
Series Editors:	 Ronald J. Brachman, Jacobs Technion-Cornell Institute at Cornell Tech
Francesca Rossi, AI Ethics Global Leader, IBM Research AI
Peter Stone, University of Texas at Austin

Introduction to Logic Programming
Michael Genesereth, Stanford University
Vinay K. Chaudhri, Stanford University

“This is a book for the 21st century: presenting an elegant and innovative perspective on logic
programming. Unlike other texts, it takes datasets as a fundamental notion, thereby bridging
the gap between programming languages and knowledge representation languages; and it
treats updates on an equal footing with datasets, leading to a sound and practical treatment of
action and change.” – Bob Kowalski, Professor Emeritus, Imperial College London

“In a world where Deep Learning and Python are the talk of the day, this book is a
remarkable development. It introduces the reader to the fundamentals of traditional Logic
Programming and makes clear the benefits of using the technology to create runnable
specifications for complex systems.” – Son Cao Tran, Professor in Computer Science, New Mexico
State University

“Excellent introduction to the fundamentals of Logic Programming. The book is well-written
and well-structured. Concepts are explained clearly and the gradually increasing complexity of
exercises makes it so that one can understand easy notions quickly before moving on to more
difficult ideas.” – George Younger, student, Stanford University

store.morganclaypool.com

About SYNTHESIS
This volume is a printed version of a work that appears in the Synthesis
Digital Library of Engineering and Computer Science. Synthesis
books provide concise, original presentations of important research and
development topics, published quickly, in digital and print formats.

G
EN

ESER
E

T
H

 • C
H

A
U

D
H

R
I

IN
T

R
O

D
U

C
T

IO
N

 T
O

 LO
G

IC
 PR

O
G

R
A

M
M

IN
G

M

O
R

G
A

N
 &

 C
LA

Y
P

O
O

L

Series ISSN: 1939-4608

Ronald J. Brachman, Francesca Rossi, and Peter Stone, Series Editors

Testimonials for
Introduction to Logic Programming

This is a book for the 21st century: presenting an elegant and innovative perspective on logic
programming. Unlike other texts, it takes datasets as a fundamental notion, thereby bridg-
ing the gap between programming languages and knowledge representation languages; and
it treats updates on an equal footing with datasets, leading to a sound and practical treat-
ment of action and change.

Bob Kowalski, Professor Emeritus, Imperial College London

In a world where Deep Learning and Python are the talk of the day, this book is a re-
markable development. It introduces the reader to the fundamentals of traditional Logic
Programming and makes clear the benefits of using the technology to create runnable spec-
ifications for complex systems.

Son Cao Tran, Professor in Computer Science, NewMexico State University

Excellent introduction to the fundamentals of Logic Programming. The book is well-
written and well-structured. Concepts are explained clearly and the gradually increasing
complexity of exercises makes it so that one can understand easy notions quickly before mov-
ing on to more difficult ideas.

George Younger, student, Stanford University

Introduction to
Logic Programming

Synthesis Lectures on Artificial
Intelligence andMachine

Learning
Editors
Ronald Brachman, Jacobs Technion-Cornell Institute at Cornell Tech
Francesca Rossi, IBMResearch AI
Peter Stone,University of Texas at Austin

Introduction to Logic Programming
Michael Genesereth and Vinay K. Chaudhri
2020

Federated Learning
Qiang Yang, Yang Liu, Yong Cheng, Yan Kang, Tianjian Chen, and Han Yu
2019

An Introduction to the Planning Domain Definition Language
Patrik Haslum, Nir Lipovetzky, Daniele Magazzeni, and Christian Muise
2019

Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms,
Second Edition
Rina Dechter
2019

Learning and Decision-Making from Rank Data
Lirong Xia
2019

Lifelong Machine Learning, Second Edition
Zhiyuan Chen and Bing Liu
2018

Adversarial Machine Learning
Yevgeniy Vorobeychik and Murat Kantarcioglu
2018

vi
Strategic Voting
Reshef Meir
2018

Predicting Human Decision-Making: From Prediction to Action
Ariel Rosenfeld and Sarit Kraus
2018

Game Theory for Data Science: Eliciting Truthful Information
Boi Faltings and Goran Radanovic
2017

Multi-Objective Decision Making
Diederik M. Roijers and Shimon Whiteson
2017

Lifelong Machine Learning
Zhiyuan Chen and Bing Liu
2016

Statistical Relational Artificial Intelligence: Logic, Probability, and Computation
Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole
2016

Representing and Reasoning with Qualitative Preferences: Tools and Applications
Ganesh Ram Santhanam, Samik Basu, and Vasant Honavar
2016

Metric Learning
Aurélien Bellet, Amaury Habrard, and Marc Sebban
2015

Graph-Based Semi-Supervised Learning
Amarnag Subramanya and Partha Pratim Talukdar
2014

Robot Learning from Human Teachers
Sonia Chernova and Andrea L. Thomaz
2014

General Game Playing
Michael Genesereth and Michael Thielscher
2014

Judgment Aggregation: A Primer
Davide Grossi and Gabriella Pigozzi
2014

vii
An Introduction to Constraint-Based Temporal Reasoning
Roman Barták, Robert A. Morris, and K. Brent Venable
2014

Reasoning with Probabilistic and Deterministic Graphical Models: Exact Algorithms
Rina Dechter
2013

Introduction to Intelligent Systems in Traffic and Transportation
Ana L.C. Bazzan and Franziska Klügl
2013

A Concise Introduction to Models and Methods for Automated Planning
Hector Geffner and Blai Bonet
2013

Essential Principles for Autonomous Robotics
Henry Hexmoor
2013

Case-Based Reasoning: A Concise Introduction
Beatriz López
2013

Answer Set Solving in Practice
Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten Schaub
2012

Planning with Markov Decision Processes: An AI Perspective
Mausam and Andrey Kolobov
2012

Active Learning
Burr Settles
2012

Computational Aspects of Cooperative Game Theory
Georgios Chalkiadakis, Edith Elkind, and Michael Wooldridge
2011

Representations and Techniques for 3D Object Recognition and Scene Interpretation
Derek Hoiem and Silvio Savarese
2011

A Short Introduction to Preferences: Between Artificial Intelligence and Social Choice
Francesca Rossi, Kristen Brent Venable, and Toby Walsh
2011

viii
Human Computation
Edith Law and Luis von Ahn
2011

Trading Agents
Michael P. Wellman
2011

Visual Object Recognition
Kristen Grauman and Bastian Leibe
2011

Learning with Support Vector Machines
Colin Campbell and Yiming Ying
2011

Algorithms for Reinforcement Learning
Csaba Szepesvári
2010

Data Integration: The Relational Logic Approach
Michael Genesereth
2010

Markov Logic: An Interface Layer for Artificial Intelligence
Pedro Domingos and Daniel Lowd
2009

Introduction to Semi-Supervised Learning
XiaojinZhu and Andrew B.Goldberg
2009

Action Programming Languages
Michael Thielscher
2008

Representation Discovery using Harmonic Analysis
Sridhar Mahadevan
2008

Essentials of Game Theory: A Concise Multidisciplinary Introduction
Kevin Leyton-Brown and Yoav Shoham
2008

ix
A Concise Introduction to Multiagent Systems and Distributed Artificial Intelligence
Nikos Vlassis
2007

Intelligent Autonomous Robotics: A Robot Soccer Case Study
Peter Stone
2007

Copyright © 2020 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by anymeans—electronic, mechanical, photocopy, recording, or any other except for brief quotations
in printed reviews, without the prior permission of the publisher.

Introduction to Logic Programming

Michael Genesereth and Vinay K. Chaudhri

www.morganclaypool.com

ISBN: 9781681737225 paperback
ISBN: 9781681737232 ebook
ISBN: 9781681737249 hardcover

DOI 10.2200/S00966ED1V01Y201911AIM044

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE ANDMACHINE LEARNING

Lecture #44
Series Editors: Ronald Brachman, Jacobs Technion-Cornell Institute at Cornell Tech

Francesca Rossi, IBM Research AI
Peter Stone, University of Texas at Austin

Series ISSN
Synthesis Lectures on Artificial Intelligence and Machine Learning
Print 1939-4608 Electronic 1939-4616

www.morganclaypool.com

Introduction to
Logic Programming

Michael Genesereth and Vinay K. Chaudhri
Stanford University

SYNTHESIS LECTURES ON ARTIFICIAL INTELLIGENCE AND
MACHINE LEARNING #44

C
M
&

cLaypoolMorgan publishers&

ABSTRACT
Logic Programming is a style of programming in which programs take the form of sets of sen-
tences in the language of Symbolic Logic. Over the years, there has been growing interest in
Logic Programming due to applications in deductive databases, automated worksheets, Enter-
prise Management (business rules), Computational Law, and General Game Playing. This book
introduces Logic Programming theory, current technology, and popular applications.

In this volume, we take an innovative, model-theoretic approach to logic programming.
We begin with the fundamental notion of datasets, i.e., sets of ground atoms. Given this funda-
mental notion, we introduce views, i.e., virtual relations; and we define classical logic programs as
sets of view definitions, written using traditional Prolog-like notation but with semantics given
in terms of datasets rather than implementation. We then introduce actions, i.e., additions and
deletions of ground atoms; and we define dynamic logic programs as sets of action definitions.

In addition to the printed book, there is an online version of the text with an interpreter
and a compiler for the language used in the text and an integrated development environment
for use in developing and deploying practical logic programs.

KEYWORDS
logic programming, computational logic, knowledge representation, deductive
databases, aritificial intelligence

xiii

Contents
Preface . xix

PART I Introduction . 1
1 Introduction . 3

1.1 Programming in Logic . 3
1.2 Logic Programs as Runnable Specifications . 3
1.3 Advantages of Logic Programming . 4
1.4 Applications of Logic Programming . 5
1.5 Basic Logic Programming . 6

2 Datasets . 9
2.1 Introduction . 9
2.2 Conceptualization . 9
2.3 Datasets . 10
2.4 Example – Sorority World . 12
2.5 Example – Kinship . 13
2.6 Example – Blocks World . 14
2.7 Example – Food World . 16
2.8 Reformulation . 16
2.9 Exercises . 18

PART II Queries and Updates . 21
3 Queries . 23

3.1 Introduction . 23
3.2 Query Syntax . 23
3.3 Query Semantics . 25

xiv
3.4 Safety . 26
3.5 Predefined Concepts . 27
3.6 Example – Kinship . 28
3.7 Example – Map Coloring . 28
3.8 Exercises . 30

4 Updates . 33

4.1 Introduction . 33
4.2 Update Syntax . 33
4.3 Update Semantics . 34
4.4 Simultaneous Updates . 35
4.5 Example – Kinship . 36
4.6 Example – Colors . 37
4.7 Exercises . 40

5 Query Evaluation . 41

5.1 Introduction . 41
5.2 Evaluating Ground Queries . 41
5.3 Matching . 42
5.4 Evaluating Queries With Variables . 45
5.5 Computational Analysis . 46
5.6 Exercises . 47

6 ViewOptimization . 49

6.1 Introduction . 49
6.2 Subgoal Ordering . 49
6.3 Subgoal Removal . 51
6.4 Rule Removal . 52
6.5 Example – Cryptarithmetic . 52
6.6 Exercises . 54

xv

PART III ViewDefinitions . 57

7 ViewDefinitions . 59

7.1 Introduction . 59
7.2 Syntax . 60
7.3 Semantics . 61
7.4 Semipositive Programs . 64
7.5 Stratified Programs . 66
7.6 Exercises . 69

8 View Evaluation . 71

8.1 Introduction . 71
8.2 Top-Down Processing of Ground Goals and Rules . 71
8.3 Unification . 73
8.4 Top-Down Processing of Non-Ground Queries and Rules 76
8.5 Exercises . 78

9 Examples . 81

9.1 Introduction . 81
9.2 Example – Kinship . 81
9.3 Example – Blocks World . 82
9.4 Example – Modular Arithmetic . 84
9.5 Example – Directed Graphs . 85
9.6 Exercises . 86

10 Lists, Sets, Trees . 89

10.1 Introduction . 89
10.2 Example – Peano Arithmetic . 89
10.3 Lists . 91
10.4 Example – Sorted Lists . 92
10.5 Example – Sets . 93
10.6 Example – Trees . 94
10.7 Exercises . 94

xvi

11 Dynamic Systems . 97
11.1 Introduction . 97
11.2 Representation . 98
11.3 Simulation . 99
11.4 Planning . 101
11.5 Exercises . 102

12 Metaknowledge . 103
12.1 Introduction . 103
12.2 Natural Language Processing . 103
12.3 Boolean Logic . 105
12.4 Exercises . 106

PART IV OperationDefinitions 109
13 Operations . 111

13.1 Introduction . 111
13.2 Syntax . 111
13.3 Semantics . 113
13.4 Exercises . 115

14 Dynamic Logic Programs . 119
14.1 Introduction . 119
14.2 Reactive Systems . 119
14.3 Closed Systems . 120
14.4 Mixed Initiative . 121
14.5 Simultaneous Actions . 122
14.6 Exercises . 124

15 DatabaseManagement . 125
15.1 Introduction . 125
15.2 Update With Constraints . 125
15.3 Maintaining Materialized Views . 126
15.4 Update Through Views . 127
15.5 Exercises . 128

xvii

16 InteractiveWorksheets . 129
16.1 Interactive Worksheets . 129
16.2 Example . 130
16.3 Page Data . 130
16.4 Gestures . 132
16.5 Operation Definitions . 132
16.6 View Definitions . 134
16.7 Semantic Modeling . 135

PARTV Conclusion . 139

17 Variations . 141
17.1 Introduction . 141
17.2 Logic Production Systems . 141
17.3 Constraint Logic Programming . 142
17.4 Disjunctive Logic Programming . 143
17.5 Existential Logic Programming . 144
17.6 Answer Set Programming . 145
17.7 Inductive Logic Programming . 146

A Predefined Concepts in EpilogJS . 149
A.1 Introduction . 149
A.2 Relations . 149
A.3 Math Functions . 150
A.4 String Functions . 153
A.5 List Functions . 153
A.6 Arithmetic List Functions . 154
A.7 Conversion Functions . 155
A.8 Aggregates . 155
A.9 Operators . 156

B Sierra . 159
B.1 Introduction . 159
B.2 Getting Started . 159

xviii
B.3 Data . 160
B.4 Queries . 168
B.5 Updates . 174
B.6 View Definitions . 179
B.7 Operation Definitions . 185
B.8 Settings . 189
B.9 File Management . 192
B.10 Conclusion . 192

References . 195

Authors’ Biographies . 199

xix

Preface
This book is an introductory textbook on Logic Programming. It is intended primarily for use at
the undergraduate level. However, it can be used for motivated secondary school students, and
it can be used at the start of graduate school for those who have not yet seen the material.

There are just two prerequisites. The book presumes that the student understands sets
and set operations, such as union, intersection, and so forth. The book also presumes that the
student is comfortable with symbolic mathematics, at the level of high-school algebra or beyond.
Nothing else is required.

While experience in computational thinking is helpful, it is not essential. And prior pro-
gramming experience is not necessary. In fact, we have observed that some students with pro-
gramming backgrounds have more difficulty at first than students who are not accomplished
programmers! It is almost as if they need to unlearn some things in order to appreciate the
power and beauty of Logic Programming.

The approach to Logic Programming taken here emerged from more than 30 years of
research, applications, and teaching of this material in both academic and commercial settings.
The result of this experience is an approach to the subject matter that differs somewhat from the
approach taken in other books on the subject in two essential ways.

First of all, in this volume, we take a model-theoretic approach to specifying semantics
rather than the traditional proof-theoretic approach. We begin with the fundamental notion of
datasets, i.e., sets of ground atoms. Given this fundamental notion, we introduce classic logic
programs as view definitions, written using traditional Prolog notation but with semantics given
in terms of datasets rather than implementation. (We also talk about implementation, but it
comes later in the presentation.)

Another difference from other books on Logic Programming is that we treat change on
an equal footing with state. Having talked about datasets, we introduce the fundamental notion
of updates, i.e., additions and deletions of ground atoms. Given this fundamental notion, we
introduce dynamic logic programs as sets of action definitions, where actions are conceptualized
as sets of simultaneous updates. This extension allows us to talk about logical agents as well as
static logic programs. (A logical agent is effectively a state machine in which each state is modeled
as a dataset and each arc is modeled as a set of updates.)

In addition to the text of the book in print and online, there is a website with automatically
graded online exercises, programming assignments, Logic Programming tools, and a variety of
sample applications. The website (http://logicprogramming.stanford.edu) is free to use
and open to all.

http://logicprogramming.stanford.edu

xx PREFACE
In conclusion, we first of all want to acknowledge the influence of two individuals who

had a profound effect on our work here - Jeff Ullman and Bob Kowalski. Jeff Ullman, our col-
league at Stanford, inspired us with his popular textbooks and helped us to appreciate the deep
relationship between Logic Programming and databases. Bob Kowalski, co-inventor of Logic
Programming, listened to our ideas, nurtured our work, and even collaborated on some of the
material presented here.

We also want to acknowledge the contributions of a former graduate student - Abhijeet
Mohapatra. He is a co-inventor of dynamic logic programming and the co-creator of many
of the programming tools associated with our approach to Logic Programming. He helped to
teach the course, worked with students, and offered invaluable suggestions on the presentation
and organization of the material.

Finally, our thanks to the students who have had to endure early versions of this material,
in many cases helping to get it right by suffering through experiments that were not always
successful. It is a testament to the intelligence of these students that they seem to have learned
the material despite multiple mistakes on our part. Their patience and constructive comments
were invaluable in helping us to understand what works and what does not.

Michael Genesereth and Vinay K. Chaudhri
December 2019

PART I

Introduction

3

C H A P T E R 1

Introduction
1.1 PROGRAMMING INLOGIC

Logic Programming is a style of programming in which programs take the form of sets of sen-
tences in the language of Symbolic Logic. Programs written in this style are called logic programs.
The language in which these programs are written is called logic programming language. And a
computer system that manages the creation and execution of logic programs is called a logic
programming system.

1.2 LOGICPROGRAMSASRUNNABLE SPECIFICATIONS

Logic Programming is often said to be declarative or descriptive and contrasts with the imperative
or prescriptive approach to programming associated with traditional programming languages.

In imperative/prescriptive programming, the programmer provides a detailed operational
program for a system in terms of internal processing details (such as data types and variable
assignments). In writing such programs, programmers typically take into account information
about the intended application areas and goals of their programs, but that information is rarely
recorded in the resulting programs, except in the form of non-executable comments.

In declarative/descriptive programming, programmers explicitly encode information
about the application area and the goals of the program, but they do not specify internal pro-
cessing details, leaving it to the systems that execute those programs to decide on those details
on their own.

As an intuitive example of this distinction, consider the task of programming a robot to
navigate from one point in a building to a second point. A typical imperative program would
direct the robot to move forward a certain amount (or until its sensors indicated a suitable land-
mark); it would then tell the robot to turn and move forward again; and so forth until the robot
arrives at the destination. By contrast, a typical declarative program would consist of a map and
an indication of the starting and ending points on the map and would leave it to the robot to
decide how to proceed.

A logic program is a type of declarative program in that it describes the application area
of the program and the goals the programmer would like to achieve. It focusses on what is true
andwhat is wanted rather than how to achieve the desired goals. In this respect, a logic program
is more of a specification than an implementation.

4 1. INTRODUCTION
Logic Programming is practical because there are well-known mechanical techniques for

executing logic programs and/or producing traditional programs that achieve the same results.
For this reason, logic programs are sometimes called runnable specifications.

1.3 ADVANTAGESOFLOGIC PROGRAMMING
Logic programs are typically easier to create and easier to modify than traditional programs. Pro-
grammers can get by with little or no knowledge of the capabilities and limitations of the systems
executing those programs, and they do not need to choose specific methods of achieving their
programs’ goals.

Logic programs are more composable than traditional programs. In writing logic programs,
programmers do not need tomake arbitrary choices. As a result, logic programs can be combined
with each other more easily than traditional programs where unnecessary arbitrary choices can
conflict.

Logic programs are also more agile than traditional programs. A system executing a logic
program can readily adapt to unexpected changes to its assumptions and/or its goals. Once again
consider the robot described in the preceding section. If a robot running a logic program learns
that a corridor is unexpectedly closed, it can choose a different corridor. If the robot is asked to
pick up and deliver some goods along the way, it can combine routes to accomplish both tasks
without having to accomplish them individually.

Finally, logic programs are more versatile than traditional programs—they can be used for
multiple purposes, often without modification. Suppose we have a table of parents and children.
Now, imagine that we are given definitions for standard kinship relations. For example, we are
told that a grandparent is the parent of a parent. That single definition can be used as the basis
for multiple traditional programs. (1) We can use it to build a program that computes whether
one person is the grandparent of a second person. (2) We can use the definition to write a
program to compute a person’s grandparents. (3) We can use it to compute the grandchildren
of a given person. (4) And we can use it to compute a table of grandparents and grandchildren.
In traditional programming, we would write different programs for each of these tasks, and the
definition of grandparent would not be explicitly encoded in any of these programs. In Logic
Programming, the definition can be written just once, and that single definition can be used to
accomplish all four tasks.

As another example of this (due to John McCarthy), consider the fact that, if two objects
collide, they typically make a noise. This fact about the world can be used in designing programs
for various purposes. (1) If we want to wake someone else, we can bang two objects together.
(2) If we want to avoid waking someone, we would be careful not to let things collide. (3) If
we see two cars come close in the distance and we hear a bang, we can conclude that they had
collided. (4) If we see two cars come close together but we do not hear anything, we might guess
that they did not collide.

1.4. APPLICATIONSOFLOGIC PROGRAMMING 5

1.4 APPLICATIONSOFLOGIC PROGRAMMING
Logic Programming can be used fruitfully in almost any application area. However, it has spe-
cial value in application areas characterized by large numbers of definitions and constraints and
rules of action, especially where those definitions and constraints and rules come from multiple
sources or where they are frequently changing. The following are a few application areas where
Logic Programming has proven particularly useful.

DatabaseSystems. By conceptualizing database tables as sets of simple sentences, it is possible
to use Logic in support of database systems. For example, the language of Logic can be used to
define virtual views of data in terms of explicitly stored tables; it can be used to encode constraints
on databases; it can be used to specify access control policies; and it can be used to write update
rules.

LogicalSpreadsheets/Worksheets. Logical spreadsheets (sometimes called worksheets) gen-
eralize traditional spreadsheets to include logical constraints as well as traditional arithmetic for-
mulas. Examples of such constraints abound. For example, in scheduling applications, we might
have timing constraints or restrictions on who can reserve which rooms. In the domain of travel
reservations, we might have constraints on adults and infants. In academic program sheets, we
might have constraints on how many courses of varying types that students must take.

Data Integration. The language of Logic can be used to relate the concepts in different vocab-
ularies and thereby allow users to access multiple, heterogeneous data sources in an integrated
fashion, giving each user the illusion of a single database encoded in his own vocabulary.

Enterprise Management. Logic Programming has special value in expressing and imple-
menting business rules of various sorts. Internal business rules include enterprise policies (e.g.,
expense approval) and workflow (who does what and when). External business rules include the
details of contracts with other enterprises, configuration and pricing rules for company products,
and so forth.

Computational Law. Computational Law is the branch of Legal Informatics concerned with
the representation of rule and regulations in computable form. Encoding laws in computable
form enables automated legal analysis and the creation of technology to make that analysis
available to citizens, and monitors and enforcers, and legal professionals.

GeneralGamePlaying. General game players are systems able to accept descriptions of arbi-
trary games at runtime and able to use such descriptions to play those games effectively without
human intervention. In other words, they do not know the rules until the games start. Logic
Programming is widely used in General Game Playing as the preferred way to formalize game
descriptions.

6 1. INTRODUCTION

1.5 BASIC LOGIC PROGRAMMING

Over the years, various types of Logic Programming have been explored (Basic Logic Pro-
gramming, Classic Logic Programming, Transaction Logic Programming, Constraint Logic
Programming, Disjunctive Logic Programming, Answer Set Programming, Inductive Logic
Programming, etc.). Along with these different types of Logic Programming, a variety of logic
programming languages have been developed (e.g., Datalog, Prolog, Epilog, Golog, Progol,
LPS, etc.). In this volume, we concentrate on Basic Logic Programming, a variant of Transac-
tion Logic Programming; and we use Epilog in writing our examples.

In Basic Logic Programming, we model the states of an application as sets of simple facts
(called datasets), and we write rules to define abstract views of the facts in datasets. We model
changes to state as primitive updates to our datasets, i.e., sets of additions and deletions of facts,
and we write rules of a different sort to define compound actions in terms of primitive updates.

Epilog (the language we use in this volume) is closely related to Datalog and Prolog.
Their syntaxes are almost identical. And the three languages are nicely ordered in terms of
expressiveness—with Datalog being a subset of Prolog and Prolog being a subset of Epilog.
For the sake of simplicity, we use the syntax of Epilog throughout this course, and we talk about
the Epilog interpreter and compiler. Thus, when we mention Datalog in what follows, we are
referring to the Datalog subset of Epilog; and, when we mention Prolog, we are referring to the
Prolog subset of Epilog.

As we shall see, all three of these languages (Datalog and Prolog and Epilog) are less ex-
pressive than the languages associated with more complex forms of Logic Programming (such
as Disjunctive Logic Programming and Answer Set Programming). While these restrictions
limit what we can say in these languages, the resulting programs are computationally better be-
haved and, in most cases, more practical than programs written in more expressive languages.
Moreover, due to these restrictions, Datalog and Prolog and Epilog are easy to understand; and,
consequently, they have pedagogical value as an introduction to more complex Logic Program-
ming languages.

In keeping with our emphasis on Basic Logic Programming, the material of the course is
divided into five units. In this unit, Unit 1, we give an overview of Logic Programming and Basic
Logic Programming, and we introduce datasets. In Unit 2, we talk about queries and updates. In
Unit 3, we talk about view definitions. In Unit 4, we concentrate on operation definitions. And,
in Unit 5, we talk about variations, i.e., other forms of Logic Programming.

HISTORICALNOTES

In the mid-1950s, computer scientists began to concentrate on the development of high-level
programming languages. As a contribution to this effort, JohnMcCarthy suggested the language
of Symbolic Logic as a candidate, and he articulated the ideal of declarative programming. He

1.5. BASIC LOGIC PROGRAMMING 7
gave voice to these ideas in a seminal paper, published in 1958, which describes a type of system
that he called an advice taker.

“The main advantage we expect the advice taker to have is that its behavior will be
improvable merely by making statements to it, telling it about its ... environment and
what is wanted from it. Tomake these statements will require little, if any, knowledge
of the program or the previous knowledge of the advice taker.”

The idea of declarative programming caught the imaginations of subsequent researchers—
notably Bob Kowalski, one of the fathers of Logic Programming, and Ed Feigenbaum, the
inventor of Knowledge Engineering. In a paper written in 1974, Feigenbaum gave a forceful
restatement of McCarthy’s ideal.

“The potential use of computers by people to accomplish tasks can be ‘one-
dimensionalized’ into a spectrum representing the nature of the instruction that must
be given the computer to do its job. Call it the what-to-how spectrum. At one ex-
treme of the spectrum, the user supplies his intelligence to instruct the machine with
precision exactly how to do his job step-by-step. ... At the other end of the spectrum
is the user with his real problem. ... He aspires to communicate what he wants done ...
without having to lay out in detail all necessary subgoals for adequate performance.”

The development of Logic Programming in its present form can be traced to subsequent
debates about declarative vs. procedural representations of knowledge in the Artificial Intelli-
gence community.

Advocates of procedural representations were mainly centered at MIT, under the lead-
ership of Marvin Minsky and Seymour Papert. Although it was based on the proof methods
of logic, Planner, developed at MIT, was the first language to emerge within the procedural-
ist paradigm. Planner featured pattern-directed invocation of procedural plans from goals (i.e.,
goal-reduction or backward chaining) and from assertions (i.e., forward chaining). The most
influential implementation of Planner was the subset of Planner, called Micro-Planner, imple-
mented by Gerry Sussman, Eugene Charniak and Terry Winograd. It was used to implement
Winograd’s natural-language understanding program SHRDLU, which was a landmark at that
time.

Advocates of declarative representations were centered at Stanford (associated with John
McCarthy, Bertram Raphael, and Cordell Green) and in Edinburgh (associated with John Alan
Robinson, Pat Hayes, and Robert Kowalski). Hayes and Kowalski tried to reconcile the logic-
based declarative approach to knowledge representation with Planner’s procedural approach.
In 1973, Hayes developed an equational language, Golux, in which different procedures could
be obtained by altering the behavior of a theorem prover. Kowalski, on the other hand, de-
veloped SLD resolution, a variant of SL-resolution, and showed how it treats implications as
goal-reduction procedures. Kowalski collaborated with Colmerauer in Marseille, who developed
these ideas in the design of the programming language Prolog, which was implemented in the

8 1. INTRODUCTION
summer and autumn of 1972. The first Prolog program, also written in 1972 and implemented
in Marseille, was a French question-answering system. The use of Prolog as a practical program-
ming language was given great momentum by the development of a compiler by David Warren
in Edinburgh in 1977.

9

C H A P T E R 2

Datasets
2.1 INTRODUCTION

Datasets are collections of facts about some aspect of the world. Datasets can be used by them-
selves to encode information. They can also be used in combination with logic programs to form
more complex information systems, as we shall see in the coming chapters.

We begin this chapter by talking about conceptualizing the world. We then introduce a
formal language for encoding information about our conceptualization in the form of datasets.
We provide some examples of datasets encoded within this language. And, finally, we discuss
the issues involved in reconceptualizing an application area and encoding those different con-
ceptualizations as datasets with different vocabularies.

2.2 CONCEPTUALIZATION

When we think about the world, we usually think in terms of objects and relationships among
these objects. Objects include things like people and offices and buildings. Relationships include
things like parenthood, friendship, office assignments, office locations, and so forth.

One way to represent such information is in the form of graphs. As an example, consider
the graph shown below. The nodes here represent objects, and the arcs represent relationships
among these objects.

art

bob

cal cam coe cory

bud

Alternatively, we can represent such information in the form of tables. For example, we
can encode the information in the preceding graph as a table like the one shown below.

10 2. DATASETS

parent

art bob

art bea

bob cal

bob cam

bea coe

bea cory

Another possibility is to encode individual relationships as sentences in a formal language.
For example, we can represent our kinship information as shown below. Here, each fact takes
the form of a sentence consisting of name for the relationship and the names of the entities
involved.

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,coe)
parent(bea,cory)

While graphs and tables are intuitively appealing, a sentential representation ismore useful
for our purposes. So, in what follows we represent facts as sentences, and we represent different
states of the world as different sets of such sentences.

A final note before we leave this discussion of conceptualization. In what follows, we use
the words relation and relationship interchangeably. From a mathematical point of view, this is
not exactly correct, as there is a subtle difference between the two notions. However, for our
purposes, the difference is unimportant, and it is often easier to say relation than relationship.

2.3 DATASETS
A dataset is a collection of simple facts that characterize the state of an application area. Facts
in a dataset are assumed to be true; facts that are not included in the dataset are assumed to be
false. Different datasets characterize different states.

Constants are strings of lower case letters, digits, underscores, and periods or strings of ar-
bitrary ASCII characters enclosed by double quotes. For reasons described in the next chapter,
we prohibit strings containing uppercase letters except within double quotes. Examples of con-
stants include a, b, comp225, 123, 3.14159, barack_obama, and "Mind your p's and q's!".
Non-examples include Art, p&q, the-house-that-jack-built. The first contains an upper

2.3. DATASETS 11
case letter; the second contains an ampersand; and the third contains hyphens. A vocabulary is
a collection of constants.

In what follows, we distinguish three types of constants. Symbols are intended to represent
objects in the world. Constructors are used to create compound names for objects. Predicates
represent relationships on objects.

Each constructor and predicate has an associated arity, i.e., the number of arguments
allowed in any expression involving the constructor or predicate. Unary constructors and predi-
cates are those that take one argument; binary constructors and predicates take two arguments;
and ternary constructors and predicates take three arguments. Beyond that, we often say that
constructors and predicates are n-ary. Note that it is possible to have a predicate with no argu-
ments, representing a condition that is simply true or false.

A ground term is either a symbol or a compound name. A compound name is an expression
formed from an n-ary constructor and n ground terms enclosed in parentheses and separated by
commas. If a and b are symbols and pair is a binary constructor, then pair(a,a), pair(a,b),
pair(b,a), and pair(b,b) are compound names. The adjective ground here means that the
term does not contain any variables (which we discuss in the next chapter).

The Herbrand universe for a vocabulary is the set of all ground terms that can be formed
from the symbols and constructors in the vocabulary. For a finite vocabulary without construc-
tors, the Herbrand universe is finite (i.e., just the symbols). For a finite vocabulary with con-
structors, the Herbrand universe is infinite (i.e., the symbols and all compound names that can
be formed from those symbols). The Herbrand universe for the vocabulary described in the
previous paragraph is shown below.

{pair(a,b), pair(a,pair(b,c)), pair(a,pair(b,pair(c,d))), ...}

A datum/factoid/fact is an expression formed from an n-ary predicate and n ground terms
enclosed in parentheses and separated by commas. For example, if r is a binary predicate and a
and b are symbols, then r(a,b) is a datum.

The Herbrand base for a vocabulary is the set of all factoids that can be formed from the
constants in the vocabulary. For example, for a vocabulary with just two symbols a and b and
the single binary predicate r, the Herbrand base for this language is shown below.

{r(a,a), r(a,b), r(b,a), r(b,b)}

Finally, we define a dataset to be any subset of the Herbrand base, i.e., an arbitrary set of
facts that can be formed from the vocabulary of a database. Intuitively, we can think of the data
in a dataset as the facts that we believe to be true; data that are not in the dataset are assumed
to be false.

12 2. DATASETS

2.4 EXAMPLE – SORORITYWORLD
Consider the interpersonal relations of a small sorority. There are just four members—Abby,
Bess, Cody, and Dana. Some of the girls like each other, but some do not.

Figure 2.1 shows one set of possibilities. The checkmark in the first row here means that
Abby likes Cody, while the absence of a checkmark means that Abby does not like the other
girls (including herself). Bess likes Cody too. Cody likes everyone but herself. And Dana also
likes the popular Cody.

Abby Bess Cody Dana

Abby P

Bess P

Cody P P P

Dana P

Figure 2.1: One state of Sorority World.

In order to encode this information as a dataset, we adopt a vocabulary with four sym-
bols (abby, bess, cody, dana) and one binary predicate (likes). Using this vocabulary, we can
encode the information in Figure 2.1 by writing the dataset shown below.

likes(abby,cody)
likes(bess,cody)
likes(cody,abby)
likes(cody,bess)
likes(cody,dana)
likes(dana,cody)

Note that the likes relation has no inherent restrictions. It is possible for one person to
like a second without the second person liking the first. It is possible for a person to like just
one other person or many people or nobody. It is possible that everyone likes everyone or no one
likes anyone.

Even for a small world like this one, there are quite a few possible ways the world could be.
Given four girls, there are sixteen possible instances of the likes relation—likes(abby,abby),
likes(abby,bess), likes(abby,cody), likes(abby,dana), likes(bess,abby), and so
forth. Each of these sixteen can be either true or false. There are 216 (i.e., 65,536) possible
combinations of these true-false possibilities; and so there are 216 possible states of this world
and, therefore, 216 possible datasets.

2.5. EXAMPLE –KINSHIP 13

2.5 EXAMPLE –KINSHIP
As another example, consider a small dataset about kinship. The terms in this case once again
represent people. The predicates name properties of these people and their relationships with
each other.

In our example, we use the binary predicate parent to specify that one person is a parent of
another. The sentences below constitute a dataset describing six instances of the parent relation.
The person named art is a parent of the person named bob and the person named bea; bob is
the parent of cal and cam; and bea is the parent of coe and cory.

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,coe)
parent(bea,cory)

The adult relation is a unary relation, i.e., a simple property of a person, not a relationship
with other people. In the dataset below, everyone is an adult except for Art’s grandchildren.

adult(art)
adult(bob)
adult(bea)

We can express gender with two unary predicates male and female. The following data
expresses the genders of all of the people in our dataset. Note that, in principle, we need only
one relation here, since one gender is the complement of the other. However, representing both
allows us to enumerate instances of both gender equally efficiently, which can be useful in certain
applications.

male(art) female(bea)
male(bob) female(coe)
male(cal) female(cory)
male(cam)

As an example of a ternary relation, consider the data shown below. Here, we use prefers
to represent the fact that the first person likes the second person more than the third person.
For example, the first sentence says that Art prefers bea to bob; the second sentence says that
bob prefers cal to cam.

14 2. DATASETS
prefers(art,bea,bob)
prefers(bob,cal,cam)

Note that the order of arguments in such sentences is arbitrary. Given the meaning of the
prefers relation in our example, the first argument denotes the subject, the second argument
is the person who is preferred, and the third argument denotes the person who is less preferred.
We could equally well have interpreted the arguments in other orders. The important thing
is consistency—once we choose to interpret the arguments in one way, we must stick to that
interpretation everywhere.

One noteworthy difference difference between Sorority World and Kinship is that there
is just one relation in the former (i.e., the likes relation), whereas there are multiple relations
in the latter (three unary predicates, one binary predicate, and one ternary predicate).

A more subtle and interesting difference is that the relations in Kinship are constrained in
various ways while the likes relation in Sorority World is not. It is possible for any person in
Sorority World to like any other person; all combinations of likes and dislikes are possible. By
contrast, in Kinship there are constraints that limit the number of possible states. For example,
it is not possible for a person to be his own parent, and it is not possible for a person to be both
male and female.

2.6 EXAMPLE – BLOCKSWORLD
The Blocks World is a popular application area for illustrating ideas in the field of Artificial
Intelligence. A typical Blocks World scene is shown in Figure 2.2.

A

B

C

D

E

Figure 2.2: One state of Blocks World.

Most people looking at Figure 2.2 interpret it as a configuration of five toy blocks. Some
people conceptualize the table on which the blocks are resting as an object as well; but, for
simplicity, we ignore it here.

In order to describe this scene, we adopt a vocabulary with five symbols (a, b, c, d, e), with
one symbol for each of the five blocks in the scene. The intent here is for each of these symbols
to represent the block marked with the corresponding capital letter in the scene.

In a spatial conceptualization of the Blocks World, there are numerous meaningful rela-
tions. For example, it makes sense to talk about the relation that holds between two blocks if
and only if one is resting on the other. In what follows, we use the predicate on to refer to this

2.6. EXAMPLE – BLOCKSWORLD 15
relation. We might also talk about the relation that holds between two blocks if and only if one
is anywhere above the other, i.e., the first is resting on the second or is resting on a block that is
resting on the second, and so forth. In what follows, we use the predicate above to talk about
this relation. There is the relation that holds of three blocks that are stacked one on top of the
other. We use the predicate stack as a name for this relation. We use the predicate clear to
denote the relation that holds of a block if and only if there is no block on top of it. We use the
predicate table to denote the relation that holds of a block if and only if that block is resting
on the table.

The arities of these predicates are determined by their intended use. Since on is intended
to denote a relation between two blocks, it has arity 2. Similarly, above has arity 2. The stack
predicate has arity 3. Predicates clear and table each have arity 1.

Given this vocabulary, we can describe the scene in Figure 2.2 by writing sentences that
state which relations hold of which objects or groups of objects. Let’s start with on.The following
sentences tell us directly for each ground relational sentence whether it is true or false.

on(a,b)
on(b,c)
on(d,e)

There are four above facts. The above relation holds of the same pairs of blocks as the on
relation, but it includes one additional fact for block a and block c.

above(a,b)
above(b,c)
above(a,c)
above(d,e)

In similar fashion, we can encode the stack relation and the above relation. There is just
one stack here—block a on block b and block b on block c.

stack(a,b,c)

Finally, we can write out the facts for clear and table. Blocks a and d are clear, while
blocks c and e are on the table.

clear(a) table(c)
clear(d) table(e)

As with Kinship, the relations in Blocks World are constrained in various ways. For ex-
ample, it is not possible for a block to be on itself. Moreover, some of these relations are entirely

16 2. DATASETS
determined by others. For example, given the on relation, the facts about all of the other rela-
tions are entirely determined. In a later chapter, we see how to write out definitions for such
concepts and thereby avoid having to write out individual facts for such defined concepts.

2.7 EXAMPLE – FOODWORLD
As another example of these concepts, consider a small dataset about food and menus. The goal
here is to create a dataset that lists meals that are available at a restaurant on different days of
the week.

The symbols in this case come in two types - days of the week (monday, ... , friday)
and different types of food (calamari, vichyssoise, beef, and so forth). There are three
constructors—a 3-ary constructor for three course meals (three), a 4-ary constructor for four
course meals (four), and a 5-ary constructor for five course meals (five). There is a single binary
predicate menu that relates days of the week and available meals.

The following is an example of a dataset using this vocabulary. On Monday, the restaurant
offers a three course meal with calamari and beef and shortcake, and it offers a different three
course meal with puree and beef and ice cream for dessert. On Tuesday, the restaurant offers one
of the same three-course meals and a four-course meal as well. On Wednesday, the restaurant
offers just one meal—the four-course meal from the day before. On Thursday, the restaurant
offers a five-course meal; and, on Friday, it offers a different five-course meal.

menu(monday,three(calamari,beef,shortcake))
menu(monday,three(puree,beef,icecream))
menu(tuesday,three(puree,beef,icecream))
menu(tuesday,four(consomme,greek,lamb,baklava))
menu(wednesday,four(consomme,greek,lamb,baklava))
menu(thursday,five(vichyssoise,caesar,trout,chicken,tiramisu))
menu(friday,five(vichyssoise,green,trout,beef,souffle))

Note that, although there are constructors here, the dataset is finite in size. In fact, there
are strong restrictions on what sentences make sense. For example, only symbols representing
days of the week appear as the first argument of the menu relation. Only symbols representing
foods appear as arguments in compound names. And only whole meals appear as the second
argument of the menu relation. Note also that compound names are not nested here. These
kinds of restrictions are common in datasets. Later in the book, we show how we can formalize
these constraints.

2.8 REFORMULATION
No matter how we choose to conceptualize the world, it is important to realize that there are
other conceptualizations as well. Furthermore, there need not be any correspondence between

2.8. REFORMULATION 17
the objects, functions, and relations in one conceptualization and the objects, functions, and
relations in another.

In some cases, changing one’s conceptualization of the world can make it impossible to
express certain kinds of knowledge. A famous example of this is the controversy in the field
of physics between the view of light as a wave phenomenon and the view of light in terms of
particles. Each conceptualization allowed physicists to explain different aspects of the behavior
of light, but neither alone sufficed. Not until the two views were merged in modern quantum
physics were the discrepancies resolved.

In other cases, changing one’s conceptualization can make it more difficult to express
knowledge, without necessarily making it impossible. A good example of this, once again in the
field of physics, is changing one’s frame of reference. Given Aristotle’s geocentric view of the
universe, astronomers had great difficulty explaining the motions of the moon and other planets.
The data were explained (with epicycles, etc.) in the Aristotelian conceptualization, although the
explanation was extremely cumbersome. The switch to a heliocentric view quickly led to a more
perspicuous theory.

This raises the question of what makes one conceptualization more appropriate than an-
other. Currently, there is no comprehensive answer to this question. However, there are a few
issues that are especially noteworthy.

One such issue is the grain size of the objects associatedwith aconceptualization. Choosing
too small a grain can make knowledge formalization prohibitively tedious. Choosing too large
a grain can make it impossible.

As an example of the former problem, consider a conceptualization of the scene in Blocks
World in which the objects in the universe of discourse are the atoms composing the blocks in
the picture. Each block is composed of enormously many atoms, so the universe of discourse is
extremely large. Although it is, in principle, possible to describe the scene at this level of detail,
it is senseless if we are interested in only the vertical relationship of the blocks made up of those
atoms. Of course, for a chemist interested in the composition of blocks, the atomic view of the
scene might be more appropriate, and our conceptualization in terms of blocks has too large a
grain.

Indistinguishability abstraction is a form of object reformulation that deals with grain size.
If several objects mentioned in a dataset satisfy all of the same conditions, under appropriate
circumstances, it is possible to abstract the objects to a single object that does not distinguish
the identities of the individuals. This can decrease the cost of processing queries by avoiding
redundant computation in which the only difference is the identities of these objects.

Another way of reconceptualizing the world is the reification of relations as objects in
the universe of discourse. The advantage of this is that it allows us to consider properties of
properties.

18 2. DATASETS
As an example, consider a Blocks World conceptualization in which there are five blocks,

no constructors, and three unary predicates, each corresponding to a different color. This con-
ceptualization allows us to consider the colors of blocks but not the properties of those colors.

We can remedy this deficiency by reifying various color relations as objects in their own
right and by adding a relation to associate blocks with colors. Because the colors are objects in
the universe of discourse, we can then add relations that characterize them, e.g., warm, cool,
and so forth.

There is also the reverse of reification, viz. relationalization. Combining relationalization
and reification is a common way to change from one conceptualization to another.

Note that, in this discussion, no attention has been paid to the question of whether the ob-
jects in one’s conceptualization of the world really exist. We have adopted neither the standpoint
of realism, which posits that the objects in one’s conceptualization really exist, nor that of nomi-
nalism, which holds that one’s concepts have no necessary external existence. Conceptualizations
are our inventions, and their justification is based solely on their utility. This lack of commitment
indicates the essential ontological promiscuity of Logic Programming: any conceptualization of
the world is accommodated, and we seek those that are useful for our purposes.

2.9 EXERCISES
2.1. Consider the Sorority World introduced above. Write out a dataset describing a state

in which every girl likes herself and no one else.

2.2. Consider a variation of the Sorority World example in which we have a single binary
relation, called friend. friend differs from likes in two ways. It is non-reflexive, i.e.,
a girl cannot be friends with herself; and it is symmetric, i.e., if one girl is a friend of a
second girl, then the second girl is friends with the first. Write out a dataset describing
a state that satisfies the non-reflexivity and symmetry of the friend relation and so that
exactly six friend facts are true. Note that there are multiple ways in which this can be
done.

2.3. Consider a variation of the Sorority World example in which we have a single binary
relation, called younger. younger differs from likes in three ways. It is non-reflexive,
i.e., a girl cannot be younger than herself. It is antisymmetric, i.e., if one girl is younger
than a second, then the second is not younger than the first. It is transitive, i.e., if one
girl is younger than a second and the second is younger than a third, then the first is
younger than the third. Write out a dataset describing a state that satisfies the reflexivity,
antisymmetry, and transitivity of the younger relation and so that the maximum number
of younger facts are true. Note that there are multiple ways in which this can be done.

2.4. A person x is a sibling of a person y if and only if x is a brother or a sister of y. Write
out the sibling facts corresponding to the parent facts shown below.

2.9. EXERCISES 19
parent (art,bob)
parent (art,bob)
parent (art,bob)
parent (art,bob)
parent (art,bob)
parent (art,bob)

2.5. Consider the state of the Blocks World pictured below. Write out all of the above facts
that are true in this state.

A

B

C

D E

2.6. Consider a world with n symbols and a single binary predicate. How many distinct facts
can be written in this language?

n, 2n, n2, 2n, nn, 2n2 , 22n

2.7. Consider a world with n symbols and a single binary predicate. How many distinct
datasets are possible for this language?

n, 2n, n2, 2n, nn, 2n2 , 22n

2.8. Consider a world with n symbols and a single binary predicate; and suppose that the
binary relation is functional, i.e., every symbol in the first position is paired with exactly
one symbol in the second position. How many distinct datasets satisfy this restriction?

n, 2n, n2, nn, 2n, 2n2 , 22n

PART II

Queries and Updates

23

C H A P T E R 3

Queries
3.1 INTRODUCTION

In Chapter 2, we saw how to represent the state of an application area as a dataset. If a dataset
is large, it can be difficult to answer questions based on that dataset. In this chapter, we look at
various ways of querying a dataset to find just the information that we need.

The simplest form of query is a true-or-false question. Given a factoid and a dataset, we
might want to know whether or not the factoid is true in that dataset. For example, we might
want to know whether a person Art is the parent of Bob. Answering an atomic true-or-false
question is simply a matter of checking whether the given factoid is a member of the dataset.

A more interesting form of query is a fill-in-the-blanks question. Given a factoid with
blanks, we might want values that, when substituted for the blanks, make the query true. For
example, we might want to look up the children of Art or the parents of Bill or pairs of parents
and children.

An even more interesting form of query is a compound question. We might want values
for which a Boolean combination of conditions is true. For example, we might want whether
Art is the parent of Bob or the parent of Bud. Or we might want to find all people who have
sons and who have no daughters.

We begin this chapter by looking at an extension of our dataset language that allows us
to express such questions. In the next section, we define the syntax of our language; and, in
the section thereafter, we define its semantics. We then look at some examples of using this
language to query datasets. With that introduction behind us, we look at an important syntactic
restriction, called safety. And, finally, we finish by discussing useful predefined concepts (e.g.,
arithmetic operators) that increase the power of our query language.

3.2 QUERY SYNTAX

The language of queries includes the language of datasets but provides some additional features
that make it more expressive, viz. variables and query rules. Variables allow us to write fill-in-the-
blanks queries. Query rules allow us to express compound queries, notably negations (to say that
a condition is false), conjunctions (to say that several conditions are all true), and disjunctions
(to say that at least one of several conditions is true).

24 3. QUERIES
In our query language, a variable is either a lone underscore or a string of letters, digits,

and underscores beginning with an uppercase letter. For example, _, X23, X_23, and Somebody
are all variables.

An atomic sentence, or atom, is analogous to a factoid in a dataset except that the arguments
may include variables as well as symbols. For example, if p is a binary predicate and a is a symbol
and Y is a variable, then p(a,Y) is an atomic sentence.

A literal is either an atom or a negation of an atom. A simple atom is called a positive
literal. The negation of an atom is called a negative literal. In what follows, we write negative
literals using the negation sign ~. For example, if p(a,b) is an atom, then ~p(a,b) denotes the
negation of this atom. Both are literals.

A query rule is an expression consisting of a distinguished atom, called the head and a
collection of zero or more literals, called the body. The literals in the body are called subgoals. The
predicate in the head of a query rule must be a new predicate (i.e., not one in the vocabulary of
our dataset), and all of the predicates in the body must be dataset predicates.

In what follows, we write rules as in the example shown below. Here, goal(a,b) is the
head; p(a,b) & ~q(b) is the body; and p(a,b) and ~q(b) are subgoals.

goal(a,b) :- p(a,b) & ~q(b)

As we shall see in the next section, a query rule is something like a reverse implication—it
is a statement that the head of the rule (i.e., the overall goal) is true whenever the subgoals are
true. For example, the rule above states that goal(a,b) is true if p(a,b) is true and q(b) is
not true.

The expressive power of query rules is greatly enhanced through the use of variables. Con-
sider, for example, the rule shown below. This is a more general version of the rule shown above.
Instead of applying to just the specific objects a and b it applies to all objects. In this case, the
rule states that goal is true of any object X and any object Y if p is true of X and Y and q is not
true of Y.

goal(X,Y) :- p(X,Y) & ~q(Y)

A query is a non-empty, finite set of query rules. Typically, a query consists of just one
rule. In fact, most Logic Programming systems do not support queries with multiple rules (at
least not directly). However, queries with multiple rules are sometimes useful and do not add
any major complexity, so in what follows we allow for the possibility of queries with multiple
rules.

3.3. QUERY SEMANTICS 25

3.3 QUERY SEMANTICS
An instance of an expression (atom, literal, or rule) is one in which all variables have been consis-
tently replaced by ground terms (i.e., terms without variables). For example, if we have a language
with symbols a and b, then the instances of goal(X,Y) :- p(X,Y) & ~q(Y) are shown below.

goal(a,a) :- p(a,a) & ~q(a)
goal(a,b) :- p(a,b) & ~q(b)
goal(b,a) :- p(b,a) & ~q(a)
goal(b,b) :- p(b,b) & ~q(b)

Given this notion, we can define the result of the application of a single rule to a dataset.
Given a rule r and a dataset �, we define v(r ,�) to be the set of all such that (1) is the
head of an arbitrary instance of r , (2) every positive subgoal in the instance is a member of �,
and (3) no negative subgoal in the instance is a member of �.

The extension of a query is the set of all facts that can be “deduced” on the basis of the
rules in the program, i.e., it is the union of v(ri ; �) for each ri in our query.

To illustrate these definitions, consider a dataset describing a small directed graph. In the
sentences below, we use symbols to designate the nodes of the graph, and we use the p relation
to designate the arcs of the graph.

p(a,b)
p(b,c)
p(c,b)

Now suppose we were given the following query. Here, the predicate goal is defined to
be true of every node that has an outgoing arc to another node and also an incoming arc from
that node.

goal(X) :- p(X,Y) & p(Y,X)

Since there are two variables here and three symbols, there are nine instances of this rule,
viz. the ones shown below.

goal(a) :- p(a,a) & p(a,a)
goal(a) :- p(a,b) & p(b,a)
goal(a) :- p(a,c) & p(c,a)
goal(b) :- p(b,a) & p(a,b)
goal(b) :- p(b,b) & p(b,b)
goal(b) :- p(b,c) & p(c,b)

26 3. QUERIES
goal(c) :- p(c,a) & p(a,c)
goal(c) :- p(c,b) & p(b,c)
goal(c) :- p(c,c) & p(c,c)

The body in the first of these instances is not satisfied. In fact, the body is true only in
the sixth and eighth instances. Consequently, the extension of this query contains just the two
atoms shown below.

goal(b)
goal(c)

The definition of semantics in terms of rule instances is simple and clear. However, Logic
Programming systems typically do not implement query processing in this way. There are more
efficient ways of computing such extensions. In subsequent chapters, we look at some algorithms
of this sort.

3.4 SAFETY
A query rule is safe if and only if every variable that appears in the head or in any negative literal
in the body also appears in at least one positive literal in the body.

The rule shown below is safe. Every variable in the head and every variable in the negative
subgoal appears in a positive subgoal in the body. Note that it is okay for the body to contain
variables that do not appear in the head.

goal(X) :- p(X,Y,Z) & ~q(X,Z)

By contrast, the two rules shown below are not safe. The first rule is not safe because the
variable Z appears in the head but does not appear in any positive subgoal. The second rule is
not safe because the variable Z appears in a negative subgoal but not in any positive subgoal.

goal(X,Y,Z) :- p(X,Y)
goal(X,Y,X) :- p(X,Y) & ~q(Y,Z)

To see why safety matters in the case of the first rule, suppose we had a database in which
p(a,b) is true. Then, the body of the first rule is satisfied if we let X be a and Y be b. In this
case, we can conclude that every corresponding instance of the head is true. But what should we
substitute for Z? Intuitively, we could put anything there; but there could be many possibilities.
While this is conceptually okay, it is practically problematic.

To see why safety matters in the second rule, suppose we had a database with just two
facts, viz. p(a,b) and q(b,c). In this case, if we let X be a and Y be b and Z be anything other
than c, then both subgoals are true, and we can conclude goal(a,b,a).

3.5. PREDEFINEDCONCEPTS 27
The main problem with this is that many people incorrectly interpret that negation as

meaning there is no Z for which q(Y,Z) is true, whereas the correct reading is that q(Y,Z)
needs to be false for just one value of Z. As we will see, there are various ways of expressing this
second meaning without writing unsafe queries.

3.5 PREDEFINEDCONCEPTS
In practical logic programming languages, it is common to predefine useful concepts. These
typically include arithmetic functions (such as plus, times, max, min), string functions (such as
concatenation), equality and inequality, aggregates (such as countofall), and so forth.

In Epilog, equality and inequality are expressed using the relations same and distinct.
The sentence same(�,�) is true iff � and � are identical. The sentence distinct(�,�) is true
if and only if � and � are different.

The evaluate relation is used to represent equations involving predefined functions. For
example, we would write evaluate(plus(times(3,3),times(2,3),1),16) to represent the
equation 3^2+2x3+1=16. If height is a binary predicate relating a figure and its height and if
width is a binary predicate relating a figure and its width, we can define the area of the object
as shown below. The area of X is A if the height of X is H and the width of X is W and A is the
result of multiplying H and W.

goal(X,A) :- height(X,H) & width(X,W) & evaluate(times(H,W),A)

In logic programming languages that provide such predefined concepts, there are usually
syntactic restrictions on their use. For example, if a query contains a subgoal with a comparison
relation (such as same and distinct), then every variable that occurs in that subgoal must occur
in at least one positive literal in the body and that occurrence must precede the subgoal with the
comparison relation. If a query uses evaluate in a subgoal, then any variable that occurs in the
first argument of that subgoal must occur in at least one positive literal in the body and that
occurrence must precede the subgoal with the arithmetic relation. Details are typically found in
the documentation of systems that supply such built-in concepts.

In practical logic programming languages, it is also common to include predefined aggre-
gate operators, such as setofall and countofall.

Aggregate operators are typically represented as relations with special syntax. For example
the following rule uses the countofall operator to request the number of a person’s children. N
is the number of children of X if and only if N is the count of all Y such that X is the parent of Y.

goal(X,N) :- person(X) & evaluate(countofall(Y,parent(X,Y)),N)

As with special relations, there are syntactic restrictions on their use. In particular, aggre-
gate subgoals must be safe in that all variables in the second argument must be included in the
first argument or must be used within positive subgoals of the rule containing the aggregate.

28 3. QUERIES

3.6 EXAMPLE –KINSHIP
Consider a variation of the Kinship application introduced in Chapter 2. In this case, our vo-
cabulary consists of symbols (representing people) and a binary predicate parent (which is true
of two people if and only if the person specified as the first argument is the parent of the person
specified as the second argument).

Given data about parenthood expressed using this vocabulary, we can write queries to
extract information about other relationships as well. For example, we can find grandparents
and grandchildren by writing the query shown below. A person X is the grandparent of a person
Z if X is the parent of a person Y and Y is the parent of Z. The variable Y here is a thread variable
that connects the first subgoal to the second but does not itself appear in the head of the rule.

goal(X,Z) :- parent(X,Y) & parent(Y,Z)

In general, we can write queries with multiple rules. For example, we can collect all of
the people mentioned in our dataset by writing the following multi-rule query. In this case the
conditions are disjunctive (at least one must be true), whereas the conditions in the grandfather
case are conjunctive (both must be true).

goal(X) :- parent(X,Y)
goal(Y) :- parent(X,Y)

In some cases, it is helpful to use built-in relations in our queries. For example, we can
ask for all pairs of people who are siblings by writing the query rule shown below. We use the
distinct condition here to avoid listing a person as his own sibling.

goal(Y,Z) :- parent(X,Y) & parent(X,Z) & distinct(Y,Z)

While we can express many common kinship relationships using our query language,
there are some relationships that are just too difficult. For example, there is no way to ask for
all ancestors of a person (parents, grandparents, great grandparents, and so forth). For this, we
need the ability to write recursive queries. We show how to write such queries in the chapter on
view definitions.

3.7 EXAMPLE –MAPCOLORING
Consider the problem of coloring planar maps using only four colors, the idea being to assign
each region a color so that no two adjacent regions are assigned the same color.

A typical map is shown below. Here we have six regions. Some are adjacent to each other,
meaning that they cannot be assigned the same color. Others are not adjacent, meaning that
they can be assigned the same color.

3.7. EXAMPLE –MAPCOLORING 29

3
6

5

4

2

1

We can enumerate the hues to be used as shown below. The constants red, green, blue,
and purple stand for the hues red, green, blue, and purple, respectively.

hue(red)
hue(green)
hue(blue)
hue(purple)

In the case of the map shown above, our goal is to find six hues (one for each region of the
map) such that no two adjacent regions have the same hue. We can express this goal by writing
the query shown below.

goal(C1,C2,C3,C4,C5,C6) :-
hue(C1) & hue(C2) & hue(C3) & hue(C4) & hue(C5) & hue(C6) &
distinct(C1,C2) & distinct(C1,C3) & distinct(C1,C5) & distinct(C1,C6) &
distinct(C2,C3) & distinct(C2,C4) & distinct(C2,C5) & distinct(C2,C6) &
distinct(C3,C4) & distinct(C3,C6) & distinct(C5,C6)

Evaluating this query will result in 6-tuples of hues that ensure that no two adjacent
regions have the same color. In problems like this one, we usually want only one solution rather
than all solutions. However, finding even one solution is such cases can be costly. In Chapter 4,
we discuss ways of writing such queries that makes the process of finding such solutions more
efficient.

30 3. QUERIES

3.8 EXERCISES
3.1. For each of the following strings, say whether it is a syntactically legal query.

(a) goal(X) :- p(a,f(f(X)))
(b) goal(X,Y) :- p(X,Y) & ~p(Y,X)
(c) ~goal(X,Y) :- p(X,Y) & p(Y,X)
(d) goal(P,Y) :- P(a,Y)
(e) goal(X) :- p(X,b) & p(X,p(b,c))

3.2. Say whether each of the following queries is safe.

(a) goal(X,Y) :- p(X,Y) & p(Y,X)
(b) goal(X,Y) :- p(X,Y) & p(Y,Z)
(c) goal(X,Y) :- p(X,X) & p(X,Z)
(d) goal(X,Y) :- p(X,Y) & ~p(Y,Z)
(e) goal(X,Y) :- p(X,Y) & ~p(Y,Y)

3.3. What is the result of evaluating the query goal(X,Z) :- p(X,Y) & p(Y,Z) on the
dataset shown below.

p(a,b)
p(a,c)
p(b,d)
p(c,d)

3.4. Assume we have a dataset with a binary predicate parent (which is true of two people if
and only if the person specified as the first argument is the parent of the person specified
as the second argument). Write a query that defines the property of being childless.
Hint: use the aggregate operator countofall. And be sure your query is safe. (This
exercise is not difficult, but it is slightly tricky.)

3.5. For each of the following problems, write a query to solve the problem. Values should
include just the digits 8, 1, 4, 7, 3 and each digit should be used at most once in the
solution of each puzzle. Your query should express the problem as stated, i.e., you should
not first solve the problem yourself and then have the query simply return the answer.

(a) The product of a 1-digit number and a 2-digit number is 284.
(b) The product of two 2-digit numbers plus a 1-digit number is 3,355.
(c) The product of a 3-digit number and a 1-digit number minus a 1 digit number is

1,137.

3.8. EXERCISES 31
(d) The product of a 2-digit number and a 3-digit number is between 13,000 and

14,000.
(e) When a 3-digit number is divided by a 2-digit number the result is between 4

and 6.

33

C H A P T E R 4

Updates
4.1 INTRODUCTION

In the preceding chapter, we saw to how to write queries to extract information from a dataset.
In this chapter, we look at how to update the information in a dataset, i.e., how to transform
one dataset into another, ideally without rewriting all of the factoids and instead concentrating
on only those factoids that have changed their truth values.

4.2 UPDATE SYNTAX

As with our query language, our update language includes the language of datasets but provides
some additional features. Again, we have variables, but in this case we have update rules in place
of query rules.

An update rule is an expression consisting of a non-empty collection of literals (called con-
ditions) and a second non-empty collection of literals (called conclusions). The conditions and
conclusions may be ground or they may contain variables. There is only one restriction: all vari-
ables in conclusions must also appear in the positive conditions.

In what follows, we write update rules as in the example shown below. Here, p(a,b) and
~q(b) are conditions, and ~p(a,b) and p(b,a) are conclusions.

p(a,b) & ~q(b) ==> ~p(a,b) & p(b,a)

As we shall see in the next section, an update rule is something like a condition-action
rule. It is a statement that whenever the conditions are true, then the negative conclusions should
be deleted from the dataset, and the positive conclusions should be added. For example, the rule
above states that, if p(a,b) is true and q(b) is not true, then p(a,b) should be removed from
the dataset and p(b,a) should be added.

As with query rules, the power of update rules is greatly enhanced through the use of
variables. Consider, for example, the rule shown below. This is a more general version of the rule
shown above. Instead of applying to just the specific objects a and b it applies to all objects.

p(X,Y) & ~q(Y) ==> ~p(X,Y) & p(Y,X)

34 4. UPDATES
An update is a finite collection of update rules. Typically, an update consists of just one

rule. However, updates with multiple rules are sometimes useful and do not add any major
complexity, so in what follows we allow for the possibility of updates with multiple rules.

4.3 UPDATE SEMANTICS
An instance of an update rule is one in which all variables have been consistently replaced by
ground terms (i.e., terms without variables). For example, if we have a language with symbols a
and b, then the instances of p(X,Y) & ~q(Y) ==> ~p(X,Y) & p(Y,X) are shown below.

p(a,a) & ~q(a) ==> ~p(a,a) & p(a,a)
p(a,b) & ~q(b) ==> ~p(a,b) & p(b,a)
p(b,a) & ~q(a) ==> ~p(b,a) & p(a,b)
p(b,b) & ~q(b) ==> ~p(b,b) & p(b,b)

Suppose we are given a dataset � and an update rule r . We say that an instance of r is
active on � if and only if the conditions are all true on �. We define the positive update set
A(r ,�) to be the set of all positive conclusions in some active instance of r , and we define the
negative update set D(r ,�) to be the set of all negative conclusions in some active instance of r .

The positive update set A(�,�) for a set of rules � on a dataset � is the union of the
positive updates of the rules on�; and the negative update set D(�,�) for� is the union of the
negative updates of the rules on �.

Finally, we obtain the result of applying a set of update rules R to a dataset� by removing
the negative updates and adding in the positive updates, i.e., the result is��D(�,�)\A(�,�).

Let’s look at some examples to illustrate this semantics. Consider the dataset shown below.
In this case, there are four symbols and one binary predicate p.

p(a,a)
p(a,b)
p(b,c)
p(c,c)
p(c,d)

Now, suppose we wanted to drop all of the p factoids in our dataset in which the first and
second arguments are the same. To do this, we would specify the update shown below.

p(X,X) ==> ~p(X,X)

In this case, there would be two instances in which the conditions are true. See below.

4.4. SIMULTANEOUSUPDATES 35
p(a,a) ==> ~p(a,a)
p(c,c) ==> ~p(c,c)

Consequently, after execution of this update, we would have the dataset shown below.

p(a,b)
p(b,c)
p(c,d)

Now suppose that we wanted to reverse the arguments of the remaining p factoids in our
dataset. To do this, we would specify an update with p(X,Y) as a condition; we would include
p(X,Y) as a negative conclusion; and we would specify p(Y,X) as a positive conclusion. In this
case, we would have one variable assignment for every factoid in our dataset; the negative con-
clusions would be {p(a,b), p(b,c), p(c,d)}, i.e., every factoid in our dataset; and the positive
conclusions would be {p(b,a), p(c,b), p(d,c)}.

p(X,Y) ==> ~p(X,Y) & p(Y,X)

After executing this update on the preceding dataset, we would have the dataset shown
below.

p(b,a)
p(c,d)
p(d,c)

4.4 SIMULTANEOUSUPDATES
Note that it sometimes happens that a factoid appears as both a positive and a negative update.
As an example of this, consider an update with p(X,a) as condition, with p(X,a) as a negative
conclusion and with p(a,X) as a positive conclusion.

p(X,a) ==> ~p(X,a) & p(a,X)

In the case of the first dataset shown in the preceding section, p(a,a) would appear as
both a positive and a negative update.

In such cases, our semantics dictates that the factoid be removed and then added right
back in again, with the result that there is no change. This is a relatively arbitrary resolution to
the conflict in such cases, but it appears to be the one favored most often by programmers.

36 4. UPDATES

4.5 EXAMPLE –KINSHIP
Once again consider the Kinship application; and assume, as before, that we start with a single
binary predicate parent (which is true of two people if and only if the person specified as the
first argument is the parent of the person specified as the second argument).

The factoids shown below constitute a dataset using this vocabulary. The person named
art is a parent of the person named bob and the person named bea; bob is the parent of cal
and cam; and bea is the parent of coe and cory.

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,cat)
parent(bea,coe)

In Chapter 3, we saw how to write queries to characterize other kinship relations in terms
of parent. In some cases, we might want to store the resulting factoids so that they can be
accessed without recomputing.

Suppose, for example, we wanted to store information about grandparents and their
grandchildren. We could do this by writing an update like the one shown below.

parent(X,Y) & parent(Y,Z) ==> grandparent(X,Z)

Starting with the dataset shown above, applying this update would result in the addition
of the following factoids to our dataset.

grandparent(art,cal)
grandparent(art,cam)
grandparent(art,cat)
grandparent(art,coe)

If we subsequently wanted to remove these factoids, we could execute the update shown
below, and we would end up back where we started.

grandparent(X,Y) ==> ~grandparent(X,Z)

Now, suppose we wanted to reverse the arguments to the parent predicate, relating chil-
dren and parents rather than relating parents and children. To do this, we could write the fol-
lowing update.

4.6. EXAMPLE –COLORS 37
parent(X,Y) ==> ~parent(X,Y) & parent(Y,X)

Executing this update would result in the following dataset.

parent(bob,art)
parent(bea,art)
parent(cal,bob)
parent(cam,bob)
parent(cat,bea)
parent(coe,bea)

In understanding updates like this one, it is important to keep inmind that updates happen
atomically—we first compute all factoids to be changed and we then make those changes all at
once—before considering any other updates.

4.6 EXAMPLE –COLORS

Ruby Red, Willa White, and Betty Blue meet for lunch. One is wearing a red skirt; one is
wearing a white skirt; and one is wearing a blue skirt. No one is wearing more than one color,
and no two are wearing the same color. Betty Blue tells one of her companions, “Did you notice
we are all wearing skirts with different colors from our names?”; and the other woman, who is
wearing a white skirt, says,“Wow, that’s right!” Our job is to figure out which woman is wearing
which skirt.

One way to solve problems like this is to enumerate possibilities and check, for each,
whether it satisfies the constraints in the statement of the problem. This approach works, but it
often requires a good deal of search. To make the process of finding solutions more efficient, we
can sometimes use values we already know to infer additional values and thereby cut down on
the number of possibilities we need to consider. In this section, we see how we can use updates
to implement this technique. In this very special case, as we shall see, this technique eliminates
search altogether.

To solve the problem, we adopt a vocabulary with six symbols r, w, b, v, x, and e. The first
three denote people/colors and the latter three denote “truth values”—true, false, and unknown.
To express the state of our problem, we use a ternary relation constant c. For example, we would
write c(r,b,v) to mean that Ruby Red is wearing a white skirt; we would write c(r,b,x) to
mean that Ruby Red is not wearing a white skirt; and we would write c(r,b,e) to mean that
we do not know whether or not Ruby Red wearing a white skirt.

In solving this problem we start with the dataset shown below. Initially, we know nothing
about who is wearing what.

38 4. UPDATES
c(r,r,e)
c(r,w,e)
c(r,b,e)
c(w,r,e)
c(w,w,e)
c(w,b,e)
c(b,r,e)
c(b,w,e)
c(b,b,e)

We can picture this situation as shown below, with the idea that the value in each cell is
an indication of our belief about whether the person listed as the first argument in one of our
c factoids is wearing a skirt with the color specified as the second argument. For the sake of
clarity, we leave cells empty when they have value e.

r w b

r

w

b

First we apply the constraint that none of the women is wearing a skirt with the same
color as her name.

c(C,C,e) ==> ~c(C,C,e) & c(C,C,x)

After this update, we are left with the state of affairs shown below. We now have x values
along the diagonal, but we still have empty cells everywhere else.

r w b

r Î

w Î

b Î

Next we take into account Betty Blue’s comment to someone who is wearing a white skirt,
which means that Betty Blue is not wearing a white skirt.

color(b,w,e) ==> ~color(b,w,e) & color(b,w,x)

This leaves us with the situation shown below.

4.6. EXAMPLE –COLORS 39

r w b

r Î

w Î

b Î Î

Now we get to the interesting part. First, we have updates that tell us that, if there are two
occurrences of x in a row or a column and the remaining cell is an e, then the final possibility
in that row or column must be a v.

c(P,C1,x) & c(P,C2,x) & c(P,C3,b) ==> ~c(P,C3,b) & c(P,C3,v)
c(P1,C,x) & c(P2,C,x) & c(P3,C,b) ==> ~c(P3,C,b) & c(P3,C,v)

Applying these updates once to the situation above leads to the situation depicted below.
Here we use a green check to represent the value v. Since neither Willa White nor Betty Blue
is wearing a white skirt, Ruby Red must be wearing white.

r w b

r Î P

w Î

b Î Î

Similarly, we have updates that tell us that, if there is an occurrence of an v in a row or a
column and there is a cell containing an e, then that e should be changed to an x.

c(P,C1,v) & c(P,C2,e) ==> ~c(P,C2,e) & c(P,C2,x)
c(P1,C,v) & c(P2,C,e) ==> ~c(P2,C,e) & c(P2,C,x)

Applying these updates gives us more information. Since Ruby Red is wearing a red skirt,
she must not be wearing a blue skirt.

r w b

r Î P Î

w Î

b Î Î

Applying these updates three more times leads to an overall solution to the problem. Since
neither Ruby Red nor Betty Blue is wearing blue, Willa White must be wearing blue. Therefore,
Willa White cannot be wearing red. And, therefore, Betty Blue must be wearing red.

40 4. UPDATES

r w b

r Î P Î

w Î Î P

b P Î Î

This problem is special in that we can solve it solely by inferring values from other values.
In constraint satisfaction problems like this one, some search is often necessary.That said, constraint
propagation techniques, like the one used here, can often cut down on this search even when they
cannot be used to solve the problem altogether.

This case is also special in that it is easy to express all of the update rules necessary to
solve the problem. For some problems, such as solving Sudoku puzzles, it is impractical to write
update rules using our limited update language. Luckily, as we shall see in future chapters, we
can easily express more complicated rules once we have the ability to write view definitions and
action definitions.

4.7 EXERCISES
4.1. For each of the following strings, say whether it is a syntactically legal update.

(a) p(a,f(f(X))) ==> p(X,Y)
(b) P(a,Y) ==> P(Y,a)
(c) p(X,Y) & p(Y,Z) ==> ~(X,Y) & ~p(Y,Z) & p(X,Z)
(d) p(X,b) ==> f(X,f(b,c))

4.2. What is the result of applying the update rule p(X,Y) ==> ~p(X,Y) & p(Y,X) to the
dataset shown below?

p(a,a)
p(a,b)
p(b,a)

4.3. Suppose we have a kinship dataset with a binary predicate parent and a unary pred-
icate male. Write update rules to replace all factoids using the parent predicate with
equivalent factoids using the binary predicates father and mother.

4.4. Amy, Bob, Coe, and Dan are traveling to different places. One goes by train, one by car,
one by plane, and one by ship. Amy hates flying. Bob rented his vehicle. Coe tends to
get seasick. And Dan loves trains. Write update rules to solve this problem by constraint
propagation.

41

C H A P T E R 5

Query Evaluation
5.1 INTRODUCTION
In Chapter 3, we described the semantics of queries in terms of instances of query rules. While
the definition is easy to understand and mathematically precise, enumerating instances is not
a practical method for computing answers to queries. In this chapter, we present an algorithm
that produces the same results but in a more efficient manner.

We begin this chapter with a discussion of evaluation of queries without variables. In
Section 5.3, we look at a way of comparing expressions containing variables. In the section after
that, we show how to combine that technique with the procedure described here to produce an
evaluation procedure for queries with variables. We close with an analysis of the computational
complexity of our evaluation algorithm.

5.2 EVALUATINGGROUNDQUERIES
If a query contains multiple query rules, we check whether the body of each rule is true. If so, we
add the head of the rule to the extension of our query. The procedure for determining whether
the body is true depends on the type of the body.

1. If the body of a query rule is a single atom, we check whether that atom is contained in
our dataset. If so, the body is true.

2. If the body is a negated atom, we check whether the atom is contained in our dataset. If
so, the body is false. If the atom is not contained in our dataset, then the body is true.

3. If the body is a conjunction of literals, we first execute this procedure on the first conjunct.
If the answer is true, we move on to the next conjunct and so forth until we are done. If
the answer to any one of the conjuncts is false, then the value of the body as a whole is
false.

Consider the dataset shown below. There are four symbols a, b, c, and d; and there is a
single binary predicate p.

p(a,b)
p(b,c)
p(c,d)

42 5. QUERYEVALUATION
Now, imagine that we are asked to evaluate the query shown below. In this case there are

three rules. To compute all answers, we execute our procedure on each of these rules.

goal(a) :- p(a,c)
goal(b) :- p(a,b) & p(b,a)
goal(c) :- p(c,d) & ~p(d,c)

In the first rule, the body p(a,c) is an atom, so we just check whether or not it is in the
dataset. Since it is not there, nothing is contributed to our result.

The body of the second rules is a conjunction p(a,b) & p(b,a), and so we evaluate the
conjuncts in order to see whether they are all true. In this case, the first conjunct is true but the
second is false, so the conjunction as a whole is false and again nothing is contributed to our
result.

The body of the third rule is also a conjunction p(c,d) & ~p(d,c). Again, we check the
conjuncts in turn. p(c,d) is true, so we move on to ~p(d,c). p(d,c) is false so the negation
is true. Since both conjuncts of the conjunction are true, the conjunction as a whole is true.
Consequently, we add the head of our rule goal(c) to our result.

5.3 MATCHING
Matching is the process of determining whether a pattern (an expression with or without vari-
ables) matches an instance (an expression without variables), i.e., whether the two expressions
can be made identical by appropriate substitutions for the variables in the pattern.

A substitution is a finite set of bindings of variables to terms. In what follows, we write
substitutions as sets of replacement rules, like the one shown below. In each rule, the variable to
which the arrow is pointing is to be replaced by the term from which the arrow is pointing. In
this case, X is associated with a and Y is associated with b.

{X a, Y b}

The result of applying a substitution � to an expression � is the expression �� obtained
from � by replacing every occurrence of every variable with a binding in the substitution by the
term to which it is bound.

p(X,b){X a, Y b} = p(a,b)
q(X,Y,X){X a, Y b} = q(a,b,a)

A substitution is amatcher for a pattern and an instance if and only if applying the substitu-
tion to the pattern results in the given instance. One good thing about our language is that there

5.3. MATCHING 43
is a simple and inexpensive procedure for computing a matcher of a pattern and an expression
if it exists.

The procedure assumes a representation of expressions as sequences of subexpressions. For
example, the expression p(X,b) can be thought of as a sequence with three elements, viz. the
predicate p, the variable X, and the symbol b.

We start the procedure with two expressions and a substitution (which is initially empty).
We then recursively process the two expressions, comparing the subexpressions at each point.
Along the way, we expand the substitution with variable assignments as described below.

1. If the pattern is a symbol and the instance is the same symbol, then the procedure succeeds,
returning the unmodified substitution as result.

2. If the pattern is a symbol and the instance is a different symbol or a compound expression,
then the procedure fails.

3. If the pattern is a variable with a binding, we compare the binding for the variable with
the given instance. If they are identical, the procedure succeeds, returning the unmodified
substitution as result; otherwise it fails.

4. If the pattern is a variable without a binding, we include a binding for the variable in the
given instance and we return that substitution as a result.

5. If the pattern is a compound expression and the instance is a compound expression of the
same length, we iterate across the pattern and the instance.

6. If the pattern is a compound expression and the instance is a symbol or a compound ex-
pression of a different length, the procedure fails.

If we fail to match a sub-pattern and a sub-instance at any point in this process, the
procedure as a whole fails. If we finish this recursive comparison of the pattern and the instance,
the procedure as a whole succeeds and the accumulated substitution at that point is the resulting
matcher.

As an example of this procedure in operation, consider the process of matching the pattern
p(X,Y) and the instance p(a,b) with the initial substitution {}. A trace of the execution of the
procedure for this case is shown below. We show the beginning of a comparison with a line
labeled Compare together with the expressions being compared and the input substitution. We
show the result of each comparison with a line labeled Result. The indentation shows the depth
of recursion of the procedure.

44 5. QUERYEVALUATION

Compare: p(X,Y), p(a,b), {}
Compare: p, p, {}
Result: {}
Compare: X, a, {}
Result: {X a}
Compare: Y, b, {X a}
Result: {X a, Y b}

Result: {x a, y b}

As another example, consider the process of matching the pattern p(X,X) and the in-
stance p(a,a). A trace is shown below. By the time we compare the last arguments in the two
expressions, X is bound to a, so the match succeeds.

Compare: p(X,X), p(a,a), {}
Compare: p, p, {}
Result: {}
Compare: X, a, {}
Result: {X a}
Compare: X, a, {X a}
Result: {X a}

Result: {X a}

As a final example, consider the process of trying to match the pattern p(X,X) and the
expression p(a,b). The main interest in this example comes in comparing the last argument
in the two expressions, viz. X and b. By the time we reach this point, X is bound to a and the
corresponding instance is b. Since the pattern is a symbol and the instance is a different symbol,
the match attempt fails.

Compare: p(X,X), p(a,b), {}
Compare: p, p, {}
Result: {}
Compare: X, a, {}
Result: {X a}
Compare: X, b, {X a}
Result: false

Result: false

5.4. EVALUATINGQUERIESWITHVARIABLES 45
This matching procedure is quite simple. However, it is worth understanding thoroughly,

as it is the basis for more complicated matching procedures defined and used in later chapters.

5.4 EVALUATINGQUERIESWITHVARIABLES
Evaluating queries with variables is complicated by the fact that there can be multiple variable
bindings that make the body of a rule true; and, consequently, there can be multiple possible
answers. In some cases, we want just a single answer; in some cases, we want several answers;
and, in other cases, we want all answers. In what follows, we talk about a procedure for generating
all answers. The procedures for the other cases are analogous.

In finding the extension for an arbitrary query rule (i.e., one with or without variables), we
start with the query rule and an empty substitution. Rather than simply checking whether the
body is true or false, as in the ground case, we compute the set of all variable bindings for which
the body is true and, for each of these, we include in our extension the result of applying that
variable binding to the head of the rule. The procedure for computing these variable bindings
depends on the type of the body of the rule.

1. If the body of the rule is an atom, we try matching the atom to the factoids in our dataset.
For each factoid that matches the atom, we add the corresponding substitution to our
answer set; and we return the set of all substitutions obtained in this way.

2. If the query is a negation, we execute our procedure on the argument of the negation and
the given substitution. If the result is a non-empty set (i.e., there are substitutions that
work), then the negation is false and we return false as answer. If the result of the recursive
execution is the empty set (i.e., there are no substitutions that work), then the negation as
a whole is true and we return the singleton set containing the given substitution as a result.

3. If our query is a conjunction, we execute our procedure on the first conjunct and the given
substitution. We then iterate over the list of answers, for each substitution executing the
procedure on the remaining conjuncts and that substitution and return the resulting sub-
stitutions.

To illustrate this procedure, consider the dataset shown below.

p(a,b)
p(a,c)
p(b,c)
p(c,d)

Now, consider the query goal(Y) :- p(a,Y). The pattern p(a,Y) matches two factoids
in our dataset, and so there are two results.

46 5. QUERYEVALUATION
goal(b)
goal(c)

Suppose instead we had the query rule goal(Y) :- p(a,Y) & p(Y,d). Once again, the
pattern p(a,Y)matches just two factoids in our dataset. Given {Y b}, the pattern p(Y,d) does
not match any factoids; given {Y c}, the pattern p(Y,d) matches just p(c,d). Thus, there is
just one answer in this case.

goal(c)

Given the conjunctive query goal(Y) :- p(a,Y) & ~p(Y,d), we would again find two
answers to the first conjunct, viz. {Y b} and {Y c}. Given the first of these, the negation
~p(Y,d) is satisfied, and so the conjunction is true. Given the second answer to the first conjunct,
the negation fails and so there is no answer in this case. As with the last query, there is just one
answer.

goal(b)

Finally, for a query with more than one rule, we would get the union of the answers to the
individual rules.

5.5 COMPUTATIONALANALYSIS
One nice feature of our query evaluation algorithm is that computational analysis is straightfor-
ward. In this section, we assume a standard left-to-right implementation of evaluation with no
indexing of datasets and no caching of results once they are computed.

Consider the query shown below.

goal(a,c) :- p(a,Y) & p(Y,c)

What is the cost of evaluating this query? In the worst case, there are n^2 facts in the
database, where n is the number of ground terms in our language. So, we need n^2 steps to
evaluate the first conjunct. There are at most n facts that have a as first argument. For each of
these, we look at n^2 possibilities for the second conjunct. Hence, the cost of computing the
instance can be expressed as shown below.

n2 + n*n2 = n2 + n3

Now consider the general version of this query shown below.

5.6. EXERCISES 47
goal(X,Z) :- p(X,Y) & p(Y,Z)

What is the cost of computing all answers to this query? In the worst case, there are n^2
facts in the database, where n is the number of objects in the domain. So, we need n^2 steps to
evaluate the first subgoal. There are at most n^2 possible values for Y. For each of these, we look
at n^2 possibilities for the second subgoal. The resulting cost is shown below.

n2 + n2*n2 = n2 + n4

Before leaving our analysis of complexity, it is instructive to compare the cost of com-
puting answers using this algorithm with the cost of computing answers in accordance with the
semantics described in the preceding chapter, i.e., by enumerating all instances of rules and, for
each such instance, checking whether the body of each such instance is true or false.

In the preceding example, the query has just three variables. Consequently, for a domain
with n objects, there are n3 instances. To evaluate each of these instances, we must compare each
of our two subgoals to every factoid in our dataset, and in the worst case there are n2 of these.
The overall cost is shown below.

n3(n2 + n2) = n5 + n5 = 2n5

Our algorithm is clearly better in this case, and the relative benefits are greater when we
consider sparse datasets, i.e., datasets that do not include all possible factoids. In such cases, the
“semantics-based” algorithm must still look at all instances, but our algorithm needs to look at
only those instances that are derived form factoids in the dataset.

Note that, in the presence of dataset indexing or caching of results, the details of these
analyses are likely to be different, but the style of analysis is the same and the relative merits of
the two algorithms are more or less the same.

5.6 EXERCISES
5.1. For each of the following patterns and instances, say whether the instance matches the

pattern and, if so, give the corresponding matcher.

(a) p(X,Y) and p(a,a)

(b) p(X,Y) and p(a,f(a))

(c) p(X,f(Y)) and p(a,f(a))

(d) p(X,X) and p(2,min(2,4))

(e) p(X,min(2,4)) and p(2,2)

48 5. QUERYEVALUATION
5.2. Suppose that we want to find all goal(X,Y,Z) such that p(X,Y) & q(Y,Z). Select the

formula that captures the worst case complexity of our standard evaluation algorithm
for this query (assuming no indexing of the dataset). The symbol n here represents the
total number of objects in the domain.

(a) 2n2 + 2n3

(b) 2n2 + 2n4

(c) 2n2 + n3 + n4

5.3. For each of the queries shown below, select the expression that captures the worst case
complexity of our standard evaluation algorithm without indexing. The symbol n rep-
resents the total number of objects in the domain.

goal(X,Y) :- p(X,Y) & q(Y) & q(Z)
(a) n4 + n3 + n2 + n
(b) 2n4 + 2n3 + n2 + n
(c) 2n4 + 2n3

goal(X,Y) :- p(X,Y) & q(Y)
(a) n4 + n3 + n2 + n
(b) 2n4 + 2n3 + n2 + n
(c) 2n4 + 2n3

49

C H A P T E R 6

ViewOptimization
6.1 INTRODUCTION
Two queries are semantically equivalent if and only if they produce identical results for every
dataset. In such cases, it does not matter which query we write if all we care about is getting
the right answers. On the other hand, it is possible that one query is computationally better than
another in that our evaluation algorithm gets those answers more quickly.

In this chapter, we look at a variety of techniques for optimizing queries, i.e., converting
expensive queries into semantically equivalent queries that are computationally less complex.
We begin with a discussion of subgoal ordering within query rules. We then look at eliminating
useless subgoals. And we finish with a discussion of eliminating rules from queries with multiple
rules.

6.2 SUBGOALORDERING
One very common source of inefficiency in evaluation stems from non-optimal ordering of sub-
goals within queries. The good news is that it is often possible to find better orderings just by
looking at the form of the queries involved even without looking at the data to which the queries
are applied.

As an example of inefficiency due to poor subgoal ordering, consider the query shown
below. Our goal is true of X and Y if p is true of X and r is true of X and Y and q is true of X.

goal(X,Y) :- p(X) & r(X,Y) & q(X)

Intuitively, this seems like a bad way to write this query for our usual evaluation procedure.
It seems as though the q condition should come before the r condition, as in the following query.

goal(X,Y) :- p(X) & q(X) & r(X,Y)

In fact, there is good reason for this intuition. For our standard evaluation procedure, the
worst-case cost of evaluating the first query is n4, where n is the size of the domain of objects.
By contrast, the worst-case cost of evaluating the second query is just n3.

Let’s look at these two cases in more detail. In the worst case, there are n2 + 2n facts in
the database, where n is the number of objects in the domain.

50 6. VIEWOPTIMIZATION
In evaluating the first query, our algorithm would first examine all n^2 + 2n facts to find

those that match p(X). There would be at most n answers. For each of these, the algorithm
would again look at n^2 + 2n facts to find those that match r(X,Y). There would be n for each
value of X. Finally, for each of these pairs, the algorithm would again examine at n^2 + 2n facts
to find those that match q(X). The grand total is shown below.

(n^2 + 2n) + n*((n^2 + 2n) + n*(n^2 + 2n)) = n^4 + 3n^3 + 3n^2 + 2n

In evaluating the second query, the algorithm would again examine all n^2 + 2n facts to
find those that match p(X). There would be at most n answers. For each of these, the algorithm
would again look at n^2 + 2n facts to find those that match q(X). There would be at least one
for each value of X. Finally, for each such X, the algorithm would examine n^2 + 2n facts to find
those that match r(X,Y). The grand total is shown below.

(n^2 + 2n) + n*((n^2 + 2n) + 1*(n^2 + 2n)) = 2n^3 + 5n^2 + 2n

Suppose, for example, there were 4 objects in the domain. In this case, there would be at
most 4 p facts and 4 q facts and 16 r facts. Evaluating the first query would require 504 matches,
while evaluating the second query would require only 208.

In the presence of indexing, the asymptotic complexity is the same for both orderings.
However, the lower degree terms for the second ordering suggest that it is still the better or-
dering. Moreover, it is possible to show that, averaging over all possible databases, the second
query is better than the first.

Fortunately, there is a simple method for reordering subgoals in situations like this. The
basic idea is to assemble a new body for the query incrementally, picking a subgoal on each step
and removing it from the list of remaining subgoals to be considered. In making its choice, the
method examines the remaining subgoals in left-to-right order. If it encounters a subgoal all of
whose variables are bound by subgoals already chosen, then that subgoal is added to the new
query and removed from the list of remaining subgoals. If not, the method removes the first
remaining subgoal from the list, adds it to the new query, updates its list of bound variables, and
moves on to the next step.

As an example of this method in action, consider the first query shown above. At the start,
the list of remaining subgoals consists of all three subgoals in the query. At this point, none of
the three subgoals is ground, so the method chooses the first subgoal p(X), adds it to its new
query, and puts X on the list of bound variables. On the second step, the method looks at the
remaining two subgoals. The subgoal r(X,Y) contains the unbound variable Y and so it is not
chosen. By contrast, all of the variables in the subgoal q(X) are bound, so the method outputs
this subgoal next. On the third step, the final subgoal is added forming the second query shown
above.

6.3. SUBGOALREMOVAL 51

6.3 SUBGOALREMOVAL
Another common source of inefficiency in evaluation stems from the presence of redundant
subgoals within queries. In many cases, it is possible to detect and eliminate such redundancies.

As a simple example of the problem, consider the query shown below. Relation goal is
true of X and Y if p is true of X and Y and q is true of Y and q is also true of some Z.

goal(X,Y) :- p(X,Y) & q(Y) & q(Z)

It should be clear that the subgoal q(Z) is redundant here. If there is a value for Y such
that q(Y) is true, then that value for Y also works as a value for Z. Consequently, we can drop
the q(Z) subgoal (while retaining q(Y)), resulting in the query shown below.

goal(X,Y) :- p(X,Y) & q(Y)

Note that the opposite is not true. If we were to drop q(Y) and retain q(Z), we would
lose the constraint on the second argument of p, which is also an argument to r.

Fortunately, it is easy to determine which subgoals can be removed and which need to be
retained. The basic idea is to assemble a new body for the query incrementally, picking a subgoal
on each step, checking for redundancy, and adding the subgoal once if it is not redundant.

As an illustration of thismethod in action, consider the example shown above.Themethod
first computes the variables in the head of the query, viz. [X,Y] and initializes the variable
newquery to a new query with the same head as the original query. It then iterates over the
body of the query, adding subgoals to the new query once they are checked for redundancy.

On the first step of the iteration, the method focusses on p(X,Y). It creates a dataset
consisting of instances of the remaining subgoals, viz. q(x1) and q(x2); it then tries to derive
p(x0,x1); and, in this case, it fails. So p(X,Y) is added to the new query.

On the second step, the method focusses on q(Y). It creates a dataset consisting of in-
stances of the remaining subgoals, viz. p(x0,x1) and q(x2); it then tries to derive q(x1); and,
once again, it fails. So q(Y) is added to the new query.

Finally, the method focusses on q(Z). It creates a dataset consisting of instances of the
other subgoals, viz. p(x0,x1) and q(x1); it then tries to derive an instance of q(Z). Note that
Z is not bound here since it does not occur as a head variable or a variable in any of the other
subgoals. In this case, the test succeeds; and so q(Z) is not added to the new query.

This method is sound in that it removes only redundant subgoals. As a result, any query
produced by this method is equivalent to the query it is given as input.

Unfortunately, the method is not complete. There are redundant subgoals that it is does
not detect. The problem arises when multiple redundant subgoals share variables that prevent
the method from detecting the redundancy.

As an example, consider the query shown below. The relation goal is true of X if p is true
of X and Y and q is true of X and Y and p is true of X and Z and q is true of X and Z.

52 6. VIEWOPTIMIZATION
goal(X) :- p(X,Y) & q(X,Y) & p(X,Z) & q(X,Z)

Clearly, the last two subgoals are redundant with the first two subgoals. Unfortunately,
our method does not detect that either of the subgoals in either pair is redundant because of the
variables shared with the other subgoal of the pair. Try it.

Detecting this sort of redundancy can be done mechanically by considering subsets of sub-
goals and not just individual subgoals. However, this is more expensive than the simple method
outlined above.

6.4 RULEREMOVAL
An analogous form of inefficiency in evaluation stems from the presence of redundant rules. As
with redundant subgoals within rules, it is often easy to detect and eliminate such redundancies.

As an example of the problem, consider the rules shown below. Relation goal is true of
X if p is true of X and Y and q is true of b and r is true of Z. Relation goal is true of X if p is
true of X and Y and q is true of Y.

goal(X) :- p(X,b) & q(b) & r(Z)
goal(X) :- p(X,Y) & q(Y)

Any answer produced by the first rule here is also produced by the second rule, so the first
rule is redundant and can be eliminated.

The trick to detecting such redundancies is to recognize that the second rule subsumes the
first, i.e., all of the answers produced by the second rule are produced by the first rule. If we
replace some or all of the variables in the body the second rule that do not occur in the head,
then the heads remain the same and all of its subgoals are members of the body of the first rule.
In this case, all we need to do is to replace Y by b, and we get the rule goal(X) :- p(X,b) &
q(b), which is the same as the first rule except with fewer subgoals. Every output of the first
rule is, therefore, an output of the second; and, consequently, the first rule can be dropped.

6.5 EXAMPLE –CRYPTARITHMETIC
A cryptarithmetic problem is a constraint satisfaction problem characterized by a finite set of
letters and a finite set of numbers and an arithmetic constraint written in terms of the letters. A
solution to the problem is a 1–1 mapping of letters to numbers such that, when the letters are
replaced by their corresponding numbers, the arithmetic constraint is satisfied.

A classic cryptarithmetic is shown below. Here, the letters are {S, E, N, D, M, O, R, Y}
and the numbers are the digits from 0–9 and we are looking for an assignment of the letters to
digits such that the equation holds.

6.5. EXAMPLE –CRYPTARITHMETIC 53
SEND

+MORE

MONEY

We can formulate this problem up as a query in much the same way that we formalized
the map coloring problem presented in Chapter 3. First, we have a dataset listing the allowable
digits.

digit(0)
digit(1)
digit(2)
digit(3)
digit(4)
digit(5)
digit(6)
digit(7)
digit(8)
digit(9)

Next, we write a query listing the eight letters as goal values, with subgoals to fix the ranges
of these variables, disjointness constraints, and additional constraints to capture the arithmetic
conditions. See below. In the interest of conciseness here, we have used ordinary arithmetic op-
erators in place of the corresponding builtins, e.g., we have used E!=S for used distinct(E,S),
and we have used used 1000*S for times(1000,S).

goal(S,E,N,D,M,O,R,Y) :-
digit(S) & digit(E) & digit(N) & digit(D) &
digit(M) & digit(O) & digit(R) & digit(Y) &
S!=0 & E!=S & N!=S & N!=E & D!=S & D!=E & D!=N &
M!=0 & M!=S & M!=E & M!=N & M!=D &
O!=S & O!=E & O!=N & O!=D & O!=M &
R!=S & R!=E & R!=N & R!=D & R!=M & R!=O &
Y!=S & Y!=E & Y!=N & Y!=D & Y!=M & Y!=O & Y!=R &
evaluate(1000*S+100*E+10*N+D),Send) &
evaluate(1000*M+100*O+10*R+E),More) &
evaluate(10000*M+1000*O+100*N+10*E+Y),Money) &
evaluate(plus(Send,More,Money)/td>

54 6. VIEWOPTIMIZATION
Having expressed our goal in this way, we can use our evaluation procedure to generate

the answer to this problem. However, this is not without difficulty. Given the way this query
is written, the evaluation process will take a long time. There are 108 = 100,000,000 possible
variable bindings. In the worst case (where there is no solution), it would check all of these. On
average, it would have to look at a substantial fraction.

The good news is that we can use subgoal ordering to transform this query into one that
is easier to evaluate. We simply move the inequalities up to the point where the variables are
bound. See below.

goal(S,E,N,D,M,O,R,Y) :-
digit(S) & S!=0 &
digit(E) & E!=S &
digit(N) & N!=S & N!=E &
digit(D) & D!=S & D!=E & D!=N &
digit(M) & M!=0 & M!=S & M!=E & M!=N & M!=D &
digit(O) & O!=S & O!=E & O!=N & O!=D & O!=M &
digit(R) & R!=S & R!=E & R!=N & R!=D & R!=M & R!=O &
digit(Y) & Y!=S & Y!=E & Y!=N & Y!=D & Y!=M & Y!=O & Y!=R &
evaluate(1000*S+100*E+10*N+D),Send) &
evaluate(1000*M+100*O+10*R+E),More) &
evaluate(10000*M+1000*O+100*N+10*E+Y),Money) &
evaluate(plus(Send,More,Money)/td>

Having done this, we eliminate many of the possibilities before they are even generated.
The upshot is that this query takes orders of magnitude less time to evaluate, on most computers
taking no more than a fraction of a second.

6.6 EXERCISES
6.1. For each of the following groups of query rules, say which rule is best in terms of worst

case evaluation complexity using our standard algorithm without indexing.

(a) goal(X,Y,Z) :- p(X,Y) & q(X,X) & r(X,Y,Z)
goal(X,Y,Z) :- p(X,Y) & r(X,Y,Z) & q(X,X)
goal(X,Y,Z) :- q(X,X) & p(X,Y) & r(X,Y,Z)
goal(X,Y,Z) :- q(X,X) & r(X,Y,Z) & p(X,Y)
goal(X,Y,Z) :- r(X,Y,Z) & p(X,Y) & q(X,X)
goal(X,Y,Z) :- r(X,Y,Z) & q(X,X) & p(X,Y)

6.6. EXERCISES 55

(b) goal(X,Y,Z) :- p(X,Y) & q(a,b) & r(X,Y,Z)
goal(X,Y,Z) :- p(X,Y) & r(X,Y,Z) & q(a,b)
goal(X,Y,Z) :- q(a,b) & p(X,Y) & r(X,Y,Z)
goal(X,Y,Z) :- q(a,b) & r(X,Y,Z) & p(X,Y)
goal(X,Y,Z) :- r(X,Y,Z) & p(X,Y) & q(a,b)
goal(X,Y,Z) :- r(X,Y,Z) & q(a,b) & p(X,Y)

(c) goal(X,Y,Z) :- p(X,Y,Z) & q(X) & ~r(X,Y)
goal(X,Y,Z) :- p(X,Y,Z) & ~r(X,Y) & q(X)
goal(X,Y,Z) :- q(X) & p(X,Y,Z) & ~r(X,Y)
goal(X,Y,Z) :- q(X) & ~r(X,Y) & p(X,Y,Z)
goal(X,Y,Z) :- ~r(X,Y) & q(X) & p(X,Y,Z)
goal(X,Y,Z) :- ~r(X,Y) & p(X,Y,Z) & q(X)

6.2. For each of the following groups of query rules, select the alternative that is equivalent
to the first rule in the group.

(a) goal(X) :- p(X,Y) & q(Y) & q(Z)
goal(X) :- p(X,Y)
goal(X) :- p(X,Y) & q(Y)
goal(X) :- p(X,Y) & q(Z)

(b) goal(X) :- p(X) & q(X) & q(W)
goal(X) :- p(X)
goal(X) :- p(X) & q(X)
goal(X) :- p(X) & q(W)

(c) goal(X,Y,Z) :- p(X,Y) & q(Y) & q(Z) & q(W)
goal(X,Y,Z) :- p(X,Y) & q(Y) & q(Z)
goal(X,Y,Z) :- p(X,Y) & q(Y) & q(W)
goal(X,Y,Z) :- p(X,Y) & q(Z) & q(W)

6.3. For each of the following pairs of queries, say whether the first query subsumes the
second, i.e., whether the set of answers to the first query contains the answers to the
second query.

56 6. VIEWOPTIMIZATION

(a) goal(X) :- p(X,Y)
goal(X) :- p(X,a) & p(X,b)

(b) goal(X) :- p(X,a)
goal(X) :- p(X,Y)

(c) goal(X) :- p(X,Y) & p(X,Z)
goal(X) :- p(X,b) & q(b)

PART III

ViewDefinitions

59

C H A P T E R 7

ViewDefinitions
7.1 INTRODUCTION
Consider the kinship dataset shown below. The situation here is the same as that described in
Chapter 2. Art is the parent of Bob and Bea. Bob is the parent of Cal and Cam. Bea is the parent
of Coe and Cory.

parent(art,bob)
parent(art,bea)
parent(bob,cal)
parent(bob,cam)
parent(bea,coe)
parent(bea,cory)

Suppose now that we wanted to express information about the grandparent relation as
well as the parent relation. As illustrated in the preceding chapter, we can do this by adding
facts to our dataset. In this case, we would add the facts shown below. Art is the grandparent of
Cal and Cam and Coe and Cory.

grandparent(art,cal)
grandparent(art,cam)
grandparent(art,coe)
grandparent(art,cory)

Unfortunately, doing things this way is wasteful. The grandparent relation can be defined
in terms of the parent relation, and so storing grandparent data as well as parent data is redun-
dant.

A better alternative is to write rules to encode such definitions and to use these rules to
compute the relations defined by these rules when needed. As we shall see in this chapter, we can
write such definitions using rules similar those that we used to define goal relations in Chapter 3.
For example, in the case above, rather than adding grandparent facts to our dataset, we can write
the following rule, safe in the knowledge that we can use the rule to compute our grandparent
data.

60 7. VIEWDEFINITIONS
grandparent(X,Z) :- parent(X,Y) & parent(Y,Z)

In what follows, we distinguish two different types of relations—base relations and view
relations. We define base relations by writing facts in a dataset, and we define view relations by
writing rules in a ruleset. In our example, parent is a base relation, and grandparent is a view
relation.

Given a dataset defining our base relations and a ruleset defining our view relations, we
can use automated reasoning tools to derive facts about our view relations. For example, given
the preceding facts about the parent relation and our rule defining the grandparent relation,
we can compute the facts about the grandparent relation.

Using rules to define view relations has multiple advantages over encoding those relations
in the form of datasets. First of all, as we have just seen, there is economy: if view relations are
defined in terms of rules, we do not need to store as many facts in our datasets. Second, there
is less chance of things getting out of sync, e.g., if we change the parent relation and forget to
change the grandparent relation. Third, view definitions work for any number of objects; they
even work for applications with infinitely many objects (e.g., the integers) without requiring
infinite storage.

In this chapter, we introduce the syntax and semantics of view definitions, and we describe
the important notion of stratification. In subsequent chapters, we look at many, many examples
of using rules to define views. And, in Chapters 11 and 12, we look at some practical techniques
for using rules to compute view relations.

7.2 SYNTAX
The syntax of view definitions is almost identical to that of queries as described in Chapter 3.
The various types of constants are the same, and the notions of term and atom and literal are
also the same. The main difference comes in the syntax of rules.

As before, a rule is an expression consisting of a distinguished atom, called the head and a
conjunction of zero or more literals, called the body. The literals in the body are called subgoals. In
what follows, we write rules as in the example shown below. Here, r(X,Y) is the head; p(X,Y)
& ~q(Y) is the body; and p(X,Y) and ~q(Y) are subgoals.

r(X,Y) :- p(X,Y) & ~q(Y)

Despite these similarities, there are two important differences between query rules and
rules used in view definitions. (1) In writing query rules, we use a single generic predicate (e.g.,
goal) in the heads of all of our query rules. By contrast, in view definitions, we use predicates for
the relations we are defining (e.g., r in the example above). (2) In writing query rules, the sub-
goals of our rules can mention only predicates for relations described in the dataset. By contrast,
in view definitions, subgoals can contain view predicates as well as predicates for base relations.

7.3. SEMANTICS 61
One benefit of the more flexible syntax in view definitions is that we can define multiple

relations in a single set of rules. For example, the following rules define both the f relation and
the m relation in terms of p and q.

f(X,Y) :- p(X,Y) & q(X)
m(X,Y) :- p(X,Y) & ~q(X)

A second benefit is that we can use view relations in defining other view relations. For
example, in the following rule, we use the view relation f in our definition of g.

g(X,Z) :- f(X,Y) & p(Y,Z)

A third benefit is that views can be used in their own definitions, thus allowing us to define
relations recursively. For example, the following rules define a to be the transitive closure of p.

a(X,Z) :- p(X,Z)
a(X,Z) :- p(X,Y) & a(Y,Z)

Unfortunately, our relaxed language allows for rulesets with some unpleasant properties.
To avoid these problems, it is good practice to comply with some syntactic restrictions on our
datasets and rulesets, viz. compatibility and stratification and safety.

A ruleset is compatible with a dataset if and only if (1) all symbols shared between the
dataset and the ruleset are of the same type (symbol, constructor, predicate), (2) all constructors
and predicates have the same arity, and (3) none of the predicates in the dataset appear in the
heads of any rules in the ruleset.

7.3 SEMANTICS
The semantics of view definitions is more complicated than the semantics of queries due to the
possible occurrence of view predicates in subgoals; and, consequently, we take a slightly different
approach.

To define the result of applying a set of view definitions to a dataset, we first combine the
facts in a dataset with the rules defining our views into a joint set of facts and rules, hereafter
called a closed logic program, and we then define the extension of that closed logic program as
follows.

The Herbrand universe for a closed logic program is the set of all ground terms that can be
formed from the symbols and constructors in the program. For a program without constructors,
the Herbrand universe is finite (i.e., just the symbols). For a program with constructors, the
Herbrand universe is infinite (i.e., the symbols and all compound terms that can be formed
from those symbols).

62 7. VIEWDEFINITIONS
TheHerbrand base for a closed logic program is the set of all atoms that can be formed from

the constants in the program. Said another way, it is the set of all facts of the form r(t1,...,tn),
where r is an n-ary predicate and t1,...,tn are ground terms.

An interpretation for a closed logic program is an arbitrary subset of the Herbrand base
for the program. As with datasets, the idea here is that the factoids in the interpretation are
assumed to be true, and those that are not included are assumed to be false.

Amodel of a closed logic program is an interpretation that satisfies the program. We define
satisfaction in two steps—we first deal with the case of ground rules, and we then deal with
arbitrary rules.

An interpretation � satisfies a ground atom � if and only if � is in � . � satisfies a ground
negation ~� if and only if � is not in � . � satisfies a ground rule � :- �1 & ... & �n if and
only if � satisfies � whenever it satisfies �1,..., �n.

An instance of a rule in a closed logic program is a rule in which all variables have been
consistently replaced by terms from the Herbrand universe, i.e., the set of ground terms that
can be formed from the program’s vocabulary. As before, consistent replacement means that, if an
occurrence of a variable in a sentence is replaced by a given term, then all occurrences of that
variable in that sentence are replaced by the same term.

Using the notion of instance, we can define the notion of satisfaction for arbitrary closed
logic programs (with or without variables). An interpretation � satisfies an arbitrary closed logic
program � if and only if � satisfies every ground instance of every sentence in �.

As an example of these concepts, consider the dataset shown below.

p(a,b)
p(b,c)
p(c,d)
p(d,c)

And let’s assume we have the following view definition.

r(X,Y) :- p(X,Y) & ~p(Y,X)

The following interpretation satisfies the closed logic program consisting of this dataset
and ruleset. All of the facts in the dataset are included in the interpretation, and every conclusion
that is required by our rule is included as well.

p(a,b)
p(b,c)
p(c,d)
p(d,c)

7.3. SEMANTICS 63
r(a,b)
r(b,c)

By contrast, the following interpretations do *not* satisfy the program. The one on the
left is missing conclusions from the rule; the one in the middle is missing the facts from the
dataset; and the one on the right satisfies the rules but does not contain all of the facts from the
dataset.

p(a,b) r(a,b) p(a,b)
p(b,c) r(b,c) p(b,c)
p(c,d) p(c,d)
p(d,c) r(a,b)

r(b,c)
r(c,d)

On the other hand, the model shown above (the interpretation before these three non-
models) is not the only interpretation that works. In general, a closed logic program can have
more than one model, which means that there can be more than one way to satisfy the rules in
the program. The following interpretations also satisfy our closed logic program.

p(a,b) p(a,b) p(a,b)
p(b,c) p(b,c) p(b,c)
p(c,d) p(c,d) p(c,d)
p(d,c) p(d,c) p(d,c)
r(a,b) r(a,b) r(a,b)
r(b,c) r(b,c) r(b,c)
r(c,d) r(d,c) r(c,d)

r(d,c)

This seems odd in that there is no reason to include r(c,d) or r(d,c) in our interpreta-
tion. On the other hand, given our definition of satisfaction, there is no reason not to include
them.

The reason that this seems wrong is that we normally want our definitions to be if and
only if. We want to include among our conclusions only those facts that must be true. (1) All
factoids in our dataset must be true. (2) All factoids required by our rules must be true. (3) All
other factoids should be excluded.

This is the classic definition of what is know as logical entailment. A factoid is logically
entailed by a closed logic program if and only if it is true in every model of the program, i.e., the
set of conclusions is the intersection of all models of the program.

64 7. VIEWDEFINITIONS
One way to ensure logical entailment is to take the intersection of all interpretations that

satisfy our program. This guarantees that we get only those conclusions that are true in every
model. For example, if we took the intersection of the three models shown above, we would get
our original model.

Another approach is to concentrate on minimal models. A model � of a logic program �

is minimal if and only if there is no proper subset of � that is a model for �. If there is just
one minimal model of a closed logic program, then minimality guarantees logical entailment.
For example, the first model given above is minimal, and every factoid in that model must be
present in every model of the program.

Many closed logic programs have unique minimal models. For example, a closed logic
program that does not contain any negations has one and only one minimal model. Unfortu-
nately, closed logic programs with negation can have more than one minimal model.

One way of eliminating with ambiguities like this is to concentrate on programs that are
semipositive or programs that are stratified with respect to negation. We define these types of
programs and discuss their semantics in the next two sections.

7.4 SEMIPOSITIVE PROGRAMS
A semipositive program is one in which negations apply only to base relations, i.e., there are no
subgoals with negated views.

The semantics of a semipositive program can be formalized by defining the result of ap-
plying the view definitions in the program to the facts in the program’s dataset. We use the word
extension to refer to the set of all facts that can be “deduced” in this way.

An instance of an expression (atom, literal, or rule) is one in which all variables have been
consistently replaced by ground terms. For example, if we have a language with object constants
a and b, then r(a) :- p(a,a), r(a) :- p(a,b), r(b) :- p(b,a), and r(b) :- p(b,b)
are all instances of r(X) :- p(X,Y).

Given this notion, we define the result of the application of a single rule to a dataset as
follows. Given a rule r and a dataset �, let v(r ,�) be the set of all such that (1) is the head
of an arbitrary instance of r , (2) every positive subgoal in the instance is a member of �, and
(3) no negative subgoal in the instance is a member of �.

Using this notion, we define the result of repeatedly applying a single stratum of rules� to
a dataset � as follows. Consider the sequence of datasets defined recursively as follows. �0 = �,
and �nC1 = \v(r ,�0\...\�n) for all r in �. The closure of � on � is the union of the datasets
in this sequence, i.e., C(�,�) = \� i .

To illustrate our definition, let’s start with a dataset describing a small directed graph. In
the sentences below, we use the edge predicate to record the arcs of one particular graph.

edge(a,b)
edge(b,c)

7.4. SEMIPOSITIVE PROGRAMS 65
edge(c,d)
edge(d,c)

Now, let’s write some rules defining various relations on the nodes in our graph. Here, the
relation p is true of nodes with an outgoing arc. The relation q is true of two nodes if and only if
there is an edge from the first to the second or an edge from the second to the first. The relation
r is true of two nodes if and only if there is an edge from the first to the second and an edge
from the second to the first. The relation s is the transitive closure of the edge relation.

p(X) :- edge(X,Y)
q(X,Y) :- edge(X,Y)
q(X,Y) :- edge(Y,X)
r(X,Y,Z) :- edge(X,Y) & edge(Y,Z)
s(X,Y) :- edge(X,Y)
s(X,Z) :- edge(X,Y) & s(Y,Z)

We start the computation by initializing our dataset to the edge facts listed above.

edge(a,b)
edge(b,c)
edge(c,d)
edge(d,c)

Looking at the p rule and matching its subgoals to the data in our dataset in all possible
ways, we see that we can add the following facts. In this case, every node in our graph has an
outgoing edge, so there is one p fact for each node.

p(a)
p(b)
p(c)
p(d)

Looking at the q rules and matching their subgoals to the data in our dataset in all possible
ways, we see that we can add the following facts. In this case, we end up with the symmetric
closure of the original graph.

q(a,b)
q(b,a)
q(b,c)

66 7. VIEWDEFINITIONS
q(c,b)
q(c,d)
q(d,c)

Looking at the r rule and matching the subgoals to the data in our dataset in all possible
ways, we see that we can add the following facts.

r(c,d)
r(d,c)

Finally, looking at the first rule for s and matching its subgoals to the data in our dataset
in all possible ways, we see that we can add the following facts.

s(a,b)
s(b,c)
s(c,d)
s(d,c)

However, we are not quite done. With the facts just added, we can use the second rule to
derive the following additional data.

s(a,c)
s(b,d)
s(c,c)
s(d,d)

Having done this, we can use the s rule again and can derive the following fact.

s(a,d)

At this point, none of the rules when applied to this collection of data produces any results
that are not already in the set, and so the process terminates. The resulting collection of 25 facts
is the extension of this program.

7.5 STRATIFIEDPROGRAMS
We say that a set of view definitions is stratified if and only if its rules can be partitioned into strata
in such a way that (1) every stratum contains at least one rule, (2) the rules defining relations
that appear in positive subgoals of a rule appear in the same stratum as that rule or in some lower

7.5. STRATIFIEDPROGRAMS 67
stratum, and (3) the rules defining relations that appear in negative subgoals of a rule occur in
some lower stratum (not the same stratum).

As an example, assume we have a unary relation p that is true of all of the objects in some
application area, and assume that q is an arbitrary binary relation. Now, consider the ruleset
shown below. The first two rules define r to be the transitive closure of q. The third rule defines
s to be the complement of the transitive closure.

r(X,Y) :- q(X,Y)
r(X,Z) :- q(X,Y) & r(Y,Z)
s(X,Y) :- p(X) & p(Y) & ~r(X,Y)

This is a complicated ruleset, yet it is easy to see that it is stratified. The first two rules
contain no negations at all, and so we can group them together in our lowest stratum. The third
rule has a negated subgoal containing a relation defined in our lowest stratum, and so we put
it into a stratum above this one, as shown below. This ruleset satisfies the conditions of our
definition and hence it is stratified.

Stratum Rules

2 s(X,Y) :- p(X) & p(Y) & ~r(X,Y)

1 r(X,Y) :- q(X,Y)

r(X,Z) :- q(X,Y) & r(Y,Z)

By comparison, consider the following ruleset. Here, the relation r is defined in terms of
p and q, and the relation s is defined in terms of r and the negation of s.

r(X,Y) :- p(X) & p(Y) & q(X,Y)
s(X,Y) :- r(X,Y) & ~s(Y,X)

There is no way of dividing the rules of this ruleset into strata in a way that satisfies the
definition above. Hence, the ruleset is not stratified.

The problemwith unstratified rulesets is that there is a potential ambiguity. As an example,
consider the rules above and assume that our dataset also included the facts p(a), p(b), q(a,b),
and q(b,a). From these facts, we can conclude r(a,b) and r(b,a) are both true. So far, so
good. But what can we say about s? If we take s(a,b) to be true and s(b,a) to be false, then
the second rule is satisfied. If we take s(a,b) to be false and s(b,a) to be true, then the second
rule is again satisfied. The upshot is that there is ambiguity about s. By concentrating exclusively
on logic programs that are stratified, we avoid such ambiguities.

Although it is sometimes possible to stratify the rules in more than one way, this does not
cause any problems. So long as a program is stratified with respect to negation, the definition
just given produces the same extension no matter which stratification one uses.

68 7. VIEWDEFINITIONS
Finally, we define the extension of a ruleset� on dataset� as follows. The definition relies

on a decomposition of� into strata�1,...,�k . Since there are only finitely many rules in a closed
logic program and every stratum must contain at least one rule, there are only finitely many sets
to consider (though the sets themselves might be infinite). With that in mind, let �0 = �, and
let �nC1 = �n \ C(�nC1,�n). The extension of a program with k strata is just �k .

The extension of any closed logic program without constructors must be finite. Also, the
extension of any non-recursive closed logic program must be finite. In both cases, it is possible
to compute the extension in finite time. In fact, it is possible to show that the computation cost
is polynomial in the size of the dataset.

In the case of recursive programs without constructors, the result must still be finite. How-
ever, the cost of computing the extensionmay be exponential in the size of the data, but the result
can be computed in finite time.

For recursive programs with constructors, it is possible that the extension is infinite. In
such cases, the extension is still well-defined; and, although we obviously cannot generate the
entire extension in finite time, if a factoid is in the extension, it is possible to.

The preceding section illustrates our method of computing extensions for semipositive
programs. We now extend our example to show how to compute the extension of a stratified
program.

Suppose we add the rule shown below to the program in the preceding section. The rela-
tion t here is the complement of the transitive closure of the edge relation.

t(X,Y) :- p(X) & p(Y) & ~s(X,Y)

Since this rule contains a negated relation, it would necessarily appear at a higher stratum
than the s relation, and so we would not compute the conclusions until after we were done with
s.

In this case, there are sixteen ways to satisfy the first two subgoals of our rule; and, as we
saw in the preceding section, nine of them satisfy the s relation. The upshot is that the remaining
seven facts satisfy the t relation. So, we can add these to our extension.

s(a,a)
s(b,a)
s(b,b)
s(c,a)
s(c,b)
s(d,a)
s(d,b)

Note that, in the presence of rules with negated subgoals, it is sometimes possible to
stratify the rules in more than one way. The good news here is that does not cause any problems.

7.6. EXERCISES 69
So long as a program is stratified with respect to negation, the definition just given produces the
same dataset no matter which stratification one uses. Consequently, there is just one extension
for any safe, stratified logic program.

7.6 EXERCISES
7.1. Say whether each of the following expressions is a syntactically legal view definition.

(a) r(X,Y) :- p(X,Y) & q()
(b) r(X,Y) :- p(X,Y) & ~q(Y,X)
(c) ~r(X,Y) :- p(X,Y) & q(Y,X)
(d) p(X,Y) & q(Y,X) :- r(X,Y)
(e) p(X,Y) & ~q(Y,X) :- r(X,Y)

7.2. Suppose we have a dataset with two symbols a and b and two unary relations p and q
where all possible facts are true, i.e., the dataset is {p(a), p(b), q(a), q(b)}. Suppose
we have a closed logic program consisting of this dataset and the rule r(X) :- p(X) &
~q(X).

(a) How many interpretations does this program have?
(b) How many models does it have?
(c) How many minimal models does it have?

7.3. Say whether each of the following rulesets is stratified.

(a) r(X,Y) :- p(X,Y) & ~q(Y,X)
r(X,Y) :- p(X,Y) & ~q(X,Y)

(b) r(X,Z) :- p(X,Z) & q(X,Z)
r(X,Z) :- r(X,Y) & ~r(Y,Z)

(c) r(X,Z) :- p(X,Z) & ~q(X,Z)
r(X,Z) :- r(X,Y) & r(Y,Z)

7.4. What is v(r ,�) where r is r(X,Y) :- p(X,Y) & p(Y,X) and � is the dataset shown
below?

p(a,a)
p(a,b)
p(b,a)
p(b,c)

70 7. VIEWDEFINITIONS
7.5. What is C(�,�) where� is {r(X,Z) :- p(X,Z), r(X,Z) :- r(X,Y) & r(Y,Z)} and

� is the dataset shown below?

p(a,a)
p(a,b)
p(b,a)
p(b,c)

7.6. What is the extension of strata�1 and�2 on�, where�1 is {q(X) :- p(X,Y)}, where
�2 is {r(X,Y) :- p(X,Y) & ~q(Y)}, and where � is the dataset shown below?

p(a,b)
p(a,c)
p(b,d)
p(c,d)

71

C H A P T E R 8

View Evaluation
8.1 INTRODUCTION

In the preceding chapter, we defined the result of applying a stratified logic program to a dataset
in a constructive manner—starting with the dataset and successively applying the program’s
strata to produce an extension of the program as a whole. This definition readily translates to a
practical method of computing such extensions known as bottom-up evaluation.

Although bottom-up evaluation is used in some Logic Programming systems, many eval-
uation engines use a top-down approach to answering questions. Instead of starting with data
and working upward, such engines start with a query to be answered and work downward, using
rules to reduce the goals to subgoals until they reach subgoals written entirely in terms of base
relations.

The benefit of doing things this way is that such evaluation engines avoid the generation
of large numbers of conclusions that have nothing to do with the question at hand. More signif-
icantly, in cases where there are infinitely many possible conclusions, they can often find answers
to specific questions without doing infinitely much work.

One downside to top-down evaluation is that, for some people, it is more difficult to
understand than bottom-up evaluation. There is also a danger of unnecessary infinite loops if
rules are written badly. However, that danger can be minimized or eliminated by understanding
how the procedure works. A little familiarity with top-down processing can help one understand
how it works and can help one avoid writing bad rules.

In this chapter, we introduce a particular top-down evaluation procedure. We begin by
defining a top-down, backtracking approach to processing goals and rules without variables. We
then introduce the key process of unification. Finally, we put the two together in a top-down
procedure for arbitrary goals and rules.

8.2 TOP-DOWNPROCESSINGOFGROUNDGOALSAND
RULES

In this section, we begin our discussion of top-down evaluation by focussing on goals and rules
without variables. In the next section, we look at a way of comparing expressions containing
variables. In the section after that, we show how to combine that technique with the procedure
described here to produce an evaluation procedure for arbitrary goals and rules.

72 8. VIEWEVALUATION
Top-down evaluation is a recursive procedure. We start with a goal to be “proved.” We

either prove the goal directly or we reduce it to one or more subgoals and try to prove those
subgoals. The way we process a goal depends on the type of the goal we are given.

1. If the goal is an atom and the predicate in the goal is a base relation, we simply check
whether the goal is contained in our dataset. If it is there, we succeed. If not, we fail.

2. If the goal is a negative literal, we execute the procedure on the argument of the negation.
If we succeed in proving the argument, then the negation as a whole is false, and the
procedure fails. If we fail to prove the argument, then the negation as a whole is true, and
so we succeed.

3. If our goal is a conjunction of literals, we first execute our procedure on the first conjunct.
If we succeed in proving that goal, we move on to the next conjunct and so forth until we
are done. If we fail to prove any one of the goals, then we fail to prove the conjunction as
a whole.

4. If the goal is an atom and the predicate in the goal is a view relation, we examine all rules
with our goal as head. For each such rule, we execute our procedure on the body of the rule.
We succeed on our goal if and only if we can succeed on the body of some rule; otherwise,
we fail.

As an example, consider the dataset shown on the left below and the rule set shown on
the right. There are three base relations – p, q, r; and there are two view relations – s and t.

p(a) s(b) :- p(a) & q(b) & r(c)
q(a) s(b) :- p(a) & ~q(b) & ~t(c)
r(a) t(c) :- r(c)

t(c) :- r(d)

Now, imagine that we are asked whether to evaluate the goal s(b). Since s is a view
relation, we examine the rules containing s(b) in the head and execute the procedure on the
bodies of these rules, one after another until we find one that succeeds.

Using the first rule for s(b), we reduce our goal to the conjunction (p(a) & q(b) &
r(c)) and evaluate this subgoal. Since p is a base relation, we simply check our dataset for the
literal p(a). Since p(a) is in the dataset, that subgoal evaluates to true and we move on to the
second conjunct q(b). Since q is a base relation, again we check our dataset for the literal q(b).
Unfortunately, in this case, we fail since q(b) is not a member of the dataset. At this point, we
terminate processing of the conjunction. (Since the conjunction as a whole is false, there is no
point in check r(c).)

Having failed to prove the body of the first rule, we move on to the second rule and
try again, this time with p(a) & ~q(b) & ~t(c) as our goal. As before, we find that p(a) is
true and we move on to the second conjunct. In this case, we have a negation, so we execute

8.3. UNIFICATION 73
the procedure recursively on q(b). As before, we fail. Therefore, the subgoal ~q(b) is true. The
upshot is that this time we continue and execute the procedure on ~t(c). Since t is view relation,
we execute the procedure on the bodies of the rules containing t(c) in the head. In this case,
we first try r(c) and fail; then we try r(d) and fail once again. Having exhausted all of the rules
defining t(c), we fail to prove t(c). This means that the negation ~t(c) is true. The upshot
of that is that the conjunction (p(a) & ~q(b) & ~t(c)) is true; and, hence, our overall goal
s(b) is true.

8.3 UNIFICATION
Unifcation is the process of determining whether two expressions can be unified, i.e., made iden-
tical by appropriate substitutions for their variables. As we shall see, making this determination
is an essential part of top-down evaluation.

A substitution is a finite mapping of variables to terms. In what follows, we write substitu-
tions as sets of replacement rules, like the one shown below. In each rule, the variable to which
the arrow is pointing is to be replaced by the term from which the arrow is pointing. In this
case, X is to be replaced by a, Y is to be replaced by f(b), and Z is to be replaced by V.

{X a, Y f(b), Z V}
The variables being replaced together constitute the domain of the substitution, and the

terms replacing them constitute the range. For example, in the preceding substitution, the do-
main is {X, Y, Z}, and the range is {a, f(b), V}.

The result of applying a substitution � to an expression � is the expression �� obtained
from the original expression by replacing every occurrence of every variable in the domain of the
substitution by the term with which it is associated.

q(X,Y){X a, Y f(b), Z V} = q(a,f(b))
q(X,X){X a, Y f(b), Z V} = q(a,a)
q(X,W){X a, Y f(b), Z V} = q(a, W)
q(Z,V){X a, Y f(b), Z V} = q(V,V)

Given two or more substitutions, it is possible to define a single substitution that has the
same effect as applying those substitutions in sequence. For example, the substitutions {X a,
Y U, Z V} and {U d, V e} can be combined to form the single substitution {X a, Y d,
Z e, U d, V e}, which has the same effect as the first two substitutions when applied to any
expression whatsoever.

Computing the composition of a substitution � and a substitution � is easy. There are two
steps. (1) First, we apply � to the range of � . (2) Then we adjoin to � all pairs from � with
different domain variables.

As an example, consider the composition shown below. In the right-hand side of the first
equation, we have applied the second substitution to the replacements in the first substitution.

74 8. VIEWEVALUATION
In the second equation, we have combined the rules from this new substitution with the non-
conflicting rules from the second substitution.

{X a, Y U, Z V}{U d, V e, Z g}
= {X a, Y d, Z e}{U d, V e, Z g}
= {X a, Y d, Z e, U d, V e}

A substitution � is a unifier for an expression � and an expression if and only if ��= � ,
i.e., the result of applying � to � is the same as the result of applying � to . If two expressions
have a unifier, they are said to be unifiable.

The expressions p(X,Y) and p(a,V) have a unifier, e.g., {X a, Y b, V b} and are,
therefore, unifiable. The results of applying this substitution to the two expressions are shown
below.

p(X,Y){X a, Y b, V b} = p(a,b)
p(a,V){X a, Y b, V b} = p(a,b)

Note that, although this substitution is a unifier for the two expressions, it is not the only
unifier. We do not have to substitute b for Y and V to unify the two expressions. We can equally
well substitute c or f(c) or f(W). In fact, we can unify the expressions without changing V at
all by simply replacing Y by V.

In considering these alternatives, it should be clear that some substitutions are more gen-
eral than others. We say that a substitution � is as general as or more general than a substitution �
if and only if there is another substitution ı such that �ı=� . For example, the substitution {X a,
Y V} is more general than {X a, Y c, V b} since there is a substitution {V c} that, when
applied to the former, gives the latter.

{X a, Y V}{V c}={X a, Y c, V c}

In top-down evaluation, we are interested only in unifiers with maximum generality. A
most general unifier � of two expressions has the property that it is general as or more general
than any other unifier.

Although it is possible for two expressions to have more than one most general unifier,
all of these most general unifiers are structurally the same, i.e., they are unique up to variable
renaming. For example, p(X) and p(Y) can be unified by either the substitution {X Y} or the
substitution {Y X}; and either of these substitutions can be obtained from the other by applying
a third substitution. This is not true of the substitutions mentioned earlier.

One good thing about our language is that there is a simple and inexpensive procedure
for computing a most general unifier of any two expressions if it exists.

The procedure assumes a representation of expressions as sequences of subexpressions. For
example, the expression p(a,b,Z) can be thought of as a sequence with four elements, viz. the
predicate p, the symbol a, the symbol b, and the variable Z.

8.3. UNIFICATION 75
The procedure also assumes that the two expressions have no variables in common. As

we shall see in the next section, we can assure this by renaming the variables in one of the
expressions.

We start the procedure with two expressions and a substitution, which is initially the
empty substitution. We then recursively process the two expressions, comparing the subexpres-
sions at each point. Along the way, we expand the substitution with variable assignments as
described below. If, we fail to unify any pair of subexpression at any point in this process, the
procedure as a whole fails. If we finish this recursive comparison of the expressions, the pro-
cedure as a whole succeeds, and the accumulated substitution at that point is the most general
unifier.

In comparing two subexpressions, we first apply the substitution to each of the two ex-
pressions; and we then execute the following procedure on the two modified expressions.

1. If one expression is a symbol and the other expression is the same symbol, then the pro-
cedure succeeds, returning the unmodified substitution as result.

2. If one expression is a symbol and the other expression is a different symbol or a compound
expression, then the procedure fails.

3. If one expression is a variable and the other expression is the same variable, then the pro-
cedure succeeds, returning the unmodified substitution as result.

4. If at least one expression is a variable and the other expression is any other expression,
we proceed as follows. First, we check whether the other expression contains the variable.
If the variable occurs within the other expression, we fail (for reasons described below).
Otherwise, we update our substitution to the composition of the old substitution and a
new substitution in which we bind the variable to the second modified expression.

5. If the two expressions are sequences of the same length, we iterate across the expressions,
comparing as described above.

6. If the expressions are compound expressions of a different length, the procedure fails.

As an example of this procedure in operation, consider the computation of the most gen-
eral unifier for the expressions p(X,b) and p(a,Y) with the initial substitution {}. A trace of
the execution of the procedure for this case is shown below. We show the beginning of a com-
parison with a line labeled “Compare” together with the expressions being compared and the
input substitution. We show the result of each comparison with a line labeled “Result” (either
a substitution where successful or “false” where unsuccessful). The indentation shows the depth
of recursion of the procedure.

76 8. VIEWEVALUATION

Compare: p(X,b), p(a,Y), {}
Compare: p, p, {}
Result: {}
Compare: X, a, {}
Result: {X a}
Compare: Y, b, {X a}
Result: {X a, Y b}

Result: {x a, y b}

As another example, consider the process of unifying the expression p(X,X) and the ex-
pression p(a,Y). A trace is shown below. The main interest in this example comes in comparing
the last argument in the two expressions, viz. X and Y. By the time we reach this point, X is bound
to a, so we call the procedure recursively on a and Y, which results in a binding of Y to a.

Compare: p(X,X), p(a,Y), {}
Compare: p, p, {}
Result: {}
Compare: X, a, {}
Result: {X a}
Compare: X, Y, {X a}

Compare: a, Y, {X a}
Result: {X a, Y a}

Result: {X a, Y a}
Result: {X a, Y a}

One noteworthy part of the unification procedure is the test for whether a variable occurs
within an expression before the variable is bound to that expression. This test is called an occur
check since it is used to check whether or not the variable occurs within the term with which it
is being unified. For example, in trying to unify p(X,X) and p(Y,f(Y)), we would not want to
bind Y to f(Y), since these expressions can never be made to look alike by substituting and value
for Y consistently throughout the expression.

8.4 TOP-DOWNPROCESSINGOFNON-GROUND
QUERIESANDRULES

Using unification, we can convert our procedure for top-down evaluation for ground queries and
rules to a procedure for evaluating arbitrary queries and rules. There are three salient changes.
(1) The procedure is begun with a goal and a substitution. (2) Rather than checking whether

8.4. TOP-DOWNPROCESSINGOFNON-GROUNDQUERIESANDRULES 77
a goal and a factoid or a rule head are identical, the procedure checks whether or not they
are unifiable. (3) Instead of returning a Boolean value from each recursive call, the procedure
returns a substitution that makes the given goal true and it uses this substitution in processing
any remaining subgoals. The steps of the procedure are described below.

1. If the predicate in the goal is a base relation, we iterate through our dataset comparing the
goal to each factoid in turn. If there is an extension of the given substitution that unifies
the goal and the factoid, we add that extended substitution to our list of answers. Once we
have finished examining all relevant factoids, we return the list of substitutions we have
accumulated along the way. (If we do not find any factoids that unify with the goal, we
return an empty list.)

2. If our goal is a negative literal, we execute the procedure on the argument of the negation
and the given substitution. If the result is empty, we return a singleton list containing the
given substitution. Otherwise, we return the empty list, indicating failure to prove the
negation.

3. If our goal is a conjunction of literals, we first execute our procedure on the first conjunct
and the given substitution to get a list of substitutions that satisfy that conjunct. We then
iterate through the list of substitutions, calling the procedure recursively on the remaining
conjuncts with each substitution in turn. We collect the answers from these recursive calls.
We return the list of these answers as value of the procedure.

4. If our goal is an atom and the predicate is a view relation, we iterate through the rules in
our program. We first copy each rule, replacing the variables by new variables (to avoid
possible conflicts with variables in our goal). We then try to find a most general unifier for
the given goal and the head of the rule starting with the given substitution. If we succeed,
we call the procedure recursively on the body of the rule and the resulting unifier. We add
all substitutions returned from this recursive call to our output list. When we have finished
examining all of the rules, we return the substitutions we have collected along the way.

Once again, consider the dataset we saw earlier (repeated on the left below), and consider
a version of the logic program with some of the object constants replaced by variables (shown
on the right below).

p(a) s(X) :- t(X) & ~r(X)
p(b) s(X) :- p(X) & ~q(X) & ~t(c)
p(c) t(X) :- p(X) & q(X)
q(b) t(X) :- r(X)
r(c)

To see our procedure in action, let’s start with a simple case. Imagine that we want to
find all objects that appear in both the p relation and the q relation. We call our procedure with

78 8. VIEWEVALUATION
p(X) & q(X) as goal and the empty substitution {} as initial substitution. Since our goal is a
conjunction, we first call the procedure recursively on p(X) and {}. Our goal p(X) with initial
substitution {} unifies all three of the p factoids in our dataset, and so the result of the recursive
call is a list of the resulting substitutions, i.e., {X a} and {X b} and {X c}. For each of these
substitutions, we then call the procedure recursively on the second conjunct q(X). There is no
factoid that unifies with q(X) given the {X a} substitution, so in this case we return the empty
list. In the second case, we are luckier. q(X) and q(b) do unify given the substitution {X b},
so we return a list containing that substitution. The third case is similar to the first in that there
is no unifiable factoid, so again we get an empty list. Having checked the second conjunct for
each of the answers to the first conjunct, we return the list of substitutions we have accumulated
along the way, in this case the list consisting of the single substitution {X b}.

As a more interesting example, imagine that we want to evaluate the goal s(X), i.e., we
want all objects that satisfy the s relation. We call our procedure with s(X) and the empty
substitution {}. Since s is a view relation, we examine the rules where s appears in the head. We
copy the first rule resulting in the new rule s(X1) :- p(X1) & q(X1) & r(c), and we try to
unify our goal with the head of this rule. In this case, we succeed with the substitution {X X1}.
We then call the procedure recursively on the body of the rule and this substitution and proceed
as before, resulting in a final answer containing the single substitution {X X1, X1 b}.

The procedure just described computes all answers to a given query. If we want just a few
answers, we can use a “pipelined” version of the algorithm that returns one answer at a time.
When processing a rule, rather than computing all answers to a subgoal before proceeding, once
we have a single answer we check whether that solution leads to an answer to the remaining
subgoals. If it does, we return that answer. If not, we generate another answer to our subgoal
and try again.

8.5 EXERCISES

8.1. Suppose we were to run our top-down evaluation method on the dataset shown below
and the ruleset shown on the right. How many dataset accesses would be required to
evaluate s(b). (Each time a factoid is looked up counts as one access.)

p(a) s(b) :- p(a) & q(b) & r(c)
q(a) s(b) :- p(a) & ~q(b) & ~t(c)
r(a) t(c) :- r(c)

t(c) :- r(d)

8.2. For each of the following pairs of sentences, say whether the sentences are unifiable and
give a most general unifier for those that are unifiable.

8.5. EXERCISES 79

(a) p(X,X) and p(a,Y)
(b) p(X,X) and p(f(Y),Z)
(c) p(X,X) and p(f(Y),Y)
(d) p(f(X,Y),g(Z,Z)) and p(f(f(W,Z),V),W)

8.3. Suppose we were to run our top-down evaluation method on the dataset shown below
and the ruleset shown on the right with the goal r(a,d). Show a trace of subgoals in
the order in which they are processed and the results.

p(a,b) r(X,Z) :- p(X,Z)
p(a,c) r(X,Z) :- p(X,Y) & p(Y,Z)
p(c,d)

81

C H A P T E R 9

Examples
9.1 INTRODUCTION
In this chapter, we look at some simple examples of view definitions. The examples here are
simple in that do not involve constructors or compound terms. In the following chapters, we
look at more complicated examples where constructors and compound terms play an essential
role.

9.2 EXAMPLE –KINSHIP
To illustrate the use of rules in defining views, consider once again the world of kinship relations.
Starting with some base relations, we can define various interesting view relations.

For example, the first sentence below defines the father relation in terms of parent and
male. The second sentence defines mother in terms of parent and female.

father(X,Y) :- parent(X,Y) & male(X)
mother(X,Y) :- parent(X,Y) & female(X)

The rule below defines the grandparent relation in terms of the parent relation. A person
X is the grandparent of a person Z if X is the parent of a person Y and Y is the parent of Z. The
variable Y here is a thread variable that connects the first subgoal to the second but does not itself
appear in the head of the rule.

grandparent(X,Z) :- parent(X,Y) & parent(Y,Z)

Note that the same relation can appear in the head of more than one rule. For example,
the person relation is true of a person Y if there is an X such that X is the parent of Y or if Y is the
parent of some person Z. Note that in this case the conditions are disjunctive (at least one must
be true), whereas the conditions in the grandfather case are conjunctive (both must be true).

person(X) :- parent(X,Y)
person(Y) :- parent(X,Y)

A person X is an ancestor of a person Z if X is the parent of Z or if there is a person Y
such that X is a parent of Y and Y is an ancestor of Z. This example shows that it is possible

82 9. EXAMPLES
for a relation to appear in its own definition. (See below for a discussion of stratification for a
restriction on this capability.)

ancestor(X,Y) :- parent(X,Y)
ancestor(X,Z) :- parent(X,Y) & ancestor(Y,Z)

A person is a parent if and only if the person has children, and a childless person is one
who has no children. We can define these properties with the rules shown below. The first rule
says that isparent is true of X if X is the parent of some person Y. The second rule states that
a person X is childless if X is a person and it is not the case that X is a parent.

isparent(X) :- parent(X,Y)
childless(X) :- person(X) & ~isparent(X)

Note the use of the relation isparent in defining childless. It is tempting to write
the childless rule as childless(X) :- person(X) & ~parent(X,Y). However, this would
be wrong. This would define X to be childless if X is a person and there is some Y such that X
is ~parent(X,Y) is true. But we really want to say that ~parent(X,Y) holds for all Y. Defin-
ing isparent and using its negation in the definition of childless allows us to express this
universal quantification.

9.3 EXAMPLE – BLOCKSWORLD
Once again, consider the Blocks World introduced in Chapter 2. The Blocks World scene de-
scribed earlier is repeated below (Figure 9.1).

A

B

C

D

E

Figure 9.1: One state of Blocks World.

As before, we adopt a vocabulary with five symbols to denote the five blocks in the scene—
a, b, c, d, and e. We use the unary predicate block to state that an object is a block. We use the
binary predicate on to express the fact that one block is directly on another. We use above to
say that a block is somewhere above another block. We use the unary predicate cluttered to
a block has other blocks on top of it, and we use the unary predicate clear to say that a block
has nothing on top of it. We use the unary predicate supported to say that a block is resting on
another block, and we use the unary predicate table to say that a block is resting on the table.

9.3. EXAMPLE – BLOCKSWORLD 83
Given this vocabulary, we can describe the scene in Figure 9.1 by writing ground atomic

sentences that state which relations hold of which objects or groups of objects. Let’s start with
block. There are five blocks in this case, named a, b, c, d, and e.

block(a)
block(b)
block(c)
block(d)
block(e)

Some of these blocks are on top of each other, and some are not. The following sentences
capture the relationships in Figure 9.1.

on(a,b)
on(b,c)
on(d,e)

We can do the same for the other relations. However, there is an easier way. Each of the
remaining relations can be defined in terms of block and on. These definitions together with
our facts about the block and on relations logically entail every other ground relational sentence
or its negation. Hence, given these definitions, we do not need to write out any additional data.

A block satisfies the cluttered relation if and only if there is a block resting on it. A
block satisfies the clear relation if and only if there is nothing on it.

cluttered(Y) :- on(X,Y)
clear(X) :- block(X) & ~cluttered(X)

A block satisfies the supported relation if and only if it is resting on some block. A block
satisfies the table relation if and only if it is not resting on some block.

supported(X) :- on(X,Y)
table(X) :- block(X) & ~supported(X)

Three blocks satisfy the stack relation if and only if the first is on the second and the
second is on the third.

stack(X,Y,Z) :- on(X,Y) & on(Y,Z)

The above relation is a bit tricky to define correctly. One block is above another block
if and only if the first block is on the second block or it it is on another block that is above

84 9. EXAMPLES
the second block. Given a complete definition for the on relation, these two rules determine a
unique above relation.

above(X,Y) :- on(X,Y)
above(X,Z) :- on(X,Y) & above(Y,Z)

One advantage to defining relations in terms of other relations is economy. If we record
on information for every object and encode the relationship between the on relation and these
other relations, there is no need to record any ground relational sentences for those relations.

Another advantage is that these general sentences apply to Blocks World scenes other
than the one pictured here. It is possible to create a Blocks World scene in which none of the
on sentences we have listed is true, but these general definitions are still correct.

9.4 EXAMPLE –MODULARARITHMETIC
In this example, we show how to define Modular Arithmetic. In Modular Arithmetic, there are
only finitely many numbers. For example, in Modular Arithmetic with modulus 4, we have just
four integers—0, 1, 2, 3—and that’s all. Our goal here is to define addition. Admittedly, this is
a modest goal; but, once we see how to do this; we can use the same approach to define other
arithmetic concepts.

Let’s start with the number relation, which is true of every number. We can completely
characterize the number relation by writing ground relational sentences, one sentence for each
number.

number(0)
number(1)
number(2)
number(3)

Now, let’s define the next relation, which, for each number, gives the next larger number,
wrapping back to 0 after we reach 3.

next(0,1)
next(1,2)
next(2,3)
next(3,0)

The addition table for Modular Arithmetic is the usual addition table for arbitrary num-
bers except that we wrap around whenever we get past 3. For such a small arithmetic, it is easy
to write out the ground facts for addition, as shown below.

9.5. EXAMPLE –DIRECTEDGRAPHS 85

add(0,0,0) add(1,0,1) add(2,0,2) add(3,0,3)
add(0,1,1) add(1,1,2) add(2,1,3) add(3,1,0)
add(0,2,2) add(1,2,3) add(2,2,0) add(3,2,1)
add(0,3,3) add(1,3,0) add(2,3,1) add(3,3,2)

That’s one way to do things, but we can do better. Rather than writing out all of those
facts, we can use rules to define add in terms of number and next and use those rules to facts
about add. The relevant rules are shown below.

add(0,Y,Y) :- number(Y)
add(X2,Y,Z2) :- next(X,X2) & distinct(X2,0) & add(X,Y,Z) & next(Z,Z2)

First, we have an identity rule. Adding 0 to any number results in the same number. Second
we have a successor rule. If X2 is the successor of X and Z is the sum of X and Y and Z2 is the
successor of Z, then Z2 is the sum of X2 and Y.

As mentioned earlier, one advantage of doing things this way is economy. With these
sentences, we do not need to write out the facts about add given above. They can all be computed
from by the facts about next and the rules defining add. A second advantage is versatility. Our
sentences define add in terms of next for arithmetic with any modulus, not just modulus 4.

9.5 EXAMPLE –DIRECTEDGRAPHS
Consider the problem of describing finite graphs and defining properties of those graphs. Let’s
start by describing a small directed graph. We use symbols to refer to the nodes of the graph;
and we use the edge relation to designate the arcs of the graph. For example, the dataset below
describes a graph with 4 nodes and 4 arcs—an arc from a to b, an arc from b to c, an arc from
c to d, and an arc from d to c.

node(a)
node(b)
node(c)
node(d)

edge(a,b)
edge(b,c)
edge(c,d)
edge(d,c)

Now, let’s augment this program with some rules defining various relations on the nodes
in our graph.

86 9. EXAMPLES
p(X) :- edge(X,X)
q(X,Y) :- edge(X,Y)
q(X,Y) :- edge(Y,X)
r(X,Y,Z) :- edge(X,Y) & edge(Y,Z)
s(X,Y) :- edge(X,Y)
s(X,Z) :- edge(X,Y) & s(Y,Z)

Here, the relation p is true of every node that has an arc to itself. The relation q is true
of two nodes if and only if there is an edge from the first to the second or from the second to
the first. The relation r is true of three nodes if and only if there is an edge from the first to the
second and an edge from the second to the third. The relation s is the transitive closure of the
edge relation.

Defining properties of a graph as a whole is often tricker than defining properties of in-
dividual nodes since we must usually ensure that the properties apply to all of the nodes in the
graph. The trick in such situations is to characterize those cases when the graph does not have
the desired property and then define the desired property as the negation of those cases.

Suppose, for example, we wanted to define the concept of reflexivity. A graph is reflexive
if and only if every node has an arc to itself. To define this notion, we would first define what it
means for a graph to be non-reflexive. A graph is non-reflexive if and only if there is a node that
does not have a self-arc. Given this definition, we can then define reflexivity as the negation of
this property.

nonreflexive :- node(X) & ~edge(X,X)
reflexive :- ~nonreflexive

We could also define this notion using the countofall aggregate as shown below. A
graph is non-reflexive if and only if the count of all nodes with arcs to themselves is 0.

nonreflexive :- evaluate(countofall(X,edge(X,X)),0)

With this approach, we do not need to define a helper relation as in the version above.
However, it involves the use of an aggregate operator, which some people findmore complicated.

9.6 EXERCISES
9.1. Two people are siblings if and only if they share a common parent. Write rules defining

the binary sibling relation in terms of the parent relation. (Hint: you will need the
built-in relation distinct to get the definition of sibling correct.)

9.2. Write rules defining the binary uncle relation and the binary aunt relation in terms of
parent and male and female.

9.6. EXERCISES 87
9.3. Two blocks are at the same height if and only if they are resting on the same number of

blocks. Define the sameheight relation in terms of block and on in such a way that it
works no matter how many blocks there are in the Blocks World.

9.4. Define multiplication mul for Modular Arithmetic in terms of number and next. To
simplify the task, you may define additional predicates in terms of number and next.

9.5. Consider a directed graph defined with a unary relation node and a binary base relation
edge. Write rules to determine if the graph is asymmetric, i.e., if there is an arc from
one node to a second node, then the graph does not contain an arc from the second to
the first.

9.6. Consider a directed graph defined with a unary relation node and a binary base relation
edge. Write rules to to determine if the graph is symmetric, i.e., if there is an arc from
one node to a second node, then there is also an arc from the second to the first.

9.7. Consider a directed graph defined with a unary relation node and a binary base relation
edge. Write rules to to determine if the graph is transitive, i.e., whenever there is an arc
from x to y and an arc from y to z, then there is an arc from x to z.

9.8. Consider a directed graph defined with a unary relation node and a binary base relation
edge. Write rules to to determine if the graph is acyclic, i.e., there is no sequence of arcs
connecting a node to itself.

89

C H A P T E R 10

Lists, Sets, Trees
10.1 INTRODUCTION
In this chapter, we begin our look at view definitions involving constructors and compound
terms. The examples here concern the representation of information about lists and trees and
sets. In the chapters that follow, we look at the representation of information about dynamic
systems and the representation of metaknowledge (i.e., information about information).

10.2 EXAMPLE – PEANOARITHMETIC
Peano Arithmetic is that branch of Mathematics having to do with the non-negative integers,
the function of addition, and the less than relation.

Peano Arithmetic is more complicated than Modular Arithmetic in that we have infinitely
many objects to consider, viz. the integers 0, 1, 2, 3, ... Since there are infinitely many such
numbers, we need infinitely many terms to describe them in our language.

One way to get infinitely many terms is by expanding our vocabulary to include infinitely
many symbols. Unfortunately, this would make the job of defining arithmetic impossible, as we
would have to write out infinitely many sentences.

Fortunately, there is a better way. In particular, we can represent numbers using a sin-
gle symbol (e.g., 0) and a single unary constructor (e.g., s). In this approach, we represent the
number 0 with the symbol 0, and we represent every other natural number n by applying the
constructor s exactly n times. For example, in this encoding, s(0) represents 1; s(s(0)) rep-
resents 2; s(s(s(0))) represents 3; and so forth. With this encoding, we automatically get an
infinite set of ground terms.

Unfortunately, even with this representation, defining PeanoArithmetic is more challeng-
ing than defining Modular Arithmetic. We cannot write all of the facts to characterize addition
and multiplication and so forth, because there are infinitely many cases to consider. For Peano
Arithmetic, we must rely on view definitions, not just because they are more economical but
because they are the only way we can characterize these concepts in finite space.

Let’s look at the number predicate first. The rules shown here define the number relation
in terms of 0 and s.

number(0)
number(s(X)) :- number(X)

90 10. LISTS, SETS, TREES
The next predicate holds of any natural number and the number that follows it. For ex-

ample, we have next(0,s(0)) and next(s(0),s(s(0))) and so forth. We can define next in
general as shown below.

next(X,s(X)) :- number(X)

Once we have number and next, we can define the usual arithmetic relations. For example,
the following sentences define the add relation. Adding 0 to any number results in that number.
If adding a number X to a number Y produces a number Z, then adding the successor of X to Y
produces the successor of Z.

add(0,Y,Y) :- number(Y)
add(s(X),Y,s(Z)) :- add(X,Y,Z)

Using next, we can also define the less than relation in an analogous manner. A number
X is less than a number Z if next holds of X and Z or if there is a number Y such that Y is the
number after X and Y is less than Z.

less(X,Z) :- next(X,Z)
less(X,Z) :- next(X,Y) & less(Y,Z)

Before we leave our discussion of arithmetic, it is instructive to look at the concept of Dio-
phantine equations. A polynomial equation is a sentence composed using only addition, multipli-
cation, and exponentiation with fixed exponents (that is numbers not variables). For example,
the expression shown below in traditional math notation is a polynomial equation.

x2 C 2y D 4z

A natural Diophantine equation is a polynomial equation in which the variables are re-
stricted to the non-negative integers. For example, the polynomial equation here is also a Dio-
phantine equation and happens to have a solution in the non-negative numbers, viz. x D 4 and
y D 8 and z D 8.

Diophantine equations can be readily expressed as sentences in Peano Arithmetic. For
example, we can represent the Diophantine equation above with the rule shown below.

solution(X,Y,Z) :-
mul(X,X,X2) &
mul(s(s(0)),Y,2Y) &
mul(s(s(s(s(0)))),Z,4Z) &
add(X2,2Y,4Z)

This is a little messy, but it is doable. And we can always clean things up by adding a little
syntactic sugar to our notation to make it look like traditional math notation.

10.3. LISTS 91

10.3 LISTS
A list is a finite sequence of objects. Lists can be flat, e.g., [a, b, f(c), d]. Lists can also be nested
within other lists, e.g., [a, [b, f(c)], d].

To talk about lists of arbitrary length, we use the binary constructor cons, and we use the
symbol nil to refer to the empty list. In particular, a term of the form cons(�1, �2) designates a
list in which �1 denotes the first element and �2 denotes the rest of the list.

For example, using this approach, we can represent the list [a, b, c] with the compound
term shown below.

cons(a, cons(b, cons(c, nil)))

Rules defining primitives and lists.

primitive(a)
primitive(b)
primitive(c)

list(nil)
list(cons(X,Y)) :- object(X) & list(Y)

object(X) :- primitive(X)
object(X) :- list(X)

Theadvantage of this representation is that it allows us to describe relations on lists without
regard to length or depth.

As an example, consider the definition of the binary relation mem, which holds of an ob-
ject and a list if the object is a top-level mem of the list. Using the constructor cons, we can
characterize the mem relation as shown below. Obviously, an object is a mem of a list if it is the
first element; however, it is also a mem if it is mem of the rest of the list.

mem(X,cons(X,Y)) :- object(X) & list(Y)
mem(X,cons(Y,Z)) :- object(Y) & mem(X,Z)

In similar fashion, we can define other relations on lists. For example, the following rules
define a relation called app.The value of app (its last argument) is a list consisting of the elements
in the list supplied as its first argument followed by the elements in the list supplied as its second.
For example, we would have app(cons(a,nil), cons(b, cons(c, nil)), cons(a, cons(b, cons(c,
nil)))).

app(nil,Y,Y) :- list(Y)
app(cons(X,Y),Z,cons(X,W)) :- object(X) & app(Y,Z,W)

92 10. LISTS, SETS, TREES
Finally, a note on syntax. There are three ways to write lists—using square brackets, using

cons, and using the ! operator.
If we know all of the elements of a list, we can write the list by wrapping the elements in

square brackets and separating them with commas, as in the example shown below.

[a,b,c]

This list can also be represented using the cons constructor, as shown below.

cons(a, cons(b, cons(c, nil)))

In order to abbreviate the representation of lists, we can alternatively use the ! operator
in place of cons. For example, we would write the list just discussed as shown below.

a!b!c!nil

All three of these representations are equivalent. In fact, they typically parse into the same
internal representation.However, they each have value in different circumstances, and so all three
are permitted.

Lists are an extremely versatile representational device, and the reader is encouraged to
become as familiar as possible with the techniques of writing definitions for relations on lists.
As is true of many tasks, practice is the best approach to gaining skill.

10.4 EXAMPLE – SORTEDLISTS
A sorted list is a list in which successive elements satisfy a given ordering relation. For example,
the list [1,2,3] is a sorted list with “less than” as the ordering relation, while [1,3,2] is not.

Note that it is common for objects to appear more than once in a sorted list. For example,
[1,2,2,3] is a sorted list with “less than or equal” as the ordering relation. However, this cannot
happen if the ordering relation is not reflexive. For example, [1,2,2,3] is not a sorted list with
“less than” as the ordering relation.

Given an ordering relation (e.g., the “less than or equal” relation leq), we can easily define
a predicate sorted that is true of sorted lists and false of everything else. See below. The empty
list is sorted. Any list of one element is sorted. A list of two or more elements is sorted if the
first element is less than or equal to the second and the tail of the list is sorted.

sorted(nil)
sorted([X]) :- object(X)
sorted(cons(X,cons(Y,L))) :- leq(X,Y) & sorted(cons(Y,L))

As with unsorted lists, we can define relations on sorted lists as well. However, in doing
so we must ensure that the resulting lists are sorted. Although the app relation defined earlier
can be applied to sorted lists, the result may not be sorted.

10.5. EXAMPLE – SETS 93
One way to deal with this is to apply a sorter to a list to ensure that it is sorted. For

example, the following view definition defines a sorting relation sortappend in terms of app
and sort.

sortappend(X,Y,Z) :- app(X,Y,W) & sort(W,Z)

This approach works, and it yields the correct answer (even when the input lists are not
sorted). However, if we know that the input lists are sorted, it is possible to define a sorting
relation in another way.

merge(nil,Y,Y) :- list(Y)
merge(X!L,Y,Z) :- merge(L,Y,W) & insert(X,W,Z)

For many people, this version is more appropriate than the version above. Moreover, as we
shall see when we get to program execution, it may execute more efficiently than the preceding
version.

10.5 EXAMPLE – SETS
A set is a collection of objects. A set differs from a list in two ways. (1) Objects can appear in
lists more than once whereas this cannot happen in a set. (2) The order of elements in a list is
essential whereas order is irrelevant for sets.

In what follows, we represent sets as ordered lists. Since order is irrelevant in a set, it does
not matter which order we choose, and keeping things ordered makes it easier to define certain
relations on sets; and, as we shall see in later lessons, it makes query answering more efficient.

If we represent sets as lists, we can see whether an object is a member of the set using the
mem relation defined earlier. However, if we represent sets as ordered lists, there is a better way.
See below.

mem(X,X!L) :- list(L)
mem(X,Y!L) :- less(Y,X) & mem(X,L)

As with the definition of list membership, this version loops through the elements of the
set. Also, if we get to a subset with the object as the first element, then we terminate successfully.
The main difference here is that we can sometimes stop early if an object is not an element of
the set. In particular, if, in looping through sublists of the sublist, we get to a sublist in which
the specified object is less than the first element, then we can stop searching since we know that
all subsequent objects in the list are greater than that element.

One set is a subset of another if and only if every element of the first set is an element of
the second. We can define the subset relation as shown below.

94 10. LISTS, SETS, TREES
subset(nil,Y) :- list(Y)
subset(X!L,Y) :- mem(X,Y) & subset(L,Y)

The intersection two sets is the set consisting of all objects that appear in both sets.

intersection(nil,Y,nil) :- list(Y)
intersection(X!L,Y,X!Z) :- mem(X,Y) & intersection(L,Y,Z)
intersection(X!L,Y,Z) :- ~mem(X,Y) & intersection(L,Y,Z)

The union of two sets is the set consisting of all elements in either set. If we represent sets
as sorted lists, then union is identical to the merge relation defined earlier.

10.6 EXAMPLE –TREES
The cons relation can also be used to represent arbitrary trees. For example,
cons(cons(a,b),cons(c,d)) represents a binary tree with a, b, c, and d as leaves.

The among relation is true of an object and a tree if the object is appears somewhere in the
tree.

among(X,X) :- object(X)
among(X,cons(Y,Z)) :- among(X,Y)
among(X,cons(Y,Z)) :- among(X,Z)

Note that, if the specified object is itself a tree, this relation is the same as the subtree
relation on trees.

10.7 EXERCISES
10.1. Say whether each of the following sentences is in the extension of the app relation

defined in Section 10.3.

(a) app(nil,nil,nil)
(b) app(cons(a,nil),nil,cons(a,nil))
(c) app(cons(a,nil),cons(b,nil),cons(a,b))
(d) app(cons(cons(a,nil),nil),cons(b,nil),cons(a,cons(b,nil)))

10.2. last is a binary relation that holds of an object and a list if and only if the specified
object is the last element of the specified list. For example, last(c,[a,b,c]) is true.
Write a logic program that defines the last relation.

10.7. EXERCISES 95
10.3. rev is a binary relation on lists. The relation holds of two lists if and only if the sec-

ond contains the same elements as the first except in the opposite order. For example,
rev([a,b,c],[c,b,a]) is true. Write a logic program that defines the rev relation.
Hint: It helps to define a variation on app and then use that variation in defining rev.

10.4. delete is a ternary relation that holds of an object and two lists if and only if the
second list is a copy of the first list with all occurrences of the given object deleted.
For example, delete(b,[a,b,c,b,d],[a,c,d]) is true. Write a logic program that
defines the delete relation.

10.5. substitute is a 4-ary relation that holds of two objects and two lists if and only if the
second list is a copy of the first list with all occurrences of the second object replaced by
the first object. For example, substitute(b,d,[a,d,d,c],[a,b,b,c]) is true. Write
a logic program that defines the substitute relation.

10.6. adjacent is a ternary relation that holds of two objects and a list if and only if the first
object and the second object are adjacent to each other in the specified list. For example,
adjacent(b,c,[a,b,c,d]) is true. Write a logic program that defines the adjacent
relation.

10.7. sublist is a binary relation that holds of two lists if and only if the first list is a con-
tiguous sublist of the second. For example, sublist([b,c],[a,b,c,d]) is true while
sublist([b,d],[a,b,c,d]) is not. Write a logic program that defines the sublist
relation.

10.8. sort is a binary relation that holds of two lists if and only if the second list is a version
of the first in sorted order. For example, sort([2,1,3,2],[1,2,2,3]) is true. Write
a logic program that defines the sort relation in terms of min.

10.9. powerset is a binary relation that holds of two sets if and only if the second set is the
powerset of the first set, i.e., the second is the set of all subsets of the first set. For
example, powerset([a,b],[[],[a],[b],[a,b]]) is true. Write a logic program that
defines the powerset relation.

97

C H A P T E R 11

Dynamic Systems
11.1 INTRODUCTION
A dynamic system is one that changes state over time. In some cases, the changes occur in
response to purely internal events (such as the ticks of a clock). In some cases, these changes
are prompted by external inputs. In this chapter, we look at the use of Logic Programming to
model purely reactive systems, i.e., those that change in response to external inputs.

Once again consider the Blocks World introduced in Chapter 2. One state of the Blocks
World is shown below. Here block C is on block A, block A is on block B, and block E is on
block D.

C

A

B

E

D

Now, let’s consider a dynamic variation of this world, one in which we have operations
that can modify the state of the world. For example, unstacking C from A results in the state
shown below on the left, and unstacking E from D results in the state shown on the right.

C

A

B

E

D

C

A

B E D

In this chapter, we look at a common way of modeling the behavior of systems like this. In
the next section, we introduce fluents (facts that change truth value from one state to another; we
then look at actions (inputs that cause such state changes); and, in the section after that, we look
at how to write view rules that define the effects of actions on fluents. Given this axiomatization,
we then show how to simulate the effects of actions andwe show how to plan sequences of actions
that lead to desirable states.

98 11. DYNAMIC SYSTEMS

11.2 REPRESENTATION
In Chapter 9, we saw how to describe the state of the Blocks World as a dataset using the unary
relation block and the binary relation on, and we saw how to define others relations, such as
clear and table in terms of these base relations.

Unfortunately, this representation is insufficient for describing dynamic behavior. In a
dynamic version of the Blocks World, the properties of blocks and their relationships change
over time, andwe have to take this into account. Fortunately, we can do this by slightlymodifying
the items in our previous vocabulary and adding in a few additional items.

First of all, we add a symbol s1 to our language to stand for the initial state of the world.
We could also add symbols for other states of the world; but, as we shall see in the next section,
we can refer to these other states in more convenient way.

Second, we introduce a notion of a fluent and provide a suitable representation. A fluent
is a condition that can change truth value from one state to the next. In our formalization, we
take the ground atoms of our static representation to be fluents. However, we now treat them
as terms instead of factoids. For example, we now treat on(a,b) and clear(a) as terms rather
than as factoids. They are no longer conditions that are always true or false; they are now terms
that are true in some states and false in others.

In order to talk about the truth of fluents in specific states, we introduce the binary pred-
icate tr and use it to capture the fact that a specified fluent is true in a specified state.

For example, we can represent the initial state of the world shown above with the sentences
shown below. Block c is on block a in state s1; block a is on block b; and so forth.

tr(clear(c),s1)
tr(on(c,a),s1)
tr(on(a,b),s1)
tr(table(b),s1)
tr(clear(e),s1)
tr(on(e,d),s1)
tr(table(d),s1)

In order to talk about actions that can change the world, we introduce constructors, one
for each action. For example, in our Blocks World setting, we would add two new binary con-
structors u and s. u(X,Y) represents the action of unstacking block X from block Y, and s(X,Y)
represents the action of stacking block X onto block Y.

In order to define the effects of our actions, we add a binary constructor do to talk about the
result of performing a given action in a given state. For example, we would write do(u(c,a),s1)
to refer to the state that results from performing action u(c,a) in state s1.

To capture the physics of the world, we write rules that say how the world changes as a
result of performing each of our actions. See below.

11.3. SIMULATION 99
tr(table(X),do(u(X,Y),S)) :- tr(clear(X),S) & tr(on(X,Y),S)
tr(clear(Y),do(u(X,Y),S)) :- tr(clear(X),S) & tr(on(X,Y),S)

tr(on(X,Y),do(s(X,Y),S)) :-
tr(clear(X),S) & tr(table(X),S) & tr(clear(Y),S)

Note that, in addition to describing changes, we also need to write sentences that records
inertia (what stays the same). For example, if we unstack one block from another, all blocks that
were clear remain clear; all blocks that were on the table remain on the table; and all blocks
that were on top of each other remain on top of each other except for the blocks involved in
the unstacking operation. The following sentences capture the inertial behavior of the Blocks
World.

tr(clear(U),do(u(X,Y),S)) :- tr(clear(U),S)
tr(table(U),do(u(X,Y),S)) :- tr(table(U),S)
tr(on(U,V),do(u(X,Y),S)) :- tr(on(U,V),S) & distinct(U,X)
tr(on(U,V),do(u(X,Y),S)) :- tr(on(U,V),S) & distinct(V,Y)

tr(clear(U),do(s(X,Y),S)) :- tr(clear(U),S) & distinct(U,Y)
tr(table(U),do(s(X,Y),S)) :- tr(table(U),S) & distinct(U,X)
tr(on(U,V),do(s(X,Y),S)) :- tr(on(U,V),S)

Sentences like these, which express what remains the same, are often called frame axioms.
Many people are irked by the need to formalize what remains the same in representing dynamics.
Luckily, there are alternative ways of formalizing dynamics that eliminates the need for frame
axioms. For example, instead of formalizing what is true in the state that results from performing
an action, we can formalize what changes from the current state (in the form of add lists and delete
lists). See Chapter 14 for more discussion of this technique.

11.3 SIMULATION
Simulation is the process of determining the state that results from the execution of a given
action of sequence of actions in a given state. Once we have a representation of the physics of
our world, simulation is easy.

As an example, consider the initial state described in the preceding section, and consider
the following sequence of two actions. We first unstack c from a, and we then stack c onto e.
If we were interested in the state of affairs after the execution of these actions, we could write
the query shown below.

goal(P) :- tr(P,do(s(c,d),do(u(c,a),s1)))

100 11. DYNAMIC SYSTEMS
The initial state is shown below, once again.

tr(clear(c),s1)
tr(on(c,a),s1)
tr(on(a,b),s1)
tr(table(b),s1)
tr(clear(e),s1)
tr(on(e,d),s1)
tr(table(d),s1)

Using this data and the change rules and frame axioms, we see that executing u(c,a) in
this state results in the data shown below.

tr(clear(c),do(u(c,a),s1))
tr(table(c),do(u(c,a),s1))
tr(clear(a),do(u(c,a),s1))
tr(on(a,b),do(u(c,a),s1))
tr(table(b),do(u(c,a),s1))
tr(clear(e),do(u(c,a),s1))
tr(on(e,d),do(u(c,a),s1))
tr(table(d),do(u(c,a),s1))

Applying the change rules and frame rules once again, we get the following conclusions.

tr(clear(c),do(s(c,e),do(u(c,a),s1)))
tr(on(c,e),do(s(c,e),do(u(c,a),s1)))
tr(clear(a),do(s(c,e),do(u(c,a),s1)))
tr(on(a,b),do(s(c,e),do(u(c,a),s1)))
tr(table(b),do(s(c,e),do(u(c,a),s1)))
tr(on(e,d),do(s(c,e),do(u(c,a),s1)))
tr(table(d),do(s(c,e),do(u(c,a),s1)))

Finally, using the rule defining the goal predicate, we end up with the data shown below.

goal(clear(c))
goal(on(c,e))
goal(clear(a))
goal(on(a,b))
goal(table(b))

11.4. PLANNING 101
goal(on(e,d))
goal(table(d))

The partial results shown above make his process look complicated, but in reality the
process is fairly simple and not very expensive. Finding a plan to achieve a goal state is not so
simple.

11.4 PLANNING
Planning is in some ways the opposite of simulation. In simulation, we start with an initial state
and a plan, i.e., a sequence of actions; and we use simulation to determine the result of executing
the plan in the initial state. In planning, we start with an initial state and a goal, i.e., a set of
desirable states; and we use planning to compute a plan that achieves one of the goal states.

In what follows, we again use the unary predicate goal, except, in this case, we define
it to be true of desired states rather than fluents as in the formalization in the last section. For
example, the following rule defines goal to be true of a state if and only if the fluents on(a,b)
and on(b,c) are true in that state.

goal(S) :- tr(on(a,b),S) & tr(on(b,c),S)

Using this definition of goal and the rules in Section 11.4, it is easy to see
that the following conclusion is true, i.e., on(a,b) and on(b,c) are both true in state
do(s(a,b),do(s(b,c),do(u(a,b),do(u(c,a),s1)))), i.e., the state that results from un-
stacking c, unstacking a, stacking b onto c, and stacking a onto b.

goal(do(s(a,b),do(s(b,c),do(u(a,b),do(u(c,a),s1)))))

In principle, we should be able to derive this conclusion through bottom-up or top-down
evaluation. Unfortunately, bottom-up evaluation explores many plans that have nothing to do
with the goals. Top-down evaluation stays focussed on the goal. Unfortunately, with the rules
shown above, it is likely to go into an infinite loop, exploring longer and longer plans when the
simple four-step plan shown above works.

The solution to this dilemma is to use a hybrid of the two approaches. We define the
binary predicate plan as shown below. plan is true of the empty plan and a state if and only if
that state satisfies the goal. It is true of a non-empty sequence of actions if and only if the “tail”
of the sequence achieves the goal when executed in the result of applying the first action in the
given state.

plan(nil,S) :- goal(S)
plan(A!L,S) :- plan(L,do(A,S))

102 11. DYNAMIC SYSTEMS
Given this definition, we can pose the question plan(L,s1), and top-down evaluation

will try plans of increasing length, trying short plans to see if the achieve the goal and moving
to longer plans only if none fails to achieve the goal.

This approach is somewhat faster than bottom-up execution and guarantees to produce the
shortest possible plan. That said, the method is still expensive. A significant amount of research
has been done to find ways to produce plans more effectively. However, it is possible to show
that a complete search of the plan space is sometimes needed.

11.5 EXERCISES
11.1. Suppose we wanted to augment the Blocks World with an action move(X,Y,Z) that

moves block X from block Y to block Z. Write the change axioms and frame axioms for
this new action in terms of the vocabulary introduced in this chapter.

11.2. Given the change and frame axioms in this chapter and the data shown below, evaluate
the query goal(P) :- tr(P,do(s(b,e),do(u(a,b),do(u(c,a),s1)))).

tr(clear(c),s1)
tr(on(c,a),s1)
tr(on(a,b),s1)
tr(table(b),s1)
tr(clear(e),s1)
tr(on(e,d),s1)
tr(table(d),s1)

11.3. Assuming the change axioms and frame axioms and goal definition in this chap-
ter and the data shown below, give one answer to the query result([X,Y]) :-
plan([X,Y],s2).

tr(clear(a),s2)
tr(table(a),s2)
tr(clear(b),s2)
tr(on(b,c),s2)
tr(table(c),s2)
tr(clear(e),s2)
tr(on(e,d),s2)
tr(table(d),s2)

103

C H A P T E R 12

Metaknowledge
12.1 INTRODUCTION
One of the interesting features of our language is that it allows us to encode information about
information. The trick is to represent sentences as terms in our language and then write sentences
about these terms, thereby effectively writing sentences about sentences. There are numerous
uses of this technique. In this chapter, we look at two of these—describing the syntax and se-
mantics of other languages within our language and representing Boolean Logic within Logic
Programming.

12.2 NATURALLANGUAGEPROCESSING
Pseudo English is a formal language that is intended to approximate the syntax of the English
language. One way to define the syntax of PseudoEnglish is to write grammatical rules in Backus
Naur Form (BNF). The rules shown below illustrate this approach for a small subset of Pseudo
English. A sentence is a noun phrase followed by a verb phrase. A noun phrase is either a noun
or two nouns separated by the word and. A verb phrase is a verb followed by a noun phrase.
A noun is either the word mary or the word pat or the word quincy. A verb is either like or
likes.

<sentence> ::= <np> <vp>
<np> ::= <noun>
<np> ::= <noun> "and" <noun>
<vp> ::= <verb> <np>
<noun> ::= "mary" | "pat" | "quincy"
<verb> ::= "like" | "likes"

Alternatively, we can use rules to formalize the syntax of Pseudo English. The sentences
shown below express the grammar described in the BNF rules above. Here, we are using the
app relation to talk about the result of appending words.

sentence(Z) :- np(X) & vp(Y) & app(X,Y,Z)
np(X) :- noun(X)
np(W) :- noun(X) & noun(Y) & app(X,and,Z) & app(Z,Y,W)

104 12. METAKNOWLEDGE
vp(Z) :- verb(X) & np(Y) & app(X,Y,Z)
noun(mary)
noun(pat)
noun(quincy)
verb(like)
verb(likes)

Using these rules, we can test whether a given sequence of words is a syntactically legal
sentence in Pseudo English and we can enumerate syntactically legal sentences, like those shown
below.

mary likes pat
pat and quincy like mary
mary likes pat and quincy

One weakness of our BNF and the corresponding axiomatization is that there is no con-
cern for agreement in number between subjects and verbs. Hence, with these rules, we can get
the following expressions, which are ungrammatical in Natural English.

x mary like pat
x pat and quincy likes mary

Fortunately, we can fix this problem by elaborating our rules just a bit. In particular, we
can add an argument to some of our relations to indicate whether the expression is singular or
plural, and we can then use this to block sequences of words where the numbers do not agree.

sentence(Z) :- np(X,W) & vp(Y,W) & app(X,Y,Z)

np(X,singular) :- noun(X)
np(W,plural) :- noun(X) & noun(Y) & app(X,and,Z) & app(Z,Y,W)

vp(Z,W) :- verb(X,W) & np(Y,V) & app(X,Y,Z)

noun(mary)
noun(pat)
noun(quincy)

verb(like,plural)
verb(likes,singular)

12.3. BOOLEANLOGIC 105
With these rules, the syntactically correct sentences shown above are still guaranteed to

be sentences, but the ungrammatical sequences are blocked. Other grammatical features can be
formalized in similar fashion, e.g., gender agreement in pronouns (he versus she), possessive
adjectives (his versus her), reflexives (himself versus herself), and so forth.

12.3 BOOLEANLOGIC
Throughout this volume, we have been using English to talk about Logic Programming. A
natural question to ask is whether it is possible formalize Logic Programming within Logic
Programming. The answer is yes, but there are some limits to what can be done.

In this section, we look at a simple version of this problem, viz. using Logic Programming
to formalize the syntax and semantics of Boolean Logic. Sentences in Boolean Logic are simpler
than those in Logic Programming. The vocabulary consists of atomic propositions, and sentences
are either propositions or complex expressions formed from logical operators. The sentence shown
below is an example. This is a statement that either p is true and q is false or p is false and q is
true.

(p ^ :q) _ (:p ^ q)

In what follows, we associate a symbol with each proposition in our Boolean Logic lan-
guage. For example, we use p, q, and r to represent proposition p, q, and r .

Next, we introduce constructors o form complex sentences. There is one constructor for
each logical operator—not for :, and for ^, and or for _. Using these constructors, we can
represent Boolean Logic sentences as terms in our language. For example, we could represent
the sentence above as follows.

or(and(p,not(q)),and(not(p),q))

Finally, we introduce a selection of predicates to express the types of various expressions
in our Boolean Logic language. We use the unary predicate proposition to assert that an
expression is a proposition. We use the unary predicate negation to assert that an expression is a
negation. We use the unary predicate conjunction to assert that an expression is a conjunction.
We use the unary predicate disjunction to assert that an expression is a disjunction. And we
use the unary predicate sentence to assert that an expression is a sentence.

With this vocabulary, we can characterize the syntax of our language as follows. We start
with declarations of our proposition constants.

proposition(p)
proposition(q)
proposition(r)

Next, we define the types of expressions involving logical operators.

106 12. METAKNOWLEDGE
negation(not(X)) :- sentence(X)
conjunction(and(X,Y)) :- sentence(X) & sentence(Y)
disjunction(or(X,Y)) :- sentence(X) & sentence(Y)

Finally, we define sentences as expressions of these types.

sentence(X) :- proposition(X)
sentence(X) :- negation(X)
sentence(X) :- conjunction(X)
sentence(X) :- disjunction(X)

A truth assignment is a mapping from proposition constants to Boolean values (true or
false). We can encode a truth assignment with a binary relation value that relates a proposition
constant and the associated value. For example the following facts constitute a truth assignment
for the proposition constants above. In this case, p is true, q is false, and r is true.

value(p,true)
value(q,false)
value(r,true)

Given a truth assignment, we can define a truth value for every sentence in our language.
A proposition is true if and only if it is assigned the value true. A negation is true if and only if
its argument is false. A conjunction is true if and only if both conjuncts are true. A disjunction
is true if and only if at least one of its disjuncts is true.

truth(P) :- value(P,true)
truth(not(P)) :- ~truth(P)
truth(and(P,Q)) :- truth(P) & truth(Q)
truth(or(P,Q)) :- truth(P)
truth(or(P,Q)) :- truth(Q)

We can make our formalization more interesting by reifying truth assignments as objects.
We could then talk about properties of sentences such as validity and satisfiability. A sentence
is valid if and only if it is true in every truth assignment. A sentence is satisfiable if and only if
some truth assignment satisfies it. A sentence is falsifiable if and only if some truth assignment
makes it false. A sentence is unsatisfiable if and only if no truth assignment makes it true.

12.4 EXERCISES
12.1. Suppose we were to add the words himself and herself to the grammar in section of

Pseudo English. Modify the rules defining our Pseudo English grammar so that these

12.4. EXERCISES 107
words appear only as the objects of sentences and so that, when one of these words is
used in a sentence, its number and gender corresponds to the number and gender of the
subject of that sentence.

12.2. Say whether each of the following sentences is a consequence of the sentences in the
section on Boolean Logic.

(a) conjunction(and(not(p),not(q)))
(b) conjunction(not(or(not(p),not(q))))
(c) sentence(not(not(p)))
(d) sentence(or(not(p),not(q),not(r)))
(d) sentence(and(p,not(p))

12.3. Which of the following sentences are consequences of the truth assignment and rules
in the section on Boolean Logic?

(a) truth(or(not(p),not(q)))
(b) truth(not(and(not(p),not(q))))
(c) truth(and(p,not(p))

12.4. Suppose we wanted to add the xor operator to our Boolean Logic language. xor(p,q)
is true if and only if the valuation of p is different from the valuation of q. Write a rule
to extend our definition of truth to accommodate the xor operator.

PART IV

OperationDefinitions

111

C H A P T E R 13

Operations
13.1 INTRODUCTION

In the preceding unit (Chapters 7–12), we saw how to write rules to define view relations in
terms of base relations. Once defined, we can use those views in queries and in the definitions
of other views.

In this unit (Chapters 13–16), we look at how to write rules that define operations in terms
of changes to base relations. Once defined, we can use those operations in updates and in the
definitions of other operations.

As we have seen, the rules used in writing view definitions generalize the rules used in
writing queries; and, as we shall see, the rules used in writing operation definitions generalize
the rules used in writing updates. That said, it is important to keep in mind the differences be-
tween views and operations—views are used in talking about facts that are true in states whereas
operations are used in talking about changes to states.

In this chapter, we define the syntax and semantics of operation definitions. In the next
chapter, we see how operation definitions can be used to specify the handling of events in dy-
namic systems (where the system’s behavior changes in response to external stimuli). In Chap-
ter 15, we look at how to use operation definitions in database management. And, in Chapter 16,
we look at how to use operation definitions in building interactive worksheets.

13.2 SYNTAX

The syntax of operation definitions builds upon the syntax of updates described in Chapter 4.
The various types of constants are the same, and the notions of term and atom and literal are
also the same. However, to these, we add a few new items.

To denote operations, we designate some constants as operation constants. As with con-
structors and relation constants, each operation constant has a fixed arity—unary, binary, and
so forth.

An action is an application of an operation to specific objects. In what follows, we de-
note actions using a syntax similar to that of atomic sentences, viz. an n-ary operation constant
followed by n terms enclosed in parentheses and separated by commas. For example, if f is a
binary operation constant and a and b are symbols, then f(a,b) denotes the action of applying
the operation f to a and b.

112 13. OPERATIONS
An operation definition rule (or, more simply, an operation rule) is an expression of the form

shown below. Each rule consists of (1) an action expression, (2) a double colon, (3) a literal
or a conjunction of literals, (4) a double-shafted forward arrow, and (5) a literal or an action
expression or a conjunction of literals and action expressions. The action expression to the left
of the double colon is called the head ; the literals to the left of the arrow are called conditions;
and the literals to its right are called effects.

 :: [~]�1 & ... & [~]�m ==> [~] 1 & ... & [~] n &
1 & ... &
k

Intuitively, the meaning of an operation rule is simple. If the conditions of a rule are true
in any state, then executing the action in the head requires that we execute the effects of the rule.

For example, the following rule states that in any state in which p(a,b) is true and q(a)
is false, then executing click(a) requires that we remove p(a,b) from our dataset, add q(a),
and perform action click(b).

click(a) :: p(a,b) & ~q(a) ==> ~p(a,b) & q(a) & click(b)

As with rules defining views, operation rules may contain variables to express information
in a compact form. For example, we can write the following rule to generalize the preceding rule
to all objects.

click(X) :: p(X,Y) & ~q(X) ==> ~p(X,Y) & q(X) & click(Y)

As with view rules, safety is a consideration. Safety in this case means that every variable
among the effects of a rule or in negative conditions also appears in the head of the rule or in
the positive conditions.

The operation rules shown above are both safe. However, the rules shown below are not.
The second effect of the first rule contains a variable that does not appear in the head or in any
positive condition. In the second rule, there is a variable that appears in a negative condition
that does not appear in the head or in any positive condition.

click(X) :: p(X,Y) & ~q(X) ==> ~p(X,Y) & q(Z) & click(Y)
click(X) :: p(X,Y) & ~q(Z) ==> ~p(X,Y) & q(X) & click(Y)

In some operation rules there is no condition, i.e., the effects of the transition rule take
place on all datasets. We can, of course, write such rules by using the condition true, as in the
following example.

click(X) :: true ==> ~p(X) & q(X)

13.3. SEMANTICS 113
For the sake of simplicity in writing our examples, we sometimes abbreviate such rules

by dropping the conditions and the transition operator and instead write just the effects of the
transition as the body of the operation rule. For example, we can abbreviate the rule above as
shown below.

click(X) :: ~p(X) & q(X)

An operation definition is a collection of operation rules in which the same operation ap-
pears in the head of every rule. As with view definitions, we are interested primarily in rulesets
that are finite. However, in analyzing operation definitions, we occasionally talk about the set
of all ground instances of the rules, and in some cases these sets are infinite.

13.3 SEMANTICS
The semantics of operation definitions is more complicated than the semantics of updates due
to the possible occurrence of views in the conditions of the rule and the possible occurrence of
operations in its effects. In what follows, we first define the expansion of an action in the context
of a given dataset, and we then define the result of performing that action on that dataset.

Suppose we are given a set � of rules, a set � of actions (factoids, negated factoids, and
actions), and a dataset �. We say that an instance of a rule in � is active with respect to � and
� if and only if the head of the rule is in � and the conditions of the rule are all true in �.

Given this notion, we define the expansion of action
 with respect to rule set � and
dataset � as follows. Let �0 be {
} and let �iC1 be the set of all effects in any instance of any
rule in � with respect to � i and �. We define our expansion U(
 ,�,�) as the fixpoint of this
series. Equivalently, it is the union of the sets � i , for all non-negative integers i .

Next, we define the positive updates A(
 ,�,�) to be the positive base factoids in
U(
 ,�,�). We define the negative updates D(
 ,�,�) to be the set of all negative factoids in
U(
 ,�,�).

Finally, we define the result of applying an action
 to a dataset� as the result of removing
the negative updates from � and adding the positive updates, i.e., the result is (� �D(
 ,�,�))
\ A(
 ,�,�).

To illustrate these definitions, consider an application with a dataset representing a di-
rected acyclic graph. In the sentences below, we use symbols to designate the nodes of the graph,
and we use the edge relation to designate the arcs of the graph.

edge(a,b)
edge(b,d)
edge(b,e)

The following operation definition defines a ternary operation copy that copies the out-
going arcs in the graph from its first argument to its second argument.

114 13. OPERATIONS
copy(X,Y) :: edge(X,Z) ==> edge(Y,Z)

Given this operation definition and the dataset shown above, the expansion of copy(b,c)
consists of the changes shown below. In this case, the factoids representing the two arcs ema-
nating from b are all copied to c.

edge(c,d)
edge(c,e)

After executing this event, we end up with the following dataset.

edge(a,b)
edge(b,d)
edge(b,e)
edge(c,d)
edge(c,e)

The following rule defines a unary operation invert that reverses the incoming arcs of
the node specified as it argument.

invert(Y) :: edge(X,Y) ==> ~edge(X,Y) & edge(Y,X)

The expansion of invert(c) is shown below. In this case, the arguments in the factoid
with c as second argument have all been reversed.

~edge(c,d)
~edge(c,e)
edge(d,c)
edge(e,c)

After executing this event, we end up with the following dataset.

edge(a,b)
edge(b,d)
edge(b,e)
edge(d,c)
edge(e,c)

Finally, the following operation rules define a binary operation that inserts a new node
into the graph (the first argument) with an arc to the second argument and arcs to all of the
nodes that are reachable from the second argument.

13.4. EXERCISES 115
insert(X,Y) :: edge(X,Y)
insert(X,Y) :: edge(Y,Z) ==> insert(X,Z)

The expansion of insert(w,b) is shown below. The first rule adds edge(w,b) to the
expansion. The second rule adds insert(w,d) and insert(w,e). Given these events, on the
next round of expansion, the first rule adds edge(w,d) and edge(w,e) and the second rules
adds insert(w,c). On the third round of expansion, we get edge(w,c). At this point, neither
rule adds any additional items to our expansion, and the process terminates.

insert(w,b)
edge(w,b)
insert(w,d)
insert(w,e)
edge(w,d)
edge(w,e)
insert(w,c)
edge(w,c)

Applying this event to the preceding dataset produces the result shown below.

edge(a,b)
edge(b,d)
edge(b,e)
edge(d,c)
edge(e,c)
edge(w,b)
edge(w,d)
edge(w,e)
edge(w,c)

Note that it is possible to define insert in other ways. We could, for example, define a
view of edge that relates each node to every node that can be reached from the node; and we
could then use this view in a non-recursive definition of insert. However, this would require
us to introduce a new view into our vocabulary; and, for many people, this is less clear than the
definition shown above.

13.4 EXERCISES
13.1. For each of the following strings, say whether it is a syntactically legal operation defi-

nition.

116 13. OPERATIONS

(a) a(X) :: p(X,Y) ==> q(Y,X)
(b) a(X) :: p(X,Y) & a(Y) ==> q(Y,X)
(c) a(X) :: p(X,Y) ==> q(Y,X) & a(Y)
(d) a(X) :: p(X,Y) ==> q(Y,X) & ~a(Y)
(e) a(X) :: p(Y,Y) ==> q(X,Y)

13.2. Say whether each of the following queries is safe.

(a) a(X) :: p(X,Y) & p(Y,Z) ==> p(X,Z)
(b) a(X) :: p(X,Y) & ~p(Y,Z) ==> p(X,Z)
(c) a(X) :: p(Y,Z) ==> p(X,Z)
(d) a(X) :: p(Y,Z) ==> ~p(X,Z)
(e) a(X) :: p(Y,Z) ==> p(Z,Y)

13.3. Given the definition fix(X) :- p(X,Y) & p(Y,Z) ==> p(X,Z), what is the result of
executing the action fix(a) on the dataset shown below.

p(a,b)
p(b,c)
p(c,d)
p(d,e)

13.4. Given the definition fix(X) :- p(X,Y) & p(Y,Z) ==> p(X,Z) & fix(Y), what is
the result of executing the action fix(a) on the dataset shown below.

p(a,b)
p(b,c)
p(c,d)
p(d,e)

13.5. Consider a type hierarchy like the one shown below.

subtype(giraffe,mammal)
subtype(rabbit,mammal)
subtype(mammal,vertebrate)
subtype(earthworm,vertebrate)

13.4. EXERCISES 117
subtype(vertebrate,animal)
subtype(invertebrate,animal)

Define an operation classify that takes an object and a type as arguments and adds
factoids stating that the object has that type and all supertypes of that type. For exam-
ple, executing the action classify(george,giraffe) should result in the following
factoids being added to the dataset.

type(george,giraffe)
type(george,mammal)
type(george,vertebrate)
type(george,animal)

119

C H A P T E R 14

Dynamic Logic Programs
14.1 INTRODUCTION
In Chapter 11, we saw how to use view definitions to describe the behavior of dynamic systems.
In this chapter, we look at an alternative approach using operation definitions. When systems
are defined in this way, they are called dynamic logic programs.

In the next section, we look at an example of a reactive system, i.e., one that responds to
external inputs. We then look at an example of a closed dynamic system, i.e., one that operates
without external input. After that, we look at an example of mixed initiative system, i.e., one
that is driven by a combination of internal and external stimuli. Finally, we look at the issues
involved in handling simultaneous inputs.

14.2 REACTIVE SYSTEMS
The simplest form of reactive system is one whose behavior is driven entirely by external inputs.
Prior to an input, the system is quiescent, i.e., nothing is changing; on observing an input, the
system changes state in accordance with the input; and, afterward, the system becomes quiescent
once again (until the next input is observed).

As an example, consider a system with three buttons and three lights. At each point in
time, some of the lights are on and some are off. If the user pushes the first button, the system
toggles the first light. If the user pushes the second button, the system interchanges the states of
the first light and the second light. If the user pushes the third button, the system interchanges
the states of the second and third lights.

In order to formalize the behavior of this system, we give names to the components of
state. We use the Boolean predicate p to mean that the first light is on; q means that the second
light is on; and r means that the third light is on. Next, we give names to the three possible
events. We use the Boolean predicate a to designate the first button being pushed; b refers to
the second button being pushed; and c refers to the third button being pushed.

Given this vocabulary, we represent the state of our system as a dataset consisting of some
subset of p, q, and r factoids, and we represent the occurrence of an event as one of our three
actions, i.e., a, b, or c.

With this new terminology, we can describe the desired behavior of our system with the
operation definitions shown below. If the user pushes the a button and p is true, the system
makes p false. If the user pushes a and p is false, the system makes p true. If the user pushes
b, the system interchanges p and q. And, if the user pushes c, the system interchanges q and

120 14. DYNAMICLOGIC PROGRAMS
r. (Note that, if action b is performed and p and q are the same, nothing changes. Similarly, if
action c is performed and q and r are the same, nothing changes. Consequently, we do not need
rules for those cases.)

a :: p ==> ~p
a :: ~p ==> p
b :: p & ~q ==> ~p & q
b :: ~p & q ==> p & ~q
c :: q & ~r ==> ~q & r
c :: ~q & r ==> q & ~r

Note that, if the system starts in a state in which all three conditions are false, it can
achieve a state in which they are true by executing the action sequence a, b, c, a, b, and a. Can
you think of a different sequence of actions that would do the trick? How many sequences are
there that produce the desired state?

14.3 CLOSEDSYSTEMS
A closed dynamic system is one that operates without external input. Its behavior results from
internal stimuli only, such as the ticks of a clock.

As an example, imagine a variation of the Buttons and Lights World described in the
preceding section. In this case, there are no buttons and so no external input. Instead, the system
cycles through states, starting in a state where all of the lights are off, cycling through states in
a particular order until all lights are on, resetting, and then repeating ad infinitum.

In specifying the behavior of this system, we use the same vocabulary as in the preceding
section except that in place of the actions a, b, and c, we have a single internal action tick
representing the tick of the clock.

With this terminology, we can describe the desired behavior of our system with the op-
eration definition shown below. When the clock ticks, the system changes state in accordance
with the state current at that time. When all of the lights are off, the first light is turned on.
When the first light is on and only the first light is on, the first light is extinguished and the
second light is turned on. And so forth.

tick :: ~p & ~q & ~r ==> p & ~q & ~r
tick :: p & ~q & ~r ==> ~p & q & ~r
tick :: ~p & q & ~r ==> ~p & ~q & r
tick :: ~p & ~q & r ==> p & ~q & r
tick :: p & ~q & r ==> ~p & q & r
tick :: ~p & q & r ==> p & q & r
tick :: p & q & r ==> ~p & ~q & ~r

14.4. MIXED INITIATIVE 121
Note that this sequence of states is the same as the sequence that would result by executing

the sequence of actions mentioned at the end of the preceding section, viz. a, b, c, a, b, and a.
If we wanted, we could also formalize this behavior using the actions defined in the pre-

ceding sections (except that the actions would be internal actions, not external stimuli).
As before, we would have the definitions of the actions, but to these we would add a reset

operation to turn off all of the lights. See below.

a :: p ==> ~p
a :: ~p ==> p
b :: p & ~q ==> ~p & q
b :: ~p & q ==> p & ~q
c :: q & ~r ==> ~q & r
c :: ~q & r ==> q & ~r
reset :: ~p & ~q & ~r

Given these definitions, we could rewrite the specification above as shown below. The
rules have the same conditions; but, instead of enumerating changes to base relations, the rules
in this case specify which internal action is performed in which state.

tick :: ~p & ~q & ~r ==> a
tick :: p & ~q & ~r ==> b
tick :: ~p & q & ~r ==> c
tick :: ~p & ~q & r ==> a
tick :: p & ~q & r ==> b
tick :: ~p & q & r ==> a
tick :: p & q & r ==> reset

This style of specification is sometimes called a universal plan. For each state, it specifies
an action to be performed in that state.

14.4 MIXED INITIATIVE
A mixed initiative system is one whose behavior is determined by either external or internal
inputs. Interestingly, in a mixed initiative system, a single external input can lead to a single
state change or a sequence of changes.

As an example, consider a variation of the closed Buttons and Lights World described
in the preceding section. In this version, in place of the buttons described in Section 14.2, we
have two different buttons. If the user pushes the first button, the system begins behaving as
described in the preceding section. If the user presses the second button, the system pauses its
operation. If the user presses the first button again, the system picks up where it left off.

122 14. DYNAMICLOGIC PROGRAMS
As before, we use p, q, and r to describe the state of the three lights. To these, we add

a single 0-ary predicate running to capture the state of the process. We use the symbols play
and stop, to refer to the two external inputs. Finally, as before, we use the symbol tick to refer
to a tick of the internal clock.

The operation rules below specify the desired behavior of our system. The definitions of
play and stop, ad there are the usual rules defining tick, the only difference being the depen-
dence on running.

play :: running
stop :: ~running

tick :: running & ~p & ~q & ~r ==> p
tick :: running & p & ~q & ~r ==> ~p & q
tick :: running & ~p & q & ~r ==> c
tick :: running & ~p & ~q & r ==> a
tick :: running & p & ~q & r ==> b
tick :: running & ~p & q & r ==> a
tick :: running & p & q & r ==> reset
tick :: running & p & q & r ==> reset

Given these rules, the system will exhibit the desired behavior. When the user presses
the play button, the state is updated to include the factoid running. The upshot is that, as the
system’s internal clock ticks, it proceeds through its cycle of states. When the user presses stop
button, running is removed, and the system will do nothing on subsequent clock ticks unless
the play button is pushed once again.

14.5 SIMULTANEOUSACTIONS
In the preceding sections, we looked at the problem of handling one input at a time. In some
applications, we must deal with the possibility of multiple simultaneous inputs. For example, a
robot might be commanded to move and extend its arm at the same time, or a computer user
might press two keys at the same time.

In some cases, the effects of such events are independent of each other. In such cases,
it is possible to handle such events independently, in effect treating the events as though they
happened independently.

The a operation and the c operation in the original version of the Buttons and Lights
World illustrate this. The behaviors associated with these inputs are independent of each other.
Pressing the a button toggles p and has nothing to do with q and r. Pressing the c button
interchanges q and r and has nothing to do with p. The upshot is that these inputs can be pro-

14.5. SIMULTANEOUSACTIONS 123
cessed independently and simultaneously in accordance with the rules defining their individual
behaviors.

Unfortunately, treating simultaneous inputs independently does not always work. In some
cases, simultaneous actions can interact in ways that lead to results that are different from the
results of independent execution.

As an example, consider a state in which the first and second lights in the Buttons and
Lights World are both on, and imagine that the user simultaneously presses both the first and
second buttons, i.e., he performs actions a and b at the same time. In this situation, the definition
of the a action mandates that p should become false, and the definition of the b action mandates
that p should become true. So what happens?

The problem in this case is that our operation definitions, as written, assume that only one
action occurs at a time. In order to deal with the possible interactions, we need to describe the
effects of simultaneous inputs.

One way to do this is to invent terminology for talking about compound actions and then
write operation definitions for such combinations.

If the number of possible actions is small, it is common practice to use chords to specify
different combinations of inputs. For example, in the Buttons and Lights World, we could use
a ternary constructor press and specify Booleans as arguments. If the first argument is true,
this means that button a is pressed. If the second argument is true, this means that button
b is pressed. If the third argument is true, this means that button c is pressed. By specifying
different combinations of Boolean, we can characterize various combinations of actions.

If the number of possible actions is large, representing compound actions as chords is
impractical. In such cases, it is common practice to represent compound actions as action lists.
For example, in the Buttons and Lights World, we would invent represent the combination of
actions a and c with the list [a,c], and we might specify the execution of this compound action
by writing an expression like execute([a,c]).

Once we have a representation for compound actions, we can write operation definitions
using this representation. For example, the rules shown below specify one possible behavior for a
Buttons and Lights World system that allows up to two simultaneous actions. If the user presses
both a and b at the same time, then a has its usual effect on p and b has its usual effect on q.
If the user presses both a and b at the same time, then these actions have their usual effects (as
defined in Section 14.2). If the user presses both b and c at the same time, then b has its usual
effect on q and c has its usual effect on r.

execute([a,b]) :: ~p ==> p & ~q
execute([a,b]) :: p ==> ~p & q
execute([a,c]) :: a
execute([a,c]) :: c
execute([b,c]) :: q & ~r ==> ~q & r
execute([b,c]) :: ~q & r ==> q & ~r

124 14. DYNAMICLOGIC PROGRAMS
Note that, if all actions in an application are independent of each other, specifying the

behavior of compound actions is very simple. Suppose, for example, we had a system with a
selection of individual actions execute(a), execute(b), and so forth; and suppose that these
actions were all independent. Then we could define the behavior of a system in response to an
arbitrary subset of these actions with the rule shown below (together with the rules defining the
individual actions).

execute(L) :: member(A,L) ==> execute(A)

Formalizing the behavior of simultaneous inputs can be tedious. However, using operation
definitions for compound actions, it is at least possible to formalize this behavior correctly in
situations where independent treatment would be inadequate.

14.6 EXERCISES
14.1. Consider the Buttons and Lights World described in the chapter but in this version

assume there is a fourth button d that toggles all of the lights at once. Write an operation
definition for d.

14.2. Rewrite the operation definitions for the Buttons and Lights World to deal with the
possibility of simultaneous execution of all three actions a and b and c. Assume that
these actions have their usual effects when done independently but result in all three
lights turning off when all three buttons are pushed at the same time.

125

C H A P T E R 15

DatabaseManagement
15.1 INTRODUCTION
In the preceding chapter, we looked at the process of updating datasets in response to inputs.
In this chapter, we look at a special case of this more general process, one where the inputs are
additions and deletions of specific facts.

In order to specify such inputs, we use two new operations, viz. add and delete. add
takes a ground atom as argument and signifies a request that the specified atom be added to
the current dataset. delete takes a ground atom as argument and signifies a request that the
specified atom be deleted from the current dataset.

Note that a system may or may not act upon the requests it receives. It may also add or
delete facts not specified in the input. Operation rules allow the programmer to specify exactly
how the database should change in response to inputs.

In this chapter, we look first at the use of operation definitions to ensure that dataset con-
straints remain satisfied after updates. In the subsequent section, we look at the use of operation
definitions to update materialized views. And then we look at the use of operation definitions
to specify updates to base relations when given requests for updates to view relations.

15.2 UPDATEWITHCONSTRAINTS
Consider a database system with constraints, and suppose the database system receives an update
request that, if executed literally, would lead to a dataset that violates the constraints.

One course of action in this situation is for the system to simply reject the request, possibly
with an indication of the possible problems (as suggested in the section on alerting in the unit
on managing inconsistency).

An alternative is for the system to repair the update set by augmenting it with additions
and deletions in such a way that the resulting update set leads to a dataset that reflects the
requested updates and satisfies all constraints.

The bad news is that there is no method of repair that is satisfactory in all applications.
The good news is that, using operation definitions, an administrator can specify how to make
repairs in such situations.

As an example of this mechanism in action, consider the rules shown below. The first
directs the system to remove a sentence of the form male(X) whenever the user adds a sentence
of the form female(X) (in addition to adding male(X)). The second rule is analogous to the

126 15. DATABASEMANAGEMENT
first with male and female reversed. Together, these two rules enforce the mutual exclusion on
male and female.

add(female(X)) :: female(X) & ~male(X)
add(male(X)) :: male(X) & ~female(X)

Similarly, we can enforce an “inclusion dependency” on parent and adult by writing the
following rule. If the user requests the system to add a sentence of the form parent(X,Y), then
the system also adds a sentence of the form adult(X).

add(parent(X,Y)) :: adult(X)

Note that not all constraints can be enforced using update rules. For example, if a user
suggests adding the sentence parent(art,art) to the database in our kinship example, there
is nothing the system can do to repair this error; and, if it wants to maintain consistency, it must
reject the update.

A separate problem arises when there are multiple possible repairs and none seems better
than the others. For example, we might have a constraint saying that every person is either male
or female. If the user specifies a person fact involving a new person but does not specify the
gender of that person, there may be no way for the system to decide that gender for itself. In
such cases, the system could reject the request; it could collect additional information; or it could
make an arbitrary choice and allow the user to modify the dataset using additional updates.

15.3 MAINTAININGMATERIALIZEDVIEWS
A materialized view is a defined relation that is stored explicitly in the database. The benefit of
materializing views is that a system can simply look up answers to questions about the materi-
alized view rather than having to compute answers from other stored relations. The downside
is that we need to keep such relations up-to-date as changes are made to the underlying base
relations. Operation definitions can help here by enabling automatic updates to materialized
views.

Suppose, for example, we had a database with parent and male as base relations; suppose
we were to define father as a view of parent and male: and suppose we were to materialize the
father relation. Then we could write update rules to maintain this materialized view. According
to the first rule below, the system should add a sentence of the form father(X,Y) whenever the
user adds parent(X,Y) and male(X) is known to be true. The other rules cover the other cases.

add(parent(X,Y)) :: male(X) ==> father(X,Y) &
add(male(X)) :: parent(X,Y) ==> father(X,Y)

15.4. UPDATETHROUGHVIEWS 127
delete(parent(X,Y)) :: ~father(X,Y)
delete(male(X)) :: ~father(X,Y)

This approach works, but it can be a little tedious to write such update rules. Fortunately,
there are some alternatives. (1) First of all, it is possible to build a program that differentiates
view definitions and produces such operation definitions automatically. (2) Second, it is possible
to build differential update processing of this sort directly into a system’s update engine. In
this second case, explicit operation definitions are unnecessary. However, they remain useful in
explaining how the system processes update requests.

15.4 UPDATETHROUGHVIEWS
In the preceding section, we discussed the process of updating views as a result of changes to the
base relations in a dataset. In this section, we discuss the reverse of this process, viz. updating
base relations when given changes to views of those relations. This process is often called update
through views.

Updating views given changes to base relations is simple because there is a functional
relationship between the views and the base relations in terms of which they are defined. The
challenge in update through views is that there may be many extensions of the base relations
that give rise to the same view extension. As a result, a change to a view relation can sometimes
be accomplished in various ways, i.e., the update can be ambiguous.

As an example, consider a deductive database in which we are storing the p relation and
the q relation, and suppose we are given the following definition of the r in terms of p and q.

r(X) :- p(X)
r(X) :- q(X)

Suppose now that the user asks us to add the fact r(a). How should we modify our dataset
so that this conclusion holds? Should we add p(a) or q(a) or both?

Of course, a system could simply reject an update in the face of ambiguity. But in some
cases the programmer might prefer that the system make a choice and leave it to the user to
correct that choice if it is in error.

The beauty of operation definitions is that they allow the programmer to specify which
of various possible base relation updates is appropriate given a change to an update to the view
relations in a logic program.

As an example, in the case mentioned above, the programmer might choose to record
p(a) (e.g., if there are far more p objects than q objects). In this case, he could specify this
policy by writing the following operation definition.

add(r(X)) :: ~q(X) ==> p(X)

128 15. DATABASEMANAGEMENT

15.5 EXERCISES
15.1. Let us assume that the likes relation is symmetric, i.e., if one person likes another,

then the second person likes the first. Define the add and delete operations to update
the likes relation in a way that enforces the symmetry.

15.2. Parenthood is an asymmetric relation. It is not possible for a person to be his own parent.
Define the add operation in such a way that it enforces the asymmetry of parent when
the user requests the addition of a parent fact.

15.3. Assume that the q relation is defined as shown below. Define add and delete to update
the r relation properly when a user requests the system to add or delete a p or q factoid.

r(X,Y) :- p(X,Y) & ~q(Y,X)

15.4. Assume that the t relation is defined as shown below. Define add and delete to update
the t relation properly when a user requests the system to add or delete a p or q factoid.

t(X,Y) :- p(X,Y)
t(X,Y) :- q(X,Y)

15.5. Given the view definition shown below, there are three general ways to update the p
and q relations when given a request to add or delete an atom involving the r relation.
Define add and delete for each of these possibilities.

r(X,Y) :- p(X,Y) & q(X,Y)

129

C H A P T E R 16

InteractiveWorksheets
16.1 INTERACTIVEWORKSHEETS
Interactive worksheets are a simple but powerful way for people tomanage data and to solve data-
related problems. Examples of interactive worksheets range from simple, single-user spread-
sheets (such as the interactive grids of cells in systems like Numbers and Excel) to collaborative,
multi-institutional planning and design tools.

The power and popularity of interactive worksheets stems from a combination of features.

1. Meaningful data display. Data is typically presented on worksheets in forms suited to the
type of data involved—as tables, charts, graphs, and so forth.

2. Modifiability. Data can be directly modified by the user in what-you-see-is-what-you-get
fashion. Importantly, data can be changed in whatever order suits the user.

3. Constraint checking. Data is automatically checked for completeness and consistency with
static and dynamic constraints. Users are alerted to problems; and, where possible, they
are given guidance in eliminating those problems.

4. Automatic computation of results. Consequences of acceptable changes are automatically
computed, and the presentation is updated to reflect those consequences.

While these features can be used in many information management settings, they have
special value in certain types of applications, e.g., configuration tasks (such as product config-
uration worksheets and academic program sheets), teaching (such as interactive exercises and
simulated environments), online games (such as Chess, Checkers, Pentago), and so forth.

The process of implementing interactive worksheets using traditional programming tech-
nologies is time-consuming and expensive. The good news is that Logic Programming can dra-
matically simplify this process. Making it easier for developers to create and maintain work-
sheets. And in many cases making it possible for non-developers to do the same. Creating and
maintaining worksheets can and should be “do it yourself ” (DIY). Just as it is possible for users
without programming expertise to create and manage traditional spreadsheets, it should be pos-
sible for users without traditional programming expertise to create and manage worksheets on
their own.

In this chapter, we see some ways in which Logic Programming techniques can be used in
creating interactive worksheets that operate in World Wide Web browsers. Although our dis-

130 16. INTERACTIVEWORKSHEETS
cussion focusses on this one class of interactive worksheets, the techniques can easily be applied
to building interactive worksheets in other technologies.

16.2 EXAMPLE

As an example of an interactive worksheet implemented as a web page, take a look at the
academic program sheet shown in http://logicprogramming.stanford.edu/chapters/
demo.html. This worksheet provides a means for a student to design a program of study that
achieves his academic goals and at the same time meets the academic requirements of his uni-
versity.

The worksheet includes a listing of courses available to the student. At the bottom on the
left, there is a pie chart indicating the proportion of his selected courses in various subareas of
Computer Science. In the middle, there is an indication of the number of units of credit the
student is requesting for each selected course. And, on the right, there is a listing of professors
responsible for those courses.

The student can change his program by selecting courses in whatever order he likes. Click-
ing an empty checkbox adds the corresponding course to his program of study. Clicking a check-
box that is already checked removes the corresponding course from his program. Once a course
is selected, the student can change the number of units of credit for each course by using the
slider associated with that course.

An important part of the update process is constraint checking. As each change is made,
the worksheet checks that all academic requirements are satisfied. If there is a violation, the
corresponding requirement turns red, indicating that there is something wrong. Once the re-
quirement is satisfied once again, the requirement turns black.

As the program is modified, as changes are made, the worksheet is updated accordingly.
For example, as each box is checked, it is added to the course list, and a photo of the associated
professor appears. Moving the slider for a course changes the requested credit; and, as such
changes are made, the pie chart automatically adjusts to show the portion of time the student is
devoting to various subareas of the department.

This is a simple example, but it illustrates the key features of interactive worksheets—
visibility of all relevant data, the ability to modify that data, automatic checking of constraints,
and automatic calculation and display of consequences.

16.3 PAGEDATA

The data underlying a web page appearing in a browser typically takes the form of a hierarchi-
cal data structure called a DOM (short for Document Object Model). The top node in this data
structure represents the document, and its child nodes represent its components. Nodes in the
DOM typically have attributes of various sorts (e.g., the width and height of a table); and, in

http://logicprogramming.stanford.edu/chapters/demo.html
http://logicprogramming.stanford.edu/chapters/demo.html

16.3. PAGEDATA 131
some cases, those attributes are objects with attributes of their own (e.g., the style attribute of a
node has attributes of its own (e.g., font family, font size, and so forth).

In order to use Dynamic Logic Programming to specify the appearance and behavior of
a web page, we need vocabulary to represent the state of a DOM in the form of factoids that
express this state.

First of all, we assign identifiers for the nodes of the DOM that we care about. In order
to give them meaning, we assign each of our identifiers as the value of the id attribute of the
corresponding node. For example, if we wanted to use the identifier mynode to refer to the input
element in the HTML fragment shown below, we would list that identifier as the id attribute
of that input widget, as shown in this example.

<center>
<input id='mynode' type='text' value='hello'
size='30' style='color:black'/>

</center>

Next, we invent predicates to describe the various properties of these nodes. See below for
the most commonly used predicates. For example, we use the binary predicate value to associate
an input node (selector or type-in field or textarea) with its value.

value(widget,value):
This factoid is true whenever the value associated with widget is value. The widget here
may be a text field, selector, radio button field, slider, and so forth.

holds(widget,value):
This factoid is true whenever one of the values associated with the multi-valued node
widget. The widget in this case multi-valued selector or a checkbox field.

attribute(widget,property,value):
This factoid is true whenever the property attribute of widget is value.

style(widget,property,value):
This factoid is true whenever the property style of widget is value.

innerhtml(widget,content):
This factoid is true whenever the innerHTML of widget is content. Note that content is
typically a string of characters.

Given this vocabulary, we can encode relevant information in the form of a dataset. For
example, the relevant state of the DOM fragment shown above can be represented by the dataset
shown below.

132 16. INTERACTIVEWORKSHEETS
value(mynode,hello)
attribute(mynode,size,30)
style(mynode,color,black)

16.4 GESTURES
User interaction with a web page takes the form of gestures (e.g., keystrokes and mouse-clicks).
In order to talk about these gestures, we need appropriate vocabulary. For example, we use the
constant click to represent the operation of clicking on a button. We use the constant select
to represent the operation of selecting a specific option from a selector.

select(widget,value):
This action occurs when the user enters or selects value as the value of widget. The widget
here may be an object or text field, a selector, a multi-valued menu, a checkbox field, a
radio button field, a slider, and so forth.

deselect(widget,value):
This action occurs when the user erases or deselects value as the value of widget.

click(widget):
This action occurs when the user clicks on widget.

tick:
This action occurs periodically. By default, it happens once per second. It is also occurs the
user clicks the Run button or the Step button in a simulation control box.

load:
This occurs when a page is first loaded.

unload:
This action occurs when a user leaves a page.

We use this vocabulary to represent user gestures. For example, if the user clicks a button
with identifier a, we represent this as the action click(a). If the user selects 3 from a selector
with identifier b, we represent this as select(b,3).

16.5 OPERATIONDEFINITIONS
Given a vocabulary for encoding data and gestures, we can describe the behavior of a worksheet
by writing suitable operation definitions. The following examples illustrate how this can be done.

Consider the following buttons with identifiers orange, blue, purple, and black.

blackblue purpleorange

16.5. OPERATIONDEFINITIONS 133
Suppose that we wanted the worksheet to change the color of this document (identified

as page) whenever the user clicks one of these buttons. This behavior can be described with the
following operation rules.

click(orange) :: style(page,color,orange)
click(blue) :: style(page,color,blue)
click(purple) :: style(page,color,purple)
click(black) :: style(page,color,black)

Alternatively, we can write these rules more compactly by using a variable, as shown below.

click(X) :: style(page,color,X)

This rule reads as follows. If a user clicks on button with X as id, then, in the next state of
the worksheet, the color style of the node identified as page should be X.

Although these operation rules work fine, they are not quite complete. This is because,
after clicking the above buttons, the state of our worksheet may include more than one fact
of the form style(page,color,X). To completely specify the desired behavior, we need to
remove the existing style factoids for page when a button is clicked. This can be done with the
following operation rule.

click(X) :: style(page,color,Y) & distinct(X,Y) ==>
~style(page,color,Y)

This rule reads as follows. If a user clicks on button X, and the color of page is Y, and Y
is different from X, then in the next state of the worksheet, the color of page should not be Y.

Now consider another example. Here we replace the four buttons with a selector with
identifier pagecolor and four options orange, blue, purple, and black.

black

Let’s suppose that we would like change the text color of this document based on the value
selected. We can describe this behavior with the following rules.

select(pagecolor,X) :: style(page,color,X)
select(pagecolor,X) :: style(page,color,Y) ==> ~style(page,color,Y)

The first rule states that, if a user selects value X for pagecolor, then
style(page,color,X) should be true in the next state, i.e., the text color of the page
should be X. The second rule say that, if a user selects value X for pagecolor and the style of

134 16. INTERACTIVEWORKSHEETS
page is Y and Y is different from X, then style(page,color,X) should not be true in the next
state.

Unfortunately, this is not quite enough. Our transition changes the color of the page, but
there is nothing changing the value of the pagecolor attribute. As a result, it will reset to black
after the gesture is processed. The following transition rules update the selector.

select(pagecolor,X) :: value(pagecolor,X)
select(pagecolor,X) :: value(pagecolor,Y) ==> ~value(pagecolor,Y)

As a final example, let’s look at an example of interactions between input widgets. The
operation rules for the four buttons in the first example change the color of the page correctly.
However, they do not update the color indicated in the selector.

The transition rule shown below prescribes the desired behavior. When the user clicks a
button with identifier X, then we want the value of the value of the selector to be updated and
we want any previous value to be removed.

click(X) :: value(pagecolor,X)
click(X) :: value(pagecolor,Y) ==> ~value(pagecolor,Y)

Combining these rules with the rules shown above allows the user to click either the
buttons or make selections and get the same effects in both cases.

16.6 VIEWDEFINITIONS
In the preceding section, we saw that a single gesture can have multiple effects. For example,
changing the value of a selector named pagecolor sets the value of the selector and changes
the color of the page. To implement this behavior, we need to manage both conditions in our
transition rules, and we need to store both conditions in our dataset. Moreover, if we are not
careful, our definitions might get out of sync with each other, and we would not get the behavior
we want.

The good news is that it is sometimes possible to write view definitions that describe such
behavior more economically and in a way that is less prone to mistakes. By defining some of our
predicates as views of other predicates, we do not need to store as much information and we can
get by with fewer transition rules.

In the case from the preceding section, suppose that we were to define the color of the
page node in terms of the value of the pagecolor node. The definition is shown below.

style(page,color,X) :- value(pagecolor,X)

With this definition in place, we could replace the operation rules shown in the last section
with the four shown below.

16.7. SEMANTICMODELING 135
click(X) :: value(pagecolor,X)
click(X) :: value(pagecolor,Y) ==> ~value(pagecolor,Y)

select(pagecolor,X) :: value(pagecolor,X)
select(pagecolor,X) :: value(pagecolor,Y) ==> ~value(pagecolor,Y)

There are fewer rules here, and they mention fewer predicates. In particular, there is no
mention of the style of the page. That property is fully determined by the value of pagecolor,
and so we do not need to store or update this information in our rules. Instead, the worksheet
computes the style using the view definition given above.

16.7 SEMANTICMODELING

So far, we have talked about purely reactive worksheets—in which behavior is defined directly
in terms of visible features and user gestures. In this section, we look at semantic modeling—
where behavior is defined in terms of relationships among objects in the application area of the
worksheet (e.g., people, places, movies, and so forth). We look at how we can use operation rules
to update this semantic data, and we look at how we can use view definitions to define syntactic
attributes in terms of semantic information.

Consider a course scheduling worksheet that is laid out as follows. In this layout, the
multi-valued selectors have identifiers course1, course2, course3, and course4, and they
have options autumn, winter, spring, and summer.

Course 1

Autumn

Winter

Spring

Summer

Course 2

Autumn

Winter

Spring

Summer

Course 3

Autumn

Winter

Spring

Summer

Course 4

Autumn

Winter

Spring

Summer

If a user of this worksheet selects the options autumn and spring in course1, then the
factoids holds(course1,autumn) and holds(course1,spring) are added to our dataset. Se-
mantically, this means that the user has selected course1 for both the autumn and spring
quarters.

Now, consider the alternative layout of this course scheduling worksheet shown below,
where the selectors have identifiers autumn, winter, spring, and summer and where they have
options course1, course2, course3, and course4 (denoting the courses that may be taken in
a quarter).

136 16. INTERACTIVEWORKSHEETS

Autumn

Course 1

Course 2

Course 3

Course 4

Winter

Course 1

Course 2

Course 3

Course 4

Spring

Course 1

Course 2

Course 3

Course 4

Summer

Course 1

Course 2

Course 3

Course 4

In this alternative layout, the user’s course selections correspond to the facts
holds(autumn,course1) and holds(spring,course1). Note that these facts are differ-
ent from the ones stored in the previous worksheet, i.e., holds(course1,autumn) and
holds(course1,spring). However, at a conceptual level, nothing has changed! In both cases,
the user has selected course1 for both the autumn and spring quarters.

The difference between the states of these two conceptually identical worksheets is due to
the difference in their layout. One way to design a semantic model of a worksheet is to separate
out what is stored in a worksheet’s state from what is rendered, e.g., style, value, holds facts.

The first step is to write out operation rules for the gestures on the worksheet’s widgets
and have the effects correspond to semantically meaningful relations.

For example, in the first course scheduling worksheet, we would use the operation rules
shown below.

select(Course,Quarter) :: taken(Course,Quarter)
deselect(Course,Quarter) :: ~taken(Course,Quarter)

In the second course scheduling worksheet, which is conceptually identical to the first
one, we would write the following rules.

select(Quarter,Course) :: taken(Course,Quarter)
deselect(Quarter,Course) :: ~taken(Course, Quarter)

The second step in creating a semantic worksheet is to define the layout of the worksheet
as a view over these semantically meaningful relations.

For example, in the first course scheduling worksheet, we would define holds as a view
of taken

holds(Course,Quarter) :- taken(Course,Quarter)

In the second course scheduling worksheet, we would define holds as shown below.

holds(Quarter,Course) :- taken(Course,Quarter)

16.7. SEMANTICMODELING 137
Now, suppose a user selects course1 in autumn and spring quarters. The facts stored in

both worksheets would be identical.

taken(course1,autumn)
taken(course1,summer)

The upshot is that the rules on each sheet, in effect, constitute a stylesheet for displaying
and updating that data. An important benefit of this is that the application data implicit in a
worksheet can be exchanged with other worksheets that manage the data in different ways.

PARTV

Conclusion

141

C H A P T E R 17

Variations
17.1 INTRODUCTION
In this chapter, we give brief descriptions of a few additional types of Logic Programming:
Logic Production Systems, Constraint Logic Programming, Disjunctive Logic Programming,
Existential Logic Programming, Answer Set Programming, and Inductive Logic Programming.

17.2 LOGIC PRODUCTIONSYSTEMS
Production systems are a programming language paradigm that has been widely used both for
computer applications such as expert systems and for representing the processes involved in
human thinking. Rules in a production system have the form: conditions ! actions. The rules
are executed in a cycle: facts in a working memory are matched with the conditions to derive the
actions to be executed. A working memory is similar to a dataset considered in this volume.
If more than one rule matches the conditions, a selection is performed to choose which rule
should be executed. The execution of a rule involves adding and removing facts from the working
memory. An example rule selection strategy is to associate priorities with the rules, and choose
a higher priority rule over a lower priority rule. The repeated execution of the rules generates the
successive states of the working memory, and this behavior provides an operational semantics to
the rules.

Production rules have been used to model three kinds of situations: stimulus-response
associations; forward chaining; and goal-reduction. We saw an example of a stimulus-response
association in Section 14.2 in the system with three lights: whenever the user pushes a button,
which is a stimulus, the response is for the system to toggle the corresponding light.

push_button :: p ==> ~p
push_button :: ~p ==> p

The following rule which we saw in Section 4.5 is an example of forward chaining, as any
time we add a parent fact, new grandparent facts are derived and added to the dataset. Such rules
can also be generalized as operations for updating materialized views as shown in Section 15.3.

parent(X,Y) & parent(Y,Z) ==> grandparent(X,Z)

142 17. VARIATIONS
As an example of goal reduction, and in the context of the planning problem considered in

Section 11.4, consider the following rule in which we state that if our goal state can be achieved
by performing an action a in state s, and it is possible for us to perform the action a in state s,
then that goal can be reduced to the goal of achieving state s.

goal(do(a,s)) & possible(a,s) ==> goal(s)

From the above examples, we can see that a natural analog exists between production rules
and dynamic rules and operations considered in this volume. In the Logic Production Systems
(LPS) framework, the production rules of the first kind are represented as dynamic rules, and the
production rules of the second and third kind are represented as view definitions. In addition
to giving dynamic rules an operational semantics similar to that of production systems, LPS
also gives dynamic rules a logical semantics. It interprets dynamic rules as declarative sentences
that need to be made true in a model that contains a sequence of time-stamped relation values,
external events, and actions.

17.3 CONSTRAINTLOGIC PROGRAMMING
Consider the Peano Arithmetic from Section 10.2, and the following query:

number(L) & number(M) & add(L,M,N) & add(L,M,s(N))

As the above query is equivalent to proving N = N + 1, it is trivially false, but when
posed to a logic programming system, it will run indefinitely. This is because the evaluation
algorithm considered in Chapter 8 does not check satisfaction of constraints across subgoals. In
a constraint logic program (CLP), the set of all constraints are tested for satisfiability at each
step in the evaluation, and therefore, it is able to answer that the above query is false.

In addition to checking global satisfaction of constraints, a CLP system allows constraints
to be stated directly as equations; it allows constraints to appear in queries; and during the
evaluation of the queries, it can generate new constraints. To illustrate these features, consider
the following program that computes the sum S of integers from 0 to N:

sumto(0,0)
sumto(N,S) :- N � 1 & N � S & sumto(N-1,S-1)

In the second rule above, constraints are stated directly using equation terms, and arith-
metic expressions appear as arguments to a subgoal. Furthermore, the second rule is unsafe
because both N and S are used in its body before they are bound. A CLP system is able to han-
dle such unsafe rules. It can also generate new constraints during the evaluation. For example,
during the evaluation of the query, S � 1, the second rule above will lead to the following
expanded version of its body:

17.4. DISJUNCTIVE LOGIC PROGRAMMING 143

N = N1 & S = S1 & N1 � 1 & N1 � S1 & sumto(N1 -1,S1-1)

The above examples illustrated the simplest form of constraints handled by the CLP sys-
tems: arithmetic equality and inequality. Such arithmetic constraints can appear in view defini-
tions considered in this volume. We saw an example use of such arithmetic inequality constraints
in the Cryptarithmetic problem in Section 6.5 even though the solution of that problem did not
require checking constraints across subgoals. In a constraint logic programming framework, the
unification procedure of Chapter 8 is generalized to invoke the constraint solver whenever the
expressions to be matched contain constraints. At each step of the evaluation, we must find a
unifier between the selected subgoal and the goal to be proven, and generate any new constraints.
In addition, we must check the consistency of the current set of constraints with the constraints
in the body of the view definition. Thus, two solvers are involved: unification, and the specific
constraint solver for the constraints in use.

Numerous extensions to the basic framework of CLP exist for problems that go beyond
simple arithmetic equality and inequality constraints. In some CLP systems, it is possible to
allow constraints in which values are floating point numbers or are defined using polynomial
equations. CLP has also been used for combinatorial search problems, for example, the Map
Coloring problem from Chapter 3. In some combinatorial problems, the goal is to not just
find one solution, but finding optimal solutions according to one or more optimization criteria;
finding all solutions; replacing (some or all) constraints with preferences; and considering a
distributed setting where constraints are distributed among several agents.

17.4 DISJUNCTIVE LOGIC PROGRAMMING

In Chapter 2, we defined a dataset as a collection of simple facts that characterize the state
of an application area. Facts in a dataset are assumed to be true; facts that are not included in
the dataset are assumed to be false. There are situations when our knowledge of the application
domain is incomplete in that given a set of facts we know that one or more them must be true
but we do not know which of them is true. For example, given a person object joe, we know
that either of male(joe) or female(joe) must be true, but we may not know which of these
is true.

To understand the difficulty posed by incomplete information, consider a world in which
we have two objects a and b, a unary relation p, and a disjunctive sentence (p(a) | p(b))
(where | is the or operator). Recall from Chapter 7 that a factoid is logically entailed by a closed
logic program if and only if it is true in every model of the program. In this example, a set
containing p(a), a set containing p(b), and a set containing both p(a) and p(b) are models of
the program, but their intersection is empty, and therefore, the only model is the empty set. This
allows us to conclude both ~p(a) and ~p(b) which contradicts our disjunctive sentence. There
has been extensive research on disjunctive logic programming to investigate different techniques

144 17. VARIATIONS
that allow us to reason effectively with such incompleteness. We consider one such technique
next.

We compute a set of definite facts as those ground atomic facts that occur in all the mini-
mal models or in none of the minimal models. If we need to determine whether (p(a) | p(b))
is true, it suffices to check if p(a) is true or if p(b) is true in every minimal model. If that is
true, we can conclude that (p(a) | p(b)) is true. To better appreciate this technique, let us
consider a more involved disjunctive logic program shown below.

q(a)
p(a) | p(b)

The above program has twominimal models: one containing q(a) and p(a), and the other
containing q(a) and p(b). Here, the set of definite facts includes q(a) as it appears in both the
minimal models, and it includes q(b) as it does not appear in any of the minimal models. We
can establish the truth of p(a) | p(b) by verifying that each minimal model contains either
p(a) or p(b).

17.5 EXISTENTIAL LOGIC PROGRAMMING
An existential rule is a rule that has an atom with a functional term in its head. Such rules
are also known as tuple generating dependencies in database systems. For our purposes, a logic
program that contains existential rules is referred to as an existential logic program. Consider
the following existential rules.

owns(X,house(X)) :- instance_of(X,person)
has_parent(X,f(X)) :- instance_of(X,person)
has_parent(X,g(X)) :- instance_of(X,male)
instance_of(f(X),person) :- instance_of(X,person)
instance_of(g(X),person) :- instance_of(X,person)

The first rule asserts that if X is a person, then X owns house(X). The second rule asserts
that if X is a person, then f(X) is the parent of that person. The third rule asserts that if X is
a male, then g(X) is the parent of X. The fourth and fifth rules assert that for every person,
f(X) and g(X) are also instances of a person. Each of these five rules has a functional term in
its head, and is therefore, an existential rule.

Existential rules can be written in Basic Logic Programming, but their effective usage
present two new challenges: termination of reasoning and reasoningwith incomplete knowledge.

The first existential rule shown above is the simplest form of an existential rule; and, by
itself, it does not present any problem with termination of reasoning. But, the fourth existential

17.6. ANSWER SETPROGRAMMING 145
rule leads to a non-terminating behavior, because it can be recursively applied to itself, leading
to infinitely many conclusions.

Let us next consider an example of incomplete knowledge. From the second
rule, we conclude has_parent(X,f(john)), and from the third rule, we conclude
has_parent(X,g(john)), but the relationship between f(john) and g(john) is under-
specified. Logically, f(john) and g(john) are two separate objects, but there are situations
when it may be desirable to conclude that they refer to the same person.

17.6 ANSWER SETPROGRAMMING

While defining the semantics of logic programs in Section 7.3, we said that an interpretation
D satisfies a ground atom p if and only if p is in D. We further said that D satisfies a ground
negation ~p if and only if p is not in D. This approach to defining the semantics is also known
as negation as failure, because we assume a negated atom to be satisfied because of its absence in
D. For a safe and stratified logic program, negation as failure semantics ensures that there is a
unique model.

Answer Set Programming (ASP) is an approach for defining the semantics of logic pro-
grams that may not be stratified. For example, consider the following rules.

p(1) p(2) p(3)
q(3) :- ~r(3) r(X) :- p(X) & ~q(X)

The above rules are not stratified. In ASP, the above rules lead to two answer sets shown
below.

Answer Set 1:

p(1) p(2) p(3) q(3) r(1) r(2)

Answer Set 2:

p(1) p(2) p(3) r(3) r(1) r(2)

An answer set solver is a program that takes an answer set program as an input and outputs
all the answer sets of that program. A typical answer set solver does not require an input query. In
this section, we consider the semantics of answer set logic programs, and some of their important
extensions.

The first step in defining answer set semantics is to compute the set of all instances of our
rules. For example, for the program considered above, the grounded program is shown below.

p(1) p(2) p(3)
q(3) :- ~r(3) r(1) :- p(1) & ~q(1)
r(2) :- p(2) & ~q(2) r(3) :- p(3) & ~q(3)

146 17. VARIATIONS
For a program that does not contain any negated atoms, or if it contains negated atoms

but is safe and stratified, it will have exactly one answer set. The answer set of such a program is
identical to its extension as defined in Section 7.3.

We next consider the programs that contain negated atoms which are not stratified. To
decide whether a set S of ground atoms is an answer set, we form the reduct of the grounded
program with respect to S, as follows. For every rule of the grounded program such that S does
not contain any of the negated items in the body of the rule, we drop the negated atoms from
that rule and only retain its positive atoms in the reduct. All other rules are dropped from the
grounded program altogether. The reduct does not contain any negated atoms, and we compute
its extension as defined in Section 7.3. If the extension coincides with S, then S is an answer set
of the given program.

As an example, suppose we wish to test if S = {p(1), p(2), p(3)} is an answer set
of the grounded program shown above. The reduct of the program with respect to S is shown
below.

p(1) p(2) p(3)
q(3) r(1) :- p(1)
r(2) :- p(2) r(3) :- p(3)

The extension of the reduct is {p(1), p(2), p(3), r(1), r(2), r(3), q(3)}which
is different from S. Hence, S = {p(1), p(2), p(3)} is not an answer set of this program.

Now, suppose S = {p(1), p(2), p(3), q(3), r(1), r(2)}.The reduct of the pro-
gram with respect to this new answer set is shown below.

p(1) p(2) p(3)
q(3) r(1) :- p(1) r(2) :- p(2)

The extension of this program is {p(1), p(2), p(3), q(3), r(1), r(2)} which is
identical to S. Hence S = {p(1), p(2), p(3), q(3), r(1), r(2)} is an answer set of this
program.

Answer set semantics provides an elegant way to define the meaning of unstratified logic
programs. ASP has been found to be a useful approach for declarative specification for a broad
range of combinatorial problems especially the ones that involve specifying complex constraints.
In addition, the ASP framework lends itself to easy generalization to deal with arithmetic and
disjunction. Public domain and commercial ASP solvers are now available that have impressive
run time performance on small problems.

17.7 INDUCTIVE LOGIC PROGRAMMING

Induction is reasoning from the specific to the general. For example, consider the following
dataset on kinship that is similar to what we have considered in the earlier chapters.

17.7. INDUCTIVE LOGIC PROGRAMMING 147

parent(a,b) parent(a,c) parent(d,b)
father(a,b) father(a,c) mother(d,b)
male(a) female(c) female(d)

Given the above dataset, we can use inductive reasoning to infer the following rules (or
view definitions):

father(X,Y) :- parent(X,Y) & male(X)
mother(X,Y) :- parent(X,Y) & female(X)

In Inductive Logic Programming, given a dataset, a set of starting view definitions, and a
target predicate, we can infer a view definition for the target predicate. In the example above, we
are given a dataset, no starting view definitions, and we can infer the view definition of father
and mother.

In the context of the Inductive Logic Programming, the dataset is also referred to as a set
of positive examples. Some inductive reasoning algorithms also take as input a set of negative
examples. If negative examples are not provided, they can be computed as the set of ground
atoms in the Herbrand base that are not present in the dataset. The combined set of positive and
negative examples taken together is also known as training data.

There are two broad classes of Inductive Logic Programming algorithms: top down, and
inverse deduction. In a top down approach to learning, we start with a general view definition,
and we restrict it until it satisfies all the positive and negative examples. In the inverse deduction
approach, we start from the known facts, and we search for view definitions that would have
been necessary to derive those facts.

149

A P P E N D I X A

Predefined Concepts in
EpilogJS

A.1 INTRODUCTION
EpilogJS is a library of Javascript subroutines designing for processing logic programs written
in Epilog. This appendix is a user guide for the predefined functions, the predefined relations,
and the various operators supported by EpilogJS.

A.2 RELATIONS

same(expression,expression)
The sentence same(x,y) is true if and only if x and y are identical. For example,
same(f(b),f(b)) is true.

distinct(expression,expression)
The sentence distinct(x,y) is true if and only if x and y are not identical. For example,
same(f(a),f(b)) is true.

evaluate(expression,expression)
The sentence evaluate(x,y) is true if and only if the value of x is y. For example,
evaluate(plus(2,3),5) is true.

member(expression,list)
The sentence member(x,l) is true if and only if x is a member of the list l . For example,
member(b,[a,b,c]) is true.

true(sentence,expression)
The sentence true(p,d) is true if and only if the sentence p is true in the dataset named
d . For example, if the dataset named mydataset contains the sentence p(a,b), then
true(p(a,b),mydataset) is true.

150 A. PREDEFINEDCONCEPTS INEPILOGJS

A.3 MATHFUNCTIONS
abs(number) ! number

The value of abs(x) is the absolute value of x. For example, the value of abs(-8) is 8.

acos(number) ! number
The value of acos(x) is the inverse cosine of x. For example, the value of acos(1) is 0.

acosh(number) ! number
The value of acosh(x) is the inverse hyperbolic cosine of x. For example, the value of
acosh(1) is 0.

asin(number) ! number
The value of asin(x) is the inverse sine of x. For example, the value of asin(0) is 0.

asinh(number) ! number
The value of asinh(x) is the inverse hyperbolic sine of x. For example, the value of
asinh(0) is 0.

atan(number) ! number
The value of atan(x) is the inverse tangent of x. For example, the value of atan(0) is 0.

atan2(number,number) ! number
The value of atan2(x,y) is the inverse tangent of x/y. For example, the value of
atan2(0,1) is 0.

atanh(number) ! number
The value of atanh(x) is the inverse hyperbolic tangent of x. For example, the value of
atanh(0) is 0.

cbrt(number) ! number
The value of cbrt(x) is the cube root of x. For example, the value of cbrt(8) is 2.

ceil(number) ! number
The value of ceil(x) is the smallest integer that is greater than x. For example, the value
of cbrt(2.2) is 3.

clz32(number) ! number
The value of clz32(x) is the number of leading zeros in the 32-bit representation of x.
For example, the value of clz32(2147483647) is 1.

cos(number) ! number
The value of cos(x) is the cosine of x. For example, the value of cos(0) is 1.

A.3. MATHFUNCTIONS 151
cosh(number) ! number

The value of cosh(x) is the hyperbolic cosine of x. For example, the value of cosh(0) is
1.

exp(number) ! number
The value of exp(x) is e to the power of x. For example, the value of exp(1) is
~2.718281828459045.

expm1(number) ! number
The value of expm1(x) is e to the power of x minus 1. For example, the value of expm1(0)
is 1.

floor(number) ! number
The value of floor(x) is e is the largest integer less than x. For example, the value of
floor(1.6) is 1.

fround(number) ! number
The value of fround(x) is the nearest single precision floating point number to x.

hypot(number,...,number) ! number
The value of hypot(x1,...,xk) is square root of the sum of the squares of x1,...,xk. For
example, the value of hypot(3,4) is 5.

imul(number,number) ! number
The value of imul(x,y) is the product of x and y as though they were 32 bit signed
integers. For example, the value of imul(4294967295,-5) is 5.

log(number) ! number
The value of log(x) is natural logarithm of x. For example, the value of log(1) is 0.

log1p(number) ! number
The value of log1p(x) is natural logarithm of x+1. For example, the value of log1p(0)
is 0.

log2(number) ! number
The value of log2(x) is base 2 logarithm of x. For example, the value of log(8) is 3.

log10(number) ! number
The value of log10(x) is base 10 logarithm of x. For example, the value of log(100) is
2.

max(number,...,number) ! number
The value of max(x1,...,xk) is the maximum of x1,...,xk. For example, the value of
max(3,4,1,2) is 4.

152 A. PREDEFINEDCONCEPTS INEPILOGJS
min(number,...,number) ! number

The value of min(x1,...,xk) is the minimum of x1,...,xk. For example, the value of
min(3,4,1,2) is 1.

minus(number,...,number) ! number
The value of minus(x1,...,xk) is the difference of x1,..., xk. For example, the value of
minus(9,4,3) is 2.

plus(number,...,number) ! number
The value of plus(x1,...,xk) is the sum of x1,..., xk. For example, the value of
plus(2,3,4) is 9.

pow(number,number) ! number
The value of pow(x,y) is x raised to the power y. For example, the value of pow(2,3) is
8.

quotient(number,...,number) ! number
The value of quotient(x1,...,xk) is the quotient of x1,..., xk. For example, the value
of quotient(12,3,2) is 2.

random() ! number
The value of random() is a random number between 0 (inclusive) and 1 (exclusive). For
example, one possible value of random is 0.23.

round(number) ! number
The value of round(x) is x rounded to the nearest integer. For example, the value of 1.6
is 2.

sin(number) ! number
The value of sin(x) is the sine of x. For example, the value of sin(0) is 0.

sinh(number) ! number
The value of sin(x) is the hyperbolic sine of i>x. For example, the value of sinh(0) is
0.

sqrt(number) ! number
The value of sqrt(x) is the positive square root of x. Works for any non-negative number
x. For example, the value of 4 is 2.

tan(number) ! number
The value of tan(x) is the tangent of x. For example, the value of tan(0) is 0.

tanh(number) ! number
The value of tan(x) is the hyperbolic tangent of x. For example, the value of tanh(0) is
0.

A.4. STRINGFUNCTIONS 153
times(number,...,number) ! number

The value of times(x1,...,xk) is the product of x1,..., xk. For example, the value of
times(2,3,4) is 24.

trunc(number) ! number
The value of trunc(x) is the integer part of x (removing any fractional component. For
example, the value of trunc(2.3) is 2, and the value of trunc(-2.3) is -2.

A.4 STRINGFUNCTIONS
stringappend(string,...,string) ! string

The value of stringappend(s1,...,sk) is the concatenation of s1, ..., sk. For example,
the value of stringappend("Hello",",","World","!") is "Hello, World!".

stringmin(string,...,string) ! string
The value of stringmin(s1,...,sk) is the si that is lexicographically smallest among the
specified strings. For example, the value of stringmin("def","abc","efg") is "abc".

matches(string,...,string) ! string
If the string str matches the regular expression pat, the value of matches(str,pat)
is the list consisting of the substring of str that matches pat and the substrings
of str that match the parenthesized components of pat. For example, the value of
matches("321-1245","(.)-(.)") is ["1-1","1","1"].

submatches(string,...,string) ! string
The value of submatches(str,pat) is the a list of all substrings of str that match
the regular expression pat. For example, the value of matches("321-1245",".2.") is
["321","124"].

A.5 LIST FUNCTIONS
append(list,...,list) ! list

The value of append(l1,...,lk) is the concatenation of l1, ..., lk. For example, the value
of append([a,b,c],[d,e,f]) is [a,b,c,d,e,f].

revappend(string,string) ! string
The value of revappend(l1,l2) is the result of concatenating the reverse of x onto y. For
example, the value of revappend([a,b,c],[d,e,f]) is [c,b,a,d,e,f].

reverse(list) ! list
The value of reverse([x1,...,xk]) is [xk,...,x1]. For example, the value of
reverse([a,b,c]) is [c,b,a].

154 A. PREDEFINEDCONCEPTS INEPILOGJS
length(list) ! numbmer

The value of length(l) is length of l . For example, the value of length([a,b,c]) is 3.

A.6 ARITHMETIC LIST FUNCTIONS
maximum([number,...,number]) ! number

The value of maximum([x1,...,xk]) is the maximum element in the specified list. For
example, the value of maximum([3,4,1,2]) is 4.

minimum(list) ! list
The value of minimum([x1,...,xk]) is the minimum element in the specified list. For
example, the value of minimum([3,4,1,2]) is 1.

sum(list) ! number
The value of sum([x1,...,xk]) is the sum of the elements in the specified list. For
example, the value of sum([3,4,1,2]) is 10.

range(list) ! number
The value of range([x1,...,xk]) is the range of the elements in the specified list, i.e.,
the difference between the maximum element and the minimum element. For example,
the value of midrange([3,4,2,1]) is 3.

midrange(list) ! number
The value of range([x1,...,xk]) is the midrange of the elements in the specified list,
i.e., one half of the sum of the maximum element and the minimum element. For example,
the value of midrange([3,4,2,1]) is 2.5.

mean(list) ! number
The value of mean([x1,...,xk]) is the mean of the elements in the specified list. For
example, the value of mean([3,4,2]) is 3.

median(list) ! number
The value of median([x1,...,xk]) is the median of the elements in the specified list.
For example, the value of median([3,14,2]) is 3.

variance(list) ! number
The value of variance([x1,...,xk]) is the mean of the elements in the specified list.
For example, the value of variance([3,4,2,1]) is 1.25.

stddev(list) ! number
The value of stddev([x1,...,xk]) is the standard deviation of the elements in the spec-
ified list. For example, the value of stddev([3,4,2,1]) is ~1.118033988749895.

A.7. CONVERSIONFUNCTIONS 155

A.7 CONVERSIONFUNCTIONS
symbolize(string) ! symbol

Thevalue of symbolize(str) is the symbol consisting of only the letters, underscores, and
digits in str in which all uppercase letters have been converted to lowercase. For example,
the value of symbolize("Your name.") is yourname.

newsymbolize(string) ! newsymbol
The value of newsymbolize(str) is the symbol consisting of only the letters, underscores,
and digits in str in which all uppercase letters have been converted to lowercase and all
spaces have been replaced by underscores. For example, the value of newsymbolize("Your
name.") is your_name.

readstring(string) ! expression
The value of readstring(str) is first expression that can be parsed from the characters
in str. For example, the value of readstring("p(a) p(b)") is p(a).

readstringall(string) ! expression
The value of readstring(str) is the list of all expressions that can be parsed from the
characters in str. For example, the value of readstring("p(a) p(b)") is [p(a), p(b)].

stringify(expression) ! string
The value of stringify(expression) is string representation of expression. For example,
the value of stringify(p(a) & p(b)) is "p(a) & p(b)".

stringifyall(expression*) ! string
The value of stringifyall([x1,...,x1]) is string representation of x1,...,x1. For ex-
ample, the value of stringifyall([p(a), p(b)]) is "p(a) p(b)".

listify(expression) ! list
The value of listify(expression) is the representation of expression as a list. For ex-
ample, the value of listify(p(a,b)) is [p,a,b].

delistify(list) ! expression
The value of delistify(l) is the representation of l as an expression. For example, the
value of delistify([p,a,b]) is p(a,b).

A.8 AGGREGATES
setofall(expression,sentence) ! list

The value of setofall([x,p]) is the list consisting of all distinct instances of x for which
the corresponding instance of p is true. For example, given a dataset containing p(a,b),
p(a,c), and p(a,d), the value of setofall(X,p(a,X)) is [b,c,d].

156 A. PREDEFINEDCONCEPTS INEPILOGJS
countofall(expression,sentence) ! number

The value of countofall([x,p]) is the number of distinct instances of x for which
the corresponding instance of p is true. For example, given a dataset containing p(a,b),
p(a,c), and p(a,d), the value of countofall(X,p(a,X)) is 3.

A.9 OPERATORS
nil The symbol nil is another representation for the empty list, i.e., nil and [] are synony-

mous.

cons(expression,list)
The symbol cons is the primary operator used in Epilog lists. For example, the list [a,b,c]
is equivalent to cons(a,cons(b,cons(c,nil))). Note that a!b!c!nil is another way
of writing this expression.

not(sentence)
The symbol not is the primary operator in negations. For example the ~p(a) is equivalent
to not(p(a)).

and(expression,...,expression)
The symbol and is the primary operator in conjunctions. For example, (p(X) & q(X)) is
equivalent to and(p(X),q(X)).

or(expression,...,expression)
The symbol or is the primary operator in disjunctions. For example, (p(X) | q(X)) is
equivalent to or(p(X),q(X)).

rule(expression,...,expression)
The symbol rule is the primary operator of rules in view definitions. For example, the rule
r(X) :- p(X) & q(X) is equivalent to rule(r(X),p(X),q(X)).

definition(expression,expression)
The symbol definition is the primary operator of function definitions. For example, the
definition f(X) := g(h(X)) is equivalent to definition(f(X),g(h(X))).

transition(expression,expression)
The symbol transition is the primary operator of transition rules. For example, the tran-
sition rule p(X) ==> q(X) is equivalent to transition(p(X),q(X)).

if(condition1, expression1, ..., conditionN, expressionN)
The symbol if is the primary conditional operator in function definitions. The
value of if(condition1, expression1, condition2, expression2, ...,
conditionN, expressionN) is expression1 is condition1 is true, else expression2

A.9. OPERATORS 157
if condition2 is true ... else expressionN if conditionN is true. For example, the value
of if(p(a),"yes",true,"no") if "yes" if p(a) is true else "no".
This builtin is a variadic, i.e., the number of arguments is not fixed.

choose(expression1, sentence)
The value of choose(expression, sentence) is a random member of the set
{expression | sentence evaluates to true}. For example, for the dataset {r(a),
r(b)}, the value of choose(f(X), r(X)) may either be f(a) or f(b).

159

A P P E N D I X B

Sierra
B.1 INTRODUCTION
Sierra is a browser-based interactive development environment (IDE) for Epilog. It allows users
to view and edit datasets and rulesets. It provides a variety of tools for querying and modi-
fying datasets and rulesets. As changes are made, it automatically updates visible datasets in
spreadsheet-like fashion in accordance with the user’s rules. It also provides tools for analyzing
datasets and rulesets, tools for tracing program execution, and tools for saving and loading files.

This document provides an introductory tour of the main features of Sierra. We see how
to load Sierra; we see how to create, view, and edit datasets and rulesets; and we see how to
save one’s work for later use. We suggest repeating the steps shown here in one’s browser as we
proceed through the tour.

B.2 GETTINGSTARTED
Since Sierra is browser-based, we start by loading a suitable browser. (Sierra runs in Safari,
Chrome, Firefox, and other browsers. In our examples here, we use Safari, although the appear-
ance and interaction are virtually the same in all major browsers.)

http://epilog.stanford.edu/homepage/sierra.php

This brings up a page that looks like the following.

http://epilog.stanford.edu/homepage/sierra.php

160 B. SIERRA

The command bar across the top provides access to menus concerning files, datasets, chan-
nels, rulesets, tools of various sorts, and system settings. We will introduce these menus one by
one as we proceed with our tour.

B.3 DATA
Clicking on the Datasets menu, we see two choices—Lambda (the default dataset) and New
Dataset (which is used to create additional named datasets). Let’s start by clicking on Lambda.
This opens a window showing the contents of the dataset named lambda. It is initially empty.

B.3. DATA 161

We can add data by typing into the window. Here we have entered the facts p(c,d),
p(a,b), and p(b,c). The window is highlighted in red indicating that we have made changes
but not yet committed those changes to the database.

162 B. SIERRA

Clicking the save button stores the data and removes the highlighting, indicating that the
window is showing the current data.

B.3. DATA 163

At this point, we can add or delete data or change it in other ways. One useful feature is
sorting the data. This can be accomplished by pressing the Sort button. Note that the window
is once again highlighted, indicating that the result of the sorting operation has not been saved
to the database.

164 B. SIERRA

Pressing Save once again commits these changes to the database.

B.3. DATA 165

Suppose we edit the data and the result is syntactically illegal, as shown below.

166 B. SIERRA

If we try to save the window, we will get an error message like the following, and the
database will not be modified.

B.3. DATA 167

At this point, we can either repair the problem and try again, or we can click Revert to
return to the current state of the dataset in the database, as we have done here.

168 B. SIERRA

B.4 QUERIES
The Tools menu contains tools for programmatically querying and updating data. If we select
the Query tool, we get a window like the one shown here. Note that the window may appear
on top of an existing window. To move a window, we click on the title bar of the window and
drag to the desired location. If we want to resize a window, we click on the tab in the lower
right-hand corner and drag to the desired size. Here, we have repositioned the window to the
right of lambda.

B.4. QUERIES 169

To form a query, we enter an expression for our desired answer in the Pattern field and we
enter our query in the Query field. Here, we are asking for all expressions of the form goal(X,Z)
where p(X,Y) & p(Y,Z) is true.

170 B. SIERRA

Pressing the Show button evaluates the query and places the results in the query window.
In this case, there are just two answers, viz. goal(a,c) and goal(b,d).

B.4. QUERIES 171

In general, queries can have many answers. By default, the Query tool shows only 100
answers, as shown in the count field. We can change this default by editing this field. In the case
of expensive queries, it is often desirable to ask for just one result. Once a result or results have
been shown, we can get the next batch of answers by clicking the Next button.

The Autorefresh checkbox tells the system whether we want the query to be recomputed
automatically in responses to changes in the database and rulebase. Here, we have checked the
box, thereby commanding automatic refresh.

172 B. SIERRA

Now, let’s go back to lambda and add another another fact.

B.4. QUERIES 173

When we press Save, the data is saved and the Query window is automatically updated,
as shown here.

174 B. SIERRA

Note that it is common for users to have multiple query windows open at the same time
and to have their Autorefresh boxes checked. When changes are made to the database, all such
boxes are refreshed automatically in spreadsheet style.

B.5 UPDATES
The Tools menu also contains tools for programmatically modifying the database. Clicking on
the Transform produces a window like the one shown here.

B.5. UPDATES 175

This tool allows us to perform transformations on the database. To specify a transforma-
tion, we enter a pattern into the Condition filed and a pattern in the Conclusion field, as shown
here.

176 B. SIERRA

In executing a transformation, Sierra finds all variable bindings that satisfy the specified
condition and, for each, modifies the database in accordance with the instances of the conclusion
corresponding tho that variable binding. In this case, we are requesting that Sierra find all facts
of the form p(X,Y); and, for each of these, we want it to delete that fact and replace it with a
fact of the form p(Y,X), i.e., the same fact with the arguments reversed.

Pressing the Execute button in this case leads to the situation show below. Note that
the facts in lambda have been changed as directed. Note also that the query window has been
updated to reflect the new data.

B.5. UPDATES 177

The Expand button asks Sierra to display the additions and deletions that would be per-
formed if the transformation were to be executed in the current state. It is extremely useful in
debugging to see changes before they are made.

178 B. SIERRA

The Expand on Update checkbox directs Sierra to refresh the changes that would be nec-
essary as the database changes. For example, if we were to check this box and click Execute, we
would see the database switch back to its original state and display a different set of changes.

B.6. VIEWDEFINITIONS 179

Finally, the checkbox labeled Run on Clock Tick allows us to schedule the transformation
rule to run whenever the clock ticks. In this case, it would result in the order of arguments of
the facts in the dataset oscillating back and forth. This case is not too interesting, but updating
on clock tick is often useful in simulating dynamic systems.

B.6 VIEWDEFINITIONS
Views in Logic Programming are effectively named queries. An important benefit of this is
composition. Once we have a name for a view, we can use that name in defining other views.
Moreover, we can use the name in defining the view itself, i.e., in defining recursive views. View
definitions are expressed by adding rules to a ruleset. In Sierra, rulesets are accessed via the
Ruleset menu.

Clicking on the Ruleset menu, we see only one choice—Library.This is the default ruleset.
(In advanced versions of Sierra, it is possible to manage multiple rulesets, but this feature is not
enabled in the basic version shown here.)

Let’s start by clicking on Library. This opens a window showing the contents of the ruleset
named library. As with the lambda dataset, it is initially empty.

180 B. SIERRA

As this is a rule window, we can enter rules by typing in the window. Here, for example,
we have defined the ancestor relation anc in terms of the parent relation p.

B.6. VIEWDEFINITIONS 181

As with lambda, we need to click the Save button in order for our definition to be recorded
in our ruleset.

182 B. SIERRA

Once we have a view defined, we can use it in queries and transforms. We could, for exam-
ple, open another query window and write a query using anc. However, there is a streamlined
tool for this purpose, viz. Compute. Here we have clicked the Compute button and gotten an
empty Compute window.

B.6. VIEWDEFINITIONS 183

If we enter anc(b,Y) in the query field and press Show, we get a list of all facts in which
b appears as the first argument.

184 B. SIERRA

As with queries, if we check the Autorefresh box, Sierra will keep the display up to date
as we make changes. For example, if we were to add an additional fact to lambda, the answer set
would be updated as shown here. (Note that the Query and Transform windows have also been
updated.)

B.7. OPERATIONDEFINITIONS 185

As with queries, it is possible to request a specific number of answers to be shown and to
step through them using the Next button.

B.7 OPERATIONDEFINITIONS
Operations in Logic Programming are effectively named transformations. As with views, an
important benefit of this is composition. Once we have a named operation, we can use that
name in defining other operations. Moreover, we can use the name in defining the operation
itself, i.e., in defining recursive operations.

Operation definitions are expressed by adding rules to a ruleset, in this case library. Here,
for example, we have defined the operation purge. On executing purge(X), Sierra eliminates
all children of p, all children of children, and so forth.

186 B. SIERRA

Once we have an operation defined, we can use it in transforms. We could, for example,
open another transform window and write purge as a conclusion. However, once again, there
is a streamlined tool for this purpose, viz. Execute. Here we have clicked Execute on the Tool
menu and gotten an empty Execute window.

B.7. OPERATIONDEFINITIONS 187

If we enter purge(c) in the query field and press Expand, we see a list of all facts that
will be deleted if we execute purge(c). Note that, if executed, these facts would be removed in
a single step, i.e., operation execution is an “atomic” action.

188 B. SIERRA

As with the Transform tool, we have the option of expansion on update and the option
of running on clock tick.

If, at this point, we press the Execute button, Sierra will delete the indicated facts and
update all windows accordingly, as shown here.

B.8. SETTINGS 189

Although not illustrated by this example, operation definitions are extremely useful as
event handlers for interactive user interfaces, e.g., browser-based worksheets.

B.8 SETTINGS
The Settings menu allows us to control the inference engine inside Sierra.

Clicking Queries brings up an interaction pane that allows us to specify the number of
inference steps performed on an individual query before the system terminates its efforts.

190 B. SIERRA

Clicking Transitions brings up an interaction pane that allows us to specify the number
of depth of recursion in expanding operation definitions.

B.8. SETTINGS 191

Clicking Timer brings up a window that allows us to set the timer going. This will run the
operations in Transform and Execution windows where we have checked Run on Clock Tick.

192 B. SIERRA

B.9 FILEMANAGEMENT
The Load option on the File menu allow us to read datasets and rulesets from the local file
system and load them into library, lambda, or named datasets. The Save options allows us to
write data from any window to the local file system.

The Save Configuration option allows us to save the complete state of Sierra to the local
file system, including data, rules, settings, open windows, and so forth. The Load configuration
option allows us to load a previously saved configuration file. These operations are extremely
useful in developing Logic Programming applications. We can stop work and continue right
where we left off on another day. And we can exchange demonstrations by sharing config files
with others.

B.10 CONCLUSION
In addition to the capabilities described here, Sierra provides tools for manipulating communi-
cation channels, which allow flow of information between Sierra and external data sources and
that enable collaboration between different incarnations of Sierra running on the same machine

B.10. CONCLUSION 193
or other machines. Unfortunately, the details are a limited complicated, and so we have skipped
over the details of these capabilities in this simple introduction.

Finally, it is worth noting that there is an extension of Sierra, known as Halle, which is
intended for use in developing interactive, web-based worksheets. In addition to the capabilities
described here, Halle provides tools for laying out these worksheets in WYSIYG fashion, dis-
playing those worksheets as separate windows in a single Sierra-like web page, and interacting
with those worksheets while allowing authors to view and edit the underlying data and rules in
Sierra-like fashion.

Comments and complaints to genesereth@stanford.edu.

genesereth@stanford.edu

195

References
[1] C. Baral and M. Gelfond, Logic programming and knowledge representation, Jour-

nal of Logic Programming, pp. 19–20 and pp. 73–148, 1994. DOI: 10.1016/0743-
1066(94)90025-6.

[2] A. J. Bonner and M. Kifer, Transaction logic programming, Proc. of the 10th International
Conference on Logic Programming, Budapest, Hungary, 1993.

[3] V. K. Chaudhri, S. J. Heymans, M. Wessel, and S. C. Tran, Object-oriented knowledge
bases in logic programming, Technical Communication of International Conference in Logic
Programming, 2013.

[4] K. L. Clark and S.-A. Tarnlund, Logic Programming, Academic Press, 1982.

[5] W. F. Clocksin and C. S. Mellish, Programming in Prolog, Springer-Verlag, 1984. DOI:
10.1007/978-3-642-97596-7.

[6] C. J. Date, WHAT Not HOW—The Business Rules Approach to Application Development,
Addison-Wesley, 2000.

[7] R. Dechter and D. Cohen, Constraint Processing, Morgan Kaufmann, 2003. DOI:
10.1016/B978-1-55860-890-0.X5000-2.

[8] D. DeGrout and G. Lindstrom (Eds.), Logic Programming: Functions, Relations, and Equa-
tions, Prentice Hall, 1986.

[9] M. Gelfond and Y. Kahl, Knowledge Representation, Reasoning, and the Design of Intelligent
Agents:TheAnswer-Set Programming Approach, 1st ed., Cambridge University Press,March
10, 2014. DOI: 10.1017/cbo9781139342124.

[10] M. R. Genesereth and M. L. Ginsberg, Logic programming, CACM, 28(9):933–941,
1985. http://dl.acm.org/citation.cfm?id=4287 DOI: 10.1145/4284.4287.

[11] M. R. Genesereth and A. Mohaptra, A practical algorithm for reformulation of deductive
databases, SAC, Limassol, Cyprus, 2019.

[12] C. Hewitt, Planner: A language for proving theorems in robots, IJCAI, 1969.

[13] P. Hayes, Computation and deduction, in Proc. of the 2ndMFCS Symposium, pp. 105–118,
Czechoslovak Academy of Sciences, 1973.

http://dx.doi.org/10.1016/0743-1066(94)90025-6
http://dx.doi.org/10.1016/0743-1066(94)90025-6
http://dx.doi.org/10.1007/978-3-642-97596-7
http://dx.doi.org/10.1007/978-3-642-97596-7
http://dx.doi.org/10.1016/B978-1-55860-890-0.X5000-2
http://dx.doi.org/10.1016/B978-1-55860-890-0.X5000-2
http://dx.doi.org/10.1017/cbo9781139342124
http://dl.acm.org/citation.cfm?id=4287
http://dx.doi.org/10.1145/4284.4287

196 REFERENCES
[14] R. Kowalski, Predicate logic as a programming language, in Proc. IFIP Congress, pp. 569–

574, Stockholm, North Holland, 1974.

[15] R. Kowalski, Algorithm = logic + control. CACM, 22(7):424–436, 1979. DOI:
10.1145/359131.359136.

[16] R. Kowalski, Logic for Problem Solving, North-Holland, 1979. DOI:
10.1145/1005937.1005947.

[17] R. Kowalski, The early years of logic programming, CACM, 31:38–43, 1987. DOI:
10.1145/35043.35046.

[18] R. Kowalski and F. Sadri, Programming in logic without logic programming,
TPLP, 16:269–295, 2016. http://www.doc.ic.ac.uk/rak/papers/KELPS DOI:
10.1017/s1471068416000041.

[19] V. Lifschitz, Answer Set Programming, 1st ed., Springer-Verlag, October 3rd, 2019. DOI:
10.1007/978-3-030-24658-7.

[20] J. W. Lloyd, Foundations of Logic Programming, Springer-Verlag, 1988. DOI:
10.1007/978-3-642-83189-8.

[21] S. H. Muggleton, Latest Advances in Inductive Logic Programming, Imperial College Press,
2015. DOI: 10.1142/p954.

[22] M.-L. Mugnier and M. Thomazo, An introduction to ontology-based query answer-
ing with existential rules, Proc. of Reasoning Web: Reasoning on the Web in the Big Data
Era, 10th International Summer School, Athens, Greece, September 8–13, 2014. DOI:
10.1007/978-3-319-10587-1_6.

[23] F. Rossi, P. Van Beek, and T. Walsh (Eds.),Handbook of Constraint Programming, Elsevier,
2006.

[24] L. Tekle, Subsumptive tabling beats magic sets, SIGMOD, 2011. http:
//logicprogramming.stanford.edu/readings/tekle.pdf

[25] J. McCarthy, Programs with common sense, Symposium on Mechanization of Thought Pro-
cesses, National Physical Laboratory, Teddington, England, 1958. http://www-formal.
stanford.edu/jmc/mcc59.ps

[26] J. McCarthy, Generality in artificial intelligence, CACM, December 1987. DOI:
10.1145/1283920.1283926.

[27] J. Minker, On indefinite databases and the closed world assumption, in International Con-
ference on Automated Deduction, pp. 292–308, Springer, Berlin, Heidelberg, 1982. DOI:
10.1007/bfb0000066.

http://dx.doi.org/10.1145/359131.359136
http://dx.doi.org/10.1145/359131.359136
http://dx.doi.org/10.1145/1005937.1005947
http://dx.doi.org/10.1145/1005937.1005947
http://dx.doi.org/10.1145/35043.35046
http://dx.doi.org/10.1145/35043.35046
http://www.doc.ic.ac.uk/rak/papers/KELPS
http://dx.doi.org/10.1017/s1471068416000041
http://dx.doi.org/10.1017/s1471068416000041
http://dx.doi.org/10.1007/978-3-030-24658-7
http://dx.doi.org/10.1007/978-3-030-24658-7
http://dx.doi.org/10.1007/978-3-642-83189-8
http://dx.doi.org/10.1007/978-3-642-83189-8
http://dx.doi.org/10.1142/p954
http://dx.doi.org/10.1007/978-3-319-10587-1_6
http://dx.doi.org/10.1007/978-3-319-10587-1_6
http://logicprogramming.stanford.edu/readings/tekle.pdf
http://logicprogramming.stanford.edu/readings/tekle.pdf
http://www-formal.stanford.edu/jmc/mcc59.ps
http://www-formal.stanford.edu/jmc/mcc59.ps
http://dx.doi.org/10.1145/1283920.1283926
http://dx.doi.org/10.1145/1283920.1283926
http://dx.doi.org/10.1007/bfb0000066
http://dx.doi.org/10.1007/bfb0000066

REFERENCES 197
[28] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, Pearson Education

Limited, 2016.

[29] M. J. Sergot, F. Sadri, R. Kowalski, F. Kriwaczek, P. Hammond, and H. T.
Cory, The British Nationality Act as a logic program, CACM, 29(5):370–386,
1986. http://complaw.stanford.edu/complaw/readings/british_nationality.
pdf DOI: 10.1145/5689.5920.

[30] J. D. Ullman, Bottom-up beats top-down for Datalog, PODS, 1989.
http://logicprogramming.stanford.edu/readings/ullman.pdf DOI:
10.1145/73721.73736.

[31] J. D. Ullman, Principles of Database and Knowledge-Base Systems—Volume II:TheNewTech-
nologies, Computer Science Press, 1989.

http://complaw.stanford.edu/complaw/readings/british_nationality.pdf
http://complaw.stanford.edu/complaw/readings/british_nationality.pdf
http://dx.doi.org/10.1145/5689.5920
http://logicprogramming.stanford.edu/readings/ullman.pdf
http://dx.doi.org/10.1145/73721.73736
http://dx.doi.org/10.1145/73721.73736

199

Authors’ Biographies

MICHAELGENESERETH
Michael Genesereth is a professor in the Computer Science Department at Stanford Univer-
sity and a professor by courtesy in the Stanford Law School. He received his Sc.B. in Physics
from M.I.T. and his Ph.D. in Applied Mathematics from Harvard University. Genesereth is
most known for his work on Computational Logic and applications of that work in Enterprise
Management, Computational Law, and General Game Playing. He is one of the founders of
Teknowledge, CommerceNet, Mergent Systems, and Symbium. Genesereth is the current di-
rector of the Logic Group at Stanford and co-founder and research director of CodeX (the
Stanford Center for Legal Informatics).

VINAYK. CHAUDHRI
Vinay K. Chaudhri is formerly a program director in the Artificial Intelligence Center at SRI
International, and currently affiliated with the Stanford Computer Science Department. He re-
ceived his Ph.D. in Computer Science from University of Toronto, Canada. Dr. Chaudhri is a
recognized expert on artificial intelligence, including knowledge representation and reasoning,
question answering, ontologies, and knowledge acquisition. At Stanford his activities include
promoting logic education for secondary schools, investigating techniques for rapidly acquiring
formal knowledge and productizing intelligent textbooks. He consults with the financial indus-
try on computable contracts and knowledge graphs. He has also taught courses on knowledge
representation and reasoning and logic programming.

	Preface
	Introduction
	Introduction
	Programming in Logic
	Logic Programs as Runnable Specifications
	Advantages of Logic Programming
	Applications of Logic Programming
	Basic Logic Programming

	Datasets
	Introduction
	Conceptualization
	Datasets
	Example – Sorority World
	Example – Kinship
	Example – Blocks World
	Example – Food World
	Reformulation
	Exercises

	Queries and Updates
	Queries
	Introduction
	Query Syntax
	Query Semantics
	Safety
	Predefined Concepts
	Example – Kinship
	Example – Map Coloring
	Exercises

	Updates
	Introduction
	Update Syntax
	Update Semantics
	Simultaneous Updates
	Example – Kinship
	Example – Colors
	Exercises

	Query Evaluation
	Introduction
	Evaluating Ground Queries
	Matching
	Evaluating Queries With Variables
	Computational Analysis
	Exercises

	View Optimization
	Introduction
	Subgoal Ordering
	Subgoal Removal
	Rule Removal
	Example – Cryptarithmetic
	Exercises

	View Definitions
	View Definitions
	Introduction
	Syntax
	Semantics
	Semipositive Programs
	Stratified Programs
	Exercises

	View Evaluation
	Introduction
	Top-Down Processing of Ground Goals and Rules
	Unification
	Top-Down Processing of Non-Ground Queries and Rules
	Exercises

	Examples
	Introduction
	Example – Kinship
	Example – Blocks World
	Example – Modular Arithmetic
	Example – Directed Graphs
	Exercises

	Lists, Sets, Trees
	Introduction
	Example – Peano Arithmetic
	Lists
	Example – Sorted Lists
	Example – Sets
	Example – Trees
	Exercises

	Dynamic Systems
	Introduction
	Representation
	Simulation
	Planning
	Exercises

	Metaknowledge
	Introduction
	Natural Language Processing
	Boolean Logic
	Exercises

	Operation Definitions
	Operations
	Introduction
	Syntax
	Semantics
	Exercises

	Dynamic Logic Programs
	Introduction
	Reactive Systems
	Closed Systems
	Mixed Initiative
	Simultaneous Actions
	Exercises

	Database Management
	Introduction
	Update With Constraints
	Maintaining Materialized Views
	Update Through Views
	Exercises

	Interactive Worksheets
	Interactive Worksheets
	Example
	Page Data
	Gestures
	Operation Definitions
	View Definitions
	Semantic Modeling

	Conclusion
	Variations
	Introduction
	Logic Production Systems
	Constraint Logic Programming
	Disjunctive Logic Programming
	Existential Logic Programming
	Answer Set Programming
	Inductive Logic Programming

	Predefined Concepts in EpilogJS
	Introduction
	Relations
	Math Functions
	String Functions
	List Functions
	Arithmetic List Functions
	Conversion Functions
	Aggregates
	Operators

	Sierra
	Introduction
	Getting Started
	Data
	Queries
	Updates
	View Definitions
	Operation Definitions
	Settings
	File Management
	Conclusion

	References
	Authors' Biographies

	Blank Page

