert</a>

ChApter 8  BlAzor



353

<br /><br />

<table border="1" cellpadding="10">

    <tr>

        <th>Employee ID</th>

        <th>First Name</th>

        <th>Last Name</th>

        <th>Title</th>

        <th colspan="2">Actions</th>

    </tr>

    @foreach (var item in Employees)

    {

        <tr>

            <td>@item.EmployeeID</td>

            <td>@item.FirstName</td>

            <td>@item.LastName</td>

            <td>@item.Title</td>

            <td>

            <a href='/employees/update/@item.EmployeeID'

               class="linkbutton">Update</a>

            </td>

            <td>

            <a href='/employees/delete/@item.EmployeeID'

               class="linkbutton">Delete</a>

            </td>

        </tr>

    }

</table>

Below the page heading, the Message property value is displayed on the page. An 

anchor element points to the Insert.razor component (discussed later in this chapter) 

accessible at /employees/insert.

ChApter 8  BlAzor



354

Note In this example, you used the anchor element because the navigation is 
quite simple and straightforward. Blazor also provides the <Navlink> component 
that can be used to render hyperlinks to razor Components. It has some additional 
features such as automatically setting the active CSS class for the link if the href 
attribute matches the current Url.

Then a <table> is rendered for displaying a list of employees. Notice the use of 

the @foreach loop to generate table rows. Every row generated displays EmployeeID, 

FirstName, LastName, and Title of the employee. Each row also has Update and Delete 

links. The Update link points to Update.razor accessible at /employees/update, and the 

Delete link points to Delete.razor accessible at /employees/delete. EmployeeID is also 

passed in these routes.

This completes the List.razor component.

 Insert a New Employee
Clicking the Insert link on the employee listing component takes you to another 

component where you can insert a new employee (Figure 8-6).

Figure 8-6. Inserting a new employee

ChApter 8  BlAzor



355

To develop this component, add a new Razor Component named Insert.razor into 

the Pages folder.

Then add the directives shown in Listing 8-8 at the top of Insert.razor.

Listing 8-8. Defining routing and injecting repositories for Insert.razor

@page "/Employees/Insert"

@inject IEmployeeRepository EmpRepository

@inject ICountryRepository CtryRepository

Here, the @page directive specifies the route template to be /Employees/

Insert. The @inject statements inject two repositories that can be accessed as 

EmpRepository and CtryRepository properties, respectively.

Next, add a @code block to the component and write the code shown in Listing 8-9.

Listing 8-9. @code block with properties and event handlers

@code {

    Employee EmployeeModel { get; set; }

    List<Country> Countries { get; set; }

    string Message { get; set; }

    protected override void OnInitialized()

    {

        EmployeeModel = new Employee();

        Countries = CtryRepository.SelectAll();

    }

    private void OnSaveClick()

    {

        EmpRepository.Insert(EmployeeModel);

        Message = "Employee inserted successfully!";

    }

}

ChApter 8  BlAzor



356

The @code block defines three properties, namely, EmployeeModel, Countries, and 

Message. The EmployeeModel property is of type Employee and is used for data binding 

with the data entry form (discussed latter). The Countries property holds a List of 

Country objects and is used to populate the Country dropdown list. The Message string 

property is used to display a success or error message to the user.

The @code block then proceeds to override the OnInitialized() lifecycle method. 

Inside, the code assigns a new Employee object to the EmployeeModel property. The 

code also calls the SelectAll() method of CtryRepository which fetches a list of all the 

countries from the Countries table.

Next, the @code block contains an event handler method named OnSaveClick(). 

This event handler method handles the OnValidSubmit event of the data entry form 

(discussed latter). Inside, the code calls the Insert() method of EmpRepository 

by passing the Employee object data bound with the form (as represented by the 

EmployeeModel property). A success message is displayed to the user by assigning it to 

the Message property.

This completes the @code block. Now proceed to add the markup shown in Listing 8-10.

Listing 8-10. Creating the data entry form using the <EditForm> component

<h2>Insert New Employee</h2>

<h3 class="message">@Message</h3>

<EditForm Model="EmployeeModel" OnValidSubmit="OnSaveClick">

  <DataAnnotationsValidator></DataAnnotationsValidator>

  <ValidationSummary></ValidationSummary>

</EditForm>

<br /><br />

<a href="/employees/list">Back to Employee Listing</a>

Notice the markup shown in bold letters. It shows the <EditForm> component 

of Blazor used to define a data entry form. The Model attribute of the <EditForm> 

element specifies a model object used for data binding with the form. Notice how 

the EmployeeModel property is used for this purpose. The OnValidSubmit attribute 

represents an event that is raised when a form contains valid entries and is submitted by 

a user. The OnSaveClick() method created earlier in the @code block is specified as the 

event handler of the OnValidSubmit event.

ChApter 8  BlAzor



357

Inside the <EditForm> element, there are two components in the form of <Data 

AnnotationsValidator> and <ValidationSummary> elements. The <DataAnnotations 

Validator> component enables data annotation–based validations for this form. The 

Employee model class uses data annotations such as [Required] and [StringLength]. 

Using <DataAnnotationsValidator> means that the form can be validated on the 

basis of those data annotations. The <ValidationSummary> component renders a list of 

validation errors (if any) from the form.

The other parts of the form should look familiar to you since you used them on the 

List.razor component also.

Next, add the markup shown in Listing 8-11 in between the 

<DataAnnotationsValidator> and <ValidationSummary> components. For the sake of 

clarity, only the first name field is shown; other fields are discussed later.

Listing 8-11. Defining form fields and validations

<table border="0" cellpadding="10">

    <tr>

        <td class="right">

            <label for="FirstName">First Name :</label>

        </td>

        <td>

            <InputText id="FirstName"

            @bind-Value="EmployeeModel.FirstName" />

            <ValidationMessage

            For="(() => EmployeeModel.FirstName)" />

        </td>

    </tr>

  ...

  ...

Notice the code shown in bold letters. It shows the <InputText> component used 

to render a textbox (HTML <input> field with type of text). The <InputText> is to be 

data bound with the FirstName property of the Employee object. This is done by setting 

the @bind-Value attribute of the component to the FirstName property of the Employee 

object.

ChApter 8  BlAzor



358

To display field–level validation errors (if any), the <ValidationMessage> component 

is used. The For attribute of the <ValidationMessage> element specifies a lambda 

expression representing an associated model property (FirstName in this case).

Just like the <InputText> component, there are a few more including <InputDate>, 

<InputSelect>, and <InputTextArea>. These components render an <input> field of 

type date, <select> element, and <textarea>, respectively. In this example, BirthDate 

and HireDate model properties are displayed using the <InputDate> component, the 

Country property is displayed using the <InputSelect> component, and the Notes 

property is displayed using the <InputTextArea> component, respectively.

The markup to display BirthDate and HireDate properties is shown in Listing 8-12.

Listing 8-12. Displaying BirthDate and HireDate using the <InputDate> 

component

<InputDate id="BirthDate"

@bind-Value="EmployeeModel.BirthDate" />

<ValidationMessage For="(() => EmployeeModel.BirthDate)" />

<InputDate id="HireDate"

@bind-Value="EmployeeModel.HireDate" />

<ValidationMessage For="(() => EmployeeModel.HireDate)" />

This markup is quite similar to the previous one except that it uses the <InputDate> 

component. Use of the @bind-Value attributes data binds BirthDate and HireDate 

properties, respectively. The <ValidationMessage> elements display validation 

messages for BirthDate and HireDate properties.

Note Components such as <Inputtext>, <Inputdate>, <InputSelect>, and 
<InputtextArea> are collectively called input components. Input components are 
validated (if validation logic is associated with them) when a field value is changed 
and when a form is submitted. You can also use plain htMl <input> elements to 
render data entry fields.

To display the Country property, you use the <InputSelect> component. You also 

need to add a bit of code because the <option> elements are to be added depending on 

the Countries list. Listing 8-13 shows how this is done.

ChApter 8  BlAzor



359

Listing 8-13. Displaying Country using the <InputSelect> component

<InputSelect id="Country"

@bind-Value="EmployeeModel.Country">

   <option value="">Please select</option>

   foreach (var c in Countries)

   {

      <option value="@c.Name">@c.Name</option>

   }

</InputSelect>

<ValidationMessage For="(() => EmployeeModel.Country)" />

The <InputSelect> element is data bound with the Country property using the  

@bind-Value attribute. An empty <option> element – Please select – is added to the 

resultant <select> element. Moreover, a foreach loop iterates through the Countries 

list and adds the <option> element for every available country. A validation message is 

displayed using the <ValidationMessage> component as before.

To display the Notes property, add the markup shown in Listing 8-14.

Listing 8-14. Displaying Notes using the <InputTextArea> component

<InputTextArea id="notes"

@bind-Value="EmployeeModel.Notes"

rows="5"

cols="40" />

<ValidationMessage For="(() => EmployeeModel.Notes)" />

Notice that in addition to the @bind-Value attribute, the <InputTextArea> element 

also specifies rows and cols attributes to specify rows and columns for the resultant 

<textarea>.

Finally, there is also a Submit button at the bottom of the data entry form that 

submits the form. You can get the complete context of Insert.razor from this chapter’s 

code download.

ChApter 8  BlAzor



360

Note You might notice that while inserting an employee, the insert component 
initially displays Datetime.MinValue in the BirthDate and hireDate input 
components. If you want to show these fields empty, just make the BirthDate and 
hireDate properties of the employee class nullable. For example, the BirthDate 
property can be changed to public Datetime? BirthDate { get; set; }, and hireDate 
can be changed to public Datetime? hireDate { get; set; }.

 Update an Existing Employee
Clicking the Update button on the employee listing page takes you to the update existing 

employee Razor Component where existing details of an employee are presented for 

editing (Figure 8-7).

To create this page, add a new Razor Component named Update.razor and place the 

@page and @inject statements as shown in Listing 8-15.

Figure 8-7. Updating an existing employee

ChApter 8  BlAzor



361

Listing 8-15. Defining page route for the update component

@page "/Employees/Update/{EmployeeID:int}"

@inject IEmployeeRepository EmpRepository

@inject ICountryRepository CtryRepository

Notice the code shown in bold letters. It defines a route template for the update 

component. The update component needs to accept an EmployeeID whose details are to 

be updated. So the route template also includes a route parameter named EmployeeID. 

EmployeeID is an integer value, and hence the parameter constraint specifies its data type 

to be int. The @inject statements are identical to the insert component created earlier 

and inject EmployeeRepository and CountryRepository objects into the component.

Next, add a @code block and the code shown in Listing 8-16 in it.

Listing 8-16. EmployeeID is marked with the [Parameter] attribute

@code {

    [Parameter]

    public int EmployeeID { get; set; }

    Employee EmployeeModel { get; set; }

    List<Country> Countries { get; set; }

    string Message { get; set; }

    protected override void OnInitialized()

    {

        Countries = CtryRepository.SelectAll();

        EmployeeModel = EmpRepository.SelectByID(EmployeeID);

    }

    private void OnSaveClick()

    {

        EmpRepository.Update(EmployeeModel);

                 Message = "Employee updated successfully!";

    }

}

Notice the code shown in bold letters. First, there is the public EmployeeID integer 

property. The EmployeeID route parameter’s value is to be assigned to this property. The 

[Parameter] attribute marked on top of it does that job.

ChApter 8  BlAzor



362

In addition to fetching a list of all countries, the OnInitialized() lifecycle method 

also fetches an existing employee from the database. This is done by calling the 

SelectByID() method of EmpRepository and passing EmployeeID to it. The returned 

Employee object acts as the model for the <EditForm> component and is stored in the 

EmployeeModel property.

The OnSaveClick() method acts as the OnValidSubmit event handler of the 

<EditForm> element. Inside, it calls the Update() method of EmpRepository and passes 

the modified Employee object (as represented by the EmployeeModel property) to it.

Below the @code block, you need to write the markup that renders the update form. 

This markup is quite similar to the insert component markup and uses the <EditForm> 

component and other input components such as <InputText>. The only difference is that 

it also shows the EmployeeID being modified in the table (Listing 8-17).

Listing 8-17. <EditForm> component that renders the update form

<h2>Update Existing Employee</h2>

<h3 class="message">@Message</h3>

<EditForm Model="EmployeeModel" OnValidSubmit="OnSaveClick">

    <DataAnnotationsValidator></DataAnnotationsValidator>

    <table border="0" cellpadding="10">

        <tr>

            <td class="right">

                <label>Employee ID :</label>

            </td>

            <td>

                @EmployeeModel.EmployeeID

            </td>

        </tr>

        ...

        ...

    </table>

    <ValidationSummary></ValidationSummary>

</EditForm>

<br /><br />

<a href="/employees/list">Back to Employee Listing</a>

ChApter 8  BlAzor



363

As you can see, the EmployeeID being modified is outputted on the page. The other 

markup is identical to the insert component, and you can grab it from the Update.razor 

file available with this chapter’s code download.

 Delete an Existing Employee
Upon clicking the Delete button on the employee listing page, you navigate to the delete 

existing employee Razor Component (Figure 8-8).

To create the delete component, add a new Razor Component named Delete.razor 

and set it up as shown in Listing 8-18.

Listing 8-18. Defining routing and injecting EmployeeRepository

@page "/Employees/Delete/{EmployeeID:int}"

@inject IEmployeeRepository EmpRepository

@inject NavigationManager UriHelper

Figure 8-8. Seeking delete confirmation from the user

ChApter 8  BlAzor



364

This code should look familiar to you since it is quite similar to the update component. 

Just like the update component, the route template contains the EmployeeID parameter. 

Also notice that in addition to injecting EmpRepository, it also injects the NavigationManager 

object. You need this object to programmatically navigate to the employee listing page once 

an employee record is deleted.

Below the @page and @inject directives, you need to write the @code block as shown 

in Listing 8-19.

Listing 8-19. Deleting an employee record and navigating to the employee 

listing page

@code {

    [Parameter]

    public int EmployeeID { get; set; }

    Employee EmployeeModel { get; set; }

    string Message { get; set; }

    protected override void OnInitialized()

    {

        EmployeeModel = EmpRepository.SelectByID(EmployeeID);

    }

    private void OnDeleteClick()

    {

        EmpRepository.Delete(EmployeeID);

        Message = "Employee deleted successfully!";

        UriHelper.NavigateTo

        ($"/employees/list?Message={Message}");

    }

}

The @code block declares the EmployeeID public property and marks it with the 

[Parameter] attribute. This way EmployeeID passed in the route is assigned to the 

EmployeeID property.

The EmployeeModel property gets assigned in the OnInitialized() lifecycle method. 

This is done by calling the SelectByID() method of EmpRepository by passing an 

EmployeeID value.

ChApter 8  BlAzor



365

Upon clicking the Delete button, the OnDeleteClick() event handler method gets 

called. Inside, the code calls the Delete() method of EmpRepository by passing an 

EmployeeID. A success message is assigned to the Message property.

Once an employee record is successfully deleted, you need to take the user back 

to the employee listing page. Additionally, you also want to display a success message 

on the employee listing page that indicates the outcome of the delete operation. To 

accomplish this, the code uses the UriHelper object. The NavigateTo() method of 

UriHelper accepts a URL to navigate and redirects a user to that URL. Here, the code 

also passes a query string parameter named Message that holds the value of the Message 

property. Recollect that you have written code in List.razor to read this query string 

parameter and render on the screen.

Below the @code block, you need to write the markup that displays employee details 

from EmployeeModel into the HTML table. You also need to seek delete confirmation 

from the user. You could have used the <EditForm> component here also. However, since 

there are no editable controls on this page, you use a variation as shown in Listing 8-20.

Listing 8-20. Displaying employee details and seeking delete confirmation

<h2>Delete Existing Employee</h2>

<h3 class="message">

    Warning : You are about to delete an employee record.

</h3>

<form>

    <table border="0">

        <tr>

            <td class="right">

                <label>EmployeeID :</label>

            </td>

            <td>

                @EmployeeModel.EmployeeID

            </td>

        </tr>

        ...

        ...

ChApter 8  BlAzor



366

        <tr>

            <td colspan="2">

                <button type="button"

                        @onclick="OnDeleteClick">

                  Delete

                </button>

            </td>

        </tr>

    </table>

</form>

<br /><br />

<a href="/employees/list">Back to Employee Listing</a>

Notice the code shown in bold letters. Here, you use the <form> element rather 

than the <EditForm> component. Inside, a table displaying employee details is 

rendered. For the sake of clarity, only the first and last rows of the table are shown 

(you can get the complete markup from this chapter’s code download). The first 

row shows EmployeeID, and the last row contains a <button> element. The type of 

the button is button rather than submit. Moreover, the @onclick event attribute 

is assigned a value of OnDeleteClick (name of the event handler method you 

wrote in the @code block). This way clicking the Delete button will invoke the 

OnDeleteClick() event handler method.

Note the onclick event handler method can accept a parameter of type 
MouseeventArgs. this event argument object supplies additional information 
about the event such as state of Ctrl, Shift, and Alt keys, screen coordinates of the 
mouse pointer, mouse button that was pressed, and so on. In the code shown in 
the preceding text, you don’t need any such information, and hence that parameter 
was not used.

This completes all the four Razor Components (List.razor, Insert.razor, Update.

razor, and Delete.razor) required to perform the CRUD operations. Before you run the 

application and confirm their working, you need to apply the CSS style sheet and layout 

to the application. This is explained in the following section.

ChApter 8  BlAzor



367

 Apply CSS and Layout to Razor Components
In the examples from the previous chapter, you know that Employee Manager’s styling 

information resides in the Site.css file located under the /wwwroot/Styles folder. So 

firstly, place the Site.css file inside the /wwwroot/styles folder of the Blazor project.

Then locate the _Host.cshtml file from the Pages folder and modify it as shown in 

Listing 8-21.

Listing 8-21. Applying the CSS style sheet

@page "/"

@namespace EmployeeManager.Blazor.ServerSide.Pages

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

<!DOCTYPE html>

<html lang="en">

<head>

    ...

    <title>Employee Manager</title>

    <base href="~/" />

    <link href="~/Styles/site.css" rel="stylesheet" />

</head>

...

</html>

The _Host.cshtml file contains top-level HTML elements such as <html>, <head>, 

and <body>. Notice the markup shown in bold letters. It sets the application’s title to 

Employee Manager and also adds the <link> element that points to Site.css from the /

wwwroot/Styles folder. Make sure to remove other <link> elements that apply Bootstrap 

CSS framework to the application.

The <ValidationMessage> and <ValidationSummary> components use a CSS class 

named validation-message while displaying the error messages. So add that to your 

Site.css file:

.validation-message {

    color: red;

    font-weight: bold;

}

ChApter 8  BlAzor



368

Next, locate the MainLayout.razor file from the Shared folder and modify it as shown 

in Listing 8-22.

Listing 8-22. MainLayout.razor contains layout applied to the components

@inherits LayoutComponentBase

<h1>Employee Manager</h1>

<hr />

<div>

    @Body

</div>

<br />

<hr />

The markup is quite straightforward. Blazor layouts inherit from the 

LayoutComponentBase class. Here, the layout sets the main heading of the application. To 

render the output of various Razor Components at a particular location in the layout file, 

you use @Body syntax.

You will revisit MainLayout again after integrating ASP.NET Core Identity with the 

application.

Note You might wonder where exactly Mainlayout.razor is applied to the razor 
Components. that’s done inside the App.razor file residing under the project root 
folder. All the components are applied Mainlayout based on this setting.

 Integrating ASP.NET Core Identity
In the preceding sections, you developed Employee Manager using the Blazor server- 

side hosting model. Although the application is able to perform CRUD operations, it 

lacks user authentication. As far as user authentication is concerned, Blazor server-side 

applications can utilize ASP.NET Core Identity just like ASP.NET Core MVC and ASP.NET 

Core Razor Pages applications.

While integrating ASP.NET Core Identity support into the Employee Manager Blazor 

application, you need to add the same Identity DbContext, models, Razor Pages, and 

startup configuration as you did with the Razor Pages version of Employee Manager 

ChApter 8  BlAzor



369

earlier in this book. You could have also used the MVC version, but the Razor Pages 

version is more suited here because Blazor syntax closely matches to the Razor Pages 

syntax. Since all the pieces required are ready with you, just copy them into this project 

as instructed in the following. And then fine-tune them at a few places as explained in 

the later sections.

In order to integrate ASP.NET Core Identity in this project, you need to carry out the 

following steps.

 Add IdentityDbContext and Associated Classes
Add a new folder named Security under the Employee Manager Blazor application’s root 

folder. Then copy these files from the Razor Pages version of Employee Manager to it:

• AppIdentityDbContext.cs

• AppIdentityUser.cs

• AppIdentityRole.cs

After adding these files, make sure to change their namespace to EmployeeManager.

Blazor.ServerSide.Security. The first file represents AppIdentityDbContext that 

communicates with the underlying data store. The other two files represent custom user 

and role, respectively.

Note You also need database tables used by ASp.Net Core Identity. If you worked 
through the earlier versions of employee Manager discussed in this book, you 
already have these tables in the Northwind database. otherwise, you need to install 
the dotnet-ef tool and eF Core migrations to create the required tables. You may 
refer to Chapter 3 for more details.

 Add Register and SignIn View Models
The project root folder already has the Models folder containing entity classes such as 

Employee and Country. Add Register.cs and SignIn.cs files from the Razor Pages version 

to this folder.

ChApter 8  BlAzor



370

After adding the files, change their namespace to EmployeeManager.Blazor.

ServerSide.Models. These files represent view models for the user registration page and 

sign-in page, respectively.

 Add Register, SignIn, and SignOut Razor Pages
Under the Pages folder, create a subfolder named Security. Then copy these files from 

the Razor Pages version:

• Register.cshtml and Register.cshtml.cs

• SignIn.cshtml and SignIn.cshtml.cs

• SignOut.cshtml and SignOut.cshtml.cs

The .cshtml files contain the Razor Pages markup, whereas .cshtml.cs files contain 

PageModel classes. As before, change the namespace of the page model classes to 

EmployeeManager.Blazor.ServerSide.Pages.Security.

After adding these files, open SignIn.cshtml.cs and go to the OnPostAsync() page 

handler method. If sign-in operation is successful, the user should be redirected to the 

default Razor Component (List.razor). So change the line as shown in Listing 8-23.

Listing 8-23. User is redirected to List.razor upon successful sign-in

public async Task<IActionResult> OnPostAsync()

{

    if (ModelState.IsValid)

    {

        var result = await signinManager.PasswordSignInAsync

        (SignInData.UserName, SignInData.Password,

            SignInData.RememberMe, false);

        if (result.Succeeded)

        {

            return Redirect("/Employees/List");

        }

ChApter 8  BlAzor



371

        else

        {

            ModelState.AddModelError("", "Invalid user details");

        }

    }

    return Page();

}

Recollect that List.razor is associated with the /Employees/List route template.

Now open SignOut.cshtml.cs and rename the OnPostAsync() page handler method 

to OnGetAsync(). You need to do this because in this case the Sign Out button resides 

inside MainLayout.razor (external to Razor Pages). And clicking the Sign Out button 

should invoke the SignOutAsync() method of SignInManager. The modified page 

handler is shown in Listing 8-24.

Listing 8-24. OnGetAsync() page handler of the SignOut page

public async Task<IActionResult> OnGetAsync()

{

    await signinManager.SignOutAsync();

    return RedirectToPage("/Security/SignIn");

}

As you can see, the OnGetAsync() removes the authentication cookie by calling the 

SignOutAsync() method of SignInManager and redirects the user to the sign-in page.

 Add _Layout, _ViewStart, and _ViewImports Files
Earlier in this chapter, you worked with MainLayout.razor and _Imports.razor files. They 

are applied to Razor Components. The Register, SignIn, and SignOut Razor Pages also 

need their layout page, view start page, and view imports page. So copy these files from 

the Razor Pages version and place them in the Pages ➤ Security folder:

• _Layout.cshtml

• _ViewStart.cshtml

• _ViewImports.cshtml

ChApter 8  BlAzor



372

Then open _ViewImports.cshtml and modify it to have the Security namespace as 

shown in Listing 8-25.

Listing 8-25. Add the Security namespace to _ViewImports.cshtml

@using EmployeeManager.Blazor.ServerSide.Pages.Security

@addTagHelper *, Microsoft.AspNetCore.Mvc.TagHelpers

As you can see, the using statement now specifies the EmployeeManager.Blazor.

ServerSide.Pages.Security namespace. Due to this statement, you can simply specify 

the page model class name in the @model directive rather than specifying a fully qualified 

class name. There is also a @addTagHelper statement since Razor Pages use Tag Helpers 

to render their user interface.

 Register and Configure ASP.NET Core Identity
In order to use ASP.NET Core Identity, you need to register it in the 

ConfigureServices() method of the Startup class. This is shown in Listing 8-26.

Listing 8-26. Registering ASP.NET Core Identity services

public void ConfigureServices(IServiceCollection services)

{

    services.AddRazorPages();

    services.AddServerSideBlazor();

     services.AddDbContext<AppDbContext>(options => options.UseSqlServer 

(this.Configuration.GetConnectionString("AppDb")));

    services.AddDbContext<AppIdentityDbContext>(options =>

options.UseSqlServer(this.Configuration.GetConnectionString

("AppDb")));

    services.AddIdentity<AppIdentityUser, AppIdentityRole>()

            .AddEntityFrameworkStores<AppIdentityDbContext>();

    services.AddScoped<IEmployeeRepository,EmployeeRepository>();

services.AddScoped<ICountryRepository, CountryRepository>();

}

ChApter 8  BlAzor



373

Notice the code shown in bold letters. Firstly, it registers AppIdentityDbContext with 

the DI container using the AddDbContext() method. Secondly, it registers ASP.NET Core 

Identity services using the AddIdentity() method. This also sets the security scheme for 

the application to ASP.NET Core Identity. This code should look familiar to you because 

you used it in earlier versions of Employee Manager also.

Next, go in the Configure() method and modify it as shown in Listing 8-27.

Listing 8-27. Add authentication and authorization middleware

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

{

    ...

    app.UseStaticFiles();

    app.UseRouting();

         app.UseAuthentication();

         app.UseAuthorization();

    app.UseEndpoints(endpoints =>

    {

        endpoints.MapBlazorHub();

        endpoints.MapFallbackToPage("/_Host");

    });

}

The UseAuthentication() method adds authentication middleware to the request 

pipeline. Similarly, the UseAuthorization() method adds authorization middleware. 

You can now decide which parts of your application require authentication and 

authorization.

 Secure CRUD Razor Components
As far as the Employee Manager application being developed is concerned, you need to 

secure all the Razor Components that participate in CRUD operations. This includes List.

razor, Insert.razor, Update.razor, and Delete.razor.

ChApter 8  BlAzor



374

To enable user authentication in these Razor Components, you use the @attribute 

directive. The @attribute directive is followed by an attribute that gets added to the 

generated component class. Listing 8-28 shows how @attribute can be added to the 

List.razor component.

Listing 8-28. @attribute directive adds an attribute to a component

@page "/"

@page "/Employees/List"

@using Microsoft.AspNetCore.WebUtilities

@inject NavigationManager UriHelper

@inject IEmployeeRepository EmpRepository

@attribute [Authorize(Roles = "Manager")]

Notice the line shown in bold letters. It has the @attribute directive followed by 

the [Authorize] attribute. The [Authorize] attribute specifies the Roles property to 

Manager. You will find the [Authorize] attribute syntax identical to previous examples. 

Recollect that in MVC applications [Authorize] is applied to actions or controllers 

and in Razor Pages applications it is applied to page model classes. Here in Blazor, it is 

applied using the @attribute directive.

Add the [Authorize] attribute using the @attribute directive to other Razor 

Components. At this stage, if you run the application, the default component (recollect 

that List.razor is associated with the “/” route template) displays an error message as 

shown in Figure 8-9.

Figure 8-9. Error while accessing the List.razor component

ChApter 8  BlAzor



375

As you can see, if a user is not authenticated or a user is not authorized to access a 

component, an error message (Not authorized) is displayed in the browser. This is the 

default error message, and you can customize it as described shortly.

To get rid of the error, navigate to /security/signin and sign in using a valid user 

account. Once you successfully sign in to the system, you will be taken to List.razor 

again, and this time the employee list will be displayed as expected.

 Display the User Name and Sign Out Button
Once a user successfully signs in to the application, its user name is to be displayed at 

the bottom of all the Razor Components along with the Sign Out button. This is done in 

the MainLayout.razor file. Listing 8-29 shows how this is done.

Listing 8-29. Displaying the user name and Sign Out button

@inherits LayoutComponentBase

<h1>Employee Manager</h1>

<hr />

<div>

    @Body

</div>

<br />

<hr />

<AuthorizeView>

    <Authorized>

        <h2>You are signed in as @context.User.Identity.Name</h2>

        <a href='/security/signout'

           class="linkbutton">Sign Out</a>

    </Authorized>

</AuthorizeView>

Notice the <AuthorizeView> component placed at the end of the MainLayout.razor 

file. The <AuthorizeView> component is capable of displaying a user interface depending 

on whether a user is authorized or not. In this case, the <Authorized> section contains a 

user interface markup that is displayed only if a user is authorized to access a component.

ChApter 8  BlAzor



376

The markup inside the <Authorized> section displays the user’s sign-in name using 

context variable. The context variable is an object of the AuthenticationState class. 

You can use the context object to access user information.

The markup then renders a hyperlink that acts as a Sign Out button. The link points 

to the SignOut Razor Page you added to the Security folder in the earlier section.

 Configure Initial Sign-In Prompt
From earlier discussion, you are aware that when you access Razor Components without 

signing in to the system, you are shown a “Not authorized” error message. You can 

customize this behavior by adding a friendlier message and a link to the sign-in page.

To do so, open the App.razor file from the project root folder. This file represents 

the Router component of Blazor. The App.razor file allows you to render custom user 

interface if it cannot find the component associated with a route or if user authorization 

has failed. Modify App.razor as shown in Listing 8-30.

Listing 8-30. Render custom user interface if authorization fails

<Router AppAssembly="@typeof(Program).Assembly">

    <Found Context="routeData">

         <AuthorizeRouteView RouteData="@routeData" DefaultLayout= 

"@typeof(MainLayout)">

            <NotAuthorized>

                <h2>You are not authorized to view this page.</h2>

                <h3>To sign in click <a href="/security/signin">here</a>.</h3>

            </NotAuthorized>

        </AuthorizeRouteView>

    </Found>

    <NotFound>

        <CascadingAuthenticationState>

            <LayoutView Layout="@typeof(MainLayout)">

                <p>Sorry, there's nothing at this address.</p>

            </LayoutView>

        </CascadingAuthenticationState>

    </NotFound>

</Router>

ChApter 8  BlAzor



377

The App.razor file contains the <Router> component. Inside, there are two sections 

as defined by <Found> and <NotFound> parameters.

The user interface that you want to render in the browser if a route is not 

associated with any component is governed by the <NotFound> parameter. The 

<AuthorizeRouteView> component and its <NotAuthorized> parameter control the user 

interface displayed if a user is not authorized to access a component. The content from 

the <NotAuthorized> section informs the user of authorization status and provides a 

link to the sign-in page. Also notice that DefaultLayout and Layout values render the 

components using the specified layout.

After making these changes, if you run the application, you will be displayed a user 

interface as shown in Figure 8-10.

You can now click the sign-in link to reach the sign-in page and sign in with valid 

credentials to access the employee listing.

This completes the application. Run it, sign in with valid user credentials, and 

confirm the working of CRUD operations.

 Use Policy-Based Authorization
So far in this book, you used role-based authorization to ensure that only users 

belonging to the Manager role can access the CRUD pages. Role-based authorization 

works great in many cases. However, at times your authorization needs are a bit more 

complex.

Figure 8-10. Custom user interface is shown if the user is not authorized

ChApter 8  BlAzor



378

Suppose you have defined three roles in your system, say, Manager, Operator, 

and Administrator. As your application evolves, you might find it difficult to fit all the 

authorization rules into these three predefined roles. For example, you might want to 

authorize a few pages based on the user’s role and a few more additional conditions. In 

such cases, you can’t simply authorize users based on their roles. That’s where ASP.NET 

Core’s policy-based authorization can be used.

Policy-based authorization uses a policy to authorize users. A policy is a bundle 

of one or more requirements. A requirement is an object that implements the 

IAuthorizationRequirement interface. It would be interesting to know that ASP.

NET Core’s role-based authorization and claims-based authorization internally use a 

requirement and a predefined policy.

An authorization policy is defined in ConfigureServices(). Listing 8-31 shows a 

policy named MustBeManager being defined.

Listing 8-31. Defining a custom policy

public void ConfigureServices(IServiceCollection services)

{

    ...

    services.AddIdentity<AppIdentityUser, AppIdentityRole>()

            .AddEntityFrameworkStores<AppIdentityDbContext>();

    services.AddAuthorization(config =>

    {

      config.AddPolicy("MustBeManager",

           policy =>

           {

             policy.RequireRole("Manager");

           }

      );

 });

 ...

}

ChApter 8  BlAzor



379

Notice the code shown in bold letters. The AddAuthorization() method defines 

a new policy using the AddPolicy() method. The AddPolicy() method takes 

two parameters: name of a policy and a set of requirements. As far as Employee 

Manager is concerned, the requirement is that a user must belong to the Manager 

role. To specify this requirement, the code uses the RequireRole() method. You 

could have used the RequireClaim() method to specify claim(s) as requirements, 

or you could have also used the Requirements collection to add custom 

IAuthorizationRequirement objects.

Now you have MustBeManager policy ready. The next step is to specify this policy 

while authorizing users. This is done in the [Authorize] attribute added in various 

components. Listing 8-32 shows the modified [Authorize] attribute in the List.razor 

component.

Listing 8-32. Applying a policy to a Razor Component

@page "/"

@page "/Employees/List"

@using Microsoft.AspNetCore.WebUtilities

@inject NavigationManager UriHelper

@inject IEmployeeRepository EmpRepository

@attribute [Authorize(Policy = "MustBeManager")]

As you can see, the [Authorize] attribute now uses its Policy property to specify an 

authorization policy (MustBeManager in this case). Users can access List.razor only if they 

meet the requirements set by the specified policy.

Note You can use policy-based authorization in MVC and razor pages 
applications using the same technique. Detailed discussion of policy-based 
authorization is beyond the scope of this book. You may read more at https://
docs.microsoft.com/en-us/aspnet/core/security/authorization/
policies.

ChApter 8  BlAzor

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/policies
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/policies
https://docs.microsoft.com/en-us/aspnet/core/security/authorization/policies


380

 Summary
Blazor is a relatively new addition to the ASP.NET Core family and allows you to develop 

rich client applications that run in the browser. What’s more, you can do the entire 

development (server side and client side) using C#, HTML, and CSS.

Blazor provides two hosting models: client side and server side. The client- 

side hosting model uses WebAssembly, whereas the server-side hosting model 

uses SignalR for its working. This chapter used Blazor’s server-side hosting to build 

Employee Manager. You were introduced to many Blazor features such as lifecycle 

methods, creating custom Razor Components, using built-in components, routing, and 

dependency injection. After developing the CRUD components, you also integrated ASP.

NET Core Identity support with the application.

So far in this book, you used local installation of SQL Server for your data storage 

needs. Modern applications often resort to cloud-based data stores. Moreover, NoSQL 

databases are also becoming more and more common. To that end, the next chapter is 

going to show you how to deal with three different data stores: Azure SQL Databases, 

Cosmos DB, and MongoDB.

ChApter 8  BlAzor



381
© Bipin Joshi 2019 
B. Joshi, Beginning Database Programming Using ASP.NET Core 3,  
https://doi.org/10.1007/978-1-4842-5509-4_9

CHAPTER 9

Azure SQL Database, 
Azure Cosmos DB, 
and MongoDB
So far in this book, you have been using a local instance of SQL Server which houses 

the Northwind database. In this chapter, you will move the Northwind database to the 

cloud using Azure SQL Database. The Employee Manager application then uses this 

database to perform the CRUD operations. Although relational databases are commonly 

used to store application data, non-relational and NoSQL databases are becoming 

more and more common. This chapter covers two such data stores: Cosmos DB and 

MongoDB. Specifically, this chapter teaches you to

• Create an Azure SQL Database using the Azure portal and connect 

with it using SQL Server Management Studio

• Perform CRUD operations on Azure SQL Database using the 

Microsoft.Data.SqlClient data provider

• Understand what NoSQL databases are and where do Cosmos DB 

and MongoDB fit into the picture

• Perform CRUD operations on Cosmos DB using the Microsoft Azure 

Cosmos DB client library and EF Core provider for Cosmos DB

• Perform CRUD operations on MongoDB using the MongoDB .NET 

driver

• Use custom cookie authentication without using ASP.NET Core 

Identity

Let’s begin this chapter’s journey with Azure SQL Database.



382

 Creating Azure SQL Database
Traditionally, you use SQL Server installed locally on your development or somewhere 

within a known network. Azure takes the SQL Server databases to cloud. Azure SQL 

Database is a relational database-managed service and provides the same set of 

functionality that you have been using with the local SQL Server. One of the advantages 

of using Azure SQL Database is you don’t need to change your application code just 

because you are moving your data to the cloud. It’s the same database engine, but the 

data is hosted and managed by Azure data centers.

Since these SQL databases are hosted and managed by Azure, you need to have an 

Azure account to create and work with them. So I encourage you to get an Azure account 

before you proceed with the example discussed in the following sections.

Here, I am going to assume that you have an Azure account and are able to sign in 

to your account for the purpose of creating an SQL database. Figure 9-1 shows the initial 

page of the Azure portal displayed upon successful sign-in.

Figure 9-1. SQL databases option in the Azure portal

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



383

As you can see, there is an SQL databases option at the top of the main page as well 

as on the left side. Clicking the SQL databases option takes you to another page shown in 

Figure 9-2.

On this screen, click the Add button at the top. Doing so will open another screen 

where you need to fill a form with various settings for creating a new SQL database 

(Figure 9-3).

Figure 9-2. Creating a new SQL database

Figure 9-3. Specifying settings for a new SQL database

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



384

At a minimum, you need to specify the following settings as per your Azure 

account setup:

• Subscription

• Resource group

• Database name (Northwind in this case)

• Server

Make sure to specify these details as per your Azure account setup. After specifying 

these details, click the Review + create button at the bottom of the page and complete 

the new database creation process. Upon successful creation of the database, you will be 

shown a success notification.

You can now see the newly created database on the main page of the SQL databases 

section. You can take a look at the basic database settings by clicking the Overview 

option (Figure 9-4).

You don’t need to go into too much detail of this page. What’s important for you is 

the Connection string section on the right side. Clicking the Show database connection 

string link will take you to another page where the ADO.NET connection string can 

be seen. Keep this connection string at a handy location because you will use it while 

connecting with the database.

Figure 9-4. Database overview page

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



385

One last step before you complete this section, you need to configure the server 

firewall to allow your client IP address. To do that, go to the Northwind database 

overview page and click the Set server firewall option (Figure 9-5) available at the top.

Click the Add client IP button and add the client’s IP to the list of allowed IP addresses.

Your database is now ready to be accessed from SQL Server Management Studio.

 Connecting to Azure SQL Database Using SQL Server 
Management Studio
Now, let’s connect with the Northwind database you just created in Azure. Open SQL 

Server Management Studio and specify the connection details such as server, user name, 

and password based on the connection string you obtained earlier. Figure 9-6 shows the 

empty Northwind database upon successful connection.

Figure 9-5. Setting the server firewall

Figure 9-6. Northwind database in SQL Server Management Studio

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



386

You can now create the Employees and Countries tables in the Northwind database 

(you can use the CREATE TABLE statement to do that). You can also add some sample 

data in Employees and Countries tables.

Note You can also take help from the t-SQL script of the northwind database 
(you obtained this script from github in Chapter 1) to add sample data to the 
employees table.

Figure 9-7 shows a query being executed on the Northwind database hosted in Azure 

that returns employee records.

 Employee Manager Using Azure SQL Database
In the sections that follow, you build the Employee Manager application 

(EmployeeManager.AzureSql) that performs the CRUD operations on the Northwind 

database that is hosted in Azure. The application is going to follow the same process as 

with the MVC version that you developed earlier. However, there are a few differences:

Figure 9-7. Fetching employee records from the Azure SQL Database

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



387

• The application uses the Northwind Azure SQL Database rather than 

the local installation of Northwind.

• The application uses the Microsoft.Data.SqlClient object model to 

perform the CRUD operations instead of using EF Core.

• The data access code is wrapped in repositories, and the 

EmployeeManagerController invokes the repositories to get the job 

done.

• The ASP.NET Core Identity tables are created in the Azure SQL 

Database.

Since the application is now familiar to you, I am going to focus only on the CRUD 

operations. You can get the complete code of this example from the book’s source code 

download.

Note this example uses microsoft.Data.SqlClient classes to perform the CruD 
operations. although entity Framework Core is a preferred way of accessing data 
in aSp.net Core, at times you might want to have more control on the overall data 
access logic. For example, you might want to quickly migrate aDo.net code to the 
newer framework, or you might want to work with queries and stored procedures 
directly rather than through an object relational mapper.

 Employee and Country Model Classes
In order to work with this example, you need the Employee and Country model classes 

as before. However, since you aren’t using EF Core in this example, these model classes 

are not entity classes. They are POCOs with validation attributes. Recollect that while 

building the client application for the ASP.NET Core Web API, you developed such 

model classes. You can grab the same classes and place them in the Models folder, or 

you can create them again. If you wish, you can also get them from the book’s code 

download. Since these classes are already familiar to you, they are not being discussed 

here again.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



388

 Creating EmployeeRepository and CountryRepository
The CRUD operations are wrapped inside two repositories, namely, EmployeeRepository 

and CountryRepository. These repositories are based on the same interfaces 

(IEmployeeRepository and ICountryRepository) that you created in Chapter 5 earlier 

and reside inside the Repositories folder. So I am not going to discuss the interfaces in 

detail here. For your quick reference, these interfaces are shown in Listing 9-1.

Listing 9-1. IEmployeeRepository and ICountryRepository interfaces

public interface IEmployeeRepository

{

    List<Employee> SelectAll();

    Employee SelectByID(int id);

    void Insert(Employee emp);

    void Update(Employee emp);

    void Delete(int id);

}

public interface ICountryRepository

{

    List<Country> SelectAll();

}

Now add the EmployeeRepository class inside the Repositories folder. The Listing 9-2 

shows the skeleton of this class.

Listing 9-2. Skeleton of the EmployeeRepository class

public class EmployeeRepository : IEmployeeRepository

{

    private string connectionString;

    public EmployeeRepository(IConfiguration config)

    {

        this.connectionString = config.GetConnectionString("AppDb");

    }

...

...

}

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



389

As you can see, the EmployeeRepository constructor accepts an object of 

IConfiguration. This is required because you need the database connection string 

while performing the CRUD operations. The connection string is stored in a member 

variable for later use.

 SelectAll( ) Method

The SelectAll() method of EmployeeRepository returns all the Employee objects to the 

caller and is shown in Listing 9-3.

Listing 9-3. SelectAll() returns all the employees

public List<Employee> SelectAll()

{

    using (SqlConnection cnn = new SqlConnection(connectionString))

    {

        SqlCommand cmd = new SqlCommand();

        cmd.Connection = cnn;

        cmd.CommandType = CommandType.Text;

         cmd.CommandText = "SELECT EmployeeID, FirstName, LastName, Title, 

BirthDate, HireDate, Country, Notes FROM Employees ORDER BY 

EmployeeID ASC";

        cnn.Open();

        SqlDataReader reader = cmd.ExecuteReader();

        List<Employee> employees = new List<Employee>();

        while (reader.Read())

        {

            Employee item = new Employee();

            item.EmployeeID = reader.GetInt32(0);

            item.FirstName = reader.GetString(1);

            item.LastName = reader.GetString(2);

            item.Title = reader.GetString(3);

            item.BirthDate = reader.GetDateTime(4);

            item.HireDate = reader.GetDateTime(5);

            item.Country = reader.GetString(6);

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



390

            if (!reader.IsDBNull(7))

            {

               item.Notes = reader.GetString(7);

            }

            employees.Add(item);

        }

        reader.Close();

        cnn.Close();

        return employees;

    }

}

The code begins by creating a new SqlConnection object. The SqlConnection class 

represents a database connection and is available in the Microsoft.Data.SqlClient 

namespace. To access classes from this namespace, you need to install the NuGet 

package – Microsoft.Data.SqlClient – for your project (if you install Microsoft.

EntityFrameworkCore.SqlServer, then this assembly is also installed). Notice that the 

whole code is put inside the using block so that the SqlConnection object is disposed 

once the method completes.

Inside the using block, the code creates a new SqlCommand object. The SqlCommand 

object represents a database command that you want to execute. Three properties of 

SqlCommand are then configured. Executing a database command requires an open 

database connection. The Connection property points to the SqlConnection object that 

you want to use while executing the database command.

The CommandType property is used to specify the type of database command you want 

to execute such as an SQL statement (Text) or a stored procedure (StoredProcedure).

The CommandText property specifies the database command to be executed. In 

this case, the code executes a SELECT statement that fetches required data from the 

Employees table.

In order to execute the SELECT statement, the database connection is established 

using the Open() method of SqlConnection. The query is executed using the 

ExecuteReader() method of the SqlCommand object. The ExecuteReader() method 

executes the query and returns the data in the form of the SqlDataReader object.

The SqlDataReader object is read-only and forward-only cursor, and the code 

iterates through it using the Read() method. The Read() method advances the current 

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



391

record pointer to the next record and allows you to read that record. Read() returns false 

if the end of records has been reached.

Inside the while loop, the code reads various column values using methods such 

as GetInt32(), GetString(), and GetDateTime(). These methods accept the column 

number (according to the SELECT query) to read value from. Which of the available 

GetXXXXXXX() methods to use depends on the data type of the column. For example, 

EmployeeID is an integer value, and hence the code uses the GetInt32() method. On the 

same lines, HireDate is a DateTime value, and hence GetDateTime() has been used. The 

column values obtained from these methods are filled into an Employee object, and the 

Employee object is added into a List. The IsDBNull() method accepts a column index 

and returns true if the specified column contains database NULL value.

Finally, the data reader and the database connection are closed using the Close() 

method, and the List of Employee objects is returned to the caller.

 SelectByID( ) Method

The SelectByID() method is similar to SelectAll() but returns only a specific Employee 

to the caller. Listing 9-4 shows this method.

Listing 9-4. SelectByID() method returns a specific employee

public Employee SelectByID(int id)

{

    using (SqlConnection cnn = new SqlConnection(connectionString))

    {

        SqlCommand cmd = new SqlCommand();

        cmd.Connection = cnn;

        cmd.CommandType = CommandType.Text;

         cmd.CommandText = "SELECT EmployeeID, FirstName, LastName, 

Title, BirthDate, HireDate, Country, Notes FROM Employees WHERE 

EmployeeID=@EmployeeID";

        SqlParameter p = new SqlParameter("@EmployeeID", id);

        cmd.Parameters.Add(p);

        cnn.Open();

        SqlDataReader reader = cmd.ExecuteReader();

        List<Employee> employees = new List<Employee>();

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



392

        while (reader.Read())

        {

            Employee item = new Employee();

            item.EmployeeID = reader.GetInt32(0);

            item.FirstName = reader.GetString(1);

            item.LastName = reader.GetString(2);

            item.Title = reader.GetString(3);

            item.BirthDate = reader.GetDateTime(4);

            item.HireDate = reader.GetDateTime(5);

            item.Country = reader.GetString(6);

            if (!reader.IsDBNull(7))

            {

               item.Notes = reader.GetString(7);

            }

            employees.Add(item);

        }

        reader.Close();

        cnn.Close();

        return employees.SingleOrDefault();

    }

}

The SelectByID() method accepts an EmployeeID as its parameter. This time 

the SELECT query contains a WHERE clause and fetches only that employee whose 

EmployeeID matches with the supplied value. Note that the EmployeeID is represented by 

the @EmployeeID parameter.

The value of the @EmployeeID parameter is wrapped inside an object of 

SqlParameter and then added to the Parameters collection of the SqlCommand object.

 Insert( ) Method

The Insert() method inserts a new employee to the Employees table and is shown in 

Listing 9-5.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



393

Listing 9-5. Insert() method inserts a new employee

public void Insert(Employee emp)

{

    using (SqlConnection cnn = new SqlConnection(connectionString))

    {

        SqlCommand cmd = new SqlCommand();

        cmd.Connection = cnn;

        cmd.CommandType = CommandType.Text;

         cmd.CommandText = "INSERT INTO Employees(FirstName, LastName, 

Title, BirthDate, HireDate, Country, Notes)  VALUES(@FirstName,  

@LastName, @Title, @BirthDate, @HireDate, @Country, @Notes)";

        SqlParameter[] p = new SqlParameter[7];

        p[0] = new SqlParameter("@FirstName", emp.FirstName);

        p[1] = new SqlParameter("@LastName", emp.LastName);

        p[2] = new SqlParameter("@Title", emp.Title);

        p[3] = new SqlParameter("@BirthDate", emp.BirthDate);

        p[4] = new SqlParameter("@HireDate", emp.HireDate);

        p[5] = new SqlParameter("@Country", emp.Country);

        p[6] = new SqlParameter("@Notes", emp.Notes ?? SqlString.Null);

        cmd.Parameters.AddRange(p);

    cnn.Open();

    int i = cmd.ExecuteNonQuery();

    cnn.Close();

  }

}

The Insert() method accepts an Employee object representing a new employee to 

be added to the database. This time the CommandText specifies an INSERT query that 

contains several parameters such as @FirstName and @Notes. To supply these parameter 

values, an array of SqlParameter is declared (seven array elements), and all the 

parameter values are wrapped in the SqlParameter object.

The SqlParameter array is added to the Parameters collection of SqlCommand using 

the AddRange() method.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



394

To execute the INSERT statement, the code uses the ExecuteNonQuery() method 

of the SqlCommand object. The ExecuteNonQuery() method executes an action query 

and returns the number of records affected by the query. In this case, since one record 

is being inserted, it will return 1 (if successful). Although here the value of i is not used, 

you can use it for further processing if needed.

 Update() Method

The Update() method is quite similar to the Insert() method discussed earlier. But it 

executes an UPDATE statement as shown in Listing 9-6.

Listing 9-6. Update() method updates an employee

public void Update(Employee emp)

{

    using (SqlConnection cnn = new SqlConnection(connectionString))

    {

        SqlCommand cmd = new SqlCommand();

        cmd.Connection = cnn;

        cmd.CommandType = CommandType.Text;

         cmd.CommandText = "UPDATE Employees SET FirstName=@FirstName, 

LastName=@LastName, Title=@Title, BirthDate=@BirthDate, HireDate= 

@HireDate, Country=@Country, Notes=@Notes WHERE EmployeeID= 

@EmployeeID";

        SqlParameter[] p = new SqlParameter[8];

        p[0] = new SqlParameter("@FirstName", emp.FirstName);

        p[1] = new SqlParameter("@LastName", emp.LastName);

        p[2] = new SqlParameter("@Title", emp.Title);

        p[3] = new SqlParameter("@BirthDate", emp.BirthDate);

        p[4] = new SqlParameter("@HireDate", emp.HireDate);

        p[5] = new SqlParameter("@Country", emp.Country);

        p[6] = new SqlParameter("@Notes", emp.Notes ?? SqlString.Null);

        p[7] = new SqlParameter("@EmployeeID", emp.EmployeeID);

        cmd.Parameters.AddRange(p);

        cnn.Open();

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



395

        int i = cmd.ExecuteNonQuery();

        cnn.Close();

    }

}

The Update() method accepts an existing Employee that needs to be updated 

in the database. Inside, an UPDATE statement is formed and executed using the 

ExecuteNonQuery() method.

 Delete( ) Method

The Delete() method deletes an existing employee from the database and is shown in 

Listing 9-7.

Listing 9-7. Delete() method deletes an employee

public void Delete(int id)

{

    using (SqlConnection cnn = new SqlConnection(connectionString))

    {

        SqlCommand cmd = new SqlCommand();

        cmd.Connection = cnn;

        cmd.CommandType = CommandType.Text;

        cmd.CommandText = "DELETE FROM Employees WHERE EmployeeID=@EmployeeID";

        SqlParameter p = new SqlParameter("@EmployeeID", id);

        cmd.Parameters.Add(p);

        cnn.Open();

        int i = cmd.ExecuteNonQuery();

        cnn.Close();

    }

}

The Delete() method accepts an existing EmployeeID and deletes that record 

from the Employees table. This time it executes a DELETE statement using the 

ExecuteNonQuery() method.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



396

Note the Countryrepository contains a single method – Selectall() – that returns 
all the countries to the caller and should look familiar to you. For the sake of 
brevity, Countryrepository is not discussed here. You can grab it from the book’s 
code download.

Once the repositories are ready, you need to register them with the DI container 

inside the ConfigureServices() method. Listing 9-8 shows how that is done.

Listing 9-8. Registering repositories using AddScoped()

public void ConfigureServices(IServiceCollection services)

{

    ...

    services.AddScoped<IEmployeeRepository, EmployeeRepository>();

    services.AddScoped<ICountryRepository, CountryRepository>();

    ...

}

This code should be familiar to you since you used the AddScoped() method earlier.

 EmployeeManagerController Class
Now that the EmployeeRepository and CountryRepository are ready, you can use 

them in the EmployeeManagerController. So add EmployeeManagerController in the 

Controllers folder and inject both the repositories into its constructor (Listing 9-9).

Listing 9-9. Injecting repositories into the EmployeeManagerController

public class EmployeeManagerController : Controller

{

    private IEmployeeRepository employeeRepository;

    private ICountryRepository countryRepository;

     public EmployeeManagerController(IEmployeeRepository empRepository, 

ICountryRepository ctryRepository)

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



397

    {

        this.employeeRepository = empRepository;

        this.countryRepository = ctryRepository;

    }

    ...

}

As you can see, the EmployeeRepository and CountryRepository instances are 

injected into the constructor. The employeeRepository and countryRepository 

members are used by other actions of the EmployeeManagerController to get their 

job done. As an example, the Update() actions of EmployeeManagerController are 

discussed in the following.

The Update() action that handles the initial GET request is shown in Listing 9-10.

Listing 9-10. Update() action that handles a GET request

public IActionResult Update(int id)

{

    FillCountries();

    Employee model = employeeRepository.SelectByID(id);

    return View(model);

}

The Update() action calls the SelectByID() method of the EmployeeRepository by 

passing an EmployeeID to it. The returned Employee object is passed to the Update view.

Upon clicking the Save button of the Update existing employee page, the form is 

submitted to the POST version of Update(). This is shown in Listing 9-11.

Listing 9-11. Saving the modifications using Update()

[HttpPost]

public IActionResult Update(Employee model)

{

    FillCountries();

    if(ModelState.IsValid)

    {

        employeeRepository.Update(model);

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



398

        ViewBag.Message = "Employee updated successfully";

    }

    return View(model);

}

The Update() invokes the Update() method of the EmployeeRepository by passing 

an Employee object to it. A success message is then displayed to the user.

You can complete the other actions of the EmployeeManagerController and also add 

the views yourself or get them from the book’s source code.

Note the process of adding support for aSp.net Core Identity is exactly same 
as before and hence not discussed here. however, remember that this time 
the northwind database is hosted in azure. So tables such as aspnetusers and 
aspnetroles are also created in the azure SQL Database. the book’s source code 
contains the completed employee manager application.

 Database Connection String
Earlier in this chapter, you created a new Azure SQL Database. That time I asked you 

to grab the ADO.NET database connection string from the Azure portal (get that now if 

you haven’t done that earlier). Now it’s the time to use that connection string. Open the 

appsettings.json file and replace the AppDb key with your connection string. The following 

sample connection string shows how AppDb should look like after the said modification:

"ConnectionStrings": {

  "AppDb": "Server=your_server_address_here;

            Initial Catalog=Northwind;

            Persist Security Info=False;

            User ID=your_user_id_here;

            Password=your_password_here;

            MultipleActiveResultSets=False;

            Encrypt=True;

            TrustServerCertificate=False;

            Connection Timeout=30;"

}

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



399

Just substitute the placeholders for user ID, password, and other details with your 

values; and you are ready to run the Employee Manager application.

 Overview of NoSQL Databases
So far in this book, you used the Microsoft SQL Server database to store data. SQL 

server is a relational database management system (RDBMS). Any RDBMS such as 

SQL Server stores data in tables. A table has rows and a row has columns. You need 

to decide the structure of a table (often called schema) in advance before you store 

any data in it. If there is any change in the table schema, it affects all the rows stored 

in that table.

In order to query the data stored in RDBMS and to manipulate it, you typically use 

Structured Query Language or SQL. The SQL statements such as SELECT, INSERT, 

UPDATE, and DELETE are quite commonly used while performing CRUD operations on 

RDBMS.

In modern computing, a new generation of databases is increasingly becoming 

common and popular. They are called NoSQL databases. NoSQL databases do not store 

the data in the rigid schema-based tables, rows, and columns. Rather, they store data 

in non-relational ways such as documents and key-value pairs. Due to this shift in the 

storage model, NoSQL databases do not use SQL to query and manipulate data. They 

typically use an object-oriented API to access the data store.

Although a detailed discussion of NoSQL databases is beyond the scope of this book, 

the following features are worth noting:

• NoSQL databases store data in different ways. Some common ways 

include document storage, key-value pairs, and graph stores.

• A NoSQL database that stores data as documents is often called a 

document database. Some examples of document databases are 

MongoDB, CouchDB, RavenDB, and Cosmos DB.

• Document databases typically store documents in the JSON format.

• NoSQL databases use a dynamic schema. This means you don’t need 

to define storage schema in advance. Pieces of data that are different 

in terms of structure can be stored together. For example, you can 

store two JSON documents with different structures together.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



400

• To perform CRUD (and other data access) operations, NoSQL 

databases provide a database-specific object-oriented API. For 

example, MongoDB and Cosmos DB both provide their own API for 

data access.

• NoSQL databases are easy to scale horizontally. For example, to 

increase the capacity of a database, you can simply add more servers. 

The database data can then span additional servers.

Now that you have some idea about what NoSQL databases are, let’s quickly get 

introduced to the document databases you are going to use in this chapter: Cosmos DB 

and MongoDB.

 Cosmos DB
Cosmos DB is an Azure-based database service. That means your Cosmos DB database 

is hosted in Azure and you get all the benefits of cloud environment for your database. 

An interesting feature of Cosmos DB is it can support multiple data models using one 

backend. For example, Cosmos DB can be used for storing documents, key-value pairs, 

and graph models.

Cosmos DB is often classified as a NoSQL database because you don’t need to define 

any schemas to store data. However, it comes with a JSON-oriented query language that 

is similar to SQL. What’s more, Cosmos DB provides native support for various popular 

NoSQL APIs including MongoDB, Cassandra, and Gremlin.

There are two options to access data residing in the Cosmos DB database. You 

can use the Cosmos DB SQL API exposed through the client library – Microsoft.

Azure.DocumentDB.Core. This client library is available as a NuGet package and 

enables ASP.NET Core applications to connect to Azure Cosmos DB via SQL API 

(also called DocumentDB).

Microsoft has also developed an Entity Framework Core provider for Cosmos DB 

and is available through the Microsoft.EntityFrameworkCore.Cosmos NuGet package. 

If you use this provider, the development process becomes quite similar to EF Core. 

That means you create a custom DbContext and entity classes that map to your JSON 

document. The methods such as Add(), Remove(), and SaveChanges() can be used to 

perform the CRUD operations.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



401

Note prior to Cosmos Db, microsoft offered DocumentDb as a noSQL document 
database. after the release of Cosmos Db, DocumentDb became a part of Cosmos 
Db. DocumentDb uses terms such as collection and document while describing 
the data. on the other hand, Cosmos Db uses terms container and item for the 
same purpose. I am going to use the same terminology while using the respective 
data access technique.

 MongoDB
MongoDB is a popular NoSQL database engine that stores data as documents. The 

documents are stored in JSON-like format. MongoDB is designed to be a distributed 

database and aims at high availability and horizontal scaling. You can download and 

install the MongoDB server on your machine for working with the example discussed in 

this chapter. MongoDB provides a driver for .NET that allows you to perform data access 

and manipulation. This driver is available as a NuGet package – MongoDB.Driver.

Note Discussion of Cosmos Db and mongoDb in more detail is beyond the 
scope of this book. You may read their official documentation at https://
docs.microsoft.com/en-us/azure/cosmos-db and www.mongodb.com 
respectively. the remainder of this chapter assumes that you have access to azure 
Cosmos Db and have also installed mongoDb on your computer.

 Creating a Cosmos DB Account
In this section, you create a new Cosmos DB account that can be used to create the 

Northwind database needed by the Employee Manager application.

In order to create a Cosmos DB account, you need to sign in to the Azure portal as 

you did previously. This time, however, you select the Azure Cosmos DB option as shown 

in Figure 9-8.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb

https://docs.microsoft.com/en-us/azure/cosmos-db
https://docs.microsoft.com/en-us/azure/cosmos-db
http://www.mongodb.com


402

Then click the Add button to create a new Azure Cosmos DB account. The account 

creation screen looks as shown in Figure 9-9.

Figure 9-8. Option to create and manage Cosmos DB accounts

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



403

On this screen, select (or create) a resource group and also enter an account name 

of your choice. You can keep other settings to their default values. Complete the account 

creation process by clicking the Review + create button.

Once the Cosmos DB account is ready, navigate to the account and click the Keys 

option to reveal the keys and connection strings as shown in Figure 9-10.

Figure 9-9. Creating new Cosmos DB account

Figure 9-10. Get Cosmos DB account keys and connection strings

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



404

Keep your keys and connection strings handy because you will need them while 

developing the Employee Manager application.

 Employee Manager Using Cosmos DB
In the sections that follow, you develop Employee Manager using Cosmos DB. Although 

the overall development process remains the same, there are a few differences:

• The employee data now resides in a Cosmos DB database named 

Northwind.

• The application uses a custom cookie authentication without ASP.

NET Core Identity. The user details such as user name, password, 

and role are also stored in the Cosmos DB database.

• A Cosmos DB database contains collections and documents. For 

the sake of analogy, you can think of a document as a record and 

a collection as a set of documents. The database, collections, and 

documents are created programmatically from within the Employee 

Manager application.

• Cosmos DB stores data in JSON documents. Each document has 

a unique string ID. Therefore, the Employee documents will have 

an extra property named DocumentID (this is in addition to the 

EmployeeID integer property) that stores a string GUID.

• Due to the preceding change, the insert and update pages will 

display EmployeeID in editable textboxes. You could have avoided 

EmployeeID altogether since DocumentID plays the role of a primary 

key, but for the sake of consistency with other versions of Employee 

Manager, you will still have it as a part of the JSON document.

• The application uses the Microsoft.Azure.DocumentDB.Core client 

library to perform CRUD options and more.

Now that you are aware of the differences in the development process of Employee 

Manager, let’s get started by creating a new ASP.NET Core web application named 

EmployeeManager.CosmosDB based on the Empty project template. Since you are 

quite familiar with the overall development by now, only the differences outlined in the 

preceding text are discussed in the following sections.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



405

 Cosmos DB Connection Details
Employee Manager needs Cosmos DB account connection details for performing 

the CRUD operations. So store them in the appsettings.json file. Listing 9-12 shows a 

configuration section named CosmosDBSettings that goes into the appsettings.json.

Listing 9-12. Cosmos DB account connection details

"CosmosDBSettings": {

  "Uri": "your_uri_here",

  "PrimaryKey": "your_primary_key_here",

  "DatabaseName": "Northwind",

  "EmployeeCollectionName": "Employees",

  "CountryCollectionName": "Countries",

  "UserCollectionName": "Users"

}

The Uri key specifies the Cosmos DB account endpoint URI. You can get this URI 

from the Azure portal (read the earlier discussion). The PrimaryKey key specifies the 

primary key as obtained from the Azure portal.

The DatabaseName key specifies the name of the database used by the Employee 

Manager application. Note that the Northwind database is not yet created in the Cosmos 

DB account. You do that programmatically in later sections. To avoid hard-coding of the 

database name, you keep it in the configuration file. Just in case you want to give some 

different name for the sake of testing, you can just change it here.

Cosmos DB stores data in collections. Collections store JSON documents. 

Here, you specify three collection names using EmployeeCollectionName, 

CountryCollectionName, and UserCollectionName keys. Note that since this example 

uses a custom cookie authentication rather than ASP.NET Core identity, you need to 

store user details somewhere. The example prefers to store them in the Users collection. 

For the sake of simplicity, user details such as user name, password, and roles are stored 

as plain JSON documents. However, in a more realistic situation, you should consider 

strong encryption techniques to protect the user data. You might even prefer to store 

user details in some other data store. Data encryption and security techniques are 

beyond the scope of this book.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



406

 Microsoft.Azure.DocumentDB.Core Client Library
As mentioned earlier in this chapter, Cosmos DB is a multi-model database. It allows you 

to store and retrieve data using multiple APIs. One of the data access models of Cosmos 

DB is a dialect of SQL called SQL API. The Microsoft.Azure.DocumentDB.Core client 

library is built around the SQL API, and that’s what you are going to use in this example. 

The Microsoft.Azure.DocumentDB.Core library allows your application to deal with 

the data as C# objects (say, Employee or Country), and it handles all the necessary 

background processing of serializing and de-serializing data to and from JSON format.

The Microsoft.Azure.DocumentDB.Core client library is available as a NuGet 

package, and you need to add it to your project.

 Employee and Country Model Classes
The Employee model class is a POCO that takes the form as shown in Listing 9-13.

Listing 9-13. Employee class is serialized as JSON document

public class Employee

{

    [JsonProperty(PropertyName = "id")]

    public Guid DocumentID { get; set; }

    [Required]

    [Display(Name ="Employee ID")]

    [JsonProperty(PropertyName ="employeeID")]

    public int EmployeeID { get; set; }

    [Required]

    [StringLength(10)]

    [Display(Name = "First Name")]

    [JsonProperty(PropertyName = "firstName")]

    public string FirstName { get; set; }

    [Required]

    [StringLength(20)]

    [Display(Name = "Last Name")]

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



407

    [JsonProperty(PropertyName = "lastName")]

    public string LastName { get; set; }

    [Required]

    [StringLength(30)]

    [Display(Name = "Title")]

    [JsonProperty(PropertyName = "title")]

    public string Title { get; set; }

    [Required]

    [Display(Name = "Birth Date")]

    [JsonProperty(PropertyName = "birthDate")]

    public DateTime BirthDate { get; set; }

    [Required]

    [Display(Name = "Hire Date")]

    [JsonProperty(PropertyName = "hireDate")]

    public DateTime HireDate { get; set; }

    [Required]

    [StringLength(15)]

    [Display(Name = "Country")]

    [JsonProperty(PropertyName = "country")]

    public string Country { get; set; }

    [StringLength(500)]

    [Display(Name = "Notes")]

    [JsonProperty(PropertyName = "notes")]

    public string Notes { get; set; }

}

As you can see, the Employee class has all the properties such as EmployeeID, 

FirstName, LastName, Title, BirthDate, HireDate, Country, and Notes. In addition, it 

also has the DocumentID property that represents the JSON document’s unique identifier 

in the form of a Guid.

Notice the code marked in bold letters. The Employee properties are decorated 

with the [JsonProperty] attribute. The [JsonProperty] attribute comes from the 

Newtonsoft.Json namespace and indicates that the underlying property is to be 

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



408

included during the JSON serialization. The PropertyName property of [JsonProperty] 

specifies the JSON property name of the underlying property. For example, the 

EmployeeID property will be represented as employeeID. Note that the PropertyName for 

the DocumentID property is id because it is going to act as the JSON document’s unique 

identifier.

The Country class is created likewise and is shown in Listing 9-14.

Listing 9-14. Country class with [JsonProperty] attributes

public class Country

{

    [JsonProperty(PropertyName = "id")]

    public Guid  DocumentID { get; set; }

    [JsonProperty(PropertyName = "countryID")]

    public int CountryID { get; set; }

    [JsonProperty(PropertyName = "name")]

    public string Name { get; set; }

}

 Creating the EmployeeManagerController
Now that the Employee and Country model classes are ready, let’s proceed to creating the 

EmployeeManagerController. As before, EmployeeManagerController will have actions 

for performing the CRUD operations.

Note In the examples that follow, you write data access code in the controller 
itself. this is done for the sake of simplicity and to remain focused on the data 
access logic. however, once you are comfortable working with noSQL databases, 
you should consider moving the data access code to repositories.

The EmployeeManagerController class declares a set of variables that are needed by 

the other parts of the code. These variables are shown in Listing 9-15.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



409

Listing 9-15. Variables that store Cosmos DB account details

public class EmployeeManagerController : Controller

{

    private DocumentClient client;

    private Uri employeeCollectionUri;

    private Uri countryCollectionUri;

    private string databaseName;

    private string employeeCollectionName;

    private string countryCollectionName;

    ...

}

The DocumentClient class is from the Microsoft.Azure.Documents.Client 

namespace and represents a client that can be used to connect with the Cosmos DB 

account and to perform data access operations.

The employeeCollectionUrl and countryCollectionUri objects are of type Uri and 

hold the address of the Employees and Countries collections (remember that a Cosmos 

DB collection consists of JSON documents).

The databaseName, employeeCollectionName, and countryCollectionName 

variables hold the respective names; and their values come from the appsettings.json file 

(we stored these values earlier).

The constructor of EmployeeManagerController does an important task – it creates 

the database and collections (if they do not exist already) and is shown in Listing 9-16.

Listing 9-16. Creating the Cosmos DB database and collections

public EmployeeManagerController(IConfiguration config)

{

    var uri = new Uri(config.GetValue<string>("CosmosDBSettings:Server"));

    var primaryKey = config.GetValue<string>("CosmosDBSettings:PrimaryKey");

    databaseName = config.GetValue<string>("CosmosDBSettings:DatabaseName");

     employeeCollectionName = config.GetValue<string>("CosmosDBSettings: 

EmployeeCollectionName");

     countryCollectionName = config.GetValue<string>("CosmosDBSettings: 

CountryCollectionName");

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



410

    client = new DocumentClient(uri,primaryKey);

     this.client.CreateDatabaseIfNotExistsAsync(new Database  

{ Id = databaseName }).Wait();

     this.client.CreateDocumentCollectionIfNotExistsAsync(UriFactory.Create 

DatabaseUri(databaseName), new DocumentCollection  

{ Id = employeeCollectionName }).Wait();

     this.client.CreateDocumentCollectionIfNotExistsAsync(UriFactory.Create 

DatabaseUri(databaseName), new DocumentCollection  

{ Id = countryCollectionName }).Wait();

    this.employeeCollectionUri = UriFactory

        .CreateDocumentCollectionUri(

            databaseName, employeeCollectionName);

    this.countryCollectionUri = UriFactory

        .CreateDocumentCollectionUri(

            databaseName, countryCollectionName);

}

The code begins by retrieving Cosmos DB account details such as Uri and primary 

key stored in the appsettings.json. Based on those details, uri and primaryKey Uri 

objects are formed. The values of databaseName, employeeCollectionName, and 

countryCollectionName are also retrieved from the configuration file. (For the sake of 

simplicity, IConfiguration injected into the controller is used to access the configuration 

information. You could have also used strongly typed configuration as discussed in 

Chapter 5.)

Then the code creates an object of DocumentClient by passing the Cosmos DB 

endpoint URI and the primary key.

Then the code calls the CreateDatabaseIfNotExistsAsync() method of 

DocumentClient. As the name of the method suggests, it creates a Cosmos DB database 

if it doesn’t exist already. This method accepts a Database object specifying the database 

Id (name of the database). The Database class is from the Microsoft.Azure.Documents 

namespace. In this example, the Northwind database will be created when you run the 

application for the first time.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



411

Then the code proceeds to creating Employees and Countries collections. This is done 

using the CreateDocumentCollectionIfNotExistsAsync() method. The first parameter 

to this method is a database Uri, and the second parameter is a DocumentCollection 

object. The DocumentCollection object specifies the name of the document collections 

(Employees and Countries, respectively). The specified collection is created in the 

database whose Uri is being supplied.

While performing the CRUD operations, you frequently need the Uri 

of the Employees collection and Countries collection. Therefore, those Uri 

objects are created using the CreateDocumentCollectionUri() method. The 

CreateDocumentCollectionUri() accepts a database name and a collection name and 

returns a Uri for that collection.

 Displaying a List of Employees

The List() action fetches employees from the Northwind database and is shown in 

Listing 9-17.

Listing 9-17. Fetching Employee documents from the database

public IActionResult List()

{

    var model = client.CreateDocumentQuery<Employee>

                (employeeCollectionUri)

                .OrderBy(e=>e.EmployeeID).ToList();

    return View(model);

}

In order to retrieve employees from the database, the code uses the 

CreateDocumentQuery<T>() method of the DocumentClient object. The call specifies 

that the JSON data is to be mapped with the Employee type and accepts a collection 

URI. The CreateDocumentQuery() method returns IOrderedQueryable. The code 

orders the employees on the basis of their EmployeeID and materializes the data into a 

List<Employee> using the ToList() method. The List<Employee> is then passed to the 

List view.

The List view that displays the employees in a table is quite similar to the MVC 

version of Employee Manager except that the Update and Delete links use DocumentID to 

uniquely identify an employee. These links are shown in Listing 9-18.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



412

Listing 9-18. Using DocumentID for rendering the Update and Delete links

...

<td>

    <a asp-controller="EmployeeManager"

        asp-action="Update"

        asp-route-id="@item.DocumentID" class="linkbutton">Update</a>

</td>

<td>

    <a asp-controller="EmployeeManager"

        asp-action="Delete"

        asp-route-id="@item.DocumentID" class="linkbutton">Delete</a>

</td>

...

As you can see, the asp-route-id attribute uses DocumentID instead of EmployeeID. 

The remainder of the List view is quite similar to what you already know and hence 

not discussed here. You can get the complete code of List.cshtml from this book’s code 

download.

 Inserting a New Employee

The Insert() action that renders a blank Insert New Employee page is shown in 

Listing 9-19.

Listing 9-19. Insert() renders an Insert New Employee view

public IActionResult Insert()

{

    FillCountries();

    return View();

}

The Insert() action calls FillCountries() to populate the Country dropdown list 

and is discussed in a later section. When you click the Save button of the Insert New 

Employee page, the Insert() action shown in Listing 9-20 gets called.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



413

Listing 9-20. Insert() adds a JSON document to Cosmos DB

public async Task<IActionResult> Insert(Employee emp)

{

  FillCountries();

  if (ModelState.IsValid)

  {

     Employee obj = client.CreateDocumentQuery<Employee>(employee 

CollectionUri).Where(e => e.EmployeeID == emp.EmployeeID).

AsEnumerable().SingleOrDefault();

    if (obj == null)

    {

        emp.DocumentID = Guid.NewGuid();

        await client.CreateDocumentAsync(employeeCollectionUri, emp);

        ViewBag.Message = "Employee inserted successfully!";

    }

    else

    {

        ViewBag.Message = "EmployeeID already exists!";

    }

   }

   return View(emp);

}

Notice the code marked in bold letters. Since EmployeeID is now being accepted from 

a user, the code ensures that the EmployeeID isn’t already there in the database. This is 

done by querying the database for a specific EmployeeID. The CreateDocumentQuery() 

method should look familiar to you since you used it earlier. The where condition filters 

the data based on a specific EmployeeID.
If there is no matching Employee object found by the query, the code inserts a new 

Employee document in the database. This is done using the CreateDocumentAsync() 

method of the DocumentClient class. Since you want to add a new document to the 

Employees collection, employeeCollectionUri is passed to the CreateDocumentAsync() 

method along with an Employee object to be inserted. Note that the DocumentID 

property of the Employee object is set to a new GUID before it is passed to the 

CreateDocumentAsync() method.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



414

The remainder of the code is quite straightforward and hence not discussed here. 

The Insert view that displays the Insert New Employee screen is quite similar to that of 

the MVC version of Employee Manager. The only difference is that EmployeeID is now 

accepted from the end user. For the sake of brevity, the Insert view is not discussed here. 

You can get the complete code of Insert.cshtml from this chapter’s code download.

 Updating an Existing Employee

When you click the Update link from the employee listing page, the Update Existing 

Employee page is displayed with details of the employee pre-populated in various data 

entry fields. The Update() action that does this is shown in Listing 9-21.

Listing 9-21. Update() action fetches an existing employee to be updated

public IActionResult Update(string id)

{

    FillCountries();

    Guid docId = new Guid(id);

     Employee emp = client.CreateDocumentQuery<Employee>(employeeCollection 

Uri).Where(e => e.DocumentID == id).AsEnumerable().SingleOrDefault();

    return View(emp);

}

The Update() action receives a DocumentID as its parameter. Notice the code marked 

in bold letters. The code converts the id into a Guid since DocumentID is a GUID. The 

code then uses the CreateDocumentQuery() method of DocumentClient to fetch only 

that Employee document whose DocumentID matches with the specified docId. The 

Employee object is then passed to the Update view.

When you click the Save button of the Update Existing Employee page, the Update() 

action (POST) is called and is shown in Listing 9-22.

Listing 9-22. Update() saves the changes to the database

public async Task<IActionResult> Update(Employee emp)

{

    FillCountries();

    if (ModelState.IsValid)

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



415

    {

     await client.ReplaceDocumentAsync(UriFactory.

CreateDocumentUri(databaseName, employeeCollectionName, emp.DocumentID.

ToString()), emp);

    ViewBag.Message = "Employee updated successfully!";

   }

   return View(emp);

}

The code uses the ReplaceDocumentAsync() method of DocumentClient to replace 

the existing Employee document with the new one. The existing Employee document is 

identified by the DocumentID. The first parameter of ReplaceDocumentAsync() forms a 

Uri to that specific document. The second parameter of ReplaceDocumentAsync() passes 

the modified Employee document.

The Update view is quite similar to the one you developed earlier and hence is not 

discussed here. You can also get it from this chapter’s code download.

 Deleting an Existing Employee

When you click the Delete link for an employee on the employee listing page, a 

confirmation page is displayed. The action that is responsible for displaying the 

confirmation page is shown in Listing 9-23.

Listing 9-23. Displaying a delete confirmation page

[ActionName("Delete")]

public IActionResult ConfirmDelete(string id)

{

    Guid docId = new Guid(id);

     Employee emp = client.CreateDocumentQuery<Employee>(employeeCollection 

Uri).Where(e => e.DocumentID == docId).AsEnumerable().SingleOrDefault();

    return View(emp);

}

This code is identical to the first Update() action and hence not discussed again.

Upon clicking the Delete button on the confirmation page, the Delete() action 

shown in Listing 9-24 is invoked.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



416

Listing 9-24. Deleting an Employee document

public async Task<IActionResult> Delete(string documentID)

{

await client.DeleteDocumentAsync(UriFactory.CreateDocumentUri(databaseName, 

employeeCollectionName, documentID));

    TempData["Message"] = "Employee deleted successfully!";

    return RedirectToAction("List");

}

The Delete() action accepts a DocumentID of an Employee document to be deleted. 

Inside, the code calls the DeleteDocumentAsync() method of the DocumentClient object 

to delete the specified document. The DeleteDocumentAsync() method accepts a Uri 

that points to the Employee document to be deleted. The Uri is formed based on the 

databaseName, employeeCollectionName, and the documentID.

For the sake of brevity, the Delete view is not discussed here. It’s quite similar to the 

one you developed earlier, and you can get it from this chapter’s code download.

 FillCountries( ) Helper Method

The Insert() and Update() actions discussed in the preceding text use a helper 

method – FillCountries(). The FillCountries() method creates a list of countries to 

be displayed in the Country dropdown list. The FillCountries() method is shown in 

Listing 9-25.

Listing 9-25. FillCountries() creates a list of countries

public void FillCountries()

{

     if (client.CreateDocumentQuery<Country>(countryCollectionUri). 

Count() == 0)

    {

         Country usa = new Country() { DocumentID = Guid.NewGuid(), 

CountryID = 1, Name = "USA" };

                 Country uk = new Country() { DocumentID = Guid.NewGuid(), 

CountryID = 2, Name = "UK" };

        client.CreateDocumentAsync(countryCollectionUri, usa).Wait();

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



417

        client.CreateDocumentAsync(countryCollectionUri, uk).Wait();

    }

     var ctry = client.CreateDocumentQuery<Country>(countryCollectionUri).

ToList();

     List<SelectListItem> countries = (from c in ctry select new 

SelectListItem() { Text = c.Name, Value = c.Name }).ToList();

    ViewBag.Countries = countries;

}

The code first checks whether the Countries collection contains any documents or 

not. This is done using the Count() method on the IOrderedQueryable returned by the 

CreateDocumentQuery() method.

Initially, there won’t be any countries in the Countries collection, and hence 

the Count() will return 0. If so, the code adds a couple of Country documents to the 

Countries collection using the CreateDocumentAsync() method.

Next, the code gets all the Country documents from the database using the 

CreateDocumentQuery() method and forms a List<SelectListItem>. The List is then 

stored in the ViewBag.Countries property.

At this stage, your application can perform CRUD operations. I encourage you to 

take a pause and test all the functionality added so far. Once you confirm that CRUD 

operations are working as expected, you can wire authentication and authorization to 

the application as outlined in the following sections.

The Azure portal also allows you to view and manipulate a Cosmos DB database 

using Data Explorer (accessible from the Cosmos DB database management page). 

Figure 9-11 shows Data Explorer with a sample Employee document.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



418

Notice that in addition to document properties available in the Employee class, a 

few more properties such as _rid and _self are automatically added by Cosmos DB for 

its use. Also notice that the JSON property names are as per the ones specified in the 

[JsonProperty] attribute.

 Adding Support for Authentication and 
Authorization
In the MVC version of Employee Manager, you used ASP.NET Core Identity to implement 

authentication and authorization. That time, user details such as user name, password, 

and roles were stored in the SQL Server database. In this example, you use Cosmos DB to 

store those details. Instead of using ASP.NET Core Identity (that requires certain tables in 

an SQL Server database by default), you use custom cookie authentication.

The custom cookie authentication and authorization follows the same overall flow 

as that of ASP.NET Core Identity. However, you need to device your own mechanism for 

user and role management.

Figure  9-11. Data Explorer showing a newly added employee

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



419

To enable custom cookie authentication, you need to add the configuration 

mentioned in Listing 9-26 in the ConfigureServices().

Listing 9-26. Enabling custom cookie authentication

public void ConfigureServices(IServiceCollection services)

{

    ...

    ...

    services.AddAuthentication

(CookieAuthenticationDefaults.AuthenticationScheme)

.AddCookie(o =>

{

    o.LoginPath = "/Security/SignIn";

    o.AccessDeniedPath = "/Security/AccessDenied";

});

}

Notice that the code uses the AddAuthentication() method to register services 

related to custom cookie authentication. The AuthenticationScheme property of 

CookieAuthenticationDefaults (Microsoft.AspNetCore.Authentication.Cookies 

namespace) passes the default name of the authentication scheme (Cookies). The 

AddCookie() configures the authentication cookie that is issued.

The Configure() method looks identical to the previous examples and hence not 

discussed here.

 Storing User Details
While working with ASP.NET Core Identity, the details such as users, roles, and user-role 

mapping are stored in SQL Server tables. Since this example doesn’t use ASP.NET Core 

Identity and resorts to Cosmos DB database store user details, you need to decide how 

these details are stored.

You could have used three Cosmos DB collections such as Users, Roles, and 

UserRoles to persist the respective details. However, for the sake of simplicity, this 

example uses only a single collection – Users – to store details such as UserName, 

Password, Email, FullName, BirthDate, and Role of a user. Although Employee Manager 

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



420

uses role-based security, there aren’t too many roles involved. So this simple document 

structure serves the purpose. In a more realistic case, however, you would consider a 

more complex and fine-tuned arrangement.

To represent a JSON document that is persisted into the Users collection, you need a 

class that has all the properties mentioned in the preceding text. Listing 9-27 shows the 

AppUser class that wraps all these details.

Listing 9-27. AppUser class stores user details

public class AppUser

{

    [JsonProperty(PropertyName = "id")]

    public Guid DocumentID { get; set; }

    [JsonProperty(PropertyName = "userName")]

    public string UserName { get; set; }

    [JsonProperty(PropertyName = "password")]

    public string Password { get; set; }

    [JsonProperty(PropertyName = "email")]

    public string Email { get; set; }

    [JsonProperty(PropertyName = "fullName")]

    public string FullName { get; set; }

    [JsonProperty(PropertyName = "birthDate")]

    public DateTime BirthDate { get; set; }

    [JsonProperty(PropertyName = "role")]

    public string Role { get; set; }

}

The AppUser class contains several properties, namely, DocumentID, UserName, 

Password, Email, FullName, BirthDate, and Role. These properties are decorated with 

the [JsonProperty] attribute.

Once the AppUser class is ready, you can go ahead and add SecurityController that 

takes care of user registration, signing-in, and signing-out operations.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



421

 Creating the SecurityController
The SecurityController includes actions for creating a new user account, signing in 

a user by issuing an authentication cookie, and signing the user out by removing the 

authentication cookie. The following sections discuss the Register(), SignIn(), and 

SignOut() actions of SecurityController that take care of these operations. You can get 

the complete code of SecurityController from this chapter’s code download.

 Creating a New User Account

In order to create a new user account, you need to add a JSON document to the Users 

collection of the Cosmos DB database. This is done by the Register() action as shown 

in Listing 9-28.

Listing 9-28. Creating a new user account

[HttpPost]

public async Task<IActionResult> Register(Register model)

{

    if (ModelState.IsValid)

    {

         AppUser usr = client.CreateDocumentQuery<AppUser>(userCollection 

Uri).Where(u => u.UserName == model.UserName).AsEnumerable().

SingleOrDefault();

        if (usr != null)

        {

            ModelState.AddModelError("", "UserName already exists!");

        }

        else

        {

            AppUser user = new AppUser();

            user.DocumentID = Guid.NewGuid();

            user.UserName = model.UserName;

            user.Password = model.Password;

            user.Email = model.Email;

            user.FullName = model.FullName;

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



422

            user.BirthDate = model.BirthDate;

            user.Role = "Manager";

            await client.CreateDocumentAsync(userCollectionUri, user);

            ViewData["message"] = "User created successfully!";

        }

    }

    return View();

}

The code first checks whether the user with a specific UserName already exists 

in the Users collection. This is done using the CreateDocumentQuery() method of 

DocumentClient.
If the UserName doesn’t exist, the code proceeds to creating a new AppUser object and 

setting its properties. Recollect that AppUser represents a JSON document you want to 

store in the Users collection.

Once the AppUser object is ready, the code adds in to the Users collection using the 

CreateDocumentAsync() method. Notice that the Users collection’s Uri is passed to the 

CreateDocumentAsync() method along with the AppUser object.

 Signing a User In to the Application

In order to sign a user in to Employee Manager, you need to validate the user credentials 

and issue an authentication cookie. Since you aren’t using ASP.NET Core Identity in this 

example, you resort to ASP.NET Core’s HttpContext.SignInAsync() method and what is 

known as ClaimsPrincipal. Listing 9-29 shows how this is done.

Listing 9-29. Signing a user in by issuing the authentication cookie

[HttpPost]

public async Task<IActionResult> SignIn(SignIn model)

{

     AppUser usr = client.CreateDocumentQuery<AppUser>(userCollectionUri).

Where(u => u.UserName == model.UserName && u.Password==model.Password).

AsEnumerable().SingleOrDefault();

    bool isUserValid = (usr == null ? false : true);

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



423

    if (ModelState.IsValid && isUserValid)

    {

        var claims = new List<Claim>();

        claims.Add(new Claim(ClaimTypes.Name, usr.UserName));

        claims.Add(new Claim(ClaimTypes.Role, usr.Role));

         var identity = new ClaimsIdentity(claims, 

CookieAuthenticationDefaults.AuthenticationScheme);

        var principal = new ClaimsPrincipal(identity);

        var props = new AuthenticationProperties();

        props.IsPersistent = model.RememberMe;

        await HttpContext.SignInAsync(CookieAuthenticationDefaults.

                                       AuthenticationScheme, principal, props);

        return RedirectToAction("List", "EmployeeManager");

    }

    else

    {

        ModelState.AddModelError("","Invalid UserName or Password!");

    }

    return View();

}

The code first checks whether UserName and Password as supplied by the 

user are valid or not. This is done by querying the Users collection using the 

CreateDocumentQuery() method for a specific UserName and Password combination.

If the user credentials are valid, the code proceeds to the sign-in operation. In order 

to sign a user in to the application, you need to construct the ClaimsPrincipal object. To 

construct a ClaimsPrincipal, you need a ClaimsIdentity and a List of Claim objects.

Note Detailed discussion of security concepts such as claims-based security, 
ClaimsIdentity, and Claimsprincipal is beyond the scope of this book. You can 
read more about these concepts in the official documentation at https://
docs.microsoft.com/en-us/dotnet/api/system.security.claims.
claimsprincipal.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb

https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal
https://docs.microsoft.com/en-us/dotnet/api/system.security.claims.claimsprincipal


424

Take a look at the code shown in bold letters. Two Claim objects are being created 

and added to the List<Claim>. These Claim objects store UserName and user’s Role, 

respectively.

Based on these claims, a ClaimsIdentity object is constructed. Then a 

ClaimsPrincipal is constructed by passing the ClaimsIdentity just created.

Next, an object of the AuthenticationProperties class is created. The 

AuthenticationProperties class is used to store properties of an authentication 

session. In this case, the IsPersistent property is set to either true or false depending 

on the Remember Me checkbox of the sign-in page.

Finally, the SignInAsync() method of the HttpContext class is called to sign the 

user in to the application. The SignInAsync() method accepts three parameters – the 

authentication scheme, ClaimsPrincipal object, and AuthenticationProperties 

object. It then issues authentication cookie to the user. This authentication cookie is 

passed between the browser and the server along with every request so that the server 

knows that a user has signed in to the application.

 Signing a User Out of the Application

The SignOut() action of SecurityController signs the user out of the application by 

removing the authentication cookie. The SignOut() action is shown in Listing 9-30.

Listing 9-30. Signing a user out of the application

[HttpPost]

public async Task<IActionResult> SignOut()

{

    await HttpContext.SignOutAsync(

CookieAuthenticationDefaults.AuthenticationScheme);

    return RedirectToAction("SignIn", "Security");

}

As you can see, the SignOutAsync() method of HttpContext does the job of 

signing the user out of the application. The SignOutAsync() accepts the name of the 

authentication scheme used as its parameter.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



425

 Securing the EmployeeManagerController with the  
[Authorize] Attribute

Once you integrate the custom cookie authentication as discussed in the preceding 

text, you can secure the EmployeeManagerController with the [Authorize] attribute. 

You can also protect the controller POST actions from the CSRF/XSRF attacks using 

the [ValidateAntiForgeryToken] attribute. This process is identical to what you did 

for the MVC version of Employee Manager. Just for your quick reference, a part of the 

EmployeeManagerController with these attributes applied is shown in Listing 9-31.

Listing 9-31. Using the [Authorize] attribute to EmployeeManagerController

[Authorize(Roles = "Manager")]

public class EmployeeManagerController : Controller

{

    ...

    [HttpPost]

    [ValidateAntiForgeryToken]

    public IActionResult Insert(Employee emp)

    {

       ...

    }

    ...

}

 Using the EF Core Provider for Cosmos DB
Earlier, it was mentioned that you can also use the EF Core provider for Cosmos DB 

(available through the Microsoft.EntityFrameworkCore.Cosmos NuGet package) to 

work with Cosmos DB. In this section, you learn how to use it in Employee Manager. 

Rather than discussing the whole Employee Manager in the light of Microsoft.

EntityFrameworkCore.Cosmos, only the CRUD operations are discussed here. But this 

book’s code download contains a complete Employee Manager application developed 

using the Microsoft.EntityFrameworkCore.Cosmos provider.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



426

 Creating the AppDbContext
Have a look at Listing 9-32 that shows a custom DbContext named AppDbContext created 

for Cosmos DB.

Listing 9-32. DbContext for Cosmos DB

public class AppDbContext:DbContext

{

     public AppDbContext(DbContextOptions<AppDbContext> options) : 

base(options)

    {

    }

    public DbSet<Employee> Employees { get; set; }

    public DbSet<Country> Countries { get; set; }

    public DbSet<AppUser> Users { get; set; }

}

As you can see, the AppDbContext class looks quite similar to any other DbContext 

you created in earlier examples. The Employee, Country, and AppUser entity classes used 

by the DbSet properties are also created similar to any other entity class. As an example, 

the Employee class is shown in Listing 9-33.

Listing 9-33. Employee entity class

public class Employee

{

    [Key]

         [Required]

         public Guid DocumentID { get; set; }

    [Required]

    [Display(Name ="Employee ID")]

    public int EmployeeID { get; set; }

    [Required]

    [StringLength(10)]

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



427

    [Display(Name = "First Name")]

    public string FirstName { get; set; }

    [Required]

    [StringLength(20)]

    [Display(Name = "Last Name")]

    public string LastName { get; set; }

    [Required]

    [StringLength(30)]

    [Display(Name = "Title")]

    public string Title { get; set; }

    [Required]

    [Display(Name = "Birth Date")]

    public DateTime BirthDate { get; set; }

    [Required]

    [Display(Name = "Hire Date")]

    public DateTime HireDate { get; set; }

    [Required]

    [StringLength(15)]

    [Display(Name = "Country")]

    public string Country { get; set; }

    [StringLength(500)]

    [Display(Name = "Notes")]

    public string Notes { get; set; }

}

Notice that the DocumentID property is of type Guid and is also marked with the 

[Key] attribute indicating that it’s the unique identifier for the document. The Country 

and AppUser entity classes are quite straightforward and are not discussed here.

You can inject the AppDbContext into any controller by registering it in the 

ConfigureServices().Listing 9-34 shows how this can be done.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



428

Listing 9-34. Registering AppDbContext in ConfigureServices()

services.AddDbContext<AppDbContext>(options =>

    options.UseCosmos(

    "your_account_uri",

    "your_account_secret_key",

    "your_database_name"

));

The UseCosmos() method supplies three pieces – your Cosmos DB account endpoint 

URI (same as your server configuration setting), your account’s secret key (same as the 

PrimaryKey stored in the configuration file), and the database name. These details are 

necessary to establish a connection with the database. For this example, it’s better to use 

a different database name since Northwind is already created in the previous example.

 Performing CRUD Operations
While using the Microsoft.Azure.DocumentDB.Core client library, you created the 

Northwind database programmatically. You can accomplish the same thing while using 

the EF Core provider for Cosmos DB as shown in Listing 9-35.

Listing 9-35. Creating a database if it doesn’t exist

public class EmployeeManagerController : Controller

{

    private readonly AppDbContext db;

    public EmployeeManagerController(AppDbContext db)

    {

        this.db = db;

        db.Database.EnsureCreated();

    }

    ...

}

The EmployeeManagerController constructor gets an instance of AppDbContext and 

stores it in a member variable (db). Then the EnsureCreated() method of the Database 

object is invoked. The EnsureCreated() method creates the database specified in the 

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



429

UseCosmos() method if it doesn’t already exist. When you use the EF Core provider for 

Cosmos DB, it stores various Employee items under a container named AppDbContext. 

This container is automatically created for you.

You can insert a new Employee item into the AppDbContext as shown in Listing 9-36.

Listing 9-36. Inserting a new employee in the AppDbContext container

[HttpPost]

[ValidateAntiForgeryToken]

public IActionResult Insert(Employee emp)

{

   FillCountries();

   if (ModelState.IsValid)

   {

    Employee obj = (from e in db.Employees

           where e.EmployeeID == emp.EmployeeID

           select e).SingleOrDefault();

    if (obj == null)

    {

        emp.DocumentID = Guid.NewGuid();

        db.Employees.Add(emp);

        db.SaveChanges();

        ViewBag.Message = "Employee inserted successfully!";

    }

    else

    {

        ViewBag.Message = "EmployeeID already exists!";

    }

   }

   return View(emp);

}

Notice the code marked in bold letters. It first checks whether an EmployeeID being 

added already exists in the database or not. It does so by querying the container for items 

with a specific EmployeeID. As you can see, this query is quite similar to any other LINQ 

to Entities query.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



430

If the EmployeeID doesn’t already exist in the database, the code proceeds to creating 

a new Employee entity. The DocumentID property is assigned a new Guid value. The 

newly created Employee is added to the Employees DbSet using the Add() method, and 

SaveChanges() is called to persist the changes.

In order to update an existing employee, you need an Update() action as shown in 

Listing 9-37.

Listing 9-37. Updating an existing employee

[HttpPost]

[ValidateAntiForgeryToken]

public IActionResult Update(Employee emp)

{

   FillCountries();

   if (ModelState.IsValid)

   {

    Employee obj = db.Employees.Find(emp.DocumentID);

    obj.EmployeeID = emp.EmployeeID;

    obj.FirstName = emp.FirstName;

    obj.LastName = emp.LastName;

    obj.Title = emp.Title;

    obj.BirthDate = emp.BirthDate;

    obj.HireDate = emp.HireDate;

    obj.Country = emp.Country;

    obj.Notes = emp.Notes;

    db.SaveChanges();

    ViewBag.Message = "Employee updated successfully!";

   }

   return View(emp);

}

Notice the code marked in bold letters that updates an existing employee in the 

Cosmos DB database. First, the code retrieves the entity that matches a specified 

DocumentID using the Find() method. It then assigns various properties of the Employee 

to their modified values. The code then calls the SaveChanges() method to save the 

changes in the database.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



431

If you wish to delete an Employee item from the AppDbContext container, you could 

write code as shown in Listing 9-38.

Listing 9-38. Deleting an employee item

[HttpPost]

[ValidateAntiForgeryToken]

public IActionResult Delete(string documentID)

{

    Employee emp = db.Employees.Find(new Guid(documentID));

    db.Employees.Remove(emp);

    db.SaveChanges();

    TempData["Message"] = "Employee deleted successfully!";

    return RedirectToAction("List");

}

The code retrieves an Employee entity that needs to be deleted using the Find() 

method. The retrieved entity is passed to the Remove() method to remove it from the 

Employees DbSet. Finally, the SaveChanges() method removes it from the database.

If you have Employee items in the AppDbContext container, you can fetch them as 

shown in Listing 9-39.

Listing 9-39. Retrieving all the employees

public IActionResult List()

{

    var query = from e in db.Employees

                orderby e.EmployeeID

                select e;

    return View(query.ToList());

}

A LINQ to Entities query grabs all the employees, and they are sent to the List view 

for display.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



432

Note as you can see from the preceding code snippets, the overall process 
of performing CruD operations using the eF Core provider for Cosmos Db is 
quite similar to the SQL Server database. therefore, other parts of this employee 
manager example are not discussed here. You can get the complete source code of 
this example from the book’s code download.

If you run this Employee Manager application and add a few Employee items, 

you can view them from Data Explorer also. Figure 9-12 shows such a sample 

Employee item.

Figure 9-12. Data Explorer showing an Employee item added to the 
AppDbContext container

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



433

 Installing and Running MongoDB
In the preceding sections, you used Cosmos DB to build the Employee Manager 

application. In this section, you will use another popular NoSQL database – 

MongoDB. Before you start writing code to perform CRUD operations, you need to 

install MongoDB on your local machine. In this section, you will do so and also run the 

database engine so that your ASP.NET Core application can connect with the database.

The first step is to visit the official MongoDB web site and download the MongoDB 

database server. You can either download the database server as an MSI file or a ZIP file. 

Figure 9-13 shows the content of the Bin folder after the ZIP file has been extracted.

Notice the mongod.exe file. It’s the build of the MongoDB daemon for the Windows 

platform. A simple way to start the MongoDB server is to run this executable using a 

command prompt. By default, the MongoDB server is run at port 27017. You can also 

specify a folder where the data is stored. For example, the following command starts 

the MongoDB server and specifies the data directory to be Data (create the Data folder 

under the MongoDB installation folder before running this command):

> mongod --dbpath ..\Data

Figure 9-13. Using mongod.exe to run the database engine

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



434

Figure 9-14 shows the command prompt when the MongoDB server is successfully 

started.

Once the MongoDB server is started, you can proceed to performing the CRUD 

operations.

Note teaching you mongoDb and the mongoDb driver in detail is beyond 
the scope of this book. the following sections focus on performing the CruD 
operations. For more details, visit the official documentation at https://docs.
mongodb.com/ecosystem/drivers/csharp/.

 Performing CRUD Operations
In this section, you learn to perform CRUD operations on a MongoDB database named 

Northwind. You haven’t created the Northwind database and its collections yet. That 

will happen through the MongoDB driver. So after creating and configuring a new 

project (EmployeeManager.MongoDB), make sure to add the NuGet package – MongoDB.

Driver – that represents the MongoDB driver for .NET.

Figure 9-14. Successful run of the MongoDB server

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb

https://docs.mongodb.com/ecosystem/drivers/csharp/
https://docs.mongodb.com/ecosystem/drivers/csharp/


435

For the sake of brevity, the following sections discuss only the CRUD operations from 

the EmployeeManagerController.

 Configuring MongoClient

In order to connect to a MongoDB server, you use the MongoClient class. Listing 9-40 

shows how MongoClient can be configured and used in an application.

Listing 9-40. Connecting with the MongoDB server using MongoClient

public class EmployeeManagerController : Controller

{

    private IMongoCollection<Employee> employees;

    private IMongoCollection<Country> countries;

    public EmployeeManagerController(IConfiguration config)

    {

        var client = new MongoClient(config.GetValue<string>

        ("MongoDBSettings:Server"));

        IMongoDatabase db = client.GetDatabase(config.GetValue<string>

        ("MongoDBSettings:DatabaseName"));

        this.employees = db.GetCollection<Employee>(config.GetValue<string>

        ("MongoDBSettings:EmployeeCollectionName"));

        this.countries = db.GetCollection<Country>(config.GetValue<string>

(       "MongoDBSettings:CountryCollectionName"));

    }

}

Inside the constructor of EmployeeManagerController, the code creates a new 

instance of MongoClient by passing the server endpoint URI. By default, this URI is 

mongodb://localhost:27017, and it’s stored in the appsettings.json file.

Once a connection is established with the server, the code gets hold of the 

Northwind database using the GetDatabase() method of MongoClient. The 

GetDatabase() method accepts a database name. If the specified database already 

exists, it is returned as IMongoDatabase implementation. If the database doesn’t already 

exist, it is created and then returned as IMongoDatabase.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



436

The code then proceeds to retrieve two document collections – Employees and 

Countries – using the GetCollection() method. If a collection already exists, it is 

returned in the form of IMongoCollection; otherwise, the collection is created and 

returned as IMongoCollection.

 Employee and Country Model Classes

The Employee and Country model classes are similar to the ones you created for 

the Cosmos DB example. However, this time they use [BsonId] and [BsonElement] 

attributes. Listing 9-41 shows the Employee class with these attributes.

Listing 9-41. Using [BsonId] and [BsonElement]

public class Employee

{

    [BsonId]

    public ObjectId DocumentID { get; set; }

    [BsonElement("employeeID")]

    [Required]

    [Display(Name ="Employee ID")]

    public int EmployeeID { get; set; }

    [BsonElement("firstName")]

    [Required]

    [StringLength(10)]

    [Display(Name = "First Name")]

    public string FirstName { get; set; }

    [BsonElement("lastName")]

    [Required]

    [StringLength(20)]

    [Display(Name = "Last Name")]

    public string LastName { get; set; }

    [BsonElement("title")]

    [Required]

    [StringLength(30)]

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



437

    [Display(Name = "Title")]

    public string Title { get; set; }

    [BsonElement("birthDate")]

    [Required]

    [Display(Name = "Birth Date")]

    [BsonDateTimeOptions(DateOnly = true)]

    public DateTime BirthDate { get; set; }

    [BsonElement("hireDate")]

    [Required]

    [Display(Name = "Hire Date")]

    [BsonDateTimeOptions(DateOnly = true)]

    public DateTime HireDate { get; set; }

    [BsonElement("country")]

    [Required]

    [StringLength(15)]

    [Display(Name = "Country")]

    public string Country { get; set; }

    [BsonElement("notes")]

    [StringLength(500)]

    [Display(Name = "Notes")]

    public string Notes { get; set; }

}

Earlier, it was mentioned that MongoDB stores data in the form of JSON documents. 

For efficient storage of these documents, MongoDB uses a binary format called BSON 

(Binary JSON).

The DocumentID property of the Employee class is marked with the [BsonId] 

attribute (MongoDB.Bson.Serialization.Attributes namespace), and its data type 

is ObjectId. This indicates that the DocumentID property is going to act as a unique 

identifier for the JSON document. (In MongoDB, the _id property of JSON documents 

acts as a unique identifier. The [BsonId] attribute automatically saves the underlying 

property as _id.) The ObjectId type is defined by the MongoDB driver and represents a 

12 byte value.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



438

The other properties are decorated with the [BsonElement] attribute (MongoDB.

Bson.Serialization.Attributes namespace) indicating that the underlying property 

will be serialized as a JSON element. You can also specify an alternate name for the JSON 

property using the parameter of the [BsonElement] attribute. If you don’t specify an 

alternate name, the name of the underlying property is used.

Note that BirthDate and HireDate properties are also decorated with the 

[BsonDateTimeOptions] attribute. The DateOnly property of [BsonDateTimeOptions] 

is true indicating that only the date part is to be considered while serializing and de- 

serializing those properties.

The Country class can be created on the same lines and is shown in Listing 9-42 for 

your quick reference.

Listing 9-42. Country class

public class Country

{

    [BsonId]

    public ObjectId DocumentID { get; set; }

    [BsonElement]

    public int CountryID { get; set; }

    [BsonElement]

    public string Name { get; set; }

}

 Displaying a List of Employees

In order to retrieve a list of Employee documents from a MongoDB database, you use 

employees IMongoCollection as shown in Listing 9-43.

Listing 9-43. Retrieving a list of employees

public IActionResult List()

{

    var model = this.employees.Find(FilterDefinition<Employee>.Empty)

.ToList();

    return View(model);

}

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



439

The Find() method called on the employees IMongoCollection takes a filter 

condition in the form of the FilterDefinition object. Since we don’t want to set any 

filter, an empty filter condition is passed. The Find() method returns a fluent find 

interface in the form of IFindFluent. To get the data as a List<Employee>, the ToList() 

method is called.

 Inserting a New Employee

In order to insert a new Employee into the database, you use the InsertOne() method of 

IMongoCollection. This is shown in Listing 9-44.

Listing 9-44. Inserting a new employee

[HttpPost]

[ValidateAntiForgeryToken]

public IActionResult Insert(Employee emp)

{

   FillCountries();

   if (ModelState.IsValid)

   {

     Employee existing = this.employees.Find(e => e.EmployeeID == emp.

EmployeeID).FirstOrDefault();

    if(existing == null)

    {

        this.employees.InsertOne(emp);

        ViewBag.Message = "Employee inserted successfully!";

    }

    else

    {

        ViewBag.Message = "EmployeeID already exists!";

    }

   }

   return View();

}

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



440

The POST Insert() action first uses employees IMongoCollection to check whether 

an EmployeeID being inserted already exists or not. If the EmployeeID doesn’t exist, the 

InsertOne() method of employees IMongoCollection is called by passing the new 

employee to be added.

 Updating an Existing Employee

In order to update an existing employee, you can use the ReplaceOne() method of 

IMongoCollection. There is also the UpdateOne() method that can be used if you wish 

to change particular properties rather than updating the whole document. The use of 

ReplaceOne() is shown in Listing 9-45.

Listing 9-45. Updating an employee

[HttpPost]

[ValidateAntiForgeryToken]

public IActionResult Update(string documentID, Employee emp)

{

   FillCountries();

   if (ModelState.IsValid)

   {

    emp.DocumentID = new ObjectId(documentID);

     var filter = Builders<Employee>.Filter.Eq(e => e.DocumentID, emp.

DocumentID);

    var result = employees.ReplaceOne(filter, emp);

    if (result.IsAcknowledged)

    {

        ViewBag.Message = "Employee updated successfully!";

    }

    else

    {

        ViewBag.Message = "Error while updating Employee!";

    }

   }

   return View(emp);

}

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



441

Notice that the Update() POST method not only takes the Employee object but also 

the documentID string. This is because model binding can’t automatically convert a 

string DocumentID into an ObjectId instance. So the code gets the string DocumentID and 

converts it into an ObjectId and assigns it to the DocumentID property of Employee.

Then the code builds a filter that filters the employees based on the DocumentID. In 

this case, since the filter is based on the DocumentID, only one Employee will be filtered. 

This filter is passed to the first parameter of the ReplaceOne() method. The second 

parameter of ReplaceOne() is the modified Employee document.

 Deleting an Existing Employee

In order to delete an existing employee, you use the DeleteOne() method of 

IMongoCollection. This is shown in Listing 9-46.

Listing 9-46. Deleting an employee

[HttpPost]

[ValidateAntiForgeryToken]

public IActionResult Delete(string documentID)

{

    ObjectId docID = new ObjectId(documentID);

    var result = this.employees.DeleteOne(e => e.DocumentID == docID);

    if (result.IsAcknowledged)

    {

        TempData["Message"] = "Employee deleted successfully!";

    }

    else

    {

        TempData["Message"] = "Error while deleting Employee!";

    }

    return RedirectToAction("List");

}

The Delete() action receives a string documentID and converts it into an ObjectId 

instance. Then the DeleteOne() method is called on the employees IMongoCollection 

by passing the deletion condition in the form of a LINQ expression.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



442

This completes the CRUD operations. You may get the complete source code of this 

example from the book’s code download.

 Implementing Authentication and Authorization

Implementing user authentication and role-based security in this example is quite 

similar to the Cosmos DB example because this example also uses a custom cookie 

authentication. The user data such as UserName, Password, and Role are stored in a 

MongoDB collection named Users. However, in a more realistic situation, you should 

consider strong encryption techniques to protect the user data. You might even prefer to 

store user details in some other data store. Data encryption and security techniques are 

beyond the scope of this book.

The SecurityController contains the same set of actions – Register(), SignIn(), 

and SignOut() – to take care of the respective operations. Usage of the [Authorize] 

attribute also remains as before. For the sake of brevity, those implementation details 

are not discussed here. You can get the SecurityController from the book’s code 

download.

 Summary
This chapter introduced you to three data stores – Azure SQL Database, Cosmos 

DB, and MongoDB. Azure SQL Database is the same SQL Server database that 

you are familiar with, but it’s hosted and managed by Azure. Nowadays, NoSQL 

databases are also quite common, and you learned two of them – Cosmos DB and 

MongoDB. Both store data in the form of JSON documents. To perform CRUD 

operations on a Cosmos DB database, you used the Cosmos DB client library as well 

as the EF Core provider for Cosmos DB. You also learned to use the MongoDB driver 

for .NET to handle data access. Together, this chapter made you familiar with cloud-

based and NoSQL data stores.

You have been developing various flavors of Employee Manager throughout this 

book. In the next chapter, you learn to deploy Employee Manager to IIS and Azure 

App Service.

Chapter 9  azure SQL DatabaSe, azure CoSmoS Db, anD mongoDb



443
© Bipin Joshi 2019 
B. Joshi, Beginning Database Programming Using ASP.NET Core 3,  
https://doi.org/10.1007/978-1-4842-5509-4_10

CHAPTER 10

Deployment
Your journey in this book, so far, involved developing the Employee Manager application 

using various technology options available in the ASP.NET Core family of technologies. 

You used the IIS Express web server while developing the applications. Once you finish 

developing an application, you want end users to use it. This calls for deploying the 

application in some hosting environment and making it accessible to the end users.

If you developed ASP.NET web applications before, you might be aware of 

Internet Information Services (IIS)–based hosting. This traditional way of deploying 

ASP.NET applications is still available to ASP.NET Core developers. Additionally, 

many modern web applications are hosted in Azure App Service. To that end, this 

chapter teaches you to

• Deploy Employee Manager in Internet Information Services or IIS

• Deploy Employee Manager in Azure App Service

This chapter uses two projects you developed earlier, namely, EmployeeManager.

Mvc and EmployeeManager.AzureSql, for the sake of illustrating the deployment options 

mentioned in the preceding text. So keep them ready with you.

Note This chapter assumes that you have installed IIS and Web Deploy on your 
machine. To know more about Web Deploy, visit https://docs.microsoft.
com/en-us/iis/publish/using-web-deploy/introduction-to-web- 
deploy. It is also assumed that you have access to the Azure portal and Azure 
App Service.

https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy
https://docs.microsoft.com/en-us/iis/publish/using-web-deploy/introduction-to-web-deploy


444

 Deploy Employee Manager to IIS
In this section, you learn to deploy the Employee Manager application to IIS. So first of 

all, open the EmployeeManager.Mvc project in Visual Studio. While opening the project, 

you need to open it in administrator mode since you want to use Web Deploy to deploy 

the web application. You can do that by right-clicking the Visual Studio entry in the 

Windows Start screen and then picking Run as administrator (Figure 10-1).

Then build the project just to make sure that there are no compilation errors. Just for 

your quick reference, Figure 10-2 shows the EmployeeManager.Mvc open in Solution 

Explorer.

Figure 10-1. Run Visual Studio as administrator

ChApTer 10  DeploymenT



445

Recollect that you have stored the database connection string in the application 

configuration file – appsettings.json. While developing Employee Manager, you used the 

local installation of SQL Server. Your database connection looked like this:

"ConnectionStrings": {

    "AppDb": "data source=.;

              initial catalog=Northwind;

              integrated security=true;

}

As you can see, the integrated security option is set to true indicating that SQL Server 

will use Windows Authentication. This is alright during development because your web 

application and SQL Server are running on the same machine. However, in many real- 

world situations, SQL Server is installed on some different server and you want to access 

Figure 10-2. EmployeeManager.Mvc open in Solution Explorer

ChApTer 10  DeploymenT



446

it using SQL Server Authentication. This means you will have an SQL Server user ID and 

password that is used by your web application to access the data. In such cases, you need 

to modify your database connection string to reflect the SQL Server details. Consider the 

following connection string that uses such credentials:

"ConnectionStrings": {

     "AppDb": "data source=your_sql_server;

               initial catalog=Northwind;

               user id=your_sql_server_userid;

               password= your_sql_server_password"

}

As you can see, the data source setting now specifies the name or the IP address of 

the target SQL Server. The user ID and password settings specify the respective values. 

Make sure to change these settings as per your setup and save the appsettings.json file.

 Create a Target SQL Server Database
As far as this example is concerned, this step is an optional step. However, in most of 

the real-world applications, you need to transfer database and data from your local 

installation of SQL Server to the production installation of SQL Server. There can be 

multiple ways to accomplish this task including these:

• You might generate database scripts using SQL Server Management 

Studio and run those scripts in the target SQL Server.

• You can use Import/Export Data features of SQL Server Management 

Studio to transfer the data from the local database to the target 

database.

• You can use the Copy Database feature of SQL Server Management 

Studio to copy the database objects and data from the local database 

to the target database.

Discussion of these database deployment techniques is beyond the scope of this 

book. If you want to use an SQL Server instance other than that running on your local 

machine, use any of these techniques to deploy your database to the target server. Make 

sure to change the database connection string from the appsettings.json as per the target 

database (see the previous section for more details).

ChApTer 10  DeploymenT



447

 Create an IIS Site
Before you use Web Deploy to deploy Employee Manager to IIS, you need to create an IIS 

site that will host your web application files. To do so, open Internet Information Services (IIS) 

Manager (Figure 10-3).

Then right-click the Sites folder and select the Add Website shortcut menu option to 

open a dialog shown in Figure 10-4.

Figure 10-3. Internet Information Services (IIS) Manager

ChApTer 10  DeploymenT



448

In this dialog, specify the site name to be EmployeeManager. Then pick a physical 

file system folder where the site’s files are to be stored (C:\EmployeeManager in this 

example). The default site under IIS listens at port 80, and to avoid interfering with it, 

specify some unused port number, say 9000. In a more real-world situation you should 

set up an SSL certificate in IIS and enforce HTTPS in your application as described in 

https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl. Now, 

click the OK button to create the site.

Once the site is created, click the Application Pools option to reveal the IIS 

application pools (Figure 10-5).

Figure 10-4. Configuring a new IIS web site

ChApTer 10  DeploymenT

https://docs.microsoft.com/en-us/aspnet/core/security/enforcing-ssl


449

Here you should see an entry for the EmployeeManager. Double-click the 

EmployeeManager application pool to reveal its settings. Change the .NET CLR version 

to No Managed Code (Figure 10-6) and then close the dialog.

Figure 10-5. IIS application pools

Figure 10-6. Change application pool properties

ChApTer 10  DeploymenT



450

Next, click the EmployeeManager site in the IIS Manager and double-click Modules 

from the Features view (Figure 10-7).

Notice the ASP.NET Core Module listed there. It’s an IIS module that handles the 

ASP.NET Core web applications.

Note Depending on the configuration of the machine running IIS, you might 
need to install the ASp.neT Core hosting bundle on it. The ASp.neT Core hosting 
bundle installs the .neT Core runtime, .neT Core library, and ASp.neT Core module. 
Detailed discussion of the ASp.neT Core module and various hosting models 
is beyond the scope of this book. you may consider reading https://docs.
microsoft.com/en-us/aspnet/core/host-and-deploy/aspnet-core- 
module for more details.

Figure 10-7. List of IIS modules

ChApTer 10  DeploymenT

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/aspnet-core-module
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/aspnet-core-module
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/aspnet-core-module


451

 Publish Employee Manager from Visual Studio
Now that the EmployeeManager site has been created in IIS, you can deploy 

your application to the site. Switch back to the Visual Studio IDE that has the 

EmployeeManager.Mvc project loaded. Click the Build menu and select the Publish 

EmployeeManager.Mvc menu option.

When you do so, you are asked to pick a publish target (Figure 10-8).

In this dialog, select the IIS, FTP, etc. option from the left-side list and click the 

Publish button. This will open a dialog as shown in Figure 10-9.

Figure 10-8. Selecting a publish target

ChApTer 10  DeploymenT



452

At the top of this dialog, you can select a publish method. Although you are going to 

use Web Deploy, it’s worthwhile to enumerate the available options:

• Web Deploy: This will deploy your application files to a target IIS that 

is configured to use Web Deploy.

• Web Deploy Package: This option generates a ZIP file containing all 

the files and settings to be deployed. You can then install the package 

in the target IIS.

• FTP: This option allows you to upload your web application files to 

an FTP location.

• File System: This option allows you to publish a web application to a 

file system folder. You can then copy these files to IIS.

Figure 10-9. Specify Web Deploy settings

ChApTer 10  DeploymenT



453

So pick Web Deploy in the Publish method dropdown list and fill out the 

following details:

• Server: This is the name or IP of the target server that has IIS and 

Web Deploy installed. In this example, the application is being 

deployed to the local installation of IIS, and hence the server is 

specified to be localhost.

• Site name: It’s the name of the IIS site that you created and 

configured earlier – EmployeeManager.

• User name and password: If the target server requires a user name 

and password to connect, you also need to specify them in the 

respective textboxes.

• Destination URL: Specifying a destination URL is optional. If 

specified, Visual Studio will launch this URL in a browser once the 

deployment is over. In this example, the destination URL is http://

localhost:9000 since the EmployeeManager site is configured to use 

port 9000.

Once you enter all these details, click the Validate Connection button so that Visual 

Studio validates the connection settings specified in the various fields and informs you of 

the success or error.

If the connection is validated successfully, click the Next button to go to the next step 

of the wizard (Figure 10-10).

ChApTer 10  DeploymenT



454

In the publish settings dialog you can specify various settings as described in the following:

• Configuration: Visual Studio allows you to build your applications 

in two modes – Debug and Release. The former is useful during 

development and debugging stages, whereas the latter is suitable 

once the application development is complete. The release mode 

output is more optimized in terms of performance and physical disk 

size. Therefore, select Release in this dropdown list.

• Target Framework: This dropdown list allows you to select the target 

version of the framework. For the Employee Manager application, it’s 

netcoreapp3.0.

• Deployment Mode: This dropdown list contains two options for 

deploying your web application – Framework-Dependent and Self- 

Contained. The former option assumes that your application will 

run on top of .NET Core installed on the server. Therefore, only your 

application files and third-party dependencies are deployed.  

Figure 10-10. Specify publish settings

ChApTer 10  DeploymenT



455

The latter mode, in addition to application-specific files, also bundles 

the .NET Core framework files with which the application was build. 

Depending on your choice, select an option from the list.

Note To know more about framework-dependent and self-contained deployment 
modes, you may read  https://docs.microsoft.com/en-us/dotnet/core/
deploying.

• Target Runtime: This setting can be used to specify the target 

runtime environment for the application. There are various options 

such as win-x86, win-x64, linux-x64, and Portable. Default selection 

is Portable. We don’t want to target a specific runtime, and hence the 

default selection is maintained.

• File Publish Options, Databases, and Entity Framework 
Migrations: Options from these categories can be used to perform 

some additional tasks such as removing additional files from the 

target machine and running EF Core migrations from your project. 

The Employee Manager application doesn’t need any of these 

options. So keep all of them unchecked (default).

After specifying these options, click the Save button. This will save your deployment 

preferences and start the deployment process. The Web Publish Activity window displays 

the status of the deployment process (Figure 10-11).

Figure 10-11. Web Publish Activity window shows the status of deployment

ChApTer 10  DeploymenT

https://docs.microsoft.com/en-us/dotnet/core/deploying
https://docs.microsoft.com/en-us/dotnet/core/deploying


456

Once the deployment is complete, Visual Studio will also launch the application in 

the browser. Figure 10-12 shows the files that got deployed to the EmployeeManager 

folder.

Note In the preceding example, you used the most common deployment options 
for deploying the employee manager application. There are many configuration 
settings that allow you to fine-tune the deployment. Discussion of all these 
configuration settings is beyond the scope of this book. you may read more at 
https://docs.microsoft.com/en-us/aspnet/core/host-and- 
deploy/iis.

Figure 10-12. Files deployed to the EmployeeManager site

ChApTer 10  DeploymenT

https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis
https://docs.microsoft.com/en-us/aspnet/core/host-and-deploy/iis


457

Let’s quickly enumerate some of the important output files obtained as a result of the 

publish operation:

• appsettings.json is the application configuration file, and it is 

deployed as it was during developing the application. If you change 

the configuration settings from this file (say, database connection 

string), the changed settings will be used by the application.

• EmployeeManager.Mvc.dll is an assembly that contains the 

compiled C# application code. This includes the EF Core model, 

controllers, and any other C# code that you might have.

• EmployeeManager.Mvc.exe is an executable that represents a 

process that listens for HTTP requests. Depending on your publish 

configuration, this executable is typically used by the <aspNetCore> 

section of web.config.

• EmployeeManager.Mvc.Views.dll is an assembly that contains 

compiled output of all the Razor files (*.cshtml) including view files, 

view imports file, View Start file, and layout file.

• All the NuGet packages and dependencies needed by 

your application are also deployed. For example, Microsoft.

EntityFrameworkCore.dll and Microsoft.AspNetCore.Identity.

EntityFrameworkCore.dll are deployed to the target location.

• There is also a web.config file generated by the publish operation. 

This file is not used directly by your application code, but it contains 

certain settings that are used by the IIS. For example, the web.config 

specifies the ASP.NET Core Module configuration and the hosting 

model used by the application.

• There is also the wwwroot folder that contains static resources used 

by your application. For example, Site*.css and jquery*.js files that 

you placed under wwwroot during development are deployed to the 

target location.

After successfully deploying the application, Visual Studio launches http://

localhost:9000. You can try signing in to the application and test the CRUD operations. 

Figure 10-13 shows the launched web application after successful sign-in.

ChApTer 10  DeploymenT



458

 Redeploying the Application
In the preceding sections, you deployed the Employee Manager application to IIS. Many 

a times after deploying an application, you make changes to the code base. This calls 

for redeploying the application to the server. To assist you in the redeployment process, 

Visual Studio remembers your previous publish settings in a publish profile.

If you again select the Build ➤ Publish EmployeeManager.Mvc menu option, you will 

be shown a dialog as per Figure 10-14.

Figure 10-13. Employee Manager launched after successful deployment

ChApTer 10  DeploymenT



459

As you can see, the dropdown list has a custom publish profile selected. Below the 

dropdown list, there are New, Edit, Rename, and Delete buttons that can be used to 

perform the specific action on the publish profile.

If you want to redeploy the web application without making any changes to the 

publish settings, you can simply click the Publish button to begin the redeployment.

If you want to make any changes to the publish settings, you can click the Edit 

button to make the necessary changes. Upon making the changes, you can then click the 

Publish button to redeploy the application.

 Deploy Employee Manager to Azure App Service
In this section, you deploy the Employee Manager application to Azure App Service. 

Earlier in this book, you developed a version of Employee Manager that uses the Azure 

SQL Database (EmployeeManager.AzureSql project). Although that application used the 

Azure SQL Database as a data store for employee data, the web application was running 

on your local machine. In this section, you deploy the application to Azure App Service.

Figure 10-14. Publish settings are stored in a custom publish profile

ChApTer 10  DeploymenT



460

Azure App Service is an Azure service that works on a platform as a service (PaaS) 

model. It can run and manage web applications, mobile applications, APIs, and 

business logic applications. You can think of Azure App Service as a managed hosting 

environment for your ASP.NET Core web applications.

Note Detailed discussion of Azure App Service is beyond the scope of this book. 
you may read more at  https://azure.microsoft.com/en-in/services/
app-service.

For this example, you use the EmployeeManager.AzureSql project created earlier. 

Just for your quick reference, Figure 10-15 shows that project opened in Solution 

Explorer.

Figure 10-15. EmployeeManager.AzureSql opened in Solution Explorer

ChApTer 10  DeploymenT

https://azure.microsoft.com/en-in/services/app-service
https://azure.microsoft.com/en-in/services/app-service


461

Since this project already uses an Azure SQL Database, you don’t need to make any 

changes to the database connection string stored in the appsettings.json. Just for your 

quick reference, the connection string is given in the following:

"ConnectionStrings": {

  "AppDb": "Server=your_server_address_here;

            Initial Catalog=Northwind;

            Persist Security Info=False;

            User ID=your_user_id_here;

            Password=your_password_here;

            MultipleActiveResultSets=False;

            Encrypt=True;

            TrustServerCertificate=False;

            Connection Timeout=30;"

}

Just ensure that your values for server, user ID, password, and other details are 

correct before you continue further.

To deploy EmployeeManager.AzureSql to Azure App Service, you essentially run 

the same wizard that you ran while deploying to IIS earlier in this chapter. However, 

selection of various options and settings is different.

So begin by opening the Build menu and then select the Publish EmployeeManager.

AzureSql menu option to start the wizard. Figure 10-16 shows the first step of the wizard 

where you pick a publish target.

ChApTer 10  DeploymenT



462

In this step, select App Service from the left-side options and then pick the Create 

New radio button to indicate that you want to deploy the application to a new Azure App 

Service. Then click the Publish button to go to the next step (Figure 10-17).

Figure 10-16. Publishing to Azure App Service

Figure 10-17. Specify Azure App Service details

ChApTer 10  DeploymenT



463

In this screen, you specify various details about the new Azure App Service such 

as follows:

• Name: Indicates the name of the new Azure App Service being 

created. This name needs to be unique. You will be informed in case 

the name you specify is already in use. This name also appears in the 

URL of the resultant web site. So make sure to enter some short yet 

meaningful name here.

• Subscription: Select your Azure subscription from this  

dropdown list.

• Resource group: A resource group is a logical grouping of resources. 

If you have already created some resource group, pick its name or 

create a new one by clicking the New button.

• Hosting plan: You also need to pick a hosting plan for your web 

application. You can either keep the default hosting plan selection or 

create a new hosting plan by clicking the New button. You should pick 

or create a hosting plan based on your requirements. Figure 10- 18 

shows a new hosting plan defined using the default size.

Figure 10-18. Creating a new hosting plan

ChApTer 10  DeploymenT



464

• Application insights: If you are interested in analyzing your 

application’s performance, you can pick an application insight. For 

this example, you can keep the Vdefault selection of None.

Notice that on the right side of the screen, there are options to create a new storage 

account and Azure SQL Database. You don’t need one for this example because your 

data is already into an Azure SQL Database.

Next, click the Create button to create a new Azure App Service as per given 

specifications. Upon creating the App Service, the necessary files will be deployed to it. 

You will be notified once the deployment is complete (Figure 10-19).

Notice the URL given in the Web Publish Activity window. It takes this form:

https://your_app_service_name.azurewebsites.net/

If you navigate to this URL (make sure to substitute your Azure App Service 

name) using a browser, you should see the application sign- in page. You can then 

sign in to the system and test the CRUD operations as before. Figure 10-20 shows the 

employee listing page of the application upon successful sign-in.

Figure 10-19. Successful deployment to Azure App Service

ChApTer 10  DeploymenT



465

If you log in to the Azure portal and go to the App Services section, you will find that 

newly created App Service listed there (Figure 10-21).

Figure 10-20. Accessing Employee Manager hosted in Azure App Service

Figure 10-21. Newly created App Service listed in the Azure portal

ChApTer 10  DeploymenT



466

 Storing Connection String in App Service
In the preceding section, you stored the database connection string in the appsettings.

json file. However, for security reasons, you might want to avoid storing the database 

connection string in the appsettings.json file. Moreover, your development connection 

string and production connection string might be different. Luckily, Azure App Service 

allows you to store database connection in a more secure way.

You can define a database connection string in your App Service using the Azure 

portal. This connection string will have the same name as the appsettings.json key 

(AppDb in this example). At runtime, the connection string defined in the App 

Service will be used instead of the connection string defined in the appsettings.json. 

This happens automatically for you, and there is no need to make any change to the 

source code.

To define a connection string in an App Service, go to the App Service and click the 

Configuration option shown in Figure 10-22.

Then you can add a database connection string by clicking the New connection 

string button (Figure 10-23).

Figure 10-22. Azure App Service configuration

Figure 10-23. Adding a database connection string

ChApTer 10  DeploymenT



467

Specify the connection string name, its value, and its type. Then save the configuration 

by clicking the Save button at the top. As you can see in the figure, a connection string 

named AppDb has been added to the App Service configuration. Make sure that this 

connection string name matches with what you used in your appsettings.json file and 

code. That’s it. Now the deployed web application will use this connection string.

 Redeploying the Application
In case you need to redeploy the application, the overall process remains the same as in 

the case of deploying to IIS. Figure 10-24 shows the publish wizard with previous settings 

selected.

As before, you can use New, Edit, Rename, and Delete buttons to perform the 

respective operation on the publish profile. You can click the Publish button to redeploy 

the web application based on the selected publish profile.

Click the Edit button to open a dialog as shown in Figure 10-25.

Figure 10-24. Redeploying the web application using the publish wizard

ChApTer 10  DeploymenT



468

As you can see, it’s Web Deploy being done to the Azure App Service. If you click 

the Next button of the wizard, you can configure the same settings as you did while 

deploying to IIS. These settings are shown in Figure 10-26.

Figure 10-25. Changing the deployment connection settings

ChApTer 10  DeploymenT



469

You can complete the deployment by following the wizard steps and rerun the 

application by launching a browser.

 Summary
In this chapter, you learned to deploy ASP.NET Core web application. Two common 

deployment options were discussed, namely, deploying to IIS and deploying to Azure 

App Service. In order to deploy a web application using any of these options, you 

used the Publish menu option under the Build menu. You also learned about various 

configuration settings available during the deployment operation such as target 

framework and deployment mode.

Figure 10-26. Changing deployment configuration settings

ChApTer 10  DeploymenT



470

This book has attempted to introduce you to various technology options available 

while building ASP.NET Core web applications including MVC, Razor Pages, Web APIs, 

jQuery Ajax, Angular SPA, Blazor, Azure SQL Database, NoSQL databases, and more. I 

hope that with this knowledge under your belt, you can prepare yourself to take a deep 

dive into the world of the ASP.NET Core family of technologies.

ChApTer 10  DeploymenT



471© Bipin Joshi 2019 
B. Joshi, Beginning Database Programming Using ASP.NET Core 3,  
https://doi.org/10.1007/978-1-4842-5509-4

Index

A
AddAsync() method, 233
AddAuthentication() method, 266, 419
AddControllersWithViews() method, 105
AddCors() method, 285
AddDbContext() method, 110, 373
AddEntityFrameworkStores()  

method, 110, 165
AddIdentity() method, 110, 373
AddJwtBearer() method, 266
Add() method, 85, 149, 430
AddModelError() method, 120
AddNewtonsoftJson() method, 29
AddPageRoute() method, 161
AddRange() method, 393
AddRazorPages() method, 161, 349
AddRazorPagesOptions() method, 161
AddScoped() method, 190, 349, 396
AddServerSideBlazor() methods, 349
AddSingleton() method, 191, 205
AddToRoleAsync() method, 119, 170
Ajax, 227–229
Angular SPA

add employees, countries,  
and users, 292, 293

app.module.ts file, 327–329
ASP.NET Core application

enabling CORS, 285
web API, running, 286, 287
web APIs, 281, 284

delete existing employee, 321, 323
display employees list

add members and  
constructor, 303, 304

@Component() decorator, 302
create component, 301
event handler, 306
markup, 307, 308
ngOnInit() method, 304
selectAll() method, 305
Skeleton, 302

editing files, Visual Studio, 290
insert new employee, 313

constructor, 311
importing classes, 309
listing page, 314–316
ngOnInit() method, 312
save_click() event handler  

method, 313, 314
integrating application, 334, 335
invoking security Web  

APIs, 299, 300
invoking Web APIs

constructor, 295
creating service, 294
delete() method, 298
@Injectable() decorator, 294
insert() method, 297
selectAll() method, 296, 299
selectByID() method, 296
update() method, 298

https://doi.org/10.1007/978-1-4842-5509-4


472

modules, 289, 290
project creation, 288, 289
routing, 330–332
running application, 333
SignInComponent, 324, 326
sign-out component, 326, 327
update existing employee, 317, 318

AppDbContext class, 70, 74
AppIdentityDbContext class, 108, 109, 164
AppIdentityRole class, 108, 164
AppIdentityUser class, 108, 164
Application architecture

employee manager, 176
JSON format, 177, 178
repository role, 178, 179
RESTful services, 176, 177

Application’s startup, configuration
code, 104
Configure() method, 105
ConfigureServices() method, 105
parts, 104
Startup.cs file, 103, 104
tasks, 103

AppMessage class, 13, 25
AppSettings.json file, 101, 102
ASP.NET Core, 387

features, 1
framework, 1
layers, 2
MVC, 3, 4
Razor Pages, 4, 5
web API, 5, 6

ASP.NET Core Identity
authentication/authorization 

middleware, 373
CRUD Razor components, 373, 375
IdentityDbContext, 369

initial sign-in prompt, configuration, 
376, 377

List.razor, 370
OnGetAsync() page handler, 371
policy-based authorization, 377, 379
Register.cs/SignIn.cs files, 369
user name and sign out button, 375
_ViewImports.cshtml, 372

ASP.NET Core Identity, MVC
AccessDeniedPath property, 110
authentication, 128, 129
authorization middleware, 110, 111
ConfigureServices() method, 109, 110
cross-site request forgery, protection, 

129, 131
database tables, 111–113
definition, 107
security controller, 113, 115
SignIn() actions, 123
sing-in page, 122

@model directive, 125
SignIn() actions, 123, 124
SignIn.cshtml, 124, 125
SignIn model class, 122, 123

sign-out, 126, 127
user registration page

AppIdentityRole object, 119
AppIdentityUser, 119
creation, 115, 116
form fields, 121, 122
Form Tag Helper, 120
Register() actions, 117, 118
Register class, 116, 117, 120
Register.cshtml, 120

ASP.NET Core Identity, Razor Pages
authentication, 173, 174
database tables, 165
OnPostAsync() page handler, 172

Angular SPA (cont.)

Index



473

security subfolder, 165, 166
sign-in page, 170

OnPostAsync() page handler, 171
SignIn class, 170
SignIn.cshtml, 170
SignInData public property, 171
SignInManager<TUser> variable, 171

sign out, 172, 173
user registration page

code, 167, 168
creation, 166, 167
OnPostAsync() page  

handler, 168, 169
Register.cshtml, 167
RegisterData property, 168
variables, 168

asp-route-id attribute, 83, 146, 412
Azure App service

accessing Employee Manager, 465
application’s performance, 464
connection string, 461
CRUD operations, 464
deployment, 464
hosting plan, 463
name, 463
PaaS model, 460
publishing, 461, 462
resource group, 463
subscription, 463
web application, 459

Azure Cosmos DB, 58, 401
Azure SQL database, 58

advantages, 382
Employee Manager (see Employee 

Manager, Azure)
EmployeeManagerController, 396

database connection string, 398
Update() method, 397

fetching employee records, 386
firewall server, 385
new page, creation, 383
overview page, 384
portal, 382
Server Management Studio, 385
specifying settings, 383

B
BadRequest() method, 233
Blazor, 58

client side, 338
displaying list, 349

adding razor component, 350
@code block, 351, 352
@foreach loop, 354
@inject directive, 351
route/injecting services, 350

Employee Manager, 343, 345
framework, 337
hosting model, 338
new application, creation, 340
Razor component, 341

DOM, 342
lifecycle methods, 343

server side, 339
templates, 340, 341

C
Client creation, Web API

ASP.NET Core Identity, 224
CRUD operations, 199
EmployeeManager.ApiClient project, 200
EmployeeManagerController, 202–204
employees list, 208
existing employee, deleting, 220–222

Index



474

fetching employee, 217
FillCountriesAsync() Helper method, 223
GetAsync() method, 218
HttpClient class, 204–206
ListAsync() action, 208, 209
List.cshtml content, 209, 211
new employee insertion

BeginForm(), 214
DropDownListFor(), 216
Form fields, 214
InsertAsync() actions, 212
Serialize() method, 213
ValidationMessageFor(), 216

run, application, 224, 225
UpdateAsync() action, 218, 219
Update view, 219
view model class, 201, 202
WebApiConfig class, 206, 207

Client-side validations, 100–101, 160, 216
@Component() decorator, 290, 302
ConfigureApplicationCookie()  

method, 110, 165
Configure() method, 104, 161, 335, 419
ConfigureServices() method, 18, 24, 104, 

160, 264
ConfirmDelete() action, 94
Cosmos DB

authentication and authorization, 418, 
420

create/manage accounts, 402, 403
EF Core provider, 425

AppDbContext, 426, 428
CRUD operations, 428–432

Employee Manager (see Employee 
Manager, Cosmos DB)

SecurityController  
(see SecurityController)

Country entity class, 73, 74
CreateAsync() method, 119, 170
CreateDatabaseIfNotExistsAsync() 

method, 410
CreatedAtAction() method, 233
CreateDocumentAsync() method, 413, 

417, 422
CreateDocumentCollection 

IfNotExistsAsync()  
method, 411

CreateDocumentCollectionUri()  
method, 411

CreateDocumentQuery() method, 411, 417
Cross-platform framework, 2, 56
Cross-site request forgery  

(CSRF), 129, 259, 425
CRUD operations

Cosmos DB, 428
AppDbContext, 429
database creation, 428
data explorer, 432
deleting employee item, 431
Update() action, 430

MongoDB, 435
[BsonId]/[BsonElement]  

attribute, 436–438
deleting employee, 441, 442
insert new employees, 439, 440
MongoClient, 435, 436
retrieving list of employees, 438
updating employee, 440, 441

D
DbContext class, 69, 135
Delete() action, 95, 196
DeleteAsync() action, 234
Delete, existing employee, 363, 364, 366

Client creation, Web API (cont.)

Index



475

Dependency injection (DI), 74, 103, 190
Deployment

configuration settings, 469
connection settings, 468
database connection string, 466, 467
EmployeeManager (see 

EmployeeManager site)
Employee Manager to IIS, 444–446
IIS site, 447–450
target SQL Server database, 446

Document object model  
(DOM), 54, 239, 342

E
EF Core model

EmployeeStProcRepository creation, 
186–189

FromSqlRaw() method, 186
ICountryRepository interface, 182, 183
IEmployeeRepository interface, 181
repositories registering, 190, 191
SelectAll() implementation, 183–185
SelectByID() method, 184
Update() method, 185

Employee entity class, 70–72
EmployeeManager.Api, creation, 179, 180
Employee Manager application

adding new employee, 47
Angular, 57
Blazor, 58
CRUD operations, 53, 54
deployment, 56
edit existing employee, 49, 50
employee deletion, 51
employees list, 46
features

CRUD operations, 34

deployment, 34
frameworks, 34
HTML, 33
user authentication, 34

GitHub repositories, 33
HTML forms rendering, 52, 53
insert operation, 48
JavaScript libraries and frameworks, 54
jQuery, 57
MongoDB, 58
MVC, 56
Razor Pages, 56
run, 131, 132
seeking confirmation, 51
sign-in page, 42, 43
sign out, 52
table

connection details, 37, 38
data source, 36
data types, 40, 41
editor, 39, 40
Northwind database, 38
structure, 41, 42
test connection, 37

user authentication, 55
user registration page, 44, 45
validation errors, 48
Web API, 57
web application, 34, 35

Employee Manager, Azure
AddScoped() method, 396
Country model classes, 387
CRUD operations, 387
delete() method, 395
EmployeeRepository/

CountryRepository, creation, 388
IEmployeeRepository/ICountry 

Repository interfaces, 388

Index



476

Insert() method, 392, 393
MVC version, 386
selectAll() method, 389, 390
selectByID() method, 391, 392
Update() method, 394, 395

EmployeeManagerController class, 75, 76
Employee Manager, Cosmos DB

connection details, 405
country class [JsonProperty]  

attributes, 408
differences, 404
EmployeeManagerController, 408

account details, 409
database and collections, 409
delete confirmation page, 415, 416
fetching documents, 411
FillCountries() method, 416–418
insert new employee, 412, 414
update existing employee, 414, 415

JSON document, 406, 408
Microsoft.Azure.DocumentDB.Core 

client library, 406
EmployeeManager.Mvc, 67, 68
EmployeeManager site

CRUD operations, 457
output files, publish operation, 457
publish settings, 454, 455
publish target, 451
Web Deploy, 452, 453
Web Publish Activity window, 455

Employees Web API, creation
delete() action, 196
EmployeesController, 192, 193
Get() action, 194, 197
Get(id) returns, 199
JSON, 198
Post() actions, 195

project addition, 192
Put() action, 195, 196

EnsureCreated() method, 428
Entity framework core model

DbContext class, 69
DbSet, 69
definition, 69
entity classes, 69
mapping, 71
properties, 71–73

Entity framework core model and 
repositories, 345

AppDbContext, 348
CountryRepository, 348
CRUD operations, 346, 347
IEmployeeRepository/ICountry 

Repository interfaces, 346
ErrorModel class, 162
ExecuteNonQuery() method, 393, 395

F
FillCountries() helper method, 76, 77, 85
FillCountries() method, 148
FindAsync() asynchronous method, 232
Find() method, 92, 154, 430, 439
forEach() method, 242
forRoute() method, 331

G
GenerateJWT() method, 271, 272
GetAsync() action, 209, 232
GetCollection() method, 436
GetConnectionString() method, 105
GetDatabase() method, 435
getItem() method, 243
GetValue() method, 206

Employee Manager, Azure (cont.)

Index



477

H
hasOwnProperty()method, 243
Hosting code, GitHub repository

dialog updation, 60
Employee Manager, 59
GitHub option, 63, 64, 66
HelloWorldMVC, 61
source control, 61
team explorer window, 62
Visual Studio project, 59

HttpContext.SignInAsync() method, 422

I
@Injectable() decorator, 294
insert_click() method, 306
Inserting, new employee

@bind-Value attribute, 357
BirthDate and HireDate properties, 358
@code block, 355
data entry, creation, 356
fields and validations, 357
<InputSelect> component, 359
<InputTextArea> component, 359
routing/injecting repositories, 355

Internet Information Services (IIS), 443, 
447

IsDevelopment() method, 19, 106

J, K
jQuery, 57

add library, project, 236
Ajax, 227, 228
ASP.NET core web application, 

creation, 229, 231
CRUD operations, 227
definition, 227

display employees list
add HTML markup, 238
add script block, 239
callback function, 240–243
GetAsync() action, 237
properties, 240
ready() method, 239

employee deletion, 254, 256–258
EmployeeManagerController, 235, 236
employees and countries web API

CountriesController, 234
CRUD operations, 231
DeleteAsync() action, 234
GetAsync() action, 232
PostAsync() action, 232, 233
PutAsync() action, 233, 234

insert new employee
configuration properties, 247
filling Country dropdown list, 248
markup, 244, 245
PostAsync() action, 249, 250
validation rules, 246

JWT-based authentication
[Authorize] attribute, 276, 277
ConfigureServices() method, 265
enable and configure, 264–266
operations, 260, 261
parts, 259
SignIn() action, 270, 271, 273, 274
signing out application, 275
user account creation, 267, 268, 270
user data storing, 262–264

update existing employee
hidden form field, 251, 252
PutAsync() action, 253, 254

JSON.stringify() method, 250
JSON Web Token (JWT),  

authentication system, 230

Index



478

L
_Layout.cshtml file, 98, 99, 159, 160
List() action, 411

M
MapControllerRoute() method, 106
MapRazorPages() method, 163
Microsoft.EntityFrameworkCore.

SqlServer, 69, 390
Model-View-Controller (MVC)

existing employee, deletion, 93, 94
actions, 94
ConfirmDelete() action, 94
delete() action, 95
Delete.cshtml, 96, 97

existing employee, updation, 90, 91
EmployeeID, 93
first action, 91
second action, 92
Update view, 92, 93

list of employees
delete() action, 83
display, 79
EmployeeManager, 80, 83
List() action, 79, 80
list view, 80–82
TempData, 82
Update() action, 83

new employee
country dropdown list, 88, 89
FirstName property, 87
form fields, 86–88
insert() action, 84, 85
Insert.cshtml, 86
insertion, 84

IsValid property, 85
Message property, 86
POST method, 85
save button, 89, 90
ViewBag’s Countries property, 89

Model-View-Controller (MVC) pattern
AppMessage class, 13
components, 3
ConfigureServices() method, 18, 19
controller class, 13, 14
“Hello World” project, 7, 8
Index.cshtml file, 16, 17
index view, 15, 16
models folder, 12
name and location, specification, 10
.NET framework type, 11
new project, creation, 8
project template, 9, 11
solution explorer, 19
UseEndpoints() method, 19

Model-View-ViewModel (MVVM), 4, 5
MongoDB

CRUD operations  
(see CRUD operations)

installation folder, 433
MSI/ZIP file, 433

N
navigate() method, 305, 315
NavigationManager object, 351, 363
@NgModule() decorator, 290, 329
ngOnInit() method, 304, 312, 327
NoContent() method, 234
Northwind database, installation, 29, 30
NuGet packages, 3, 70, 107, 390

Index



479

O
OnGet() method, 23, 144
OnInitialized() lifecycle method, 352, 356
OnModelCreating() method, 137, 140
OnParametersSet() overridden  

method, 343
OnPostAsync() method, 169, 370
OnSaveClick() method, 356, 362

P, Q
PasswordSignInAsync() method, 124, 172
Platform as a service (PaaS) model, 460
PostAsync() action, 213, 232, 250
POST Insert() action, 440
PutAsync() action, 233

R
Razor Pages

AppDbContext class, 136
application’s configuration, startup

Configure() method, 161
default page, 160
Error.cshtml, 162
error page, 162
parameters, 161
routing-related configuration, 163

ASP.NET Core web  
application, 133, 134

class generation, 140
client-side validations, 160
Countries class, 136, 139
data annotations, 138
EF Core model, 135, 136
EF Core scaffold command, 135
EmployeeManager folder, 141
Employees class, 136, 137, 139, 140

existing employee, deletion
confirmation, 156
Delete.cshtml, 157, 158
OnPost() page handler, 156, 157

existing employee, updating, 151, 152
Boolean property, 153
FillCountries() method, 153
Find() method, 154
OnGet() page handler, 153
OnPost() page handler, 154, 155
Update.cshtml file, 155
UpdateModel members, 152

list of employees
addition, 142, 143
Anchor Tag Helper, 146
Employees property, 144
hyperlinks, 146
List.cshtml, 142–145
ListModel class, 144
@page directive, 145

new employee
Add() method, 149
asp-for attribute, 151
Countries property, 148
Employee property, 148
form fields, 150, 151
Form Tag Helper, 150
Insert.cshtml, 147, 149, 150
insertion, 146
OnGet() page handlers, 148, 149
OnPost() page handlers, 148, 149
@page directive, 150
SaveChanges() method, 149

OnModelCreating()  
method, 137, 138

options, 136
page creation, 141
run, application, 174

Index



480

Razor Pages, ASP.NET Core
AppMessage class, 20
Configure() methods, 24
HelloWorldRazorPages project, 22
Index.cshtml, 20, 22–24
MapRazorPages() method, 25
MVVM, 4
OnGet() method, 23
solution explorer, 21
ViewModel, 4

ready() method, 239, 276
Redeploying, 458, 459, 467, 468
RedirectToAction() method, 95
RedirectToPage() method, 157, 173
Register() action, 268
Relational database management system 

(RDBMS), 399
Cosmos DB, 400
features, 399, 400
MongoDB, 401
SQL, 399

Remove() method, 95, 431
@RenderBody() method, 99
ReplaceDocumentAsync() method, 415
ReplaceOne() method, 440
RoleExistsAsync() method, 119, 170
RoleManager class, 119

S
SaveChangesAsync() method, 233
SaveChanges() method, 86, 95, 430
save_click() event handler  

method, 313
SecurityController, 442

[Authorize] attribute, 425
new user account, creation, 421, 422

signing user, 422–424
selectAll() method, 183, 322
selectByID() method, 184
setRequestHeader() method, 277
SignalR, 339
SignInAsync() method, 424
SignIn() method, 326
Simple Object Access  

Protocol (SOAP), 176
Single Page Applications (SPA), 4, 6
SQL Server Management Studio, 30, 35, 

381, 385, 446
startup class constructor, 104
Structured Query Language (SQL), 399
subscribe() method, 323
System.ComponentModel.

DataAnnotations, 70

T
ToListAsync() method, 232
ToList() method, 77

U
Update() action, 83, 414
Update existing employee, 360

<EditForm> component, 362, 363
page route, 361
[Parameter] attribute, 361

UpdateOne() method, 440
UseAuthentication()  

method, 111, 266, 373
UseCors() method, 285
UseCosmos() method, 428, 429
UseDeveloperExceptionPage()  

method, 19, 106

Index



481

UseEndpoints() method, 19, 106
UseExceptionHandler() method, 162
UseRouting() method, 19, 106
UseStaticFiles() method, 106
UseStatusCodePagesWithReExecute() 

method, 161

V
a _ViewImports.cshtml file, 77, 78
a _ViewImports File, 141–142
View() method, 14, 80
_ViewStart.cshtml file, 99, 159, 160

W, X, Y, Z
Web API project

Configure() methods, 27
controller class, 26
Get() action, 26, 27
JSON format, 28
MapControllers() method, 27
NuGet package, 29
RESTful services, 25

WebAssembly, 338
Web Services Description Language 

(WSDL), 176

Index


	Table of Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Chapter 1: Introduction to ASP.NET Core
	Overview of ASP.NET Core
	ASP.NET Core MVC
	ASP.NET Core Razor Pages
	ASP.NET Core Web API

	Creating an ASP.NET Core MVC Project
	Creating an ASP.NET Core Razor Pages Project
	Creating an ASP.NET Core Web API Project
	Installing the Northwind Database
	Summary

	Chapter 2: Sample Application
	Features of Employee Manager
	Understanding the Employees Table
	Adding a Countries Table

	Signing In to Employee Manager
	Creating a New User Account
	Listing All the Employees
	Inserting a New Employee
	Updating Existing Employee
	Deleting Existing Employee
	Signing Out of Employee Manager
	Technology Options Used to Develop Employee Manager
	Rendering HTML Forms
	Performing CRUD Operations
	Using JavaScript Libraries and Frameworks
	User Authentication
	Deployment
	ASP.NET Core MVC
	ASP.NET Core Razor Pages
	ASP.NET Core Web API
	jQuery
	Angular
	Blazor
	Azure SQL Database
	Azure Cosmos DB
	MongoDB

	Hosting Code in a Private GitHub Repository
	Summary

	Chapter 3: ASP.NET Core MVC
	Create an ASP.NET Core Web Application
	Create an Entity Framework Core Model
	Create an EmployeeManager Controller
	Add a _ViewImports File
	Displaying a List of Employees
	Insert a New Employee
	Update an Existing Employee
	Delete an Existing Employee
	Add Razor Layout and View Start
	Enable Client-Side Validations
	Store the Database Connection String in appsettings.json
	Configure Application Startup
	Add ASP.NET Core Identity Support
	Add AppIdentityUser, AppIdentityRole, and AppIdentityDbContext Classes
	Add ASP.NET Core Identity Configuration to Startup
	Add Database Tables to Store User and Role Details
	Add SecurityController to the Controllers Folder
	Create a User Registration Page
	Create a Sign-In Page
	Add a Sign Out Button
	Authenticate and Authorize Users
	Protect the Application Against Cross-Site Request Forgery

	Run the Application
	Summary

	Chapter 4: ASP.NET Core Razor Pages
	Create a ASP.NET Core Web Application
	Reverse Engineering the Entity Framework Core Model
	Create Pages and EmployeeManager Folders
	Add a _ViewImports File
	Displaying a List of Employees
	Inserting a New Employee
	Updating an Existing Employee
	Deleting an Existing Employee
	Add Razor Layout and View Start
	Client-Side Validations, Style Sheet, and appsettings.json
	Configure Application Startup and Error Handling
	Add ASP.NET Core Identity Support
	Add AppIdentityUser, AppIdentityRole, and AppIdentityDbContext Classes
	Add ASP.NET Core Identity Configuration and Database Tables
	Add the Security Subfolder to the Pages folder
	Create a User Registration Page
	Create a Sign-In Page
	Signing the User Out of the Application
	Authenticating and Authorizing Users

	Run the Application
	Summary

	Chapter 5: ASP.NET Core Web API
	Application Architecture
	ASP.NET Core and REST Services
	Understanding the JSON Format
	Role of the Repository

	Creating an EmployeeManager.Api Project
	Creating the EF Core Model and Repositories
	Creating EmployeeSqlRepository and CountrySqlRepository
	Creating EmployeeStProcRepository and CountryStProcRepository
	Registering Repositories with the DI Container

	Creating Employees Web API and Countries Web API
	Running the Employees Web API

	Creating a Client for Web API
	Creating View Models
	Adding the EmployeeManagerController
	Setting Up the HttpClient
	Strongly Typed Configuration

	Displaying a List of Employees
	Inserting a New Employee
	Updating an Existing Employee
	Deleting an Existing Employee
	FillCountriesAsync() Helper Method
	Integrating ASP.NET Core Identity

	Running the Application
	Summary

	Chapter 6: jQuery
	Overview of Ajax
	Create an ASP.NET Core Web Application
	Employees Web API and Countries Web API
	EmployeeManager Controller
	Add a jQuery Library to the Project
	Display a List of Employees
	Insert a New Employee
	Update an Existing Employee
	Delete an Existing Employee
	Overview of the JSON Web Token (JWT)-Based Authentication
	What Is JWT?

	Add Support for JWT Authentication
	Storing User Details
	Enable and Configure JWT Authentication
	Create a New User Account
	Signing In to the Application
	Signing Out of the Application
	Enforce Authentication on All Pages

	Summary

	Chapter 7: Angular
	Overview of the Project Structure
	Create ASP.NET Core Web API Application
	Enabling CORS in Web API Project
	Running Web API Application

	Create Angular Application
	Angular Application Architecture
	Editing Angular Project Files in Visual Studio

	Add Employee, Country, and User Classes
	Add Service to Invoke Employees Web API
	Add Service to Invoke Security Web API
	Display a List of Employees
	Insert a New Employee
	Update an Existing Employee
	Delete an Existing Employee
	Sign-In Component
	Sign-Out Component
	Understanding app.module.ts
	Routing
	Running the Angular Application
	Integrating Angular Application with ASP.NET Core Application

	Summary

	Chapter 8: Blazor
	Blazor Hosting Models
	Client Side (Blazor WebAssembly)
	Server Side (Blazor Server)

	Overview of Razor Components
	Component Lifecycle Methods

	Employee Manager Project Structure
	Entity Framework Core Model and Repositories
	Display a List of Employees
	Insert a New Employee
	Update an Existing Employee
	Delete an Existing Employee
	Apply CSS and Layout to Razor Components
	Integrating ASP.NET Core Identity
	Add IdentityDbContext and Associated Classes
	Add Register and SignIn View Models
	Add Register, SignIn, and SignOut Razor Pages
	Add _Layout, _ViewStart, and _ViewImports Files
	Register and Configure ASP.NET Core Identity
	Secure CRUD Razor Components
	Display the User Name and Sign Out Button
	Configure Initial Sign-In Prompt
	Use Policy-Based Authorization

	Summary

	Chapter 9: Azure SQL Database, Azure Cosmos DB, and MongoDB
	Creating Azure SQL Database
	Connecting to Azure SQL Database Using SQL Server Management Studio

	Employee Manager Using Azure SQL Database
	Employee and Country Model Classes
	Creating EmployeeRepository and CountryRepository
	SelectAll() Method
	SelectByID() Method
	Insert() Method
	Update() Method
	Delete() Method


	EmployeeManagerController Class
	Database Connection String

	Overview of NoSQL Databases
	Cosmos DB
	MongoDB

	Creating a Cosmos DB Account
	Employee Manager Using Cosmos DB
	Cosmos DB Connection Details
	Microsoft.Azure.DocumentDB.Core Client Library
	Employee and Country Model Classes
	Creating the EmployeeManagerController
	Displaying a List of Employees
	Inserting a New Employee
	Updating an Existing Employee
	Deleting an Existing Employee
	FillCountries() Helper Method


	Adding Support for Authentication and Authorization
	Storing User Details
	Creating the SecurityController
	Creating a New User Account
	Signing a User In to the Application
	Signing a User Out of the Application
	Securing the EmployeeManagerController with the [Authorize] Attribute


	Using the EF Core Provider for Cosmos DB
	Creating the AppDbContext
	Performing CRUD Operations

	Installing and Running MongoDB
	Performing CRUD Operations
	Configuring MongoClient
	Employee and Country Model Classes
	Displaying a List of Employees
	Inserting a New Employee
	Updating an Existing Employee
	Deleting an Existing Employee
	Implementing Authentication and Authorization


	Summary

	Chapter 10: Deployment
	Deploy Employee Manager to IIS
	Create a Target SQL Server Database
	Create an IIS Site
	Publish Employee Manager from Visual Studio
	Redeploying the Application

	Deploy Employee Manager to Azure App Service
	Storing Connection String in App Service
	Redeploying the Application

	Summary

	Index



